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PREFACE

SCIENCE, like many other topics, is much more interesting if it makes
sense to you. I wrote this book because science is extraordinarily
interesting to me, and I want to share that interest with other people.

My goal for the book is to convey the foundations of my own understand-
ing of science, which I have acquired over an extended period of time.
Scholars argue over whether science is a body of knowledge, a collection
of techniques, a social and intellectual process, a way of knowing, a
strictly defined method, and so forth. These arguments are not very inter-
esting to me, since I accept all of these elements as valid partial visions of
science. In one guise or another, they all appear somewhere in the book.
My other motivation for writing the book is to show that science, as well
as being interesting, is also important. A significant part of our culture,
our economy, and our environment are entangled with science in pro-
found ways. To comprehend the world we live in without some grasp of
science is difficult. Crucial issues are at stake, and these issues require an
understanding of science in order to approach them intelligently.

The audience for this book is anybody with some curiosity about the
issues I explore. No particular background is assumed. In writing, I espe-
cially had in mind a reader who enjoys ideas but hasn’t studied the sci-
ences in any depth. People who have a scientific background will also find
the book of interest, but I primarily had in mind people who are not
experts. In fact, my underlying assumption is that you don’t need any
particular expertise to have a genuine understanding of what science is
and how science works.

In order to keep the scope of the book manageable, I am using the word
“science” to mean natural science. (This is merely a convenient conven-
tion, not intended to reflect any opinion about the relative worth of the
disciplines I’m not including.) The social sciences, mathematics, and engi-
neering are sometimes discussed briefly, but the main focus of the book
is on chemistry, biology, physics, and the earth sciences. I have tried to
avoid any prejudice in favor of a particular discipline. I have also tried to
avoid favoring either the laboratory sciences or the historical/observa-
tional sciences. My own background is in physics, and that may have
colored my treatment and choice of topics. Nevertheless, I have tried to
maintain a broad transdisciplinary flavor.

A number of books already try to explain science to the general public.
I would like to articulate why I have written another one and why what
I have tried to accomplish is different. My overarching goal is to give the
reader more than just a description of how other people (scientists) think
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about the world; I want to communicate this thought process to readers
in a way that enables them to actually engage in a similar thought process.
My other claim to novelty is the distinctive combination of different ap-
proaches I’ve employed: historical narratives, integrative cross-disciplin-
ary ideas and concepts, comparisons with other (nonscientific) endeavors,
and characteristically scientific tactics for thinking about the world.
Lastly, I have put a lot of effort into presenting substantial ideas in a way
that does not oversimplify these ideas into fluff, but also does not bore
the reader to death. Of course, I don’t want to promise too much. I have
covered a lot of ground in just a few hundred pages. For every topic I
discuss, multiple volumes have been written. I can only scratch the surface
here and try to illuminate the major points of each issue with broad brush-
strokes. But despite these limitations, my intention is to get to the heart
of the matter in every case.

I have generally avoided expressing personal opinions on controversial
issues (social, political, or scientific), opting instead to present all sides as
fairly as I could. On the other hand, there are also sections of the book
where I have presented views that reflect a broad consensus among many
reasonable people, though other opinions may exist. In a few places, I
express personal opinions because I could not see any way to avoid it; I
have clearly indicated those passages that present no one’s thinking but
my own.

Finally, because this book contains so many interrelated ideas, I have
employed quite a few cross-references throughout. This practice allows
readers (optionally) to find useful information and background when un-
familiar ideas appear. My intention is to allow the book to be read in an
order other than from beginning to end. If you are one of those readers
who is well-adapted to the new electronic age, you can think of these
cross-references as hypertext links and pretend you are clicking a mouse
as you turn to the indicated page.

• • • • •

I have many debts to acknowledge regarding the creation of this book,
which is based on many years of prior work. My thinking during all that
time has been influenced by many teachers, colleagues, and friends.
Among my teachers, Prof. C. D. Swartz stands out as the first person who
introduced me to real science. The rest of my teachers and colleagues
who have contributed to my thinking over the years are too numerous to
mention. Many of my friends have influenced my thinking in important
ways; Scott Wittet, Paul Ferguson, and Christine High deserve special
mention.
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A number of people have also contributed more directly to the develop-
ment of the book. Betsy Reeder, Dan Perrine, Fr. Frank Haig, S.J., and
Peter French have all read portions of the manuscript, offering both criti-
cism and encouragement. Randy Jones and Helene Perry read through an
entire early version, offering me a variety of suggestions for improvement.
Two anonymous reviewers carefully and thoroughly read this early ver-
sion and also a completed later version, in both cases providing me with
many corrections and recommendations. Judy Dobler made a very careful
and critical reading of some early chapters, and supplied me with a re-
markably voluminous set of notes and stylistic comments; everything
I wrote afterward was influenced by these suggestions. And Trevor
Lipscombe was able to see possibilities for this book that I had not been
able to see myself.

I would also like to acknowledge my institution, Loyola College, for
providing a sabbatical leave during which the writing of this book was
started. There is no possibility that the book could exist if I had not had
that unencumbered period of time to focus on it.

Finally, I owe several debts to my family, Paula and Rebecca Derry.
They have supported this arduous venture in many ways, including en-
couragement. My daughter, Rebecca, has checked passages for clarity,
caught some typographical and grammatical mistakes, and contributed
to the figures. My wife, Paula, has read a great deal of the manuscript,
offering incisive critical comments on both content and style. She has also
greatly influenced my thinking about a number of key issues for many
years prior to the writing of the book. (I should also mention the cats,
Katie and Smokey, who amused me by walking across the keyboard as I
tried to think of something suitable to write.)

Although the many suggestions I received have improved the book
greatly, I must take responsibility for the final product. I have not made
all of the changes that have been suggested. In the end, I had to decide
what should be included or not. Writing this book has been a lot of hard
work, but it has also been very enjoyable. I hope your experience of read-
ing the book is rewarding and congenial.

Baltimore
July 1998
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Prologue

WHAT IS SCIENCE?

Science is the last step in man’s mental development and it
may be regarded as the highest and most characteristic

attainment of human culture.
(Ernst Cassirer)

The belief that science developed solely out of a pursuit of
knowledge for its own sake is at best only a half truth, and

at worst, mere self-flattery or self-deception on the part
of the scientists.

(Lewis Mumford)

AS THE OPENING QUOTATIONS by two noted philosophers indi-
cate, opinions about science span a wide range. But it’s not clear

whether these two eminent thinkers are really talking about the
same thing when they refer to “science.” Cassirer is discussing science
as an abstract method to bring constancy and regularity to the world.
Mumford, in contrast, is considering science as a driver of technology, a
method to bring about practical changes in life. Both of these viewpoints
contain an element of truth; neither is comprehensive. A simple, brief,
and comprehensive way to define science is in fact not so easy to come up
with. A colleague of mine recently remarked that the defining characteris-
tic of science is that statements in science must be tested against the behav-
ior of the outside world. This statement is fine as far as it goes, but repre-
sents a rather impoverished picture of science. Where are imagination,
logic, creativity, judgment, metaphor, and instrumentation in this view-
point? All these things are a part of what science is.

Science is sometimes taken to be the sum total of all the facts, defini-
tions, theories, techniques, and relationships found in all of the individual
scientific disciplines. In other words, science is what is taught in science
textbooks. Many beginning science students have this idea. But an oppos-
ing opinion, which is becoming increasingly influential, has been ex-
pressed in academic circles. In this view, the heart of science is in its meth-
ods of investigation and ways of thinking, not in specific facts and results.
The science taught in textbooks is a lifeless husk, whereas real science is
the activity going on in the laboratories and fieldwork. Once again, both
of these ideas have merit while neither can claim to be complete. Method-
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ology without content is at best merely a faint image of science (at worst,
it’s totally meaningless). And yet the content itself, divorced from the
thought processes that create such knowledge, surely can’t be all there is
to science. After all, this body of scientific results changes from year to
year, and may sometimes be unrecognizable from one generation to an-
other. The results of science are inseparably intertwined with its thought
processes; both together are needed to understand what science is.

There are many other such debates and contrasting perspectives among
scientists and philosophers concerning the true nature of science, and
we’ll consider a number of them as we go along. For now, though, let’s
take a rest from these abstractions and look at a small example of science
in action. Our example concerns something of interest to almost every-
one: food.

Example: Why should you whip a meringue in a copper bowl?

As anyone who has made a lemon meringue pie knows, whipping egg
whites results in a somewhat stiff foam (the meringue). A tradition in
cooking, which can be traced at least back to the eighteenth century, is
that egg whites are best whipped in a copper bowl when making me-
ringues. The meringue turns out creamier and less prone to overbeating
if the bowl is made of copper (the creamy meringue also has a somewhat
yellowish color). Less elite cooks, like myself, achieve a somewhat similar
result by using cream of tartar in the meringue instead of beating it in a
copper bowl. The interesting question then presents itself: How and why
does using a copper bowl affect the meringue?

To understand the influence of the copper bowl, we must first under-
stand why a meringue forms at all. Why do egg whites make a stiff foam
when they are whipped? The answer to this question is related to the
composition of the egg white (also called albumen), which is a complex
substance containing many different proteins (ovalbumen, conalbumen,
ovomucin, lysozyme, etc.) suspended in water. These proteins contain
long chains of amino acids twisted together into a compact form. The
compact protein structure is maintained by chemical bonds between vari-
ous parts of the twisted chains, acting as a kind of glue. As you whip the
egg whites, these bonds weaken and the amino acid chains start to unfold,
mostly due to contact with the air contained within the bubbles you create
by whipping. The unfolded chains of different protein molecules can then
start bonding to each other, eventually forming a latticework of overlap-
ping chains that surrounds the bubble wall. The water in the egg white is
also held together within this network of protein chains. The protein net-
work reinforces the bubble walls and so maintains the structural integrity
of the foam. And we have a meringue.
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If you overbeat the egg whites, however, the meringue turns into cur-
dled lumps floating in a watery liquid. The reason this happens is that the
network of protein chains becomes too tightly woven and can no longer
hold enough water within its structure. The bonding between chains has
become too effective, leaving few bonding sites for water molecules. The
protein turns into clumps while the water drains out. Adding a little cream
of tartar helps to avoid this unfortunate outcome. The cream of tartar is
slightly acidic, contributing excess hydrogen ions that interfere with the
cross-chain bonding. With weaker bonding, the meringue is less likely to
become overbeaten.

This brings us back to the copper bowls, which confer the same virtue:
less likelihood of overbeating. Basing our reasoning on the cream of tartar
example, we might guess that the copper bowl somehow increases the
acidity of the egg white. But such an increase would be difficult to under-
stand, and in any event a simple measurement of the acidity proves
that this idea is wrong. Instead, the answer turns out to be related to
the ability of conalbumen, one of the proteins making up egg white, to
bind metal ions (in this case, copper) to itself. The copper ions that are
incorporated into the conalbumen molecule have a striking effect; they
stabilize the coiled structure of the protein, acting to prevent the chains
from unfolding. Standard laboratory chemistry experiments had demon-
strated this fact many decades ago. Since the conalbumen (with copper
added) isn’t unfolded, its chains don’t take part in the formation of a
stable foam. If we assume that a small but significant number of copper
atoms are scraped from the sides of the bowl into the egg white, then we
have a good possible explanation of why copper bowls help to prevent
overbeating.

We can test our explanation. These conalbumen/copper complexes ab-
sorb light of certain specific colors. Looking at the light absorbed by me-
ringues, we can find out if they really do have such conalbumen/copper
complexes. This test has actually been performed, and light absorption
experiments using meringues beaten in a copper bowl do indeed reveal the
presence of stable conalbumen/copper molecules. Incidentally, the light
absorption properties of the complex give it a characteristic yellow color,
and so we also have an explanation for the yellowish color of the me-
ringue. This modest example is far removed from the grand philosophical
debates about science, but it nicely illustrates a number of important
themes: science is about real things that happen in the world; science tries
to provide a coherent understanding of these things; our specific observa-
tions must be placed in a more general framework to be understood; inter-
pretations are often based on pictorial models; we often use instruments
and measurements to augment our observations; a genuinely coherent
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picture often leads to predictions of new observations, which serve as tests
of how correct our present interpretation is. Most of these themes, as well
as many others, will recur throughout the book.

AN OVERVIEW

The first part of the book is about scientific discoveries. More particularly,
we examine the question of how discoveries are made. I’m not interested
in undertaking a systematic and exhaustive investigation of the sources
of scientific discovery, however, and I’m certainly not trying to devise a
theory to explain the process of discovery. My firm belief is that there are
many, many factors involved in this process, and they vary greatly from
one situation to another. My only goal is to illustrate some of these factors
by looking at examples. Since I’m looking at particular examples of dis-
coveries, this part of the book is primarily historical. The historical ap-
proach allows us to look at the rich context of each discovery, without
distorting the narrative to fit into a preconceived notion. On the other
hand, I am trying to use each example to illustrate some particular ele-
ment that played a dominant role in the discovery under discussion (even
when several other factors were also important). Some of these dominant
elements include: the apprehension of patterns in data; increased power
of instrumentation; luck (serendipity); the role of discrepancies; thematic
imagination; the hypothetico-deductive method; the consequences of a
priori postulates; and inspired flashes of intuition.

In the second part of the book, we shift gears and approach science
from quite a different angle. For some time now, it has seemed to me
that scientists often approach the world with a rather distinctive kind of
thinking process. I don’t mean by this that any particular method is ap-
plied; rather, I’m referring to a style of looking at questions and ap-
proaching problems. Let me illustrate this vague statement with an exam-
ple. When I was on a jury deciding an automobile accident lawsuit, I was
the only person who asked: “What plausible model can we construct for
the accident that is consistent with the photographs of the damage?” The
other jurors weren’t entirely sure what I meant by this. Constructing mod-
els is a very typical way for a scientist to think about a situation. Science
is often done this way, and scientists naturally extend the practice to other
situations. As I said, this practice (thinking in terms of models) is only
one example of the style I’m talking about. Another customary approach
is to employ quantitative thinking about a situation (for example, “how
precisely do I know this number?” or “does the order of magnitude of
that number make sense?”). Yet another example is the habit of looking
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for general principles of known validity against which to judge particular
claims. These sorts of characteristic scientific thought processes and ap-
proaches are the subject of the second part of the book.

The third part of the book is an endeavor to place science within a
broader matrix of ideas. An important part of this undertaking is to look
at what science is by looking more closely at what science is not. Of
course, a great deal of human experience and thought lies outside science,
but we’re mostly concerned with those areas that do have some overlap-
ping interests. For this reason, vast subjects like religion, politics, and
ethics are discussed somewhat narrowly, primarily in terms of how they
relate to science. On a much different note, we also contrast science with
pseudoscience, which might be described as a burlesque of real science
(but unfortunately is often taken seriously). Moving from there into con-
troversial territory, we look at some areas where arguments are still raging
over whether the topics in question are science or not. Then, after a rather
condensed summary of the main ideas and issues in the philosophy of
science, we again enter into an intellectual minefield and briefly discuss
the arguments of the postmodern critics of science.

In the fourth and final part of the book, we consider some of the broad
concepts and ideas important in the sciences. Although each of the indi-
vidual scientific disciplines has its own central principles (for example,
natural selection in biology or plate tectonics in geology), the concepts
emphasized in this part of the book are transdisciplinary. In other words,
the subjects discussed here cut across disciplinary boundaries and are im-
portant in a variety of different sciences. In this way, I hope to show
some of the underlying unity of the sciences, which can become lost in
the fragmentary treatment of particular results. A prime example of such
broadly important concepts is symmetry. Though symmetry is in many
ways a mathematical concept, it is significant in art and aesthetics as well
as in virtually every science. Another good example is the dependence of
volume and surface area on the characteristic size of an object; this too
turns out to be important in many areas of science (as well as in practical
affairs). Very often in the sciences, a prominent consideration is how
something changes. Two of the most common and useful kinds of change
are discussed here: linear variation (one thing proportional to another)
and exponential variation (growth rate proportional to amount). Pro-
found issues at the heart of many sciences turn on the concepts of order
and disorder, which are treated here in some detail. We then round out
this part of the book with a discussion of feedback loops and homeostasis
in the sciences. The book ends with a brief epilogue in which we will
reconsider the question: what is science?
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Chapter 1

A BIRD’S EYE VIEW: THE MANY ROUTES

TO SCIENTIFIC DISCOVERY

Now, I am not suggesting that it is impossible to find natural
laws; but only that this is not done, and cannot be done, by

applying some explicitly known operation. . . .
(Michael Polanyi)

HOW DOES A SCIENTIST go about making a discovery? The
idea that there’s a single answer to this question (the “scientific
method”) persists in some quarters. But many thoughtful peo-

ple, scientists and science critics alike, would now agree that science is
too wide-ranging, multifaceted, and far too interesting for any single an-
swer to suffice. No simple methodology of discovery is available for look-
ing up in a recipe book. To illustrate some of the rich variety in the ways
scientists have discovered new knowledge, I have chosen five cases to re-
count in this chapter: the accidental discovery of x-rays; the flash of intu-
ition leading to the structure of benzene; the calculations through which
band structure in solids was discovered; the voyages of exploration inspir-
ing the invention of biogeography; and the observations and experiments
resulting in smallpox vaccine.

§1. SERENDIPITY AND METHODICAL WORK:
ROENTGEN’S DISCOVERY OF X-RAYS

Working late in his laboratory one evening in 1895, a competent (but
not very famous) scientist named Wilhelm Roentgen made a sensational
discovery. His experiments revealed the existence of a new kind of ray
that had exotic and interesting properties. Because these mysterious rays
were then unknown, Roentgen called them x-rays (x standing for the un-
known), a name that we still use to this day. After he reported his new
discovery, Roentgen immediately became a highly celebrated figure and
won the first Nobel Prize in physics just a few years later.

Of course, we now know what x-rays are. X-rays are similar to light,
radio waves, infrared and ultraviolet rays, and a variety of other such
radiations. All of these things are particular kinds of electromagnetic
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waves, so called because they are wavelike transmissions in electric and
magnetic fields. The major difference between light and x-rays (and all
the other types) is the wavelength of the radiation (this is the distance
over which the wave repeats itself; different colors of light also differ in
wavelength). The energy of the radiation also changes with the wave-
length. X-rays have hundreds of times more energy than light, which ac-
counts for both their usefulness and also their potential danger. This high
energy also played an important role in Roentgen’s discovery.

The experiments that Roentgen had in mind built on the work of many
other nineteenth-century scientists (Thomson, Crookes, Lenard, and oth-
ers). This work consisted of experiments with something called a cathode
ray tube. These devices are not as unfamiliar as you may think; the picture
tube in your television is a cathode ray tube. Basically, a cathode ray tube
is just an airtight glass container with all the air pumped out to create a
vacuum inside, and pieces of metal sealed into the glass wall so that electri-
cal connections outside the tube can produce voltages on the metal inside
the tube. If the voltage is high enough, a beam of electrons leaving the
metal can be produced. A substance that glows when high-energy rays
strike it, called a phosphor, can also be placed inside the tube. When the
beam of electrons strikes the phosphor, we can see the presence of the
beam by the telltale glow emitted. In essence, this is how your television
creates the picture you see on the screen.

In 1895, the existence of electrons was not known (Thomson was soon
to discover the electron in 1897). The cathode rays, which we now call
electron beams, were at that time simply another mysterious radiation
that scientists were still investigating. One important property known to
be true of the cathode rays is that they are not very penetrating, that is, do
not go through matter easily. For example, cathode rays couldn’t escape
through the glass walls of the tube. Lenard had discovered that a thin
aluminum sheet covering a hole in the glass allows the cathode rays
through, but the rays can then only make it through about an inch of air.
All these observations were made using the glow of phosphors to detect
the presence of the beam. Roentgen wondered whether some tiny portion
of the cathode rays might after all be escaping through the glass walls
undetected. The glass itself is weakly luminescent when struck by cathode
rays, so the whole tube produces a kind of background glow. If an escap-
ing beam were very weak, the slight glow it caused on a detecting phos-
phor might be washed out by this background glow of the tube. So Roent-
gen designed an experiment to test this hypothesis. He covered the tube
with black cardboard to screen out the background glow, and his plan
was to look for a weak glow on the phosphor he used as a detector when
he brought it close to the covered tube wall.
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As a first step, Roentgen needed to check his cardboard covering to
make sure that no stray light escaped. As he turned on the high voltage,
he noticed a slight glimmering, out of the corner of his eye, coming from
the other side of his workbench (several feet away from the tube). At first,
he thought that this must be a reflection from some stray light that he had
not managed to block successfully. But when he examined the source of
the glimmer more carefully, he was shocked to discover that it was coming
from a faint glow of the phosphor he planned to use later as a detector.
Something coming from the tube was causing a slight glow from a phos-
phor located over thirty times as far away as cathode rays can travel
through air. Roentgen immediately realized that he had discovered some
fundamentally new kind of ray, and he excitedly embarked upon the task
of studying its properties. He found that these rays had extremely high
penetrating powers. His phosphor continued to glow when a thousand
page book or a thick wooden board was placed between the tube and the
phosphor. Even thick plates of metals such as aluminum and copper failed
to stop the rays completely (although heavy metals such as lead and plati-
num did block them). In addition to their penetrating power, Roentgen
found that his new rays were not affected by magnetic and electric fields
(in contrast to cathode rays, which are deflected by such fields).

In the course of his investigations, Roentgen made another accidental
discovery that insured his fame in the history both of physics and of medi-
cine. While holding a small lead disk between the phosphor screen and
cathode ray tube, Roentgen observed on the screen not only the shadow
of the disk but also the shadow of the bones within his hand! Perhaps
to convince himself that the eerie image was truly there, Roentgen used
photographic film to make a permanent record. After he completed his
systematic and methodical investigations of the properties of x-rays,
Roentgen published a report of his findings. The experiments were
quickly replicated and justly celebrated. In physics, the discovery of x-
rays opened up whole new avenues in the investigations of atoms and
turned out to be the first of several revolutionary discoveries (followed
quickly by radioactivity, the electron, the nucleus, etc.). In medicine, prac-
titioners quickly realized the diagnostic value of x-rays as a way to look
inside the body without cutting it open. The use of x-rays in medicine is
one of the fastest practical applications of a new scientific discovery on
record.

Roentgen’s discovery of x-rays was a marvelous combination of luck
and skill. Discovering something you aren’t looking for, a process often
referred to as serendipity, is not uncommon in the sciences. But as
Pasteur’s famous maxim says, “chance favors only the prepared mind.”
Roentgen’s mind was extremely well prepared to make this discovery,
both by his skill in experimental techniques and by his thorough knowl-



14 C H A P T E R 1

edge of the previous work on cathode ray phenomena. Also, Roentgen’s
painstaking detailed investigation of the x-rays, following his initial lucky
break, was crucial to the discovery process. He recognized the importance
of the faint glimmer he did not expect to see.

§2. DETAILED BACKGROUND AND DREAMLIKE VISION:
KEKULÉ’S DISCOVERY OF THE STRUCTURE OF BENZENE

The carbon atom has chemical properties that set it apart from all other
elements. Carbon is able to form a wide variety of chemical bonds with
other elements, particularly with hydrogen, oxygen, nitrogen, and with
other carbon atoms. The tendency to form various kinds of carbon-car-
bon bonds, in addition to the C-H, C-O, and C-N bonds, fosters the cre-
ation of complicated chainlike structures in such carbon-based molecules.
For these reasons, many thousands of these carbon compounds exist, so
many in fact that the study of them is a separate branch of chemistry. This
branch is called organic chemistry, because it was once thought that only
living organisms could produce these compounds. It’s true that the mole-
cules of living organisms (carbohydrates, fats, proteins) are all in this cate-
gory, but “organic” is a misnomer in the sense that many organic chemis-
try compounds have nothing at all to do with life.

We might say that organic chemistry started with the synthesis of urea
in 1828 by F. Wöhler. For many years thereafter, organic chemistry pro-
ceeded by trial and error, with chemists using their experience and various
rules of thumb to synthesize new compounds. Organic chemists had no
theory underlying their work and didn’t know the structures of the com-
pounds they created. Around the middle of the nineteenth century, the
work of many chemists contributed to a growing understanding of the
science underlying organic reactions and syntheses. Prominent among
these chemists was August Kekulé. Kekulé’s major contribution to or-
ganic chemistry was the idea that a molecule’s three-dimensional structure
was a key ingredient in determining that molecule’s properties. The num-
ber of atoms of each element making up the molecule is obviously im-
portant, but how they are connected to each other in space is equally
important. Kekulé’s theories concerning molecular structure in general,
along with his determinations of the structures of many specific com-
pounds, advanced the field considerably.

By 1865, Kekulé had worked out the structures of many compounds,
but the structure of benzene had proven to be intractable. Benzene is a
volatile liquid that can be obtained from coal tar. Benzene is sometimes
used as an industrial solvent, but the major importance of benzene is its
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role as the structural basis for many dyes, drugs, and other important
chemicals. Michael Faraday had already determined the atomic composi-
tion of benzene in 1825. Benzene consists simply of six carbon atoms and
six hydrogen atoms. But forming these six C and six H atoms into a struc-
ture that makes sense had defied the efforts of organic chemists, including
Kekulé. One major problem with devising a reasonable benzene structure
is the 1:1 ratio of C atoms to H atoms. Kekulé had already previously
concluded that C atoms make four bonds to other atoms and that H
atoms make one such bond, a system that works well for methane (see
chapter 18) and similar compounds. But it’s hard to reconcile this idea
with the 1:1 ratio of C atoms to H atoms in benzene. Another big problem
was the chemical behavior of benzene, especially compared to other com-
pounds in which hydrogen atoms don’t use up all of the available carbon
bonds. These other compounds, such as acetylene (the gas used in welding
torches), can be chemically reacted with hydrogen to produce new com-
pounds that have more H atoms. Benzene, however, wouldn’t accept any
new H atoms in such a reaction.

Kekulé had pondered these problems for a long time. He combed his
knowledge of organic chemistry in general, reviewed everything that was
known about the reactions of benzene with other chemicals, and ex-
pended great effort in order to devise a suitable structure that made sense.
Then, Kekulé hit upon the answer in a flash of inspiration. As Kekulé
recounts the episode:

I turned my chair to the fire and dozed. Again the atoms were gamboling before
my eyes. . . . My mental eye, rendered more acute by repeated visions of this
kind, could now distinguish larger structures of manifold conformation: long
rows sometimes more closely fitted together all twining and twisting in snake-
like motion. But look! What was that? One of the snakes had seized hold of its
own tail, and the form whirled mockingly before my eyes. As if by a flash of
lightning I awoke; and this time also I spent the rest of the night in working out
the consequences of the hypothesis.

Kekulé’s vision had suggested to him the ring structure of benzene
shown in Figure 1. By having the chain of carbon atoms close on itself,
he was able to satisfy the bonding numbers for C and H while leaving no
room for additional H atoms. The question then became purely empirical.
Does this benzene structure explain all of the known reactions and synthe-
ses involving benzene? Does it predict new reactions and syntheses accu-
rately? To make a long story short, the answer to these questions turned
out to be, basically, yes.

Other structures were also proposed for benzene, and a vigorous debate
went on for some years. In the end, Kekulé’s ring structure had the most
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Figure 1. The structural model of the benzene molecule worked out by Kekulé,
often referred to as a benzene ring. The ring structure was inspired by Kekulé’s
vision of a snakelike chain of atoms closing on itself.

success in explaining the data and became accepted as the correct struc-
ture. Some inconsistencies remained; calculated energies for the molecule
were higher than the measured energies, and the placement of the three
double bonds was distressingly arbitrary. These problems were finally
cleared up many decades later when the modern quantum theory of chem-
ical bonding was applied to the benzene ring, showing that all six bonds
are really identical (circulating clouds of electrons bonding the carbons
might be a more appropriate image than alternating double and single
bonds). Meanwhile, Kekulé’s proposed benzene ring was extremely suc-
cessful in suggesting reaction pathways for commercially important or-
ganic compounds. The German chemical industry soon became the envy
of the world, producing dyes, drugs, perfumes, fuels, and so on. The solu-
tion of the benzene structure problem was a key to much of this activity,
which was an important segment of the German economy prior to World
War I. Kekulé himself, however, had little interest in commercial ventures
and confined his attention largely to scientific understanding.

A number of scientists have reported experiences similar to that of Ke-
kulé. After a prolonged period of apparently fruitless concentration on a
problem, the solution seems to arrive all at once during a brief period of
relaxation. It’s crucial to immerse oneself completely in the details of the
problem before the flash of inspiration can come. An unusual aspect of
Kekulé’s experience is the highly visual character of his insight. His earlier
development of the structural theory of organic chemistry had also been
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informed by such visions of dancing atoms, so this seems to have been a
general part of his thinking process. Kekulé’s early training had been in
architecture, and it’s possible that this training influenced his rather visual
approach to chemistry and his tendency to think in terms of the spatial
“architecture” of molecules.

§3. IDEALIZED MODELS AND MATHEMATICAL CALCULATIONS:
THE DISCOVERY OF BAND STRUCTURE IN SOLIDS

Semiconductors are now an essential part of modern life, forming the
heart of integrated circuits and diode lasers. Computers, compact discs,
telecommunications, audio amplifiers, television, and many other devices
would not exist if we didn’t understand the behavior of semiconductors.
The essential concept needed to understand semiconductor behavior is
the concept of energy bands separated by band gaps, although few people
have ever heard these terms. The existence of energy bands in solid materi-
als was discovered by several people during the years from 1928 to 1931,
at a time when semiconductors were merely a laboratory curiosity of little
or no interest to anyone. The motivation for the work that led to this
discovery was a desire to understand how electrons can even move
through metals at all. If you imagine the negative electrons in a metal as
moving through the array of fixed positive ions (which are much more
massive than the electrons), the problem becomes apparent. The electrons
and ions exert strong forces on each other. As the electrons try to move,
they soon collide with an ion and are scattered into a different direction.
This kind of scattering, in fact, is what causes electrical resistance in the
first place. However, all the calculations done before 1928 indicated that
the electrons shouldn’t get much farther than one or two ions; experimen-
tal resistance measurements required electrons to get past hundreds of
ions before colliding. This was a mystery.

In an effort to solve this mystery, Felix Bloch applied the newly invented
theory called quantum mechanics to the problem. In the strange world of
quantum mechanics, the electrons may be pictured as waves rather than
as particles. Bloch also used another recently discovered fact: the ions in
a metal are arranged in an orderly periodic fashion (a crystal lattice; see
chapter 18). So Bloch’s model (see chapter 6) of a metal consisted of quan-
tum mechanical electron waves traveling through a periodic lattice of pos-
itive ions. Bloch succeeded; he was able to calculate the motion of the
electrons in such a system, and the results were remarkable. It turned out
that the electrons could sail effortlessly through the lattice without hitting
ions. Resistance was due to vibrations of the ions and imperfections in
the crystal. The results agreed well with experiments.
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Another important step was taken by Rudolf Peierls, building on the
foundation of Bloch’s work. Peierls kept the same basic model that Bloch
used, but now he varied the strength of the forces between the electrons
and the ions. In his previous work, Peierls had already shown that a more
detailed examination of Bloch’s calculations reveals a “flattening” of the
energy curve for the electrons. (This energy curve tells us how the elec-
tron’s energy changes as its momentum increases.) His experience with
this previous work enabled Peierls to recognize the significance of his new
calculations. He discovered that where the flattening of the energy curve
ends, there is an energy range above it in which no electron states at all
can exist. Above this range of forbidden energies, another allowed band
of electron energy states occurs. In other words, we have bands of allowed
energy states for electrons in solids, separated by a zone of forbidden
energies with no states. This zone of forbidden energies is what we now
call a band gap. Above the second band of states, there is another gap,
and so on. This discovery was an unexpected result of the calculations,
and its importance can’t be overemphasized. The idea of energy bands
and gaps is at the heart of our understanding of the behavior of electrons
in solids, but even Peierls did not see this clearly at first. One more ingredi-
ent was needed in order to fully appreciate the true significance of band
structure in solids.

This final ingredient was supplied by Alan Wilson in 1931. The prob-
lem that Wilson was pondering concerned a peculiar implication of the
work done by Bloch and Peierls. If electrons can move easily through a
lattice of ions, no matter how strong or weak the electron-ion forces are,
then why isn’t every solid a metal? While grappling with this puzzle, Wil-
son realized that the proper interpretation of the band calculations not
only answers the question, but does so in a fundamental and illuminating
fashion. Wilson realized that if a band was full (all possible states occu-
pied by electrons), then no electron could gain energy, because to gain
energy puts the electron into the band gap where no states exist for it to
occupy. Electrons must gain some energy to become a current (i.e., to
move), as in a conductor. A solid with a full energy band must then be an
electrical insulator (like quartz or sapphire). Solids with partly empty
bands have higher energy states available for the conduction electrons to
go into, and so these are metals (like copper or aluminum). Wilson’s idea
explained the essential difference between metals and insulators, which
had been an unsolved problem since the first attempts to understand the
properties of matter.

Going further, Wilson extended his theory to explain electrical conduc-
tion in semiconductors (like silicon). The major riddle presented by semi-
conductors was that they, in contrast to metals, became better conductors
at higher temperatures instead of worse. Wilson pictured semiconductors
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as solids with full bands but having rather small band gaps. Electrons can
be thermally excited into the empty band above the gap, and these elec-
trons conduct the current. Naturally, more electrons can acquire enough
energy to cross the gap at higher temperatures, and so the sample becomes
a better conductor. Using the idea of energy bands and gaps, we could
now understand the electrical behavior of metals, insulators, and semi-
conductors in a unified manner. At the time, experimentalists were still
debating whether semiconductor behavior was real or just an artifact
caused by low-quality samples. Several decades later, our understanding
of semiconductors became the basis for the microelectronics revolution.
The central unifying idea of energy band structure in solids arose unex-
pectedly from the results of calculations. No one anticipated the existence
of band gaps in solids (in fact, as we’ve seen, it took a while to recognize
their importance even after the discovery). The concept just turned out to
be a result of assuming electron waves in a periodic lattice of ions, and
calculating the consequences of this assumption.

§4. EXPLORATION AND OBSERVATION: ALEXANDER
VON HUMBOLDT AND THE BIOGEOGRAPHY OF ECOSYSTEMS

Although he is not a famous figure today, Alexander von Humboldt was
one of the leading natural scientists of his own time. He was a friend or
correspondent to virtually every noted scientist in Europe, he socialized
with the elite in the court of Napoleon, he was admired by Goethe, he
stayed at Jefferson’s home Monticello as an honored guest, and the King
of Prussia put some effort towards attracting Humboldt into his service.
Humboldt was probably more well known to his contemporaries in the
educated public than any scientist alive now is known. His fame is re-
flected in the twenty-four places (towns, counties, mountains, rivers, even
a glacier) named after him. Humboldt’s scientific work is voluminous,
and he worked in virtually every field in the natural sciences. He made
contributions to astronomy (studying meteor showers), botany (dis-
covering over three thousand new species), geology (studying volcanoes
and geologic strata), geophysics (studying the earth’s magnetic field), me-
teorology (studying tropical storms), and oceanography (studying the
major ocean currents). And this list isn’t even complete. Many of these
studies were observational in nature; Humboldt’s sharp mind, natural
curiosity, and keen powers of observation gave him the intellectual tools
needed for such work. But what also set Humboldt apart from the average
naturalist was that he embarked on a voyage of exploration that can only
be called epic. Humboldt was the scientist who opened up the New World
for study.
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In 1799, Humboldt embarked on his journey of exploration to South
America and Mexico. When he left Latin America in 1804, he had col-
lected thirty cases of geological and botanical specimens, as well as innu-
merable notes, records, measurements, maps, and codices. Among his ad-
ventures on this trip, he traveled by boat down the Orinoco River through
the tropical jungles of Brazil (coming down with typhoid in the process).
In Ecuador, he scaled the highest peak in the Andes, setting a new record
for the highest altitude ever achieved. Everywhere he went, he made pre-
cise measurements of the latitude (using astronomical instruments), baro-
metric pressure, and the earth’s magnetic field (strength and direction).
He collected gases from the fumes of active volcanoes and analyzed their
chemical composition. He described the geological structures and cli-
mates of the different regions he visited. Everywhere he went, Humboldt
collected samples of minerals, plants, and animals. In the mountains of
the Andes, Humboldt made one of his most important and fruitful discov-
eries. As he climbed the mountains on exploratory expeditions, Hum-
boldt was struck by the dramatic changes in the vegetation and animal
life at different elevations. At the base of the mountains grew palms, ba-
nanas, and sugar, typical of the tropical climate. At higher elevations,
coffee and cotton were found, along with maize, wheat, and barley on
the flatter areas. Above this, the vegetation became more sparse, mostly
evergreen shrubs, while at the highest elevations only alpine grasses and
lichens could be seen. He realized, based on his extensive travels, that this
sequence was similar to the changes in vegetation with latitude as one
moved from the tropics towards the poles. As Humboldt pondered the
meaning of these changes, he realized that the climate was a major, but
not the only, part of the physical environment that determined the plant
life found in a geographical area.

Based on his studies and observations, Humboldt developed a theory
of biogeography, of how the physical conditions of an area influence the
features of the ecosystem (to use the term we now employ) found there.
The temperature, soil conditions, amount of sunlight, rainfall, and topog-
raphy all work together to determine what kind of plant and animal life
might inhabit a place. This may seem obvious today, but the idea was
both novel and important when Humboldt proposed and explicated it.
Much of his work consisted of describing and classifying parts of nature,
but this theory gave meaning and context to the classifications. Humboldt
believed in the underlying unity of nature, and in the biogeography idea
he could see a reflection of this unity. Like any important discovery, his
idea also opened up new areas of investigation and suggested new ideas
to other scientists who followed Humboldt.

Before leaving Humboldt, I can’t resist the temptation to mention his
work in cultural anthropology. The native cultures of the Inca, Aztecs,
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and Maya had been partially decimated by conquest, but a keen and intel-
ligent observer like Humboldt was still able to learn and record a great
deal. He studied their languages, visited archeological sites (such as the
pyramids at Teotihuacan), collected ancient writings and sculptures, re-
corded their myths and legends, and examined petroglyphs. The knowl-
edge of astronomy possessed by the vanished cultures was an especially
interesting area studied by Humboldt, and he looked in detail at the calen-
dar systems that they had created. These cultures had mostly been ignored
before Humboldt’s work, and his efforts stimulated further interest by
later scholars. Humboldt’s insatiable curiosity and sharp analytical mind
ranged over every part of the natural world. His travels and explorations
gave him the opportunity to deliver a treasure trove of new knowledge to
the intellectual community of Europe, and this knowledge contributed to
the great integrative theoretical work in geology and biology done by
scholars who followed him in succeeding generations. Humboldt’s own
attempt at a grand integration of all knowledge was his masterpiece, Cos-
mos. This work is informed by Humboldt’s conviction of the harmony
and unity underlying the diversity of nature. Subsequent discoveries and
theories have rendered the details of Cosmos obsolete, but it remains a
remarkable testament to the depth of Humboldt’s thinking.

§5. THE HYPOTHETICO-DEDUCTIVE METHOD:
EDWARD JENNER AND THE DISCOVERY
OF SMALLPOX VACCINE

Edward Jenner started his career as an apprentice country doctor in
Gloucestershire, the rural area of England where he grew up. After his
apprenticeship, Jenner went to London in 1770 for more advanced train-
ing under the highly regarded surgeon, John Hunter. Medicine was still
in a somewhat primitive state at this time, using many traditional methods
of doubtful efficacy. Hunter was a pioneer in the application of scientific
thinking to medical practice, and he taught Jenner to do the same. Jenner
proved to be an excellent student, and he developed into a first rate doctor
under the guidance of the brilliant Hunter. Equally able as both a medical
practitioner and as a scientist, Jenner embarked on his own career after
his time with Hunter ended.

Against his teacher’s wishes, Jenner decided to move back to Glouces-
tershire (Hunter wanted Jenner to stay in London, where he could make
a reputation). His move back to the countryside, however, gave Jenner
the opportunity to follow up on an idea he had gotten when he was still
a young apprentice. While treating a milkmaid for a minor ailment known
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as cowpox, Jenner had become acquainted with one of the local legends
of the Gloucestershire region. The milkmaid told him that she was lucky
to have the cowpox, because now she would never contract smallpox.
Smallpox was one of the most dreaded diseases of the time, and the milk-
maid assured Jenner that having had cowpox protects against getting
smallpox. Jenner put this conversation in the back of his mind at the
time, but now he was hoping to look into the matter more thoroughly.
Gloucestershire was a major dairy farming area, and this made it an ideal
place to conduct his study. Cowpox was a disease that the cows con-
tracted, and the cows often then transmitted the illness to humans
(through cuts on their hands, for example) as they milked the cows. Cow-
pox wasn’t very serious; it caused fever, aching, and some temporary blis-
ters around the hands. The illness lasted a few days, and a full recovery
could be expected. The cowpox sometimes came to the dairies in epidem-
ics, but sometimes it vanished for years on end.

Smallpox at that time was a worldwide scourge, highly contagious and
often fatal. In the century before Jenner began his work, smallpox had
claimed over twenty million people in Europe. Almost a third of the chil-
dren under age three in Britain succumbed to the Red Death. The small-
pox sometimes raged unchecked in terrible epidemics, and there was no
treatment available. Among the victims who did not die, many were left
horribly disfigured, blinded, or insane. The only preventative measure
known was inoculation, the practice of purposely infecting people with
material from active smallpox pustules. This action might produce a less
severe case of the illness, which then protects the person against con-
tracting it again. But, the procedure often could go awry and produce a
severe case, even death. Worse yet, even when the procedure worked well,
the inoculated person might give the disease to others. In Russia, an entire
epidemic had started this way. So Jenner’s idea that there might be a safe
way to prevent smallpox was exciting. It had taken root in his mind and
become his dream: a world free from the Red Death. But the matter was
not simple. There were a number of cases in which people who had once
had cowpox did come down with the smallpox. For that reason, many of
the local Gloucestershire doctors dismissed the old legend completely.
And yet, there was enough anecdotal evidence in favor of the legend to
still convince many people of its truth. Jenner, excellent scientist that he
was, realized that he needed to start making careful observations, includ-
ing keeping good notes and records, if he wished to untangle the situation.

After his medical practice was established, Jenner began his work in
earnest. He made a scientific study of the cowpox, which no one had ever
done before. A more precise description of the symptoms and course of
the disease was needed, both in cows and in humans. For several years,
Jenner carefully observed all the cases which occurred in the dairies, and
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he interviewed people who had gotten cowpox in the past. Making careful
notes on these case histories, he began to achieve a more thorough under-
standing of the cowpox. At the same time, Jenner began to make a system-
atic study of the cases in which cowpox had apparently conferred immu-
nity to smallpox. Just as importantly, he also studied those cases where it
had not done so. If he wished to use cowpox as a tool in the fight against
smallpox, Jenner would have to solve the puzzle of why some people still
contract smallpox even after having cowpox. These cases were often
taken to be proof that the old legend was merely superstition, and Jenner’s
work was widely regarded by his colleagues as a waste of time.

But Jenner did not give up easily, and he continued to look for some
clue that would solve this puzzle. As he pored over his records, he came
to realize that different sets of symptoms were observed (the appearance
of the pustules, swelling in the armpits, headaches, body pains, vomiting,
etc.) in different victims; in other words, the cowpox had no single fixed
description. The same thing was true in cows (sometimes the pustules
were circular, sometimes irregular; sometimes they lasted weeks, some-
times days, and so on). Jenner concluded that what dairy farmers had
been calling cowpox was actually several distinctly different diseases. This
fact solved Jenner’s puzzle, because only one of these diseases conferred
immunity to the smallpox. Once he had this idea with which to organize
his observations, Jenner was soon able to distinguish these different ver-
sions from each other. His next step was to determine which disease (he
referred to it as the true cowpox) was able to protect against smallpox.
Based on his records and observations, Jenner was able to give a very
complete and accurate description of the true cowpox. One of the major
clues that helped him was the lack of symptoms in response to inoculation
with smallpox matter on the part of people who had contracted the true
cowpox in the past. In this manner, after five years of patient work, Jenner
was able to distill a hypothesis from his observations.

He then put his hypothesis to the test, and he discovered that some
mysteries still remained. At one of the local dairies, there was a major
outbreak of the true cowpox. Jenner continued to keep his meticulous
records, and so there was no doubt in his mind when these same milkers
came down with smallpox the following year. His hypothesis, and his
dream of defeating smallpox, seemed shattered. He pored over his records
and continued to study the cowpox, looking for a solution to this new
puzzle. For several more years, Jenner tried in vain to figure out why
even the true cowpox sometimes failed to protect against smallpox. There
seemed to be no answer. Then, while looking at two cows in different
stages of the disease, Jenner realized the factor he had been overlooking
for so long. The disease, and in particular the appearance of the pustules,
gains in strength for a few days, then the disease is at its worst for a while,
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and finally it declines and goes away over a few days. This much Jenner
had known well for years. But now he hypothesized that the virulence of
the matter in the pustules, which transmits the disease, should also like-
wise gain and decline in strength; and cowpox only protects against small-
pox when the matter in the pustules is at its strongest. This new hypothesis
solved the puzzle, and was consistent with the facts he knew. For example,
the milkers whose smallpox epidemic so mystified him had gotten cowpox
in its earliest stages.

Jenner now designed an experiment to test this latest hypothesis. In
May of 1796, Jenner extracted some material from a pustule on the hands
of a milkmaid named Sarah Nelmes. She had contracted the disease from
a cow while it was at its worst, and her own case was also now at its
strongest. These conditions were ideal for Jenner’s experiment, and he
used the material to purposely infect a young boy named James Phipps.
After the cowpox had run its course in young Phipps, Jenner inoculated
him with live smallpox matter the following July. Tensely, day after day,
Jenner and the Phipps family looked for any sign of a smallpox infection
beginning. But even several days after the expected time of onset, the boy
had absolutely no smallpox symptoms! The experiment had succeeded.
The cowpox material, deliberately introduced into a human body, had
been shown to confer immunity to the Red Death.

Our story ends here, but Edward Jenner’s story went on for several
more years. He had an uphill battle convincing the medical community
and the general public that his method, which came to be known as vacci-
nation (from the Latin word for cow), was an effective method to prevent
smallpox. His problems were compounded by incompetent people who
tried to steal his idea but couldn’t perform the procedures properly (in one
terrible case, a quack mixed up cowpox and smallpox material, actually
starting an epidemic). Such mishaps gave the vaccine an undeserved repu-
tation for being unsafe and ineffectual. But Jenner managed to sort these
problems out, and in the end his smallpox vaccine derived from the cow-
pox material came into widespread use, saving untold numbers of people
from the ravages of smallpox. For this service to humanity, Jenner became
a hero in his own time and had numerous honors bestowed on him.

There are certainly elements of luck and inspiration in this story, but it
mainly illustrates the pathway to discovery that we now often call the
hypothetico-deductive method. We start by making observations; orga-
nize these observations into a hypothesis; test the hypothesis against fur-
ther observations and modify it as needed; make predictions based on the
modified hypothesis and design experiments to test our predictions. This
highly successful methodology is also sometimes enshrined in elementary
textbooks as the “scientific method.” The discovery of the smallpox vac-
cine is a good example of just how powerful this method can be.
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Although Jenner is most famous for discovering vaccination, he had a
productive career as both a medical researcher and as a naturalist. In
medicine, he deserves some credit for discovering the role of hardening
of the arteries in causing heart attacks. As a naturalist, he made important
studies of hibernation in animals, and he also discovered the cuckoo
hatchling’s habit of pushing fellow hatchlings out of the nest. In all of his
work, Jenner’s careful, accurate, and honest observations were always the
foundation for his conclusions.
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Chapter 2

NATURE’S JIGSAW: LOOKING FOR PATTERNS

AS A KEY TO DISCOVERY

. . . merely to observe is not enough. We must use our obser-
vations and to do that we must generalize. . . . The scientist

must set in order. Science is built up with facts, as a house is
with stones. But a collection of facts is no more a science

than a heap of stones is a house.
(Henri Poincaré)

TO DISCOVER an underlying coherence and regularity in nature,
buried within reams of observational and experimental data that
has so far defied understanding, is at the heart of science. Finding

such previously unseen patterns is one of the key processes of scientific
discovery. In this chapter, we look at the stories of two highly important
discoveries. Each story has its own interesting features, but they both have
in common the finding of a pattern, like the pieces of a jigsaw puzzle
falling into place once you see the picture they form.

§1. THE PERIODIC TABLE OF THE ELEMENTS

Our concept of an element, a chemical substance that cannot be broken
down or changed into anything else, was unknown to antiquity. Neverthe-
less, a few of the substances we now recognize as elements (mostly metals
like gold, iron, and copper) were known in ancient times, and the alche-
mists later isolated a few more (such as antimony and arsenic). During
the seventeenth and eighteenth centuries, chemistry became established
as an empirical science, but it still lacked a theory in the modern sense.
Valuable discoveries were made, especially in the work with gases; hydro-
gen, oxygen, and nitrogen were all observed during this time, but their
nature was not understood. Lavoisier was finally able to reconceptualize
chemistry in a way that made these observations sensible. He introduced
the idea of an element in its modern form and he enumerated the sub-
stances that he considered elements at that time. Lavoisier published his
work in 1789, and chemistry progressed rapidly after this. Many new
elements were isolated and identified, using ingenious new techniques.
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The novel science of electrochemistry, made possible by the invention of
the battery, played a major role in this work. By about 1850, the number
of known elements had grown to roughly sixty, compared to only around
twenty in Lavoisier’s time. Thanks to the skillful and methodical work of
many chemists, a great deal of information about the chemical and physi-
cal properties of these elements was available.

What kind of chemical and physical properties are interesting? Whether
an element is a metal or a nonmetal; a solid, a liquid, or a gas; brittle or
ductile; highly reactive or fairly inert; all these are basic questions. The
density, melting point, boiling point, and crystal structure are all basic
physical measurements. Chemically, the first interesting question is: with
what other elements does this form a compound? What are the ratios of
these elements in the compounds they form? Based on the answers to
these questions, chemists were able to assign a valency to each element, a
measure of how much is needed to form a compound. Potassium, for
example, has a valence of one and forms a compound with chlorine in
a 1:1 ratio, a compound with oxygen in a 2:1 ratio, a compound with
phosphorus in a 3:1 ratio, and so on. Calcium, with a valence of two,
forms a compound with chlorine in a 1:2 ratio, a compound with oxygen
in a 1:1 ratio, and so on. If you multiply these two simple examples many
times over, you begin to have a sense of the vast quantity of information
that chemists had acquired by the middle of the nineteenth century.

As the properties of the elements were explored, patterns began to
emerge. For example, several of the metals all had very similar chemical
properties (highly reactive with a valence of one) and physical properties
(low densities and low melting points); they were called the alkali metals.
Other sets of elements with strikingly similar properties were also known
(the halogen gasses, the alkaline earth metals). Other more complex pat-
terns were seen, such as the similarity in crystal structures between analo-
gous compounds of elements (e.g., the cubic structure of salts like NaCl,
KCl, LiF, NaI, etc.). The formation and reactions of acids and bases, car-
bonates, sulfates, and others could all be systematized based on the pat-
terns seen in elemental properties. But there was no underlying concept
to tie all of these patterns together coherently. The underlying concept
turned out to be related to the atomic weights of the elements. (The atomic
weight is a measure of the relative mass of an element’s atom, based on
some agreed-upon standard.) The nineteenth century chemists realized
that the atomic weight of an element is a fundamentally important quan-
tity, and they spent considerable effort to measure it well. Such measure-
ments were very difficult, however, and the tabulated atomic weights re-
mained very uncertain in many cases even toward the end of the century.

Relationships between chemical properties and atomic weights were
noted as early as 1817, when a German chemist named Dobereiner de-
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vised a system of “triads.” He observed that for various sets of chemically
similar elements, the atomic weight of one is the average of the atomic
weights of the other two (e.g., Ca is the average of Mg and Sr). In the
following decades, a variety of relationships between chemical properties
and atomic weights were proposed. Between 1862 and 1870, six different
scientists devised periodic systems that were similar in conception to that
used today. The most famous of these scientists, who is usually credited
with the discovery of the periodic table of the elements, was Dmitri Men-
deleev. The periodicity of the relationship between the atomic weights and
the properties of elements was strongly hinted at by the known properties
of the lighter elements, which seemed to recur in a cycle of eight (John
Newlands in England referred to this in 1865 as the law of octaves). But
not all of the elements fit into such a system; given the presence of discrep-
ancies, many skeptics attributed the seeming pattern to coincidence. What
set Mendeleev apart from the other investigators of this problem was his
dogged determination to have a system that really worked and his vast
detailed knowledge of the chemical and physical properties of virtually
every known element.

Many of those properties he measured himself. Other properties he
found by combing through the chemistry literature, always keeping up-
to-date with the very latest work. In addition to reading the published
work, Mendeleev kept up a lively correspondence with other chemists in
order to make sure that he had the very best information about the ele-
ments. He was especially scrupulous about having the most accurate
atomic weights possible, since these weights were the key variable in the
periodic system. For Mendeleev, every single element was like a close
friend whom he knew well. All of the information he gathered was written
down on a little white card, one card for each element. Each new chemical
fact he learned was added to the appropriate card. As Mendeleev slowly
worked out the correct pattern for the variation of the elements’ proper-
ties, he hung the cards on his wall in the proper order, moving them
around as he got new ideas and updated information. Slowly, the patterns
came to make more and more sense, and Mendeleev was able to appre-
hend a unified order amidst the multiplicity of elemental properties; he
announced his periodic system of the elements in 1869. As the pieces of
the puzzle fell into place and Mendeleev was able to fit most of the ele-
ments into his system, he became more confident. Because his work was
grounded in an intimate knowledge of the elements, which included many
thousands of pieces of factual information, this work was built on a
sturdy foundation. After many years of work, the pattern seemed to be
authentic and the system seemed complete barring a few exceptions. Men-
deleev then became extremely confident. He became so confident, in fact,
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that he took an unprecedented action: Mendeleev claimed that the ac-
cepted atomic weights of several elements were wrong because they did
not fit into his periodic system. He proposed changing the atomic weights
of indium, uranium, cerium, and titanium so that these elements would
fall into their proper place in the pattern. These changes weren’t made in
order to cheat by brushing exceptions under the rug; on the contrary,
Mendeleev proposed these new atomic weights as bold predictions of his
system, which could be experimentally tested to verify or refute the peri-
odic law. After many careful measurements had been made, Mendeleev’s
predictions were in fact largely verified.

Mendeleev made another set of predictions that were even more dra-
matic. His periodic table contained a number of blank spaces. Mendeleev
declared that these blank spaces must correspond to elements as yet undis-
covered. By using the periodic table, the thorough Russian chemist was
able to predict the atomic weights of the unknown elements and to pro-
vide a long detailed list of the chemical and physical properties that these
predicted elements would possess. The new (still undiscovered) elements
were named after the elements with analogous properties above them in
the table, for example ekasilicon and ekaaluminum. Just a few years later
(in 1875), a new element was discovered in France with an atomic weight
and set of properties matching the predictions for ekaaluminum; we now
know this element as gallium, named after its country of origin. Another
new element, named germanium, was later discovered and matched with
ekasilicon in atomic weight, physical properties, and chemistry. Few could
doubt the correctness of the periodic law after this. Mendeleev lived to
see a number of his predictions verified. Another stunning verification of
the system, however, could not have been predicted. When the first inert
gas was discovered (argon; see chapter 4), it didn’t fit anywhere in the
periodic system. But a whole set of such inert gases were soon found, and
they filled up a whole new column placed between the halogens and the
alkali metals, with atomic weights that were just right to keep the period
system intact. The most recent additions to the periodic table are the
short-lived artificial elements of very high atomic weight, one of which is
named mendelevium in honor of the discoverer of the periodic law.

Actually, a number of people discovered some version of the periodic
law at roughly the same time. New versions have also been devised since
then. An explanation for the amazing regularity in the elements was found
after Mendeleev died by Bohr, Pauli, and others (see chapter 18). Mende-
leev was not the first to note these regularities and did not explain them.
What Mendeleev is justly honored for is the discovery of a pattern incor-
porating such a wealth of factual detail that it had to be real.
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§2. DRIFTING CONTINENTS

If you look at a world map or globe, you may be struck by how the
coastlines of Africa and Europe (on the eastern side of the Atlantic Ocean)
seem to match up with the coastline of the Americas (on the western side).
It’s not a perfect fit, of course, but the correspondence of these coastlines
is striking enough to have fired the imagination of several writers. A num-
ber of people before the twentieth century had speculated that these conti-
nents might have once been joined together. In 1910, this thought crossed
the mind of Alfred Wegener. The major difference between Wegener and
the other people who had noticed this fit between the continents is that
Wegener looked into the matter more closely. He studied the geology of
the African and South American coastal regions, and learned about the
plants and animals living there. Paleontologists had collected a lot of in-
formation about the fossils of plants and animals that had once lived on
these coasts, and Wegener also studied this fossil record. Much of the
information fit together like the pieces of a puzzle, and Wegener became
convinced that these continents had once been joined together, 250 mil-
lion years ago. Since then, they have been drifting apart to their present
positions. It turns out that similar correspondences exist between the
coasts of east Africa and India.

The idea of continental drift was not accepted by very many people
when Wegener proposed it. After all, the thought of continents drifting
around like icebergs is rather absurd by common sense standards, and
probably aroused opposition for that reason alone. But even on strictly
scientific grounds (logic and evidence), there were good reasons not to
believe. An alternate explanation for the similarities in geology, fossil
record, and plant/animal life had already been advanced and was widely
held. This alternate theory assumed that land bridges connected the
continents in the past, and these bridges have now sunk under the oceans.
Meanwhile, there was a major problem with the drift theory: no mecha-
nism was known that could account for the huge forces that might
cause continents to move. Wegener had in fact proposed such a mecha-
nism, but it was easy to show that his proposal must be wrong. He
speculated that small differences in gravity between poles and equator
might be combined with tidal forces to move the continents. These
forces, however, are millions of times too small for this job. Critics of
continental drift, ignoring the vast amount of empirical support Wegener
had presented, dismissed the theory because his mechanism seemed so
clearly wrong.

Wegener admitted that his mechanism was speculative, but he insisted
that the evidence in favor of moving continents was strong (whatever the
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mechanism may turn out to be). Sinking land masses (in other words, the
proposed former bridges) made no sense to him. Land masses are higher
(continents) because they are less dense or lower (ocean floors) because
they are more dense. Large land mass areas wouldn’t sink or rise at ran-
dom. Also, certain life forms were found only in a narrow range near both
coasts. Surely detached and drifting continents explained this fact better
than a vast former land bridge. Finally, Wegener’s theory explained why
the climates of the continents had been so very different in the distant
past (namely, these continents had been located at very different places
on the earth’s surface then). The opponents of drift also had some good
arguments. For example, the lower crust of the earth is not fluid enough
to allow the upper crust to move. In their judgement, the geological and
paleontological evidence was too fragmentary and incomplete to prove
the case for drift. These opponents also charged that many of Wegener’s
coastal fits were not as good as he claimed (the opponents were mistaken
in this case; Wegener had quite rightly used the boundaries of the conti-
nental shelf rather than the coastline itself).

As you can see, both sides of the controversy had some good arguments.
The pieces of the puzzle could be fit together in more than one way, and
there was no definite choice as to which picture was correct. Wegener had
a few influential allies in the scientific world, but his opponents were both
influential and also far more numerous. Wegener’s theory was a radical
innovation, and the majority of people in the scientific community were
not prepared to accept it without decisive proof. More pieces of the puzzle
were needed.

One major missing piece, obviously, was a credible mechanism to drive
the drift process. Such a mechanism was actually proposed as early as
1928 by Arthur Holmes: convection currents (see chapter 17) in the
earth’s mantle. The idea is based on a well-known fact, namely, that the
earth’s interior is continually heated by radioactivity. This heat must
somehow escape from deep inside the earth. Holmes proposed that the
heat moves upward in a convection current (i.e., fluid mantle material
carrying the heat as it moves) that then flows sideways along the boundary
with the crust and eventually flows back downward (where it heats up
again to renew the cycle). As the mantle convection current moves along
under the crust, the crust is carried along with it like a ship carried by a
water current. Interestingly, this work did not attract much support for
the idea of continental drift. Perhaps the concept had been too thoroughly
dismissed by that time for anyone to think seriously about it. And of
course, the convection currents themselves were still unproven ideas. Few
scientists are willing to give up lightly the ideas on which their entire
careers are based. In any event, Wegener had little support for his theory
when he died in 1930 during an expedition to Greenland. The new pieces
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of the puzzle needed to support drift theory would be empirical, not con-
ceptual. These pieces would not be found for several decades, in unex-
plored territory at the bottom of the oceans.

Almost nothing was known about the ocean floor before 1940, with
one exception. A major mountain had been discovered in the middle of
the Atlantic Ocean (the Mid-Atlantic Ridge) when the first telegraph ca-
bles were strung from America to Europe. After World War II, a great
deal of effort was expended using newly available technologies (like sonar,
deep-sea core sampling, and seismography) to learn about the bottom of
the sea. The result of this research revolutionized our thinking. The Mid-
Atlantic Ridge turned out to be part of a worldwide system of undersea
mountain chains. Remarkably, these mountains have at their heart a huge
chasm, about one mile deep and twenty miles wide. This rift is a major
source of seismic and volcanic activity. Another amazing discovery was
that the ocean floors are quite young (by geological standards, anyway).
No fossils or rocks older than a few hundred million years could be found.
This may sound old, but the long-held idea of geologists was that the
ocean floor must be among the oldest places on earth, undisturbed for
perhaps billions of years. The composition of the ocean floor was also
unexpected, being mostly basaltic rocks in contrast to the mostly granitic
rocks making up the continents. These surprising results were very diffi-
cult to explain.

An explanation that integrates all of these new facts was proposed
around 1960 by Harry Hess. Termed “sea-floor spreading,” the idea is
that new material is continuously welling up (from the earth’s interior) in
the great oceanic rifts. This new rock is added to the ocean floor as it
comes up, pushing the previously added rock outward from the rift. The
sea floor is being newly created and spreading outward (from the rift) all
the time. The engine driving this process is the mantle convection mecha-
nism that we’ve already considered. Meanwhile, the continents ride along
on the spreading sea floor like boxes on a conveyor belt. In this way, new
ideas that were proposed in order to explain perplexing new oceano-
graphic facts also implied the reality of continental drift. At the same time
these new explorations of the ocean floor were going on, other geologists
were engaged in studying a very different field: paleomagnetism. The basic
idea is simple. If lava contains magnetic minerals, those minerals will line
up with the earth’s magnetic field like a compass needle to point toward
the magnetic North Pole. As the lava cools and solidifies, these pointers
will be frozen in place and keep their original direction forever. If you go
to various locations on the earth’s surface, you might then expect to find
the magnetic orientation of the rocks pointing toward the North Pole.
Geologists did indeed expect this result. Instead, they discovered a variety
of different directions. This work is complicated, because you have to be
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sure the rock hasn’t been moved (by earthquakes, water, etc.) since the
lava cooled. Eventually, a great deal of work led to a consensus that the
differences in direction were real. The perplexing conclusion seemed to
be that the North Pole wanders around over geological time periods.

But there is another way to interpret this data. Perhaps it is not the Pole
that is wandering; perhaps the continents are wandering. Based on this
hypothesis that the continents are moving with respect to the North Pole,
geologists compared the magnetic directions of the rocks at many geo-
graphic locations and time periods to figure out the motions that the conti-
nents must have had. The results were astounding. Based on this study of
fossil magnetism, the continents must have moved in just the way that
Wegener had claimed that they moved. Another piece of the pattern fell
into place. Oceanography and paleomagnetism then joined forces to pro-
duce a striking confirmation of the picture that was emerging. Magnetic
studies of rocks, on both the continental land masses and the ocean floor,
revealed another initially confusing fact: a complete reversal of the mag-
netic direction for some rocks. This magnetic reversal is found to occur
simultaneously at many places on the earth, and it has taken place more
than once. In other words, the magnetic poles periodically flip places (this
field reversal is a well-confirmed empirical fact, but we still don’t fully
understand why it happens). What does this magnetic reversal have to do
with our story about continental drift?

The magnetic studies of the ocean floor, near the great oceanic rifts,
revealed another strange pattern. Stripes of sea floor, hundreds of miles
wide and running parallel to the rifts, contained rock with the same mag-
netic orientation. As you move out away from the rift, the stripes alternate
in their orientation (imagine a map with North-pointing rock colored
black and South-pointing rock colored white; this map will look a bit
like a zebra). Once you realize that the earth’s magnetic field periodically
reverses itself, however, this seemingly bizarre result begins to make per-
fect sense. In fact, this result is a startling vindication of the theory of sea-
floor spreading. The fresh lava emerges from the rift to create new ocean
bottom. As the lava cools, it freezes in the direction of the earth’s field.
As time progresses, the new rock moves outward, creating one of the
observed stripes. When the field reverses, creation of a new stripe begins.
As the field reverses periodically, a pattern of alternating stripes is created.
The theory predicts exactly what we observe. All of the puzzle pieces had
now been found. The time was ripe for geologists to assemble all of these
pieces into a coherent picture. This was accomplished in the middle of the
1960s by a number of people, the key player perhaps being Tuzo Wilson.
The resulting picture, a synthesis of all available information, is what we
now call plate tectonics. The continents ride on giant pieces of the earth’s
crust called plates. The plates themselves fit together on the earth’s surface
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like the pieces of a puzzle. The bottoms of these plates reach down into
the mantle to a region (called the asthenosphere), which is more plastic
and fluidlike due to the high temperature. This region is where the great
convection currents exist, slowly driving the movements of the plates. The
oceanic rifts, the Pacific “ring of fire,” and other unstable regions of high
volcanic and seismic activity are plate boundaries where the mantle mate-
rial is welling up or sinking down. The continental mountain ranges are
the result of momentous collisions between the plates. Plate tectonics is
now one of the fundamental organizing principles of modern geology.
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Chapter 3

NEW VISTAS: EXPANDING OUR WORLD

WITH INSTRUMENTATION

Not only do we use instruments to give us fineness of detail
inaccessible to direct sense perception, but we also use them

to extend qualitatively the range of our senses into regions
where our senses no longer operate. . . .

(P. W. Bridgman)

WE EXTEND our powers of observation by the use of instru-
ments. We sometimes increase the range of our senses into
new regimes of size or intensity, but we can also do more than

just magnify our usual means of perceiving the world. By using appro-
priate instruments, we can even “observe” new phenomena that our
senses can’t detect at all. Chemists, for example, learn about the motions
of atoms within a molecule by measuring the infrared rays that a molecule
emits but our eyes can’t see. Beyond extending the range of our senses,
there is another way in which instruments help us discover new things.
Instruments can also create new and exotic conditions under which to do
experiments and make observations. (In technical jargon, instruments can
extend the range of an independent variable). For example, the behavior
of matter undergoes fascinating transformations at extremes (very high
and very low) of temperature, pressure, energy, and so on. A famous par-
ticular case is graphite (pencil lead) turning into diamond at very high
pressures and temperatures. In this chapter, we’ll look in more detail at
some examples of discoveries made by using new instrumentation to ex-
tend the range of our observations. It may happen that only marginal
gains are made by such extensions; we learn a little more, increase our
precision, tidy up a few details. But sometimes, dramatic new discoveries
are made in these new territories and totally unsuspected phenomena
emerge. The examples I’ve chosen mostly illustrate the latter, more dra-
matic, cases. Not only are such cases more interesting, but I think they
are also more typical.
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§1. SUPERCONDUCTIVITY

An important technological development that grew out of our under-
standing of thermodynamics (the science of heat; see chapter 17) during
the nineteenth century was the invention of the refrigerator, the ability to
make something colder. Along with its important practical uses, such as
preserving food, refrigeration gave scientists a new tool in the study of
nature. They could now explore the properties of matter at very cold
temperatures. Nowhere was this tool more highly developed than in the
laboratory of H. Kamerlingh Onnes in Leiden. Onnes was the leader of
a large research group including master technicians and instrument mak-
ers as well as scientists, all devoted to the study of science at low tempera-
tures (cryogenics). In 1908, Onnes and his colleagues made a major break-
through: they achieved temperatures low enough to change helium from
a gas into a liquid, just 4.2 centigrade degrees above absolute zero (abso-
lute zero is the lowest temperature that can exist). Once they were able
to make liquid helium, Onnes and his group could cool other samples to
the same low temperature and study the behavior of these samples.

An important property that they wanted to study was the electrical
resistance of metals. What is resistance? If you attach wires from the two
terminals of a battery (or the two prongs of an electrical outlet plug) to
the ends of a metal bar, an electrical current (flow of charge) moves
through the bar. The battery or outlet (known technically as a voltage
source) acts to drive the current through the metal. The amount of current
that flows depends on that property of the metal called its resistance (you
might think of resistance as the tendency to impede a current flow). Met-
als typically have low values of resistance (except very thin wires),
whereas things like glass have high resistances.

