


Raphael 's fresco Causarum Cognitio in the Vatican 's Stanza della Segnatura represents a high-water 
mark of the myths surrounding Plato. The scene is a lofty and imposing building, and the 
composition is dominated by Plato, holding his Timaeus and pointing upwards with his right 
hand (up to the understanding of causes?), in lively and public discussion with Aristotle, who holds 
his Ethics. Geometry is clearly represented by the group at the right front ; astronomy is behind 
them, where the king and the globe illustrate a conunon confusion between the astronomer Ptolemy 
and the dynasty of Macedonian rulers of Egypt; and music occupies the left foreground, indicated 
by a tablet containing a harmonic system. Arithmetic is less easily identified. Perhaps the only 
popular feature of the tradition that is not to be found in the fresco is an inscription ' Let no one 
unskilled in geometry enter'. The common name of the fresco, 'The School of Athens', has no better 
authority than a seventeenth-century French guidebook. 
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Plato greatly advanced mathematics in general and geometry 
in particular becau.se of his zeal for these studies. It is well 
known that his writings are thickly sprinkled with mathemat
ical terms and that he everywhere tries to arouse admiration 
for mathematics among students of philosophy. 

Proclus quoting Eudemus, Commentary 
on the First Book of Euclid's Elements, 
tr. G. Morrow, p. 66. 

In the 'Cloisters' of the Metropolitan Museum in New York 
there hangs a magnificent tapestry which tells the tale of the 
Unicorn. At the end we see the miraculous animal captured, 
gracefully resigned to his fate, standing in an enclosure sur
rounded by a neat little fence. This picture may serve as a simile 
for what we have attempted here. We have artfully erected 
from small bits of evidence the fence inside which we hope to 
have enclosed what may appear as a possible, living creature. 
Reality, however, may be vastly different from the product of 
our imagination; perhaps it is vain to hope for anything more 
than a picture which is pleasing to the constructive mind when 
we try to restore the past. 

0. Neugebauer, The Exact Sciences in 
Antiquity, Chapter 6. 



PREFACE TO THE SECOND EDITION 

The changes in this second edition are the inclusion of a substantial Appendix, 
Chapter 10, the rewriting of much of Chapter 5, the inclusion of three new 
Plates, a significantly expanded Bibliography, and many smaller additions, 
modifications, and corrections. Also the Addenda at the end of the chapters of 
the paperback edition have been incorporated into the text. 

The original Preface, below, explained how the book can be read starting 
with any of its three Parts; I now take this further and recommend any reader 
new to the book to start with the first section of the new Appendix, which 
forms an introduction to a substantial and important part of the book and 
makes explicit some of the unspoken attitudes that underlie its treatment. I 
have adopted this arrangement in order to maintain the overall structure of 
the book and because, as I explain there, that section approaches the subject 
differently from the main text. Thereafter the new Appendix material is more 
in the nature of amplifications and extensions taking the argument further, 
and references to it have been inserted into the main text where appropriate. 
Its final section is a slightly revised version of the original Epilogue, and a 
new, brief, autobiographical Epilogue has been added to round off the book. 

One very apt criticism of the book has been that, despite its title, it treated 
only a part of the mathematics of Plato and his associates. I was a ware of this; 
indeed I said as much in the original Epilogue, now Section 10.5, and wanted 
the book to be called Some of the Mathematical Topics of Plato's Academy? 
However, the publisher vetoed this on the grounds that it was too long (though 
there is a good precedent for ignoring this kind of advice: W. C. Fields is said to 
have called a film Never Give a Sucker an Even Break since that was too long to 
fit on any cinema advertising board of that period), and because the Press tried 
to avoid punctuation in titles (though they seem to have relaxed this for the 
recently published What Is Mathematics, Really?). But they also said that it 
would drastically reduce the sales of the book, a clinching argument. Another 
suggestion for clarifying this issue has been to rename this second edition A 
Mathematics of Plato's Academy, thus making the point that it may be only 
one of many, and also distinguishing the first and second editions without 
greatly inconveniencing bibliographers and librarians, but this also has its 
disadvantages. I have therefore decided to do the conventional thing, and 
stick to 'Second Edition'. 

There are two very different reasons why some topics were only fleetingly 
mentioned, if at all, in the text of the book: they may be spurious, untestified, or 
only found in manifestly unreliable sources; or, though very important in 
themselves, they may be irrelevant to the overall argument of the book-and it 
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may often be difficult for the reader to make the distinction between these two 
cases. Some examples of omitted but important topics are the interpretations 
of Plato's Timaeus, Plato and Aristotle's philosophies of mathematics, other 
aspects of the diversity of fourth-century mathematics, Greek logic, etc.; while 
examples of topics which seem to be untestified even in our best ear;ly sources 
are a possible Old Babylonian influence on the beginnings of Greek mathe
matics, the role of Eleatic philosophy, in particular Parmenides' use of reductio 
ad absurdum, the importance of ruler and compass constructions in early Greek 
mathematics-and the story of the discovery of incommensurability. In fact 
this last topic is treated at some length right at the end of the exposition of 
things Greek, in Section 8.3(c), and my conclusions are clearly stated at the end 
of this section, but only the most dedicated reader will get this far. One reason 
for not coming clean earlier with my point of view about this discovery, which 
is seen by most as a defining moment of Greek mathematics, was to minimise 
distraction from what I thought to be more important things, but this has 
clearly led to misunderstandings. Therefore I now reverse my earlier approach, 
which is why I recommend the reader to start with this introductory survey of 
the story of incommensurability in the Appendix. 

While the main contents of the first edition of this book may be highly 
controversial, in general they avoided polemic as much as possible. In parts of 
the new Appendix, I go more on the offensive, and point out in more detail why 
I dissent from other more traditional views, and why I think that they may 
indeed sometimes be more speculative than my own. 

Let me, at the outset, set out my position in this new polemical stance. Our 
evidence concerning pre-Euclidean mathematics is so indirect and fragmentary 
that the greatest part of the stories that are now told about the period must be 
invention. This book sets out an unconventional story in which the study of 
various kinds of ratio plays an important part: anthyphairetic ratios, associated 
with Theaetetus; astronomical ratios, associated with Eudoxus; musical ratios, 
associated with Archytas; and accountants' ratios, which grew out of the 
everyday Egyptian and Greek way of handling division. In this situation, 
where none of us has very much evidence to back up our accounts: 

• Whose story contains the most invention? 
• Whose story relies most on our own ways, today, of understanding 

arithmetic and the other basic intuitions of mathematics? 
• Whose story has the greatest coherence? 
• Whose story is the most interesting? 

Again, readers must decide for themselves the answers to these questions, 
preferably after studying my proposals here; I am, of course, biased but my 
own answers will be perfectly obvious, and have if anything been reinforced 
during the period since the publication of the first edition. 

Since writing the book more than fifteen years ago, I have come to know and 
appreciate the enormous contributions of many more scholars than I had then 
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read, let alone referred to, and am embarrassed by the brashness and ignorance 
of some parts of the text. (One small but pervasive example was an attempt at a 
bit of linguistic reform, fortunately unsuccessful, which has been corrected in 
this second edition. I had misunderstood the early meaning of 'algorism', and 
was not aware that 'algorithm' has an even longer and more noble ancestry 
than I had thought. For more details see p. 63.) However, had I read more 
before writing, this might have led me to replace some of the bounce and 
enthusiasm by a more sober and serious approach. Readers must also decide 
for themselves whether this would have been an improvement or not. 

Those who would like to know more about the circumstances of the 
composition and execution of Raphael's fresco, reproduced here as the 
frontispiece, are recommended to E. H. Gombrich, Symbolic Images, and 
G. W. Most, 'Reading Raphael: The School of Athens and its pre-text'; 
publication details are given in the Bibliography. 

Much of the material in the Appendix has been tried out at a series of 
meetings organised by Vassilis Karasmanis and Marinus Taisbak, and I would 
like to thank them and the other participants for their most helpful reactions 
and comments. While writing the Appendix, I have had a lively and stimulating 
correspondence with Reviel Netz, who was working on his own book, and I 
extract one of his many witty and apposite reflections: "We're like two pedlars 
caught in a derelict mining-town in the Old West; you carry a whole load of 
your 2nd edition, I a whole load of my Shaping of Deduction in Greek 
Mathematics, and we've got only each other to sell our wares to. Funny, 
isn't it?" Many of those who helped me in the writing of the first edition have 
continued to answer my questions over the succeeding years, and provide 
advice and material; and new people, not mentioned in that earlier Preface, 
include Benno Artmann, Gerhard Brey, Julio Gonzalez Cabillon, Menso 
Folkerts, Jens H0yrup, Henry Mendell and Eleanor Robson. Throughout, I 
have again benefited from the experienced and constructive help of John 
Fauvel. And all of my work on Greek mathematics leading up to the first 
edition of this book was inspired by W. R. Knorr's Evolution of the Euclidean 
Elements and his early articles. Wilbur died of melanoma, tragically early, while 
this second edition was being prepared. I dedicate it to his memory. 

Warwick 
January 1998 

D.H.F. 





PREFACE TO THE FIRST EDITION 

Theon of Smyrna, a neo-Platonic commentator of the third century AD, wrote a 
book Expositio Rerum Mathematicarum ad Legendum Platonem Utilium; with a 
little less hubris than Theon, I regard this book here as 'An Account of 
Mathematical Topics that May be Useful for Reading Some Bits of Plato'. But, 
at the outset, I must emphasise that, like Theon, I do not deal with Plato's 
philosophy. My objective is to provide a background, developed around a new 
interpretation of aspects of early Greek mathematics, against which to set some 
of our evidence about the activities of Plato and his colleagues in the Academy. 
The exposition is divided into three parts, each with its own introduction; the 
following brief preface, together with these introductions, will give a summary 
of the aims, contents, and organisation of the book. 

The subject matter is early Greek mathematics, a phrase I shall use to denote 
the phase of developments that culminates in the works of Euclid and 
Archimedes. Part One (Chapters 1-5) sets out, in some detail, an exploration 
of some mathematical topics suggested by ideas found in the works of Plato, 
Aristotle, Euclid, and Archimedes and carried out using methods derived from 
their procedures; and it proposes that similar investigations might, indeed, have 
taken place and had some influence on the development of early Greek 
mathematics. The main theme, though not in its treatment here, is 'well 
known', as mathematician's jargon expresses it: it has been intensively studied 
since the seventeenth century, it can be found in readily available publications, 
and it has, from time to time, played an important role in the development of 
parts of mathematics. Yet it is possible to emerge from a modern training as a 
fully qualified member of the mathematical community without any knowledge 
whatsoever of this material. Every mathematician knows the algorithm which 
generates the greatest common factor of two numbers: at each step, we subtract 
the smaller as many times as possible from the larger to leave a still smaller 
remainder. When the procedure terminates, the last non-zero remainder is the 
greatest common factor. What we shall mainly be studying, usually in the 
context of two line segments rather than two numbers, is the relationship 
between the two original quantities and the sequence of numbers that describes 
how many subtractions have been performed at each stage. The original pair of 
numbers or lines clearly determines this pattern of subtractions; but conversely, 
we may ask, what is it about the original pair that is determined by this pattern? 
Can the same pattern arise from two different pairs and, if so, how are they 
related? 

The algorithm and the theory associated with the pattern of subtractions 
are now generally called the Euclidean algorithm and continued fractions. 
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However, the word algorithm is a recent corruption of a fine old word algorism 
(derived from al-Kharizmi); and I shall eventually argue that Euclid's role in 
the development of our understanding of the process may have been far from 
positive. Moreover the treatment of the material within Greek mathematics will 
not permit the introduction of the fractions or real numbers that are needed for 
the standard descriptions of continued fractions; and so on. For these and other 
reasons, some to be described more fully in Chapter 2, I shall refer to the 
cluster of ideas and procedures around this Greek algorithm by the word 
'anthyphairesis', the transcription of its Greek description by the perfectly 
ordinary Word avfJv</>a{pECtC, Which can be roughly translated as 'reciprocal 
subtraction', the subtraction of one thing from another. 

The main theme of Part One is the definition and use of ratio, which is 
described by Euclid, at Elements V Definition 3, as "A sort of relation in 
respect of size between two magnitudes of the same kind". By meditating on the 
questions posed at the end of the last paragraph but one, we see that 
anthyphairesis provides one such definition of ratio; then astronomy suggests 
another, and music theory another. These ideas will be developed and related to 
each other, and this material will be connected to the description of a 
mathematical curriculum that Plato sets out in Republic VII. 

Part Two, which could equally well have been placed before Part One, 
discusses some aspects of our evidence about the period. Chapter 6 takes a very 
general point of view; it examines the evidence for one well-known and 
representative story about Plato's Academy, and then looks at the transmission 
of Greek texts in general down to our time. Then, in Chapter 7, a single topic, 
the treatment of numbers and fractions, is examined in fine detail, for it is out 
of our underlying experience with arithmetic that much of mathematics grows. 
In order to highlight my argument that early Greek mathematics is non
arithmetised I shall examine its obverse, arithmetised mathematics and calcu
lation with fractions, and will argue that there is a systematic and very 
widespread misunderstanding about Greek arithmetical calculations. What is 
often taken as proven fact is, at best, an interpretation not based on any clear 
evidence. 

Parts One and Two combine, I believe, to set out a very plausible argument 
that the study of various different ways of describing ratio might have played 
an important role in the development of mathematics within Plato's Academy; 
yet there seems to be no explicit mention of this subject, nor any of its 
techniques, discoveries, problems, and pitfalls, in any surviving Greek source 
of any kind. In Part Three, Chapter 8, I discuss a few of the discrepancies 
between what later Greek commentators tell us about Greek mathematics and 
what we find in our surviving early evidence. And finally, in Chapter 9, I sketch 
the theory and story of the development, since the seventeenth century, of the 
mathematics underlying my reconstruction here of anthyphairetic ratio theory, 
and finish by reflecting on the fact that it, too, after having intrigued and 
influenced Fermat (perhaps), Brouncker, Wallis, Huygens, Euler, Lambert, 
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Lagrange, Legendre, Gauss, Galois, and many others, has subsequently been 
left to one side and omitted from the basic training of mathematicians, and so 
has been neglected by many mathematicians and historians of today. 

The problems posed by trying to describe and develop mathematics that may 
be unfamiliar to many people, within a very novel, initially implied, historical 
context, have driven me, after a series of unsatisfactory rejected drafts, into 
adopting an unconventional expository technique. The book includes four 
dialogues that contain, in condensed form, the exposition of a lot of material. A 
substantial part of the text is then an elaboration of and commentary on 
material introduced in these dialogues. 

The referencing system I adopt throughout does not conform to the different 
conventions of either classicists or mathematicians, but I hope that it can be 
immediately understood and used by everybody. Every book or article will 
normally be referred to by its author and an acronym of its title (in italic for a 
book, roman for an article) with, as necessary, volume, page, line, and note 
numbers; then these acronyms are expanded in the Bibliography. So, for 
example, Heath, HGM ii, 50-6, refers to pages 50 to 56 of volume 2 of T. L. 
Heath's History of Greek Mathematics, a discussion of Archimedes, Measure
ment of a Circle. Modern editions of ancient authors also fit into the same 
system, but with the refinement that the editor's name will be added, as in the 
example Archimedes-Heiberg, Opera i, 232-43, again a reference to Measure
ment of a Circle. Collected works such as this, which contain the texts in their 
original language, ancient or modern, with or without translations or com
mentaries, will be identified by a keyword: Opera, Works, Werke, etc. Where a 
particular translation of a text is referred to, the translator will be given in the 
same way; for example Archimedes-Heath, WA, 91-8, for this same work. If at 
any point in the text it seems that a fuller title will provide an extra grain of 
information, then it will be given; if an author's name requires initials for 
clarification, they will be given. Papyrological publications will be cited in their 
own standard way; for details of this, see Chapter 6, footnote 18. Euclid, Plato, 
and Aristotle, our major sources, need special mention. Of the nine volumes (in 
ten parts) of the critical edition of Euclid's surviving works, edited by J. L. 
Heiberg with H. Menge and M. Curtze, here called Euclid-Heiberg, Opera, five 
volumes (in six parts) have been reissued in a form described on its title page as 
"Euclidis Elementa post J. L. Heiberg edidit E. S. Stamatis"-this will be 
described as Euclid-Stamatis, EE; and there is a standard, exemplary, and 
readily available three-volume English translation and commentary to which I 
hope every half-way serious reader will have access, which will be called Heath, 
TBEE (=The Thirteen Books of Euclid's Elements), not Euclid-Heath, TBEE. 
'The Elements' will always be Euclid's Elements, and most translations of 
passages from the Elements will be from Heath, TBEE, though some are taken 
from the recent comprehensive commentary, Mueller, P MDSEE. Similarly, 
Plato's and Aristotle's works will generally be referenced by title only, without 
editor or translator, though the translators of extended passages will be 
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identified, often in the notes; most of these translations will be taken from 
Plato, CD and Aristotle-Ross, WA, now available in a convenient revised 
two-volume version, Aristotle-Barnes, CW. Three basic English reference 
works will be cited without author or editor: the DSB, OCD, and OED 
(=The Dictionary of Scientific Biography, The Oxford Classical Dictionary, 
and The Oxford English Dictionary). Further notes on this kind of referencing 
system, which I first saw and appreciated in de Ste. Croix, CSAGW, are given 
in the Bibliography. In this way, I hope that any text that is cited anywhere can 
be quickly identified by anybody; but whether some of these texts can then be 
located and consulted is quite a different matter, which may need the assistance 
of a very specialised library. I must, at the outset, record my gratitude to my 
own university library, the Ashmolean Library, and the Bodleian Library for 
their .generous and expert help in this respect. 

The book finishes with an Index of Cited Passages, an Index of Names, and a 
conventional General Index. 

Direct quotations of texts are either displayed, or run into the text and 
enclosed in double quotation marks " ... "; single quotation marks are used to 
set off words or phrases. I have used algebraic formulae, in contexts referring to 
Greek mathematics, only as a shorthand for more long-winded geometrical 
descriptions; this is explained in several places, for example Sections l.2(e), 3.2, 
4.5(b ), and throughout Chapter 5. The examples just given illustrate the system 
of cross-referencing used in the book, and the chapters and sections are 
indicated throughout in the running heads. 

I would like to thank the very many people, far more than I can possibly 
name here, who have helped me write this book. Ifl do mention some by name, 
I hope that they will not be inhibited thereby in their criticism, which has so 
much helped in the past, and that those whom I do not name will not feel that 
their help is less appreciated. My interest in Greek mathematics was kindled by 
reading The Evolution of the Euclidean Elements, and its author Wilbur Knorr 
has since provided further encouragement, information, and advice. Andrew 
Barker, Alan Bowen, Malcolm Brown, Ivor Bulmer-Thomas, Harold Chemiss, 
Roger Herz-Fischler, Geoffrey Lloyd, Bernard Teissier, and Tom Whiteside 
have kept up a steady stream of help, encouragement, and material. It soon 
became apparent that I needed to enter new and vast fields of scholarship, and I 
wish to acknowledge warmly the help that has been given and the interest that 
has been shown by many classicists, and how much I have come to appreciate 
their information and insights. Very particular thanks are due to the papy
rologists, especially Sir Eric Turner (1911-83) and his colleagues Walter 
Cockle, Peter Parsons, and John Tait; and I have received special assistance 
from Alain Blanchard, William Brashear, Myles Burnyeat, Patrice Cauderlier, 
Jim Coulton, D.R. Dicks, Tiziano Dorandi, Brenda Farr, Hermann Harrauer, 
Ludwig Koenen, Tom Pattie, Bob Sharples, David Thomas, and Nigel Wilson. 
The community of mathematicians and historians of mathematics has looked 
on, sometimes rather bemused, and offered advice and help of all kinds; 
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notable have been E. M. Bruins, J. W. S. Cassels, Donald Coxeter, Kay 
Dekker, John Fauvel, Bernard Goldstein, Bill Gosper, Ivor Grattan-Guinness, 
Jan Hogendijk, Jan van Maanen, John Mason, Joe and Barry Mazur, Ian 
Mueller, David Mumford, Mike Paterson, Paddy Patterson, Mark Rafter, 
Rolph Schwarzenberger, Jacques Sesiano, Jeff Smith, B. L. van der Waerden, 
and many of my immediate colleagues of whom I should like particularly to 
thank, for more than I could ever hope to enumerate, Elaine Greaves Coelho 
and Christopher Zeeman. The staff of Oxford University Press have given me 
comfort, encouragement, and expert help, and have indulged my idio
syncracies. The inclusion of several items, including the frontispiece, was 
made possible by a grant from the Fondation Les Treilles. 

The book itself has been written in three very special places, each with its 
own presiding genius, to whom it is jointly and affectionately dedicated. 

Les Treilles, Tourtour, 
Les Cates du Plan, Ollioules, 
and St. Nicholas', Warwick 

D.H. F. 
July 1986 
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PART ONE 

INTERPRET A TIO NS 

Finding out about ratios is a secret of deep logic. 
Omar Khayyam, Discussion of Difficulties in Euclid. 

This first part will develop the main mathematical and historical structure of 
the interpretation. I have tried to make it as direct and explicit as possible, and 
have used various expository devices to get across ideas and attitudes that may 
be unfamiliar or unconventional. It contains no footnotes and the minimum of 
distractions in the main text; so even the details of the ancient texts and their 
translations, other references, and additional incidental material are given, to 
begin with, in the notes at the end of each chapter. A new Appendix, Chapter 
10, has been added to the second edition and readers are strongly recommended 
to read its first section, 10.1, for an overview of the argument of the book. 

Chapter 1 sets the scene by describing the context, techniques, and themes 
that will dominate this book. I take as model, for both the kind of mathematics 
and the kind of mathematical exposition, the passage from Plato's Meno where 
Socrates persuades a slaveboy to double a square. Then, after analysing the 
concepts and techniques that will be at our disposal, I propose a sequel to this 
episode in which the slaveboy, now greatly increased in confidence and 
knowledge, faces the question of giving a definition of ratio. 

Chapter 2 starts a commentary on my dialogue, in the form of an exposition 
of some of the techniques it introduced. Again I adopt a Platonic rather than a 
Euclidean style: problems are suggested rather than formally enunciated, the 
motivation is treated at length while sometimes the actual evaluation is left to 
the reader, the treatment is very personal and discursive, and I make no attempt 
to set out a definitive account of the subject. I have tried to illustrate the 
techniques on examples that arise in our ancient evidence and my aim, here and 
elsewhere, is one of comprehensiveness: I wish to describe a cluster of 
associated methods that will provide plausible reconstructions of not one but 
all of these ancient examples that sometimes seem so perplexing to a modern 
audience. 

Chapter 3 is a reinterpretation of Book II of Euclid's Elements and some 
related material. Here I have attempted to present an exhaustive account. 
Rather than suggesting to the reader that something can be done, I have done it 
and set out the details, but I encourage my readers to skip these details where 
this is more palatable. Here again, the aim is of comprehensiveness: a successful 



2 Interpretations 

explanation of a coherent collection of results like Book II should account for 
everything that is found in the book. This chapter ends with a discussion of the 
texts on side and diagonals found in the Platonic commentaries by Theon of 
Smyrna and Proclus. This is the only substantial piece of evidence from later 
sources that is invoked in Part One, and my discussion indicates, incidentally, 
some of the difficulties with late and indirect material of this kind. 

Chapter 4 presents an interpretation of Plato's curriculum in Republic VII. 
The central idea here is that Plato's logistike refers to ratio theory, but that 
different definitions of ratio are appropriate for mathematics, astronomy, and 
music theory. Then the underlying unity of the curriculum comes, I suggest, 
from relating these different manifestations of ratio to each other. Again, the 
exposition of some of these ideas is done in dialogue form. 

Chapter 5 gives a description of the classification of incommensurable lines 
found in Elements X and applied in Elements XIII. My main interest here is in 
the mathematical motivation of this classification, and I propose that it is a 
further extension of the problems suggested by the reconstructions of Chapters 
3 and 4. 



1 

THE PROPOSAL 

1.1 SOCRATES MEETS MENO'S SLAVEBOY 

Plato's Meno is an enquiry into virtue. As part of the discussion, Plato's 
Socrates digresses to illustrate his opinion that we cannot teach anything, but 
can only prompt recollection of the opinions of a disembodied soul. But 
Socrates' digression takes him into the subject of our enquiry here, so let us 
begin with this passage, Meno 8le-85d. The translation is by W. K. C. 
Guthrie; I have suppressed all editorial additions, made one very slight 
alteration throughout which will be explained in Section l.2(c), below, and 
restored two speeches at the end of 83b that have unaccountably been 
omitted. 

MENO: What do you mean you say that we don't learn anything, but that what we 
call learning is recollection? Can you teach me that it is so? 

SOCRATES: I have just said that you're a rascal, and now you ask me if I can teach 
82a you, when I say there is no such thing as teaching, only recollection. Evidently 

you want to catch me contradicting myself straight away. 
MENO: No, honestly, Socrates, I wasn't thinking of that. It was just habit. If you 

can in any way make clear to me that what you say is true, please do. 
SOCRATES: It isn't an easy thing, but still I should like to do what I can since you 

b ask me. I see you have a large number of retainers here. Call one of them, 
anyone you like, and I will use him to demonstrate it to you. 

MENO: Certainly. Come here. 
SOCRATES: He is a Greek and speaks our language? 
MENO: Indeed yes-born and bred in the house. 
SOCRATES: Listen carefully then, and see whether it seems to you that he is learning 

from me or simply being reminded. 
MENO: I will. 
SOCRATES: Now boy, you know that a square is a figure like this? 
BOY: Yes. 

c SOCRATES: It has all these four sides equal? 
BOY: Yes. 
SOCRATES: And these lines which go through the middle of it are also equal? 
BOY: Yes. 
SOCRATES: Such a figure could be either larger or smaller, could it not? 
BOY: Yes. 
SOCRATES: Now if this side is two feet long, and this side the same, how many feet 

will the whole be? Put it this way. If it were two feet in this direction and only 
one in that, must not the area be two feet taken once? 

BOY: Yes. 
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d SOCRATES: But since it is two feet this way also, does it not become twice two feet? 
BOY: Yes. 
SOCRATES: And how many feet is twice two? Work it out and tell me. 
BOY: Four. 
SOCRATES: Now could one draw another figure double the size of this, but similar, 

that is, with all its sides equal like this one? 
BOY: Yes. 
SOCRATES: How many feet will its area be? 
BOY: Eight. 
SOCRATES: Now then, try to tell me how long each of its sides will be. The 

e present figure has a side of two feet. What will be the side of the double-sized 
one? 

BOY: It will be double, Socrates, obviously. 
SOCRATES: You see, Meno, that I am not teaching him anything, only asking. Now 

he thinks he knows the length of the side of the eight-feet square. 
MENO: Yes. 
SOCRATES: But does he? 
MENO: Certainly not. 
SOCRATES: He thinks it is twice the length of the other. 
MENO: Yes. 
SOCRATES: Now watch how he recollects things in order-the proper way to 

recollect. 
83a You say that the side of double length produces the double-sized figure? Like 

this I mean, not long this way and short that. It must be equal on all sides like 
the first figure, only twice its size, that is, eight feet. Think a moment whether 
you still expect to get it from doubling the side. 

BOY: Yes I do. 
SOCRATES: Well now, shall we have a line double the length of this if we add 

another the same length at this end? 
BOY: Yes. 
SOCRATES: It is on this line then, according to you, that we shall make the eight

feet square, by taking four of the same length? 
b BOY: Yes. 

SOCRATES: Let us draw in four equal lines, using the first as a base. Does this not 
give us what you call the eight-feet figure? 

BOY: Certainly. 
SOCRATES: But does it contain these four squares, each equal to the original four-

feet one? 
BOY: Yes. 
SOCRATES: How big is it then? Won't it be four-times as big? 
BOY: Of course. 
SOCRATES: And is four-times the same as twice? 
BOY: Of course not. 
SOCRATES: But how much is it? 
BOY: Fourfold. 

c SOCRATES: So doubling the side has given us not a double but a fourfold 
figure? 

BOY: True. 
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SOCRATES: And four-times four are sixteen, are they not? 
BOY: Yes. 

5 

SOCRATES: Then how big is the side of the eight-feet figure? This one has given us 
four-times the original area, hasn't it? 

BOY: Yes. 
SOCRATES: And a side half the length gave us a square of four feet? 
BOY: Yes. 
SOCRATES: Good. And isn't a square of eight feet double this one and half that? 
BOY: Yes. 
SOCRATES: Will it not have a side greater than this one but less than that? 

d BOY: I think it will. 
SOCRATES: Right. Always answer what you think. Now tell me. Was not this side 

two feet long, and this one four? 
BOY: Yes. 
SOCRATES: Then the side of the eight-feet figure must be longer than two feet but 

shorter than four? 
BOY: It must. 

e SOCRATES: Try to say how long you think it is. 
BOY: Three feet. 
SOCRATES: If so, shall we add half of this bit and make it three feet? Here are two, 

and this is one, and on this side similarly we have two plus one, and here is the 
figure you want. 

BOY: Yes. 
SOCRATES: If it is three feet this way and three that, will the whole area be 

three-times three feet? 
BOY: It looks like it. 
SOCRATES: And that is how many? 
BOY: Nine. 
SOCRATES: Whereas the square double our first square had to be how many? 
BOY: Eight. 
SOCRATES: But we haven't yet got the square of eight feet even from a three-feet 

side? 
BOY: No. 
SOCRATES: Then what length will give it? Try to tell us exactly. If you don't want to 

84a count it up, just show us on the diagram. 
BOY: It's no use, Socrates, I just don't know. 
SOCRATES: Observe, Meno, the stage he has reached on the path of recollec

tion. At the beginning he did not know the side of the square of eight feet. 
Nor indeed does he know it now, but then he thought he knew it and 
answered boldly, as was appropriate-he felt no perplexity. Now however 

b he does feel perplexed. Not only does he not know the answer; he doesn't 
even think he knows. 

MENO: Quite true. 
SOCRATES: Isn't he in a better position now in relation to what he didn't know? 
MENO: I admit that too. 
SOCRATES: So in perplexing him and numbing him like the sting-ray, have we done 

him any harm? ' 
MENO: I think not. 
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SOCRATES: In fact we have helped him to some extent toward finding out the 
right answer, for now not only is he ignorant of it but he will be quite 
glad to look for it. Up to now, he thought he could speak well and 
fluently, on many occasions and before large audiences, on the subject of a 

c square double the size of a given square, maintaining that it must have a 
side of double the length. 

MENO: No doubt. 
SOCRATES: Do you suppose then that he would have attempted to look for, or 

learn, what he thought he knew (though he did not) before he was thrown into 
perplexity, became aware of his ignorance, and felt a desire to know? 

MENO: No. 
SOCRATES: Then the numbing process was good for him? 
MENO: I agree. 
SOCRATES: Now notice what, starting from this state of perplexity, he will 

d discover by seeking the truth in company with me, though I simply ask 
him questions without teaching him. Be ready to catch me if I give him any 
instruction or explanation instead of simply interrogating him on his own 
opinions. 
Tell me, boy, is not this our square of four feet? You understand? 

BOY: Yes. 
SOCRATES: Now we can add another equal to it like this? 
BOY: Yes. 
SOCRATES: And a third here, equal to each of the others? 
BOY: Yes. 
SOCRATES: And then we can fill in this one in the corner? 
BOY: Yes. 
SOCRATES: Then here we have four equal squares? 

e BOY: Yes. 
SOCRATES: And how many times the size of the first square is the whole? 
BOY: Four-times. 
SOCRATES: And we want one double the size. You remember? 
BOY: Yes. 
SOCRATES: Now does this line going from corner to corner cut each of these 

squares in half? 
BOY: Yes. 
SOCRATES: And these are four equal lines enclosing this area? 
BOY: They are. 
SOCRATES: Now think. How big is this area? 
BOY: I don't understand. 

85a SOCRATES: Here are four squares. Has not each line cut off the inner half of each of 
them? 

BOY: Yes. 
SOCRATES: And how many such halves are there in this figure? 
BOY: Four. 
SOCRATES: And how many in this one? 
BOY: Two. 
SOCRATES: And what is the relation of four to two? 
BOY: Double. 
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8ELgo:µ•v OTL [ o]u8e a'/o..Xry [ 
ry J ;J apa Try 'fJY EO'TlV 1Ta[paXXryXos 

~=--------=lo 

/3]1«'-------~ 

15 Eav irapa]XXryXoypaµµ[ov] Tpt[yowro 

avr17]v Kat EV r[mS'] avTatS' ( 

J <<rT<fL T[o ira]paXXryX[ oypaµµov 

ir]apa[MryXoyp]af;'f;'[ov 

{3acrw] TE [ 

20 J • [ 
O't1rXa]r!o[v 

EIT<(<u Jx8ro f 
J Tro [<{3y) Tp[iyrovro 

] TryS /IY K[ at 

25 Tat]f f!y [a]• a[XXa 

] irapa;.XryXoypa[µµov 

] KaL TOU <{3[ y 
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[t77V c5oBet](Tav evlJeiay ~o' 
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4. P. Berol [inv.] 17469: photograph of text; and transcription in W. Brashear, Vier neue 
Texte zum antiken Bildungswesen, Archiv fur Papyrusforschung 40 (1994), 29-30. See 
Section 6.2. 





6. Vatican manuscript 190, folio 14v: Elements I, mid Definition 19 to mid Common 
Notion 3, with scholia, inserted figures, and annotations. See Sections 6.3 and 7.2, note 1. 



Fr. (b), 2nd hand. Col. iv. 

55 [7)J vvg wpoov Lyt/31,_{E', 7) t 1jµfpa L{31 lXq. 
[ L ]'f 'ApKToDpor aKpawvxor E'TrLTEAAEL, 

[7)] vvg c1pwv L/3/3'{{ ,ll, 7) 8' 1)µ£pa Lartlr..'. 
( K}; ~Tl¢avor dKpwvvxor Emr{llllEL 
[IC )al {3opEaL 1fvEfoV<TLI' Opvtf){aL, 7) vvg 

60 [&ip)oov L/3L>..', 7) 8' ~µlpa Layt'X. 'OrripLI' 
[ 7r)Ep17rllEI Ka.I xpvrroDv 1fAoiov Ega-
[ye]rat. TD/3L (E) El' TOOL KptooL. " lrr'f/µEp{a 
[Ea]pw~. [7)] vvg ropoov L/3 Kat ~µlpa L/3, 
[ic]~l iop[T]~ ~fT~p<f>Lor. K( ll;>..w£8u 

65 [dic]pwwx[oi] 8vvov[rr]w, ~ vvg wprov La/3'.f1, 
[7)] K 1)µlpa [L]{3tx µ t. MExElp <; f.v TooL 
(T]ailpa11. 'Ta8Er dicp<fivvxoL 8vvovrrw, 
(7)] ,i•vg O>poov Ladxl, 

55. I. i'r' for 1'/f. 57. c'r' corr. from r'. 65. ~· corr. 68. I. '><'•i for x·,·. 

7. P. Rib. i 27: photograph of column 4 and its transcription, both from B. P. Grenfell & 
AS. Hunt, The Hibeh Papryi i (1906), 138~57 and Plate VIII. See Section 7.1 (c). 



1847 [1036]. 30 B.C. - 14 A.D. 

~ L d 'T/ L d 2 I'ero(µe-rela) yij(q) Ka11ie(1'6v-roq) 1'ui Ile-rex(wv

aioq) qL aeX AtP(oq) 8 d' 'T/1 t' ,, 1' P' L d' fl' 'T/ t' ,, [lPlJ/ d(eo)v(eai) 
a 

d' i'''· Bo(eea) Az(oµiV'TJ) uai: 1'p'. 4 "Al(l'f/) Azo(µi'P'TJ) Av 

Trot AM( rpei) L d' 'f/ 1 a 4 ,fl' a 1' P' / L d 1' P' [.'. '] . 5 "Al(l'T/) 
. '' f-vo(µi'IWl) L 'YI' L dt 'T/' LI d' 'YI' "' 8 "Al(l ) 1' L di fl' ,,,, 11p1 

"' · ., ., L d1 ., • 'T/ a 'T/' 11 P' 

o / 1' d' 7 "Al(l'T/) Az(oµi'P'TJ) 1' L dz:,~;~:,; A'P' I')! L d 'T/1 1'P' 

8 / d(eo)v(eai) ·~ L d' 'T/' (t','). 9 Bo(eeil) ex(oµ8V'f/) 6ta Avaiµaz(ov) 

10 L d' fl' A1 P1 I I I 11 "A'(. ) 2 1 ) " L d1 fl' 
e a d' fl' l'P' o e L d 1 p. "'"''T/ 15x(oµl5V'TJ u L d' fl' l'P' 

0 I ,, d' 'f/ 1 1' P'. 12 I 0 L 'f/1 t' ,, • 

3 Au quatrieme c<lt6 du quadrilatere, le 1J n'est pas surmont6 du trait qui 
indiquerait qu'il s'agit de 1/8. n faut cependant comprendre 1/8 et non 8, 
en raison du produit : 1/4 et 1/16 d'aroure. 7 Il manque un quatrieme 
nombre aux dimensions des c<lt6s donn6es pour le calcul de la superficie. Le 
signe o ( = oµolwi; ?) indique que le quatrieme c<lt6 consld6r6 est 6gal au pre

mier. 9 Avalµaxoi; : le mllme sans doute que dans W.O. 760 et 761. 
2 Je ne comprends pas al = aa( ). aex = probablement dex(Jj). 

8. 0 Bodi. ii 1847: photograph of text; and transcription in J. G. Tait & C. Preaux, 
Greek Ostraca in the Bodleian Library at Oxford ii (1955), 308. See Sections 7 .1 (d), 7.4, 
and 8.1. 





10. Brit. Mus. Add. Ms. 37516, recto: photograph of text; transcription from F. G. Kenyon, Two Greek school-tablets, Journal of the Hellenic Society 
29 (1909), 29-40 and Plate V; and translation. See Section 10.l(c). (Continued on the next page.) 



o IIvOayopa<; <f>i>.oao<f>os a1Tof3as Kat ypaµµaTa oioaaKwv avvE{3ov>.EvEv Tois EaVTov µaB71Tais Evaiµovwv a1TEXEa8ai 
TOV IIvOayopov <f>i>.oao</>ov a1Tof3avTES Kat ypaµµaTa oioaaKOVTOS >.oyos a1TOfLV7JfLOVEVETat avvf3ov>.EvOVTOS TO!S EaVTOV µa071Ta1s EVaiµovwv a1T[E]XEaB[at] 
Tw IIvBayopa <f>i>.oao</>w a1Tof3avn Kai ypaµµaTa oioaaKovn 'EootEv' avvf3ov>.Evaai Tois EavTov µa871Tais Evaiµovwv a1TEXEa0at 
Tov IIvOayopav <{n>.oao<f>ov a1Tof3avTa Kai ypaµµaTa oioaaKOVTa <f>aaiv avvf3ov>.Evaat Tois EavTov µa071Ta1s Evaiµovwv a1TEXEa0ai 
w IIvOayopE <f>i>.oao</>E a1Tof3as Kai ypaµµaTa oioaaKov av 1TOTE avvE{3ov>.EvaaTov Tois EavTov µaB71Tais Evaiµovwv a1TEXEaBai 
Kat OVKWS 
TW IIvOayopa <f>i>.oao<f>w a1Tof3aVT7JV Kai ypaµµaTa oioaaKOVTE avvf3ov>.EvET7JV TO!S EaVTOV µaB71Tais EVaiµovwv a1TEXEaBai 
TO!V IIvOayopoiv <f>i>.oao</>oiv a1To{3aVT<Jff Kai ypaµµaTa oioaaKOVTO!V >.oyos a1TOfL7JfLOVEVETa! avvf3ov>.EvOVTO!V TO!S EaVTOV µaB71TatS Evaiµovw[v] a1TEXEa0at 
Toiv IIvOayopoiv <f>i>.oao</>oiv a1Tof3avToiv Kat ypaµµaTa oioaaKOVToiv EOotEv avvf3ov>.Evaat Tois EavTov µaB71Tais Evaiµovwv a1TEXEa0ai 
TW IIvBayopa <f>i>.oao</>w a1To{3aVT7JV Kai ypaµµaTa oioaaKOVTE </>aaiv avvf3ov>.Evaai TO!S EaVTOV µa071TatS Evaiµovwv a1TEXEaBai 
w IIvOayopa <f>i>.oao</>w a1Tof3avT7JV Kai ypaµµaTa oioaaKOVTE a</>w 1TOTE avvf3ov>.EvaaTTJV TO!S EaVTOV µaB71Tais Evaiµovwv a1TEXEa0ai 
Kai 1TA7J0VVT!KWS 
01 IIvOayopat <f>i>.oao<f>oi a1Tof3avTES Kai ypaµµaTa oioaaKOVTES avvE{3ov>.Eva071v Tois EavTov µaB71TatS Evaiµovwv a1TEXEaBai 
TWV IIvOayopwv <f>i>.oao</>wv a1Tof3avTwv Kai ypaµµaTa oioaaKOVTWV >.oyos a1TOfLV7JfLOVEVETai avvf3ov>.EvaavTWJ! Tois EaVTOV µaB71TatS EVatµovwv a1TEXEa0ai 
Tois IIvOayopats <f>i>.oao</>ois a1Tof3aqf Kai ypaµµaTa oioaaKOVTois EOotEV avvf3ov>.Evaai Tois EaVTOV µaB71TatS Evaiµovwv a1TEXEa0ai 
TOVS IIvOayopas <f>i>.oao</>ovs a1To[f3av]Tas Kai ypaµµaTa oioaaKOVTas </>aaiv avvf3ov>.Evaai TO!S EaVTOV µaB71TatS Evaiµovwv a1TEXEU0at 
w IIvOayopai <f>i>.oao<f>oi a1Tof3avTES Kai ypaµµaTa oioaaKOVTES VfLE!S 7TOTE avvf3ov>.wqf1! TO!S EaVTOV µaB71TatS EVaiµovwv a1TEXEa[Oat] 

Pythagoras [nominative] the philosopher, when he had gone away and was teaching letters, advised his pupils to abstain from meat. 
There is a story of Pythagoras [genitive] the philosopher, when he had gone away and was teaching letters, advising his pupils to abstain from meat. 
It occurred to Pythagoras [dative] the philosopher, when he had gone away and was teaching letters, to advise his pupils to abstain from meat. 
They say that Pythagoras [accusative] the philosopher, when he had gone away and was teaching letters, advised his pupils to abstain from meat. 
0 Pythagoras [vocative] the philosopher, when you had gone away and were teaching letters, you once advised your pupils to abstain from meat. 
And in the dual: 
The two Pythagorases [nominative dual], the philosophers, when they had gone away and were teaching letters, advised their pupils to abstain from meat. 
There is a story of the two Pythagorases [genitive dual], the philosophers, when they had gone away and were teaching letters, advising their pupils to abstain from meat. 
It occurred to the two Pythagorases [dative dual], the philosophers, when they had gone away and were teaching letters, to advise their pupils to abstain from meat. 
They say that the two Pythagorases [accusative dual], the philosophers, when they had gone away and were teaching letters, advised their pupils to abstain from meat. 
0 you two Pythagorases [vocative dual], philosophers, when you had gone away and were teaching letters, you once advised your pupils to abstain from meat. 
And in the plural: 
The Pythagorases [nominative plural], the philosophers, when they had gone away and were teaching letters, advised their pupils to abstain from meat. 
There is a story of the Pythagorases [genitive plural], the philosophers, when they had gone away and were teaching letters, advising their pupils to abstain from meat. 
It occurred to the Pythagorases [dative plural], the philosophers, when they had gone away and were teaching letters, to advise their pupils to abstain from meat. 
They say that the Pythagorases [accusative plural], the philosophers, when they had gone away and were teaching letters, advised their pupils to abstain from meat. 
0 Pythagorases [vocative plural], philosophers, when you had gone away and were teaching letters, you once advised your pupils to abstain from meat. 





1.1 Socrates meets Meno's slaveboy 7 

b SOCRATES: How big is this figure then? 
BOY: Eight feet. 
SOCRATES: On what base? 
BOY: This one. 
SOCRATES: This line which goes from corner to corner of the square of four 

feet? · 
BOY: Yes. 
SOCRATES: The technical name for it is 'diagonal'; so if we use that name, it is your 

personal opinion that the square on the diagonal of the original square is double 
its area. 

BOY: That is so, Socrates. 
SOCRATES: What do you think, Meno? Has he answered with any opinions that 

were not his own? 
c MENO: No, they were all his. 

SOCRATES: Yet he did not know, as we agreed a few minutes ago. 
MENO: True. 
SOCRATES: But these opinions were somewhere in him, were they not? 
MENO: Yes. 
SOCRATES: So a man who does not know has in himself true opinions on a subject 

without having knowledge. 
MENO: It would appear so. 
SOCRATES: At present these opinions, being newly aroused, have a dreamlike 

quality. But if the same questions are put to him on many occasions and in 
different ways, you can see that in the end he will have a knowledge on the 

d subject as accurate as anybody's. 

The passage is well known and frequently discussed, but I quote it here in full 
for special reasons: 

(i) It is our first direct, explicit, extended piece of evidence about Greek 
mathematics; it probably dates from about 385 BC. By going forward from this 
time we may probe further back into the past, as in the following three typical 
examples: In commentaries, written in the sixth century AD, by Simplicius and 
Eutocius on Aristotle and Archimedes respectively, we find descriptions of 
work by Hippocrates (c.425 BC?) and Archytas (c.385 BC or earlier?) that come, 
directly or indirectly, from a now lost History of Mathematics written around 
325 BC by Eudemus, a pupil of Aristotle. Second, Euclid's Elements, which is 
believed to have been compiled around 300 BC, gives us an edited and anony
mous treatment of some of the mathematics of Euclid's predecessors, in a text 
that has passed through the hands of an unknown number of further scribes 
and editors before arriving at the versions that we now possess. Third, to find 
more than very short and isolated references to the mathematics of the 
Pythagoreans, and any information about Pythagoras himself, we have to go 
forward to the notoriously biased and uncritical hagiographical writings of 
Iamblichus in the third century AD. In this shifting and murky world of 
fragmentary, anonymous, secondary and tertiary accounts, this passage by 
Plato and other mathematical passages in his dialogues stand out as direct 
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testimonies from someone located at the centre of that remarkable group of 
creative mathematicians who initiated the style and some" of the techniques and 
preoccupations that have since dominated the subject. 

(ii) It serves as a lucid and straightforward example of some of the problems, 
styles, and techniques of early Greek mathematics. I shall discuss this in more 
detail later in this chapter. 

(iii) It leads directly into my exposition, at the end of this chaper, of some of 
the themes and preoccupations of this book. 

My aim throughout will be to try to emphasise mathematical texts that 
survive from the fourth and third centuries BC, including another long passage 
in Plato's Republic VII which describes a curriculum for the future guardians of 
the state, and to attempt to fit them together into some coherent account. To 
begin with, I shall ignore the accounts by the commentators in late antiquity; 
then, when the details of the proposed reconstruction have been presented, I 
shall consider, in Part Three of this book, a few of the different interpretations 
presented by the neo-Platonic and neo-Pythagorean commentators from the 
third century AD onwards. I now believe that these are later misunderstandings 
and that they can be explained and may be almost inevitable. I introduce this 
argument right at the end of the book, but a proper discussion of the issues will 
have to be deferred to future publications. 

1.2 THE CHARACTERISTICS OF EARLY 
GREEK MATHEMATICS 

1.2(a) Arithmetised mathematics 

There is a style of mathematics that I shall call 'arithmetised'. It is chFJ.racterised 
·by the use of some idea of number that is sufficiently general to describe some 
model of what is now frequently called 'the positive number line' and its 
arithmetic. The range of numbers that can be handled may be more or less 
comprehensive. For example, that great part of Babylonian mathematics which 
is restricted to the so-called regular numbers, numbers with terminating 
sexagesimal expansions, deals, in effect, with numbers that can be written as 
common fractions with denominators containing powers of two, three, and 
five; while, at other times, the scope of arithmetic has been extended to include 
informal or formal descriptions of irrational, complex, infinitesimal, and 
infinite quantities under this general umbrella of 'numbers'. These numbers 
then permeate mathematics: in geometry, lines become endowed with a 'length'; 
the 'area' of a rectangle is the product of the lengths of its base and height, and 
this basic definition is extended to the area of more and more two-dimensional 
figures; three-dimensional figures have a numerical 'volume'; then, more 
recently, higher-dimensional spaces have been created, purely numerical con
structs whose properties are then described by geometrical analogies. The ratio 
of two quantities becomes the quotient of the two numbers that represent them; 
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for example, the ratio of the circumference to diameter of a circle becomes a 
number that can be approximated by an integer 3, or by fractions such as 3!, 'lf-, 
or m, or represented as a decimal number 3·1416 ... 'or an infinite product 

2 (~ . ~ . ~ . ~ . ~ ... ), 

or a continued fraction 

( 1 12 32 52 ) 
4 l+ 2+ 2+ 2+ .... 

Familiarity with the manipulation of numbers can then lead to the experience 
and confidence out of which algebra can grow; a non-mathematician, looking 
at almost any mathematics text of today, might be inclined to describe 
mathematics as 'all algebra', a natural reaction to the result, over the last 
three hundred years, of our version of this programme of arithmetisation. 

Many cultures have developed their own versions of arithmetised mathe
matics. Our evidence about Babylonian mathematics comes from contem
porary clay tablets which contain practically nothing but numbers, expressed 
in an efficient floating-point, decimally coded, sexagesimal notation. Egyptian 
mathematics is arithmetised, though its description in terms of unit fractions 
seems to us to be unwieldy and inconvenient. Ptolemaic astronomy and the 
mathematics of Heron and Diophantus seem to be a powerful and profound 
blend of the earlier Greek geometrical and Babylonian arithmetised methods; 
and these were then further developed by Arab astronomers and mathe
maticians. Western mathematics since the sixteenth century has, as I have 
already suggested, been dominated by the arithmetised point of view, and this 
culminated in the developments of the nineteenth and twentieth centuries when 
the arithmetised formulation permeated analysis; the resulting minute investi
gations led to the first known coherent, formal descriptions of what might be 
meant by 'number' and 'arithmetic'. Dedekind tells us, in the introduction to 
his Stetigkeit und irrationale Zahlen, that he conceived his definition of 'real 
numbers' on Wednesday, 24 November 1858, and other versions were given by 
Meray, Weierstrass, and Cantor; other, different formal models for the number 
line have been proposed since. This recent activity shows a consciousness by 
mathematicians that the description of the number line and its arithmetic is at 
the root of our understanding and intuition about mathematics today. There 
may have been pockets of non-arithmetised mathematics such as, for example, 
nineteenth-century 'synthetic geometry', but the trend has been towards a more 
and more comprehensively arithmetised approach. And it seems that the power 
and scope of modern mathematics owes much to the completeness and 
effectiveness of this approach. 

Greek mathematics up to the second century BC seems, to an extraordinary 
degree, to be different. I shall argue, throughout this book, that while the 
Greeks may originally have deployed techniques that could serve perfectly as 
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labelling systems for the positive number line, they did not and could not go 
on to consider arithmetical operations with these labels. Thus my first char
acteristic of early Greek mathematics is negative: it seems to be completely 
non-arithmetised. 

l .2(b) Non-arithmetised geometry 

Geometry, modelled on the properties of the three-dimensional space we seem to 
experience about us, provides the main ingredient of Greek mathematics. And 
Socrates gives a good illustration of his common-sense attitude to this geometry 
when he says, right at the beginning of his encounter with the slaveboy: 

Such a figure could be either larger or smaller, could it not? 

(I shall return to this assertion much later, at the end of Chapter 4.) A typical 
solution of a problem or proof of a proposition will consist of a figure and a 
collection of statements about the figure. Thus the first two incorrect solutions 
to Socrates' problem of doubling a square were two figures, which the reader 
was left to supply, together with statements about counting equal squares; 
while the third and correct solution consisted of a further figure with the 
statements like: "these squares are cut in half"; "these lines are equal"; "this 
square contains two (equal) halves"; and "four is twice two". Another good 
example of this demonstrative procedure, which also illustrates Euclid's use of 
the word 'equal' (isos), is Elements I 35: 

Parallelograms which are on the same base and in the same parallels are equal to one 
another. 

Here the figure is a straightforward instantiation of the enunciation of the 
proposition. Different configurations are possible, according to the amount of 
overlap, and Fig. 1.1 illustrates one case, slightly different from that treated by 
Euclid. The argument then runs: the two triangles are equal so that, when the 
trapezium is added to each, Common Notions 2 and 4: 

If equals be added to equals, the wholes are equal. 
Things which coincide with one another (ta epharmozonta ep' allea) are equal to one 
another, 

will confirm the equality of the parallelograms. We need some kind of 
assurance that this particular figure will ensure the universal truth of the 

FIG. 1.1 
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proposition; while Aristotle worries about this kind of question, it does not 
seem to bother the mathematicians. 

Equality, then, does not mean arithmetical equality of some numerical 
measure of area and it cannot mean congruence. In fact congruence does not 
seem to be a basic concept in the Elements, since Euclid has no single word for 
it; the idea of coincidence in Common Notion 4 might seem a candidate, but 
this piece of text may be a later interpolation (see Heath, TBEE i, 224 f.) and 
Euclid does not make systematic use of this terminology (it appears elsewhere 
only in I 4 & 8 and III 24). Another way of describing congruence is found, for 
the first time, in XI Definition 10. 

Equal and similar (isos kai homoios) solid figures are those contained by similar planes 
equal in multitude and magnitude. 

This 'definition' illustrates further how Euclid's geometry consists of assertions 
about space either that are taken as self-evident, as apparently this is, or that 
may be listed explicitly as Common Notions, such as the examples I have just 
quoted, or as postulates, for example Postulate 5: 

That, if a straight line falling on two straight lines make the interior angles on the same 
side less than two right angles, the two straight lines, if produced indefinitely, meet on 
that side on which are the angles less than two right angles, 

or asserted without comment, as in I 1: 

From the point C in which the circles cut one another ... , 

or asserted because they are held to follow from some earlier assumptions or 
propositions, which may be implied, or paraphrased, or quoted word-for-word, 
but which are almost never located by exact references, so that the two 
occasions when distant locations are specified (possibly in later interpolations) 
are very surpnsmg: 

For it was proved in the first theorem of the tenth book that, if two unequal magnitudes 
be set out, and if from the greater there be subtracted a magnitude greater than the half, 
and from that which is left a greater than the half, and if this be done continually, there 
will be left some magnitude which will be less than the lesser magnitude set out [XII 2], 

and 

For this has been proved in the last theorem but one of the eleventh book [XIII 17]. 

The problems of elucidating the status of Euclid's geometry have occupied 
and perplexed commentators since late antiquity up to the present day. Of the 
examples I have just cited, XI Definition 10 would now seem to us to be not 
a definition but a proposition, indeed a proposition that is only true if 
sufficiently strong additional conditions, such as convexity, are imposed, and 
which otherwise can n'ow be shown, by ingenious counter-examples, to be false. 
Postulate 5 is now perceived not simply as the postulation of the converse ofl 17: 
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In any triangle two angles taken together in any manner are less than two right 
angles, 

but as a profound statement about a particular kind of geometry; and the 
assertions in I 1 and XII 2 are interpreted in terms of conditions that need to be 
imposed on our mathematical model of space. We can have no clear idea of the 
point of view of Euclid and his sources; we simply do not have enough reliable 
information. But these are not the kinds of questions I shall be considering 
here. I shall rather use geometry as Socrates and Euclid do, as describing some 
non-arithmetised idea of space through which assertions and relations are made 
manifest, and I will leave to one side questions of the status of the geometrical 
objects and procedures that participate in the figures and constructions, and 
refer to the geometry in the way that Plato describes, at Republic VII, 527a: 

Their [the geometers'] language is most ludicrous, though they cannot help it, for they 
speak as if they were doing something and as if all their words were directed towards 
action. For all their talk is of squaring and applying and adding and the like, whereas in 
fact the real object of the entire study is pure knowledge. 

I shall go on to describe how geometry can be used to establish a very surprising 
kind of pure knowledge and will argue that this may be what Plato is referring 
to here. 

The objects of this geometry are points, lines, and simple figures which reside 
in two- and three-dimensional space, and which are manipulated in various 
ways; and one of the main preoccupations of Euclid's geometry is the 
transformation, combination, and comparison of these figures-see Plato's 
"squaring and applying and adding and the like". The idea behind Euclid's use 
of 'equality' within geometry is one of size, not shape, and his concern, at first, 
is to see if two lines, two plane figures, or two three-dimensional regions are 
equal in size or, when they are not equal, which is the bigger. Let us look at 
these operations in a little more detail. 

The comparison of two lines can be carried out using the first three 
propositions of Book I: these enable us to superimpose one line and its 
endpoint on the other, an operation that is used explicitly at the beginning of 
I 4. Then Book I develops some of the machinery for manipulating and 
comparing two rectilineal plane regions; it culminates in Proposition 44: 

To a given straight line to apply, in a given rectilineal angle, a parallelogram equal to a 
given triangle, 

and I 45 shows how to extend this to any given rectilineal figure, though Euclid 
here shows no concern about the one step that might today seem to require 
some detailed proof, the operation of triangulating the figure that is to be 
transformed. A crucial preliminary result is established in I 43, which asserts 
that the two shaded parallelograms in Fig. 1.2 are equal: the large parallelo
gram contains two smaller parallelograms, and each of these three is cut into 
equal halves by the diagonal. Hence when the two equal smaller halves are 
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FIG. 1.2 

subtracted from the equal larger halves, the results will be equal. The last 
proposition of Book II, II 14, describes how 

To construct a square equal to a given rectilineal figure, 

and this theory for rectilineal plane figures is further elaborated in Book VI. 
Problems that arise with more general plane magnitudes and three-dimensional 
figures are considered in Book XII but, by that time, new ingredients have 
introduced new mathematical preoccupations. 

Let me return, for a final illustration of non-arithmetised geometry, to 
Socrates and the slaveboy. At 82c-d, they have to work out the area of a 
square two feet by two feet. In arithmetised geometry, we would immediately 
say that its square is two times two square feet. Socrates proceeds differently. 
He argues, with my interpolations: 

If it were two feet in this direction and only one in that [it would comprise two 
juxtaposed one-foot squares, forming a rectangle, so that], must not the area be two feet 
taken once; but since it is two feet this way also [and so comprises two such rectangles 
juxtaposed], does it not become twice two feet? 

This illustrates the basic geometrical operation of addition, represented by 
juxtaposition of the corresponding figures. Similar passages occur at 83b and e. 

Greek mathematics does deploy some numbers, as in the passages just 
considered, and these are manipulated arithmetically, even in a geometrical 
context, as at Meno 83e, again with my interpolation: 

If it is three feet this way and three that, will not the whole area be [three juxtaposed 
rectangles each comprising three juxtaposed squares, so that it is] three-times three feet. 

It is to this ingredient that I now turn. 

l .2(c) Numbers and parts: the arithmoi and mere 

Greek mathematics makes free use of the cardinal numbers; but rather than our 
thinking of the sequence 1,2, 3, ... , qua cardinals, a much more faithful 
impression of the very concrete sense of the Greek arithmoi is given by the 
sequence: 

duet, trio, quartet, quintet, .... 
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I have omitted the first term because in early Greek mathematics the unit, the 
monas, has a different status from the others, so that an argument may have to 
be reformulated when it applies to this case. These numbers are ordered by size 
('a quartet is bigger than a trio'), and can be added by concatenation ('a trio 
plus a quartet makes a septet') and subtracted 'the less from the greater'. 

The arithmoi also appear in other forms, such as the adverbial sequence: 

once, twice, three-times, four-times, .... 

These two particular kinds of numbers can act on each other to give multi
plication, as in Socrates' "dis duo in" (twice two) or "treis tris" (three three
times ). Division, or division with remainder when the less does not measure the 
greater, is described similarly. There are further numerical sequences, such as: 

simple, double, triple, quadruple, ... , 

which Socrates also draws on, and which are used in the same way; the 
particular choice seems to depend on grammatical or stylistic convenience. 
None of these other forms seem to have a common name in English, and I shall 
refer to them as 'repetition numbers'. 

Another kind of numerical sequence is: 

half, third, quarter, fifth, ... ; 

see, for example, Socrates' remark at the end of Meno 83c. These are 
occasionally found in formal mathematics and are ubiquitous in certain 
kinds of calculations. They are frequently confused with the ordinal numbers, 
the different sequence: 

first, second, third, fourth, fifth, ... , 

but I shall refer to them by their Greek name as the series of parts (meros or 
morion, plural mere or moria), and will denote them by 2, 3, 4, ... or 2', 3', 4', .... 
Chapter 7 will be devoted to a discussion of these parts; meanwhile I urge that 
they should not be thought of as: one-half, one-third, one-quarter, one-fifth, ... , 

b "t . I I I I nor e wn ten. 2 , 3,4 , 5 , .... 
Some examples from the Elements will illustrate these features. The basic 

definitions are VII Definitions 1 to 5: 

A unit is that with respect to which each existing thing is called one; and a number is a 
multitude composed of units. 
A number is a part of a number, the less of the greater, when it measures the greater; but 
parts when it does not measure it. 
The greater number is a multiple of the less when it is measured by the less. 

Then the answer to a question such as 'What multiple?' or 'What part?' will be a 
repetition number, or a phrase which describes a repetition number. See, for 
example, VII Definition 8: 
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An even-times even number (artiakis artios arithmos) is that which is measured by an 
even number according to an even number (kata artion arithmon). 

But Euclid never tells us how to answer the question 'What parts?' Heath's 
hyphen, "even-times even", conveys the nuance of the adverbial form. I have 
added similar such hyphens to Guthrie's translation of the Meno passage 
with which this chapter began; see, for example, 83c: tettaron tetrakis estin 
hekkaideka, four four-times are sixteen. 

The multiplication that arises when a repetition number acts on a cardinal 
number is explicitly described in terms of addition: 

A number is said to multiply a number when that which is multiplied is added to itself as 
many times as there are units in the other, and thus some number is produced 
[VII Definition 15]; 

and here the phrase "as many times as there are units in the other" illustrates 
how a cardinal number can be converted into a repetition number. We shall see, 
in the next chapter, how division is similarly construed in terms of subtraction. 

Greek arithmetike (i.e. arithmetike techne) is the art of the arithmoi, the study 
of the properties of these kinds of numbers. It is frequently translated as 
'arithmetic', but 'number theory' will better convey the sense of the word 
provided it is always interpreted within the context of these kinds of mani
pulations of the Greek arithmois. However, I shall generally leave it in its 
transliterated form, and refer to arithmetike. 

l.2(d) Ratio (logos) and proportion (analogon) 

The two words, ratio and proportion, logos and analogon, refer to different 
kinds of mathematical entities, though they are frequently conflated and used 
as if they were interchangeable. A ratio is something; in modern terms, it is a 
function of two (or possibly more) variables, and if we want to make use of this 
concept, we should say what it is and how it is calculated and manipulated. I 
shall very often write a: b as shorthand for the phrase 'the ratio of a to b'; the 
symbol means no more and no less than the words, and it is up to us to say 
what they stand for if we want to go on to make use of the idea. Euclid's 
definition-though description might be a better word to use-occurs at 
VDefinition 3: 

A ratio is a sort of relation in respect of size between two magnitudes of the same kind. 
(Logos esti duo megethan homogenon he kata pelikoteta poia schesis.) 

This is elaborated in V Definition 4: 

Magnitudes are said to have a ratio to one another which are capable, when multiplied, 
of exceeding one another, 

but these do not tell us enough about ratios to enable us to prove any 
results about them. r shall explain this point in more detail later in this 
section. 
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On the other hand, a proportion is a condition that may or may not hold 
between four objects. It may appear as a question: '"Are a, b, c, and d 
proportional?' to which, if it is properly posed, we have to answer 'Yes' or 
'No'. There are other ways of expressing the same question: 'Is a to bas c is to 
d?' (this being a question about a proportion, and not about two ratios), or the 
idea may be introduced as an assertion, not as a question. I shall often use 
'a : b : : c : d' as shorthand for all of these forms of words. Euclid gives two 
different definitions of proportionality. One, at V Definition 5, is believed to be 
due to Eudoxus and to date from c. 350 BC (though the evidence for this attribution 
and date is indirect, or late and anonymous), at the end of the period I shall 
mainly be considering. Since my concern here will be with the precursors of this 
definition, I shall not quote or try to explain it here. The second definition 
occurs at VII Definition 20: 

Numbers are proportional when the first is the same multiple, or the same part, or the 
same parts, of the second that the third is of the fourth. 

I have earlier suggested that the answer to 'What multiple?' or 'What part?' is 
an adverbial number. This fits well within the restrictions on the arithmoi and 
leads to an idea of 'same multiple' and 'same part' which makes this definition 
workable in these cases; but Euclid nowhere explains how to treat the case 
when the first number is 'parts' of the second, neither explicitly in a definition, 
nor implicitly in a proposition, so we do not know how to interpret 'same parts' 
in this definition. In fact what information he does give seems inconsistent: 
VII Definitions 3 and 4, already quoted earlier but repeated here for emphasis, 
tell us that 

A number is part of a number, the less of the greater, when it measures the greater; but 
parts when it does not measure it, 

so that any number is either part or parts of a greater number; but VII4 then 
proves, at some length, that 

Any number is either a part or parts of any number, the less of the greater. 

Something is curiously wrong. I shall discuss some of our evidence concerning 
these numerical parts, mere, in Chapter 7. 

It is often asserted that the discovery of the phenomenon of incommen
surability led to a situation in which the early Greek mathematicians were 
unable to set the theory of ratio or proportion on firm foundations, within the 
means at their disposal, until the development by Eudoxus, in the middle of the 
fourth century BC, of the proportion theory of Book V. I wish, throughout 
this book, to query everything in this sentence except that which relates to the 
identification, dating, and attribution of Eudoxan proportion theory; see 
Section 10 .1. As a first step, I shall address here the mathematical component 
of this assertion, in the following interpretation: that the ingredients of early 
Greek mathematics, such as I have described them so far or, alternatively, as 
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can be inferred from what are believed to be the early books of the Elements, 
are inadequate to set up a theory of ratio or proportion sufficiently general to 
handle incommensurable magnitudes. At this point a long quotation from 
Aristotle's Topics, VIII3, 158a31-159a2, is in order. The Topics is a manual of 
'syllogistic dialectic', a kind of formal debate between a 'questioner' and an 
'answerer': 

There are certain hypotheses upon which it is at once difficult to bring, and easy to stand 
up to, an argument. Such, e.g., are those things which stand first and those which stand 
last in the order of nature. For the former require definition, while the latter have to be 
arrived at through many steps if one wishes to secure a continuous proof from first 
principles, or else all discussion about them wears the air of mere sophistry; for to prove 
anything is impossible unless one begins with the appropriate principles, and connects 
inference with inference till the last are reached. Now to define first principles is just 
what answerers do not care to do, nor do they pay any attention if the questioner makes 
a definition: and yet until it is clear what it is that is proposed, it is not easy to discuss it. 
This sort of thing happens particularly in the case of the first principles (arche): for while 
the other propositions are shown through these, these cannot be shown through 
anything else: we are obliged to understand every item of that sort by definition. The 
inferences, too, that lie too close to the first principle are hard to treat in argument .... 
The hardest, however, of all definitions to treat in argument are those that employ terms 
about which, in the first place, it is uncertain whether they are used in one sense or in 
several, and, further, whether they are used literally or metaphorically by the definer. 
For because of their obscurity, it is impossible to argue upon such terms; and because of 
the impossibility of saying whether this obscurity is due to their being used meta
phorically, it is impossible to refute them .... It often happens that a difficulty is found 
in discussing or arguing a given position because the definition has not been correctly 
rendered .... In mathematics, too, some things would seem to be not easily proved for 
want of a definition, e.g. that the straight line parallel to the side, which cuts a plane 
figure divides similarly (homoios) both the line and the area. But once the definition is 
stated, the said property is immediately manifest: for the areas and the lines have the 
same antanairesis and this is the definition of the same ratio .... But if the definitions of 
the principles are not laid down, it is difficult, and may be quite impossible, to apply 
them. There is a close resemblance between dialectical and geometrical processes. 

Here Aristotle (i) makes some observations about method: to avoid sophistry 
you must define your terms unambiguously and connect inference to inference 
up to your conclusion; (ii) introduces an example from mathematics. His 
description is loose, but it clearly means that, in Fig. 1.3, where the rectangles 
might equally well be replaced by parallelograms (though other such examples 
always seem to refer to rectangles), the ratio of A to Bis equal to the ratio of a 

a b 

FIG. 1.3. The Topics proposition 
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to b. Note that this can be interpreted as a statement either about ratio or about 
proportion; and (iii) he sketches a proof of this statement. I shall now discuss 
the mathematical proposition (ii), while attempting to follow the precepts in (i); 
and will postpone the exploration of Aristotle's proof (iii) to the next chapter. 

The proposition of Fig. 1.3, which I shall hereafter refer to as 'the Topics 
proposition', is a version of Elements VI 1: 

Triangles and parallelograms which are under the same height are to one another as 
their bases. 

Euclid proves it in the usual way of Greek mathematics: he draws an 
appropriate figure and makes an observation about this figure which refers, 
implicitly, to his definition of proportionality at VDefinition 5 (which I have 
not quoted). This makes manifest that the four magnitudes satisfy this 
condition and so are proportional. I shall construct an alternative definition 
of proportionality out of early ingredients, and then give another proof. 
However, I am not offering this as a historical reconstruction of a definition 
and proof that may have been used in early Greek times; on this we have no 
evidence. Its roles are to refute the mathematical assertion that such a proof is 
impossible and to introduce an important kind of manipulation. Other defini
tions of ratio and proportion, also constructed out of early ingredients, will be 
described later, and each such definition will lead to a corresponding proof of 
the Topics proposition. 

We perform a manipulation that is familiar within any deductive develop
ment of mathematics: we take a proposition that is equivalent to the definition 
we wish to replace, and use that instead as the definition. We have to proceed 
case by case. For lines, we have VI 16: 

If four straight lines be proportional, the rectangle contained by the extremes is equal 
to the rectangle contained by the means; and if the rectangle contained by the 
extremes be equal to the rectangle contained by the means, the four straight lines will 
be proportional; 

the second half will now serve as our definition. For numbers, we adapt the 
similar proposition VII 19. For two geometrical objects a and b, and two 
numbers n and m, we define a: b: : n: m if ma = nb where ma is the operation of 
multiplication as repeated addition, such as we have already seen in V Defini
tion 4 and VII Definition 15. For two straight lines a and b, and two plane 
regions A and B, we define a: b : : A : B if the rectangular prism with base A and 
edge b is equal to the prism with base B and edge a. Dimensional restrictions 
prevent us from giving a similar definition for four plane regions, but we can 
circumvent these by proving the Topics proposition and then applying this to 
reduce one or both of the pairs of plane regions to ratios of lines. A new 
approach will be needed to deal with the ratio of two three-dimensional 
regions, but, as it stands, this definition is adequate to handle all the rectilineal 
plane proportion theory of the Elements including the whole of Book X. 
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The proof of the Topics proposition now follows immediately: a: b : : A : B 
means that the rectangular prism with base A and edge B should be equal to 
that with base B and edge a; but both of these are rectangular parallelepipeds 
with edges a, b, and c, where c is the height of the original rectangle. (The reader 
is highly recommended to draw a figure.) QED 

Note that this proof is expressed in terms of proportion theory; the ratios a: b 
and A : B are not here defined and they have no meaning outside a proportion. 
We have formal techniques, today, for passing from a definition of proportion 
to an idea of ratio-any reasonable definition of proportion will define an 
equivalence relation, and the resulting equivalence class is the ratio-but I 
believe that we cannot find anywhere, in Greek mathematics, anything that can 
be reasonably interpreted as implying any consideration of this kind of formal 
manipulation; see Section 10.2. Nor can we find any other definition of ratio, 
other than the statements I have quoted. Euclid's two definitions that concern 
ratio, V Definitions 3 and 4, do not give us enough information to construct a 
proof of the Topics proposition, which is the criterion I shall use for deciding 
whether a definition of ratio is mathematically adequate. Heath's comment 
sums up the situation: 

The true explanation of its presence [ sc. V Definition 3] would appear to be substantially 
that given by Barrow (Lectiones Cantabrig, London, 1684, Leet. III of 1666), namely 
that Euclid inserted it for completeness' sake, more for ornament than for use, intending 
to give the learner a general notion of ratio by means of a metaphysical, rather than a 
mathematical definition; "for metaphysical it is and not, properly speaking, mathe
matical, since nothing depends on it or is deduced from it by mathematicians, nor, as I 
think, can anything be deduced." This is confirmed by the fact that there is no definition 
of ,\6yoc in Book VII, and it could equally have been dispensed with here [Heath, EE ii, 
117]. 

As Heath observes here, we also do not find anywhere a definition of the ratio 
of two arithmoi, n: m. Moreover I do not believe that we have any good 
evidence that anybody-mathematicians, accountants, schoolmasters, or 
schoolchildren-deployed anything corresponding to our conception of a 
common fraction n/m; all that we do have is a minute quantity of very tenuous 
and ambiguous early evidence on papyrus, and then abundant examples, from 
the ninth century onwards, in manuscripts that have been subjected to drastic 
modernisation of script and, possibly, numerical notation. This is a very 
contentious opinion, so I shall later devote much of the long Chapter 7 to 
this topic. Yet, notwithstanding this absence of any apparent mathematically 
usable definition, the word logos frequently appears to refer to ratio, in 
isolation outside a proportion: Plato and Aristotle make many such references, 
and ratios are 'compounded' in the Elements, at VI 23: 

Equiangular parallelograms have to one another the ratio compounded of (the ratios of) 
their sides. 

and, in a similar proposition for the arithmoi, at VIII 5. The difficulties of 
interpretation of these last two propositions are augmented by the obscurities 
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of the definition of compounding, itself almost certainly an interpolation, at 
VI Definition 5: · 

A ratio is said to be compounded of ratios when the sizes of the ratios, having been 
multiplied together, make some ratio. (Logos ek logon sugkeisthai legetai, hotan ai ton 
logon pelikotetes eph' hautas pollaplasiastheisai poiosi tina.) 

I shall return to this topic in Section 4.5(c). Further, the massive and monolithic 
programme of construction and classification of incommensurable lines in 
Book X of the Elements seems to be connected with ratios of pairs of lines. This 
programme, though not necessarily the actual text of Book X, is attributed to 
Theaetetus, who died in 369 BC, before Eudoxus is supposed to have introduced 
the general theory of proportionality of Book V, and it is based on an idea of 
pairs of lines being either commensurable or incommensurable 'in square'; 
those that are incommensurable in square are called alogos, without ratio. I 
shall discuss the content and motivation of this book later, in Chapter 5. 

Our evidence seems abundantly to indicate that some idea of ratio, in 
isolation, not occurring within a proportion, appears to be an important 
ingredient of early Greek mathematics. 

l.2(e) The language of Greek mathematics 

Greek mathematicians seemed to confront directly the objects with which they 
were concerned: their geometry dealt with the features of geometrical thought
experiments in which figures were drawn and manipulated, and their arithmetike 
concerned itself ultimately with the evident properties of numbered collections 
of objects. Unlike the mathematics of today, there was no elaborate conceptual 
machinery, other than natural language, interposed between the mathematician 
and his problem. Today we tend to turn our geometry into arithmetic, and 
our arithmetic into algebra so that, for example, while Elements 147: 

In right-angled triangles the square on the side subtending the right angle is equal to the 
squares on the sides containing the right angle 

means literally, to Euclid, that a square can be cut into two and manipulated 
into two other squares (see Fig. 1.4 for the proof of 147, or Fig. 1.5 for a proof 
that may have been excised from between II 8 and 9), the result is now usually 
interpreted as 

p2 + q2 = r2, 

where we now must explain just what the ps, qs and rs are and how they can be 
multiplied and added. To us, the literal squares have been replaced by some 
abstraction from an arithmetical analogy. 

A passage from Plato's Gorgias, 45la-c, illustrates the point further, and 
introduces new features that will come to preoccupy us: 

Suppose that somebody should ask me: ... Socrates, what is arithmetike? I should reply, 
as you did just now [about rhetoric], that it is one of the arts which secure their effect 
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FIG. 1.4 

through speech. and if he should further enquire in what field, I should reply that of the 
odd and the even, however great their respective numbers might be. And if he should 
next enquire, What art do you call logistike? I should say that this art too is one of those 
that secure their entire effect through words. And if he should further demand in what 
field, I should reply, like the mover of an amendment in the Assembly, that in details 
'hereinbefore mentioned' logistike resembles arithmetike-for its field is the same, the 
even and the odd-but that logistike differs in this respect, that it investigates how 
numerous are the odd and the even both relative to themselves and relative to each 
other. 

FIG. 1.5 
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Note how Plato emphasises speech, not writing (though this should also be seen 
in the context of Socrates' discussion here of the art ofrhetoric); and add to this 
the barbed myth he tells at Phaedrus 274c-5b: 

The story is that in the region of Naucratis in Egypt there dwelt one of the old gods of 
the country, the god to whom the bird called Ibis is sacred, his own name being Theuth. 
He it was that invented arithmos te kai logismos, geometry and astronomy, not to speak 
of draughts and dice, and above all writing. Now the king of the whole country at that 
time was Thamus, who dwelt in the great city of Upper Egypt which the Greeks call 
Egyptian Thebes, while Thamus they call Ammon. To him came Theuth, and revealed 
his arts, saying that they ought to be passed on to the Egyptians in general. Thamus 
asked what was the use of them all, and when Theuth explained, he condemned what he 
thought the bad points and praised what he thought the good. On each art, we are told, 
Tham us had plenty of views both for and against; it would take too long to give them in 
detail. But when it came to writing Theuth said, "Here, 0 king, is a branch of learning 
that will make the people of Egypt wiser and improve their memories; my discovery 
provides a recipe for memory and wisdom". But the king answered and said, "O man 
full of arts, to one it is given to create the things of art, and to another to judge what 
measure of harm and of profit they have for those that shall employ them. And so it is 
that you, by reason of your tender regard for the writing that is your offspring, have 
declared the very opposite of its true effect. If men learn this, it will implant forgetfulness 
in their souls; they will cease to exercise memory because they rely on that which is 
written, calling things to remembrance no longer from within themselves, but by means 
of external marks. You have found a charm not for remembering but for reminding, and 
you are providing your pupils with the semblance of wisdom, not the reality. For you 
will find that they have heard much without having been taught anything and that they 
will seem men of many judgements, though for the most part being without judgement 
and hard to live with into the bargain since they have become conceited instead of wise". 

The transition in Athenian intellectual life from an oral to a written culture may 
not have been far in the past when Plato wrote these words, though we do not 
know enough to be absolutely sure about this; but Plato's sympathies lie clearly 
in the past, tremendous reader and writer though he was. I shall return to the 
question of the physical form of our guidance-just what texts we have, how 
reliable they might be, and how they have been edited in ancient and modern 
times-in Chapters 6 and 7. 

To a mathematician, the point of an argument resides not in the words that 
make up the argument, but in the ideas that lie behind these words. In Greek 
mathematics, these ideas can always be expressed, and not merely described, in 
everyday language, although sometimes we may find this language tortured 
almost to extinction of its meaning. Also these words might have initially been 
carried within an oral tradition, and so been even more subject to the 
reorganisation, adaptation, adjustment, and revision that is commonplace 
even within the later written tradition of mathematics. 

We shall therefore be concerned with a kind of mathematics that can be 
completely expressed in everyday language. Whenever I resort to any symbolic 
notation in the context of Greek mathematics, the reader should confirm that it 
is being used only as a convenient shorthand and that the symbols themselves 
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have neither more nor less meaning than the words that they replace. For 
example, I shall introduce the notation Jn to stand for the side of a square 
equal to n times the square on a given line; and if a and b are two lines, then a.b 
will denote the rectangle with sides a and b, the construction introduced in the 
first proof of the Topics proposition given above. These ideas and notations are 
prompted by Elements II Definition 1 and Proposition 14: 

Any rectangular parallelogram is said to be contained by the two straight lines 
containing the right angle 

and 

To construct a square equal to a given rectilineal area. 

So, to write J2 . J3 is to employ a convenient shorthand to describe a particular 
rectangle. But, within this interpretation, to write J2. J3 = J6 is to make a 
meaningless assertion, while if we render it meaningful by writing, for instance, 
J2. J3 = J6.l, then it becomes a non-trivial geometrical statement about the 
equality of two rectangles which must be established by some geometrical 
argument based, for example, on the configuration of I 43 (see Fig. 1.2, above, 
and the end of Sections 4.5(b) and (e)). If, however, we are tempted to interpret 
the statement arithmetically, then we should heed Dedekind's words, in his 
Stetigkeit und Irrationale Zahlen. After having defined addition, he goes on: 

Just as addition is defined, so can the other operations of the so-called elementary 
arithmetic be defined, viz., the formation of differences, products, quotients, powers, 
roots, logarithms, and in this way we arrive at real proofs of theorems (as, e.g., 
v2. v3 = ./6) which, to the best of my knowledge have never been established 
before [p. 22]. 

Our familiarity, since the sixteenth century, with the convenient notation for 
decimal fractions and, since the nineteenth century, with well-founded arith
metised mathematics, has tended to dull our awareness of the machinery that 
must lie behind a formally correct account of the arithmetical manipulations of 
real numbers. These problems will not be our concern here, but we must be ever 
vigilant that any symbolism that is introduced as a geometrical shorthand does 
not involve any anachronistic and prohibited arithmetical sleight-of-hand. 

1.3 SOCRATES MEETS THE SLA VEBOY AGAIN 

Early Greek mathematics, I have suggested, is not arithmetised and did not 
even have at its disposal our notation or conception of common fractions. Yet, 
on the other hand, we find that mathematicians of the highest calibre, who 
elsewhere were exercised to attempt precise and explicit explorations of their 
basic concepts, seemed to find no difficulty in using freely the idea of the ratio 
of two numbers or of two geometrical magnitudes, and nobody at that time 
seemed to have expressed any concern about its meaning, not even in the face of 
knowledge of the phenomenon of incommensurability. 
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Can this picture possibly be consistent? • 
I shall now take seriously Socrates' final remark about Meno's slaveboy's 

potential as a mathematician and will make him the mouthpiece for some of my 
proposals. I will try to imagine how he could have answered if Socrates had 
asked him for the meaning of the ratio of two numbers. I shall suppose that 
Socrates' previous question in the Meno some time earlier has led the boy to do 
a substantial amount of private study and this has developed a latent ability in 
mathematics. And, to keep the exposition moving briskly, I shall make him a 
little more forthcoming than he was when Socrates first met him. So picture a 
talented youth, who advances towards learning and investigation smoothly and 
surely and successfully, with perfect gentleness, like a stream of oil that flows 
without a sound, so that one marvels how he accomplishes all this at his age 
(Plato's description of another mathematician, borrowed from Theaetetus 
144b ). I imagine the conversion set around 370 BC; at this time, Plato is 
involved with his highly philosophical and mathematical middle dialogues 
(Republic, Theaetetus, Parmenides, Sophist, Statesman, and Timaeus), Archytas 
and Theaetetus have made considerable contributions to mathematics, and 
Eudoxus' influence is beginning to be felt, though his proportion and exhaus
tion theories of Elements V and XII lie in the future; but the dialogue contains 
one blatantly anachronistic fantasy in Socrates' reference to 'my young friend 
Euclid'. Suppose, then, that Socrates meets the slaveboy again in Meno's 
house, and is tempted to resume his earlier conversation. (Each speech is 
numbered for later reference.) 

SOCRATEs1: Tell me, boy, what is the relationship of size between this heap of sixty 
stones, and that heap of twenty-six stones? 

BOY2: Do you mean the number of times the smaller goes into the larger? 
SOCRATES3: Try it. 
BOY4: It goes more than twice, but less than three-times. 
SOCRATES5: Can you be more precise? 
BOY 6: It goes twice with eight stones left over. 
SOCRATES7: Those 'eight stones' aren't related to anything now. 
BOY8: I just omitted to say that they're still in relation to the other heap of twenty-six 

stones. 
SOCRATES9: Go on. 
BOY 10: Give me time. I can now describe that relationship in the same way. So let's say: 

twice at the first step, and now I'll tell you about the relationship between eight stones 
and twenty-six stones. 

SOCRATES11: Go on. 
BOY12: Again that will be the number of times the smaller goes into the larger: that's 

three-times and then the relation between two stones and eight stones; and that's 
four-times-exactly. 

SOCRATEs13: So you've extracted a relationship expressed by: first step, twice; second 
step, three-times; third step, four-times-exactly. The technical name for that is a ratio. 

(60:26 = [2,3,4]) 
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BOY14: So that's what a ratio is! I've always wondered what those mathematicians mean 
when they use the word logos. 

SOCRATEs15: It's just one of the different possible definitions. Can you deduce anything 
from that last step? 

BOY16: Yes, that we could have manipulated throughout in twos. So heaps of thirty and 
thirteen stones will give the same ratio. 

SOCRATEs17: Now let'~ compare this ratio with some other ratios. Is it bigger than the 
ratio: three-times, three-times, four-times-exactly? 

BOY 18: You haven't said that ratios can always be compared or told me what it means; 
but I'd say that, however it's defined, it ought to imply that anything that starts 'first 
step, three-times' will be bigger than anything that starts 'first step twice'. 

([2, ... ] < [3, ... ]) 

SOCRATEs19: Good. It's sometimes better in mathematics to leave those formal points 
of definition and verification until later, and first find out what kind of thing you 
want to do. Try another comparison, this time with the ratio twice, four-times, four
times-exactly. Think carefully. 

BOY20: That's strange. Since the second remainder comes from the second, originally 
smaller, pile, we can see that anything that starts 'twice, four-times' will be less than 
anything that starts 'twice, three-times'. 

([2, 4, ... ] < [2, 3, ... ]) 

That kind of thing seems to happen generally, since it depends on which of the two 
original piles the remainder comes from. 

SOCRATES21 : Yes. To see which of two ratios is the greater, you have to note whether 
their terms differ first at the first, third, fifth, . . . step, or the second, fourth, 
sixth, ... step since, in the latter case, the reverse of the relationship ofless and greater 
between the terms holds between the ratios; this will be the first way we shall find that 
the greater and less is connected with the odd and even. So do you see how we can 
sandwich our ratio: twice is less than twice, four-times, which is less than our ratio 
twice, three-times, four-times, which is less than twice, three-times, which is less than 
three-times. 

([2] < [2, 4] < [2, 3, 4] < [2, 3] < [3]) 

BOY22: Yes, and I can see how it will work in general. With each step you get closer and 
closer, alternating above and below. 

SOCRATEs23: Will you always get there? 
BOY24: I suppose so. The heaps are always getting smaller and smaller, so the process 

can't go on for ever; I wonder how long it takes. Can I ask you a question? 
SOCRATEs25: Is that your question? Ignore that remark; we're doing mathematics, not 

logic! Go ahead. 
BOY26: What two heaps will have the ratio twice, four-times, three-times-exactly? 
SOCRATES27: It's easy to work that out backwards: the final step will be three stones to 

one stone (or six to two, and so on). So the penultimate step will be four-times three 
plus one (that's thirteen) stones to three. So the answer will be twenty-nine stones to 
thirteen stones, or fifty-eight to twenty-six, and so on. But if you now want to work 
out the ratio twice, four-times, three-times, followed by anything else, you'll have to 
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start all over again. Now there's a very convenient and easy forward method, but my 
young friend Euclid is baffled by the problem of explaining it formally. 

BOY28: So we can now translate that chain of inequalities you just told me back into 
heaps of stones: the ratio of two stones to one stone is less than the ratio of nine stones 
to four stones, which is less than our ratio of sixty stones to twenty-six stones, which is 
less than the ratio of seven stones to three stones, which is less than the ratio of three 
stones to one stone. 

([2] < [2, 4] < [2, 3, 4] < [2, 3] < [3] becomes 

2 : 1 < 9 : 4 < 60 : 26 < 7 : 3 < 3 : 1) 

SOCRATES29: Yes, and if you do a few more conversions that stretch out a bit further 
than three steps, and explore the idea a bit, you'll soon find out the forward method 
for yourself. Sometimes I think in terms of heaps of stones, and sometimes I convert 
them into ratios, since I find that gives me a lot more information. 

BOY30: What do you mean? 
SOCRATEs31 : Not too fast! I can't keep up with your questions. 
BOY32: Well here's another question: Can you add or multiply these ratios? 
SOCRATEs33 : What nonsense! Who ever thought of adding the ratio of twenty-nine to 

thirteen stones to the ratio of sixty to twenty-six stones. It doesn't make sense! 
BOY34: But suppose we have three heaps of stones; how can we calculate the ratio of the 

first to the third from the ratio of the first to the second and the second to the third? 
Or a similar question about adding: how can we get the ratio of the first and second 
combined to the third out of the ratios of the first to third and second to third? Surely 
these are sensible questions. 

SOCRATES35 : You've got me there! This definition of ratio has the peculiar feature that 
these kinds of calculations seem curiously intractable; even Theaetetus can't do them 
directly and if he can't, I'm certainly not going to try. But if you think about ratios in 
quite a different way, the way that Archytas and the music theorists have been doing, 
then these kinds of manipulations make good sense in general and become quite easy; 
but their approach doesn't allow them to describe all ratios that can occur in 
geometry. Eudoxus and the theoretical astronomers have just started to think 
about yet another description of ratio, but they haven't been able to do much with 
their definition so far. Then linking these different but equivalent ideas poses further 
problems. There are even technical difficulties with the procedures used by scribes and 
taxmen when they work out their accounts, but there's no interest in cleaning up that 
mess! So you can see that there are lots of problems still to be solved with your 'adding 
and multiplying ratios'. Let's move on to a different topic: what about the ratio of two 
lines? 

BOY 36: Surely I can just use the same process. I wonder if it can then go on forever. 
SOCRATEs37 : And of two plane regions or two solids? 
BOY38 : I can use geometrical constructions to convert two rectilineal regions into two 

adjacent rectangles with equal vertical sides; then the ratio of the rectangles is the ratio 
of the bases, so we're back to the ratio of lines. But I foresee problems in doing these 
operations with curvilinear regions in general and most kinds of solids. 

socRArns39: Yes. Eudoxus is working on just these problems now. What about the ratio 
of the diagonal to a side? 

BOY40: Of what? 
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SOCRATES41 : A square, a pentagon, anything you like. Or the circumference to a 
diameter? Or the surface to a section? Or the circumdiameter to a side, a diagonal, 
or an edge? Or the dimensions of squares and cubes? 

BOY42: Not so fast! All of this is very intriguing. How can I find out more? 
SOCRATEs43 : Go and see Plato and his friends in the garden of Academia out in the 

north-western suburbs; they don't seem to talk about anything else now. But be 
warned: studies that demand more toil in the learning and practice than this you will 
not discover easily, nor find many of them; it looks like a long time before this idea of 
ratio will be understood. 

This last sentence begins with another quotation from Plato (Republic VII, 
526c); and my slaveboy should perhaps also be warned about the reception he 
is likely to get at the garden of Academia if the description at Republic VI, 
495c--496a, a passage that I am not going to quote here, is a reliable indication 
of Plato's aristocratic attitude to other social classes and ungentlemanly 
activities. This is an important aspect of any evaluation of the beliefs and 
activities of Plato and his associates, but it will only make a very bizarre and 
fleeting appearance in my story here, in Chapter 6, note 11. 

1.4 NOTES AND REFERENCES 

For a description of the system of referencing books and articles, see the introduction. There 
is a detailed bibliography, arranged alphabetically, at the end of the book. 

1.1 The translation by Guthrie of the Meno is taken from Plato, CD; this translation is 
reprinted, with an interesting collection of articles, in Brown, PM. For a critical 
edition of the Greek text with full commentary and discussion of the date of the 
dialogue, see Plato-Bluck, PM. There is almost complete unanimity over the figures, 
all of which are omitted from the manuscripts. For a recent discussion, see Boter, 
PM; Sharples MPM; and Fowler, YMPM. 

1.2(a) Dedekind's Stetigkeit is translated in his ETN. This essay remains the most lucid 
description of the 'real numbers' that I know. Dedekind's opinions on Eudoxus and 
his assertion about arithmetic, quoted in Section 1.2(e), have often been challenged, 
but I believe they stand correct. 

One by-product of the development of computers and the consequent study of 
algorithms has been to make evident some of the subtleties and problems that 
underlie arithmetised mathematics. An excellent general reference is Knuth, ACP ii; 
and, for an informal description of some of the difficulties underlying arithmetic with 
decimal fractions, see my FHYDF. I shall return to this topic in Sections 4.5(b) and 
(e), and elsewhere. 

l.2(b) Heath's discussions of equality in the notes in TBEEi are unsatisfactory: up to I 35 he 
treats the word as if it meant congruence, and then he writes (TBEE i, 327): "Now, 
without any explicit reference to any change in the meaning of the term, figures are 
inferred to be equal which are equal in area or in content but need not be of the same 
form". Surely 'equal' throughout means 'equal in magnitude'. However, his remarks 
on the following page on 'content' are very valuable; they enable us to say, in modem 
terms, that Euclid is developing the results needed for a non-arithmetised theory of 
ordered content, for line magnitudes in Books I 1-3, rectilineal plane areas in I, II, 
and VI, and siml)le solids in XI. Eudoxus' theory of exhaustion enables this theory to 
be extended to circles, pyramids, cones, and spheres in Book XII; see my dialogue, 
Socrates39, in reply to Boy38. Using these theories, we can say when two geometrical 
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magnitudes are equal or, if they are unequal, which is the greater, which is exactly 
what is needed for the ratio theories I shall be describing. • 

There are four places in the Elements where a local reference such as "as was proved 
in the theorem preceding this" is given: VIII 19and21,IX12, andX 30. There are other 
places where general references to earlier results are found: "It is then manifest from 
what was proved before that ... (X 55)"; "For let the same construction be made as 
before ... , then, in manner similar to the foregoing" (X56; also see 57-9, 61-5, and 
91); and the general and vague "for we have learnt how to do this" (X 10). These are 
the only specific references in the Elements. (I am grateful to Malcolm Brown for this 
information, which does not seem to have been pointed out or discussed in any of the 
literature on the Elements.) The various references added, in editorial square 
brackets, to Heath's translation TBEE are far from complete; a more detailed 
analysis of the logical structure of the Elements can be found in Mueller, 
P MD SEE which incorporates the earlier analyses of Neuenschwander, EVBEE 
and SBEE. Some such back-references are found in marginal annotations (scholia) 
to our earliest complete manuscript of the Elements; for an illustration, see the 
frontispiece of Heath, TBEE i with its brief description on p. xi. 

A counter-example to Elements XI Definition 10 can be got by pushing inwards 
one of the pyramidal groups of faces round a vertex of an icosahedron; however 
Cauchy proved that the definition is unambiguous for convex polyhedra. For 
instructions on how to make a model of an exotic non-convex flexible counter
example, see the article by its discoverer, Connelly, FS. 

l.2(c) See Klein, GMTOA, for a thorough discussion of the arithmoi, arithmetike, and 
related topics. I know of no place where the role of repetition numbers is considered, 
but have not made an exhaustive search; I was tempted to use the language of the 
schoolroom and call them 'gozinter numbers', as in 'two gozinter four twice', but 
have resisted. Greek numerical notation, and its extensions to fractional quantities, 
will be considered in Chapter 7. 

1.2( d) Book V Definitions 3 and 5 and Proposition 11 lead many mathematicians to believe 
that the early Greek idea of ratio is something like the equivalence class defined by 
proportionality. For a discussion, see the new Appendix, Section 10.2. 

The translation of the Topics quotation is based on Aristotle-Ross, tr. Pickard
Cambridge, WA i, Heath, MA, 80, and Knorr, EEE, 257. The role of the Topics 
proposition in Book Xis analysed in detail in Knorr, EEE, Chapter 8, and there is an 
excellent discussion of Book V proportion theory in Knorr, APEPT. The way in 
which the Greek word parallelogrammon often refers to a rectangle is well illustrated 
in Elements X; this book will be described in detail in Chapter 5. Elements VI, 
Definition 5, quoted at the end of this section, is not listed by Heath with the other 
definitions on TBEE ii, 188, but it can be found on p. 189. 

On the date ofTheaetetus' death (seep. 211.11) there is now a lone dissenting voice 
of an expert on Platonic and Pythagorean matters. Thesleff, PC, p. 8 n. 67, writes: "I 
find it essential to note that historians df mathematics who take for granted that 
Theaitetos was still alive in the 370s must be wrong. He made some important 
discoveries as a young man, and Plato and his friends were deeply impressed by this. 
But he is likely to have died in 390Bc .... ". 

l.2(e) Klein, GMTOA, discusses the conceptualisation and language of Greek mathematics; 
see especially p. 63: "Greek scientific arithmetic and logistic are founded on a 
'natural' attitude to everything countable as we meet it in daily life. This closeness 
to its 'natural' basis is never betrayed in ancient science." 

The translations of the Gorgias and Phaedrus quotations are adapted from those, 
by Woodhead and Hackforth respectively, in Plato, CD. I have corrected the last line 
of the first, and taken the last two pungent sentences of the second from Cherniss, 
REA, 3. The status of books, writing, and education in early Greek life is 
controversial; see Goody, DSM and Havelock, LRG for different points of view to 
that expressed here. Also, the use of 'book' may raise misunderstandings for a 



1.4 N ates and references 29 

modern user of books; see Eisenstein, FREME. I have followed Turner, Athenian 
Books in the Fifth and Fourth Centuries B. C., and the final sentences of this brilliant 
analysis will serve as an envoi to my first chapter. 

Plato ... devotes some pages of the Phaedrus to an analysis of the deficiencies of books. Even if 
it be granted that the writer is disinterested and knows his theme inside out, a book suffers from 
many deficiencies. It inclines its reader to rely on someone else's bottled-up memory, and turns 
him into a pseudo-philosopher, a doxosophos. Its message, once frozen into writing, is rigid-a 
book cannot answer questions, if defective, or defend itself, if attacked. The author of a book is 
like a reckless gardener, writing in water or sowing in ink. It is impossible not to feel that Plato, 
tremendous reader though he was, is fighting a rearguard action against the written word's 
inhibiting effect on thought; that Plato realises the day is past when he could undo the harm 
done by a book by publicly convicting the author of ignorance. By the first thirty years of the 
fourth century books have established themselves and their tyranny lies ahead. 



2 

ANTHYPHAIRETIC RA TIO THEORY 

2.1 INTRODUCTION 

In response to the opening question of my dialogue, which was couched in the 
terms of Elements V Definition 3, my slaveboy develops a process of repeated 
reciprocal subtraction which is then used to generate a definition of ratio as 
a sequence of repetition numbers (see S13 and B14, i.e. the 13th speech, by 
Socrates, and the 14th, by the boy). As my Socrates says (S 15), and as I have 
already illustrated in Section 1.2( d), this is not the only possible way of defining 
ratio or proportion, even within the context of early Greek mathematics; so, to 
distinguish it, I shall often refer to this as 'the anthyphairetic ratio', and call the 
underlying subtraction process 'anthyphairesis'. These words are derived from 
the Greek verb anthuphairein used, at Elements VII 1 and 2, and X 2 and 3, to 
describe this operation of reciprocal subtraction. Euclid's only explicit reasons 
for introducing the process are to find the greatest common measure (B 16) and, 
in X 2, as a criterion for incommensurability which he then never uses explicitly; 
but I shall be arguing that substantial portions of the Elements, Plato's 
mathematical references, and other fourth- and third-century testimonies can 
be interpreted very plausibly in anthyphairetic terms. The sequence of repeti
tion numbers that arises from anthyphairesis represents the result of repeated 
subtractions (B2), not divisions, and this interpretation is corroborated by the 
Greek name, derived from anti-hypo-hairesis, 'reciprocal sub-traction'. I wish 
to avoid the modern names, the 'Euclidean algorithm' and 'continued frac
tions', by which the process and associated mathematical objects are now 
known, for the following reasons, among others that will underlie my recon
struction: the Euclidean algorithm is now generally construed as a division 
process, whereas anthyphairesis is based on repeated subtraction; continued 
fractions are now handled using the real numbers and a sophisticated general
isation of fractions, whereas I shall propose a different approach in which a 
heuristic stage, based on the properties of what are now called Farey series and 
making use only of manipulations of arithmoi, is followed by geometrically 
formulated proofs in the style of, but much more elaborate than, those we have 
seen in Meno 81-5; and Euclid's Elements may even have contributed to the 
decline of interest in and knowledge of the process. 

It seems natural to expect that ratios should themselves be comparable in 
size though, as the boy points out (B18), it is not obvious that the comparison 
of cardinal (B2) and repetition (B4) numbers should automatically imply a 
comparison of anthyphairetic ratios, sequences of repetition numbers. Euclid 



2.1 Introduction 31 

makes a similar kind of silent assumption in his proportion theory at Elements 
V 10: he has defined proportion and disproportion (a condition that a to b 
should be less than or, implicitly, greater than c to d) in VDefinitions 5 and 7, 
but in V 10 he assumes a trichotomy law, that any four magnitudes must be 
either proportional or disproportional. The comparison of anthyphairetic 
ratios reveals the curious feature that the lexicographic ordering of ratios is 
reversed at the second, fourth, sixth, etc. steps (B20 and S21). This is only the 
first of the instances we shall find in which an even-odd parity plays a 
fundamental role in anthyphairetic ratios, and, I shall argue, it is only one of 
the many examples of behaviour to which Plato might be referring when he 
talks of the 'mutual relationships' of 'the even and the odd' and, sometimes, the 
'greater and the less'; one such passage, Gorgias 45la-c, was quoted in Section 
l.2(e), and others will be considered in Section 4.2. 

As my slaveboy observes (B36), the same process can be applied to two lines 
and, more generally, to any two geometrical magnitudes which allow of the 
necessary operations of comparison and subtraction. The Topics proposition 
provides a very convenient configuration for evaluating the ratio of two plane 
regions (B38), and, as Aristotle says at Topics 158b29 ff. (quoted in full in 
Section l.2(d)), 

The areas and the lines have the same antanairesis and this is the definition of the same 
ratio (ton auton logon). 

(The importance of this passage was first pointed out in 1933 in Becker, ESI, 
since when every serious discussion of Greek proportion theory has considered 
it.) The word used here is derived from the compound anti-ana-hairesis, 
'reciprocal re-traction'. Some have argued that the two words have different 
meanings, but I shall treat them as synonymous, as did Alexander of Aphro
disias, in his commentary on this passage (Alexander-Wallies, IT, 545): 

The said [fact] expressed in such-like terms is not familiar, but it becomes familiar once 
the definition of 'in proportion' (analogon) is stated, that the line and the space are 
divided in proportion by the drawn parallel. Now this is the definition of proportionals 
which the ancients used: those magnitudes are in proportion to each other (and homiOs 
to each other) of which the anthuphairesis is the same. But he [sc. Aristotle] has called 
anthuphairesis antanairesis. 

These words also seem to be used interchangeably in commercial documents 
on papyrus, to describe a deduction from a financial account. (There is here 
no suggestion of a process, the repeated subtraction, that is conveyed by the 
adverb aei in Euclid's usage; see B10.) Of the many examples, here are two 
from the same collection of documents, the Zenon Archive: anthuphairein in 
P. Lond. vii 1994, lines 164, 176, 233, and 321, and vii 1995, line 333 (both 
dated Autumn 251 BC); and antanairein in P. Cair. Zen. iii 59355, lines 95 and 
150 (dated Summer 243 BC). A third word, antaphairein, is found in Nico
machus, Introduction to Arithmetic I 13.11, where it is used with exactly the 
same sense. 
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Another comment of Aristotle, at Metaphysics 1021a3-8, has recently been 
explained as relating to anthyphairesis. This passage, ta:ken out of its rather 
complicated context, reads 

. . . But the exceeding relative to the exceeded generally is indefinite in respect of 
arithmos, for arithmos is commensurable, and arithmos is not said of something not 
commensurable; the exceeding relative to the exceeded is so much and still more, and 
this is indefinite; for it is by chance either equal or unequal. So these are the things 
spoken of relative to something in respect of arithmos. 

This translation is taken from Pritchard, MDPEM, where the author argues, 
very plausibly, that Aristotle is here referring to the first subtraction in the 
anthyphairesis of two incommensurable magnitudes (for which "arithmos is not 
said"). Then the remainder and the originally smaller magnitude will also be 
incommensurable. The reader is recommended to consult the article for a full 
discussion of the passage. 

It is a natural step within arithmetised geometry to assign a unit length to 
some important or basic line within a figure, and then calculate the length of 
the other lines. For example, we would say that the length of the diagonal of a 
square with unit side is y'2 (a real number); the longer diagonal of a hexagon 
with unit side is 2, the shorter is y'3; and so on. The equivalent step within 
anthyphairetic geometry is to evaluate the ratio of two lines, areas, or volumes 
that are related by some construction. My Socrates suggests several such 
problems (S39 and S4 1) and he also hints that this approach might reveal 
useful or interesting behaviour (S29). The rest ohhis chapter will embark on the 
study of some of these examples. Since the mathematical approach may be 
novel, even to many mathematicians, I shall emphasise here this aspect of 
the subject, but will illustrate the procedures, wherever possible, with ancient 
examples. Until these mathematical techniques become more familiar, the 
historical questions of whether or not some of them might be plausible 
reconstructions of ancient practice cannot be evaluated. 

My concern throughout this book will be to explore the properties of 
anthyphairetic and other kinds of ratios, and not to develop abstract theories 
of ratio or proportion, akin to those we find in Elements V and VII. 
Investigations of the formal aspects are very important, but a full treatment 
of the topic can be found in Knorr, EEE, Chapter 8 and Appendix B. I see no 
need to duplicate that work here. 

2.2 SOME ANTHYPHAIRETIC CALCULATIONS 

2.2(a) The diagonal and side 

Consider first the problem of finding the ratio of a diagonal and side, proposed 
at S39 and S41 . The general problem is as follows: given a line, construct a 
regular polygon with this line as side, take a diagonal (there will be a choice of 
different diagonals when there are six or more sides) and calculate the ratio of 
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this diagonal to the side. In each case, we needed some additional geometrical 
construction which will embody the information we seek, just as the first step of 
the solution of Socrates' problem in the Meno was to draw a figure which 
contained the obliquely placed square. (Note in passing that the word dia
gramma seems, in Plato and Aristotle, to refer ambiguously to either a 
geometrical figure or a proof.) The constructions for the square, pentagon, 
and hexagon, the three examples I shall consider here, are given in Fig. 2.1; 
these having been drawn, it remains to say the appropriate words about them. 

First, the square. Figure 2.l(a) shows how, starting from the small square 
placed obliquely in the corner, we can construct a large square with side equal 
to the small side plus small diagonal; when the figure is completed, as shown, it 
becomes clear that the large diagonal is twice the small side plus the small 
diagonal. Observe that this figure is not unlike the successful third Meno 
construction, and it also resembles the proof of Pythagoras' theorem that may 
have been excised from between Elements II 8 and 9 (see Fig. 1.5): all consist of 
a square or rectangle placed obliquely inside a larger square. We now calculate 
the ratio of the large diagonal plus large side to the large side: this clearly is 
twice, followed by the ratio of the large diagonal minus side to the large side. 
Again, from the figure, this latter ratio, taken the greater to the less (B2), will be 
the ratio of the small diagonal plus side (equal to the large side) to the small side 
(equal to the large diagonal minus side). Since the absolute size of the figure 
does not affect these ratios (cf. Meno 82c), we have proved that the ratio of a 
diagonal plus side to side of any square is equal to twice, followed by the same 
ratio; and so is equal to twice, twice, followed by the same ratio; and so is equal 
to twice, twice, twice, twice, followed by the same ratio; and so is equal to an 
unending sequence twice, twice, twice, etc. Now we can modify the first term to 
get the result that the ratio of the diagonal to side of a square is equal to once, 
twice, twice, twice, etc. (Any readers who find such a complete but informal 
description unsatisfactory or unconvincing should, here and elsewhere, rework 
the material to their own satisfaction, within the stylistic restrictions imposed 
by the historical context.) I shall discuss some evidence that may relate to Fig. 
2.l(a) in Section 3.6, below. 

(a) (b) 

FIG. 2.1 
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This proof depends on the result that my slaveboy appreciated right from the 
start (B8 and B10), that some terms of a given ratio, of numbers or magnitudes, 
can be evaluated and then followed by the ratio of the remaining numbers or 
magnitudes. Here this gave rise to the recursive behaviour in which a ratio was 
equal to twice, followed by the same ratio, and so the original ratio, by eating 
its own tail, is completely evaluated. This remarkable kind of phenomenon 
will itself recur time and time again. The proof started from the ratio of 
diagonal plus side to side purely for reasons of brevity and convenience; the 
evaluation of the ratio of diagonal to side works equally well, as the reader 
is encouraged to verify; but is one step longer, since the recursive property 
does not then manifest itself until the second subtraction step has been 
performed. 

Next the pentagon. It is easy to prove that the diagonals of a pentagon will 
cut each other so as to generate a smaller pentagon, in a configuration known 
as a pentagram; see Fig. 2.1 (b ). The many isosceles triangles in the figure 
enable us to see that the side of the large pentagon is equal to the side plus 
diagonal of the small, while the large diagonal is the small side plus twice the 
small diagonal. The evaluation of the ratio of the large diagonal to the large 
side then leads, after two steps, to the same kind of recursive behaviour; and 
this shows that their ratio is equal to the unending sequence once, once, once, 
etc. The reader is again strongly encouraged to work out the details. 

There are many propositions on or involving the pentagon in the Elements. 
Of these, the closest in spirit to this figure seems to be XIII 8: 

If in an equilateral and equiangular pentagon straight lines subtend two angles taken in 
order, they cut one another in extreme and mean ratio, and their greater segments are 
equal to the side of the pentagon, 

which can be elucidated, pruned, and extended as follows: 

If in an equilateral and equiangular pentagon [two adjacent diagonals] cut one 
another, ... their greater segments are equal to the side of the pentagon [and their 
lesser segments are equal to the diagonals of the smaller pentagon formed by the larger 
diagonals]. 

Next the hexagon; see Fig. 2.l(c). Here there are two different diagonals: the 
larger is the diameter of the circumscribing circle and so is twice the side of a 
hexagon (this, of course, is a description of the ratio in any sense of the word), 
while the shorter is such that the square on it is three times the square on the 
side (this result is contained, explicitly, in the proof of XIII 12). The shorter 
diagonal is an example of a problem my Socrates called 'the dimensions of 
squares' (S41): given a line p and two numbers n and m, construct squares equal 
to n times and m times the square on p; what then can we say about the ratio 
of their sides? I shall return to this example in Section 2.3(b) below, and discuss 
the solution of the problem in detail in the next chapter. 
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Other ratios associated with regular polygons and polyhedra will be 
considered in Chapter 5. 

2.2(b) The circumference and diameter 

One of the simplest of geometric figures is a circle. Clearly there are problems in 
treating the circumference of the circle as a geometrical magnitude, to be added 
to or compared with other line magnitudes, as Aristotle points out at Physics 
248a 10-13, but Archimedes, in his Sphere and Cylinder I, extends the scope of his 
geometry to include well-behaved curved one- and two-dimensional geometrical 
objects. The book is prefaced by some Axioms (Axiomata), which start: 

There are in a plane certain finite bent lines which either lie wholly on the same side of 
the straight lines joining their extremities or have no part on the other side. I call concave 
in the same direction a line such that, if any two points whatsoever are taken on it, either 
all of the straight lines joining the points fall on the same side of the line, or some fall on 
one and the same side while others fall on the line itself, but none falls on the other side; 

and some Postulates (Lambanomena), which start: 

Of all lines which have the same extremities, the straight line is the least. Of other lines 
lying in a plane and having the same extremities, [any two] such are unequal when both 
are concave in the same direction and one is either wholly included between the other 
and the straight line having the same extremities with it, or is partly included by and 
partly common with the other; and the included line is the lesser. 

As a result of these principles, Archimedes is able to say, at the end of his 
postulates, that 

With these premises, if a polygon be inscribed in a circle, it is clear that the perimeter 
(perimetros) of the inscribed polygon is less than the circumference (peripherias) of the 
circle; for each of the sides of the polygon is less than the arc of the circle cut off by it, 

and, in Proposition 1, he then proves that the perimeter of a circumscribed 
polygon is greater than the circumference. The first six propositions then 
establish theoretical results about approximating the circumference by 
inscribed and circumscribed polygons; but the actual calculation of the 
magnitudes of their perimeters is carried out elsewhere, in his short work 
Measurement of a Circle. Proposition 3 of this treatise evaluates that: 

The perimeter of every circle is three-times the diameter and further it exceeds by [a line] 
less than a seventh part of the diameter but greater than ten seventy-first [parts of the 
diameter]. 

I shall examine some textual details of Archimedes' argument in Section 7.3(a), 
where I shall describe some of the corruptions, additions, and emendations to 
our surviving manuscripts. I will illustrate there how Greek procedures may be 
based on manipulations that are very different in kind from, though equivalent 
to, our fractional manipulations; so that the last words here, "ten seventy-first 
[parts]" (deka hebdomekostomonois), refer to lines, not numbers, so do not carry 
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the same connotations as our -W- From the anthyphairetic point of view, the 
calculation shows explicitly that the ratio of circumference to diameter is less 
than three-times, seven-times, and greater than three-times followed by the 
ratio of seventy-one to ten (taken, as always, the greater to the less; see B2), i.e. 
greater than three-times, seven-times, ten-times: 

[3, 7, 10] < c: d < [3, 7]. 

Other parts of the calculation also fit very well into an anthyphairetic context, 
as I shall illustrate in Section 2.4(d), below. We also have a short report of 
another closely related calculation by Archimedes, at Heron, M etrica I 25: 

Archimedes proves in his work on plinthides and cylinders that of every circle the 
perimeter has to the diameter a greater ratio than 211 875 to 67 441, but a lesser ratio 
than 197 888 to 62 351. But since these numbers are not well-suited for practical 
measurements, they are brought down to very small numbers, such as 22 to 7. 

Unfortunately Heron gives no further details, the work by Archimedes to 
which he refers is now lost, the alleged lower bound to the ratio is in fact a close 
upper bound, and the upper bound is a poorer estimate than 22: 7. 

Now to the illustration of some further properties of ratios, using this ratio 
c: d as an example, as a first elucidation of my Socrates' remark (S29) that these 
anthyphairetic ratios contain a lot of information. I encourage any reader who 
is daunted by the material in this or any subsequent section of this chapter 
and the next to skip-read or cut to the beginning of the following section, and 
return later, when the material becomes necessary, or more accessible, or more 
appealing. Each section starts from a modest level; some rise to encounter quite 
subtle phenomena. 

The expansion of this ratio of circumference to diameter actually starts 

c:d = [3, 7, 15, 1,292, 1, 1, 1, ... ]; 

I shall extract some of the information that is coded in these numbers. Let us 
label the lines involved as follows: 

c - 3d = r 

d - 7r = s 

r - 15s = t 

s- t = u 

t- 292u = v 

u-v= w 

etc. 

(This is not algebra, i.e. symbolic manipulation, but mere shorthand; and a 
similar comment applies to the later manipulations in which we count 
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First c=3d+r 

Third r=15s+t 

Second d=7r+s 
d.__ .......... _.___,_~,___,__.___. 

Fourth s=t+u 

FIG. 2.2. Four steps in the anthyphairesis of c: d 

intervals). The lines r, t, and v first arise as subintervals of c; whiles, u, and w 
are subintervals of d; see Fig. 2.2. Now consider the question of estimating 
the sizes of r, s, t, etc. We can make a series of increasingly precise 
statements: 

(i) If we ignore the remainder at any step, and so treat the subtraction 
process as if it terminated at that step, we will get an approximation to the 
ratio. The remainders seem to be getting very small very quickly, so this should 
yield increasingly good approximations. The remainders at the first, third, fifth, 
etc. steps all arise as subintervals of the larger original magnitude c, so ignoring 
them should give underestimates since it will reduce the size of c; while ignoring 
the second, fourth, etc. remainders should similarly give overestimates (B20 and 
S21). Hence (S21 and B22): 

[3] < [3, 7, 15] < [3, 7, 15, 1,292] < · · · < c:d < · · · < [3, 7, 15, 1] < [3, 7]; 

then (B28 and S29) we can convert this into a string of ratios of numbers: 

3 : 1 < 333 : 106 < 103 993 : 33 102 < ... < c : d < ... < 355 : 113 < 22 : 7. 

(ii) The instruction to ignore a remainder at a certain step is rather vague, 
since this would seem to alter all of the preceding steps of the process. What 
we can do, instead, is to alter the original larger or smaller interval so that the 
subtraction process performed with this modified interval will terminate at 
the required step. We can see by how much to decrease or increase by 
counting intervals, as in the following analysis of Fig. 2.2. Consider the first 
two steps: 

Look at 7 c and 22d: 

c = 3d + r = 3(7r + s) + r 

= 22r + 3s 

d = 7r+s. 

7c = 7 x 22r + 21s 

22d = 22 x 7r + 22s; 
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they are very close to each other. If we increase 7c bys, or decrease 22d bys, 
they will be equal: ' 

(c + s/7): d = c: (d - s/22) = 22: 7. 

A similar calculation will hold at the third step, where the decomposition 
r = 15s +tis introduced: 

c = 22r + 3s = 22(15s + t) + 3s = 333s + 22t 

d = 7r + s = 7(15s + t) + s = 106s + 7t. 

Now look at 106c and 333d. Since 106 x 2 = 333 x 7 + 1, this time we have 

(c - t/106): d = c: (d + t/333) = 333: 106; 

and so on. The process seems to be perfectly general and seems to hold for any 
ratio; if the nth step of c: d introduces a new interval x as remainder, then the 
associated ratio p : q which terminates on the nth step is got by adding (n even) 
or subtracting (n odd) the qth part of x to the antecedent c, or subtracting 
(n even) or adding (n odd) the pth part of x to the consequent d: 

(c ± x/q): d = c: (d ~ x/p) = p: q, 

where the signs alternate as n increases. In Section 2.3(c) I shall address the 
further problem of calculating these ratios p: q. 

Again, let me emphasise that the symbolism introduced here is merely a 
convenient abbreviation for long-winded descriptions of how the intervals can 
be decomposed into more and more, smaller and smaller intervals. 

(iii) We can now estimate the error in these approximations. A first 
approach yields the following: we want to evaluate c: d, and have shown 
that (c + s/7): d = 22: 7; also, since d = 7r + s, we know that s < d/7. 
Hence 22 : 7 is greater than c: d by an amount that can be described by 
increasing the antecedent c by less than d/72. Alternatively, we write 
c: (d - s/22) = 22: 7, so that we can decrease the consequent d by an interval 
less than d /7 x 22. 

At the next step, we have (c - t/106): d = 333: 106, and tis less than s (since 
it is a remainder at the third step whens is subtracted), whiles< d/106 (from 
the decomposition d = 106s + 7t). Hence 333: 106 is greater than c: d by an 
amount that can be described by decreasing the antecedent c by less than 
d / 1062 • Alternatively we can increase the consequent; this gives a slightly less 
simple and convenient result. 

This result also appears to be perfectly general: at the kth stage, if we 
estimate the remainder x in this way we will get 

(c ± x/q): d = c: (d ~ x/p) = p: q, 

where x is less than d / q; so the error corresponds to decreasing or increasing 
the consequent c by an amount less than d/q2. 



2.2 Some anthyphairetic calculations 39 

(iv) We get a more refined error analysis by exploiting the following heuristic 
principle: If, at any stage of the evaluation of an anthyphairetic ratio, the lesser 
term goes a large number of times into the greater, then it must be very much 
smaller than the greater and the remainder it will leave will be even smaller. So 
if we neglect this remainder by modifying the antecedent or consequent as in (i) 
or (ii), and so truncate the anthyphairesis before this large term, we should 
expect to get a particularly good approximation. Consider, for example, the 
third step of this ratio c: d, 

r - 15s = t. 

This shows thats< r/15, which combines with the description 

d = 7r +s 

to yield that s < d / 15 x 7. Hence the first estimate of (iii) can be improved to 
the conclusion that 22: 7 = [3, 7] is greater than c: d by an amount that can be 
described by increasing the antecedent c by less than d / 15 x 72 • 

Again, this result is perfectly general: ifthe (k + l)st stage of the process gives 

w-nx=y 

(where the case of large n is of particular interest), then 

(c±x/q):d=p:q where x<d/nq, 

so the error corresponds to decreasing or increasing the consequent c by an 
amount less than d/nq2. For example, the ratio 355: 113 = [3, 7, 15, l] is in 
excess by an amount that corresponds to increasing the circumference less than 
1/292 x 1132 of the diameter. 

It is possible to extend this method further to give a lower bound for the 
error, since if 

w - nx = y with y < x 

we know that x will not go (n + 1) times into w. Hence 

w/(n + 1) < x < w/n, 

and this leads to the estimate 

d/(n + 2)q < x < d/nq. 

(v) Two historical remarks are in order concerning the calculations I have 
just evaluated. First, the only fractional quantities involved are the unit 
fractions or 'parts', 2', 3', 4', ... , described briefly in Section l.2(c) and to be 
analysed in Chapter 7. Second, we today would tend to describe the difference 
between a smaller and a larger ratio, p: q and r: s, by giving some arithmetical 
expression for their difference r: s - p: q, either exactly or by specifying some 
bound such as 'less than one part in a thousand' or the like. Greek practice 
is different. To my knowledge, ratios, even ratios of numbers, are never 
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subtracted like this; instead a typical manipulation would be to use a fourth 
proportional, writer: s = x: q, and then compare x and p, just as we have been 
doing. 

(vi) The argument of (iv) developed the heuristic principle that a large term 
in the anthyphairetic expansion indicates the existence of an unusually accurate 
approximation to the given ratio by the ratio of the relatively small numbers 
got by truncating the anthyphairesis just before the appearance of this large 
term. Conversely, if we are calculating, somehow, term by term, the anthy
phairesis of a given ratio, then the amount of work needed to calculate a given 
term cannot be predicted in advance, since it will depend on the size of that 
term. Suppose, then, that someone, possibly Archimedes, set out to calculate 
the anthyphairesis of c: d; he would already find difficulty in calculating the 
third term, 15, of the expansion, and would have enormous problems in 
evaluating the fifth term, 292. 

(vii) Consider, further, what will happen if we try to calculate the anthy
phairesis of some commensurable ratio by finding closer and closer approxi
mations to it; an illustration, to fix the idea, would be to calculate the ratio of 
the surface of a sphere to an equatorial section by approximating these by 
figures that are more amenable to manipulation. As the approximations get 
better and better, so the remainder corresponding to the last step of the exact 
calculation will get smaller and smaller, and so the corresponding term of the 
anthyphairesis will grow bigger and bigger. (In fact, a terminating anthy
phairesis should often be considered as finishing with an additional infinite 
term; see Section 2.3(b) below.) So, for example, let us try to imagine the 
reaction of anyone (again possibly Archimedes) who set out to calculate the 
anthyphairesis of circumference to diameter of a circle with a view to 
formulating a hypothesis, for example on whether it is commensurable or 
not: as the fifth term appears to grow in size, they might be tempted to conclude 
that the ratio was indeed commensurable. 

If we, today, are tempted to feel patronising about such ignorance, then we 
should reflect that 7T was only proved to be irrational (that being our 
arithmetised formulation of this problem) by Lambert, in 1768, and to be 
transcendental, by Lindemann, in 1882; that numbers of the form afl, such as 
2./3 , which look as if they ought to be transcendental, were only proved to be 
so by Gelfond in 1934, and this important result was generalised to 
af 1 + af2 + · · · + af k by Baker only in 1966; that, while Euler investigated 
the zeta function 

1 1 1 
'(s) =TS+ 2s + 3s + ... 

and found that ,(2) = 7T2 /6, ,(4) = 7T4 /90 and, generally, that '(2n) = 7T2n/k 
(a result described in Weil, NT, 184 and 256-76, as "one of Euler's most 
sensational early discoveries, perhaps the one which established his growing 
reputation most firmly .... Characteristically, before solving it, Euler had 
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engaged in extensive numerical calculations"), it was not until 1978 that it was 
proved, by Apery, that '(3) is irrational, and it is still not known if it is 
transcendental; and that it is not yet known whether Euler's constant 

y = lim [1 + ! + ! + · · · +!-log n] 
2 3 n 

is rational or irrational. Some questions like this are extraordinarily difficult to 
answer. 

2.2(c) The surface and section 

The obvious two-dimensional generalisation of the problem of finding the 
ratio of circumference to diameter is to find the ratio of the surface of a 
sphere to its equatorial section. At first sight, this ratio of two curved regions 
would seem to be of even greater difficulty (see Section 2.2(b)(vii), above); in 
fact the answer is as simple as it could be. Archimedes proves, at Sphere and 
Cylinder I, Proposition 33: 

The surface of any sphere is four-times the greatest of the circles in it. 

Many other results by Archimedes yield similar examples of ratios which are 
commensurable, and have anthyphairetic expansions containing only one or 
two terms. 

2.3 ANTHYPHAIRETIC ALGORITHMS 

2.3(a) The Parmenides proposition 

Plato gives, at Parmenides l 54b--d, a special case of a proposition that we shall 
use: 

If one thing actually is older than another, it cannot be becoming older still, nor the 
younger younger still, by any more than their original difference in age, for if equals 
be added to unequals, the difference that results, in time or any other magnitude, 
will always be the same as the original difference .... [But] if an equal time is added 
to a greater time and to a less, the greater will exceed the less by a smaller part 
(morion). 

To paraphrase and simplify slightly Plato's homely paradox: as two people 
grow older together, the difference between their ages will remain constant, but 
the ratio of their ages will get closer to 1 : 1. Let r and s denote the different 
ages, and p the equal time added to both, then 

if p :p < r: s (i.e. r > s) then p :p < (p + r): (p + s) < r: s. 

A slightly more general form of this result will be basic to my reconstruction: 

if p: q-;:: r: s then p: q < (p + r): (q + s) < r: s. 

I shall call this 'the Parmenides proposition'. 
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An illustration of this Parmenides proposition, in modern usage, would be 
that the average speed for a day's journey must lie between the average speeds 
for the morning and afternoon. Note, however, that this illustration does not 
apply to early Greek mathematics, and indeed such an inhomogeneous ratio, of 
distance to time, is prohibited by Elements VDefinition 3. We can see a possible 
context for this prohibition by observing how this ratio, as now conceived, 
depends on arithmetised foundation of mathematics, in which it is interpreted 
as something like (distance in miles) --;- (time in hours). Also observe that we 
cannot evaluate the anthyphairesis of such a ratio of incomparable magnitudes 
without first converting it into some homogeneous ratio, so that we can apply 
the operation of B2; typically we now arithmetise, though we could equally well 
geometrise and represent both distance and time by line segments. Similar 
comments will apply to other definitions of ratio that I shall give in Chapter 4 
(cf. S35). 

We shall use the proposition in the case where p, q, r, and s are numbers, 
arithmoi. Euclid's theory of proposition for numbers in Elements VII 
contains no definitions or propositions about disproportion, 'p to q is 
greater or less than r to s', but to explore the Parmenides proposition in 
this context, we can appeal to the device I described in Section l.2(d), and 
extend a proposition into a new definition. We take Elements VII 19, which 
asserts that 

if p: q:: r: s then ps = qr, and conversely, 

and make some extension of the theory to enable us to assert, either as a 
definition or a proposition, that 

if p: q < r: s then ps < qr, and conversely. 

The Parmenides proposition now follows easily: we wish to prove that 

p:q< (p+r):(q+s), 

which is equivalent to 

p(q + s) < q(p + r), i.e. ps <qr, 

and this now is equivalent to our assumption that p: q < r: s. The second 
inequality follows by a similar argument. The result can be conceived as 
belonging either within a theory of ratio, or within a theory of proportion 
that has been extended to include disproportion. 

It is worth looking at this result in the case when p, q, r, and s are 
magnitudes. The proof I have just given cannot then apply, since the 
product of two magnitudes cannot be defined in many concrete cases, such 
as for two plane regions, two solid regions, two intervals of time, or even 
two non-rectilineal lines. But all the ingredients for a different proof can 
be found in Book V, and while Euclid does not actually formulate the 
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proposition for magnitudes, he does prove an important related result on 
equality, at V 12: 

if p: q: : r: s, and p: q: : t: u, etc., 

then p: q:: (p + r + t +etc.): (q + s + u +etc.). 

We shall use this in our proof. We proceed as follows: if p: q < r: s then, by 
a step that Euclid assumes in V 18, the so-called existence of a fourth 
proportional, there is a magnitude x such that 

p:q: :r:x. 

(Note that this step is not true for numbers; for example we cannot find a number 
x such that 3: 4:: 5: x.) By V 8, we know that x > s. An application ofV 12 gives 

p: q:: (p + r): (q + x), 

and another application of V 8 yields the result that 

p:q< (p+r):(q+s). 

The other inequality is proved similarly. 
The Parmenides proposition, together with the proof I have just given, is 

found in Pappus, Collection VII 8. It was rediscovered by Chuquet, in his 
Triparty en la Sciences des Nombres of 1484, where it is called "la regle des 
nombres moyens". It was used by Wallis for his approximations to 7T in his 
Treatise of Algebra of 1685. It is a basic property of Farey series. It is the first 
theorem enunciated by Cauchy in his Cours d'Analyse of 1821. And-the end to 
which I shall put it here-it can be used to explore many of the properties of 
anthyphairesis. 

2.3(b) An algorithm for calculating anthyphaireses 

Two basic problems within anthyphairetic ratio theory are as follows. First, 
given some ratio 8, find a procedure for calculating the anthyphairesis 
[no, n1, n2, .. . ] of 8; and, conversely, given such an anthyphairetic ratio, find 
some convenient procedure for calculating the sequence of approximations 
[no, n1, ... , nk] =Pk : qk. called the convergents of the ratio (B26 to S29). I 
shall now describe an algorithm to solve the first of these problems, and 
illustrate it with the example that arose as the ratio of the shorter diagonal 
of the hexagon to the side, a typical example of the following general class 
of the ratio of sides of squares: given a line p and numbers n and m, 
construct squares equal to n and m times the square on p and call their 
sides Jn and Jm respectively (so this notation stands for the lines, the 
geometrical objects, and not their arithmetical interpretation as lengths, real 
numbers); now evaluate Jn: Jm. The example considered here will be the 
ratio 8 = J3 : 1. 

The procedure must be formulated in terms of, and only depend on, the kind 
of interpretations and manipulations of the arithmoi that were described in 
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l.2(c). For example, it is not appropriate to arithmetise in terms of decimal 
numbers and proceed as we usually do today: ' 

y'3 - 1 x 1 = 1 ·732 ... - 1 x 1 = 0·732 .. . 

1 - 1 x 0·732 ... = 0·268 .. . 

0·732 ... - 2 x 0·268 ... = 0· 196 .. . 

0·268 ... - 1 x 0· 196 ... = 0·072 .. . 

etc. 

so that y'3: 1 = [1, 1, 2, 1, ... ]; or to use common fractions and write [1, 1, 2, 1] 
as 

1 1 3 7 
l+ 1 =l+--1= 1+4=4· 

1+-- l+-
2+! 3 

1 

These kinds of manipulations occur in the modern theory of continued 
fractions, and they can be adapted into convenient ways of proceeding with 
numerical calculations on a pocket calculating machine, but they do not 
correspond to anything that we know of the style and techniques of early 
Greek mathematics. 

Instead we use the Parmenides proposition. To operate it, we shall need two 
ingredients: a test for whether p : q is less than, equal to, or greater than the 
given ratio y'3: 1, and the initial under- and overestimates. The test will be 

p: q is <, =, or >J3: 1 according as p2 is <, =, or >3q2. 

I shall not stop here to consider the formal status of this proposition within 
ratio theory, but will rather adopt the attitude of my Socrates, at S19. The 
initial estimates will be the most natural ones, like those that my slaveboy 
produced at B4: 

1 : 1 < y'3 : 1 < 2 : 1 

or, in general, 

n: 1 < fJ < (n + 1): 1, 

which I shall refer to as the 'standard' under- and overestimates. Also I have 
taken the given ratio fJ as 'the greater to the less'. There is never any difficulty in 
either setting up any problem so as to consider this case, or handling the 
reciprocal ratio, 'the less to the greater'; I shall give an illustration of this in 
Section 2.4(a), below. 

Now proceed as follows. By the Parmenides proposition, 1 : 1 < 3: 2 < 2: 1 
and, since 32 < 3 x 22 , 3 : 2 is an underestimate. Hence 3 : 2 < y'3 : 1 < 2 : 1. A 
second application of the proposition leads to the underestimate 5 : 3, hence 
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TABLE 2.1. Approximations to y'3 : 1 

New Under/ 
Under- Over- estimate equal/ Run 
estimate estimate p:q p2 3q2 over length 

1 : 1 2: 1 3:2 9 12 3 under 
3:2 2: 1 5:3 25 27 2 under 2 
5:3 2: 1 7:4 49 48 1 over 
5:3 7:4 12:7 144 147 3 under 

12:7 7:4 19: 11 361 363 2 under 2 
19: 11 7:4 26: 15 676 675 1 over 1 
19: 11 26: 15 45:26 2025 2028 3 under 
etc. 

5 : 3 < y'3 : 1 < 2: 1. This then generates an overestimate of 7 : 4; and so on. The 
operation is conveniently set out as in Table 2.1. 

The process will generate runs of improving under- and overestimates. If, for 
convenience and simplicity, we retain only the estimate at the end of each run 
(they are underlined in the table), we get 

1: 1 < 5: 3 < 19: 11 < y'3: 1 < 26: 15 < 7: 4 < 2: 1 

which we can now convert into anthyphairetic ratios, 

[1] < [1, 1,2] < [1, 1,2, 1,2] < y'3: 1<[l,1,2, 1,2, l] < [1, 1,2, l] < [2]. 

Anybody who performs these calculations-and everyone who would under
stand should-will notice an ambiguity of a terminating expansion that arises 
by holding over the very last subtraction to a new step: 

[no,n1, ... ,nk + l] = [no,n1, ... ,nk, l]. 

This is the only possible ambiguity of anthyphairetic expansions. Also there is a 
subtlety of inequalities between terminating ratios, beyond that described in 
S21 . Consider the two relationships 

[2, l] = [3] < [3, 2], 

neither of which seems to conform to S21 . The equality has just been explained; 
the inequality arises because any terminating expansion should be conceived as 
finishing with a large term, bigger than any number that will occur elsewhere; 
let us write this as 'm' for 'many' or 'millions' or 'myriads'. Then 

[2,m] < [2, l,m] 

now does satisfy Socrates' description. So S21 should be modified to: 

s;,: To see which of the two ratios is the greater, proceed as follows. Express any 
terminating ratio in the standard form, in which the last term is not 'once', and add an 
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extra notional very large step of 'many-times'. Now note whether their terms differ first 
at the first, third, fifth, ... step, or the second, fourth, sixth, ... step, since, in the latter 
case, the reverse of the relationship of less and greater between the terms holds between 
the ratios . ... 

Now consider the string of inequalities that we have just calculated. It is 
reminiscent of those that appeared in my dialogue, at S21 and B28, and this 
suggests that it may be related to the anthyphairesis. In fact, the connection is 
very close indeed, since we can deduce immediately from our innermost 
inequalities, 

[1,1,2,1,2] < J3:1 < [1,1,2,1,2,1], 

that 
J3: 1 = [1, 1, 2, 1, 2, 1 or more, ... ]. 

Alternatively, we can extract this information directly from Table 2.1, by 
reading off the lengths of the runs of under- and overestimates, except for some 
slight difficulty over the first two terms of the expansion. This difficulty, and its 
resolution, can best be explained to a modern audience by starting off the 
algorithm with the universal, but un-Greek, approximations 

0: 1 < () < 1 : 0, 

as in Table 2.2 where the expansion of a ratio () = [n0 , n1, ... ] is illustrated. The 
first term no accounts for the first no lines of Table 2.2; the next line generates 
the overestimate (no+ 1): l; and the (no+ 2)nd line, marked by an asterisk, 
corresponds to the first line of Table 2.1. Hence n1 is one plus the number of 
overestimates at the beginning of Table 2.2. In the case of J3: 1, there are no 
initial overestimates, so this yields J3: 1 = [l, 1, ... ]. Thereafter, the lengths of 

TABLE 2.2. Expansion of()= [no,n1, .. . ] starting from 0: 1<()<1: 0. The 
schema of Table 2.1 starts at the line marked * 

Under- Over- New Run 
estimate estimate estimate Type length 

0: 1 1: 0 1 : 1 under 
1 : 1 1: 0 2: 1 under 

(no-1):1 1: 0 no: 1 under no 
no: 1 1: 0 (no+l):l over 
no: 1 (no+l):l (2n0 + 1): 2 over 

no: 1 ((n1 - l)no + 1): (no - 1) n1no + 1: n1 over n1 
no: 1 (n1no + 1): no ((n1 + l)no + 1): (n1+1) under 

etc. 

* 
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the runs of under- and overestimates of Table 2.1 give the successive terms of 
the anthyphairesis. 

I recommend anybody who is unfamiliar with any of these manipulations to 
calculate a few terms of the anthyphairesis of y'n: 1 for 2 ::::; n ::::; 10. 

2.3( c) An algorithm for calculating convergents 

As my Socrates explains at S27, there is no problem in evaluating individual 
convergents: [no] =no: 1, [no, ni] = (non1 + 1): ni, [no, n1, nz] = (non1 nz + 
no+ nz): (n1nz+1), and so on. What we now develop is a much more 
convenient forward method. I shall describe and illustrate it on the examples 
of convergents of the two ratios [2, 3, 4, 5, ... ] and [5, 5, 10, 5, 10, ... ]. 

One problem with [2, 3, 4, 5, ... ] is that we do not know if any ratio 8 exists 
that has this as anthyphairesis. This, I feel, is not a problem that would have 
had any meaning for the Greeks, even within the most extreme developments of 
my reconstruction, so I shall ignore it here; its solution depends either on the 
sort of eighteenth-century manipulations at which Euler excelled, or on nine
teenth-century ideas of the foundations of mathematics. I choose this example 
since the numbers involved illustrate clearly and unambiguously the manipula
tions to be performed. This problem does not arise with [5, 5, 10, 5, 10, ... ], since 
this is the anthyphairesis of some explicit ratio that I shall identify later in this 
section, and establish by rigorous geometrical proof in the next chapter. 

So suppose that 8 = [2, 3, 4, 5, ... ]. This means that, if we expand 8 using the 
algorithm of the previous section, then the pattern of runs of under- and 
overestimates will be determined by this expansion. For convenience, I shall 
adopt, in Table 2.3, the format of Table 2.2, and start with the initial estimates 

0: 1 < 8 < 1: O; 

the more strictly historical algorithm will start instead (at the line in Table 2.3 
marked with an asterisk) with the initial estimates 

2:1<8<3:1. 

With this information, we can set out the skeleton format of Table 2.3, which 
contains enough information for us now to insert the remaining information by 
an automatic procedure. In particular we are most interested in the derivation 
of the run-end estimates, the ratios that go into the boxes in column 3; these, it 
can be seen, are the successive convergents. Clearly the first box contains 
(2 x 1+0): (2 x 0 + 1) = 2: 1. Then the next line starts with the estimates 
2 : 1 < e < 1 : 0 and so, after three steps of overestimates, the next box will 
contain (3 x 2 + 1): (3 x 1+0) = 7: 3. Then the next line starts with the 
estimates 2: 1 < e < 7 : 3 and so, after four steps of underestimates, the next 
box will contain ( 4 x 7 + 2) : ( 4 x 3 + 1) = 30: 13; and so on. We can abstract 
this information in Table 2.4 where, for convenience, it is written out in a 
compact horizontal format. 
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TABLE 2.3. The approximation procedure for the ratio 8 = [2, 3,4, ... ] 

Under- Over-
estimate estimate 

0: 1 1: 0 

2: 1 3: 1 

etc. 

New 
estimate p: q Type 

under 
under 
over 
over 
over 

under 
under 
under 
under 

Run 
length 

2 

3 

4 

Once two columns of Table 2.4 are known, the rest of the table can be 
calculated easily and quickly. The table can be started from the first two 
columns, which correspond to the estimates 

0: 1 < 8 < 1: 0, 

or the next two columns can be written down, since [2] = 2: 1 and [2, 3] = 7 : 3, 
and the algorithm applied from this point. 

As a second example, consider <P = [5, 5, 10, 5, 10, ... ]; the reader is 
encouraged to compute the first five convergents of this ratio and confirm 
immediately that 

5: 1 < 265: 51 < 13 775: 2651 < <P < 1351: 260 < 26: 5. 

The point of this example is that early results in what I have called the 
problem of dimensions of squares (see S4 i, and Sections 2.2(a) and 2.3(b) 
above) will be that 

y'(n2 + 1): 1 = [n, 2n, 2n, 2n, .. . ] 

and y'(n2 + 2): 1 = [n, n, 2n, n, 2n, n, 2n, .. . ], 

where the expansions are periodic, repeating indefinitely-this will be proved in 
the next chapter. Hence y'27: 1 = [5, 5, 10, 5, 10, ... ], and the calculation of the 

TABLE 2.4. The convergents of [2, 3, 4, 5, 6, ... ] 

nk 2 3 4 5 6 

Pk 0 1 2 7 30 157 (6 x 157 + 30) = 972 
qk 1 0 1 3 13 68 (6 x 68 + 13) = 421 

Type under over under over under over under 

* 
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convergents then tells us that 

265: 51 < y'27: 1 < 1351: 260, 

in which the error estimates of Section 2.2(b) show that 

if y'(27 + x): 1=265:51, then x < 1/(5 x 512 ), and 
if y'(27 - y): 1 = 1351: 260, then y < 1/(10 x 2602 ). 

49 

But since y'27 = 3y'3 (this is a geometrical statement, about fitting together 
nine squares each equal to three times a given square, something in the style of 
Plato's slaveboy's first two attempts at doubling a square), this inequality 
implies that 

265: 153 < y'3: 1 < 1351: 780, 

with the corresponding error estimates also being divided by 3. I shall return to 
this statement in Section 2.4(d), below. 

There is one place in the Elements where one looks, in vain, for details of this 
kind of calculation of convergents. At the beginning of Book X we find 
anthyphairesis introduced as a criterion of incommensurability: 

If, when the less of two unequal magnitudes is continually subtracted in turn 
(anthuphairein aei) from the greater, that which is left never measures the one before 
it, the magnitudes will be incommensurable [X 2], 

and as a construction to solve the problems 

Given two (or three) commensurable magnitudes, to find their greatest common 
measure [X3 (or 4)]. 

These are then followed by a block of four propositions that are variations on 
X5: 

Commensurable magnitudes have to one another the ratio which a number has to a 
number. 

At this point, it would surely be an interesting and obvious step to relate 
the pattern of the anthyphairesis to the numbers involved in this ratio, but 
on this the text is silent. There would be no difficulty in describing the 
backwards procedure (Socrates' explanation at the beginning of S27 can 
easily be translated into Euclidean idiom), but it is not easy to see how to 
express the much more convenient forward procedure within the stylistic 
restrictions of Euclid's Elements, where the enunciations of propositions 
cannot contain any reference to particular figures or numbers, and where no 
symbolic manipulation is permitted (see the end of S27). Nevertheless, at no 
point does either algorithm transcend any of the restrictions on arithmetike. 
The absence of any such exploration from the Elements has meant that very 
few of those who have learned their mathematics from Euclid, either directly 
or indirectly, have any intimate experience of the operation of anthyphairesis, 
in any guise. 
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2.4 FURTHER ANTHYPHAIRETIC CALCULATIONS 

2.4(a) Eratosthenes' ratio for the obliquity of the ecliptic 

Ptolemy explains, at Syntaxis I 12, how to measure the obliquity of the ecliptic, 
and then concludes: 

We found that the arc between the northernmost and southernmost points, which is the 
arc between the solsticial points, is always greater than 47 ~ 0 and less than 47 i 0 • From 
this we derive very much the same ratio as Eratosthenes, which Hipparchus also used. 
For [according to this] the arc between the solstices is approximately 11 parts where the 
meridian is 83 [Ptolemy-Toomer, PA, 63]. 

This asserts that 11 : 83 lies between 4 7 ~ : 360 and 4 7 i : 360; and this curious 
ratio 11 : 83 has provoked occasional perplexed comment. Let us apply the 
approximating algorithm. We start with the standard under- and overestimates 
to the interval, 

1: 8 < 47 ~: 360 < 47 i: 360 < 1: 7, 

and apply the Parmenides proposition until the first intermediate ratio is 
generated. The calculation is set out in Table 2.5; the result, 11 : 83, arises 
after four lines of calculation. 

By-products of this calculation are the evaluations: 

In fact, 

47~: 360 = [O, 7, 1, 1, 1,4,. .. ] and 

47i: 360 = [O, 7, 1, 1, 5 or more, ... ]. 

47~ :360 = [O, 7, 1, 1,4,3, 1,3], 

11: 83 = [O, 7, 1, 1, 5], and 

47i :360 = [O, 7, 1, 1,5, 1,6,2]. 

This example is of a ratio taken 'the less to the greater' which has the effect of 
introducing an initial step of zero which reverses antecedent and consequent; 

TABLE 2.5. Eratosthenes' ratio for the obliquity of the ecliptic 

Under- Over- New 
estimate estimate estimate p : q 360p 47~q 47iq Type 

1:8 1:7 2: 15 720 715 7161 over both 
1:8 2: 15 3 :23 1080 1096! 1098t under both 
3: 23 2: 15 5:38 1800 1811 t 18144 under both 
5:38 2: 15 7:53 2520 25261 2530! under both 
7:53 2: 15 9: 68 3240 32413 3247 under both 
9: 68 2: 15 11:83 3960 3956! 3963! between 
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then the ratio 'the greater to the less' follows. We can handle the situation in 
words, by saying something like: 'the antecedent of the given ratio is less than 
the consequent, and the anthyphairesis of the ratio is seven-times, once, .. .'. So 
the use of a zero here carries no implications about the introduction of a zero 
into the Greek number system. 

Reciprocation seems to be a process that is handled fluently and with 
confidence in Greek mathematics. 

2.4(b) The Metonic cycle 

Astronomers in Babylonia from the time of Darius (c.490Bc), and in Greece 
after the mid-fifth century BC, used a cyclical calendar in which 235 months, 
some (called 'hollow') of 29 days, the rest of 30 days ('full'), are made equal to 
19 years. In Greece, this astronomical (not civil) lunar-solar calendar is 
attributed to Euctemon and Meton, and is said to have started on the 
summer solstice, 432 BC. It was then modified by Callippus, in the fourth 
century, into a cycle of 76 = 4 x 19 years. 

Although this calendar may seem to embody some very precise astronomical 
parameters, it is shown in Goldstein, NMC, how it can in fact be deduced from 
the following relatively crude data: 

(i) The year is a little more than 365 days long, 
(ii) The length of 12 synodic months (i.e. new moon to new moon) is a little 

more than 354 days (note that 31524 = 29 !), and 
(iii) The average length of a synodic month (the 'mean' synodic month) is a 

little more than 29 ! days. 
We now look for a cycle of p years in which the 365 - 354 = 11 days' 

discrepancy, called the 'epact', approximates an integral number q of months; 
so we have to find p and q such that 

29!q < llp < 30q, 

i.e. 

29 ! : 11 < p : q < 30 : 11. 

This can easily be done by trial and error; or it can be used as another 
illustration of the algorithm. We take the standard under- and overestimates to 
the interval: 

2 : 1 < 29 ! : 11 < 30 : 11 < 3 : 1 

and apply the algorithm to generate a ratio which lies within the interval, 
exactly as in the previous example. This gives 

29 ! : 11 < 19 : 7 < 30 : 11, 

the cycle in which 19 years are approximately equal to 19 x 12 + 7 = 235 
months and 6940 days. 
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The Metonic year is 365 ~ + f§ days long. Callippus' calendar incorporates 
the more accurate parameter that a year is approximately 365 ~ days long, so 
that 76 years are approximately 27 759 days; and so it relates the three principal 
astronomical periodic rotations: the earth around its axis, the moon around the 
earth, and the earth and moon around the sun. Another similar, slightly less 
accurate but more convenient, cyclical calendar in which 25 years, 9125 days, 
are made equal to 309 lunar months, will be described in Section 4.4. 

2.4( c) Aristarchus' reduction of ratios 

Aristarchus observes, within the proof of Proposition 13 of his On the Sizes and 
Distances of the Sun and Moon, 

but 7921 has to 4050 a ratio greater than that which 88 has to 45, 

and in Proposition 15, 

but 71755875 has to 61735500 a ratio greater than that which 43 has to 37. 

We could generate these results by applying the Parmenides proposition directly, 
as we did with Eratosthenes' ratio. But since we do not know, in advance, how 
long this will take, apart from the very rough bound that, starting with 
1: 1 < 7921: 4050 < 2: 1, we must arrive at a ratio of 88: 45 at the latest within 
about forty steps (also see my slaveboy's unanswered reflection in B24), it will 
generally be quicker, whenever possible, to calculate the anthyphairesis and use 
this to compute the convergents. An easy evaluation gives 

7921 :4050=[1,1,21, 1, 1, 1,2,22], 

from which we can calculate: 

n 1 1 21 1 2 22 

p 2 43 45 88 etc. 

q 22 23 45 

Type under over under over under 

and so the first of Aristarchus' results. (At this point we can see that the 
Parmenides proposition would have required 23 lines and 46 multiplications to 
arrive at this answer.) 