Kamerlingh Onnes asked the question: What happens to the resistance
of a metal as its temperature becomes very low? He already knew that a
metal’s resistance generally decreases as the metal gets colder. Would
this continue until absolute zero, or would the decrease level off? Would
the resistance disappear at absolute zero, or would some residual resis-
tance remain? Experiments with platinum showed a leveling off, but
this seemed to be caused by impurities. So they tried mercury next, be-
cause mercury could be highly purified by distillation. The behavior of
mercury’s resistance was totally unexpected. The resistance slowly de-
creased as usual until a temperature was reached just below that of liquid
helium. Then, the resistance dropped abruptly to zero! This was so ex-
traordinary that the results were initially misinterpreted as a mistake, a
short circuit in the apparatus. As luck would have it, a technician monitor-
ing the temperature dozed off and the temperature drifted upward
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through the transition point, so the experimenter actually witnessed the
abruptness of the change. Subsequent careful experimentation revealed
that the transition to zero resistance really did occur as a sharp drop at a
specific temperature, now called the critical temperature. Superconductiv-
ity had been discovered.

The initial discovery occurred in 1911. Over the next few years, super-
conductivity was found in several other metals and explored in more de-
tail (for example, very high currents and magnetic fields were found to
destroy the effect). In order to determine whether the resistance was really
zero or just very small, currents were set going in superconducting rings
and left alone; these currents persisted indefinitely, showing that the
resistance was truly zero. Early efforts were made to understand super-
conductivity on a theoretical basis, but these efforts were only partially
successful, yielding important insights but no comprehensive theory. After
nearly half a century, John Bardeen and his colleagues finally devised a
genuinely coherent explanation for superconductivity that accounted for
all of the experimental findings.

§2. THE MICROSCOPE

In scientific usage, we don’t always use the word “observation” to mean
something you actually see with your eyes. But it’s still true that sight is
one of our primary means of acquiring information; and in some cases,
an “observation” really is an observation. If we are indeed using our eyes
as scientific instruments, then we’ll want to improve them. The primary
tool for this purpose is the lens. A lens is a curved piece of glass that bends
rays of light passing through it (by refraction at the curved glass surface).
The action of lenses was known to Arab science a millennium ago. In
Europe, Roger Bacon wrote about using lenses to magnify letters as an
aid to reading, and eyeglasses were in use by 1300. The art of lens grinding
continued to improve, and both telescopes and microscopes existed in
primitive forms before 1600. Our eyes had been improved for seeing
things that are far away and for seeing things that are very small. Our
power to make scientific observations was thus increased, and astrono-
mers (led by Galileo; see chapter 5) quickly exploited the telescope in
their work. At about the same time, a few pioneers began to look with
microscopes at small things like insects, spores, and fabric threads in order
to see more detail.

Many of the early microscopes were limited in their magnifying power
by the difficulty of grinding the small highly curved lenses needed. Neither
the compound microscopes with more than one lens (similar to modern
versions) nor the simple single lens microscopes had magnifications much
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greater than about 50X. Nevertheless, a lot of interesting work was done
with such instruments, the most famous example being Robert Hooke’s
series of studies published as Micrographia in 1665. The objects of study
in all this work were visible to the unaided eye, but only as small blurs
(fleas, for example). The microscope gave us a wealth of new and detailed
information about such things. But the really amazing discovery, which
is the main topic of this section, was yet to come, awaiting the ability to
craft a better lens.

Improved lenses were soon produced, and some of the best were ground
by the premier lensmaker of that century, Antony van Leeuwenhoek. We
still don’t know how he produced such fine lenses, for he never divulged
his secrets to anyone. Leeuwenhoek’s microscopes were relatively simple,
consisting of a single lens embedded in a small piece of metal with a screw
to position the sample at the proper position for focus. The simplicity of
the design was paid for by the difficulty of using such microscopes in
practice. Leeuwenhoek devised new techniques, requiring extreme pa-
tience and skill, for using his handmade microscopes (he also refused to
share these techniques with anyone else). The results of all this work and
skill were remarkable: microscopes with magnifications of over 300X and
an extensive series of papers describing his observations spanning 50
years. In 1674, Leeuwenhoek looked at some scummy pond water with
one of his high-power microscopes and thereby revealed a completely new
world, unknown and unexplored. He saw through his lens a swarm of
tiny creatures with strange and wonderful forms. They had a variety of
sizes and shapes, some were translucent and some glittered, they moved
slowly or quickly using rows of beating cilia or spiral-shaped appendages.
Within this droplet of ordinary water, an entire unsuspected universe of
life was going about its business in the microworld, which could now for
the first time be seen.

Leeuwenhoek’s discovery of the microbes in pond water was one of the
high points in his illustrious career. During this career, he also discovered
bacteria, spermatozoa, and blood capillaries; and he studied in detail the
cell structures of plants, red blood cells, embryos, muscle fibers, and insect
anatomy. He discovered a whole new world and spent his life carefully
observing and documenting the facts of this world. Leeuwenhoek and his
fellow microscopists were far ahead of their time; it took the science of
biology about a century to formulate a systematic understanding of na-
ture into which the microbial world could fit. Their techniques and obser-
vations were the beginnings of what we now call microbiology, and we
now know that the denizens of the microbial world are very important
to us (for both good and ill). Although we now take the existence of
microbes for granted (what five-year-old doesn’t know about germs?), it’s
worth remembering that no one had ever seen a microbe before Leeuwen-
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hoek. Because no one had seen microbes, they essentially did not exist (in
a conceptual sense). The key that allowed Leeuwenhoek to enter this new
world was his improvement to the art of lens grinding and the increase in
magnification this gave his microscopes.

§3. RADIO ASTRONOMY

While the microscopists used lenses to see the very small, the astronomers
used lenses and mirrors to see farther into the night skies. Making bigger
and better telescopes, astronomers discovered new planets, moons around
other planets, galaxies, and stars from ever farther away. But all these
discoveries are not the story I’m going to tell right now, because even the
biggest and best lenses and mirrors still gather ordinary light, the same
light seen by our unaided eyes. Our present story is about looking at the
skies with a completely different instrument, and seeing a world that is
invisible to our eyes at any magnification.

The story starts in 1930. The first transatlantic telephone link using
radio waves had recently been constructed, and the sound quality left a
lot to be desired. Bell Telephone Laboratories assigned Karl Jansky to
track down the cause of all the static and hissing sounds in the lines. He
found that most of it was caused by thunderstorms, but a small residual
hiss seemed to be coming from outer space. Jansky eventually localized
the source of these radio emissions as the Milky Way, but he was unable
to pursue these studies any further (Bell assigned him to other duties).

In retrospect, this was the origin of radio astronomy. But the field did
not take off very quickly. Astronomers were totally uninterested, and the
only person who continued Jansky’s work (a radio engineer named Grote
Reber) did so as a hobby. Astronomers paid little attention for at least
three reasons: the cause of the radio emissions was completely mysterious;
astronomers had no expertise in radio engineering (in contrast to tele-
scope construction, which was a highly advanced specialty by this time);
and the source of the radio waves could not be localized very precisely.
This last problem was a very serious one. Traditional astronomy had pro-
gressed to a remarkable degree of precision (comparable to locating the
position of a dime over a mile away). The early attempts at radio astron-
omy couldn’t really locate anything; they merely indicated the general
direction from which the radio signals came. Astronomers were unim-
pressed by such large bloblike indications of position. But work on radar
during World War II greatly improved radio technology, and the precision
of the interstellar radio source locations continued to increase (mostly by
making the radio telescopes, which were basically antennas, much bigger
or by combining the signals from widely separated antennas). In the post-
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war period, the radio astronomers began to locate radio emission sources
with positional accuracies good enough to attract the attention of the
traditional astronomers, and the field began to make serious contribu-
tions to science. At this point, we had a revolutionary new tool with which
to look at the universe, and the radio universe looked a lot different from
the optical universe we had seen for thousands of years. Galaxies that had
appeared to be shining calmly turned out to have enormous radio sources
at their cores, shooting out violent jets of material across millions of light-
years. The optically dim remnants of a supernova shine brightly with
radio waves, as do other forms of star death and birth. A number of faint
stars, called pulsars, emit strong radio waves with intensities that vary
periodically with clockwork stability. All of these things cannot be seen
with any eye or telescope. They are part of a world that we can’t see, a
world whose existence we never suspected.

As the techniques of radio astronomy matured, its results had to be
taken seriously. But these results still remained mysterious and difficult to
interpret. A particularly bizarre result was discovered in 1960 by radio
and optical astronomers working together: the discovery of quasars. The
initial discovery was a brightly emitting radio source that was extraordi-
narily small in size. The high resolution of the new radio telescopes al-
lowed radio atronomers to see how small the source was and also to locate
it precisely in the sky. Knowing an exact position allowed the optical
astronomers to train their telescopes on that spot in order to see what it
looked like in the world of light. Remarkably, the object just looked like
an ordinary star. Worse yet, the star appeared to be 4.5 billion light-years
away. (The method used to determine this distance is a little too involved
to relate here; it involves the spectroscopy of starlight, Doppler shifts of
frequency, and the expansion of the universe.) But for something that
bright to be so far away, it must throw off more energy than 100 galaxies
put together. Yet, the size of the object was only a few hundred times
bigger than our solar system. The strange new objects that had been dis-
covered were called quasi-stellar radio sources, which was shortened to
quasars. How can we understand the properties of these quasars? How
can something that small radiate that much energy? Just as the radio and
optical astronomers had teamed up to discover quasars, the astrophysical
theorists teamed up with the general relativity experts to understand what
quasars are. We now believe that quasars are supermassive black holes,
equivalent to millions of stars. (A black hole is an object that has suffered
“gravitational collapse”; its gravitational field is so strong that not even
light can escape, thus the name.) As matter is sucked into the giant black
hole, the matter accelerates and radiates away the energy we see. Al-
though theorists are still investigating these processes, the consensus is
that this explanation is substantially correct, and that a similar picture
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explains the observations of radio galaxies. The huge gas jets streaming
from the cores of radio galaxies are caused by spinning black holes that
are somewhat less massive than the quasar black holes.

For thousands of years, astronomy was done with our eyes. Telescopes
extended the powers of our eyes to see farther, but radio astronomy ex-
tended the powers of our senses to see a new and invisible universe. In
this new universe, we discovered things like quasars, which we hadn’t
even imagined before. Karl Jansky’s discovery of radio waves from the
stars opened up a new world to explore, and moved black holes from the
dustbins of theorists into the hearts of galaxies.
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Chapter 4

CLOSE, BUT NO CIGAR: DISCREPANCIES

AS A TRIGGER TO DISCOVERY

Indeed, I have seen some indications that the anomalous
properties of argon are brought as a kind of accusation

against us. But we had the very best intentions in the
matter. The facts were too much for us, and all that we
can do now is apologize for ourselves and for the gas.

(Lord Rayleigh)

SEEING what you do not expect can be a powerful impetus to de-
velop new ideas. Sometimes this process is obvious. If you believe
that yellow fruits don’t exist, then seeing a banana will modify your

beliefs. This is progress; it’s a primitive example of scientific discovery
resulting from an observed discrepancy. Most examples are more compli-
cated. There are a number of episodes in the history of science where
initially small discrepancies eventually instigated major scientific revolu-
tions. Two celebrated cases in physics are the Michaelson-Morley experi-
ment (which was eventually explained by the theory of relativity) and the
blackbody radiation measurements (which were the beginning of quan-
tum mechanics). I’ve chosen not to discuss these two cases here because
they are rather complicated and because so much has been written about
them elsewhere. Instead, we’ll look at some simpler examples. In the first
example (argon), a tiny numerical discrepancy in a routine measurement
provides a clue that leads to the discovery of a new gas, and this gas
turns out to be a member of a previously unsuspected class of chemical
elements. In the second example (the barometer), a somewhat minor but
unexplainable observational discrepancy leads to an important new con-
cept (atmospheric pressure). In the last example (Neptune), a remarkably
small discrepancy leads to the vindication of a theory (classical mechan-
ics) and the discovery of a new planet.

§1. ARGON

Toward the end of the nineteenth century, the composition of the atmo-
sphere was well known to be oxygen and nitrogen, plus small amounts
of carbon dioxide and water vapor. Around 1890, the famous British
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physicist Lord Rayleigh was making some measurements of the densities
of oxygen and nitrogen. These measurements were intended to increase
the precision with which the densities of the gases were known. Rayleigh
didn’t anticipate anything radically new to result from these experiments.
But his density measurements for nitrogen did result in a small and puz-
zling discrepancy. He made one of his nitrogen samples by starting with
air and removing the oxygen (and other reactive gases). He measured its
density. He made another nitrogen sample by starting with ammonia and
decomposing it. For this sample, he measured a different density (slightly
smaller). The difference between these two density measurements was not
large, only about one part in a thousand. But because he had measured
the densities with such high precision and repeated the experiments many
times, he knew the difference was real even though it was small.

At first, Rayleigh assumed that there must be something different about
the nitrogen in the two cases. One suggestion, for example, was that some
of the heavier nitrogen exists as a triatomic molecule instead of the normal
diatomic nitrogen molecule (just as ozone is a triatomic oxygen molecule).
But this idea didn’t really stand up to scrutiny because when he tried to
make the heavier nitrogen by any other method, he failed. Only nitrogen
in the atmosphere had an anomalously high density. Eventually, Rayleigh
came up with the idea of chemically reacting the atmospheric nitrogen in
order to remove it (as a gas) from the container it was in. He discovered
that there was a small residue of gas that he couldn’t remove. A chemist
named William Ramsay also started to experiment with removing nitro-
gen from atmospheric nitrogen samples, and he obtained similar results,
that is, a small amount of some gas that couldn’t be removed.

Rayleigh and Ramsay came to the conclusion that they had discovered
a new and previously unsuspected gas in the atmosphere. This gas had
some remarkable properties: The density of the gas was much higher (i.e.,
the gas was much heavier) than any other gas known at that time. In
addition, the new gas was totally unreactive chemically; it was unaffected
by strong acids, strong bases, and highly reactive metals. They named
their new gas “argon.” The scientific community was astonished by this
discovery, and initially quite skeptical. But the detailed research of Ray-
leigh and Ramsay (including measurements of argon’s density, index of
refraction, solubility, and atomic spectra) built a convincing case, and the
scientific community soon hailed the discovery of argon as an exciting
event. Argon was the first of the so-called inert gases to be discovered.
Ramsay went on to find a number of others (krypton, neon, xenon, and
helium), and a new column of the periodic table (see chapter 2) was estab-
lished for this new class of gaseous elements that didn’t form chemical
compounds. Thus ended the story that started with a minor discrepancy
in the density of nitrogen.
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There are some interesting historical footnotes to this story. Helium
had actually been “discovered” decades earlier (1868), in the sense that
its atomic spectra had been measured in the light from the sun. Since these
atomic spectral lines didn’t belong to any known element on earth, the
scientists who observed them (Lockyer and Janssen) interpreted the spec-
tra as belonging to a new element found in the sun. Lockyer named the
new element helium after the name of the Greek sun god. Many years
later, after argon was discovered in 1894, Ramsay found helium on earth
(recognized by its atomic spectra) in the course of his search for inert
gases. The other interesting bit of history is that these gases are not actu-
ally completely inert; in the 1960s, chemists were finally able to create a
few exotic chemical compounds containing these gases, which until then
had been thought to be totally unreactive.

§2. THE BAROMETER

Our next example is also about air, but this example is from a much earlier
time, namely 1643. Oxygen and nitrogen haven’t been discovered yet and
won’t be for over a century. Very little, in fact, was understood about
air at that time. One important property of air was known to advanced
thinkers, though it was still debated by reactionary academics: it was
known that air had weight. The fact that air had weight was known in
particular by Galileo’s talented student, Evangelista Torricelli. Torricelli
(and his colleague Viviani) became interested in a somewhat peculiar
minor discrepancy between an observed fact and the accepted explana-
tion for that fact. The fact that intrigued them was that water could only
be pumped to a height of 34 feet by suction pumps. This was well known
to plumbers, mining engineers, and other practical folks who had to move
water from lower to higher places. These suction pumps were like the old
hand pumps with which rural Americans got the water from their wells.
Pumps like these operate on the same principle you use when you suck a
liquid up a straw. In other words, if you keep making your straw longer
and longer, you won’t be able to suck water to the top once your straw
is over 34 feet long. Why should this be true?

In order to answer this question, you need to answer a prior question:
Why does the suction make the liquid rise at all? At that time, the accepted
explanation for why suction makes a liquid rise was the one given by
Aristotle. The explanation was based on a very general principle, namely
that nature abhors a vacuum (horror vacui in Latin). In other words, an
empty space is an unnatural state, and nature will therefore attempt to
fill this space with something. In the case of the pump, applying suction
starts to create a vacuum, and so the liquid rises to fill the space where
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the vacuum started to form. (Just to avoid any confusion, I should say
right away that all this is now considered nonsense. The phrase “nature
abhors a vacuum” still survives as a literary device, but it has no scientific
content. Most of the universe is a vacuum.) So, it was thought that a
suction pump worked because nature abhorred a vacuum. But the suction
could only pump water up to 34 feet. This height limitation is the discrep-
ancy between the observed fact and the explanation! Why should nature’s
abhorrence of a vacuum only extend up to 34 feet?

Torricelli pondered over this discrepancy, looking for a way to make
sense of it. We have no record of his thought processes, but somehow he
made a connection between this discrepancy in the theory of suction
pumps and the fact that air has weight. Making this connection was a key
insight, and working out the consequences of his idea allowed Torricelli
to discover atmospheric pressure, to invent the barometer, and to create
a vacuum (all in the same experiment!). Let’s take a look at his reasoning.
If air has weight, and if we are living at the bottom of what might be
called an ocean of air, then the weight of this large amount of air above
us must be pressing down on us. (We now call this pressing down by
the name “atmospheric pressure,” a concept that did not exist until Torri-
celli thought of it.) The weight of the air also presses down on the surface
of the water to be pumped. If we now remove some of the air over the
water in a tube (by suction), the weight (or atmospheric pressure, as we’d
say now) is less over the water in the tube. The pressure of the air over
the rest of the water then pushes the water up the tube, since the pressure
in the tube is less. Note that as the water column rises in the tube, the
weight of the water column itself pushes back on the pressure that is
pushing the column up. The higher the column, the more it weighs and
the harder it pushes back. When the weight of the water column is pushing
down just as much as the atmospheric pressure is pushing it up, then
the column won’t rise any higher. This happens when the column is 34
feet high. Torricelli’s explanation for the observed discrepancy was not
merely fine-tuning of the currently accepted thinking. He proposed a
completely new conceptual model for the action of the pump. The idea
of atmospheric pressure had never been thought of before because the
effects of atmospheric pressure are not usually apparent. Replacing ab-
horrence of a vacuum with atmospheric pressure was, in its own way, a
scientific revolution.

If we are surrounded by a strong pressure due to the air, why don’t we
notice it? We don’t feel like we’re being pressed on. We don’t typically see
or feel any effects of this pressure. The reason atmospheric pressure
has so little visible effect is that the air is both inside and outside most
objects, including ourselves; the inside and outside pressures cancel, and
therefore the net pressure is zero. If you want to see a dramatic demonstra-
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tion of the effects of atmospheric pressure, try this: Put a little water into
an empty aluminum can and heat the water to boiling for a few minutes
(this will fill the can with water vapor). Then quickly plunge the can, open
end downward, into cold water. The coldness will condense the water
vapor into liquid, leaving a vacuum inside the can. Atmospheric pressure
will then rapidly implode the can with a loud bang, leaving a crumpled
bit of metal.

But none of this information was known to Torricelli and his contempo-
raries in 1643. Torricelli’s radical new idea was certainly interesting, and
it did explain the limitations of suction pumps; but his idea was, so far,
just unproven speculation. What separates vaguely interesting speculation
from true science is the next step. Torricelli reasoned that if the weight of
the water was responsible for the height limitation of the water column,
then a new liquid with a different density (i.e., different weight) should
rise to a different height. In fact, the ratio of the densities should predict
the height of the new liquid column (e.g., a liquid that is twice as dense
as water should rise to only half the height of the water column because
the weights of these two columns are the same). So Torricelli did an exper-
iment. He knew that the density of mercury is 13.6 times greater than
the density of water. If his explanation was correct, atmospheric pressure
should only be able to lift a column of mercury up to a height of 2.5 feet
(34/13.6 = 2.5). A diagram of the experiment is shown in Figure 2. The
procedure is to take a glass tube that is closed at one end and fill the tube
with mercury. The open end of the tube is then placed in a bowl of mer-
cury, with the tube held vertical and the closed end at the top. The column
of mercury then drops under its own weight, leaving a vacuum in the
space of the tube above the mercury. The mercury column drops until it
reaches the height at which its weight is counterbalanced by the pressure
of the atmosphere on the bowl of mercury. The height of the mercury
column turned out to be 2.5 feet, just as Torricelli had predicted. A vac-
uum, of which nature was supposed to have such an abhorrence, had
been easily created at the top of the tube. The concept of atmospheric
pressure was strikingly confirmed.

Two important instrumental techniques were invented at the same time
in this experiment. Now that it was possible to create a vacuum, it was
also possible to do experiments in a vacuum. This capability led to entire
new experimental programs (although the preferred method of making a
vacuum became, after a few decades, the newly invented air pumps). The
second important technique derives from the following fact: the height of
the mercury column is directly proportional to the atmospheric pressure
exerted on the bowl (see chapter 19). Measure the height and you’ve also
measured the pressure. Thus, the inverted tube of mercury used in this
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Figure 2. A schematic version of Torricelli’s experiment, testing his prediction
that atmospheric pressure could only keep a column of mercury 2.5 feet high. In
performing the experiment, he also invented the barometer, since this device can
also measure changes in atmospheric pressure.

experiment is, automatically, a pressure-measuring instrument. We call
this instrument a barometer. The mercury barometer, in essentially the
same form as Figure 2, is still occasionally used to measure variations
in atmospheric pressure. Why are there any variations in atmospheric
pressure? One reason is that the pressure varies with altitude. Since there
is less air (less weight) above you when you are higher up, a pressure
decrease with altitude is predicted by Torricelli’s theory. In fact, a cele-
brated and important test of the theory was carried out in 1648 by Pascal,
who cajoled his brother-in-law into hauling a barometer up to the top of
a mountain. This experiment demonstrated that the atmospheric pressure
decreased at higher altitudes as predicted. Variations in atmospheric pres-
sure are also associated with changes in the weather. Low pressure is typi-
cal of stormy weather and high pressure is typical of cool clear weather.
For this reason, televised weather reports usually tell you the current at-
mospheric pressure and how it’s changing. You may have noticed that the
atmospheric pressure is reported in inches. This refers to the height a
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mercury column in a barometer would reach, using an inch of mercury
as a unit of pressure.

Having instruments to measure gas pressure and the ability to create a
vacuum were invaluable capabilities for science. These new experimental
capabilities, in addition to the important new concept of the atmosphere
as a sea of air that exerts pressure, led to many productive avenues of
research and a great deal of scientific progress. All that progress began
with a minor observational discrepancy with a well-accepted but incor-
rect principle.

§3. NEPTUNE

Our last example is the discovery of the planet Neptune in 1846. We
discuss the motions of the planets extensively in chapter 5, ending with
Newton’s explanation of these motions. Between the time of Newton’s
work and the discovery of Neptune, the intellectual landscape had
changed profoundly, as had the celestial landscape. During Newton’s life-
time, his work was an exciting beginning for a new science. By the mid-
nineteenth century, Newton’s mechanics was a highly developed and so-
phisticated science, and also an established orthodoxy. Meanwhile, in the
sky, the five planets of the ancient Babylonians had been joined by an
exciting newcomer in 1781: the planet Uranus. The discovery of Uranus
by William Herschel isn’t our topic at the moment, but it does present
a number of interesting features. In some ways, it was a discovery by
serendipity, since Herschel just happened by accident to be looking at the
spot where Uranus was. But it’s also an example of discovery resulting
from better instrumentation because he was only able to see that Uranus
is a planet (instead of a star) as a result of using a telescope with very
high magnification. Even with such high magnification, a talented and
experienced observer like Herschel was required in order to see the subtle
difference.

Why am I discussing Uranus when our topic is Neptune? Uranus actu-
ally plays a key role in our story. After Uranus was discovered, its orbital
motion was recorded over many years (orbital information was also
found in historical records, where it turned out that Uranus had been seen
before but mistakenly identified as a star). Newton’s laws of motion were
used, as usual, to calculate a predicted orbit for Uranus. Between the ob-
served orbit and the calculated orbit, however, there was a very tiny dis-
crepancy. Now the calculation of planetary orbits had become a highly
refined and exact science by the middle of the nineteenth century. The
earliest applications of Newton’s laws to planetary motion assumed that
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the planets were influenced only by the gravitational attraction of the sun.
Because the sun is many hundreds of times more massive than any planet,
only considering the sun is a very good approximation. But all the planets
have some mass, and so they all have some slight gravitational influence
on each other. As long as the observations of the planetary positions are
no more precise than the predictions of the approximate theory, these
slight effects can be ignored. As the power and precision of telescopes
improved, however, astronomers were able to measure the positions of
the planets so precisely that the theory could no longer make accurate
predictions using only the gravitational influence of the sun. The other
planets had to be included.

Including the gravitational influence of the other planets is extremely
difficult. Applying Newton’s laws to calculate the motion of objects can
only be done for (at most) two mutually interacting objects. The reason
for this limitation is mathematical; the equations we get for three or more
objects can’t be solved. Fortunately, the great mass of the sun makes it
initially possible to ignore the other planets, and only that fact made it
possible for Newton to apply his theory. As I said, subsequent progress
in observational astronomy eventually forced physicists to deal with this
problem, which they did in a remarkably clever manner. They couldn’t
solve the “three body problem” directly, but since the gravitational at-
traction of a planet is so much smaller than that of the sun, they were
able to treat it as a small correction on the orbit they could solve using
only the sun. The technical jargon for this technique is that the gravity of
the planet is treated as a small perturbation on the gravity of the sun. The
effect of this perturbation on the orbit could be approximately calculated
using special mathematical methods that were worked out for this pur-
pose. A feature of the technique is that the approximation becomes better
as the perturbation becomes smaller (see chapter 6 for a more general
discussion of this idea). For this reason, the technique works very well for
our planetary motion problem. Needless to say, the actual mathematical
manipulations are exceedingly difficult. Even so, a number of brilliant
mathematical physicists (Laplace being the most prominent) had used
these techniques to work out all the motions of the planets by the begin-
ning of the nineteenth century, and all of the predictions fit the observa-
tions perfectly.

Until Uranus. By the 1840s, it had become clear that there was a small
discrepancy between the growing collection of observations and the in-
creasingly precise perturbation calculations for Uranus. When I say small,
keep in mind just how good the observations and calculations had become
by that time. The discrepancy we are discussing is roughly 30 seconds of
arc, about the same as the angle between two automobile headlights
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which you see from five miles away. But as small as the discrepancy was,
it was still real and it shouldn’t have been there. How could this discrep-
ancy be explained? One “obvious” explanation is that the inverse-dis-
tance-squared relation for gravity breaks down in the case of Uranus and
some different law holds (perhaps due to its much greater distance from
the sun). Such a revolutionary and arbitrary conclusion is unwarranted
by the facts of this case, however; throwing out universal gravitation
should be our last resort, not our first choice (see chapter 12). Another
explanation might be that a large body (e.g., a comet) had passed close
to Uranus sometime in the previous hundred years, greatly perturbing its
orbit. This hypothesis is plausible, but it has the disadvantage of being
untestable (see chapter 14). Other possible explanations might be in-
vented, but the most popular proposed explanation at the time is also the
one we are most interested in here: Another planet exists in our solar
system, exerting a gravitational perturbation that accounts for the dis-
crepancies in the orbit of Uranus.

If you make the hypothesis that another planet, yet unknown, is the
cause of the irregularities in the orbit of Uranus, then your next step
would naturally be an attempt to locate the new planet. In particular, you
would want to calculate the orbit that this new planet must have in order
to account, quantitatively, for these irregularities. The difficulty of such a
calculation is mind-boggling. It’s hard enough to calculate the perturba-
tions on an orbit from a source that you know, but here you must work
backwards and figure out the location of the source based on the perturba-
tions. Yet two formidable mathematicians, J. C. Adams in England and
U. LeVerrier in France, undertook this calculation and they both came to
the same conclusion. The world now had a prediction of where to look for
the hypothetical new planet. LeVerrier sent his work to the observational
astronomer J. G. Galle in 1846. Galle immediately set to work looking
for the planet. He found it on his first night of observation! The new
planet eventually came to be named Neptune. This exciting discovery was
a great triumph for Newton’s mechanics.

Some interesting peculiarities can be found in this historical episode.
Adams actually completed his calculations before LeVerrier and sent the
results to G. Airy, the Astronomer Royal. Airy inexplicably paid little
attention to this work, and thus missed the chance to discover Neptune.
Another interesting point is that both Adams and LeVerrier made some
very incorrect assumptions about Neptune’s orbit at the beginning of their
calculations. The orbits they calculated were therefore not accurate. Be-
cause they only possessed recorded orbital positions for a limited period
of time, however, the orbit of their calculated planet and the orbit of the
real Neptune were not yet very far apart. This circumstance, in combina-
tion with a dose of good fortune, made their predicted position for Nep-
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tune very close to its actual position in 1846. These historical curiosities
need not distract us from the main point. A remarkably small discrepancy
in the orbit of Uranus led directly to the discovery of a new planet, Nep-
tune. Along the way, Newton’s laws of motion and universal gravitation
were verified to an unprecedented degree of precision.
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Chapter 5

INGREDIENTS FOR A REVOLUTION: THEMATIC

IMAGINATION, PRECISE MEASUREMENTS, AND

THE MOTIONS OF THE PLANETS

We see [Kepler] on his pioneering trek, probing for
the firm ground on which our science could later build,

and often led into regions which we now know to be
unsuitable marshland.

(Gerald Holton)

THE DISCOVERY of how and why the planets move, related in
this chapter, is intimately tied to the beginnings of modern science.
It’s worth remembering, however, that modern science didn’t exist

until after this story had already ended. For that reason, the motivations
and thinking patterns of the people who contributed to our understanding
of the motions of the planets were vastly different from our modern-day
point of view. An understanding of the planetary motions emerged only
slowly from a strange tangle of metaphysical assumptions, thematic
hypotheses, and observations of the night sky. When a true understanding
was finally achieved, physics as we know it came into existence as part of
the same event. The story starts with the ancient Babylonians and ends
over four thousand years later with Sir Isaac Newton. The Babylonians
were careful observers of the night sky, recording the positions of the
moon, stars, and planets. They also developed sophisticated mathematical
techniques to help them find the regularities in the paths of the celestial
lights. But their understanding of these lights was not scientific in the way
we understand the word; the night sky of the Babylonians was a place of
myth and wonder, populated by living beings. Other civilizations had also
developed such an observational, mathematical, and mythological astron-
omy to a high degree (the Mayans and the builders of Stonehenge come
to mind, for example). The Babylonians hold a special interest for us,
though, because their legacy of observational and mathematical work was
passed on to the Greeks.
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§1. GREEK ASTRONOMY

The Greek philosophers had inquiring minds; they wondered about the
nature of these lights in the sky and questioned their ancient religious
beliefs. Instead of merely using mathematics as a practical tool to predict
where the moon or a planet would be on a certain day, the Greek mind
also wanted to know the underlying causes. The idea that the true nature
of the world is based on mathematical relationships originated with Py-
thagoras of Samos, one of the greatest thinkers of antiquity, who lived in
the sixth century B.C. Pythagoras and his followers combined mathemat-
ics, number mysticism, and science, applying their ideas to music, astron-
omy, and medicine. Astronomers who were followers of Pythagoras con-
tinued for several generations to create world systems in order to explain
the motions of celestial bodies in a way that was consistent with their
philosophy. The last of this line of thinkers was Aristarchus; the system
he proposed was that the earth and the planets move around the sun, with
the earth rotating on its axis. In other words, Aristarchus created a system
that was conceptually identical to the system Copernicus devised eighteen
hundred years later. Unfortunately, his ideas did not catch on. No one
really knows why this happened, but Greek astronomy instead became
dominated by the earth-centered systems that we’ll look at next.

The Pythagorean emphasis on the importance of mathematics was in-
corporated into the thinking of Plato. The immense influence of Plato on
European culture kept this mathematical ideal alive, and it eventually was
incorporated into modern science. But Plato’s philosophy is based upon
idealizations rather than the study of nature, upon pure thought rather
than experience and perception. An example of this idealized thinking
that is relevant to our story is Plato’s teaching that the sphere and the
circle are perfect shapes in some metaphysical sense. Many astronomical
observations indicate that celestial bodies move in circular paths. Also,
the circle is a mathematically simple figure, making it highly useful in the
application of geometry to astronomy. These two facts, in combination
with the philosophical idea of the circle as a perfect shape, resulted in an
almost inescapable conclusion: The planets must, by all of this reasoning,
move in perfect circular paths. But there is a problem with this conclusion.
If the planets are moving in perfect circles around the earth, we should
always observe them moving across the sky in the same direction at a
constant rate. The planets don’t move this way, however. They occasion-
ally stop, move backwards for a while, and then return to their usual
direction. This so-called retrograde motion presents a problem to the be-
liever in circles. The problem was solved in an ingenious manner by Eu-
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doxos, a student of Plato, using sets of nested spheres. This kind of think-
ing eventually culminated in the famous system of Ptolemy: the planets
move in little circles called epicycles, while the epicycles themselves move
on larger circles around the earth. This system results in a path for the
planet that allows retrograde motion. Ptolemy could then account for all
the observed motions of the planets using only the circular paths allowed
by philosophy. The sun, moon, and five planets could all be described
using a total of thirty-nine circles. The geocentric system of Ptolemy, with
all of its wheels-within-wheels, was the last major innovation in astron-
omy for fourteen centuries. As you undoubtedly know, the civilization of
antiquity fell into decay at about that time, while Western Europe entered
into the Dark Ages for hundreds of years. The learning of the Greeks was
preserved in the East and was later assimilated by the civilization of Islam.
Through contact with the Islamic empire, Europe rediscovered the teach-
ings of Ptolemy and Aristotle in the twelfth century.

The system of Ptolemy can be thought of as just a mathematical device
for tracking the planets’ motions, but in fact it was not thought of this
way. Instead, Ptolemy’s work was combined with the physical ideas of
Aristotle, in which the celestial bodies are attached to crystal spheres
whose motion carries the planets and stars along their paths. The motions
of the spheres were considered natural and thus did not need further ex-
planation. The earth, at the center of the cosmos, was governed by differ-
ent laws; on earth the natural motion was to be at rest (or, if elevated, to
fall down). Also, on earth there was change and decay whereas the celes-
tial regions were immutable and perfect. Outside the outermost sphere of
stars was the Prime Mover who kept the whole thing going. The science
of Aristotle is self-contained and logical, in its own way. It is completely
nonmathematical, though, and the mathematical astronomy of Ptolemy
is simply grafted on. It may seem that we have wandered off the subject
a little with all these digressions about Greek philosophy. As we proceed,
however, you’ll see that such philosophical considerations play a central
role in the story. The teachings of Aristotle were incorporated into Chris-
tian theology, and they dominated European thought for about three hun-
dred years. But eventually the closed and stable world of the High Middle
Ages began to break up in the brisk intellectual winds of the Renaissance.

§2. COPERNICUS

One of the ironies of history is that a great revolution in human thought,
the banishing of the earth from the center of the universe, was instigated
by a quiet and conservative thinker who actually disliked novelties. Most
of the thinking of Nicolaus Copernicus was quite medieval in character,
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and he saw his work in astronomy as part of the humanist tradition in
which he and his contemporaries were engaged. This humanist activity
consisted of recovering and translating the writings of ancient Greece.
The humanists were making available, along with literature and philoso-
phy, the works of the Pythagoreans, of Archimedes, and other scientific
or mathematical treatises. Copernicus seems to have viewed his work as
a restoration of the ancient Pythagorean astronomy rather than as a radi-
cal new idea. Copernicus was educated in Italy, a center of advanced Re-
naissance thinking. The idea of a sun-centered universe was known and
discussed there. Copernicus did not invent the heliocentric system. His
great accomplishment was to work out the mathematics of the heliocen-
tric system as methodically as Ptolemy had done for the geocentric system.
This methodical working-out was a necessary step before astronomers
would take the heliocentric idea seriously.

Another indication of Copernicus’ conservatism is that he used, with
few exceptions, only the observations of the Greeks recorded in Ptolemy’s
work (which in fact were not all that accurate). Contrast this behavior
with the program of Regiomontanus, a prominent astronomer who lived
a generation before Copernicus. Regiomontanus believed that Ptolemaic
astronomy was flawed, and he also considered the merits of the heliocen-
tric system; but instead of reworking the mathematics of Ptolemy, he
chose to build better observational equipment to make new and better
measurements of the positions of the planets. In a sense, Regiomontanus
was more modern in his outlook than Copernicus, but it was Copernicus
who started the revolution in astronomy. On the other hand, we’ll see
later that improved measurements were also needed to advance the cause.

In thinking about Copernicanism, we need to keep in mind that three
different levels of meaning are involved. First, there is the mathematical
level, the details that are primarily of interest to astronomers; second,
there is the physical level, the assertion that the earth actually moves
around the sun and rotates on its axis; third, there is the cosmological
level, the implications of destroying the closed and stable world of Aris-
totle where everything has a natural place (and remember, this was the
world in which medieval folks lived). Let’s discuss each of these levels in
more detail.

The mathematical details of his system were clearly the major interest
of Copernicus himself. As a method for making astronomical calcula-
tions, the new system made a few improvements and simplifications. Pro-
fessional astronomers used Copernicus’ work to make new tables of plan-
etary positions, and it was helpful for practical problems like navigation
and calendar reform. But this kind of calculational simplification is not
really the main point. A more important issue is conceptual simplicity,
and here Copernicus’ system has both good and bad points. The major
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simplification provided by heliocentrism is that it easily explains retro-
grade motion. Retrograde motion is just an artifact caused by the motion
of the earth, a kind of optical illusion. For example, during one year the
earth travels all the way around the sun (thus going in two opposite direc-
tions), while a planet like Jupiter only goes through a small part of its
orbit (always in the same direction). So, looked at from the earth, Jupiter
appears to change direction but it really doesn’t (see Figure 3). Other
observations are also explained in a satisfying manner, such as the fact
that Mercury and Venus are always near the sun. But there are also some
problems. Because the planets don’t actually move in circles (more on this
later) and because some of the old Greek observations were mistaken,
Copernicus had to reintroduce epicycles so that his system would match
the positions of the planets. In fact, Copernicus used about the same num-
ber of epicycles as Ptolemy. Also, the center of the system was not actually
the sun but instead was a point in empty space near the sun.

These subtle points were mostly the concern of astronomers and mathe-
maticians, not the typical educated person (humanists, clergy, academics,
aristocrats, etc.). For most people, the question of whether the earth
moves was a more interesting and compelling question. The debate was
lively, but not widespread. To most people in the generation following
Copernicus, the earth’s motion did not really seem to be a pressing issue.
The reaction among Protestants was mixed, and the Catholic Church was
fairly favorable (Copernicus was a Canon of the Church), though neither
group paid much attention at first. Among freethinkers, innovators, and
intellectual radicals of various sorts, the Copernican idea of a moving
earth was widely embraced simply because it was so contrary to tradition.
The dedicated Aristotelian scholars, on the other hand, were vehemently
opposed to the idea; heliocentrism contradicted Aristotle’s teachings, vio-
lated his cosmology and his physics, and seemed patently absurd. (A stu-
pid idea. Do you feel like you’re moving?) Many arguments, based on
Aristotle’s physics, were put forth against a moving earth. Copernicus
believed in the motion of the earth based on his mathematical astronomy,
even though his physics was purely Aristotelian. He tried to counter the
arguments against a moving earth as best he could, but his arguments
were not convincing because a heliocentric system cannot be understood
properly without getting rid of Aristotelian physics. This point was well
understood by Copernicus’ successors if not by Copernicus himself.

In addition to the physical question of whether the earth moves, there
was the metaphysical question of what it means for the earth to move
(the cosmological level of Copernicanism). The medieval universe was
small and cozy. Everything is in its proper place and nothing important
ever changes. You couldn’t tear the earth out of its natural place in the
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Figure 3. A schematic illustration of the reason for retrograde motion. The path
of the planet, as seen from the moving earth, appears to go backward during part
of the orbit.

center of the cosmos, send it whirling around the sun, and still have every-
thing be basically the same. Copernicus had given metaphysical reasons
why the sun should be at the center of the cosmos, but that did not solve
the problem. Once change and instability were allowed by the introduc-
tion of heliocentrism as a viable alternative to the traditional universe,
there was no way to keep further novelties from being invented and pro-
posed. As this became more and more apparent to the authorities of the
Church, they hardened their initially tolerant attitude toward Copernican
astronomy. But by then, it was too late to go back to the old thinking.

The importance of Copernicus was not the result of his particular math-
ematical description, which was incorrect. Nor was it the result of his
explanation of his system, which was based on old and incorrect ideas.
The importance of Copernicus arose from the fact that the publication of
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his system started an important debate and led to further advances in
thinking. Copernican astronomy served as a springboard for progress
both in mathematical astronomy (by Kepler) and in the science of motion
(by Galileo). In a final irony, Copernicus almost surely would have de-
tested the new ideas in both of these areas.

§3. KEPLER AND TYCHO

Johannes Kepler was a mathematician of genius, and he was thoroughly
steeped in Pythagorean number mysticism. His Pythagorean outlook in-
duced him to look for harmonies and numerical relationships in the orbits
of the planets; his genius, combined with patience, allowed him to find
these relationships. But Kepler also had one more trait that made him
different from other intellectuals of his time: he insisted that the relation-
ships he found must describe the actual paths of the planets. Those which
did not were unacceptable. This may sound trivial to those of us in the
modern world, but it was a revolutionary attitude in his day. This attitude
in combination with his mathematical talent and his mystical predilection
culminated in the crucial discoveries that astronomy needed at that time.

In his youth, Kepler thought he had discovered a relationship between
the orbits of the five planets (in Copernicus’ system) and the five Platonic
solids (see chapter 18). He later abandoned this idea because the numeri-
cal values of the orbits were not quite right. He remained convinced, how-
ever, that deep numerical and mathematical relationships existed in the
cosmos, if only he could find them. But as Kepler continued his work, he
became increasingly aware that he was hampered by the low quality of
existing astronomical observations. By a stroke of good luck, new obser-
vations were being made at that time, far better than any which had ever
been made before. These new observations were the work of the greatest
observational astronomer since antiquity, the Danish nobleman Tycho
Brahe. Brahe had a passion for systematic and precise measurements, and
he had the resources to build new instruments of his own design in order
to make such measurements. Not only were his planetary positions re-
corded with the highest precision attainable (until the telescope came into
use), they were also recorded for many points in the orbit instead of just
a few. Tycho’s greatest accomplishment was the set of planetary observa-
tions that Kepler later used so brilliantly. In addition, Tycho observed the
paths of comets and showed that comets were definitely celestial objects
that went through the orbits of the planets, proving that the crystal
spheres of Aristotle must be fictional. Kepler joined Brahe at the Imperial
court in Prague, thus gaining access to the planetary measurements (which
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had never been published). When Tycho Brahe died, Kepler was able to
keep the precious measurements in his possession.

Kepler worked on the problem of planetary orbits for the next several
decades, checking his ideas and calculations against Tycho’s recorded po-
sitions. The planet that gave him the most trouble was Mars, and for a
good reason. Like Copernicus and Galileo, like Plato and Aristotle, like
all astronomers before him, Kepler assumed that the planets moved in
circles. But as we now know, the planets don’t move in circles. They move
in ellipses (an ellipse is a kind of flattened circle; the orbits of planets
are only slightly elliptical, almost circular). Different planets depart from
circularity by different amounts. Mars, it so happens, has a greater depar-
ture from circularity than most planets. So when Kepler tried to find a
circle that fit the elliptical orbit of Mars, he could not do it. He tried and
tried, doing laborious calculations by hand for years, using one circular
scheme after another. He came very close, but because Tycho’s observa-
tions were so precise, close was not good enough. In desperation, Kepler
gave up the assumption of circular paths and discovered that he could get
a perfect fit with an ellipse. This extremely important discovery, that plan-
ets move in elliptical orbits, we now know as Kepler’s first law.

During the same investigation of Mars’ orbit, Kepler also made another
important discovery. Everybody had always assumed that the planets
move with a constant speed. It became apparent to Kepler that the speeds
of the planets actually change, moving faster when they are closer to the
sun and slower when they are farther away. This was very disturbing; the
planets should move in a more orderly and harmonious fashion than that.
Kepler found through his difficult and tedious calculations that there was
indeed an underlying mathematical harmony hidden deep in the orbits.
Kepler’s discovery is illustrated in Figure 4 (the departure from circularity
is exaggerated compared to real orbits for purposes of illustration). The
pie-shaped wedges are marked out by movements of the planets. In both
cases, the planets took equal amounts of time to move the distances
shown. The wedge for the planet near the sun is a little wider because the
planet is moving faster. What Kepler discovered is that the sizes of the
two wedges, that is, the crossed-hatched areas, are both equal. Any wedge
marked out by the same time interval is also equal in area. We now call
this Kepler’s second law: equal areas are swept out in equal times. I don’t
know whether you find this interesting or amazing, but to Kepler’s Pytha-
gorean mind it was like finding the signature of God among his numbers.

A final mathematical relationship discovered by Kepler concerns the
time it takes for a planet to go around the sun and the planet’s distance
from the sun. The planets move slower and slower as they get farther and
farther from the sun. Is there some order or reason to this slowing-down?
Yes! Kepler discovered that the square of the time a planet takes to go
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Figure 4. An illustration of Kepler’s second law. The crosshatched wedges repre-
sent areas swept out by moving planets (this ellipse is more exaggerated than a
real planetary orbit, but is somewhat like a comet’s orbit). The areas of the two
wedges are equal, and they are both swept out in equal amounts of time.

around the sun is proportional to the cube of the planet’s distance from
the sun. This is a complicated relationship; we can only imagine how
Kepler extracted it from his reams of numbers, and we can only imagine
his joy at finding once again a hidden harmony in God’s plan for the
cosmos. We now call this relationship Kepler’s third law.

Kepler’s work is important for three different reasons. The first reason
is that Kepler finally provided a correct mathematical description for the
motions of the planets (this is the point usually emphasized in modern
textbooks). After thousands of years of effort, the true paths of the planets
were finally known. Moreover, this correct description was needed before
Newton could make further progress by finding the explanation for these
orbits (we’ll discuss Newton later). A second reason for the importance
of Kepler’s work is that he chose to give up his beloved circles because
they were contradicted by Tycho’s observations. No one before Kepler
would have given up their metaphysical presuppositions just because the
data didn’t fit. In this sense, Kepler represents a transition to the modern
view of science. His Pythagorean number mysticism was a relic of the
past, while his insistence on agreement with the evidence of the senses
was a jump into the future. Finally, Kepler’s third important contribution
is that he thought about the motions of the planets in terms of physical
causes. As long as everyone assumed the planets move in perfect circles
and that perfect circular motion was a natural motion, then there was no
need to ask any more questions. But when Kepler discovered that the
planets move in elliptical paths (having the properties given by his laws),
he felt that these discoveries did require an explanation. He knew that the
sun must have a central role in directing the motions of the planets, and
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he imagined some sort of physical cause emanating from the sun that
weakens as distance from the sun increases. As the cause becomes weaker,
the planets at an increased distance move more slowly. This combination
of physical cause with mathematical description has proven to be a re-
markably fertile idea in the development of science. Because Kepler was
exploring completely new intellectual territory, he had many of the details
wrong. But his key insight, namely that something from the sun causes
the planets to move as they do, was profoundly correct.

§4. GALILEO AND DESCARTES

We now take a look at the role played by Kepler’s brilliant contemporary,
Galileo Galilei. Galileo probably did more than any other thinker to bring
about the establishment of modern science. Like Kepler, Galileo believed
that mathematics is the language we need in order to understand nature.
He was undoubtedly influenced in this belief by the same Pythagorean
tradition of Neo-Platonic thought that influenced Kepler. But Galileo had
a more practical and modern mind; he was much less prone to mystical
speculation. (Another irony: the hardheaded Galileo continued to believe
in circles while the otherworldly Kepler gave up circles to match the obser-
vations.) Galileo also championed experimentation as a way to learn
about nature, and it was his combination of experimentation and mathe-
matics that proved to be so powerful in advancing physics.

Galileo did not make any major contributions to mathematical astron-
omy, but he made three other important contributions to understanding
the planets: telescopic observations, a new science of motion, and popu-
larizing Copernicanism. The most important contribution turned out in
the end to be the new science of motion he invented. During his lifetime,
however, he was most famous for his work in astronomy, using the re-
cently invented telescope. Galileo significantly improved the telescope,
and he was the first person to point it toward the night sky and discover
new things there. He discovered the mountains and craters of the moon,
proving wrong the Aristotelian claim that celestial orbs were perfect
spheres. He discovered that Venus had phases like the moon, important
evidence that Copernicus was right. He discovered that another planet,
Jupiter, had moons of its own. This exciting discovery provided a minia-
ture Copernican system for people to see. Galileo’s third contribution was
to convince the majority of educated people, who still mostly lived in a
geocentric universe, that Copernicus was right.

Making a convincing case for Copernicanism is probably what Galileo
is most known for today. His rhetorical skills were formidable, and he
wrote in strong and interesting Italian prose instead of boring academic
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Latin. The popularization of heliocentrism was important in advancing
the cause of science at the time, especially since many of Galileo’s argu-
ments were based on the inadequacy of Aristotle’s physics. Galileo’s new
thinking about motion made the often-quoted arguments against a mov-
ing earth obsolete. The old physics, along with the old cosmology, needed
to be swept away in order to make progress. Galileo’s insistence that the
same laws of nature hold on earth and in the celestial realms was particu-
larly important. Change does not come easily, however, and Galileo is
also famous today for the reaction against him. A brief digression on this
battle is worthwhile. The initially tolerant (and even encouraging) atti-
tude of the Church toward Copernicanism had gradually hardened into
opposition, as it became apparent that new ideas in astronomy might
lead to new and heretical religious ideas. The entire intellectual climate of
Europe had become less tolerant due to the religious wars and persecution
resulting from the struggle between Protestants and Catholics. Also, Gali-
leo’s intellectual enemies, the Aristotelian academics, had worked hard to
convince the Church to side with them. Galileo, for his part, entered into
needless disputes and controversies with influential members of the clergy
(although brilliant, he was also abrasive and egotistical). All of this culmi-
nated in the well-known trial of Galileo, in which he was forced to deny
Copernicanism, and the Church rejected heliocentrism for centuries.

In the last few years of his life, Galileo wrote his masterpiece, a system-
atic explanation of the new science of motion that he had developed over
his lifetime. Almost every student of high school or college physics learns
this work at the beginning of the course: the relationships between posi-
tion, time, velocity, and acceleration. Galileo’s new science was one of
the crucial ingredients, along with Kepler’s mathematical astronomy and
ideas about physical forces from the sun, that Newton synthesized into a
genuine understanding of planetary motion. The remaining ingredient
that Newton required was supplied by the French philosopher, René Des-
cartes. Descartes was an immensely influential thinker in both philosophy
and mathematics (most of his work is outside the scope of our interest
here). Descartes’ physics largely turned out to be wrong, except for the
idea of inertia. Descartes’ concept of inertia was both correct and im-
portant. The old Aristotelian concept of inertia was that the natural state
of motion is rest, and objects only move if something moves them. Galileo
correctly denied this, but incorrectly thought that the natural state of mo-
tion was circular. Descartes finally realized that the natural state of motion
is to go in a straight line with a constant speed. (This conclusion is by no
means obvious because we almost never see it happen; there are always
forces acting that prevent the natural state of motion from occurring.) So,
inertia is the property of an object that keeps it going in this natural
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straight-line motion. Beginning physics students learn this assertion as
Newton’s first law of motion.

But if the natural thing to do is to fly off in a straight line, why then do
the planets move in ellipses around the sun? This is the part Descartes
had wrong. Unable to accept Kepler’s ghostly emanations from the sun,
Descartes thought that some substance must fill the universe and account
for the motions of the planets. He imagined that this substance swirled
around in cosmic whirlpools, carrying the planets along with it. Kepler
was closer to the truth in some ways, thinking there must be a force from
the sun that weakens with distance. But Kepler had the wrong concept of
inertia; thinking that the planets wanted to be at rest, he imagined the
force from the sun must push them along to keep them moving. Of course,
Galileo had it wrong, too. His concept of inertia was circular motion, and
he thought that the planets moved in circles, making further explanation
unneeded. It was Newton who put all the pieces of the puzzle together in
just the right way to explain the motions of the planets properly.

This collection of half-right and half-wrong theories may be hard to
follow, but following each twist and turn of the argument isn’t really
necessary. I included all this detail because I have a point to make, and
my point is this: Scientists don’t simply sit down and write out correct
theories from scratch. Ideas evolve over time. Different people contribute
different bits and pieces, good ideas are mixed with bad ideas, observa-
tions are improved, new ideas are invented, and the good ideas are slowly
sifted out from the ideas that don’t work. Different combinations of good
ideas are tried, and eventually a coherent picture emerges. In this case, it
emerged from the mind of Newton.

§5. NEWTON

Isaac Newton’s accomplishments are staggering. He did fundamental
work in optics that dominated the field for hundreds of years; he invented
the branch of mathematics known as calculus; and he founded physics as
we know it today by creating mechanics, the science of motion. In the
course of creating mechanics, Newton discovered the correct explanation
for the motions of the planets. Newton and his colleagues had by this
time refined Kepler’s nebulous concept of “a force from the sun” into
“the force of universal gravitation.” The force of gravitation was a mutual
attraction between all things that obeyed a well-defined mathematical
form (namely, that decreased as the inverse distance squared). Building
on Galileo’s study of acceleration, Newton discovered the general way in
which a force changes the motion of an object (we now call this discovery
Newton’s second law of motion). Applying his new mechanics to planets
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attracted by the gravity of the sun, Newton was able solve the ancient
problem of planetary motion.

In words, the solution is this: A planet would just travel in a straight
line if left on its own. But the planet is not left on its own, it is pulled
toward the sun by gravity. On the other hand, if the planet were just
standing still to start with, gravity would cause it to fall straight into the
sun. So, a planet has two opposing tendencies. The planet has an inertial
tendency to fly off in a straight line, and it has a gravitational tendency
to fall into the sun. The delicate balance of these two opposing tendencies
results in the planet’s elliptical orbit. Newton showed mathematically that
his laws of motion, applied to an inverse-distance-squared attractive force
like gravity, predicted all of the properties that Kepler had discovered in
the planetary motions (i.e., Kepler’s laws). The beautiful mathematical
harmonies of Kepler turned out to be the result of an even deeper mathe-
matical order. Newton’s laws of motion, which we now call classical me-
chanics, could explain and predict any motion due to any kind of force.
This theory was applied with unchallenged success for centuries (see chap-
ter 4) until it too was found to have limits. But that is a whole new story.
The story of the motions of the planets, which started in ancient Babylon,
ended with Newton.

§6. COMMENTS

What are some of the interesting points concerning scientific discovery
that are illustrated by this story? One point is that merely making observa-
tions and measurements is not enough for a science to evolve; people must
also ask questions and look for explanations. This is why astronomy as
a science was founded by the Greeks and not by earlier civilizations. The
other side of this coin, however, is that science does need better observa-
tions and more precise measurements in order to make progress, particu-
larly if conditions are ripe for a major breakthrough but the necessary
data are lacking. We saw an example of this in Kepler’s utilization of
Tycho’s work.

A theme running through the entire story is the influence of metaphysi-
cal ideas on the thinking of scientists. The assumption of circular motion
was common to Ptolemy, Copernicus, and Galileo. The joining of Pytha-
gorean heliocentrism with dogmatic adherence to uniform circular mo-
tion was the foundation of Copernicus’ system. And it was the combina-
tion of a Pythagorean belief in mathematical harmony with a respect for
the precise measurements of Tycho that inspired Kepler’s work. Another
theme in this story is the influence of social and cultural forces on the
history of ideas. The humanist activity and the ferment of new ideas in
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the Renaissance exposed Copernicus to heliocentrism at a time when the
Ptolemaic system was starting to be perceived as weak. The practical need
for better astronomy (navigation, calendar reform, and so forth) coin-
cided with a general reevaluation of old ideas. This reevaluation included
the realization that Ptolemy’s work gave inaccurate predictions, which
could only be patched up by adding more epicycles. Geocentrism was
becoming a tired and decaying system. So, when Copernicus proposed his
heliocentric system, it started a revolution in thought instead of being
quietly forgotten as Aristarchus’ system had been forgotten.
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Chapter 6

A UNIVERSE IN A BOTTLE: MODELS, MODELING,

AND SUCCESSIVE APPROXIMATION

One of Oppenheimer’s great strengths as a theorist was an
unerring ability to look at a complicated problem and strip

away the complications until he found the central issue
that controlled it.

(Kip Thorne)

IN TRYING to understand nature, we rarely attempt to grasp com-
pletely every possible detail. If we did, we’d be overwhelmed by the
mass of inconsequential information. As a result, we would miss the

truly interesting patterns and relationships that give us scientific insight.
An important tool to achieve scientific understanding is the construction
of conceptual models. Models, in the sense in which I’m using the word
here, are imaginary simulations of the real natural systems we are trying
to understand. The models include only properties and relationships that
we need in order to understand those aspects of the real system we are
presently interested in. The rest of the details of the system are left out of
the model.

§1. BILLIARD BALLS AND STREET MAPS

Let’s illustrate this vague and abstract description of models with a brief
example. Many properties of gases can be understood by modeling the
gas atoms as tiny billiard balls; in other words, the atoms can be imagined
as small hard spheres that don’t affect anything unless they collide with
it. When they do collide, according to the model, they behave similarly to
colliding billiard balls (the similarity is in the way they exchange physical
properties like momentum and energy). Now, atoms are not tiny billiard
balls. Atoms have many properties that are not at all described by this
model (think of chemical reactions, for example). And yet, many proper-
ties of gases (e.g., pressure, heat capacity, expansion and compression,
diffusion, etc.) can be understood on the basis of this very simple model.

A good example of a model from everyday life is a street map. The lines
on paper are not real streets, and yet the map models many properties of
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the real streets: the relative positions of the streets; where the streets inter-
sect with each other; the directions of the streets; and so on. Most of these
properties of streets are in fact the properties we are interested in when
we use a map. Many other properties are not provided by our map model:
the people walking on the sidewalks; whether the street is asphalt or con-
crete; whether it runs through a business district or residential area; and
so on. Many of these properties are of no interest when we use a map,
though it’s possible that some piece of information that you want might
be left out. A map that includes most of the information you want, and
leaves out most of the information you don’t, is a good model of the real
streets for your purposes. Whether a model is good or not depends on
what you want the model to do. The worth of a model depends on what
kind of information or understanding you wish the model to provide. In
the case of the map, a good map for navigating the downtown region of
a city will be different from a good map for getting to another city hun-
dreds of miles away. This point is also true for scientific models. The
billiard ball model for gas atoms is a good model for explaining gas
pressure, but it’s a poor model for explaining how a gas condenses into
a liquid.

Sometimes, a model just isn’t appropriate for understanding a process
or system we are interested in. For those cases, we need to devise a new
model. But sometimes, we don’t need to invent a whole new model. We
can modify, extend, or refine a model so that it allows us to understand
things the unmodified model did not. For example, maps sometimes
model freeway exits in a very sketchy and schematic way, showing no
details of how the exit is actually laid out in real life. This might be alright
in some cases, but I have occasionally had a lot of trouble getting on or off
a freeway due to this mapmaking custom. When this happens, I definitely
regard the model as deficient. Yet the model (map) can easily be fixed in
this case simply by adding the details of the freeway exit to the existing
map. In other words, the sketchy map is an approximate model of reality
that is too crude; the modified map is an improved approximation. This
idea of approximate models and of successively improving your approxi-
mations (until your model does what you want) is very useful in the sci-
ences. For example, we have identified a shortcoming of our billiard ball
model of gases (it doesn’t explain why a gas should condense into a liq-
uid). Now that we know where it fails, we can refine the model to take
care of this problem (e.g., we can endow the billiard balls with a new
property like mutual attraction).

We’ll come back to this gas example in more detail later, as well as a
number of other examples from the sciences. Before we look at more
examples, however, we need to consider one more general aspect of scien-
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tific models: the value of mathematical models. We have so far discussed
the idea of a model as a pictorial representation of reality, and sometimes
this is an appropriate way to make progress and gain new understanding.
Sometimes, however, a conceptual model is only a first step, and the sec-
ond step is a mathematical representation of the conceptual model. In the
scientific examples of §2, I will try as much as possible to indicate how
this is done and why it’s useful (though a detailed mathematical treatment
of those examples is beyond the scope of this book).

Traffic Model

Let’s end this section with an example of a fairly simple mathematical
model. The system we’ll model is a familiar one: traffic flow at an intersec-
tion governed by a traffic light. Suppose we are interested in the traffic at
an intersection of two streets, Main Street and Oak Street. Main Street is
usually a little busier than Oak Street, but during rush hours Main Street
becomes much busier. Now, there’s a traffic light at the intersection, and
we want to arrange the timing of the red and green lights so that the
number of people inconvenienced by stopping is about equal on the two
streets. Clearly, in order to accomplish this goal, the people on the busier
street must get a shorter red light. The difference between rush hours and
the rest of the day makes solving our problem more complicated. We
might ideally want a computer-controlled traffic light that adjusts its tim-
ing to the traffic flow, but the intersection is located in Budgetville where
the residents are too cheap to buy one. So how should we arrange the
timing to accomplish our goal? We need to equalize somehow the number
of people inconvenienced on the two streets over the course of an entire
day. The solution to our problem will involve some kind of compromise
in which people on Main Street will be somewhat more inconvenienced
during rush hours while people on Oak Street will be somewhat more
inconvenienced the rest of the time.

In order to progress further, we’ll make an idealized mathematical
model of the situation. We said that Main Street is busier than Oak Street,
more so during rush hours. To make a mathematical model, we need a
mathematical concept that corresponds to (and measures) how busy a
street is. The rate of traffic flow, that is, the number of cars passing by per
unit time, is a good candidate for this measure. All of the complications of
changing traffic flow rates throughout the day can be approximated by
four numbers, two for Main Street (rush hours and nonrush hours) and
two for Oak Street (rush hours and nonrush hours). Choose symbols to
stand for these four different rates.
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Rm,r , Rm,n , Ro,r , and Ro,n

R stands for rate of traffic flow, the m subscript stands for Main Street,
the o subscript stands for Oak Street, the r subscript stands for rush hours,
and the n subscript stands for nonrush hours. Rm,r , for example, is the
traffic flow rate on Main Street during rush hours. Numbers like these in
a model are sometimes called the parameters of the model.

We are now ready to solve our model. Remember, we have no control
over the rates; they are determined by the habits of the Budgetville citi-
zens. We can measure them, but not change them. The variables that we
can control are the times that the lights are red for each street. What do
we want? We want equal numbers of people inconvenienced by stopping
on each street. We want to arrange the timing of the red lights so as to
make this equality true. Finding these correct times for the red lights is
what we mean by solving the model. Let’s call the duration of the red
light times ∆tm on Main Street and ∆to on Oak Street. A little thought will
convince you that we now have four different values for the number of
cars stacked up at red lights. These are

Nm,r = Rm,r ∆tm

No,r = Ro,r ∆to

Nm,n = Rm,n ∆tm

No,n = Ro,n ∆to

where Nm,r is the number of cars lined up on Main Street during rush
hours, and so on for the other three numbers.

The crucial question now is this: How are these numbers related to our
goal? We want equal numbers of people on the two streets inconvenienced
by having to stop. The total number of people stopped on Main Street or
Oak Street during rush hours is equal to the number stopped during each
red light multiplied by the number of times the light turns red. The same
can be said about the total number of people stopped during the nonrush
hours. Assume that rush hours are 7:00 A.M. to 9:00 A.M. and 4:00 P.M.
to 6:00 P.M., a total of four (4) hours. Nonrush hours are 9:00 A.M. to
4:00 P.M. and 6:00 P.M. to 9:00 P.M. (we’ll assume there’s negligible traffic
after 9:00 P.M.; there’s not much nightlife in Budgetville), a total of ten
(10) hours. Since

10/4 = 2.5

we can write our equality condition in the form
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Nm,r + 2.5Nm,n = No,r + 2.5No,n

This is a mathematical statement of our desire that equal numbers of
people be inconvenienced throughout the day on both Main and Oak
Streets. Now we are getting somewhere! Rewrite this condition as

Rm,r ∆tm + 2.5Rm,n ∆tm = Ro,r ∆to + 2.5Ro,n ∆to

and find ∆tm in terms of ∆to. If we do the algebra, we discover that

∆tm = {(Ro,r + 2.5Ro,n)/(Rm,r + 2.5Rm,n)} ∆to

We have now accomplished our goal. Knowing values for the four R
parameters, we can now set the times of the lights using this expres-
sion. Doing so will at least approximately yield the desired result: equal
numbers of people stacked up during the day at red lights on Main
and on Oak.

This example illustrates several interesting points about models. A
number of idealizations and approximations were made in order to create
a mathematical model of the real-life situation, and using the model en-
abled us to extract certain kinds of information that would have been
difficult to obtain otherwise. The model employs a number of parameters,
which approximately represent some quantities of interest in the model.
From our model, we don’t get any new insight or understanding into
certain questions and issues (e.g., we don’t learn anything about why
Main is busier than Oak); these questions may be of interest in some other
context, but our model is not intended to address them. Finally, we
can test our model empirically to find out if the approximations we’ve
made are close enough to reality to suit our purposes: Any complaints in
Budgetville?

§2. SOME SCIENTIFIC MODELS

To see how models are used in the sciences, let’s look at some examples
of models that provide insight into various natural systems and processes.
These brief discussions are only intended to give a sense of how the models
work, without going into many details. I don’t give any mathematical
formulations of the models, but I do indicate the ingredients needed for
such formulations. The examples we will look at are the ideal gas model;
models of blood flow in the body; the nuclear shell model; models of drug
uptake in the body; biological models of heredity; and the game theory
model of social conflict.
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Ideal Gas

Let’s take another look at the model of gas molecules as billiard balls,
which is technically known as the ideal gas model. In this model, the gas
molecules are pointlike, that is, they don’t take up any space. The mole-
cules don’t interact with each other or with anything else (e.g., the walls
of their container) unless they happen to collide (make a direct hit). If
they merely pass nearby, it’s as if they weren’t even there. When they do
collide, they exchange energy and momentum as particles undergoing a
classical elastic collision. Which is to say: they act like colliding billiard
balls, or like tennis balls bouncing off a brick wall. These properties define
the molecules of an ideal gas. Ideal gas molecules are a good approxima-
tion to the behavior of real gas molecules when the molecules are far apart
and moving fast, so the ideal gas model works best for gases with a low
density and high temperature. The ideal gas approximation breaks down
when the density is too high or the temperature too low, because other
ways in which the gas molecules interact (e.g., they attract each other)
then become more important.

This model can be used to explain the relationships between pressure,
volume, temperature, and number of molecules. In other words, we can
explain why the ideal gas equation (see chapter 19) is true, using our
model. The key idea is that pressure is caused by gas molecules hitting the
walls of the container. (This idea can be treated mathematically by relating
the pressure on the wall to the momentum imparted by the molecules
hitting the wall.) If the volume of the container is increased, the gas atoms
become more spread out, and the pressure decreases. If the temperature
is increased, the gas atoms move faster, and the collisions with the walls
become harder and more frequent, thus increasing the pressure. The quali-
tative relationships found in the ideal gas equation are obviously pre-
dicted by our model, and it turns out that the quantitative relationships
are also predicted by the mathematical version of the model.

Common sense tells us why the model must break down at too high a
density. According to the ideal gas equation, the product of pressure and
volume is constant. If this remained strictly true, we could make the vol-
ume as close to zero as we pleased by simply continuing to increase the
pressure. This conclusion makes sense in terms of our model because the
gas molecules in the model don’t take up any space. But the model itself
doesn’t make any sense if the molecules get too close together, because in
fact they do take up space. The approximation (pointlike molecules)
breaks down when the density becomes too high, and so does the ideal
gas equation. If we did the experiment, we would at first start to see small
deviations from the equation as the pressure increased. Eventually the
gas turns into a liquid when the pressure becomes high enough. A liquid
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obviously doesn’t behave like an ideal gas! More particularly, the volume
of a liquid decreases very little as the pressure increases.