The second inequality follows similarly. In this particular case, it might be 
sensible to remove the obvious factors 33 x 53; but, in general, it is a notorious 
fact that factorisation can be an enormously long process, while finding the 
common measure of two numbers using anthyphairesis, as in Elements VII 2, is 
extremely rapid. This means that the very process for removing common factors 
efficiently is precisely the same process which generates the anthyphairetic ratio 
and so, with very little extra effort, the approximations we are seeking. 

I remark, in passing, that Aristarchus' treatise is an excellent illustration of 
what I have called 'non-arithmetised' mathematics. Relationships are expressed 
as ratios of arithmoi, and the only fractional quantities are simple parts. I shall 
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go into this question in more detail in Section 7.3(b), where I shall describe the 
two mild exceptions to the statements I have just made. 

2.4(d) Archimedes' calculation of circumference to diameter 

Proposition 3 of Archimedes' Measurement of a Circle is a mine of calculations, 
many of which can be interpreted anthyphairetically. I have already discussed 
its enunciation in Section 2.2(b ). The first half of the calculation, which 
evaluates an upper bound for c: d, starts from an underestimate of the ratio 
of the diameter of the circle to the side of a circumscribing hexagon, 
y'3: 1 > 265: 153. I showed, in Section 2.3(c), how this can be easily and 
quickly evaluated from the result that 

y'27: 1 = [5, 5, 10 ... ]. 

The second half, the calculation of a lower bound, starts from an overestimate 
of the ratio of the shorter diagonal to side of an inscribed hexagon; this (see 
Section 2.2(a)) is again y'3: 1, and Archimedes' overestimate of 1351: 780 is 
again a third of the next convergent of y'27: 1, also calculated in Section 2.3(c). 
Both of these approximations are also convergents of y'3 : 1, the ninth and 
twelfth respectively, but the fact that Archimedes did not take the eighth and 
ninth or the ninth and tenth convergents to y'3: 1, viz.: 

265: 153 < y'3: 1 < 97: 56 < 362: 209 < 1351: 780, 
9th 8th 10th 12th 

any of which would provide sufficient accuracy for his subsequent calculation, 
has caused some perplexity. A derivation that starts from the expansion of 
y'27: 1 accounts for this anomaly. Also, the terms of y'27: 1 are relatively large, 
and this will guarantee the very rapidly improving accuracy of the convergents; 
see Section 2.2(b )(iv). (For an endorsement of this procedure, see Knorr, AD, 
p. 435: "Thus, even accepting that the extant evidence does not permit 
certainty, one may well wonder what a more satisfactory solution of the 
quotation could possibly look like.") 

Archimedes performs each half of the calculation by successively doubling 
the number of sides of each hexagon four times, and each time estimating the 
ratio of the side of the new polygon to the diameter of the circle, always 
rounding any subsequent approximation upwards for the circumscribed 
polygon and downwards for the inscribed polygon. Each doubling of the 
polygons (except the final step of the circumscribing polygon) involves 
estimating a square root. For example, the first step which replaces the 
circumscribing hexagon by a dodecagon, requires an underestimate for 
y'349 450: 153. Since 

y'349450: 1 = [591, 6, 1, 196, ... ], 

this has the extremely accurate underestimate 591 ~ : 153. But Archimedes uses 
instead the approximation 591 i : 153, either for reasons of computational 
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convenience, or as a result of his computational techniques, or because he can 
estimate that his initial approximations to y'3 : 1 allow him some latitude, or for 
other reasons; or, as I shall illustrate later, in Section 7.3(a), it is not impossible 
that this particular fractional part might be a later editorial addition. We shall 
see there how the text has been re-worked and altered so much that we cannot, 
any longer, be sure of some of the details of the original calculations. 

The calculation of the overestimate ends with the following passage in which 
I have adapted the translation so as to imitate, in the English text, the different 
ways in which the numbers are expressed. 

The ratio of AI' [the diameter] to the perimeter of the 96-sided polygon is greater than 
the ratio of 4673 2' to 14 688, which [now taken 'the greater to the less'] is greater than 
threefold and there are remaining 667 2', which [number] is less than the seventh part of 
4673 2'; so that the circumscribed polygon is threefold the diameter and bigger by less 
than the seventh part; so therefore the perimeter of the circle is less by more than 
threefold and more by a seventh part. 

The description here is reminiscent of the opening lines of my dialogue, but so 
also would be a conventional arithmetical description of a ratio as an integer 
part plus a unit-fractional part; any difference would become evident if the 
ratio needed a more accurate or less simple description. The corresponding 
passage at the end of the second part of the calculation, the evaluation of the 
underestimate, reads: 

Conversely then the perimeter of the polygon bears to the diameter a ratio greater than 
6336 has to 2017 4', which is bigger than 2017 4' or threefold and ten 7lst [parts]. And so 
the perimeter of the inscribed 96-sided polygon is threefold the diameter and greater 
than the 10 7lst [parts], so that also the circle is still more than threefold and greater 
than the 10 7lst [parts]. 

Unfortunately this passage which, if more explicit, might have shed some 
light on the way Archimedes conceived the ratios involved, is tantalisingly 
brief; nor is it made any more informative by being repeated three times. 
What is more, each occurrence of the expression '10 7lst [parts]' shows a 
wide range of variation between apparently incorrect or meaningless alter
natives in the surviving manuscripts. Indeed, in many cases throughout the text 
the 'correct' numbers cannot be traced back any earlier than early sixteenth
century annotations to the manuscript; for example, the best manuscripts do 
not contain here the ratio 6336: 2017 !r, but 6301 ~ : 7017 l More details will be 
given in Section 7.3(a). · 

Both of these calculations illustrate again the process that Heron called, in 
the passage from Metrica I 25 quoted in Section 2.2(b), "bringing down to 
small numbers". For example we can evaluate that 

14 688: 4673 ! = [3, 7, 667, 2] 

and 

6336: 2017 Ir= [3, 7, 10, 2, 1, 36], 
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and hence the overestimate [3, 7] = 22: 7 and underestimate [3, 7, 10] = 223: 71. 
However, it is here more illuminating to describe the same calculation in terms 
of the Parmenides proposition. The starting estimates 

3:l<c:d<4:1 

follow from the figure of a hexagon inscribed in, and a square circumscribed 
about a circle. The initial run of overestimates is (read from the right): 

3 : 1 < c : d < 22 : 7 < 19 : 6 < 16 : 5 < 13 : 4 < 10 : 3 < 7 : 2 < 4 : 1; 

all can be verified from the inequalities 

c:d< 14688:4673!<22:7 

smce 

14688 x 7 = 102816 < 4673! x 22 = 102817. 

The next run of underestimates is: 

3: 1 < 25: 8 < 47: 15 < 69: 22 < 91: 29 

< 113:36 < 135:43 < 157:50 < 179:57 

< 201: 64 < 223: 71 < 6336: 2017 ! < c: d < 22: 7. 

However, since the next estimate satisfies 

6336: 2917! < 245: 768 < 14688: 4673!, 

there is not enough information to decide whether 245 : 78 is less than, equal 
to, or greater than c : d. In this sense, the ratios given in the enunciation 
extract all the anthyphairetic information from Archimedes' surviving 
calculation. 

2.4(e) Pelf's equation 

The problem is best explained in the following two texts. First, a challenge to 
European mathematicians proposed by Fermat in 1657. The translation is from 
Diophantus-Heath, DA, 285-6: 

There is hardly anyone who propounds arithmetical questions, hardly anyone who 
understands them. Is this due to the fact that up to now arithmetic has been treated 
geometrically rather than arithmetically? This has indeed generally been the case both in 
ancient and modern works; even Diophantus is an instance. For, although he has freed 
himself from geometry a little more than others in that he confines his analysis to the 
consideration of rational numbers yet even there geometry is not entirely absent, as is 
sufficiently proved by the Zetetica of Viete, where the method of Diophantus is extended 
to continuous magnitude and therefore to geometry. 

Now arithmetic has, so to speak, a special domain of its own, the theory of integral 
numbers. This was only lightly touched upon by Euclid in his Elements, and was not 
sufficiently studied by those who followed him (unless, perchance, it is contained in 
those Books of Diophantus of which the ravages of time have robbed us); arithmeticians 
have therefore now to develop it or restore it. 
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To arithmeticians therefore, by way oflighting up the road to be followed, I propose the 
following theorem to be proved or problem to be solved. If they succeed in finding the 
proof or solution, they will admit that questions of this kind are not inferior to the more 
celebrated questions in geometry in respect of beauty, difficulty, or method of proof. 

Given any number whatever which is not a square, there are also given an infinite 
number of squares such that, if the square is multiplied into the given number and unity 
is added to the product, the result is a square. 

Example. Let 3, which is not a square, be the given number; when it is multiplied into 
the square 1, and 1 is added to the product, the result is 4, being a square. 

The same 3 multiplied by the square 16 gives a product which, if increased by 1, 
becomes 49, a square. 

And an infinite number of squares besides 1 and 16 can be found which have the same 
property. 

But I ask for a general rule of solution which any number not a square is given. 
E.g. let it be required to find a square such that, if the product of the square and the 

number 149, or 109, or 433 etc. be increased by 1 the result is a square. 

Second, a passage from Theon of Smyrna-Hiller, ERMLPU, 42-5, adapted 
from the translation of Thomas, SIHGM i, 132-7, to bring out the evocation 
on the word logos at the beginning: 

Just as numbers potentially contain triangular, square, and pentagonal ratios (logoi), 
and ones corresponding to the remaining figures, so also we can find side and diagonal 
ratios (logoi) appearing in numbers in accordance with the generative principles (logoi); 
for it is from these that the figures acquire balance. Therefore since the unit, according to 
the supreme generative principle (logos), is the starting-point of all the figures, so also in 
the unit will be found the ratio (logos) of the diagonal to the side. For instance, two units 
are set out, of which we set one to be a diagonal and the other a side, since the unit, as 
the beginning of all things, must have it in its capacity to be both side and diagonal. Now 
there are added to the side a diagonal and to the diagonal two sides, for as great as is the 
square on the side, taken twice, [so great is] the square on the diagonal taken once. The 
diagonal therefore became the greater and the side became the less. Now in the case of 
the first side and diagonal the square on the unit diagonal will be less by a unit than 
twice the square on the unit side; for units are equal, and 1 is less by a unit than twice 1. 
Let us add to the side a diagonal, that is, to the unit let us add a unit; therefore the 
[second] side will be two units. To the diagonal let us now add two sides, that is, to the 
unit let us add two units; the [second] diagonal will therefore be three units. Now the 
square on the side of two units will be 4, while the square on the diagonal of three units 
will be 9; and 9 is greater by a unit than twice the square on the side 2. 

Again, let us add to the side 2 the diagonal of three units; the [third] side will be 5. To 
the diagonal of three units let us add two sides, that is, twice 2; there will be 7. Now the 
square from the side 5 will be 25, while that from the diagonal 7 will be 49; and 49 is less 
by a unit than twice 25. Again, if you add to the side 5 the diagonal 7, there will be 12. 
And if to the diagonal 7 you add twice the side 5, there will be 17. And the square of 17 is 
greater by a unit than twice the square of 12. When the addition goes on in the same way 
in sequence, the proportion will alternate; the square on the diagonal will be now greater 
by a unit, now less by a unit, than twice the square on the side; and such sides and 
diagonals are both expressible (rhi!tos). 

The squares on the diagonals, alternating one by one, are now greater by a unit than 
double the squares on the sides, now less than double by a unit, and the alternation is 
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regular. All the squares on the diagonals will therefore become double the squares on the 
sides, equality being produced by the alternation of excess and deficiency by the same 
unit, regularly distributed among them; with the result that in their totality they do not 
fall short of nor exceed the double. For what falls short in the square on the preceding 
diagonal exceeds in the next one. 

There is also a similar passage in Proclus' commentary on Plato's Republic, 
which contains an additional description of 'side and diagonal lines'; this will be 
quoted in Section 3.6(b), where the passages will be discussed in more detail. 

Both of these texts show an interest in finding, for a given number n (Theon 
and Proclus deal only with the case n = 2), those numbers q for which nq2 + 1 is 
a square number p2. Theon also refers to the further cases where nq2 - 1 is to be 
a square and, while Fermat does not explicitly mention this case, the choice of 
the three examples he proposes shows without doubt that he was also interested 
in this related problem. Euler named the equation 

x2 -ny2=1, 

to be solved in integers, after John Pell (1611-85), a minor British mathematician 
who had nothing to do with the problem, and the name has stuck. More details of 
the recent history of the topic will be given in Chapter 9; my concern here is to 
point out that our basic approximating algorithm of Section 2.3(b) gives a 
practical method for solving the general problem that would be compatible with 
our knowledge of early Greek mathematics, and to introduce some further 
Greek evidence. Again I shall concentrate mainly on the mathematical issues; 
textual and historical problems will be considered in Section 3.6(b), and 
developments since the seventeenth century will be surveyed in Section 9. l(c). 

Suppose we apply the basic algorithm for calculating convergents to y'n: 1. 
At each step of the process, each application of the Parmenides proposition, we 
need to compare the new approximation p : q with y'n : 1, and this is done in 
columns 4 and 5 of Table 2.1, by comparingp2 and nq2 . In the example of y'3, 
calculated in Table 2.1, we see that this gives a pattern of 3 under, 2 under, 1 
over, 3 under, 2 under, 1 over, and this pattern will appear to continue 
indefinitely; it is a further example of the periodic behaviour exhibited by the 
process which I hope has been obvious to everybody, and which will soon come 
to dominate our discussion. This same kind of periodic behaviour will seem to 
appear whatever value of n is chosen, and moreover the value '1 over' will 
always seem to occur, sometimes alternately with the value '1 under'. In other 
words, the algorithm set out in Table 2.1 will always seem to solve the problem. 
What is more, the solutions will always seem to be the penultimate convergents 
before the end of the period of y'n: 1; if the period contains an even number of 
terms, they all will be solutions of x2 - ny2 = 1; if an odd number, the solutions 
of x2 - ny2 = =i= 1 will alternate. Hence, if we already know in advance the 
anthyphairesis of y'n: 1, we can proceed directly to the calculation of the 
convergents and hence the solution. For example, the convergents of y'27: 1, 
calculated in Section 2.3(c), suggest that the solutions of x2 - 27y2 = 1 may be 
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x = 26; y = 5; x = 1351, y = 260; and so on. We can then check that this 
is so. 

The heuristic arguments of Section 2.2(b)(iv) again hint at what may be 
happening: a solution of x2 - ny2 = ±1 will correspond to a very good approxi
mation, x: y, to Jn: 1. Now the run-end approximations that occur just before 
the appearance of a long run of under- or overestimates, being the convergents 
that precede a large term in the anthyphairesis, will be particularly good 
approximations. Moreover the largest term in the expansion of Jn: 1 (but not 
of Jn: Jm) always seems to be the term '2no' that marks the end of the period. 
Hence we might expect that the penultimate convergent of each period would give 
rise to a small value of x2 - ny2; in fact it turns out to generate the smallest 
possible value-it cannot be zero, but it is ± 1. If the period contains an even 
number of terms, the first penultimate convergent and all subsequent penultimate 
convergents will be overestimates, and hence the positive signs; if odd, they will 
alternate between under- and overestimates, and so the signs will also alternate. 

The other piece of Greek evidence that gives rise to further speculation 
concerning Pell's equation in antiquity is Archimedes' remarkable Cattle 
Problem, an epigrammatic puzzle involving the sizes of four herds of cattle. 
The problem has two possible interpretations, which then give rise to the 
following two mathematical problems: either solve a collection of linear 
indeterminate equations 

nx-my = 1, 

where n and m satisfy 

nm = 23 014 894 = 2. 7. 353. 4657; 

or solve Pell's equation 

x2 - 410 286 423 278 424y2 = 1 

(in which the coefficient of y2 factorises to 23 . 3. 7. 11 . 29. 353. 46572), an 
equation whose smallest solution is the stupendous 

x = 7·760 ... x 10206544 

y = 3·831 ... x 10206537_ 

The existence of this problem may imply that either the interpretation which 
leads to Pell's equation, or the interpretation as a linear problem, or both 
interpretations, could be solved, at least 'in principle', by the setter of the 
problem. So let us therefore look at the mathematics that lies behind the 
alternative interpretation. 

2.4(f) The alternative interpretation of Archimedes' Cattle Problem 

Consider the linear indeterminate problem expressed by the equation 

nx-my = 1, 
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where, as always, n and m are integers, and the equation is to be solved in 
integers. Since my will then be less than but close to nx, this means that y: x will 
have to be less than but close to n: m; and this again suggests that we look at 
approximations to n : m. Again we can proceed in two similar ways, either by 
working with the approximating algorithm of Section 2.3(b), or by proceeding 
directly to the evaluation of the anthyphairesis and convergents of 2.3(c). In 
addition, each approach splits into two distinct cases. 

First, look again at a typical sequence of approximation p: q, generated by 
the basic algorithm of Section 2.3(b); take, for example, those that arise in 
column 3 of Table 2.1, and compare successive pairs. We see that 

3.3-2.5=-l 

5.4-3.7=-l 

7.7-4.12=+1 

12.11-7.19=-l 

etc. 

and, in general, if p: q and p' : q' are consecutive ratios, they seem to satisfy 

pq' - p'q = ±1, 

the negative sign occurring when p: q increases top' : q', the positive sign when 
it decreases; column 6 tells us which of these cases applies. 

So suppose we wish to solve 

26x - 15 y = + l. 
We execute the approximation algorithm on 26: 15, which will then generate all 
but the last line of Table 2.1 (at which point it will terminate with an equality). 
The penultimate estimate 19: 11 will be less than 26: 15. Hence, we guess (and 
can verify) that 

26 . 11 - 15 . 19 = 1, 

and the equation is solved. Other solutions (in fact, every other solution) then 
arise from the identity 

26(11 + 15k) - 15(19 + 26k) = l. 

Suppose, however, that we wish to solve the dual equation 

26x - l5y = -1. 

We now want an approximation that will be greater than 26: 15; so we look 
back in Table 2.1 to the previous overestimate 7 : 4 and check that it is a 
solution: 

26. 4 - 15 . 7 = -1. 
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Then, as before, the general solution is given by 

26(4 + 15k) - 15(7 + 26k) = -1. 

This second case has led us to the previous convergent, and this suggests 
that we look at the behaviour of the convergents and ignore the rest of the 
intermediate approximations. So we can repeat this kind of exploration on 
Table 2.4, where we see that the cross-products of adjacent convergents again 
satisfy the same kind of relationship. This leads to the second technique for 
solving these equations, in which we proceed directly to the anthyphairesis and 
convergents, without passing via the calculations of Table 2.1. Hence, for 
example, to solve 

972x - 42ly = -1, 

we evaluate that 972: 421 = [2, 3, 4, 5, 6]; work out the convergents (exactly as 
in Table 2.4, except that the table will terminate with an equality); and so read 
off and check that the penultimate convergent, which is an overestimate, 
satisfies 

972.68-421.157 = -1, 

from which we can write down the general solution, as before. If, however, we 
want to solve the dual equation 

972x - 42ly = +l, 

we adapt this method by exploiting the ambiguity of the terminating expansion 
(see Section 2.2(b)): We now write 972:421 = [2,3,4,5,5,1], and take the 
penultimate convergent of this modified expansion. This gives the solution 

972. 353 - 421. 815 = +l. 

These results appear to be perfectly general, and appear to solve every 
example of such problems. They have been expressed, purely for convenience of 
exposition, in the form of equations, but they are, in fact, straightforward 
statements about differences of products of integers that can easily be expressed 
and manipulated in everyday language. 

2.5 NOTES AND REFERENCES 

2.1 Aspects of the modern theory of continued fractions, together with a sketch of 
the history of its development, will be given in Chapter 9. But for someone who 
is merely interested in understanding my proposals here, I do not think it is 
necessary and it may even be distracting to know this modern theory in advance. 
(In common with perhaps nine-tenths of mathematicians of today, I had never 
met the topic in my undergraduate or graduate mathematical training, and was 
only vaguely aware of a revival of interest in it among certain mathemati
cians when I accidentally stumbled on the path which eventually led to this 
anthyphairetic interpretation of early Greek mathematics.) 
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The translation of the passage of Alexander of Aphrodisias, IT, is taken from 
Knorr, EEE, 258. This book contains an excellent summary of previous 
proposals concerning anthyphairesis, in particular, the work of Allman, 
Becker, von Fritz, Heller, van der Waerden, and Zeuthen, together with Knorr's 
own interpretations. (I have also taken the brief description of the etymology of 
anthuphairesis and antanairesis from it; see p. 290, n. 26.) My reconstruction will 
be different. In brief, all preceding proposals have reconstructed an anthy
phairetic theory of proportion, but I shall argue that there may have been a 
highly developed exploration of some remarkable properties of anthyphairetic 
ratios; see Section 1.2( d), above. Also, previous anthyphairetic interpretations 
have invoked the modern arithmetised theory of continued fractions, while the 
version developed here is based on the non-arithmetised Parmenides algorithm; 
see Section 9.l(b) and note 13. 

Knorr, EEE, Chapter 8 and Appendix B, gives a very useful discussion of the 
formal development of the proportion theories of the Elements; but his inter
pretation makes crucial use of the surprising difficulties in an anthyphairetic 
proof of Elements V 9: if A: C: : B: C then A = B. Surely a practising mathe
matician, faced with the difficulties that Knorr has uncovered, would proceed 
indirectly, via the alternando property that he has just proved. For then 
A: C:: B: C is equivalent to A: B:: C: C. Now the anthyphairesis of C: C is 
[l]; so also must be that of B: C; so B = C. 

For an example of an interpretation in which anthuphairesis and antanairesis 
do not mean the same thing, see Heron-Bruins, CC iii, 60 ff. 

For details of abbreviations used to refer to papyri, see Liddell, Scott, & 
Jones, GEL, pp. xl ff.; or Turner, GP. Several aspects of the Zenon archive are 
discussed by Turner; see the index, s.v. Zenon. Some topics in papyrology will be 
discussed more systematically in Chapters 6 and 7 below. 

2.2(a) The evaluation of the ratio of diagonal to side of a square given here is based on 
an interpretation of the description of side and diagonal lines found in Proclus' 
commentary on Plato's Republic, to be described in detail in Sections 2.4(e) and 
3.6(b). It is the one important place where my reconstruction draws in a crucial 
way on mathematical evidence that is only found in uncorroborated reports in 
later commentators-here, in Theon of Smyrna and Proclus. 

The anthyphairesis of the side and diagonal of a pentagon is made the basis 
of a reconstruction of early Greek mathematics in von Fritz, DIHM; for a 
discussion, see Knorr, EEE, 29-32. 

The usual Greek word for both diagonal and diameter is diametros, 'the 
through measure'. It can refer to the diagonal of a parallelogram in contexts 
where there is no corresponding diameter of a circumcircle; see for example, 
Elements I 34: "The opposite sides and angles of parallelogrammic areas 
(parallelogramma chOria) are equal to one another and the diagonal (diametros) 
bisects the areas"; here diametros cannot mean the diameter of a circle, in any 
interpretation. There is a very rare word diagonios which is only used twice in 
the Elements, at XI 28 and 38, and in very few places elsewhere (I am grateful 
to Malcolm Brown for this information). I shall adapt translations to read 
'diagonal' or 'diameter' as appropriate. For example, the usual translation as 
'side and diameter lines (or numbers)' is, I believe, inappropriate. 

2.2(b) The translations.of Archimedes' Sphere and Cylinder are taken from Thomas, 
SIHGM ii, 40 ff. There is a photographic reproduction of our sole surviving 
manuscript of Heron's Metrica in Heron-Bruins, CC i (with transcription in vol. ii 
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and annotated translation in vol. iii); the translation of.the passage quoted here 
comes from Knorr, AMC. Also see the notes to Sections 2.3(c) and 2.4(d), below. 

An anecdote from Reid, H, 164, illustrates the difficulty and unpredictability 
of problems associated with irrationality and transcendence: "[Siegel] was 
always to remember a lecture on number theory which he heard [as a student 
in 1919] from Hilbert .... Hilbert wanted to give his listeners examples of the 
characteristic problems of the theory of numbers which seem at first glance so 
very simple but tum out to be incredibly difficult to solve. He mentioned 
Riemann's hypothesis [concerning the zeros of '(s)], Fermat's theorem [the 
hypothesis concerning the insolubility of xn + yn = zn in integers if n ;;,, 3], and 
the transcendence of 2v2 (which he had listed as his seventh problem at Paris) as 
examples of this type of problem. Then he went on to say that there had recently 
been much progress on Riemann's hypothesis and he was very hopeful that he 
himself would live to see it proved. Fermat's problem had been around for a long 
time and apparently needed entirely new methods for its solution-perhaps the 
youngest members of his audience would live to see it solved. But as for 
establishing the transcendence of 2v2 , no one present in the lecture hall would 
live to see that! The first two problems which Hilbert mentioned are still 
unsolved. But less than ten years later, a young Russian named Gelfond 
established the transcendence of 2v-2 . Utilising this work, Siegel himself was 
shortly able to establish the desired transcendence of 2v2." Fermat's Last 
Theorem was proved by Andrew Wiles in 1994 but there still does not seem to 
have been any significant progress on the Riemann Hypothesis, so the problems 
have succumbed in precisely the opposite order to that predicted by Hilbert. 

2.3 (a), (b), & (c) The 'Parmenides proposition' is described in Steele, MRCP, on 
p. 179: "The Parmenides (l 54b-d) notes that the ratio (a+ x): (b + x) lies nearer 
to 1: 1 than does a: b (all terms being positive) and enunciates a strangely explicit 
principle of continuity." There is also a useful discussion in Plato-Allen, PP, 
258-9 which concludes: "It has been said that Plato was not an original 
mathematician. But it is worth remarking that the theorems he here uses are 
not attested before Hellenistic times." 

My original treatment, in REGM, of the approximation algorithm and the 
evaluation of convergents was more diffident than the account given here; see, 
e.g., p. 823: "the algorithm described here is not proposed as a reconstruction of 
an original procedure" (in italics there!). At that stage I had not appreciated the 
implications of the Parmenides passage, I was unaware of the existence of the 
proposition in Pappus, and my treatment of the question of the starting 
estimates was offhand and unsatisfactory. I now believe that it is not unreason
able to propose some appropriate formulation of this algorithm as a recon
struction of an early Greek procedure. Also see, for example, Knorr, AMC, 
137 ff., where a much more sophisticated variant of the algorithm, there 
expressed in terms of the manipulation of common fractions, is proposed as 
an explanation of Archimedes' approximation to J3: 1. 

The Parmenides proposition is an example of a mean: given a smaller and 
larger ratio, it will generate an intermediate ratio. We have many reports of early 
interest in different kinds of means among Greek mathematicians and music 
theorists (see e.g. Heath, HGM i, 85-9); but in all these cited examples, the mean 
generates an intermediate between two magnitudes or, in special cases, between 
two numbers, while the Parmenides proposition generates an intermediate 
between two ratios. There is a connection between the arithmetic mean and 
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the Parmenides proposition: if c = ! (a+ b) is the arithmetic mean between two 
magnitudes a and b with a < b, the Parmenides proposition, applied to a: 1 and 
b: 1 (with a: 1 < b: 1) will generate the ratio a+ b: 2 = c: 1, and this kind of 
description can be extended to the general case of weighted arithmetic means. I 
shall return to this question in Section 4.5(b); see especially B74 there. 

The first edition of this book attempted to reintroduce the word 'algorism' to 
replace 'algorithm', a word castigated by the Oxford English Dictionary (1933), 
s.v. algorism, as one of the "many pseudo-etymological perversions, including a 
recent algorithm in which [algorism] is learnedly confused with the Greek 
apiT8µ,6c, number". The Supplement to the OED (in vol. 1, 1972, incorporated 
into the OED second edition of 1989), admitted the word and cited, as its first 
example, the first edition of Hardy & Wright, !TN (1938), a passage that was 
slightly changed in the second edition of 1945. In fact, the early meaning of 
'algorism' is actually 'calculation with Hindu-Arabic numerals', as opposed to 
calculation with the abacus. During the twelfth to fifteenth centuries, there were 
hundreds of treatises whose titles or incipits were variations on De arte 
numerandi algoristica, where the abacus treatises might be called Practica 
aritmetica cum denariis proiectilibus or Algorithmus linealis. This last description 
might be seen as a precursor of our modern use of 'algorithm'; in any case, the 
word has an even more established and distinguished history than I had thought. 
Its first indubitably modern use as far as I know-and what must surely be its 
first significant mathematical use-was in Latin in 1684, in Leibniz' first 
publication on the calculus in Acta Eruditorum, indeed in the first publication 
of the calculus, 'Nova Methodvs pro maximis et minimis ... ': "Ex cognito hoc 
velut Algorithmo, ut ita dicam, calculi hujus, quern voco differentialem, ... ". 
This short article of six pages was translated by Joseph Raphson in 1715, in The 
Theory of Fluxions ... , where this passage is rendered "Now from this being 
known as the Algorithm, as I may say of this Calculus, which I call 
differential, ... " (p. 23). The word was then taken up by Euler, for instance 
in his article 'De usu novi algorithmi in problemate Pelliano solvendo' (and the 
'Pell' here gave rise to the misnomer described in Section 2.4(c), above), and its 
use was then firmly established. (Details of these publications are listed in the 
bibliography, and I would like to thank Gerhard Brey, Julio Gonzalez Cabillon, 
Menso Folkerts, Ivor Grattan-Guinness, and Steve Russ for information and 
help in compiling this note.) 

2.4(a) For discussions of Eratosthenes' ratio, see Ptolemy-Toomer, PA, 63 n. 75; 
Dicks, GFH, 167 ff. and DSB s.v. Eratosthenes; Neugebauer, HAMA ii, 734 
(especially n. 15); Rawlins, EGU with my subsequent note BROE; Goldstein, 
OEAGE; and Taisbak, BET. This translation uses common fractions, but the 
Greek text follows the practice described briefly in Section 1.2(c) and to be 
examined in detail in Chapter 7: Ptolemy describes Eratosthenes' ratio as µ,' kai 
meizonos men e dimoirou tmematos, elassonos de hemisous tetartou, "47 and more 
than the two parts of a division, but less than a half fourth". 

2.4(b) There is a full discussion of calendric cycles in Neugebauer, HAMA ii, 615-29. 
Of the precise data that can be extracted from some of them, he observes drily 
(p. 616): "We may, of course, say that [Callippus' calendar] implies that 1 
month= 29; 31, 53, 3, ... days and be pleased by the accuracy of this value 
but one may weU ask whether Callippus was ever interested (or able) to carry out 
the division ... " (this sexagesimal value of the mean synodic month is equal to 
the decimal 29·530 85 ... days; the actual value is 29·530 59 days), and (p. 623): 



64 Anthyphairetic ratio theory 2.5 

"Neither the Metonic nor the Callippic cycle have anything to do with an 
accurate determination of the length of the mean synodic month". 

2.4(c) There is a critical edition of On the Sizes and Distances of the Sun and Moon in 
Aristarchus-Heath, AS. I shall describe the style of Aristarchus' calculations in 
Section 7.3(b). 

2.4( d) Also see 2.2(b ), above. There is a complete text of Archimedes' Measurement of a 
Circle with translation, filled out with extracts from Eutocius' commentary, in 
Thomas, SIHGM i, 316-33, but this omits the apparatus to be found in the 
critical edition, Archimedes-Heiberg, Opera i, 232-43; and Heiberg's apparatus 
needs to be corrected by and collated with the Latin translation by William of 
Moerbeke in Clagett, AMA ii. See Section 7.3(a) for more details, and a 
discussion of the treatment of the fractions in the original. 

On the excessive accuracy of Archimedes' approximations of y'3: 1, see 
Knorr, AMC, 137 f. This article contains the best overall analysis of Archi
medes' general strategy that I know; my only reservation concerns the arithme
tised context that is assumed for the calculation. I shall discuss the text in more 
detail in Section 7.3(a). 

2.4(e) Fermat's challenge, together with an exchange of letters between Frenicle de 
Bessy, Brouncker, and Wallis, is published in Wallis, CE; there is a discussion of 
the different methods of solving the problem in Edwards, FLT, 25 ff. The 
translation of Theon of Smyrna, on side and diagonal numbers, the last 
paragraph excepted, is taken from Thomas, SIHGM i, 132-7, except that I 
have again replaced 'diameter' by 'diagonal' throughout. 

2.4(f) I know of no discussion of the implications of this alternative interpretation of 
Archimedes' Cattle Problem. My own exploration of these mathematical aspects 
of the problem, ACPPCM, has never been published. 
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ELEMENTS II: 
THE DIMENSION OF SQUARES 

3.1 INTRODUCTION 

This chapter will be entirely devoted to the problem of the dimension of squares 
(see S41 and Section 2.2(a)): given a line p, and two numbers n and m, what can 
we say about the anthyphairesis of y'n and y'm, the ratio of the sides of the two 
squares equal ton and m times the square on p? We shall only consider the case 
where y'n and y'm are incommensurable, and so the anthyphairesis does not 
terminate. 

The algorithms of the last chapter have begun to reveal some remarkable 
properties of the anthyphairetic ratio y'3: 1, and a similar arithmetical explora
tion, leading to the formation of a hypothesis, will be the first step of the 
investigation of any ratio y'n : y'm. This hypothesis will then determine the 
second step, the construction of a geometric figure. Although some of these 
figures are very elaborate, they are built up out of simple ingredients such as 
squares, rectangles, and parallelograms; their geometrical properties are, on the 
whole, straightforward and will be taken for granted, just as Socrates, in the 
Meno, omitted to verify the details of the various geometrical figures he 
described. Finally, in each case, we shall see that the hypothesis with which 
we started will correspond to some property exhibited by the figure. 

These detailed mathematical arguments underlie a historical argument: I 
propose that this whole programme may indeed correspond to an early Greek 
investigation of which only the basic geometrical figures survive. Thus the 
situation is complementary to that which we find in the Meno: our surviving 
manuscripts of Plato's dialogues do not-and perhaps none of them ever did
contain any of the figures on which the mathematical arguments depend. (In 
Socrates' conversation with the slaveboy, the information in the text is so 
detailed that we have no difficulty in reconstructing the figures with confidence 
but, at Meno 86e-87b, there is another mathematical passage that has 
provoked an enormous variety of different geometrical reconstructions.) For 
the problem of the dimension of squares, I shall propose that the basic figures 
needed in this investigation of the dimension of squares survive in the form of a 
series of simple though convoluted geometrical exercises: the substantial, 
coherent, and idiosyncratic material comprising Book II of the Elements and 
the block of cognate. propositions at XIII 1-5. It is now a much harder and 
more hazardous process to proceed in the opposite direction, to reconstruct the 
mathematical investigation which gave rise to these geometrical figures. One 
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important methodological principle can be stated at th~ outset, and will be 
observed hereafter throughout this book: that the evidence must be taken as a 
whole. Since the geometrical techniques set out in the propositions of Book II 
can be adapted to other purposes in other contexts, very many applications of 
some of these propositions can be found elsewhere. Because of this versatility, 
and because of the coherence of this material within the Elements, if we wish to 
try to explain its role within the development of pre-Euclidean mathematics, it 
is not sufficient to provide some retrospective justification in which some of 
these propositions are related to topics studied somewhere throughout the long 
history of the development of mathematics, from ancient Babylonian arith
metical techniques or before up to modern preoccupations with algebraic 
structures; we must rather try to provide some acceptable reconstruction 
which leads forward, up to all of them. And since this material also seems to 
relate to the construction and classification of incommensurable lines in Book 
X, the interpretation should connect with the developments of this book also. 

The arguments of this chapter will be arduous. They will involve novel 
mathematical procedures, elaborate numerical explorations, and detailed tex
tual examinations. If it is any consolation to the non-mathematician, I think 
that a conventional mathematical training may generate difficulties in fol
lowing the line of reasoning, for much of the work fits uneasily into our 
arithmetised viewpoint of today; to the non-specialist in ancient mathematics, a 
similar consolation applies, since my explanation requires that a great deal of 
the received interpretation be put aside. It is not important to follow the 
mathematical argument in detail to understand the proposals that follow in 
later chapters, and I again encourage my reader to skip many of the technical 
details that arise. However, historical considerations now start moving into the 
foreground, and I believe it is necessary to appreciate the kinds of mathematical 
techniques I shall be describing here in order to evaluate the plausibility of 
some of my later historical proposals. 

3.2 BOOK II OF THE ELEMENTS 

Book II comprises two definitions: 

Any rectangular parallelogram is said to be contained by the two estraight lines 
containing the right angles. And in any parallelogramic area let any one whatever of 
the parallelograms about its diameter with the two complements be called a gnomon, 

and fourteen propositions about squares, rectangles, and gnomons. The 
subject of each proposition is best conveyed by its figure (and it is these 
figures, not what is made of them in their enunciations or proofs, that will 
enter my proposed reconstruction); these are given here as Figs 3.1-3.14, each 
corresponding to Book II Propositions 1-14. (The additional Figs 3.9(a) and 
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3.IO(a) will be explained presently.) The caption of each figure gives an 
abbreviated statement of the enunciation. For example the enunciation of II 4: 

Ifa straight line [AB] be cut at random [at CJ, the square on the whole [AB2] is equal to 
the squares on the segments [AC2 + CB2] and twice the rectangle contained by the 
segments [2AC. CB] 

A---
B D E C 

I I I 
FIG. 3.1. 

A. BC =A. BD +A. DE+ A. EC 

A C B 

ITJ 
'FIG. 3.3. AB.BC=AC.CB+BC2 

A C D 

FIG. 3.5. (AC = CB) 
AD.DB+CD2 =CB2 

A C B 

~ 
FIG. 3.7: 

B 

AB2 +BC2 = 2AB.BC+CA2 

A C B 

LO 
FIG. 3.2. 

AB.BC+BA.AC =AB2 

D F E 

FIG. 3.4. 
AB2 = AC2 +CB2 +2AC.CB 

A B D 

FIG. 3.6. (AC = CB) 
AD .DB+ CB2 = CD2 

A C B D 
,. 

/ 

,. I 

FIG. 3.8. (BC = BD) 
4AB. BC+ AC2 = (AB + BC)2 = AD2 
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A C D B 

Fm. 3.9. (AC= CB) 
AD2 + DB2 = 2AC2 + 2DC2 

FIG. 3.10. (AC= CB) 
AD2 + DB2 = 2AC2 + 2CD2 
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Fm. 3.13. 
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Fm. 3.12. 
BC2 = BA2 +AC2 +2CA.AD 
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FIG. 3.14. (EF =ED) 
A = BE. EF = EH2 
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has become the caption of Fig. 3.4: 

AB2 = AC2 + CB2 + 2AC. CB. 

It is important to realise that all these operations are geometrical; neither 
Euclid's propositions, nor my notation, makes or needs any reference to the 
manipulation of any kind of number other than the arithmoi, as with the 'twice' 
that appears in this enunciation. 

The demonstration of Proposition 4 is typical of Propositions 1-8. The 
setting-out is brief (lines 4 to 7 in Heath's translation); it identifies the various 
components of the figure: "For let the straight line AB be cut at random at 
C", then "The square on the whole" is "the square on AB", and so on. The 
construction follows (lines 8 to 14): the square ADEB, the diagonal BD, CF 
parallel to AD or EB, and HK through G parallel to AB or DE. The proof itself 
is a long and meticulous verification of the consequences of the construction: 
that BC equals CG (lines 15 to 22), that CGKB is a square, the square on CB 
(lines 23 to 35), and that HDFG is the square on AC (lines 36 to 38, repeated on 
line 39). Then it is asserted that AG (i.e. the rectangle AHGC) equals GE (line 
40), and that AG and GE are equal to the rectangle contained by AC and CB 
(lines 41 to 42). The results so far are summarised (lines 43 to 45), and this 
summary is repeated (lines 46 to 48): 

Therefore the four areas HF, CK, AG, GE are equal to the squares on AC, CB, and 
twice the rectangle contained by AC, CB, 

and the fact that this gives a decomposition of the square, the ostensible point 
of the proposition, is merely stated (lines 49 to 50): 

But HF, CK, AG, GE are the whole ADEB, which is the square on AB. 

This is then followed by a repetition of the setting-out (lines 51 to 52) and the 
enunciation (abbreviated, as usual, to "Therefore etc." in Heath's translation). 
The proposition has an alternative proof and is followed by a porism: 

From the demonstration it is manifest that in square areas the parallelograms about the 
diameter are squares, 

but both are believed to be interpolations by Theon of Alexandria; see Heath, 
TBEE i, 381. 

The elaborate verifications in this proof, for example that CBGK is a square, 
are not repeated in the later propositions, so that the proofs of Propositions 5, 
6, and 7 are shorter. Proposition 8 again has a long proof, since the verification 
that the double gnomon gives rise to equal squares in the corner and equal 
rectangles along the arms is carried out in detail, again with repetitions. In all of 
these propositions, almost all of the text of the demonstrations concerns the 
construction of the figures, while the substantive content of each enunciation is 
merely read off from the constructed figures, at the end of the proofs, as in lines 
49 to 50 of II 4, the proposition just considered. 
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Proposition 9 starts in the same style; its enunciation follows the well
established pattern: 

If a straight line be cut into equal and unequal segments, the squares on the unequal 
segments of the whole are double of the square on the half and of the square on the 
straight line between the points of section; 

it has the same kind of setting-out, but the associated figure and proof differs 
from the previous propositions. Euclid's proof proceeds by drawing two 
isosceles right-angled triangles which fit together into a larger isosceles right
angled triangle (Fig. 3.9), and applying 147, the so-called Pythagoras' theorem; 
alternative proofs are easily constructed which avoid the use of 147 and 
continue to apply the techniques of dissecting squares. One such proof is 
given in Heath's note to II 9, and an even simpler version of it follows directly 
from Fig. 3.9(a). A similar situation occurs with Proposition 10: Euclid's proof 
is based on Fig. 3.10, and an alternative proof can be read off from Fig. 3.lO(a). 
Proposition 11 solves a specific problem: 

To cut a straight line so that the rectangle contained by the whole and one of the 
segments is equal to the square on the remaining segment; 

Propositions 12 and 13 give versions of a generalisation of 147 which 
correspond to what we now call the cosine law for obtuse- and acute-angled 
triangles respectively; and Proposition 14, which concludes the book, shows 
how 

To construct a square equal to a given rectilineal figure. 

This construction starts with a typical Euclidean back-reference, to 145: 

For let there be constructed the rectangular parallelogram BD equal to the rectilineal 
figure A, 

and the new and important contribution of the rest of the proposition is to 
show how to convert this rectangle into an equal square. 

With the exception of implied uses of 147 and 45, Book II is virtually self
contained in the sense that it only uses straightforward manipulations of lines 
and squares of the kind assumed without comment by Socrates in the Meno. 
Moreover the only reference to l 45, just quoted above, occurs in the last 
proposition, II 14, where it is tacked on to contribute extraneous generality, out 
of keeping with the style of the rest of the book. Also, it can be argued that a 
proof of 'Pythagoras' theorem', referred to in Section l.2(e), has been excised 
from between Propositions 8 and 9. This proof, which l shall call Proposition 
8a, exploits the manipulation of gnomons, the basic technique of Book II, and, 
with its obliquely placed square, is reminiscent of the successful third Meno 
figure; so the proof also conforms in style with the testified ingredients of early 
Greek mathematics. Moreover the stylistic variations in the proof of II 9 
and 10 could then arise from the wish of the book's author, compiler, or editor 
to integrate this new result further into the logical development before it is 
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required in II 11 and generalised in II 12 and 13; then a later editor might 
have excised the proposition to remove the duplication of I 47 and II 8a. The 
argument is plausible, and further considerations in favour of it can be found 
in Knorr, EEE, 174-9. I shall return, in Section 3.6, to further discussion of 
Propositions 12 and 13. 

3.3 THE HYPOTHESES 

The algorithms of Chapter 2 enable us to evaluate as many terms as we want of 
the anthyphairesis of any ratio Jn: Jm, the only restriction being our ability to 
express or evaluate the squares of the integers involved. We also evaluate, at the 
same time, the convergents of these ratios. For example: 

J2 : 1 = r1, 2, 2, 2, 2, ... J, 

with convergents 1: 1, 3: 2, 7: 5, 17: 12, 41: 29, ... ; 

J3: 1 = [1, 1, 2, 1, 2, 1, 2, ... ], 

with convergents 1: 1, 2: 1, 5: 3, 7 :4, 19: 11, 26: 15, 71 :41, ... ; 

J3: J2 = [1,4,2,4,2,4,2, ... ], 

with convergents 1 : 1, 5: 4, 11 : 9, 49: 40, 109: 89, 485: 396, 1079: 881, ... ; 

J4: 1=2: 1 = r2J; 

J4: J2 = J2: 1, given above; 

J4:J3 = [1,6,2,6,2,6,2, ... ], 

with convergents 1: 1, 7: 6, 97: 84, 209: 181, 1351: 1170, 2911: 2521, ... ; etc. 
The obvious hypothesis to draw from these and further examples is that the 

expansion of Jn: Jm is periodic, with a period that starts with the second 
term; and we have already verified this for the example J2: 1, the ratio of the 
diagonal to side of a square. Table 3.1 lists the expansions, but not the 
convergents, of Jn: 1 and J(2n + 1): J2 for 1 ~ n ~ 50. (When n is a 
square, the ratio Jn: 1 is commensurable and the entry for the anthyphairetic 
ratio contains only one term; otherwise the entry is terminated by a comma 
after one apparent period. Hereafter I shall always silently assume that n and m 
are such that Jn and Jm are incommensurable, so that all examples such as 
J8: J2 have been suppressed, as in the second column of this table.) 

The examples in the table lead us to formulate a slightly more refined 
hypothesis, that 

Jn:Jm= [no,n1,n2, ... ,nk,2no]. 

where the period, identified by the superior bar, terminates with a term equal to 
twice the first term of tile expansion. It also seems that we can guess the general 
behaviour of some examples that lie around the commensurable ratio Jn2 : 1, 
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n 

2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 
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y'n: 1 

1, 2, 
1, 1, 2, 
2 
2, 4, 

2, 2, 4, 
2, 1, 1, 1, 4, 
2, 1, 4, 
3 
3, 6, 

3, 3, 6, 
3, 2, 6, 
3, 1, 1, 1, 1, 6, 
3, 1, 2, 1, 6, 
3, 1, 6, 

4 
4, 8, 
4, 4, 8, 
4, 2, 1, 3, 1, 2, 8, 
4, 2, 8, 

4, 1, 1, 2, 1, 1, 8, 
4, 1, 2, 4, 2, 1, 8, 
4, 1, 3, 1, 8, 
4, 1, 8, 
5 

5, 10, 
5, 5, 10, 
5, 3, 2, 3, 10, 
5, 2, 1, 1, 2, 10, 
5, 2, 10, 

5, 1, 1, 3, 5, 3, 1, 1, 10, 
5, 1, 1, 1, 10, 
5, 1, 2, 1, 10, 
5, 1, 4, 1, 10, 
5, 1, 10, 

6 
6, 12, 
6, 6, 12, 
6, 4, 12, 
6, 3, 12, 

TABLE 3.1 

y'2n + 1: y'2 

1, 4, 2, 
1, 1, 1, 2, 
1, 1, 6, 1, 2, 
2, 8, 4, 
2, 2, 1, 8, 1, 2, 4, 

2, 1, 1, 4, 
2, 1, 2, 1, 4, 
2, 1, 10, 1, 4, 
3, 12, 6, 
3, 4, 6, 

3, 2, 1, 1, 3, 1, 12, 1, 3, 1, 1, 2, 6, 
3, 1, 1, 6, 
3, 1, 2, 14, 2, 1, 6, 
3, 1, 4, 4, 1, 6, 
3, 1, 14, 1, 6, 

4, 16, 8, 
4, 5, 2, 5, 8, 
4, 3, 3, 8, 
4, 2, 2, 2, 8, 
4, 1, 1, 8, 

4, 1, 1, 1, 3, 18, 3, 1, 1, 1, 8, 
4, 1, 2, 1, 8, 
4, 1, 5, 1, 1, 3, 2, 1, 18, 1, 2, 3, 1, 1, 5, 1, 8, 
4, 1, 18, 1, 8, 
5, 20, 10, 

5, 6, 1, 3, 3, 1, 6, 10, 
5, 4, 10, 
5, 2, 1, 20, 1, 2, 10, 
5, 2, 3, 6, 1, 20, 1, 6, 3, 2, 10, 
5, 1, 1, 10, 

5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 10, 
5, 1, 2, 2, 1, 10, 1, 2, 2, 1, 10, 
5, 1, 3, 1, 2, 1, 1, 22, 1, 1, 2, 1, 3, 1, 10, 
5, 1, 6, 1, 10, 
5, 1, 22, 1, 10, 

6, 24, 12, 
6, 8, 12, 
6, 4, 1, 7, 2, 7, 1, 4, 12, 
6, 3, 1, 1, 24, 1, 1, 3, 12, 
6, 2, 1, 2, 1, 24, 1, 2, 1, 2, 12, 
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TABLE 3.1 (cont.) 

n Jn: 1 J2n + 1: ,/2 

41 6, 2, 2, 12, 6, 2, 3, 1, 4, 2, 1, 1, 1, 7, 1, 24, 1, 7, 1, 1, 1, 2, 
4, 1, 3, 2, 12, 

42 6, 2, 12, 6, 1, 1, 12, 
43 6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 6, 1, 1, 2, 8, 2, 1, 1, 12, 

6, 1, 2, 26, 2, 1, 12, 44 6, 1, 1, 1, 2, 1, 1, 1, 12, 
45 6, 1, 2, 2, 2, 1, 12, 6, 1, 2, 1, 12, 

46 6, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12, 6, 1, 4, 1, 1, 8, 1, 1, 4, 1, 12, 
6, 1, 8, 3, 1, 4, 1, 3, 8, 1, 12, 
6, 1, 26, 1, 12, 

47 6, 1, 5, 1, 12, 
48 6, 1, 12, 
49 7 
50 7, 14, 

for example: 

7, 28, 14, 
7, 9, 2, 2, 9, 14, 

J(n2 - 1): 1 = [(n - 1), 1,2(n - I)], 

J(n2 +I):l=[n,2n], and 

2 --
J(n +2):1 = [n,n,2n]. 

This chapter will be dedicated to the geometrical verification of statements of 
this sort. 

While the computation of the whole of Table 3.1 using the algorithms of 
Chapter 2 might be straightforward, it would be very time-consuming and 
tedious, as can be seen by calculating the example of JI 9 : 1, the first example 
of a ratio Jn: 1 which involves a long period containing several terms greater 
than one in its period. (However, a skilled and resourceful calculator would 
notice further patterns of behaviour that could be exploited to reduce greatly 
the amount of routine calculation.) In fact I calculated the results of this table 
using a pocket calculating machine and a simple arithmetical algorithm: 

x = xo; 

Xk = nk + 'Pk with 0 :::::; 'Pk < 1; 

if 'Pk =I- 0 then cp"k 1 = Xk+I; 

then x : 1 = [no, n 1 , n1, ... ] , 

and I verified the one doubtful example, J83 : J2, which lay beyond the limits 
of the accuracy of the machine, using the algorithm to be described in Chapter 
9. So I do not wish to propose that such a systematic and large-scale set of 
calculations as is embodied in Table 3.1 might ever have been performed in 
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antiquity. It would seem more reasonable to assume that only some very 
restricted corpus of examples was ever explored, at m<fst, for example, the 
ratios y'n: 1 for 2 :::;; n :::;; 20, and a few other isolated examples of y'n: y'm. 
Therefore the quite startling general hypothesis, that the period comprises a 
palindromic block terminated by twice the first term, would not present itself so 
forcefully from this limited exploration. (In the case of y'(n2 + 1): 1, this 
palindromic block is void, while in some other cases it is reduced to only one 
term.) I know of no evidence, of any kind whatsoever, that leads me to suggest 
that this hypothesis might have any part in a reconstruction of Greek mathe
matics; all of the abundant Greek evidence about palindromes seems to be later 
in time and connected with charms, magic, and gratuitous word-play. 

An example of a false hypothesis which results from an inference made from 
an insufficiently universal collection of examples is that the period has been 
evaluated when the first occurrence of a term equal to 2no is reached. A more 
extensive search would reveal examples such as 

y'l5: y'8 = [1, 2, 1, 2, 2,. .. ]. 

However, it is true that in any ratio of the form y'n: 1, the first occurrence of a 
term 2n0 will mark the end of the period, though I shall not prove this here in 
this book and I know of only one obscure place in the mathematical literature 
(Muir, EQSCF) where this type of result is investigated. 

It seems curiously difficult to prove any of these arithmetical conjectures 
directly from the properties of the Parmenides proposition, from the operation 
of the algorithm that generated them, the more so if the proof is restricted to 
the ingredients of Greek arithmetike such as I have described them in Section 
1.2(c). But we can reformulate the problem in various ways and seek indirect 
proofs; for example, in modern style, we can arithmetise these conjectures by 
converting them into statements about the manipulation of real numbers, and 
then explore them algebraically. I shall proceed differently, and geometrise. For 
us here, the hypotheses that y'2 : 1 = [ 1, 2] will be a statement about the 
anthyphairesis of the diagonal and side of a square, and one version of such 
an interpretation was proved in 2.2(a). So we now turn to the problem of 
constructing further figures which may help in establishing and explaining 
some of the hypotheses that arise from our heuristic investigations of these 
ratios y'n: y'm. 

3.4 THE FIRST ATTEMPT: 
THE METHOD OF GNOMONS 

The first method is a direct confrontation of the problem: we build up squares 
of the appropriate sizes by adding gnomons to a given square on an assigned 
line p, introduce some additional construction lines, and then convert the 
statements about the anthyphairesis into statements about these figures which 
we then verify. We shall always be dealing with geometrical lines, never their 
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arithmetical lengths, but for brevity and clarity we will usually omit mention of 
p. For example, P will denote the square on p and )2 the line )2p, the side of 
the square equal to 2P. 

PROPOSITION )2: 1 = [1, 2]. 

PROOF We prove the equivalent result that (1+)2):1 = [2]. Start with the 
square P; then the square 2P with the same bottom left-hand corner differs 
from P by a gnomon Q + R + S, equal to P (Fig. 3.15). This figure now 
contains the sides AB= 1 and AC= )2. We can check that BC, the width of 
the gnomon, is less than AB, since a gnomon of width AB is equal to 3P, which 
is too big. Add a line AD, equal to AB; then DC= 1 + )2, and all the lines 
needed in the enunciation of the proposition have been constructed. The first 
step of the anthyphairesis of DC: AB= (1+)2):1 is 

DC - 2AB = BC with BC < AB. 

Hence 
DC:AB = [2,AB:BC]. 

We now prove that AB: BC = DC: AB. This is equivalent to the statement 
that the square on AB is equal to the rectangle contained by DC and BC; hence 
we must verify that 

P=T+Q+R 

where T is the appended rectangle contained by AD and BC. But these two 
plane regions are obviously equal, since T = Q = S, and Q + R + S = P. 
Hence, by the same recursive property that was described and exploited in 
Section 2.2(a), we see that 

DC:AB = [2,DC:AB] = [2]. QED 

The same technique, starting from a square of side n and size n2 P, will prove 
the generalisation: 

PROPOSITION For any number n, )(n2 + 1) = [n, 2n]. 

I shall consider such general statements later. Meanwhile here is its first case. 

D A B C 

[ T Q R 

p s 

FIG. 3.15 
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PROPOSITION y'3: 1 = [1, 1,2]. 

PROOF We prove the equivalent result that (1+y'3):1 = [2,1]. Start with 
the square P, a gnomon Q + R + S of size 2P, and the square with side 
AC= y'3, size 3P (Fig. 3.16). We can check that !AB< BC< AB, since a 
gnomon with width ! AB is too small, while a gnomon of width AB is too big. 
Add a new gnomon T + U + V + W + X of size P to make the total width of 
added gnomons, BD, equal to AB; and append a rectangle Y with sides 
EA = AB and CD. We can see that Q = S, T = X = Y, and U = W. We 
now proceed to the anthyphairesis of EC : AB = ( 1 + y'3) : 1. 

EC - 2AB = BC with BC < AB, 

and, since AB = BD, 

BD - lBC = CD with CD < BC. 
Hence 

EC:AB = [2, 1,BC:CD]. 

We now prove that BC: CD= EC: AB. This is equivalent to the statement 
that the rectangle with sides AB and BC is equal to the rectangle with sides EC 
and CD; hence we must verify that 

that is, 

But 

hence 

and 

Thus 

R+ V=Y +T+ U, 

R=2T. 

2Q+R=2P, 

2Q + 2T + R = 2P + 2T, 

Q+T=P. 

R=2T, 
and the equality is established. 

E A B 

[ y T u 

Q R 
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Fm. 3.16 

C D 
v 

w 

x 

.... 



3.4 

Therefore 

and so 

The first attempt: The method of gnomons 

(1+y'3):1 =EC: AB= [2, 1, BC: CD] 

= [2, 1,EC:AB] 

= [2,1], 

y'3: 1 = [1, T,2]. 
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QED 

This result can be generalised many ways, as can be guessed from an inspection 
of Table 3.1. The following results suggest themselves almost immediately: 

y'(n2 - 1): 1 = [(n - 1), 1,2(n - 1)], 

y'(n2 + 2): 1 = [n, n, 2n], 

y'(n2 + n): 1 = [n, 2, 2n], 
2 --

y'(2n + n): y'2 = [n, 4, 2n]. 

The evaluation of further expansions suggests yet more results; for example, a 
table of y'n: y'3 will yield 

y'(3n2 + 2n): y'3 = [n, 3, 2n], and 

y'(3n2 + n): y'3 = [n, 6, 2n]. 

These expansions are particular cases of the result that 

y'(p2q + 2p): y'q = [p, q, 2p], 

the general form of the expansion which has two terms in its period; I shall give 
a geometrical derivation of this formula in the next section. All of these results 
can be verified with elaborations of the procedure used to evaluate y'3 : 1; I 
shall go on to consider a few examples, continuing as long as the procedures 
exhibit new features, and will discuss only the new features that enter each 
calculation. But first, let us relate what we have done so far to the propositions 
of Book II. 

The verification of y'2: 1 = [1, 2] started with the construction of a particular 
case of a figure of the type of II 4 or 7, to which a rectangle was appended to 
make a figure of type II 5 and 6. The lines y'n needed in this and other examples 
can all be constructed using II 14. The statement, in Fig. 3.15, that the square 
on AC is equal to 2P is a particular example of II 4, and that the rectangle 
contained by DC and BC can be decomposed into T + Q + R is an example of 
II 1. Figure 3.16 introduces the configuration of double gnomons of II 8 (except 
that, in this proposition, the gnomons are of equal width; we shall soon 
encounter examples of multiple equal gnomons), and the decomposition 
there of P into Q + 4 is an example of II 2, while the decomposition of the 
rectangle with sides AB and BC into R + U is an example of II 3. 
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Propositions II 1 to 10 refer to properties of the general configurations of 
Figs 3.1-10, each of which is based on "a line cut at random" (hos etuchen), 
while the configurations of Figs 3.15 and 3.16, which arise from particular 
anthyphairetic ratios, are precisely specified. (In fact, while Figs 3.15 and 3.16 
are drawn approximately to scale, in the following Figs 3.17-19 the correctly 
proportioned gnomons will be too narrow to be labelled conveniently.) My 
proposed interpretation is that the author of the archetype of Book II is 
introducing the type of figure and kind of argument that are needed for 
anthyphairetic calculations, but adapted into self-contained propositions or 
exercises that do not refer to anthyphairesis. Therefore general statements 
have been chosen to illustrate the particular kinds of manipulations that arise 
in anthyphairesis. So, for example, the very particular assertion, in Fig. 3.15, 
that 

AC2 = P + Q + R + S = P + 2P = 3P 

has become, in II 4, the general statement that 

AC2 = P + Q + R + S, 

and a variation, which introduces overlapping regions such as arise later in 
these anthyphairetic examples, occurs in II 7 

AC2 + R = 2(Q + R) + P. 

(This proposition reads: 

If a straight line be cut at random, the square on the whole and that on one of the 
segments both together are equal to twice the rectangle contained by the whole and the 
said segment and the square on the remaining segment.) 

Similarly, the configuration of Fig. 3.16 gives rise to the two variations of II 5 
and 6, according as whether the gnomon is added to or subtracted from the 
initial square. The correspondence between these anthyphairetic arguments and 
Book II will be of this nature, and my arguments can only be sustained if every 
proposition of Book II can eventually be accounted for in terms of some 
reasonable anthyphairetic procedure. The first method of gnomons will, in this 
sense, account for II 1-10 and 14. 

Let us return to further examples of this method of gnomons. 

PROPOSITION )(n2 - 1): 1 = [(n - 1), 1, 2(n - l)]. 

PROOF The Euclidean technique for handling a general proposition such as 
this, which I shall follow in this proof, is to consider the result for a small 
fixed typical value of n, e.g. n = 4. We construct Fig. 3.17 as follows: P1 is the 
square on p, P9 a square of size (n - 1)2P1 = 9P1, Qi+ Q1 + Q3 + R + S a 
gnomon of size 2(n - l)P1 = 6P1, so that AC= )15, the side of a square of 
size (n - 1)2P1 + 2(n - l)P1 = (n2 - l)P1 = 15P1; BD = AE = l; and FA= 
AB= (n - 1) = 3. As before, we verify that !AE <BC< AE. 
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F A E B CD 

FIG. 3.17 

The first two steps of the anthyphairesis of FC: AE = (3 + y'l5): 1 are 

FC-6AE= BC 

and, since AE = BD, 
BD- lBC=CD. 

Hence 
FC:AE = [6, l,BC:CD]. 
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We now prove that BC: CD = FC: AE, i.e. that BC. AE = FC. CD, i.e. that 

R+U=6T+U 

where T denotes the equal rectangles T 1, T 2 , and T 3 . But 

6Q+R = 6P1. 

So, adding 6T and observing that Q + T = P1, we get the result. QED 

PROPOSITION J(n2 + 2): 1 = [n, n, 2n]. 

REM ARK Instead of following the Euclidean technique of choosing a fixed n, 
e.g. n = 3, I shall here illustrate the point that a general proof involves little 
more than the device of writing Q1, Q2, Q3 as Q1, ... , Qn and recognising where 
to put the dots and the ns; this kind of notational trick is a modern way of 
automatically indicating generality of an argument. Euclid's use of everyday 
language, which does not permit the symbolic manipulation involved, does not 
allow him the possibility of that kind of expression of generality, but he seems 
aware of the underlying technique. For a clear and celebrated example, see his 
proof of IX 20. 

PROOF Construct Fig. 3.18 as follows: Start with a square Pn2 of size n2P1; 
add a gnomon Q1 + Q1 + · · · + Qn + R + S of size 2P1; add (n - 1) further 
gnomons of the same width; the total width of the gnomons will then be less 
than the unit (see below); so add a final gnomon T 1 + T 2 + · · · + T n + U 1 + 
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FIG. 3.18 

U 2 + · · · + Un + V + W + X to bring up the total width of added gnomons to the 
unit AB. Finally adjoin GA = AC. 

Thus the following lines have been constructed: AB, the assigned line; 
AC= n; AD= y'(n2 + 2); GD= n + y'(n2 + 2); CD= DD1 = D1D2 = · · · = 
Dn-2 E; and CF = AB. 

We need to check that (1/(n + l))AB <CD< (1/n)AB; this follows by the 
usual kind of argument, since (2n/(n + l))AB2+(l/(n+1)2)AB2 < 2P1 but 
(2n/n)AB2 + (1/n2)AB2 > 2P1. 

The first two steps of the anthyphairesis are: 

GD - 2nAB =CD, where CD < (1/n)AB, 

and, since AB = CF, 

CF - nCD = EF, where EF =AB - nCD <CD. 

Hence 
GD:AB = [2n,n,CD:EF]. 

Finally, we prove that CD: EF = GD: AB, i.e. since AB = CF, CD. CF = 
GD. EF. As before, this is equivalent to 

nR+ U = 2nT+ U, i.e. 2T = R. 

But, by the original construction, 

2nQ+R=2P1, 
and 

nQ+T = P1, 

from which the conclusion follows. QED 
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Fro. 3.19 

PROPOSITION J(2n2 + n): J2 = [n, 4, 2n]. 

When n is even, this case reduces to the result 

J(4n2 +n):1 = [2n,4,4n] 

which can be evaluated using the techniques already described. Therefore we 
need only consider the case of odd n, and Fig. 3.19 illustrates the case of n = 3, 
around which the reader is invited to construct a proof. 

The only new idea of the construction of the figure for this proposition is to 
start with a square P2 other than the given square P1; in fact, ratios of the form 
Jn: Jm are no more difficult to handle than ratios Jn: 1. So the reader is 
invited to investigate, in either the Euclidean or a more general geometric 
interpretation, the result: 

PROPOSITION J(mn2 + 2n): Jm = [n, m, 2n]. 

This shows that this method of gnomons can verify every expansion of the 
form Jn: Jm which has one or two terms in its period. We now move on to the 
case of periods of length three, which must therefore have the form [n, m, m, 2n] 
since the first two terms of the period are palindromic. The first such example 
of a ratio Jn: 1 occurs with n = 41: 

J41: 1 = [6, 2, 2, 12]. 

Since it is no more difficult to handle ratios of the form Jn: Jm, I shall 
illustrate the technique on a ratio involving smaller numbers. 
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PROPOSITION J5: J2 = [1, 1, 1, 2]. 

PROOF See Fig. 3.20: Start with a square P2 = 2P1; add a gnomon 
Q + R + S of size 3P1. By the usual argument, this gnomon will have a width 
less than J2, so we can add a further gnomon T + U + V + W + X to bring the 
total width of added gnomons up to J2. Adjoin the line FA = AB. Hence 
AB = J2; AC= J5; FC = J2 + J5; and AB= BD. We can check, as usual, 
that !AB< BC< AB. 

The first two steps of the anthyphairesis of FC: AB = ( J2 + J5) : J2 are 

FC - 2AB = BC, where BC < AB, 

and, since AB= BD, 

BD - lBC =CD where !BC< CD< BC. 

Let CE = CD; the third step is then 

BC- lCE =BE. 

Hence 
FC:AB = (J2 + J5): J2=[2,1, 1,CE:BE], 

and, as usual, we must now prove that 

FC: AB = CE: BE, i.e. FC. BE = AB. CE 

which is equivalent to 

2(Q - T) + (R - U) = U + V, 

i.e. 

2Q+R = 2T+2U + V. 

But 2Q + R is the first gnomon, of size 3P1, and 2T + 2U + V is the second 
gnomon, also of size 3P1. QED 
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The new feature of this proof is the third step of the anthyphairesis, which 
introduces a complication in which the second gnomon folds back in a 
comparison with the first. The most important details of this new figure 
occur in the square on BD, in the top right-hand corner, in which "a straight 
line is bisected, and a straight line is added to it in a straight line" exactly as in 
II 10. In fact my Fig. 3. lO(a), from which can be read off a proof of Euclid's 
Proposition 10 that conforms to the style of the proofs ofII4--8, is precisely the 
same as the top right-hand corner of Fig. 3.20, rotated through 180°. 

Most of the examples in Table 3.1 of ratios which have three terms in their 
period are special cases of the general result: 

PROPOSITION J(2n2 + 2n + 1): ../2 = [n, 1, 1, 2n ], 

that can be established by the same technique. The remaining cases are 

.,/41: 1=[6,2,2,12], and 

.,/37: .,/2 = [4,3,3,8], 

which can also be verified in the same way. However it is not easy, from an 
arithmetical search, as from an extension of Table 3.1, to find general formulae 
to describe these cases. In fact, with a bit of algebra (which I do not propose 
was available in any form to the Greeks) we can now easily derive the following 
general result: 

PROPOSITION J(n2m2 + n2 + 2nm + 1): J(m2 + 1) = [n,m,m,2n]. 

It is possible to verify this for small values of n and m by the same method, and 
even to see that this verification is perfectly general. 

The procedure can still be used for examples with four terms within the 
period, provided they involve only small numbers. For example, the table yields 

J7 : 1 = [2, 1, 1, 1, 4] 

and a short further search reveals 

.,/8: .,/3=[1,1, 1, 1,2], 

both examples of the general result: 

PROPOSITION J(3n2 + 4n + 1): .,/3 = [n, 1, 1, 1, 2n ]. 

It is even just possible to verify the 

PROPOSITION .,/13: 1=[3,1, 1, 1, 1, 6], 

which has five terms in its period, but anything that involves a longer period, or 
larger numbers within the period, becomes unfeasible. For example, the 
conjecture: 

HYPOTHESIS .,/19: 1 = [4, 2, 1, 3, 1, 2, 8] 

generates a figure that seems to me to defy analysis by this method. 
The new Appendix 10.3 takes up the story at this point. 
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3.5 THE SECOND ATTEMPJ: 
SYNTHESISING RATIOS 

3.5(a) Introduction 

Since the method of gnomons has run into difficulties, we now try a different 
kind of attack on the problem: we change direction, and approach a solution 
from the other side. Hitherto we had started in each case from a hypothesis that 

y'n: y'm = [no, n1, nz, ... , nki 2no] 

which was then actually handled in the equivalent form 

( y'n + nov'm): y'm = [2no, n1, ... , nk], 

and we exploited in an essential way the feature that this anthyphairesis was 
now purely periodic. Let us now instead try to explore the questions: can we 
construct the ratio whose anthyphairesis is some purely periodic expansion 
[no, n1, ... , nk], and can we then show how, or explain why, if no is even and 
n1, n2 , ••• , nk is palindromic, then this ratio will be of the form 
( y'n + ! nov'm) : y'm? The arguments that can be plausibly reconstructed 
within the Greek context will only give a very partial answer to these general 
problems; indeed the ultimate resolution of this question, to be described in 
Section 9.l(c), will require contributions from some of the most celebrated 
mathematicians of the seventeenth, eighteenth, and nineteenth centuries AD. 

3.5(b) The extreme and mean ratio 

These questions about purely periodic expansions have been phrased very 
generally in order to describe, at the outset, the approach and objective. Much 
more reasonable, as a reconstruction of ancient explorations, would be to study 
the particular ratios [T], [2], ... , [T,2], [T,3], ... , [2,T], [2, 3], ... , [ 1, 2, 3], .... 
The explicit surviving Greek evidence then relates only to the simplest case of 

[ T]: if a line AB is to be cut at the point C such that 

AB:AC= [T], 
then 

AB - lAC = CB with CB < AC 

and 
AB:AC = AC:CB. 

Hence, by the usual transformation of this proportion, the problem of finding 
C is precisely that solved by the construction of II 11: 

To cut a straight line [AB] so that the rectangle contained by the whole and one of the 
segments [CB] is equal to the square on the remaining segment [AC]. 

Euclid's construction is illustrated in Fig. 3.11: ABDE is the square on AB, F 
bisects AE, FG = FB, and AGHC is the square on AG. The proof is a 
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straightforward verification, using II 6 applied to GAFE, and Pythagoras' 
theorem applied to the triangle ABF. 

This construction is then invoked in IV 10: 

To construct an isosceles triangle having each of the angles at the base double of the 
remaining one. Let any straight line AB be set out, and let it be cut at the point C so that 
the rectangle contained by AB, BC is equal to the' square on CA; .... Therefore the 
isosceles triangle ABD [with AB= AD, and BD =AC] has been constructed having 
each of the angles at the base DB double of the remaining one, 

and this particular triangle is then used in IV 11: 

In a given circle to inscribe an equiangular and equilateral pentagon .... Let the isosceles 
triangle FGH be set out having each of the angles at G, H double the angle at F; ... 

Then the same construction, now described using proportion theory, is named 
at VI Definition 3: 

A straight line is said to have been cut in extreme and mean ratio (akron kai meson 
logon tetmesthai) when, as the whole line is to the greater segment, so is the greater to 
the less, 

and its metrical properties are explored in a series of propositions at the 
beginning of Book XIII. Finally, the properties of the extreme and mean ratio 
and the pentagon are used in XIII 8, 9, 11, 16, and 17. The only other surviving 
references to extreme and mean ratio are found in Ptolemy's Syntaxis, Pappus' 
Collection, Hypsicles' 'Book XIV' of the Elements, and an anonymous scho
lium on Book II of the Elements; no other Greek text of any kind makes any 
explicit allusion to the construction. 

3.5(c) The nth order extreme and mean ratio 

Consider now the case of [ 2]. The ratio )2: 1, the diagonal to side of a square, 
is [ 1, 2]; hence, if ABDE is the square on AB, then AB: (EB - AB) = [2]. We 
can construct the point C1 on AB with AC1 =EB - AB, as in Fig. 3.21, where 
EG =EB. IfC1C2 =AC,, then 

AB:AC1 = [2,AC1 :C2B]; 

so the rectangle contained by AB and C2B is equal to the square on AC1. 
This construction is reminiscent of II 11, and it prompts us to explore the 

following generalisations: 

DEFINITION The point C1 is said to divide AB in the noem ratio (read: nth 
order extreme and mean ratio) if, taking n points C1, C2, ... , Cn_ 1, Cn on AB 
such that AC, = C1 C2 = · · · = Cn-I Cn, then Cn lies between A and B, and 
AB. CnB = ACj. (See Fig. 3.22.) 

PROPOSITION If_C1 cuts AB in the noem ratio, then AB: AC, = [n]. 

PROOF AB: AC1 = [n, AC1: CnB], and AB: AC1 = AC1: CnB. QED 
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FIG. 3.21 

The definition of the noem ratio implies that CnB is less than AC,; it will be 
called the 'lesser segment' of the noem ratio. The 'greater segment' of the extreme 
and mean ratio generalises in two ways: to AC1, which will be called the 'initial 
segment' of the noem ratio; and to ACn, which will again be called the 'greater 
segment'. Care must sometimes be exercised in making the appropriate choice. 
I shall describe two typical results about the 3rd order ratio, but will indicate 
the generality of these kinds of procedures by labelling the division points C1, 
Cn-1, and Cn, thus following a compromise path between the different 
Euclidean and modern styles of handling general statements. 