In the range of densities and temperatures for which the deviation from
ideal gas behavior is still small, we can retain our model as a first approxi-
mation. We just modify the model slightly to account for the deviations.
For example, we can add a weak attractive force (which decreases with
distance) to account for the tendency of the gas to form a liquid, and we
can add a strong repulsive force at very short distances to account for
the nonzero size of the molecule. Various mathematical versions of such
improved models have been proposed and work well, accounting for
many of the behaviors we see experimentally. Eventually, however, we
discover behaviors (the gas mixture of oxygen and hydrogen turning into
water, for example) that cannot be explained by any amount of tinkering
with the model. To account for these cases, we need a completely different
conceptual model of the gas molecules.

Blood Flow

Understanding how our blood flows in veins, arteries, and capillaries is
an important problem of great medical interest. But this problem is also
incredibly complicated to understand completely. As usual, we’ll begin
our attempt to understand a complicated situation by using a simple
model. We’ll start by approximating blood as a liquid with the properties
of water. Next, approximate the blood vessel as a thin straight tube with
rigid walls and a uniform cross-sectional area. Finally, assume a moderate
steady pressure on the liquid. This model is a good approximation for
water flowing in a hypodermic syringe, for example. It’s admittedly a
poor model for blood in the human body, but has the virtue of being easy
to solve. The velocity of the blood flow in this model is directly propor-
tional to the pressure drop along the length of the blood vessel.

The first incorrect assumption made in this model is that the resistance
to blood flow (which is the constant of proportionality in the model) is a
constant. The resistance of the blood vessel to blood flow depends on the
radius of the vessel, and the radii of the small arteries can be greatly varied
by their muscles. But the pressure drop itself can also vary as the radius
of the vessel changes. Our initial model may be a good starting point, but
a much more complicated model is required to accurately describe blood
flow throughout the circulatory system. The second problem with our
model is the assumption of flow through a straight tube. Blood vessels are
generally curved tubes. Worse yet, the arteries are continually branching
into numerous smaller tubes, down to the capillaries. In these geometries,
fluid flow may become very complicated due to the onset of turbulence.
The mathematical models needed in such cases are very difficult to solve,
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requiring large amounts of time on high-powered computers. A third
problem with our model is the treatment of blood as a simple fluid, like
water. If all we had was blood plasma, then this assumption might be
reasonable. The chemical complexity of blood plasma doesn’t affect its
fluid properties much. But the blood cells suspended in the plasma make
its fluid properties much different (and more complicated) than water.
Because of these cells, the viscosity (resistance to flow) of blood actually
depends on the flow rate of the blood. The reasons for this effect are not
well understood, but it’s certainly important; the smallest capillaries are
barely bigger than the red blood cells. To model the actual biological ef-
fects in this case is probably not practical. If we assume some fairly simple
model for the variation of the viscosity, however, we can still approxi-
mately find the blood flow.

We may also need to consider some other features of blood circulation
(depending on the particular problem we are considering). The pressure,
for example, isn’t steady but rather comes in big pulses due to the heart-
beat. These time variations in pressure become less prominent in the
smaller vessels, which are farther away from the heart. Blood vessels ex-
pand to accommodate blood flowing into them, which keeps the pressure
from getting too high (age and cholesterol decrease this ability). Another
complication is that the circulatory system is equipped with a set of valves
to shunt blood into or out of the capillaries as needed.

Comparing this example (blood flow) and the previous example (ideal
gas), we see an interesting difference. The simplest model for the gas
works well and only needs small corrections under certain conditions.
The corrections only become large as the conditions become extreme. In
contrast, the simplest model for blood flow isn’t really very good under
any conditions. The utility of that simple model is that it provides a frame-
work to think about the problem and to ask which improvements are
needed. The answer to the question of what improvements are needed
depends in turn upon which features of blood flow we are interested in
understanding (and under what conditions). The improvements in this
case will not be small corrections but instead will radically change the
simple model.

Nuclear Shell Model

The nucleus of an atom is made up of protons and neutrons. During the
1930s and 1940s, after the discovery of these subatomic particles, physi-
cists worked to understand the properties of nuclei in terms of the forces
holding the particles of the nuclei together. One model assumed that the
particles lost their individual identities because each particle was acted on
by strong forces exerted by all of the other particles in the nucleus. In this
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model, called the liquid drop model, the nucleus is thought of as a kind
of homogeneous substance rather than as a collection of single particles.
A different model, called the shell model, assumed that the particles do
retain their individual identities. As single particles feeling some kind of
force, the particles in a nucleus might behave similarly to the electrons in
an atom. Now, the electrons in an atom are in “energy levels,” also known
as orbitals or shells. The organization of these electron shells accounts for
the structure of the periodic table of the elements (see chapter 2) in chemis-
try. But the electron shells exist because there is a single point source (the
nucleus itself) for the forces on the electrons. No such single source had
been determined for the forces on the particles in the nucleus, and for this
reason the nuclear physicists heavily favored the liquid drop model.

In her examination of the data on stability and abundances of nuclear
isotopes, a physicist named Maria Goeppert Mayer discovered an inter-
esting pattern. (Isotopes are forms of an element that have different
masses, i.e., different numbers of neutrons.) The pattern was that nuclei
with certain special numbers of neutrons or protons (namely, 2, 8, 20,
28, 50, 82, and 126) were unusually stable. Now, atoms with certain
special numbers of electrons are also exceptionally stable. These atoms
are the inert gases, and they are stable by virtue of their “closed shells”
(a closed shell means that the energy level is filled with all the electrons it
can accommodate). Mayer reasoned that the so-called magic numbers for
the nuclei might also be explained by such a shell model (J. H. D. Jensen
also independently devised the shell model at about the same time). The
forces between particles in a nucleus were unknown at that time, so
Mayer started by using a simple model in which the particles move freely
inside the nucleus but can’t escape from it (this model, well known to
physics students, is called a square well). This model predicts the first
three magic numbers (2, 8, 20) but then breaks down and cannot account
for the numbers above 20. We seem to be on the right track, but there is
clearly something important going on in the real nucleus that is missing
from the model. Mayer tried a number of modifications to the model,
initially without success.

One aspect of the problem she had been leaving out of the model was
a term analogous to the magnetic energy of the nuclear particles. The
protons and neutrons can be thought of as similar to little compass nee-
dles, and they have different energies depending on their orientations just
as a compass needle lowers its energy by pointing north. This effect,
known technically as a spin-orbit interaction, occurs for electrons in
atoms and was well understood for that case. But because the effect is
very small for electrons in atoms, no one had yet thought of including it
in the model of the nucleus. These energies turn out to be large in the case
of the nucleus, however, and significantly modify the results of the initial
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simple model. Mayer calculated the predictions of a square well model
including spin-orbit terms, and this improved model correctly predicted
all of the magic numbers! Shell models became an accepted part of nuclear
physics. Since that time (1949), a great deal has been learned about nu-
clear forces, and we now have considerably more refined models. But the
basic framework of these more refined models is the idea of shell struc-
ture, which was demonstrated using the improved (but still simple) model
just discussed. In that sense, the use of a relatively crude model made a
decisive and fertile contribution to our knowledge. Once again, we needed
to have the essential features (both the square well and the spin-orbit
terms) but not all of the details. Note that we started with a model that
was inadequate (though basically correct) and looked for the necessary
ingredient missing from this model in order to explain the facts of interest
to us at the time (the magic numbers). Incidentally, Mayer (who was not
paid a salary for much of her career due mostly to gender discrimination)
later shared the Nobel Prize for this work.

Drug Uptake in the Body

Another interesting biomedical problem is the way in which drugs, typi-
cally eaten as a pill or injected into the bloodstream, make their way to
the part of the body affected by the drug. An anticancer drug might have
to get to the tumor it’s intended to combat, for example. The actual physi-
ology involved in this process is very complicated. The drug will have
varying concentrations (which all change with time) in the bloodstream,
in the fatty tissue of the body, in various organs (e.g., the liver), and in
the part of the body we have targeted. The mechanisms by which the
exchanges between different parts of the body take place, and how these
mechanisms depend on the concentrations, are not well understood. But
if we are interested primarily in more practical questions (such as the time
it takes for the drug to reach its target, the amount that reaches there,
and the best method to administer the drug), then we may not need to
understand all of these mechanisms. We can instead make a simplified
model. The drug concentrations can be assumed, as an approximation,
to change with time in some fairly simple fashion (e.g., exponential; see
chapter 20). The parts of the body (blood, fat, organs, etc.) can be mod-
elled as just a number of storage areas for the drug, and the rate at which
the drug is exchanged between these areas is then all we need to know. A
highly oversimplified model like this one is not intended to provide insight
into the workings of the system it models. The intention in this case is
merely to answer some limited questions about the behavior of the system.
Now, since we know little about the physiological processes involved, we
can’t predict the exchange rates used in our model. A practical procedure
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in a case like this is to make measurements of some quantity that is accessi-
ble (in this model, the drug concentration in the blood is a good example
of an easily measured quantity). This measured data is then combined
with the model in order to figure out the numerical values of the exchange
rates. Using these rates in our model, we can then predict (at least approxi-
mately) the drug concentration in other parts of the body at future times.

We have here another example of using models to answer particular
questions rather than to investigate the fundamental workings of the sys-
tem we are modeling. In this sense, the drug uptake model is more similar
to the traffic model than to the other scientific models we’ve examined.
Models are used this way extensively in various applied sciences. Can we
use such a model to learn anything interesting about nature? Yes, some-
times even highly oversimplified models can provide us with real scientific
insight. For example, if one model works and another model doesn’t, we
have a clue about what to include in a general theory of the system. Also,
parameters in a model (such as the exchange rates in our drug uptake
model) may correspond to real quantities that we use to conceptualize the
mechanisms of the system (in this case, physiological processes). We can
then use the numerical values of these parameters to test predictions of
more sophisticated attempts to understand the system.

Notice the interesting difference between parameters in the drug uptake
model (exchange rates) and parameters in the traffic model (traffic flow
rates). In the traffic model, we can measure the parameters directly (just
sit at the intersection with a stopwatch and count the cars). The numerical
values of the parameters are then simply put into the model. In the drug
uptake model, however, we can’t just measure the exchange rates; they
aren’t accessible to our measurement techniques. Instead, we measure the
change with time of one variable (drug concentration in blood), and then
look for values of the rates that force the model predictions to agree with
these measurements. This is called fitting the parameters of a model, a
procedure used extensively in the sciences. We’ll come back to the topic
of parameter fitting in §3.

Heredity

Genetics is the science concerned with the transmission of hereditary in-
formation. We can think of genetics as a series of successively more so-
phisticated models. We’ve now looked at several cases in which succes-
sively more refined models (we might call them closer approximations)
replaced simpler models. In the case of genetics, each of the models we’ll
discuss was devised to (and was able to) account for all of the information
known at the time it was developed. Each improvement was inspired by
new experimental information. So in this case, the series of models is
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also chronological. The earliest model is that of Gregor Mendel, the well-
known founder of genetics. In this model, there are dominant traits and
recessive traits that are passed on to later generations according to the
rules that Mendel deduced from his pea plant experiments. If the traits
(tall/short, wrinkled seed/smooth seed, etc.) are dominant, they are ex-
pressed when received from either or both parents; if the traits are reces-
sive, they are expressed only when received from both parents. The key
concept in this model is the trait itself, and there is no attempt to conceptu-
alize the physical mechanism by which the trait is passed on. There is only
some factor of unknown nature postulated that must somehow carry this
information. By the time Mendel’s work became generally known to sci-
entists, cell biologists had observed, through their microscopes, threadlike
structures called chromosomes in the nuclei of cells. The chromosomes
were identified as the carriers of hereditary information, and this discov-
ery was combined with Mendel’s work to create a new model. An im-
portant implication of this new model, verified by experiments, is that
some traits are linked with other traits, that is, they are inherited together.
This linkage is due to the traits being carried by the same chromosome.
The parts of the chromosomes that determine the traits are called genes.
This productive model was used to interpret the results of many breeding
experiments (with fruit flies, molds, etc.), including those with mutated
strains. Using the ideas of linked traits and mutations, geneticists were
able to map out the assignments of various genes to their chromosomes.
But this model still treats the genes themselves as unknown determiners
of hereditary traits. There is no conceptualization of the nature or struc-
ture of the genes in the model.

The next refinement is to identify the gene as a biochemical agent; in
other words, the genes express the hereditary characteristics by specifying
the structures of proteins created by a cell. The proteins known as en-
zymes, which are responsible for much of the biochemical activity of life,
are especially important in this model of gene action. The idea of genes
as biochemical agents was based on a great deal of information from
genetics experiments, combined with a growing understanding of the bio-
chemical processes occurring in living cells. But the details of what the
genes are made of, what the genes look like (their structure), and how the
genes are able to specify the manufacture of proteins were totally un-
known at the time this model (gene as biochemical agent) was devised.

To answer these questions about genes required the use of new tech-
niques for determining the structure of large and complicated molecules.
One important discovery, made with such techniques, was that nucleic
acids (e.g., DNA) don’t have any predetermined order in the sequence of
bases that make up the molecule; the bases can be in any order. Because
of this fact, the DNA molecule can encode information (more particularly,
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genetic information) in its sequence of bases. The DNA molecule was
identified as the fundamental component of the genes, and the problems
then became these: What is the spatial structure of the DNA molecule?
How is the encoded information used to create proteins? What is the
code? The structure of DNA was soon determined to be the famous dou-
ble helix, and the details of its action (using RNA as an intermediary)
were worked out over a number of years. We now have a highly detailed
model of how hereditary information is transmitted in living organisms.
The last refinement of the model was the discovery that some genes do
not carry structural information about proteins. Instead, these genes con-
trol the actions of the structural genes, telling them when to turn on and
turn off. In this model, the interpretation of the coded sequence of bases
on the DNA molecule becomes rather more complicated. Molecular biol-
ogists now have a vastly greater amount of detail worked out, however,
and this model is the currently accepted picture of hereditary transmission
of traits. Notice that each of the successively improved models encom-
passes, and doesn’t contradict, the model that precedes it.

Game Theory

Discussion of the social sciences is generally outside the scope of this
book. I’ll make an exception here, however, because models are very use-
ful in the social sciences just as in the natural sciences. Some social science
models are mathematical, especially in economics, while others are more
conceptual. One of our major points so far has been that models are sim-
plified (and sometimes overly simplified) representations of reality. It’s
probably fair to say that mathematical models in the social sciences need
to make extreme simplifying approximations. The question then becomes
this: What interesting and valid results do we get from such models? In
other words, when are the approximations good enough? This question
belongs at the forefront of social science research, and we can’t really
address it well here.

Instead, we’ll look at one simple model of social interactions, and at
the assumptions this model makes. The social interactions we’ll consider
are conflicts, and the model is the mathematical theory of games. Conflicts
arise in a variety of circumstances. Political conflicts occur between
groups in a society, for example, or between nations. Military conflicts
can also occur between nations. In economics, conflicts between different
companies or between management and labor might occur. The common
element in all of these varied situations can be modeled as two or more
participants engaged in a contest or struggle (of some sort) that has
winners and losers (note the simplifying assumptions that we have al-
ready made). Now, a key point in most real conflicts is that each side
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will devise a strategy in order to win; but whether this strategy works
depends on the strategy of the opponent, which is unknown. This element
of uncertainty about the opponent’s actions is the issue that game theory
tries to address.

Game theory was invented in 1928 by the mathematician John von
Neumann. He started by considering a very simple example: a game of
matching pennies in which two players lay down pennies either heads up
or heads down. If they match, one player wins (and gets the pennies). If
they don’t match, the other player wins. Now it’s very obvious that you
can’t make a choice that guarantees you’ll win; whether your choice wins
depends on the choice your opponent makes, which you can’t know. How,
then, can you devise a strategy? Well, you can’t devise a strategy that
assures you’ll win more than you lose. But, you can assure that you won’t
lose more than half the time (i.e., you’ll break even in the long run). If
you impose any kind of pattern on your play, you run the risk that your
opponent will discern the pattern and outguess you (you’ll lose more than
you win). But if you lay down half heads and half tails at random, proba-
bility dictates that you won’t lose more than half the time. Since this kind
of play minimizes the losses of both players, von Neumann considered
this to be a stable solution of the problem. This game, and our analysis,
seem trivial because the game is so simple. There are only two possible
moves, and winner takes all. Von Neumann’s brilliant insight was to
apply the same kind of reasoning to more complicated games. He consid-
ered games where there are many possible choices, and where each choice
leads to different amounts of gain or loss for each player. The mathemati-
cal analysis then becomes decidedly nontrivial. Remarkably, von Neu-
mann was able to show that for any zero-sum game (i.e., one player’s loss
equals the other player’s gain) with two players and some random
choices, there is always a strategy that minimizes the losses of both play-
ers. Given the particular rules of a game, we can mathematically deter-
mine that strategy.

In this analysis, we have made two major simplifying assumptions.
We’ve restricted the game to just two players, and we have assumed that
it’s a zero-sum game. Game theorists have looked at multiplayer games
in great detail. An interesting new feature is the possibility of coalitions
forming and breaking up. We can then ask which of the possible coalitions
are most advantageous to the players. The possibility of partners negotiat-
ing how to divide the winnings can also be built into the model, and the
solution of the game then must include the optimum manner to do so. If
the game is not zero-sum, then far more complex (and fascinating) possi-
bilities arise. A famous example of a non-zero-sum game is known as the
Prisoner’s Dilemma. The players are two prisoners who have been ar-
rested for committing a crime together; they are kept separate and can’t
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talk to each other. If neither confesses, both go free. If both confess, both
go to jail with a light sentence. If one confesses and the other does not,
the confessor is paid off and the partner gets a heavy jail sentence. The
game has a number of ethical and psychological dimensions that are
worth considering. From a game theoretic point of view, though, the main
interest is this: If each player employs a strategy to maximize personal
gain, then both players wind up worse off than they need to be. Unfortu-
nately, no solution to this dilemma has yet been found (although there is
an optimum strategy for many repetitions of the game, namely: always
do what has just been done to you).

The usefulness of game theory in creating social science models is that
it incorporates some of the elements of real conflicts (not knowing an
opponent’s strategy, random variations that we can’t control). The novel
contribution of game theory has been to make these “messy” characteris-
tics of human affairs amenable to mathematical treatment. On the other
hand, the simplifying approximations of the models are very severe.
The rules and the payoffs in real conflicts are not usually well specified.
Also, humans don’t always act in the rational manner required by the
models. Still, game theory has proven to be a fertile method in the social
sciences. Applications to legislative voting patterns, military tactics, inter-
national diplomacy, business decision making, labor-management dis-
putes, and anthropological studies of other cultures have been made.
Game theory has even been applied in the natural sciences, in studies of
animal behavior.

§3. IMPROVING MODELS

A central idea of this chapter is that a model is an approximate representa-
tion of the real situation, and we can often improve our model to get a
better approximation. Sometimes this requires an actual conceptual
change in the model. In this section, however, we’ll look at two specialized
techniques in which the basic concepts of the model remain the same. In
one technique, the details of the model are improved by adding succes-
sively smaller corrections; in the other technique, the model is improved
by tinkering with its parameters.

Systematic Correction

We can use several different methods to improve a mathematical model
systematically with smaller and smaller corrections. By doing so, we can
make the model as close to reality as we please (which is to say, we can
make the predictions of the model match the experimental data to any
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desired level of precision) by including corrections that are small enough.
One method is to represent the results of the model as a sum of several
terms, each term becoming progressively smaller. A different method is to
use iteration, which means reworking the model over and over again and
getting closer to the correct result each time. A sum of terms, of the sort
I just mentioned, is known in mathematics as a series. The idea is that a
complicated model can be represented by such a sum, even though each
term of the sum is simple. If we keep only the first term (which is the
biggest) then we have only a crude approximation to reality. If we keep the
second term as a correction to the first, we have a better approximation.
Retaining the third term makes the approximation even better, and so on.
Since each term is simple, the model stays fairly simple; since each term
is smaller than the previous term, we get closer and closer to a correct
version of the model.

This seems very abstract, but we can illustrate the basic idea by a simple
process of long division in arithmetic. Suppose you divide 527 by 32. Do
it out by hand. What do you get? Notice that the answer you get, based
on the process you used to get it, can be written as

527/32 = 10 + 6 + 0.4 + 0.06 + 0.008 + . . . ,

which we normally just write as 16.46875 (this number can just as well
be thought of as the sum I wrote down). If you decide that computing
every term is too much work, you can stop at some point and keep fewer
terms as an approximation to the correct answer. This approximation to
the exact answer may be all you need. For example, if you are dividing
$527 among 32 people, then 16.47 is close enough, because the terms
you left out are fractions of a penny. If you really hate arithmetic and
don’t mind losing some money, you can retain only two terms to get the
crude approximation 16. The analogy of these procedures with successive
approximation in models by adding ever-smaller correction terms is very
close to the mark.

A scientific example of this method is the perturbation series technique
used to find planetary orbits. Suppose we want to calculate the orbit of
Saturn. A first approximation (which is already very good, incidentally)
is to include only the gravitational influence of the sun. But the planet
Jupiter is also pretty big (though small compared to the sun) and near
Saturn, so a second approximation would be to include the gravitational
influence of Jupiter on Saturn as a correction to the sun. In other words,
we first ignore Jupiter and calculate an orbit based on the sun; then we
include Jupiter as a perturbation on this orbit and calculate the small
correction that this entails. We could extend this method to include the
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gravity of any other planet, or else we could leave other planets out be-
cause their corrections are too small to worry about (i.e., have no observ-
able consequence). An extremely interesting historical episode involving
perturbation theory is related in chapter 4.

The second method I wish to discuss briefly is the iterative method. In
this case, all the terms of the model are large. We therefore can’t include
some terms as small corrections on the rest, but we may still be able to
use successive iteration (repeating the same calculation over and over).
We start by making some initial guess about the values of all the terms,
and use this guess as a starting point to solve the model. The first essential
requirement in this technique is that we have some recipe with which to
calculate results based on our guess. The second requirement is that we
also have a way to use these results in finding a new and corrected set of
terms in the model. We then use our new values of the terms as a new
starting point for another iteration, and we go on to calculate yet another
new set of terms. If we are on the right track, these corrected terms are
closer to the previous starting point in this second iteration than in the
first iteration. We can continue iterating this way until the input terms
and the output terms are the same, a condition known as self-consistency,
which indicates that we have gotten our model right. As you might guess,
this method has been made more practical by the tremendous increases
in computing power in recent decades.

Parameter Variation

We have already seen in §2 that models often have parameters, numbers
that represent important quantities in the model. Sometimes, parameters
are measured independently (as in our traffic model). Parameters are also
sometimes computed using some independent method that isn’t part of
the model itself. But sometimes, parameters are varied or adjusted until
the model predictions match some data (as in the drug uptake model).
We say that the parameters of the model are “fit” to the data. Parameter
fitting can be a valuable technique, but it can also be a misleading tech-
nique. Let’s look at a simple example to see how parameter fitting works
in practice. Suppose we are trying to model how water consumption de-
pends on population in a city. A good first guess is that this dependence
is approximately linear, that is, the amount of water used is proportional
to the number of people who live there (see chapter 19). So, we make a
linear model to approximate this relationship. Our model has only one
parameter, namely, the proportionality constant. To explore the issue fur-
ther, we might make a plot of water consumption versus population, ob-
taining data from historical records. Now, we wouldn’t expect every data
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point to lie exactly on a perfect straight line. But if our model is a good
one, we expect our set of scattered points to cluster about a straight line.
Parameter fitting in this case consists of finding the “best” line through
all these points, the line for which the greatest number of points lie as
close to the line as possible. The slope of this best-fit line is the desired
value of the parameter in our model. (The name of the technical procedure
used to find slopes in this way is a “least-squares fit,” which is available
on many commercial software packages.)

As I said, there are both good points and pitfalls to parameter fitting.
If a model is essentially correct, parameter fitting gives us a way to extract
valuable numerical information from the data. The pitfalls are related to
the use of parameter fitting as a test of whether a model is correct. Per-
haps, in our example, the dependence is not linear for some reason (e.g.,
shifting demographics). If the departure from linearity is small and the
scatter is large, we may not notice. We would then confidently announce
that our model (which is incorrect) must be right because we got a good
fit to the data with it. The problem is minor in this case, because we’d
soon notice if the model wasn’t at least approximately right. The major
problems arise in more complicated models, which have many parame-
ters. By varying all of the parameters at once, it’s often possible to fit a
limited amount of data with a model that isn’t even close to being right;
the many adjustable parameters merely give the model enough flexibility
to fit many different sets of data. We can’t always conclude that a model
is correct solely because it matches observations, if adjustable parameters
have been used; the fitting procedure might simply force the model to
match the observations. An ancient example of this problem is Ptolemy’s
geocentric model of the planetary motions (see chapter 5). The properties
of each epicycle can be adjusted independently to get the best fit to the
observations of the planetary positions. This geocentric model had a large
number of parameters that could be varied to fit a relatively small amount
of data. The result was a successful model that was, of course, thoroughly
wrong in concept.

The dangers of parameter fitting have occasionally shown up in my
own research work. Some colleagues and I once used a model potential
with two adjustable parameters that we fit to five measured atom-surface
binding energies. We obtained a very good fit, i.e., binding energies com-
puted using this potential matched the measured energies quite well.
However, we realized (on rather general theoretical grounds) that one of
our parameters was only affected by extremely small binding energies,
which our experiments could not measure. Our good fit did not ensure
that our results were meaningful. The value of a parameterized model
depends on our goals. If our only goal is to have a model that can serve
as a tool in applications (regardless of its conceptual merits), then a pa-
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rameterized model that fits all of the data of interest might be fine. If our
goal is to achieve understanding, however, then we demand more from
our parameterized models. For example, in a model with parameters rep-
resenting well-defined quantities of interest, the best-fit values of these
parameters can be compared with independently calculated values for
these same quantities. If the calculations agree well with the numerical
values of the parameters, we have good evidence that our ideas are on the
right track. Using methods like this, even schematic models can give us
insights about nature.

§4. THE PHYSICIST AND THE HORSE

The use of approximations and models is so integrated into the fabric of
science that it has even become the basis for a joke. I first heard this story
many years ago, and since then I’ve come across several versions. It goes
something like this: An organized crime syndicate has decided to ask sev-
eral people how to predict the winners of horse races (the ones they are
unable to fix, I suppose). The first person they ask is a psychic. The psychic
gazes into a crystal ball and predicts the winner of a race. The horse loses.
I’ll leave the fate of the psychic to your imagination. The syndicate decides
to ask a computer programmer next. The computer programmer writes
a program to predict the winners of horse races, enters in all relevant
information, runs the program, and announces the winner of the next
race. The horse loses. The computer programmer shares the fate of the
psychic. Finally, the syndicate decides to ask a physicist. The physicist
tells them to come back in a few weeks and starts thinking about the
problem. The syndicate comes back as scheduled, and the physicist says,
“I’m not finished yet, come back in another week.” They come back in
another week, and the physicist says “All right, I’m ready now. But I won’t
just tell you the answer, I have to explain my method to you.” So the
physicist leads them all to a blackboard, sits them down, steps up to the
board with a piece of chalk, draws a large circle on the board, and says:
“First, assume that the horse is a sphere. . . .”
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Chapter 7

THINKING STRAIGHT: EVIDENCE, REASON,

AND CRITICAL EVALUATION

The number of persons who have a rational basis for their
belief is probably infinitesimal; for illegitimate influences not

only determine the convictions of those who do not examine,
but usually give a dominating bias to the reasonings

of those who do.
(William E. H. Lecky)

Crime is common. Logic is rare.
(Sherlock Holmes)

AWELL-CONSTRUCTED scientific argument, defending a scientific
conclusion, generally rests upon two foundations: reliable empir-
ical evidence and sound logical reasoning. Of course, there have

been scientific arguments that weren’t based on good evidence and reason-
ing, but these shoddy arguments (and the conclusions based on them)
generally don’t withstand the test of time. The point isn’t that we always
have proper evidence and reasoning in the sciences, the point is that we
always should have these things. This point is not trivial. In some areas
of human thought, conclusions may quite properly not be based on logic
and evidence. In some political discourse, for example, we might legiti-
mately based our conclusions on a shared set of values and traditions
instead of rational analysis (elected government versus divine right of
kings, for instance). Although such considerations sometimes enter into
scientific thinking (see chapter 11), science still provides an excellent ex-
ample of reasoned discourse. As such, we can at least use science as a
starting point for a discussion of valid argumentation across the board.

The subject matter of this chapter, as you see, extends far outside the
boundaries of science. We are concerned here with methods of clear think-
ing and critical analysis that are relevant to any issues. Where the methods
and thought processes typical of the sciences are applicable, these meth-
ods are invaluable. When issues turn on differences in values, faith, cul-
tural background, and so on, then we are obligated to isolate these differ-
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ences and identify them clearly. Differing values are no excuse for bad
logic and lack of evidence. Valid argumentation in the murky and ambigu-
ous issues of human affairs is not essentially different from valid argumen-
tation in the esoteric realms of science; it’s just more difficult.

§1. GOOD ARGUMENTS

Deductive Reasoning

The purpose of deductive logic is to find relationships between statements
(called premises and conclusions) that guarantee the truth of the conclu-
sions if the premises are true. On the one hand, this means that we must
be very careful to scrutinize the premises carefully. False premises can lead
to false conclusions even when the logic of the argument is valid. (Logi-
cians use the word “argument” to mean a set of premises leading to a
conclusion.) On the other hand, the ability to spot bad logic ensures that
we don’t get fooled into accepting false conclusions based on obviously
true premises. In fact, if we can spot bad logic, then we don’t even need
to look very carefully at the premises; we already know the conclusions
are suspect at best. A valid logical argument, based on well-supported
premises, leads to a trustworthy conclusion. A few years ago, when I was
exhorting one of my classes to look for logical flaws (along with undocu-
mented assertions, errors of fact, internal contradictions, and so on), one
of my students said “It’s all a matter of opinion.” But not everything is
simply a matter of opinion. There are clear and well-defined rules worked
out by logicians that can be used to analyze arguments. Recent work in
logic is all symbolic, essentially reducing arguments to formulas and ex-
amining the conditions under which the formulas are valid. Although this
work is interesting, I’ll focus here on the older verbal tradition in logic,
which goes back to Aristotle.

A central element of this tradition is the syllogism. A syllogism is a form
of logical argument that consists of two premises and a conclusion. The
premises might be general propositions, taken to be always universally
true; particular propositions about a single object, person, event, and so
on; or conditional propositions concerning the circumstances under
which a statement is true. In a valid syllogism, the truth of the two prem-
ises ensures without fail that the conclusion is true. Logicians customarily
illustrate the use of the syllogism with simple examples like this:

(1) All cats are cute. {major premise}

(2) Smokey is a cat. {minor premise}

(3) Therefore, Smokey is cute. {conclusion}
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Figure 5. If all cats are cute, then this individual cat must, by the inescapable logic
of the syllogism, be cute.

(see Figure 5) It’s quite obvious here that statements (1) and (2) cannot
be true and yet have statement (3) false. People may have differing opin-
ions about statement (1), and statement (2) is a simple matter of fact,
either right or wrong. But if we accept both of these statements, the truth
of statement (3) inevitably follows. Syllogisms like this one, which contain
no conditional propositions, are called categorical syllogisms. The syllo-
gism is a useful tool in constructing an argument. Once you have estab-
lished a valid syllogism, you can then concentrate on establishing the va-
lidity of your premises. Perhaps more importantly, in analyzing someone
else’s argument, you can disentangle the logic from the premises. After
you isolate the syllogistic form of the logic, you may see clearly that the
reasoning is invalid. In that case, you don’t have to worry about analyzing
the premises (often a difficult and problematic task, leading to no unam-
biguous result). The veracity of the premises doesn’t matter if the logic is
invalid; the argument is no good anyway.

Another useful point concerning syllogisms is that the logic can be re-
versed. Once a valid syllogism has been established, one of the rules of
logic tells us the following: If the conclusion is known to be false, then at
least one of the premises must be false. Apply this reasoning to our exam-
ple. If Smokey is not cute, then either Smokey isn’t a cat or else not all
cats are cute. I should also mention that there are some conclusions which
cannot be drawn from syllogisms. For example, the truth of the conclu-
sion doesn’t tell us anything about the truth or falseness of the premises.
Similarly, the falseness of the premises tells us nothing about the truth or
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falseness of the conclusion. We’ll explore these rules further in our discus-
sion of bad logic in §3. Finally, let’s look briefly at another important part
of deductive logic, the conditional proposition. One type of conditional
proposition tells us something about the truth of statements that are
paired together (example: either 1+1=2 or my understanding of arithmetic
is wrong). A second important type is the hypothetical proposition, which
takes the form of an “if . . . then” assertion (example: if the Orioles win
one more game, then they will be in the playoffs). These conditional prop-
ositions can also be used as premises in a syllogism.

Inductive Reasoning

In deductive logic, our conclusions are based on a set of premises, and
the truth of the premises implies the truth of the conclusions. The advan-
tage of deductive logic is that we have the certainty of truth in those cases
where the method can be used. The disadvantage of deductive logic is
that we seldom have any well-defined general premises that we know are
true. Instead, we can use a different form of reasoning, called inductive
logic. The method of inductive logic is to use the truth of many particular
statements to make a generalization, which is our conclusion. If every cat
I’ve ever seen is cute, then I conclude based on this experience that all
cats are cute. Obviously, the disadvantage of reasoning by induction (as
opposed to deduction) is that my conclusions are less certain. I might run
into an ugly cat tomorrow.

The use of inductive reasoning at some point is almost unavoidable.
The difficulty is how to assess the validity of an inductive argument. Since
a proof by induction can never be absolutely certain, how can we judge
the quality of any conclusions drawn? Philosophers have put a lot of effort
into deciding how to make such judgments; but for analyzing typical argu-
ments, we can get a lot of use just from common sense. If a generalization
is based on only one or two examples, then the conclusion is basically
worthless. If the generalization is based on thousands of well-controlled
and highly documented cases, then we can (at least provisionally) accept
a conclusion in this case. In between these extremes, we’ll accord conclu-
sions the respect they deserve based on the amount of inductive evidence
presented.

Evidence

As we’ve seen, a valid deductive argument only results in a genuinely valid
conclusion if the premises are true. An inductive argument is likewise
only meaningful if reliable particular cases are presented. In both of these
methods, the quality of the argument rests as much on the evidence of-
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fered in support of the argument as it does on the logic. Accordingly, we
must be able to evaluate the quality of this evidence in order to analyze
the validity of the argument. How can we evaluate evidence? One of the
first questions to ask is whether any documentation has been presented
to back up the contentions being made. Why should we believe a claimed
statement? What source, reference, or authority has warranted this claim?
Where does a particular fact come from? Is the source of this fact reliable
or not? Politicians and editorialists often feel no need to provide any docu-
mentation at all for claimed facts. When a source is given, it’s often of
doubtful credibility. Beyond asking for documentation, we can also make
our own evaluations of how plausible a claim is. This involves looking
for internal contradictions, violations of intuition and common sense,
contradictions of other facts we know to be true, numerical estimates that
don’t make sense, and so on. Some of these methods are typically used in
the sciences (§2), but critical evaluation of evidence is always a necessary
part of a proper analysis (§3).

§2. THE CONTRIBUTIONS OF SCIENCE

What does critical analysis of argumentation have to do with science?
One simple answer to this question is that science routinely employs this
very kind of critical analysis all the time. Science is one of the few human
endeavors in which we sometimes have the luxury of starting with a gen-
eral premise, deductively working out the results of this premise, and com-
paring these results to evidence of extremely high quality. Examining this
process at work in the relatively tidy and uncomplicated problems of sci-
ence gives us a sense of how to proceed in the more difficult realms of
politics, economics, social issues, and so on. The skeptical attitude charac-
teristic of the sciences also fosters a spirit of critical analysis across a wide
range of issues. Beyond these general considerations, however, science
offers several techniques and modes of thinking that are not commonly
found in other fields. In the rest of this section, we’ll survey some of these
scientific thinking practices.

Using Basic Knowledge

Although science continues to progress as new results are discovered and
old theories are modified, we have a certain amount of core knowledge
and experience in science that is not likely to change radically or quickly.
Unlike the trends and fads of political ideologies and public opinion, we
can count on this basic scientific knowledge to be correct. When such
knowledge is relevant to the premises of an argument, then we can evalu-
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ate these premises without knowing every factual detail. An example is
the conservation of energy law (see chapter 17). There are no known
exceptions to this principle, and none are expected. If the success of some
public policy initiative depends on the creation of energy from nothing,
then we can reject this policy without further consideration. You don’t
need an extensive stock of scientific knowledge to apply this kind of rea-
soning. For example, it’s clear on very fundamental grounds that the earth
is finite. Anyone who argues that the earth’s resources are limitless must
then be wrong. Any argument that depends on limitless resources as a
premise is likewise wrong. Another example of basic knowledge is the
form and properties of exponential growth (chapter 20). Whether the
subject of debate is population growth, economics, resource use, finance,
or energy policy, any exponentially changing quantity shares the same
properties and characteristics; and these properties are not subject to con-
trary opinion, they are simply matters of arithmetic. If the premise of an
argument demands a contradiction of these known properties, then you
may safely conclude that this premise is wrong. Notice that both of these
examples provide us with constraints on truth, giving information about
what must be wrong instead of telling us that something is right.

Probabilistic Thinking

At one end of the spectrum, these few rock-hard certainties are useful
when we can apply them, but unfortunately this is seldom. In other words,
we often find ourselves trying to arrive at conclusions in the absence of
the information we need. So at the other end of the spectrum, we can
employ a completely different way of thinking that scientists also find
useful, namely, thinking in terms of the probability that a statement is
correct. If we don’t (perhaps can’t) know for sure whether a premise is
right or wrong, we need to make our best guess as to how likely the
premise is to be right or wrong. This style of thinking is alien to many
people. “A statement is either right or it’s wrong. How can there be any-
thing in between?” Some people feel a need to choose sides, even in the
absence of information, and become wedded to their position. More so-
phisticated people might still choose sides, but they will remain aware
that their choice could well be incorrect and keep an open mind. In both
cases, though, a position is staked out.

In the course of scientific work, we are often faced with situations we
don’t understand because of insufficient information. Suppose there are
three alternative explanations for an experimental result. We don’t want
to choose one of them without good evidence. The ideal procedure might
be to design further experimental tests to weed out the inferior ideas. But
this procedure costs time and effort, so we rank the ideas based on the
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probability of correctness for each one and test the best idea first. Our
probability estimates may not be very accurate, but at least they are better
than choosing at random. This approach is a very natural way to think
about a scientific problem. Since all scientific results are in some sense
provisional, thinking in terms of probabilities gives us a way to make
distinctions between ideas that are speculative, those that are well
founded, and those that are quite certain. The rock-hard certainties I men-
tioned before are the concepts with such a high probability of being cor-
rect that we can, for pragmatic purposes, assume they are true. A few
things in everyday life fall into this category, like the inevitability of death
and taxes. Most real-life issues, however, are much more complex and
ambiguous than scientific questions. Does it make sense to attempt esti-
mates for probabilities of correctness in these murkier cases? I believe that
it does make sense to try, even if we don’t have (and can’t get) the addi-
tional information we need to verify and improve our estimates. The bene-
fit I see in such probabilistic thinking is that we don’t get tied to a position;
we maintain a more fluid and flexible receptivity to new information and
different viewpoints. On the other hand, probabilistic thinking allows us
to make judgments rather than just give up because we don’t have cer-
tainty on an issue; an application of this outlook to real-life public policy
issues is discussed in chapter 10.

Hidden Assumptions

The conclusion of an argument is based on the premises of the argument.
In verbal rhetoric, however, the premises are not always stated clearly.
Sometimes the premises are implied or taken for granted. A syllogism
containing an unstated but clearly implied premise is called an enthymeme
(“Sacco is evil because he is an anarchist” implies the unstated major
premise “all anarchists are evil” and also states the conclusion first rather
than last). But even when the premises appear to be stated fully, there
might be some further hidden premises assumed, either in addition to
those that are stated or else underlying those that are stated. In the analy-
sis of an argument, either scientific or nonscientific, it’s always important
to look for hidden assumptions and to evaluate the validity of those as-
sumptions. Let’s look at a few scientific examples. If a chemical reaction
needs to be done in the absence of oxygen, a chemist might do the experi-
ment in a container with the air pumped out. The unstated underlying
assumption here is that the tiny amount of oxygen left over (about 0.01
percent of the amount found in air) is not enough to affect the experi-
ment—probably a good assumption, but not necessarily. A famous exam-
ple of an unstated assumption (in physics) was that the measured velocity
of light would depend on the velocity of the person making the measure-
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ment. This “fact” was taken for granted until Albert Einstein stated ex-
plicitly that it was really just an assumption, and an incorrect assumption
too. In biology, the classification of organisms into animals and plants
carries with it the underlying assumption that all organisms must fit into
one category or the other (this assumption has also been challenged by
more recently discovered organisms). For a long time, an unstated as-
sumption of medical research was that studies having only adult males
for subjects produce results applicable without modification to the rest of
the population.

Now let’s apply the technique to some political issues. In the debate
over gun control legislation, both proponents and opponents make un-
stated assumptions about the relationship between the incidence of vio-
lent crime and the easy legal availability of guns. In debates over the desir-
ability of environmental regulations, there is often a hidden assumption
embedded in the arguments, namely that such regulations are a drain on
the economy leading to loss of jobs, and so forth. Politicians proposing
large tax cuts often employ the underlying assumption that no relation-
ship exists between the tax revenues collected by the government and the
desired services provided by the government. A hidden assumption may
or may not be correct, but until we bring it out into the open by making
an explicit statement of the assumption, we can’t engage in an analysis of
its correctness.

Evaluating Causality

Although philosophers differ over some of the finer points concerning
causality, we do have some pragmatic criteria for establishing causality in
both science and logic. These criteria are just as applicable in everyday
life and public affairs as in the sciences. Many people find the subject
confusing, and invalid claims of cause/effect relationships are pretty com-
mon. One mistake is so common that it even has a Latin name: post hoc,
ergo propter hoc. A literal translation is “after this, therefore because of
this.” When one event follows another, you might assume that the first
was the cause of the second. After Jimmy Carter was elected President,
the country suffered a period of high inflation. Can we conclude that
Carter’s policies caused the inflation? (His political enemies certainly
made this claim.) But his term had been preceded by many years of high
military and domestic spending; during his term, oil cartels had artificially
driven up the price of energy. Both of these conditions, having little to do
with Carter’s policies, are more plausible reasons for the cause of inflation
at that time (actually, of course, a complicated detailed analysis is needed
here). On a less grand scale, consider your car; suppose it needs some
repairs to the engine, then a new muffler, then a new battery, and finally
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some new tires. Does each of these problems cause the problem that fol-
lows? I doubt it. This example, in fact, illustrates an alternative explana-
tion that makes more sense than “A causes B.” A more likely situation is
that the car is old, and the old age of the car is responsible for all of the
other problems. “C causes both A and B” instead of “A causes B” is often
a possibility worth considering.

Fallacious reasoning about causality is ubiquitous in our political and
economic discussions. Any time people see correlations between events,
trends, or quantitative measures, they have a strong desire to assume a
causal link. But there may be many different causes contributing to a
single effect. Or the two correlated things may both be caused by some-
thing else that you haven’t identified yet. Or you may not have a cause/
effect relationship at all in some cases; for example, two events might be
related by a feedback loop (see chapter 21). And of course, the correlation
you see may be nothing more than a coincidence. The welfare state has
caused an increase in poverty; guns on the streets have caused an increase
in violent crime; environmental regulations have caused a decrease in pro-
ductivity; sexual immorality has caused the AIDS epidemic; television has
caused a declining attention span in our youth; and so on. Claims like
these, which vary greatly in plausibility, are made all the time. Very few,
if any, are actually valid claims.

How can we rigorously demonstrate a causal link? Doing so turns out
to be very difficult. We would first need to demonstrate that the cause
must have been present for the effect to occur. In addition, we would need
to demonstrate that the effect will always occur when the cause is present.
In the language of logic, we say that the cause must be both a necessary
and a sufficient condition for the effect. In science, this can sometimes
be accomplished by a detailed series of carefully controlled experiments.
Much of the controversy and confusion arising from biomedical studies
results from the ability of such studies to draw conclusions that are highly
suggestive of causal links, and their inability (due to monetary and/or
ethical constraints) to rigorously prove causality. Since the majority of
complicated situations have multiple partial causes, we still customarily
use the word “cause” even when the cause is neither necessary nor
sufficient. In these cases, we must settle for a statistical inference of causal-
ity, requiring a large random sample. For a one-time historical event, a
rigorous demonstration of causality is virtually impossible. The best
we can do is to make a detailed analysis that accounts for as many
known possible causal factors as we can think of and assess the role of
each one in bringing about the effect. We will undoubtedly not be able
to prove causality, but we may well be able to make a convincing case
(probability again).
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Models

Another important ingredient in establishing causality is having a causal
model. In other words, we should have some reasonable way to under-
stand how and why A causes B. A good model by which to understand
the claimed causal link contributes to making the claim more believable.
The causal link between tobacco smoking and lung cancer, for example,
is based in part on statistical evidence and in part on physiological models
of the carcinogenic activity of the tars. Establishing causality is only one
of the many important uses of models in thinking, both inside and outside
the sciences. The topic of models, modeling, and successive approxima-
tion is so important that I have given it an entire chapter (6) of its own.
One worthwhile point concerning models and the evaluation of argu-
ments is this: Arguments are often based on analogies, and the validity of
the argument then turns on how good the analogy is. An analogy is a
comparison between dissimilar ideas, events, processes, and so forth; the
comparison might be very apt, but it might also be wildly inappropriate.
How can we judge whether an analogy is good or not? Since models are
also basically a kind of analogy, familiarity with models (and how to
assess them) can help us to evaluate critically a claim based on analogy.

Quantitative Thinking

Many of the arguments that we must evaluate are totally verbal, but some-
times an argument rests at least partly on some numerical claims. These
numerical arguments require their own special techniques of critical anal-
ysis. How accurate and how precise are the claimed numbers? Do the
numbers make any sense in terms of other things you know? Can you
make an order-of-magnitude estimate of your own against which to
check the claims? Are the numbers as large or as small as claimed when
you compare them to something relevant (e.g., a percent change)? Once
again, science offers us a variety of useful ways to think about these quan-
titative issues, and the importance of the material warrants a separate
chapter (8).

§3. BAD ARGUMENTS

An argument can be bad in a variety of different ways. A bad argument
simply means an argument that has an untrustworthy conclusion, as op-
posed to being invalid in a formal sense. Logicians call this “material”
validity. A materially invalid (bad) argument might be defective on several
different grounds. For example, the argument might simply be logically



T H I N K I N G S T R A I G H T 99

flawed as we discussed in §1. But, the argument might instead be logically
valid and have a false conclusion because some premises are false. For
example:

(1) All cows are reptiles.

(2) All reptiles can fly.

(3) Therefore, all cows can fly.

This ridiculous example is a logically valid syllogism, in a formal sense,
even though not a single statement in it is true. Another type of invalid
argument is one in which the statements are not necessarily false, but
the statements are so ambiguous that they don’t have any well-defined
meaning. Many rhetorical devices are also used by writers and speakers
to convince without valid logic or evidence. A number of these fallacious
arguments have been categorized and named. The typical political speech,
newspaper editorial, or magazine opinion piece is far more likely to con-
tain fallacious rhetorical tricks than any actual attempt at valid argumen-
tation. We’ll examine a few of the more common types of fallacy (straw
man, false dilemma, ad hominem, begging the question, and slippery
slope) later. Next, though, we’ll examine some of the mistakes that are
often made in the logical form of arguments, and then take a critical look
at the validity of evidence used in arguments.

Invalid Logic

Let’s start with a look at arguments that do attempt some logical struc-
ture, but that have a logical flaw. After starting with a true (or at least
plausible) argument, one mistake commonly made is to assume the truth
of its converse (i.e., reversing the conclusion and premise). For example,
you might read a well-documented and convincing essay arguing that
overly high taxation rates impair the productivity of an economy. At the
end, the writer demonstrates that our economic productivity is low, and
from this concludes that we have an overly high taxation rate. Note the
form of the logic: “If taxes are too high, then productivity is low; produc-
tivity is in fact low, therefore taxes are too high.” Even if you accept the
first statement, the second statement need not be true. A valid argument
doesn’t imply its converse (after all, productivity may be low for a differ-
ent reason). If the flaw in the logic is not apparent, consider a more obvi-
ous example: “If I am a corporate executive, then I make a good salary;
I do make a good salary, therefore I must be a corporate executive.” But
of course it’s not so. Maybe I’m an M.D. or a basketball star.

The inverse of an argument is another example of invalid logic. Once
again we start with a valid argument, so that some premise really does
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imply a conclusion. We then show that the premise is wrong. Because the
premise is false, we decide that the conclusion has also been proven false.
For example, consider this fallacious bit of logic that was used often a few
decades ago: “Citizens who support the country’s war effort are patriotic
citizens. Therefore, those who don’t support the war are not patriotic.”
The truth of the first statement in no way implies the truth of the second.
(After all, very patriotic people may well believe a war is not in the best
interests of their country.) If emotions are running high over an issue like
this, the illogic of the argument may well be overlooked. The incorrect
logic becomes more obvious in this example: “All dimes are coins. This
is not a dime, so it can’t be a coin.” But it may be a nickel.

Our last example of commonly used invalid logic concerns the incorrect
use of what logicians refer to technically as distribution. Distribution
means making a statement about all members of a class. When we say
that all cats are cute, the term “cats” is distributed because we have made
an assertion about every single cat. The term “cute” is not distributed in
our statement because we have not made any assertions about all possible
cute creatures (or any other cute things, for that matter). You can see the
possibilities for foggy thinking here.

For example, we can make a simple invalid syllogism:

(1) All cats are cute.

(2) All dogs are cute.

(3) Therefore, all cats are dogs.

This example illustrates the fallacy of the undistributed middle term. The
middle term of a syllogism is the term that appears in both of the premises,
the term that relates them to each other in some way (e.g., “cat” is the
middle term of our original syllogism example back in §1). A rule of
logic states that the middle term must be distributed in at least one of the
premises in order for any valid conclusion to be drawn. Our example
makes the mistake seem silly and trivial, but people’s lives have been de-
stroyed on the basis of this logical fallacy. “Mr. Jones has admitted that
he is member of the Free Oppressed Peoples League (FOPL). The FOPL
has been proven to be a Communist front organization. Jones is obviously
a Communist and should be fired from his government job.” This kind
of reasoning was all too common a half century ago. The middle term of
this syllogism is the FOPL. FOPL is undistributed in the first premise be-
cause it’s the predicate of the sentence. The tricky reasoning is in the
second premise, the logic of which should be restated as “some members
of the FOPL are Communists.” (No more than that can be validly inferred
from the FOPL’s status as a Communist front.) Restated in this way, we
see more clearly that the middle term is undistributed (“some” not “all”)
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and that no valid conclusions can be made concerning Mr. Jones. There
are a number of other ways in which invalid arguments can be made by
using distribution incorrectly. Without going into a lot of technical details,
we can summarize the basic gist of the rules fairly simply: You can’t draw
a conclusion that is stronger than the premises on which the conclusion
is based.

Invalid Evidence

In typical disputes over everyday matters and public affairs, inadequate
evidence is at least as big a problem as flawed logic. There are several
different varieties of invalid argument based on evidence; most of them
can be found in virtually any edition of any newspaper. The simplest ex-
ample of invalid evidence is the old-fashioned unadorned lie. People who
are opportunists or extreme ideologues will say virtually anything, with
little regard for whether it’s false or true. In some cases, we have no trou-
ble discerning lies; few people pay any attention to the claims made by
spokespersons for the tobacco industry. In other cases, though, we would
need some kind of independent reliable information in order to detect
lies. A plausible statement from an apparently reputable source is usually
taken at face value. Our only recourse in these situations is to have as
many different information sources as possible, and to accept statements
only on a tentative basis (in the spirit of probabilistic thinking discussed
in §2). We do have a few strategies with which to defend ourselves against
lies. A claim which sounds plausible might become more dubious upon
further critical evaluation (an example is given in chapter 8). We can also
look for internal contradictions in a set of statements made by the same
person. The reliability of the source is another place to check carefully
and critically; many highly biased organizations give themselves neutral-
sounding names and paid operatives now mount phony grassroots cam-
paigns on various issues.

But people don’t need to lie in order to mislead us. There is also the
problem of suppressed evidence, also sometimes called an error of omis-
sion. We are told the truth, but only a part of the truth. A politician might
say that she only has five thousand dollars in her bank account, a perfectly
accurate statement, but one that fails to mention the two million dollars
she has in stocks. A commercial advertisement might boast (truthfully)
about the virtues of the ingredients in a product, but leave out the fact
that all of the product’s competitors contain the same ingredients. A varia-
tion of the suppressed evidence technique is the selective quotation, often
called quoting out of context. As we all know, a person’s actual thinking
can be completely misrepresented by quoting a single sentence fragment
from an hour-long speech. The quoted words are accurate (and the
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speaker can’t deny saying them), but the position attributed to the speaker
is totally distorted. Once again, we are faced with a difficulty. How do
we know what we’re not being told? We may be lucky enough to have
the facts from another source, but we can’t always depend on this. Our
only alternative is to consider all claims critically and skeptically. Al-
though we can’t always know what evidence has been suppressed, it’s
often easy to hypothesize the kind of evidence that may well have been
suppressed. In the end, we must make judgments and evaluations based
on a variety of considerations (the consistency of a claim with other things
we know; the reliability of the source; the plausibility of the claim; the
plausibility of the hypothetical suppressed information). Some of the tech-
niques outlined in §2 are helpful in this process. Obviously, the more
information we have from a variety of different (and reasonably reliable)
sources, the better able we are to spot cases of suppressed evidence.

At least two other criteria are useful in evaluating evidence. One is the
source of the evidence. Often, no source at all is given; a fact seems to
come from nowhere, or else a vague and undocumented source is given
(“Many scientists agree that ———” or “Senior officials in the adminis-
tration say that ———”). A variation of this problem is when a specific
source is cited, but the worth of the source is questionable. I recently read
a diatribe against vaccination that contained many quotations, facts, and
statistics, each one carefully documented by citing a source; but the source
was the same book in every single instance, a book written by somebody
with no known qualifications and published by a publisher I’ve never
heard of. Despite the copious documentation, I was less than impressed
by the reliability of the evidence. The second criterion we can use is the
likelihood that a writer (or source cited) really knows (or even could
know) the fact being stated. Political parties, candidates, ideologues, and
governments often tell you the intentions and motivations of their oppo-
nents; if you think about it, there’s no one less likely to really know these
things. You-are-there style journalism often tells you what someone was
thinking or saying at a certain time, information not known by anyone
with certainty. In cases like these, a little thought reveals that something
stated as a fact is probably nothing more than a supposition. The factual-
sounding form of the statement is there for rhetorical effect.

Statistics

Most of these points concerning evidence in general apply equally well to
statistical evidence, but the use of statistics presents some extra opportuni-
ties to mislead. Statistical facts may be cited selectively, for example,
which is another version of suppressed evidence. But statistical facts might
be unreliable or misleading for more technical reasons, which we will now
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explore. The reliability of statistical results depends (among other things)
on the size and quality of the sample used. Conclusions based on small
samples tend to be quite unreliable. Some biomedical studies, which re-
ceived a good deal of publicity, have actually been based on samples too
small to tell us anything reliable. Even a large sample might yield mis-
leading results. To tell us something unambiguously, a statistical sample
must be chosen randomly. If you do a survey of people chosen from the
membership of the Sierra Club, you probably won’t get an accurate pic-
ture of American opinion on environmental issues. On a more subtle and
realistic note, statistical studies may also be biased by a nonrandom re-
sponse rate; in other words, the people who choose to send back a com-
pleted survey may hold opinions that don’t accurately reflect those of the
entire initial sample. Similarly, people who volunteer to take an experi-
mental heart disease drug may well be people who already take extra
measures (such as proper diet and exercise) to prevent heart disease.

Public opinion surveys are especially prone to biased results because
the way in which the questions are worded has a large effect on the an-
swers given. For this reason, you should view with suspicion any statisti-
cal claims about people’s opinions. Many people will be in favor of help-
ing prevent children from starving, while few people will support wasting
more money on welfare cheats, despite the fact that both statements may
refer to the identical policy change. Without knowing how the question
was phrased, statistics concerning public opinion are as worthless as
they are exact-sounding. Governmental statistical reports also suffer from
various flaws. Crime rate statistics, for example, are based on crimes re-
ported rather than crimes committed, which may not always be the same
(rapes and crimes against poor ethnic minorities have often been underre-
ported). Economic statistics are also dependent on the quality of the data
reported to the government, which is quite possibly less than accurate in
some cases.

Perhaps the major intentional use of statistics to mislead people em-
ploys accurate numbers that are then incorrectly interpreted, usually by
leaving out some important point (suppressed evidence again). For exam-
ple, a political party might claim that its budget proposal contains a 1.2
percent increase in money for some popular program. But if the inflation
rate is 4.5 percent, this “increase” represents a substantial cut. If I want
to know whether defense spending is increasing or decreasing, should I
look at the dollars spent on defense or at the percent of the budget spent
on defense? For a statistical comparison to mean anything, the quantities
we compare must be appropriate. Unfortunately, we are rarely provided
with all of the information we need in order to make such appropriate
comparisons. Our only recourse is to question the information we are
given and ask ourselves what we really want to know.
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Rhetoric and Fallacy

There are many rhetorical devices that are intended to deceive a reader
or listener with fallacious arguments. A variety of these techniques
have been catalogued and named. Let’s look at a few of the more common
types.

A “straw man” argument is directed not at someone’s actual position,
but rather at a distorted version that was fabricated by the perpetrator of
the straw man fallacy. This distorted version (the straw man) might be a
weaker argument, with irrelevant evidence and poor logic substituted for
the valid arguments that support the conclusion under attack. Alterna-
tively, the straw man position might be a more radical version than the
real position held by a person or group, and this radical distortion is more
easily attacked (extreme positions rarely have much support in the general
public). The straw man fallacy is a popular rhetorical trick used by ideo-
logues, editorialists, and (almost universally) political campaigners.

Another often-used technique is the “ad hominem” argument. A literal
translation of this Latin phrase is “to the man.” In other words, instead
of actually addressing the evidence and logic of a person’s argument, those
who commit the ad hominem fallacy attack the person herself. For exam-
ple, suppose Senator Krupt has proposed campaign finance reform legisla-
tion. Opponents of this legislation, instead of saying why it will be ineffec-
tive or undesirable, merely attack the legislation by pointing out that
Senator Krupt has often engaged in the sleazy campaign financing prac-
tices that this legislation will prevent. Possibly true, but definitely irrele-
vant. The effectiveness of the ad hominem argument in popular discourse
is remarkable when so little thought is needed to reveal its fallaciousness;
the validity of a position certainly doesn’t depend on the virtues (or vices)
of the person proposing that position.

The “false dilemma” is another piece of effective rhetoric that is logi-
cally invalid. In the false dilemma, two alternatives are proposed as the
only possible positions that can be adopted. One of these is inherently
weak and easily attacked. After demonstrating how poor this weaker po-
sition is, the argument concludes that the other alternative is correct. The
logical flaw, of course, is that there may well be other alternatives besides
those two, perhaps even a broad spectrum of possibilities that haven’t
been included for consideration. An oversimplified example of the false
dilemma is the following: “We must engage in a massive military buildup
because unilateral disarmament will surely lead to the destruction of our
country.” Other false dilemmas are “either good jobs or a livable environ-
ment” and “either traditional health care delivery or socialized medicine.”
These examples may sound silly when written out so starkly, but the same
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basic arguments might be quite plausible sounding (to the unwary) if they
are dressed in enough rhetorical embellishment.

When an argument assumes the truth of the conclusion as part of the
premises, this is known as begging the question (sometimes called circular
reasoning). For example, suppose we argue as follows: “The government
spends too much of our hard-earned money. Therefore, we need to cut
back on government spending.” We might be able to make a pretty good
case for this conclusion, but we haven’t made any kind of case at all here;
we could just as easily have reversed the conclusion and the premise. We
have merely begged the question.

Although there are many other categories of fallacious argument, we’ll
just consider one more, namely the “slippery slope.” In this case, the posi-
tion argued against is assumed to lead inevitably to some terrible result.
This terrible result is then argued against, instead of the actual proposed
position. Examples: “Banning the sale of machine guns is a bad idea be-
cause if we do that today, then tomorrow we’ll be confiscating every gun
from every citizen.” “If we allow any logging in this old growth forest,
then we’ll soon be clearcutting the entire area.” Unless some good evi-
dence or convincing reasons are given to support the claim that one action
really will lead to another, the slippery slope argument is a fallacy. A
famous historical example of a slippery slope argument is the domino
theory used during the controversy over the Vietnam war. Fallacious argu-
ments can be difficult to spot because the stylistic form of an essay (or a
speech) often disguises the logical structure. Conclusions and premises
might be mixed together in any order, and some premises might simply
be left out (unstated, either implied or hidden). Arguments can be based
on analogy or appeals to emotion instead of logic, and the rhetorical use
of loaded words (or images) can easily sway our opinions. Suppressed
and/or fabricated evidence isn’t always easy to detect, and our own preju-
dices can mislead us as much as clever rhetoric. But all these difficulties
can be overcome to some extent by critically evaluating the arguments
we encounter.
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Chapter 8

THE NUMBERS GAME: USES OF

QUANTITATIVE REASONING

When you can measure what you are speaking about
and express it in numbers, you know something about
it, and when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meagre

and unsatisfactory kind.
(Lord Kelvin)

Quantification sharpens the image of things seen by
the mind’s eye, both external phenomena and internal

conceptions, but it is useless or worse until the right
things are in the field of viewpoint.

(R. W. Gerard)

§1. WHY NUMBERS?

THE WORD “quantitative” means measurable in numbers, as op-
posed to “qualitative,” which refers to verbal description. Al-
though not every aspect of science is quantitative, the sciences are

certainly more quantitative than other intellectual pursuits like literature
or philosophy. Scientific discourse is also more quantitative than typical
everyday conversations. Why should this be so? What is gained by the
process of reducing qualities to numbers, and what is lost? One major
advantage of quantification is exactitude. Instead of saying that an ele-
phant is heavy or that an atom is small, we can provide a number for the
mass of the elephant or the size of the atom. (Of course the matter is a
bit more complicated because no measured number is really exact, but
instead is only as good as the measurement that we made to get it; see
§2.) Our number may not be exact, but we have clearly gained in precision
by switching from a word like “heavy” to a number like 1850 kg for the
mass of our elephant.

We have actually gained something even more important than precision
because the word “heavy” has no meaning by itself. An elephant is heavy
compared to a hummingbird but is not heavy compared to Mt. Everest.
Is an elephant heavy? Having a number for the mass of the elephant, we
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can now compare this number, quantitatively, to the masses of other
things. We can say which is heavier, and we can say by how much. Our
comparisons are unambiguous now, so we have gained in clarity as well
as precision.

These advantages are found in everyday life as well as in science. Hav-
ing a number for your bank account balance is probably better than feel-
ing wealthy or poor. In scientific work, however, the matter becomes cru-
cially important because a defining characteristic of science is that we
compare our understanding of nature with the observation of nature. A
qualitative agreement between the two might be possible for many differ-
ent understandings, not all of them correct. Quantitative agreement be-
tween a predicted number and a measured number is much less likely to
be the result of incorrect thinking. Physicists of the nineteenth century,
for example, predicted that a hot hollow body with a small hole would
emit infrared radiation out of the hole. Their theories also predicted,
quantitatively, how much radiation should come out at each wavelength.
At short wavelengths, the predictions disagreed with the experimental
measurements of the radiation. This seemingly minor quantitative dis-
crepancy was the beginning of the revolution in thought we now know
as quantum theory, the technological fruits of which include lasers and
microelectronic computer chips.

Example: The Area Needed for Solar Cells

More subtle and less obvious advantages also result from quantification
and numerical work. It’s possible to simplify complicated chains of rea-
soning, which would otherwise be difficult to carry out, by reducing them
to a set of numerical computations. Consider the following example: Op-
ponents of renewable energy sources sometimes claim that electrical en-
ergy from the sun is impractical because we would have to cover up vast
areas of the country with solar cell panels to meet our needs. Is this true?
It certainly sounds plausible enough. But how can we determine if the
claim really makes sense or not? Verbal argumentation fails us here, and
we need to think through the question numerically. To avoid worrying
about the rate of energy use, let’s just think about one day. We need to
know how much energy is produced by a given area of solar cell panel
during this day (i.e., we want the energy per unit area). We then need to
know how much total energy is used by the country in a day. A little
thought reveals that the total area of solar panels needed is the total en-
ergy used in the country divided by the energy produced per unit area.
To obtain the numbers we need, we can start by looking up the yearly
U.S. consumption of electrical energy (then divide by 365 days). Doing
so, we find that the U.S. uses about 7 billion kilowatt-hours each day
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(the kilowatt-hour is the energy unit used by electrical utilities). Now,
about 1 kilowatt-hour of energy is contained in bright sunlight shining
for one hour on one square meter of ground. For want of a better estimate,
let’s take the number of sunny hours to be five, on the average. A typical
solar cell has an efficiency of about 10%, that is, one-tenth of the energy
in the light is converted to electricity. So, the energy per unit area is about
0.5 kilowatt-hour of electrical energy per square meter in a day. We
now have both numbers we need. The arithmetic is easy: 7 billion total
kilowatt-hours divided by 0.5 kilowatt-hour per square meter. We
therefore conclude that we need about 14 billion square meters of solar
panel. This sounds like a lot of area. But is it really a lot? Recall the
relationship between area and distance (see Chapter 16). This area is actu-
ally only about 120,000 meters on a side, that is, a square that measures
about 75 miles by 75 miles. For comparison, the U.S. is about 2000 miles
by 3000 miles.

The main point here is that we could not have arrived at our conclusion
(namely, that the claims of the solar power opponents are wildly incor-
rect) without using a numerical argument. Two other points are also
worth making, though: First, our conclusion is not much affected by par-
ticular choices for unknown numbers (e.g., what would be the effect of
assuming only one hour of sunlight per day instead of five?). Second,
we have not shown that solar energy is practical (economic issues, raw
materials availability, energy storage problems, etc., haven’t been ad-
dressed); we have merely shown that one argument against solar energy
is bogus.

Other Gains and Losses

If the phenomena we are trying to understand have been reduced to num-
bers, then the behavior of the phenomena can be represented by mathe-
matical relationships among the numbers. Not only do the mathematical
forms bring order and simplicity to complex phenomena, but manipula-
tion of the mathematical relations can reveal new and previously unsus-
pected behaviors. We have now crossed the bridge from quantification to
the role of mathematical thought itself in the sciences, so we’ll not proceed
further here. Instead, we will return to the question of whether anything
is lost in the process of reducing the world to numbers. We certainly pay
a price in the sense that we have lost both the raw sensory experience of
what we study and any aesthetic dimensions it may possess. I prefer lis-
tening to the music generated from the quantitative information stored
on a compact disc, rather than counting the etch pits on the disc. In this
sense, many things outside the realm of science cannot be quantified and
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still retain their true meaning. A more interesting question is whether
anything of genuine scientific interest is not amenable to quantification.
This question may be more controversial, but it seems clear to me that
the answer is yes. Taxonomy, for example, is the science of classifying
plants and animals into an organized system; it’s inherently descriptive
and nonquantitative, yet central to science. But these larger issues are not
our main concern here. Let’s return to the more practical questions of
how to utilize numbers effectively when they are appropriate to the prob-
lems under consideration.

§2. PRECISION

How Good Are Measured Numbers?

When you see a number, do you ever ask yourself: “How well do I
know this number?” Most people probably don’t (after all, a number is
a number, right?). Let’s consider an example we are all familiar with,
such as the nutritional information on a box of cereal. Suppose our Won-
der Flakes box tells us that one 8 oz serving supplies 15% of our daily
requirement of carbohydrates. This sounds unambiguous enough, but
think about it for a minute. Can that 15% possibly be the same number
for a 250-lb person who does manual labor all day and a 140-lb person
who sits at a desk all day? Presumably, 15% is some kind of average.
Even granting that we have an average number, is our number necessarily
exactly 15% or might it be 14.5%? How about 16.2%? Could it be as
far off as 12%? Do you think that even 15.01% is too far off? Or do
you think it surely must be exactly 15% or else they wouldn’t have
written 15%?

Actually, very few numbers are exact. The only examples I can think
of are: purely mathematical numbers, quantities defined by convention
(i.e., mutual agreement), and integers (I have exactly 10 fingers). Any
other numbers that are the result of measurement are not exact. The
proper interpretation of such a number is that it represents a range of
values around the actual written value. How wide is this range? In the
case of our Wonder Flakes box, we unfortunately have no idea. In fact, a
number usually represents a range that we don’t know. Keeping this point
in mind is extremely important when evaluating the information that
crosses your path each day. An unadorned number, with no information
given about its precision, doesn’t tell you as much as it pretends to. Know-
ing this, you can interpret numbers more realistically and thereby (para-
doxically) get more genuine information from them. So, what does the
15% on the Wonder Flakes box really tell us? First of all, if the people
who determined that number did a proper scientific job, then its precision
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is known and can be stated quantitatively (using technical methods de-
scribed later in the section). But even if someone does know how precise
that 15% is, we do not. We still need to form the best conclusions we can,
given our limited information. To do this, we need to introduce the con-
cept of an order of magnitude.

Orders of Magnitude

Since we don’t know anything about the precision of this 15%, a prudent
course of action is to assume the worst and take it to be very imprecise.
Even so, the 15% is still telling us something important, because we know
that it’s in the general ballpark of about 10%, as opposed to either 1%
(which would be a trivial amount) or 100% (which would be all the car-
bohydrates we need). You may object that 1% is not always trivial. And
where did I get 1% from anyway, why not 2% or 1.5%? The answer to
the first of these objections is that 1% is trivial in this context: nobody is
going to eat 800 oz of cereal in a day. The answer to the second objection
follows from the same reasoning; after all, nobody is going to eat 400 oz
in a day either. Anything anywhere near 1% will be trivial, which is the
major point here. The same logic applies to the 100%. We don’t care
much whether it’s really 80% or 110%, because anything anywhere near
100% is almost all you need to eat. More importantly, anything near
either 100% or 1% is obviously not right for Wonder Flakes. How do I
know? Because both are inconsistent with the 15%, no matter how impre-
cise it is, if this number has any meaning at all.

Notice that 1%, 10%, and 100% are separated by factors of ten, and
that they can be written as 0.01, 0.1, and 1.0. The closest power of ten
to a number is called the order of magnitude of that number. For example,
the order of magnitude of 0.15 is 0.1 and the order of magnitude of 889
is 1000. A convenient notation is to write numbers (after rounding off)
as 10 to the appropriate power. For example, the order of magnitude of
114 would be written 102 and 0.0027 would be 10-3. This method, called
scientific notation, is very handy for expressing extremely large and small
numbers. The method is also convenient for multiplying numbers because
we only need to add the powers of ten together.

We now see that the only firm conclusion we can draw from the number
15% is that the order of magnitude of our carbohydrate needs supplied
by this cereal is 0.1 (10-1). This is dependable information because the
actual number is highly unlikely to be an order of magnitude less or an
order of magnitude more. The information is also worthwhile (after all,
is there any reason you would ever want to know the nutritional content
of your Wonder Flakes more precisely than its order of magnitude?). As
a bonus, we have also automatically taken care of the fact that 15% must
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be an average because the carbohydrate needs of anyone will undoubtedly
have this same order of magnitude. Sometimes, of course, you need more
precision than this. I would not want my eyeglass prescription filled only
to the nearest order of magnitude, for example. In a surprising number
of cases, however, order of magnitude information turns out to be very
useful. Let’s illustrate this with two examples, one of purely scientific in-
terest and another more concerned with public policy.

Consider the order of magnitude of the energy involved in chemical
bonding. Using the energy unit known as the eV (abbreviation for elec-
tron-volt), the order of magnitude of chemical bonding energies turns out
to be 1 eV. Compare this to the order of magnitude of the energy of light
(you can think of light as consisting of discrete bundles of energy known
as photons). A light photon also has an energy with order of magnitude
1 eV. So, the binding energies of chemical reactions and light photons have
the same order of magnitude (although individual reactions of different
chemicals have different energies, as do different colors of light). This
similarity in orders of magnitude is interesting, because it allows several
crucially important processes to occur. One example is photosynthesis in
plants, the conversion of light energy into chemical energy stored in the
body of the plant. Photosynthesis is obviously of great importance to us,
ultimately providing all of our food. A second example is the action of
the human eye’s retina. Light falling on the retina causes chemical reac-
tions that initiate the nerve impulses to the brain, resulting finally in what
we perceive as visual images. The essential first step in both of these pro-
cesses depends on a proper match between the order of magnitude of light
energy and of chemical energy.

Let’s now consider an example that is more concerned with practical
matters of public policy. In the early 1980s, a program called the Strategic
Defense Initiative (popularly known as Star Wars) was begun. The pur-
pose of this program was to develop directed energy weapons such as
lasers that could shoot down incoming nuclear bombs carried by inter-
continental ballistic missiles before they could reach the United States.
This program, costing tens of billions of dollars, was greeted with some
skepticism concerning its practicality. In response, the American Physical
Society sponsored a study to assess directed energy weapon technology.
One conclusion of the study was that the power needed by lasers to shoot
down missiles would have to be at least two orders of magnitude greater
than the power of existing lasers. Understanding what an order of magni-
tude is, you see clearly the implications of that conclusion. Note that
the study group did not give a precise number for the power needed;
nor could they have done so without performing experiments costing
millions of dollars and taking years to complete. But using the informa-
tion at their disposal and their basic knowledge of physics, they were able
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to calculate the order of magnitude of the required power. This order of
magnitude was sufficiently informative, given the number it turned out
to be. The emphasis on directed energy beams was dropped soon after
the study group’s report was published (although the SDI program contin-
ued to exist).

Uncertainty

We have so far been discussing poorly known numbers, but some numbers
are known very precisely. The charge of an electron, for example, is
known to within a fraction of a part per million. Analytical chemists rou-
tinely measure masses of chemicals with extremely high precision. But
even these numbers are still not exact. We need some way to express nu-
merically how well or poorly a number is known; we need the concept of
uncertainty. The uncertainty of a quantity is the range within which we
believe this quantity to lie. Conventionally, the uncertainty is usually writ-
ten after a ± sign following the quantity. For example, your weight might
be written as 153 ± 4 lb, meaning that your actual weight is probably
between 149 lb and 157 lb. The best value for the weight itself is 153 lb
and the uncertainty of the weight is 4 lb. This uncertainty is pretty high,
maybe because you are using a cheap old bathroom scale. A better scale
(perhaps the kind found in a doctor’s office) provides a better value, like
151.8 lb ± 0.1 lb. This value is consistent with the first, but is more precise.
Without using any scale at all, you might just guess 160 lb ± 20 lb. Your
guess is also consistent with the first and second values, but is now consid-
erably less precise.

The uncertainty of a number is also sometimes called the error of the
number, the experimental error, or the error bar. This last term comes
from the graphical representation of uncertainty, as shown in Figure 6.
Measurement uncertainties can be interpreted within a statistical frame-
work, the mathematical theory of errors. In the natural sciences, the usual
custom is to identify the uncertainty with a statistical concept called the
standard deviation. Leaving statistical technicalities aside, a rough inter-
pretation of the standard deviation is the following: if a value is measured
a large number of times, about two-thirds of these determinations will be
within the range given by the uncertainty. In the social sciences, somewhat
different customs prevail, but the basic idea is the same (namely, that one
attaches a statistically defined reliability to the error range). However,
statistical interpretations of uncertainty are only really meaningful when
they are based on extremely large amounts of data, which is almost never.
So, in practice you are safer to interpret a quoted uncertainty as only a
rough estimate unless you have evidence that it’s statistically valid.
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Figure 6. Uncertainties are illustrated graphically as error bars. In this imaginary
example, the error bar tells us what the uncertainty range is for each of the percent-
age daily requirement numbers given by the graph.

Some Interesting Points

Before leaving this topic, there are three technical points worth making:
the difference between precision and accuracy; the nomenclature for indi-
cating an order of magnitude; and the difference between measurement
error and natural variability. Strictly speaking, precision and accuracy are
not the same thing to a scientist, and the distinction is useful. Precision
tells us the range of a set of measurements, that is, how well they agree
with each other. Accuracy, on the other hand, tells us how well these
measurements agree with the correct value. If you weigh yourself on a
doctor’s scale, for example, you will get a precise measurement of your
weight, but if you are wearing heavy boots, then you won’t get an accurate
measurement (scientists often use the term “systematic error” to refer to
this kind of situation). High precision is no guarantee of correctness.

The method of using the ± sign and a range doesn’t work very well
when a number is known only to the nearest order of magnitude. We can
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always just use the words “order of magnitude” to indicate this situation,
as I’ve done so far, but that’s rather inconvenient. Instead, we have a
special symbol, ∼, which means the same thing. For example, we can write
the nutritional value of Wonder Flakes as ∼10% or the typical yearly
income of Americans as ∼104 dollars. I will use this notation in the next
section discussing estimation.

The uncertainty of the number representing some quantity can be due
to two distinct sources. On the one hand, there may be an uncertainty
due to the measurement process even if the number is very well defined
(the speed of light, for example). On the other hand, uncertainties may
also be due to the natural variability of the quantity itself. If I ask how
much vitamin C is in an orange, the answer will involve some uncertainty
stemming from the differences among oranges (no matter how precisely
I measure the vitamin C content of a particular orange). In a case like
this, we want to know both the average (our answer) and also the range
(our uncertainty). I find it useful to keep in mind that numbers have uncer-
tainties, and that uncertainty must be considered as we evaluate claims
that are made in politics, business, and the media. Always striving to make
your own uncertainty estimate for any number you use is a good habit to
cultivate.

§3. ESTIMATION

We rarely have the luxury of knowing precise values for numbers needed
in the everyday course of life. Two simple examples will show what I
mean by this statement. Example 1: Suppose you are traveling somewhere
by car and you have a roadmap. You can say about where you are on the
map and about how far you are from your destination. But what you say
certainly won’t be extremely close (within a mile, say) to the actual dis-
tance. Example 2: Now suppose you are reading a newspaper and come
across a startling claim, for example, “all of the acidic lakes in the north-
eastern U.S. can be limed for $500,000 a year” (this is an actual quotation
from a newspaper; more on this later). You would need some independent
and reliable source of information to determine whether this claim is valid
or not. However, in the same way that you can estimate the unknown
mileage to your destination, you can estimate the numbers you need to
decide whether this claim makes sense. Since we rarely have independent
and reliable sources of information at our fingertips, developing skill in
estimation can be exceedingly valuable.

Scientists find it invaluable to make rough estimates during the course
of their work. Estimates serve as a check on the results of difficult and
sophisticated calculations; if the detailed calculation gives a result that
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seems unrealistic compared to the crude estimate, we have a clue that
something may have gone wrong in the maze of details. Making an initial
estimate might also tell us whether some idea or plan is feasible and worth
the effort of working out the details (or not). The so-called back-of-an-
envelope calculation is a standard part of the cultural lore in physics. One
person who was famous for his ability to use estimation techniques was
the physicist Enrico Fermi. With his quick mind and extensive command
of facts, Fermi was legendary for being able to work out complex prob-
lems in a simple fashion, and he made it a point to train his students in
the same estimation methods of which he was a master. A particularly
striking example occurred when Fermi observed the explosion of the first
atomic bomb. By dropping bits of paper to the ground and measuring
how far they were blown by the wind from the blast, Fermi was immedi-
ately able to estimate how powerful the bomb was (in equivalent tons of
TNT). His estimate was later verified by careful analysis of instrumental
readings.

We have already developed one of the key ingredients we need for skill
in estimation: the idea of an order of magnitude. To use this idea effec-
tively, you must be able to make reasonable estimates of the quantities
you need. The last key ingredient is the ability to combine your estimates
judiciously after you have made them in order to obtain the result you
want. In making useful estimates, you also sometimes need to draw on a
bit of basic knowledge (i.e., some commonly known facts). An example
of what I mean by basic knowledge is the population of the United States,
of your hometown, and of the world (rough estimates). A few other exam-
ples of useful things to know (roughly) are the density of water, the size
of the United States, and how much electrical energy your household uses
each month. For any particular fact, of course, you either know it or you
don’t. Obviously, we can’t always happen to know just the information
we need, but we can be on the lookout for potentially useful facts and
commit them to memory. It’s not hard to remember an order of magni-
tude, which is all you usually need. Let’s look at two examples of how to
make an order-of-magnitude estimate. The first example demonstrates
some of the basic ideas in the technique, while the second example shows
how to apply estimation methods in a public policy dispute.

Example 1: Gold bricks

What is the worth of a chunk of gold the size of a typical brick (the kind
brick houses are made of)? Just guessing off the top of my head, I have no
idea. But with some thought, we can make a pretty reasonable estimate. I
know from listening to financial news reports that the cost of gold is
roughly $400/oz, that is, $400 for about 30 grams of gold. If we know
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how many grams are in the brick, we can figure out how many lumps of
30 grams each are in the brick (divide the number of grams in the brick
by 30). Each lump costs $400, so $400 times the number of lumps gives
us the cost of the brick. Now we need to know how many grams of gold
are in the brick (i.e., we need the brick’s mass). Your first thought might
be to try a direct estimation of this number. If you try to do this, I suspect
that your estimate will not be close to the correct number. I’m sure my
estimate would not be close. Why is the mass of a gold brick so hard to
estimate? Because to make a decent estimate, you would have to lift one
in your hand and feel how heavy it is. I don’t know about you, but I have
never had a brick of gold in my hand. There is a better way to estimate
the mass of a gold brick. The only other information we’ll need turns out
to be the density of gold, which we can either estimate or look up. To
estimate, use the density of water (1 g/cm3) and the fact that heavy metals
are an order of magnitude more dense than water (e.g., see chapter 4 and
justifiably assume that the densities of gold and mercury have the same
order of magnitude). Since the information we want in this case is readily
available, though, I just looked it up. I found that the density of gold is
about 20 g/cm3. This means that each volume of 1 cm3 contains 20 g of
gold. The volume of the gold brick is something we can estimate (see
chapter 16) because it is the same as the volume of an ordinary brick,
which we’ve all seen. The volume of the brick (the number of cubic centi-
meters it contains) multiplied by 20 then gives us the number of grams in
the brick, which we want. As you may have noticed, we’ve been using
the relationship mass equals density times volume (see chapter 19). This
relationship can be written as an equation, m = ρV where m is the mass,
ρ is the density, and V is the volume.

To proceed further, we need to estimate the volume. We could again
attempt to do this directly just by looking at a brick and guessing its
volume. Estimating volumes is not so easy, however, and we are likely to
be way off in our estimate. An alternative method is to estimate the length
of each side of the brick. I find it much easier to estimate a length than to
estimate a volume. All we need to do then is multiply the three lengths
together to get the volume of the brick. For my estimates of the sides of
a brick, I chose 5 cm, 8 cm, and 20 cm. The volume I estimate based on
these lengths is then about 800 cm3. This estimate is probably not very
precise, but I’m almost certain that I’ve gotten the order of magnitude
right. We now have all of our ingredients assembled, and we can put
them together to find our estimate of the gold brick’s worth. Multiply the
volume times the density

(800 cm3) < (20 g/cm3) = 16,000 g
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to get the mass of the brick. Then divide the mass by 30 to get the number
of $400 lumps, which is about 530. Finally, multiply this number times
$400 to get $212,000. An equivalent (in fact identical) procedure is to
divide $400 by 30 g to get the price per gram, about $13/g, and then
multiply this by the brick’s mass

(16,000 g) < ($13/g) = $208,000

The numbers are slightly different only because I have rounded off differ-
ently in the two cases; the difference is not meaningful given the crude
estimates we’ve been using. In fact, the proper procedure is actually to
round off the results to $200,000. So we have our answer: the gold brick
is worth about $200,000.

There are two especially interesting points concerning this result. One
is how large the result is. This is a lot of money, and I doubt if many
people would guess offhand that a piece of gold the size of a brick is that
costly. That we can get such an unexpected result from numbers we know
or can estimate is a testimonial to the power of these methods. The second
interesting point is closely related to the first. Even though our number
is not very precise, it tells us something important. Why? Because the
remarkable characteristic of this result is not the exact amount but rather
its order of magnitude. The important information we have learned is
also the dependable information (namely, that a gold brick is incredibly
expensive even compared to our expectations).

Example 2: Acidic lakes

Let’s take a closer look at the example quoted near the beginning of the
section (“all of the acidic lakes in the northeastern U.S. can be limed for
$500,000 a year”). This quote is from an opinion piece in a 1992 issue
of U.S.A. Today. The author’s purpose is to convince the reader that
environmental problems are exaggerated. The quote is taken from a
series of claims that are intended to show that acid rain is not really a
problem. Liming means adding an alkaline substance to neutralize the
excess acidity of the lake (much like the heartburn medicines advertised
on TV). We don’t have any way to know whether the quote is true or is
a lie, but we do have a way to proceed. The question is this: Does this
quote make sense?

To progress very far in our thinking, we need to know how many acidic
lakes there are in the northeast. Estimating that number would be our
first task, and I admit that it would be a tough one. But we are in luck
because, in the very same list of claims, the author writes: “There are 240
critically acidic lakes out of more than 7000 northeastern lakes.” The
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author neglects to tell us what “critically acidic” means, but we can cer-
tainly assume that 240 must be the smallest number of acidic lakes con-
ceivable. (You may object that if we’re worried about the author’s lying
in the first place, why should we trust this number? If he was lying,
though, he’d give us a number that is too small and the real number of
acidic lakes would be bigger, so once again we may assume that 240 is
the minimum possible number of acidic northeastern lakes.) So we can
divide $500,000 (the total claimed cost of fixing the problem) by 240 to
obtain the maximum average cost per lake. This should be a good esti-
mate of the cost to neutralize the acidity of a single lake, based on the
author’s claims. In practice, we can round off to 250 to make the arithme-
tic easier (obviously we lose no real precision by doing this). The arithme-
tic is trivial, and we discover that the estimated cost for each lake is about
$2000. What have we gained by doing this? We now have a number that
we can compare to other numbers we are familiar with (half a million
dollars is a little abstract to me). How much of a job does $2000 buy?
Compare that amount to some contracting or landscaping job you are
familiar with. I paid about that much money to get a new set of drain
gutters on my house. Is it reasonable that this amount will pay for a crew
of professionals to travel to a lake and perform chemical procedures to
neutralize its excess acidity? And remember that this is the highest amount
it could be.

An Afterthought

Obviously, getting better (more reliable and/or more precise) information
is always desirable whenever this is possible. But even a rough estimate
can be informative and valuable, and we often learn what we need to
know just from the order of magnitude of an estimated number. One of
the difficulties of estimation techniques is that there are no simple rules
to follow. Not knowing whether we’ve gotten the right answer and not
having necessary information to work with are both somewhat dis-
turbing. The benefits of making estimates, however, are well worth the
effort involved both in science and in practical affairs.

§4. THE INTERPRETATION OF NUMBERS

Quantitative reasoning can be a valuable tool in thinking, but if this tool
is not used properly, then we might come to incorrect conclusions even
when the numbers are right. Let’s look more closely at how to interpret
numerical information.
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Meaning and Context

Numbers have meaning (or at least numbers represent something with
meaning). The number for the average income of Americans has a mean-
ing in terms of the quality of life of American citizens. The number of
people in the world who die of malnutrition has a meaning that is all too
obvious. The number of tons of coal burned last year in the United States
to produce electricity has a meaning too, but that meaning is less obvious.
The convenience of using the electricity; the environmental pollution of
burning the coal; the jobs created mining the coal; the importance of the
technologies that run on electricity; the profits of the mining and utility
companies; and many other factors all contribute to the meaning of that
number. We need to have a genuine understanding of a number’s meaning
in order to use it productively in our reasoning. We should also under-
stand that reducing a concept to a number leaves out some of its meaning.
A person’s quality of life depends on many other things (relationships,
job satisfaction, etc.), not just personal income. The number of people
dying of malnutrition tells us nothing about whether the cause is natural
disasters or political intrigue. In other words, the use of quantitative rea-
soning is productive when it’s used as part of a more general approach.
The meaning of the numbers must be understood and placed into a con-
text that goes beyond quantitative information.

Numerical Comparisons

The information we get from a number can sometimes be made much
more meaningful by looking at it in comparison with other numbers. For
example, the number of tons of coal burned last year may not tell you
much by itself. Compare that number to the number of tons of coal
burned 25 years ago; compare it to the amount of known coal reserves in
the earth; compare it to the amount of oil or natural gas burned to pro-
duce electricity; make these kinds of comparisons and you start to arrive
at a deeper understanding of what the number of tons of coal burned last
year means. In fact, the ability to make numerical comparisons of this
type is one of the greatest advantages of quantification. Comparing things
that have not been quantified in this way can sometimes be very difficult.
For example, suppose we are trying to decide how to allocate scarce pub-
lic health resources. Two diseases are both terrible killers of the people
who get them; how should we decide which disease to spend more money
fighting? On what basis can we compare them? Now suppose that we
quantify the number of people who die from each disease in a year, and
we discover that one of the diseases kills over a hundred times as many
people as the other disease. This quantitative comparison may induce us
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to make a choice, spending more money on the disease that kills more
people. Of course, there are ethical issues and other aspects of the decision
that can’t be quantified. And once again, we want to keep in mind that
we may have lost important information in the process (e.g., how easy or
difficult is it to cure each disease?). Despite these considerations, however,
the quantitative aspects of a problem like this one are invaluable additions
to our thinking process. This ability to make numerical comparisons is
one of the unique advantages of quantification.

Relative Quantities

In thinking about the significance of a number, another important consid-
eration is the relative value of that number. By relative value I mean not
the number itself, but rather the number compared to some standard or
total. As a simple example, let’s say that some animal is eight years old.
This doesn’t tell us very much; in particular, it doesn’t tell us anything
about whether the animal is old or young unless we know its expected
lifespan. If the typical lifespan of this species is forty years, the animal has
lived only 20% of its life; whereas, if the typical lifespan is ten years, the
animal has lived 80% of its life. Let’s take forty years to be the typical
lifespan. Then eight years is the actual age of the animal while 20% is the
relative age of the animal. As you can see, both of these numbers (eight
years and 20%) convey information, each in a different way. As another
example, suppose we are trying to decide how important it is to recycle
a certain industrially important metal. We find that 25,000 tons of this
metal are mined per year. This tells us something of moderate interest,
but not really what we need to know. We now discover that this amount
(25,000 tons) is 5% of the estimated reserves of the metal in the earth.
This number implies that, at the rate we are presently mining it, all the
metal will be gone in twenty years. The relative value (5%) is clearly the
important thing to know in deciding about this issue.

Precision

Another point to consider in the interpretation of numbers is their preci-
sion. For example, suppose one quantity is 3% greater than another, but
both are known only to within ±40%. The fact that one is bigger than
the other is virtually meaningless in this case. If someone tried to use this
3% difference to make a point in an argument, you would realize that it
meant nothing if you knew the precision of the numbers. And if you didn’t
know the precision of the numbers, you would know that you need to
ask for it. Sometimes we know only the order of magnitude of a number,
but this knowledge can still be useful. In the example we just discussed,
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where the precisions are only ±40%, we would still have meaningful in-
formation if one number was an order of magnitude greater than the other
(as opposed to 3%). The order of magnitude of a quantity can often be
estimated, which makes it particularly useful.

Making Numbers Meaningful

The numerical value of a quantity is sometimes not the most important
point to note when trying to interpret numbers. Instead, the change in
the numerical quantity is sometimes the important point. An example is
inflation in the economy, where the numerical value of the dollar is not
as important as whether that value is increasing or decreasing, and by
how much. The rate of change is also itself a numerical quantity, but
further discussion of this point would take us too far afield (see chapters
19 and 20 for more on rates). An additional advantage of quantification
is that it allows us to combine and manipulate concepts in a convenient
way. We’ve seen several examples of this already (the solar panel example
and the estimation examples). Combining concepts in this way is almost
impossible without quantification, and the process allows us to arrive at
new and deeper interpretations of the initial concepts. Finally, numbers
are sometimes not meaningful because they are too large, too small, or
too abstract. In these cases, we can often manipulate the number in some
way that makes it more meaningful by bringing it within our experience.
As a simple example, recall the number of tons of coal burned per year
(discussed above). The order of magnitude for this number is 109 tons, a
number so large that we have trouble even imagining the amount, and
for that reason it’s difficult to interpret. If we divide 109 by the number
of people in the United States, we have the number of tons of coal burned
in a year for each person. Since there are about 300 million people (3 <
108) in the U.S., we find that about 3 tons of coal are burned for every
person in the country. This result is a more easily imagined and more
meaningful number; we get a real sense of how much coal is being burned.
Recall that we employed a similar tactic in the acidic lake example.

FOR FURTHER READING
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Chapter 9

ULTIMATE QUESTIONS: SCIENCE AND RELIGION

Science and religion deal with different aspects of
existence. If one dares to overschematize for the sake

of clarity, one may say that these are the aspect of
fact and the aspect of meaning.

(Theodosius Dobzhansky)

THE RELATIONSHIP of science to religion is a broad topic, which
has been treated extensively by many profound thinkers. Before
starting our brief account, I wish to clarify what is meant by religion

here, since it can mean quite different things to different people. I am
using the term very broadly to include: organized religions based on well-
defined creeds, traditional religious beliefs and experiences in a variety of
cultures, spontaneous religious experiences that are not within a particu-
lar tradition, and so on. Many kinds of religious experience, based on
faith, mystical insight, scripture, and authority, are all included. The tradi-
tions and sacred writings of many different cultures are all taken to be
equally valid for our purposes here. There is a common element in all
these conceptions of religion that is not present in science, and it is this
common element and its relationship to science that we will now explore.
A number of questions present themselves for consideration: Are there
any possible conflicts between science and religion? Are there indeed some
conflicts that are inevitable? Do science and religion have any common
ground, any synthetic worldview that they share? Or are science and reli-
gion completely incompatible, with nothing to say to each other at all?
Should religion be considered merely an artifact of human thought and
an object of scientific study? Or is it science that should be considered an
artifact of human thought, unworthy compared to the eternal verities of
religion? These questions don’t have simple yes-or-no answers, but I be-
lieve that we can say something intelligent about the issues they raise.

§1. SOME FUNDAMENTAL DIFFERENCES

Let’s begin by stating clearly the differences in purpose and in method
between science and religion. Science attempts to bring coherence to our
experiences, whereas religion attempts to infuse our experiences with
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meaning. This difference is apparent in an example that is at the heart of
science and also central to some forms of mysticism: the contemplation
of nature. Looking at the wooded bank of a creek, a scientist might per-
ceive the photochemical processes of food production or the flow of en-
ergy and material through the ecosystem. A nature mystic looking at the
same scene might perceive its deep harmony and sacred beauty. The same
person might perceive both of these aspects; there is no contradiction
between the two. But they are very different things. No scientific result
can give my life or the universe significance; this is not a goal of science.
Giving life significance is, on the contrary, one of the very important goals
of religion. By the same token, no scientific result can rob our experiences
of meaning because science can say nothing one way or the other on this
issue. Questions of meaning, which may be central to religion, are outside
the scope of scientific discourse.

Scientific statements are ultimately statements about sensory informa-
tion. This comment is true in spite of the many abstract concepts and
terms, not directly observable, to be found in the sciences. Religious state-
ments, on the other hand, are ultimately statements about that which we
cannot perceive with our senses. Transcendent beings are not located in
space, time, or matter. For this reason, they are not subjects of scientific
discourse. The wooded bank of the creek illustrates this point as well.
The coherent picture of this scene as an ecosystem is based on observa-
tions and measurements. A scientific concept (ecosystem) is exactly what
ties the observations and measurements into a coherent picture. The
sacred quality of the scene, on the other hand, is not inherent in these
observations and measurements. Instead, it’s inherent in the experience
of the observer.

The discourse of science is always a public discourse. Science is con-
veyed in terms which can (at least in principle) be precisely defined. Re-
turning to the woodland scene, each niche in the ecosystem and each
chemical reaction in the photosynthesis process can be precisely defined
and described to someone else. In contrast, religious experiences can be
private and are often ineffable, that is, incapable of being expressed in
well-defined terms. (An ineffable scientific result is by definition impossi-
ble.) The sense of the woodland scene as a sacred place cannot always be
communicated to someone else. We can try to put it into words, but the
words might be incapable of conveying the real experience.

Finally, the results of science are always tentative results, subject to
revision in the light of new evidence or better ideas. Religious statements,
in contrast, are not generally intended to be tentative statements subject
to revision. Religion is concerned with knowing eternal truths; science
is concerned with discovering new and improved ways to understand
the world.
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§2. HISTORICAL CONFLICTS

For some people, the basic relationship between science and religion is
antipathy and conflict. Examples of this conflict are not hard to find. Co-
pernicus’ great work was banned, Galileo was tried by the Inquisition,
Giordano Bruno was burned at the stake, the use of lightning rods was
denounced as impious, Darwin’s work was ridiculed and attacked by An-
glican clergy, and even today Fundamentalists attempt to persuade
schools in the United States to rid the science curriculum of evolutionary
theory. A. D. White spent about 800 pages documenting in detail this
dismal record of religious interference with science (and that was only
through 1895). But was all this really necessary? I see no inherent conflict
between science and religion because the two have different purposes and
methods (as outlined in §1). If the discourse of religion is concerned with
transcendence and meaning while the discourse of science is concerned
with understanding the observed behavior of nature, how can there possi-
bly be a conflict? Well, considering the historical record, maybe the ques-
tion we should ask instead is this: How did it happen that so many con-
flicts occurred? Presumably, these conflicts occur when religion invades
the realm of discourse proper to science, or science invades the realm of
discourse proper to religion, or else there is some genuine overlap between
the two. Many of the most obvious cases involve religious authorities
making statements about nature that (in retrospect anyway) have no par-
ticular spiritual content and contradict the evidence of the senses. All of
the cases that White details (occurring in Christian Western Europe) fall
into this category. Less obvious and less talked about are the cases where
scientists overstep the limits of their fields and make statements that have
no real warrant in scientific evidence about the spiritual dimensions of
humanity. Examples of such statements are these: “The more the universe
seems comprehensible, the more it seems pointless” (made by a physicist);
“Man must . . . discover his total solitude, his fundamental isolation. He
must realize that . . . he lives on . . . a world that is deaf to his music, and
as indifferent to his hopes as it is to his sufferings or his crimes” (made
by a biochemist). Such statements, which are clearly religious in character,
are erroneously passed off as scientific deductions (Mary Midgley has
written particularly lucid work on this point).

The question remains: Is there some area of legitimate overlap between
science and religion wherein conflict (or cooperation) may occur? We’ll
take up this question at the end of the chapter. Meanwhile, let’s look at
two final points concerning science/religion conflicts. The first point is
this: Conflicts don’t involve abstractions such as “science” and “reli-
gion.” Conflicts involve people, scientists and religious authorities. As
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such, there are questions of political influence and power as well as the
involvement of other participants in the society (e.g., scholastic academ-
ics). There are many complications in the real cases that have occurred,
the details of which are best studied by historians and sociologists. It’s
worth keeping in mind, though, that philosophical conflicts occur in a
social context. The second point is that the Christian West had particu-
larly bad conflicts compared to other cultures. I think this happened for
two main reasons. One reason is that the churches adopted superfluous
views about nature (such as geocentrism) and incorporated these into the
fabric of their orthodoxies. In contrast, for a teaching such as Zen Bud-
dhism, most scientific questions are simply irrelevant, and so conflict in
this area is not possible. The other reason is that there were already secu-
lar elements in European culture at that time to which science and the
scientists could belong. In contrast, science in the Islamic world of the
twelfth century was integrated into a cultural milieu grounded in Islam,
which permeated all aspects of life; in other words, science could not
conflict with religion because science did not exist apart from religion.

§3. FAITH, EXPERIENCE, AND MEANING

Religion and science do have some characteristics in common, and look-
ing at these commonalities gives us a deeper understanding of their differ-
ences. Many simplistic accounts state that religion is based on faith while
science is based on experience. As we’ll see, however, both faith and expe-
rience are intrinsic to both religion and science, but in very different ways.
Meaning is also central to both religion and science, but once again the
sense of the word “meaning” is quite different in the two cases. The role
of faith in religions is well known, but in what sense does faith play a role
in the sciences? Isn’t science based on skepticism, the opposite of faith?
Concerning any individual results, claims, or theories, the answer to this
is yes. But in order to do science at all, scientists must have an underlying
faith that nature is subject to scientific understanding, that nature is in
some sense lawful, rational, and orderly (I only mean by this that nature
is not totally capricious; this is not a strong claim in any way). As the
chemist/philosopher Michael Polanyi has emphasized, scientists must also
have an implicit faith that the overall premises and methodologies of sci-
ence are valid. Religious faith is of a different sort, but religious faith
itself comes in several varieties: faith in the truth of particular dogmas or
scriptural writings; faith in the pronouncements of religious leaders or
authorities; or faith in the reality of a lived religious experience. Finally,
one must at least have faith in the integrity of one’s overall worldview,
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which might be grounded in religion. In this last case, we are getting close
to the kind of faith discussed above in connection with science.

What role does experience play in science and in religion? In science,
experience means experience through sensory perception (and its exten-
sion by instrumentation). This is essentially what we mean by empirical
observation. Religious experiences, on the other hand, are not primarily
sensory experiences (the senses may have some involvement, but ulti-
mately the experience is not one of sensory perception). Instead, they are
internal experiences. The revelatory gnosis of the Christian mystic; the
Enlightenment of the Zen master; the initiation at Eleusis; the moment
when the Sufi adept finally understands the hidden meaning of things; all
these are solitary and internal experiences that do not depend on the evi-
dence of the senses and cannot be communicated by words in the usual
fashion. For both of these reasons, such experiences play no role in the
discourse of science. Now, can we form some judgment as to whether
one or the other of these very different and incommensurable kinds of
experience is more valid or real than the other? This is obviously a matter
of great controversy, which I will refrain from entering. Instead, let me
quote at some length from two sources with opposite points of view. From
E. O. Wilson: “The enduring paradox of religion is that so much of its
substance is demonstrably false, yet it remains a driving force in all socie-
ties. . . . The individual is prepared by the sacred rituals for supreme effort
and self-sacrifice. Overwhelmed by shibboleths, special costumes, and the
sacred dancing and music so accurately keyed to his emotive centers, he
has a ‘religious experience.’ ” And from A. S. Eddington: “Are we, in
pursuing the mystical outlook, facing the hard facts of experience? Surely
we are. I think that those who would wish to take cognisance of nothing
but the measurements of the scientific world made by our sense-organs
are shirking one of the most immediate facts of experience, namely that
consciousness is not wholly, nor even primarily a device for receiving
sense-impressions.” There is no right answer on this issue. We all must
arrive at our own conclusions.

We turn now to the role of meaning in science and in religion. I pre-
viously wrote in §1 that meaning is the province of religion and has no
role in science, but I was using the word “meaning” in a particular way.
Bringing order and coherence to a set of otherwise unrelated facts and
observations certainly gives these facts and observations meaning. This is
one of the important things that science does, and in this limited sense
meaning is crucial to scientific thinking. However, meaning in the sense
of ultimate significance or metaphysical purpose is alien to scientific think-
ing; whereas this kind of meaning is relevant to (perhaps even crucial to)
religious thought. Consider as an example an epidemic in which many
thousands of people die. If we can identify a microorganism causing the
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disease and determine how it is spread, we have provided a scientific
meaning for the seemingly random patterns of death. But to ascertain the
spiritual meaning of these deaths, if there is any, requires a different mode
of thinking. Confusing these two different roles of meaning can cause
serious problems in the relationship between science and religion. To at-
tach great metaphysical significance to the “fact” that the earth is the
center of the universe by concluding that humanity is thus central to the
divine plan is a grave mistake. Why? Because the position of the earth is
an empirical question, while the position of humanity in the divine plan
is clearly a religious question. When the two were joined together in medi-
eval Europe, misunderstandings were caused that apparently still exist. It
turns out, of course, that the empirical answer to the empirical question
is that the earth is not the center of the universe. We now have people
making the naive assertion that because the earth is not central to the
universe, we can conclude that humanity is thus peripheral in some meta-
physical sense. This confusion has been widespread (Newtonian physics
was mechanistic, so God became a clockmaker). If there are any useful
connections between levels of meaning in science and in religion, they
must be made carefully, thoughtfully, and with circumspection.

§4. MUTUAL INTERESTS?

Now that we understand the important differences between science and
religion, we are in a position to ask these questions: Do they share any
common ground at all? Do science and religion have anything of interest
or value to say to each other? Or are they in fact mutually exclusive cate-
gories with no possibility of overlap? At least one tradition asserts that
science and religion have a meaningful overlap in the following sense: If
nature is the embodiment of some spiritual divine presence, then the study
of nature (i.e., science) is a way to better know this divine presence. This
seems to have been the position of Galileo, for example, who writes in
his letter to the Grand Duchess Christina that “God reveals Himself in
no smaller measure in the phenomena of nature than in the sacred words
of Scripture.” The study of nature as a means of spiritual enlightenment
is a tradition going at least as far back as Pythagoras; it was prominent
in the thinking of Roger Bacon, Isaac Newton, and Albert Einstein; and
it’s still held by a number of scientists alive today.

A counterargument to this tradition might be that there are scientists
who are atheists, but I think that this misses the point. After all, a Chris-
tian scientist and a Hindu scientist might both study science in the same
way (as would an atheist scientist), and they both might feel that their
study of science deepened their spiritual comprehension of the world
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(they’d part company with the atheist here). But each one could arrive at
a different spiritual understanding of the science they shared. This differ-
ence is entirely legitimate, based on the premises we’ve discussed. Science
cannot dictate religious conviction in any public and/or necessary way,
but science can certainly inform the religious convictions of individuals
on a personal level. The atheist, of course, is also free to reject on a per-
sonal level any such religiously informed understanding of science. But
nobody can claim that this religiously informed understanding of science
is wrong in any fundamental way, as long as the science itself is valid. The
fact that science does not require any nonmaterial entities doesn’t logi-
cally exclude their existence. It is impossible to prove that God exists
based on scientific grounds. (I have ignored the voluminous and pointless
literature on this question; I hope what I did write makes clear why the
statement is correct.) For identical reasons, it is equally impossible to
prove that God doesn’t exist based on scientific grounds. There is a fa-
mous story that when Napoleon asked Laplace why he left God out of
his book Celestial Mechanics, Laplace replied “I had no need of that hy-
pothesis.” Laplace was correct, of course, but that doesn’t tell us anything
about God. It only tells us something about celestial mechanics. In other
words, science can get along quite well without religion; but this fact does
not imply that science has somehow invalidated religion, nor does it imply
that science and religion are incompatible.

An interesting modern development is the attempt to interpret the reli-
gious significance of quantum mechanics. A number of books have been
written on this theme, perhaps the most prominent being the one by
F. Capra. The basic idea is that quantum mechanics can be interpreted as
indicating that all parts of nature are fundamentally interconnected, an
idea that is similar to the teachings of several Eastern religions. While this
comparison is certainly of some interest, we should keep in mind that the
meaning of interconnectedness may not be identical in the scientific and
religious contexts. Moreover, it is somewhat dangerous (as I’ve already
discussed) to tie one’s religious truths to scientific theories, because these
theories are liable to change as our knowledge and understanding prog-
ress. The teachings of Eastern religions, in contrast, have been stable for
thousands of years. Other attempts to amalgamate science and religion
need to be considered in the same manner. Perhaps the most well known
of these is the work of Teilhard de Chardin, blending together ideas of
evolution and Christian theology. Such systems of thought can succeed in
providing personal meaning to individuals, but extreme care is called for
to avoid violating the legitimate premises of either science on the one hand
or religion on the other.

Turning to a different topic, values and ethics certainly constitute an
area where religion and science intersect. This topic, however, is so im-
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portant that I have treated it separately in a chapter of its own (chapter
11). A number of specific proposals for dialogue between science and
religion have been made in the literature, but I won’t deal with them here
in any detail. Instead, I will suggest one last broad area where science and
religion can meet: the question of what it means to be human. This ques-
tion is asked both by science and by religion, each in its own way. We
have, unavoidably, an area of mutual interest. It remains to be seen
whether it’s an area of incompatibility. I suggest that science and religion
need not be incompatible on this issue if neither transgresses its appro-
priate province. Whether science and religion might even enrich each
other on the issue of what it means to be human also remains an open
question.
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Chapter 10

MORE PRACTICAL QUESTIONS: SCIENCE

AND SOCIETY

Science, by itself, provides no panacea for individual, social,
and economic ills. It can be effective in the national welfare

only as a member of a team. . . . But without scientific
progress no amount of achievement in other directions can

insure our health, prosperity, and security.
(Vannevar Bush)

CENTURIES AGO, Francis Bacon eloquently expressed the idea
that science would contribute many practical benefits to society
in general. Bacon hoped that society would in turn devote re-

sources to science so as to hasten scientific progress. I believe it’s fair to
say that Bacon’s vision has come to pass, and this chapter is a brief look
at the current situation. Science has brought problems as well as benefits
to society, but I don’t dwell much on the problems here because they
are dealt with more fully in chapter 11. This chapter simply presents an
overview of some basic topics dealing with how science relates to the
broader society.

§1. TECHNOLOGY AND SCIENCE

The relationship of science to technology is unclear to many people. Even
scholars who study this relationship don’t always agree with each other.
There are a number of points to discuss, however, on which a broad con-
sensus has formed. One common misconception is simply to equate sci-
ence with technology, to assume they are both the same. All of the techno-
logical gadgets and wizardry we are so accustomed to seeing (spaceflight,
ultrasound imaging, computerized special effects on film, microwave
ovens, laser eye surgery, and so on), all these things are taken to be science.
But these things are technology, which is not the same as science. Science
is a way of understanding the world (including both the methods used to
acquire knowledge, and also the facts and theories that make up our cur-
rent worldview). Technology, on the other hand, is a way of controlling
the world, a set of tools that we can use to make things happen as we
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wish. So science and technology can sometimes be separate and unrelated.
For example, many important improvements were made to the steam en-
gine without any real scientific understanding of those improvements. The
classification system for plants and animals was devised by Linnaeus with-
out either using or influencing any technology. But I think that these exam-
ples are probably the exceptions and not the rule.

More typically, science and technology are highly intertwined. Ad-
vances in scientific understanding enable the development of new techno-
logies. An example is the discovery of electromagnetic induction by Mi-
chael Faraday, which ultimately led to the development of the huge
dynamos that supply our electrical power. New technologies have also
led to scientific advances. The first telescopes were discovered by accident
and improved by trial and error (i.e., they were not applications of optical
knowledge, which did not yet exist); these telescopes played a pivotal role
in the rise of modern science (see chapter 5). Over the course of time, the
relationship between science and technology has become steadily more
important. In modern times, this relationship is vital. The entire micro-
electronics revolution, which has so powerfully affected our lives, is based
on a fundamental understanding of the physics of semiconductor crystals
(see chapter 1). Lasers are now central to such widely varying applications
as compact disc players and retina surgery; the invention of the laser
evolved directly from studies of atomic and molecular energy levels. But
both of these examples also show that the relationship between science
and technology is a two-way street. Computers, which were first enabled
by the advance of science, are now indispensable in the laboratory and
are used to make calculations that were previously impossible. Lasers
have opened new frontiers of precision and sensitivity in the study of
atomic and molecular energy levels (among many other areas), the study
of which had once led to the beginning of the laser itself. Science and
technology depend on each other for their continued vitality.

Technology is sometimes referred to as applied science, but this is not
quite right. Although modern technology greatly depends on the results
of modern science, there is also a strong element of craft knowledge and
lore (tricks of the trade) that is needed. This blending of scientific under-
standing with technical know-how is what most characterizes technology
in the modern era (although various factions sometimes stress one aspect
or the other). Applied science is itself a term that is used in several differ-
ent ways. The term might be used to describe the employment of scientific
results to achieve some end (example: using total internal reflection to
transmit light through a thin glass fiber). Alternatively, the term might be
used to describe the scientific study of some process or phenomenon of
practical importance (example: studying the optical properties of glasses
in order to make more effective glass fibers). Finally, this same term can
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also be used to describe the development of innovative engineering tech-
niques based on current science (example: creating novel glass processing
methods to manufacture the improved fibers). All these different shades of
meaning for applied science are legitimate and contribute to technological
progress (to fiber optics communication technology, in this example). It’s
often important, however, to bear in mind which shade of meaning is
being used in any particular discussion.

We are tempted to think of research and development as a simple linear
chain of discrete activities, with each link leading to the next one: pure
science—applied science—engineering—technology. But all of these activ-
ities overlap all of the others in complex ways, so our simple discrete
chain is not a very realistic picture. Why does it matter very much how
we think about these things? One reason it matters is because science
itself affects society only marginally, but science-based technology affects
society in extremely powerful ways. It has been credited with major bless-
ings (better health, material prosperity, etc.) and equally important curses
(environmental problems, more deadly munitions, etc.). Technology is a
key link connecting science and society. Society, through public policy
decisions, is responsible for the uses to which technology is put, and also
is responsible for the allocation of resources to our research and develop-
ment enterprise.

§2. PUBLIC FUNDING OF SCIENCE

The prophet of public funding for science was Francis Bacon. In his fic-
tional work New Atlantis written in 1624, Bacon envisioned a utopian
society that supported systematic scientific research to unlock the secrets
of nature and systematic applications of this knowledge to produce practi-
cal benefits. Although Bacon’s work may have influenced the founding of
the Royal Society, the King only gave his good name to the endeavor; he
did not give any money. Bacon was far ahead of his time. For the next
three centuries, scientific research was done on low budgets. Occasional
wealthy patrons provided support, a few wealthy amateur scientists sup-
ported themselves, universities contributed a little bit, and a few private
foundations funded research on a small scale. Government funding was
mostly limited to some practical research in fields like agriculture (with a
few exceptions, like the Smithsonian Institution). As technology became
more commercially important, companies like Bell Telephone and Gen-
eral Electric founded industrial laboratories to perform basic research in
areas of interest to them.

So the situation remained until World War II. The pressing needs of
the war required quick results in areas such as the development of radar,
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antibiotics, and the atom bomb. Given the emergency situation, money
was no object. Government officials recognized the valuable contribu-
tions of science during the war, and Franklin Roosevelt asked the head of
the scientific war effort, Vannevar Bush, to write a report on the role of
government in postwar science. This influential report, entitled Endless
Horizons, recommended large scale funding of scientific research by the
government and led to the creation of the National Science Foundation.
Since that time, the federal government has dominated the funding of
science. I’m not as familiar with the particular historical circumstances in
the other industrialized countries of the world, but all of them have de-
voted significant amounts of money to the support of science in the post-
war period. While the motivation of a scientist is often simply curiosity
and a desire to understand nature, the motivation of society to fund sci-
ence (through its government) is generally more practical. Of course many
citizens are fascinated by the new results of scientific research, but I doubt
that this alone would justify the amount of tax money spent on research
and development. Economic prosperity, military security, and better
health are more often cited as reasons for societal support of science.

In the decades following World War II, the arms race and the space
program rivalry resulting from the Cold War served to stimulate govern-
mental funding of science. The booming economic climate of this period
also stimulated the growth of scientific funding (leading to rapid scientific
progress). The more stagnant economic times that followed caused a
slowdown of this growth and a renewed debate over the justification for
science funding. Several large multibillion dollar scientific projects were
all started around the same time, unfortunately on the verge of a reces-
sion. One of these projects, the superconducting supercollider, was can-
celled while still under construction (the first time anything like that had
ever happened). The countries of Europe also found it more difficult to
keep up funding for science, and the situation was worst of all in the
remnants of the former Soviet Union. Finally, the end of the Cold War
removed yet another rationale for the support of research.

The success of Japan in fostering the commercial development of tech-
nologies had encouraged a new element in the debate over public funding
of science in the United States. There seemed (in the United States) to be
some impediment to the use of basic scientific research results in commer-
cial applications. The Japanese government took a more active role in
promoting such technology transfer, and voices were raised in favor of
adopting a similar policy in the United States. Similarly, a shift in emphasis
away from basic scientific research in favor of applied science and engi-
neering was advocated. This position was rather controversial, however,
finding supporters and detractors in both the scientific and the political
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communities. Meanwhile, the amount of basic research done in the major
industrial laboratories steadily decreased. As I write this, the situation
remains unsettled. Funding for pure scientific research has remained at
roughly the same level for about a decade or so. Government spending is
highly impacted by the stringent fiscal climate imposed by simultaneous
tax cutting and budget balancing. Funding for scientific research seems
to enjoy support in both the general public and the political establish-
ment, but unresolved issues remain concerning the proper level of such
funding and how it should be allocated. One positive outcome of the
science funding controversies is that scientists are now making greater
efforts to explain the results of their work and its benefits to society.

§3. SCIENCE AS A SOCIAL INSTITUTION

About ten million people in the United States have degrees in a science or
engineering field, about a half-million with doctoral degrees. In the natu-
ral sciences, these numbers are roughly three million total and a quarter-
million doctoral degrees. Although we have a long way to go before the
gender and ethnic makeup of people in the sciences mirrors that in the
general population, we have made some progress in the last few decades.
The common stereotype of the scientist as an old (dull) white male is
contradicted by the wide variety of people who go into the sciences. Nor
do people who become scientists have any single type of personality. Intro-
verts, extroverts, competitive people, cooperative people, nice people, and
obnoxious people all sometimes become scientists. Curiosity and flexibil-
ity are probably more common traits in scientists than in the general pub-
lic, but even these traits vary widely from one scientist to another. And
just as there is no single personality type, there is also no single monolithic
culture in the sciences. Some subfields of science foster a culture that is
highly competitive and hierarchical, while others are much less so.

A common element in all forms of science, considered as a social activ-
ity, is communication. A discovery or theory doesn’t become incorporated
into science until it’s communicated to the scientific world. The primary
means of communication in the sciences are journals and meetings; books
tend to play a larger role in the later stages of the process as knowledge
becomes more consolidated, while electronic mail is becoming more im-
portant for the instantaneous transmission of information about work in
progress. Scientific meetings are a time-honored tradition, bringing scien-
tists together to exchange insights and information through formal pre-
sentations and informal discussions. Scientific journals are the primary
medium for the formal announcement of most results. Journals and meet-
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ings are often sponsored by scientific professional associations, another
tradition that can trace its roots back to the time of the Accademia dei
Lincei (Italy, 1600), Royal Society (England, 1662), and Academie des
Sciences (France, 1666). Scientific journals are a very specialized commu-
nications medium, designed for experts to present technical results to
other experts. No one reads these journals for their entertainment value.
Readers of scientific journals do, however, want some assurance con-
cerning the scientific value of what they read; time spent studying sloppy
work or half-baked ideas is time wasted. To assure the quality of the
work they publish, journals use the charming old custom of peer review
(peer review is also used by funding agencies to choose which research
proposals are funded). Any article submitted for publication is first
sent to experts in the field for critical scrutiny. These reviewers, who re-
main anonymous, can demand revisions or even bar publication. Only
work that is approved by these referees is published in scientific journals.
Not surprisingly, peer review is a bit controversial. Very innovative ideas
and unexpected results tend to get selectively filtered out, making peer
review a force for conservatism in science. Since scientists are humans,
there is some risk of cronyism and deference to reputations. Sloppy refer-
ees do occasionally overlook mistakes. Despite these flaws, peer review
is solidly entrenched in the sciences. The system is far from perfect, but
basically it does work, and most scientists consider it far better than the
alternatives.

Like any human institution, science is affected by the motivations and
foibles of its practitioners. One motivation of scientists, of course, is sim-
ply curiosity and a desire to find out more about how nature works. But
scientists are also motivated by a desire for rewards, as most people are.
A difference between science and many other professions is that money
is only secondarily important as a reward; the main desideratum of scien-
tists is more often recognition and fame. A problem can arise when the
desire for rewards (or fear of failure) overcomes honesty and a scientist
engages in fraud. Despite a number of well-publicized cases, fraud is quite
infrequent in the sciences (the social penalty is very high). Another exam-
ple of human failings creeping into the rationalist paradise of science is
the social and political negotiations that occur. For example, a youthful
scientist might back an older colleague who has more influence and au-
thority in the social system rather than a junior colleague who has more
convincing evidence. Sociologists of science have recently taken an inter-
est in this kind of activity and tried to document it. Their studies have
yielded some interesting insights, but the degree to which these social in-
teractions actually affect scientific results has probably been exaggerated
(see chapter 15). On the other hand, social factors probably do influence



M O R E P R AC T I C A L Q U E S T I O N S 139

greatly the success or failure of some individual scientists, regardless of
the quality of their work.

The community of scientists interacts with the broader society on a
variety of levels. We have already discussed technology, and the profound
impact that science has on society through its applications. We’ve also
discussed the resources that society provides to the scientific enterprise.
In chapter 11, we see that various questions concerning values and ethics
link science with the rest of society. Yet another important link between
science and society is the educational undertaking; one responsibility of
scientists is to ensure that the citizenry has an appropriate understanding
of science. The legal system is also an area where science and society
intersect; for example, DNA evidence in criminal trials and the use of
epidemiology in toxic substance liability suits. Many aspects of the sci-
ence/society interface (technology, education, law, values) are relevant to
public policy controversies that have an important scientific dimension.
Examples of such controversies are legion: acid rain, nuclear disarma-
ment, genetic engineering, biodiversity, radioactive waste storage, ozone
layer depletion, environmental pollution from pesticides, and so on. In
the last section, we’ll look more closely at two of these controversies,
global warming and the health effects of power lines.

§4. PUBLIC POLICY CONTROVERSIES

Global Warming

The basic science underlying the global warming controversy involves a
process known as the greenhouse effect. The sun’s rays strike the earth
and warm it. As the temperature of the earth rises, the earth also radiates
away some of its heat (in the form of infrared rays); the higher the temper-
ature, the more infrared radiation. The balance between heating (due to
the incoming sunlight) and cooling (due to the outgoing infrared radia-
tion) results in some equilibrium temperature for the earth. If we had no
atmosphere, more infrared rays would escape into space and the earth’s
temperature would be much colder. Instead, certain gases in the atmo-
sphere (such as water vapor and carbon dioxide) block some of the out-
going infrared rays, trapping their heat energy and further warming
the earth. These gases operate in much the same way as the glass in a
greenhouse, letting in the light (with its energy) but not letting out the
infrared; hence the name, greenhouse effect. The controversy concerns
the effects of increased carbon dioxide in the atmosphere due to the burn-
ing of fossil fuels. Since carbon dioxide is one of the greenhouse gases,
increasing its concentration has the effect of trapping more heat. The
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worry is that this might cause a rise in the average global temperature of
the earth; no one knows the effect of such a global temperature rise on
the world’s climate patterns. If the American midwest became prone to
drought or the antarctic ice melted significantly, the results might be disas-
trous. There is no controversy over the fact that CO2 levels in the atmo-
sphere are rising; data for this increase is very clear. The controversy is
over what effect, if any, these CO2 levels will have on the global climate.
The related political controversy is whether to legislate limits on the
amount of CO2 emissions allowed.

The scientific basis for the greenhouse effect is clear enough, but there
are two good reasons for the continuing scientific controversy. One reason
is that the atmosphere is a very complicated system, which makes it diffi-
cult for us to understand all of the processes well and to make accurate
predictions. The other reason is that we have poor data on the mean
global temperature and its history, which makes it difficult to judge
whether global warming has already occurred or not. In addition, the
political, economic, and ideological dimensions of the issue all contribute
further to the controversy in important ways. Let’s first look at the com-
plexity of the atmospheric processes in order to find out why it’s not
obvious whether we’ll have global warming. If we try to model the effects
of increasing CO2 on temperature, we must include several important
feedback processes in our model (see chapters 6 and 21). For example,
increasing the air temperature will increase the humidity, and water vapor
is also a greenhouse gas. In this case we have a positive feedback loop,
which will make the problem worse. However, increasing the water vapor
in the air will also tend to increase the cloud cover, and clouds reflect back
the incoming sunlight. This reflected sunlight never reaches the ground to
warm it. So in this case we have a negative feedback loop, which tends to
restrain global warming. A number of these feedback mechanisms are
at work (involving snow cover, ocean temperatures, and even the world
ecosystem), although the clouds are probably the biggest feedback effect
that we don’t understand well. In order to make an accurate prediction
of the temperature change wrought by an increase in CO2, our model
must include these feedback mechanisms properly.

Climate researchers use extremely sophisticated models of atmospheric
dynamics. These general circulation models, as they are called, include
the effects of changing latitude and longitude, changes with altitude, con-
vection of heat due to wind circulation patterns, and a variety of feedback
mechanisms. The variables calculated in these models include tempera-
ture, barometric pressure, and humidity. As you can see, the complexity
of climate models is astounding. They need to be “run” for long periods
of time on supercomputers, especially if we want projections for decades
into the future. This very complexity is what makes it difficult to assess
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the accuracy of the projections produced by these models. How can we
know whether we’ve left some important piece of the problem out of our
model, significantly altering the final result? General circulation models
have been employed to find out how including an increased concentration
of carbon dioxide in the atmosphere affects the mean global temperature
over a time period of about fifty years. Different models, using various
approximations and assumptions for the dynamics of the atmosphere,
naturally yield somewhat different results for global warming. Climate
researchers, under the auspices of the world’s governments, have con-
vened meetings to consider all of the available results and arrive at a con-
sensus on the most reliable overall projection. The consensus is that a
doubling of the CO2 level will result in a global temperature rise of several
centigrade degrees, but the uncertainty (see chapter 8) of this projection
is almost as large as the rise itself. Attempts have been made to check the
accuracy of the climate models by using them to calculate the greenhouse
gas warming for the last fifty years and compare the calculation to mea-
sured temperatures. Unfortunately, this process is not as easy as it sounds.
We need the average temperature over the entire world, but very few good
measurements exist for the nonindustrialized areas and the oceans; in
other words, we have little data for most of the world! Where we do have
measurements, local changes (warming due to urbanization, for example)
tend to dominate. On the global level, short-term changes (such as world-
wide cooling caused by volcanic eruption of particulates blocking the sun-
light) further complicate the situation, thwarting our attempts to make
meaningful comparisons. In the end, we have no way of knowing whether
global warming has already occurred or not, based on the recent tempera-
ture history we have available.

Since the historical temperature record doesn’t give us an unambiguous
answer, and the results of climate models can’t tell us with absolute cer-
tainty what will happen, what can we conclude? Although this question
is a scientific problem, it also has much broader implications. What public
policy options should be adopted concerning fossil fuel burning? Eco-
nomic, political, and ideological considerations enter here. If we try to
stay as close to scientific considerations as possible in making our assess-
ment, we need to think in terms of probabilities (see chapter 7). The uncer-
tainties of the climate models prevent us from knowing exactly what the
effect of increased greenhouse gases will be; the consensus which emerges
from looking at all of the modelling work, however, suggests that nonneg-
ligible warming is reasonably probable. This conclusion is the best that
science can do for the present, and society needs to make decisions based
on this probability (which is meaningful) rather than on certainties that
we can’t have.
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Power Lines and Public Health

In the late 1970s, reports began to surface linking various health problems
to low-frequency electromagnetic fields. The AC electrical power we use
all the time (from the wall socket) has a frequency of 60 cycles per second,
which is low. In other words, we are exposed almost continuously to this
kind of weak low-frequency field. If the fields due to electrical power lines
have an adverse effect on our health, then this is a major issue. Since the
utility industry (and by extension the rest of our economy) has billions of
dollars invested, and since we depend so greatly on our electrical technol-
ogy, the issue is certain to generate controversy. The basis for the idea
that power line fields are dangerous comes from epidemiological studies.
Epidemiology tries to trace the cause of a disease by finding correlations
between the incidence of the disease and some other factor (which is taken
to be the cause). For example, if all the people who got food poisoning
during an epidemic had eaten the crab cakes at a certain restaurant, we
can probably conclude that these crab cakes were responsible. But epide-
miological work is rarely this easy or unambiguous in real life. The corre-
lations are often quite weak, and detailed statistical analysis is needed to
find out whether such weak correlations are telling us something real or
are just small chance happenings. To use the standard jargon, we want to
know whether the correlations are statistically significant.

The early studies, looking for correlations between childhood leukemia
and proximity to electrical transformers, were suggestive but not conclu-
sive. These results stimulated further research, and a number of studies
were undertaken. Some of the studies showed correlations and some did
not, resulting in a confused picture for a while. During this unsettled pe-
riod in the epidemiological research, the media unfortunately presented a
somewhat distorted picture of the situation (including an inflammatory
series of articles by P. Brodeur). Meanwhile, the epidemiology work con-
tinued, including a number of studies looking at workers with high occu-
pational exposures to low-frequency fields. One major problem with all
of these studies became apparent as work progressed. Very few good mea-
sures of the “dose” were possible in any of this work, especially compared
to a control group reflecting the general population. No one really knew
what the field strengths or the durations of exposure were for either the
studied groups or the controls. Assumptions made about exposure based
on occupation or on proximity to a high-voltage power line often turned
out to be questionable.

Another problem was the lack of a plausible model for how these fields
might cause cancer or other diseases. As we’ve seen (chapter 7), correla-
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tions alone don’t imply cause, and we would like to know what the mech-
anism is (or could be) in a case like this. The relationship between power
line fields and health effects is particularly puzzling because these fields
are very weak inside the body. The naturally occurring fields produced by
our own physiological functions are much bigger (typical values for the
field across a cell membrane, for example, are over a million times larger
than the fields induced across such a membrane by external sources like
high voltage lines). Even the weak random changes in fields to which our
cells are constantly exposed (due to thermal noise, for example) turn out
to be larger (by about a thousand times) than the comparable fields due
to power lines. Some laboratory studies of the effects of low-frequency
electromagnetic fields have been done, mostly using in vitro cell cultures.
The dose can be varied easily in these experiments, and comparisons made
to a field-free control sample. Some interesting effects have been observed,
but usually at very high field strengths. At the low fields comparable to
the situation we’re discussing, only a few studies have resulted in any
observable effects. Those effects tend to be only marginally above thresh-
old and difficult to reproduce. In any event, none of the claimed effects
are able to account for any adverse health consequences (such as cancer)
due to power lines.

We now have over a hundred epidemiological studies on this issue.
Taken collectively, these studies show virtually no adverse health impact
of exposure to low-frequency electromagnetic fields. A few individual
studies have indicated weak effects, which has kept the issue alive as a
public controversy. But these effects are rarely replicated in later studies;
apparently, they are just random shifts away from the average. We actu-
ally expect that random variations of this sort will happen (like getting
five heads and one tail when flipping a coin six times). Our reliable source
of information is the entire set of studies taken as a whole, which doesn’t
demonstrate any problem. What can we conclude from all this? Once
again, we need to think in terms of probabilities. We can’t have an abso-
lute certainty that the low-frequency fields cause no harm at all to our
health. I also can’t be absolutely certain that I won’t be struck down by
a falling meteorite when I leave my house tomorrow. But neither of these
propositions is very probable. Given the feeble epidemiological evidence,
negative laboratory studies, and lack of any plausible mechanism, the
scientific consensus is that power line fields are not dangerous to our
health. Not every single scientist agrees with this consensus view, and the
public controversy is surely far from settled. But for the vast majority of
scientists, the scientific controversy is in fact virtually settled. The proposi-
tion that low-frequency fields pose a public health threat is so improbable
that we can consider the issue moot.
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Chapter 11

DIFFICULT AND IMPORTANT QUESTIONS:

SCIENCE, VALUES, AND ETHICS

Our zealous endeavor to create a “value-free” science—
which seems so essential a requirement of objective scientific

method—has meant simply that the values dominating our
thinking have retired to the arena of our underlying presuppo-

sitions, where they can maintain themselves against critical
appraisal by being so completely taken for granted that no

one’s questioning attention is focused upon them.
(E. A. Burtt)

We [scientists] produce the tools. We stop there. It is for you,
the rest of the world, the politicians, to say how the tools are

used. The tools may be used for purposes which most of us
would regard as bad. If so, we are sorry. But as scientists,

that is no concern of ours. This is the doctrine of the ethical
neutrality of science. I can’t accept it for an instant.

(C. P. Snow)

QUESTIONS concerning the relationship of values and ethics to
science are extremely important because science affects humans
so powerfully. Science affects people in several ways, both di-
rectly and indirectly. Some examples of the influence of science

are these: the profound changes in worldview that have accompanied
major scientific revolutions; the effect of movements like behaviorism and
sociobiology on humanity’s self-image; and the indirect effects of science
resulting from the technologies enabled by scientific discoveries. Both the
direct effects of science and its indirect effects have implications in the
realm of values and ethics. The relationship between science and values
is not simple, despite the many simple statements that are made. One such
statement (often heard) is that science and values are unrelated because
science is objective and value-free. In contrast, we sometimes hear that
the study of science is evil because science is soulless and mechanistic
(and/or it produces destructive and powerful technologies). At the oppo-
site pole, other writers maintain that the study of science is an unmitigated
good because science leads to the truth and produces material prosperity.
We’ll subject all of these simple claims to critical scrutiny in this chapter.
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§1. THE INHERENT VALUES OF SCIENCE

The community of scientists shares, as a group, certain values. I am not
talking about subtle unexamined biases here, just simple virtues like hon-
esty and curiosity. Now honesty is usually considered a virtue by almost
everyone, not just in the sciences. Curiosity, however, is not necessarily
considered a virtue by all groups in our culture. Both of these values (as
well as the others we’ll discuss) are particularly highly regarded in the
sciences. Let’s consider some of these scientific values and their implica-
tions in more detail.

Free Flow of Information

The scientific community is in general opposed to secrecy and isolation.
Scientific progress depends on the free and unimpeded flow of informa-
tion from one scientist to another. If a scientist doesn’t publish her results,
that is, share these results with the wider community, then the results
cannot contribute to a progressively more refined understanding of na-
ture. A commitment to open communication of results is one of the bed-
rock values of science. Yet, scientists working in the military and in indus-
try often need to keep scientific information secret. Their values as
scientists are in conflict with their values as members of another societal
institution. Each individual scientist must come to terms with this conflict,
and the larger community must resolve issues as they arise. A famous
example of this conflict occurred during the Manhattan Project (the effort
to develop an atomic bomb), when General Groves (the military project
director) tried to compartmentalize the knowledge of different groups of
scientists. The scientists themselves were determined to share their knowl-
edge with each other. Strife over this issue also flared up in the early 1980s,
when the executive branch of the government tried (unsuccessfully) to
widen the scope of scientific work which should be classified secret and
remain unpublished.

Honesty

Obviously, truthfulness is held to be a virtue quite generally, not just in
the sciences. But honesty does have a special place as a core value in the
sciences, which is not always typical of other human affairs. We are not
always shocked when politicians, lawyers, and businesspeople tell lies.
Dishonesty in science, however, is still greeted by some outrage, and
rightly so. The reason is not that scientists are considered more virtuous
than other professionals, but because honesty as a virtue is more im-
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portant in doing science. You can engage in a real estate transaction or
make a political deal without assuming that the other party is telling the
truth; you can’t do science, however, without assuming that the other
people engaged in the same work are giving you honest information.
There is certainly some fraud occurring in science, as evidenced by a num-
ber of well-publicized cases. There is also a disturbing trend for some
scientists in a few disciplines to be considered “experts” and thereby qual-
ify for large payments in legal proceedings (which can be a corrupting
influence). Fortunately, these things are still a very small part of the entire
scientific enterprise. Even so, they are a matter of grave concern in the
scientific community. Why? Precisely because honesty is considered such
an important scientific value.

Curiosity

Curiosity, in this context, is the desire to know more and to better under-
stand nature. In other words, scientists always consider learning more
about nature to be a positive good. Such curiosity is not only a part of
the personality structure of most scientists, but it’s also taken to be one
of the values of the scientific community as a whole. Unlike honesty, curi-
osity is not always considered a virtue by all members of our society.
Novel ways of thinking sometimes contradict traditional understandings.
Certain religious groups find curiosity a threat to their dogmatic beliefs.
One of the staples of science fiction is the scientist who seeks knowledge
that humans aren’t meant to know. And, of course, there is the adage,
curiosity killed the cat. Although curiosity is one of the core values of
science, individual scientists might have a conflict between this value and
the other values they hold. As a clear and simple example, consider the
conflict between my curiosity about how much pain a human can with-
stand and my ethical revulsion over an experiment to find out. A more
subtle and difficult example is the following: Suppose a line of investiga-
tion driven by curiosity (and therefore good to perform) gives us knowl-
edge that leads to a new technology we know is very dangerous and/or
harmful. Should we undertake this investigation?

Open-mindedness

A scientific result or idea must ultimately be based on evidence, that is,
observation and experiment. If accumulating evidence contradicts one of
our beliefs, no matter how strongly held, then we must give up the belief.
This willingness to change your mind based on evidence is also one of the
basic values of science. Of course, there are stubborn scientists who are
hard to convince; scientists are humans. It’s fair to say, however, that
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anyone who doesn’t share this value of open-minded willingness to alter
a belief in response to evidence is not a scientist. Once again, not everyone
in our culture shares this value. Generally speaking, the people who don’t
like curiosity are also not thrilled by open-mindedness. Also, politicians
who change their positions based on evidence are sometimes accused of
being weak and vacillating (waffling).