CoNSTR UC TI ON To divide a line AB at C1 in the noem ratio, construct the 
square ABDE (see Fig. 3.23) and on AE, produced as necessary, take 
points F1,F2(=E),F3,F4, ... , with AF1=F1F2=F2F3, ... ; then these 
points will be used in the construction of the 1st, 2nd, 3rd, 4th, ... order 
extreme and mean ratios. To construct the nth order ratio, take G on EA 
produced with FnG = FnB, and C1 on AB with AC1 =AG. Let AC1 = 
C 1 C2 = · · · = Cn-1 Cn; we must prove that Cn lies between A and B and that 
AB. CnB = ACf. Now 

and 

But 

A 

FnG2 = (AFn + AG)2 = (AFn + AC,)2 

=AF~+ ACf + 2AFn. AC,, (by 114) 

2AFn . AC1 = nAE. AC, = AB. ACn-

FIG. 3.22 

B 
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Hence 
ACI +AB . ACn = AB2. 

Therefore ACn < AB and, subtracting AB. ACn from both sides, we see that 
ACI =AB. CnB. QED 

The case where n is even, n = 2m, is connected with the dimension of squares: 
here AFn = mAB, an integral multiple of AB, so FnB2 = (m2 + l)AB, and 
AC1 = y'(m2 + l)AB - mAB. If AB is the assigned line, then 

AB:AC1=1: (y'(m2 +1) -m) = [2m]. 

Thus we have again arrived, by a circuitous route, at the result that 

y'(m2 + 1): 1 = [m, 1: ( y'(m2 + 1) - m)] = [m, 2m ]. 

3.5(d) Elements XIII, 1-5 

The metrical properties of the extreme and mean ratio are considered in 
XIII 1-5, a series of propositions reminiscent of the style and techniques of 
Book II. All of these propositions can be easily generalised to the noem ratio; 
here, as an illustration, is XIII 1 followed by its generalisation: 
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If a straight line be cut in extreme and mean ratio, the square on the greater segment 
added to half of the whole is five-times the square on the half. • 

Euclid's proof is based on Fig. 3.24; the lettering of the vertices is his but the 
labelling of the regions has been added, for our convenience. He proceeds as 
follows. If AB is cut in extreme and mean ratio at C, and DA = ! AB, we must 
prove DC2 = 5AD2 . Draw the squares on DC and AB and complete the figure 
as shown. We then know that 

AB.CB=AC2 , i.e. P=Q, 
and that 

AB.AC= 2AD.AC, i.e. R = S1 + S2. 

Hence 
P + R = Q + S, + S2. 

Add AD2 = T, and assemble the result into squares: 

DC2 = AB2 +AD2. 

But AB2 = 4AD2, so DC2 = 5AD2. QED 

We tend, today, to refer to the extreme and mean ratio by its modern name, 
the 'golden section', and to arithmetise and identify it with the 'golden number', 
! ( )5 + 1). The proposition expresses this result in the equivalent Greek idiom: 
if AB = 2, twice some assigned line, then CD = )5, the side of a five-fold 
square, so we have proved that 

2:()5-1)=[1]. 

Note that this is not, nor can it be converted into, a ratio of two sides of integral 
squares. 

The generalisation of this proposition explains the role of the number 5: 

L---~--~F 
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Fro. 3.24 
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PR o Po s 1 TIO N If a straight line be cut in the noem ratio, the square on the 
initial segment added to n times the half of the whole is (n2 + 4) times the 
square on the half. 

PROOF If AB is cut in noem ratio at C1, and DnA =~AB, we must prove 
that DnCT = (n2 + 4)ADi (see Fig. 3. 25). Draw the squares on DnC1 and AB, 
and complete the figure as shown. We know that 

AB. CnB =ACT, i.e. P = Q 

and that 
AB. AC1 = 2AD1 . AC1, Le. R = 2S. 

Hence 
P+nR = Q + 2nS. 

Add AD~= n2T, and assemble the result into squares: 

DnCT = AB2 + n2T 

= (n2 + 4)T (since AB2 = 4T) 

= (n2 + 4)ADf. QED 

Propositions 2 to 5 of Book XIII can easily be generalised in this way; 
complete details are given in my article GGS. 

3.5(e) Further generalisations 

Now consider the problem of synthesising a ratio containing two terms in its 
period. In advance, I must say that I feel that this will be implausible as a 
reconstruction of a Greek procedure. 
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PROPOSITION If 

and 

are the first two steps of the anthyphairesis of the ratio ao : a, of two lines, and 
ao : a1 = [n, m], then 

PROOF Since [n, m] is an anthyphairetic ratio, n ;;:;, 1, m;;:;, 1, and a0 > a1. We 
have 

ao : a, = [n, m, az: a3] 

and hence, since the anthyphairesis is periodic, 

Hence 

and so 

ao. a1 = ao. (ma2 + a3) 

= mao . az + ao . a3 

= mao. az + a1 . az, 

=a, . (ao - az) 
2 = na1. QED 

Note that, although this proposition is expressed symbolically, everything can 
be interpreted as a shorthand for the geometrical manipulations of rectangles 
and squares. However, the algebraic content and the amount of autonomous 
identity that is attributed to the symbols and their manipulations are much 
greater here than anything we have so far encountered. 

We are really more concerned with the converse result: 

PROPOSITION If ao - na1 = az, where ao > a1 > az and mao. az = naf, 
then ao :a1 = [n,m]. 

PROOF Write a, - ma2 = a3; we want to prove that a3 < az and that 
az: a3 = ao: a,, i.e. that ao. a3 =a,. az. Now 

ao .a3 = ao. (a1 -ma2) 

= ao . a, - mao . az 
2 = ao .a, - na1 

=a,. (ao - na1) =a, .az. 

QED 
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CONSTRUCTION To divide AB at C1 so that AB:AC1 = [n,m] (see Fig. 
3.26, which illustrates the case of [4, 3]), first carry out a preliminary construc
tion to locate B' on AB with nAB'2 = mAB2; this can be done as follows, using 
II 14. Draw the square ABDE and, on EA produced, take J with nAJ = mAB. 
On EJ as diameter, draw a semicircle meeting AB at B'; then AJ .AE = AB'2, 
so nAB'2 = nAJ. AE = mAB2 . Next, on AE, produced if necessary, take the 
point Fm with AFm = !f AB; on EA produced, take G with FmG = FmB'; and 
C1 on AB with AC, =AG. Take C2, ... , Cn with AC, = C1 C2 = · · · = Cn-1 Cn; 
we shall prove that mAB. CnB = nACi. This verification follows the same 
pattern as the earlier constructions: 

But 

hence 

FmG2 = (AFm + AG)2 = (AFm +AC, )2 

=AF~+ ACT+ 2AFm. AC1 

=AF~ +ACT +mAB.AC,. 

ACT + mAB. AC1 = AB'2. 

J 

G 

A 

0 

G 

Fro. 3.26 
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Now multiply by n, and write nAB' 2 = mAB2 and nAC1 .= ACn; then 

nACf + mAB . ACn = mAB2 . 

Hence 

nACf = mAB2 - mnAB. AC, 

= mAB. (AB - nAC1) 

=mAB.CnB, 

and so AB:AC1 = [n,m]. 

If we take AB as the unit, we can evaluate AC, as follows: 

AC, = GFm - AFm 

= y'(AF~ + AB' 2) -AFm 

3.5 

QED 

With this evaluation, we can now synthesise the general ratio having the form 
[p, q, 2p ]. We start by writing q for n and 2p form, to get 

and hence 

[p, q, 2p l = v (p2 + 2:) : 1 

= y'(p2q + 2p): y'p. 

Thus we have proved that every ratio of the form [p, q, 2p] is indeed a ratio of 
sides of squares. 

It is possible to generalise this construction to the problem of cutting a line 
AB at a point C such that AB: AC has an arbitrary periodic expansion. We 
start again, with a similar result: 

PROPOSITION If AB: AC= [n1, n2, ... , nk], then there exist numbers p, q, 
and r, determined by n1, n2, ... , nk. such that 

pAB2 = qAB. AC+ rAC2, 

and conversely. 

Then a construction similar to that of Fig. 3.26, in which rAB' 2 = pAB2 and 
AF 3 =~AB, will yield the required division point. But the evaluation of p and q 
requires so much detailed symbolic manipulation that it is quite unthinkable as 
a reconstruction of an ancient procedure. More details of this construction, 
which is due to Christopher Zeeman, are given in my BTEE. 
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3.6 THE THIRD ATTEMPT: 
GENERALISED SIDES AND DIAGONALS 

3.6(a) The method 

We now take the procedure of sides and diagonals that was used in Section 
2.2(a) to compute the ratio J2: 1 and generalise it so that it will apply to a ratio 
Jn: Jm of any sides of squares. I shall discuss in more detail the historical 
evidence relating to the procedure in the next section; first, I describe its 
operation. 

Behind the construction of Fig. 2.l(a), repeated here as Fig. 3.27 (with a 
slight addition that makes explicit how the side of the larger square is 
constructed out of the diagonal plus side of the smaller), there lay a relation 

S=s+d 

D = 2s+d. 

There is no problem in drawing a square corresponding to a prescnpt10n 
S = as+ bd, for any values of a and b, and deriving the corresponding relation 
D = 2bs +ad; but only very special values of a and b will lead to the recursive 
behaviour which will confirm the periodicity of D: S = J2: 1 = [1, 2] (or, 
equivalently and more conveniently, of (S + D): S = (1+J2):1 = [2]); the 
reader is encouraged to draw the figure for a= 2, b = 3, and then try to use 
this to evaluate D: S, to see how the periodic behaviour fails to manifest itself, 
in contrast with the case of a = 3, b = 2. The historical evidence, plus some 
experience with anthyphairetic ratios, suggests that we look at the behaviour of 
the convergents to identify what is so special about the successful side and 
diagonal relations. 

The anthyphairesis and convergents can always be calculated using the 
algorithms of Section 2.3, though I shall now, for convenience, transpose the 
second and third lines of the standard format of Table 2.4 and will refer to 
the convergents as dk: sk (for diagonal and side, of course) rather than Pk: qk. 

For the example of J2: 1, we have: 

J2 = [1 2 2 2 2 ... ] 
Sk 1 2 5 12 29 
dk 1 3 7 17 41 

FIG. 3.27 
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The algorithm of2.3(c) described how to generate the successive convergents by 
the relations ' 

Sk+I = nk+JSk + Sk-1· 

dk+I = nk+ldk + dk-1· 

The side and diagonal numbers described by Theon (see Section 2.4(e)) and 
Proclus (see below) appear to be the different relations that, for the case of 
y'2: y'l, 

with 

so= do= 1; 

these also seem to generate the convergents. It is a plausible assertion that these 
two relations are equivalent; however, we do not attempt to prove this here, but 
immediately convert the arithmetical side and diagonal relation for y'2: 1 into a 
geometrical prescription for manipulating squares, which is then used to 
construct the particular figure which embodies the proof of our hypothesis 
about the periodicity of the anthyphairesis of D: S. The first stage of heuristic 
investigation of the convergents is then again left behind, incomplete but 
superseded. 

I encourage the reader to explore further how this new kind of relation is 
apparently satisfied by the convergents of any ratio, by looking at the sequence 
of convergents to ratios whose anthyphaireses have successively longer and 
longer periods which (for convenience only) contain only small terms: y'5: 1, 
y'3: 1, y'5: y'2, .... Here I shall present some of the conclusions of such an 
exploration, illustrated in the case of y'7 : 1. 

The algorithm of 2.3(b) applied to y'7: 1 gives, after fourteen lines of 
calculation: 

y'7 = [2 1 1 

1 2 3 

3 5 8 

4 

14 17 31 

37 45 82 

1 4 ... ] 

48 372 

127 717 

and so the main hypothesis we wish to prove is that y'7: 1 = [2, 1, 1, 1, 4]. Since 
the period is four terms long, we are led to seek a side and diagonal relation of 
the form 

Sk+4 = ask + bdk 

dk+4 = 7bsk + adko 

and further exploration suggests that the appropriate values of a and b always 
seem to be given by the convergent just before the occurrence of the end-of-
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period term '2no'; here the end-of-period term appears to be n4 = 4 = 2no, 
which suggests that a = 8 and b = 3. Hence we guess that 

Sk+4 = 8sk + 3dk 

dk+4 = 21sk + 8dk. 

(This 'penultimate' convergent 8 : 3 has a very special relation to the ratio 
J7: 1, some aspects of which have already been described in Section 2.4(e). The 
side and diagonal relation will thus always be built around solutions of Pell's 
equation; here &2 - 7.32 = 1.) 

We now convert this into a prescription for a geometrical construction: 

S = 8s+3d 

D = 21s+8d, 

which we apply to an appropriate figure built out of the lines 1 and J7. A 
convenient choice, which can be generalised to any ratio of sides of squares 
Jn: Jm, is a small parallelogram with one sides equal to the assigned line (or, 
in general, to Jm), one diagonal d equal to J7 (or, in general, to Jn), and the 
other side an integral multiple ps of s. The basic inequalities for the sides of 
the triangle (Elements I 20) tell us that p must satisfy d - s :::::; ps :::::; d + s, and 
hence, when d = J7 and s = 1, p = 2 or 3. Let us choose p = 2. So we take the 
parallelogram with sides s = 1 and 2s = 2, and (longer) diagonal d = J7, and 
apply the prescription to construct a larger similar parallelogram with shorter 
side S = 8s + 3d, and longer side 2S = 16s + 6d. Figure 3.28 illustrates this 
case of n = 7, m = 1, p = 2, a= 8, and b = 3, and once its complexities have 
been explained it can be seen to be a straightforward generalisation of Fig. 3.27 
with S = as+ bd. 

pbd 

S=as+bd 

d=Vn 

bs 
pS=p(as+bd) 

FIG. 3.28 
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We now evaluate the longer diagonal D of this larger parallelogram and 
verify that D = nbs +ad. But, from the figure, we see that 

AB= bs, DE= ad, EF = p2bs, 

so it remains only to calculate BD. We invoke Elements II 12: 

In obtuse-angled triangles the square on the side subtending the obtuse angle is greater 
than the squares on the sides containing the obtuse angle by twice the rectangle 
contained by one of the sides about the obtuse angle, namely that on which the 
perpendicular falls, and the straight line cut off outside by the perpendicular towards 
the obtuse angle, 

and apply it to ABG. Note that this triangle is obtuse-angled at B (since dis the 
longer diagonal of the parallelogram) and BD is equal to "twice [BC], ... , the 
straight line cut off outside [the triangle ABG] by the perpendicular [GC] 
towards the obtuse angle [at B]". Hence 

b2d 2 = b2s2 + p2b2s2 + bs. BD, 

and so, since d 2 = ns2, we get 

BD = (n - p2 - 1 )bs. 

(The derivation of this last statement should be interpreted in terms of the 
converse of II 1.) We now add AB, BD, DE, and EF, which gives 

D = nbs+ad, 

and the geometric prescription is confirmed. A different kind of figure, which 
generates an acute-angled triangle and which the reader is encouraged to 
explore, will occur when d is the shorter diagonal of the parallelogram; in 
this case the verification requires Elements II 13. 

Note that this construction can be carried out for any values of a and b. 
However, the next and final step depends in a subtle way on the underlying 
relation a2 - nb2 = ±1, but the general elucidation of this kind ofresult will not 
be achieved before the eighteenth and nineteenth centuries. So here we must 
leave the general case vn: vm and revert to the verification of the particular 
case of )7: 1 for which S = 8s + 3d and D = 2ls + 8d. We evaluate 
(2S + D) : S, as follows: 

(2S + D): S = [ 4, S: (D - 2S)] 

Hence )7: 1=[2,1, 1, 1,4]. 

= [ 4, (8s + 3d): (5s + 2d)] 

= [ 4, 1, (5s + 2d): (3s + d)] 

= [4,l,l,(3s+d):(2s+d)] 

= [ 4, 1, 1, 1, (2s + d): s] 

= [ 4, 1, 1, 1, (2S + D): SJ 

=[4,1,1,1]. 

QED 
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This method will appear to verify any example of a ratio of sides of squares, 
no matter how long its period may be and, in this sense, the problem is solved. 
However, I cannot conceive of a general proof which could be formulated 
within the techniques of Greek mathematics that this procedure will always 
work, no matter what values of n and mare chosen. Nor, as I observed earlier, 
do I know of any evidence that Greek mathematicians observed or explored 
the palindromic behaviour of these anthyphairetic ratios Jn: Jm, nor can I 
conceive of how Greek techniques could elucidate this result, even in any 
particular case. The eventual explanation of this general behaviour will take us 
into the nineteenth century, and will combine contributions by, among others, 
Fermat, Brouncker, Wallis, Euler, Lagrange, Legendre, and Galois. Details 
and references will be given in Section 9.l(c). 

3.6(b) Historical observations 

It is, at the very least, a noteworthy coincidence that the programme of the 
verification of anthyphairesis of sides of squares can be completed by a 
procedure whose only significant mathematical prerequisites, other than 
some very basic results of Book I of the Elements, are those two slightly 
incongruous Propositions 12 and 13 of Book II that were left over from our 
earlier partially successful assaults on the same problem. This correlation 
between mathematical problems and ancient evidence could immediately be 
carried further if I were to proceed, as I now could, to consideration of Book X, 
because just as the material of Book II seems to be connected with and 
preparatory for Book X (though this in a way that is difficult to accommodate 
in detail within many interpretations of Book II) so does this anthyphairetic 
interpretation of Book II lead into an anthyphairetic motivation of Book X. 
But to embark straightaway on this arduous topic would be to tax cruelly the 
stamina of even my most sympathetic reader, so I shall leave this next step until 
later (see Chapter 5) and will, in the next chapter, turn to a discussion of Plato's 
mathematics within this interpretation. 

Consider, now, the historical evidence concerning this procedure of 'sides 
and diagonals'. In the previous chapter (at 2.4(e)), I quoted, in its entirety, what 
Theon of Smyrna writes about side and diagonal numbers. Our other sources 
of information on the topic are Proclus' commentary on Plato's Republic 
(Proclus-Kroll, IR ii, 24-9), written in the fifth century AD, in which Proclus 
makes a wide variety of observations concerning Plato's mysterious nuptial 
number, Republic VIII, 546b-d, and Iamblichus-Pistelli, NA!, 91.3-93.6, which 
does not add anything further, so which I shall leave to one side here. Proclus' 
discussion of side and diagonal numbers starts at ii 24.16: 

The Pythagoreans demonstrate by numbers (dia ton arithmon) that the expressible 
(rhetos) [squares] constructed on the inexpressible (arrhetos) diagonals are greater or less 
than double by a unit. For since the unit is, generatively, everything, it is clear, they say, 
that it is both side and 'diagonal. So let there be two units, the one as side, the other as 
diagonal, ... 
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and the text continues in a very similar vein to Theon's description, with the 
addition only of a customary reference to Plato: ' 

Whence Plato said that the number forty-eight is a square of the expressible diagonal of 
five minus one, and of the inexpressible minus two, since the square of the diagonal is 
double that of the side [i.e. 48 = ( J(50 - 1) )2 - 1 = ( J50)2 - 2 where ( J50)2 = 2 x 52]. 

It seems apparent that both passages derive ultimately from a common 
archetype. I leave a detailed analysis of this textual question to others more 
competent than me (I know of no published discussion of this issue), and start 
with the following three observations: 

(i) The information that this construction derives from the Pythagoreans is 
found only in Proclus, not in Theon, though Theon does elsewhere frequently 
mention the Pythagoreans. Therefore, since both authors seem to be drawing 
on a common source, it is not improbable that this is an addition, either by 
Proclus himself or by some intermediate source of his text. 

(ii) Neither Theon nor Proclus actually demonstrates the arithmetical result 
that dk - 2s~ = ±1 in any sense beyond verifying that it seems to hold for the 
first few cases. 

(iii) The mathematical implications of the words (ar)rhetos are not entirely 
clear. (I shall return to this question in Section 5.2(a).) 

All of these points are further illustrated by the sentences with which this first 
passage from Proclus ends (ii 25.9-13): 

And if we take all the [squares] on the diagonals of this kind, of which each is greater or 
less than double by a unit, they will be really double: for instance nine and 49 [is double] 
of 25 and 4. This is why the Pythagoreans too had confidence in this method. 

After this inconsequential description of side and diagonal numbers, and 
after some obscure and sometimes corrupt passages in which Proclus discusses 
various apparently unrelated views of Dercyllides, Nicolas, Magnus, and 
Pythagoras, Proclus returns to considerations of sides and diagonals (IR ii, 
27.1-28.12): 

Since it is impossible that the diagonal be expressible when the side is expressible (since 
there does not exist a square number double of a square number, from which it is also 
clear that there are incommensurable (asummetros) magnitudes, and that Epicurus was 
wrong to make the atom a measure of every body, and Xenocrates was wrong to make 
the indivisible line the measure of lines) the Pythagoreans and Plato thought to say that, 
the side being expressible, the diagonal is not absolutely (haplos) expressible, but, in the 
squares whose sides they are, [the square of the diagonal] is either less by a unit or more 
by a unit than the double ratio which the diagonal ought to make: more, as for instance 
is 9 than 4, less as is for instance 49 than 25. The Pythagoreans put forward the following 
kind of elegant theorem of this, about the diagonals and sides, that when the diagonal 
receives the side of which it is diagonal it becomes a side, while the side, added to itself 
and receiving in addition its own diagonal, becomes a diagonal. And this is demon
strated by lines (grammikos) through the things in the second [book] of Elements by him. 
If a straight line be bisected and a straight line be added to it, the square on the whole 
line with the added straight line and the square on the latter by itself are together double 
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the square on the half and of the square on the straight line made up of the half and the 
added straight line. Let AB be a side and let BI' be equal to it, and let I' LI be the diagonal 
of AB, having a square double that of it [i.e. AB]; by the theorem, the square on ALI with 
that on LIG, will be double that on AB and on BLI. Of these, the square on LII' is double 
that on AB; and it remains that the square on ALI is double that on BLI, for if as whole is 
to whole, so is what is taken away to what is taken away, the remainder, also, will be to 
the remainder as the whole is to the whole. Then the diagonal I' LI, receiving in addition 
the side BI', is a side; and AB, taking in addition itself, [i.e.] the [side] BI', and its own 
diagonal I' LI, is a diagonal; for it has a square double that of the side [LIB]. These things, 
then, this way. Let us now prove by numbers (arithmetikos) the result on the expressible 
diagonals which are, as we said earlier, by a unit greater or less. Let there be a unit and 
let there be another unit around it; ... ; 

and with this Proclus reverts to another inconsequential description of side and 
diagonal numbers not dissimilar to Theon's and his own earlier description at ii 
24.11-25.6, but carried now up to a side of 12 and diagonal of 17. Let me 
continue the list of observations on these passages: 

(iv) Proclus, only, gives a description of an "elegant theorem" about side 
and diagonal lines. 

(v) This elegant theorem is said to be "demonstrated by lines through the 
things in the second book of Elements"-surely Euclid's Elements. (Alter
natively, the end of this phrase can be construed to mean "through the elements 
in the second book".) 

(vi) There is no proof of, or reference to, this elegant theorem in Elements II 
as we have it. 

(vii) Proclus cites the enunciation of Elements II 10 with slight, but surely 
unimportant, variations in the wording, and he uses this to verify the result. 

(viii) The manuscript of Proclus' commentary contains no figure but it seems 
certain that the configuration to which his text refers is that provided by the 
editor Kroll in his discussion of the passage (at ii 393-400), and given here as 
Fig. 3.29, through Kroll and most modern commentators continue the diagram 
further to the right. 

(ix) Proclus makes no further use of this elegant geometrical theorem but 
reverts abruptly, at the end, to a further inconsequential discussion of side and 
diagonal numbers. 

"A B r 
FIG. 3.29 
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(x) Anybody seeking a connection between the elegant theorem and Elements 
II, as we now have it, would be led to Propositions 6, 8 (perfiaps), and 10, since all 
of these propositions deal, more or less explicitly, with one line added to another 
(likes+ d), then with the line added to itself and added to the other (like 2s + d); 
and, of these, Propositions 6 and 8 involve rectangles, while 10 involves only 
squares. Thus the elegant theorem seems, in the allusive style in which such 
references are made in Greek mathematics, to be referring to II 10, and this 
proposition does indeed provide a quick proof; but it leads no further. 

(xi) Proclus' completion of the proof by invoking a general result on 
proportions, in fact Elements V 19 or VII 11, is unnecessarily and irrelevantly 
heavy-handed; all that is needed is Common Notion 3. 

To these, let me add the subjective opinion: 
(xii) Proclus' proof of the elegant theorem is pedestrian, unilluminating, and 

inconsequential, in contrast to the perspicuous proof based on Fig. 3.27. 
Now let me fit these observations together. Proclus and Theon are drawing on 

some earlier source, now lost to us. Either Theon's source is already less complete 
than Proclus', or Theon only abstracts a portion of it; in either case, having made 
observation (i) above, we can set Theon's testimony aside, as being contained 
within Proclus' text. Next, from (ii), we can infer that this earlier source did not 
contain a complete proof of the arithmetical results, though such is easy to 
provide since it follows from any acceptable description of the manipulation 

df+1 - 2~+! = (2sk + dk) 2 - 2(sk + dk) 2 = -(df - 2~) 

= ±(di1 - 2si) = ±1. 

Hence, we infer, this source may not have been primarily concerned with 
proving this relation, but with illustrating or investigating the connection 
between its essential ingredients: both side and diagonal equal to one as 
starting values; the recurrence relation for Sk and dk; and the relation 
df - 2s~ = ±1. This opinion is reinforced by the way the same discussion is 
repeated, each time at length. (Note also how, in my proposed reconstruction, 
it is not the proofs of these kinds of relations that is pertinent, but their 
association with a geometrical figure, and thence to the anthyphairesis of some 
ratio. So it would be more important to explore and understand these relations 
than to prove one particular example.) Observation (iv) was included to 
emphasise a feature that often passes without comment: that there are two 
distinct relations, one involving side and diagonal lines, the other side and 
diagonal numbers, and these are often conflated in discussions of the topic (see, 
for example, Heath, TBEE i, 398 ff.). Observations (v) and (vi) are compatible 
with a very wide range of explanations concerning the form and role of 
Elements II or its archetype, too wide to be described and analysed here; but 
observations (vii) to (xi) seem to indicate that the citation of II 10, along with 
the figure (see (viii)), and the details of the proof, was a later addition to the 
original text, possibly by Proclus or his source. 
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This leaves (xii). Underlying this observation is an inconsistency within 
Proclus' testimony, that the theorem as he describes and demonstrates it is not 
elegant. This is my subjective judgement but, as an illustration of how it does 
seem to be more widely held, see how the alternative proof by Fig. 3.27 is 
described by Heath, TBEE i, 400-1, as "an ingenious suggestion", and by 
Burkert, LSAP, 430, n. 16 (in a footnote which contains the only geometrical 
figure in this long book) as "still more perspicuous". Just as Meno's slaveboy 
must have marvelled at Socrates' ability to draw the figure which led to the 
solution of the problem of doubling a square (Meno 84d-e), so we can still 
marvel at the construction of Fig. 3.27, and the way this diagram makes evident 
the anthyphairesis of )2: 1. Moreover, Fig. 3.27 fits well in the style of attested 
fourth-century Greek mathematics, since it bears a striking resemblance to the 
successful Meno figure, as well as to the alternative reconstructed proof of 
Pythagoras' theorem II Sa (see Fig. 1.5 and its associated text, and Section 3.2, 
above); all consist of obliquely placed squares or rectangles within larger 
squares. And further, once this figure has been drawn, it is not too difficult 
to see some of the remarkable ways in which this simple construction can be 
exploited and generalised within the context of anthyphairetic mathematics. 
These qualities of simplicity, surprise, power, and generality are, today, some of 
the features that lead mathematicians to use words like 'elegant', and I can 
conceive of it being so also in antiquity. But, removed from its fertile context, 
for example as we find it in Proclus, the theorem scarcely seems to merit the 
description. 

I suggest therefore that Proclus' description of a figure in which "when the 
diagonal receives the side of which it is diagonal it becomes a side" may indeed 
originally have been a reference to the construction of Fig. 3.27, and that this 
construction was investigated in the context of its generalisation to diagrams 
like Fig. 3.28 with a view to proving the observed periodicity in the problem of 
the dimension of squares. Then, as the original anthyphairetic content was 
excised from the material to be included in Euclid's Elements, all that remained 
of this procedure were Elements II, Propositions 12 and 13, and a haunting 
echo of an elegant theorem about diagonals and sides. 

Finally, it is worth returning to the opening paragraph of this Section 3.6(b) 
and remarking that the detailed evaluations in Saito, IPPC and its extensions, 
have not yet thrown up any uses of II Propositions 12 and 13. 

3.7 SUMMARY 

My proposal is that Book II of the Elements may be a collection of figures and 
results whose connecting feature is that they arose in three different attempts to 
verify and explore the periodicity of the anthyphairetic ratios of incommen
surable sides of squares, Jn: Jm. Ultimately, the third and most involved 
method succeeded in' establishing a proof of periodicity in any given case, and 
each method shed some light on the phenomena involved. 
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3.8 NOTES AND REFERENCES 

3.2 The most common interpretation of Book II is in terms of what is now called 
'geometrical algebra', a name that was apparently coined by Tannery and 
Zeuthen for a much older point of view. This kind of interpretation has recently 
been the focus of vigorous argument; for a general discussion see Mueller, 
PMDSEE, 41-53 and 301-3, and Berggren, HGM, 397-8. My proposals here 
provide an entirely different reconstruction of the antecedents and original 
context of the book. For an illuminating and informed discussion of later uses of 
the propositions of Book II, see Saito, BTEE, and his catalogue in IPPC. 

3.3 The hypotheses about the periodic palindromic behaviour of y'n: y'm will be 
proved in Section 9. l(c). Lack of space has precluded any discussion of the 
Greek evidence on palindromes; I recommend the curious reader to start with 
Horsfall, SB, and the references contained therein. I cannot see any evident 
connection between this material and mathematics. I do not know of any 
palindromes in Plato's writings or other fourth-century texts beyond isolated 
words like apa, cocpoc, etc. 

3.4 There is a discussion that relates incommensurability, anthyphairesis, and Book 
II-style arguments in Zeuthen, CLAEE, but this only deals with a few simple 
cases; it does not involve the figures of II 5 and 6; and the arguments seem to be 
set in an arithmetised context. 

3.5(b) The extreme and mean ratio has been known under a variety of names. There is a 
brief history of these in the introduction to my GGS; in particular the most 
common name, the golden section, first seems to appear in a book by Martin 
Ohm, the younger brother of the physicist Georg Simon Ohm, in 1834 or 1835. 
The dramatically simple construction of the extreme and mean ratio of Fig. 3.30, 
based on the mid-points of two sides of an equilateral triangle inscribed in a 
circle, was published, perhaps for the first time, in 1984; see Odom, EP. I am 
indebted to Roger Herz-Fischler for much detailed information about the 
extreme and mean ratio; see Curchin & Fischler, HANTDEMR, DQDPR, 
and his monograph MHDEMR. 

FIG. 3.30 

3.6 I know of nowhere in the mathematical literature where the underlying property 
of the generalised method of sides and diagonals (that the convergents of a ratio 
y'm: y'n whose period contains p terms satisfies a recurrence relation of the form 
Sk+p = nask + bdb dk+p = mbsk + adk, where a: b is the convergent that occurs 
just before the end-of-period term 2n0) is proved. I am grateful to J. W. S. 
Cassels for sketching a proof of this result. 

On the contrast between arguments that proceed dia ton arithmon or dia ton 
grammon, see Neugebauer, HAMA ii, 771n.1. 
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PLATO'S MATHEMATICS 
CURRICULUM IN REPUBLIC VII 

4.1 PLATO AS MA THE MA TIC IAN 

My attitude to Plato and the Academy has been greatly influenced by the 
sceptical and rigorous analysis described in Cherniss, The Riddle of the Early 
Academy, especially Lectures 1 and 3 therein. And, to a historian of ancient 
mathematics, an additional riddle is raised by Cherniss's scrupulous 
exploration of the fragmentary evidence, in the tension between his conclusion, 
on the one hand, that: 

All the evidence points unmistakably to the same conclusion: the Academy was not a 
school in which an orthodox metaphysical doctrine was taught, or an association the 
members of which were expected to subscribe to the theory of ideas. . . . The 
metaphysical theories of the director were not in any way 'official' and the formal 
instruction in the Academy was restricted to mathematics [pp. 81 f.], 

and 

Philodemus says that mathematics made great progress under the direction of Plato, 
who formulated problems which the mathematicians zealously investigated. Proclus, 
too, in his famous summary, which appears to derive ultimately from the History of 
Mathematics written by Eudemus, credits Plato's concern for mathematics with the great 
progress of these studies and particularly of geometry. Besides Theaetetus, Leodamas, 
and Phillip of Opus, he names six specialists in mathematics who, he says, passed their 
time together in the Academy and pursued their investigations in common. [The next 
sentence will be quoted below.] [Plato] is said to have induced Phillip to turn his 
attention to the subject, to have originated the theorems about the section, the number 
of which Eudoxus increased, and to have communicated to Leodamas the method of 
analysis [p. 65], 

while, on the other hand, Cherniss is forced to add, in the sentence omitted 
from the previous quotation, that: 

It cannot be imagined that Plato taught any of these men mathematics, though he is 
said ... [p. 65, original italics]. 

This opinion is then amplified: 

Plato's influence on these men, then, was that of an intelligent critic of method, not that 
of a technical mathematician with the skill to make great discoveries of his own; and it 
was by his criticism of method, by his formulation of the broader problems to which the 
mathematician should address himself, and, as the summary of Proclus says, by arousing 
in those who took up phnosophy an interest in mathematics that he gave such a great 
impulse to the development of the science [p. 66]. 



104 Plato's mathematics curriculum in Republic VII 4.1 

(I have omitted the detailed references to ancient literature and modem 
scholarship that fill out these quotations; the reader is ·strongly encouraged 
to consult the original book and the cognate review article, Chemiss, PM.) I 
believe that, within my new interpretation, we may argue that while Plato's 
principal interest was in dialectic, for which he regarded mathematics only as a 
preliminary, he does none the less show detailed knowledge of important 
characteristics and problems of technical mathematics, and there is no indi
cation that he could not communicate on equal terms with the mathe
maticians who seem to have dominated, if not comprised, the group of 
friends and associates that assembled round him. This thesis I shall now 
attempt to illustrate by sketching an interpretation of his mathematics 
curriculum in Republic VII. 

This curriculum (Republic VII 52lc-531c) is proposed as part of the 
education of future guardians of the state; it will occupy men from age 
twenty (537b-c) to thirty (537d). It will be preceded by early training in 
childhood, imparted through play (536d-e), by sightseeing trips to the 
battlefield (537a), and by a two- or three-year break for gymnastics (537b), 
and only those who show promise will go on to study mathematics. At age 
thirty, and after a second selection, the students will pass on to a training in 
dialectic (537d-e) for five years (539e). They will then be compelled "to hold 
commands in war and other offices suitable to youth" for a further fifteen 
years, up to the age of fifty (539e-40a); and those who come through this 
programme of preparation will, from time to time for the rest of their lives, be 
called on to rule the state (540a-b). In this way, the objective will be achieved: 

What we require is that those who take office should not be lovers of rule. Otherwise 
there will be a contest with rival lovers. What others, then, will you compel to undertake 
the guardianship of the city than those who have most intelligence of the principles that 
are the means of good government and who possess distinctions of another kind and a 
life that is preferable to the political life? [52lb] 

This life is that of the true philosopher as conceived by Plato. A related 
programme of training for citizens of the state, at a lower technical level 
and excluding the training in dialectic, is described in Laws VII, especially at 
817e-822c. 

If this state is not to remain a day-dream, then the first generation of 
true philosophers must be trained. Plato finished the book with a chilling 
description of the speediest and easiest way of doing this (540e-54la). 

The curriculum is in five parts: arithmetike te kai logistike (524d-526c); 
plane geometry (526c-527c); three-dimensional geometry (528a-d); astronomy, 
which was prematurely introduced as the third subject (527d-528a), then 
replaced in this position by solid geometry and reintroduced as the fourth 
topic (528d-530c); and, finally, music theory (530d-531c). Plato emphasises, 
at the end of his description, that this is n'ot a disparate collection of topics 
(531c-d): 
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I take it that if the investigation of all these [mathematical] studies goes far enough to 
bring out their community and kinship with one another, and to infer their affinities, 
then to busy ourselves with them contributes to our desired end and the labour taken is 
not lost; but otherwise is in vain, ... , but it is a huge task .... Do we not know that all 
this is but the preamble of the law itself, the prelude of the strain we have to apprehend? 

It is such a unity that I shall emphasise, by illustrating how each topic can 
contribute to our understanding of ratio. (All quotations from the Republic will 
be given in the translation of P. Shorey in the Loeb Classical Library and 
reprinted in Plato, CD.) 

4.2 ARITHMETIKE TE KAI LOG/STIKE 

From the aphorisms of Heraclitus, for example Fragment 1: 

Tou de logou toud' eontos aei axunetoi ginontai anthropoi kai prosthen e akousai kai 
akousantes to proton . ... (Of the logos which is as I describe it men always prove to be 
uncomprehending, both before they have heard it and when once they have heard it .... ), 

and Fragment 50: 

Ouk emou alla tou logou akousantas homologein sophon estin hen panta einai (Listening 
not to me but to the logos it is wise to agree that all things are one), 

up to the opening sentence of St John's gospel: 

En arche en ho logos, kai ho logos en pros ton theon, kai theos ho logos (In the beginning 
was the word, and the word was with God, and God was the word (sic)), 

and beyond, the word logos has carried an enormous range of connotations. It 
occupies five dense columns of text in the Greek-English Lexicon by Liddell, 
Scott, & Jones, with a substantial entry in the Supplement; this is one of the 
longest entries in the whole lexicon. I shall here be concerned only with its very 
restricted range of mathematical meanings and uses. 

An unambiguous ingredient of our surviving contemporary references to 
Greek mathematical and scientific thought in the first half of the fourth century 
BC, especially in Plato's and Aristotle's writings, is the frequent appeal to the 
idea of logos as ratio, and the use of the derived words that may even have been 
coined by Plato and his associates: logistike, the art (i.e. techne, understood) of 
logos, usually translated as calculation, reckoning, computation, etc., and 
logismos, also used for calculation, reckoning, computation, etc. or, more 
abstractly, for judgement and rationality; an index to the occurrences in 
Plato, Archytas, Aristotle, and the pre-Socratic philosophers is given in an 
appendix to this chapter. While these words are used in a range of contexts and 
with a range of meanings that may be irrelevant to my mathematical enquiry 
here, a very substantial number of explicitly technical occurrences remain. And 
while, to many readers with other interests in mind, it often does not matter 
whether Plato is making a precise allusion to mathematics or not, the 
identification and interpretation of these references is crucial to a specialised 
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investigation of early Greek mathematics. So, to take one minute example, that 
the sentence: 

Logistike pou tis hemin hen techne [Statesman 259e] 

can be translated (by Skemp in Plato, CD) as 

There exists, we agree, an art of counting, 

or (by H. N. Fowler, in the Loeb Classical Library edition) as 

We recognised a sort of art of calculation 

may be a matter oflittle general concern; but we must here make a more serious 
attempt to identify just what Plato meant by logistike in this mathematical 
reference. This issue is complicated by three factors: 

(i) Plato frequently refers to both logistike and arithmetike together, some
times treating them as if they are overlapping parts of the same mathematical 
study; see, for example, the first part of the curriculum, which we shall be 
discussing in more detail below. Then, at other times, he is prepared to draw a 
fine distinction between them; see, in particular, Gorgias 451a--c, quoted in 
1.2( e ), and the related passage, Charm ides 165e-166a, which does not even 
mention arithmetike. In other contexts, for example Protagoras 356a-357b, he 
talks of metretike, the art of measurement, in similar terms: 

If the saving of our life depended on the choice of odd and even, and on knowing when 
to make the right choice of the greater and when of the less-taking each by itself or 
comparing it with the other, and whether near or distant-what would save our life? 
Would it not be knowledge; and knowledge of metretike, since the art here is concerned 
with excess and defect, and of arithmetike as it has to do with the odd and even? 

(ii) Logistike has an everyday meaning of practical calculation and financial 
accounts, and Plato himself uses it with this sense, for example at Philebus 
56d-57a, where he again talks of arithmetike, logistike, and metretike: 

Socrates: Are there not two kinds of arithmetike, that of the people and that of 
philosophers? ... And how about logistike and metretike as used in building and 
trade when compared with the geometry and logismoi studied (or practised) in 
philosophy (he kata philosophian geometria te kai logismoi katameletomenoi)-shall we 
speak of each of them as one or two? 
Protarchus: I should say that each of them was two. 

Similar references to everyday arithmetike and logistike can be found in the first 
part of the curriculum. I shall distinguish the two different types by talking of 
'practical' or 'theoretical' arithmetike and logistike. 

(iii) By the first century BC, at the latest, theoretical logistike had come to 
refer to that kind of artificial calculation that mathematicians tend to devise 
about numbered collections such as 'pebbles' or 'cattle on the isle of Sicily'; and 
neo-Platonic commentators, when discussing logistike, seem to dwell exclusively 
on this interpretation. See, for example, Proclus-Morrow, CFBEE, 38-40: 
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Others, like Geminus, think that mathematics should be divided differently; they think 
of one part as concerned with intelligibles only and of another as working with 
perceptibles and in contact with them. . . . Of the mathematics that deals with 
intelligibles they posit arithmetike and geometry as the two primary and most authentic 
parts, while the mathematics that attends to sensibles contains six sciences: mechanics, 
astronomy, optics, geodesy, canonics, and logistike . ... Geodesy and logistike are 
analogous to these sciences [sc. geometry and arithmetiki!j, since they discourse not 
about intelligible but about sensible numbers and figures .... Nor does the student of 
logistike consider the properties of number as such, but of numbers as present in sensible 
objects; and hence he gives them names from the things being numbered, calling them 
sheep numbers or cup numbers. 

Another such description, credited to Anatolius, is cited in the Heronian 
Definitions (Heron-Heiberg, Opera iv, 164); and an anonymous scholium to 
the passage at Charmides l 65e-l 66a gives a similar description of logistike as 
the science of numbered objects. (Both of these passages are translated in 
Thomas, SIHGMi, 16-19.) But in his discussion of the curriculum in Republic 
VII, Plato is emphatic that this theoretical arithmetike te kai logistike, his 
astronomy, and his music theory are theoretical sciences which do not concern 
themselves with sensibles. There is a great gulf between what Plato is describing 
and what the neo-Platonic commentators understand by these terms. So, for 
the moment, I shall continue to ignore the later evidence. 

A comprehensive discussion of logistike can be found in J. Klein, Greek 
Mathematical Thought and the Origin of Algebra. Since I agree in large 
measure with Klein's conclusion about the meaning of Plato's logistike, but 
wish to propose a different reconstruction of the mathematics that lies behind 
it, I would like to proceed by making explicit some of these agreements and 
divergences, and recommend this book for an immensely detailed enu
meration and evaluation of the evidence; and also the summary, with 
comprehensive references, in Burkert, LSAP, 446 n. 119. Klein concludes, 
and I concur, that 

The ['theory of ratios and proportions'] does seem identical with the 'theoretical logistic' 
postulated by Plato [p. 6], 

though I disagree with an implication of the word 'postulated', that while the 
possibility of this theory was assumed, little of it had actually been achieved. 
The next passages indicate Klein's conception of this theoretical logistic. (I 
have occasionally silently arranged the syntax of these quotations slightly to fit 
the context here, without, I hope, disturbing the sense of the originals. The 
italics and quotation marks are all Klein's. The first passage is followed by my 
annotations.) 

In the face of definite multitudes of things we habitually determine their exact number
we number, i.e., count, the things .... In order to be able to count we must know and 
distinguish the single nilrnbers, we must "distinguish the one and the two and the three" 
(to hen te kai ta duo kai ta tria diagignoskein-Republic VII, 522c). Plato calls the totality 



108 Plato's mathematics curriculum in Republic VII 4.2 

of this science of all possible numbers the 'art of number'-'arithmetic'. a But we are also 
in the habit of multiplying or dividing these multitudes. This mea!l'S that we are no longer 
satisfied with the number by which we have enumerated the things in question,h but 
that we bring to bear on this number new 'numbers', whether we wish to separate 
off a 'third' part of the respective quantity or wish to produce a multitude which 
amounts to 'four' times the given one.< In such multiplications and divisions, or, 
more generally, in all calculations which we impose on multitudes, we must know 
beforehand how the different numbers are related to one another and how they are 
constituted in themselves.d This whole science ... is called the 'art of calculation'
'logistic' [pp. 18-19]. 

Notes: 
a In fact, at Republic VII, 522c, Plato actually writes: "I mean, in sum, arithmos te 

kai logismos". See (i) above. 
b I take this and the following sentence to be a reference to the unit in which we 

are counting, which is then cut up or multiplied to make a new unit. But Plato 
insists, explicitly and emphatically, that this is not permitted in theoretical logistike; 
see Republic VII, 525e-526a. Klein is well aware of this, as the quotations below will 
indicate. 

c Klein rightly insists throughout on the concreteness of the Greek arithmoi as 
numbered collections of objects, as cardinal numbers; but he does not analyse how 
repetition numbers describe relations between these cardinal numbers. So here he must 
put 'third' and 'four times' in quotation marks, presumably because they are not 
cardinal numbers, and so do no fit within the scope of his arithmoi without some 
further explanation. See Section l.2(c). 

d This is, without doubt, a reference to the explanations of logistike at Gorgias 451a-c 
(quoted in 1.2(e)) and Charmides 165e-166a (quoted above). 

The reason why Klein needs such an elaborate description of multiplication 
and division is, I believe, partly because he has not identified the role of 
repetition numbers in Greek mathematics, but mainly because he cannot get 
away from the common conception that a ratio of two numbers must ultimately 
be manipulated and conceived mathematically as a fraction, or some more 
acceptable formulation of our idea of a fraction, and this contravenes the 
Platonic prohibition of "cutting up the unit" at Republic VII, 525e. This is 
made quite explicit in his Chapter 5, 'Theoretical Logistic and the Problem of 
Fractions', which opens: 

The question before us is: What prevents later writers from interpreting the arithmetical 
theory of relations, i.e., proportions, as theoretical logistic? [p. 37], 

and his answer follows: 

The crucial obstacle to theoretical logistic-keeping in mind its connection with 
calculation-arises from fractions, or more exactly, from the fractionalisation of the 
unit of calculation [p. 39], 

and 

A calculation which is intended to be as exact as possible simply cannot be effected 
within the realm of these pure numbers [whose noetic character is expressed precisely in 
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the indivisibility of the units]. The immediate consequence of this insight, at least within 
the Platonic tradition, is the exclusion of all computational problems from the realm of 
the 'pure' sciences [p. 43]. 

A further difficulty, suggested in the introduction, is not developed in detail: 

An additional reason was the elaboration of the theory of ratios into a general theory of 
proportion, which depended on the discovery of incommensurable magnitudes and 
which led altogether beyond the realm of counted collections [p. 7]. 

I shall postpone discussion of the topic of this last quotation until much later 
(see Sections 8.3 and 10.1) and here only comment that I find the choice of 
'depended' (beruhen, in the original German) puzzling. 

It is, I hope, now clear that it is possible to handle exact calculations, ratios 
of incommensurable magnitudes, approximations, and other such manipula
tions without transcending any of the restrictions on the arithmoi given in 
1.2(c); many anthyphairetic illustrations of such manipulations were given in 
Chapters 2 and 3, and further procedures based on other definitions will be 
described below, in Sections 4.4 and 4.5. The essential liberating step comes 
from rejecting the techniques and preoccupations of our own present-day 
brand of arithmetised mathematics, which is founded on the arithmetical 
manipulations of fractions, with its further extensions to real numbers and 
beyond, and developing in its place techniques more suited to the Greek 
context. 

I propose, then, that we should conceive of logistike (techne) and logismos as 
'ratio theory'. There are different varieties of ratio theory: I have, so far, 
developed only some of the theory of anthyphairetic logistike, but I shall also 
illustrate astronomical and music-theoretical logistike below and will introduce 
an accountant's ratio theory, with several variations, in Section 7.4(b). The 
unity of Plato's curriculum will then depend on being able to pass freely 
between these different ideas of ratio; we shall see how this will pose tricky 
problems for the mathematicians and will direct their attention away from the 
particular contexts of astronomy and music, towards abstract problems. Let us 
start by looking at Plato's description of arithmetike te kai logistike (Republic 
VII, 522c-526c), to see how well it corresponds to this point of view. 

The study of ratio is intimately bound up with the use and manipulations of 
the arithmoi; in fact ratios are characterised by various kinds of patterns that 
can then be described by sequences of numbers. In this manner arithmetike and 
logistike enter in a fundamental way. As Plato says: 

Is it not true of them that every art and science must necessarily partake of them? 
[sc. arithmos te kai logismos] [522c]. 

Plato describes how this study leads naturally to the awakening of thought by 
illustrating how the comparison of three lines (three fingers is the example he 
chooses in 523c-524c) leads to a true comparison, not of how they seem to 
appear-which may depend on how near or far each is-or of their irrelevant 
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characteristics of colour or touch or weight, but purely in relation to the "great 
and small". Now the theories of geometrical magnitudes, "abstract magnitudes, 
and number that we find in the Elements also develop and exploit this kind of 
comparison-"the less of the greater" (ho elasson tou meizonos) is an 
ubiquitous phrase in Elements V and VII-and this comparison of arithmoi 
and magnitudes is precisely the ingredient needed to define any kind of ratio 
(see, for example, my dialogues, B1-S13 and B36-s, and E61 and Bss-Ass, 
below). We shall see, indeed, that: 

It is one of those studies which we are seeking that naturally conduce to the awakening 
of thought [523a], 

and we will go on to see just how valid is the assertion (S43) that 

Studies that demand more toil in the learning and practice than this we shall not discover 
easily nor find many of them [526b], 

though the difficulty of the subject is offset by its extraordinary attractiveness 
and charm (cf. 528c--d). 

One feature of these ratios that has provoked a lot of subsequent toil is very 
strikingly evocative of the assertion that 

It occurs to me, now that the study of logismos has been mentioned, that there is 
something fine in it . . . that it strongly directs the soul upwards and compels it to 
discourse about pure numbers, never acquiescing if anybody proffers to it in the 
discussion numbers attached to visible and tangible bodies [525c-d]. 

Practical logistike-the activities of merchants and hucksters (525c), arith
metike, logistike, and metretike as used in building and trade (Philebus, 56e), 
and the calculation of financial accounts and taxes (see Chapter 7)-is mainly 
concerned with arithmetical calculations. But let us look more closely at what is 
implied by this arithmetic. The ontological status of arithmetic with ratios is far 
from evident, and my slaveboy's question at B32 is a blatant anachronism: 
however fluent we might now be in performing these kinds of operations, and 
however basic they might now be to the development of our kind of mathe
matics, they have presented enormous obstacles in the understanding of 
mathematics, both phylogenically and ontogenically. (It is not too difficult to 
explain to a beginner what we might want a fraction like 'five-eighths' to mean; 
but to explain, from basic principles, what a calculation like 'five-eighths 
divided by three-quarters' might reasonably signify is of a different order of 
difficulty, and I suspect that many who can perform such manipulations would 
have serious problems in elucidating what they are doing.) Moreover, we find 
little or no explicit trace of such fractional arithmetic in our evidence on Greek 
mathematics. As an illustration of this, observe how reactions to the text of the 
'arithmetical' Book VII of the Elements can vary from a recognition that this 
book does not seem to deal with the arithmetic of fractions in any form (see, for 
example, Mueller, PMDSEE, Chapters 2 and 3) to what I believe is a wholesale 
rewriting of this book in terms of fractional calculations (see, for example, van 
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der Waerden, SA, 48-9 and 110-16, quoted in Section 4.5(c), below), which 
then sometimes involves a comprehensive apparatus of equivalence relations, 
purely formal tricks of the last hundred years (see, for example, Taisbak, DL). I 
believe that my Socrates' reply S33 is also anachronistic: these topics are not 
found in the Elements, or elsewhere in early Greek mathematics, because they 
are not a part of the non-arithmetised mathematics which is being developed 
there, and neither my boy's question B32, nor the reply S33, fits naturally within 
this non-arithmetised approach. But if we excise these two speeches, and 
modify the dialogue at this point to: 

BOY32_4 : Well here's another question. Suppose we have three heaps of stones; how can 
we calculate the ratio of the first to the third from the ratio of the first to the second 
and the second to the third? Or a similar question about adding ... , 

we now have something that is historically acceptable and mathematically 
interesting; my slaveboy is now asking about the operation known to Euclid as 
'compounding' ratios. Not only is Euclid's text corrupt and confused (see the 
brief comments at the end of l.2(d), and the more detailed analysis to follow in 
Section 4.5(c), below) but also the underlying mathematical problem is 
curiously difficult. It is a remarkable feature of anthyphairetic and astro
nomical ratios that their arithmetic is intractable; it is difficult to pass 
directly from the information that y'2: 1 = [1, 2, 2, 2, ... ] and y'3: 1 = 
[1, 1, 2, 1, 2, 1, 2, ... ] to the results that y'6: 1 = [2, 2, 4, 2, 4, 2, 4, ... ] and that 
(y'2 + y'3): 1=[3,6, 1, 5, 7, 1, 1, ... ], where this latter ratio seems to exhibit no 
evident pattern and its evaluation, using the algorithms of Chapter 2, is a great 
deal more difficult than all of the ratios we have met so far except for the 
circumference and diameter of a circle. (This 'binomial' line y'2 + y'3 is one of 
the alogoi of the classification of Elements X; see Chapter 5, below.) Even the 
relation between the ratios b : c and 2b : c is far from obvious. As a modem 
textbook puts it: 

There is, however, another and yet more significant practical demand that the apparatus 
of continued fractions [i.e. anthyphairetic ratios, modern style] does not satisfy at all. 
Knowing the representations of several numbers we would like to be able, with relative 
ease, to find the representations of the simpler functions of these numbers (especially, 
their sum and product). In brief, for an apparatus to be suitable from a practical 
standpoint, it must admit sufficiently simple rules for arithmetical operations; otherwise 
it cannot serve as a tool for calculation. We know how convenient systematic fractions 
are in this respect. On the other hand, for continued fractions there are no practically 
applicable rules for arithmetical operations; even the problem of finding the continued 
fraction for a sum from the continued fractions representing the addends is exceedingly 
complicated, and unworkable in computational practice [Khinchin, CF, p. 20]. 

The situation is quite extraordinary: on the one hand, in the world of the 
sensibles, these everyday operations of arithmetic with general kinds of 
numbers are commo11place. We have many, many examples of financial 
accounts on papyrus from Graeco-Roman Egypt which contain explicit 



112 Plato's mathematics curriculum in Republic VII 4.2 

examples of such arithmetic, expressed throughout in unit fractions. This is 
practical logistike; there seems to be no insuperable difficulty in doing it, but it 
is very difficult to describe in any correct and complete way how it is done, or, 
at a more subtle level, to say just what is being done. (See the last part of 
S3s; more details of our evidence about these calculations will be given in 
Chapter 7.) In some kinds of theoretical logistike, on the other hand, we can 
define our terms precisely, but we cannot now perform some of these everyday 
manipulations. (Now see the beginning of S35). The reaction of a practical 
calculator to a description of the insights and power of this theoretical logistike 
is likely, even today, to be not dissimilar to the reception that Plato describes, at 
the beginning of Republic VII, 514a-518b, that will be accorded to someone 
who returns to the cave of shadows after seeing the reality of the world of 
sunlight outside! The final ironic twist in this story of the search for algorithms 
for arithmetic-that anthyphairetic arithmetic is actually not very difficult 
while decimal arithmetic is much more subtle than is generally thought-will be 
described in Section 9.3(a). 

So, on the one hand, theoretical logistike seems, in the ancient evidence, 
to show little preoccupation with the arithmetic of ratios and, even today, 
the corresponding mathematical problem of arithmetic with continued 
fractions is still little discussed because of its supposed difficulty. On the 
other hand, the cluster of mathematical ideas round the subject as described 
by Plato seems to involve the ingredients of 'the odd and the even', 'the 
greater and the less' (or 'the excess and the defect') and 'their mutual 
relationships'; does this resonate with anything of significance in connection 
with ratio theories? In fact, the associations, in particular with anthy
phairetic ratios, are now so rich and diverse that any attempt to enumerate 
them completely would spread through many pages, but here, in summary, 
are a few instances: 

(i) At the ground level of the definition and evaluation of any kind of ratio 
of two numbers or two magnitudes we shall need to manipulate 'the greater and 
the less' in some kind of comparison process (see S1 to S13 and the further 
definitions to follow); and this comparison tends to implicate arithmetike to 
describe the pattern of the process. In anthyphairesis, the even-numbered 
terms, no, n1, ... , describe subtractions from the initially larger pile, the odd, 
n1, n3 , ••• , from the initially smaller. 

(ii) Now ascend to the level of understanding some details of anthyphairetic 
ratios. Here the order relationship ('the less and greater') between ratios 
involves taking account, in a surprising and subtle way, of 'the less and the 
greater' numbers that arise in 'the odd and the even' steps; see S17 to B22, and 
s;, in Section 2.3(b ). 

(iii) Look now at the algorithms for calculating anthyphairetic ratios, 
described in Section 2.3. These are built around the alternating manipulations 
of under- and overestimates, 'the mutual relationship of the greater and the less 
and the odd and the even'. 
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(iv) Pass to the properties of anthyphairetic ratios as explored in Section 2.4. 
Again we find an increasingly subtle exploration of the greater and the less; 
and the odd-even parity enters in the behaviour of Pell's equation (see the 
generalised side and diameter numbers and Archimedes' Cattle Problem) in a 
way that still has not received a satisfactory characterisation. 

(v) There is an odd-even parity underlying the astronomical ratios to be 
described in Section 4.4, below, but it plays a less prominent role there. 

When I try to identify the mathematical features which underlie and 
permeate the definition, development, and application of anthyphairetic ratio 
theory, I find it hard to better these allusive descriptions that can be borrowed 
from Plato. 

4.3 PLANE AND SOLID GEOMETRY 

Plato does not tell us what his plane geometry is, but what it does (Republic VII 
526d-527c): 

[SOCRATES:] What we have to consider is whether the greater and more advanced part of 
it tends to facilitate the apprehension of the idea of good .... If it compels the soul to 
contemplate essence, it is suitable; if genesis, it is not .... [It] will not be disputed by 
those who have even a slight acquaintance with geometry, that this science is in direct 
contradiction with the language employed in it by its adepts .... Their language is 
most ludicrous, though they cannot help it, for they speak as if they were doing 
something and as if all their words were directed towards action. For all their talk is of 
squaring and applying and adding and the like, whereas in fact the real object of the 
entire study is pure knowledge ... the knowledge of that which always is, and not of a 
something which at some time comes into being and passes away. 

[GLAUCON:] ... Geometry is the knowledge of the eternally existent. ... 
[SOCRATES:] It would tend to draw the soul to truth, and would be productive of a 

philosophical attitude of mind, directing upward the faculties that now wrongly are 
turned earthward .... We must require that the men of your Fair City shall never 
neglect geometry, for even the by-products of such study are not slight. 

We can only infer from this that geometry is thought by Plato to be very 
important, but it is difficult to tell, from this report alone, just what kind of 
geometry is being referred to. 

About solid geometry, Plato is much more informative (528a-d): 

[SOCRATES:] After plane surfaces, we went on to solids in revolution [sc. astronomy] 
before studying them in themselves. The right way is next in order after the second 
dimension to take the third. This, I suppose, is the dimension of cubes (auxe kubiJn) 
and of everything that has depth. 

[GLAUCON:] ... But this subject does not appear to have been investigated yet. 
[SOCRATES:] There are two causes of that: first, inasmuch as no city holds them in 

honour, these enquiries are languidly pursued owing to their difficulty. And secondly, 
the investigators need a director, who is indispensable for success and who, to begin 
with, is not easy to find, and then, if he could be found, as things are now, seekers in 
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this field would be too arrogant to submit to his guidance. But if the state as a whole 
should join in superintending these studies and honour therrf, these specialists would 
accept advice, and continuous and strenuous investigation would bring out the truth. 
Since even now, lightly esteemed as they are by the multitude and hampered by the 
ignorance of their students as to the true reasons for pursuing them, they nevertheless 
in the face of all of these obstacles force their way by their inherent charm and it 
would not surprise us if the truth about them were made apparent. 

[GLAUCON:] It is true that they do possess an extraordinary attractiveness and charm. 

Note particularly how Plato insists that his solid geometry has "not been 
investigated", is "languidly pursued", is "lightly esteemed", is "hampered by 
ignorance", and is "absurdly neglected". 

The standard interpretations of this passage are that Plato is referring either 
to the construction of the regular solids, or to solid geometry in general, or to 
the duplication of the cube. However, this does not seem compatible with our 
evidence about Hippocrates, Archytas, and Theaetetus, which indicates that 
these subjects do "appear to have been investigated" by the specialists and are 
not "lightly esteemed by the multitude". Rather than develop these objections 
in detail here, I shall proceed directly to my alternative interpretation. 

The first stage of the problem of duplicating the cube is to find some 
geometrical configuration from which we can construct the double cube. 
This generalises the successful duplication of a square in the third section of 
Socrates' encounter with the slaveboy in the Meno, and we have evidence that 
this aspect of the problem for cubes had been resolved by the contributions of 
Hippocrates and Archytas, and perhaps even of Eudoxus and Plato, at the time 
of the composition of the Republic. We now try to pass to the next stage of the 
problem of duplicating the cube, and try to 'count up' the solution. This will 
correspond to the further stages in the problem of doubling (or tripling, etc.) 
the square, in which we evaluate the ratio y'2: 1 (or, more generally, the ratio 
y'n: y'm)-what I have called 'the dimension of squares'-and it will be my 
proposed interpretation of Plato's problem of the "dimension of cubes and 
everything that has depth" (Esti de pou touto peri ten ton kubi5n auxen kai to 
bathous metechon, 528b ). Since I have so heavily loaded the terminology by 
referring, in my S41 and throughout Chapter 3, to the earlier problem as the 
'dimension of squares', an explanation of the Greek text is perhaps in order at 
the outset. The word used here is auxe, as in deutera auxe, 'second dimension' 
or auxe kubon, 'dimension of cubes'. This carries connotations of growth and 
increase, as in the example at Republic VI 509b: ten genesin kai auxen kai 
trophen, "generation and growth and nurture"; also see the other examples in 
Liddell, Scott, & Jones, GEL. The first step in the plane problem is the 
generation (genesis) of the square (see Meno 82b--c or Elements 146). Then 
we pass on to the 'growth' of larger squares; for example, two juxtaposed 
squares can be converted into a double square (see Meno 82b-5c or Elements 
II 14) whose side is then 'counted up' (arithmeo, Meno 84a) in relation to the 
original square; three juxtaposed squares are converted into a triple square, 
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whose side is 'counted up' against the original and the double square, etc. In 
such a way, all squares can be systematically 'grown' and 'counted up' against 
each other in a programme that uncovers some remarkable mathematical 
phenomena, some of which were described in the previous chapter. (The 
interesting proposal that Plato is not completely satisfied with the conclusion 
of Socrates' encounter with the slaveboy in the Meno, since they do not attempt 
to 'count up' the side of the double square, is developed in Brown, PDSA.) 

Let us try a similar procedure for cubes, and so pass to this next step of trying 
to 'count up' the double cube. As with the dimension of squares (see Section 
3.3), we start with a heuristic exploration. The generalised Parmenides proposi
tion and a table of cubes up to 99 enable us to apply the algorithm of 2.3(c) to 
yield the expansion 

12: 1 = [1, 3, 1, 5, 1, 1, ... ] . 

No pattern is yet evident. A table of cubes up to 999 enables us to extend this 
calculation to 

12:1 = [1,3,l,5,1,1,4,1,1, ... ]. 

TABLE 4.1. Evaluation of 12: 1 = [1, 3, 1, 5, 1, 1, 4, 1, 1, ... ] 

New 
Under- Over- estimate Under/ An thy-
estimate estimate p:q p3 2q3 over phairesis 

0: 1 1: 0 1 : 1 1 2 under 
1 : 1 1: 0 2: 1 8 2 over 
1 : 1 2: 1 3:2 27 16 over 
1 : 1 3:2 4:3 64 54 over 3 
1 : 1 4:3 5:4 125 128 under 1 
5:4 4:3 9:7 729 686 over 
5:4 9:7 14: 11 2744 2662 over 
5:4 14: 1 19: 15 6859 6750 over 
5:4 19: 15 24: 19 13824 13 718 over 
5:4 24: 19 29:23 24389 24334 over 5 
5:4 29:23 34:27 39304 39366 under 

34:27 29 :23 63:50 250047 250000 over 
34:27 63: 50 97: 77 912 673 913066 under 
97:77 63: 50 160: 127 4096000 4096766 under 

160: 127 63: 50 223: 177 11089 567 11 090466 under 
223: 177 63: 50 286:227 23 393 656 23 394167 under 4 
286:227 63: 50 349:277 42 508 549 42 507 866 over 1 
286: 227 349: 277 635:504 256047 875 256048128 under 
635:504 349:277 984: 781 952 763904 952 759082 over -etc. 
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Still no pattern manifests itself. (The calculation so far is set out in Table 4.1. 
Note that it has already exceeded the standard Greek numeral system, to be 
described in Chapter 8.) The evaluation can be continued as long as the 
arithmetical operation of cubing the numbers is practically feasible, or we 
can go on to develop new and more elaborate procedures for extending the 
calculation further. The first 75 terms of the ratio are: 

~2: 1=[1,3,1,5, 1, 1,4, 1, 1,8, 1, 14, 1, 10,2, 1,4, 12,2,3, 

2, 1,3,4, 1, 1,2, 14,3, 12, 1, 15,3, 1,4,534, 1, 1,5, 1, 

1,121, 1,2,2,4, 10,3,2,2,41, 1, 1, l,3,7,2,2,9,4, 

1, 3, 7, 6, 1, 1, 2, 2, 9, 3, 1, 1, 69, 4, 4, ... ] . 

Still no hypothesis manifests itself; there is neither any apparent periodicity, 
nor any associated apparent systematic behaviour of p 3 - 2q3 that might lead 
to a generalisation of Pell's equation. The only regularity that persists, since it is 
a fundamental property of the Parmenides proposition and not of the particular 
example to which it is applied, is the behaviour of the cross-product of 
consecutive approximations in column 3 of Table 4.1: 

32 - 2. 4 = 1 

42 - 3. 5 = 1 

5.7-4.9=-l 

etc. 

The difficulty with the problem of the dimension of cubes is that we cannot 
even begin, at this stage, to formulate any hypothesis that we could attempt to 
prove. The hunt for results cannot start until we have identified the quarry. 

This problem is still only partially understood. It was not until Gauss's work 
on the continued fraction expansion of a randomly chosen real number, a 
problem that he abandoned incomplete because of its difficulty, that any 
reasonable general hypothesis could be formulated, and only very partial 
results have so far been established, notwithstanding more and more extended 
explorations made possible by the development of electronic computers; see, 
for example, von Neumann and Tuckerman, CFE, and Churchhouse and 
Muir, CFANMI. Alternatively we might ask the simpler question: are the terms 
bounded or, if not, can we obtain some idea of their rate of growth? Again, only 
partial results have been found, very weak bounds like nk < abk where a> 1 
and b > 1. More explanations and details will be given in Section 9.2(c). 

Within this interpretation, Plato's words about the problem of the dimension 
of cubes can apply, in their entirety, to this problem today; and we still have no 
informed idea of its possible ramifications, though the charm of the problem 
still attracts a few mathematicians. But I have tried, in my description, to show 
how this problem also fits naturally within an anthyphairetic formulation of 
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early Greek mathematics, and Plato's words can fit no less appropriately there 
also, without any anachronism. Moreover we can now go back to Plato's plane 
geometry. We read later that 

It is by means of problems, then, as in the study of geometry, that we will pursue 
astronomy ... [Republic VII, 530b]. 

Plato does not appeal to the deductive method, the proving of theorems, or the 
development of formal theories, but to "problems". I propose that one of the 
things that has so impressed Plato about geometry is the initial success there of 
the anthyphairetic programme: the fruitful pursuit of problems such as my 
Socrates outlined at S41. I shall describe, in Chapter 5, how a clever kind of 
argument enables this programme to be extended further to yield some 
information about the circumdiameter and side of the pentagon and the 
circumdiameter and edge of all the regular solids, and so provide an interpreta
tion of, and motivation for, Book X of the Elements and bring out its 
relationship to Books II, IV, and XIII. In this way Books X and XIII, which 
surely deserve the description as "the greater and more advanced parts" of 
geometry (Republic VII, 526e), will be seen to fit together within the anthy
phairetic programme. But I know of no technique, even today, that will yield 
any anthyphairetic result about any other problem in solid geometry. 

4.4 ACADEMIC ASTRONOMY 

4.4(a) Introduction 

Plato's views on theoretical astronomy have earned him the contempt of 
observational and computational astronomers. In answer to Glaucon's query 
about 

How . . . ought astronomy to be taught contrary to the present fashion if it is to be 
learned in a way to conduce to our purpose? [529c], 

Socrates explains (529c-530c): 

These sparks that paint the sky, since they are decorations on a visible surface, we must 
regard, to be sure, as the fairest and most exact of material things; but we must recognise 
that they fall far short of the truth, the movements, namely, of real speed and real 
slowness in true number and in all true figures both in relation to one another and as 
vehicles of the things they carry and contain. These can be apprehended only by reason 
(logos) and thought, but not by sight .... We must use the blazonry of the heavens as 
patterns to aid in the study of those realities, just as one would do who chanced upon 
diagrams drawn with special care and elaboration by Daedalus or some other craftsman 
or painter. For anyone acquainted with geometry who saw such designs would admit the 
beauty of the workmanship, but would think it absurd to examine them seriously in the 
expectation of finding in them the absolute truth with regard to equals or doubles or any 
other ratio (ison e diplasion e alles tinos summetrias) . ... Do you not think that one who 
was an astronomer in very truth would feel in the same way when he turned his eyes 
upon the movements of the stars? He will be willing to concede that the artisan of heaven 
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fashioned it and all that it contains in the best possible manner for such a fabric; but 
when it comes to the proportions of day and night, and of their relation to the month, 
and that of the month to the year, and of the other stars to these and one another, do 
you not suppose that he will regard as a very strange fellow the man who believes that 
these things go on forever without change or the least deviation .... It is by means of 
problems, then, as in the study of geometry, that we will pursue astronomy too, and we 
will let be the things in the heavens, if we are to have a part in the true science of 
astronomy. 
[Glaucon:] You enjoin a task that will multiply the labour of our present study of 
astronomy many times. 

There is a related passage at Timaeus, 37c-39e, where Plato describes how the 
universe was made out of uniformly rotating motions which generate time and 
the pattern of eternal nature. See, for example, 39b-c: 

In order that there might be a clear measure of the relative speeds, slow and quick, ... God 
kindled a light which we now call the Sun, to the end that it might shine, so far as 
possible, throughout the whole Heaven, and that all the living creatures entitled thereto 
might participate in number, learning it from the revolution of the Same and Similar. In 
this wise and for these reasons were generated Night and Day, which are the revolution 
of the one and most intelligent circuit; and Month, every time that the Moon having 
completed her own orbit overtakes the Sun; and Year, as often as the Sun has completed 
his own orbit .... [Translation by R. G. Bury, in the Loeb Classical Library.] 

I shall again describe my interpretation by a dialogue in which my slaveboy 
shows further evidence of his considerable mathematical abilities. The subject 
will again be "the absolute truth in regard to equals or doubles or any other 
ratio", but now in the context of "the relation [of the day] to the month, and 
that of the month to the year". 

4.4(b) The slaveboy meets Eudoxus 

BOY44 : Excuse me, Eudoxus, Socrates told me [see S35] that you astronomers have your 
own way of handling ratios. Would you explain it to me? 

EUDOxus45 : How do you think the relationship of day to month can best be described? 
BOY46 : Well, I could do the reciprocal subtraction process, but I can't now point to 

heaps of stones or manipulations with geometric figures while I'm doing it. 
EUDOxus47 : Yes, that technique is well adapted to arithmetike and geometry, but it 

doesn't seem to be the right thing for astronomy. Tell me: what would happen if the 
lunar month was always thirty days long? 

BOY4g: I suppose that the next new moon would always appear sometime on the thirty
first day after the previous one. 

EUDOXUS49: Anytime? 
BOY50 : That's possible. I've heard talk of astronomical anomalies, variations in the 

regularity of the heavens, so that the month could sometimes be a bit shorter, 
sometimes a bit longer, provided the new moon always appeared sometime on the 
thirty-first day after the previous new moon. 

Eunoxus51 : Let's do some theoretical astronomy. Suppose that the motions are uni
form, and go on forever without change or the least deviation, and that the month is 
exactly thirty days long. 
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BOY52 : Then the moment of new moon must always take place at the same time on the 
thirty-first day after the previous new moon. 

EUDOXUS53: Why? 
BOY54: If it didn't, it would slowly creep backwards or forwards through the day. Now 

the first time the new moon can actually be observed is at dusk just after sunset. So, if 
the new month starts at the sunset of this observation, and if the moment of new 
moon is actually creeping forwards in time, then eventually one month will start with 
a thin observable crescent and the next month will start with a thick crescent, thirty
one days later. Or, if the month were a bit shorter than thirty days, it would eventually 
give rise to a twenty-nine day month, in the same kind of way. 

EUDoxus55 : Let's draw this out schematically on a line which represents time flowing by 
uniformly. We'll mark each sunset, the beginning of each day, to give a scale of equal 
time intervals: 

Then, on the same line, we mark off the conjunction of sun and moon, the theoretical 
moment of new moon. For convenience, I'll suppose the 'month' is very short, just 
one or two days long, or the line will have to stretch out a very long way for us to see 
what's happening: 

BOY56: It's beginning to look like geometry now. 
EUDOXUS57: Yes, you can do the same thing with two lines or two numbers. But don't be 

misled by first appearances; I haven't been able to find any problems of interest in 
geometry with this yet-just a few formal definitions and propositions about ratio and 
proportion. 

BOY58 : I see now how you're using the day like the dripping of a water-clock, to mark 
the rhythm of the passage of time. 

Euooxus59: Then describe the rhythm of the months. 
BOY60 : You mean the pattern of Ds and Ms? I can simply say: 

where D&M denotes a conjunction at sunset that I can suppose starts the sequence; 
you did say that we were doing theoretical astronomy! Or I can say: a one-day month, 
a one-day month, a two-day month, a one-day month, a two-day month, etc., and 
then I can code it as { ... , *1*, 1, 2, 1, 2, ... } where those asterisks again indicate the 
coincidence. I'm also supposing here that the new month always starts at the sunset 
coinciding with or following conjunction, and that's another highly theoretical 
supposition. 

EUDOXUS61: These sequences are the astronomical ratios, of course. Can any sequence of 
numbers arise in this way? 

BOY62 : Clearly not. You couldn't have { ... ,1,2,3, ... } or, for subtler reasons, 
{ ... , 1, 1, 2, 2, ... } ; I wonder how you can distinguish a permitted sequence? I 
suppose, just like anthyphairetic ratios, that there must be lots of information 
coded in those numbers. 
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EUDOXUS63: Quite so. Here's an example of a longer sequence; see if you can decode it: 

{ ... , *1*, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, *1*, ... }. 

BOY64: Since it contains two pairs of asterisks it must be a commensurable ratio and 
then-because I can count the numbers and the commas and do a bit of fiddling at the 
ends-I can see that twenty-nine commas represent thirty months, while the ones and 
twos, added together, make forty-two which represents forty-three days. So it's the 
ratio 43: 30. 

Incidentally I can represent that 43: 30 anthyphairetically as [l, 2, 3, 4]; and that 
seems to me to be shorter, neater, and clearer. 

Eunoxus65 : Socrates told me that you were quick! But I did help you a lot by that gift of 
two coincidences; what would you have done without them? And you are right: these 
astronomical ratios are very dilute, small beer compared with the pure spirit of 
anthyphairetic ratios. 

BOY66: I can't yet see what to do if there aren't any coincidences. But I can see how that 
first anthyphairetic term no = 1 comes from the way that the astronomical sequence 
contains only ones and twos, since that means that the month is more than one but 
less than two days long. So the interval between D1 and M1 will give the difference 
between a day and a month, here less than a day; then the interval between D2 and M2 

is twice that difference, still less than a day; but the interval between D3 and M3, three
times that difference, is bigger than a day, since the third month contains an extra day. 
So n1 = 2. I suppose that now that new remainder, the interval between M1 and D3, 
between two months and three days-that's a convergent!---can be measured against 
the previous remainder, the difference between D 1 and M1, in one of the larger 
patterns that seem to occur in the sequence. 

Eunoxus67 : Not bad! Since you're obviously so keen on anthyphairetic ratios, I'll show 
you how to generate the astronomical ratio which corresponds to the anthyphairetic 
ratio [l, 2, 3, 4, ... ]. I'll describe longer and longer sequences which start from an 
initial coincidence Mo&D0 . I, too, can only see how to do this starting from a 
coincidence, though I can also see that lots of these astronomical ratios won't ever 
have a coincidence in them, however far you go backwards or forwards through them. 

Since no= 1, we must start M&D D M, .... Let's call that initial pattern So-that 
doesn't include the coincidence M&D; so So = D M. In fact, it's better, for the 
moment, to forget that initial coincidence. 

Since n1 = 2, we now repeat this pattern So twice, and then we'll have to slip in an 
extra day: DM DM D. Let's call that S1 and write S1 = s31 D. 

Now we look at the interval from M2 to D3, and compare that with D1 to M1. Since 
n1 = 3, when Mz to D3 has been repeated three-times it will still be less than D1 to M1 
but, on the next time, we'll have to slip in an extra D1 to M1. So we get S2 = 
DMDMD DMDMD DMDMD DM = S~2 S0 . At the end of that, we have the 
interval from D10 to M7-another convergent! 

Next, since n3 = 4, we repeat S2 four-times and then, on the next time round, we 
have to slip in an extra S1 sequence; so S3 = S~' S1. Work it out, and you'll see we get 
the sequence I've been talking about [in Ess and E63, above]. 

If the anthyphairetic ratio terminated there, [l, 2, 3, 4], this would end with a 
coincidence. Now you know that terminating anthyphairetic sequences behave as if 
they finish with very, very big numbers [see S~ 1 in Section 2.3(b)]. So if it wasn't 



4.4 Academic astronomy 121 

exactly terminating, but actually was [1, 2, 3, 4, 1 0000 0000, ... ]-that myriad-myriad 
is an everyday approximation to infinity-then, as this cycle S3 was repeated, so the 
gap between M3o and D43 would be doubled to M6o to Ds6, tripled to Mgo to D129, and 
so on, and would eventually manifest itself. (If, on the other hand, D43 came before 
M30 , then we'd be dealing with a ratio like [1, 2, 3, 3, 1, 100000000, ... ], which is close 
to but bigger than [1, 2, 3, 4,]-this time the month is slightly longer.) This is another 
illustration of how these large terms in anthyphairetic expansions code large amounts 
of information; an astronomical ratio would have to go on for scores of myriads of 
myriads of terms to encode this same information. But theoretical astronomy doesn't 
face any problems with detecting exact coincidences; it exploits the repetition of 
precisely uniform events and the 'before, coincident, or after' in exactly the same way 
that geometry exploits addition and the 'less, equal, or greater'. Complaining that the 
heavens aren't like that, or saying that these kinds of measurements aren't possible, is 
like objecting that a geometer's figure of a circle isn't exactly round. 

Do you follow? 
BOY68 : I'm sorry, Eudoxus, I wasn't listening! Take that long sequence you gave me 

and count the number of one-day months lying between consecutive two-day 
months and add one to each. (That's probably just the usual trouble with counting 
points and intervals, that there's always one more point than intervals.) This gives a 
sequence: 

{ ... '*3*, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, *3*, ... }. 

Note that this sequence contains just twos and threes. Now count the number of twos 
between the threes and add one to each:{ ... , *3*, 3, 3, *3*, ... }. I think this tells you 
that the anthyphairetic ratio is [1 2, 3, ... ] and, since this contains four terms-those 
coincidences introduce complications, and I think incommensurable ratios without 
coincidences may be easier to handle-I think I can deduce from this that n4 = 4. 
And I think that the sequences that arise as astronomical ratios are precisely those 
that, when you go on transforming them in this way, will always generate new 
sequences only containing ns and (n + 1 )s, where that n will be the next term of the 
corresponding anthyphairetic ratio. 

EUDOXUS69: That's brilliant! Let me think. 
[And they both walk off, thinking.] 

4.4(c) Egyptian and early Greek astronomy 

One feature of the early phase of astronomy in Egypt and Greece, parallel to 
and distinct from the cosmological speculations of pre-Socratic philosophers, 
is the construction of cyclical calendars. The earliest Greek examples, known 
as parapegmata, are associated with the names of Meton, Euctemon, Demo
critus, Eudoxus, and Callippus, and several examples survive, either directly 
on papyrus or stone, or indirectly, as described by later authors. There is an 
enormous literature on these parapegmata which I shall not attempt to 
describe here; it is summarised and reviewed in Neugebauer, History of 
Ancient Mathematical Astronomy ii, 615-29. Lunar calendars and the pheno
mena of first and last visibility of the moon (see B54) are very clearly 
described and analysed in Parker, The Calendars of Ancient Egypt. Also see 
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Bulmer-Thomas, PA; Goldstein & Bowen, NVEGA; Riddell, EMES; and van 
der Waerden, GAC. 

Any discussion of calendars is complicated by the distinction that must be 
made between solar and lunar calendars, a distinction that frequently corre
sponded, in ancient astronomy, to the difference between civil and astro
nomical calendars. The solar calendar is based on the movement of the sun 
through the zodiac: the year therefore has 12 zodiacal months, each 30 or 31 
days long. In a lunar calendar, the first day of the month is tied to some lunar 
phenomenon, for example the appearance of the new crescent after sunset, the 
last appearance or first disappearance of the old crescent before sunrise, or the 
observation or estimation of the moment of full moon; the lunar month is 29 or 
30 days long; and the year will contain either 12 or 13 lunar months. 

Another complication is caused by astronomical anomaly. Since the motions 
of the heavenly bodies vary in speed, the intervals they determine will vary in 
duration. Here are two examples. First, while the mean synodic month 
(conjunction to conjunction, averaged) is 29·530 59 days, the synodic months 
themselves may vary between about 29 ! and 29 ~ days long, and the observa
tions of crescent visibility in Egypt can give up to three 29-day or five 30-day 
lunar months in a row. Second, because the sun's motion is not uniform, the 
intervals between the solstices and equinoxes will vary during the year. These 
periods, starting with the summer solstice, are 92, 89, 90, and 94 days long, and 
they are so given in Callippus' parapegma as reported in the 'Eudoxus 
papyrus', P. Par. 1. (Geminus' later description of Callippus' parapegma is 
slightly different; see Neugebauer, HAMA ii, 627, n. 9.) On the other hand, 
Eudoxus' parapegma, as described in this same text, apparently makes these 
intervals into [91], 92, 91, and 91 days (the slight doubt is caused by restoration 
of damaged text), in clear defiance of the other recorded calendric evidence 
and astronomical observations. In my interpretation of Plato's astronomy, I 
consider a kind of theoretical astronomy in which anomaly is ignored (see 
E41-s1), and I suggest that Eudoxus may indeed have been involved in this kind 
of study. 

Here, briefly, are some examples of ancient cyclical calendars. First a 
Greek text which contains an early lunar calendar: P. Ryl. [inv.] 666 = P. 
Ryl. iv 589, dated 180Bc, first published in Turner & Neugebauer, GDNM. 
This starts with a list of financial accounts, perhaps owed by the members of 
a gymnasium, on which interest is charged at the implied rate of two per cent 
per month; then the second half of the text is a lunar calendar. This calendar 
omits the meteorological, astronomical, and religious data that is a feature of 
most of the surviving Greek parapegmata and, in the preserved section at 
least, and despite what it says in its introduction, it simply lists lunar months. 
The text reads: 

Year 1 of Queen Cleopatra and King Ptolemy the son, gods Epiphaneis. Parapegma 
of lunar new moons, showing how they are related to the days of the Egyptian 
twelvemonth. The period of the table is twenty-five years, three hundred and nine 
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months [including intercalary months], nine thousand one hundred and twenty-five 
days. It indicates the lunar months and which of them are full [i.e. 30 days long], 
which hollow [i.e. 29 days long], which intercalated [i.e. the 13th month]; and in what 
sign of the Zodiac the sun will be during each month. When the sun has traversed the 
twenty-five years it will return to the same starting point and revolve in the same 
manner .... The lunar new moons in the first year are 

Thoth 20 
Phaophi 19 
Hathyr 19 
Choiak 19 

[29 days] 
[30 days] 
[30 days] 
[29 days] 

The text containing the month lengths, given at the end in square brackets, is 
lost at this point through damage to the manuscript, but a later similar 
fragment allows it to be reconstructed with confidence. If the calendar had 
continued for twenty-five years, it would have stretched over some two metres 
of roll; only about half a metre survives. Another, more extensive, example of 
this same twenty-five year lunar calendar is found in the demotic papyrus P. 
Carlsberg 9 (see Neugebauer & Parker, EAT iii, 220-5, Neugebauer, HAMA i, 
563 f., and Parker, CAE). There are good reasons for believing that this cycle 
was developed in Egypt in the fourth century BC (see Parker, CAE). Ptolemy 
refers to it much later, at Almagest VI 2: 

Now 25 Egyptian years less O; 2, 47, 5 days contain approximately [in fact, exactly!] an 
integer number [309] of[mean synodic] months, and [in 25 years] the mean notions are ... , 
[translation and annotation from Ptolemy-Toomer, PA, 276] 

and Ptolemy's table of conjunctions and oppositions which then follows, 
together with some calculations, is based on this cycle. Other more accurate 
but less convenient cyclical calendars, the Metonic cycle and its refinement by 
Callippus, were described in Section 2.4(b ), and an extract from another 
parapegma is illustrated in Plate 7 and described in Section 7.l(c). 

These calendars are precisely the raw material of what my Eudoxus called 
'astronomical ratios' (see B60 and E61): any sequence that describes the patterns 
generated by interacting periodic phenomena. My dialogue and these examples 
both deploy two equivalent ways of describing the lengths of successive lunar 
months: either as a sequence which describes the succession of new days and 
new moons, as in the left-hand column of P. Ryl. iv 589, which is a condensed 
form of my kind of description as 

... MDDD ... (29 times) ... DDMDD ... (30 times) ... DDMDD ... , 

or in terms of the length of the months, as in the right-hand column, for which I 
introduced the notation{ ... , 29, 30, 30, 29, ... }. There is not enough text in P. 
Ryl. iv 589 for us to continue this sequence uninterrupted for very long, but 
the example of P. Carlsberg 9 is complete. From it we can reconstruct the 
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relationship between this lunar calendar (in which a period of 9125 days is split 
into 309 mean synodic months) and a civil zodiacal calendar. (It is skilfully 
argued in Parker, CAE, that the lunar calendar was originally closely tied to 
actual lunar observations, though anomaly and the underlying approximation, 
of 931c?t = 29.5307 ... for the mean synodic month of 29.530 59 days, mean that 
the fit can never have been exact and that it will drift with the passage of time.) 
From this, a complete enumeration of the astronomical ratio of day to month 
that it embodies could be extracted, in the form of a list of the lengths of the 309 
successive months. 

Our evidence about early Egyptian and Greek astronomy contains many 
other such examples of enumerations of almost-periodic astronomical pheno
mena; I shall not press this point further, but again refer the reader to 
Neugebauer, HAMA. Let us now look to the next stage. 

There are two main directions in which we can turn. The first is to explore, 
observationally and computationally, the irregularities of the heavens: the 
anomalies, the erratic behaviour of the planets, the fine details of the observ
able universe. The tradition that stretches from the astronomers of Babylonia, 
through Hipparchus and Ptolemy, then the Arabs, up to the sixteenth century 
and on to today, one of the gigantic intellectual achievements of mankind, is a 
massive programme of such an exploration. Note how this kind of astronomy 
has, throughout, been carried out within an arithmetised tradition, and indeed 
it can scarcely be conceived without the use of such arithmetic for its records 
and calculations. In this approach the cyclical phenomena which so dominate 
the early stages of observation atrophy and fall away, just as the original 
lunar calendars give way to the much more abstract but observationally and 
computationally convenient solar calendars. But there is a second route which 
beckons. Since the astronomical data so often presents itself in cyclical form, an 
understanding of the behaviour of interacting cycles might lead directly to the 
heart of the phenomena of astronomy themselves. Within the programme I 
have been developing, this suggests that we look for some anthyphairetic 
understanding of astronomical ratios. The first step in such an understanding 
would be merely to relate these two ways of describing the same thing. Until 
this first step is achieved, we do not know what further illumination is 
possible. 

What stifles this second enterprise is its subtlety and difficulty. The problem 
is not hard to formulate (Ess-B60 ), the initial explorations are promising 
(E6i-6), but the next steps, for example the two algorithms described in the 
dialogue at E67 and B68 , are far too ingenious for everyday use. (The algorithm 
in E67 is found, independently and almost simultaneously, in E. B. Christoffel, 
OA (1875) and H.J. S. Smith, NCF (1876) and is also described in my AREP; 
the algorithm in B6s is due to Christopher Zeeman; see Zeeman, GG, and 
Series, GMN.) I suggest that Plato's and Eudoxus' approach to astronomy may 
have been to attempt to explore further in this direction. We have little direct 
evidence about whether they might have achieved any results, such as E67 and 
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B6s, but these ideas and procedures are very closely related to the techniques of 
Elements V and their applications in Book VI. 

We retire from these tentative explorations of this kind of investigation of 
interacting, almost-periodic phenomena with profound insights but few results 
beyond the "formal definitions and propositions about ratio and propor
tion" (E57 , my unconventional but defensible description of Elements V). The 
original motivating problems (to understand and manipulate cyclical phenom
ena via their astronomical and anthyphairetic ratios) recede, unanswered; the 
formal machinery becomes the theory that survives and takes on an inde
pendent life of its own, and a new phase of development begins. For a good 
illustration of how this formal theory can then be used in geometry, see the 
proof of Elements VI 1. 

This is only a sketch of the first steps of a proposal for reconstructing some 
of the astronomy of Plato's circle, a conceptual framework within which to fit 
our fragmentary and tentative evidence. (Some of this evidence is negative: for 
example, we perhaps need to account for the lack of any further astronomy 
of consequence in Egypt and in the post-Eudoxan tradition.) I have not here 
begun to introduce any geometrical or kinematic considerations that might 
enrich and complicate further the point of view, as Glaucon recognises at 
Republic VII, 530b-c (a passage that was quoted at the beginning of this 
section); for an illustration of what might be involved here, see Riddell, EMES. 
But I believe that it does offer a plausible interpretation that is compatible 
with Plato's remarks on astronomy within the Academy, our evidence about 
Eudoxus' achievements, and other early developments in both Greek and 
Egyptian astronomy. 

4.5 ACADEMIC MUSIC THEORY 

4.5(a) Introduction 

Plato's astronomy and music theory (harmonike) are "kindred sciences", both 
of which should be studied not by experiment and observation but by 
"ascending to generalised problems". Music theory is the last topic in the 
curriculum, Republic VII, 530d-53 lc: 

[SOCRATES:] We may venture to suppose that as the eyes are framed for astronomy so the 
ears are framed for the movements of harmony; and these are in some sort kindred 
sciences, as the Pythagoreans affirm and we admit, do we not .... Then, since the task 
is so great, shall we not enquire of them what their opinion is and whether they have 
anything to add? And we in all this will be on the watch for what concerns us, [which 
is] to prevent our fosterlings from attempting to learn anything that does not conduce 
to the end we have in view, and does not always come out at what we said ought to be 
the goal of everything, as we were just now saying about astronomy. Or do you not 
know that they repeat the same procedure in the case of harmonies? They transfer it to 
hearing and measure audible concords and sounds against one another, expending 
much useless labour just as the astronomers do. 
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[GLAUCON:] Yes, by heaven, and most absurdly too. They talk of something they call 
minims and, laying their ears alongside, as if trying to catch a' voice from next door, 
some affirm that they can hear a note between and that this is the least interval and the 
unit of measurement, while others insist that the strings now render identical sounds, 
both preferring their ears to their minds. 

[SOCRATES:] You are speaking of the worthies who vex and torture the strings and rack 
them on the pegs; but-not to draw out the comparison with strokes of the plectrum 
and the musician's complaints of too responsive and too reluctant strings-I drop the 
figure, and tell you that I do not mean these people, but those others whom we just 
now said we would interrogate about harmony. Their method exactly corresponds to 
that of the astronomer; for the numbers they seek are those found in these heard 
concords, but they do not ascend to generalised problems and the consideration which 
numbers are inherently concordant and which not and why in each case. 

[GLAUCON:] A superhuman task. 
[SOCRATES:] Say, rather, useful for the investigation of the beautiful and the good, but if 

otherwise pursued, useless. 
[GLAUCON:] That is likely. 

Plato distances himself even from the Pythagorean tradition of music 
theory in a way that leaves us with very little evidence of any kind on 
which to base our reconstruction; at most we have a single text, the Sectio 
Canonis, which I shall describe, that may give us a later and flawed example of 
"generalised problems and the consideration of which numbers are inherently 
concordant and which not and why in each case". Any interpretation must 
therefore be very speculative; I shall present here a collection of ideas that relate 
the basic objects and operations of music theory to the development of 
logistike, and will also include some related topics of wider interest. The 
exposition will be in another dialogue, between Archytas and the slaveboy, 
and again I beg the reader to ignore any distortions of chronology or social 
order that this introduces. 

4.5(b) Archytas meets the slaveboy 

ARCHYTAS70 : Do you have a few minutes to spare? Ever since Plato started sending me 
details of your discussions on anthyphairesis, I've been wanting to talk to you. I'd like 
to see what you think about a suggestion of mine on how music theory may help us to 
understand more about the behaviour of ratios. 

BOY71 : I'd be delighted. Meno lets me spend as much time as I want on mathematics 
now. 

ARCHYTAS72 : Have you been able to make any progress with the problem of compound
ing anthyphairetic ratios? [See B32-S35 , with its modification B~2_4 in Section 4.2 
above.] 

BOY73: Not much. I can only work out examples by ugly and crude methods that rest on 
some rather dubious operations, but I can't understand much or prove anything. 

ARCHYTAS74: Would you tell me more? 
BOY75: Let's take an example like compounding J2: 1=[1,2] and J3: 1 = [1, T,2]. 

First work out some convergents of the ratios: 
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1: 1 < 7: 5 < 41: 29 < 239: 169 < ... ../2: 1 ... < 577: 408 < 99: 70 < 17: 12 < 3: 2 

1:1<5:3<19:11< 71:41 <···../3:1···< 97:56 <26:15< 7:4 <2:1. 

Now multiply together the antecedents and the consequents of any two under
estimates and work out the anthyphairesis of the result; and then do the same for 
two overestimates. We might as well ignore all but the best approximations, so this 
gives 

239 x 71: 169 x 41 < ? < 577 x 97: 408 x 56 

Le. 16969: 6929 < ? < 55969: 22848 

Le. [2,2,4,2,2, ... ] <? < [2,2,4,2,6, ... ]. 

Hence the new unknown ratio in the middle looks as if it really will be [2, 2, 4] = 
..)6: 1. But I can't explain what's going on, let alone prove anything. What's more, I 
can't really see what it means to compound two commensurable ratios p: q and r: s to 
give (p x r): (q x s). lfwe add, giving (p + r): (q + s), then we get the basic operation 
of the Parmenides proposition which I can understand much better. For example, it is 
a mean, while compounding isn't; and it is fundamental to anthyphairesis, which I 
now understand better and better, but compounding doesn't seem to have much 
connection with anthyphairesis. If both of the ratios are multiples, n : 1 and m : 1, or 
both are parts, 1 : n and 1 : m, then compounding involves the product of the arithmoi 
n and m, and it is possible that, in the more general case, it may be an extension of this 
kind of result. Next, I can use compounding to say something about the ratio of two 
rectangular numbers [see Elements VIII 5], with a similar geometrical result about two 
rectangles, or about two equiangular parallelograms [see Elements VI 23]; but these 
seem isolated results of no great importance. Finally, while I can prove the particular 
geometrical relations like ../2 . ..)3 = ..)6. 1 that are suggested by the manipulation 
above, there's something curious about the underlying geometry that I don't under
stand and can't prove. That's a summary of just about everything I can say about 
compounding. 

ARCHYTAs76 : Have you tried exploring what happens with commensurable ratios? 
BOY77 : No. So I'm glad to have met you because they've told me that you've done a lot 

with these ratios of arithmoi. 
ARCHYTAs78 : Well, my idea is that if you look at this operation in the context of the 

simplest kind of commensurable ratios, then you might get some help from music 
theory. Let me explain. When Plato first started to tell me about the need for a 
mathematical 'definition' of ratio, I couldn't understand what he was talking about. 
Surely, I then thought, a ratio b: c is just a convenient word for 'the relationship 
between two lines (or numbers) b and c' or 'the separation between two sounds'; 
does it really need any more definition than that? And if b can be expressed as m 
parts of something, and c as n parts of the same thing, then isn't the ratio b: c just 
m:n? 

BOY79 : If you'd said that in Athens, you'd have had people like Socrates asking you 
awkward but interesting and fruitful questions! For instance, you haven't really said 
what m:n is. 

ARCHYTAS80 : So they ke~p telling me, and so I learned from the account of your second 
meeting with Socrates! Now, although the music theorists don't usually use the word 
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logos, but talk instead of diastema, 'intervals', I'll treat musical intervals as if they are 
ratios. The most important intervals in music are the octave 2: 1, twelfth 3: 1, and 
double octave 4: 1, and the fifth 3: 2, fourth 4: 3, and tone 9: 8; and all of them except 
the last are consonant intervals. These all correspond either to multiple ratios 
n : 1 = [n] or to the so-called epimoric ratios ( n + 1) : n = [1, n], so they're particu
larly simple kinds of anthyphairetic ratios, of a form that is specified by just one 
number n. I might also add that the next such kind of simple anthyphairetic ratio is 
[1, 1, n] = (2n + 1): (n + 1) (where n ;;,, 2, since [1, 1, 1] = [1, 2] is an epimoric ratio), 
and this doesn't seem to be of any importance in music. 

BOY81: Much as I am a champion of anthyphairesis, I feel here that there is a more 
commonplace explanation for this word epimorion, 'a part in addition', that it 
describes the simplest kinds of fractional quantities greater than one, namely 1 + n' 
[see Chapter 7]. However, we can push your anthyphairetic explanation a bit further. 
Take a general ratio b: c = [no, n1, n2 , ... ] and try to work out just what it is about b 
and c that is described by each of the nk s. You'll see that the connection is very direct 
in the case of no and n1, but it starts to get rather remote for n2 and beyond. For 
example, it's immediately clear why [2] = 2: 1, [1, 3] = 4: 3, and [2, 3] = 7: 3, etc., but 
it's rather harder to see why [2, 3, 4] = 30: 13 without thinking in detail of the 
subtraction process. Do you see what I mean? So these ratios from music theory 
are also simple in the sense that the relations between the antecedent, the consequent, 
and the terms of the anthyphairesis are all absolutely transparent. In this sense, ratios 
like [1, 1, n] are also getting rather complicated. 

ARCHYTAS82 : Yes, when Plato sent me the account of your second conversation with 
Socrates, I had to think for a long time to work out how you could compare the ratios 
just by looking at the terms of the anthyphairesis [see S17_21 and S~ 1 in Section 2.3(b)], 
since I couldn't fathom out what these later nk meant. Then I saw how each was 
associated with a remainder that came from either the antecedent or the consequent, 
according as k was even or odd, just as you said there, and that made all the 
difference. 

Back to music theory: we see that these basic intervals in music theory all 
correspond to these simplest kinds of anthyphairetic ratios, each of them described 
by a single number n, in either the fractional or the anthyphairetic sense. Next let's 
look at what the basic operations of music theory do to these intervals. In music we 
adjoin or subtract two intervals to make a new interval, rather as lines or other 
magnitudes are added or subtracted in geometry, and in this way we can generate all 
the basic intervals of music out of fourths and fifths. For instance: 

a fourth and fifth give an octave, i.e. 4: 3 and 3: 2 give 2: 1, 

a fifth and an octave give a twelfth, i.e. 3: 2 and 2: 1 give 3: 1, 

two octaves together give a double octave, i.e. 2: 1 and 2: 1 give 4: 1, 

and a fifth less a fourth gives a tone, i.e. 3: 2 less 4: 3 gives 9: 8. 

Now these operations correspond to compounding the ratios (or the opposite of 
compounding when the intervals are subtracted) and all of these examples of 
compounding (but not its opposite) give rise to concordant ratios. 
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BOY83 : Are all concordant ratios multiple or epimoric? 
ARCHYTAS84 : An interesting question that I'll leave to one side, since I've now got to my 

main point. I've seen how Eudoxus' ideas on astronomical ratios have led to 
mathematical insights into the relation between astronomical and anthyphairetic 
ratios, and to some elegant mathematical definitions and proofs [see E57 and Eleme.nts 
VJ; is there any possibility that these musical analogies might give some other such 
insights into properties of ratios? For example, consider the problem of compounding 
anthyphairetic ratios. Surely it must be simpler to guess or work out what the rule 
should be by looking at simple examples like 

[l, 3] and [1, 2] give [2], 

[l, 2] and [2] give [3], and 

[l, 3] and [l, 8] give [l, 2], 

which are precisely the examples arising from music theory, and perhaps also using 
some further insights from music theory, than by studying your example 

[l,2,2,2, ... ] and [l,l,2,l,2, ... ] give [2,2,4,2,4, ... ]. 

So if we investigate music to see why certain basic intervals are concordant, and how 
and why new concordant intervals are generated out of this basic set, we may get 
closer to understanding the operation of compounding ratios. 

BOY85 : I'm not so sure it will help, but it's certainly worth trying. Let me explain further 
why this particular problem may be of special interest. Plato is looking for some kind 
of absolute comparison against a standard [see Statesman 283c-284d], and I think 
that ratios might give some mathematical illustration of this, if only we could find how 
to add and multiply them. For example, our basic results about inequalities between 
ratios tell us that 

[1,2] < [2,T,4] < [4,4,8] < [5, 1, 1, 1, 10], 

but, until we find out how to relate the anthyphairesis of2b: c with b: c, we don't have 
any general way of seeing that the second ratio is exactly twice the first, the third is 
exactly three times the first, and so on. Or again, if we could find out how to add and 
subtract ratios in general then, since we can already compare two ratios for size, we 
could define ratios of ratios. I don't know quite what this would mean, but I think our 
hope of understanding would increase if we could first perform the operations and 
explore their behaviour. So I'm particularly intereste.d in arithmetic with ratios. 

ARCHYTAS86 : What do you mean here by 'arithmetic'? It doesn't seem to have much to 
do with arithmetike, the study of the arithmoi. 

BOY87 : It's part of a more general point of view. Just as arithmetike grows out of the 
properties of the arithmoi-their addition and multiplication, the subtraction of the 
less from the greater, the unit, oddness, evenness, and primality, and so on-so by 
analogy I'm coming to think of the study of adding, subtracting, multiplying, etc. of 
lots of other kinds of things as looking for their own characteristic underlying 
'arithmetic'. This arranges the sciences into some kind of hierarchy. For example, 
all aspects of the arithmetic of anthyphairetic ratios seem problematic while, for 
geometrical magnitudes, especially for straight lines, addition and subtraction are 
straightforward, but rii.ultiplication seems to be a different kind of operation with its 
own subtleties. That's connected with what I was saying at the beginning about 



130 Plato's mathematics curriculum in Republic VII 4.5 

../2 . ../3 = ../6 .1, or the general result about Jn. Jm = Jnm. l for any two arithmoi 
n and m; and there are similar problems about arithmetic with edges of cubes, and 
perhaps yet other kinds of things. 

ARCHYTASss: And in music theory we can also talk about the greater and less, and we 
can put together and take away musical intervals in an operation that we describe as if 
it were addition and subtraction, though it seems to be more analogous to multi
plication and a more general kind of division than that of addition and subtraction of 
arithmoi or lines; indeed there seems to be nothing in music theory that would 
correspond to that addition and subtraction. (So, incidentally, we can defme the 
anthyphairesis of musical ratios, just as you were asking above [in B85]. Here's the 
example of 2 : l and 3 : 2. 

2: 1 less 3: 2 once leaves 4: 3, smaller than 3: 2, 

3: 2 less 4: 3 once leaves 9: 8, smaller than 4: 3, 

4: 3 less 9: 8 twice leaves 256: 243, smaller than 9: 8, 

9: 8 less 256: 243 twice leaves 531441 : 524 288, smaller than 256: 243, 

etc., 

so the musical anthyphairetic ratio of the ratio 2: l and 3: 2 is [1, 1, 2, 2, ... ]. I can 
easily prove that this won't terminate, since the remainder will always be either 
3 x 3 x · · · x 3: 2 x 2 x · · · x 2, or the other way round, so it can't be 1: 1; but I can't 
say anything more about it. Or we could define a musical version of Eudoxus' 
astronomical ratios. For example 3: 2 could be described by the pattern of 

2 4 8 16 32 64 128 256 512 1024 2048 
3 9 27 81 243 729 2187 ... 

So now 3 : 2 = { { * 1*, 2, 1, 2, 1, 2, 2, 1, ... } } . Can you make anything of these mani
pulations?) On the other hand, music only involves ratios of arithmoi, and that 
sometimes restricts the possibilities; for example, it means that the tone 9 : 8 cannot be 
divided into two equal musical intervals. I see how you are saying that these different 
subjects-geometry, astronomy, music theory, and I'm sure we'll find others-seem to 
be growing out of a considerable body of overlapping ideas about ratio, and 
information about one branch seems to feed back into the other topics. 

But I'm completely baffied about your remarks about ../2 . ../3 = ../6 . l. What are 
you talking about there? 

BOY89 : Let me spell that out, since you might be unfamiliar with the definitions and 
shorthand that I'm using. We choose some assigned line a, and let b, c, d, ... be any 
other lines. Geometrical addition b + c corresponds to adjoining lines, and we can 
similarly adjoin areas and volumes. Now consider geometrical multiplication of lines. 
Let b . c denote the rectangle with sides b and c; it's one kind of geometrical 
multiplication that is inhomogeneous (that is, b. c is a different kind of geometrical 
magnitude from band c) and restricted (since we can't define the product of four lines, 
or two rectangles). There is another kind of geometrical multiplication, where we 
apply b . c as a rectangle to the assigned line a; the width of this rectangle will be a 
homogeneous unrestricted product of b and c. This satisfies all the same kinds of 
properties of multiplication as the multiplication of arithmoi, and much more, but it 
now depends on an arbitrary choice of a. 
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ARCHYTAS90 : Surely that's just the fourth proportional to b, c, and a [see Elements 
VI 12]? 

BOY91: Yes! And you see here how the assigned line a is now analogous to the unit in 
arithmetike, and how this kind of multiplication of lines is more general than the 
multiplication of arithmoi, since the geometrical fourth proportion always exists, 
while it doesn't necessarily exist in arithmetike. There are lots of interesting develop
ments relating these two kinds of geometrical multiplication that Theaetetus has 
started exploring in order to extend the scope of our anthyphairetic knowledge of the 
dimensions of squares, but it soon gets very complicated. [See Elements X, to be 
described in Chapter 5.] Here, I'll just consider the rectangular multiplication b. c. 
Given band c, we can define y'(b. c) to be the side of the square equal to b. c--call 
it the 'square side' of b and c; it's the mean proportional (or geometric mean) of b 
and c. Now, in a straightforward example or illustration, I tend to refer to the 
assigned line and the square on it as the unit line and the unit square, or even omit 
mention of them altogether, and so just say 'the square side of 2' or 'y'2' for 
y'(2a. a), etc. I've studied closely your amazing geometrical configuration for 
doubling, tripling, etc. the cube, in connection with the seemingly intractable 
problem of the dimensions of cubes; you could use this notation there and write 
~2 for the 'cube edge' of 2a . a . a. 

ARCHYTAS92: So this result y'2. y'3 = y'6. 1 is just a statement about rectangles, that the 
rectangle with sides y'2 and y'3 is equal to the rectangle with sides y'6 and 1 [see Fig. 
4.1]. Or we could say that the homogeneous product of\12 and y'3 is y'6. 
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BOY93 : Exactly; and I'll explain how this result gives yet another illustration of a 
profound link between arithmetike and geometrike. One direct assault on the problem 
leads to this interesting configuration [see Fig. 4.2], in which we start with the assigned 
line AB = 1 and construct [using Elements II 14] AC' =AC = y'2 and y' AD' = y'3; 
then [using Elements III 35], we construct AG' = y'6. Hence we want to show that 
AC.AD'= AG' .AB. Ifwe subtract the rectangle ABPD' from both and apply the 
standard result on complements about a diagonal [Elements I 43; see Fig. 1.2, above], 
we see that y'2. y'3 = y'6. 1 means that the point P lies on the diagonal AQ. But I 
can't prove anything from this figure, though I'm still looking. A more successful 
proof uses gnomons of a square [see Fig. 4.3]. We start with the unit line AB and unit 
square ABB"B', and put unit gnomons round it, in the usual way, thus generating 
lines AC = y'2, AD = y'3, etc. (There's an easy way of doing that by setting 
AC= AB", etc., or we can use many other such relations like AD"= AG.) Then 
y'2. y'3 is a rectangle with sides AC and AD', while y'6: 1 is a rectangle with sides AB 
and AG', for instance. If we subtract the overlapping rectangle ABPD' from both, 
then again we see that we have to prove that the point P lies on the diagonal AQ. 
This will hold if the angles PAD' and QAG' are equal. Now these triangles have 
their sides proportional: we start with a line (AB or AC), construct the square side 
of three-times the square on these lines (AD' or AG') and construct triangles with 
these two sides around the right angle (AD'P or AG'Q). Hence these triangles have 
their sides proportional, and so [see Elements VI 5] their angles will be equal. But 
there's something strange about this kind of argument. To take the easiest possible 
example, why is it that the angles of any equilateral triangle are always equal to a third 
of two right angles? Perhaps we have to postulate this. 

ARCHYTAs94 : Surely the angles of an equilateral triangle are all equal and therefore, since 
the sum of ... 

BOY95: Yes, but just why is the sum of the angles of a triangle two right angles? The 
astronomers have started describing geometrical models of the earth and heavens in 
terms of nested spheres. Suppose we look at equilateral triangles whose edges are great 
circles on a sphere, precisely the kind of thing these astronomers sometimes consider. 
We can still talk about angles and triangles, and the angles of a very small equilateral 
triangle are indeed each still approximately two-thirds of a right angle but, as the 
triangle grows, so also the angles grow. If one vertex is at a pole and the other two are 
on the equator, the angles will each be a right angle; then as the triangle expands over 
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the sphere, so the angles can grow to almost three and a third right angles each. This 
example doesn't prove anything, but it certainly makes you think. I recall that the first 
thing Socrates said to me was that a square could be "either larger or smaller", and I 
was naive enough to let it pass [see Meno 82c]. I wonder what he would have answered 
if I'd questioned him on this point. 

ARCHYTAS96: I doubt if even all of your evident mathematical skills could persuade 
Socrates to answer questions, rather than ask them. Alas, I must be getting on. 
Farewell. 

4'.5(c) Compounding ratios 

Addition and multiplication of common fractions, 

m p mq+np 
-+-=---
n q nq 

and 

are operations so basic to arithmetised mathematics that it may be difficult for 
us today to conceive of a mathematics of any sophistication in which they are 
unknown or unimportant. But, as my dialogue explains-see especially B1s-I 
believe that this may indeed have been the case for early Greek mathematics. 
There is a manipulation in the Elements, generally described in translation by 
the word 'compounding', that corresponds to the multiplication of two 
common fractions, but Euclid does not develop or exploit its properties; and 
there is nothing that deals with the addition of common fractions. In the next 
section I shall suggest that the Sectio Canonis might have been an attempt, 
albeit obscure and irretrievably flawed, to explore the behaviour of com
pounding through the study of music, and music may have been the one 
place in ancient science and mathematics where the operation arose naturally; 
the idea behind this proposal is set out in A16-84· Then, in Chapter 7, I shall 
describe our evidence about arithmetical calculations, and argue that a 
commonly accepted conclusion, that Greek mathematicians conceived and 
sometimes even expressed fractional manipulations in the form of common 
fractions, written upside-down, is far from being an established fact. In this 
section, I shall now discuss some questions of the interpretation of some 
relevant passages of the Elements. 

Our assumptions about the role of these manipulations with common 
fractions within mathematics are pervasive and often not articulated, so I 
shall start with a brief statement of the point of view against which I am 
arguing. This is taken from van der Waerden, SA, where the interpretations are 
always set out with exemplary clarity. We read there, with the original 
emphases: 

It is probable that it was calculation with fractions which led to the setting up of this 
theory [sc. Elements VII]. Fractions do not occur in the official Greek mathematics 
before Archimedes, but, in practice, commercial calculations had of course to use 
them. The reason why fractions were eliminated from the theory is the theoretical 
indivisibility of unity. In the Republic (525e), Plato says: "For you are doubtless aware 
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that experts in this study, if anyone attempts to cut up the 'one' in argument, laugh at 
him and refuse to allow it; but if you mince it up, they multiply, always on guard lest 
the one should appear to be not one but a multiplicity of parts." ... When fractions 
are thus thrown out of the pure theory of numbers, the question arises whether it is 
not possible to create a mathematical equivalent of the concept fraction and thus to 
establish a theoretical foundation for computing with fractions. Indeed, this equivalent 
is found in the ratio of numbers [again, sc. Elements VII] .... The art of computing, 
including the calculation with fractions, is called 'logistics' by the Greeks [pp. 115-16; 
also see pp. 49-50]. 

Contrast this description with an illustration of a Euclidean manipulation with 
proportions, taken from Elements XIII 11. I have replaced the references to the 
particular lines involved by the letters b, c, d, and e; otherwise the text is taken 
verbatim from Heath, TBEE iii, 462-3: 

... therefore, proportionally, as b is to c, so is d to e. And doubles of the antecedents 
may be taken; therefore, as the double of bis to c, so is the double of d to e. But, as the 
double of dis to e, so is d to the half of e; therefore also, as the double of b is to c, so is d 
to the half of e. And the halves of the consequents may be taken; therefore, as the double 
of bis to the half of c, so is d to the fourth of e. And bJ is double of b, CJ is half of c, and 
eJ a fourth part of e; therefore as bJ is to CJ, so is d to eJ. Componendo also, as the sum of 
bJ, CJ is to CJ, so is [the sum of d and ei] to eJ; therefore also, as the square on the sum of 
bJ, CJ is to the square on CJ, so is the square on [the sum of d and ei] to the square on eJ. 

This is taken from a proposition in which the theory of proportion is applied 
fluently, as we see from the last two steps and the further passage quoted below. 
Yet Euclid takes four steps to deduce from b : c: : d: e that 2b : ! c: : d: ~ e, in a 
context where the fractional quantities ! c and ~ e pose no problems since they 
correspond to labelled lines in the figure. Compare this with the manipulation 
componendo, that 

if x : y : : z : w then ( x + y) : y : : ( z + w) : w, 

(see V Definition 14 and Propositions 17 and 18; this operation is also known as 
'composition') and the even more drastic step that 

if x : y : : z : w then x 2 : y 2 : : z2 : w2 

(see VI 22, with the long note in Heath, TBEE ii, 242 ff.) which go through 
without comment. We see a similar confident manipulation later in the same 
proof (Heath, TBEE iii, 464) where Euclid argues, for different lines b, c, and d: 

Let the square on b be equal to that by which the square on c is greater than the square 
on d; therefore the square on c is greater than the square on d by the square on b . ... 
And since the square on c is five times the square on d, therefore the square on c has to 
the square on d the ratio which 5 has to one. Therefore, convertendo, the square on c has 
to the square on b the ratio which 5 has to 4, ... 

Here Euclid justifies the last step by his reference to conversion of ratios 
(VDefinition 16 and Proposition 19): 

ifx:y::z:w with z<x and w<y then x:y::(x-z):(y-w). 
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It is not immediately clear how the argument is meant to go; for example, all 
the magnitudes x, y, z, and w need to be homogeneous for V 19 to be applied 
whereas here, in the immediate context of XIII 11, they are not. (Incidentally, 
this passage is the only place I know of where the manuscripts of the 
Elements use numerals rather than words to denote numbers; see Chapter 
7, below.) Yet despite the fluency in these apparently more complicated kinds 
of manipulations, the operations of doubling the antecedents, 

if x : y : : z : w then 2x : y : : 2z : w, 

and asserting that 

if x : y : : z : w then 2x : y : : z : !w 
seem to require special and individual explanation, though their formal 
justification follows immediately from V 4. The intuition behind Euclid's 
treatment does not seem to be based on an understanding of the manipulation 
of common fractions, where these operations like doubling or halving the 
antecedent or consequent are straightforward; by contrast, these operations 
seem intractable for anthyphairetic and astronomical ratios (see Bs5 and 
Section 9.3(a), below). Conversely, the operations componendo and conver
tendo (though not composition) are more straightforward and natural for 
anthyphairetic and astronomical ratios, but less so for common fractions. 

There is nothing in the Elements that seems remotely connected with the 
general addition of two ratios. While composition can be conceived in terms of 
the addition of x: y and y: y to give x + y: y, there is no hint of this point of 
view, and the closely related manipulations of conversion and of V 12, that 

if x:y::z:w then x:y::(x+z):(y+w), 

(which is the Parmenides proposition in the case of equality) are very 
emphatically not directly related to the addition and subtraction of fractions, 
whatever the erroneous feeling among novices that they ought to be; also see 
the contrast between (p x q): (r x s) and (p + q): (r + s) described in A75 . 

Let me now turn to the compounding of ratios-which is not to be confused 
with the composition of ratios though, as we shall see, they share the same 
Greek name. This does correspond to our multiplication of common fractions. 
The operation appears in Elements VI Definition 5 (which is almost certainly 
interpolated), VI 23, and VIII 5, all of which were quoted at the end of Section 
l.2(d); they will also be quoted again below. The procedure, as it appears in 
VI 23 and VIII 5, but not VI Definition 5, can be described as follows. Given 
two ratios b : c and d : e-and note yet once again, in passing, that Euclid gives 
no mathematically serviceable definition of ratio in the Elements adequate for a 
proof of VI 1, the Topics proposition, though he does, here and elsewhere, 
appeal to the idea of ratio-if we then write 

b: c:: x: y and d: e: : y: z, 
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then x: z is called the compound of b: c and d: e. To bring out the connection 
with the multiplication of common fractions, we can carryout this operation by 
writing 

b : c : : b x d : c x d and d : e : : c x d : c x e 

(where the products b x d, etc. are interpreted appropriately; this is a version of 
the Topics proposition). Then the compound of b: c and d: e is b x d: c x e. 
When b, c, d, and e are lines, as in VI 23, then the lines y and z can be found for 
any line x, by the basic construction of a fourth proportional at VI 12; but when 
they are numbers, as in VIII 5, the operation requires the idea of continued 
proportion, the subject of VIII 4 and, indeed, of most of Book VIII. On the 
other hand, the garbled definition at VI Definition 5 seems to be striving 
towards an arithmetised operation, in which the two ratios are 'multiplied 
together' in some sense. 

The role of compounding within the Elements is analysed in great detail in 
Mueller, PMDSEE and, to avoid an enormously long excursion through the 
evidence and its interpretations, I shall restrict myself to quoting some of his 
conclusions, with which I concur, and refer the reader to this book for the 
detailed analyses: 

It is possible to say that compounding ratios is an analogue of multiplying fractions. The 
serious question for interpretation is whether compounding should be viewed as a 
representation of multiplying, i.e., as a device for representing the multiplication of 
fractions in the language of proportionality. I shall be arguing that compounding should 
not be viewed in this way [p. 88, on VI Definition 6]. 

[Euclid's] failure to exploit VIII 5 is a good indication that he does not construe 
compounding as a representation of multiplying .... Since there is no other candidate 
for the representation of the multiplication of fractions, it also seems unlikely that 
Euclid construes duplicating and triplicating as squaring and cubing [fractions] 
[pp. 92-3, on VIII 11 and 12]. 

It is not, of course, possible to show that Euclid does not have calculations or something 
like them in mind when he deals with ratios. But he certainly does not make any such 
concern explicit, and, as we shall see, the way he proceeds in applying ratios suggests 
anything but a calculational model. In particular, although he uses the compounding of 
ratios in later books, he shows no clear sense of its relation to duplicating and 
presumably, therefore, none of its relation to multiplication [pp. 135-6, on proportion, 
ratio, and calculation in Book VJ. 
In general the geometric books confirm the impression gained from the arithmetic ones 
[VII-IX] that Euclid does not construe compounding as multiplication. VI 23 itself is, in a 
sense, evidence of this fact since the product of the lengths of two sides of a parallelogram 
does not produce a value of any mathematical significance [p.154, on VI23]. 

Euclid's failure to reduce VI 14 to 23 is one piece of evidence that he does not view 
compounding of ratios as some form of multiplication. Further evidence is provided by 
VI 19 and 20 ... [p. 162, on VI 14, 19, and 20]. 

[Euclid's] failure [to see the notion of compounding in the solid Books XI and XII] is 
perhaps the strongest evidence that he does not construe compounding ratios as 
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multiplication [p. 221, on XI and XII; also see pp. 225-6 where the great simplifications 
that are made possible by using compounding of ratios are described]. 

Euclid's failure to prove this extension of XII 9 is perhaps some further confirmation of 
the view that the connections among compounding, multiplying, and volumes were not 
so immediately clear to him as they are to us [p. 229, on XII 9]. 

Also see the perceptive analyses in Saito, DRBS and CREA. 
Finally, let us look at the terminology used for some of these operations in 

the Elements. We find that the verb suntithemi, 'to put together', its associated 
noun sunthesis and adjective sunthetos, the verb sugkeimai which serves as a 
passive, and the various participles, are used with an enormous range of 
meanings. Here are some examples of Heath's translations, with the exact 
Greek form given in each case. A word from this group can mean the sum, of 
two numbers: 

Let two numbers AB, BC prime to one another be added (sugkeisthi5san). I say that the 
sum (sunamphoteros) is also ... [VII 28], 

or of two lines, of which examples abound in Book X; see, for example: 

To find two lines incommensurable in square which made the sum (sugkeimenon) of the 
squares on them ... [X 33]. 

It can also be used with overtones of multiplication, as in: 

A composite (sunthetos) number is that which measured by some number [VII Definition 
13]. 

It describes the operation on ratios called composition, or componendo: 

Composition (sunthesis) of a ratio means taking the antecedent together with the 
consequent as one in relation to the consequent by itself [V Definition 14], 

as well as that of compounding, 

A ratio is said to be compounded (sugkeisthai) of ratios when the sizes of the ratios 
multiplied together make some (?ratio, or size) [VI Definition 4], 

and 
Equiangular parallelograms have the ratio compounded (sugkeimenon) of (the ratios of) 
their sides [VI 23, see also VIII 5]. 

It is used in connection with procedures of analysis and synthesis in Book XIII: 

Synthesis (sunthesis) is an assumption of that which is admitted (and the arrival) by 
means of its consequences at something admitted to be true [see Euclid-Stamatis, EE iv, 
198, and Heath, TBEE i, 137-40 and iii, 442-3]. 

In addition to these technical senses, it is used with the general sense of 
something being made up of, consisting of, constructed of, etc. We find these 
same words used elsewhere to describe logical and dialectical procedures; and 
the word sunthesis is employed in grammatical works and literary criticism in 
very much the same way as 'composition' is used in English. 

The precision of terminology that has been developed in parts of modern 
mathematics, by means of which different operations can be distinguished and 
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compared, is not found in the Elements. However, the spirit of such a study of 
these different operations can be discerned: there is· no sense of Euclid 
confusing addition, multiplication, composition, and compounding, even 
though they bear the same name. In this sense, my slaveboy's programme, 
described at B87 , is not anachronistic though, as Archytas objects at As6 , our 
use today of 'arithmetic' to describe operations of addition, subtraction, 
multiplication, and division with very general and different kinds of 'numbers' 
conveys a very different sense from that of the Greek 'arithmetike'. 

Now let us turn to the objects and manipulations of Greek music theory. 

4.5(d) The Sectio Canonis 

This is not the appropriate place to attempt a general survey of the role of 
music in early Greek scientific and moral theory. For this, I refer the reader to 
the articles in the OCD, s.v. music (by Mountford & Winnington-Ingram), with 
their references, and the articles and books by Barker, Bowen, and Burkert that 
will be cited here or listed in the Bibliography. 

I wish here to illustrate the very limited comment about music theory set out 
in A7s-As4 : that it is conceivable that our understanding of mathematics might 
be helped by a study of the theory of music, in the way I have suggested that the 
study of cyclical phenomena in astronomy can help our understanding of 
Elements V, Definition 5. In the event, it will turn out that this contribution 
from music to mathematics is negligible or non-existent, but nevertheless the 
idea is worth trying. My illustration will be cast in the form of a description of 
the Sectio Canonis, a treatise on the construction of the musical scale. 

The Sectio Canonis (Euclid-Heiberg, Opera viii (ed. Menge), 158-83, or Jan, 
MSG, 148-66; recent study in Barker, MAESC) is a short treatise on music 
theory. Its author is unknown and its date is uncertain, but it clearly belongs 
within a mathematical, as contrasted with empirical, study of music, and this 
places it broadly within the Pythagorean and Academic traditions, rather than 
those associated with Aristotle's Lyceum. The propositions that make up the 
bulk of the work are formulated in Euclidean style, and it is generally included 
within the Euclidean corpus. There is a complete translation in Barker, GMWii, 
and I am grateful to Andrew Barker for providing the following literally rendered 
and annotated passages. We start with the introduction to the treatise: 

If there were stillness and motionlessness, there would be silence; and if there were 
silence and nothing moved, nothing would be heard. Then if anything is going to be 
heard, impact (plege)a and movement must first occur. Then since all phthongoib occur 
when some impact occurs, and since it is impossible for an impact to occur unless 
movement has occurred beforehand-and since of movements some are more closely 
packed (pyknoterai), others more sparse (araioterai), and the more closely packed ones 
make the phthongoi higher-pitched, the sparser ones lower-pitched-it follows that some 
phthongoi must be higher-pitched, since they are indeed composed of more closely 
packed and more numerous movements, while others are lower-pitched, since they are 
indeed composed of sparser and less numerous movements. Thus those that are 
higher-pitched than what is rightc reach what is right [through] being slackenedd by the 
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taking-away of movement, while those that are too low-pitched reach what is right 
[through] being tightenede by the addition of movement. We must therefore agree that 
phthongoi are composed of parts (morion), since they reach what is right by addition and 
taking-away. All things that are composed of parts are spoken of (legetaif with respect 
to one another in a ratio (logos) of number, so that it is necessary that the phthongoi, too, 
be spoken of (legesthai) in a ratio of number with respect to one another. Of numbers, 
some are spoken of (legontai) in multiple ratio [to each other], some in epimoric, some in 
epimeric, so that it is necessary that the phthongoi, too, be spoken of (legesthai) in ratios 
of these sorts with respect to one another. Of these8" the multiple and the epimoric are 
spoken of (legontai) with respect to one another under a single name.h 

Again, of the phthongoi we grasp (gignoskomen) some as being concordant, others as 
discordant, and [we grasp] the concordant ones as making a single blend, the one 
[produced] out of both [phthongoi], the discordant ones as not [doing so]. Since these 
things are so, it is likely; that the concordantphthongoi, since they make for themselves a 
single blend of the phOne,1 the blend [produced] out of both, are among the numbers 
which are spoken of (legomenon) with respect to one another under a single name, being 
either multiple or epimoric.k 

Notes: 
Round brackets indicate transliterations of the Greek, and square brackets contain 
words added to clarify the English version. 

a Plege, literally 'a blow'. Also, instead of "impact and movement" one could read 
"an impact and a movement". 

b Phthongoi are sounds, but in technical writings specifically pitched sounds, sounds 
each of which is at some one definite pitch: it is commonly used to mean 'note'. The term 
psophos is used for 'sound' in its most general sense, 'noise', whether or not it has definite 
pitch. The term phOne, literally 'voice', and properly of the human voice, is often used in 
musical authors to mean 'musical sound', not necessarily of the voice, and not 
necessarily of a single definite pitch. See the occurrence indicated at note j below. 

c To deon, what is right, correct, or proper, or what is required; here, evidently, the 
pitch that the musician requires. 

d Aniemenous: this relates to the slackening of a string to lower pitch, but in standard 
jargon the verb is applied directly to the sound or note, in the sense 'to lower in pitch'. 

e Epiteinomenous: the uses of this verb are parallel to those mentioned in the previous 
note. 

f Legetai, from legein, 'to say': this is also the verb cognate with logos where logos 
means 'ratio', and this occurrence of it might therefore be translated 'are related', 
'are ratioed'. But here the ambiguity, or perhaps conceptual assimilation, is part of 
the argument, since the fact that numbers standing to one another in multiple or 
epimoric ratios are 'spoken of with respect to one another under a single name' is 
taken to imply that things in these (but not other) kinds of ratios possess a real 
unity. 

g That is, 'these numbers', not 'these ratios' as many commentators have assumed; 
see the similar passage at the end of the introduction: "the numbers which are 
said ... ". Also see Barker, MAESC, 2-3. 

h The word for 'name' here (onoma) is not cognate with logos, legein, etc., and has 
no special mathematical usage. 

i Eikos: 'A reasonable hypothesis', 'a fair assumption'. 
j On the sense of phOne see note b above. It seems to be carefully chosen here: the 

sound in question is a musical one, but it is not a sound of one definite pitch, a 
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'note', since it is precisely the sound constituted out of the blending of two notes. It 
is a phenomenon distinct from either of its components, or from the two considered 
merely as existing simultaneously: it is a 'third thing', but it is not a third note. 

k The adjectives 'multiple' and 'epimoric' here qualify the phthongoi, not, 
grammatically speaking, the numbers. 

The first half of the first paragraph seems to be related to another account 
of music given by Archytas in his Fragment Bl (Diels & Kranz, FV i, 431-5; 
recent detailed study in Bowen, FEPHS and Huffman, AAFl), except that 
while Archytas outlines what we might call a 'velocity hypothesis' in which 
sluggish and weak movements produce low-pitched sounds, quick and power
ful movements produce high-pitched sounds, the Sectio sets out an 'impulse 
hypothesis'. The other apparent proponents of the impulse hypothesis seem 
later in time and associated with the Lyceum (see the pseudo-Aristotelian 
Problems XIX 39, 921a7-31, and De Audibilibus 803b27-804a9), though there 
are difficulties in the interpretation of these passages. For this reason, and in 
order to avoid overloading my dialogue yet further, I did not have my Archytas 
suggest developing a theory of the patterns generated by two interacting trains 
of impulses. These patterns are precisely what I have called astronomical ratios 
(see E55 for an example) and their structure, in which near coincidences are 
generated and decay, can best be described in terms of the corresponding 
anthyphairetic ratios. The simplest patterns will be generated by the multiple 
ratios, and these are in some sense completely static, with a regularly occurring 
coincidence when the two trains of impulses are in phase. The patterns of the 
epimoric ratio (familiar from the vernier scale, which exploits the astronomical 
ratio 10 : 9) will be almost static. But the pattern exhibited by the less simple 
ratios [no, n1, n2, ... ], with more than two non-zero terms, will have a shifting 
structure in which hierarchies of almost-periodic blocks of terms move in and 
out of prominence, rather as my Eudoxus described at E67 ; a simple example of 
this phenomenon will occur with a ratio like [l, 2, 100 000 000, ... ]. We could 
also apply this kind of analysis to the rhythmical structure of music, to explain 
why the rhythmical signatures described by multiple and epimoric ratios such 
as 3 : 2 and 4: 3 have a structure that is immediately clear and easily under
stood, while signatures like 5 : 3, 8 : 3, 7 : 4, etc. are much harder to comprehend 
by ear. There is some evidence of interest in these rhythmical ratios in Plato, 
Aristoxenus, and Aristides Quintilianus, but I shall not develop any of these 
rich ideas here. 

In the second half of the introduction, we find what seems to be an argument 
that the study of phthongoi, pitched sounds, should be assimilated into 
mathematics. The argument is scarcely explicit, precise, or coherent, but it 
seems to go as follows, with my notes and additions in parentheses: pitched 
sounds consist of a succession of impacts, and since the pitch can be varied by 
adding or taking away movement and therefore impacts (and since each impact 
is an indivisible unit?), therefore the relation between two pitched sounds can 
be described as a ratio of two numbers. (Note, in passing, that the argument is 
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specious and the conclusion is false.) Any ratio (taken, as almost always in 
music theory, the greater to the less) will be either a multiple ration: 1, or an 
epimoric ratio (n + 1) : n, or neither of these, an epimeric ratio. (On the use of 
the word morion or meros, plural moria or mere, 'part' and 'parts', see Sections 
l.2(c) and 7.l(b). Epimoric means, literally, 'a part in addition', epimeric means 
'parts in addition'.) The multiple and epimoric ratios are described by a single 
name. (This is enigmatic, and no completely satisfactory explanation presents 
itself; see the discussion and proposal in Barker, MAESC, 2-3. In Aso-2, I 
suggest a slight addition to Barker's argument, that this single name may be the 
single number n which is needed to describe the simplest ratios [ n] and [ 1, n ], 
or, arithmetically, the simplest numerical and fractional quantities n and 
1 + n'. These are precisely the multiple and epimoric ratios, and the Greek way 
of describing each of them will be given below.) Therefore the concordant 
intervals should then all be found among the multiple and epimoric ratios. 

Some such conclusion does seem to have been held by Academic music 
theorists since later commentators remark, with some disbelief, that while 
musical practice and the theorists of the Lyceum regarded the octave plus a 
fourth (2: 1 and 4: 3, making 8 : 3) as a concordant interval, the Academic 
music theorists treated it as a dissonance or ignored it altogether; see Ptolemy
During, HKP 13. For example, no reference to this interval appears anywhere 
in the Sectio Canonis; also see my Archytas' evasion in Bs3-As4 . 

We now turn to the propositions of the Sectio. I shall first cite all of their 
enunciations and discuss briefly the proof of a few of them. The translation is again 
literal and the following details should be noted: The words logos (ratio) and 
diastema (interval) are distinguished here; frequently they are conflated into 
'ratio'. The propositions deal with combinations and decompositions of the 
multiple intervals (pollaplasion diastema), for example the duple (diplasion 
diastema), or triple (triplasion diastema), and with the epimoric intervals (epi
moriondiastema), thehemiolic(hemioliondiastema, 'half-whole', for 3 : 2),epitritic 
(epitriton diastema, 'third-in-addition', for 4: 3), and the epogdoic (epogdoon 
diastema, 'eighth-in-addition', for9: 8). The numbers of the propositions are set in 
square brackets because they are not found in the best manuscripts. 

[l] If a multiple interval put together (suntethen) twice makes some interval, this interval 
too will be multiple. 
[2] If an interval put together twice makes a whole that is multiple, then the interval will 
also be multiple. 
[3] In the case of an epimoric interval, no mean number, neither one nor more than one, 
will fall within it proportionally. 
[4] If an interval which is not multiple is put together twice, the whole will be neither 
multiple nor epimoric. 
[5] If an interval put together twice does not make a whole that is multiple, that interval 
itself will not be multiple either. 
[6] The duple interval is composed (sunesteken) of the two greatest epimoric [intervals], 
the hemiolic and epitrific. 
[7] From the duple interval and the hemiolic, a triple interval is generated. 
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[8] If from a hemiolic interval an epitritic interval is subtracted (aphairethei), the 
remainder left is epogdoic. 
[9] Six epogdoic intervals are greater than one duple interval. 
[10] The octave (diapason) interval is multiple. 
[11] The interval of the fourth (dia tessaron) and that of the fifth (dia pente) are each 
epimoric. 
[12] The octave interval is duple. 
[13] It remains to consider the interval ofa tone (toniaion) to show that it is an epogdoic. 
[14] The octave is less than six tones. 
[15] The fourth is less than two and a half tones, and the fifth is less than three and a half 
tones. 
[16] The tone will not be divided into two or more equal intervals. 
[17] The paranetai and lichanoi will be found by means of concords, as follows .... 
[18] The paranetai and tritai do not divide the pyknon into equal intervals. 
[19] To mark out the kanon according to the so-called immutable systema. 
[20] It remains to find the moveable notes .... 

Propositions 1-9 develop some purely arithmetical results about intervals, 
Propositions 10-18 translate these into statements about musical intervals, and 
Propositions 19 and 20, which some have argued are interpolations, describe 
how to mark out a particular kind of scale. 

First, consider the terminology. The word diastema, 'distance between' or 
'interval', in a very general sense, is often treated by ancient and modern 
commentators as ifit were here synonymous with logos 'ratio' (see Aso), but the 
author of the Sectio seems to maintain a careful distinction between the two. 
The mathematical Propositions 1-9 are permeated with the language of ratios, 
and they explicitly cite some results from some external mathematical theory of 
ratio or proportion, which are then translated into statements about intervals. 
See, for example, Proposition 2, which invokes Elements VIII 7: 

If an interval put together (sunthen)a twice makes a whole that is multiple, then that 
interval will also be multiple.b 

c B D 

6 12 24 

Let there be an interval BC, and let it be that as C is to B so Bis to D (hOs ho C pros ton 
B, houtos ho B pros ton D), c and let D be a multiple of C. I assert that Bis also a multiple 
of C. For since D is a multiple of C, C therefore measures D. But we have learned 
(emathomen de)d that where there are numbers in [continued] proportion (analogon)
however many of them-and where the first measures the last, it will also measure those 
in between.' Therefore C measures B, and B is therefore a multiple of C. 

Notes: 
a Sunthen, here and throughout the Sectio, has the mathematical sense of 

compounding, as in Elements VIII 5. 
b The figures show some variations between the manuscripts, and the numbers 

appended to them may be later additions. 
c This is exactly the same terminology for proportions that we find throughout 

Book VII. 



4.5 Academic music theory 143 

d One of the very occasional explicit back-references in the Elements, in X 10, uses this 
same word, though with the different particle gar. See Section l.2(b) and its Notes, above. 

e This result follows immediately from Elements VIII 7. The argument will work only 
for continued proportion (hexes analogon or, from Elements VIII 8 onwards, often sunexes 
analogon): a: b:: b: c, b: c:: c: d, etc., the subject of Elements VIII. To see why, consider 
the simplest example of a non-continued proportion 2 : 3 : : 4: 6. Also see Aristotle, 
Nicomachean Ethics, 113la30-bl6, and the note to Elements VDefinition 8, in Heath, 
TBEEii, 131. 

We have here an enunciation phrased in terms of intervals between numbers. It 
is immediately translated into the terminology of proportions, and is estab
lished by means of a quoted result. Then, since the conclusion is to be related to 
the enunciation, there is an implied final translation back into the language of 
intervals. 

Very similar remarks can be made about Proposition 3, in which the results 
of Elements VII 22 and VIII 8 are cited. The proposition is described by 
Boethius, who attributes it to Archytas, and it is also elsewhere translated by 
him (see Boethius-Friedlein, IM III 11 and IV 2). It has attracted an enormous 
commentary, and I refer the reader to the description in Heath, TBEE ii, 295, 
and the recent discussions in Burkert, LS, 442-7, and Knorr, EEE, 212-25 for 
further details. 

Another example of the mathematical style can be found in Proposition 6: 
The duple interval is composed (sunesteken) of the two greatest epimoric [intervals], that 
is from the hemiolic and the pitritic. 

B 

iL tK 
c 
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I 
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Let BC be hemiolic of DE, and let DE be epitritic ofF. I say that BC is duple of F. I took 
away (apheilon) EK, equal to F, and CL, equal to DE. Then since BC is hemiolic of DE, 
BL is a third part (triton meros) of BC, and a half (hemisu) of DE. Again, since DE is 
epitritic ofF, DK is a fourth part of DE, and a third part ofF. Then since DK is a fourth 
part of DE, and BL is a half of DE, DK will therefore be a half of BL. Now BL was a 
third part of BC: therefore DK is a sixth part of BC. But DK was a third part of F: 
therefore BC is a duple of F. 

Alternatively: 

A 

B 

c 

12 8 6 
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Let A be hemiolic of B, and let B be epitritic of C. I say that A is duple of C. Since A is 
hemiolic of B, A contains B and a half of B. Then two A's (duo hvi A) are equal to three 
B's. Again, since Bis epitritic ofC, B contains C and a third ofC. Therefore three B's are 
equal to four C's. Now three B's are equal to two A's and therefore two A's are equal to 
four C's, and therefore A is equal to two C's: therefore A is the duple of C. 

The arguments of both proofs are very basic and long-winded and both seem 
to avoid any explicit use of the words associated with ratio or proportion. Both 
styles of argument are found elsewhere in the treatise, so there is no suggestion 
that either proof is an interpolation. Consider the second proof first; it is an 
exploration of a particular case of the simple deduction that, 

if nA = mB and mB = pC, then nA = pC, 

in which m and p are then reduced to their lowest terms and described. The 
proofs of Propositions 7 and 8 are similar, and perhaps that of Proposition 9 
(cited below) can be viewed as an extension of this method. Now consider the 
first proof. This is an exploration of operations like: "I take away ... CL, equal 
to DE [from BC]. Then, since BC is hemiolic of DE, BL is ... a half of DE". 
This could be an almost explicit explanation of the statement that the 
anthyphairesis of BC: DE is [l, 2]; or it could also be an almost explicit 
statement of the arithmetised relation between BC and DE, that BC = 
(1 + 2')DE. Unfortunately for us, these kinds of descriptions are almost 
identical when applied to the anthyphairetic ratios [1, n] and the fractional 
quantity 1 + n', and nowhere in the treatise is any more complicated kind of 
such a description explored. (See Aso-Bs1; a similar example arose in Section 
2.4(d), where the ratio 4673 2': 14 688 in the Measurement of a Circle was 
described as "greater than threefold and there are remaining 667 2', which is 
less than the seventh part of 4672 2'". There, also, a little more information 
might have made it clear whether the underlying idea was anthyphairetic or 
fractional.) 

The final citation of an external result occurs in Proposition 9: 

Six epogdoic intervals are greater than one duple interval. 
Let A be one number. Let the epogdoic of A be B, let the epogdoic of B be C, let the 

epogdoic of C be D, let the epogdoic of D be E, let the epogdoic of Ebe F, and let the 
epogdoic of F be G. I say that G is more than the duple of A. 

Since we have learned how to find numbers of epogdoic of one another, the numbers 
A, B, C, D, E, F, G have been found. A is 262144, B is 294912, C is 331 776, D is 
373 248, Eis 419 904, Fis 472 392, G is 531441: and G is more than the duple of A. 

Here A is 86, Bis 85 • 9, ... , and G is 96; but, parenthetically, practically every 
numeral in the surviving manuscripts is incorrect. In particular, the sampi 'T', 
for 900, appears variously as T, i/J, or 'f; see Chapter 7, below. The reference in 
the proposition could be to Elements VIII 2: 

To find numbers in continued proportion, as many !lS may be prescribed, and the least 
that are in a given ratio. 
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Indeed Euclid observes, in a porism, that the extreme terms of this continued 
proportion will be powers of the terms of the original ratio, just as in this 
application. 

Let us now turn to the music theoretic manipulations in Propositions 10-20; 
but since these are described and analysed in detail in Barker, MAESC, I can be 
very brief. We find here that the terminology of ratios is confined to three 
carefully organised references to the mathematical theory. The first is right at 
the end of the long Proposition 12, to be quoted below; the second is in 
Proposition 16: 

The tone will not be divided into two or more equal intervals. 
It has been shown that it is epimoric. In the case of an epimoric interval neither several 

mean [numbers] nor one fall within it proportionally. Therefore the tone will not be 
divided into equal intervals. 

and the third is a similar reference in Proposition 18. 
The Introduction seems to provide the link between the mathematical theory 

of Propositions 1-9 and the musical theory of Propositions 10-20, and we can 
abstract that link into two principles: 

The interval between two notes can be expressed in terms of numbers 
(arithmoi), and 

All concords are either multiple or epimoric ratios. 
As I remarked earlier, the second principle distinguishes Pythagorean and 

Academic musical studies from those of the Lyceum, and we can elaborate this, 
in the context of the Sectio, as follows. In Proposition 6, quoted above, the 
treatise investigates the relation 

(4: 3) and (3: 2) make (2: 1), 

and, in Proposition 7, the relation 

(2: 1) and (3: 2) make (3: 1). 

Then the music theoretic consequences are analysed in the comprehensive 
Proposition 12: 

The octave interval is duple. 
We have shown that it is multiple; it is thus either duple or greater than duple. But 

since we showed that the duple interval is composed of the two greatest epimorics, it 
follows that if the octave is greater than duple it will not be made up of just two 
epimorics, but of more. But it is made up of two concordant intervals, the fifth and the 
fourth. Therefore the octave will not be greater than duple: therefore it is duple. 

But since the octave is duple, and the duple is made up of the two greatest epimorics, it 
follows that the octave is made up of the hemiolic and the epitritic, since these are the 
greatest. But it is made up of the fifth and the fourth, and these are epimoric. The fifth, 
therefore, since it is greater, must be hemiolic, and the fourth epitritic. 

It is clear then that the fifth and octave is a triple. For we showed that the triple 
interval is generated from a duple and a hemiolic interval, so that the octave and a fifth is 
also a triple. • 

The double octave is a quadruple. 
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But nowhere does the Sectio discuss any mathematical or musical implication 
of the relation 

(2:1) and (4:3) make (8:3). 

Much more serious than this omission is the flaw to be found in the proof of 
Proposition 11: 

The interval of the fourth and that of the fifth are each epimoric. 
Let A be nete synemmeni5n, let B be mese, and let C be hypate meson [three fixed notes 

on the scale, each a fourth apart]. The interval AC, being a double fourth, is therefore 
discordant [a musical fact]: it is therefore not multiple[!; see below]. Thus since the two 
equal intervals AB and BC when put together make a whole which is not multiple, 
neither is AB multiple [Proposition l]. And it is concordant: therefore it is epimoric. The 
same demonstration applies also to the fifth. 

The inference that a discordant interval is not multiple cannot follow from any 
argument or assumption stated or hinted anywhere in the treatise or elsewhere. 
Note that the second principle of the Introduction, described above, does not 
state that all multiple and epimoric intervals are concordant; this would ensure 
the truth of the proposition but it is clearly false, as the examples of 5 : 1, 7 : 1, 
and 9 : 8 clearly illustrate. There seems to be no explanation of the flaw in this 
proof, nor any way of recovering the proposition, and since the remaining 
propositions depend on it, the remainder of the argument collapses. 

It may be misplaced effort to look for a sophisticated mathematical explana
tion for a treatise so obscure and flawed as the Sectio, but nonetheless I have 
tried, in my dialogue. Just as the idea of ratio in an astronomical context might 
plausibly lead to the profound insight of Elements V Definition 5, as I proposed 
in Section 4, so an exploration of ratio in a musical context might yield some 
other mathematical insights. Moreover, the manipulations of music theory 
seem to depend fundamentally on the operation of compounding, an operation 
which seems to pose some serious problems for mathematicians. My purely 
speculative suggestion, set out in A70-s4, is that music theory might plausibly 
give some help with this problem. It might become apparent only later that the 
compounding of anthyphairetic ratios is an even more subtle operation, both 
conceptually and computationally, as I explained in Section 2, above. In the 
event, the proposal in A84 that it may be easier to infer it from simple 
commensurable examples will turn out to be misguided, as I shall explain in 
Section 9.3(a). 

Let me leave this brief discussion of the Sectio Canonis by emphasising a part 
of my opening description of the treatise: that its author is unknown and its 
date is uncertain. 

4.5(e) Further problems 

The final speeches of my dialogue, B89-A96. introduce further questions about 
the connections between geometry and arithmetike that I shall only discuss 
very briefly here. The description in Bs9-B91 of the geometrical operations is 
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included in preparation for the work of the next chapter, and to make the 
geometrical meaning of a statement like )2. )3 = )6. 1 quite clear. The 
symbolism introduced is, of course, intended for the convenience of the 
modern reader, and there is no suggestion in Greek mathematics of any such 
developments; all of the symbolic manipulations should be read as shorthand 
descriptions of geometrical manipulations. 

The straightforward construction in B93 of the lines involved in 
)2. )3 = )6. 1 leads, in Fig. 4.2, to a configuration closely resembling that 
called the arbelos, the shoemaker's knife, which is found in the Archimedean 
Book of Lemmas, Archimedes-Heiberg, Opera ii, 510-25 and Archimedes
Heath, WA, pp. xxxiiff. and 301 ff. This treatise is known only in an Arabic 
translation of what appears to be a later Greek compilation of heterogeneous 
results. The observation in B95 on the angles of an equilateral triangle is very 
suggestive. As a postulate: 

That the angles of all equilateral triangles are equal to one another, 

or a similar postulate for 'squares': 

That the angles of all equiangular and equilateral rectangles are equal to one another, 

it invites the explicit evaluation of Postulate 4 of Elements I: 

That all right angles are equal to one another. 