Values Employed in Theory Choice

In determining whether one theory is better than another, scientists em-
ploy criteria that, from a philosophical point of view, can be considered
as values. For example, we generally prefer theories that have greater ac-
curacy, better consistency with other theories, a broader scope of applica-
tion, a higher degree of simplicity, and are more likely to lead to progress.
While these things are values (strictly speaking), they are not really in the
same category as the rest of the subject matter in this chapter. Criteria for
theory selection are discussed more extensively in chapter 14.

Value-free Science?

You often hear or read the statement that science is objective and/or value-
free, but the meaning of this statement isn’t always clear. If the statement
refers to the actual content of science (e.g., experimental and theoretical
results), then the statement is problematic. Arguments over this issue are
sophisticated and difficult; fortunately, we don’t need to deal with these
arguments here because they are unrelated to the present issues of interest
(see chapter 15). If the statement “science is value-free” refers to the over-
all context within which science is done, however, then this statement is
utter nonsense. To the extent that science is the activity engaged in by
scientists, then clearly science is tied to a set of values, namely, the shared
values of the scientific community (which have been the main subject mat-
ter of this section).

§2. THE IMPACT OF SCIENCE ON VALUES

We have focused our attention so far on the shared values of scientists,
but this is only a small part of the story. Scientific results often lead to
new technologies, profoundly affecting human society in ways that can
be either useful or destructive. In this way, science becomes entangled in
questions of values and ethics that lie far outside the original scope of
scientific values.
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For example, questions about the behavior of atomic nuclei, which
were posed and answered by physicists many years ago, simply involved
curiosity about the workings of nature. An unexpected result of the
knowledge gained about nuclei was the development of the atomic bomb,
a weapon of mass destruction. Similarly, studies of how organisms trans-
mit inherited characteristics, motivated by scientific curiosity, have re-
sulted in the technology of genetic engineering with its accompanying
ethical dilemmas. These examples clearly illustrate how seemingly value-
free scientific issues quickly become value-laden when the science bears
technological fruit. Even in the absence of new technologies, new science
can sometimes have unforeseen effects on cultural issues well beyond the
scope of the science itself. Increasing knowledge alone can affect the way
we think about our values. Let’s explore some of these issues (concerning
both technology and science) in more depth.

New Technologies

Many of the important issues can be illustrated by looking at a specific
case: molecular biology and genetics. Rather than looking at future sce-
narios of human clones, let’s consider the implications of some procedures
that are present-day realities. A number of diseases are inheritable, such
as Huntington’s disease, phenylketonuria, and sickle cell anemia. People
with family histories of such genetic diseases are obviously at higher risk
for having them. Until recently, however, there was no way to know
whether an at-risk individual actually had the condition until the onset
of symptoms (which may occur late in life, as in Huntington’s disease for
example). Scientific advances in our knowledge of genetics now allow us
to identify particular genes (or groups of genes) as being responsible for
some of these diseases, so we now have the technological ability to tell
someone whether or not a condition exists long before any symptoms
become evident. Is this a good thing? The ability to determine whether an
individual has a genetic disease opens up a range of ethical dilemmas.
Unless we have a treatment for the condition, the person might well prefer
not knowing. If a doctor knows, is it ethical to withhold the information
from the person (or, for that matter, to not withhold it)? If an insurance
company finds out, it might refuse to issue health or life insurance; how
should society handle that problem? If the person is a minor, who should
determine whether a test is performed, the person or the parents? If the
test can be performed prenatally (which is often the case), the issues be-
come even more complex due to the possibility of abortion if the genetic
condition is detected. Many examples of this sort can be found in the
biomedical field. New techniques, for example, now allow us to prolong
life far longer than ever before. Few people would argue that this is not
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good, but even this generally positive outcome of scientific progress opens
up some difficult questions. At what point is it proper to allow a suffering
and terminally ill person to die? How much of society’s scarce resources
should be used for the expensive process of keeping very old and very ill
people alive, as opposed to improving health care for babies and young
children? The issues involved in such questions go far beyond the science
and technology that provide the new techniques.

Biomedical applications are not the only technologies that raise issues
of values and ethics. In chemistry, for example, the technological goal is
often to produce some useful new substance. These substances can be
powerful agents to benefit society, but they can also do unintended harm.
Chemists have created new pesticides and fertilizers, allowing highly im-
proved agricultural yields. Feeding more people is certainly good. The
gains have been accompanied by serious side effects, however, such as
environmental pollution and toxic effects on humans and wildlife.
Weighing the positive and negative effects on humanity in a case like this
depends at least in part on our values as well as our scientific knowledge.

The application of science to military technology is also an area rife
with ethical questions. Although there are many examples of military ap-
plications, perhaps the most famous is the development of the atomic
bomb (largely by physicists). The invention of nuclear weapons, with their
unprecedented destructive capability, led many scientists in the postwar
era to consider the ethical dimensions of scientific work more seriously
than previous generations had done. The fundamental scientific work
done earlier in the century to understand the nature of radioactivity and
nuclear forces gave no hint of these devastating technological applica-
tions; many scientists completely dismissed the possibility of using the
nucleus as a source of great energy. By the time they realized that such
applications were practical, many scientists in the Allied countries per-
ceived themselves to be in a deadly race with Nazi Germany to produce
a bomb. On that basis, they believed their actions to be quite justified
ethically. Subsequent events, including the use of atomic bombs on civilian
targets and the arms race with the Soviet Union, caused some scientists
to regret the decision to build the bomb (some withdrew from military
work). Others considered their actions well justified by the Communist
threat, and they continued to devise ever-more-destructive weapons.

As a final example, let’s take a look at computer science and cybernet-
ics. We again have a case of powerful technologies that can greatly influ-
ence people’s lives. Realization came early that automated control systems
could displace human workers for many tasks, and this trend has contin-
ued. Many commentators have noted the massive restructuring of our
economy brought on by the information age, and with it the potential
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for social dislocations and further marginalization of some segments of
society. In addition, important issues of individual privacy, censorship,
and intellectual property rights have been created by the advance of com-
puter technology and networking (for example, private information
about yourself, which you give voluntarily to one organization, will al-
most surely end up in many other databases without your knowledge or
consent). Once again, we are forced to confront new challenges to our
old values by the advance of technology. My main point here is that all
of the issues we’ve been discussing exist because new scientific under-
standing gave us new abilities. I am certainly not arguing that scientific
advances are bad because they may create new ethical issues. The gist of
all these examples can be summarized by a statement that has been said
so many times as to become trite: Science and technology give us power
but not wisdom. Any tool can be used for good or for ill, and only we (as
individuals and as a society) can choose.

New Science

Science and technology are very different. The previous examples have all
involved technology, and concerned science only indirectly insofar as the
technological advances were enabled by scientific understanding (see
chapter 10). Does science per se have any direct impact on our values?
Historically, the answer is certainly yes, as the following examples will
illustrate. Whether science must necessarily affect our values is a philo-
sophical question that is difficult to answer (and not really our main con-
cern here).

An early example of the effects of science on values is the impact stem-
ming from the rise of the heliocentric theory. Looked at from a purely
practical point of view, it really doesn’t make much difference whether
we believe the earth or the sun is at the center of the universe. But in the
cultural milieu of late medieval Europe, the central location of the earth
in astronomy was inextricably associated with the central importance of
humankind itself in the grand scheme of things. The central position of
the earth could not be dislodged without having people’s understanding
of their own nature severely shocked. A people’s self-image is surely inti-
mately connected with their values. As the debate over heliocentrism un-
folded, academic questions of astronomy became increasingly bound up
with the more general struggle between the forces of progress and reaction
in Europe.

A similar process occurred with even greater intensity in the debate
over Darwin’s ideas on evolution by natural selection. In this case, the
stakes were even higher for the human self-image because humans them-
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selves are part of the subject matter of the theory. Evolution by natural
selection effectively removes a barrier between humans and the rest of the
animal kingdom; the potential impact of evolutionary thought on values
was profound. In the hands of careless thinkers, evolutionary theory led
to the perfidious doctrine of social Darwinism (this was an attempt to use
scientific advances improperly to justify existing social class inequities).
The same strain of thought also contributed to the infamous eugenics
movements of the early twentieth century (eugenics is the attempt to
“breed” better humans by not allowing the “unfit” to reproduce). These
unfortunate consequences were in no way implied by Darwinian thought,
but they do illustrate how much potential impact science can have on
values, and for that reason how careful we must be when making such
interpretations.

Physics has also had an effect on humanity’s view of itself and thereby
on our values. The equations of Newton’s classical mechanics are deter-
ministic. In other words, if we know all the forces on a particle, and if we
know its present motion, then we can exactly predict all of its subsequent
motions. Actually, such a program was never really possible in practice
(see chapter 17), but this practical difficulty didn’t affect the conclusions
drawn by various eminent thinkers. The idea of a clockwork universe, in
which the future is predetermined and free will doesn’t exist, became
deeply embedded in our culture. The revolutionary new theories of twen-
tieth-century physics (relativity and quantum mechanics) introduced a va-
riety of radical ideas. One of these new ideas was an element of nondeter-
minism in microscopic events. In other words, we cannot always predict
exactly what will happen to a particle even if we know everything that
we can know about that particle. Once again, a number of eminent think-
ers seized upon this result of physical theory to claim a place for free will
in the world, and this idea has also passed into our popular culture.

Our final example deals with issues in which the impact of science on
values can be extreme: the study of human beings by modern biology and
psychology. A generation ago, the reigning paradigm in psychology was
behaviorism and operant conditioning. Some extreme behaviorists
claimed that all human behaviors were predictable based on past and
present sensory stimuli; they furthermore claimed that mental processing,
not expressed in behaviors, was an epiphenomenon of no importance.
These ideas imply that free will and reflective self-consciousness are
merely illusions, a claim that very strongly influences our values. The be-
haviorist fad has now passed, only to be replaced by its polar opposite:
the claim that who we are as humans is primarily the result of evolution
and genetic predisposition. The extreme viewpoint here is that only the
genes are of any importance, and that we humans are merely convenient
methods for the genes to propagate themselves (another claim that obvi-
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ously influences our values profoundly). Remarkably, all of these claims
have been passed off as purely scientific statements without any value-
laden components, a point that we will reconsider near the end of the
next section.

§3. THE IMPACT OF VALUES ON SCIENCE

Do the values held by a culture or an individual affect the way science is
done, or even the results of science? Whether the actual results (theories
and facts) of science are much affected by the values (and other presuppo-
sitions) of a culture or individual is hotly debated in academia. We’ll ex-
amine this issue only briefly here (a more detailed treatment is found in
chapter 15). But the more limited question of whether our values affect
science in any way at all seems to me to have a clear answer: yes. For
example, our cultural values regarding material prosperity influence the
amount of effort we spend studying scientific questions that we think
will contribute to our prosperity. The values of an individual concerning
patriotism and/or pacifism might influence that person’s decision whether
to work on a scientific project with clear military implications.

The Limits of Scientific Inquiry

Let’s look at another example in somewhat more detail: the issue of
whether there should be any limits to our choices of which scientific ques-
tions to study (and if so, what those limits are). One dimension of this
question concerns ethical issues surrounding the implementation of a re-
search study, rather than the scientific knowledge resulting from the re-
search. In this case, the ethical issues may extend far outside the bound-
aries of science, and there are clear limits to the extent of the inquiry
allowed. An infamous example is the Tuskegee study of the long-term
effects of syphilis in a group of black men from 1932 to 1972 (the men
were purposely not treated, in order to observe the effects of the disease);
a stark reminder that freedom of scientific inquiry has sharp limits when
overriding ethical principles are involved. Other examples in this category
(but where the issues are more complex, controversial, and difficult to
resolve) include the use of animal subjects in research and the use of fetal
tissue in research.

A much different category involves the question of whether there
should be limits on scientific research if that research will lead (or might
lead) to dangerous technologies. Restricting the early nuclear physics re-
search that eventually enabled nuclear weaponry might be an example,
or the molecular biology research that enabled genetic engineering. We
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can make philosophical arguments both against and in favor of such limi-
tations, but I think it’s a waste of effort to weigh such arguments because
in practice the issue is moot: we can’t possibly predict all the technological
consequences at the time the research is being done. The real issues con-
cern how to control the technologies after they become apparent. These
issues are important, but they are not issues about the limits of scientific
inquiry. An interesting exception to this point might be research that is
undertaken primarily in the hope and expectation that it will lead to a
certain technology (for example, plasma physics/fusion power or geriat-
rics/increased longevity); in those cases, the desirability of the research
might well be debated in terms of the desirability of the anticipated tech-
nological outcome.

Finally, we can ask the question of whether there should be limits to
scientific inquiry because the knowledge produced is something we don’t
want to know (or shouldn’t know). The knowledge might be antithetical
to some cherished traditional belief, for example, or might exacerbate
tensions between ethnic groups in society. We see here a clash between the
inherent values of science (curiosity, open-mindedness) and other values
esteemed by our society (or at least by some members of it). A discussion
of such deep and complicated issues is beyond our ambitions here, but I
will offer an opinion and a comment. My opinion is that freedom of in-
quiry is not something to be given up lightly, but rather should be consid-
ered one of the core values of our culture in general, not just in science.
Ignorance is far more likely to harm us than to help us. My comment
is that good, solid scientific knowledge rarely causes any problems. The
problems usually arise when highly value-laden implications are drawn
from scientific results, a procedure that we should always scrutinize as
critically as possible.

Risk Assessment

Values also have an impact on science in the assessment of potential risks
to society from toxic pollutants, disasters, and so on. The degree to which
value-neutral science can be done in this field is controversial, and the
question is obviously a significant one. Let’s look at the issues more
closely. We’ll first dismiss from further consideration the extreme cases of
ideological zealotry and commercial greed. People who will say virtually
anything with no regard for evidence (tobacco industry employees claim-
ing that heavy smoking does no harm, for example) may sometimes be
labeled as scientists, but using the word doesn’t make it so. These extreme
cases have little to do with real science and are not of interest here.

The interesting question is whether legitimate scientific risk assessments
can be kept free of presuppositions based on values. A number of people,
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including many scientists and engineers, believe that this is possible.
“Facts are facts, and the results of properly made measurements don’t
depend on our values.” According to this view, we employ our values
when we make policy decisions based on the risk assessments; objective
science tells us what the risks are, and our values tell us whether these risks
are worth taking for the benefits involved. This point of view certainly has
some merit, but it has been criticized as an overly idealized picture of the
way the process actually works. The flaw in that picture, according to its
critics, is that we rarely have a complete and definitive set of data. In fact,
the typical situation is just the opposite: only a small amount of very
sketchy information is available. Moreover, the information that does
exist is often not directly applicable. For example, toxicity studies involv-
ing animals and high doses must be interpreted for the case of humans
and low doses. No one knows how the dose extrapolations should be
done, or what the differences are between the toxic substance’s effects on
humans and on animals. In trying to formulate a risk assessment based
on such inadequate information and high degrees of uncertainty, we are
forced to make scientific judgments of various sorts.

Our scientific judgments, say the critics, can easily be influenced by our
value judgments in general, especially given the fact that our assessments
have importance for real people’s lives. For example, a person who gener-
ally thinks that industry is overly regulated might well emphasize the fol-
lowing point: large uncertainties allow the possibility that a substance
is not very dangerous. A person who generally thinks that exposure to
environmental toxins is a major public health problem, on the other hand,
might instead emphasize the opposite point: these large uncertainties
allow the possibility that the toxic substance is far more dangerous than
we can presently document. Neither of these examples is bad science. In
both cases, the people did as well as they could with the information at
hand; the point is that the large uncertainties in the information allowed
their values to influence their interpretation. This influence may or may
not be inevitable. But to the extent that it happens, we’ll improve the
quality and worth of our risk assessments by critically scrutinizing the
risk assessment process in terms of both science and values.

Studying Humans, Revisited

We’ve already looked briefly at the impact of science on values in the
scientific study of human beings. But perhaps that influence goes both
ways; presupposed values might also affect the science being done in this
case. In hindsight, for example, it’s quite obvious that much of the work
on human heredity (closely related to the eugenics movement) in the early
1900s was tainted by class and ethnic prejudice. There have been at least
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three major attempts to draw conclusions about humans based on studies
of animals: behaviorism, ethology, and sociobiology. In each of these three
cases, the claims concerning human nature have gone well beyond the
legitimate scientific knowledge. If such claims about human nature are not
justified by the purely scientific information available, they must surely
contain significant value-laden elements. (I will admit that my judgment
here might be controversial, though I don’t see how to avoid it.) More-
over, the very claim that such animal studies even can tell us something
of importance about human nature is a presupposition (which is not to
say that it’s wrong) rather than an empirical fact. I don’t think it’s stretch-
ing too far to say that this presupposition stems from the values of these
investigators.

So far, we’ve only been talking about the influence of values on the
overblown claims made in the name of science in these three cases. We still
haven’t addressed the question of whether values influenced the scientific
methodologies themselves, or the response of the scientific community to
these studies. This question is more difficult, and I don’t think any defini-
tive answers are possible. It does seem interesting that behaviorism be-
came popular in the United States during the middle of the twentieth cen-
tury, a time when the general thinking in the culture was receptive to the
idea that people are primarily molded by their social conditions. In con-
trast, ethology grew out of a central European intellectual tradition that
existed in cultural and political conditions of instability and authoritari-
anism; these conditions may have been more hospitable to an emphasis
on inborn traits and instincts. Reading too much into such observations
is dangerous, however, and any thoughts about the influence of cultural
values on these sciences must remain speculative in the absence of a de-
tailed scholarly discussion.

§4. WHERE SCIENCE AND VALUES MEET

What is the proper relationship between science and values? As we’ve
seen, one possible answer is this: “There is no relationship, because sci-
ence tells us what is, and values tell us what ought to be.” But the many
examples we’ve discussed make it clear that this answer doesn’t hold up
very well under close scrutiny. The sentiment expressed is not completely
wrong, just inadequate to cover all of the many situations possible. At
the opposite extreme, we see claims that science and values are not only
related but that the relationship is hierarchical (i.e., one thing totally con-
trols the other). “Values are created by the brain, which can be studied
scientifically; values are just a branch of biology.” So say the extreme
reductionists. Of course, the extreme postmodernists say something dif-
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ferent: “Sciences are always based on unstated presuppositions, which are
really value preferences; scientific results are merely expressions of our
social values.” Such extreme views surely don’t do justice to the subtle
complexities involved in these questions.

So values and science are related to each other, but the relationship is
not hierarchical. Each has an important role to play in examining issues,
and these roles are complementary. Science can provide empirical infor-
mation and a depth of understanding to inform our debates over values
and our ethical decisions. But the resolution of these debates and decisions
must ultimately depend on a sagacity that comes from outside the realm
of science. Because science (through its associated technologies) also pro-
vides us with a great deal of power, the issues require careful thought.
Both scientists as individuals and also society in general have responsibili-
ties in the consideration of these issues. Some responsibilities of scientists
are to exhibit extreme honesty concerning the uncertainties in our knowl-
edge and to carefully scrutinize the broader ramifications of their work.
Society as a whole must be involved in making decisions about those is-
sues that cut across the boundaries of science, values, and ethics; the obli-
gation of the scientist (as someone with special expertise) is to join the
debate as an informed citizen.
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Chapter 12

QUESTIONS OF AUTHENTICITY: SCIENCE,

PSEUDOSCIENCE, AND HOW TO TELL

THE DIFFERENCE

The first criterion that a contribution to science must fulfill
in order to be accepted is a sufficient degree of plausibility.

Scientific publications are continuously beset by cranks,
frauds and bunglers whose contributions must be rejected

if journals are not to be swamped by them.
(Michael Polanyi)

If you go into that realm without the sword of reason,
you will lose your mind.
(Robert Anton Wilson)

THE PREFIX “pseudo” comes from a Greek word meaning false,
so pseudoscience literally means false science. “Pseudo” also carries
an implication of counterfeit or deceptive, making pseudoscience

not only false science but also false science that pretends to be real. These
simple definitions, however, don’t really tell us much. We may know that
pseudoscience is false science, but how do we know whether some partic-
ular body of knowledge or set of claims is pseudoscience or genuine sci-
ence? What criteria do we have to make this determination? No official
set of specific standards has been universally agreed upon to distinguish
pseudoscience from genuine science, but there is broad overall agreement
among scientists and philosophers on the general principles involved. A
number of authors have attempted, with varying degrees of success, to
specify a set of criteria. The attitude of many working scientists, however,
is that no definition of pseudoscience is needed, because they know it
when they see it. Unfortunately, this attitude doesn’t help the average
person make such a judgment. Also, this attitude reinforces the tendency
to label anything you don’t like as “pseudoscience,” causing the word to
lose any precise meaning at all.

In §1, we’ll look at a set of characteristics that can be used to identify
pseudoscience and distinguish it from genuine science. As I said, these
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criteria may not be universally accepted, but they are clear, sensible, and
useful; I doubt whether many working scientists (or philosophers of sci-
ence) will have any very serious objections to them. Following the general
discussion of the defining characteristics of pseudoscience, we’ll examine
several specific examples of pseudoscience in detail. In each of the exam-
ples, we’ll discuss exactly how the criteria apply to that particular case
and show why it qualifies as pseudoscience (i.e., why it does not qualify
as genuine science). The three examples we will look at are the work of
Immanuel Velikovsky, perpetual motion machines, and creation science.

§1. DEFINING CHARACTERISTICS

Static or Randomly Changing Ideas

One of the hallmarks of real science is growth and progress in our under-
standing. Ideas change over time as new discoveries are made; novel re-
search fields open up as new techniques become available and new ques-
tions are asked; and fragmentary facts become integrated into coherent
theoretical overviews as the knowledge base increases and creative minds
work to comprehend this knowledge. Old ideas and knowledge are not
discarded in this process; instead, they are reinterpreted in light of the new
understanding that has been achieved. Many examples of this progressive
growth in scientific understanding are chronicled in Part I. In contrast,
the ideas in a pseudoscience either remain static or else change randomly.
Either way, there’s no discernible progress. There is a good reason that
we see no progress: the pseudoscience has neither an anchor in a well-
established foundational body of knowledge, nor any systematic compari-
son with observation. If there is some dogmatic idea behind the pseudosci-
ence, this idea remains static, since there is nothing to change it. If not,
then ideas come and go at random because there is no particular reason
to accept some and reject others.

Vague Mechanisms to Acquire Understanding

This brings us to our second criterion. In genuine science, the goal of the
activity is to achieve some coherent understanding of our observations.
We must reject our understanding if it is incoherent or if it conflicts with
observations and experiments (I’m leaving out a few subtle points here;
see chapter 14). In other words, there are certain general procedures that
virtually all scientists would agree are valid, even if the details of how
these procedures are applied may not be identical in every particular case.
Most of this book is concerned with these valid procedures and how they
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are applied in a number of interesting examples, so I won’t elaborate here.
The present chapter is concerned instead with pseudoscience, in which
the procedures are only caricatures of those found in genuine science.

Understanding in pseudoscience might be based on many different
premises, which may be neither coherent nor consistent with observation.
For example, understanding might be based on a great idea that seems to
explain everything but that is so vague (and so vaguely connected to any-
thing else) that the idea has no actual content. Or understanding might
be based on connections between things that are not logical deductions
or empirical findings, but rather just imagined connections in the mind of
the pseudoscientist (between colors and musical scales, for example, or
between sunspots and business cycles). Sometimes, two or three observa-
tions are used to prop up a vast array of speculative thought, none of
which is related to or supported by any other observations. Or, to give
one last example, the premises of a pseudoscience are often “proven cor-
rect” by (allegedly) proving some other premise wrong (e.g., this must be
a sparrow because I’ve shown you it’s not a pigeon). This example starts
to overlap with our next criterion.

Loosely Connected Thoughts

Rigorous logic, a strict chain of deductive reasoning with no gaps or weak
spots, is highly prized in the sciences. This ideal is sometimes not possible:
there are gray areas and matters of interpretation in real science; creative
new work may depend on intuitions and metaphors; and, of course, scien-
tists occasionally make mistakes. Nevertheless, the ideal of rigorous logic
is still maintained as something to strive for. If a scientist makes an error
of logic, the legitimate task of other scientists is to find this mistake and
point it out. In pseudoscience, on the other hand, we often find wide,
gaping holes in the logic; indeed, we often find that there is no logic at
all, just some loosely connected thoughts. For example, a man named
Ignatius Donnelly published a book in 1882 claiming that the legendary
continent of Atlantis existed. He based his claims on the similarities be-
tween the ancient cultures of Egypt and South America (pyramid building,
flood myths, embalming, etc.). His argument was that these similarities
could only be explained by the existence of an earlier Atlantean culture,
situated geographically between these two areas, which colonized them
both. In this fairly simple case, the low quality of the logic is apparent.
Unfortunately, promoters of pseudoscience often use technical-sounding
words and scientific jargon, making it more difficult (though not impossi-
ble) for people without scientific backgrounds to spot the lack of meaning
in the way words are used. We’ll see several examples of both obvious
and not-so-obvious logical flaws in the case studies. A point to emphasize
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is that when logical errors do occur in science, there is a way to correct
them built into the normal process of doing science; in pseudoscience,
such correction processes don’t exist.

Lack of Organized Skepticism

This last point brings us to our fourth criterion: organized skepticism. A
new idea or result in science is usually presumed wrong until it is shown
to be right. The typical way to present results to the scientific community
is to publish the results in a professional journal. But before it can be
published, new work must undergo peer review, which means that it’s
sent to other scientists for criticism and judgment; only work judged as
worthwhile will be published (see chapter 10). The norm in science is to
subject ideas, experiments, and interpretations to criticism in order to
weed out bogus results. The results that survive this process become a
well-established consensus, and new results that contradict this consensus
are greeted by particularly severe skepticism. On the other hand, even the
consensus remains subject to criticism, and that criticism becomes severe
if new and contradictory results (having survived their own skeptical scru-
tiny) start to accumulate. Oddly enough, skepticism keeps open the possi-
bility of change even as it tends at the same time to foster conservatism
in science.

No such tradition of organized skepticism is found in pseudosciences.
For those pseudosciences that are based on a preconceived belief, skepti-
cism is in fact forbidden. For some promoters of pseudoscience, selective
skepticism of other bodies of knowledge (including mainstream science)
is practiced, but not of their own. For many of the believers of various
pseudosciences, though, skepticism is merely an irrelevant concept. They
simply don’t engage routinely in any practice of critical thinking. Needless
to say, the skepticism with which scientists greet pseudoscience is gener-
ally unwelcome. This skepticism is interpreted as the close-minded re-
sponse of someone invested in protecting an orthodox status quo. People
who make this interpretation don’t realize the important role of skepti-
cism in scientific thought.

Disregard of Established Results

Our last criterion is not only misunderstood by promoters of pseudosci-
ence, its importance is also underestimated by many people who evaluate
the competing claims of a science and a pseudoscience. Scientific advance
virtually always builds on previous work (as Newton phrased it, he
“stood on the shoulders of giants”). We see this time after time in the
stories of discovery related in Part I. Even revolutionary changes arise out
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of a well-understood context, and such changes always account for the
tenets of the outmoded viewpoint. Well-established results have become
so through a long hard process of critical scrutiny, and these results re-
main established because they continue to explain a wide variety of obser-
vations and experiments in a coherent and satisfying manner. For all of
these reasons, scientists work from a sturdy foundation of accepted ideas
even as they try to extend our knowledge into new and unfamiliar areas.

In pseudoscience, on the other hand, we find a rather cavalier disregard
for established results. Indeed, contradicting known results is often taken
to be a great virtue because it shows how new and exciting the ideas are.
Rejecting the ideas of a pseudoscience because they conflict with every-
thing else we know is considered (by the believers in the pseudoscience)
to be close-minded and authoritarian. While I agree that any idea, no
matter how unorthodox, initially deserves an open-minded hearing, this
does not imply that the unorthodox idea and the established idea should
be considered on an equal footing. For the reasons I’ve outlined, the unor-
thodox idea must be subjected to a much greater burden of proof. Those
who engage in pseudoscience don’t accept the obligation to provide such
proof, or even to take into consideration the foundational knowledge that
has been developed by the sciences over hundreds of years. Perhaps one
reason that people who work in a pseudoscience feel free to ignore estab-
lished results is that such people mostly work in isolation from any
broader intellectual community. Whereas a scientist works to integrate
results into a larger framework (which ultimately includes all of the sci-
ences), the pseudoscientist works alone (or in a self-contained group that
maintains no intellectual contact with anyone outside the pseudoscience).
This isolation is actually yet another criterion by which to identify pseu-
doscience.

Some Afterthoughts

Not every activity that meets some or all of these criteria is necessarily a
pseudoscience. Only those activities that meet the criteria and also claim
to be sciences are pseudosciences. For example, loosely connected
thoughts not ordered by logic are perfectly appropriate (and may be quite
profound) in poetry. Ideas that remain static and unchanging over thou-
sands of years are found, again very appropriately, in religions based on
scriptures. Only a fool would call poetry and religion pseudosciences. A
more subtle and interesting example is provided by alchemy, which is
very often labeled as pseudoscience. As cultural historians such as Mircea
Eliade and Titus Burckhardt have shown, however, traditional alchemy
was a method of spiritual initiation rather than a misguided attempt to
do science as we know it; in that sense, alchemy is not actually a pseudo-
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science. To reiterate, a pseudoscience is an activity that claims to be a
science but is not a genuine science based on the criteria listed above.

Our criteria are somewhat formal, and don’t include personal charac-
teristics that are sometimes associated with practitioners of either pseudo-
science or science. For example, pseudoscientists may have a tendency to
feel persecuted when their ideas are rejected, harbor a seemingly personal
antipathy toward mainstream science, or have a hidden agenda (such as
making money or promoting a religious doctrine). I’m mentioning these
personal traits because they do sometimes occur, but they are not defining
characteristics of pseudoscience, they don’t always occur, and we have
only a slight interest in them here. In describing the differences between
science and pseudoscience, I have also been considering science in a nor-
mative sense, a kind of idealized science. In other words, I have been
describing how scientists ought to behave, not necessarily how they al-
ways do behave. Real scientists, being human, sometimes fall short of this
ideal (for example, scientists have been known to cling stubbornly to an
idea in the face of contradictory evidence, or uncritically jump on a band-
wagon). But this truism is irrelevant. The point here is that pseudoscience
doesn’t even share the normative ideals of genuine science.

Lastly, note that each of the five criteria listed above has significant
overlap with all of the other criteria. Although I have separated them into
categories for conceptual simplicity, the criteria are really all interrelated.
For example: lack of skepticism allows the presence of loosely connected
thoughts to go uncriticised; the lack of mechanisms to acquire under-
standing stifles the ability to make progress; and so on. While isolated
aspects of one or two criteria may occasionally creep into real science,
activities or ideas that meet most or all of these criteria (operating together
and reinforcing each other) are certainly pseudoscientific.

§2. VELIKOVSKY

In 1950, Immanuel Velikovsky published a book called Worlds in Colli-
sion. This book was the result of a decade’s research into the myths of
many ancient cultures, and the major thesis of the book was extraordinary
to say the least: cataclysmic events, found in the myths of almost every
culture in the world, had their common origin in real disasters caused by
collisions between the earth and other members of the solar system. The
book was furiously attacked by several members of the mainstream scien-
tific community, but those events are a story of their own, which I’ll relate
at the end of the section. Our primary interest is whether this work should
be considered science or pseudoscience. The first question to ask is
whether Velikovsky claims that his work is science. Based on comments
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in the preface of the book, on explicit comparisons between his ideas
and standard scientific ideas, and on numerous statements made later by
Velikovsky and his supporters, there is no doubt that he claims his work
is scientific. How then does the work compare to our criteria for pseudo-
science? Before answering this question, let’s take a more detailed look at
the content of Worlds in Collision.

It’s a massive book, 400 pages long with about half a dozen citation
footnotes on each page. Velikovsky quotes from legends of flood, fire,
earthquake, battles between deities, and so on from many, many cultures
(Hebrew, Greek, Hindu, Chinese, Egyptian, Assyrian, Mayan, Choctaw,
Japanese, Babylonian, Samoan, Persian, Finnish, Eskimo, Ovaherero,
etc.). Most of the book is taken up by quotations from his sources, detail-
ing these legends and myths. The Hebrew accounts in the Old Testament
of the Bible are particularly prominent. To account for the similarities
in the myths of so many cultures, Velikovsky believes that some real
global catastrophes must have occurred. Based on the details he has found
in his historical studies, Velikovsky concludes that the following events
happened: A large planet-sized object was ejected from Jupiter and be-
came a comet. This comet passed close to Earth, causing the plagues of
Egypt during Exodus, along with other disasters recorded in other places.
Earth passed through the tail of the comet. This tail was composed of
hydrocarbons, which rained down in the form of petroleum (rains of fire)
and carbohydrates (manna from heaven). The comet left Earth, went
around the sun, and came back in 52 years to temporarily stop the rota-
tion of Earth as related in the Book of Joshua. The comet later passed
near Mars, causing Mars to leave its orbit and pass near Earth a few
times, causing (among other things) the destruction of Sennacherib’s As-
syrian army. The collision of the comet and Mars also inspired a number
of passages in the Iliad. The eventual result of this collision was that Mars
entered its present orbit, and the comet became the planet Venus (in its
present orbit).

This highly abridged account leaves out a lot, but we have enough mate-
rial now to begin a scrutiny based on our pseudoscience criteria. The first
thing that you may notice in this scenario is the total disregard for classical
mechanics, which was exceedingly well established and had been for some
time (see chapter 4). For example, the amount of energy needed to eject
Venus from Jupiter is impossibly high; it’s virtually impossible for Mars
to have turned the elliptical orbit of Venus/comet into the almost circular
orbit of Venus; conservation of momentum is violated by some of these
actions; and so on. Velikovsky claims that his work only contradicts the
assumption that gravity is the sole force involved, and that electric and
magnetic forces between planets can fix the situation. But he offers no
theory or calculations to justify this assertion, and in fact calculations
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show that such forces (which are also well understood) cannot fix the
situation either. In his book, Velikovsky claims that his ideas are merely
an unorthodox alternative to unproved assumptions about the stability
of the solar system, a claim that many readers accepted. But his work
actually contradicts a great deal of science that we are very confident is
correct. Velikovsky’s bland refusal to worry about these contradictions is
a sign of pseudoscience.

Now, contradicting established results doesn’t by itself make his work
wrong, but this does increase the burden of proof to show that the work
is right. How does his work measure up to this increased burden of proof?
This is an interesting question, because the book certainly offers a large
amount of evidence. Page after page of quotations from culture after
culture are given on each topic (example: east becoming west and west
becoming east). From all this, Velikovsky concludes that some physi-
cal event happened (example: the direction of Earth’s rotation changed).
The cumulative effect of all these similar legends is indeed impressive. But
the evidence is not critically examined. The reliability and authenticity
of the sources isn’t assessed. We don’t know what date each of the
sources refers to (they would all have to refer to the same date if they
described a real event). We don’t know the contexts of the quotes. And no
alternative explanations are considered by Velikovsky. There is, in short, a
lack of skeptical scrutiny in the work, making the evidence appear better
than it really is. This lack of skepticism is another one of our criteria for
pseudoscience.

The book is also based almost entirely on loosely connected ideas as
opposed to logical deductions. For example, a mythical description of a
battle between Ares and Pallas Athena becomes a physical collision be-
tween Mars and Venus. The thunderbolts of Zeus become electrical dis-
charges between planets. The hypothetical hydrocarbons in a comet’s tail
can become either oil or food, depending on the legend being discussed.
In mythology, Athena sprang from the head of Zeus; so the planet Venus
was ejected from Jupiter. A local myth is first assumed to refer to a real
event; the event is then assumed to be a global catastrophe; the global
catastrophe is then assumed to have a cosmic origin; the cosmic origin is
then assumed to be a particular planet passing by; the planet is then as-
sumed to have some particular complicated history. Despite the length of
the book and its wealth of detail, there are never any carefully constructed
logical connections made between any of the assumptions in this long
chain. Instead, the same assumptions are simply repeated over and over.
The evidence upon which Velikovsky bases his conclusions consists al-
most entirely of myths, legends, and ancient writings, not observations of
nature. (A few pages are devoted to geophysical evidence that couldn’t be
interpreted at the time, contributing little to his work.) Yet, we are asked
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to base our understanding of nature (the solar system) on this evidence.
This is another sign of pseudoscience (namely, our criterion of vague
methods to acquire understanding).

Velikovsky’s supporters may think this criticism is unfair because he
did make several observational predictions (some of them correct). These
predictions have been used by many people to argue that Velikovsky was
right. Here are some of his predictions: Venus and Mars should be hot,
due to collisions, electrical discharges, going near the sun, and so on;
Venus should have hydrocarbons in its atmosphere; and Mars should
have argon and neon as major components of its atmosphere. Do these
predictions blunt the charge that Velikovsky’s work is pseudoscience?
Venus was eventually discovered to be much hotter than expected by
mainstream science in 1950. This discovery has been promoted as a strik-
ing confirmation of Velikovsky’s work, which is in turn a reason to take
his ideas seriously. But this prediction is not part of a coherent picture
based on Velikovsky’s ideas, because heat generated by events thousands
of years ago (which his model requires) would have long since radiated
away, leaving cold planets. In contrast, the scientific research that discov-
ered the high temperature of Venus also discovered that Venus has a lot of
carbon dioxide in its atmosphere, leading to a large amount of greenhouse
warming (see chapter 10). This greenhouse effect (which had actually
been suggested speculatively by one scientist even before 1950) accounts
(quantitatively) extremely well for the temperature of Venus.

But even if we didn’t have a good explanation for a hot Venus, we
cannot conclude that Velikovsky is right, because his prediction was based
on erroneous logic. Also, his predictions about the temperature and
atmosphere of Mars are wrong (a fact usually left unmentioned by his
supporters). His prediction of hydrocarbon clouds on Venus was thought
to be correct for a while, and highly touted as another striking confirma-
tion. Later work has shown that the clouds are actually made of sulfuric
acid. Again, the interesting point is not so much that this prediction is
wrong. Even if the prediction were right, the proper conclusion (given
the fact that there was no valid logic supporting the prediction) would
not be that Velikovsky’s ideas are correct. We would merely have a re-
markable coincidence. We’ve seen so far that Velikovsky’s work should
be classified as pseudoscience based on several of our criteria: disregard
of established results, loosely connected ideas, lack of skeptical scrutiny,
and vague methods to acquire understanding. Our other criterion was
lack of progress and growth. His work qualifies as pseudoscience based
on this criterion also, since his ideas cannot be modified based on testing,
or suggest new research directions. Instead, we are given a storyline,
which we can either accept or reject. Velikovsky was an interesting and
imaginative thinker, and he was a patient, thorough collector of ancient
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myths and legends. But his work, whatever other virtues it may possess,
is not science.

The controversy between Velikovsky and mainstream science is an in-
teresting story itself. A number of scientists, particularly astronomers,
were livid with rage that Worlds in Collision had been published. They
attacked the work in public (reviews, letters to the editor, etc.), and they
threatened the publisher with a boycott of its textbooks unless it stopped
publishing the book. This censorship, combined with the abusive and dis-
dainful treatment of Velikovsky and his work, has become an issue of its
own, separate from the merits or flaws of the book. The behavior of the
scientists was not well received in many quarters, being interpreted as an
illegitimate attempt to suppress new and rival ideas. By making Velikov-
sky into a martyr, the scientists probably increased his support in the gen-
eral public (presumably the opposite of what they wanted to do) and
hardened the position of his followers. The inappropriate behavior of
Velikovsky’s detractors, however, doesn’t improve the argument of his
book. We don’t need to censor pseudoscience; we just need to learn how
to recognize it.

§3. PERPETUAL MOTION

A perpetual motion machine is just what it sounds like: a machine that
runs forever. More particularly, it’s a machine that runs forever without
any fuel or source of energy to keep it going. A perpetual motion machine
can continue to do useful work for us without needing any supply of
gasoline, coal, electricity, and so forth. We get something for nothing. It
sounds too good to be true. In fact, it is too good to be true. Perpetual
motion machines do not and cannot exist. The impossibility of perpetual
motion was already a current idea among the ancient Greek philosophers.
Practical folks had also figured out long ago that there are no perpetual
motion machines, probably based on the innumerable failed attempts to
build one. Simon Stevin, back in 1586, used the nonexistence of perpetual
motion as the starting point of his derivation for vector resolution of
forces (in other words, Stevin felt he could take it for granted that perpet-
ual motion was absurd). Scientific understanding of the reason why per-
petual motion is impossible came later, when the conservation of energy
principle was formulated in the nineteenth century. Conservation of en-
ergy is now one of the bedrock foundational principles of the sciences
(see chapter 17).

Attempts to invent a perpetual motion machine have a long and fasci-
nating history. A typical design might be, for example, a water wheel that
runs a pump; the pump delivers the water to a higher elevation; the water
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runs down, turning the water wheel; and so it goes, forever. Another pop-
ular idea uses flywheels with hinged weights on them that are supposed
to use gravity to keep the flywheel turning. Many such clever mechanical
contraptions and ideas have been proposed, but none of them have ever
been known to work. Of course, we wouldn’t expect any of them to work
based on our present scientific understanding. The U. S. Patent Office
does not accept applications for perpetual motion machines anymore; the
Paris Academy of Sciences refused to consider claims of perpetual motion
back in 1775. But people are still claiming, even now, to have invented
perpetual motion machines. Moreover, their claims are taken seriously by
journalists, politicians, and investors. How can this be? Are all these peo-
ple unaware of the history of failure in such attempts, and unaware of
fundamental scientific results? They are in fact aware of these things, but
are not concerned by them. The inventors believe they have discovered
important new scientific principles that can make perpetual motion a real-
ity for the first time in history. What is this new science that has been
discovered (so they claim) by the perpetual motion machine inventors?
Basically, they are saying that their machine can tap into a vast reservoir
of energy that is always present but unnoticed. No violation of the energy
conservation principle is involved because a source exists for the energy
produced by their machines. Now, one of the modern theories of physics
(quantum field theory) does in fact have such a large energy reservoir as
one of its concepts (called zero point energy or vacuum fluctuation en-
ergy). Invoking such a concept makes their claims sound fairly plausible.
Is the idea that we can tap into the vacuum energy to make a perpetual
motion machine science or pseudoscience?

The issue has now become subtle for the following reason: One of our
criteria for pseudoscience is the disregard of established results. At first,
we might say this criterion is obviously met, since perpetual motion is
utterly forbidden by conservation of energy. But by using the concept of
the vacuum energy, the promoters of perpetual motion can claim that
conservation of energy is not violated; we are not creating energy out of
nothing, we are simply using some existing energy. Since the vacuum en-
ergy qualifies as an established result, our conclusion seems less obvious
now. However, we are ignoring a key point: the same theory that tells us
the vacuum energy exists also tells us that we can’t use it. Taking this
point into account, we see that the reasoning of the perpetual motion
promoters does indeed disregard established results. Surely it’s illogical
to use a concept in a way that is clearly prohibited by the very structure
of the theory in which the concept arose.

Another criterion is the lack of logical connections. To be science, their
explanation would need to specify unambiguously the mechanism by



Q U E S T I O N S O F A U T H E N T I C I T Y 169

which their machine extracts energy from the vacuum. Instead, we get
strings of technical-sounding words that don’t actually have any meaning
(example: “The flow of load current does not create any anti-torque and
therefore, the output power is greater than the input power used to rotate
the device”). Isolated concepts, which don’t fit together in any meaningful
way, are used. The perpetual motion machines are real (they believe), and
so require an explanation. But the explanation is not sought by doing
controlled experiments and trying to interpret the results within some
constructive framework tied to the rest of science. Instead, a pseudo-ex-
planation is created out of whole cloth, to somehow account for the very
existence of the machine. Vague pictorial analogies are employed in place
of logical connections between empirical observations (“I use the analogy
of a tornado. A tornado concentrates a force in a small volume, a force
that was always present, it’s just changed form.”). There is no attempt to
predict quantitatively the output of the machine in response to varying
conditions. All that we have are some scientific-sounding bits and pieces
(a technological device, some fancy terminology, a quantum field theory
concept), but none of it hangs together. The pieces don’t fit together into
a picture. And this is why it’s not science.

Another sign of pseudoscience is the lack of growth and progress in
the field. Perpetual motion promoters actually use this argument against
mainstream science; they claim that conventional scientists are dogmati-
cally attached to outmoded ideas, while they themselves are enlightened
prophets of progress. We’ve already discussed the validity of this argu-
ment. The real issue is whether there has been any progress in understand-
ing the behavior of the alleged perpetual motion machines (or the science
underlying this behavior). As we’ve already seen, there hasn’t been any
such progress because the inventors are not even really trying to achieve
any new understanding. Instead, the same pseudo-explanations are sim-
ply repeated over and over.

I have not yet addressed one question, which you have undoubtedly
been asking yourself. Haven’t these machines been tested? Determining
whether they work, once and for all, should be fairly easy. I’ve saved
this question to discuss in conjunction with another criterion of pseudo-
science, organized skepticism. The inventors of these machines have ap-
parently convinced themselves that their measurements prove they are
getting out more energy than they put in. When other scientists and
engineers point out the potential flaws in the measurements that might
incorrectly lead to that conclusion, they are ignored. When independent
professionals have tested the machines with the best possible equipment,
the machines have behaved as conventional science predicts they should
(i.e., no perpetual motion). The inventors remain unconvinced. Appar-



170 C H A P T E R 1 2

ently, lack of organized skepticism also qualifies perpetual motion as a
pseudoscience. Of course, the simplest test would also be the most con-
vincing: plug the machine into itself and let it run without an external
source of energy. The inventors have not done this, but they are sure they
could if they wanted to.

§4. CREATION SCIENCE

The evolution of life on earth is one of the central organizing principles
of modern biology. Evolution, however, has always been a controversial
idea among some groups, including certain fundamentalist sects in the
United States. The members of these sects believe that everything written
in the Bible is literally true, and their dislike of evolutionary thought is
based on the fact that it contradicts part of the Bible. Several decades
ago, a number of fundamentalists with some scientific background joined
together to invent something called creation science. The basic thesis of
creation science is that the universe was created, in its present form includ-
ing all known species of plants and animals, about five thousand years
ago; and that this conclusion is defensible on purely scientific grounds.
Because of these claims for scientific validity, we may subject creation
science to the kind of critical analysis outlined in §1. Based on our criteria,
is it creation science or creation pseudoscience? Let’s first clear up any
misunderstandings caused by the close relationship between creation sci-
ence and creationism in general. Creationism need not make any claims
for scientific validity. We can legitimately postulate a divine being who
created the universe in a way that makes it appear as though the universe
had a long and involved history before this act of creation. This argument
was in fact made in great detail in a book called Omphalos, written by
Philip Gosse in 1857, in response to mounting geological evidence for a
very old earth. The claim is based purely on religious faith; cannot be
affected in any way (supported or denied) by observations or evidence;
and has nothing whatever to do with science (see chapter 9). Whether we
accept or reject creationism on other grounds is irrelevant to our present
discussion of science and pseudoscience. Creation science, on the other
hand, very explicitly claims that observations and evidence lend scientific
credibility to the idea of special creation. We can (and I do) legitimately
reject this absurd claim.

Our very first criterion for pseudoscience was lack of progress or
growth in our understanding. In the case of creation science, the under-
standing of its practitioners must remain static by definition because they
assume up front that special creation occurred. Looking for evidence is
an afterthought, engaged in only for the purpose of supporting their pre-
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conceived conclusion. This conclusion will not change, regardless of any
possible observation or argument put forth; the creation science promot-
ers are quite candid about the static nature of their view on creation.
Nothing can change their view, a stance that is totally antithetical to real
science but quite characteristic of pseudoscience. Another criterion,
closely related to the first one in this case, is the lack of organized skepti-
cism. These two criteria are related here because an unchangeable precon-
ceived idea cannot, by its very nature, be subjected to skeptical scrutiny.
Skepticism implies asking yourself whether an idea is correct or not. Con-
cluding that special creation is incorrect, however, has been forbidden
under any circumstances by the believers in special creation. Of course,
they have plenty of skepticism for the conclusions of mainstream biology,
geology, and physics. But that’s not scientific skepticism, in the sense of
doubting all premises in order to arrive at a correct picture; instead, se-
lected pseudoskepticism is directed toward any ideas that disagree with
their preconceived conclusions. Now, since scientists are genuinely skepti-
cal, they criticize each others’ ideas. Creation science writers routinely
quote scientists’ critical comments in an attempt to cast doubt on the
validity of evolutionary ideas. Creation science itself is invulnerable to
this tactic, for the reasons I’ve outlined. Ironically, these characteristics of
real science (being open to skeptical criticism, and changing ideas) are
exploited by creation science writers to attack evolutionary thought, mis-
leading people who don’t understand what science actually is or how it
works. As we’ve seen, however, these tactics are based on aspects of cre-
ation science that in fact identify it as a pseudoscience.

Looking at the mechanisms used to acquire understanding in creation
science, we see that yet another criterion of pseudoscience is met. In a
way, no mechanisms are used at all to acquire understanding in creation
science; there’s no need for them because the answers are already known
ahead of time. Creation science has never even attempted to construct a
positive research program by which our understanding might be in-
creased. Instead, most of their writings are merely attacks on evolutionary
thought, employing the dubious logic I mentioned in §1 (i.e., “If some-
thing is wrong with evolution, then special creation must be right.”). To
the extent that creation science does have something positive to offer,
it’s an attempt to reconcile our observations with the Biblical accounts
(assumed to be true). If we rather broadly interpret “acquiring under-
standing” to include this sort of activity (“How do we understand what
we see in a way that doesn’t conflict with our beliefs?”), then the mecha-
nisms we find are vague, illogical, and ad hoc. Instead of fitting all the
evidence together into a coherent picture, each piece of evidence is consid-
ered in isolation from all of the others. For each of these isolated pieces,
the practitioners of creation science devise some kind of separate explana-
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tion. To assess the quality of these isolated explanations, we must move
on to another of our criteria: loosely connected thoughts. Due to the un-
derlying goals of creation science, its arguments don’t need to have any
real validity. The arguments merely need to sound plausible when not
subjected to any critical scrutiny. We are therefore not surprised to find
vague statements and loosely connected ideas instead of well-thought-out
logical connections. Let’s illustrate this point with an example: the cre-
ation science explanation for the fossil record found in layers of rock. The
fossils (mostly of extinct creatures) certainly exist, and so creation science
is obligated to give a scientific explanation of them. The creation science
explanation is that the fossils are the preserved bodies of creatures who
died in the Great Flood (the one written about in the Bible, in which all
life perished except for that on Noah’s Ark).

As a scientific explanation of the fossil record, this story has a major
problem: it doesn’t account for the different types of creatures found in
different layers of rock (geological strata). As we go into deeper and
deeper layers, the bodies of the creatures become more primitive; only
water-dwelling creatures appear below a certain level; and so on. An evo-
lutionary picture accounts for these facts quite naturally, fitting together
nicely with the geological picture of the layers as sedimentary rocks depos-
ited over a long period of time. In other words, lower strata are older,
and for that reason contain earlier creatures that are more primitive. The
creation science picture (simultaneous death by flood) implies that all
creatures should be mixed together in all the rocks. To account for the
layering, various separate and unconvincing ad hoc explanations need to
be devised. The basic idea simply doesn’t explain what is observed. Other
questions that this idea doesn’t answer include the following: Why were
water-dwelling creatures killed by a flood? Why aren’t there huge num-
bers of human remains in the fossil record? How did creatures repopulate
islands (like Australia) after the flood? And so on. The point here isn’t
that the creation science explanation of the fossil record is wrong; the
point is that this explanation doesn’t really explain anything. We can
never prove that this account is wrong (after all, the bodies might have
miraculously sorted themselves). Nor can we prove that the evolutionary
account is right. As we’ve emphasized, the role of science is not to provide
certainty (which it can’t do; see chapter 14) but rather to provide coher-
ence (which it sometimes does stunningly well). The promoters of creation
science argue that, because neither evolution nor creation science can be
proved, both are equally valid. This argument, which is central to their
program, is based on a profound ignorance of what science is.

Our last criterion of pseudoscience is disregard of established results.
The advocates of creation science claim that their work is consistent with
sciences other than evolutionary biology. Creation science was devised
mainly as a tool with which to debunk evolutionary thought. For this
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reason, promoters of creation science often use isolated fragments of
mainstream sciences (e.g., thermodynamics), which they take out of con-
text and apply incorrectly, as part of their efforts to attack evolution. In
this way, they try to convey the impression that their ideas (as opposed
to evolution) are really consistent with many established results. The im-
pression they convey, however, is false. The assertion that the earth is only
a few thousand years old flatly contradicts the results of many mainstream
sciences: nuclear physics (radioactive decay dating), cosmology (micro-
wave background), astronomy (redshift measurements), geology (plate
tectonics, erosion), and so on. In its disregard for the well-established
results of the mainstream sciences, creation science easily qualifies as a
pseudoscience.

To summarize, creation science is an endeavor that starts with a precon-
ceived idea and distorts evidence to fit this idea. We achieve no increased
understanding of our observations of the world because creation science
isn’t based on those observations. The statements found in creation sci-
ence are vague, isolated fragments, having no coherence and no logical
connections to each other or to observational evidence. Creation science
forbids its practitioners to engage in critical scrutiny of its assertions (also
forbidding disagreement with the assertions). Creation science is inconsis-
tent with important results in a variety of real sciences. In short, creation
science amply satisfies every one of our criteria for a pseudoscience.
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Chapter 13

CONTENTIOUS QUESTIONS: THE SHADOWY

BORDERLANDS OF SCIENCE

“Then the one called Raltariki is really a demon?” asked
Tak.

“Yes—and no,” said Yama. “If by ‘demon’ you mean a
malefic, supernatural creature, possessed of great powers, life
span, and the ability to temporarily assume virtually any
shape—then the answer is no. This is the generally accepted
definition, but it is untrue in one respect.”

“Oh? And what may that be?”
“It is not a supernatural creature.”
“But it is all those other things?”
“Yes.”
“Then I fail to see what difference it makes whether it be

supernatural or not—so long as it is malefic, possesses great
powers and life span and has the ability to change its shape
at will.”

“Ah, but it makes a great deal of difference, you see. It is
the difference between the unknown and the unknowable,
between science and fantasy—it is a matter of essence.”

(from Lord of Light by Roger Zelazny)

SOMETIMES, results are reported that lie far outside the scientific
mainstream. These unorthodox results are rejected by most, but not
all, scientists. Although cases like this are occasionally labeled as

pseudoscience in order to attack their validity, I believe this label is wrong.
As we have seen (chapter 12), the defining characteristics of pseudoscience
concern the methods of thinking, not the unlikelihood of the content.
Pseudoscience seems an inappropriate description of cases where all par-
ties agree on the validity of basic scientific methodology, even if there is
heated disagreement over whether it’s being applied properly. Another
label that has been applied to the subject matter of this chapter is “patho-
logical science.” Once again, some less emotional term might be a better
choice. But rather than quibbling over terminology, let’s look at some
cases in detail. Of the many subjects that might be discussed in this chap-
ter, I have chosen two: cold fusion and parapsychology.
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§1. COLD FUSION

Nuclear Fusion

The word “fusion” in this context refers to a process in which lighter
atomic nuclei combine together (fuse) to form heavier nuclei, releasing
energy. Some of the mass of the nuclei is converted into energy during the
fusion process. Fusion is the process that drives energy production in the
sun and other stars, so fusion is ultimately responsible for almost all of
our energy on earth. Fusion is also the energy source in the hydrogen
bomb, a terrifying weapon of mass destruction. The name “hydrogen
bomb” refers to the fact that hydrogen nuclei fuse together into helium
nuclei. (To be more precise, nuclei of the isotope of hydrogen known as
deuterium are the nuclei that fuse. A hydrogen nucleus is a single proton,
while a deuterium nucleus has both a proton and a neutron.) For many
years, scientists and policymakers have been hoping that fusion can some-
day be used as a new source of energy for our society. The required fuel is
abundant (deuterium replaces hydrogen in a certain fraction of the water
naturally occurring on earth; such water is called heavy water), and the
radioactive waste products are few, making fusion a highly desirable en-
ergy source.

Before recounting the cold fusion story, which is fairly recent, let’s look
at the efforts to harness fusion energy by standard techniques; these ef-
forts, which have been going on for over forty years, provide the context
for our story. Fusion occurs naturally in the sun because the sun is very
hot. At the fantastically high temperatures found in the sun, the nuclei
and electrons of atoms are separated, forming what is known as a plasma.
The nuclei are positive and the electrons are negative, so the plasma is a
kind of charged particle gas. The charged particles making up the plasma
in the sun have extremely high energies and speeds because of the high
temperatures. These high energies and speeds enable the colliding nuclei
to get close enough to each other to fuse, overcoming the mutual repul-
sions caused by their charges (which ordinarily keep them apart, pre-
venting fusion). Along with the extreme temperatures needed, the density
of the plasma must also be high enough to yield significant numbers of
collisions. If the density can be kept high enough after the fusion reaction
has started, this reaction will be self-sustaining because the energy re-
leased by the fusion process will keep the temperature high. The sun’s own
gravity keeps the density high enough in the sun. In a hydrogen bomb, the
density doesn’t need to remain high very long, because the explosion lasts
only a short time (the needed high temperature is provided by an atomic
bomb explosion as a trigger). The challenge to the plasma physicists has
been to create a plasma with a steady high temperature and sufficient
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density so that a controlled self-sustaining fusion reaction can be main-
tained on earth. If this can be done, we might be able to use nuclear fusion
to satisfy the world’s need for energy.

The problem with creating these conditions may already be apparent
to you. At temperatures like those in the sun, any container in which we
tried to keep the plasma would be immediately vaporized. The solution
to this problem has been to use the fact that the plasma particles are
charged; because they are charged, they can be trapped using magnetic
fields instead of material containers. In other words, the plasma can be
confined within a magnetic bottle. This method gave rise to a multitude
of difficult technical problems, many of which have now been solved.
We’ve made steady progress toward attaining the combination of temper-
ature, density and duration that will yield a self-sustaining energy-produc-
ing reaction. But many years and many billions of dollars have been in-
vested to reach the present state of progress. Although we have learned a
lot about the physics of plasmas and have achieved many milestones to-
ward practical fusion energy production, we are at best several decades
and many more billions of dollars away from this elusive goal. But the
effort continues because the fuel for this energy is cheap, relatively non-
polluting, and virtually limitless.

Claims of Fusion at Room Temperature

Such was the background for the dramatic announcement (in 1989) that
two electrochemists (M. Fleischmann and B. S. Pons) had achieved nu-
clear fusion at room temperature, using equipment no more complicated
than a standard electrochemical cell (which is little more than two pieces
of metal, called electrodes, sitting in some liquid, called electrolyte, and
connected to a battery). Fusion occurring at room temperature in an elec-
trochemical cell was quickly dubbed “cold fusion.” One of the electrodes
was made of the metal palladium and the electrolyte contained some
heavy water, that is, the hydrogen isotope deuterium was present. Palla-
dium metal is well known to be capable of absorbing large amounts of
hydrogen (or in this case, deuterium), the way a sponge absorbs water.
The idea of cold fusion is that, under the conditions of the electrochemical
reaction taking place in the cell, the amount of deuterium in the palladium
electrode becomes so great that the nuclei become close enough to un-
dergo fusion. It’s difficult to understand how or why this should happen.
But, according to proponents, experimental evidence indicated that cold
fusion was in fact happening. In particular, large amounts of heat were
measured, which the chemical reactions in the cell couldn’t account for.

The results were announced at a press conference before being pub-
lished in any scientific journal, and the media gave the story a great deal
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of coverage. Cold fusion was presented as a solution to all of our energy
problems (which a cheap and simple way to achieve fusion would indeed
be). The experiments were also presented as a revolutionary scientific
breakthrough, since the new results seemed to contradict a great deal of
well-established science. There was also a human-interest side to the
story: the triumph of lonely innovators working on a shoestring budget,
where teams of experts with vast resources had failed. What the media
did not emphasize was how little documented evidence for cold fusion
really existed. Following the original announcement, several research
groups quickly started working to test the cold fusion claims. The situa-
tion was initially very chaotic and confused. Different groups made con-
flicting claims of positive and negative results, sometimes followed by
retractions. This confusion was probably the result of too much haste and
carelessness, brought on by the excitement of the extraordinary claims
and their societal implications. As time went on and the results of more
careful and well-controlled experiments became available, few research
groups found any evidence for cold fusion in the end. The few experi-
ments that did find such evidence were inconsistent and not reproducible.
Let’s examine this scientific evidence in more detail.

Experimental Evidence

What sort of measurements would indicate that nuclear fusion was taking
place? One measurement, which was widely emphasized, is excess heat
in the electrochemical cell, indicating that energy is being produced. In
addition, the fusion process results in a number of measurable radiations
(gamma rays and neutrons) and substances (helium isotopes and tritium).
Measurement of these fusion products would indicate that fusion is taking
place. The amounts of these fusion products, relative to each other and
to the amount of heat produced, can be predicted. This is a crucial point,
because the experiments should not only find the fusion products but
should find them in the correct amounts. Let’s take a closer look at this
issue, because much of the argument over the validity of cold fusion turns
on this point. Figure 7 is a schematic illustration of the three ways in
which deuterium can undergo fusion. Protons are indicated by plus signs
(+) because they have a positive charge, and neutrons by empty circles
because they have no charge. Deuterium is represented by a proton and
neutron together, the helium nucleus by two protons and two neutrons,
the lighter isotope of helium by two protons and one neutron, and tritium
(another isotope of hydrogen) by one proton and two neutrons. In all of
these reactions, fusion of deuterium occurs in a way that conserves charge.
From many years of experiment and from well-understood theory, we
know that the first two reactions are about equally probable, while the
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Figure 7. Three possibilities for the nuclear fusion of two deuterium nuclei (deute-
rium, or heavy hydrogen, is an isotope of hydrogen with one additional neutron).
(a) Two deuteriums fusing to produce a helium isotope and a neutron. (b) Two
deuteriums fusing to produce tritium and a proton (tritium is another hydrogen
isotope, with two additional neutrons). (c) Two deuteriums fusing to produce
helium and a gamma ray. This reaction occurs very infrequently compared to the
other two.

third reaction is about a million times less probable than the other two.
We also know how fast these reactions must proceed in order to produce
a given amount of energy (the alleged source of heat in cold fusion).

How do the results of cold fusion experiments compare to these re-
actions? Results were mixed. Some experiments detected no fusion prod-
ucts (neutrons, helium, etc.) at all, while other experiments detected small
quantities of one product or another. Critics have questioned whether
those small quantities were really fusion products, as opposed to detector
artifacts or naturally occurring contaminants (in other words, phony
data). Leaving such questions aside, however, the amounts of the fusion
products were far too small to account for the heat that was measured.
Also, the amounts were not consistent with the probabilities of the vari-
ous fusion reactions shown in Figure 7. To make a crude analogy, it’s as
if someone told you about going on a 2000-mile trip, showed you gasoline
receipts consistent with driving 2000 miles, but had an odometer reading
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increase of only 5 miles on the car. In the case of cold fusion, the inconsis-
tency is dramatic. Some of the people doing the experiments would have
received massive lethal doses of radiation to account for the heat, instead
of the barely detectable amounts of radiation they reported.

Experiments are always difficult to do. Sophisticated equipment can
easily produce readings that are wrongly interpreted; this is why scientists
criticize each other’s work and try to reproduce experiments. In this case,
detecting neutrons is difficult for two reasons: There are always some
neutrons around anyway (called background), and detectors sometimes
say that the number of neutrons has increased when it hasn’t (called drift).
Even measuring excess heat isn’t as easy as it sounds. Temperature differ-
ences across the cell, if they are not measured properly, can make the
amount of produced heat look bigger than it really is. Experiments that
account for such possible spurious results are better experiments. We say
that such experiments are well-controlled experiments, or that they have
better controls. The experiments in cold fusion that had the best controls
detected no fusion products and little or no excess heat.

Evaluation

Claims for the observation of cold fusion were based on a considerable
amount of excess heat and a minute amount of fusion products. Two
mysteries therefore needed to be explained. The first mystery is how fu-
sion can occur at all under the conditions of the electrochemical cell (i.e.,
how do the nuclei get close enough together?). The second mystery is why
there are not enough fusion products to account for the heat produced.
Several theorists attempted to explain these two mysteries, but the pro-
posed explanations all suffered from the same problem: they were all ad
hoc explanations. An ad hoc explanation is an explanation that is not
based on anything, an explanation where you just make it up as you go
along and use any assumptions needed to achieve the result you want. No
coherent theory that really explains the results has ever been proposed to
account for cold fusion. A highly developed and interconnected set of
theories and experiments, on the other hand, has evolved over fifty years
to give us a coherent picture in which cold fusion is not possible.

But, you may object, experiment should be the ultimate authority here;
theories must change if experiments contradict them. This is true. But
consider the quality of the experimental evidence. None of the experi-
ments claiming evidence for cold fusion have been reproducible. The most
carefully done experiments have seen no indications of fusion at all. Even
experiments done by proponents of cold fusion have results that conflict
with each other in their details. In addition, the experiments are known
to be difficult to perform properly, and known to produce phony results
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sometimes looking much like those obtained by the cold fusion propo-
nents. Is this kind of evidence sufficient to spark a major scientific revolu-
tion? The answer to this question is, in the end, a judgment (see chapter
14). The judgment of the mainstream scientific community has been clear:
cold fusion does not exist. Few scientists are even paying attention to the
question anymore, regarding it as a closed issue. A very small number of
scientists consider cold fusion to be real, and they are still working in the
area. If these scientists could ever make a convincing case, the mainstream
judgment would change. Alternatively, the number of cold fusion propo-
nents may dwindle over the years until it reaches zero some day, and the
issue will then die.

§2. PARAPSYCHOLOGY

Parapsychology is the study of various extraordinary abilities ascribed to
the human mind. Examples of such paranormal abilities are these: acquir-
ing information without using the senses (extrasensory perception, or
ESP); causing something to move without any physical mechanism (psy-
chokinesis); and knowing in advance that some unpredictable event will
happen (precognition). Many people (scientists and nonscientists alike)
vehemently deny the very existence of all these things and believe that
parapsychology is bogus and pseudoscientific. The proponents of para-
psychology, on the other hand, believe there is good evidence for the exis-
tence of such paranormal abilities. We’ll take a look at some of this evi-
dence and discuss how it might be interpreted. We’ll also reconsider the
question of how to judge whether a field is scientific or not: Should our
criteria be based on the methods used or on the subject matter studied?

Historical Context

Folk beliefs about paranormal human abilities are found in almost all
cultures and are usually rooted in an irrational worldview. These common
folk beliefs are a kind of “prehistory” for parapsychology, but they have
little to do with our present discussion. The involvement of scientists in
paranormal studies began in England, near the end of the nineteenth cen-
tury. A quasi-religious movement known as Spiritualism had become
prominent (in both the United States and England) at that time. The main
activity of Spiritualists was (allegedly) communicating with the spirits of
the dead, but this activity was usually accompanied by strange sounds
and lights, furniture moving on its own, and other weird things. Much of
that display, not surprisingly, turned out to be trickery and fraud. But
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a number of scientists became interested in these seemingly paranormal
phenomena, and they began to engage in a scientific study of Spiritualism.
The Society for Psychical Research was founded to provide an organized
forum for such studies (a similar American Society was founded shortly
afterward). Several prominent scientists and scholars participated in this
work. A good deal of their effort was devoted to unmasking fraud, but a
number of cases were judged by the scientists to involve genuine effects.
These cases were investigated, but in the end it was too difficult to exert
proper scientific controls. Interest in this kind of study gradually faded
over a number of years.

Parapsychology in its modern form began in the 1930s at Duke Univer-
sity, under the direction of J. B. Rhine and L. E. Rhine (even the word
“parapsychology” comes from this source). A new research method was
developed. Instead of looking at the spectacular claims of prominent Spir-
itualists, the Rhines looked for evidence of weak paranormal abilities in
average people. In a typical experiment, a subject might look at a random
series of images on cards, while a second subject (who can’t see the cards)
tries to identify which card is being viewed. If this second person can
identify the correct card image more often than expected based on ran-
dom chance guessing, the result is interpreted as evidence for paranormal
abilities. A major innovation of this method was the central role given
to statistical arguments. Considerable work has been done using such
methods, initially at the Duke laboratory and later at several other institu-
tions. Early work was criticized for having insufficient controls (e.g., peo-
ple might identify cards by seeing smudges on the backs or torn corners).
In response to this criticism, experimental designs were improved. Statisti-
cal methods were also criticized and, as a result, improved. A professional
association was founded, and several journals were established to publish
the results of these studies. These same research methods (i.e., looking for
small paranormal effects using statistical techniques) are still prominent
in present-day parapsychology. Several innovations have been added dur-
ing the last several decades, such as the increasing use of automated data
collection (which is intended to avoid bias and fraud).