On the other hand, it is now well known that these postulates about similar 
and non-congruent figures are equivalent to Postulate 5 and that there are 
ways of excluding what is now called non-Euclidean geometry. Our 
evidence on this topic from early Greek geometry is very sparse, and I 
shall not enter the question of its interpretation here beyond observing 
that, although this postulate is generally described as if its origin lies in 
problems associated with parallel lines and indeed it is often referred to as 
the 'Parallel Postulate', the postulate itself is articulated without invoking 
the language of parallels: 

That, if a straight line falling on two straight lines make the interior angles on the same 
side less than two right angles, the two straight lines, if produced indefinitely, meet on 
that side on which are the angles less than two right angles. 

Indeed it more resembles a converse of Elements I 17: 

In any triangle two angles taken together in any manner are less than two right angles; 

and it can be read as the assertion that it is possible to construct a triangle of 
any size with angles equal to those of a given triangle. Its formulation seems to 
be more closely concerned with the properties of similar figures than with 
parallel lines, and so with the considerations at the end of B95. 

Our earliest treatises on Greek mathematics, On the Moving Sphere and On 
Risings and Settings by Autolycus of Pitane, who flourished at the end of the 
fourth century BC, are on spherical geometry, and we have later reports of work 
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by Eudoxus on subtle constructions involving spheres. However, we have no 
explicit evidence that Greek geometers ever considered tlre spherical model for 
geometry, as in B95, however attractive the idea may be. Spherical geometry is 
excluded from the Elements by Postulate 2: 

To produce a finite straight line continuously in a straight line, 

and also by Postulate 3: 

To describe a circle with any centre and distance. 

Postulate 1 can even be included in these considerations when it is 
interpreted as 

To draw a [unique] line from any point to any point, 

for this does not hold on a sphere: there are infinitely many lines joining 
antipodal points and two lines joining non-antipodal ones. Is it possible 
that the role of all of the postulates-and not just Postulate 5-was to 
exclude such exotic geometries? We cannot know; we have but little 
evidence on this topic. (For further discussions of spherical geometry, see 
Rosenfeld, HNEG, and Toth, PCA.) My reason for introducing non
Euclidean geometry is to bring the little set of dialogues themselves in a 
full circle with my slaveboy's reflection at the end of B95, and so point to 
a further level of mathematical subtlety underlying Socrates' example of 
doubling a square in the Meno. 

4.6 APPENDIX: THE WORDS LOG/STIKE AND 
LOGISMOS IN PLATO, ARCHYTAS, ARISTOTLE, 

AND THE PRE-SOCRATIC PHILOSOPHERS 

4.6(a) Plato 

The references to logistikos (the lemma form of logistike) in Brandwood, A 
Word Index to Plato, divide between about twenty-five where the context is 
explicitly mathematical and about ten with the more general sense of 
'intellectual principle' or 'reason'; while logismos (excluding ten instances 
found in the pseudo-Platonic Definitions, all of them non-mathematical) 
divide between about thirty explicitly mathematical references and forty 
usages with the more general sense of 'rational discussion' or 'reason'. It 
might also be interesting to check, in the same way, the 1500 or so entries for 
logos. 

The relevant entries from the Index are reproduced below; they are divided 
into grammatical categories with lemmata underlined, as in the Index. Those 
items that seem to me to refer to specifically mathematical passages are set in 
bold-face type. An asterisk indicates some variation between the manuscripts 
or editorial emendation, details of which can be found in the Index. This list 
should cover all occurrences of these words in the Platonic and pseudo-Platonic 
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corpus. A similar index to alogos and (ar)rhetos can be found in the Appendix 
to Chapter 5. 

A.oytcµ6c Timaeus 34a.8; Laws I 644d.2. 
A.oytcµ,6v Euthyphro 7b.10; Hippias Minor 367a.9, c.5*; Republic IV 440b.1, 

VII 522c.7, 524b.4, IX 587e.5; Phaedrus 274c.8; Timaeus 30b.4, 33a.6; Laws 
VII 805a.3; Epinomis 974a.2; Definitions 412e.2, 416a.l,12. 

A.oytcµ,ov Meno IOOb.2; Phaedo 66a.1; Symposium 207b.7; Republic IV 439d.l, 
44la.9, IX 586d.2; Timaeus 36e.6, 72e.2, 77b.5, 86c.3; Critias 121a.7; Sophist 
248a.11; Philebus 2lc.5, 52b.3; Laws I 645a.1,5; Epinomis 981c.4; Definitions 
413c.3, 415e.6, 416a.18. 

A.oytcµ,0 Meno 98a.4; Phaedo 79a.3, 84a.7; Republic I 340d.4, IV 43lc.6, VI 
496d.6, VIII 546b.1, X 603a.4, 604d.5, 61lc.3; Parmenides 130a.2; Phaedrus 
249c.l; Timaeus 52b.2, 57e.l, 72a.l; Laws III 697e.2, VII 813d.l; Epistle VII 
340a.2; Definitions 412b.4,5, 415d.10. 

A.oytcµ,o{ Laws VII 817e.6, X 896c.9. 
A.oytcµ,ovc Hippias Minor 367a.1; Protagoras 318e.2; Republic VI 510c.3, VII 

525d.1; Theaetetus 145d.2; Statesman 257a.7, b.7; Philebus llb.8; Laws VII 
819b.2. 

A.oytcµ,wv Hippias Minor 366c.6, 367b.7, c.2,3,5*; Hippias Major 285c.5; 
Republic VII 526d.8, 536d.5; Timaeus 47c.2; Sophist 254a.8; Philebus 57a.1; 
Laws VII 809c.4; Definitions 412a.7*. 

A.oytcµofc Philebus 52a.8; Laws X 897c.6, XII 967b.3. 
A.oytcTEov (nt.) Timaeus 62a.1. 
A.oytcTric Republic I 340d.6; Statesman 260a.5. 
A.oytcndc Hippias Minor 367c.4; Theaetetus 145a.7. 
A.oytcTtK6v Republic I 340d.3. 
A.oytcTtK0 Republic VII 525b.6, IX 587d.11. 
A.oytcTtKo{ Euthydemus 290c.1; Republic VII 526b.5; Laws III 689c.9. 
A.oyH/mK~ Charmides 166a.5; Gorgias 450d.6, 45lc.2,5; Republic VII 525a.9; 

Statesman 259e.1; Philebus 56e.7; Definitions 41le.10, 414c.3. 
A.oytcTtK~v Gorgias 451b.5; Republic VII 525c.1. 
A.oytcnK'ijc Charmides 165e.5, 166a.10; Hippias Minor 366c.6; Definitions 

412b.9. 
A.oytcTtKfj Statesman 259e.5, 260a.10. 
A.oytcndv Charmides 174b.5; Republic IV 439d.5, 440e.6,9, 442c.11, VIII 

550b.l, 553d.l, IX 571c.4, d.7, 580d.4*, X 605b.5; Timaeus 37c.1. 
A.oytcTtKov Republic IV 440e.8, 441a.5, X 602e.1. 
A.oytcTtK0 Republic IV 44la.3, e.4. 
A.oytcTtKa Hippias Minor 366d.5. 

4.6(b) .Archytas 

Two fragments of krchytas, B3 and 4 in Diels & Kranz, FV ii, 436-8, are 
concerned with logismos and logistike. They are cited here in full: 
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B3. Logismos, when discovered, stops strife and increases concord; when it occurs, there 
is no excess of gain, but there is equality; for by this we settle our disputes. By this, 
then, the poor take from the powerful, and the rich give to the needy, both sides 
trusting that through this they will get fair treatment. It is a rule and it prevents 
men from doing wrong: it stops those who know logismos before they do wrong, 
persuading them that they will not be able to escape notice, when they come to it: and 
it prevents those who do not know from doing wrong, showing by that very fact [i.e. 
that they do not know logismos] that they are doing wrong. [Translation adapted from 
Freeman, APSP, and Harvey, TKE; see Chapter 6, n. 11, below.] 

B4. Logistike, it seems, in regard to wisdom is far superior to all the other sciences, 
especially geometry, because logistike is able to do more clearly any problem it 
will ... and-a thing in which geometry fails-logistike adds proofs and, at the same 
time, if the problem concerns forms, logistike treats of the forms also. [Translation 
adapted from Freeman, APSP.] 

4.6(c) Aristotle 

The following entries are taken from Bonitz, Index Aristotelicus, which is 
probably far from complete. Aristotle almost always uses the words in the 
sense of the 'reasoning faculty'. Passages in bold-face type indicate a context 
which contains some additional reference, as when this 'reasoning faculty' is 
associated with the 'rational and irrational principles' of the soul, or, very 
occasionally, with some technical usage; but none of these passages seem to 
shed any light on the nature of mathematical logistike. Again, there is a 
massive entry for logos, about fifteen times longer than these entries 
combined. 

li.oyicµ,oc Posterior Analytics 88b12, 100b7; Topics 145b2, bl 7; Physics 200a23; 
On the Soul 415a8, 433al2, b29; Metaphysics 980b28, 1015a33; Nicomachean 
Eth/cs lllla34, 1117a21, 1119bl0, 114lbl4, 1150b24, 1220al, 1250all, bl3; 
Politics 1312b29, 1322b9, 1334b24, 1369b7; Rhetoric to Alexander 1429al7; 
Fragment 96 1493b32; Fragment 97 1493b37. 

li.oyicrn{ Politics 1322bll; Fragment 406 1546a4, alO, a21; Fragment 407 
1546a26. 

li.oyicT~pwv Fragment 406 1564a4. 
li.oyicnKoc Topics 126a8, al3, 128b39, 129all sqq, 134a34, 136bll, 138a34, 

b2, bl3, 145a29, 147b32; Physics 210a30; On the Soul 432a25, 433b29, 434a7; 
Nicomachean Ethics 1139a12, 1182al8, a20, 1249a31, b30, 1250a3, al6; 
Rhetoric 1369a2. 

4.6(d) Pre-Socratic philosophers 

The index to Diels & Kranz, Die Fragmente der Vorsokratiker contains nine 
columns of entries for logos, half a column for logismos, and one entry 
(Archytas B4; see above) for logistike. Here are the entries for logismos, each 
with its reference number and volume, page, and line entries. Square brackets 
denote texts described as spurious; for further details of the classification, see 
FV i, 1. The bold type is as in Section 4.6(a), above. 
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Anaxagoras A66 11 22.4 
Archytas B3 437.7 (see above) 
Democritus B187 ii 183.10 

B290 11 205.19 
[B302 11 222.19] 
[B306 ii 223.32] 

Epicharmus [B56 i 208.5 f.] 
[B57 208.9] 

Hippias 80A5 ii 256.2 (=Plato, Protagoras 318e.2) 
86All ii 328.32 (=Plato, Hippias Major 285c.5) 

Hippocrates of Cos 64C2 ii 67.18 (i.e. the physician) 
Pythagoras 9 101.2 
Theodorus 4 397.25 (=Plato, Theaetetus 145d.2) 



5 

ELEMENTS IV, X, AND XIII: 
THE CIRCUMDIAMETER 

AND SIDE 

5.1 THE CIRCUMDIAMETER AND SIDE, 
AND OTHER EXAMPLES 

5.l(a) The problem 

Let us now tum to the problem of the circumdiameter and side, introduced 
by my Socrates at S41 . It is very similar in spirit to the very fruitful problem 
of the diagonal and side, discussed in Section 2.2, out of which grew the 
remarkable discoveries of the dimension of squares in Chapter 3. We take a 
regular polygon with its circumscribed circle, and try to describe the relation 
between the circumdiameter and a side. Instead of the side we can take a 
diagonal; and instead of the diameter, we can take the radius, since doubling 
or halving a ratio has an effect on the anthyphairesis that seems difficult to 
elucidate. We can also consider the inscribed circle, or investigate the similar 
three-dimensional problems associated with an edge or diagonal of a regular 
polyhedron inscribed in or circumscribed around a sphere. 

The geometrical constructions associated with several such problems are 
described in Elements IV and XIII. Most of them lead to lines that are either 
commensurable or related as the sides of squares, and they are described as 
such by Euclid; see Elements XIII 12 (equilateral triangle and hexagon), 13 
(tetrahedron), 14 (octahedron), and 15 (cube). In these cases the anthyphairesis 
can be completely described by an additional short and now routine calcula
tion. But three examples, the pentagon, icosahedron, and dodecahedron, give 
rise to more complicated relations than pure sides of squares. The worst kind of 
behaviour considered in the Elements occurs already with the pentagon, and I 
shall concentrate exclusively on this example. My geometrical descriptions 
throughout this chapter will be based on the treatment in Taisbak, CQ, to 
which I shall add an anthyphairetic motivation.* 

5.l(b) The pentagon 

Consider the circumradius and side or diagonal of a pentagon. There is no 
difficulty in evaluating and expressing the relations between these lines using 

* I strongly encourage the reader to look at the Appendix, Section 10.1, before embarking 
on this chapter, which has been rewritten for the second edition, incorporating some of the 
material in my IRBT. All further notes will be put at the end and can be ignored by anyone 
whose main interest is to understand the material presented here; they contain background 
information and additional comments of a general nature. 
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FIG. 5.1 

the language and techniques at Euclid's disposal. Take a regular decagon 
A1B1A2B2 ... AsBs inscribed in a circle (see Fig. 5.1), and note that Euclid's 
basic construction of the pentagon at Elements IV 11 does, in fact, start from 
the side of a decagon inscribed in a circle, though Euclid does not bring out this 
fact. Then the diameters, such as A1B3, A1B4, and A3Bs, will intersect in the 
centre C of the circle. Now most of the angles of the figure can be expressed in 
terms of the angle subtended at the circumference by a side of the decagon, 
which is one-twentieth of the circle, or 18°. Hence many 36°-72°-72° isosceles 
triangles can be found, in particular A3B3D (so B3D = B3A3 =the side of the 
decagon) and A2CD (so A2D = A2C = the radius of the circumcircle = the 
side of the inscribed hexagon). Hence the line A2B3 is the sum of the sides of the 
inscribed hexagon and decagon, and so is divided in extreme and mean 
ratio; this result is proved at Elements XIII 9. Note that since A 2 BsD is also a 
36°-72°-72° triangle and B5EB2 is perpendicular to A1EB3, then A1E = 
ED = q, where 2q = r, the radius of the circle. Write B3E = p; then, by 
XIII 3, one of the block of propositions on the metrical properties of the 
extreme and mean ratio (see Section 3.5(d), above), 

B3E2 = 5A2E2, i.e. p2 = 5q2 . 

Hence 

and 



154 Elements IV, X, and XIII: The circumdiameter and side 

Now, from the right-angled triangle A1A2B3, 

A1A~ + A1B~ = A1B~, 

so 

and hence 

A,A~ + p. r = l0q2 = lO(r/2) 2 . 

Similarly, from the right-angled triangle A1A3B3, 

A1A~ + A3B~ = A1B~, 

or 

and hence 

A1A~ =p.r+ lO(r/2) 2 . 

We, today, express these kinds of results in the arithmetised form: 

side of pentagon= r/2y'(l0 - 2y'5) 

diagonal of pentagon= r/2y'(l0 + 2y'5), 

5.1 

but we find nothing of this kind in the Elements. It is not that Euclid is unable 
or unwilling to articulate this kind of result. We can write these formulae as 
y'(lO(r /2)2 ± r. y'5(r /2)2) and describe them, within the idiom of Books II or 
XIII 1-5, by: 

The square on the side [or diagonal] of a pentagon is less [or greater] then ten squares on 
half the radius by the rectangle contained by the radius and the side of the square equal 
to five times the square on half the radius. 

Nor is it that such a statement is difficult to understand. In Fig. 5.2(a), we start 
with "ten squares on half the radius" and then, in Fig. 5.2(b ), double the base, 
halve the sides, and subtract "the [upper] rectangle contained by the radius 
[r = 2q] and the side [p] of the square equal to five times the square on half the 
radius [so p2 = 5(r/2)2 = 5q2]". This leaves the lower, shaded rectangle equal 
to the square on the side of the pentagon; then the side itself can be constructed 
using Elements II 14. A similar procedure, in which p. r is added, not sub
tracted, will give the square on the diagonal. Nor is it that this kind of result is 
remote from the kinds of manipulations and evaluations that occur in the 
Elements: we find an exploration of the pentagon at XIII 11 which involves 
the vertices of the decagon, the projection of a side of the pentagon on an 
adjacent diameter (for example A1F in Fig. 5.1), and a line equal to a quarter of 
the radius, q/2 in my notation. Euclid's argument turns on the fact that 
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2q=r 
lOq 10q2 - - - --·~--~ 

Sq 

(a) (b) 

FIG. 5.2 

4q=2r 

(c) 

A1A2B3 and A1FA2 are similar right-angled triangles, so that 

A1A~ = A1F .A,B3 , i.e. side2 =(projection). (4q). 
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This rectangle appears as the lower, shaded rectangle in Fig. 5.2(c), where it 
arises from a further doubling of the base and halving of the side of the 
rectangle of Fig. 5.2(b). While the likes of Fig. 5.2 are not generally drawn in 
the Elements, these kinds of figures do seem to follow the Euclidean style of 
argument much more closely than manipulations of the corresponding 
algebraic formulae. 

For each of the cases of the circumdiameters and sides (or edges) of the 
pentagon, icosahedron, and dodecahedron, instead of providing something 
which corresponds to our kind of metrical description, Euclid suppresses all 
of the numerical constants that give essence to our evaluations and enunciates 
only qualitative results. For example, at XIII 11, we have: 

If in a circle which has its diameter expressible (rhetos) an equilateral pentagon be 
inscribed, the side of the pentagon is the alogos ('without ratio') straight line called 
minor (elasson). 

This proposition means that the side of the pentagon can be expressed as the 
difference of the sides of two squares, where these squares satisfy certain further 
kinds of very elaborate qualitative, not quantitative, relations of a kind that 
have been developed,· in the Elements, in the classification of Book X, and 
which I shall describe in Section 5.2, below. 
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5.l(c) The extreme and mean ratio 

The extreme and mean ratio gives another illustration of Euclid's procedure. If 
a line of length 1 is cut in extreme and mean ratio, the longer segment has 
length! ( J5 - 1 ), the shorter! (3 - J5), and their ratio is! ( J5 - 1): 1. While 
these arithmetised statements might seem to us today to contain some of the 
essential facts about the extreme and mean ratio, they do not occur in the 
Elements, though there is absolutely no doubt that Euclid could have articu
lated them, expressed geometrically, among the propositions that he does prove 
at Elements XIII 1-5. Instead this block of results finishes, at XIII 6, with: 

If an expressible (rhetos) straight line be cut in extreme and mean ratio, each of the 
segments is an alogos straight line, the one called apotome (apotome). 

This, again, is a qualitative statement that is, this time, sufficiently simple to 
be described without further terminology: each of the segments can be 
expressed as a difference of two lines which are incommensurable with each 
other, but such that the squares on these lines are commensurable with each 
other and with the square on the whole. 

5.l(d) Surd quantities 

Notwithstanding these reservations about the relevance of these kinds of 
arithmetised expressions, there is a very long and still active tradition of 
interpreting Book X in this style. Simon Stevin was far from the first to 
follow this path, but he is one of the best known; in 1585, he boasted that he 
possessed the key to Book X: the calculus of surd quantities. 1 Let us follow his 
suggestion and, without attempting to explain further what these 'surd 
quantities' are, explore a few more examples: 

J(2 ± J3) = J~± J! 
J(Js ± J6) = v~± v! 

J ( J2 ± 1) = \I ( J ! + !) ± J ( J ! - !) 

J(J5 ± J2) = J(Ji+ Ji)± J(Ji- Ji) 
etc. 

We get what seems, at first, to be a bewildering variety of behaviour. Since 
squares are easier to understand than square roots, let us also look at them: 

(Jg+ J7J) 2 = (t + 7J + 2Jt'YJ) = (/3 + y) where f3 = g + 7J and y = 2Jt7J. 
Note that f3 > y-the arithmetico-geometric inequality, X 59/60-and neither 
f3 = g + 'YJ nor J(/32 - y2) = g - 'YJ involves square root signs. A bit more 
explanation shows that these are sufficient conditions for (/3 + y) to be the 
square of one of these kinds of surds; and that explains the first example. Yet 
more exploration by anyone at ease with the mathematics that has developed 
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since the time of Stevin and which, I think, owes a not insignificant debt to 
him (see my FHYDF) will uncover what has been called "the quintessence of 
Book X":2 

y'(/3 ± y) = v'(!/3 + ! y'(/32 - y2)) ± v'(!/3 - ! y'(/32 - y2)). ( *) 

The first three examples given above satisfy conditions, the first of which was 
just described (namely f3 the positive square root of a square; y the positive 
square root of a non-square; and (/32 - y2) a square) that lead to simplifications 
in this formula, while the fourth example represents the most general kind of 
case that can occur, in which none of the numbers involved are 'accidentally' 
rational, or are 'accidentally' rationally related to each other. 3 

One more example. Given f3 and y, we could choose g at will, and write 

v' (/3 ± y) = g + ( v' (/3 + y) - t); 

then, for some special choice of g, we might get a pretty expression on the right
hand side. Formula ( *) is not doing this, at least not directly, for it requires that 

both y' (/3 + y) = g + 'Y/ and y' (/3 - y) = g - 'Y/, 

and it is almost irresistible for us nowadays to treat these two cases of addition 
and subtraction together. Euclid, however, gives completely separate but 
parallel treatments of his equivalents to these cases of addition and subtraction, 
only linking them together at the end; and therefore so shall I. Here then is the 
first way the formula misrepresents Book X; and Euclid must therefore specify 
just how the right-hand side is constituted, just what form the f3 and y can have. 

5.l(e) Anthyphairetic considerations 

Let us now try to explore these ratios anthyphairetically. We immediately face 
two problems: that the evaluation of the anthyphairesis is sometimes rather 
difficult, beset with theoretical and practical problems, and that the behaviour 
revealed by the heuristic search seems to be unpredictable. 

The first problem in evaluating the terms of a ratio like !v'(lO ± 2y'5): (1 
or 2), using some algorithm such as those described in Section 2.3, has already 
manifested itself in Section 4.2, where the example of ( y'2 + y'3) : 1 was cited to 
illustrate the intractability of algorithms for anthyphairetic arithmetic. I shall 
illustrate the difficulties in more detail using this slightly simpler ratio. The 
algorithm of Section 2.3(b) depended on some kind oftest to identify whether 

p: q is <, =, or > ( y'2 + y'3) : l. 

Suppose we manipulate boldly, ignoring problems of meaning and inter
pretation, and all historical and mathematical problems: 

p: q is <, etc. ( y'2 + y'3): 1 according asp is <, etc. ( y'2 + y'3)q, 

i.e. according as p2 is <,etc. (5 + 2y'6)q2, 
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provided we can justify these operations, including the arithmetical result that 
y'2. y'3 = J6, on which see B93, 

i.e. according as (p2 - 5q2 ) is <, etc. 2J6q2 , 

i.e. according as p4 - l0p2q2 + 25q2 is <, etc. 24q4 , 

although if p2 < 5q2, some further investigation is needed, 

i.e. according as p4 + q4 is <, etc. lOp2q2 . 

The trouble now, as anybody who applies the algorithm will find, is that the 
numbers grow far too quickly for the calculation to be carried very far; the first 
three terms are calculated in Table 5.1 and, at the next step, the calculation will 
overflow the capacity of the standard Greek numerals (see Chapter 7). No 
periodic or regular behaviour presents itself, though we notice incidentally that 
( J2 + J3) : 1 is close to and greater than the ratio of the circumference to 
diameter of a circle. (Explanations of this can be seen in the perimeters of a 
square inscribed in, or of a hexagon circumscribed around, a circle, or in the 
areas of an octagon inscribed in and of a hexagon circumscribed around it; see 
Popper, OSE i, Chapter 6, n. 9.) 

We attempt these calculations for the same motives that lay behind the 
calculations of Section 3.3 (see especially Table 3.1), in the hope that they 
may uncover some plausible hypotheses. After this, we hope that the 
calculations will fall away, to be replaced by deductive proofs, as happened 
with the problem of the dimension of squares; compare Sections 3.3-3.6. 
So let us continue to ignore any historical and mathematical scruples 
relating to any aspect of this calculation, and pass to the results, to see if 

TABLE 5.1. Evaluation of ( J2 + J3): 1 = [3, 6, 1, 3 or more, ... ]. 
(Compare Table 2.1) 

New Under/ 
Under- Over- estimate equal/ 
estimate estimate p:q p4 q4 p4 +q4 l0p2q2 over 

3: 1 4: 1 7:2 2401 16 2417 1960 over 
3: 1 7:2 10: 3 10000 81 10 081 9000 over 
3: 1 10:3 13 :4 28 561 256 28 817 27040 over 
3:1 13 :4 16:5 65 536 625 66161 64000 over 
3: 1 16:5 19: 6 130 321 1296 131617 129960 over 
3:1 19: 6 22:7 234256 2401 236657 237 160 under 

22:7 19: 6 41: 13 2 825 761 28 561 2854322 2840890 over 
22:7 41: 13 63: 20 15 752 961 160000 15 912 961 15876000 over 
22:7 63: 20 85: 27 52200625 531441 52 732066 52670250 over 
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any plausible hypotheses would eventually present themselves. For the 
pentagon, we get: 

side: circumradius = y'(lO - 2y'5): 2 

= [1, 5, 1, 2, 3, 2, 28, 2, 27, 3, 22, 1, 7, 1, 9, ... ], 

side: circumdiameter = y'(lO - 2y'5): 4 

= [O, 1, 1, 2, 2, 1, 6, 1, 56, 1, 54, 1, 1, 1, 10, ... ], 

diagonal: circumradius = y'(lO + 2y'5): 2 

= [1,l,9,4,l,l,l,2,l,l,2,3,7,1,2, ... ], and 

diagonal: circumdiameter = y'(lO + 2y'5): 4 

= [O, 1, 19, 2, 3, 6, 5, 1, 1, 1, 3, 2, 1, ... ]. 

We are again faced with behaviour similar to that encountered in the problem 
of the dimension of cubes (see Section 4.3), that no regularity seems to be 
evident. The purely anthyphairetic approach seems blocked. 

We can try to investigate this problem from the other side, and attempt to 
evaluate the ratio of the side or diagonal to circumradius or diameter of the 
pentagon directly, by geometric arguments such as were given in Section 2.1 for 
the simpler cases of the diagonals and sides of regular polygons. We can indeed 
try, but I can see no possibility of progress with the example of the circumcircle 
of the pentagon. However the case of the extreme and mean ratio is amenable 
to this approach, for here we can both evaluate the ratio geometrically and 
explore the construction metrically, and then compare what we find. We then 
get 

!(JS-1): !(3-y'5) = [T]. 

We also notice that this particular expansion is much easier to evaluate directly, 
since the test for whether 

p: q is <, =, or > ! ( y'5 - 1) : ! (3 - y'5) 

reduces to finding whether 

p2 is <, =, or > pq + q2, 

and the numbers involved in the arithmetical exploration only grow quad
ratically. But it is difficult to see, from just this one example, what may be 
happening in general, what it is that is so special about the relation 
(JS - 1) : (3 - y'5) that it yields a purely periodic anthyphairesis. Also the 
issue is complicated by another phenomenon: all examples of ratios of sides of 
squares seem to have the form [no, n1, ... , 2n0], and so contain an even term 
somewhere in their anthyphairesis. Hence the extreme and mean ratio is an 
example of a periodic anthyphairetic expansion which cannot be expressed as a 
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ratio of sides of squares (see Section 3.5(b)). Can anything more be said about 
this new class of expressible ratios? 

A final series of evaluations will illustrate the problem further. The following 
calculations, one of which requires a great deal more computational or 
analytical effort, yield 

(J2+J3):J6= [1,3,1,l,15,1,1,1,19,2,4,1,1,3,47,1,3, ... ], 

(J2 + y'3): (J6 - 1) = [2, 5, 1, 6,4,2, 2, 2, 106, 12, 2, 1, 1, 2,2, ... ], 

( y'2 + y'3) : ( J6 + 1) = [O, 1, 10, 2, 1, 1, 1, 15, 9, 5, 2, 6, 5, 4, 17, ... ], 

and 

( J2 + J3): ( J6 - 2) = [6, 1, 2742, 1, 1, 1, 3, 1, 160, 1, 1, 2, 5, 3, 1, ... ], 

but 

(y'2+y'3):(J6+2) = [0,1,2]. 

Let us explore to see why this last result may be so much simpler than the rest. I 
shall consider the reciprocal ratio ( J6 + 2): ( J3 + J2), taken 'the greater to 
the less', and will work out in detail the geometrical manipulations which 
simplify this expression. We start from the identities 

( y'3 + y'2) . ( J3 - y'2) + y'2. J2 = J3. J3, 
so 

(J3 + J2). (y'3 -y'2) = 1.1, 

and 
( y'6 + 2). ( J3 - J2) = y'2. 1, 

which correspond to geometrical configurations of rectangles which the reader is 
strongly encouraged to draw. (Note that the latter identity uses manipulations 
like J6. J3 = Jl8. 1 = 3. J2, on which again see Ass-B93.) Hence we have: 

( J6 + 2) : ( J3 + y'2) = ( J6 + 2) . ( J3 - J2) : ( J3 + y'2) . ( y'3 - J2) 

= y'2. 1: 1. 1 

= J2: 1 

= [I,2]. 

(by the Topics proposition) 

(by the evaluations above) 

(by the Topics proposition) 

However, this result seems to be very special, and were such a manipulation 
as this ever explored, it would perhaps be more likely to prompt an investi
gation of the behaviour of rectangles like ( y'p ± Jq). (Jr± Js) than of the 
underlying properties of anthyphairesis. 

These manipulations may seem to us to be very artificial and laboured. But 
when Euclid deals with a similar kind of result at Elements X 112-14, his 
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treatment is also notoriously complicated and, if viewed algebraically, difficult to 
follow. He never seems to recognise the relevance and simplification that would 
follow from using freely the basic identity (b + c). (b - c) = b2 - c2 . Further, 
there seems to be nothing corresponding to this identity in the configurations of 
Book II though it is easy to draw a variant figure of II 5 that deals with it. I 
shall return briefly to this question at the end of Section 5.2(f) below. 

The material I have described so far has provided sufficient clues to permit 
an informed guess as to what might be happening, but I do not think that much 
of this information would be accessible in any such coherent form within the 
early Greeks' arithmetical techniques, while the underlying phenomenon itself, 
if it were ever guessed, would probably lie outside their techniques of deductive 
geometrical proof. The result is that the only known regular behaviour of 
anthyphairesis connected with the arithmetical operations of taking sums, 
products, and roots (of any order) is that ratios of the form ±(p ± Jq): r 
(or, in arithmetised terms, those numbers that arise as solutions of quad
ratic equations with integer coefficients) will have an anthyphairesis that is 
eventually periodic, 

±(p ± Jq): r = [no,n1, ... ,nk,mo,m1, ... ,mz]; 

and, conversely, any such expression will give rise to a ratio that can be expressed 
in this way. (This converse can be demonstrated geometrically by the final 
generalisation of the procedure of synthesising ratios in Section 3.5 but, as I 
observed here, I feel that this also would be highly implausible as a reconstruction 
of Greek procedures since it involves an extended subsidiary quasi-algebraic 
computation.) Much more reasonable would be to propose that any such 
arithmetical heuristic explorations of the problems were abandoned at some 
early stage since they gave no insight and were computationally intractable. 

5.2 ELEMENTS X: A CLASSIFICATION OF SOME 
INCOMMENSURABLE LINES 

5.2(a) Introduction 

An investigation such as I have described in Section 5.1 sets up a remarkable 
contrast. On the one hand, there is the spectacular success of the anthyphairetic 
exploration of the ratios of sides of squares, Jn : Jm, in which a wide range 
of arithmetical and geometrical techniques and problems are bound together 
into some apparently coherent whole. On the other hand, there is an equally 
spectacular lack of success in the search for any similar regular, predictable 
anthyphairetic behaviour of any other geometrical ratios, apart from the 
extreme and mean ratio. Such a contrast might lead to the growth of an 
attitude in which these sides of squares come to be considered as the basic 
underlying understandable geometrical objects in terms of which everything 
else should be descrioed. I propose that Book X of the Elements may indeed be 
a product of such a point of view. 
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The book opens with four definitions: 

1. Those magnitudes are said to be commensurable (summetroi) which are measured by 
the same measure, and those incommensurable (asummetroi) which cannot have any 
common measure. 
2. Straight lines are commensurable-in-square (summetroi dunamei) when the squares 
on them are measured by the same area, and incommensurable[-in-square] when the 
squares on them cannot possibly have any area as a common measure. 
3. With these hypotheses, it is proved that there exist straight lines infinite in multitude 
which are commensurable and incommensurable respectively, some in length only, and 
others in square also, with an assigned (protetheisa) straight line. Let the assigned 
straight line be called expressible (rhetos), and those straight lines which are commen
surable with it whether in length and in square, or in square only, expressible, but those 
incommensurable with it alogoi. 
4. And let the square on the assigned straight line be called expressible, and those areas 
which are commensurable with it expressible, but those which are incommensurable with 
it alogoi, and the straight lines that produce them alogoi, that is, in case the areas are 
squares, the sides themselves, but in case they are any other rectilineal figures, the 
straight lines on which are described squares equal to them. 

I have rendered rhetos as 'expressible', but have left alogos in transliterated 
form. This latter word means 'without words' or, if the material of Book Xis 
indeed not just about the lines and areas in themselves, but also their mutual 
relations, 'without ratio'. These Greek words are almost always rendered into 
English as 'rational' and 'irrational', respectively. But: 

(i) According to Euclid's definitions, if we denote the assigned line by a, 
then both 3a: 2a and J3a: J2a are ratios of expressible lines. However, in 
our arithmetised description of ratios today, the first corresponds to what 
is universally called a rational number, the second to an irrational number. 
So the usual translation can lead to mathematical confusions and mis
understandings. 

(ii) The use of the words 'rational' and 'irrational' gives the impression that 
the definitions refer to a dichotomy in which every line is either rational or 
irrational; but this is not the case in the original Greek. In fact, Euclid makes no 
attempt in the classification of Book X to consider every possible kind of line; 
rather, he works outwards from the assigned line to generate new kinds of lines 
and areas that are described in terms of the lines and areas that have already 
been considered. He first describes the expressible lines in Definition 3, and 
then he goes on to describe thirteen different kinds of alogoi lines that arise 
from some very special constructions. 

(iii) The word pairs rhetos/arrhetos and logos/alogos, which do describe 
dichotomies, are not uncommon from the fifth or fourth century BC onwards, 
when they are found in a variety of technical and non-technical contexts. The 
only surviving possibly mathematical pre-Socratic use of alogos is in the title of 
a book by Democritus, Peri alogon grammon kai naston, and of arrhetos is in a 
later and unreliable report of an aphorism of Lysis, arithmos arrhetos theos; 
both of these will be discussed in Section 8.3(b). An example of Plato's use of 
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these words occurs at Theaetetus 20le-202c, where Socrates describes a dream 
in a remarkable passage many of whose words have mathematical overtones, 
for example: 

... In that way, the elements (stoicheia) have no account (aloga) and are unknowable 
(agnosta), but they are perceivable (aistheta); and the complexes (sullabai) are knowable 
(gnostai) and expressible (rhetai) and judgeable (doxastai) in true judgement (aletheia 
doxa) . ... 

Given the many problems that are associated with these words it would seem 
best, in contexts that might involve unfamiliar nuances of specialised technical 
meanings, to make a special effort to keep track of the original terminology. 
So I have included an index to the occurrences of alogos and (ar)rhetos in 
Plato, Aristotle, and the pre-Socratic philosophers at the end of this chapter, 
and there is a general survey of the topic of incommensurability in the new 
Appendix, Section 10.1. 

The suggestion of rendering rhetos as 'expressible' was made in van der 
Waerden, SA, 168-79; he also translates alogos as 'unreasonable'. Another 
approach is taken in Taisbak, CQ: he makes no attempt to translate the words 
but merely replaces them by neutral, easily remembered alternatives: 'red' for 
rhetos, 'amber' for mesos, and 'obscure' for alogos, and this has the additional 
effect of enhancing his opinion that Book X may be nothing more than a 
virtuoso display of mathematical reasoning. This question of the motivation of 
Book X has openly perplexed commentators for the past five hundred years or 
more, and practically everybody now cites Stevin's description of Book X as the 
"cross of mathematicians": 

La difficulte du dixiesme Livre d'Euclide est a plusieurs devenue en horreur, voire jusque 
a l'appeler la croix des mathematiciens, matiere trap <lure a digerer, et en la quelle 
n'aperc;oivent aucune utilite [quoted from Heath, TBEE iii 9]. 

More recent opinions about the motivation and role of the book are: 

We are prepared to face the possibility that there was no other point than to entertain[!] 
us with good logic [Taisbak, CQ, 58], 

The true merit of Book X, and I believe it is no small one, lies in its being a unique [?] 
specimen of a fully elaborated deductive system of the sort that ancient philosophies 
consistently prized [Knorr, CM, 60], 

I believe that a satisfactory account is provided by attributing to Euclid the desire to fit 
the edge of the inscribed regular icosahedron into a classification scheme .... One 
would, of course, prefer an explanation that invoked a clear mathematical goal 
intelligible to us in terms of our own notions of mathematics, and which, under analysis, 
would lead univocally [?] to the reasoning in Book X. Unfortunately Book X has never 
been explicated successfully in this way, nor does it appear amenable to explication of 
this sort. Rather, Book X appears to be an expedient for dealing with a particular 
problem and at the same time a mathematical blind alley [Mueller, PMDSEE, 270--1], 

[Euclid] probably plunged himself into this treatment of irrationality, forgetting every
thing else in his work-research for the sake of research, art for art's sake. Euclid's 
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behaviour reminds us of the immortal verses of Goethe's songster who refuses the king's 
ostentatious presents because he is content with his own song: "I.<>ing as the bird sings up 
on high/ Amidst the leaves and boughs./The heartfelt song that comes as a cry/its own 
reward allows" [Wilhelm Meisters Lehrjahre, II 12. Tr. from Euclid-Frajese & Maccioni, 
EE, 568-9]. 

With more than 115 propositions, some very long, the book is massive (more 
than a quarter of the bulk of the Elements), monolithic, and forbidding: 

Book X does not make easy reading .... Up to X 28 it goes fairly well, but when the 
existence proofs start with X 29 ... ones does not see very well what purpose all of this is 
to serve. The author succeeded admirably [?] in hiding his line of thought [van der 
Waerden, SA, 172], 

Simply put, Book X is a pedagogical disaster [Knorr, CM, 59], 

Was the lot of the ancient mathematics student really such a pleasant one? We recall the 
frequent laments by Hellenistic writers over the harshness of the schoolmasters, their 
ready resort to corporal punishment. ... "Leaming comes with pain", they said. This 
meant real physical pain in the lower school; but did it mature into intellectual pain at 
university level? [Knorr, RTCQ, on Book X. As someone who has spent his life teaching 
mathematics, I would not like to think that I or any of my colleagues could behave like 
that now, but I must confess that I cannot be entirely sure!], 

Danger! Ne s'aventurer dans la lecture de ce livre qu'apres une solide preparation [The 
Introduction, by ltard, to the reprinting of Euclid-Peyrard, OE, xiv]. 

5.2(b) Preliminary comments 

No comprehensible description of Book X can avoid a massive reorganisation 
of Euclid's opaque and unhelpful order of presentation and I shall not dwell on 
this fact any further. I shall also set aside most of the textual issues: questions of 
whether the lemmas are interpolations or not, whether certain propositions are 
authentic, how some lacunae should be filled, and discussions of possible 
authorship, and will refer to Euclid as the author of Book X, although his role 
was possibly at most editorial; on Euclid and his/her/their Elements, see 
Sections 6.2 and 10.4. Such is the nature of the material that it imposes a 
more formal approach than I have adopted hitherto. 

My account will be based on the interpretation given in Taisbak, CQ, 
Chapter 2, 26-61. This book sets out a purely geometrical account, and the 
author's quirky, idiosyncratic, witty style provides the perfect antidote to the 
relentless, repetitive monotony of the original. This treatment, like many of 
Taisbak's mathematical and historical opinions, parallels much in Knorr, CM 
(which is an elaboration of Knorr's earlier discussion in EEE, 278-85; also see 
Knorr, ETB), but while Knorr's descriptions and procedures can generally be 
translated into geometrical terms, the tendency of an incautious reader will be 
to interpret his notation arithmetically. A useful, short, clear, but highly 
arithmetised description is given in van der Waerden, SA, 168-72; and a 
long and detailed account, which develops simultaneously Book X and its 
application in Book XIII, can be found in Mueller, PMDSEE, 251-306, 
though additional complexity is introduced there both in the elaborate notation 



5.2 Elements X: A classification of some incommensurable lines 165 

that is used and by the way the side and circumdiameter of the icosahedron is 
made the locus for problems that already arise, in their most acute form, in the 
much simpler configuration of the side and circumdiameter of the pentagon 
that I described at the beginning of this chapter. I refer the reader to these 
accounts, especially to Taisbak and Knorr, for further details of the treatment 
that I shall present here. 

The organisation of Book X differs from the other books of the Elements in 
several ways. It opens with four definitions which, like all of the definitions 
elsewhere in our best manuscript of the Elements, are unnumbered and, like 
many of the other sets of definitions, they do not have a heading 'Definitions'. 
(This kind of editorial tidying-up is clearly set in parentheses or given notes in 
the translations given in Mueller, P MDSEE, and discussed below at the 
beginning of Chapter 7.) But Book X is unique in having further definitions 
inset in the body of the text: six headed 'Second Definitions' between Proposi
tions 47 and 48, and six more headed 'Third Definitions' between 84 and 85; it 
also splits between Propositions 72 and 73, as will be explained below. The 
book also contains some thirty other unnumbered items-corollaries, lemmas, 
porisms, and remarks, not all of them coherent or correct-interspersed in the 
text (for a discussion of this feature, see Knorr, EEE, 269, n. 40) which, purely 
for simplicity, I shall often refer to as 'Propositions', so that Proposition 1/2, 
for example, will be the remark between Propositions 1 and 2. 

5.2(c) Commensurable, incommensurable, and expressible lines and areas 

The basic language of Book X is set out in its opening definitions (quoted 
above) and Propositions 1 to 26; then Propositions 27 to 35 are a series of 
general constructions of examples relevant to the theory which follows. 
Propositions 1 to 4 describe the anthyphairesis of two magnitudes; they have 
no apparent relevance to the material that follows but I am proposing that they 
provide the underlying motivation for the whole classification; Definitions 1 
and 2 and Propositions 5 to 16 deal with commensurability and incommen
surability (the first time that this topic has been introduced in the Elements; see 
Section 10.1), most of which I shall assume is familiar to the reader; and 
Propositions 17 and 18 deal with the standard Euclidean theory of application 
of areas, which I shall explain briefly later, when it is used. 

I now go on to Definitions 3 & 4, the remark 18/19, and Propositions 19 to 
26, and will make some comments about Propositions 27 to 35. 

DEFINITIONS 3 & 4 We fix a line a, called the assigned (or expressible) 
line. Any other line b such that b2 is commensurable with a2 will be called 
expressible. (For example, 2a and J2a are expressible lines.) Hence expressible 
lines may be commensurable (i.e. in length, for example J2a and Jl8a) or 
(incommensurable-in-length but) commensurable-in-square-only (for example 
a and J2a). An area that is commensurable with a2 is called expressible. A line 
or area that is not expressible is called alogos. 
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REMARKS 
(i) The definitions and propositions will be cross-referenced to the Euclidean 

definitions and propositions on which they are based; readers are strongly 
urged to read Euclid's own enunciations in every case, and complete the 
sketches of proofs, or supply one where none is given here-a geometrical, 
not an arithmetical, proof, of course-and then compare their proofs with 
Euclid's. The basic set of figures is collected together in Fig. 5.3. Remarks, 
parenthetic comments, and other such items will not be found in the Elements, 
unless otherwise indicated. 

(ii) Euclid refers in Definition 3 to the assigned line and its square as 'the 
expressible'. I shall maintain the distinction between an expressible line (or 
area) and the expressible line (or square) by always calling the latter the 
assigned line (or square), and reserving the letter a (or a2) for it. 

(iii) Euclid's expression he to chOrion dunamene means 'the side of the square 
[equal to]', and is abbreviated in Heath's translation to 'side'; see his notes on 
Definition 4 and Proposition 54, TBEE iii, 13 and 19. I shall often refer to it as 
the 'side' or 'square side' and abbreviate it to 'v". I repeat: when it occurs here 
in the context of Greek mathematics, 'J' should always be thought of as a line, 
not a number, the square side, not the square root. It can be constructed using 
Elements II 14. 

(iv) I shall use the geometric shorthand that was introduced in Section l.2(c), 
developed thereafter, and described in Bs9 and B91: lower-case italic Roman 
letters a, b, c, ... will always denote lines; b. c the rectangle with sides b and c; 
and b2 the square with side b. Upper-case italic Roman letters will denote areas, 
J B the square side of B, and if,\ is a positive integer, an arithmos, then ,\b or ,\B 
denote ,\ concatenated copies of b or B-there is no problem with the 
ambiguous notation ,\b. c since, by II 1, (,\b). c and ,\(b. c) are equal; and 
J(,\(b. b)) will be abbreviated to J,\b. Care should be exercised with this last 
notation since J,\b has no arithmetical sense. Yet further, vt\b has neither 
arithmetical nor geometric sense and will never be used; instead, the notation 
J J,\b will be used for J,\( J,\b. b), the square side of a rectangle with sides 
J,\b and b. (Note how these definitions are formulations of the statements 
J,\b. J,\b = ,\b. b and J J,\b. J J,\b = J,\b. b; as an exercise, prove that 
J,\2µ,b = ,\Jµ,b.) The notation just introduced could be extended to include 
the general expressible area, where ,\ is a fraction, but the proofs do not involve 
anything more than integral ,\; the exploration of examples will, however, 
usually lead to fractions. 

This notation is a pure shorthand for geometrical configurations, especially 
those involving rectangles. The algebraic-looking expressions that arise and the 
'coefficients' like J2, J J2, etc., do not have any autonomous existence and 
they should never be manipulated without reference to some geometric figure, 
though this figure may often only be implied. Heath's translation of Book X 
occupies more than 250 pages of his [1926 iii] and many of its arguments stretch 
over almost two pages: after Proposition 17, all but a handful of them are about 
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manipulating rectangles and squares, and they can be accurately and briefly 
summarised in this geometric shorthand. 

PROPOSITION 12 Any two expressible areas are commensurable, and 
anything commensurable with an expressible area is expressible. 

PROPOSITION 15 The sum and difference of two expressible areas are 
expressible. 

PROPOSITIONS 12 & 18/19 A line commensurable or commensurable-in
square-only with an expressible line is expressible. 

PROPOSITIONS 9 & 10 Two lines are commensurable if and only if their 
squares have a ratio equal to some square number. Example: y'2a and y'18a, 
again. 

DEFINITION 3 & PROPOSITION 18/19 If two expressible lines are incom
mensurable, their squares will be commensurable. 

PROPOSITION 15 The sum and difference of two commensurable 
expressible lines are expressible. 

PROPOSITIONS 36 & 73 The sum (or difference) of two incommensurable 
expressible lines is alogos; it will be called a binomial (or an apotome) line. (As 
the numbering indicates, this is out of place here; it will be restated and proved 
later.) 

PROPOSITION 19 The rectangle contained by commensurable expressible 
lines is expressible. 
PROOF See Fig. 5.3(a), where hand ware commensurable and expressible; 
by Proposition VI 1, h. w: h2 = w: h, etc. 

REMARKS 

(i) The role of VI 1, the Topics proposition, is analysed in Knorr, EEE, 
259-60. His conclusion is that "there is not a single theorem within the theory 
of irrational lines proper which does not employ Aristotle's theorem [sc. VI 1] 
either explicitly or once-removed." 

(ii) All the figures here are laid out horizontally to emphasise their 
affinity with VI 1; the Euclidean figures start vertically and then, after 
Proposition 38, most of them become horizontal. Euclid usually refers to the 
height as "an expressible straight line" and the width as the platos, usually 
translated as "the breadth", which suggests the letter b, but I want to reserve 
that for another use. These letters-a, b, c, d, e, h, q, u, v, w, x, & y-have 
been chosen carefully to denote special kinds of lines, and will be used 
consistently. 

PROPOSITION 20 If an expressible area Bis applied to an expressible line h, 
so B = h. w, then w will be expressible and commensurable with h. 
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PROOF Again see Fig. 5.3(a), etc. 

Hereafter h will be called the height; and w will be called the width of B with 
respect to h, these last four words usually being understood. 

PROPOSITION 21 The rectangle contained by incommensurable expressible 
lines is alogos. 
PROOF See Fig. 5.3(a), yet again. 
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PROPOSITIONS 21 & 23/24 (Euclid gives no separate formal definition of 
this crucial idea.) An alogos area equal to the rectangle contained by incom
mensurable expressible lines is called medial. A line is called medial if it is the 
side of a medial area. For example: J2a. a is a medial area, J J2a is a medial 
line. 

PROPOSITION 22 If a medial area b. c (or, equivalently, the square on a 
medial line) is applied to an expressible height h, its width w will be expressible 
and incommensurable with h. 
PROOF Ifb.c=h.w, then h:c=b:w (VI16), so h2 :c2 =b2 :w2 (VI22). 
Since h2 and c2 are expressible, they are commensurable, so b2 and w2 are 
commensurable, etc. (Euclid's proof is slightly different, and uses VI 14, with 
its idea of reciprocal proportionality, associated with the operation of 
compounding; see Section 4.5(c).) 

PR op o s IT ION s 23 & 23/24 An area commensurable with a medial area is 
medial; and a line commensurable or commensurable-in-square-only with a 
medial line is medial. 
PROOF See Fig. 5.3(b): let B = b2 be a medial area, and let c2 be commen
surable with b2 . Apply both to an expressible h, so b2 = h. v and c2 = h. w. 
Then v is expressible and incommensurable with h (Proposition 22), so w is 
expressible and incommensurable with h, so h . w = c2 is medial. 

PROPOSITION 23/24 Two medial lines may be commensurable (e.g. JJ2a 
and J J32a), commensurable-in-square-only (e.g. J J2a and J J8a), or 
incommensurable-in-square (e.g. J J2a and J J3a). 

Two medial areas may be commensurable or incommensurable. (Give 
examples!) It makes no geometric sense to say that incommensurable medial 
areas are commensurable-in-square, but we can give an arithmetised inter
pretation, in terms of the square and fourth roots of numbers: medial lines 
have length 0\ and medial areas JA., where A is not a perfect square, so any 
two medial areas are indeed arithmetically commensurable-in-square. It is 
even possible to articulate a version of this kind of result geometrically, using 
X 22: if two incommensurable medial areas are applied to an expressible 
height, then their breadths will be medial and commensurable-in-square-only. 
The fact that Book X contains no suggestion of this kind of result is yet 
another indication that its procedures are not being conceived in any 
arithmetical form. 

PROPOSITION 24 The rectangle contained by commensurable medial 
lines is medial. For example: J J2a and J J32a contain the medial area 
J8a.a. 

PROPOSITION 53/54 A rectangle is the mean proportional between the 
squares on its sides. 
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PROOF See Fig. 5.3(c): b2 : b. c = b: c = b. c: c2 by two applications of VI 1. 
This lemma duplicates a part of Euclid's proof of X25. • 

PROPOSITIONS 25, 27, & 28 The rectangle contained by commensurable
in-square-only medial lines is either expressible or medial. Examples: J J2a 
and J J8a contain the expressible area 2a. a; and J J6a and J J24a contain 
the medial area y'12a. a. 
PROOF See Fig. 5.3(d): let band c be medial lines, commensurable-in-square
only, and apply b2 , b. c and c2 to the expressible height h, so b2 = h. u, 
b. c = h. v, and c2 = h. w. Then, by Proposition 22, u and w are expressible, 
and each is incommensurable with h, but since u: w = (h. u): (h. w) = b2 : c2, 
they are commensurable with each other. Since, by the previous result, b. c is 
the mean proportional between b2 and c2, v will be the mean proportional 
between u and w. So, since v2 = u. w where u and v are expressible and 
commensurable, v will also be expressible. Finally, v can be either commen
surable or incommensurable with h, so h . v = b . c can be either expressible or 
medial. 

EXERCISES Readers who wish to test their understanding of this material 
might now try to solve some of the problems posed in Propositions 27-35, 
but let me warn them that Euclid's examples are chosen strictly with a view 
to the theory that will follow and, until they have been put in their context, 
some of them (especially 33-5, which go beyond the corpus of lines so far 
described) will seem perverse and gratuitous. Moreover, while the enuncia
tions seem to ask for specific examples, Euclid's proofs give general pro
cedures for constructing all examples,4 and this adds to their complexity. Since 
I have already given the two simplest and accessible results, Propositions 27 
and 28, here are two more easy ones: 

(i) If an expressible area is applied to a medial height, its width will be medial 
and commensurable-in-square-only with the height. 

(ii) If a medial area is supplied to a medial height, its width will be medial 
and either commensurable or commensurable-in-square-only with the height. 

Unlike the configurations described in these two exercises-which seem 
obvious manipulations to consider given the development of Book X so far
the lines in Book X that play the role of the height are always expressible (with 
the exceptions of Propositions 112-14, exceptions which do not detract from 
this general observation). This is one example (and I shall give another later, in 
note 6 which may indicate that Book X is not some purely formal and 
gratuitous exercise, as is suggested by Knorr and Taisbak (see Section 5.2(a), 
above), and which may seem the case from the description given so far). 

The proof of one earlier result was postponed. Because this is important, 
indeed vital, to what follows, I give it here: 

PR o Po s IT ION s 36 & 73 The sum (or difference) of two incommensurable 
expressible lines is alogos; it will be called a binomial (or apotome) line. 
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PROOF Let b and c be incommensurable expressible lines; then, by 114, 
(b + c)2 = b2 + c2 + 2b. c . . Now b2 + c2 is expressible and b. c is medial; hence 
2b. c is medial and so is incommensurable with b2 + c2 • Hence ( b + c )2 is the 
sum of an expressible and a medial area, and so is not expressible, so is not 
commensurable with the expressible area b2 + c2 ; so it is alogos. The proof for 
(b - c) is similar. 

But I leave as final exercises: 

PROPOSITION 26, generalised Neither the sum, nor the difference of two 
incommensurable medial areas will be expressible or medial; and neither the 
sum, nor the difference of a medial and an expressible area will be expressible or 
medial. So the square sides of these areas will be alogoi lines. (The rest of Book 
X is, in effect, devoted to elucidating their properties; and the conclusion of 
these investigations is set out in Propositions 71 & 72, and 108 to 110.) 

EXAMPLES So far, only three kinds oflines have been named and proved to 
be alogos-medial, binomial, and apotome-but we are surrounded by other 
potential examples. For example: 
• Higher order medials: JJJ2a, JJJJ2a, etc.; this is Proposition 115. 
• 'Trinomials' and 'tri-apotomes' like b ± c ± d for mutually incommensurable 

expressible lines; then 'quadrinomials', etc. 
• 'Mixed binomials/trinomials/etc.', like a ± J2a ± J J3a, etc. 
• Lines of the form Jb. c, J(b + c). d, etc., for any previously defined kinds of 

lines, 
and there are completely different kinds of lines that are also almost certainly 
alogoi, for example: 
• Edges of cubes, {;'2a, etc. 
• Cubic binomials, apotomes, trinomials, etc. 
• Mixed 'edge-sides' like v(J2a) or J({/'2a). (I cannot construct a purely 

geometrical proof that these lines are equal.) 
• 'Circular irrationals' like the square sides of circles of expressible diameters. 
• 'Elliptical irrationals', and perhaps also 'spiral irrationals', 
and yet more combinations involving them. 

Book X stakes off a little patch of coherent order in the middle of this jungle 
and, moreover, relates the otherwise unexplained lines that arise elsewhere in 
the Elements to this system. It is a remarkable achievement. 

Readers who want to continue directly their reading of Book X should skip 
the next section. 

5.2(d) Interlude: surd numbers and alogoi magnitudes 

The word 'surd', as is well known, arises from a mistranslation of the Greek 
alogos into the Latin surdus (meaning silent, deaf, mute, etc.; cf. the French 
sourd) via the Arabie a~amm (meaning deaf, etc.). (For more details see, for 
example, the Oxford English Dictionary, s.v. surd.) So, if we unscramble this 
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mistranslation, was Stevin's boast that the key to understanding Book X was to 
interpret it in terms of the alogoi? Surely Book X is nothing if it is not some 
kind of calculus of the alogoi. 

Of course not. Stevin's surds are numbers, and he proposed to understand 
Book X in arithmetical terms. To this was soon to be added another dramatic 
development of his period in which he also participated and which was 
practically complete in its basics by the time of Descartes' Geometrie of 1637, 
namely the use of a symbolic algebraic notation. And I believe that the 
development of this algebraic notation owed no small debt to yet another 
contribution of Stevin's, his lucid introduction to the West of the idea of 
decimal fractions, in his pamphlet De Thiende of 1585.5 For the first time there 
was a generally available, 'user-friendly', understandable, comprehensive way 
of doing arithmetic with the most general kinds of numbers. Mathematicians 
could now stop worrying about the details of each particular arithmetical 
manipulation and begin to abstract with confidence from the belief that any 
arithmetical calculation was possible. Of course the trick was as old as Babylon, 
and astronomers had been doing it to base 60 for more than three thousand 
years; but the Babylonians had a proper respect for the soft underbelly of this 
beguiling technique and avoided non-terminating expansions whenever they 
could; and sexagesimal arithmetic is still not user-friendly, even using pocket 
calculators which have it as a wired-in feature. There was for the first time, 
in the late sixteenth century, the general delusion that expressions like 
y'2 x y'3 = y'6 had some easily understood arithmetical sense. And it was a 
delusion that mathematicians would go on living with for 300 years of 
spectacular progress, but it remained unjustified until 24th November 1858 
when Dedekind, as he tells us in his Stetigkeit und irrationale Zahlen, gave the 
first mathematically acceptable definition of the arithmetic involved and the 
first satisfactory explanation and proof of this identity; see Section l.2(c). 

These developments also affected geometry: the arithmetisation of geometry, 
which had been pottering along gently since the time of Heron and probably 
since the time of the merging of Greek geometrical and Babylonian arithmetical 
astronomy in the second century BC, exploded into action. This programme of 
arithmetisation of geometry starts by choosing, explicitly or implicitly, an 
assigned unit line; then all lines become endowed with a numerical length with 
respect to this line, with the essential feature that it is assumed that these 
lengths can be manipulated arithmetically. Similarly this unit line defines a unit 
square, whence all sufficiently simple plane regions (e.g. rectilinear, circular, 
etc.) are assigned numerical areas, and this definition is shown to be consistent 
with the definition of the area of a rectangle as the product of the lengths of its 
sides. Similarly for volumes. Lengths, areas, and volumes are then mixed and 
manipulated indiscriminately as dimensionless numbers, and we construct 
and solve expressions involving these numbers; and these expressions are 
abstracted into algebraic formulae which are also manipulated irrespective of 
their geometric sense. We then go on to explore the numbers in their own 
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right, and distinguish, for example, between rational, irrational, algebraic, 
transcendental, and other kinds of numbers. 

Let us look at the effect the arithmetisation of geometry has on the basic 
language of Book X, such as I have described it so far. We have the assigned 
line a, so let us take that as the assigned unit line (and many commentators do 
indeed refer to it as such). Thereafter, instead of referring to lines b, c, . .. , x, y, 
we refer to their lengths f3, y, ... , ~' YJ, numbers; and instead of referring to 
geometrical areas B, C, ... , X, Y, we refer to their numerical areas, again 
numbers. So the essential geometrical difference between lines and areas that 
underlies Book X is not immediately captured by these formulae that are used 
to describe it. Worse, the length of expressible line can be either a rational 
number or the square root of a non-square rational number; an expressible area 
is a rational number; and a medial area is the square root of a non-square 
rational number. So we cannot immediately distinguish between expressible 
lines, expressible areas, and medial areas in these formulae. 

If we have faith that Book X is doing something worth investigating and 
we want to try to understand just what it is, then the translation into the 
language we use to understand it should, at the very least, be able to 
represent clearly and without confusion the basic features of Euclid's text. In 
a choice between convenience for us and fidelity to Euclid, the second 
consideration should surely be paramount. So, while I think that an arith
metical interpretation can lead to insights into the mathematical problem that 
Euclid is exploring, I also feel that, if we are to understand Euclid's treatment, 
this arithmetised way of thinking may be a hindrance. And so also may be the 
complications caused by the translation of rhetos and alogos as rational and 
irrational, respectively. 

5.2(e) The classification of Book X, and its use in Book XIII 

Choose and fix some expressible height h; and wherever there is a sum of two 
lines or two areas, always write the larger one first. 

Propositions 36 to 72 of Book X describe properties of certain sums of pairs 
of lines or areas; then a parallel set of Propositions 73 to 110 describe precisely 
analogous properties of their difference. Proposition n corresponds to Proposi
tion (n + 37) for 36 :::;; n :::;; 70; then Proposition 71, on an expressible area plus 
a medial area, splits into Propositions 108 (expressible minus medial) and 109 
(medial minus expressible); and 72 (medial plus medial) corresponds to 110 
(medial minus medial). Anyone who understands one of any of these pairs can 
immediately understand the other. Therefore I need only consider Propositions 
36 to 72 here. In fact, the manuscripts of Book X have a break between 
Propositions 72 and 73, and heading: 'Second ordering of other ratios, those 
involving subtraction' (deutera taxis heteron logon ton kata aphairesin). 

Propositions 36 to 70 then split into five blocks of six and one block of five 
(Proposition 67 de'!ls with two cases in one). If we understand the first 
proposition of each block properly, we can step through the rest almost 
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FrG. 5.4. To be read in conjunction with Table 5.2 

TABLE 5.3. Typical examples of the six additive and subtractive lines, with respect to the 
height h = a. The letter a has been omitted throughout for typographical convenience. 
For example, ( y'l2 + 3) = ( y' y'27 + y' y'3)2 is to be interpreted as 'the rectangle 

contained by ( y'l2a + 3a) and a is equal to the square on ( y' y'27a + y' y'3a)' 

Class Rectangle= Square Name of the side of the square 

(3 ± y'5) = (v~± v!)2 binomial or apotome 
2 (y'12 ± 3) = (y'y'27 ± y'y'3)2 first bimedial or first apotome 

of medial 
3 (y'S ± y'6) = (y'y'~± vv!)2 second bimedial or second 

apotome of a medial 
4 (10 ± y'20) = ( y'(5 + y'20) ± y'(5 - y'2op2 major or minor 
5 (y'5 ± 1) = (y'(y'~+ 1) ± y'(y'~ - 1)) side of an expressible plus a 

medial area or that, etc. 
6 (y'lO ± y'S) = (y'(y'~ + v!) ± y'(y'~ - v!))2 side of the sum of two medial 

areas or that, etc. 



TABLE 5.2, after Taisbak, CQ, 50. The six additive and six subtractive alogoi lines of Book X. To be read in conjunction 
with Fig. 5.4: u + v = b, u. v = (c/2)2 , and bct,c; C =is commensurable with, <t =is not commensurable with; 
exp= expressible, med= medial, and, in each row, terms with suffixes are commensurable if and only if the suffixes 
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that which produces with an 
expressible area a medial 

that which produces with a 
medial area a medial whole 
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automatically. So we need only understand five propositions-36, 42, 48, 54, 
and 60-and Definitions 4 7 /48 to understand all of this material! 

The geometrical configurations needed for all of these propositions, 36-110, 
are given in Fig. 5.4, on the left for addition, and on the right for subtraction. 
This composite figure, read in conjunction with Table 5.2, will describe how the 
procedure works; and together they comprise what can, I think, properly be 
called "the geometrical quintessence of Book X". They are based on Taisbak, 
CQ, 40, 42, and 50. 

BASIC PROPOSITIONS ON ADDITION VI 28, X 16/17, 17, 18, & 59/60. 
Let q = x + y. If w is the width of q2 with respect to the height h, q2 = h. w, then 
w can be written 

w=b+c, where h.b=x2 +y2 and h.c=2x.y. 

Conversely, given w = b + c, then q = Jh. w can be written 

q = x + y, where x2 + y2 = h. b and 2x. y = h. c. 

Note that, in these expressions, b ~ c and x ~ y, by the convention stated at 
the beginning of this section. This detail is essential. 

PROOF If q = x + y, then q2 = x2 + y2 + 2x .y (Fig. 5.4(a+) & 114). Now 
construct the following rectangles and arrange them as in Fig. 5.4(b+): 
h.u=x2; h.v=y2, with u+v=b; and h.c=2x.y. Since x2 +y2 = 
(x - y) 2 + 2x .y (Fig. 5.4(a_)), we have x2 + y2 > 2x .y, i.e. b > c. 

Conversely, given w = b + c and h. w = q2 , we first find how to write 
b = u + v such that h . u = x2, h . v = y2, and x . y = ! h . c. 

Let us explore these relations. Since x . y is the mean proportion between x2 

and y 2 (see the discussions of Propositions 53/54 and 25, 27, & 28, above), ! h. c 
will be the mean proportion between h . u and h . v, so ! c will be the mean 
proportion between u and v, sou. v = (!c)2 • Hence we must solve the geometric 
problem u + v = b, u. v = (!c)2 • This is precisely the problem of elliptical 
application of areas, introduced in Book X at Propositions 16/17, 17, and 18. 
Proposition 17 states, with my additions: 

If there are two unequal straight lines [band c], and to the greater [b] there be applied a 
parallelogram [here a rectangle] equal to the fourth part of the square on the less [i.e. 
u. v = (~ c) 2] and deficient (elleipon) by a square figure [i.e. u + v = b] and .... 

The solution of this problem is given at VI 28; it requires a condition (diorismos) 
which here becomes that (! c )2 must not be greater than (! b )2 , precisely the 
hypothesis of our proposition. We therefore follow the procedure of VI 28, 
which is set out in Fig. 5.4(c+): bisect AB= bat C, construct the square on BC, 
(! b )2, and the square with side CD = ! d where (! d)2 = (! b )2 - (! c )2, so that 
!bis the hypotenuse of the right-angled triangle with shorter sides !c and !d. 
But then 
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while 
P + Q + R = S + R smce P + Q = S; 

hence S + R is our required elliptical application of (! c )2 to AB. So AD = u 
and DB= vis the required splitting of AB= b. 

Finally, we construct x2 = h. u and y 2 = h. v on the same diagonal, as in 
Fig. 5.4(a+), and verify immediately that q = x + y gives the required 
decomposition of the square. QED 

COROLLARIES 17 & 18 With these notations, u is commensurable with v if 
and only if b is commensurable with d. 

PROOF See Fig. 5.4(c+ or_): u = !b + !d, v = !b - !d hence b = u + v and 
d= u-v. QED 

Call d = J(b2 - c2) the square difference of b and c; Euclid's terminology is 
described in Heath, TBEE iii, 43; he b ara tos c meizon dunatai te d, 'the [square 
on] bis greater than the [square on] c by the [square on] d'. 

This basic proposition describes the interplay of the following two 
fundamental moves around which Book X is constructed: 

(r--+ s), rectangle--+ square: Given a line w, convert the rectangle h. w into a 
square q2 and take its side: q = Jh. w, and 

(s--+ r): Given a line q, take the width of q2 with respect to the height h, 
q2 =h.w. 

In Propositions 48 to 59, w = b + c runs through a subclassification of 
binomial lines into six different kinds, and the operation ~f--+ s), q = x + y, 
generates the six named additive alogoi lines. (There is a slightly confusing 
detail at the beginning, that the first kind of binomial b + c will generate a 
binomial x + y; so we only get five new names of alogoi lines.) But Euclid does 
not set out the theory this way. Instead, he presents us, stone cold, with the 
ingredients x and y of the new alogoi in Propositions 31 to 35, defines these 
alogoi in 36 to 41, explores their properties in 42 to 47, introduces the 
subclassification of binomials in Definitions 47/48 and Propositions 48 to 53; 
and only then explains what he is doing when the operations ( r --+ s) surface in 
54 to 59 and (s--+ r) in 60 to 65. 

We start this programme with a geometrical version of our opening 
exploration of ( J~ + v'Y/) 2 = (~ + 'YJ + 2J~'YJ) = (/3 + y) m Section 5.2. 
Compare the two approaches! 

DEFINITION 47/48.1, AND PROPOSITIONS 54 & 60 If the square on a 
binomial q = x + y is applied to an expressible height h, its width w will be a 
binomial w = b + c 1n which the expressible lines b and c satisfy: b is 
commensurable with h; c is incommensurable with h; and d = J(b2 - c2) is 
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commensurable with b. Such a binomial will be called a first binomial with 
respect to h. 

Conversely, if w = b + c is a first binomial with respect to h, then the square 
side of h . ( b + c) will be a binomial. 
PROOF See Fig. 5.4(+): we have (x + y) 2 = h. (b + c) where h. b = x 2 + y2, 

h. c = 2x. y, x2 = h. u, y2 = h. v, b = u + v, and d = u - v. Suppose, first, 
that x + y is a binomial; then x and y are expressible lines, so x2 and y2 are 
expressible areas, so h. b = x 2 + y2 is expressible, so b is expressible and 
commensurable with h. Similarly h. d = x2 - y2 is expressible so d is also 
expressible and commensurable with h. Finally, since x and y are incom
mensurable, x . y is medial, so 2x . y = h . c is medial, so c is expressible and 
incommensurable with h. So b + c is a first binomial with respect to h. 

Conversely, if b + c is a first binomial with respect to h, then u = ! (b + d) 
and v = ! ( b - d) are also commensurable with h. So x 2 = h . u and y2 = h . v 
are expressible areas, so x and y are expressible lines; and since 2x. y = h. c is 
medial, x and y are incommensurable. So x + y is a binomial line. QED 

This proof is summarised in the column heading and top line of Table 5.2. 
The remaining five lines will correspond to the five possible other relations of 
(in)commensurability that can hold between h, b, and d, which will generate the 
remaining five classes of binomials with respect to h. 

Abbreviate 'is commensurable with' as C, and 'is not commensurable 
with' as <t, and organise the configurations as follows. (This notation and 
arrangement was introduced in Knorr, CM.) 

SECOND DEFINITIONS 47/48 There are the following six mutually 
exclusive classes of binomials: 

1st hCb & h<tc & bCd 

2nd h<th & hCc & bCd 

3rd h<th & h<tc & bCd 

4th hCb & h(/,c & b(/,d 

5th h<th & hCc & b(/,d 

6th h<th & h(/,c & b(/,d 

If w = b + c belongs to the kth class (or order), it will be called a kth binomial 
with respect to h. 6 

I shall call this the subclassification of binomials with respect to h; it is set out 
in columns 1 to 3 of Table 5.2. Can all cases be realised? (For example, we 
cannot have hCb, hCc, bCd, since b + c is not then a binomial.) We must check 
that the following is possible: 

PROPOSITIONS 48 TO 53 To find a kth binomial with respect to h. 
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In the narrow sense, these propositions are satisfied by a set of examples 
such as are listed in Table 5.3; but again Euclid gives a general method in 
each case, starting from the general constructions purportedly given in 
Lemma 28/29. 7 

Now look again at the caption of Table 5.2 and the headings of its columns. 
We have proved that: 

(i) The entries in columns 1 and 6, and in columns 2 and 7, are equivalent, 
including the subscripts. 

(ii) The entries in columns 3, 4, and 5 imply those in column 6, in rows 1 to 3. 
It will be straightforward to read the table from left to right; this gives the 

process (r ____, s) which corresponds to Propositions 54 to 59, described below, 
and yields the five new alogoi lines. In order to read the table from right to left, 
(s ____, r), Propositions 60 to 65, we need the definitions of these new types of 
lines, which are given within Propositions 36 to 41. And Table 5.3 gives some 
examples of these new alogoi lines. 

Here are the details. The process goes like clockwork. 

PROPOSITIONS 37, 55, & 61 If w = b + c is a 2nd binomial with respect to 
h, then x and y are medial, commensurable-in-square-only, and contain an 
expressible rectangle. Such a line q = x + y is called a first bimedial, and it is 
alogos. 

Conversely, if q is a first bimedial, w is a 2nd binomial with respect to h. 
PROOF See row 2: ifw is a 2nd binomial, x2 + y2 is medial (column 6); u and 
v are commensurable (column 3), so x2 = h. u and y2 = h. v are commen
surable (columns 4 and 5); but neither x2 nor y2 can be expressible (since their 
sum is medial), so x2, y2, and x2 + y2 are medial and mutually commensurable. 
So x and y are medial, and commensurable-in-square-only, since x. y is 
expressible. And (x + y)2 = x2 + y2 + 2x .y is the sum of a medial and an 
expressible area, so is alogos. 

Conversely, if q is a first bimedial, columns 4, 5, and 7 hold by definition, 
and column 6 follows immediately. But these imply the properties in columns 
1-3. QED 

PROPOSITIONS 38, 56, & 62 If w is a 3rd binomial with respect to h, 
then x and y are medial, commensurable-in-square-only, and contain a 
medial rectangle. Such a line q = x + y is called a second bimedial, and it is 
a logos. 

Conversely, if q is a second bimedial, w is a 3rd binomial with respect to h. 
PR o o F See row 3: as in the previous proposition, x2, y2, and x2 + y2 are 
medial and mutually commensurable. But this time x . y = ! h. c is medial and 
incommensurable with x2 + y2 = h. b. So (x + y )2 = x2 + y2 + 2x. y is the sum 
of incommensurable medial areas, so q is alogos and not medial. So x and y are 
commensurable-in-square-only. 

Conversely, again, eolumns 6 and 7 imply columns 1 and 2. Also, since the 
areas in columns 4 and 5 are commensurable, this implies column 3. QED 
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PR o Po s IT ION s 39, 57, & 63 If w is a 4th binomial with respect to h, then x 
and y are incommensurable-in-square and such that x2 +- y2 is expressible and 
x . y is medial. Such a line q = x + y is called a major, and it is alogos. 

Conversely, etc. 
PR o o F Surely clear from row 4! 

PR o Po s 1 TIO N s 40, 58, & 64 If w is a 5th binomial with respect to h, then x 
and y are incommensurable-in-square and such that x2 + y2 is medial and x. y 
is expressible. Such a line q = x + y is called the side of an expressible plus a 
medial area, and it is alogos. 

Conversely, etc. 
PROOF Clear, even to the description of the names, from row 5. 