So far, I have only been relating the history of the practitioners of para-
psychology research. Part of the history of parapsychology, however, is
the criticism its practitioners receive from people outside the field. During
every phase of the historical sketch I’ve outlined, critics have said: “These
alleged paranormal abilities simply don’t exist. Parapsychology doesn’t
have any subject matter that is real. The results that have been published
can all be accounted for by either fraud or careless experimental design.”
Such charges have been made against the work of each generation of para-
psychologists throughout the history of the field.
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Reasons for the Controversy

I think the major reason that parapsychology is so severely criticized can
be stated very simply: The existence of the paranormal abilities that para-
psychologists study is contradicted by the many well-established results
of the natural sciences. In other words, the mainstream sciences (physics,
chemistry, and biology) look for and find lawful regularities and identifi-
able causal mechanisms in the workings of the world. In the understand-
ing that these sciences have achieved, there is no way for human minds
to affect the world (or other minds) directly, without the use of muscles;
or for human minds to gain information from the world (or other minds)
directly, without the use of the senses. In the words of one critic, science
is a “seamless web,” and we can’t simply graft the paranormal onto it
without disrupting the entire structure. Since this seamless web of interre-
lated ideas and results is so well confirmed (by countless experiments and
observations made by many thousands of scientists over hundreds of
years), then we may dismiss the results of parapsychology without further
consideration.

Why is this reasoning not compelling to the advocates of parapsychol-
ogy? There are at least three replies that advocates make to such reason-
ing. First: Science grows and develops by learning new things and incorpo-
rating these new things into a broader understanding; this might
eventually happen with paranormal phenomena, even if we can’t see how
it could happen at the moment. After all, revolutionary changes have oc-
curred before in the history of science. Second: The empirical evidence
that paranormal phenomena exist is overwhelming. In the face of empiri-
cal observations supporting the phenomena, we can’t simply deny the
existence of the paranormal because it doesn’t fit our current understand-
ing. Third: The results of parapsychology may not actually contradict
our current scientific understanding, because certain aspects of quantum
physics appear to be consistent with it, for example, nonmaterial informa-
tion transfer. Needless to say, critics of parapsychology are not convinced
by any of these replies. A relationship between quantum physics and psi
(“psi” is a general term coined to describe paranormal phenomena and
the causes thereof) is highly speculative at best. Any role for quantum
physics in explaining psi would be even more controversial than the exis-
tence of psi (the very thing it’s supposed to justify). Regarding a revolution
in scientific thinking to accommodate psi, critics point out that such revo-
lutions only happen when there is a pressing need. In other words, revolu-
tions occur when so many anomalies have accumulated that we can no
longer use current scientific ideas productively. If the empirical evidence
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for psi were indeed overwhelming, then we would be forced to undergo
a revolutionary change in our thinking. But the evidence for psi is only
meager and weak.

Evidence

You can see that the key question now has become this: How strong,
really, is the empirical evidence for the existence of psi? The advocates
and critics of parapsychology answer this question in exactly opposite
ways. We can’t even attempt a complete and detailed review of the para-
psychology literature. The number of published studies is very large, and
each study would require a critical evaluation. For many studies, a sec-
ondary literature of criticism and rebuttal already exists, and we’d also
have to look at that. Instead, I’ll just describe a few of the studies that
parapsychologists consider exemplary. My main interest isn’t in settling
the issue (even if that were possible); my main interest is in showing how
to think about scientific evidence.

The early work with guessing-card images provides several illustrative
examples. In Rhine’s laboratory during the 1930s, a series of tests were
run with J.G. Pratt and H. Pearce. There is little question of subtle sensory
clues in this case because the two people were in different buildings (using
synchronized watches to time the guesses with the card choices). The
cards had five different images (a standard technique in such work), so
guessing at random would presumably result in correct guesses for about
20% of the attempts. A lot of data was collected (1850 attempts), and
Pearce guessed right on about 30% of these attempts. A later card-guess-
ing series from Rhine’s laboratory involved a subject named W. Delmore.
Using ordinary playing cards (i.e., 52 images instead of 5), the experi-
menter placed each card in an opaque envelope and showed the envelope
to Delmore, who tried to guess which card was in it. Once again the
number of attempts was large (2392). In this case, we would expect cor-
rect guesses at random in about 2% of the attempts. Delmore guessed
correctly about 6% of the time. The probability of the results observed
in these two experiments is vanishingly small. However, it’s almost impos-
sible to rule out trickery completely in experiments of this type. Because
of the problems with card guessing (e.g., the danger of sleight-of-hand
being used), more recent work has often employed an electronic random-
event generator. This device is often based on the radioactive disintegra-
tion of atoms as its source of random events. In practice, the device might
have four possible states that it can choose among randomly, and then
indicate its state to the subject by turning on lights. The subject tries to
predict which state the device will choose (precognition) or to influence
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this choice (psychokinesis). The subject registers the prediction by press-
ing a button; the device records the prediction of the subject automati-
cally, and keeps a running total. Random-event generators are able to
acquire large amounts of data quickly and easily, and make cheating dif-
ficult. In general, the effects that have been observed using these devices
have been small; but because the number of trials has been so large, the
results have been statistically significant. For example, one subject pre-
dicted correctly 27% of the time (instead of the 25% expected by random
guessing). This isn’t much, but based on the 15,000 attempts that were
made, we would expect such a result only once every 100,000 experi-
ments. Critics of work with random-event generators have questioned
whether the device really does produce genuinely random choices, since
proof of this randomness is not always included in the published work.
Also, the subjects sometimes do worse than random guessing instead of
better, which is confusing. Some results with random-event generators,
however, have now been replicated by independent investigators.

Our final example illustrates a different kind of research method. Sub-
jects are first asked to relax, and note the imagery that enters their minds.
Meanwhile, an experimenter in another room is concentrating on some
particular image (which might be anything, e.g., an art print). The test is
whether the subject’s mental imagery is related to the image the experi-
menter concentrates on, and whether the subject can identify this image
when presented with a number of choices. A typical procedure in these
experiments is to promote a relaxed state in the subject with diffuse light
and white noise. After about 50 such experiments had been performed,
results were pooled for the 39 of them in which the same research method-
ology was used: Four pictures were presented to the subject, and only a
correct choice was counted. (In some other studies, choosing a wrong but
similar picture was given partial credit.) The subjects would then be ex-
pected to choose correctly 25% of the time by chance. The results of these
39 studies, reporting data from 1,193 subjects, were combined. The sub-
jects chose correctly more than 30 percent of the time, which once again is
extremely improbable. Some of the criticisms of this work include problems
with randomizing the pictures, and problems with subjects receiving sen-
sory information (e.g., if the same picture that the experimenter handled is
used as one of the subject’s choices). Also, only about half of the individual
studies obtained positive results, making replicability an issue.

Evaluation

There are two questions to consider, and I think the two questions should
be considered separately. Is parapsychology a science? Are the paranor-
mal effects studied by parapsychology real effects? I first need to justify
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my opinion that these are really separate questions, because even this
opinion is itself controversial. My reason for this belief is that science is
a way of investigating and understanding a phenomenon, not a specific
body of knowledge concerning that phenomenon. This subtle point is
easy to overlook because in a mature science (like optics or botany) our
level of understanding has become so high that the methods and subject
matter of the science merge together; the fact that light has different wave-
lengths and the act of making a rainbow with a prism become inseparable
in our minds. The early stages of a science are quite different. In the early
history of chemistry, for example, we once thought that a burning mate-
rial was losing a substance called “phlogiston.” We now know that burn-
ing materials are combining with oxygen, and that phlogiston does not
exist. Many chemists (e.g., the highly respected Joseph Priestley) did ex-
periments to study the properties of phlogiston. No one has suggested
that these experiments were not science because phlogiston does not exist.
So, it is possible for a science to study effects (at least for a while) that
are not real. Parapsychology might still be a science, regardless of whether
paranormal effects exist or not. Of course, I haven’t answered our ques-
tion yet, I’ve only tried to convince you that I can ask the question. Is
parapsychology a science?

Although several eminent authorities would disagree with my assess-
ment, I believe the answer is yes. My reason for this answer is that the
parapsychologists, in the published works which I’ve read, accept the
ground rules of science: Assertions need to be tested by experiment; flaws
in experimental design must be corrected; the generally accepted rules
of logical inference should be followed; experimental results should be
replicable by independent investigators; and, the ultimate goal of the en-
deavor is a coherent understanding of the observations. Individual para-
psychologists have sometimes made unwarranted statements that violate
one or more of these ground rules, and those statements can legitimately
be used to argue against my position. But isolated examples are not
convincing. The proper question is whether the field as a whole (as an
institution) condones such unwarranted statements. There is another ar-
gument against parapsychology as a science, and this argument merits
serious consideration. The understanding achieved within any science
must be consistent with all other sciences. This is the “seamless web”
argument that I discussed earlier. We can’t have a valid science with an
inbred worldview, isolated from the scientific community as a whole. To
give parapsychologists more time in which to integrate their results into
a broader framework may not be entirely unreasonable, however. Critics
will answer that parapsychology has had many years to pursue this goal
and has come up empty-handed. But perhaps this is an argument that
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the field is an unsuccessful science, not an argument that the field is not
a science.

We now come to the second question: Are the effects real? We face
here a situation similar to that found for cold fusion. A small number of
committed workers in the area are convinced that the evidence demon-
strates real effects, while a large number of mainstream scientists think
this conclusion is nonsense. We’ve looked briefly at some of the evidence
marshalled by the parapsychologists. How should we evaluate this evi-
dence? The key issue here is the burden of proof required. The more radi-
cally an idea diverges from well-established knowledge, the more stri-
dently we demand ironclad proof that the idea is right. Since the existence
of psi would be a revolutionary change of unprecedented proportions, the
evidence for psi must be subjected to unprecedented critical scrutiny. This
evidence hasn’t yet stood up to the stringent tests required, despite the
fact that more modern experiments have eliminated many of the initial
objections to their work (such as the easy availability of ways to cheat).
The unusually high demand for proof (which is justified by the extrava-
gance of the claims) accounts for the continued skepticism of the scientific
community, even when parapsychologists believe that their evidence
should suffice.

§3. COMPARISONS

An important similarity between cold fusion and parapsychology is the
problem with replicability, which both fields have. If two scientists can’t
do the same experiment and achieve the same result, we are bound to
have confusion and controversy. After a body of well-documented and
well-replicated work starts to emerge, controversies tend to die out. In
the case of cold fusion, advocates claimed that the problem with repro-
ducing their results was that the experimental techniques of the critics
were not right. But this claim couldn’t withstand scrutiny for very long,
because cold fusion advocates were obligated to specify the right proce-
dures in detail. In the case of parapsychology, the replication problems
are in a different category; these problems may be due to the individual
differences among the human subjects. If an alleged psi ability is found in
experiments with a particular subject, how can another experimenter test
this claim without having the same subject? Although this problem might
be unavoidable for individual experiments, aggregate results of collec-
tions of experiments should be reproducible.

A major difference between cold fusion and parapsychology has been
in their historical developments. Cold fusion burst dramatically upon the
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scene, caused a frenzy of activity, and then almost died out. Parapsychol-
ogy, in contrast, has had a small but relatively stable number of investiga-
tors for over a hundred years. The reason for the initial burst of cold
fusion activity is undoubtedly the shock of the initial announcement com-
bined with the social and economic implications of plentiful energy. The
reasons this activity ended are related to the string of failures the field
endured. The reasons for continued activity in parapsychology are un-
clear. Proponents argue that the successes of the field continue to attract
new investigators each generation, while critics maintain that the wide-
spread and irrational urge to believe in psi accounts for the continued
activity of the field.

A rather superficial similarity is that both fields have been labeled
pathological science. This label is a term coined by the famous chemist
Irving Langmuir to describe the activities of scientists who study nonexis-
tent phenomena by deluding themselves into observing things that aren’t
there. A classic case cited by Langmuir is the study of N-rays. Around the
beginning of the century, many scientists studied N-rays intensively for
several years. N-rays don’t exist, except (apparently) in the imaginations
of those scientists. Cold fusion and parapsychology do share one charac-
teristic that Langmuir attributed to pathological science, namely, they
both study effects that are small and difficult to observe. But neither field
meets all of Langmuir’s criteria, and it’s not clear that using this term
accomplishes anything. Another similarity between these two fields is that
proponents of both fields call for revolutionary changes in our scientific
thinking. We have already discussed the basis, in each field, for demanding
drastic changes in our understanding. Likewise, we have discussed the
case against drastic changes, both in general terms and also for each field
in particular. But there is also an interesting difference between these two
fields, namely, in the kind of changes demanded. Cold fusion demands
specific changes in specific, highly studied physical systems. Parapsychol-
ogy, on the other hand, calls for changes that are far-reaching but only
vaguely defined.
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Chapter 14

VERY ABSTRACT QUESTIONS: THE PHILOSOPHY

OF SCIENCE

“And you,” I said with childish impertinence, “never
commit errors?”

“Often,” he answered. “But instead of conceiving only
one, I imagine many, so I become the slave of none.”

(from The Name of the Rose by Umberto Eco)

SCIENTISTS go about their work, gathering and interpreting data in
order to better understand nature. Rarely does a scientist question
the basis for this work. What do we mean by “better understand-

ing”? How do we know our methods are valid and our interpretations
correct? Why should we even assume that nature can be understood at
all? These are questions of a type that scientists rarely ask. Asking this
kind of question is the task of the philosopher of science. Philosophers of
science have taken a variety of approaches. For some, the goal has been
to ascertain the true nature of things, which the methods of science can
only hint at. This metaphysical outlook has come under strong attack by
other philosophers, who claim that only direct observations have meaning
and that the job of science is to find regularities in these observations.
In this view, the role of the philosopher is a sort of gatekeeper, to bar
metaphysical entities from science. One school of thought assigns to phi-
losophy the work of determining normative methodological rules for the
sciences. In other words, philosophers need to tell scientists how they
ought to judge between competing theories; select valid evidence; con-
struct explanations with desirable properties; use inductive and deductive
logic; determine the truth or falsehood of a claim; and so on. This view
was predominant during the first half of the twentieth century, but has
since been challenged (primarily by thinkers influenced by the history of
science). Historical studies indicate that scientists rarely behave according
to the rules prescribed by the philosophers, so what meaning do such rules
really have? In this chapter, we’ll take a brief look at these controversies,
along with a variety of other interesting issues, acquiring a broad over-
view of the philosophical landscape as we go.
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§1. EMPIRICISM AND RATIONALISM

The word “empirical” means founded upon experience and observation.
Empirical observations are certainly a necessary ingredient of science, and
one might even say that empirical results are the foundation upon which
scientific thinking is built. But can science be built on empirical results
alone? Although some people might answer yes to this question, such
people are in the minority these days. A brief historical sketch reveals
rising and falling fortunes for empiricism in European thought. The
Greeks were rather more inclined toward metaphysical speculation than
empirical observation; but there was also a strain of empiricism in Greek
thought, as in the biological observations of Aristotle and in the attention
paid to astronomical observations. Empiricism waned during the Middle
Ages, as thinkers relied more on the authority of the ancients, but it be-
came prominent in the sixteenth and seventeenth centuries as part of the
new learning advocated by natural philosophers. Galileo, for example,
effectively used new observational discoveries (Jupiter’s moons and the
phases of Venus) to argue for the Copernican system (see chapter 5). In
England, Francis Bacon enshrined empirical observation as the basis for
all progress. Bacon is a sort of patron saint of empiricism; he envisioned
the workings of science as primarily a systematic gathering of empirical
facts. These facts would then be sifted and organized so as to arrive at
general conclusions. Bacon’s ideas remained very influential for many
years, but the actual practice of science developed a more theoretical
strain in parallel with such empiricism. Currently, most people would
surely say that empirical observations and theoretical constructions must
mutually reinforce each other in order for science to progress.

There is an important problem with basing scientific conclusions solely
on empirical facts, namely, the so-called problem of induction. Induction,
or inductive logic, basically means that we can conclude that something
will always happen because it has always happened before. (“I know the
sun will rise tomorrow, because it has risen every day before until now.”)
This logic is at the core of any attempt to prove a conclusion by empirical
observation, because any such set of observations must be finite in num-
ber and yet the conclusion is meant to be general. To put it more grandi-
osely, we wish to make a universal statement based on an isolated set of
observations (see chapter 7 for a more practical discussion of induction).
The problem with this reasoning is that there is no way we can guarantee
that it is true. The fact that something has always happened before does
not insure that it will always happen. We’ll return to this issue in §4.

At the opposite pole of thought is the doctrine of rationalism. The
champion of rationalism was René Descartes, who distrusted empirical
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information as a secure foundation for knowledge because the senses can
be fooled. We all know that we can be seriously misled by optical illusions
and so on. If the evidence of our senses can’t be trusted, what can? Des-
cartes believed that deductive logic, exemplified by mathematics, was the
surest foundation for knowledge. Ultimately, then, science should be
based on our minds, not our senses. Rationalism, taken to an extreme,
proclaims that truth can be apprehended directly by our minds. We only
need to use the proper thought processes, identifying manifestly true first
principles, and deducing their consequences; no empirical input is needed
in this view. Few people still accept this extreme view. Historically, neither
empiricism nor rationalism has proven adequate by itself as a philosophi-
cal foundation for science. Perhaps the most important result of Des-
cartes’ program was to highlight the value of mathematics in the sciences.

Logical Positivism

The marriage of empiricism with mathematical logic was completed in
Vienna around 1930 by a group of philosophers who had developed a
viewpoint called logical positivism. A major tenet of positivism is that
only directly observable objects and events should be considered valid
scientific subject matter, making it a highly empiricist philosophy. Any-
thing that can’t be observed is, for the positivist, unwanted metaphysical
baggage. The task of science, in this view, is to ascertain the logical rela-
tionships between all of these observables. The network of logical connec-
tions built up in this way is a scientific theory, and such a theory is the
only “positive” knowledge that we can possibly have. The clarity and
precision of positivism were attractive to many philosophers. Nothing is
more clear and unambiguous than mathematical logic; and empirical facts
are certainly a firm foundation upon which to build science. But there is
a problem: many things in the sciences are not directly observable. What
do we do about these things? (The grandfather of positivism, Ernst Mach,
had stoutly denied the existence of atoms because they could not be ob-
served.) To address this problem, the logical positivists demanded “rules
of correspondence” between theoretical entities and empirical observa-
tions. As long as a concept could be connected to observations by a set
of rigid rules, the concept was legitimate. If such rules can’t be found, get
rid of the concept.

A similar kind of thinking is found in the movement known as opera-
tionalism. The key idea here is the “operational definition” of a scientific
concept, which is a definition purely in terms of operations resulting in
a measurement. For example, Newton had defined time with a verbal
statement that he regarded as self-evident, but that was operationally
meaningless. Einstein’s redefinition of time in terms of the operations with
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clocks that are needed to measure time turned out to be an important
advance. Using examples like this, P. W. Bridgman (an experimental physi-
cist with philosophical interests) formulated the idea of an operational
definition. Bridgman claimed that any concepts that couldn’t be defined
operationally should be considered scientifically meaningless. The spirit
of operationalism is quite consistent with logical positivism, and both
were heavily influenced by Mach. In terms of the positivist program, oper-
ational definitions are a particular kind of correspondence rule. Logical
positivism dominated the philosophy of science for decades, and still ex-
erts some influence. But it came under attack around the middle of the
century, and has waned in authority since then. We’ll see some of the
problems with positivism as we go on with the chapter. A different philo-
sophical vision of science, however, had been articulated even before posi-
tivism was invented. The brilliant French physicist and philosopher, Henri
Poincaré, proposed that science needs to employ “conventions” that are
creations of the human mind, not directly tied to empirical facts. These
conventions are not merely free creations, however, because they are con-
strained by our observations of the world in a variety of indirect ways,
and sometimes must change with the course of scientific progress. Poin-
caré, writing near the turn of the century, devised a philosophy of science
that in many respects foreshadowed much later developments.

§2. FOUNDATIONAL QUESTIONS

Causality and Determinism

The idea of causality is very important in the sciences but has been notori-
ously difficult to make philosophically precise. The root word of causality
is “cause.” If one event or action is the cause of another, they are con-
nected by a causality relation. This sounds simple enough, but what do
we mean when we say that one thing causes another (see chapter 7)? For
example, what caused my coffee cup to break? I pushed my coffee cup
off the shelf. So, my pushing it caused the cup to break. But we could just
as well say that gravity pulling it down caused the cup to break; or, we
could say that the brittleness of the clay caused the cup to break. This
example illustrates two problems: the problem of multiple partial causes,
and the problem of logical necessity (i.e., if the cause occurs, the effect
must follow). In the physical sciences, discussions of causality are re-
stricted to cases where a single cause can be identified that always gives
rise to a well-defined effect. In the life sciences and the social sciences,
where such a restriction is seldom possible, the concept of causality is still
often employed (e.g., a virus causes the common cold, but exposure to
the virus doesn’t always necessarily result in a cold). Although descrip-
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tions based on causality are quite widespread and important in these
fields, philosophical analysis of such usage has not been thoroughly
worked out. The restriction to cases of single causes and necessary effects
is very limiting, of course, but does permit a high degree of logical rigor
in the discussion.

Empiricist philosophers, however, have used this criterion of universal
conjunction to deny the meaningfulness of causality. As David Hume
pointed out, the most that we can ever really know is that one event has
always followed another; to then claim that the first event causes the sec-
ond is merely a bad verbal habit. Night always follows day, for example,
but we don’t claim that the day causes the night. This isn’t the last word,
though, because empiricism isn’t the only game in town; other philoso-
phers have elevated causality to the status of a metaphysical principle.
Philosophers who were heavily influenced by physics adopted a different
line of thought. Since you can write down equations and solve them in
order to predict the second event based on the occurrence of the first
event, then predictability becomes the key issue (see, however, chapter
17). Another word for such predictability is determinism; the first event
determines the occurrence of the second. Put differently, the important
property of the world is that it’s deterministic, not that it’s causal. Causal-
ity, in this view, is just anthropomorphic language assigning motives to a
deterministic sequence.

Chance and Probability

But if the world is deterministic, there should be no random events; and
yet, we know that dice rolls and lightning strikes are unpredictable. Even
without using the new insights gained in the last few decades (chapter
17), this paradox can be resolved. The prediction of an event requires a
complete specification of the state that deterministically gives rise to this
event. In practice, meeting this requirement is rarely possible. From this
standpoint, the need to use probability in the sciences stems from what
we don’t (and perhaps can’t) know. How can we figure out what the
probability of an event is? There are well-defined mathematical rules for
combining probabilities. For example, I can calculate the odds in a coin
toss of getting five heads in row, if I know the odds of getting a head on
each toss. But how do I know the odds of each individual toss coming up
heads? How do we figure out the single-event probabilities that we need
in order to make combinations? There are two main schools of thought
on this question: one subscribes to the principle of indifference, while the
other adopts the frequency interpretation.

The principle of indifference is simply stated: if there is no reason to
believe that one event is more or less likely than another, then the events
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have equal probabilities. The odds of getting heads in a coin toss are 50
percent; the probability of any particular face coming up on a tossed die
is 1/6; there is a 1 out of 52 chance of drawing any particular card from
a deck; and the odds of finding a particular air molecule in one volume
of a room are the same as finding it in any equal-sized volume. The adher-
ents of the frequency interpretation, being empiricists, find this idea
too metaphysical. They instead define the probability of an event as the
ratio of the number of times this event occurs to the number of possible
times it could occur. In other words, we toss many coins, and count the
number of heads that turn up. The disadvantage of this technique is that
it’s often impractical to carry out, but the obvious advantage is that you
find out if your presuppositions are wrong (for example, you may be using
loaded dice).

The arguments between these schools of thought tend to be highly tech-
nical. The questions are important, however, because many sciences are
based on chance and probability. Prominent among these are statistical
mechanics, genetics, the theory of experimental errors, quantum physics,
and much of the social sciences. In addition, some strains of modern phi-
losophy consider scientific theory validation to be primarily a matter of
increasing the probability of correctness, since we have no method of
assuring certainty. Finally, questions of determinism and chance in the
sciences influence the broader philosophical discussions of free will and
destiny in human affairs.

Space and Time

We experience our lives in space and time. Long before the dawn of a
scientific worldview, philosophers (not to mention poets and mystics)
were deeply engaged by questions about the nature of space and time.
Since all natural processes occur in space and time, these concepts are
fundamental to science. (Examples might include the formation and ero-
sion of mountain ranges, or the geographic distribution of plants and
animals during a period of climate change.) But the use we make of space
and time in many sciences is pretty straightforward, with little need for
philosophical analysis. An exception to this statement is physics, in which
space and time become themselves objects of study. Newton’s descriptions
of space and time as absolute properties of reality, unaffected by either
matter or consciousness, were in fact metaphysical presuppositions. The
writings of Kant put this metaphysical view of space and time on a more
rigorous philosophical foundation. Put simply, the properties of space are
given by the geometry of Euclid, and time is a separate property that
exists independently of space. Einstein discovered that these metaphysical
properties of space and time are incompatible with the logic of modern
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physical theory (electrodynamics and mechanics don’t fit together prop-
erly), as well as certain experimental observations. In response, Einstein
reformulated our conceptions of space and time. In Einstein’s relativistic
worldview, space and time are welded together into a single four-dimen-
sional spacetime, whose non-Euclidean properties depend on the matter
that resides there. One challenge of twentieth-century philosophy of sci-
ence has been to find a good metaphysical foundation for this revolution-
ary conception (Ernst Cassirer’s work here is noteworthy).

A second major question concerns the directionality of time, the so-
called arrow of time. Past, present, and future have always been a mystery
worthy of consideration by philosophers. In science, part of the mystery
stems from the role that time plays in the equations of physics. In the
physics of both Newton and Einstein, these equations don’t depend on
the plus or minus sign of the time; the same motions are predicted either
way, only the direction of the sequence of events will be reversed. In other
words, the universe could just as well be running either forward or back-
ward, as far as the equations are concerned. Of course, we always experi-
ence the universe as running forward, from past to future. Why should
this be? Some insight into the question comes from statistical physics (see
chapter 17), but philosophers are still pondering these deep issues.

Reductionism and Emergence

To illustrate what reductionism means, let’s consider an example. Kepler’s
laws tell us descriptively how the planets move around the sun (see chap-
ter 5). Newtonian dynamics tells us, in theory, how any object should
move. If we apply Newtonian dynamics to the case of the planets and the
sun, we find that Kepler’s laws result from the analysis; we are able to
explain, in broader terms, why they work. In other words, we have re-
duced Kepler’s laws to a special case of dynamics. Different degrees and
levels of reduction can be found in the sciences. In our example, there are
two levels of reduction; first, Kepler reduced reams of observational data
to a small number of empirical rules, and then Newton reduced these
empirical rules to a special case of a general theory. This sort of reduction
occurs all the time in the sciences; in a sense, we’re really just carrying
out a principle aim of science, subsuming the particular to the general.
But under what conditions can such a reduction be accomplished? Can
any scientific result be reduced in this fashion? If so, isn’t all of science
then ultimately reducible to some final irreducible theory? These are some
of the philosophical questions concerning reductionism. Whether any sci-
ence can be reduced to some other (more fundamental) science is a hotly-
debated question.
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Let’s first consider a classic example of one science being reduced to
another. The science of thermodynamics is entirely based on three general
laws, which were originally distilled purely from observations and experi-
ments on heat and bulk materials. In other words, thermodynamics says
nothing about the microscopic properties of materials (or heat). The sci-
ence of statistical mechanics, on the other hand, assumes that materials
are made of atoms obeying the laws of dynamics. Since we cannot in
practice predict the individual motions of the vast numbers of atoms, we
use probability theory along with dynamics to make predictions for aver-
aged values. Remarkably, theorists discovered that these averaged values
correspond to the variables of thermodynamics. We can now understand
thermodynamic results based on a microscopic picture, and so we can
say that thermodynamics has been reduced to statistical mechanics. This
accomplishment is one of the great victories of reductionism.

But the atoms themselves are made of subatomic particles, which are
studied by high-energy physics. Does this mean that thermodynamics can
be reduced to high-energy physics? Let’s expand this line of thought:
Chemistry studies reactions between atoms and molecules, forming and
breaking chemical bonds. These bonds are formed by electrons, subject
to the equations of quantum physics. So chemistry is reducible to physics.
Biology, however, studies organisms that are made of chemicals. Psychol-
ogy studies human thinking, which occurs in the brain, a biological organ.
Sociology studies societies, which are made of humans. We can then make
the claim that sociology is reducible to physics through a kind of hierar-
chical chain of reductions. There are, however, a number of problems
with this absurd claim. An important technical problem is that successful
reductions must involve clear and precise correspondences between all
terms in the two theories or sciences. If this condition is not satisfied (it
rarely is), then each science is an independent thought system with its
own terms and structure, not necessarily reducible to anything else. On a
practical note, the “reducing” science can’t predict all of the results found
in the “reduced” science in most cases (not even chemistry and physics,
where reductionism seems fairly viable). Favorable synthetic reaction
pathways are more often found by working in the lab, not by solving
quantum physics equations.

Another argument against extreme reductionism has been advanced by
the philosophical movement known as holism. The basic idea here is that
a whole may be more than the sum of its parts. A complex system may
exhibit emergent properties that can’t be predicted by analysis of the com-
ponent parts of the system. But a reductionist program requires that the
complex systems of one science can be understood in terms of the compo-
nent parts in its “reducing” science. For example, a biological cell must
be understandable based solely on the chemical reactions occurring in the
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cell. If the cell has emergent properties not predicted by these chemical
reactions, biology can’t be reduced to chemistry. Emergence, as a philo-
sophical doctrine, attracted both interest and controversy (reductionists
criticized it as disguised vitalism). Recently, however, the idea of emergent
properties has received a boost from within science itself, as the study
of complex systems has progressed (see chapter 17). In any event, few
philosophers (or thoughtful scientists) still subscribe to the radical form
of reductionism (although it’s still often found in introductory textbooks).
The sense in which reductionist programs are still valid (and to what ex-
tent) is an active question in the philosophy of science.

§3. EPISTEMOLOGICAL ROOTS

How Do We Know?

The branch of philosophy concerned with problems of knowledge is
called epistemology. How do we acquire knowledge of the world? What
does it mean to know something? How do we know that our knowledge
is true? How is our knowledge of something related to the thing itself?
These are the kinds of questions explored by the philosophy of knowl-
edge, epistemology. Epistemological questions are broader than the ques-
tions found in the philosophy of science, but are in a sense foundational.
The roots of the philosophy of science are deeply embedded in epistemol-
ogy. Here, we’ll take a brief look at some of the epistemological issues
that are most relevant to the philosophy of science.

Percepts and Constructs

We often think of perceptual observations as simple facts, not reducible
to anything simpler. “I see a tree.” We call this an observation, not a
conceptual statement. But what I actually perceive, before my mind im-
poses order on it, is some spatial distribution of colors and intensities.
And even these result from various reflected light rays striking the cells of
my retina, sending neuronal signals to the brain. The actual perception
results, in some way we don’t understand, from the complex pattern of
interconnected neuronal activity in the brain. It’s not simply a matter of
“a tree is there” and “I see it.” So even in the simplest cases, our percep-
tion of the world entails our mind imposing some order on a mass of
information produced by signals originating in the world. Put differently:
we create constructs based on our percepts. The point is that this is neces-
sary, not optional. We can’t avoid the use of constructs in our empirical
observations. This doesn’t mean that our perceptions are arbitrary, be-
cause there are connections between the percepts and constructs, rules
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which govern how the constructs are created from the percepts. If these
rules are well defined, then empirical observation is still meaningful.

In scientific discourse, the terms under discussion (i.e., constructs) be-
come more complex and abstract. Instead of a tree (which I can see), we
might be studying photosynthesis (which I can’t see). But the process of
photosynthesis can be related to the absorption of light and the produc-
tion of glucose, which I can measure and analyze chemically. My actual
empirical observation might only be the pointer reading of the instrumen-
tation I use to measure the absorption or analyze the glucose. But there
are well-defined rules (rules of correspondence, in positivist language)
that relate the pointer readings to the quantities, and there are clear rela-
tionships between the measured quantities and the photosynthesis pro-
cess. Our facts and our empirical observations are embedded in a dense
matrix of interpretation.

Notice that we have now introduced a new element into the discussion.
We are now talking about relationships between concepts only (e.g., “glu-
cose is produced by photosynthesis”). The rules of correspondence relate
the concepts to observations, but there are also purely logical relation-
ships between the concepts themselves, none of which are directly observ-
able. Constructs can be related to each other by logical relationships, and
related to percepts by rules of correspondence. Are we free in science to
create any constructs we please? The answer is no. Higher-level constructs
may not be unique, but neither are they arbitrary. In order to be useful in
science, constructs must have certain properties. We’ve already seen that
constructs must be connected to other constructs by logical relationships;
an isolated construct cannot be valid in science, no matter how interesting
it may otherwise be. Likewise, we’ve seen that scientific constructs must
ultimately have some connection to perceptions, at least an indirect con-
nection. (Hierarchies of angels and demons with many intricate relation-
ships to each other, but nothing to tie them to perception, are not objects
of scientific study.) Constructs should also have some degree of stability;
we can’t just keep making it up as we go along. They should also be
extensible, that is, capable of being generalized. Finally, scientists have a
preference for constructs that are simple rather than being unnecessarily
cluttered with complications.

Theory-laden Facts

The foregoing considerations bring us face-to-face with one of the prob-
lems of logical positivism (and empiricism in general). Empirical facts
are already constructs, not “raw” percepts. The terms used in the lan-
guage of a scientific theory are also constructs (more abstract than the
fact-constructs). Now, the rules by which fact-constructs are created
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from percepts may be (and almost surely are) influenced by the theory-
constructs to which they are related. Our empirical facts are not then
totally independent of the theories we use to interpret them. As a trivial
example to demonstrate the point, suppose I say that empirical observa-
tion proves that the sun rises in the east every day. “East” and “sun” are
both complicated collections of concepts, involving geographical knowl-
edge, astronomical knowledge, and so on. Surely that statement must
mean something very different to us than it meant to the ancient Celtic
Druids. How can we then consider it a simple empirical fact? This in-
tertwining of theory and observation is one of the problems with the view
that scientific results can be proved by purely empirical means. If empiri-
cal observations already have a conceptual component inherently built
into them, it is circular reasoning to say that our observations have proved
our concepts correct. This situation has been noted by philosophers, who
use the term “theory-laden” (coined by N. R. Hansen) to describe the
interpretive matrix that accompanies seemingly simple facts. If empirical
facts are theory-laden, then the positivist program is clearly derailed.
What’s not so clear is the extent to which the theory-laden quality of facts
impairs our ability to validate a scientific theory by empirical tests. Some
thinkers have concluded that objective science isn’t even possible under
the circumstances, while others believe that only slight adjustments to
empiricism are needed. This issue, along with other issues of theory vali-
dation, is considered next.

§4. VALIDATION OF THEORIES

Failure of Induction

Logical positivism has a problem, even if you accept the pristine theory-
independence of facts: the problem of induction. On the one hand, there
is a purely logical problem with inductivism. Any logical proof of the
inductivist premise must be itself a proof by induction (“induction has
always worked, therefore it is valid”). This obviously is no proof at all,
since it assumes the truth of the premise it sets out to prove. On the other
hand, there is a more practical problem: the conclusions based on induc-
tion do, in fact, sometimes turn out to be wrong. For example, Lavoisier
had shown (by the late eighteenth century) that a number of substances
are elements, that is, substances that cannot be further broken down or
changed to another substance. By the beginning of the twentieth century,
this property of elements (unchangeability) had been shown empirically
to be true innumerable times. That elements are immutable was taken to
be a well-known fact; note that the conclusion is clearly based on induc-
tion. Around 1900, radioactivity was discovered, and Rutherford demon-
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strated that the radioactive decay process is actually a change from one
element to another. The previous conclusion, based on induction, had
simply been wrong.

Falsificationism

To avoid the problem of induction, we can turn the question around:
Once a theory has been proposed, we demand that it make statements
that can be falsified by comparison with observation. We then make the
observations. If they don’t agree, that is, if the statement is false, we pro-
nounce the theory wrong. If the observation agrees with the prediction
(statement is true), then we say the theory is confirmed by the observation.
But we don’t necessarily say that the theory is true. We’ve made a subtle
but important change in our philosophical view concerning the goals of
science. In this picture, we accept theories on a provisional basis, as long
as they continue to be confirmed. We can never prove a theory is right,
only that it’s wrong (if a statement is false). This idea has been implicit in
science for some time, but as a formal doctrine it is closely associated with
the philosophy of Karl Popper.

The criterion of falsifiability serves a number of worthwhile purposes.
Primarily, it allows us, when deciding questions of validity, to weed out
statements that have no observable consequences. An extreme example is
the claim of an Aristotelian opponent of Galileo that he made after he
(the opponent) observed through a telescope mountains and craters on
the moon. To make this observation consistent with his belief that the
moon is a perfect sphere, he hypothesized the existence of an invisible
substance that covered the mountains and filled the craters, making a
perfect spherical surface. This substance could not in principle be ob-
served, so his claim could not be falsified. Such statements are of little use
in the discourse of science.

But the rigorous logic of falsificationism is rarely enforced in practice;
if it was, many productive and valid ideas would have died an early death.
A famous example is the so-called stellar parallax predicted by the Coper-
nican theory. Stellar parallax simply means that the stars should appear
to be in slightly different places as the earth itself moves around from
place to place. This sensible conclusion is hard to escape, but the effect
was not observed until about 1840, roughly 300 years after the work of
Copernicus. Strictly speaking, the theory was falsified. But it wasn’t given
up, nor should it have been. (The reason parallax was not seen is that the
stars are much farther away than anyone suspected, and it awaited the
technical development of better telescopes to make the observation.) The
point here is that a good theory, which has a number of empirical confir-
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mations and is leading progressively to new ideas and applications, will
not and should not be given up even if a few minor discrepancies remain.
Falsificationism is still a valuable methodological tool. The confirmation
of bold new ideas, when put to the test of falsification, drives the progress
of science (as in the case of bending starlight predicted by Einstein’s gen-
eral relativity in 1915 and observed during a solar eclipse in 1919).
Equally important, the falsification of well-accepted ideas, as in the radio-
active transmutation of elements cited above, also drives the progress of
science. So, falsificationism serves well as a framework for thinking about
scientific questions, but it doesn’t provide us with a universal principle
for determining validity in science.

The Quine-Duhem Thesis

In our discussion of stellar parallax, we saw that an apparently discon-
firming fact could be accounted for by the overall context of the situation
(large distances, limited instrumentation, etc.). This episode is indicative
of a more general problem, namely the underdetermination of theories
by facts. The general idea is this: Any scientific theory is a complex
interlocking set of concepts, observations, definitions, presuppositions,
experimental results, and connections to other theories. No single fact is
going to be crucial to the survival of a theory. We can illustrate this
point with a simple hypothetical example. Suppose I have a theory that
predicts that carbon turns to diamond at a certain very high pressure and
temperature. I try it, and it doesn’t happen. My theory appears to be
falsified. But, how do I know what the temperature and pressure really
are? To measure extreme pressures and temperatures requires special in-
struments, which themselves operate according to theories. Maybe those
theories are false under our conditions, and my diamond theory is correct
after all. Empirical facts are not always unambiguous. So, the complexity
of many interdependent and theory-dependent terms makes it difficult to
frame an unambiguously falsifiable statement. Pierre Duhem argued as
early as 1906 that our experiments only test the total structure of a sci-
ence, not individual hypotheses. W. V. O. Quine later extended and
strengthened this idea considerably, resulting in the so-called Quine-
Duhem thesis: It’s impossible, on purely logical grounds, to falsify a the-
ory experimentally, because any observation can be accommodated by
making suitable adjustments.

The Quine-Duhem thesis has generated a lot of controversy. Some
thinkers believe the claim is a triviality, while others believe that it utterly
destroys the objectivity of science. An important point to keep in mind
is that the adjustments we must make to save a theory, while they may
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be logically possible, may also be unacceptable on other legitimate
grounds; the Quine-Duhem thesis does not mean that all theories are
equally good. The question then becomes this: On what grounds are such
judgments made?

Kuhn and Scientific Revolutions

This last question was examined, along with a host of other issues, in a
very influential book called The Structure of Scientific Revolutions by
Thomas Kuhn. Kuhn’s work, published in 1962, was based on historical
studies of how science is actually done, as opposed to the normative work
typical of the philosophy of science before that time. Since the book was
published, many critical commentaries on it have been written. Kuhn also
continued to refine his own philosophy of science, and a legion of scholars
have rather freely interpreted his work to support a wide variety of
positions and viewpoints. Very briefly, Kuhn’s view is this: Scientific com-
munities operate by sharing a set of assumptions (some tacit and some
explicated), techniques, and methodologies, along with a common termi-
nology and worldview. All of this he collectively refers to as a paradigm.
Work within a paradigm is called normal science, and consists of filling
in details, solving puzzles, and so on. When the number of unsolvable
puzzles, loose ends, empirical facts that don’t fit in, and so on becomes
intolerable, a scientific revolution occurs; after this, an entirely new para-
digm is adopted. During periods of normal science, determining validity
is relatively straightforward because everyone agrees to the same rules
and talks the same language. During a scientific revolution, however,
when two different paradigms are competing, it becomes extremely diffi-
cult to determine validity based on simple empirical comparisons because
different scientists might be talking a different language and even seeing
a different world. For example, if I live in a world where combustion
occurs by the driving off of a substance called phlogiston, and you live in
a world where combustion occurs by the combining with a substance
called oxygen, how can we compare the results of our experiments to
arrive at a common conclusion? Eventually, the new paradigm becomes
established. This new paradigm is determined to be better than the old
paradigm by a consensus of the scientific community. The process driving
the paradigm shift includes a combination of empirical criteria (e.g., there
are fewer falsified statements) and nonempirical criteria (e.g., the new
paradigm leads to a period of vigorous activity and progress).

Kuhn’s picture is controversial as a general description of scientific
progress, but there are certainly some elements of truth in it (at least for
some historical eras). Our main interest here is the key role played by
consensus judgments of scientific communities. Validity is not established
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merely by a rational comparison of theories, applying a set of predeter-
mined standards that automatically lead to a unanimous choice. Instead,
individuals working in communities try to sort out a maze of theory-
laden observations (of varying accuracy and relevance), out of which they
formulate a coherent worldview where observations make sense to them.
Eventually, the individual judgments coalesce into a consensus judgment
of the whole community as a powerfully coherent new formulation
emerges. Those who are not convinced become marginal to the process
(cranks). Kuhn’s work has been attacked because it has been taken to
imply that there are no standards, that validity in science is determined
by majority rule (the work has also been applauded for the same reason;
Kuhn, incidentally, didn’t agree with this interpretation). The accusation
is that nonscientific criteria, such as political ideology or religious convic-
tion, may play a role in the process. Kuhn’s work certainly implies that
there is some role for the judgment of scientific communities. But the
precise nature of that judgment, and the extent to which it sanctions a
kind of irrational antirealism, are very controversial matters indeed (see
chapter 15).

Criteria for Theory Selection

A theory that explains more is better than a theory that explains less. If
we need to make up a separate explanation for each individual phenome-
non, we have not done very well; but if a single theory explains a set of
disparate phenomena all at once, then we’ve accomplished something.
The greatness of Newton’s mechanics is that it explains the orbits of the
planets around the sun, the spinning of an ice skater, and the workings of
a grandfather clock, all with the same laws of motion. So explanatory
power is one of our criteria for what makes a theory good. What else
makes a theory good? Simplicity: a simple and elegant theory, with few
assumptions, will be chosen over a cumbersome and ugly theory, even if
both explain the observed data equally well. Fertility: a good theory leads
to new ideas, new applications, new connections to existing theories, and
new refinements of itself (eventually, to even newer theories). A theory
that is an intellectual dead end is a poor theory, even if it explains all the
current data (vitalism, in biology, might be an example). Finally, a good
theory should lead to the prediction of unforeseen results, to something
that was not known when the theory was devised. For example, the highly
mathematical theory of electricity and magnetism derived by James Clerk
Maxwell predicted the existence of radio waves, which no one had ever
observed or even suspected. None of these criteria can be justified from
an empiricist viewpoint because in each case the “good” theories and the
“bad” theories account for all known data equally well. And yet, science
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makes extensive use of these criteria in theory selection judgments. We
might justifiably label such criteria as metaphysical statements, although
the word “metaphysical” carries a lot of undesirable excess baggage.

Judgment in Science

Some element of human judgment must surely be a part of the critical
process in science (after all, science is done by humans). But the judgments
of individual scientists, and the scientific consensus that they formulate,
are severely constrained by nature. Scientific theories are not free con-
structions of the human mind, any more than they are inductive general-
izations of simple facts. A rigorous methodology of science that excludes
human judgment may or may not be impossible, but it certainly hasn’t
been accomplished. Yet judgments are made within the context of agreed-
upon methodological standards that allow us to employ nature as a reli-
able (if not infallible) guide. So we have arrived at the following answer
to our question of how validity is determined: Out of our initial set of
empirical observations and experiences, shaped by our unformulated pre-
conceptions, we begin to develop initial scientific concepts. These con-
cepts are used to organize a growing stock of observations, which are
combined with various nonempirical criteria (such as simplicity, fertility,
and explanatory power) in order to formulate more refined theories. This
last step requires the exercise of scientific judgment on the part of individ-
uals and communities. The refined theories lead to a set of predictions,
statements, and claims that should have falsifiable consequences. These
predictions, statements, and claims are then tested against empirical ob-
servation, with scientific judgment again exercised to resolve any ambigu-
ities that present themselves. The collective result of this judgment is a
consensus of the scientific community as to whether the theory is valid or
not. This consensus judgment is retained provisionally, since new observa-
tions are being made and new theories are being formulated that may
challenge it.

§5. SCIENTIFIC EXPLANATION

What is the point of a scientific theory? We’ve looked in some detail
at the question of whether a theory is correct, but what does a correct
theory do for us? A theory is intended to explain the phenomena we ob-
serve. The question then becomes this: What do we mean by a scientific
explanation? Philosophers have had a very difficult time answering this
thorny question, and we’ll just take a brief look at it. The positivist answer
was that an explanation is a deduction from a law of nature. In other
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words, if I want to explain why some event happens, I start with some
totally general premise (a law of nature) that is always true; I then use
deductive logic to demonstrate that this event must follow from this prem-
ise. For a science that is already in a highly mathematical form (such as
physics) this works reasonably well, but it doesn’t work so well for less
axiomatized sciences (such as geology). Another problem is that it’s possi-
ble to construct explanations that formally satisfy these conditions but
don’t actually explain anything. Finally, the idea of a law of nature has
never been defined sharply. Yet the basic point of this concept of scientific
explanations seems to be on the right track. The essential idea is that an
explanation should account for many disparate phenomena by some
small number of fundamental premises. This point is still valid even in
the absence of all the formal deductive logic conditions, and it remains
valid for virtually any science.

Another aspect of scientific explanation is that there are often succes-
sively deeper levels of explanation, each level explaining what is left unex-
plained by the previous level. For example: The properties of a particular
element are explained by the position of the element in the periodic
table, which brings an ordered regularity to such properties (see chapter
2). The organization of the periodic table itself is explained by the electron
shell structures of the elemental atoms. These shell structures, in turn, are
explained by the Pauli exclusion principle of quantum mechanics. And
the exclusion principle is explained by the symmetries of the quantum
mechanical wavefunction (see chapter 18). The successive layers of expla-
nation unfold like an onion being peeled. At the core of the onion is a
fundamental principle that cannot be further explained (in the previous
example, a symmetry principle). This too is characteristic of scientific
explanation; an irreducible level is reached, beyond which no further
explanation is possible at that point in a science’s development. Future
progress might or might not unfold at a deeper level, but until then, the
premises of this irreducible level are just taken to be the starting point
and accepted as such.
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Chapter 15

QUESTIONS OF LEGITIMACY: THE POSTMODERN

CRITIQUE OF SCIENCE

Yet in the choice of these man-made formulas we can not be
capricious with impunity any more than we can be capricious

on the common-sense practical level. We must find a theory
that will work; and that means something extremely difficult;
for our theory must mediate between all previous truths and
certain new experiences. It must derange common sense and
previous belief as little as possible, and it must lead to some

sensible terminus or other that can be verified exactly. To
“work” means both these things; and the squeeze is so tight

that there is little loose play for any hypothesis. Our theories
are wedged and controlled as nothing else is. Yet sometimes

alternative theoretic formulas are equally compatible with
all the truths we know, and then we choose between

them for subjective reasons.
(William James)

ABATTLE is raging in academia over the issue of whether objective
knowledge is possible. The opposing camps are not really very
well defined, but in broad terms we might say this: the traditional-

ists, on one side, favor western culture, values that are absolute, and truth;
the postmodernists, on the other side, favor multiculturalism, relativism,
and a worldview in which truth doesn’t exist. While these caricatures
oversimplify the interesting range of issues involved, the ramifications for
fields like history, philosophy, and sociology are clear. The sciences have
also been drawn into this conflict. Scientists have generally thought of
their discipline as objective, free of values, and leading to definite knowl-
edge (as opposed to mere opinion). But the postmodern critique denies
the possibility of objectivity and of definite knowledge. Postmodernists
point out that science is a product of western culture; if we deny the pri-
macy of western culture, then science is just another claimant (among
many) for the validity of its results. An entire area of academia (science
studies) has been built up around this basic idea. A number of scientists
have been rather vocal in taking exception to these postmodern claims.
A point these scientists often press is that many of the postmodern critics
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of science have little understanding of either the results or the methods of
science; for this reason, such critics are poorly qualified to make the claims
they do. This attitude came to a head in 1996, when physicist Alan Sokal
wrote a parody imitating typical postmodern papers and then published
it in one of their leading journals. Leaving aside questions of whether this
action was ethical and what (if anything) we might conclude from the
episode, it certainly brought the controversy to everyone’s attention.

Several murky issues are tangled together in this controversy. Is science
merely the tool of an iniquitous imperialistic system? If so, is this situation
necessary, or is it contingent? Does the validity of a scientific result depend
for its warrant on the justice of the sociopolitical system in which the
science is done? Is the achievement of scientific consensus a rational pro-
cess, or a political process? Are scientific theories accurate reflections of
a pre-existing reality, or merely social constructions based on negotiations
between interest groups? Are the knowledge claims of science more valid
than knowledge produced by other ways of knowing, or are all such
claims equally valid? Let’s explore these questions and try to untangle
some of the relevant issues. One source of confusion stems from mixing
together two very different issues: the question of whether science is good
or bad, and the question of whether science delivers a correct understand-
ing of nature. The validity of an idea doesn’t depend on its moral virtue
(or lack thereof). The question of whether science is good must surely
depend on what our values are, and that discussion belongs in a different
place (chapter 11, which includes a serious consideration of these mat-
ters). The second question (is science valid?) is our primary interest here.

§1. THE CONSTRUCTION OF SCIENCE

Is the Definition of Scientific Validity a Cultural Artifact?

One of the most abstract, general, and powerful arguments of the science
critics is based on the following premise: We and our thinking processes
are products of our culture. Even our most fundamental assumptions are
culture-bound, rather than being true in any absolute sense. For example,
two of the fundamental assumptions of science are that, in formulating
our understanding of nature, observational evidence is paramount and
logical coherence is necessary. A cultural critic might argue that these
assumptions are really just products of European thought during the last
four centuries and need not be universally made. This argument is ex-
tremely difficult to counter because any point you make can be dismissed.
Contrary evidence is not decisive if the primacy of evidence can be denied.
Logical flaws can likewise be ignored if logic itself is merely a cultural
artifact. Scientists often point to the success of science in making predic-
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tions, but the high esteem we bestow on predictive success is, once again,
a product of culture. Along these lines, the philosopher Paul Feyerabend
has made the comment that voodoo is no better or worse than science as
a way of understanding the world. If we don’t get to make any presupposi-
tions at all, who is to say that Feyerabend is wrong?

But this argument has force only if we restrict our attention to the most
extreme alternatives. I am willing to concede that science has no absolute
superiority to other thought systems in the sense I’ve just outlined. Science
is indeed the product of a particular culture in a specific set of historical
circumstances. However, the alternative to “science is absolutely supe-
rior” does not have to be “all modes of thinking are equally valid.” Be-
tween these two extremes lies a continuum on which we can make and
justify judgments. That science is intrinsically superior to any other realm
of human endeavor is certainly questionable, but that science is a purely
arbitrary construct is at least equally questionable.

Are the Results of Science Social Constructions?

Inspired by the work of Thomas Kuhn (chapter 14), sociologists of science
began to look more closely at the process by which scientists arrive at a
consensus. They reported that the process is not the purely rational sifting
of evidence that we sometimes pretend it is. In fact, scientists are humans,
and the workings of the scientific community are a process of social nego-
tiation. Matters of prestige, friendship, and power (which should be irrele-
vant) do enter into these social negotiations. The question is this: Do these
social forces warp, or even determine, the results of science? In the early
stages of a scientific discussion, when the ideas are still unclear and the
evidence is sparse, these “illegitimate” social factors must surely influence
the discussion. The postmodern critics who subscribe to the so-called
strong program of social constructivism argue that these influences al-
ways permeate the discussion and eventually determine the outcome.
Many scientists (and like-minded philosophers) maintain that such social
influence is limited by the constraints imposed by nature; there is a reality,
and it will decide the issues in the end, regardless of prestige and power.

An example illustrates this point. When S. Chandrasekhar was a young
and unknown scientist, he performed a set of calculations suggesting that
massive stars end their lives by gravitational collapse (black holes, as we
now call them). The foremost authority in astrophysics at that time, Sir
Arthur Eddington, could not accept such an absurd-sounding conclusion.
He thought that something (unspecified) must be wrong with the theory,
and he said so. Although Chandrasekhar had the better argument, Ed-
dington’s conclusion was almost universally accepted in the scientific com-
munity. No observational evidence of any sort existed then, the idea was
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strange as well as new, and Eddington’s prestige was enormous. But today
we accept the presence of black holes in the universe with few reserva-
tions. This change is due to the many new measurements made in astron-
omy (see chapter 3), working together with an increasingly sophisticated
theoretical understanding of the issues. But this process of changing from
a world without black holes into a world with black holes took roughly
two generations to complete. Although nature might eventually decide
the issues in the end, social prestige can still impose a wrong-headed con-
clusion for quite a while. Suppose the issues are extremely subtle and
complex; the observations and measurements needed to resolve the issues
are difficult to acquire; and there is no substantial theoretical context
within which to work. If all of these statements are true, then a situation
in which social factors prevail over nature’s voice might last for some
time. The postmodern critics can be right for a given historical period,
even if nature does ultimately constrain our constructions in some pro-
found manner.

§2. UNDERDETERMINATION AND IDEOLOGY

The Quine-Duhem Thesis Revisited

There is a variation of the constructivist argument, based on the Quine-
Duhem thesis (see chapter 14), that would tend to blunt the point I just
made. The basic idea of the Quine-Duhem thesis is that scientific theories
are not uniquely determined by observations and experiments. A given
set of results can be interpreted in a number of different ways. If the data
aren’t deciding the content of our theories, then we must (at least in part)
be freely constructing them. Put differently: We don’t discover scientific
results, we invent those results. Since science is done by people working
together in the scientific community, inventing results is a social process.
While there is surely a certain amount of truth in this outlook, careless
application of the idea leads to an extremely distorted vision of science.
The stories of discovery related in Part I, taken collectively, reveal a much
richer tapestry than the threadbare statement that science is a social con-
struction. Science is a construction, but by no means is it an arbitrary
construction. Our data may not uniquely determine our theories, but our
data working together with our demand for logical coherence effectively
whittles down the possibilities quite dramatically.

Two major problems plague the postmodernist use of the underdetermi-
nation argument. One problem is the blithe assumption that it’s easy to
come up with any number of alternative theories that explain a myriad
of empirical observations. In fact, as anyone who has made the attempt
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will tell you, it’s usually difficult to come up with even one satisfactory
explanation. Since all of our explanations must interlock coherently, the
Quine-Duhem thesis fades in relevance. The second problem goes deeper
in its implications. A really good scientific theory gives us back much
more than we put into it. A theory devised to solve one problem turns
out to have the power to solve hundreds of unanticipated problems. An
explanation for what is now known might also explain new discoveries
made decades from now, discoveries that no one could ever have foreseen.
This unexpected power of theories to advance far beyond the boundaries
within which they were invented is difficult to understand if such theories
are merely arbitrary constructions. To me, this suggests that these theories
are in some sense a mirror of reality. The claim here isn’t that science gives
us a complete and undistorted grasp of reality; or that science allows us
to apprehend all possible levels of reality; or that science is the only valid
approach to reality. However, scientific results are not arbitrary; we
achieve an understanding of nature that is meaningful and genuine in the
course of scientific investigation.

Theories, Metaphors, and Cultural Myths

We need to be very careful about the interpretations we draw from scien-
tific results. The postmodern commentators on science make some valid
criticisms, but I think these criticisms are often misdirected toward science
itself rather than questionable interpretations that pretend to be science.
For example, a scientist might proclaim that humanity has been de-
throned from a central place in the cosmos. A scientist might make this
statement, but it’s not science. Such a statement is a metaphorical exten-
sion of the actual scientific facts and is highly charged with emotional
overtones and value implications. Many cultural critics have castigated
science for being soulless, mechanistic, atheist, capitalist, or what have
you. Both scientists and critics of science have unfortunately sometimes
confused scientific results with the value-laden interpretations that they
overlay on these results. (A more extended discussion of this issue is found
in chapter 11.) The problems involved in disentangling metaphors from
theories can be subtle because the metaphors are often crucial in the pro-
cess of constructing the theories. In addition, these metaphors become
entrenched in the interpretations of what a theory means, especially in
the larger culture. A clear example is evolutionary theory, which has a
well-defined role in science (providing a coherent explanation of a set of
observations), a broader role in both science and culture (providing, in
Darwin’s words, a “view of life”), and finally an extremely broad role in
culture as a contemporary “creation myth.” All of these roles might be
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legitimate on some grounds, but only the first is legitimate as science.
Making these distinctions isn’t easy in practice, however, because the dif-
ferent roles all operate simultaneously under the same name (evolution
by natural selection).

Back to Politics

A major claim of the postmodern program is that the results of science
merely reflect the political ideologies, economic interests, and cultural
prejudices of scientists (and/or the elites who employ the scientists). I have
argued that this statement, taken literally as a kind of universal assertion,
is wrong. But if we back away from this extreme position and ask our-
selves where a less rigid version might apply, we find a more fertile area
for discourse. A number of postmodern scholars have done this sort of
worthwhile analysis, and it’s unfortunate that more extremist claims have
dominated the discussion. For example, political and economic considera-
tions have clearly played a large role in shaping the scientific research
agenda (military, agricultural, and medical research are all examples).
These extrascientific influences don’t completely shape the research
agenda, since the science itself drives research into unexpected directions,
but their influence is undeniable. Similarly, there are real questions con-
cerning gender discrimination in the sciences (even if the claim that science
is a manifestation of “male thinking” is nonsense).

Finally, let’s reconsider the situation where underdetermination is most
important (complex phenomena, sparse data, and no fundamental the-
ory). If deeply held values are also involved, then hidden ideological pre-
suppositions might well dominate the discussion. As an example, consider
the long-running debate over the question of environmental influences
versus inherited traits in “determining intelligence.” The quotation marks
are there because it’s not clear that causal determination is even the proper
way to frame the issue and ask questions. Nor is it clear that intelligence
is a single well-defined concept, much less an independent object of study.
Vast social and economic resources might be redirected based on the out-
come of this debate. The questions involved touch on deep underlying
visions of what it means to be human. Given all of these circumstances,
proponents of a particular (and definitive) position on this issue (the na-
ture/nurture debate over intelligence) aren’t basing their position on
purely scientific grounds. If the postmodern critique draws attention to
the murky foundation of issues like this, then I think the postmodernists
have performed a valuable service. Perhaps the outcome of such a critique
can isolate the genuinely scientific portions of the debate and the valid
conclusions that can be drawn.
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COMMON GROUND: SOME UNIFYING CONCEPTS
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Chapter 16

FLEAS AND GIANTS: SOME FASCINATING INSIGHTS

ABOUT AREA, VOLUME, AND SIZE

The simplest plants, such as the green algae growing in
stagnant water or on the bark of trees, are mere round cells.

The higher plants increase their surface by putting out leaves
and roots. Comparative anatomy is largely the story of the

struggle to increase surface in proportion to volume.
(J. B. S. Haldane)

WHAT DO THE FOLLOWING all have in common: mittens;
the chemical industry; your lungs; kindling wood for camp-
fires; and the low heating bills of rowhouses? Answer: all these

things, and many more, depend on the mathematical relationships be-
tween the surface area of an object, its volume, and the characteristic size
of that object. These relationships are relatively simple, but their implica-
tions aren’t always obvious at first glance. We’ll explore these implica-
tions in some detail, and our reward will be an idea that is both simple and
powerful, an idea that explains many seemingly unrelated phenomena
in many different sciences both effortlessly and elegantly. A little effort
examining the purely geometric concepts in the beginning is more than
repaid later with a host of fascinating applications.

§1. BASIC IDEAS

Squares and Cubes

Look at the cube drawn in Figure 8. As you can see, the cube has six (6)
square faces and twelve (12) straight line edges. Every one of these 12
edges has the same length. Let’s use the symbol L to designate this length.
Every face of the cube is then a square, made up of four equal sides of
length L. If you asked me “How big is the cube?” or “What is the size of
the cube?”, I would answer that the size of the cube is L; in other words,
I would use the cube’s edge length, or linear dimension, to characterize
the size of the cube.
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Figure 8. A cube of edge length L.

What is the total surface area of the cube? Each cube face is a square,
and the area of a square is the length of the side multiplied by itself, that
is, the length squared, which we write as L2. The origin of the name L
squared for L < L = L2 lies in this geometric relationship. Since there are
6 faces, the surface area of the cube is 6L2.

What is the volume of the cube? The volume of a cube is the length of
a side multiplied by itself and then multiplied by itself again, that is, L <
L < L = L3. This is called L cubed, and once again is named for the
geometric relationship. An illustration of these principles is shown in Fig-
ure 9 for the specific case of L=2. As you see, the area of a face is L2 = 4,
and the volume of the cube is L3 = 8. Looking carefully at Figure 9 reveals
exactly why the relationships between length, area, and volume are those
we have specified. A key point here is that the surface area grows much
more rapidly than the side length, and that the volume grows much more
rapidly than the surface area. If we let A stand for the surface area of a
face (recall Acube = 6Aface), and V stand for the volume of the cube, we can
summarize our relations so far as

A = L2

and

V = L3.
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Figure 9. A cube of edge length L = 2, illustrating that the surface area of a cube
face is L2 (which is 4, in this case) and that the volume of a cube is L3 (which is
8, in this case).

We see that for L=1, we have A=1 and V=1; for L=2, we have A=4 and
V=8; for L=3, we have A=9 and V=27; and so on. The rapid growth of
volume compared to area, and of area compared to length, is illustrated
in Figure 10, which is a graph of V and A versus L.

Although I’ve suppressed the units so far to keep the discussion simpler
and more focused, units are important. The unit of area is the square of
the unit chosen for the length. If we measure length in feet (ft), then area
is measured in square feet (ft2). If you purchase cloth for sewing, you
might buy an amount of cloth measured in square yards. In the SI system
of units (this is just the metric system; SI stands for the French words
Système International), area might be in units of cm2 or m2. For volume,
the unit is the cube of the length unit. For example, you might want to
know how many cubic feet of water are in a gallon. Again, the SI units
of volume might be cm3 or m3. In scientific work, the SI units are usually
preferred, and I’ll generally either use SI units or else suppress the units
as I did before. As long as a consistent set of units (e.g., cm, cm2, cm3) is
used, the situation is fairly simple and we can suppress the units without
affecting any of the relationships we’ve studied.
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Figure 10. The surface area of a cube face and the volume of the cube plotted
against the edge length of the cube, illustrating the rapid growth of the volume
compared to the surface area, and the rapid growth of the surface area compared
to the size of the cube.

The Crucial Point

We now come to the fascinating and surprising result that is the main
point of this chapter. Because the volume is growing faster than the sur-
face area as the length increases, the ratio of surface area to volume de-
creases with increasing size. Let’s demonstrate this point explicitly for
cubes of side length L = 1, 2, and 3 (again suppressing the units). The
areas of the square faces are A = 1, 4, and 9, so the surface areas of the
cubes are Acube = 6, 24, and 54. The volumes of the cubes are V = 1, 8,
and 27. The ratios of surface area to volume for these three cubes are
then equal to 6/1, 24/8, and 54/27 (which in turn are equal to 6, 3, and
2). So, we see that as L increases, the amount of surface area per volume
decreases. But we can turn this around to get a very important result: the
ratio of surface area to volume increases with decreasing size. This key
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Figure 11. The ratio of the surface area of a cube to the volume of the cube,
plotted against the edge length L of the cube. This graph illustrates the dramatic
increase in this ratio as the size of the cube decreases.

relationship is shown graphically in Figure 11, where the (surface area)/
(volume) for a cube is graphed against side length L.

Another way to see why these relationships are true is illustrated by
looking back at Figure 9. Imagine that this cube with L=2 (and thus V=
8) is sliced up into eight (8) smaller cubes of L=1 (V=1) by cutting through
the dotted lines. Each of the new smaller cubes has three faces that were
part of the surface area of the original large cube, but each also has three
new faces that were part of the interior of the large cube, not part of its
surface area. The same total volume now has twice as much surface area
in the form of eight small cubes instead of one large cube. This same
volume, as you can see, would have even more surface area if each of the
small cubes was again sliced up into even smaller cubes of L=1/2 (we’d
have 64 cubes and quadruple the original surface area). We can draw
the following conclusions: A smaller cube has more surface area per unit
volume than a larger cube. A given volume exposes more and more sur-
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face area as it is divided into smaller and smaller cubes. Why are these
conclusions of any interest to science? Before we tackle this question, let’s
show that our conclusions are not restricted to cubes. Meanwhile, you
can get a sense of the answer by thinking about a more specific question,
namely: What would you rather use to cool down a drink quickly, one
large ice cube or eight smaller ice cubes having the same total ice volume?

Circles and Spheres

We now turn our attention from the square to the circle (in two dimen-
sions) and from the cube to the sphere (in three dimensions). What length
can we use to characterize the size of a circle? The radius of the circle is
an obvious choice (or the diameter, which is just double the radius). The
area of a circle (as you may already know) is proportional to the square
of the radius. If we let R stand for the radius of a circle, the area is given
by the formula

Acircle = πR2,

where π (the Greek letter pi) is a constant equal to the ratio of the circle’s
circumference to its diameter. The important point here is that the area is
proportional to the square of the characteristic size (R2), just as was true
of the square itself (L2). The surface area of a sphere is a little more compli-
cated than that of a cube. We can’t just add up some circle areas to get
the area of a sphere. In the end, though, the formula for the surface area
of a sphere turns out to be simple:

A = 4πR2,

where R in this case is the radius of the sphere. Once again, the crucial
point of interest is that the surface area of the sphere increases as the
square of the sphere’s linear dimension (radius).

The volume of a sphere is also difficult to derive but easy enough to
write down. Again let R stand for the radius of the sphere. The volume
is given by the formula

V = (4/3)πR3.

Yet again, the interesting thing from our point of view is that, for a sphere,
the volume is proportional to the cube of the radius. As the radius in-
creases, the volume of the sphere will grow faster than the surface area
of the sphere. Why? Because the volume and surface area of a sphere
depend on the radius in the same way that the volume and surface area
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of a cube depend on the edge length. (Of course the proportionality con-
stants are different.) The reasoning we applied to the case of the cube,
and the conclusions we came to, are every bit as valid for the sphere. In
particular, a large sphere that is subdivided into many small spheres will
then have much more surface area.

We could demonstrate these facts with numbers and with graphs, as
we did for the cube, but let’s instead try a different technique. We’re inter-
ested in the ratio of the surface area to the volume, A/V. If you replace A
and V in this ratio with our formulas for a sphere, you’ll find that A/V =
3/R. In other words, the surface area per unit volume is proportional to
1/R. As R increases (i.e., the sphere gets bigger), the amount of surface
area per volume decreases; as R decreases (the sphere gets smaller), the
amount of surface area per volume increases. As we said, the sphere has
the same properties as the cube in this respect.

Other Shapes

A variety of well-defined geometric shapes (like cones and pyramids) have
known formulas for their surface areas and volumes. In all cases, the area
is proportional to the square of some characteristic length, and the volume
is proportional to the cube of this length. Strictly speaking, this is only
true if all the relevant lengths (such as the height of a cone and the radius
of its base) are equal; only the cube and sphere have a single length that
completely characterizes the size. None of our conclusions are affected by
this point, however, as you’ll see next.

Suppose the shape is irregular, like a piece of fruit, a rock, or an animal.
In these cases, there are no simple formulas for the volume and surface
area. But even for such irregular shapes, the surface area increases as the
square of some characteristic length, while the volume increases as the
cube of this length. (The preceding examples have hopefully convinced
you that this must be so. Thinking about the units of volume and of sur-
face area will give you some insight into why.) The characteristic length
isn’t precisely defined for irregular shapes, but it doesn’t need to be pre-
cisely defined either. We aren’t interested in precise values for the surface
area or volume; we are only interested in the consequences of how A and
V depend on the size of the object. We’ll use the symbol , to stand for this
ill-defined length, which characterizes the size of the object. The volume is
then proportional to ,3 and the surface area is proportional to ,2. But the
proportionality constants are not well defined and will vary depending
on the exact shape of the object. (A useful way to express these relation-
ships is A ∼ ,2 and V ∼ ,3 where the symbol ∼ is read “goes as” or “scales
with” and has the meaning we have just given.) The important point is
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that these irregular shapes have roughly the same properties as the cube
and the sphere, properties with which we are by now quite familiar.

The volume always grows more rapidly than the surface area as the
size of an object increases, regardless of its shape. Smaller things have
more surface area per unit volume than bigger things do. Suppose a large
irregularly shaped object, like a rock, is ground up into many small irregu-
larly shaped objects, like sand grains. The total volume of the sand is the
same as the volume of the rock. But the sand has a vastly greater amount
of surface area than the rock had. An elephant has a greater surface area
than a mouse has, but the mouse has a much greater surface area for its
volume than the elephant has. In other words, if we collect enough mice
together so that their total volume is the same as the elephant’s, the total
surface area of the collected mice will be much greater than that of the
elephant.

§2. APPLICATIONS IN SCIENCE AND IN LIFE

Of Mice and Mittens

So what difference does it make to the mouse whether it has more surface
area per unit volume than an elephant? Actually, it makes a lot of differ-
ence. Animals lose body heat through their skin, that is, their surface area.
Because heat is lost through the surface area of the skin, the mouse loses
heat much faster than the elephant, relative to body weight. Since the heat
comes from the food eaten by the animal, mice need to eat much more
(again relative to body weight) than elephants. Another example involv-
ing body heat is one that I mentioned in the first sentence of the chapter,
namely mittens. Why are mittens more effective than gloves to keep your
hands warm? You lose your body heat through your exposed surface area,
just like the mouse. Your fingers are relatively small parts of your body,
so they expose relatively large amounts of surface area for their volume.
A glove that wraps around each individual finger also exposes a lot of
surface area for the volume of the hand, whereas a mitten is one large
wrapping, which thereby has a smaller surface area exposed. Less heat is
lost because the mitten is larger than the finger of a glove, and so it has
(as we’ve learned) less surface area per volume.

Strength and Weight

A flea can jump about two feet into the air. You may have read or heard
that if a flea were as big as a human, the flea could jump thousands of
feet high. This statement is based on a simple proportion between the size
of the flea (compared to a human) and its jumping ability; the size and
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the jump are both scaled up equally to reach this conclusion. But this
conclusion isn’t correct, because a flea’s strength, which determines its
jumping ability, increases in proportion to the cross-sectional area of its
legs. The flea’s weight, on the other hand, which it must propel upward,
increases in proportion to the volume of the flea. Based on the relation-
ships we’ve learned, the flea’s weight will increase by hundreds of times
more than its strength if the flea becomes hundreds of times bigger. If a
flea were as big as a human, it could not jump thousands of feet into the
air. In fact, if a flea were that big, it might not even be able to stand up.
The same fate would befall the legendary giants found in folktales and
myths. The ability of leg bones to carry weight will scale upward with the
cross-sectional area of the bones, whereas the weight the bones must carry
will scale upward with the volume of the giant. If the giant is 5 times as
tall as a human, the bones of the giant are 25 times as strong; but these
bones must carry 125 times as much weight. A large enough giant would
not be able to walk, his legs having broken under his own weight. Despite
my somewhat whimsical examples, these principles actually operate in
real life in ways that you can see. Look at the body and legs of a deer, and
then look at the body and legs of an elephant. The legs of the elephant
are much thicker and sturdier, compared to the size of its body, than the
legs of the deer. The very largest creatures on earth, the whales, are sea
creatures that don’t need to hold themselves up with legs. Small creatures,
like insects and spiders, often have very thin legs.

Making Surface

A given volume of material has the least surface area when it is one object.
Turning this volume into many smaller objects, by dividing it up, will
increase the surface area. The smaller these objects are (which means the
greater their number), the more surface area we create. This principle
is exploited in many different ways, both by nature and by humans. A
wonderful example is the biological cell. A cell gets its nutrition through
the cell membrane. So, the ability of a cell to supply its needs is propor-
tional to the cell’s surface area. But the nutritional needs of the cell are
proportional to the volume of the cell. As a cell gets bigger, its need for
nutrition grows faster than its ability to supply the need. This fact (re-
sulting from the mathematical relationships of volume and area to size)
imposes limits on the maximum size that a cell can have. Single-celled
creatures are therefore always small. But of course there are large crea-
tures in nature. Nature has been able to sidestep this limit on size by
means of multicellular organisms. The size of the cells remains small, but
there are many of them.
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A technological example of these principles is found in the operation
of chemical catalysts. A catalyst is a substance that encourages (promotes)
a chemical reaction, but is not itself changed by the reaction. A catalyst
works by bringing the reacting molecules onto its surface, where the mole-
cules find each other and undergo their reaction. The new molecule that
results from the reaction then leaves the surface, making room for more
reactants to start the process again. Clearly, based on this description, the
effectiveness of a catalyst increases if it has more surface area. The surface
area of a catalyst is increased by making it in the form of highly divided
particles, like a powder. Such catalysts are essential to the activities of the
chemical industry. We find a similar application in the operation of filters,
like the kind used to purify water. In this case, however, the impurities
sticking to the surface of the filter material stay there. Once again, more
surface area is desirable for improving the effectiveness of the filter, and
more surface area is created by making the filter material in the form of
small particles. The surface area of a material can also be increased by
making the material highly porous. This is actually similar to having the
material highly dispersed into a powder. (Think of the powder as being
compressed with the small particles glued together, and you have a porous
material.) Groundwater is purified by seeping through porous rocks on
its way to the underground water table.

Turning again to an example from biology, consider the operation of
your lungs. The job of the lungs is to deliver oxygen from the air to your
bloodstream, where it is carried by the red blood cells. To get from the
air to your blood, the oxygen must move across a surface. The rate at
which the blood can be oxygenated, then, is limited by the amount of
surface area available for this transfer. If your lungs were just hollow like
balloons, the amount of surface area they would have (given their volume,
which is your chest cavity) would be many hundreds of times too small
to supply the amount of oxygen you need. You would soon be dead. So
how can the lungs do their job? The total volume of each lung is subdi-
vided into many tiny air sacs, called alveoli, each of which has a much
greater surface area per unit volume than one large air sac the size of the
lung would have. The tubes bringing air to the lungs keep branching into
smaller and smaller tubes until the microscopic alveoli are reached. The
walls of the alveoli have blood capillaries in them, and this is where the
exchange of oxygen for carbon dioxide takes place. The vast number of
alveoli into which the volume of the lungs is divided contain a vast
amount of surface area in which this gas exchange takes place. In a sense,
the mathematical principles we studied in §1 are responsible for our being
able to breath.
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These principles also operate in geology. For example, erosion is a pro-
cess that basically occurs at a surface, since this is where the wind or water
actually attacks the eroding substance. As the erosion advances and the
substance begins to break down, more surface area is exposed and the
process will accelerate. Corrosion processes attack metals in a similar way
for similar reasons. Corrosion often starts at a small crack or fissure,
where the surface area is greater. As the metal corrodes, more surface area
is exposed. You may have noticed a small pointlike area of rust on your
car, which stayed about the same size for a while, but became bigger faster
once it started to grow. Another example from geology is the movement
and retention of water in porous rock and soil systems. Finer soil particles
present more surface area and thus hold more water (the water sticks to
the surfaces) than coarse sandy soils.

Examples from Everyday Life

The same processes that occur in erosion and corrosion also determine
how quickly salt and sugar dissolve in water. Large pieces take a longer
time to dissolve because they have less surface area per volume than finely
ground powders and the dissolving process occurs at the surface. Another
example from the kitchen is the technique of grinding spices to release
their flavors more effectively (a whole peppercorn, because it has less sur-
face area, has much less effect than a ground peppercorn). The same is
true of ground coffee. An ounce of chocolate chips will melt much faster
than a one-ounce brick of chocolate. If you have ever built a fire, you
know that you can’t just light a match under a log. You start with paper,
use the paper to get kindling wood (small pieces) burning, then add mod-
erate-sized pieces of wood. When the fairly large pieces of wood are burn-
ing well, then you can put big logs on the fire. Fire is a chemical reaction
between the wood and oxygen, and this reaction takes place at the sur-
face. Exposing more surface area by having smaller pieces of wood makes
it easier to get the fire started. The fire won’t last long, though, because
the volume of these small pieces won’t provide fuel for long. After the fire
is well started, then you add the big pieces of wood, which have a lot of
volume (but not much surface) in order to keep the fire going.

Household examples of these principles are easy to find. A basket of
wet laundry will mildew before it dries because drying occurs at the sur-
face and the bundled cloth exposes little surface area for its volume. The
laundry needs to be hung up (which exposes a much greater surface area)
in order for it to dry. Snow that has been piled up by drifting or plowing
doesn’t melt until long after the rest of the snow has melted. The large
piles have less surface area for their volume, and the snow absorbs heat
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through its surface. Though you can’t see it directly, another example is
the carburetor of an automobile, which turns the gasoline into a fine mist
to expose more surface area for ignition. A building loses heat through
its outside walls, so the rate of heat loss in the winter is proportional to
the surface area of the building. The amount of heat needed to warm the
inside of the building is proportional to the volume. A large apartment
building, or a set of rowhouses, has less surface area per volume than a
number of detached houses having the same total volume. While the heat-
ing bill of the apartment building is probably larger than that of any one
house, the heating bill per dwelling unit will certainly be smaller for the
apartment building than the heating bill for the average house, all other
things being equal. In an apartment, most of your walls are inside walls
through which you are not losing any heat. For our last example, consider
the prices of different pizza sizes (small, medium, and large). The cost of
a pizza is often roughly proportional to its diameter (i.e., a linear dimen-
sion), but the amount of pizza you eat is better measured by its area
(which is proportional to the square of this linear size). Based on our
familiar mathematical reasoning, you will get more for your money by
buying a large instead of a small.

Recap

Scientists regard an idea as powerful if the idea ties together a large num-
ber of seemingly disparate phenomena in a coherent way, if many separate
observations can be explained by a single underlying cause. If the idea is
easy to understand, if it is simple as well as powerful, then the idea is
especially worthwhile. The relationships we’ve explored in this chapter,
namely,

A ∼ ,2

and

V ∼ ,3,

qualify as both simple and powerful. Their mathematical simplicity trans-
lates into an intuitive sense that surface area per unit volume shrinks rap-
idly with increasing size. Their implications for the behavior of things in
the world are highly important, not only in all of the natural sciences but
in our everyday lives as well.
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Chapter 17

THE EDGE OF THE ABYSS: ORDER AND

DISORDER IN THE UNIVERSE

What was visible was chaos, irregularly streaming
bits of liquid, random motions. . . . Then suddenly . . .

crystallization began . . . resplendent with colorful
order and geometric beauty.

(Henry Margenau)

Movement overcomes cold.
Stillness overcomes heat.
Stillness and tranquillity set things in order in the universe.

(Lao Tsu)

The gap between “simple” and “complex,” between
“disorder” and “order,” is much narrower than

previously thought.
(G. Nicolis & I. Prigogine)

This order, the same for all things, no god or man has made.
(Heraclitus)

IN THE CREATION MYTHS of many cultures, the divine powers
engage in a mighty struggle to impose form on the primordial forces
of chaos. The world is a continual struggle to maintain form and

order, which forever hovers close to the edge of the abyss. With this
mythic and poetic backdrop to remind us of the broad issues underlying
our investigation, let’s take a look at how modern science approaches the
age-old question of order and disorder in the universe. While the scientific
worldview is a bit less poetic, some remarkable insights have emerged
from the study of these questions. The last several decades in particular
have seen a resurgence of interest, accompanied by a new understanding,
which many people consider a scientific revolution. Before looking at
these revolutionary new results, however, let’s start by considering the
older (and no less interesting) insights about order and disorder that are
rooted in the nineteenth century studies of heat.
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§1. DISORDER FROM ORDER—THE SECOND LAW
OF THERMODYNAMICS

Heat and Motion

Heat had once been pictured as some sort of subtle fluid, but by the middle
of the nineteenth century we understood that heat is a form of motion:
the microscopic motion of the atoms making up an object. These moving
atoms have energy (called kinetic energy, meaning energy of motion), just
as a moving baseball or a moving planet (or anything else that moves)
has energy. But you can see the motion of a baseball, whereas the motions
of the atoms are invisible, and in many different random directions. Al-
though we can’t see this random microscopic motion, however, we can
feel its effects as heat. To convince yourself dramatically of the equiva-
lence of motion and heat, feel a piece of metal that you have just been
hacksawing or drilling for a while. It’s pretty darned hot! This observa-
tion is exactly what led Count Rumford, based on his classic cannon-
boring experiments, to conclude that heat is a form of motion. What does
all this discussion about heat have to do with order and disorder? Well,
the thermal motion of the atoms is certainly more random and disordered
than the back-and-forth motion of a hacksaw or the spinning motion
of a drill. This simple observation marks the beginning of an elaborate
theoretical development, which we now call thermodynamics and statisti-
cal mechanics, at the hands of Carnot, Joule, Clausius, Kelvin, Helmholtz,
Maxwell, Gibbs, and Boltzmann. Let’s trace this development in a little
more detail, and then we’ll return for a deeper look at our major theme
of order and disorder.

The First Law

Much of the interest in these problems during the nineteenth century was
due to the practical problems of the industrial revolution. The main
source of power at that time was the steam engine. So far, we’ve talked
about motion (like drilling) turning into heat; a steam engine does the
reverse of this process, turning heat into motion (burning coal to run a
train locomotive, for example). Since the heat and the motion are both
forms of energy, these examples are specific cases of a more general pro-
cess: the transformation of energy from one form into another. Energy
transformation processes occur all the time in nature. Energy in sunlight,
for example, gets turned into energy stored in chemical bonds during pho-
tosynthesis in plants. When we eat the plants, this stored chemical energy
is turned into energy of motion by our muscles, into heat to keep our
warm-blooded bodies warm, and into the energy needed by our cells to
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stay alive. Millions of years ago, some of the plants were buried and
slowly became coal or oil. The energy stored in these fossil fuels is turned
into heat when they’re burned; this heat energy is turned into motion by
steam turbines, automobile engines, and so on. The steam turbines often
turn electrical generators, which transform the energy of motion into elec-
trical energy. When you switch on an electric lamp, you may be using
some of this primordial energy, which came to earth in ancient sunlight.

These examples hint at the vast range and importance of energy trans-
formations in nature. The scientists of the nineteenth century discovered
a remarkable fact about these transformations; although the energy might
change its form in myriad ways, the total amount of the energy is always
the same before and after the change. No energy is ever lost or gained in
any natural process. This statement is the famous law of conservation
of energy. Careful experiments conducted by James Joule were the first
convincing demonstration of this law, and no exceptions have ever been
discovered since then. Although the applications of this principle (conser-
vation of energy) extend far beyond its origins in the study of heat, the
original name is also still used: the first law of thermodynamics. This law
tells us that energy can be neither created nor destroyed, but only changed
from one form into another.

Conservation of energy is one of the most general and important princi-
ples in the sciences. Chemical reactions, biological metabolism, and engi-
neering design practice are all governed by this principle. It forbids, once
and for all, the possibility of a perpetual motion machine that does work
for us without requiring fuel (see chapter 12). In physics, energy conserva-
tion survived the revolutionary changes in worldview wrought by relativ-
ity and quantum mechanics; space, time, and determinism all changed
irrevocably, but energy conservation still holds true. In fact, when physi-
cists were faced with an apparent breakdown of energy conservation in a
subatomic reaction, they postulated the existence of a new particle with
properties that made it difficult to observe yet allowed it to conserve en-
ergy in the reaction. Sure enough, several decades later this particle (the
neutrino) was experimentally verified to really exist.

The Second Law

But the first law doesn’t tell us everything we need to know. A process
that violates conservation of energy is impossible, but many processes
that conserve energy perfectly well are still impossible. For example, a
golf ball could turn much of its thermal energy into motion, lowering its
temperature and jumping spontaneously into the air, without violating
the first law. But no golf ball has ever done this. Why not? To answer this
question, we must distinguish between energy that we can use to do useful
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work (like move an object), and energy that is not usable in this way. For
example, if I expend some of my energy lifting a box, then I can get this
energy back by dropping the box (which acquires energy of motion as it
falls). But if I expend my energy pushing a box across the floor, I’ve lost
this energy in the sense that the box won’t move again on its own. My
energy has been dissipated by friction into an unusable form. The energy
is conserved (has not been lost to the universe), but cannot be recovered.
Such dissipated energy often ends up as heat (friction between the drill
and metal causes the heat I mentioned previously). We can extract useful
work from heat; that’s what a steam engine does. But we can’t turn all of
the heat into work. Motivated by practical interest in steam engines, Sadi
Carnot investigated carefully the question of just how much usable energy
can be extracted from heat. We now call Carnot’s answer to this question
the second law of thermodynamics. The second law is what prevents our
golf ball from spontaneously jumping into the air.

To understand the second law, we must first introduce the concept of
entropy. Entropy is an abstract quantity. You can’t see it or feel it. The
change in the entropy of an object is defined as the ratio of heat change
(gained or lost) to temperature. Admittedly, the interpretation of entropy,
defined in this way, is a little murky (we’ll clear it up later). But Rudolf
Clausius realized that the quantity that he termed entropy had a remark-
able property: it never spontaneously decreased in any physical process.
This property of entropy is the essence of the second law. As Clausius
phrased it, “The entropy of the world tends toward a maximum.” A sim-
ple example will help illustrate the meaning of the second law. What hap-
pens when a hot (higher temperature) block of metal touches a cool (lower
temperature) block of metal? The hotter metal cools, of course, and the
cooler metal warms, until both are at the same temperature. Heat energy
flows from the warmer to the cooler. While the hot object loses entropy
and the cool object gains entropy, the cool object gains more entropy than
the hot object loses based on our definition of entropy. The total entropy
of the system (i.e., both blocks together) increases, in accordance with the
second law. A cake taken out of the oven cools in order to increase the
total entropy of the world. The trivial-sounding observation that “heat
never spontaneously flows from a cooler object to a warmer object” can
actually be taken as an alternative statement of the second law.

Heat does flow from higher temperatures to lower temperatures, and
when it does, we can extract some useful work from this heat energy. The
maximum amount of work we can obtain corresponds to a total entropy
change of zero (an ideal heat engine); to get more work would decrease the
entropy and violate the second law. Any real-life engine actually increases
entropy as it operates, and produces even less usable work. These consid-
erations are obviously relevant to engineering designs. In addition, the
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second law governs whether chemical reactions occur, determines the dis-
tribution of plants and animals in a food chain, is centrally important to
virtually every science, and even prohibits the existence of perpetual mo-
tion machines that don’t do work and so violate the first law. But what
does any of this have to do with order and disorder?

Entropy and Information

The answer to this last question was discovered by Ludwig Boltzmann,
working in Vienna near the end of the nineteenth century. To understand
Boltzmann’s conception of entropy, we must first look in general at the
project that Boltzmann (and also Willard Gibbs at Yale) undertook to
accomplish. Thermodynamics does not try to tell us anything about the
motions of the atoms in a substance. Heat is simply taken to be another
form of energy, and the second law is a compact distillation of a vast array
of observations for which there is no further explanation. Boltzmann
and Gibbs created a microscopic theory (i.e., a theory dealing with the
motions of atoms) and explained the thermodynamic laws in terms of
these microscopic motions. This theory is called statistical mechanics.
The word “statistical” appears in this name for an interesting reason. We
are now trying to understand the behavior of a substance by looking at
the behavior of its atoms. But there are an unimaginably large number of
these atoms. We can’t possibly know how each of the atoms behaves.
How then can we understand the properties of a substance based on our
understanding of its atoms? Boltzmann and Gibbs accomplished this
feat by using probability and statistics. We can’t know the behavior of
each individual atom, but we can predict the net behavior of a large num-
ber of atoms statistically. (An analogy might be flipping coins; we can’t
predict whether any single coin will be heads or tails, but the fraction of
a large number of flips coming up heads is predictable, namely, one-half.)
The extremely large number of atoms works to our advantage now, since
statistical results become more precise for larger samples. The results of
thermodynamics, based on observation, can all be explained by this appli-
cation of probability and statistics to motions at the atomic level. We
have, in effect, reduced thermodynamics to statistical mechanics (see
chapter 14).

Boltzmann discovered that entropy, in this theory, is a measure of the
number of states available to the system. What does this mean? Imagine
a deck of cards with all four suits separated and arranged from ace to
king and the suits stacked in order (e.g., hearts, clubs, spades, diamonds).
There is only one way to do this. This system has only one available state.
The entropy of this system is at a minimum. Suppose we keep the suits
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separated and arranged, but now stack the suits in any random order.
There are 24 ways to do this (count them), so the system now has 24
available states. If we shuffle the hearts so that they are arranged in ran-
dom order, they can wind up in any of over 6 billion possibilities; the
number of available states for this deck of cards is getting very high. If
we simply shuffle the entire deck, then the number of possible arrange-
ments (a very large number) is at a maximum. Since this is also the number
of available states, the entropy now is at a maximum. As this example
indicates, entropy has a very intuitive meaning. Entropy is a measure of
the disorder in a system. The entropy is least for the completely well-
ordered deck, the entropy increases with increasing randomness, and the
entropy is at a maximum for a completely shuffled deck having no order.
The second law now takes on a new significance. The second law tells us
that the disorder of the universe is increasing. The natural tendency for a
system is to become more disordered. Imposing order requires some effort
(or, to be more precise, some energy). We can now understand why the
second law is true. A highly ordered state is less probable than a disor-
dered state because the number of choices for the system decreases as it
becomes ordered. Heat flowing spontaneously from a cooler place to a
hotter place is improbable for the same reason that shuffling a deck of
cards into four arranged suits is improbable. For the disordered heat of a
golf ball to become ordered energy of motion and make the ball jump
into the air is so improbable that we’ll never see it happen during the age
of the universe. It’s effectively impossible. All violations of the second law
are like this: merely improbable, but so improbable that we declare them
impossible. (A monkey pecking at a typewriter is far more likely to write
every book in the Library of Congress than our golf ball is likely to jump
in the air.)

This broader interpretation of the second law has wide application in
nature. We can use it to explain why a drop of ink spreads throughout a
glass of water, why dead plants and animals decay, and why machines are
constantly in need of maintenance. A major new set of insights were
worked out more recently, linking the concept of entropy with that of
information. Entropy is a measure of disorder in a system (what we don’t
know), while information (what we do know) is in some sense a measure
of the order that exists. Information, in this picture, then becomes a kind
of negative entropy. These ideas (worked out in what we now call infor-
mation theory) have proven to be exceedingly fertile in applications to
modern telecommunications systems, including the now-famous internet.
Another fascinating application of the second law is to an old problem,
the arrow of time. We clearly perceive a directionality in time; the past is
what has already happened, and the future has yet to happen. This trivial-
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sounding concept has a problem, from a scientific point of view: nothing
in the equations governing the behavior of matter distinguishes between
the past and the future. The world could just as well be running backward.
This premise is surely absurd, and yet it demands an explanation. The
second law provides such an explanation, because the disorder in the
world must inexorably increase with time. In this view, the future is the
time direction in which the disorder becomes greater. Increasing disorder
itself imparts a direction to time’s arrow. While this idea certainly isn’t
the last word on issues regarding time, it has profoundly influenced the
discussion.

The ultimate significance of the second law is not entirely clear. A com-
mon misinterpretation is that the second law prohibits the formation of
order, but this isn’t true. Living things create and maintain highly ordered
structures by consuming energy and creating greater entropy in the rest
of the world. A more homely example is the refrigerator, which makes
heat flow from a cooler place to a warmer place by consuming energy and
discharging entropy. We can always create islands of local order at the
expense of greater disorder elsewhere. Only a so-called isolated system
can never decrease its entropy. Of course, the ultimate isolated system is
the entire universe, and pessimistic writers have taken a nihilistic message
from the second law: everything is headed toward total disorder. Extrapo-
lating our limited knowledge and experience to the entire universe is al-
ways dangerous, however, and there are still questions about the cosmic
significance of the second law. What we do know about the central role
of the second law in chemistry, physics, biology, geology, engineering, and
information theory is already important enough.

§2. ORDER FROM DISORDER—OPEN SYSTEMS
AND EMERGENT PROPERTIES

An isolated system is also sometimes called a closed system, in contrast
to an open system that can exchange energy, material, and information
with the rest of the world. For many years, the study of thermodynamics
was essentially restricted to the study of closed systems at equilibrium.
(By equilibrium we mean the final steady-state condition of a system; for
example, when our hot and cold metal blocks arrive at the same tempera-
ture, they have achieved equilibrium.) The entropy of a closed system is
maximum at equilibrium. Closed systems at or near equilibrium are the
easiest to understand, but we have discovered more recently that such
systems are by no means always the most interesting. In the last few de-
cades of the twentieth century, the study of open systems that are far from
equilibrium has revealed a wealth of new and revolutionary insights. We
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have discovered that order can spontaneously arise in such systems, a
phenomenon known as self-organization. Self-organizing systems occur
in living things, chemical reactions, moving fluids, computer models, and
social organizations. We’ll look at several examples of such systems, and
we’ll see how new properties (called emergent properties) can arise.

Some Simple Examples: Convection Rolls
and Chemical Clocks

Let’s start with a simple (but historically important) example: convection
cells in a heated liquid. Imagine a wide, shallow container filled with
water. The container has flat metal plates at the bottom and top, with
water filling all the space in between. If the bottom plate is warmer than
the top plate, heat will flow in order to equalize the temperatures (trying
to achieve equilibrium). But if we continuously supply heat to the bottom
plate, we thwart the attempt to achieve equilibrium. A steady-state tem-
perature difference (called a gradient) is established instead. As we make
the bottom plate hotter and hotter, the gradient increases, and we drive
the system farther away from equilibrium. At a certain critical tempera-
ture difference, a remarkable thing happens. The system undergoes an
abrupt transition and a set of rolling convection cells form. In these con-
vection cells, warmer water from the bottom rises up (where it cools),
driving cooler water down to the bottom (where it warms). The water
moves around continuously, much like a spinning cylinder (these move-
ments are sometimes called convection rolls). Each cell can roll either
clockwise or counterclockwise, with the direction alternating from one
cell to the next. This seemingly simple motion is quite remarkable because
the entire system organizes itself into this pattern all at once. Order has
arisen spontaneously from the disordered motion of heat.

No violation of the second law has occurred here, because we are con-
stantly supplying energy to the system (which is far from equilibrium).
The simplicity of the experimental set-up (called a Bénard cell) allows us
to understand in some (mathematical) detail how and why the order arises
in this case. We can vary the geometry and carefully control the tempera-
ture in order to make predictions that test our understanding. The basic
ideas inherent in this simple experiment are also found in the titanic
forces of nature. The great forces that slowly move continents are due to
convection cells in the earth’s mantle (see chapter 2). The circulating air
of a hurricane or tornado and the vast stable ocean currents (like the
Gulf Stream) are similar examples of self-organized convection systems
in fluids.

We now turn to a completely different kind of system, namely a collec-
tion of chemicals and their reactions. Even a simple system, with just a
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few chemicals, can exhibit interesting properties of self-organization. The
key requirement needed for this to occur is that some chemicals must play
two distinctly different roles in the reactions. These chemicals need to be
both reactants (taking part as either input sources or output products)
and also catalysts (agents that speed up a reaction without taking part).
This property is sometimes called autocatalysis. In addition, we must have
an open system in which source materials, products, and energy can flow
in and out. A famous example of such self-organization is the Belousov-
Zhabotinski reaction, the so-called chemical clock. The chemicals in-
volved are not exotic (cerium sulfate, malonic acid, and potassium bro-
mate), but one of the intermediate products (bromous acid) catalyzes its
own formation. The inflowing reactants drive the system from equilib-
rium, and (under the proper flow conditions) the reaction starts to periodi-
cally oscillate. Because two of the products have different colors, you can
actually see the reaction oscillate as the solution periodically changes back
and forth from colorless to yellow. The changes occur at highly regular
time intervals, hence the name “chemical clock.” If the solution isn’t
stirred, then differences can develop in space as well as time. Waves of
color move through the solution, sometimes forming beautiful spiral pat-
terns. All of this order unfolds naturally from the process itself, emerging
from the microscopic disorder of the inflowing reactants.

In the previous two examples, we’ve only looked at self-organized be-
havior in simple systems. Highly complex systems, having many compo-
nents interacting in a variety of ways, are actually more prone to self-
organization than simple systems. Complex systems, in fact, are where
the ideas of self-organization and emergence really come into their own.
We’ll soon look at highly complex autocatalytic chemical systems and
how these systems relate to life. But first, let’s look at a complex system
made up of very simple pieces: Boolean networks.

Complex Networks

Each component of a Boolean network operates according to the rules
formulated by George Boole over a century ago. These rules, which are
the foundation of mathematical logic, operate on binary variables (which
is a fancy way to say that the variable has only two possible values). We
might call these two values by several names: true and false (if we’re think-
ing about logic); on and off (if we’re thinking about switches); zero and
one (if we’re thinking about binary, or base two, numbers). Since elec-
tronic devices can be built that have on/off states, their outputs can be
used to represent either binary numbers or logical decisions. Electronic
devices of this type, operating according to the rules of Boolean logic, are
called logic gates. Such devices are at the heart of every digital computer.
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The basic rules of Boolean logic are not complicated. Each component
has multiple inputs and a single output. These inputs and outputs specify
binary states (for example, let’s call these states 0 and 1). The values of
the input states then determine the output state, according to the rule we
choose. An important Boolean rule is the AND operator, which specifies
that the output will only be 1 if all of the inputs are 1. Supposing we have
two inputs, then inputs 1 AND 1 give an output of 1. Inputs of 1 AND
0, 0 AND 1, and 0 AND 0 all give an output of 0. A different Boolean
rule is the OR operator, which gives a 1 if any of the inputs are 1. In this
case, we have 1 OR 1 gives 1, 1 OR 0 gives 1, 0 OR 1 gives 1, and 0 OR
0 gives 0. There are also other Boolean rules, but the definitions of the
AND and OR are enough to get across the essential idea. We can string
such components together in a complicated fashion to build up complex
systems. As long as the inputs are kept completely separate from the out-
puts, the results are quite predictable and well-defined. If we mix the in-
puts and outputs together, however, letting the outputs of some compo-
nents be the inputs of the others in a set of feedback loops (see chapter
21), then we have a complex system whose total state will be unpredict-
able. This arrangement is a Boolean network. The total state of the system
is simply the complete specification of all the individual components’
states. For example, a five-component system with a total state of {10100}
means that the first and third components are in state 1, while the rest
are in state 0. A five-component system has 32 possible states that it might
be in. For a system with thousands of components, the number of states
it might be in becomes astronomically large.

A Boolean network with thousands of components may have a highly
disordered state. If the output of each component serves as the input for
a large number of other components, the total state of the system cycles
aimlessly among virtually every possibility. Little or no order is formed
in such a system. Using the language of the previous section, the entropy
of the system is near its maximum value. In the extreme case where every
output is connected to the input of every component, the state is totally
random. Every possible state is equally probable, and the entropy is as
high as possible. If, however, we connect each output to the input of only
two other components, we see a very different behavior. In this case, the
system eliminates possible states at an astonishing rate. Instead of the
astronomically large number I just mentioned, the system narrows its
choices down to fewer than a hundred states. This drastic winnowing of
possibilities is a spontaneous action of the system itself, and it happens
for virtually any random interconnections made in the wiring. In other
words, the self-organization doesn’t depend on any details of the system
design, but only on the restriction to two (or fewer) inputs to each mem-
ber. (Of course, these wiring details do determine, in some unpredictable
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way, which of the states the system ultimately chooses to keep.) So, we
see here the spontaneous emergence of order from randomness in a case
where the individual rules for each component are simple, but the entire
system is highly complex. Such emergence is not inherent in the rules,
resulting instead from the operation of the entire system as a whole.

Somewhat similar systems, studied by many people, go by the name
“cellular automata.” In this case, each component is connected only to
its nearest neighbors in the network. The number of states for each com-
ponent might be more than two, and the rules governing the state of each
component are more flexible than the Boolean rules. A famous example
is the so-called Game of Life (invented by John H. Conway), in which
each component has two states: alive and dead. The state of any compo-
nent is determined by the states of its neighbors (i.e., by how many of its
neighbors are alive or dead). The rule is simple enough, but the complex-
ity arises from two facts: all of the neighbors are influencing each other
at the same time, and the whole system evolves from one step to the next.
Astoundingly, these simple rules can generate patterns that grow and re-
produce themselves.

Emergence and Life

We’ve looked at self-organization in autocatalytic chemical reactions and
in complex networks of interacting components. Suppose we now com-
bine these cases by making the interacting components of the complex
network a large set of chemicals that can react and autocatalyze to create
the feedback interconnections. Based on our experience with Boolean net-
works and autocatalytic chemistry, we might expect such a system to self-
organize into an ordered state of some sort. If these chemicals are amino
acids, carbohydrates, and nucleotide fragments, then this ordered state
might look very much like a living organism. Living things are very defi-
nitely open thermodynamic systems, existing far from equilibrium. Life
uses the energy sources in the environment to maintain an ordered state
in apparent defiance of the second law. We’ve already seen that no real
violation of the second law occurs, however, because living organisms
also reject their excess entropy to the environment. The details of how
existing organisms do this are still being studied by biologists and bio-
chemists, but the underlying idea is not mysterious. The mystery has been
this: how did this process begin before the organisms existed? In other
words, how did life begin?

The emergence of order in nonequilibrium open systems provides a clue
to the solution of this mystery. Accumulating evidence suggests that a
spontaneous ordering tendency is quite common in complex systems;
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some people (e.g., Stuart Kauffman) believe that such ordering is not only
common but almost inevitable. Just as a Bénard cell organizes itself into
convection rolls when driven far enough from equilibrium, a complex
collection of autocatalytic reactions organizes itself into a stable self-sus-
taining system, a primitive precursor of life. In this picture, changing con-
ditions will perturb the self-organized ordered state, which may respond
by switching to another allowed state more suited to the new environ-
ment. This process would be the beginnings of evolution by natural selec-
tion, the genetic code serving primarily as a record of the changes. The
development of an organism results from the interplay between the infor-
mation preserved in the genetic code and the natural ordering tendency
inherent in the system. These ideas are still novel and speculative. We
don’t yet understand how life began. The recent work on open systems
and self-organization holds great promise, however, to continue providing
new insights.

In addition to specific applications, the recognition of emergence is it-
self of fundamental importance in the sciences. To reiterate, we mean
by “emergence” the idea that new properties arise from interactions in
complex open systems. These new properties of the system are not predict-
able, even in principle, from the properties of the individual interactions.
Rather, the new properties emerge from the complexity of all the inter-
actions together. This directly contradicts the old reductionist ideal of
understanding a system by splitting it into its component pieces (see
chapter 14). Here, the behavior of the system is governed not by the pieces
but by the system as a whole. Science is still assimilating this new point
of view.

§3. ORDER HIDDEN WITHIN DISORDER—NONLINEAR
DYNAMICS AND CHAOS THEORY

Unpredictable behavior doesn’t require a high degree of complexity to
occur. A major new insight in the last few decades has been the realization
that even simple systems can act unpredictably. A pendulum, for example,
is fairly simple. An ordinary (unforced) pendulum is the epitome of regu-
lar predictable motion (that’s why we once used them to run clocks). But
imagine a pendulum that is given a push at regular intervals (called a
forced, or driven, pendulum). This forced pendulum, if it is pushed with
enough force at the appropriate frequencies, can go into chaotic motion;
the swinging of the pendulum is irregular, and we can’t predict what it
will do next. Though it’s unpredictable, this motion is not random. We’ll
explore the difference between unpredictable and random as we go along.
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For now, my main point is this: Even a simple thing like a pendulum can
exhibit complex behavior. Why should this happen? What properties of
a simple system might cause chaotic motion to occur? We’ll answer these
questions as we go along, too. Next, however, let’s try to better under-
stand what chaos is by looking at a particular example.

The Logistic Equation

Let’s look in more detail at another case that is deterministic, simple, and
yet still chaotic. This case, sometimes called the logistic equation, is an
elementary algebraic relation

xn+1 = rxn(1 − xn),

in which we start with some specific number for x0, the initial value of x.
This initial value is, as you can see, the n=0 case. The constant r in this
equation is just a number we can choose, sometimes called a parameter
(as opposed to the x’s, which are variables). Once we have chosen x0 and
r, all the rest of the xn values are automatically predetermined; that’s why
we call this a deterministic equation. The way it works is this: Insert the
initial value x0 (n=0) into the right-hand side of the equation, and you
produce x1 (n=1) on the left-hand side. Take this x1 (n=1) value, and now
insert it into the right-hand side. Now you get x2 (n=2) on the left-hand
side. Next insert x2 in order to get x3, and so on up to any n you please.
The appearance of the equation is perhaps deceptively simple. There is
actually an iterated feedback loop (see chapters 6 and 21) implied by this
method. The behavior of this system (that is, the sequence of xn numbers
we generate) can exhibit an astoundingly rich variety, depending on the
values of the parameter r and of x0.

If we restrict the initial value x0 to numbers less than 1 and don’t let r
be any greater than 4, then we guarantee that xn is never outside the range
of 0 to 1. In Figure 12, we graph successive values of xn against n for the
case when r=3.4 is the parameter and x0=0.02 is the initial value (n from
0 to 25). You can see that the system soon settles down to alternating
between just two xn numbers, 0.45 and 0.84. We might call this behavior
periodic, analogous to the periodic swinging of an ordinary pendulum.
The value of r decides the behavior of this system. xn might settle down
to a single repeating number, or might alternate between two (as we saw),
four, eight, and so on numbers, depending on r. In Figure 13, we graph
the results for r=4 and x0=0.8 (n from 0 to 40). The behavior of xn seen
in Figure 13 is quite remarkable; there is no repeating pattern at all. The
system now exhibits chaotic variation with n. Because there is no regular-
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Figure 12. Graph of the logistic equation for r = 3.4, illustrating periodic
behavior.

ity, we can’t predict what the graph will look like for further increases of
n (in contrast to Figure 12). The changes are not random, however. We
can certainly calculate the next set of xn values without any ambiguity;
but we can’t say what they’ll look like before we calculate them. In es-
sence, this is what we mean by deterministic chaos.

Sensitivity to Initial Conditions

Chaotic systems have many interesting properties, one of which is illus-
trated in Figure 14. This graph shows two sets of xn values (n from 0 to
18). One of these is just the same as the graph shown in Figure 13, except
for the shorter range of n (in other words, the dotted line graph repeats the
results for r=4 and x0=0.8). The second graph is for the same parameter r
and starts with an initial value x0 that is different by only one part in a
thousand (i.e., r=4 and x0=0.8008). The striking feature that you notice
in this graph is that the two results are completely different after about
n=10. The points start out very close, but they soon diverge from each
other a little and the divergence rapidly grows. This property, known as
sensitivity to initial conditions, is shared by all chaotic systems.
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Figure 13. Graph of the logistic equation for r = 4.0, illustrating chaotic
behavior.

Sensitivity to initial conditions is a very important attribute of chaotic
systems in nature. Real quantities in natural systems always suffer from
microscopic fluctuations. Even though a chaotic system is deterministic,
the long-term behavior of the system is truly unpredictable due to sensitive
dependence on initial conditions. The meteorologist Edward Lorenz has
called this the butterfly effect; a butterfly flapping its wings in Argentina
might start a chain of events leading to a hurricane in Cuba. Lorenz dis-
covered sensitivity to initial conditions while solving a set of model equa-
tions describing the atmosphere (the model, although highly simplified,
turned out to have chaotic solutions).

Nonlinearity

Why are some systems well-behaved and orderly, while others are irregu-
lar and chaotic? The most important characteristic of a system in this
regard is undoubtedly whether the system is linear or nonlinear. Chaotic
motion is virtually always due to some nonlinearity in the dynamics. In a
linear system, the output is directly proportional to the input (we’ll look
in more detail at linear variation in chapter 19). In contrast, the output
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Figure 14. Graphs of the logistic equation for r = 4.0, with initial values of 0.8
and 0.8008; the diverging behavior of the two graphs as n increases illustrates
sensitivity to initial conditions.

of a nonlinear system depends in some more complicated fashion on the
variables of the system; the dependence is not simply a direct proportion-
ality. For example, in the logistic equation that we have explored, the
output (xn+1) has a quadratic dependence on the input (xn), because
xn(1−xn)=xn − xn

2. In the driven pendulum example, the effect of gravity
on the bob has a trigonometric dependence on the angle (a sin(θ) varia-
tion), which is nonlinear. In other cases, we might have the product of a
variable with its own rate of change; in systems with more than one vari-
able, the output might depend on the product of these variables.

The typical behavior of a linear system is stable and predictable, often
periodic. The linear equations governing the dynamics can usually be
solved, so we can predict the motion in practice as well as in principle.
Also, many systems that are actually nonlinear can be well approximated
by linear models (see chapters 6 and 19). The pendulum falls into this
category if the arc it swings through is not too large (that’s how we get
regular motion). Another famous example is the solar system, where the
governing equations can be made linear by including only the influence
of the sun on each planet, leaving out the effect of all the other planets.
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These linear systems, being both important and solvable, received almost
all of the attention of scientists for many years. More recently, the wide-
spread occurrence of nonlinearity in nature has drawn greater attention.
As Lorenz emphasized, the dynamics of the atmosphere are nonlinear.
Turbulence in fluids is governed by nonlinear equations, ecosystems are
not linear systems, and many physiological processes are nonlinear. As we
have seen, such nonlinear systems are prone to chaotic and unpredictable
behavior.

Phase Diagrams

There is an important difference between unpredictable changes and ran-
dom changes. The difference is subtle and has only been studied in recent
decades. The standard meaning of chaos in the English language implies
both randomness and unpredictability, a kind of pure disorder. The word
“chaos” has a somewhat different technical meaning in the science of
nonlinear systems: deterministic yet unpredictable, unpatterned yet non-
random. In this sense, the choice of “chaotic” as a label for these systems
is confusing, although it has the virtue of being evocative.

In order to illustrate the difference between chaos and random motion,
we need to make a brief digression: an introduction to phase diagrams.
To understand a phase diagram, we can start by looking at the kind of
information we’re interested in. We have so far been talking about the
form of the time variation in a dynamical system (periodic or irregular,
for example). By graphing the important variables of the system versus
time, we can see all at once what the time behavior of the system is. The
graphs of Figures 12, 13, and 14 are examples of this kind of information,
since the successive n values can also be thought of as time intervals
(greater n means later time). But if a system has at least two important
variables that change with time, we can look at a different kind of infor-
mation; we can look at how the variables relate to each other instead of
how each individually varies with time. In particular, we can make a graph
of one variable versus the other variable. For each instant of time, we
have a point on the graph representing the values of the two variables at
that instant. A long stretch of time will produce many such points, and
all the points together make up what we call a phase diagram. If the varia-
tion is periodic and regular, the points will form a closed curve with some
characteristic shape. A nice example of a simple phase diagram, for an
ordinary pendulum, is given in Figure 15. The position of the pendulum
bob is plotted on the x-axis, and the velocity of the bob is plotted on the
y-axis. As the pendulum goes back and forth, its location on the phase
diagram moves from point to point around the curve. One complete pe-
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Figure 15. Phase diagram for a simple pendulum, showing the relationship be-
tween position and velocity for this periodic system.

riod of the repeated motion represents one complete circuit around the
curve. As the pendulum repeats its periodic motion over and over, its point
on the graph continues to cycle around.

Strange Attractors

If the behavior of a variable is truly random, then the location of its point
on a phase diagram will also change randomly as time goes on. For a
system with two randomly changing variables, then, we would expect to
see a random distribution of points on the x-y plane of a phase diagram
(like raindrops on a car windshield). As we said before, a forced pendulum
can go into chaotic motion. The position and the velocity of the chaotic
pendulum are both irregular and unpredictable as time goes on. But they
are not random. Figure 16 shows a phase diagram for a chaotic pendu-
lum, and this array of points is clearly not random. The motion, though
unpredictable, always winds up having a location in phase space that is
somewhere on the complicated pattern shown in the figure. This compli-
cated pattern is an example of what has come to be known as a “strange
attractor.” A strange attractor is a region of a phase diagram on which
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Figure 16. Phase diagram for a chaotic pendulum. The pattern shown, represent-
ing the motion of this aperiodic system, is called a strange attractor (image cour-
tesy of J.C. Sprott)

points representing the behavior of a chaotic system are located. Put dif-
ferently, the motion of the system is attracted to some region of phase
space, and we call this region a strange attractor. The word “strange” is
used to distinguish these chaotic cases from periodic behavior, where the
closed curve is also an attractor in phase space. The strange attractors are
very different, though, because there is no simple way to relate the strange
attractor on the phase diagram to the observed behavior of the system,
which gives every appearance of being random. The existence of strange
attractors in chaotic systems is telling us something very profound about
nature: Within the disorder of the chaotic system, there is to be found a
hidden order of a different kind. Strange attractors have many extraordi-
nary properties. They never close in on themselves (i.e., never repeat);
instead they fold, twist, and convolute in ever-increasing density and com-
plexity. Points that start out arbitrarily close to each other on the attractor
become widely separated as time goes on (this is another result of sensitiv-
ity to initial conditions). Because of the never-ending twisting and folding,
strange attractors cannot be identified as ordinary lines or planes. Instead,
they have what mathematicians call a fractal geometry (fractals are quite
interesting in their own right). And of course, we can’t fail to notice the
mysterious beauty of the visual patterns that strange attractors present.
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Chaotic Systems in Nature

All of this fascinating mathematics would be only slightly useful in science
if these chaotic systems were an occasional curiosity in nature. Instead,
however, we find chaos in a wide variety of natural systems. Regular and
predictable behavior seems to be the exception, not the rule. We over-
looked this chaotic motion for hundreds of years by concentrating on
the problems that we could solve, namely, predictable systems. Irregular
behavior seemed uninteresting; we dismissed these as cases where we
knew the procedures to find a solution, but actually finding it was too
hard. We are now beginning to understand the rich structure of these
apparently random cases, and we are discovering how frequently they
occur in nature. Since chaotic systems are found in biology, physics, chem-
istry, and geology (and also the social sciences), and all of these systems
share similar characteristics, nonlinear dynamics is also an integrative and
unifying idea in the sciences, tying together many otherwise unrelated
areas of study.

Many examples of chaos are simple everyday occurrences. The smoke
rising up from a lit cigarette or incense stick forms a set of swirls that curl
and break up in a chaotic pattern. The creation of a snowflake is a delicate
balance between the regular formation of a crystal lattice and the nonlin-
ear growth at its edges (this accounts for the old adage that no two snow-
flakes are alike). Turbulence in fluids is another example of chaos. The
pattern of whirlpools and eddies in a stream is a familiar example of
turbulent flow. Water in pipes and the movement of air across an airplane
wing also exhibit turbulence under some circumstances, and these are
major engineering problems. Turbulence, in fact, was one of the areas in
which chaos theory first became prominent. A number of electrical cir-
cuits have nonlinear circuit elements, and these circuits produce voltages
that vary chaotically. Several such circuits (e.g., the van der Pol oscillator)
have been studied extensively, including the properties of their strange
attractors. Meteorology is another field in which chaos made an early
appearance, when Lorenz discovered that his computer model of the at-
mosphere produced no predictable pattern (the implications for our abil-
ity to make long-term weather predictions are apparent). In the course of
his studies, Lorenz found a strange attractor for his system, shown in
Figure 17, which has become quite famous.

In biology, an example of chaotic dynamics is found in the study of
population changes. In fact, the logistic equation we worked with is a
simple model of how populations change from year to year. (The variable
x, ranging between 0 and 1, represents the population divided by its maxi-
mum value.) In this model, n means the number of years, x0 is the initial
population, xn is the population in year n, and r is a measure of the fertility
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Figure 17. The Lorenz attractor, showing the relationship between three variables
in a chaotic climate model.

of the species. The population in year n+1 is proportional to the popula-
tion xn in year n (for obvious reasons), but also proportional to (1 − xn)
because resources become more scarce as the population grows. For mod-
erate values of r, the population settles to a stable number, or cycles regu-
larly between a few numbers. But as we have seen, populations can also
vary chaotically from year to year. Even this simple model captures im-
portant features of real changes in some cases (e.g., certain species of
insects).

Perhaps the most dramatic example so far is the discovery of nonlinear
dynamics and chaos in the workings of the human heart. We think of the
heartbeat as a regular and periodic occurrence, but the heart needs to
change the tempo of its rhythmic pumping over a wide range while still
remaining stable. The operation of the heart is extremely complex, with
the muscles and nerve stimuli of many different parts all working together
at the proper times. A linear oscillator, if it’s knocked out of normal opera-
tion, has a difficult time regaining this normal operation. A little nonline-
arity mixed properly into a system actually can help the system maintain
a robust stability (which we certainly want in the operation of our heart).
As we’ve seen, however, small changes in a system parameter can drive

 

 

 



T H E E D G E O F T H E A B Y S S 251

the system from stable behavior into the chaotic regime; in the heart, this
means irregular fibrillations and possible death. So order and disorder
coexist in the heart, and both must play their roles properly for the heart
to work.
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Chapter 18

RIDING BLAKE’S TIGER: SYMMETRY IN

SCIENCE, ART, AND MATHEMATICS

But the idea of the crystal is nothing but its spatial
symmetry. . . . all the actual forms of crystalline

symmetry, and only these, follow from the mathematical
characteristics of Euclidean space.

(C .F. von Weizsacker)

Symmetry is a vast subject, significant in art and nature.
(Hermann Weyl)

THE CONCEPT of symmetry plays an important role in all of the
natural sciences, playing a particularly fundamental role in physics.
This concept is also of prime importance in mathematics, where

our intuitive notions of symmetry gain precision and rigor. Symmetry is
central to aesthetics and the arts, but also useful in technical work and
engineering. Few concepts have such wide-ranging implications. What
does the word “symmetry” mean exactly? In general usage, symmetry
implies a sense of being harmonious and well balanced. In geometry, it
has a more restricted meaning: If you do something to a geometric figure
(move it, spin it, flip it over, etc.), and it still looks the same, then we say
that the figure has a symmetry. These two definitions are not as far apart
as they may at first seem. We’ll begin by exploring the geometric concept
of symmetry, and then extend our understanding of its applications in
science as we go along. In the process, we’ll make contact with the general
aesthetic sense of symmetry; we’ll show how it serves as a unifying princi-
ple in science; and we’ll discover its deep ramifications in mathematical
and physical theory.

§1. SOME BASIC IDEAS

Rotations, Reflections, and Translations

Take a look at the cross with four equal arms shown in Figure 18a. Sup-
pose that I rotate this cross (about its center) through one-quarter of a
full circle. We are left with a cross that looks identical; we say that this
cross is symmetric under the operation of one-quarter turn rotations. We
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Figure 18. Some shapes with fourfold rotational symmetry. Three also have re-
flection symmetry, but two do not.

could equally well have done a three-quarter turn, a half turn, or a full
turn rotation. For any of these operations, we get a cross that looks identi-
cal to the original (for any other angle, we get something different). We
say that this cross has a four-fold rotational symmetry. For all of the other
shapes in Figure 18, the angles that bring us to an unchanged shape are
the same angles we found for the cross, namely, integral multiples of quar-
ter-turns. All of these shapes have a four-fold rotational symmetry. You
can see intuitively that they share some property, but now we have pre-
cisely defined what that property is. Any conclusions that apply to four-
fold symmetric objects now apply automatically to each of these shapes
and to all other imaginable shapes sharing this symmetry.

There is a subtle difference between the first three shapes (a, b, c) and
the second two (d, e). This difference, though subtle, is quite important
(even profound). To see the difference, imagine a vertical line (in the plane
of the paper) through the center of each shape, and then fold over this
line as if you were folding the paper over. You see that three of the shapes
have matching halves under this operation, while the other two do not.
We say that the first three have a bilateral symmetry (or reflection symme-
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Figure 19. A variety of shapes with n-fold rotational symmetries.

try), while the second two don’t. This kind of symmetry is familiar; for
example, anyone who has cut out paper dolls has created bilateral symme-
try. If you imagine placing a mirror on the imaginary line through the
center of the shape, you’ll also create a bilaterally symmetric figure. This
is the source of the term reflection symmetry. A shape can have a number
of reflection symmetries along different lines (vertical and horizontal in
these particular cases). Although our examples so far have had both rota-
tional symmetry and bilateral symmetry, a shape can easily have a bilat-
eral symmetry without a rotational symmetry (a horseshoe, for example).
We can have shapes with any number of rotational symmetries (n-fold
symmetry, where n is an integer). Some examples are given in Figure 19
(they also have some reflection symmetries). Note that all of the so-called
regular polygons have n-fold rotational symmetries. The ultimate in rota-
tional symmetry is the circle: it can be rotated through any angle at all
without being changed. Any line through the center of a circle results in
a bilateral symmetry.

The other major type of symmetry is called translational symmetry.
Imagine that each point in a shape is moved over a given distance, in a
given direction. The result of this process will be a reproduction of the
shape. Now repeat the operation, over and over again forever. This is
translational symmetry. “Translate” simply means “move to a new spot.”
If we have translational symmetry, then we move to a new spot that looks
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Figure 20. A pattern with two-dimensional translational symmetry.

exactly like the old spot. These ideas are consistent with our definition of
symmetry given above (if you do something to it, it still looks the same).
An interesting example of translational symmetry is shown in Figure 20.

Symmetries in Three Dimensions

So far, all of our work has been in two dimensions, that is, in a plane,
because it’s much easier to visualize (and draw) figures in a plane. Most
of the important ideas can be introduced and illustrated without the com-
plications of three dimensions. When we go from two dimensions to three
dimensions, however, some new and interesting features appear. In two
dimensions, we rotated about a point in space, but in three dimensions
we must rotate about a line (called the rotation axis). Because this line
must have a direction, and it might be any direction, this case is rather
more complicated. The symmetry properties of the shape will be very
different for different choices of the rotation axis direction. The only ex-
ception to this statement is the sphere. For any line through the center of
a sphere (any line at all in any direction) the sphere can be rotated through
any angle and remain unchanged. The sphere has the same high degree
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Figure 21. The five Platonic solids. These are the only possible shapes that have
identical regular polygons for every side.

of rotational symmetry as the circle, and has it for any rotation axis
(through its center) that we choose. (Any plane through the center of the
sphere is also a plane of reflection symmetry.) Perhaps this remarkable
degree of symmetry is the reason the Greeks considered circles and spheres
to be perfect figures (see chapter 5). Another fascinating discovery about
rotational symmetry in three dimensions goes back to the Greeks, this
one a bit more complicated. In a plane, a regular polygon has n equal
sides, n equal angles, and n-fold rotational symmetry. Starting with n=3,
we see that n can be any number we please. Regular polygons might be
hard to draw for some values of n, but they aren’t hard to imagine. The
situation is quite different in three dimensions. The three dimensional
analog of a polygon is a polyhedron, a solid figure with polygonal faces
(for example, a cube is a polyhedron having six square faces). A regular
polyhedron has only identical regular polygons for each of its faces (so a
cube is also a regular polyhedron). While there are an infinite number of
regular polygons in two dimensions, it turns out that there are only five
regular polyhedra in three dimensions (they are shown in Figure 21): the
tetrahedron with four triangular faces; the cube with six square faces;
the octahedron with eight triangular faces; the dodecahedron with twelve
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Figure 22. A reflection symmetry in three dimensions. It’s impossible to make the
two shapes identical by any combination of rotations and translations.

pentagonal faces; and the icosahedron with twenty triangular faces. These
shapes are known as the Platonic solids, and they have an intriguing array
of symmetries.

Reflections in three dimensions also present some novel features. In
Figure 22, we see two cubes, each having a marked corner. These cubes
have a reflection symmetry in the indicated plane. This plane is sometimes
called a mirror plane, for obvious reasons. Now, try to imagine moving
these two cubes around so that one of them is perfectly superimposed on
the other. You can’t accomplish this task. In three dimensions, no set of
rotations and translations is equivalent to a reflection. The same thing
happens if you look at yourself in a mirror and try to move your right and
left hands around so that they match—it can’t be done. For translations in
three dimensions, we need to know several directions and distances in
three dimensions to define the translational symmetry. Translationally
symmetric figures in three dimensions are more difficult to visualize, but
don’t present many new conceptual features. Translations combined with
other operations are more interesting. For example, we can combine a
translation in one direction with a rotation around that direction, re-
sulting in a helical shape, also called a screw. The mirror reflection of
this helical screw is another helical screw, and these two shapes, though
symmetric under reflection, are intrinsically different from each other.
One is called a right-handed helix, and the other is called a left-handed
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helix (a right-handed screw goes inward when it is turned clockwise,
while a left-handed screw comes out when it is turned clockwise). As
we’ll see later, these possibilities are realized in nature with fascinating
consequences.

§2. USEFUL AND BEAUTIFUL APPLICATIONS
OF SYMMETRY

Chemical Bonds

Now that we know something about symmetry, let’s explore how it re-
lates to science. We’ll start with the simple methane molecule (methane is
the main constituent of natural gas), which consists of one carbon atom
joined to four hydrogen atoms. The carbon atom is at the center of a
regular tetrahedron, one of the Platonic solids (see Figure 21). The hydro-
gens are located at the corners of this tetrahedron. Tetrahedral bonding
is common, in part because this is the only way in which four atoms
can be bonded together in a three-dimensionally symmetric fashion. The
electrons of the atoms making up the molecule also have their own sym-
metries, which partly determine the symmetry of the bonds they make.
Metal atoms typically have different symmetries than carbon, and metal
atom sites often play a key role in biologically important processes. He-
moglobin, for example, is the component of your red blood cells that
carries the oxygen to the rest of your body. The iron atom in the substance
called heme is bonded to four nitrogens at the corners of a square, with
the iron at the center (see Figure 23). The heme is bonded to a large pro-
tein molecule called globin at a single bonding site: the iron atom. This
iron atom also forms a bond with a water molecule. So iron is bonded to
six other atoms, and these bonds form an octahedral symmetry (another
Platonic solid; see Figures 21 and 23). Four bonds are to the nitrogens in
the heme, one bond is to the globin, and the last bond is to the water
molecule, while the iron atom sits at the center of the octahedron. The
water is replaced by oxygen in the lungs to make oxyhemoglobin, and
then the oxygen is replaced again by water when the oxygen is delivered
to the cells of the body. A similar octahedral bonding structure is found
in chlorophyll, the substance that plants use to photosynthesize food. In
the case of chlorophyll, the metal atom found in the octahedrally symmet-
ric bonding site is magnesium.

The importance of bonding, structure, and symmetry is dramatically
illustrated by the classic case of pure elemental carbon. Carbon atoms can
bond to each other in several ways. They might form tetrahedral bonds
(like methane), but with carbon at the center and also at each vertex of
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Figure 23. A schematic illustration of the hemoglobin structure, showing the oc-
tahedral symmetry of the iron atom binding site. The alternate binding of water
and oxygen molecules to the iron is the means by which blood transports oxygen
from our lungs to our cells.

the tetrahedron. With each carbon atom bonding to four other carbon
atoms, every carbon atom is tetrahedrally bonded to four more in an
endless interlocking array. Carbon in this structure is what we call dia-
mond. But, carbon can also form bonds to three other carbon atoms
within a plane, forming flat hexagonal arrays that are only weakly bonded
to each other. We call this form of carbon graphite, the stuff your pencil
leads are made of. The properties of graphite and diamond are very differ-
ent, yet both are made only of carbon atoms. Just a few years ago, chem-
ists created a new form of carbon in which sixty carbon atoms are bonded
together into a soccer-ball-like structure that was named buckminsterful-
lerene. This structure of interlocking hexagons and pentagons also has a
variety of interesting symmetries. As we’ve seen, symmetry plays a central
role in structure and bonding. In the examples of graphite and diamond,
we also see some new features not found in molecules. The arrays of
atoms go on repeating forever, so we now have something new: transla-
tional symmetry. We are now talking about crystals.
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Crystallography

Crystals have captured the imagination of humans since before recorded
history. Small crystals have been found among the power objects of sha-
mans at archaeological sites, the ancient Egyptians venerated the mineral
lapis lazuli, and almost every great monarch has hoarded gemstones. The
beauty of gems and crystalline minerals is partly in their colors and bril-
liance, but it’s also partly in their highly facetted geometric shapes. Today,
crystals are valued not only for their beauty but also for their technologi-
cal usefulness. As one example, the microelectronic integrated circuits
used in computers, stereos, televisions, and other electronic devices are
manufactured from single crystals of the element silicon. Inherent in the
beautiful geometric shapes of crystals are many symmetries, including ex-
amples of each type (rotational, translational, reflection) we’ve discussed.
Ice crystals, for example, have a six-fold rotational symmetry, which is
revealed in the spectacular beauty of snowflakes. The science that studies
the structures of crystals is known as crystallography, and we aren’t sur-
prised to find the use of symmetry as one of its central organizing princi-
ples. Crystallography in turn is foundational to the physics and chemistry
of solids, and also to mineralogy and the earth sciences. An interesting
historical note: The mathematical basis of crystallography, which is just
the systematic investigation of all the possible symmetries that a crystal
might have, was completed by the end of the nineteenth century, before
the experimental confirmation of the idea that crystals are regular and
periodic arrays of atoms. The defining characteristic of crystals is their
translational symmetry. Crystals are ordered periodic arrays of atoms,
which repeat regularly over and over again in space. The local structure
of the crystal is then reproduced at any equivalent point, and the overall
(macroscopic) structure of the crystal inherits any symmetries that the
local structure might possess. This repeating local structure in a crystal is
called its unit cell. If the unit cell has a four-fold rotational symmetry, for
example, so does the entire crystal. In this way, the combination of local
symmetry in the unit cell along with translational symmetry gives rise to
the final symmetry of the crystal structure. This symmetry, in turn, mani-
fests itself in the facets and angles of the actual crystal that we see. The
beautiful shapes of crystals are ultimately due to the ordered arrange-
ments of their atoms.

A simple real-life example of a crystal known to all of us is table salt,
sodium chloride. A careful look reveals that salt crystals are cubic. The
atomic structure of salt, shown in Figure 24, is actually two interlocking
cubes (one of sodium and one of chlorine), so each kind of atom is sur-
rounded by neighbors of the other kind. Because each crystal face consists
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Figure 24. The crystal structure of sodium chloride (table salt). Filled circles rep-
resent the sodium ions; open circles represent the chlorine ions.

of squares, with atoms at the corners and one atom in the center, this type
of structure is known as a face-centered cubic crystal (this is one of the
most common structures for pure elements). This crystal has three perpen-
dicular rotation axes (one for each dimension), each of which has four-
fold rotational symmetry. There are other rotation axes in the cubic salt
structure that have three-fold symmetry and two-fold symmetry. Each
rotation axis is perpendicular to a plane of atoms, and each of these planes
is a plane of reflection symmetry.

The need for translational symmetry in three dimensions restricts the
kinds of rotation and reflection symmetries that a crystal might have. For
example, the only rotational symmetries that are allowed are 2-fold, 3-
fold, 4-fold, and 6-fold. Any other type of rotational symmetry leads to
a structure that can’t be repeated translationally (and still fill all space
without any gaps). This restriction accounts for the fact that no crystal
can have pentagonal symmetry (although a fascinating modern develop-
ment has been the discovery of quasicrystals, which have 5-fold rotational
symmetry and almost, but not quite, have long range order). Crystallogra-
phers have worked out all of the possible combinations of rotational,
translational, and reflection symmetry that can exist in a crystal; a total
of 32 symmetry classes turn out to be possible. The 32 symmetry classes
can be further categorized into 6 sets that have various symmetries in
common. These 6 sets are the major crystal systems used to categorize
minerals and other crystalline solids (see Figure 25). The different crystal
systems are characterized by the angles between their axes and by the
relative lengths of these axes. In the isometric system, for example, all the
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Figure 25. The fourteen Brevais lattices, organized into the six major crystal sys-
tems. Crystals are limited to these possible structures by fundamental symmetry
considerations.

lengths are equal and all the angles are right angles. In contrast, the tri-
clinic system has no right angles and no side length equals any other.
Between these two extremes, we have the orthorhombic (all right angles,
no equal sides), tetragonal (all right angles, two equal sides), hexagonal
(two right angles, two equal sides), and monoclinic (two right angles, no
equal sides) systems.

The possible types of “space lattice” structure are also limited. In addi-
tion to the face-centered structure we’ve seen in salt, the unit cell might
also be body-centered, side-centered, or primitive. Combining these possi-
bilities with the 6 crystal systems results in the 14 so-called Brevais lattices
(Figure 25). Any crystal structure, no matter how complicated, can be
ultimately reduced to one of these 14 potential structures. A number of
minerals and ceramics, with complicated compositions and a variety of
bonding characteristics, exhibit highly complex crystal structures (each
point on the lattice, which is the translationally repeating unit, can have
a group of atoms with its own structure). Even the most complicated
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crystal structure, however, must obey the constraints imposed by funda-
mental symmetries.

As we’ve seen in the examples of diamond and graphite, the structure
(and symmetry) of a crystal has a profound impact on its physical proper-
ties. Physical properties can also affect symmetry quite directly. The open
crystal structures of silicon, germanium, and diamond, with their tetrahe-
dral symmetry, result from the strongly directional covalent bonding of
their constituent atoms. Sometimes, the symmetry properties of a crystal
affect its properties in a direct and unambiguous manner. For example,
the piezoelectric effect (producing electricity by squeezing a crystal) can-
not occur in a crystal that has a reflection symmetry plane perpendicular
to the direction you squeeze the crystal. Optical properties, such as the
way a crystal polarizes light, are directly affected by crystal symmetry. A
dramatic example is double refraction by calcite crystals, in which an
object seen through the crystal is split into two separate images. Symmetry
alone doesn’t determine physical properties (metals as dissimilar as so-
dium and iron both have the same body-centered cubic structure). On
the other hand, only the translational symmetry of crystals has enabled
scientists to understand the properties of materials, with their uncount-
able numbers of electrons. Only the fact that all of the electrons share a
similar environment in all parts of the sample (in other words, transla-
tional periodicity) makes this problem tractable. Taking advantage of this
symmetry, we are able to understand a great deal about the properties of
metals, insulators, and semiconductors (see chapter 1).

Points, Spheres, and Tires

To end the section, let’s treat two new topics that are completely different.
One of the simplest symmetries imaginable in three dimensions is that of
a single point. A point looks the same from any angle that you look at it.
Putting this in fancier language, we say that a point has full rotational
symmetry about any axis (through the point). We’ve seen this symmetry
before: the rotational symmetry of a sphere (with our point at its center).
Spherical symmetry is intimately related to the many inverse squared
distance relationships found in science (examples are Newton’s law of
gravitation, Coulomb’s law for electrical charges, and the decrease of
light and sound intensity with distance). The point source (of mass or
charge, for example) can be replaced by any spherically symmetric distri-
bution without changing any effects outside the sphere. These results fol-
low from combining spherical symmetry with the relevant physical laws
in each case.

We’ll now leave such highly abstract matters to consider a practical
problem faced by most of us on occasion: balancing automobile tires.
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What does it mean when your mechanic asks you if you want your tires
balanced? Ideally, a tire should have full circular rotational symmetry
about its rotation axis (which is the axle of the car). If it doesn’t, then the
tire will have a pronounced tendency to wobble at high rotational speeds.
This wobble is felt by the driver as an unpleasant vibration of the whole
car. Now, due to small manufacturing inaccuracies, the tire’s axis of sym-
metry and rotation axis may not coincide exactly. By attaching small
weights at the right places on the edge of the wheel, the mechanic brings
these two axes into alignment. The rotational symmetry of the tire is re-
stored. This is called balancing the tire.

§3. SOME MORE IDEAS

We have so far discussed cases in which the symmetry is perfect, though
we’ve already had to admit this is not always realized in nature. In this
section, we’ll explore more fully the concepts of approximate symmetry
and broken symmetry. In addition, we’ll introduce a somewhat more ab-
stract notion of symmetry, not so tied down to geometry. This is the math-
ematical concept of the transformation. Our thinking about transforma-
tions will lead naturally to a brief discussion of the mathematical concept
of a group, and the relationship between symmetry and group theory.