PRO PO SIT ION s 41, 59, & 65 If w is a 6th binomial with respect to h, then x 
and y are incommensurable-in-square and such that x2 + y2 and x. y are 
incommensurable and both medial. Such a line q = x + y is called the side of 
a sum of two [incommensurable] medial areas, and it is alogos. 

Conversely, etc. 
PROOF See row 6: we need only verify that x2 + y2 = h. band 2x .y = h. c 
are incommensurable. But bis, as always, incommensurable with c. QED 

We now prove the following: 

PROPOSITIONS 42 TO 47 Each of these alogos lines q can be expressed in 
only one way as a sum x + y satisfying the descriptions in columns 6 and 7 of 
Table 5.2. 

We use the following: 

LEMMA 41/42 If x + y = X1 +YI with x > X1, then x2 + y2 > XT + yf. 

PROOF Write x + y = 2s, x - s = d, and x1 - s = d1; then d > d1. We now 
have exactly the configuration of II 5, so x. y + d 2 = s2 = x 1 . y 1 + d?. Hence 
x.y<x1.y1, and since x2 +y2 +2x.y=xT+YT+2x1.y1, we see that 
x2 + y2 > xi + yf. QED 

PROOF OF PROPOSITIONS 42 TO 47 Consider first the case of the 
binomial. Suppose q = x + y = x1 + Y1, both binomials. If x and x1 are not 
equal, suppose x > x1. Then x2 + y2 + 2x . y = XT +YT + 2x . Y1, and, by the 
lemma, (x2 + y2 ) > (xT +Yi). Hence (x2 + y2) - (xi+ YT)= 2x1 ·YI - 2x .y. 
But this left-hand side is expressible, while the right-hand side is not, which 
is not possible. 

A similar argument is given by Euclid for any q in rows 2, 4, and 5: look at 
columns 6 and 7. However the following argument, given by Euclid for rows 3 
and 6, will, in fact, deal with all of the rows 2 to 6: 
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Let q = x + y be any of the alogoi lines from rows 2 to 6 and suppose, as 
above, that q = x + y = x 1 +YI with x > x 1. Then, by the operation (s---+ r) of 
Propositions 60 to 65, q2 = h. w, where w is a binomial, which we can express as 
w = b + c with h. b = x2 + y2 and h. c = 2x. y, or w = b1 + c1 with h. b1 = 
xf +YT. Hence b > b1, by the lemma just proved; and thus w has been written 
as a binomial in two different ways, which contradicts the result already proved 
for binomials. QED 

It is a basic feature of expressible and medial lines that a line commensurable 
with an expressible line is also expressible, and a line commensurable with a 
medial is also medial. Euclid proves, in Propositions 66 to 70, that this applies 
to the other additive alogoi lines, also including, in 66, that a line commen
surable with a kth binomial is also a kth binomial. It is also a basic feature of 
expressible and medial lines that the same obtains for commensurability-in
square, and Euclid ought to have proved that this applies to the other alogoi 
lines also, for he appears to use it in XIII 18, as I shall explain later. (But this 
property does not apply to the subclassification of binomials.). And, at the 
same time, we can prove that the lines are divided in the same ratio. 8 So we 
have: 

PROPOSITION 66, strengthened A line commensurable with a kth binomial 
with respect to h is also a kth binomial with respect to h, and is divided in the 
same ratio. 

(66 to 70, strengthened) A line (commensurable or) commensurable-in
square with any of the additive alogos lines of Table 5.2, column 8, is the same 
kind of alogos line, and is divided in the same ratio. 
PROOF It is straightforward to see that a line w1 commensurable with a kth 
binomial w = b + c is also a kth binomial divided in the same ratio (i.e. 
w1 = b1 + c1 with b: c = b1: c,; sob: b1 = c: c1 = (b + c): (b1 + c1)). And it is 
also obvious why this does not apply to commensurability-in-square, since the 
width of the square on any binomial applied to his a 1st binomial with respect 
to h. 

Now suppose q1 is commensurable-in-square with some alogos line q = x + y 
of column 8, so qT = h. w1 is commensurable with q2 = h. (b + c); sob+ c is a 
binomial and w1 is commensurable with b + c; and so, by what we have just 
proved, w1 is also a binomial, w1 = b1 + c1, in the same class and divided in 
the same ratio. So q1 = x 1 + l' will be the same kind of alogos line as q. 
Moreover (x+y) 2 :(x1+Y1) =(b+c):(b1+c1)=b:bi=c:c1. We also 
have (x2 +y2 ):(xj+yj)=h.b:h.b1 and 2x.y:2x1.y1 =h.c:h.c1, from 
which we easily deduce that x: y = x1 : YI. QED 

Propositions 71 and 72 give a complete answer to the part of the final 
exercise of Section 4· above which deals with addition. I give 72 first, for its 
enunciation is a little startling: 
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PR o Po s 1T1 o N 72 The side of the sum of two incommensurable medial 
areas is either the side of the sum of two medial areas, or is a second bimedial! 
(The first alternative is, of course, the name of the additive alogos line in row 6 
of Table 5.3.) 
PROOF Let B and C be incommensurable medial areas: apply both to h, 
B = h. b, C = h. c in the configuration of Fig. 5.4(b+). Then h(/h, h<tc, and 
b<tc. Either b<t,d, and b + c is a 6th binomial, so q = Jh. (b + c) = )(B + C) is 
the side of the sum of two medial areas; or bCd, sob+ c is a 3rd binomial, and 
J(B + C) is a second bimedial. QED 

We see that the second case is a special case of the first. Nowadays we might 
be inclined to explain what is going on: "The side of the sum ... is, in general, 
the line called 'the side of the sum of two medial areas'; in particular cases, it is 
the line called a second binomial".9 There is also: 

PR o Po s 1T1 o N 71 The side of the sum of an expressible and medial area is 
either .... 

We have, I think, now covered all propositions up to 72; hence, by applying 
our knowledge to the subtractive cases, we have also covered 73 to 110, and so 
have described all of the additive and subtractive alogoi lines of columns 8 and 
9 of Table 5.2; and also the subdivision of the binomials and apotomes into six 
classes each; and the medial line. We need once again to check that they are all 
different. We start with: 

PR o Po s IT ION 111 No binomial is commensurable with any a po tome. 

PROOF by contradiction. Suppose q = x + y = x1 - YI where x and y, and 
x 1 and YI are pairs of incommensurable expressible lines. Write q2 = h. w, then 
w = b + c = b1 - c1, where b + c is a 1st binomial and b1 - c1 a 1st apotome; so 
b and b1 are both commensurable with h, and c and c1 are both incom
mensurable with h. Suppose b <bi; then c = (b1 - b) - c1, so the expressible 
line c has been written as an apotome, which is impossible. The case b > b1 is 
identical. QED 

We see immediately that this result also holds for commensurability-in-square. 
And we then use this result as a bridge to prove: 

PR o Po s IT ION s 72/73 & 111/112, strengthened. The thirteen classes of 
alogoi lines: medial, binomial, apotome, first bimedial, first apotome of a 
medial, . . . are all disjoint; and any line that is commensurable or 
commensurable-in-square with a line in a given class is also in that class. 

There is some scholarly discussion over whether Propositions 112 to 115 are 
later interpolations into the manuscripts or not. However since I am leaving 
aside all but the most blatant textual questions, I now go on to consider them. 
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PR o Po s 1 TIO N s 112 & 113 If an expressible area e2 is applied to a binomial 
(or a po tome) height, its width will be an a po tome (or binomial) the terms of 
which are commensurable with the corresponding terms of the binomial 
(apotome), and in the same ratio, and this apotome (binomial) will be of 
the same order as the binomial (apotome) with respect to any given expressible 
line h. 

PROPOSITION 114 If (b + c) is a binomial, (!- g) an apotome, band/, 
and c and g are commensurable, and b: c = f: g, then (b + c). (! - g) is 
expressible. 

The arithmetical versions of these results are simple variations on the identity 
(f3 + y). (f3- y) = (f32 - y2 ), but the intricacies of Euclid's proofs illustrate the 
increasing divergence between the arithmetical and geometrical points of 
view. 10 I explain here the proof of 112 in detail: 

PROOF OF 112 See Fig. 5.3(e); suppose the expressible area e2 is applied to 
the binomial (b + c) as height, so e2 = (b + c) .f, then its width f will be 
alogos. We shall try to find g so that f = (! + g) - g displays that f is an 
apotome. (This procedure is familiar from Euclid's treatment of apotomes, 
where g is called the annex off; see, for example, Propositions 79 to 84.) So 
we need to find the appropriate expressible line (! + g) bigger than f. 
Various possibilities suggest themselves: to apply e2 to b or to c, or to 
b - c, and take its width. I leave the reader to explore the first and third 
alternatives, which appear to me to lead nowhere; here, following Euclid, we 
pursue the second. 

If e2 is applied to c, its width will be expressible, commensurable with c, and 
bigger than/; so write it as/+ g1• Then 

e2 = c . (! + g1) = ( b + c) .f. 
Hence 

(b + c): c = (! + g1) :f 

and so, separando, 

b: c = g, :f. 
Unfortunately, in the resulting expression, f = (! + g1) - g1, 

(i) g1 = (! + g1) - f is the difference between an expressible and an alogos 
line, so is alogos, and 

(ii) we do not have (! + g1): g1 = b: c. 
So try again. We first deal with the second condition by finding g2 such that 

(! + g2) : g2 = b: c, 

so also = g1 :f, 

and so too = (! + g, + g2): (! + g2)· 
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[We are now at Heath, TBEE iii, 244.11-18.] Rearranging the order of this, 

(! + g1 + gz): (! + gz) = (! + gz): gz = b: c = g1 :J, 

and we see a continued proportion in the first two terms, so (by VI 19, for 
squares), 

(! + g1 + gz)2: (! + gz)2 = (! + g1 + gz): gz 

and also = (! + gz)2 : Ii 
and also = b2 : c2, which are commensurable. 

Hence (! + g1 + gz)Cg2, so (! + g1 )Cg2, and since (! + g1 )Cc, we see that 
gzCc; hence also gz is expressible. Further, since (! + gz/Crl, (! + gz) is also 
expressible; and since b<tc, (! + gz)<tg2. Hence f = (! + gz) - gz is indeed an 
apotome with annex gz, divided into the same ratio as the binomial b + c. 
Moreover (! + gz) : b = gz : c, where gzCc, so the terms of (! + gz) - gz are 
commensurable with the terms of b + c. Finally, Proposition 14 completes the 
verification that b + c and (g + gz) - g2 belong to the same class with respect to 
any expressible line h. QED 

The proof of Proposition 113 runs exactly parallel to this.11 And I 
recommend readers to construct their own proof of Proposition 114 before 
working carefully through Euclid's proof, and then to ponder on any 
discrepancies between the two lines of thought. Euclid concludes Proposition 
114 with: 

PROPOSITION 114/115 An expressible area can be contained by alogoilines. 

But we have already seen, in Proposition 25, that this happens for two 
appropriate medial lines. 

After Proposition 115 (on higher order medials; see the end of Section 5.2(c)), 
the manuscripts of Book X end with a rag-bag of unnumbered material, almost 
certainly interpolated: alternative proofs of Propositions 115, 106, and 107; two 
long-winded proofs that the side of a square is incommensurable with its 
diagonal; 12 and constructions of incommensurable plane and solid figures. All 
of this is relegated into an appendix by Heiberg (see Euclid-Stamatis, EE, 
228-36) and most of it is not mentioned in Heath, TBEE. 

Consider now the applications of Book X in Book XIII, in Propositions 6, 
11, 16, 17, and 18. Here I shall proceed by taking skeleton quotations, slightly 
paraphrased, from Heath's translation of the proofs of these propositions, 
reading, as always, 'rational' and 'irrational' as 'expressible' and 'alogos' 
respectively, and altering the labels of the lines to which these proofs refer, 
replacing them by the letters that have been used uniformly throughout this 
section and in Figures 5.3 & 5.4 and Table 5.2. Further comments, and page 
and line references to Heath, TBEE iii, are placed in square brackets. 
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PROPOSITION XIII 6 If an expressible straight line be cut in extreme and mean 
ratio, each of the segments is the alogos straight line called apotome. 
[PROOF] Leth be an expressible straight line, let it be cut in extreme and mean ratio, 
and let g be the greater segment; I say that each of g, h - g is the alogos straight line 
called apotome. For ... (!h + g) 2 = 5{!h) 2 [by XIII l]. Therefore ... (!h + g) is 
expressible ... and incommensurable in length with! h; therefore ... g [ = ( ! h + g) - ! h] 
is an apotome. Again ... h. (h - g) = g2 [this is the basic property of extreme and mean 
ratio]. Therefore the square on the a po tome g, if applied to the expressible straight line h, 
produces (h - g) as breadth. But the square on an apotome, if applied to an expressible 
straight line, produces as breadth [i.e. width] a first apotome [with respect to that line]; 
therefore (h - g) is a first apotome [with respect to h] . . . QED 

Next, we consider the side of a pentagon inscribed in a circle. 

PR o Po s r TI o N XII I 11 If in a circle which has its diameter expressible an 
equilateral pentagon be inscribed, the side of the pentagon is the alogos straight line 
called minor. 

In the first half of the proof of this proposition, a configuration is set up in which, in 
Fig. 5.5, B is a vertex of the pentagon inscribed in a circle of diameter BH, F is the 
centre of the circle, FK = i BH, and M is the intersection with the diagonal of the 
pentagon perpendicular to BH. The geometry of the pentagon is then explored 
quantitatively; but it is not pointed out before the final lines of the proof that this 
exploration implies that the square on the side of the pentagon is equal to the rectangle 
BH. BM. Euclid therefore proves that BM = BK - KM is a fourth apotome with 
respect to BH. So let BH = h, BK = b, KM = c, so BM = b - c, and now pick up the 
proof at 463.21. 

Therefore c2 = 5(h/8)2 , ... therefore c is expressible. And ... b = 5(h/8) therefore ... b 
is incommensurable in length with c. And each of them is expressible. Therefore b, care 
expressible straight lines commensurable in square only, [464] ... therefore b - c is 
an apotome and c is the annex to it. I say next that b - c is also a fourth apotome [with 
respect to h]. Let ... d 2 = b2 - c2; therefore ... [there follows a proof that BK is 
commensurable with BH; but this was already proved, in effect, at the beginning] b2 has 
to c2 the ratio which 5 has to 1. Therefore convertendo, b2 has to d 2 the ratio which 5 has 
to 4, and this is not the ratio which a square number has to a square number; therefore b 
is incommensurable with d ... therefore b - c is a fourth apotome. But the rectangle 
contained by a rational straight line and a fourth apotome is alogos, and its square side13 

is alogos, and called minor. 

The classification of the edge of the icosahedron appeals to this result for the 
pentagon: 

B M F K H 

-his-
-------b-----~ 

----c-----> 

Fro. 5.5 
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PROPOSITION XIII 16 To construct an icosahedron and comprehend it in a sphere, 
like the aforesaid figures; and to prove that the side of the ic.osahedron is the alogos 
straight line called minor. 

Let the diameter ... of the given sphere be set out ... [five pages later] ... therefore 
the icosahedron has been comprehended in the given sphere. [486.l] I say next that 
the side of the icosahedron is the alogos straight line called minor. For, since the 
diameter of the sphere is expressible, and the square on it is five times the square on the 
radius of the circle EFGHK, therefore the radius of the circle EFGHK is also expres
sible; hence its diameter is expressible. But, if an equilateral pentagon be inscribed in a 
circle which has its diameter expressible, the side of the pentagon is the alogos straight 
line called minor. And the side of the pentagon EFG HK is the side of the icosahedron. 
Therefore the side of the icosahedron is the alogos straight line called minor. 

Similarly, the classification of the dodecahedron appeals to the result for the 
extreme and mean ratio; I leave the reader to work out the details in XIII 17. 

Finally we have: 

PROPOSITION XIII 18 To set out the sides of the five figures and to compare them 
to one another. 
... [506.22] Therefore the square on the side of the pyramid is four-thirds of the square 
on the side of the octahedron, and double of the square on the side of the cube; and the 
square on the side of the octahedron is one and a half times the square on the side of the 
cube. The said sides, therefore, of the three figures, I mean the pyramid, the octahedron 
and the cube, are to one another in expressible ratios. But the remaining two, I mean the 
sides of the icosahedron and the side of the dodecahedron, are not in expressible ratios 
either to one another or to the aforesaid sides; for they are alogos, the one being minor 
and the other apotome. 

As was pointed out in this discussion of Propositions X 66 to 70, the result of 
this final sentence is not proved in Book X, but it is easy to extend the proofs of 
Propositions 103, 105, and 1111112 to cover it. 

In addition to these explicit references to Book X in Book XIII, there are 
several other propositions which may well be implicitly related to the 
classification. For a typical example: 

PROPOSITION XIII 12, supplemented If an equilateral triangle be inscribed in a 
circle, the square on the side of the triangle is triple of the square on the radius of the 
circle [and so, if the radius is expressible, then also is the side of the triangle]. 

Similar inferences follow immediately from Propositions 1 to 4 and 12 to 15; 
and most of the remaining results of Book XIII establish intermediate steps in 
the proofs of all of these results. 

This completes our reading of the text of Books X and XIII. The only 
other surviving use that is made of the Book X classification is found in 
Pappus, Collection IV; it is described in Heath, TBEE iii, 9-10. And both 
Proclus and Pappus report that Apollonius worked with the so-called 
'unordered alogoi'; for a discussion with quotations, see Heath, TBEE iii, 
10 and 255-9. 
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5.2(f) Euclid's presentation of the classification 

As the quotations in Section 5.2(a) indicated, few people today can find a 
kind word to say about Euclid's exposition, no matter how much they may 
elsewhere praise the austere wonder of the mature synthetic style that we find in 
Archimedes and Apollonius. So let me try to offer two small crumbs of 
justification on his behalf. 

The first feature I want to discuss is the way the first explanation of the 
additive alogoi lines is deferred until Propositions 54 to 59. The complications 
this causes are particularly acute in the case of the lines of rows 4 to 6; we get 
arcane examples constructed in Propositions 33 to 35 (and the relation of these 
lines to the classification of Book X, when it is eventually developed, will never 
be explored by Euclid); then these lines are used in the bizarre Propositions cum 
Definitions 39 to 41, explored further in Propositions 45 to 47, then left on one 
side. Some completely new distinctions are introduced in Definitions 47/48 and 
explored in Propositions 48 to 53. Only then, as I say, is the mechanism 
revealed. The exposition would be greatly simplified if the binomial and 
apotome lines were defined along with the medial somewhere around Proposi
tion 20; the subclassification of binomials of Definitions 41/42 given then; and 
the process (r---+ s) of Propositions 54 to 59, and (s---+ r) of Propositions 60 to 
65, given with its associated propositions on construction, alogos-ness, and 
uniqueness. Or if not this radical reorganisation, then at least some gesture in 
this direction. 

The whole theory starts up with the choice of the assigned line a; but 
observe how this more amenable description I have just proposed requires the 
second choice with which I opened Section 5.2(c): the choice of the express
ible height h. But also observe that this height h does not enter Euclid's 
construction and description of the alogoi lines in Propositions 33 to 47. The 
choice of h determines the subclassifications of binomials and apotomes, and 
that determines the ~rder in which the alogoi lines are generated in Proposi
tions 54 to 59; if we replace h by h1, incommensurable with h, this 
subclassification will be changed. The following example will illustrate this 
clearly. 

The binomial w = 2a + J3a is a 1st binomial with respect to h = a, and 

q=Jh.w=J~a+J!a 

is again a binomial; but it is a 3rd binomial with respect to h1 = J2a, and 

q, = Jh1. w= J(J2a. (2a + J3a)) = J(a. (J8a + J6a)) = JJ~a + JJ!a 

is now a second bimedial. So this way of generating the alogoi lines depends on 
an arbitrary choice of height h, which then drops out of the procedure. And 
Book X, in Euclid's procedure, is presented in such a way as to deal first with 
everything that does' not depend on choosing h, first for the additive lines, 
then for the subtractive. Note also that in the application of Book X to the 
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classification of the edge of the icosahedron in XIII 16, the lines that play the 
roles of a and h are different and incommensurable. • 

It would be easier to argue vigorously for this justification of the presentation 
of Book X if its author had been a little more punctilious over some details! For 
example, casual readers, searching for some information about the alogoi lines, 
will come across the blocks of formal definitions, indeed headed 'Definitions', 
at 47/48 and 84/85; but they will have to search more closely and read more 
carefully to find the essential definitions buried in Propositions 21, 36 to 41, 
and 73 to 78. So one might be inclined to think that Book X contains 23 
different kinds of alogoi lines: medial, six binomial, six apotome, two bimedial, 
etc. But of these, the subclassification of the binomials and apotomes is, or 
should be, internal to the mechanism of Book X, while the subclassification of 
the bimedials and the apotomes-of-a-medial is part of the classification proper. 
And only when one reaches the end of 111/112 does Euclid make it explicit that 
the classification embraces only thirteen kinds of lines, none of which are 
described in the three blocks of formal definitions. 14 

Yet more, Euclid is very casual in his references to this line h which I have 
consistently referred to here as 'the height', and which plays this determining 
role from the Second Definitions 47/48 onwards. Euclid introduces it as "Given 
an expressible line ... " (as in Definitions 47/48); or gives no quantification, as 
in Propositions 54 to 59: "If an area is contained by an expressible line and a 
kth binomial ... ",and similarly, in Propositions 60 to 65; or he does not refer 
to it at all, as in Propositions 48 to 53: "To find a kth binomial". (All of these 
quotations are taken from the enunciations of these propositions, but this kind 
of treatment is also followed through consistently in the proofs.) Yet more, 
when Euclid applies the theory in XIII 6 and 11, outside the context of the 
development of the theory in Book X, he refers to the 1st and 4th apotomes 
respectively, but fails to say to which heights these refer. I have added these 
missing details to my discussions of all of these examples. 

For my second crumb of justification of Euclid's treatment, consider the 
spectacular absence of specific examples and illustrations from Book X. 
However useful and illuminating these examples might be, the fact remains 
that it is not Euclid's practice to offer this kind of assistance anywhere in the 
Elements. But still, the emphasis on the qualitative aspect of a classification, 
which we now see as essentially quantitative, is striking: contrast Euclid's 
statement that the side of a pentagon inscribed in a circle of expressible 
diameter is minor with our nearest common equivalent, that its length is 
y'(IO - 2y'5)d/4. Euclid may have a further justification, however, that in 
any specific example in rows 3 or 6, for instance 

( J2a + J3a)2 = (5a + J24a). a, 

he must either state and prove the lemma that y'2a. J3a = J6a. a, or state this 
as a general hypothesis, that J>...a. y' µa= J>...µa. a, or produce a truly general 
proof; but such a proof may have been way beyond his means. (See note [6], 



5.3 The scope and motivation of Book X 189 

above.) By avoiding examples, he avoids both the problem of dealing with this 
issue, and the pretence (that almost all-if not all-modern commentators 
seem to adopt) that this problem does not exist. Given the constraints imposed 
on his expository style, I think his tactic is justified. 

5.3 THE SCOPE AND MOTIVATION OF BOOK X 

I shall set out my proposals in some theses and antitheses which culminate in 
my principal thesis. 

(i) Euclid's treatment throughout the Elements is purely geometrical, with no 
undertones of arithmetised mathematics. 

I have already illustrated this thesis in many places throughout this book, in 
particular at several places in the discussion of Elements X, and it should be 
unnecessary to dwell on it further here. 

(ii) Euclid's treatment in Elements II and X is two-dimensional, based on 
squares and rectangles, and he nowhere shows any interest in giving any similar 
results for cubes or other three-dimensional figures. 

This thesis is a truism, so I will bring out its implications more prominently. 
The basic results of a three-dimensional exploration would be straightforward: 
the Topics proposition in three dimensions, which is, in fact, proved as XI 25; 
the cubic version of X 9, which would follow from VIII 27 in the same way 
that the square version is apparently based on VIII 26; the three-dimensional 
analogue of the results of Book II, such as the geometrical identity 

(x + y) 3 = x3 + 3x2 . y + 3x. y2 + y3 

illustrated in Fig. 5.6; etc. We could then define a new class of 'cubic 
expressibles' by taking the edges of cubes commensurable with the assigned 
cube, then define new kinds of 'cubic' medials, binomials, and apotomes, and 
begin to explore their properties. Such manipulations suggest themselves 
immediately, and the early results are attractive exercises in the kinds of 

y 

x y 

Fro. 5.6. (x + y)3 = x3 + 3x2 .y + 3x .y2 + y3 
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reasoning found throughout the plane and solid geometry of the Elements and 
in our other fragmentary evidence of early Greek mathematics. Yet, with the 
sole exception of the three-dimensional Topics proposition at XI 25, none of 
these results is found in the Elements. For example, while the general idea of 
II 1 is repeated in the particular cases of II 2 and 3, and has indeed already been 
silently assumed in the proof of I 4 7, nowhere do we find its three-dimensional 
analogue articulated; nowhere do we find the result of Fig. 5.6 set out. The 
contrast is striking: the explorations of Books II and X are strictly restricted to 
two-dimensional phenomena. 

(iii) The subject of Book X is not the manipulation or classification of 
quadratic surds, nor of the roots of quadratic or biquadratic equations with 
integer or fractional coefficients. 

This statement is a reformulation of thesis (i), and has been discussed at 
lengths in Section 5.1, above. The notes in Heath, TBEE iii, provide very 
interesting and useful discussions of textual and terminological matters con
cerning Book X, but his mathematical analysis is, I believe, irrelevant. The 
same comment goes for the analyses in Pappus-Thomson & Junge, CPBXEE, 
17-32 and Euclid-Stamatis, EE iii, pp. xi-xv. The perplexities that follow from 
such kinds of arithmetised and algebrised descriptions are raised several times 
in Mueller, PMDSEE, Chapter 7. 

(iv) The implied underlying theme of the book is some qualitative descrip
tion of the ratios of certain kinds of lines, and words rhetos and alogos are 
indeed referring specifically to the ratios of lines. 

The best way of establishing this thesis is to appeal to Euclid's text, and look 
at the role played by Book X in Book XIII, where it is used to classify other 
lines arising in the extreme and mean ratio (XIII 6), the side and circum
diameter of the regular pentagon (XIII 11 ), and the edge circumdiameter of the 
icosahedron (XIII 16) and dodecahedron (XIII 17). This cycle of results on the 
five regular solids is then summarised in XIII 18 and, in the course of this proof, 
we read: 

The said sides, therefore, of the three figures, I mean the pyramid, the octahedron, and 
the cube, are to one another in expressible ratios (logois rhetois). But the remaining two, 
I mean the side of the icosahedron and the side of the dodecahedron, are not in 
expressible ratios either to one another or to the aforesaid sides; for they are alogoi, the 
one being minor and the other an apotome. 

Also, Euclid makes no attempt to build up a systematic classification of areas; 
see, for example, his offhand treatment of the medial area in X21-3. The areas 
that are named are introduced only with a view to developing the classification 
of lines. 

(v) The idea of ratio that underlies Book X is not arithmetised but 
anthyphairetic. 

Consider first arithmetised mathematics, mathematics in which the idea of 
number is extended beyond the arithmoi to include fractional quantities, and 
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then further to include more and more general kinds of numbers, and where 
this general kind of number is then used to define and manipulate ratios. The 
striking dichotomy here is between fractions, the 'rational numbers' of modern 
mathematics, which describe ratios of arithmoi, and the rest, the 'irrational 
numbers', which cannot be described in finite terms by ratios of arithmoi. This 
dichotomy pervades arithmetised mathematics and so now dominates our 
thinking about ratios; for example, within basic arithmetised mathematics, 
we can perceive little qualitative difference between irrational square roots and 
irrational cube roots. This dichotomy is not suggested anywhere by any of the 
terminology of Book X and does not correspond to any of the classifications 
found there. 

Now consider anthyphairetic mathematics. Those ratios that can be now 
completely understood and described in finite terms by the arithmoi include the 
ratios of the sides of commensurable squares, that is the ratios of expressible 
lines Jm: Jn, and some sporadic examples like the extreme and mean ratio. If 
we then wish to extend outwards from these accessible, expressible lines, it 
would be natural to start with those lines that arise from the simplest 
operations of adding, subtracting, and squaring pairs of expressibles. This 
seems to correspond closely to what we find in Book X, which starts from the 
expressible lines and goes on to construct medials, apotomes, and binomials, 
which are truly baffling from an anthyphairetic viewpoint. These new lines are 
profoundly alogoi, without reason, and Book X is then one of the very few 
successful attempts to find order in a corner of this mathematical jungle. 
Sections 9.2(d) and 9.3(b) will describe briefly the modern and largely 
unsuccessful further attempts at this kind of exploration. 

5.4 APPENDIX: THE WORDS ALOGOS AND 
(AR)RHETOS IN PLATO, ARISTOTLE, AND 

THE PRE-SOCRATIC PHILOSOPHERS 

For an explanation of this list, see the Appendix to Chapter 4. 

5.4(a) Plato 

aA.oyov (m.) Timaeus 42d.1. 
aA.6yovc Republic VII 534d.5. 
aA.oyoc (f.) Definitions 414c.7, 416a.23. 
aA.oyov Theaetetus 201d.1; Timaeus 47d.4. 
aA.6yov Timaeus 28a.3; Laws III 696e.1. 
aA.oy<:p Republic IX 59lc.6; Timaeus 69d.4. 
(lA.oyov (nt.) Gorgias 465a.6, 496b.1, 519e.3; Phaedo 62b.2, c.6, 68d.12*; 

Symposium 202a.6; Republic X 609d.9, 11; Parmenides 13ld.2, 144b.3; 
Theaetetus 199a.3, 203d.6, 205c.9, e.3; Timaeus 5le.4; Sophist 219e.4, 
238c.10, e.6, 239a.), 259a.1; Philebus 55b.l; Axiochus 365e.5. 

aA.6yov Philebus 28d.6. 
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iL\oya Protagoras 32lc.1; Theaetetus 202b.6, 203a.4, h;6; Sophist 24la.5*, 
249b.1. 

aAoywTEpov (nt.) Charmides 175c.7; Gorgias 519d.1. 
aAoywrnTOv (nt.) Apology 18c.8. 
dli.oywrnrn Philebus 55c.3. 
dli.6ywc Gorgias 50la.6; Republic IV 439d.4; Phaedrus 238a.1; Timaeus 43b.2, 

e.3, 53a.8; Laws II 669d.4, IX 875b.8. 

app!]TOV (f.) Laws VII 788a.3. 
app~TWV Republic VIII 546c.5. 
appYJTOV (nt.) Sophist 238c.10, e.6, 239a.5; Laws VI 754a.4; Alcibiades I 122d.2. 
appYJrn Hippias Major 303c.1; Symposium 189b.4; Sophist 241a.5*; Laws 

VII 793b.3, 822e.2. 
app~TWV Hippias Major 303b.7. 

PYJrn{ Theaetetus 205d.9. 
PT/Tac Theaetetus 202b.7. 
PYJTWV Republic VIII 546c.5. 
PYJT6v Theaetetus 205e.7; Epistle VII 34lc.5. 
PT/Ta Hippias Major 303b.8; Republic VIII546c.1, Laws VII 817d.3; Epistle 

VII 341d.5. 
PYJTOfc Symposium 213a.2; Laws VIII 850a.7. 

5.4(b) Aristotle 

ali.oyoc Posterior Analytics 76b9; Physics 188a5, 212b30, b34, 252a24; On the 
Heavens 289a6, b34, 29lb13; Meteorology 355a21, a35, 362a14, 366a9; On 
the Soul 432a26; Prophesying by Dreams 463a23; Generation of Animals 
722b30, 734a7; Problems 954b35; On Indivisible Lines 968b18; Metaphysics 
999b23, 1002a29, 1046b2, 1083a8; Nicomachean Ethics 1095bl5, 1102al8-
l 103al0, llllbl, bl3, 1117b24, 1120bl8, 1172blO;MagnaMoralia1198a17; 
Eudeman Ethics 1218a29; Politics 1334bl8, b21; Oeconomica 1343bl3; 
Rhetoric 1369a4, 1370a18; Poetics 1460a13, 146lb14. 

app~TWC Fragment 40 148lb6. 

PYJT6c On Indivisible Lines 968b15, bl8; Metaphysics 1017b 1, b3; Nicomachean 
Ethics 1l62b26, b3 l, l l 63a5. 

5.4(c) Pre-Socratic philosphers 

ali.oyoc 
Democritus { A33 ii 91.20} (See Sections 5.2(a) and 

Bllp ii 141.24 8.3(b )) 
Al05 11 109.35 
Al16 11 111.25 
Bl64 11 177.1 
B292 11 206.6 



Empedocles 
Heraclitus 
Leucippus 
Parmenides 
Philo la us 
Protagoras 

appYJTOC 
Lysis 

Bl36 
A16 
A22 
A45 
Bll 
Cl 

[4 

11 

ii 

ii 

Notes 

367.4 
147.35, 148.19 and 35 
77.1 

226.2 
412.11 

193 

269.23 (=Plato, Protagoras, 32lc) 

421.5] 

NOTES 

(See Sections 5.2(a) and 
8.3(b )) 

1, p. 156: Stevin described Book X as "the cross of mathematicians"-"La difficulte du 
dixiesme Livre d'Euclide est a plusieurs devenue en horreur, voire jusque a l'appeler la croix des 
mathematiciens, matiere trap dure a digerer, et en la quelle n'aperr;oivent aucune utilite". (This 
particular quotation is in G. Loria, Le scienze esatte nell' antica Grecia (1914); it then was 
passed on by Heath, TBEE iii, 8-9, and thereafter by most modern commentators on Book 
X.) Knorr, CM, opens with a different but similar quotation, and a nice general discussion 
which I wish I could include in its entirety here, along with its three notes-better, I wish I had 
written it!-for I can conceive of no better introduction to my own treatment. (I would 
change only one word: for 'algebraic' in lines 23 and 26, read 'arithmetical'.) However the 
references to Stevin need some clarification and correction. Stevin's L'Arithmhique (1585) is 
an octavo volume consisting of Le Premier and Le Second Livre d'Arithmetique, followed by 
Les Quatres Premiers Livres d'Algebre de Diophante d'Alexandrie, paginated together. This 
was issued bound with La Pratique d'Arithmhique, a second collection of tracts which include 
La Pratique itself, La Reigle d'Interest avec ses Tables (originally published in Dutch in 1582, 
and subsequently reissued in a corrected Dutch version in 1590), La Disme (the French 
translation of De Thiende, also of 1585), and the Traicte des Incommensurable Grandeurs, all 
paginated together in a second sequence. Loria's passage is from Le Premier Livre 
d'Arithmhique, pp. 36-7 and Knorr's from the Traicte des Incommensurables Grandeurs, 
p. 162 of the second sequence. Stevin's mathematical works were then reissued by Albert 
Girard in 1634 as the <Euvres Mathematiques in six parts, paginated separately but bound 
together, and the first part contains L'Arithmhique and La Pratique d'Arithmhique with an 
added Appendice Algebrique, now paginated in one sequence; and these two quotations occur 
on pages 10 and 213 respectively. Finally, excerpts are again reprinted in Stevin-Struik, The 
Principle Works of Simon Stevin, and these quotations can be found in vol. ii(b), 535-6 and 
713 respectively. La Pratique d'Arithmetique also contains the Appendice des Incommen
surables Grandeurs mentioned by Heath; this is pages 187-201 of the 1585 edition, second 
sequence, and pages 218-22 of the 1634 <Euvres, but it is not included in Stevin-Struik, PW, 
and neither quotation occurs therein. Knorr notes the modern German translation of De 
Thiende; it is worth adding that the Dutch original and Richard Norton's English translation 
of 1608 are in The Principal Works iia, on pp. 386-455, and this English translation has often 
been reprinted. 

2, p. 157: This algebraic interpretation was apparently first formulated by Chasles, its 
description as "the quintessence of Book X" is due to Junge, and van der Waerden and 
Knorr cocnur with it; see Pappus-Thomson & Junge, CP BXEE, 23; Knorr, CM, 64 n. 32; and 
van der Waerden, SA, 168-72. My own "anyone at ease ... will uncover" is, of course, typical 
crass mathematician's arrogance and insensitivity to the historical past, and should be 
ignored; it is not meant to be taken seriously. 
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3, p.157: In my IRBT, 255-8, I give examples of how this formula both illuminates and 
distorts the interpretation of Book X and why, ultimately, it is confical to think of it as the 
quintessence of anything, for it purports to explain something reasonably simple, v'(/3 ± '°'/), 
in terms of two much more complicated expressions! 

4, p. 170: Or which purport to generality. But Knorr, CM 57-8, points out, apparently for the 
first time, that the second Lemma 28/29 is grossly defective when viewed, as apparently 
presented, as a general construction. He concludes: "Euclid's handling of the second lemma is 
thus yet another unsettling reminder that the proofs of Book X are not always as well 
conceived as they commonly are purported to be." 

5, p. 172: I do not wish to imply that Descartes' geometry is arithmetised; his algebra is as 
impeccably geometrical as my approach in Section 5.2 above, with the mild exception that he 
does not seem to explain what he means by y'2, v 2, etc. The key step underlying his algebra 
is to fix an assigned line a, and then define a new kind of multiplication of x and y to be the 
width of the rectangle x. y when applied to a; so this product is again a line. In fact, this same 
kind of operation is used repetitively throughout Book X in a different context as we shall 
soon see, but here without any overtones of any analogy with the multiplication of two 
numbers. 

However, I think it can be argued that Descartes encouraged his readers to think in 
arithmetical terms and build on their arithmetical understanding of geometry; and only to 
resort to his geometrical definitions for a formal justification. A similar schizophrenia is 
common among mathematicians today. To return to the example of Sections l.2(a) and (e), 
for most mathematicians v'2 x y'3 = y'6 might conjure up something closer to 1.4142 ... x 
1.7321 ... = 2.4495 ... than a complicated statement about equivalence classes of Cauchy 
sequences of rational numbers, or Dedekind cuts, even though this arithmetical approach is 
defective in the essential detail that the multiplication is not effectively defined. 

6, p.178: Compare this table with the text itself of Euclid's Second Definitions 47/48 and 
Plato's Theaetetus 192al-194b6. I cannot believe that the mathematician(s) who developed 
Book X did not have some schematic way of setting out these descriptions. A formally 
minded person will notice that the 4th, 5th, and 6th classes can be further subdivided 
according as to whether cCd or not, and the 5th and 6th classes subdivide differently 
according as to whether hCd or not. But all these further subdivisions of the kth binomial still 
generate the same alogos line in Euclid's classification. This may be another indication that 
Euclid is concerned with something more than a fully worked-out formal system. 

7, p. 179: See note 4, above, and its text. 

8, p.181: Junge noticed the first problem with commensurability-in-square; see Pappus-
Thomson & Junge, CPBXEE 175 n. 131, with thanks to Wilbur Knorr for this reference. The 
proofs strengthening Propositions 66 to 70 are due to Mueller; see his P MD SEE 283 and 199. 
This observation about the ratio of the two lines of the binomial is due to Knorr; see his CM 
65 n. 38. 

9, p. 182: Mathematicians today refer to these special cases using pejorative words like 
'degenerate' or 'non-generic' and, of late, the interest has been in developing a precise 
language for exploring the typical or generic behaviour; for example: 'almost all numbers are 
irrational, indeed transcendental'; 'almost all continuous functions are nowhere differen
tiable'; 'almost all orbits in the three-body problem are bounded', etc. Euclidean geometry is, 
par excellence, the study of the degenerate case, the specific example, the very particular 
construction. The fact that some behaviour happens to manifest itself is sufficient to establish 
its importance. So the fact that the fourth additive and subtractive lines happen to arise in the 
construction of the pentagon-see below-is sufficient to justify the special names they are 
given of 'major' and 'minor'. Knorr (in EEE, CM, and ETB), Mueller (in PMDSEE), and 
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Taisbak (in CQ) speculate on the origin of these names. I agree that this is worth 
investigating, but I feel it may be more pertinent to speculate first on the reason for the 
basic terminology of the rhetos and the alogos that underlies the programme of Book X. At 
the risk of becoming tedious, I say again that, at the very least, one should not obliterate these 
features by the misleading mistranslations as 'rational' and 'irrational'. 

10, p. 183: I cannot see how to construct a geometric proof around the identity 
E2 /((3 + !') = (E2 /((32 -12 ))(3- (E2 /((32 -12))1', which is an arithmetical version of Proposi
tion 112, provided an appropriate litany is added about square roots of rational numbers 
which leads to the conclusion that the coefficients E2 / ((32 - 12 ) are rational. 

11, p.184:In fact the close correspondence between 112 and 113 causes Euclid to abandon 
completely one of his rules of style. When Euclid uses letters in setting out a proposition, to 
refer to the details of his figure, he normally introduces them in strict alphabetical order: A, 
B, I', Ll, E, .... But the letters appear in Prop. 113 in the order determined by the previous 
proposition: A, B, Ll, K, 6J, I', H. Earlier propositions of Book X show minor infringe
ments of this stylistic principle-see Propositions 48 to 53, and 108-but nothing as 
spectacular as this. 

12, p. 184: These are two versions of the so-called Pythagorean proof that m2 = 2n2 leads to a 
contradiction. Knorr proposes, very plausibly, that this material was interpolated in Book X 
after the time of Alexander of Aphrodisias (early third century AD), as a result of the 
continuing activity of commentators who wished to deal with the remarks of Aristotle at 
Prior Analytics 4la23-30 and 50a35-38 about "e.g. the falsity of what follows from the 
assumption that the diagonal is commensurate, viz. that then odd numbers are equal to 
evens". See Knorr, EEE, 228-31, and Sections 8.3 and 10.1 below. 

13, p.185: Heath translates this as 'square root' (TBEE, 464, 5 lines up), which may indicate 
that, after all, he is thinking arithmetically. 

14, p.188: I maintain the distinction between the internal mechanism and the end-product of 
the classification by referring to the 1st, 2nd, ... , 6th binomials and a po tomes, but the first 
and second bimedials and apotomes of a medial, etc. And were the explanation not to be 
found at Proposition 1111112, I am certain that there would be scholarly arguments about 
how many different types of alogoi lines Euclid described: 23, 13, or 11. See, for example, 
Proposition 72/73 and its note in Heath, TBEE iii, 158. 





PART TWO 

EVIDENCE 

The papyrologist works with an ancient script which he trans
forms into a modern script, with the language denoted by the 
script, and with the meaning conveyed by the language. This 
linguistic trinity-script, language, and meaning-is fixed 
irremovably at the centre of his activity, and it is an indivisible 
trinity. 

H. C. Youtie, The Textual Criticism of 
Documentary Papyri, p. 16. 

Chapter 6 speaks for itself, and needs no further introduction. Chapter 7 
describes a wide range of different kinds of texts-scientific and commercial, 
advanced and elementary, abstruse and pedagogic-whose common element, 
examined in great detail here, is their treatment of numbers and, especially, 
fractions. I wish to illustrate how the implications of a kind of arithmetical 
manipulation might change as a text is recopied with different conventions of 
writing or printing, or translated, or interpreted in a different mathematical 
context. All the examples chosen relate to the question whether the Greek 
mathematicians of the fifth and fourth centuries BC had at their disposal the 
manipulations of common fractions such as p/q + r/s = (ps + qr)/qs, 
p / q x r / s =pr/ qs. I believe that we have no good evidence on which to 
argue that they did, although reservations about this point of view can be 
found in Knorr, TFAEG and WEM. Of course, insofar as fractional quantities 
were manipulated correctly, they did use procedures that were equivalent to our 
operations with common fractions, but their different conceptions and opera
tions may have given rise to different intuitions and abstractions about the 
underlying mathematics. 

Another purpose of Chapter 7 is to set in higher relief the non-arithmetised 
nature of early Greek mathematics; were it to have been arithmetised, then we 
shall see just what kind of arithmetic would have been used. (There is a brief 
summary of the way this aspect of the overall argument fits together in Fowler, 
LFEGM.) However, I nowhere consider the important and vast subject of 
Ptolemaic astronomy, which is a blend of Babylonian arithmetical and Greek 
geometrical methods, but only note, in passing, that we have no Greek evidence 
of any use of or inter~st in Babylonian sexagesimal arithmetic before the second 
century BC. 





6 

THE NATURE OF OUR EVIDENCE 

6.1 AI'EQMETPHTOI: MHJEII: EII:JTQ 

Plato, it is said, placed an inscription over the door to the Academy: "Let no 
one unskilled in geometry enter". Since my aim is to propose a new and central 
role for Plato in the development of early Greek mathematics, this well-known 
and often-cited story provides an epitome of the main theme of this book. 

Let us, however, pause a moment and enquire about the evid~nce for the 
story. Plato (c. 429-347 BC) founded his school sometime around 385 BC, and 
the 'early Academy', 1 the fourth-century period of existence under its first three 
directors or scholarchs, Plato, his nephew Speusippus, and Xenocrates, forms 
the shadowy background to the mathematical developments discussed here. 
The Academy is then common~y believed to have continued in existence for 
almost a millennium, directed by a 'golden chain' of scholarchs who kept alive 
and developed the Platonic tradition, until the closure of the Athenian schools 
by an order promulgated by the emperor Justinian in AD 529, the same year 
that St Benedict founded the monastery of Monte Cassino (thus, coin
cidentally, providing historians with a clear and symbolic break between 
pagan antiquity and medieval Christianity). Such is the almost universal 
impression to be gained from both scholarly and popular accounts alike, yet 
the evidence for every remark of substance in the previous sentence is found, 
under scrutiny, to be either lacking or distorted, and this whole line of 
interpretation is unfounded. This is not the place to attempt a summary of 
this scrutiny and details of alternative interpretations,2 beyond the following 

1 See Cherniss, REA. This short and erudite book is essential reading for anybody 
interested in the scanty evidence concerning the early Academy and what has been made of 
it by modern scholars. 

2 See Cameron, LDAA, Glucker, ALA, and Lynch, AS. These works are each fascinating 
and authoritative syntheses of a wide range of different kinds of evidence. Cameron poses and 
discusses the following questions: "What was Justinian's motive? Did he give the last push to 
a tottering edifice, or destroy a thriving intellectual centre? Indeed, did he actually succeed in 
destroying anything at all? What did the philosophers do on their return?" (p. 7). Lynch's 
book assembles the literary, archaeological, epigraphical, and legal evidence concerning the 
Athenian schools in general, and so has much of importance to say about the Academy. 
Glucker's massive re-evaluation of the context of later Platonism must, if it is accepted, 
modify or put into question practically everything previously written on the subject. His work 
is set out in an equally massive book of some 450 densely argued pages, with a second 
instalment promised, directed at a readership so different from what I envisage here that I 
dare to suggest the following page references to his main conclusions for the interested but 
non-specialist reader: pp. 8'8-97 (Philo and Antiochus); 138-9, 145, and 153-8 (on the revival 
of Platonic studies in Asia Minor and Syria in the second century AD, but its absence from 
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general conclusions. It now appears that the Academy fell into disuse after the 
directorship of Philo, who went to Rome,3 a refugee fronrthe Mithridatic wars, 
sometimes around 85 BC, and soon after this the tradition of philosophical 
schools in Athens languished. Then there was a general revival of interest in 
Plato's philosophy and mathematics in the second century AD, in Syria and 
Asia Minor, at which time a few philosophers may have migrated back to 
Athens. However, Athens does not seem to have become once more celebrated 
for its philosophical activity before the fifth century,4 when the study of Plato's 
work again flourished in a prosperous and active school directed successively 
by Plutarch of Athens, Syrianus, Proclus, Marinus, Hegias, and Damascius; 
this school appears to have survived Justinian's edict; and its next scholarch, 
Simplicius, appears to have continued to write, have students, draw his 
emoluments, and even practise his pagan religion-albeit in reduced circum
stances and more circumspectly-into the second half of the sixth century. But 

Athens until the revival of the neo-Platonic school of Athens in the fifth century AD); 226-55 
(the school's property, including a summary of recent archaeological investigations); 296, 
306-15, and 321-2 (the 'Golden Chain' of scholarchs and Proclus' mystical attitude to Plato's 
'divine philosophy'); 322-9 (a summary and extension of Cameron, LDAA, on the 'end' of 
the Athenian schools); and 364--79 (the succession of the Peripatetic, Stoic, and Epicurean 
schools and the attitude of the Athenian citizens to the philosophical activity within their 
city). My only unease about these investigations concerns their neglect of the role of 
mathematics within philosophy throughout the period with which they are concerned. 
Compare, for instance, the conclusions of Cherniss, quoted at the beginning of Chapter 4, 
with the only three allusions to mathematics I could find in Glucker's book: two passing 
references to Theon of Smyrna on pp. 136 and 212, and the following passage on p. 260: 
"From our passage [Plutarch, De E apud Delphos, 387 f.] we learn that he [Plutarch] had 
already studied some mathematics-a subject with which, at the dramatic date of the dialogue 
[AD 66/7] he was somewhat too passionately involved". This disdain, or distaste, for 
mathematics is general. See, for example, the review of Cherniss, REA by Solmsten (Classical 
Weekly 40 (1946), 164--8, on 168): "This [mathematics] was the kind of work to which Plato 
kept the members of the Academy with inexorable strictness, refusing to discuss with them, 
especially with the younger men, the more serious philosophical problems connected with his 
theory of ideas" (my emphasis); and it would be easy and profitless to point to scores of 
similar instances. 

According to Cameron, Monte Cassino is now believed to have been founded in AD 530! 
3 Glucker's stronger conclusion, that Philo died in Rome, is queried in Sedley, EA; see 

especially n. 2. 
4 Here, for example, is one anecdotal piece of evidence for the dearth of intellectual activity 

in Athens, in a letter from the neo-Platonic philosopher and student of Hypatia, Synesius of 
Cyrene, to his brother, written around AD 396: " ... And as for Athens: A curse on the 
accursed boatman who brought me here! Why, present-day Athens has nothing worth 
venerating except for the famous names of its places. It's just like the skin that is left from 
a sacrificed victim: a remainder of a life that once was. That's the condition of things now that 
philosophy has gone from here. All that remains for us to to travel around and wonder at the 
Academy, the Lyceum, and-by Zeus-the painted Stoa which gave its name to the philo
sophy of Chrysippos, though it's now no longer painted since the proconsul took away the 
panels on which Polygnotes of Thasos displayed his art. In our time Egypt has received and 
continues to cherish the creative works of Hypatia, while Athens-which was formerly the 
dwelling place of the wise-now has only bee-keepers to make her famous" (Epistle 136, 
quoted in Lynch, AS, 195 f.). 
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though this Athenian neo-Platonic school consciously revived and emulated the 
tradition of Plato's Academy, it never seems to have been called 'The Academy' 
by its contemporaries. In fact this name, with its modern connotations, is an 
obstacle to the solution of what is characterised, in Cherniss, The Riddle of the 
Early Academy, as the more genuine problem of understanding Plato's 
Academy: 5 

What, then, did Plato really do in his Academy? ... 'Academy' and 'Academic' are terms 
which men of formal training, who speak as their own the modern European tongues, 
have been pleased to apply to themselves and their organisations. Is it not wonderful, 
therefore, that by a more or less unconscious retrojection modern scholars have attached 
the particular significance which 'Academy' has in their own milieu to the garden of 
Plato's which was situated in the suburb northwest of Athens called 'Academia' after a 
mythical hero .... The external evidence for the nature of the Academy in Plato's time is 
extremely slight ... [REA, 61 f.]. 

The same point is made in Glucker, Antiochus and the Late Academy: 

For the ordinary educated Roman of [Cicero's] age, the place is just what it appears to 
be to a visitor to Athens-a gymnasium. To us, influenced as we are by the Platonic 
tradition, the word 'Academy' has come to mean an institution of learning, a learned 
society, or at least a place of theoretical ('academic') education. In ancient Athens, the 
Academy was first and foremost a public park dominated by its gymnasium, and the 
connection between it and Plato's school was only one of the numerous historical 
reminiscences in an area rich in history. (In order to obtain the right perspective, one can 
add that the excavations in the area of the Academy have not proved to be a tourist 
attraction in our times, although they are mentioned in most guidebooks to Greece.) It is 
in such a light that Pausanias, in what is essentially a tourist guide [Description of Greece, 
I xxix-xxx], describes the area. 6 He proceeds to describe in detail monuments like the 
enclosure to Artemis nearby and the small shrine of Dionysus Eleutherus .... He lists 
the graves of the various war heroes and of distinguished statesmen and philosophers .... 
He [describes] the altar to Eros built by Charmus ... ; the altar of Prometheus in the 
Academy itself; the altar to the Muses-most probably the one dedicated by Plato and 
decorated by Speusippus (Diogenes Laertius, Lives of the Eminent Philosophers IV, l); 
an altar to Athena and an olive tree. It is only then that he mentions that not far from 
the Academy is a memorial to Plato, in a place where a god indicated to Socrates in a 
dream that Plato was to be the greatest of philosophers. Pausanias narrates the dream in 
great detail, but says nothing to the effect that Plato was buried on what was his own 
estate near the Academy (if that was the case), or of the very existence of such an estate. 
He passes on immediately to a description of the tower of Timon the misanthrope, 
whose property, as we know from other sources, was near Plato's school. ... The 
traveller in Attica was shown Plato's grave, but he was not told of the connection 
between the Academy and Plato himself or his school [ALA, 244f.]. 

5 The 'riddle' ofCherniss' title is to understand why some modern scholars need to propose 
an 'unwritten doctrine' to account for the discrepancy between Aristotle's account of Plato's 
theory of idea-numbers and what is found in Plato's own writings. 

6 Pausanias lived during the second century AD. The OCD observes: "He loves all religious 
and historical remains . • .. on which he writes plainly and honestly. His accuracy herein is 
confirmed by existing remains". 
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To return, then, to the inscription. It is most unlikely that the archaeological 
record could now be of any help in verifying or refuting the proposal that Plato 
himself had any part in putting it up7 so we have, instead, to rely on references 
to it by ancient writers; 8 but these cannot be traced back any earlier than the 
fourth century AD. The earliest such reference occurs in an oration written in AD 

362 by the emperor Julian the Apostate, who mentions an inscription over the 
entrance to Aristotle's classroom and alludes to another over Plato's, without 
giving any details of their contents. No other reference to Aristotle's inscription 
is known, and the first details of the wording of Plato's inscription come from 
an anonymous scholiast9 who has been identified as probably the fourth
century orator Sopatros, in an annotation of a manuscript of Aelius Aristides. 
Sacred places sometimes had inscriptions such as "Let no unfair or unjust 
person enter"; and this scholium implies that the author of Plato's inscription 

7 The site of the Academy has been buried under the sprawl of twentieth-century Athens 
without ever being properly excavated, and the scattered reports of the partial excavations 
have never been brought together into any kind of comprehensive work; see Whycherly, 
PAPS, especially Part II, 2-10. A full discussion of the archaeological evidence, with 
references to some fifty archaeological reports, can be found in Glucker, ALA, 237-46; he 
concludes: "The one subject on which the excavations have not so far shed any new light is 
precisely the issue which Mr. Aristophron hoped to clear up with the aid of these excavations: 
the connection between the Academy and the school of philosophy established in that area by 
Plato .... As to the history of Plato's school, we are at present still largely at the mercy of our 
literary sources. And the literary sources hold their peace. Or rather, they behave as though 
any connection between the Academy and the philosophical school founded by Plato was 
restricted to the 'Classical' period of the school, between Plato and the pupils of Cameades 
and Clitomachus [i.e. up to the end of the second century BC]". Lynch, AS, 17-31, also deals 
with the archaeological evidence, but mainly with reference to the Lyceum, which was to the 
east of Athens. 

8 My summary of these sources is based on Saffrey, AME (=AI'EQMETPHTOE 
MHiJEIE EIEITQ, Une inscription legendaire). Also see Riginois, Platonica, The Anec
dotes Concerning the Life and Writings of Plato, in which the sources of 148 anecdotes 
(including this) are examined; very few can be traced back to the first century AD or before. 

9 A scholium is a marginal note in a manuscript (for some examples, see Plates 5 & 6) and 
its author is the scholiast. The scholium reads: 

El 0€ ~ yEwµ,erp{a E7TEyEypa7TTO 8€ Ef.1,7Tpoc8Ev Tfjc 8iaTpif3ijc Tov ID.aTwvoc on 
AI'EQMETPHTOE MHiJEIE EIEJTQ. dvTl dv{coc Kal a8tKOC. ~yap YEWf.1,ETp{a 
T~V lc6T'Y}Ta Kal T~V 8tKalOcVV'Y}V ~TJTEf. 

(There had been inscribed at the front of the school of Plato. "Let no one who is not a 
geometer enter'. [That is] in place of 'unfair' or 'unjust': for geometry pursues fairness and 
justice.) 

Andrew Barker, who has provided this and the following translation, notes: "The piece is 
riddled with ambiguities. 'No one who is not a geometer' might be paraphrased as 'no one 
who is not geometrically minded'. 'No one unskilled in geometry' doesn't quite work here, 
since the sequel suggests that ageometretos indicates a disposition as much as a skill. Anisos 
'unfair', literally 'unequal', is used with something of the sense of 'antiegalitarian'. In this 
usage, someone who is isos pursues equality as an end or ideal, while someone who is anisos 
rejects it-see Aristotle, Nicomachean Ethics l 129a32-bl. 'Unfair' or 'unjust': the scholiast 
may possibly mean 'unfair or unjust', or again 'unfair and unjust'. In such a context kai may 
mean either 'and' or 'or', and in the latter case there is no way of telling which arrangement of 
inverted commas best expresses the scholiast's intention." 
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has substituted agei5metretos, 'ungeometrical', for anisos kai adikos, 'unfair or 
unjust', in the normal formula; also the scholium seems to indicate that the 
inscription was not put up by Plato. The story is repeated and used by the sixth
century Alexandrian neo-Platonic philosophers Philoponus, Olympiodorus, 
Elias, and David to impute a variety of different motives to Plato in having 
the inscription put up in the first place. Finally, the most commonly used 
standard source for the story is the twelfth-century Byzantine Johannes Tzetzes 
(described in the OCD as a "copious, careless, quarrelsome, Byzantine poly
math") in his Book of Histories (or Chiliades), a review of Greek literature and 
learning in 12 674 verses. 10 Thus the evidence for the story is late and of 
doubtful provenance. 

In support of the evidence, it can be added that the word agei5metretos is 
found in technical use during the fourth century BC (Aristotle, Posterior 
Analytics 77b12-13: "One should therefore not discuss geometry among 
those who are agei5metretoi, for in such a company an unsound argument 
will pass unnoticed."), so the inscription is philologically acceptable; Julian's 
account of the inscription seems to allude to a well-known story, so the 
anecdote could have been in circulation before his time (but how much 
earlier?); and there can be no doubt that Plato regarded mathematics as 
being extremely important. However, that the inscription corresponds so well 
with Plato's own opinions can be used as an argument against its authenticity: 
it could be a later elaboration of Plato's words, for example at Gorgias 508a: 
"Geometric equality is of great importance among gods and men" .11 The main 

10 Tzetzes, Chiliades VIII, 974-7: 

IIpo TWV 7rpo8vpwv TWV aVTOV yp6.<f;ac V7TYJPXE II/..aTWV' 
M7]8Eic dyEwfiiTp'Y)TOC Elcfrw µ,ov T~v CTEY'Y)V' 

TovTECTlV, afiiKOC µ,7]8Eic 7TapElCEpx.fc8w rfJfiE· 
'Ic6T'YJC yap Kai fi{Kai6v Jen YEWf-1-ETp{a. 

(On the front of his doorway Plato had written 'Let no one who is not a geometer enter my 
house.' That is, 'Let no one who is unjust come in here', for geometry is equality and justice.) 
Andrew Barker notes: "Similar comments to those on Sopatros' scholium apply here. In both 
passages I would take adikos to mean 'unjust' rather than the more general 'unrighteous', 
since this facilitates the parallel with geometry, which presumably has to do with 'due 
proportions' and the like; but the more general senses can't be ruled out if 'righteousness' is 
being understood, for instance, within a broad conception of virtue as a mean. In any case, 
writers were not always conscious of the ambiguity, or sometimes appear to play on it 
deliberately-as (arguably) does Plato himself." 

11 A bizarre, though possible, explanation of the background of 'geometric equality', at 
Gorgias 508a, has been proposed in Harvey, TKE: that this was part of an intellectual 
argument developed by the aristocratic Archytas and Plato to discredit democracy. In place 
of the simple political formulation that all citizens are equal, which loosely corresponds to the 
application of an arithmetic proportion in which each term stands at an equal distance from 
its neighbour, one should rather reward each according to his value, and this is better 
described by a geometric proportion, in which each term bears the same relationship to its 
neighbour. Harvey even proposes that logismos, in Archytas' fragment B3, might mean 
geometric proportion, but this surely cannot be the case for Plato's logismos; see Section 4.2. 
Also see de Ste. Croix, CSAGW, 413-14. 
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argument against the authenticity of the story is the fact that no direct evidence 
can be found earlier than the fourth century AD, and 747 years separate the 
tentative date of the Academy's foundation and the date of Julian's oration. 
There can also be added a further kind of negative evidence ex silentio: 
Aristotle (384-322 BC), who spent from his eighteenth to thirty-seventh year 
in the Academy, leaving on Plato's death in 348/7 BC, was very critical of the 
mathematical bias of Academic philosophy. For instance, in a discussion of 
Plato's theory of ideas (Metaphysics 992a32-bl) he wrote: "Mathematics has 
come to be identical with philosophy for modern thinkers, though they say it 
should be studied for the sake of other things", and a little later, he adds that, in 
this approach, "The whole study of nature has been annihilated". 12 It is 
therefore curious that Aristotle nowhere points to the inscription as a flagrant 
and defiant advertisement by Plato of the very tendency of which he, Aristotle, 
is so unequivocally critical. 

I have dwelt on this story of Plato's inscription at such length because it 
provides a convenient way of introducing what we find, time and time again, 
when we study the spectacular developments in mathematics that took place in 
the period which culminated in the compilation of Euclid's Elements and Data 
at the end of the fourth century BC: the evidence for many stories cannot be 
traced back any earlier than a period five, six, seven, or even eight hundred 
years after the event, and we often have little indication of whether the stories 
are authentic, plausible, or misleading. It is now worth pursuing this question 
even further and exploring the form in which the surviving evidence, early or 
late, reaches us. 

6.2 EARLY WRITTEN EVIDENCE 

Suppose we take a substantial text relating to the early developments of Greek 
mathematics-Euclid's Elements, for example. What, precisely, are we con
sidering? 

Euclid himself is an elusive figure. 13 We know nothing of him from 
contemporary references, and the only thing that can be hazarded with any 
degree of confidence is that he may have lived sometime around 300 BC, since 
the general theory of proportion to which Aristotle appears to allude, at 
Posterior Analytics 1.5, 74al 7-25, appears in polished and complete form in 
Book V of the Elements. He most probably lived before Archimedes, since 
Archimedes refers to earlier, possibly Euclidean, works, 14 though the only 

12 Also see Cherniss, REA, passim, and especially p. 68. 
13 See the DSB for articles on Euclid (by I. Bulmer-Thomas) and the transmission of the 

Elements (by J. Murdoch; this deals mainly with the Arabic and Latin traditions that I shall 
not consider here). 

14 In Sphere and Cylinder I 2 and 6; Quadrature of the Parabola 3, Conoids and Spheres 3; 
and Method I and II; these passages are cited in the testimonia in Euclid-Stamatis, EE i, 
pp. xii-xiii and some are excerpted in Thomas, SIHGM ii, 50 f. (for Sphere and Cylinder 12) 
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explicit citation, in Sphere and Cylinder I, 3: " ... by the second [proposition] of 
the first of the [books] of Euclid", is uncharacteristic of Archimedes' style, and 
so is very probably a later addition to the manuscript. A stronger argument for 
dating some kind of Euclidean text to around 300 BC will be described below, 
but the evidence for this will also not be without its complications. 15 

Nine or ten works are attributed to Euclid, of which the Elements, Data, 
Division of Figures, Phaenomena, Optics, Catoptrica, and Sectio Canonis survive 
in one form or another. Of these the most varied and important is the Elements, 
which comprises thirteen books containing, in all, more than 133 definitions 
and 465 propositions, occupying more than 20 000 lines of text. 16 It deals with a 
variety of topics in a recognisably varied range of mathematical and literary 
styles. Euclid is the compiler, not the author, of the work: he is believed to have 
taken source works by other mathematicians and edited them, adapting and 
rearranging the material, perhaps even inserting new material of his own, to 
make the complete treatises. The original source works cannot have been 
written very long after the change in Athenian intellectual and cultural activity 
from an oral to a written tradition; this appears to have taken place in the sixth, 
fifth, and fourth centuries, BC, and a range of explanations has been proposed 
to account for this development.'7 Let us now consider what actual writings 

and 224f. (for the Method). However, there are indications that Archimedes may have 
learned some mathematics from pre-Euclidean sources; see Knorr, APEPT. 

15 The suggestion that Euclid was the pen-name of a group of mathematicians or the name 
of a teacher, used collectively by his students, was put forward in ltard, LAE, 11. The fact 
remains that we have no facts on this subject. For a recent discussion of the difficulties posed 
by Proclus' attempt to locate Euclid (CFBEE 68, lines !Off.) see Fraser, PA ii, 563, n. 82; 
other ancient references are discussed in notes 84-91 and the text to these notes. 

16 A 'line of text' means a line of the critical edition, Euclid-Heiberg, Opera. The text and 
scholia of the Elements, vols. i-v, without Latin translation and with added prefatory 
material, has been reissued in Euclid-Stamatis, EE; but see notes 34, 40, 58, and Chapter 7 
n. l, below. 

17 See, for example, for one of the most popular of the explanations, Hall, CCT, 26-7: "Up 
to the end of the sixth century BC Greek literature is in this state of ceaseless flux, and is 
exposed to all the dangers of a tradition that is practically oral. And then the change comes 
swiftly and suddenly with the birth of a new form of literature, not local nor occasional nor 
professional as the older forms had been, but Pan-Hellenic in its appeal, although it sprang 
from a single city-state. This new form was Attic Tragedy, which never lost the hold which it 
rapidly obtained over the Greek race in all quarters of the ancient world. The enthusiasm for 
Tragedy created a reading public, since but few Greeks could hope to see the masterpieces of 
the great dramatists performed in Athens. Thus an impulse was given to the production of 
books which ends in the growth towards the end of the fifth century of an organised book 
trade with its centre in Athens." This from a book published in 1913; nobody today would 
speak with such confidence. Here, for example, is Turner, ABFFCBC, 16: "Let us ... attempt 
to trace the steps by which books came into common use in Athens. The target before such an 
inquiry is a correct appreciation of the part played by the written word in the revolution 
which took place in the techniques of thought during the fifth century BC. It is a target against 
which Wilamowitz scored a brilliant and authoritative miss [in Einleitung in die griechischen 
Tragodie (1907), Chapter 3]. He laid it down that the texts of the Greek tragedies were the first 
books. This positive staf'ement I hope to demonstrate as false; while his rigorous definition of 
a book as 'what is published by its author through the medium of an organised book trade for 
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survive, and in what form. Here I shall only lead up to consideration of the 
Greek Euclidean tradition; there is also, up to the tenth century AD, a debased 
Latin tradition; and also a rich but largely unexplored Arabic tradition which 
plays an important role in the transmission of Greek mathematical ideas. 18 

Inscribed, as opposed to written, texts will scarcely enter into our discussion. 
The most common materials on which writing is found are pieces of pottery or 
stone (called 'ostraca') or wooden writing boards or wax tablets, for ephemeral 
work, 19 and, for more enduring records, papyrus rolls: the pith of the papyrus 
plant was fashioned into oblong sheets which were then immediately joined by 
the maker to form rolls about thirty feet long. The height of the rolls varied 
greatly, and might be altered by cutting, but a typical range of heights for 
literary texts would be eight to twelve inches. 20 An exceptionally narrow roll, P. 
mich. iii 146, only four inches high, will be cited in the next chapter; it is a 
pocket-sized ready reckoner. The writing was set out, column by column, side 
by side on the roll, in capital, unaccented letters without gaps between words, 
but with the words occurring at the end of a line divided between lines 
according to strictly observed rules. 21 

the benefit of an expectant public' is to import from the nineteenth century a criterion which 
obscures understanding of the fifth." Also see the mythical story told by Plato of the 
invention of "arithmos te kai logismos, geometry and astronomy, not to speak of draughts 
and dice, and above all writing" at Phaedrus 274d-275b, quoted in Section l.2(e), and the 
notes to that section. For a further discussion, which includes the oriental background against 
which Greek culture is set, see Pfeiffer, HCS, Chapter 2. The earliest evidence for the 
development of the Greek alphabet out of the Phoenician is found in the eighth and seventh 
centuries BC and comes from graffiti on pottery; for a summary and references, see 
Coldstream, GG, 295-302 and 382. 

18 For references concerning the Arabic and Latin traditions, see note 13 and Toomer, 
LGMWAT. For further details of the role of writing in ancient Greek culture, see Turner, 
GP; I shall rely heavily on this and other works by Turner in what follows. Wherever possible, 
I shall refer to papyrus texts by the standard method adopted by papyrologists: an 
abbreviation for the published collection or publication, followed by the publication 
number; the abbreviations are expanded in GP, Chapter IX or the Introduction to Liddell, 
Scott, & Jones, GEL. If a text has no such publication number, but appears in the second 
edition of Pack, GLLTGRE, its reference number there will be given and, for anything 
particularly important to our topic here, further details of its publication. In this way, I hope 
that every relevant cited text can be easily located, even by somebody who has never 
previously ventured into the papyrological literature. The Euclidean texts will also eventually 
be included in Corpus dei papiri filosofici greci e latini. 

19 See Diogenes Laertius-Hicks, LEP, III 37: "Some say that Phillip of Opus copied out the 
Laws [of Plato], which were left on waxen tablets." For illustrations of tablets, complete with 
the schoolboys' writing exercises, see Turner, GMA W, Plate 4, and PW, Plate 6; other 
examples will be cited in the next chapter. Tax-collectors' receipts and calculations were often 
made on ostraca; see Plate 8 for an example. 

20 I am here only discussing Greek texts (i.e. texts written in Greek). Papyrus as a writing 
material is much older: around 3000 BC, at Saqqara, a blank roll was placed in the tomb of the 
Vizier Hemaka for the use of the dead man. See Cerny, PBAE; Cockle, RCP; Lucas, AEMI; 
and Lewis, PCA. 

21 See Turner, GMAW, 19-20. One rule, about division between doubled consonants, may 
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SURVIVINGEARL YGREEKPAPYRIARESETOUTJUSTLIKETHISAND 
INSCRIPTIONSARESOMETIMESCARVEDBOUSTROPHEDONICALL Y 
25l3:VIG1'1I23YIIJ3T A1'1.513T JA1'102G51AW 510'ilG1'1A2G51A W)l'JAH 
DIALECTSINALIVINGCHANGINGV ARIETYOFSTYLESASSOCIATED 
WITHLEGALADMINISTRA TIVELITERARYSOCIALANDTECHNICAL 
SUBJECTSANDINANEVOLVINGANDV AR YINGSTYLEOFHANDS 
WITHTILDASFILLINGTHEENDOFTHELINE"'"'"'"'"'"'"'"'"'"'"'"'"'"'"' 

Accents, marks to resolve ambiguous word divisions, and even indications of 
change of speaker in a play, were only slowly and irregularly introduced during 
the Alexandrine period, and it is not before the ninth-century Byzantine 
manuscript tradition that written Greek approached its now standard form, 
with upper and lower case letters, spaces separating words, and an elaborate 
array of accents and breathings; this development will be described in the next 
section. The most common type now used for printed Greek (it is used in this 
book) is based on the beautiful Greek handwriting of the Cambridge scholar 
Richard Porson (1759-1808) which itself was based on this Byzantine script; it 
was designed and first used by Cambridge University Press for his posthum
ously published editions of Euripides. 22 For an example of a font designed to 
correspond more closely to early Greek script see Plate 2, a reproduction from 
volume i of The Oxyrhynchus Papyri; this experiment was gradually abandoned 
after a few years, and the editors of the series now use Porson's Greek types, 
with a recently introduced and increasingly popular variation, which I have 
adopted, of a sigma in the form of a c, without any distinction between medial 
and final forms. 23 (In fragmentary unspaced texts, such a distinction may be 
problematic or impossible to determine.) 

Papyrus rolls are fragile and will tear, if handled too roughly; they are 
inconvenient, as any microfilm user will appreciate: Athenian vase-paintings 
show readers getting into difficulties with a twisted roll, and the aged Verginius 
Rufus broke a hip while trying to collect up one he had dropped; 24 but they 
continued to be the main vehicle for permanent records until between the 
second and sixth centuries AD, when a gradual process of 'codification', of 
transcription of manuscripts into codices, was carried out. (A codex is a 
forerunner of the modern book: flat sheets of material are gathered, folded, 

have forced a scribe in an example which follows to cram in an extra IL above the line when 
splitting the word ypafL I /LY/ see Turner, Fowler, Koenen, & Youtie, EEi, on lines 27-8 of P. 
Mich. iii 143. 

22 See Sandys, HCS ii, 424-30. There is a facsimile of Porson's handwriting in Watson, The 
Life of Richard Parson, M.A., opposite p. 260. (Porson was celebrated for his witticisms and 
epigrams; this is a Greek epigram boldly rendered into English: "The Germans in Greek I Are 
sadly to seek; I Not five in fivescore, I But ninety five more: I All save only Herman, I And 
Herman's a German." He was also celebrated for his drinking.) 

23 In fact, on the insubstantial evidence cited in the previous note, Porson mainly used the c 
sigma; but, curiously, there is one a, in TEvTovoa, where we now would use c;. 

24 See Turner, GP, 7. 
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and stitched. The word derives from the Latin name of a hinged set of wooden 
tables. Early codices were made from either papyrus or p1lrchment.25) 

Do we then have a papyrus roll containing an early manuscript of the 
Elements? That would be far too much to expect. Papyrus will rot unless kept 
perfectly dry, though it can be preserved in a damp climate if it is baked at a 
high temperature until it is carbonised, and then kept undisturbed-like burned 
paper, it is then useless for everyday purposes, and the writing is frequently 
illegible, but it is in a stable and relatively indestructible state. This is certainly 
the main reason why only two pieces of papyrus have been found in Greece, 
both of them in tombs. The oldest dates from the second half of the fifth 
century, and so is perhaps the earliest surviving Greek papyrus; it comes from a 
recently uncovered tomb between Athens and Sounion which contained a male 
skeleton, a papyrus roll, a bronze pen with a split nib, the remains of a tortoise 
shell lyre, and two oil flasks; "The papyrus, a shapeless, flattened mass, will 
need a miracle to be preserved and unrolled, as it did to survive 2500 years". 26 

The second piece, a line-by-line commentary on an Orphic cosmological poem, 
was found in 1963, in Derveni, north of Thessaloniki; it has been preserved 
through being baked during the burial rites. 27 These two texts, together with a 
cache found in Herculaneum, to be described below, may be the only written 
(again, not inscribed) Greek texts that have not passed through Egypt in the 
course of their transmission down to us. 