Broken Symmetry

To think about broken symmetry, consider this example: If we take a
sphere and drill a hole in it, then we will obviously lose the spherical
symmetry. But, we’ll still have a figure with circular symmetry (about an
axis through the center of the hole and the center of the sphere). This
example is typical. A broken symmetry is the introduction of some lower-
symmetry element into a highly symmetric figure. In nature, it’s not un-
common for such symmetry breaking to occur in a seemingly symmetric
system, sometimes due to small random fluctuations. Imagine a straight
line of ants coming to the center of a barrier in their path. The symmetry
of the system suggests that the ant line will split up into two halves going
around the barrier, but instead the symmetry is broken and they mostly
go only one way around. As another example, recall our translationally
symmetric crystals and imagine that a single atom is missing (this happens
in real crystals, and is called a defect). The symmetry of the lattice has
been broken by the defect. Mathematically, the translational symmetry is
gone. But for most of the crystal, it’s still there; we still have approximate
translational symmetry. So for many properties of the crystal, we can ig-
nore the presence of the defect. The broken symmetry is strong in the
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neighborhood of the defect, though, and local properties are dominated
by it. At the edge of the crystal where the lattice ends (the surface), the
translational symmetry is broken strongly. Once again, some properties
of the crystal are dominated by the presence of the surface, while other
properties are unaffected. A person’s face is an interesting case of approxi-
mate bilateral symmetry. Perhaps you have heard that a slight asymmetry
is added to patterns by Islamic rugmakers as an intentional imperfection.
Approximate bilateral symmetry is commonly found both in art and in
biology.

Transformations and Group Theory

A transformation in mathematics is what the normal usage of the word
suggests: a change from one thing to another. The difference from normal
usage is that in mathematics, the change is very precisely defined by some
rule. For example, we might have a transformation that turns numbers
into their doubles (1 into 2, 7 into 14, etc.). The rule in this case is “double
this.” In the geometric cases we’ve looked at, the transformations have
been movements in space, with rules such as “rotate one-fifth of a turn”
or “translate one lattice spacing to the right.” The advantage of casting
the discussion in terms of transformations instead of motions in space is
that we can now broaden the concept of symmetry. We can include new
cases, which are not geometric but which follow similar rules. For exam-
ple, suppose we have a rule that is “turn this number into its negative.”
This rule is actually identical to a reflection in one dimension about a
point (we can associate this point with the number zero). We have found
a symmetry in numbers. This case is fairly simple and easy to visualize,
but the same kind of thinking can be applied to more complicated cases.

If transformations have some symmetry, then we can combine them in
a way that brings the system (or moves the figure) back to its starting
point. If we have a reflection symmetry, for example, then two reflections
produce our original figure back again. A figure with three-fold rotational
symmetry (like a triangle) rotated through three successive rotations gets
us back to where we started; it’s as if the triangle has not moved. A trans-
formation that leaves you with no change is an important transformation.
Mathematicians call this the identity. If two successive transformations
result in the identity, we say that one transformation is the inverse of
the other. The inverse of a clockwise rotation, for example, is an equal
counterclockwise rotation. The inverse of a translation to the right is an
equal translation to the left. We’ve already seen that the inverse of a re-
flection is just another reflection.

Now, suppose we have a collection of transformations that includes the
identity, and for which every transformation has an inverse. Impose one
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last condition: If we combine any two of these transformations, the result
must be another of the transformations that is in our collection. A collec-
tion of transformations that has these properties is called a group. The
study of the properties of groups is called group theory, and from these
simple beginnings it evolves into an important branch of mathematics.
Let’s look at a simple example of a group of transformations, in order to
get a better sense of what groups are. An equilateral triangle has several
transformations that leave it looking unchanged. We can rotate it through
a one-third turn, a two-thirds turn, or a full (three-thirds) turn. The full
turn brings it back to where it started, so that is the identity. In addition
to these three angles, we can also do reflections about the lines that go
through the vertices, perpendicular to the opposite sides (i.e., lines that
bisect the triangle). Since there are three reflection axes, we have six sym-
metry transformations, one of which is the identity. Now, if we do any
two of these consecutively, we can get the same figure by doing one of the
others in our collection. So, these six transformations make up a group.
This group is called the symmetry group of the triangle. This group of
transformations characterizes precisely the symmetry of the triangle. In
fact, it characterizes the symmetry of all figures having three reflection
symmetries and a three-fold rotational symmetry. The notion we’ve devel-
oped is very general. The symmetry possessed by any shape is specified
by its symmetry group. The symmetry group of a sphere, for example,
has an infinite number of transformations (all rotations about any line
through its center, plus reflections about any plane through its center).
The symmetry group for the icosahedron consists of 120 transformations.
And Euclidean space itself is characterized by its symmetry group, con-
sisting of all rotations, reflections, and translations. The abstract methods
of group theory can be used to derive many important results. For exam-
ple, a crystal must have a symmetry described by one of 230 possible
space groups, and only these. The greatest power of group theory, though,
stems from its ability to describe the symmetries of transformations that
are not even geometric, providing a common mathematical language with
which to describe symmetries both visualizable and nonvisualizable. We’ll
come back to this point in §5.

§4. SYMMETRY IN BIOLOGY AND ART

Biology

Among the most apparent symmetries in our experience is the bilateral
symmetry of the human being. Bilateral symmetry is a property we share
with most of the vertebrates, insects, and other (but not all) members of
the animal kingdom. But this bilateral symmetry, although overwhelm-
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ingly present in animals, is only an approximate symmetry. We appear
on the outside to be bilaterally symmetric, but our internal organs are
asymmetric (the heart on the left side, for example). Also, most people
have a dominant hand. Even the appearance of symmetry is only approxi-
mate, since there are small blemishes, differences in fingerprints, and so
on. Another interesting asymmetry is in the functioning of the brain,
where some evidence indicates the right and left halves are partially spe-
cialized for different thinking processes (spatial, linguistic, musical, etc.).
Other animals exhibit quite a variety of symmetries. The starfish has five-
fold rotational symmetry, along with five reflection symmetries. The octo-
pus and the medusa have eight-fold symmetry, while the hydra has six-
fold symmetry. Many of the microscopic radiolarians have the symmetries
of the Platonic solids. Once again, of course, these symmetries are all
approximate to varying degrees. It’s probably not surprising that living
organisms have a lower degree of symmetry than inorganic forms such as
crystals. The more interesting point is that they have as much symmetry
as they do.

Another extremely interesting question is involved here. There’s a little
bit of broken symmetry in the developed animal, but there is a huge
amount of broken symmetry in its development from an initial single cell.
How does this come about? Although the blastula stage of an embryo
appears to be spherically symmetric, we know experimentally that there
are inherent asymmetries even at that stage. These asymmetries can be
traced back to the orientation of the egg, and become more apparent as
the embryo develops. A great deal of knowledge has been acquired from
the study of embryo development, but this is still an area in which we
don’t have a fundamental understanding.

Plants also offer some beautiful instances of symmetry. Flower petals
characteristically show a number of different rotational symmetries, with
five-fold and six-fold being perhaps the most common. Three-fold, four-
fold, eight-fold and even higher symmetries are also seen (usually accom-
panied by their corresponding reflection symmetries). Trees often have
an approximate cylindrical symmetry, while some climbing vines exhibit
helical symmetries, both right-handed and left-handed. More complicated
versions of helical symmetry are seen in sunflower florets and fir cones.
The most prominent helical symmetry in biology is undoubtedly the DNA
molecule, with its celebrated double helix structure. The lack of transla-
tional symmetry in DNA is an important property, since the aperiodic
structure of the molecule encodes the genetic information of an organism.
Translational symmetry is understandably seen less often in biology, but
there are a few approximate cases. In one dimension, the segmented
worms, centipedes, and so forth, show this property in animals, while
bamboo stalks are an example from the plant world. A striking and fa-



268 C H A P T E R 1 8

mous illustration of symmetry in nature is the beehive, which has transla-
tional symmetry in two dimensions as well as six-fold rotational symme-
try. Since a hexagonal lattice of this sort provides the most efficient
packing in two dimensions, the bees manage to minimize their use of labor
and material in their architecture. The geometric ability of the bees is
legendary, and a good deal has been written about the advanced mathe-
matics of three-dimensional beehive structures.

A number of the molecules found in biological organisms do not have
reflection symmetry. Since the molecule is not identical to its mirror
image, these substances have two forms, a right-handed molecule and a
left-handed molecule. Glucose is a prominent example. The molecules are
almost indistinguishable chemically, but sometimes have different effects
on light shining through them. You might expect the two forms to exist
in equal amounts, and they do for substances created in the laboratory.
Pasteur discovered the existence of such substances when he made tartaric
acid for the first time in 1848, and he obtained equal amounts of the
right-handed and left-handed forms. The right-handed form was already
known, having been found in fermenting grapes (wine); the left-handed
form had never been seen before. Only one of the two forms is produced
by the biological process. In fact, living organisms almost always produce
only one form of such mirror image crystals. Our bodies, for example,
contain only right-handed glucose (but left-handed fructose). No one
knows the reason for this broken symmetry. Another biological example
of handedness is found in the shells of snails. A snail shell is a spiral
helix, which could be right-handed or left-handed. Instead of occurring
in roughly equal numbers, almost all species of snails have right-handed
shells. Again, there is no apparent reason for this. (Remarkably, even one
of the basic interactions of nature, the weak nuclear force, exhibits an
unexpected handedness.)

Art

Let’s now take a look at symmetry in art. Symmetry often plays a major
role in artwork because there is a strong aesthetic quality in the consider-
ation of symmetry. Once again, however, it’s broken symmetry that is
usually important. In art, perfect symmetry would have a tendency to
become monotonous. Bilateral symmetry has been common in many art-
works, from antiquity to the present. Many paintings have an overall
form of bilateral symmetry, but exhibit broken symmetry in their details.
For example, in paintings of the Last Supper, Christ sits in the line of
symmetry with six apostles on either side. The style of Tibetan painting
in which the Buddha sits at the center and various scenes are positioned
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Figure 26. Two patterns used in Moorish ornamental artwork.

symmetrically about the painting (each scene being different) is another
example. Architecture provides many instances of buildings that are bilat-
erally symmetric when viewed from the front (Gothic cathedrals, the
White House, the Taj Mahal, etc.). Rotational symmetry is less important
in painting, but is often found in mosaic tilings, stained glass windows,
and so on. We also find rotational symmetry in the ornamentation of vases
and the tops of columns in buildings. Buildings themselves occasionally
exhibit rotational symmetry, a celebrated example being the leaning tower
of Pisa. Translational and reflection symmetries, combined with rotations,
are all found in what H. Weyl refers to as the art of ornament. This cate-
gory includes ceramic tiles, wallpaper, and cloth prints; among its finest
realizations are the remarkable achievements of the Arabs in their glass
and mosaic art. A famous example of this art is the Alhambra, a Moorish
palace in present-day Spain. Two Moorish patterns, taken from Weyl, are
shown in Figure 26. The mathematical analysis of these complex patterns
is difficult, and it’s a testament to the ingenuity of the artisans that they
apparently exploited every symmetry available (17 symmetry groups are
now known to be possible in two dimensions; examples of every one have
been found in Egyptian ornaments). An interesting technique employed
by these artisans was to create a geometric pattern with some high symme-
try, and then use color to produce a new and lower symmetry in the actual
artwork. Once you become aware of their presence and start to notice
them, symmetries are overwhelmingly apparent in art, architecture, and
ornamental design.
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§5. DEEP APPLICATIONS

We’ve mostly been discussing symmetries that are visualizable and readily
apparent. There are also mathematical symmetries in the sciences that are
not as obvious but are very important. Particularly in physics, we find
that symmetry is fundamental to the workings of nature. Let’s look at
some of these cases.

Unification

A wonderful example comes from the theory of electricity and magnetism.
Around the middle of the nineteenth century, James Clerk Maxwell pon-
dered the known equations governing electricity and magnetism. He no-
ticed an asymmetry in these equations: a changing magnetic field causes
an electric field, but a changing electric field doesn’t cause a magnetic
field. Maxwell rewrote the equations to make them symmetric (mainly by
adding one new term), and he then explored the new equations to find out
what implications such a change might have. He discovered a remarkable
result. The altered equations predicted waves of electric and magnetic
fields that travel with the same speed that light was known (experimen-
tally) to have. The correct interpretation of this result is that light is in fact
an electromagnetic wave moving through space like ripples on a pond.
Maxwell had made a fundamental discovery about the nature of light, an
age-old problem, and unified the sciences of optics and electromagnetism.
This episode has entered physics lore as the first of a series of unifications
grounded in symmetry. The next major unification was due to Einstein,
the theory of relativity. Once again, an asymmetry in the laws of physics
was perceived. This time, the asymmetry was between two observers in
relative motion. To rid physics of this asymmetry, to make the laws of
physics the same for all observers, Einstein proposed revolutionary ideas.
He welded together space and time into a single space-time continuum,
and discovered the symmetries of this unified space-time (physicists refer
to these symmetries as the Lorentz transformations). A consequence of
unifying space and time was the further unification of mass and energy
into a single fundamental entity.

More recently, a goal in physics has been to unify the so-called four
fundamental forces. These four forces, which are gravitation, electromag-
netism, and the strong and weak forces in atomic nuclei, are presently
thought to be the only interactions in nature; others, such as friction and
chemical bonding, can be reduced to these four. The goal is to reduce
these four to just one. A step in this direction was accomplished when the
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electromagnetic and weak interactions were unified, that is, shown to be
two manifestations of the same underlying interaction. Why then do they
appear to be so different? The unified interaction is described by a symme-
try, and a spontaneous symmetry breaking occurs resulting in two sepa-
rate forces. This symmetry breaking would have occurred early in the
evolution of the universe, as it cooled down from the big bang. Although
the strong nuclear forces haven’t yet been included in a unified theory,
there has been some progress in understanding these forces based on the
whimsically named quark model. The interactions of the particles called
quarks explain a great deal of the behavior of elementary particles in
general. These quark interactions can be described by a small number of
fundamental symmetry operations. The symmetries are not visualizable,
but are instead presented in the language of group theory, similar to the
manner we’ve discussed above.

Another important application of symmetry is to the conservation laws
of physics. We have already examined the fundamental importance of
energy conservation (see chapter 17). A number of similar fundamental
conservation laws exist. Momentum, angular momentum, and electric
charge are all conserved quantities in both classical and modern physics.
In 1918, the mathematician Emmy Noether showed that every conserva-
tion law is due to some underlying symmetry. Conservation of momentum
results from the translational symmetry of space, for example; conserva-
tion of angular momentum results from the rotational symmetry of space;
conservation of energy results from the translational symmetry of time
(i.e., the laws of physics don’t depend on when they are observed). Electric
charge, and several other more abstract quantities, are conserved due to
the abstract symmetries mentioned previously.

Permutations, Symmetry, and Algebra

For our next example, we need to introduce one more concept, the permu-
tation group. “Permutation” is just a fancy way to say “rearrangement.”
For example, 213 is a permutation of the digits 123, and there are six
permutations of 123 possible. What does this have to do with symmetry?
Place the numbers 1, 2, and 3 at the vertices of an equilateral triangle,
and perform all possible symmetric rotations and reflections of this trian-
gle. The remarkable result of these operations is that we get the same six
permutations! The permutation of three objects has the same symmetry
as the triangle, and for that reason is described by the same group. For
more than three objects, we no longer have a simple geometric interpreta-
tion, but we can still create a symmetry group.
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Now, one important postulate of the modern theory of matter is that
all basic particles (e.g., electrons) are identical to each other. If we have a
system of these identical particles, such as the electrons in an atom, the
system cannot be made different by a permutation of the particles. (By
analogy, you might think of permuting three different colored balls to
obtain six color patterns, as opposed to permuting three green balls and
obtaining the same color pattern every time.) As you can see, this rule
imposes a new kind of symmetry on the system, a much higher symmetry.
One result of this high symmetry is that no two electrons of the system
can be in the same state. Every electron in the system must differ from the
rest in some way (a different energy, a different angular momentum, etc.).
This result is known as the Pauli exclusion principle. The exclusion princi-
ple is responsible for all the different electron configurations of all the
different elements. Without the exclusion principle, every element would
have electrons that look like the electron in the hydrogen atom, and they
would all behave chemically just like hydrogen. The wonderfully diverse
chemical behaviors of the elements, and the order in these chemical behav-
iors seen in the periodic table (see chapter 2), are all due to the exclusion
principle. The order imposed on chemistry by the periodic table is the
result of an underlying symmetry.

Our last example comes from mathematics, and appropriately involves
the invention of the group concept. This example deals with algebraic
equations, such as the quadratic equation. The highest power of the
variable (call it x) in a quadratic equation is the square of x. But we
might have equations with the cube of x, or the fourth power of x, or any
power of x we wish. This kind of equation is called a polynomial equa-
tion. In 1832, the 21-year-old Evariste Galois was investigating the
properties of polynomial equations in a very general way. He discovered
that the permutations of the solutions of the equations formed a group.
This group preserved the algebraic relationships of the equations, much
as we have seen groups of transformations which preserve the appear-
ance of geometric figures. But symmetry groups for geometric transforma-
tions didn’t yet exist; Galois coined the term “group” to describe the
structures he had found. Galois had discovered a symmetry deeply hidden
in the structure of algebra, from which many valuable results could be
deduced (he was able to prove, for example, that no general solution
can be written down for equations of the fifth power or higher). Galois
summarized his results in a long letter that he desperately wrote during
the night before he went to his death in a duel. Generations of mathemati-
cians and scientists have worked to unravel the profound ramifications
of his discovery.
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Chapter 19

THE STRAIGHT AND NARROW: LINEAR

DEPENDENCE IN THE SCIENCES

Moreover the simplest derived geometrical concepts,
to which here belong especially the line and the plane,

correspond to those which suggest themselves most
naturally from the logical standpoint.

(Hermann Weyl)

ABASIC QUESTION in almost any science is this: how does one
thing depend on another? In physics, for example, we might ask
how an object’s position depends on time, or how a current de-

pends on voltage. In chemistry, we might ask how the rate of a reaction
depends on temperature, or how the reactivity of a metal with an acid
depends on the pH of the acid. And in biology, we might ask how the
metabolism of an animal depends on the amount of some hormone in its
blood, or how the growth of a plant depends on the amount of rainfall it
receives. These few examples could be multiplied almost without end.
Sometimes, how one thing depends on another is quite complicated, but
in this chapter we are interested in a very simple kind of dependence.
Mathematically, we say that one variable depends on another variable,
or that one variable is a function of another variable. A mathematical
function is just a way of specifying the dependence. Again, the functional
dependence may be simple or it may be complicated, and in this chapter
we’ll look at the simplest case possible: the linear function, otherwise
known as a straight line.

§1. BASIC IDEAS

To understand what linear dependence means, let’s start with an example
that is familiar to most people, namely, working for an hourly wage. If
you are working at a job that pays $12.00 per hour, then you’ll make
$12.00 working for one hour, $24.00 working for two hours, $36.00
working for three hours, and so on. We can summarize all of the particu-
lar cases in a single statement simply by saying that the amount of money
you make is equal to the number of hours you work multiplied by $12.00
per hour. This can be written in the form of an equation,
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money = ($12.00 per hour)(hours).

The amount of money you make is said to be directly proportional to the
amount of time you work. “Directly proportional” simply means that
one quantity is equal to another quantity times some constant number
(called the proportionality constant). In our example, the proportionality
constant is $12.00 per hour. Of course, the proportionality constant
might be different; for example, you might get a raise to $14.00 per hour.
The amount of money you make is still linearly dependent on the number
of hours you work, but you make more money now (after your raise) for
the same amount of time worked. The proportionality constant, in this
case, is a measure of how rapidly you accumulate money. We now have
two different ways to say the same thing. A variable that depends linearly
on another variable is, by definition, directly proportional to that vari-
able; these two relationships are identical. What meaning does the word
“linear” have in this context, and why do we use it as a synonym for
direct proportionality? The word “linear” comes from the word “line.”
To see why that’s appropriate, look at the graph in Figure 27. The amount
of money you make is plotted on the vertical axis versus the number of
hours you work plotted on the horizontal axis. As you see in Figure 27,
the graph of a direct proportionality relationship is in fact a straight line.
So, we call the relationship linear.

The solid line in Figure 27 is a graph of the money you make before
your raise, while the dotted line is after your raise. They are both straight
lines, but the line for $14.00 per hour has a steeper angle with the hori-
zontal. The angle that a straight line makes with the horizontal axis al-
ways depends on the proportionality constant of the graphed relation-
ship. The larger rate of pay having the steeper angle is no accident. For
this reason, the proportionality constant is called the slope of the graph
(e.g., the slope of the steeper line is $14.00 per hour).

All of these ideas are quite general. Instead of the money you make,
think of some arbitrary quantity y; instead of the hours you work, think
of another arbitrary quantity x; and instead of your wages, think of any
arbitrary constant m. Instead of the previous equation, we now have

y = mx.

This may look more abstract, but y = mx really isn’t any more complicated
than our simple example. The advantage of this more abstract version is
that these symbols can now stand for anything we want. Let’s illustrate
the point with one more simple real-life example of a linear relationship.
If you are traveling on the highway in a car that gets a gas mileage of 42
miles per gallon, the distance you travel is directly proportional to the



276 C H A P T E R 1 9

Figure 27. Graph of money earned at $12.00/hour (solid line) and $14.00/hour
(dashed line), plotted against number of hours worked. The dependence of money
on time worked is linear; the proportionality constant is the slope of the line.

amount of gasoline you use. In this example, y is equal to the distance
you go, x is equal to the number of gallons of gasoline used, and m = 42
miles per gallon.

We can add a constant to our linear equation and still have a straight
line with the same slope. Instead of just the money you make, for example,
you might be more interested in your total savings. In that case, you add
the (linearly increasing) money you are earning onto the amount of money
you had to start with. Graphically, the effect of adding a constant is to
shift the entire straight line vertically upward or downward on the graph.
Our modified linear equation might look like

y = mx + b,

where b stands for the value of the constant we’re adding. This constant
is sometimes called the y-intercept of the graph (because y=b when x=0,
which is the y-axis).
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Regardless of the particular value of m, our main interest may simply
be that y is in fact directly proportional to x. In other words, y varies
linearly with x, and this linear dependence is often the crucial informa-
tion concerning some scientific phenomenon; the details of the propor-
tionality constant may be less important to us. Scientists emphasize the
importance of the functional dependence itself by using the symbol “_”
which means “is proportional to.” So, instead of using an equation, we
can simply write

y _ x

to express the fundamental idea we’re interested in. To actually find num-
bers for y that correspond to numbers for x, however, we obviously need
the proportionality constant.

§2. EXAMPLES OF LINEAR VARIATION
IN THE SCIENCES

Our primary motivation for discussing linear dependence is its usefulness
and widespread application in the sciences. The property that makes lin-
earity so useful is that it’s the simplest functional dependence that two
variables can have. (Even if there is no dependence, meaning one variable
remains constant while the other changes, this too is a straight line, with
a slope of zero.) A process or phenomenon that is governed by a linear
relationship is easy to analyze and to understand. Fortunately, many such
linear relationships are found in nature.

Constant Velocity

A simple example is motion with a constant velocity. Constant velocity
implies a steady speed and direction, moving the same distance in
each equal time interval. (If you move 25 meters during each second, for
example, you have a constant velocity of 25 m/s; this is about 56 miles/
hour.) The distance you travel is directly proportional to the time
you’ve been traveling. The constant of proportionality in this case is the
velocity. So,

distance = (25 m/s)(time)

or, more generally,

x = vt,
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Figure 28. Graphs of constant velocity motion. The slope of the line is equal to
the velocity in each case.

where x stands for the distance, t stands for the time, and v stands for the
velocity. Graphs of distance versus time are given in Figure 28 for veloci-
ties of 25 m/s, 10 m/s, and 35 m/s, in order to illustrate once again the
relationship between the appearance of the line and the numerical value
of the slope (i.e., velocity).

In both our first example (involving money) and our last example (in-
volving distance), the relevant quantity changes linearly with time. Put
differently, both cases are concerned with a constant rate of change for
some quantity. A constant rate of change is a fairly common application
of the idea of linear variation in the sciences, and also in more general
real-life situations. Another example might be a steady rainfall, in which
the water level in a rain gauge increases linearly with time. But not all
linear variations have to do with time rates of change, as our next exam-
ples show.
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Density

Consider the relationship between mass, volume, and density. By defini-
tion, the density of a substance is its mass per unit volume. In other words,
the density of an object is the mass of this object divided by its volume.
This relationship can be written as

ρ = m/V,

where ρ is the density, m is the mass, and V is the volume. (ρ is the Greek
letter rho.) Multiplying both sides of the equation by V, we have the equiv-
alent form

m = ρV.

For any particular substance (characterized by some density), the mass
varies linearly with the volume. In a graph of mass versus volume, the
slope of the straight line would be equal to the density of the substance.
We see that the mass is directly proportional to the volume of an object,
while the density is a property of the substance that the object is made of
(and is unaffected by the size or shape). Of course, for a set of objects
having the same volume, but made of different materials, the mass of each
object is directly proportional to its density. Incidentally, it’s interesting
to note that, based on the material discussed in chapter 16, the mass does
not vary linearly with the characteristic size or with the surface area of
an object.

Ideal Gas Law

Let’s now look at the ideal gas law from chemistry. As an equation, the
ideal gas law can be written as

PV = nRT,

where P is the pressure a gas exerts, V is the volume of the container the
gas is in, n represents the amount of gas, T is the temperature of the gas,
and R is a constant (known as the universal gas constant). Suppose we
keep the volume of the container and the amount of gas fixed. The pres-
sure of the gas is then directly proportional to its temperature. P varies
linearly with T; the proportionality constant in this case is nR/V. A variety
of linear dependences are implied by the ideal gas law. If we keep the
pressure constant, for example, the volume varies linearly with the tem-
perature for a fixed amount of gas. If both the pressure and the tempera-
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ture are held constant, then the volume is directly proportional to the
amount of gas (slope = RT/P). A V _ n dependence is, of course, quite
sensible if you think about it. But all of these simple linear relationships
are predicated on the rest of the variables in the equation being held con-
stant. If more than two quantities can vary at once, then we lose the simple
linearity.

Hooke’s Law

Another example, from physics, is known as Hooke’s law. Hooke’s law
is usually introduced in connection with the force that a spring exerts
when you stretch it (or compress it). The law states that the force exerted
on an object is directly proportional to the distance through which the
object is displaced. For a stretched spring, this means that the spring pulls
back with a force proportional to the distance through which it is
stretched. If you pull twice as far, the spring pulls back twice as hard, and
so on. As an equation, Hooke’s law is written as

F = −kx,

where F is the force, x is the distance stretched (or compressed), and k is
the proportionality constant. The minus sign is there because the spring
pulls in the direction opposite to the direction of the displacement (a force
acting like this is called a restoring force). What meaning does the propor-
tionality constant k have in this case? If k is large, then a small displace-
ment results in a large force (and the opposite is also true). Some thought
then reveals that the proportionality constant k in Hooke’s law is a mea-
sure of how stiff the spring is. One reason why Hooke’s law forces are so
interesting is that many different physical systems are governed by forces
that (at least approximately) have this form. A diatomic molecule, a guitar
string, an atom in a solid, a pendulum, and a floating object that bobs
up-and-down, are all examples of systems having restoring forces linearly
proportional to displacements from equilibrium (equilibrium is defined
as the position where the force is zero). Another reason Hooke’s law
forces are interesting is that such forces, being linear, are simple. Because
the forces are so simple, we’re able to analyze their effects and predict the
motions they cause (these motions turn out to be periodic oscillations).

Other Examples

Next, let’s look at an example from biology. The amount of oxygen con-
sumed by an organism is directly proportional to the amount of energy it
uses in metabolic activities. As a particular example of this, the stomach
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uses energy to secrete digestive acids. A graph of the oxygen uptake by
the stomach versus the rate of stomach acid secretion is a straight line.
Approximate linearity (see §3) is often useful in biology. The flow rate
of blood through the circulatory system, for example, is approximately
proportional to the pressure drop in the system (see chapter 6).

Finally, we’ll consider one more example from chemistry. The boiling
point and freezing point of a liquid changes if something is dissolved in
the liquid. The boiling point gets higher and the freezing point gets lower.
This lowering of the freezing point is familiar to everyone who has used
salt to melt ice from sidewalks and roadways in the winter. The amount
by which the temperature (of the freezing or boiling point) changes is
directly proportional to the concentration of the solution. The constant
of proportionality, in this case, depends on the identity of the components
making up the solution.

§3. APPROXIMATE LINEARITY

As we see in these examples, many phenomena in the sciences are linear,
which is one reason why linearity is important. Another reason is that
certain phenomena, which are not really linear, can still be considered
approximately linear (at least for some range of the variables). In other
words, they are almost linear. (Approximate models are discussed more
thoroughly in chapter 6.) In such cases, we can exploit the inherent sim-
plicity of linear dependence in our analysis. As a simple example of ap-
proximate linearity, reconsider the gas mileage of your car. We said in
section 1 that the distance you drive is linearly proportional to the amount
of gasoline you use. But this isn’t quite right. Some of your journey might
be uphill, where your gas mileage is lower; highway driving gives you
better mileage than city driving; and so on. The “constant” of proportion-
ality actually varies a bit as driving conditions change. The relationship
is only approximately linear. We’ve already seen a similar example from
science, namely the relationship between blood flow rate and pressure
drop in the circulatory system. Once again, the proportionality constant
(resistance to blood flow) varies somewhat with the pressure drop, instead
of being a genuine constant.

An interesting example of approximate linearity is shown in Figure 29,
where atomic weights of elements are graphed versus their atomic num-
bers. The atomic number of an element is the number of protons the
element has. The atomic weight depends on the number of neutrons and
protons together (they have similar masses). The number of protons and
the number of neutrons are roughly equal in each element, but not exactly
equal. For this reason, the atomic weight is roughly proportional to the
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Figure 29. Graph of the relationship between atomic weight and atomic number
in the elements, showing an example of approximate linearity. Along with the
small amount of scatter, notice the upward curve at high atomic number (seen
more easily with a straightedge or by looking at the plot along a glancing angle).

atomic number (with m approximately 2), but not exactly proportional.
This relationship had interesting historical consequences. When the peri-
odic table was first worked out (see chapter 2), the periodicity was in the
atomic weights (which were known experimentally) rather than in the
atomic numbers (which had not yet been invented as a concept; protons,
neutrons, and nuclei would not be discovered for many years).

Our last example, from biomedical work, has important public policy
ramifications. When an organism (e.g., a human) is exposed to some
chemical (such as a medicine or a toxin), and the chemical has an effect,
this effect is called a response to the chemical. The amount of the chemical
to which the organism is exposed is called the dose. We can certainly
expect some relationship between the dose and the response. If the re-
sponse is quantified in some way, we can make a graph of the response
versus the dose, sometimes called a dose-response curve. It’s not un-
common for the dose-response curve to be approximately linear, espe-
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Figure 30. Graph of a clearly nonlinear relationship (a sine curve), along with a
straight line that is an excellent approximation for part of the curve.

cially if the dose is not too high or too low. Questions about the dose
range over which we can correctly assume the linear response approxima-
tion are important. For example, the toxicity of chemicals and radiation
studied at relatively high doses is assumed to be linear down to low doses,
where empirical studies are difficult. If the linear approximation breaks
down at low doses, the danger of exposure might be underestimated or
overestimated.

Many mathematical relationships that are not linear can also be consid-
ered approximately linear over some range. In Figure 30, we see a graph
of a relationship that is decidedly nonlinear (it’s actually a trigonometric
relationship known as a sine curve). On the same graph, we plot a straight
line. The straight line and the sine curve are virtually identical up to about
20 degrees. Most curves are nearly linear over some range of variables
that is small enough, giving us an insight into why approximate linearity
is common in nature. The opposite is also true: Most linear relationships
break down if the range of variables is too extreme. The ideal gas law, for
example, breaks down when the pressure is very high or the temperature
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is very low (see chapter 6; the density becomes high in both of these cases,
and it’s not surprising that the ideal gas law breaks down with the gas on
the verge of becoming a liquid). Hooke’s law also breaks down if the
displacements become too large (which again is not too surprising, since
you know that you can’t stretch a spring indefinitely). These breakdowns
do not detract from the usefulness or wide applicability of linear relation-
ships. Any relationship in science is only valid within some proper domain
of applicability.

Linear relationships are among the simplest relationships possible, and
we’ve now seen that many phenomena in nature are linear (plus many
more are at least approximately linear over some range). For these rea-
sons, it’s a common practice to assume that two variables are linearly
related if we don’t have any other information. This assumption can be
quite useful when you try to make an order-of-magnitude estimate of
some unknown quantity (see chapter 8). On the other hand, caution is
advisable when drawing conclusions based on assumed linear depen-
dence, as we saw in the case of dose-response relationships. Some phe-
nomena turn out to be very nonlinear, and assuming linearity can lead to
incorrect conclusions. Assumed linear dependence is an intelligent work-
ing hypothesis, but it needs to be checked by empirical tests. The simplic-
ity of nature is remarkable, but not infinite.

EPIGRAPH REFERENCE: Hermann Weyl, Philosophy of Mathematics and Natural
Science, Atheneum, 1963, p. 69.



Chapter 20

THE LIMITS OF THE POSSIBLE: EXPONENTIAL

GROWTH AND DECAY

The reader can suspect that the world’s most
important arithmetic is the arithmetic of

the exponential function.
(Albert A. Bartlett)

HOW THINGS CHANGE with time is a central question in the
sciences. Some examples: how the shape of a riverbank changes
with time; how a chemical reaction rate changes with time; how

currents and voltages in an electrical circuit change with time; how a pop-
ulation of animals changes with time; how air temperature and rainfall
change with time; how the inflation rate of the economy changes with
time. These examples represent virtually all of the natural sciences (chem-
istry, biology, physics, geology, meteorology) and even include a social
science (economics). There are many ways in which things can vary with
time, some simple and some complicated. In chapter 19, we looked at
linear changes with time, which are quite simple because the rate of
change is constant. In this chapter, we’ll look at a time variation that is
somewhat more complicated, but exceedingly interesting and important.
Instead of remaining constant, the rate of change is proportional to the
amount of the time-varying quantity. We’ll explore what this statement
means and why it’s so very important as we go along. Time variations of
this sort are known as exponential changes. Exponential variation occurs
for a variety of natural processes in many different sciences. We also find
it in certain human social constructions, namely financial transactions.
Such widespread occurrence is enough by itself to make exponential varia-
tion worthy of examination. As we’ll see, however, the importance of
exponential variation goes beyond academic interest; the future health of
the human race may depend on how well we understand the implications
of exponential growth.
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Figure 31. Graph of a quantity that grows exponentially with time.

§1. EXPONENTIAL DEPENDENCE

Exponential Growth

The term “exponential dependence” is really just a shorthand way to
specify a particular kind of change. Although there are fancy mathemati-
cal definitions we could use, the easiest way to understand exponentials
is to look at a graph. Figure 31 is a graph of a quantity growing exponen-
tially with time, and this graph warrants careful examination. What prop-
erties does the exponential curve have? The first property you might no-
tice is that the quantity grows with time. But you also see that the quantity
starts out growing very slowly, and grows at an ever-faster rate as time
goes on. In fact, the rate of growth is proportional to the size of the quan-
tity at any point in time. The more the quantity grows, the faster it’s rate
of growth is. This is one of the central properties of exponential growth.
To really appreciate the implications of this behavior, let’s graph the quan-
tity in Figure 31 over a somewhat longer period of time. We’ve done so
in Figure 32, with the amount of time doubled from 3 s to 6 s on the
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Figure 32. Graph of the same quantity shown in Figure 31, but over a longer time
period; the portion of this curve for the first 3 seconds is identical to the entire
curve in Figure 31.

horizontal axis. Look carefully at the numbers on the vertical axis, and
you’ll notice that the entire curve in Figure 31 is indeed the same as the
first three seconds of the curve in Figure 32. What really draws your atten-
tion, however, is the huge increase that occurs after the first three seconds.
The time has only doubled, but the exponentially growing quantity is
about twenty times larger. Few people would have anticipated such a large
increase. This difference between your expectation and the actual dra-
matic growth (which follows from the proportionality of growth rate to
amount) is the main point to grasp here.

Exponential Decay

A quantity can shrink exponentially instead of growing. We usually refer
to this process as exponential decay, and it’s illustrated graphically in
Figure 33. Once again, the rate of change is large when the quantity is
large; but this time the quantity is shrinking, and so the rate of change
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Figure 33. Graph of a quantity that decays (i.e., decreases) exponentially with time.

gets smaller as time goes on. After a long time, when not much of the
quantity is left, the quantity shrinks very slowly. In §2, we’ll look at sev-
eral natural processes that behave this way.

Doubling Times and Half-Lives

An interesting property of exponential change is that the time needed to
change by a factor of two remains constant for a given process. In other
words, if some exponentially growing quantity doubled in size (e.g., from
25 to 50) after three hours, then it would also double in size (from 50 to
100) after another three hours. After yet another three hours (nine hours
total), it would double again (from 100 to 200). And so on. Note carefully
that this quantity grew as much in the last three hours as it grew in the
first six hours. How long would it now take to grow as much as it grew
in the entire nine hours? Just three more hours. This behavior is illustrated
in Figure 34, which is based on the previous example. The characteristic
time it takes for the quantity to grow by a factor of two is called the
doubling time (the doubling time is three hours in our example and in
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Figure 34. Graph of an exponentially growing quantity that has a doubling time
of 3 hours.

Figure 34). It will always be the case for exponential growth that a quan-
tity increases as much in its final doubling time as it has previously in-
creased in its entire history. Exponential decay processes also have a char-
acteristic time. In this case, of course, the quantity decreases by a factor
of two instead of increasing. During each characteristic amount of time,
the quantity shrinks to half of the size it was at the beginning of that time
period. The name for the characteristic amount of time in this case is the
half-life of the decay process. After one half-life, a quantity has decreased
to half its original amount; after two half-lives, the quantity is one-quarter
its original amount (half of a half); after three half-lives, the quantity is
one-eighth its original amount (half of one-quarter); and so on. The actual
amount of the decrease is less for each successive half-life because there
is less to start with at the beginning of each successive time period. The
meaning of a half-life is illustrated in Figure 33, where the half-life is
about 0.7 second. Choose any 0.7 s interval on this curve, and you can
verify for yourself that the quantity decreases to one-half of its value at
the start of that interval.
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§2. SOME EXAMPLES

Population Growth

One of the classic examples of exponential growth in science is from biol-
ogy: the growth of a population. Our reasoning applies to an organism
that is not subject to constraints on available resources. For example,
imagine a single-celled organism (such as a bacterium or an amoeba),
which reproduces by cell division. Imagine also that the organism is sitting
on a very large supply of nutrients and reproducing as fast as it can. At
first, there is only one cell. This cell divides and then there are two cells;
these two cells divide and then there are four cells; the four cells divide and
there are eight cells; and so on. The number of cells (i.e., the population of
the organism) doubles after every cell division. As we have seen, growth
that is characterized by such a doubling of the population in given time
periods is exponential growth. You may object that this scenario is unreal-
istic. Eventually, the nutrients will become depleted, or the waste products
will slow the growth rate. These objections are absolutely correct. The
growth will be exponential only while there are no such constraints, a
situation that must surely be temporary. Indeed, one of the major points
of this chapter is that exponential growth can’t possibly be sustained for
long periods of time. As long as these kinds of constraints are absent,
however, the population growth can and will be exponential growth. Al-
though the population doubling is easiest to see for single-celled organ-
isms, which grow by cell division, exponential population growth is in
fact typical of many creatures, including humans. Any population that
increases by a certain percentage each year (as opposed to a certain fixed
number each year) is an exponentially growing population. For example,
the human population on earth has recently been growing at a rate of
roughly 2 percent per year. If this growth rate stays the same, the popula-
tion will increase exponentially with a doubling time of about 35 years.
In less than 250 years, the world population would be more than 750
billion people!

Cooling

A simple example of an exponentially decreasing quantity is the tempera-
ture of an object that cools by losing heat to its surroundings. Obviously,
the object starts out at its maximum temperature, which is also the maxi-
mum temperature difference between the object and its environment.
Your experience tells you that hotter things cool at a faster rate. In fact,
the rate of cooling turns out to be directly proportional to this tempera-
ture difference between the hotter object and its cooler surroundings. As
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the object cools, and the temperature difference decreases, the rate of cool-
ing slows down (a process that you’ve probably noticed if you’ve ever
waited for a cake to cool down so you could eat it). As we’ve seen, this
property (namely, a rate of change that is proportional to a changing
quantity) is exactly the property that characterizes exponential change.
So, the temperature difference between a hot object and its environment
decreases exponentially as the object cools.

Radioactive Decay

Another famous example of an exponential decrease is the decay of radio-
active nuclei. The nucleus of an atom is called radioactive if this nucleus is
unstable; in other words, if the nucleus can change into a different and
more stable form (often a different element), instead of just sitting there
already in a stable form doing nothing. Most elements are stable and nonra-
dioactive, but several elements with high atomic numbers are radioactive
and naturally decay into more stable states, emitting radiation as they do
so (which is the reason they are called radioactive). There are also unstable
isotopes (versions of an element with a different number of neutrons) of
many elements, and these also undergo radioactive decay. Now, the proba-
bility that a radioactive nucleus will decay is the same for every atom of a
given element. The number of nuclei that decay in a given time is simply
this probability times the number of nuclei present in the sample. The num-
ber that decay in a given time is the decay rate. Since the decay probability
is just a constant, we see that the radioactive decay rate is proportional to
the amount of radioactive material still left in the sample. Once again, this
condition is the hallmark of exponential change. The remaining amount of
a radioactive substance decreases exponentially with time.

You may have heard the term “half-life” used in connection with radio-
activity in newspapers and magazines (radioactive substances feature
prominently in a variety of public policy issues, such as nuclear waste
disposal, medical applications, reactor leakages, and so on). We now see
clearly what half-life means in this context: the half-life is the time it takes
for one-half of the radioactive sample to decay into a stable species. Be-
cause the decay is exponential, the rate slows down as the sample shrinks.
During the second half-life, only one-quarter of the original amount is
lost, and so on. An interesting application of this principle is the technique
of radiocarbon dating, used in archaeology to date primitive artifacts. A
radioactive isotope of carbon (carbon-14) decays into stable nitrogen
with a half-life of about 5700 years. By measuring the amount of carbon-
14 remaining in a piece of wood or bone, for example, we can determine
the number of years that have passed since the tree or animal died (and
thereby stopped replenishing its carbon). Because we know the form of
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the exponential decay curve, the amount of remaining carbon-14 deter-
mines the number of years the sample has been decaying. In this way, the
age of the object can be ascertained fairly accurately.

Compound Interest

Our last example of exponential growth is not taken from the sciences.
Instead, this example is financial. Even though the phenomenon is not
scientific, a discussion of compound interest is worthwhile because it’s a
familiar and important part of our day-to-day lives. Suppose we invest
money and get a 5 percent return on our investment. At the end of some
time period (for simplicity, let’s say a year), we have an amount of money
equal to the original investment plus 5 percent of that investment. During
the next year, we get a 5 percent return on this new and greater amount
of money. At the end of the second year, we’ve made more money than
we did during the first year; this new and greater amount is now added
to the total. During the third year, we get our 5 percent return based on
this new (larger) total. And so on. Since the total increases by a greater
amount each year, and since this ever-increasing total serves in turn as the
basis for the next year’s increase, then the rate of growth is increasing
with the worth of the investment itself. Once again, we see the central
characteristic of exponential growth in this process. If you work out the
mathematics of compound interest, you find that the growth is indeed
approximately exponential. This implies that your investment will grow
only slowly for the early years, but will grow at quite a substantial rate
after many years have passed (assuming you don’t spend any of the
money). All of this reasoning, incidentally, applies equally well to several
other financial cases. Economic inflation, for example, increases the
amount of money needed to purchase goods in the same way that com-
pound interest increases the amount of an investment. If salary increases
are awarded as a percentage of current salary, then the salary also in-
creases in this manner. And growth in the economy itself (e.g., the gross
national product) will be exponential if such growth is a consistent per-
centage of the current value, which is what economists and politicians
typically strive for.

§3. SOCIETAL IMPLICATIONS

Exponential variation has fascinating mathematical characteristics and is
certainly worth understanding for these alone. In addition, we’ve seen
that a wide variety of natural phenomena all obey an exponential depen-
dence law of some sort. Actually, there are many more examples than
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we’ve looked at here; transistor currents, chemical equilibria, capacitor
charging, and a host of others could have been included. In this sense,
exponential variation constitutes an underlying commonality across dif-
ferent scientific disciplines, which is really our main interest here. But
there is another reason for understanding exponential variation. A variety
of issues at the science/society interface turn on the concept of exponential
change. Before leaving the subject, let’s explore some of these issues in
more detail.

We’ve already mentioned the problem of nuclear radioactive waste dis-
posal. An understanding of the concept of a half-life, and what this means
in the context of an exponential decay law, is necessary in order to under-
stand the nature of this problem. A clear understanding of the problem is
needed before we can assess the proposed solutions to the problem. Of
course, many other facets of the problem need to be understood and ac-
counted for (effects of radiation on human health, geologic stability of
proposed sites, etc.). But to even begin thinking about these various facets
of the problem would be difficult without a basic understanding of expo-
nential radioactive decay.

Another problem, which we’ve also mentioned briefly already, is
human population growth. In order to have a decent life, humans need
resources such as food, space, energy, and so on. If there are too many
people on earth, it is simply not possible to provide these resources to
everyone. How many people are too many? We don’t yet know in detail
the answer to this question, but the major point to make here is that the
details of the answer are almost irrelevant if population growth continues
to be exponential. Because the rate of growth increases with the size of
the population itself, a disaster is obviously inevitable; the details only tell
us whether this disaster will be sooner or later. Now, when I say that a
disaster (for example, mass starvation) is inevitable, I mean that it’s inevi-
table if the growth continues to be exponential. Hopefully, humanity will
be able to curb this exponential population growth by volition before the
growth is stopped in a very unpleasant manner by forces we cannot con-
trol. A closely related problem is exponential growth in the use of natural
resources, such as metal ores, fossil fuels, and so on. Such growth in the
use of resources (which is historically well documented) is partly due to
population growth, and partly due to economic growth (these are related
but not identical). The basic problem, of course, is that the total amounts
of the resources are fixed and finite, while the rates at which the resources
are consumed increase without end. The problem is especially crucial for
fossil fuels, which are nonrenewable and cannot be recycled. The obvious
conclusion is that someday these resources will be completely depleted
and thereafter gone forever; the only question is when this will happen.
In thinking about this issue, the importance of understanding exponential
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growth can’t be stated too strongly. For example, someone might argue
that we have greatly underestimated the available oil reserves on earth
and that there is ten times as much oil as we had previously thought. This
statement (“ten times as much”) sounds very impressive. However, the
seemingly large increase in available resources would be used up in little
more than three additional doubling times. For a growth rate of just a
few percent per year, this is about one human lifetime. What if we discov-
ered instead that we had one hundred times as much oil as we had
thought? This seemingly vast supply of oil would all be used up in less
than seven additional doubling times, that is, about two human lifetimes.

FOR FURTHER READING

“Forgotten Fundamentals of the Energy Crisis,” by Albert A. Bartlett, American
Journal of Physics, vol. 46, p. 876, September 1978.

e: The Story of a Number, by Eli Maor, Princeton University Press, 1993.
“Exponential Growth and Doubling Time,” in Conceptual Physics, by P. G. Hew-

itt, HarperCollins, 1993, p. 705.

EPIGRAPH REFERENCE: Albert A. Bartlett, in American Journal of Physics, vol. 46,
1978, p. 877.



Chapter 21

IN THE LOOP: FEEDBACK, HOMEOSTASIS,

AND CYBERNETICS

The feedback of voluntary activity is of this nature. We
do not will the motions of certain muscles, and indeed we
generally do not know which muscles are to be moved to
accomplish a given task. . . . Our motion is regulated by

some measure of the amount by which it has not yet
been accomplished.

(Norbert Wiener)

THE PRESENCE of feedback, in both natural systems and techno-
logical systems, is often at the heart of how these systems function.
What do we mean here by the word “feedback?” Before attempting

a formal definition, let’s consider a simple example. If we turn a space
heater on in a small room, the temperature in the room will simply con-
tinue to rise until the room becomes quite warm. There is no feedback in
this case. But now suppose that the heater contains a temperature sensing
device, which lowers the heat output if the temperature rises (and in-
creases the heat output if the temperature goes down). In other words,
suppose we have a thermostat. We see very different behavior this time;
the temperature will rise to some moderate value, and subsequently
fluctuate about this value. We say that there’s a feedback operating in
this case, because the effect of the heater (the temperature rise) has an
influence on its cause (the heat output). Part of the effect has been fed
back to the cause, and modified it. We can now see what feedback means
in general: Some input (or cause) gives rise to some output (or effect),
but a part of the output is fed back to the input so as to influence the
behavior of the system. The part of the output that goes back to the input
is termed feedback, and the whole system (including the input, the output,
and the feedback) is often referred to as a feedback loop. Figure 35 shows
a schematic picture of a feedback loop (you can see there why it’s called
a loop). Similar terminology is sometimes used in everyday conversations.
If we request feedback on a piece of writing, for example, we want a
response to an action, which can modify further action (in this example,
a second draft).
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Figure 35. A schematic illustration of a feedback loop. The input to the system
gives rise to some output. Part of the output feeds back to influence the input,
modifying the behavior of the system.

§1. POSITIVE FEEDBACK AND NEGATIVE FEEDBACK

The mechanism of a feedback loop may be simple or complicated, de-
pending on the details of the system. Regardless of the details of the mech-
anism, though, all feedbacks can be classed into two broad categories:
positive feedback or negative feedback. The meanings of these terms in
science are somewhat different from their everyday conversational mean-
ings. Positive feedback means that the output reinforces the input that
caused it. Conversely, negative feedback tends to decrease the input. The
thermostat example, with which we started the chapter, is an example of
negative feedback, whereas a heater that increased its heat output as the
temperature rose would illustrate positive feedback. What would happen
if we had such a positive feedback heating system? As you can see, positive
feedback is not always desirable. In fact, positive feedback often leads to
an uncontrolled (and therefore undesirable) result. The classic example
of unwanted positive feedback is putting a microphone in front of a
speaker. Any small random sound picked up by the microphone is ampli-
fied by the audio amplifier and fed to the speaker, where it’s picked up by
the microphone again and sent (now louder) to the amplifier. The ampli-
fier again feeds the sound to the speaker (even louder) and hence to the
microphone, and so on. This process continues until we hear that ex-
tremely loud and obnoxious wailing sound that everyone is familiar with.
Positive feedback can also cause a decrease instead of an increase, as long
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as the decrease is magnified by the feedback loop. Roughly speaking, this
happened during the stock market crash of 1929. When falling stock
prices frightened investors, they sold their stocks, causing another fall in
stock prices. Even more frightened, investors sold yet more stocks, re-
sulting in even lower prices, and so on.

Negative Feedback and Stability

Negative feedback, on the other hand, usually leads to stability. Because
it provides stability, negative feedback is often used in engineering control
systems. A simple and familiar example of a control system is the thermo-
stat, described at the beginning of the chapter. A rudimentary thermostat
(like that found in most homes) simply turns heat on when the tempera-
ture goes below a certain level, and turns it off again when the tempera-
ture is high enough. Another example is the cruise control on some auto-
mobiles, which uses feedback to maintain a steady speed by increasing
and decreasing the amount of gasoline, depending on whether the car is
slowing down or speeding up. In the nineteenth century, steam engines
had a control device called a governor to perform this task, using an inge-
nious mechanical feedback method.

Electrical engineers have become highly skilled in using negative feed-
back to make electronic circuits do what they want. An amplifier is a
circuit that takes some input voltage and produces an output voltage that
is just a magnified version of the input. For example, an audio amplifier
takes the tiny voltage signals provided by a tape deck or CD player and
produces a powerful output voltage that can drive the speakers. But if
drifts and fluctuations occur in the output, we’ll get a distorted and un-
pleasant musical sound. By making a fraction of the output negative and
feeding this back to the input, we cancel out such drifts and fluctuations.
In this way, we can make a highly stable and linear amplifier. Such ampli-
fiers have a variety of important uses in sound reproduction, automated
control systems, and high-precision scientific instruments.

Natural systems can also have negative feedback, which maintains their
stability. In a biological system consisting of a predator and prey, for ex-
ample, an increase in the prey population would result in an increase in
the number of predators, since they would have more food to eat. But an
increase in the number of predators would in turn reduce the growth of
the prey population, because the prey would be eaten faster. Of course, the
decrease in prey would then cause a decrease in the number of predators,
because there would now be less food to eat. And so it goes, the net effect
being relatively stable populations of both predator and prey. In a real
ecosystem, of course, there will be a highly complex network of such
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feedbacks. On a global scale, the amount of oxygen and carbon dioxide
in the atmosphere is partially regulated by feedback from the animals and
plants that consume and generate these gases. If the amount of carbon
dioxide (which the plants need to live) decreases, for example, the plants
will grow more slowly and use less carbon dioxide, thereby slowing the
decrease. One can only imagine the complexity of all these feedback pro-
cesses in the entire global ecosystem.

Positive Feedback and Oscillations

Positive feedback also plays an important role in both nature and technol-
ogy. We’ve seen how positive feedback leads to uncontrolled growth of
the output, but in reality such unlimited growth can’t last forever. Instead,
one of two things might happen: either the system saturates, or else it
lapses into oscillations. As an example of the former possibility, consider
our insane thermostat, which called for more heat as the temperature
rose. The heater would soon be producing all the heat it could, a situation
known technically as saturation, and no further change would take place.
The speaker/microphone case is also an example of saturation, since the
noise is as loud as it can get (limited by the power of the amplifier). But
as I said, the system may not saturate; instead, it may oscillate.

Oscillations are simply vibrations, or periodic to-and-fro motions. A
simple example of oscillatory motion is a child swinging on a swing. Oscil-
lations can be rapid or slow, and the measure of how fast the oscillations
are is known as their frequency. In order to have an oscillatory output, a
feedback system must have something special about its feedback loop:
Instead of feeding back everything in the output, the loop only feeds back
a part of the output that has some particular frequency. That frequency
will be amplified to saturation, while nothing else is amplified at all. The
resulting output consists of oscillations at that frequency. To visualize this
process, think about the child on the swing. If the swing just has small
random movements (which are a mixture of many different frequencies),
then not much happens. Assume for the moment that we have some way
to amplify one frequency and feed it back to the input, that is, push the
swing with that one particular frequency. The swing is now going at that
frequency, and if we amplify it again and again, the swing will soon be
going high, starting from just small random motions.

It’s not hard to design electronic feedback loop circuitry with this prop-
erty (only feeding back a selected frequency), and such circuits do indeed
have oscillatory voltage outputs. These circuit devices, called oscillators,
are used in many important applications. Electronic music synthesizers,
for example, use oscillator circuits to create sounds. The timing circuitry
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in computers and digital watches is another application of oscillators.
In fact, the quartz crystals in so-called quartz watches are part of a feed-
back loop, and these crystals vibrate with a highly precise frequency. The
watch uses this frequency to keep time. A similar mechanism occurs in
the sound production of flutes and organ pipes. Air blowing across the
mouthpiece of the flute or lip of the pipe enters into unstable turbulent
vibrations (in other words, random movements up and down over the
lip). The air column of the instrument, however, has a natural frequency
with which it wants to vibrate (similar to a plucked string; the natural
frequency depends on the length of the air column or string). A positive
feedback loop couples the vibrating air column with the blown air, re-
sulting in strong oscillations at the natural frequency of the tube and a
pleasant musical tone.

§2. REGULATION AND CONTROL

Homeostasis

Individual organisms, notably the human body, regulate their functions
using a host of negative feedback systems. Perhaps the most well-known
example of this regulation is body temperature. We need to maintain body
temperature within a fairly narrow range to stay alive, despite widely
varying external temperatures and internal metabolic activity (yet another
thermostat). The main mechanism for this control is the increase and de-
crease of perspiration, in response to increasing and decreasing body tem-
perature. Shivering is used to produce extra heat if the temperature falls
too low. Another excellent example of regulation in the body is the chemi-
cal composition of blood. Blood chemistry must also remain within nar-
row limits in order for us to stay alive. Some of the feedbacks are fairly
simple, even if the actual physiological mechanisms are complex. The kid-
neys, for example, simply remove urea at a higher rate as the urea level
in the blood increases. Not all of the feedback loops are so simple, though.
The regulation of the blood’s pH level (i.e., the acidity of the blood) re-
quires a complex and interrelated set of feedback loops involving carbon
dioxide, carbonic acid, hemoglobin in the red blood cells, and the action
of the lungs in exchanging gases between the blood and atmosphere. The
name given to all these types of regulatory processes, and the stable state
they produce, is “homeostasis.” As we’ve seen, homeostasis is essential
to the continuation of life. Other examples of homeostatic regulation in-
clude hormone levels, hydrogen ion concentration, blood pressure and
heart rate, calcium metabolism, and various functions of the parasympa-
thetic nervous system.
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Cybernetics

Feedback loops are also involved in the control of voluntary behavior. If
I reach out to pick up an object, my eyes sense the position of my hand
relative to the object. This information is used to constantly modify
how I continue to move my hand. In persons who have suffered damage
to the part of the brain that performs this feedback, any attempt to pick
up an object results in wild and uncontrolled swings. In fact, we need to
use negative feedback mechanisms just to hold still, and damage to these
systems results in tremors. Feedbacks also operate in situations such as
steering a car. We’re constantly correcting for drift from one side to an-
other. The feedback mechanisms are more subtle in these cases; the
brain receives information from the senses, processes this information,
and in response sends commands to the muscles. Once again, though,
negative feedback is used to bring about more stable control. Norbert
Wiener studied these kinds of feedback processes extensively. Wiener was
a very influential scientist and mathematician; with his colleagues, he
combined the study of feedbacks with the emerging sciences of informa-
tion theory, computer science, and neurophysiology. A new science devel-
oped from this work, which he termed “cybernetics.” Cybernetics is
the general study of control and communication in both humans and
machines.

A simple example of a cybernetic device is our familiar thermostat,
where a human and a machine work together to control temperature.
Extremely complicated versions of such cybernetic control systems have
been designed for diverse applications, such as automated manufacturing
techniques. These control systems employ sensors to detect positions,
pressures, temperatures, and so on. Computers are used to process all the
information from the sensors and make decisions based on the informa-
tion; servomechanisms then carry out the commands of the computer,
such as moving robot arms or opening and closing valves. Humans moni-
tor the entire process, telling the computer how to make its decisions and
formulating the goals of the process. The founding of cybernetics was
not only intellectually important, but also had practical consequences.
Industrial automation was a direct result of the early cybernetic studies
by Wiener and his coworkers. The consequences of automation have been
profound. Automation has increased efficiency and saved humans from
doing dangerous jobs, but it has also caused many jobs to disappear, taken
over by machines. Intellectually, the development of cybernetics has led
to a new view of the world, more rich and complex than the simple cause-
and-effect models that preceded it. The introduction of feedback into a
system means that the effect and the cause can no longer be completely
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disentangled. The behavior of such a system is far more diverse and inter-
esting (and complicated) than a system without feedback. Cybernetics has
made science more aware of the presence of feedback in many systems
and provided the tools needed to study these systems.

§3. COMPLEX FEEDBACKS

The earth’s climate is affected by feedback loops, both positive and nega-
tive. For example, a rise in the average temperature of the air results in
more water vapor in the air (the reason it’s more humid in summer than
in winter). Water vapor is a greenhouse gas, which means that it traps the
sun’s heat in the atmosphere. Increasing the water vapor in the air further
raises the temperature in a positive feedback loop. More water vapor in
the air, however, causes more cloud formation; the clouds decrease the
amount of sunlight reaching the earth, so there is also a negative feedback
at work. Many such complicated feedbacks, working together, determine
the earth’s global climate. Questions about these feedback loops are a
major source of difficulty in predicting the effects of adding more green-
house gases (from fossil fuel combustion and other industrial processes)
into the atmosphere (see chapter 10).

Feedback loops are created by a variety of different mechanisms in dif-
ferent kinds of systems. We’ve seen at least three different kinds of feed-
back mechanism so far. The simplest kind is just a fraction of the output
fed back to the input (which occurs, for example, in electronic linear am-
plifiers). A more complicated mechanism exists when the output is de-
tected and then affects the input in response. A thermostat, controlling a
heater in response to temperature changes, is an example of this. Finally,
in some cases the feedback is in the form of information alone; this is
particularly likely if a human or a computer is part of the feedback loop.
Feedback may be linear (i.e., directly proportional to the output) or it
may be nonlinear. Because it’s simpler, the linear case is easier to under-
stand (see chapter 19), and we can usually predict the output in such
cases. If the feedback is nonlinear, however, the output may change in a
complicated and perhaps unforeseen fashion; nonlinear systems can ex-
hibit a rich variety of interesting behaviors (see chapter 17). An extreme
example is the human brain. The neurons of the brain are connected to-
gether in an indescribably complex array of nonlinear feedback loops,
resulting in our mental processing.

Around the middle of the twentieth century, a number of thinkers felt
that the old disciplinary structures of science were becoming outmoded.
They developed a discipline known as general systems theory, in which
the concept of feedback played a prominent role. Some proponents of
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general systems theory thought they could unite all of the sciences into a
single unified discourse. While this never really came to pass, it’s certainly
true that the concept of feedback is valuable in many different sciences
and that it unifies many seemingly disparate phenomena. Remarkably, we
can use the same basic concept to discuss electronic circuitry, biological
ecosystems, engineering control systems, global climates, flutes, tremors,
and homeostatic regulation in the human body—and thermostats.
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Epilogue

SO, WHAT IS SCIENCE?

Each had felt one part out of many. Each had perceived it
wrongly. No mind knew all: knowledge is not the companion

of the blind. All imagined something, something incorrect.
(From The Blind Ones and the Matter of the Elephant,

a Sufi tale as retold by Idries Shah)

I WOULD LIKE to end with some pithy aphorism that sums up in a
few words my understanding of what science is. But I don’t believe
that’s possible. Every brief attempt I’ve seen to define science has

failed to capture some crucial element of the total picture. Even a longer
attempt (like this entire book) can’t even begin to include everything that’s
worth saying about science. Instead, I’ll end with a story. When I was
visiting a group of children (my daughter’s fourth grade class) to do some
science activities with them, one of our projects was to find out which
things conduct electricity and which don’t. Hooking together a battery
and light bulb with some wires, the children inserted various objects be-
tween two wires and observed whether the light bulb was glowing or not.
If the bulb lights up, the object is a conductor. Most of the conductors
turned out to be made of metal (paper clips, key chains, orthodontic
braces, etc.). But then the children had a big surprise: pencil lead (graph-
ite) is an electrical conductor, even though it’s not shiny and metallic-
looking like the rest of their collection. Although I wasn’t able to explain
this to the children, we do understand why graphite is a conductor despite
the dissimilarities between graphite and the metals. The explanation is
largely based on concepts we’ve seen in chapter 1 and chapter 18. Basi-
cally, the unusual crystalline structure of graphite (consisting of two-di-
mensional sheets) accounts for the special properties it has.

This anecdote illustrates many aspects of how science works: starting
with ideas and concepts you know, observing the world, trying different
things, creating a coherent context, seeing patterns, formulating hypothe-
ses and predictions, finding the limits where your understanding fails,
making new discoveries when the unexpected happens, and formulating
a new and broader context within which to understand what you see.
Many of these same themes appear sprinkled throughout this book. If
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there is any single statement that encompasses as many of these themes
as possible, perhaps it is this: Science is the active and creative engagement
of our minds with nature in an attempt to understand. Beyond this broad
generality lies the enjoyment of exploring a variety of particular paths in
science.

EPIGRAPH REFERENCE: Idries Shah, Tales of the Dervishes, E. P. Dutton, 1970,
p. 25.
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Descartes, René, 62–63, 190–91
destiny, 194
determinism, 192–93
deterministic chaos, 243
deterministic equation, 242
deuterium, 175–78
diamond, 259
digestive acids, 281
diode lasers, 17
direct proportionality, 275
discoveries, 6
disorder, 7, 230–51
distribution, 100–101
DNA, 267
Dobzhansky, Theodosius, 125
dodecahedron, 256–57
Donnelly, Ignatius, 160
dose-response curve, 282–83
double refraction, 263

doubling time, 288–89
drift, 179
drug uptake, 78–79
drugs, 15, 16
Duhem, Pierre, 201
dyes, 15, 16

Eco, Umberto, 189
ecosystem, 19–20, 297–98
Eddington, Arthur, 129, 209–10
Einstein, Albert, 130, 191, 194, 270
electrical resistance, 17, 36
electrochemical cell, 176, 179
electromagnetic waves, 11, 270
electrons, 12, 17
elements, 26, 199–200
elephants, 107, 224, 225, 303
Eliade, Mircea, 162
ellipse, 59–60
embryo, 267
emergence, 240
emergent properties, 195–97, 237–41
empiricism, 190, 198–99
Endless Horizons, 136
energy, 231–32
energy bands, 17, 18
entropy, 234–36
epicycles, 54, 56, 86
epidemiology, 142
epistemology, 197–98
equilibrium, 236
erosion, 227
established results, 161–62
estimation, 115–19
ethics, 7, 145–57
ethology, 156
Euclid, 194
Euclidean space, 194, 266
evidence, 92–93
evolution, 170–73
exclusion principle, 272
experience, religious, 129
explanatory power, 203
exponential approximation, 78
exponential change, 7, 94, 285–94
extrasensory perception, 180

face-centered cubic structure, 261
faith, 128–29
false dilemma, 104
falsifiability, 200–201
Faraday, Michael, 15, 134



I N D E X 307

feedback, 7, 295–302; negative, 296–98,
300; positive, 296, 298–99

feedback loops, 239, 242, 295–302
Fermi, Enrico, 116
fertility, 203
Feyerabend, Paul, 209
filters, 226
first law of thermodynamics, 231–32
fleas, 224–25
Fleischmann, M., 176
forced pendulum, 241, 247–48
fossil record, 30, 172
four-dimensional spacetime, 195, 270
fractal geometry, 248
fraud, 147, 181
free will, 194
frequency interpretation, 193–94
friction, 233
fuels, 16
function, linear, 274–77
fundamental forces, 270–71
funding, 135–37
fusion, nuclear, 175–76
fusion products, 177–79

Galileo, 61–63, 127, 130, 190
Galle, J. G., 50
gallium, 29
Galois, Evariste, 272
game theory, 81–83
gases, 69–70
general circulation models, 140–41
general systems theory, 301–2
genes, 80
genetic diseases, 149
genetic predisposition, 152
genetics, 79–81
geometry, 252–58
Gerard, R. W., 107
germanium, 29
giants, 225
Gibbs, Willard, 234
global warming, 139–41
Goethe, 19
gold bricks, 116–18
Gosse, Philip, 170
graph: exponential, 286–89; linear, 275–76
graphite, 259, 303
gravitation, 63–64
Greeks, 52–54, 64, 190
greenhouse effect, 139–41, 166, 301
grinding, 227

group theory, 265–66, 271–72
growth, exponential, 286–87

Haldane, J. B. S., 217
half-life, 289
handedness, 268
Hansen, N. R., 199
heartbeat, 250–51
heat, 231–34
heating bills, 227
helium, 44
helix, 257–58
hemoglobin, 258–59
Heraclitus, 230
Herschel, William, 48
Hess, Harry, 32
hexagonal system, 262
hidden premises, 95–96
holism, 196
Holmes, Arthur, 31
Holmes, Sherlock, 89
Holton, Gerald, 52
homeostasis, 7, 299
honesty, 146–47
Hooke, Robert, 38
Hooke’s law, 280
horse, spherical, 87
human population growth, 293
Humboldt, Alexander von, 19
Hume, David, 193
Hunter, John, 21
hypothetico-deductive method, 6, 21, 24

icosahedron, 256–57
ideal gas, 74–75, 279–80
identical particles, 272
identity transformation, 265
ideological presuppositions, 212
Iliad, 164
inadequate information, 155
indifference, principle of, 193–94
induction, 190, 199–200
inductive logic, 92, 190
inert gases, 29, 43–44
inertia, 62–64
inflation, economic, 292
information, 234–36
inoculation, 22
inquiry, limits of, 153–54
inspiration, 15
instrumentation, 6
insulators, 18



308 I N D E X

integrated circuits, 17
internet, 235
intuition, 6
inverse (of argument), 99–100
inverse squared distance, 263
inverse transformation, 265
irregular shapes, 223–24
Islam, 128
isometric system, 261–62
iteration, 85

James, William, 207
Jansky, Karl, 39, 41
Jefferson, Thomas, 19
Jenner, Edward, 21
Joule, James, 232
judgment, 204
Jupiter, 164

Kant, Immanuel, 194
Kauffman, Stuart, 241
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