No surviving Greek papyrus found in Egypt can be confidently dated by 
handwriting, context, or other internal evidence to before Alexander's conquest 
of Egypt, though a roll of Persae by Timotheus, Pack no. 1537, was found, in 
1902, at Abusir, in a sarcophagus that has been dated by some, on archaeo
logical evidence, to the middle of the fourth century, but this is disputed.28 

For a long time, the oldest document that could be securely dated on internal 
evidence was P. Eleph. 1, a marriage contract of 311 BC from Elephantine Island, 
Assuan.29 This may now have been supplanted by a boldly written notice found 

25 The origins and development of the Greek codex are still far from understood, and 
literary texts on papyrus rolls are still occasionally found in the ninth century. See Roberts & 
Skeat, BC, who also discuss the transition from papyrus to parchment. 

26 Report of The Times, 25 May 1981, supplemented by Cockle, RCP, 147. 
27 There is a very interesting preliminary account of the discovery of the Derveni papyrus, 

followed by a most illuminating transcript of a discussion, in Kapsomenos, OPRT; for a 
photograph, brief discussion, and bibliography, see Turner, GMA W, no. 51. The text still has 
not had its definitive publication; se.e Turner, Tsantsanoglou, & Panissoglou, ODP. 

28 For a bibliography, see Pack no. 1537. 
29 The text and translation is in Hunt & Edgar, SP i, 2-5, and it is worth quoting in full: 

"In the seventh year of the reign of Alexander, son of Alexander, the fourteenth year of the 
satrapship of Ptolemy, in the month Dius. Marriage contract of Heraclides and Demetria. 
Heraclides takes as his lawful wife Demetria, Coan, both being freeborn, from her father 
Leptines, Coan, and her mother Philotis, bringing clothing and ornaments to the value of 
1000 drachmae, and Heraclides shall supply to Demetria all that is proper for a freeborn wife, 
and we shall live together wherever it seems best to Leptines and Heraclides consulting in 
common. If Demetria is discovered doing any evil to the shame of her husband Heraclides, 
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in the Sacred Animal Necropolis at Saqqara which reads: "Of Peukestas. No 
one is to pass. The chamber is that of a priest. (IIEYKECTOY I 
MHIIAPAIIOPEYECBAIMH I tJENAIEPEJQCTOOIKHMA)", or, 
more colloqually, "By order of the commander-in-chief Peukestas. Out of 
bounds to troops. Ritual areas." This notice can perhaps be dated, on the 
evidence of the name of Peukestas, to around 330 BC. 30 

Let us now turn to technical and Euclidean texts. Perhaps our earliest 
scientific text is P. Hib. i27, a parapegma related to Eudoxus' calendar; this 
gives a very clear and important illustration of early numerical practice, and it 
will be described and reproduced in the next chapter (see Section 7.l(c) and 
Plate 7). Our earliest glimpse of Euclidean material will be the most remarkable 
for a thousand years: six fragmentary ostraca containing text and a figure, Pack 
no. 2323, found on Elephantine Island in 1906/7 and 1907/8 and published, 
with photograph and commentary, in Mau & Muller, MOBS. These texts are 
early, though still more than 100 years after the death of Plato (they are dated 
on palaeographic grounds to the third quarter of the third century Bc); 
advanced (they deal with the results found in Elements XIII, 10 and 16, on 
the pentagon, hexagon, decagon, and icosahedron); and they do not follow the 
text of the Elements (though they are clearly connected with the material of 
these propositions). So they give evidence of someone in the third century BC, 

located more than 500 miles south of Alexandria, working through this difficult 
material; and the fact that the texts are on potsherds and are not the received 
text of the Elements suggests that this may be an attempt to understand the 
mathematics, and not a slavish copying or learning of the material. For 
example, the text jumps straight from the middle of Proposition 16 (Heath, 
TBEE iii, on p. 483) to the porism found at the end, and it contains nothing on 
the classification of the side as a minor line. These fragments are the evidence, 
mentioned earlier, which corroborates assigning Euclid to c. 300 BC,31 but one 

she shall be deprived of all that she brought, but Heraclides shall prove whatever he alleges 
against Demetria before three men whom they both accept. It shall not be lawful for 
Heraclides to bring home another wife in insult of Demetria nor to have children by another 
woman nor to do any evil against Demetria on any pretext. If Heraclides is discovered doing 
any of these things and Demetria proves it before three men whom they both accept, 
Heraclides shall give back to Demetria the dowry of 1000 drachmae which she brought and 
shall moreover forfeit 1000 drachmae of the silver coinage of Alexander. Demetria and those 
aiding Demetria to exact payment shall have the right of execution, as if derived from a 
legally decided action, upon the person of Heraclides and upon all the property of Heraclides 
both on land and on water. The contract shall be valid in every respect, wherever Heraclides 
may produce it against Demetria, or Demetria and those aiding Demetria to exact payment 
may produce it against Heraclides, as if the agreement had been made in that place. 
Heraclides and Demetria shall have the right to keep the contracts severally in their own 
custody and to produce them against each other. Witnesses: Cleon, Gelan; Anticrates, 
Temnian; Lysis, Temnian; Dionysius, Temnian; Aristomachus, Cyrenaean; Aristodicus, 
Coan." 

30 See Turner, CCOS. 
31 The first reference to these ostraca in connection with the problem of locating Euclid 

appears to be Fraser, PA ii, 558, n. 43. 
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complication in this proposal is that we cannot be sure of their relationship to 
the received text of the Elements: it is not inconceivable that the fragments 
represent a preliminary version of the final text, not the other way round, 
though they provide, in themselves, slender evidence for such a proposal. 

One of the first and most spectacular discoveries of papyrus was at 
Herculaneum: a library of some 1800 rolls that had been buried in boiling 
volcanic ash and rain during the eruption of Vesuvius in AD 79. The town was 
rediscovered when a well was being dug in the gardens of a house on the lower 
slopes of Mount Vesuvius in 1752, and it has subsequently been excavated. The 
publication of these texts became a prestige project commissioned by the 
Bourbon Kings of the Two Sicilies and, between 1802 and 1806, the Prince 
of Wales (later King George IV) sent his chaplain John Hayter to supervise the 
unrolling of the papyri; then, in 1819 and 1820, he sent Sir Humphry Davy 
(later President of the Royal Society) and the Reverend Peter Elmsley (later 
Camden Professor of Ancient History at Oxford) to make chemical experi
ments on the papyri and to decipher them. 32 Initially great expectations were 
aroused that their contents might unlock the secrets of antiquity, but unfortu
nately very little of the material proved to be legible, and the books in the 
library are mostly restricted to Epicurean philosophy. One of the papyrus rolls 
(P. Herc. 1061) does provide us, however, with a second glimpse of the 
Elements, in an essay by Demetrius Lacon. The title page of the roll, apart 
from the author's name and a few letters at the end, has broken away and much 
of the text that follows is either missing or illegible. Generally the state of the 
texts is such that photographs show little of use (see Plate l); but as the various 
papyrus rolls from Herculaneum have been unrolled or broken open, layer by 
layer, sometimes inevitably being destroyed in the process, they have been 
drawn, and some drawings and a transcription of column 9, from Heiberg, 
QPTM, are also given in Plate l.33 Column 8 lines 9-17 cites Elements 
I Definition 15, the definition of a circle; column 9 cites Elements I 9, the 
proposition on bisecting an angle, and its figure and a summary of the proof 
are given in column 10; column 9, lines 12-15 cites Elements 13, a proposition 
that is used in the proof of I 9; and finally column 11 gives the enunciation and 
figure of I 10. The text itself appears to be a defence of an Epicurean doctrine 
that allowed the possibility of an infinite divisibility of a line, against criticism 
by Polyaenus, and is believed to date from around 100 BC. 

Our next Euclidean fragment34 comes from a dramatic and extensive find of 
papyri at Oxyrhynchus, in January 1897, by B. P. Grenfell and A. S. Hunt, in 

32 See Davy, SOEPFRH. A survey of recent restoration work on the papyri, especially by 
A. Fackelmann, is given in Cockle, RCP, 158. There is a recent bibliography of the 
Herculaneum papyri, Gigante, CPE; and Cavallo, LSSE, contains sixty-four remarkable 
plates of photographs, by T. Dorandi, of fragments of the collection. 

33 Heiberg's conclusions have not all been accepted by later scholars; see, for example, De 
Falco, EDL. For further work on this fragment, see Angeli & Dorandi, PMDL. 

34 The next three texts are unreliably reprinted in Euclid-Stamatis, EE i, Appendix II. 
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one of a series of expeditions for papyri sponsored by the Egypt Exploration 
Fund (later to become the Egypt Exploration Society). Oxyrhynchus was a 
large Graeco-Roman town in the desert to the west of and above the Nile 
valley, adjacent to the modern Arab village Behnes, about 120 miles south of 
Cairo. A series of rubbish mounds yielded an enormous quantity of papyrus: 
"The flow of papyri soon became a torrent it was difficult to keep pace with", 35 

and indeed about half of the papyri found there still remains to be transcribed 
and published. Publication is still taking place in the series The Oxyrhynchus 
Papyri, 65 volumes to 1988, the centenary year; and volume i, edited by 
Grenfell and Hunt and published in 1898, included a fragment containing 
the enunciation of Elements II 5, together with a roughly drawn figure (see Plate 
2). This fragment is dated by Grenfell and Hunt to the third or fourth century 
AD, but Sir Eric Turner has revised this dating in some notes that he very kindly 
provided me on the published Euclidean fragments from Egypt. Of this, he 
wrote36 (with my additions in square brackets): 

P. Oxy. i 29. Height 8.5cm, width 15.2cm. 
A kollesis (a pasted join between two sheets of papyrus, the join being made by the 

manufacturer at the time the roll was put together) runs through the middle of the 
column of writing. Thick and poor quality papyrus. Writing in a single broad column. 
Lower margin about 3 cm, broken above. The kollesis and the fact that this is a II 5 show 
that the fragment is almost certainly from a longer(? complete) manuscript of Euclid [to 
which can also be added the evidence of the broken letters in the first line: these probably 
come from the end of either the enunciation, or the conclusion of II 4]. An empty space 
at the left (with no trace of the preceding column) of at least 3 cm shows that this was a 
generously laid out manuscript. But the figure is drawn without rule, free-hand, and 
carelessly [and is unlabelled]. 

The handwriting is a medium to large rounded capital, roughly bilinear, fairly quickly 
written, clear to read but with no claim to be regarded as calligraphic. I should date it 
confidently to the end of century i AD/early century ii, say AD 75-125 .... [Here follows a 
discussion of palaeographical features, supporting this date; see note 37.] 

Note that this text was one of the first finds of Grenfell and Hunt at Behnesa 
(Oxyrhynchus). They published in a great hurry, and no doubt included this piece to 
illustrate the wide range of subjects on which papyri could throw light. Their palaeo
graphical (especially dating) framework was still to be worked out. By 1902 I do not 
think that the dating offered would have been 'third or fourth century'. 

35 See Turner, GP, Chapter 3 and James, ed., EEEES, for full and exciting accounts of this 
and other discoveries. This quotation is from Grenfell and Hunt's own account, cited in GP, 
29. 

36 Personal communication. Turner's query about the dating was noted in Pack, 
GLLTGRE, no. 368. 

37 Turner's notes continue: "The verticals of i T 'Y/ y v 1T often terminate at the foot with 
left-pointing serifs, vis widely spread. The hand is rounded and fairly upright, but the writing 
takes an upward slope to the right. Note the Tin fJ-ETogv (and elsewhere), the frequent cursive 
E, and the enlarged initial E in mv. Some parallels for the handwriting, in general, in dated 
documents are: P. Oxy. 378 (BM 809) col. ii (Domitian); P. Ry!. 597; P. Amh. 66 (AD 124); P. 
Lond. 298 (AD 124); and among undated documents: P. Oxy. 1793 (Callimachus); P. Ry!. 484 
(assigned to this period); f>. Lit. Lond. 132 (Hyperides). There are tremata on initial i", ii. One 
final vis extended to fill the line (this is not significant for the date)." 
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Their transcription is very good. Of line I only 7TEp is certainly read. The traces are 
compatible with the restoration [of the enunciation or conclusion of II 4], but a guess of 
a different word could be verified, i.e. stated to be acceptable or not. Between lines 1 and 
2, a paragraphus indicated that a new section begins: also see the cursive E 1 = number 5 
in the left-hand margin and the enlarged initial letter of rnv. 

I doubt whether the restoration of the figure at the end of lines 4 and 5 is correct [also 
see the discussion below], because on this restoration there is no reason why in line 2 the 
writing after ypaµ,1.w should not continue to the right, instead of resuming at the 
beginning of line 3. Perhaps the figure was something quite different. All there is to go 
on is the short portion of a horizontal line visible more or less accidentally, since the 
papyrus is broken off above line 4, 7TEptEXOfLEVov. 

The two 'errors' in Greek are superficial: TETpaywvov is probably attracted into the 
genitive by the preceding YJfLLCEtac. In fLETotv the o is not an error but the use of an 
alternative form of the word common in the later koine. 

I have the impression that there may be ink (one or two letters?) at the top left of the 
figure level with line 9 and at the lower right. But my photograph has gone brown, and 
these may not really be ink. 

The text of II 5 reads, in Heath's translation: 

If a straight line be cut into equal and unequal segments, the rectangle contained by the 
unequal segments of the whole together with the square on the straight line between the 
points of section is equal to the square on the half. 

There is a space to the right of lines 1 to 4, and traces of a horizontal line on line 
4, invisible on the photograph in Plate 2: these led Grenfell and Hunt to 
propose that the space was taken up with a figure showing two lines: 'a straight 
line cut into equal segments' and 'a straight line cut into unequal segments'. As 
Turner points out above, and because such a figure is quite unprecedented in 
our early evidence of the text, this is implausible. The question of the figure is 
discussed by Heiberg who also disagrees with this restoration, but I cannot 
understand fully his alternative proposal. 38 An alternative reconstruction, 
which I have not seen discussed in the literature, is as follows. As was noted 
above, the broken words in line 1 could come either from the enunciation 
(protasis) or the conclusion (sumperasma) of II 4, since the conclusion is a 

38 Heiberg, QPTM, 148: "La figure, elle aussi, est identique a celle de nos manuscrits; il est 
etrange qu'elle ne paraisse pas porter trace de lettres et qu'elle soit placee immediatement 
apres la protase: dans nos manuscrits mathematiques, la figure se trouve regulierement a la fin 
du theoreme. Peut-etre cette place insolite fournit-elle la raison pour que I' E ajoute designe la 
figure comme appartenant a ce theoreme. Les editeurs expliquent le peu de longueur des 
lignes 2-4 en admettant qu'il y a eu a leur droite une figure, soit deux lignes droites divisees 
pour exemplifier Jes mOtS de lCU KUl clVtca; iJS ajoutent qu'on ne VOit leS traces que de Ja Jigne 
inferieure. Mais une figure de ce genre est tout a fait inoule dans nos manuscrits mathema
tiques et on ne peut plus inutile, en sorte que cette explication est sujette a caution. On devrait 
plut6t penser que la fin necessaire du theoreme precedent (II 4) 07TEp <£8n 8dgai, qui, selon les 
editeurs, a rempli, sous quelque forme abregee, le reste de la ligne 1, a eu la distribution que 
voici: 07TEp <£8n a eu sa place a la ligne 1, tandis que 8Ei:gai s'est trouve au-dessous, devant Jes 
ligne 2-3; alors la barre qui suit la ligne 4 a pu etre mise comme signe de separation." But 
what is meant by "8Ei:gai s'est trouve au-dessous, devant les lignes 2-3"? There is an ample 
margin to the left which contains no trace of writing. 
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word-for-word repetition of the enunciation.39 This fragment does not appear 
to come from a scribe's copy of the work; with its quickly written hand on poor 
quality papyrus, it is more likely to be working notes by somebody who 
understood the material. This opinion is corroborated by the roughly drawn 
figure and, in particular, by the way in which the figure is unlabelled and the 
diagonal line is undoubled: the diagonal enters only in the construction of the 
figure and does not play any part in the proof, and an unlabelled figure would 
provide poor help for understanding the text of Euclid's proof. The text could 
have been written by somebody who wrote down the enunciation, drew the 
figure, and then worked through the proof doubling the lines on the figure as he 
did so, but without writing down any of the details of the proof or labelling the 
figure; observe the generous space immediately below the last line and the 
second paragraphus at the end of the fragment. (The proof is a very long and 
elementary verification of the associated geometrical construction; see the 
discussion of Book II in Chapter 3.) This would explain why the figure came 
immediately after the enunciation, rather than at the end of the proof, why the 
figure is unlabelled and the diagonal is undoubled, and it would also explain 
line 1 and the gap to the right of lines 1 to 4: these could have contained, in 
similar style, the last line of the enunciation of II 4 and the associated figure for 
this proposition; and the fragment could have been part of a manuscript of 
notes by someone working through Book II of the Elements. 

The next text, P. Fay. 9, is indeed fragmentary; its photograph and trans
cription are reproduced in Plate 3. It was edited and published in 1900 in 
Grenfell, Hunt, & Hogarth, FTP, along with other papyri found in the Fa yum, a 
region some fifty miles north of Oxyrhynchus. 40 It is assigned to the latter half of 
the second century AD and it contains part of Elements I 39 and 41. The difficulties 
of this fragment arise from the fact that no single complete line of text survives, 
and when the surviving letters are compared with the received text, the lines of 
the fragment seem to contain a very irregular number of letters: between nearly 
corresponding points on the first ten lines of the fragment, there are 32, 39, 81, 
26, 41, 38, 36, 40, and 23 letters in the received text, to be described in the next 
section.41 It is worth quoting part of the editors' discussion: 

The general tendency of the fragment is towards compression; and some agreements 
with the manuscript called p [=Paris gr. 2466] are noticeable. The irregularities of the 

39 For this reason the conclusion is often omitted from editions and translations of the 
Elements; see how Heath generally finishes his translations with "Therefore etc." from 14 
onwards, as explained in his note to that proposition. Ancient authors, editors (perhaps even 
Euclid), or scribes did the same: the conclusion is often omitted in Books VIII and IX, or cut 
short, from Book X onwards, with the words Kai Ta Jgijc (and the rest); see Heath, TBEE 
i, 58. 

40 The text is reprinted in Euclid-Stamatis, EE i, 188 f., but there is a displacement of its 
vertical alignment and some of the spacing is incorrectly reproduced, and the final two lines of 
fragment (b) should read:] TQ.VTatS' a] I 7Ta]pa,\,\71,\[o]S' [. 

41 These figures, whicn are based on my own counts, differ slightly from those given by the 
editors. 
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text followed by the papyrus extended to the order of propositions. Proposition 39 is 
immediately succeeded by Proposition 41. Proposition 40 was either omitted or else placed 
in some other position. It is noticeable that the diagram of Proposition 39 is drawn at 
the end of the demonstration, instead of, as is usual, at the beginning. [Incorrect: the 
diagrams in the manuscript usually come at the end of the demonstrations. See note 38 
and Plate 5.] 

An easy explanation of the eccentricities of this fragment would be obtained ifit could 
be supposed that it did not form part of a regular book, but was merely an imperfectly 
ret;!lembered exercise. But this is not a satisfactory view. The words are correctly spelled, 
and the handwriting, though not of the regular literary type, is by no means ill formed. 
Its date is apparently the latter half of the second century AD. The papyrus was found 
with a number of documents belonging to the reigns of Antoninus, Marcus, and 
Commodus. 

Sir Eric wrote of this fragment: 

I am inclined not to dismiss this text as yet. At least it deserves further scrutiny, but it is 
going to be difficult to do it. The photographs from Mount Holyoke show that it has 
come to pieces (of course, perhaps it was always in pieces42), and it has been put into the 
frames just any how. The placing of the pieces doesn't agree with Grenfell and Hunt's 
publication, and they are obviously wrong in their relation to each other. 

Grenfell and Hunt's date is probably correct enough. On page 97 they point out that 
the papyrus does not seem to correspond with the manuscripts, and leave it at that; I 
wonder if this is sufficient. 

The reason why I think it would be interesting to know more is in the drawing of the 
figure, and its two surviving letters. It seems to be that these letters are written by the 
original scribe, but with a different, sharper pen (perhaps with the one with which he 
ruled the lines of the figure). In that case he was taking some trouble (using a rule), and 
perhaps these indications are e:gough to suggest that we have part of a real manuscript 
for the Elements here, and its difficulties and divergencies deserve further investigation. 

The challenge of matching the fragment to the text had already been taken 
up by Heiberg, who also gave an extended discussion of the question of the 
missing Proposition 40. Unfortunately his proposals are too long and detailed 
to quote or summarise here, but his overall conclusion is also that this 
fragment, as he reconstructs it, diverges greatly from our text as received 
from other sources; but that this in no way justifies rejecting the text, in view of 
the character of the writing.43 Therefore the fragment remains as a tantalising 

42 Miss Anne Edmonds, Librarian of Mount Holyoke College, where the papyrus is now 
kept, has kindly sent me copies of correspondence with organisers of the Egypt Exploration 
Fund that indicate that the fragment was already badly broken up when it was received by the 
college in 1903/4: "The last [papyrus] may be a puzzle or lesson to some mathematicians who 
can read Greek. I fear that it is very much more mutilated now than it was when the account 
of it was written" (Letter from W.W. Goodwin, 12 June 1904). 

43 Heiberg, PE. After a brief discussion of P. Herc. 1061 and P. Oxy. i29 on pp. 47-8, his 
discussion of this~text and his proposed reconstruction follows on pp.48-53. Here is his 
general conclusion: "Bei dieser Reconstruction bin ich so wenig wie moglich von unseren Hss. 
abgegangen, und wenn auch das positive hier und da unsicher bleibt, steht das negative 
Ergebniss, wozu schon die Herausgeber gelangt sind, unumstosslich fest, dass der Papyrus 
sehr stark von unserem Text abweicht, der allgemein als vortreffiich gilt. Man konnte daher 
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unresolved puzzle: that the surviving papyrus fragment that most closely 
resembles a professional scribe's copy differs so much from the received text. 

Next, a fragment containing the first ten definitions of Book I of the 
Elements, P. Mich. iii 143, published by F. E. Robbins in Winter, Robbins, & 
others, PUMC iii, 26-8. Sir Eric's notes began: "I have compared the photo
graph and text as published. At a number of points I would quarrel with the 
transcript (all would need to be checked with the original) .... "The subsequent 
re-examination has led to a republication of the text in which the original 
editor's assessment that it "might well be the attempt of an older youth to 
reproduce from memory definitions imperfectly learned" has now been 
reversed to "One might guess that the piece was written by a schoolmaster, a 
grammaticus, making sure he has the text which he wanted to dictate to his 
students or on which he intended to base his next lesson"! For further details 
and a photograph, see the re-publication, Turner, Fowler, Koenen, & Youtie, 
EEi. 

One more Euclidean fragment has been published recently: P. [inv.] Berol. 
17469, in Brashear, VNTAB (see Plate 4). This is dated on palaeographic 
grounds to the second century AD, and it gives the figures and enunciations of 
Elements I 8 (fragmentary), 9, and 10 (fragmentary). (The editor's restoration 
of the figure to Proposition 8 omits the second half of Euclid's text figure; one is 
tempted to offer a different restoration to include this, but there is no evidence 
of it in the traces on the fragment, even where one would expect them.) This is 
the only Greek text I know of where the figures are placed before the 
enunciations, something that seems to us to be a logical place for them; we 
find them alongside the text (see Plates 1 and 2), in the middle (Plate 3) and, 
universally in our minuscule Byzantine manuscripts, at the end (see Plate 6 and 
note 38, above). There are several possibilities for its origin: it could be a 
teacher's or student's notes on the text, an aide-memoire, though it is very well 
produced for such a use: the figures are drawn with a ruler, and the text is 
carefully written. It could be a thematic index to some or all of the Elements 
(such as we find in Mueller, P MDSEE, though there restricted to the enun
ciations); this is often done for volumes of music, which give the first two or 
three bars of each piece, and modern catalogues of manuscripts, which give the 
incipits of each item. We cannot know, though there is one thing that it is very 
unlikely to be: in modern texts, the figures or plates are often separated from 
the text and published as a separate volume (this is done by Neugebauer and his 
associates; see, for example, his HAMA); but the figures here are unlettered, 
which would render them useless for this purpose. However, whatever its 

versucht sein, wie es auch geschehen ist, das ganze wegzuwerfen als eine verwilderte 
Ueberlieferung. Die Herausgeber haben an ein 'imperfectly remembered exercise' gedacht, 
verwerfen aber mit vollem Recht diesen Gedanken angesichts der correcten Buchstabirung 
und des ganzen Schriftcharakters. Dass wir ein wirkliches Buch vor uns haben, bestiitigt 
die Normalzeile, und es'kommen noch andere Umstiinde hinzu, wodurch die einfache 
Verwerfung dieser unserer iiltesten handschriftlichen Quelle ganz unmoglich wird" (p. 50). 
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purpose was, it does lend support to my proposed reconstruction above of P. 
Oxy. i 29 as part of a similar text of enunciations and unlettered figures, 
though that text was much more casually written and its figure more crudely 
drawn. 

Such is the extent of the published Euclidean papyrus fragments: material 
corresponding to about sixty complete lines of Heiberg's text, plus fragmentary 
information about a further sixty lines.44 Moreover, neither the earliest 
evidence in the Elephantine ostraca, nor that in the fragment that most 
resembles a professional scribe's copy, P. Fay. 9, follows the received text. In 
addition to these fragments on papyrus, there is a parchment palimpsest from 
the seventh or eighth century, British Library Add. gr. 17211, which consists of 
five partially legible parchment leaves containing parts of Book X and Book 
XIII Proposition 14 (but there numbered 19), which was collated by Heiberg in 
his edition of the.Elements.45 

There is a persistent and widespread belief that the lack of surviving texts 
from this early period is due to the burning of the library of Alexandria by the 
Arabs after their conquest in AD 642. The evidence connected with this story is 
very well and authoritatively presented in Butler, The Arab Conquest of Egypt 
(1902), 401-26, and the supplemented second edition by P. M. Fraser (1978) 
adds a summary of subsequent work, which does not significantly alter Butler's 
conclusions. 46 I can do no better than to quote two passages, and refer the 
reader to this book for a full discussion. 

The story as it stands in Abu 'l Faraj is well known and runs as follows. There was at this 
time a man who won high renown among the Muslims, named John the Grammarian. 
He was an Alexandrian, and apparently had been a Coptic priest, but was deprived of 
his office owing to some heresy by a council of bishops held at Babylon. He lived to see 
the capture of Alexandria by the Arabs, and made the acquaintance of 'Amr, whose 
clear and active mind was no less astonished than delighted with John's intellectual 
acuteness and great learning. Emboldened by 'Amr's favour, John one day remarked, 
'You have examined the whole city, and have set your seal on every kind of valuable: I 
make no claim for aught that is useful to you, but things useless to you may be of service 
to us.' 'What are you thinking of?' said 'Amr. 'The books of wisdom,' said John, 'which 
are in the imperial treasuries.' 'That', replied 'Amr, 'is a matter on which I can give no 
order without the authority of the Caliph.' A letter accordingly was written, putting the 
question of Omar, who answered: 'Touching the books you mention, if what is written in 
them agrees with the Book of God, they are not required: if it disagrees, they are not 
desired. Destroy them therefore.' On receipt of this judgement, 'Amr accordingly 
ordered the books to be distributed among the baths of Alexandria and used as fuel 

44 At least one more Euclidean text can be expected from the Oxyrhynchus collection. 
45 A palimpsest is a parchment (as here) or other medium that has been washed or rubbed 

clean to make way for another text; sometimes parts of the lower text can still be read. Here 
the Elements was the earlier text, replaced by a text of Homer; the legible parts of the original 
are published in Heiberg, PEE. There is a brief general account of palimpsest discoveries in 
Reynolds & Wilson, SS, 174 ff. 

46 Additional references, for which I am indebted to P. M. Fraser, are Furlani, GFIBA and 
SIBA, and Meyerhoff, JGPAAM. 
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for heating: it took six months to consume them. 'Listen and wonder', adds the writer 
[ACE, 401-2]. 

After twenty pages of discussion, Butler concludes: 

It may not be amiss to briefly recapitulate the argument. The problem being to discover 
the truth or falsehood of the story which charges the Arabs with burning the 
Alexandrian Library, I have shown-
(i) that the story makes its first appearance more than five hundred years after the event 
to which it relates; 
(ii) that on analysis the details of the story resolve into absurdities; 
(iii) that the principal actor in the story, viz. John Philoponus, was dead long before the 
Saracens invaded Egypt; 
(iv) that of the two great public Libraries to which the story could refer, (a) the Museum 
Library perished in the conflagration caused by Julius Caesar, or, if not, then at a date 
not less than four hundred years anterior to the Arab conquest; while (b) the Serapeum 
Library either was removed prior to the year 391, or was then dispersed or destroyed, so 
that in any case it disappeared two and a half centuries before the conquest; 
(v) that fifth, sixth, and early seventh century literature contains no mention of the 
existence of any such Library; 
(vi) that if, nevertheless, it had existed when Cyrus set his hand to the treaty 
surrendering Alexandria, yet the books would almost certainly have been removed
under the clause permitting the removal of valuables--during the eleven months' 
armistice which intervened between the signature of the convention and the actual 
entry of the Arabs into the city; and 
(vii) that if the Library had been removed, or if it had been destroyed, the almost 
contemporary historian and man ofletters, John of Nikiou, could not have passed over 
its disappearance in total silence. 

The conclusion of the whole matter can be no longer doubtful. . . . One must 
pronounce that Abu 'l Faraj's story is a mere fable, totally destitute of historical 
foundation. 

My only concern in this matter has been to establish the truth, not to defend the 
Arabs. No defence is necessary: were it needful, it would not be difficult to find 
something in the nature of an apology. For the Arabs in later times certainly set great 
store by all the classical and other books which fell into their hands and had them 
carefully preserved and in many cases translated. Indeed they set an example which 
modern conquerors might well have followed .... [ACE 424-6]. 

For the answer to the question posed at the beginning of this section, let us 
now turn to our most important source of information about Greek literature 
and science: Byzantine and medieval manuscripts from the ninth century AD 

onwards. 

6.3 THE INTRODUCTION OF MINUSCULE SCRIPT 

Two developments in writing appear to have had an important effect on tlie 
survival and transmission of Greek manuscripts. The first, the change from the 
papyrus roll to the codex form, was described briefly in the last section;47 the . 

47 See, especially, n. 25. 
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second, to be described here, was the development of a new·script.48 Although 
the further developments in the substrate of writing-the change from papyrus 
to parchment and the introduction of paper by the Arabs, who learnt the 
process from Chinese prisoners of war taken at Samarkand, perhaps in 
AD 7 51-were ultimately to prove very important in the spread of written 
and, later, printed books, in the short run they were less influential. 

Up to the beginning of the ninth century AD, almost all Greek literary works 
continued to be written in variants of the unspaced capital script illustrated in 
the preceding section. This seemed to be slow to write, to be difficult to read, 
and to require a generous area of papyrus or parchment. Early administrative 
and financial documents used a wide range of abbreviated, cursive scripts that 
can be very difficult to decipher; for an example, see Plate 8. Various uses of 
cursive scripts for literary texts had not previously led to the emergence of a 
distinctive, stable, and widely employed script; but then, sometime around 
AD 800, in circumstances that are still far from clear, a new kind of compact, 
cursive script took over and thereafter came to dominate the production of 
literary texts. This script soon came to employ majuscule and minuscule letters, 
ligatured groups of letters, spaced words, and a full range of accents and 
breathings; and very much more text could be fitted onto the page. It is now 
generally referred to as 'minuscule' script, and almost all of the Greek texts that 
survive have been through a process of minusculisation; indeed this was, in most 
cases, necessary for their preservation, as very little survives in the old script. 

The first precisely dated manuscript in minuscule, Leningrad gr. 219, copied 
in AD 835, is a Gospel named after the Archimandrite Porphoryrij Uspenskij; 
another text which contains a few leaves of minuscule, and may date from 813-
20, is Leiden B.P.G. 78, a copy of Ptolemy's Handy Tables with a commentary 
by Theon. Since the minuscule script in both of these examples does not look 
primitive or experimental, it may have been developed as much as fifty years 
earlier. The other scientific manuscripts that survive from this early period 
illustrate further how the old capital script still continued in use (Ptolemy's 
Almagest survives complete in the older style in Paris gr. 2389 and in minuscule 
in Vatican gr. 1594, and the old capital form is often retained for the headings 
of books and chapters that are otherwise written in minuscule), and how the 
earliest minuscle versions might not necessarily be the best (Euclid's Elements is 
found first in a beautiful minuscule manuscript dated to AD 888, Bodleian 
D'Orville 301 (see Plate 5), then a better text is found in the slightly later 
minuscule Vatican gr. 190 (see Plate 6); these texts will be referred to by the 
letters B and P respectively49). Another ninth-century manuscript, Vatican gr. 
204, contains, in the following order, an important collection of scientific 

48 My account will be very heavily based on Lemerle, PHB, Reynolds & Wilson, SS, and 
Wilson, SB. 

49 It is editoral practice to associate letters, called sigla, with the manuscripts used in a 
critical edition of a text. The conspectus siglorum for Euclid-Heiberg, Opera, is P =Vatican 
gr. 190 (first used by Peyrard for his Greek, Latin and French edition of 1814--18); 
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texts:50 Theodosius, Sphaerica; Autolycus, On the Moving Sphere; Theon's 
recension of Euclid's Optics with Prolegomena; Euclid, Phaenomena;51 Theo
dosius, On Habitations, On Nights and Days, and On Days and Nights II; 
Aristarchus, On the Sizes and Distances of the Sun and Moon; Autolycus, On 
Risings and Settings I and II; Hypsicles, On Rising-times;52 Euclid, Catoptrica; 
Eutocius, Commentary on Books I-III of Apollonius' Conics; Euclid, Data; 
Marinus, Commentary on Euclid's Data; and Scholia to Euclid's Elements, 
incomplete at the end. 

Two people in the ninth and early tenth century were important in the 
preservation and transmission of Greek scientific texts: Leo the Philosopher 
(c. 790 - after 869), Archbishop of Thessaloniki 840-3 and later head of 
the school established under the emperor Bardas; and Arethas (c. 850-?), 
Archbishop of Caesarea in Cappadocia.53 Leo's interest in mathematics and 
astronomy led him to acquire a copy of some works of Archimedes, 
Apollonius' On Conic Sections, some works on mechanics by the unknown 
authors Marcellus and Quirinus, a geometrical treatise by Proclus, and a work 
by Theon; we know this54 from some obscure epigrams he wrote, preserved in 
the Greek Anthology IX 200, 202, and 578, which do not permit closer identi
fication. He certainly must have possessed a copy of Ptolemy's Almagest 
though not, as is commonly supposed,55 the manuscript Vatican gr. 1594, 
and he wrote a note on Elements VI 5 that is found, in the later scribe's hand, in 
the Euclid manuscript B;56 but none of the books owned by Leo are known to 
survive. Eight volumes of the library of Arethas have survived and been 
identified through his marginal notes. The earliest is our earliest surviving 
complete manuscript of the Elements (see Plate 5); it was written by the scribe 
Stephanus, possibly one of the most accomplished by Byzantine calligraphers, 

B = Bodleian D'Orville gr. 301; F =Florence Laurenziana gr. 28.3; V =Vienna phil. gr. 103; 
b =Bologna gr. 18 and 19; p =Paris Bibliotheque Nationale gr. 2466; q =Paris gr. 2344; 
and L = London Add. gr. 17211. For more details of these manuscripts, see vol. v. of Opera, 
reprinted in Euclid-Stamatis, EE, v1 (in Latin) or Heath, TBEE i, Chapter 5 (in English). 
Further Euclidean manuscripts are described in Heiberg, PE. 

so This is taken from the description, due to Menge, given in Aristarchus-Heath, AS, 325 f. 
si There is a photograph of an opening of this text in Neugebauer, HAMA iii, Plate VIII, 

and a very interesting discussion of text figures in general, and those in this manuscript in 
particular, in ii, 751-5. 

sz This is the earliest surviving Greek text to divide the circle into 360 degrees, or to show 
any other influence of Babylonian sexagesimal arithmetic; see Chapter 7, below. 

s3 For full biographies, see Wilson, SB, Chapters 4 (Leo) and 6 (Arethas), and the DSB 
(Leo). 

s4 Except for information about the Archimedes manuscript. Leo may have owned the lost 
archetype of most of our surviving manuscripts of Archimedes' works; see Chapter 7 n. 45 
and text. 

ss See Wilson, TBS, where it is pointed out that the identification is based on a note on 
folio 263v, but this is written in a much later hand, of the thirteenth century or afterwards, 
and is of no particular significance. 

s6 See Euclid-Heiberg: Opera v, 714 (= Euclid-Stamatis, EEv2 , 341): Hupomnema scholion 
eis tas ton logon sunthesis te kai aphairesin Leontos. 



220 The nature of our evidence 6.3 

in AD 888, and it cost fourteen gold pieces, at a time when salaries of civil 
servants started at seventy-two gold pieces a year, though they could rise in 
exceptional circumstances to 3500. Arethas also commissioned an important 
copy of Plato which contains all the main dialogues except the Republic, Laws, 
and Timaeus: Bodleian E. D. Clarke 39, written by John the Calligrapher in 895 
and costing twenty-one gold pieces. These are the only two manuscripts of his 
that bear directly on our interests here, though it has been suggested that a copy 
of Pappus' Collection (Vatican gr. 218) might have belonged to his library, on 
the flimsy grounds that its minuscule script hints at an origin in Constantinople 
and the subject matter coincides with one of Arethas' interests. 57 

It is evident that most of our texts of the Elements derive from an edition 
made by Theon of Alexandria in the middle of the fourth century AD. The 
scribe of the manuscript P appears also to have had a pre-Theonine manuscript 
to which he also referred, and this enables us to get a glimpse of an earlier 
recension of the text; it forms the most important text for Heiberg's critical 
edition, in his Euclidis Opera Omnia (1883-1916). The other texts he used and 
the textual procedures he followed are described, in Latin, in his Prolegomena 
Critica (Euclid-Stamatis, EE v1, pp. xvi-lxxxix), and the evidence from some 
of the papyrus fragments and further Byzantine manuscripts is discussed in 
his later article 'Paralipomena zu Euklid'. 58 All of this material is described in 
Heath's admirable translation, The Thirteen Books of Euclid's Elements 
( = TBEE), Chapters 5 and 6. 

Plate 6 gives a photograph of a folio of the Vatican Manuscript P; the text 
starts in the middle of Definition 19 of Elements I and continues through to the 
middle of Common Notion 3. Plate 5 is an opening of the Bodlein manuscript 
B, starting in the middle of the enunciation of Elements II, Proposition 5 
(compare this with the same text in Plate 2) and continuing into Proposition 6. 
Observe the wealth of scholia, some copied by the scribe from his exemplar, 
some added later, the interlinear annotations, and the many figures. Another 
facsimile from B, of folio 45 verso, Elements III 4 and the beginning of 5, can be 
found as a frontispiece to Heath, TBEE i, with brief description on p. xi. 59 

To summarise and answer the question which opened Section 6.2: our 
sources before AD 888 tell us about approximately 1 per cent of the eventual 

57 See Wilson, SB, 129-30: "We must not imagine Arethas as being rich enough to 
commission or acquire all the important or calligraphic manuscripts produced in his lifetime, 
nor should we think so ill of the culture of the capital as to suppose him the only man of his 
generation willing to explore the abstruse areas of mathematics". There is a detailed 
description of Vatican gr. 218, with new critical edition and translation of Pappus, Collection 
VII, in Pappus-Jones, BSC. 

58 Beware; the bibliography of Euclid-Stamatis, EE i, pp. xxxvii-xxxix does not contain 
Heiberg's very important article PE, and still less does the reprinted text incorporate any of 
the material therein; the existence of this article is only noted on EEv1, p. xv. (Concerning this 
page, also see Chapter 7, n. l, below.) 

59 For a photographic reproduction of a complete mathematical manuscript, see Heron
Bruins, CC i; this manuscript is our only surviving copy of Heron's Metrica. 
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text of the Elements, and possibly a similar amount of other scientific and 
literary texts; almost all of the surviving Greek material comes in the form of 
Byzantine or medieval manuscripts. On the other hand, the wealth of docu
mentary papyri, dealing with all manner of financial, administrative, legal, and 
personal matters, have vastly increased our understanding of everyday aspects 
of life in Graeco-Roman Egypt. 

In the next chapter I shall examine in detail part of one small family of 
Byzantine manuscripts of a short mathematical work, Archimedes' Measure
ment of a Circle, and describe some other kinds of texts, both scientific and 
commercial, found on papyrus. 



7 

NUMBERS AND FRACTIONS 

7 .1 INTRODUCTION 

7.l(a) Numerals 

Almost the only notation for numbers (i.e. numerals) found in the earliest and 
best manuscripts of Euclid's works (apart from the Sectio Canonis) is used to 
label the propositions; 1 with the exception of three numerals in Elements 
XIII 11,2 those few numbers that are used in the text are written out as 
words. This is an extreme case; most mathematical texts, and all manner of 
financial, administrative, and legal documents, employ a notation that will 
underlie the main topic of this chapter. But first I shall start by severely 
delimiting and emphasising the scope of my discussion here: 

(i) The Greeks employed two different kinds of numerals, the so-called 
acrophonic and alphabetic systems. There are wide regional variations in the 
acrophonic system; the earliest and best-represented version in our evidence, that 
found in Attica, is based on a variety of different forms of the six elementary 
symbols: I= 1, II (for 7TEVTE; the right-hand leg of the pi is shorter than the 
left) = 5, LI (for DEKa) = 10, H (for EKaT6v) = 100, x (for xOuot) = 1000, and 
M (for µ,vpwi) = 1 0000, together with four compound symbols, also found in a 
variety of forms, which denote 5, 500, 5000, and 5 0000. So much is well known 

1 The definitions are not numbered in the best manuscripts of the Elements, and they are 
grouped together in blocks connected by SE; see Plate 6. For example, in Book I, 
Definitions 1-3, 4-6, 7-10, 11-12, 15-18, and 19-22 are so connected; for a discussion, 
see Turner, Fowler, Koenen, & Youtie, EEi, 19-20. The numbers that occur in the 
manuscripts of the (possibly pseudo-Euclidean) Sectio Canonis, Proposition [9] (here the 
propositions are unnumbered) require some emendation for them to make sense; see 
Section 4.5(d). This, we shall see, is typical. There are abundant numerical illustrations in 
the later scholia to the Elements, one of which has entered the text of some manuscripts; 
see Euclid-Stamatis, EE ii, 237-8. In particular, there is a frequently cited later annotation 
on folio 32v of B which consists of the Arabic numerals for 1 to 9 (see Vogel, BIZB, which 
reproduces facsimiles of the text, and Wilson, MP, 401--4 for an informed discussion); 
unfortunately the description of this in Euclid-Heiberg, Opera v, p. xix has been omitted 
from Euclid-Stamatis, EE. This missing text reads, insofar as it can be reproduced here: 
"De notis numeralibus arabicis, quae in scholiis Vindobonensibus maxime in libro X 
occurrunt, hoc tantum commemorabo, scholia ilia manu Vb, h.e. sine dubio saec XIL exarata 
esse. pro numero 5 usurpatur 0, nostrum vero 0 punctum est vet 0

; prorsus similes sunt series 
numerorum in B fol. 32v (ad initium libri 11) m. rec. [see below] et in b ad II, Im. rec. 
i/ri'J</>oc lvl3iK~ [see below]." The omitted passages reproduce the form of these Arabic 
numerals; examples of these can also be seen in many of the scholia in Book X, for 
example nos. 152, 155, 170, 183, 184, and many from no. 356 onward. 

2 This passage was quoted in Section 4.5(c), above. 
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and frequently described, 3 but what is less frequently pointed out is that, with the 
exception of a few early papyrus accounts recently found at Saqqara, of which 
only one has so far been published,4 and occasional archaic usages in literary 
stichometry, the acrophonic system is only found on inscriptions, and has little 
relevance to mathematics. 5 I shall consider exclusively the alphabetic system. 

(ii) We must differentiate clearly between texts which are copies of earlier 
texts, such as Byzantine manuscripts, and texts which may be originals or 
which, if copies, more closely reflect early practice, such as some material found 
on papyrus. One objective of this chapter will be to emphasise the problem of 
assessing the effect of the later modification of the conceptions and notations, 
especially in the descriptions of fractional quantities, during the ninth to 
sixteenth centuries, the period during which most of the surviving texts were 
copied. But note that I shall follow here the almost universal practice of 
presenting any Greek words or texts in modern printed form, as they have been 
transcribed by their editors, 6 and will only occasionally refer to the wide 
diversity of different styles which are found in the original manuscripts. 

(iii) In scientific computations from the time of Hipparchus and Hypsicles 
(c. 150 BC), and especially in Ptolemy's Almagest and its commentaries, the 
Greeks employed an alphabetic version of the sexagesimal system found earlier 
in Babylonian cuneiform clay tablets that date back almost to 2000 BC. But 
there is no trace whatsoever of sexagesimal numbers in any Greek text from 
before the second century BC, and I shall not consider them further here. 7 

3 See, for example, Heath, HGM i, 29 ff., Thomas, SIHGM i, 41 ff., etc. 
4 Turner, FODMS. Also see Section 6.2, n. 30 and its text. 
5 For descriptions of the acrophonic system, based on a thorough familiarity with the 

epigraphical evidence, see Guarducci, EG i, 417-28; Tod, AGNS; and the more specialised 
Johnston, TGV, Chapter 6, and Lang, NNGV. Concerning stichometry-the labelling or 
counting of lines or verses in a text-see Tod, AGNS, 32f. (= GNN 130f.), Turner, GP 94f., 
McNamee, AGLPO, 122, and, for examples, P. Ry!. iii 540, P. Oxy. x 1231 and xiii 3000, and 
P. Herc. 1151. These uses of acrophonic numerals are not unlike the way we have retained 
Roman numerals in stylised contexts such as labelling the books of the Bible (as in 'I Kings' 
for 'the first book of Kings') or on clock dials (which consistently employ the form 1111, now 
elsewhere very unusual). 

6 So one text, P. Lond. ii 265, in Section 7.3(c) below, will be given without diacritical 
marks, while others have them added or corrected by their editors. For a not entirely 
successful attempt to use characters that more closely resemble early script, see Fowler & 
Turner, HP. The editors of The Oxyrhynchus Papyri gradually abandoned their original 
practice of employing the specially created font that can be seen in Plate I for their diplomatic 
transcriptions (i.e. transcriptions as close as possible to the written text). 

7 The earliest surviving text which contains anything resembling the sexagesimal system is 
Hypsicles, Anaphorikos (On Rising-times); see Hypsicles-De Falco, Krause, & Neugebauer, 
AG. (This manuscript is in Vatican gr. 204; see Chapter 6, n. 52 and text.) Also there are later 
secondary reports that Eratosthenes ( c. 250 BC) divided the circumference of a circle into sixty 
parts; the Keskinto inscription in Rhodes, JG xii(!) 913, has a division of the circle into 360°; 
and the Antikythera Mechanism of 80 BC has brass circular scales divided into 360° (see Price, 
GG). Numerical practice is rarely consistent, and different systems are often mixed together, 
even within a single context. For discussion and references, see Neugebauer, HAMA ii, 590 ff. 
and 698 ff. 



224 Numbers and fractions 7.1 

(iv) Any convenient and easily remembered sequence of labels or marks can 
be used to stand for the sequence 

first, second, third, fourth, fifth, ... ; 

for example we can, and often still do, use the letters of the Greek alphabet, a, 
f3, y, S, E, .... Sometimes, as for example in labelling the books of the Iliad and 
Odyssey, the next letter in this sequence is s, as we might expect; in this case 
there will be no numerical overtones, and we have a pure letter labelling system. 
Our earliest evidence about numerical notations is of such kinds of usage, and 
this also will not concern us here; 8 ordinal arithmetic will not become a part of 
mathematics before the nineteenth century. 9 

The main topic of this chapter will be the use of the alphabetic numerals and 
the associated system for treating fractional quantities, in school, commercial, 
and scientific texts. I shall regard it as very important to pin down as many 
as possible of the various points of the discussion to illustrative examples 
which, in many cases, will then be reproduced and transcribed in the plates, 
and translated and described in the text. 

The standard Greek alphabet consists of twenty-four letters. In the alphabetic 
numeral system, 10 this is supplemented by three letters:" 

• vau or digamma, originally written corf, which later, in minuscule, is called 
stigma and is transcribed as S', a letter not unlike, but not identical with, the 
final form of sigma in Parson's Greek types; 

• koppa Cj, or<;, and 
• san or ssade T, later, in minuscule, called sampi and written ~-

These twenty-seven letters were used in three groups of nine to represent the 
unit digits: 

8 See Tod, LLGI. For examples of confusion between ( as the sixth letter of the Greek 
alphabet and the numeral for seven, see Keaney, ETTHP, 296 n. 2, and Sharples, NETDP, 
144. 

9 Landau's joke at the beginning of his Grundlagen der Analysis (1930) could scarcely have 
been understood before the twentieth century: " 'Theorem I', 'Theorem 2', ... , 'Theorem 
301' are simply labels for distinguishing the various theorems, ... and are more convenient 
for the purposes of reference than ifl were to speak, say, of 'Theorem Light Blue', 'Theorem 
Dark Blue', and so on. Up to '301 ', as a matter of fact, there would be no difficulty whatever 
in introducing the so-called positive integers. The first difficulty-overcome in Chapter 
I-lies in the totality of the positive integers I, ... , with the mysterious series of dots after the 
comma, in defining the arithmetical operations on these numbers, and in the proofs of the 
pertinent theorems" (Landau, FA, p. v). 

10 The best general account of this alphabetic system I know is Smyly, EAGL; this article is 
informed with Smyly's experience in transcribing difficult numerical papyri, but note that all 
of his comments on common fractions, p/q, are based entirely on examples drawn from 
minuscule manuscripts. Also Coulton, TUGTD, 74-89, Neugebauer, ESA, Chapter I, and 
de Ste. Croix, GRA, are highly recommended. The Phoenician antecedents of the Greek 
alphabet are described in Coldstream, GG, 295-302 and 382. 

11 For further details of these extra letters, see Liddell, Scott, & Jones, GEL, s.vv. f 
(between E and ~), M, l (both between 1T and p), L;, o{yaµµa, and K61T1TU. 
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a /3 y 0 E ~ ~ YJ e 
for 2 3 4 5 6 7 8 9, 

the tens: 

K ;\ µ, v ~ 0 7T 1 or? 
for 10 20 30 40 50 60 70 80 90, 

and the hundreds: 

p c T v </> x ifa w Tor~ 
for 100 200 300 400 500 600 700 800 900. 

An extra place of thousands was often originally indicated by a hooked or 
looped line extending above the units, a to e, but this notation gave way, in the 
fourth century AD, to an oblique stroke below and to the left, right, or under the 
letter. 12 The notation of a lower left stroke was later adopted in minuscule 
manuscripts, and thousands are now usually transcribed as either a lower case 
letter with a lower left accent, or as an upper case letter: ,a or A to ,8 or B for 
1000 to 9000. The digits may be written in any order in the course of a 
calculation, but the answer to the calculation or a number in isolation is almost 
always written in decreasing order of digits, left to right. So, for example 5324 
may appear in an edited texts as 1ETKO or ETKO, where the bar over the numeral 
is a sign, also generally adopted around the fourth century AD (though found 
not infrequently before then, especially to indicate dates; see Section 7. l(c), 
below, for an example), and then used in minuscule manuscripts, that is used to 
distinguish a number from a word or from the letters used to label a figure. 13 

The evolution of the letter san into sampi caused some confusion; we shall see a 
typical example where we find 1ETKO where we would expect 1E ~;\o, 5924, and 
confusion between ~ and ;\ or ifa is also common. 

12 In the Achmim Mathematical Papyrus (no. 12 in the catalogue in the Appendix) the 
scribe employs all three usages to denote thousands; see, for example, the Table Paleo
graphique, Planche l; also see Milne & Skeat, SCCS, 62-4. There are valuable discussions of 
the papyrological evidence concerning thousand, myriad, and fraction indicators in Brashear, 
CTAL, 215 n. 2, and MS. 

13 In one manuscript of Euclid, the scribe has confused the use of the alphabet to label the 
figure with its use as numerals, and so has translated the letter labels on the figure as Arabic 
numerals; see Heiberg-Euclid, Opera, supplement (=vol. x), ed. Curtze, pp. xvi-xxvii. 
Numbers can also be confused with words; for example the scribe of Heron's Metrica at 
one place copied the text /LY y AYJfL/La ( ... 43 3'. Lemma ... ) as 43 3' 38' 40' 41', in the notation 
to be described in the next section; see Heron-Bruins, CC i, folio 77r line 16 or Heron
Heiberg, Schone, & others, Opera iii, 50. There is no guarantee that an edited and printed text 
follows the practice of the scribe of the manuscript in its handling of these matters; see how 
the bars over numerals representing dates are omitted in Plate 7, lines 56, 58, 62, 64 and 66. 
Also, the numerals that occur in Elements XIII 11 (see the opening paragraph, above) are 
written in the manuscriP,ts B and P, at least, in exactly the same way as the labels on the 
diagrams: in majuscules fn B, minuscules in P, both distinguished by a superior bar; but one 
cannot tell this from Heiberg's text. 
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Larger numbers, tens of thousands up to tens of millions, were originally 
indicated by writing these letters over a mu (for µ,vpiliSEc, myriads or ten 
thousands); then, from the second century AD onwards, other abbreviations 
and arrangements appear. This system ran out at a myriad myriad, 'ten 
thousand times ten thousand', the proverbial multitude that no man could 
number (see Daniel 7:10 and Revelation 5:11). 14 It is now easy for us to see 
how, in principle, to continue this procedure automatically up to a myriad 
blocks each containing a myriad (a myriad raised to the power of a myriad) 
and this appears to be the basis of the system described by Apollonius in a 
book that is now lost, but which is referred to in Pappus, Collection II 
(excerpted in Thomas, SIHGM ii, 352-7). Archimedes' Sandreckoner describes 
an exponential system for arbitrarily large numbers (excerpted in Thomas, 
SIHGM ii, 198-201) in which the process just described-which gives numbers 
of what he calls the first period-is then repeated to give numbers of the 
second period. 15 Since Archimedes takes as the limit of his basic system of 
numbers not the myriad, but the myriad myriad, this yields a myriad myriad 
raised to the power of a myriad myriad, then raised again to the power of a 
myriad myriad. At this point he stops his description and gives a theoretical 
analysis of his procedure. 

This interest in very large numbers is clearly theoretical and restricted to 
mathematics. The only place outside the works of Archimedes, the now lost 
book of Apollonius, and Diophantus16 that I know where there is any attempt 
or need to express a number bigger than a myriad myriad is a very corrupt 
passage in Theon of Smyrna-Hiller, ERMLPU, 126--7, where Theon estimates 
the volume of the earth. Our only known manuscript, Venice Marciana gr. 303, 
of this half of the treatise (pp. 120-205) was made in the fourteenth or fifteenth 
century by a scribe who could not read Greek numerals, so almost all of them 

14 So this would be a suitable number to use in my modified S21 in Section 2.3(b ), just as 
I did in the last paragraph of E67 , in Section 4.4(b). A similar device can be used in 
manipulating anthyphairetic ratios in a calculating machine, which has the same finite 
capacity for integers. I have imitated the feature of counting by myriads by splitting 
transcriptions of numbers that arise in Greek contexts into blocks of four, rather than the 
now conventional blocks of three or five. 

15 Since Archimedes does not describe how the precise value of a number is got by adding 
together the various orders of the different periods, it might be more accurate to say that 
Archimedes' system describes the size of, or an approximation to, a number and this is how he 
uses it, to obtain an estimate of the number of grains of sand that would fill the universe. 
Contrast the way we say 'the solution of Archimedes' Cattle Problem is 7·6 x · · · x 1<>2°6544 , in 
which the relation between the approximate and exact values is more straightforward. (The 
number itself completely fills 46! sheets of computer print-out, as reproduced in Nelson, 
SACP, 165-76!) 

16 See Diophantus-Heath, DA, 47 (but Heath's example can only be found in the 
apparatus to Diophantus' text, Diophantus-Tannery, Opera ii, 323.8, and there are further 
corruptions too involved to be pursued here). For further comments on Diophantus' 
notation, see n. 28, below. There is an isolated exception to my statement in a table of 
squares which goes up to 1 0000 x 1 0000; see no. 68 in the Appendix to this chapter. 
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are corrupt and have had to be restored by the editor. 17 On the other hand, 
there is little sign of any difficulty in commercial documents with manipulations 
which involve numbers in the tens or hundreds of millions, and such large 
numbers are not uncommon. 

7.1 (b) Simple and compound parts 

Now let us turn to fractions. First, the word: I shall always use it with its 
general meaning of "a numerical quantity that is not an integer" (OED, s.v. 
fraction). All other meanings will be qualified: a common, or vulgar fraction for 
p/q, which is proper or improper according asp is less than q or not; when 
p = 1, the common fraction is a unit fraction; a decimal fraction for the decimal 
expression of a fraction, which may then be rounded or not, periodic or not, and 
terminating or not; a sexagesimal fraction; a complex fraction, for a common 
fraction that has a fraction for its numerator or denominator; a continued 
fraction; and so on. Note that fractions, being 'numerical quantities', belong to 
what I have called the arithmetised style of mathematics, and the non
arithmetised approach may often be signalled by the use of the alternative 
terminology of ratios. 18 

I shall argue in this chapter that we have no evidence for any conception 
of common fractions p / q and their manipulations such as, for example, 
p/q x r/s = pr/qs and p/q + r/s = (ps + qr)/qs, in Greek mathematical, 
scientific, financial, or pedagogical texts before the time of Heron and 
Diophantus; and even the fractional notations and manipulations found in 
the Byzantine manuscripts of these late authors may have been revised and 
introduced during the medieval modernisation of their minuscule script. 
Among the thousands, possibly the tens of thousands, of examples of fractions 
to be found in contemporary Egyptian (hieroglyphic, hieratic, and demotic), 
Greek, and Coptic texts, all but a few isolated examples in five texts (P. Lond. ii 
265 (p. 257); M.P.E.R., N.S. i l; and three demotic papyri published in Parker, 
DMP), all to be described in detail in Section 7.3, below, use throughout the 
following 'Egyptian system for expressing fractions: 

We take the basic sequence of the arithmoi: 

two, three, four, five, ... , 

represented m Greek by the letters f3, y, o, E, ... , and convert it into the 
sequence 

half, third, quarter, fifth, ... , 

where, after the exceptional cases of the first few terms, for which special 
symbols (to be described below) are assigned, the derived symbol is got by 

17 See Smyly, NTS, for a discussion. 
18 See the example of' Aristarchus, On the Sizes and Distances of the Sun and Moon, in 

Section 7.3(b), below. 
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appending to the numeral a long line, straggling upwards, no~ gepe~ally called 
a 'fraction indicator' and usually transcribed as an accent, y, S, E, ... , or 
a prime, y', S', E 1, ••. ; clear examples can be seen in Plates 7 and 8. Later a 
variety of strokes, bars, and dots are found as fraction indicators. 

This sequence: half, third, quarter, fifth, ... is often confused with the nearly 
homonymous sequence of ordinal numbers: first, second, third, fourth, fifth, ... , 
and its terms are often called unit fractions. The universal Greek way of 
referring to them is as µepoc or µ,6pwv, 'part' (plural µ,ep'Y) or µ,6pia, 'parts'). 
The two Greek words are used interchangeably, sometimes both in the same 
passage; and they are often transl~teg a~ 'fractions' or even 'denominators', 19 

but I shall always refer to the L, y, S, E, •.• more accurately as 'parts', and 
distinguish, where necessary, between simple parts20 (i.e. isolated members of 
the sequence) and compound parts (to be described below). One reason why I 
wish to avoid the name of unit fractions is because of the overtones of the 
notation it suggests, l/q, which immediately introduces associations with the 
common fraction p / q; these associations are completely absent from the Greek 
des?ripti<;m and n?!at~<?n. I shall instead write the translated sequence of parts 
as 2, 3, 4, . . . , 10, 11, . . . , in imitation of early Greek practice, or as the 
typographically more convenient and understandable 2', 3', 4', ... , 1 O', 11', ... , 
or as 3rd, 4th, ... , 10th, 1 lth, ... ,21 and I recommend strongly that they be 
read 'the half, the third, the quarter or the fourth, .. .'22 and not 'one-half, one
third, one-quarter or one-fourth, .. .'. , 

The sequence of parts starts with f3, 'the two parts', Ta Mo µ,ep'Y), an 
expression for 'two-thirds'.23 This, to begin with, was the standard letter beta 
with the usual fraction indicator (see Plates 7 and 8, to be described below, and 
the detailed analysis of this point in Fowler & Turner, HP), and it is found later 
in a range of variants and forms; each text may show its own version. However 

19 See, for example, Timaeus 36a-b, or Heron-Heiberg, Schone, & others, Opera v, 96.4 
and 12. (Liddell, Scott, & Jones, GEL, s.vv. µipoc and µ6pwv, cite the apparently incorrect 
Stereometrica 2.14 and 16 and translate, following Heiberg's index verborum, as 'the 
denominators of fractions'.) Euclid refers to an arithmos and its corresponding meros as 
being 6µ,wvvµoc, 'called by the same name', in Elements VII 37-9. 

20 A simple part is also called an aliquot part; see the OED, s.v. aliquot, which cites 
Billingsley on Elements V Definition 1: "This ... is called ... a measuring part ... and of the 
barbarous it is called ... an aliquot part''. 

21 The notation 2, 3, 4, ... , based on Egyptian practice, is also used, but this conflicts with 
the later scribal notation for distinguishing a number or figure label from the text, or for 
differentiating one kind of number from another. See n. 13, above, and the text to that note, 

22 Curiously, just as we can never say 'second' for 'half' so the Greeks could never write f3 
(see below); and ju;;t as we have the alternatives 'quarter' and 'fourth', so they had an optional 
special form for ll. However, Greek has a special terminology for epimoria (described in 
Section 4.S(b) (see A60 and B61 )) and their reciprocals (see the next note) which has no 
idiomatic translation. 

23 This principle is sometimes said to be general, with -rd. -rpla µ~p'Y), the three parts (sc. of 
four) for three-quarters, and so on, but I cannot cite any Greek examples, and only two-thirds 
has an associated symbol. Also see n. 83, below. 
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extraordinary it may seem to us, it is an incontrovertible fact that the sequence 
of parts starts with two-thirds, and this term has exactly the same status as the 
other parts in the symbolic expression of fractions. (Thi~ is alJ a<)ditional reas,on 
for avoiding the name 'unit fractions' for the sequence {3, L, y, 8, ... , sin9e f3 is 
not a unit fraction.) I shall transcribe all variants of this symbol as {3, and 
translate it as 3 or 3". The symbol Sis often found in a special form in which 
one side of the LI is extended to form the fraction indicator, and this is 
sometimes transcribed as d or d'; see for example, the transcription in Plate 
8. The various signs for the half may or may not incorporate a fraction 
indicator which then may or may not be shown on the transcribed text; here 
they will all be transcribed as L. 

More complicated fractions than simple parts are expressed as sums of 
an integer and different simple parts;24 I shall refer to them as compound 
parts. They are laid out as follows: first come the digits of the integer 
part of the number, written out in decreasing order as was explained 
above; this is followed by the successive parts, in order (i.e. order of 
increasing 'denominator'), the digits of each part (i.e. 'denominator') being 
written, as usual, in decreasing order.25 Some pai:r;s of symbols may be 
ligatured into a composite symbol, for example L 8 fqr, i (not unlike an 
upside-down {3, and sometimes printed as such) and {3s' for ~-

Let us now look at two texts that will illustrate many of these features. 

7.l(c) P. Hib. i27, aparapegma 

Many of the features so far described are illustrated in the early papyrus text, P. 
Hib. i 27; see Plate 7. In addition to its very full original publication in Grenfell 
& Hunt, HP i, 138-57, there are the easily accessible descriptions of its 
astronomical content in Neugebauer, HAMA ii, 599 f. and 686 ff., and of its 
numerical features in Fowler & Turner, HP, so my account here can be very 
brief. This text is perhaps our earliest physically surviving Greek scientific or 
semi-scientific text; it comes from the cartonnage of a mummy and is dated, 
from internal evidence of the text, to about 300 BC, and this date seems to be 
corroborated by palaeographical analysis. It opens with a fragmentary and 
elementary introduction, believed to be based on Eudoxus' astronomical 
system, and this is followed by a parapegma (see Section 4.4(c)) of which 
column 4, lines 55--68, is reproduced and transcribed here in Plate 7. The 
translation of this part of the text is: 

24 The only example I know of an expression that involves repeated parts is in a 
schoolboy's exercise, P. Louvre [inv.] MND552K side A, described at no. 17 in my catalogue 
in the Appendix. 

25 The only Greek example I know where the parts are not arranged in decreasing order is 
P. Oxy. xii 1446, a survey of land and rents. The fractional quantity y~p~;~ (3 6' 150' 12') 
occurs twelve times and SS~;;~ (interpreted as 44' 50' 300' 12') occurs once. The editors 
suggest that the anomaly may have been caused by the later addition of an extra 12' artaba of 
wheat to the rent of the land. Also seen. 88, below. 
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55 The night is 13 12' 45' hours, the day 10 3" 5' 30' 90'. 
56 16th, Arcturus rises in the evening, 
57 the night is 12 3" 15' 45' hours, the day 11 9' 10' 30'. 
58 26th, Corona rises in the evening, 
59 and the north winds blow which brings the birds, the night 
60 is 12 2' 30' hours, the day 11 3' 10' 30'. Osiris 
61 circumnavigates, and the golden boat is brought 
62 out. Tybi 5th, the sun enters Aries. 20th, spring equinox, 
63 the night is 12 hours, and the day 12 hours 
64 and the feast of Phitorois. 27th, Pleiades 
65 set in the evening, the night is 11 3" 6' 90' hours, 
66 the day 12 10' 30' 45'. Mechir 6th, the sun enters 
67 Taurus. Hyades set in the evening, 
68 the night is 11 2' 10' 35' hours, ... 

7.1 

As is typical with numerical texts, there are several errors which here can 
be corrected with some confidence. They are noted in the editors' 
apparatus: 

55 for 13 12' 45' read 13 15' 45' 
68 for 11 2' 10' 35' read 11 2' 10' 30' 90' 

and the editors have restored some parts, including two smudged numbers on 
lines 57 and 65 where the scribe has illegibly altered the text. 

Note the following features: 
(i) The distinctive l,ong straggling fraction indicators. 1 , 

(ii) The letter f3 in f3 for~ (e.g. end of line 55); it is the same as the f3 in tf3, 12' 
(e.g. the beginning of this line) or the letter f3 (e.g. line 59). 

(iii) The distinction between stigma (fragmentary examples in lines 56 and 
58; complete example in line 66) and sigma (no examples occur as numbers; the 
letter occurs in lines 56 and 58, with no distinction between upper and lower 
cases, and initial, medial, or final forms). The written letters are completely 
different, and the transcribed printed letters, in this well-designed font, are 
slightly different. 

(iv) The letter koppa (e.g. at the end of line 55). 
(v) The way the dates, the original numbers, are distinguished throughout by 

a superior bar (not indicated in the transcription), but how the arithmoi are not 
otherwise distinguished from the text. 

It is now standard editorial practice to modernise the notation of fractions. 
For example t~~;\ at the end of line 55 would now almost always be silently 
translated as 10*, as was done in Grenfell and Hunt's original edition. There is 
no harm whatsoever in this as long as it is done consciously; this kind of 
translation makes texts accessible and comprehensible. But we must remain 
aware that translations like this can alter the significance of the text, and that 
similar translations may have occurred in some texts during their long period of 
transmission and revision, down to our own time. 
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7.l(d) 0. Bodi. ii 1847, a land survey ostracon 

There is evidence of Egyptian land surveys from at least 3000 BC, and many 
detailed Greek examples from the Ptolemaic period, dating from the second 
century BC onwards, have been discovered and published. They vary from short 
calculations on potsherd or stone ostraca to long papyrus rolls setting out the 
survey of a whole village. There are, broadly speaking, two kinds of record: one 
giving the owner, location, dimensions, and area of each field, while the other, 
the annual return, gives the area (but not the dimensions), the crop under 
cultivation, the annual tax paid, and sometimes details of roads, drains, and 
canals which pass through the land. 26 A typical short example of the first kind 
of record, 0. Bodl. ii 184 727 from Thebes in Egypt, dated to between 30 BC and 
AD 14, is given with its transcription in Plate 8. These rapidly written, cursive, 
highly abbreviated texts present enormous problems to the uninitiated reader, 
rather as happens today with doctors' prescriptions. However, most abbrevia
tions in this text have been successfully resolved, the added letters being put in 
parentheses (though, on the bottom line of the apparatus, the second editor notes 
that one abbreviation in line 2 has defeated her while another is uncertain). 

The text reads, in translation: 

5 2' 4' 8 2' 4' 

2 The land measurement of the (land) of Kalliedon (farmed) by Petechonsis, 
beginning(?) on the west. 

2' 4' 8' 
3 4' 8' 16' 32' 1 8' 16' I 4' 16' arouras. Adjacent to the north 32'. 

1 2' 8' 
4 Another (field) adjoining the bottom, 2' 4' 8' --r6f 32' I 2' 4' 32'. 

2' 4' 8' 
5 Another (field) adjoining 2' 8' 2 , 4 , 2' I 4' 8' 16'. 

2' 4' 8' 16' 32' 
6 Another (field) 4 1 8, 32 , o I 4 4'. 

7 Another (field) adjoining 4 2' 4' 2, 2~, 4~, 1 ~~; ·~2 , I ~ 2' 4' 8' 32'. 

8 I 9 2' 4' 8' [16'] arouras. 

9 Adjacent on the north, (farmed) by Lysimachos 

2' 4' 8' 32' 
10 5 I 5 2' 4' 32'. 

1 4' 81 32' 0 

2' 4' 8' 
11 Another (field) adjoining 4 2, 4 , 8, 32 , o I 3 4' 8' 32'. 

12 I 9 2' 8' 16'. 

The basic calculation, which occurs in lines 3, 4, 5, 6, 7, 10, and 11, is as 
follows. The lengths a, b, c, and d of the four sides of a field (with a opposite c, 

26 For a discussion oflaud surveys in general, and the papyrological evidence in particular, 
see Crawford, KEVPP. 

27 Also known as 0. Tait; it is published in Tait, Preaux, & others, GOBLO ii, 308. 
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b opposite d), measured in schoinia and half, fourth, eighth, sixteenth, and 
thirty-second parts of a schoinion (the word means 'measuring cord', and 1 
schoinion = 100 cubits, 1 cubit= elbow to knuckle, approximately) are 
written out a ~ c. If two sides of a field are equal, then the second will be 
replaced by an o, perhaps for homoion, or a dot, or even omitted (see lines 6, 7, 
10, and 11, and the editor's note to line 7). In the case of a triangular field, ou 
(for outhen, nothing) would replace one side; there are no examples here. The 
oblique line I is one of the standard symbols in documentary papyri for equality; it 
is usually described as an abbreviation for the gamma of ginetai or ginontai, 
'becomes', but is more probably derived from an Egyptian sign, which is later 
often Hellenised into a gamma; then, in the Byzantine period, this symbol 
disappears completely, and is replaced by much more explicit biliteral or triliteral 
abbreviations which continue into the minuscule manuscripts.28 The area of the 
field follows, given in arouras (1 aroura = 1 square schoinion, equal to approxi
mately 0.676 acres, or 0.25 hectares), and it always appears to be calculated by 
multiplying together the averages of the two pairs of opposite sides, 

nominal area=~ (a+ c) x ~ (b + d) =~(ab+ ad+ be+ cd), 

28 The text M.P.E.R., N.S. i 1, to be described below in Sections 7.3(d) and 4(a), uses 
variously this sign, the biliteral abbrevation ft, or the word ginetai. On these abbreviations, 
see Blanchard, SAP DG, 29 ff, especially notes 9-11 and the text to these notes, and 
McNamee, AGLPO. Differences between the abbreviations in the papyrological traditions 
and those found later in Byzantine minuscule texts are very common. For example, consider 
the abbreviations for subtraction: throughout the Byzantine minuscule manuscripts of 
Diophantus and once in Heron (at Metrica III, 7; see Heron-Bruins, CC i, folio 103r, line 
5 for a photograph), we find a sign similar to a rounded vertical arrow, 1'· I am grateful to 
Alain Blanchard for the following sketch of the general development of the earlier Greek 
symbol for 'from which': "My impression is that there must again be a break between the 
papyrological and medieval periods. The papyrological forms, derived from the demotic I., 
wp.t (for this word see Mattha, DO, 156, no. 190, line 2; Erichsen, DG, 85; and Pestman, 
GDZA, 76-8) are relatively faithful to their prototype, with different kinds of deformations. 
There are various kinds of examples: 7._, U.P.Z. ii 157.9, 242Bc and M.P.E.R., N.S. i I [see 
Section 7.3(d), below]; l, P. Petrie ii 39c.9, iii BC, to P. Lond. i 99 (p.158).28, iv AD; and 2_, P. 
Berl. Leihg. 13.15, beginning of ii AD. The demotic word appears to be used fqr itemising, with 
subtracting as a secondary meaning; the Greek expression seems to be def! wv, 'from which'. 
Despite some reinforcement of this sign at the end of its evolution (for example, L0 , 0. Bodi. i 
1957.3, ii AD? and£:., P. Lond. ii 755 verso (p. 221).38, iv AD), the sign did not survive beyond 
the Roman period. In the Byzantine period it is replaced by a more explicit abbreviation a<{i 
(e.g. P. Sorb 61.16, v AD? & P. Lond iv 1419.1396, after AD 716); or a<{iw (e.g. P. Lond iv 
1413.221, AD716-21); or a<fi 0 (e.g. P. Lond iv 1419.43, after AD 716)." 

The possibility that the sign 1' might be an introduction during the Byzantine minusculi
sation was dismissed by Tannery, the editor of Diophantus' works, in SSCG, 208-9: "A la 
verite, comme on ne le recontre que dans ce passage [Heron, Metrika III 7] ... ii pourrait n'y 
avoir la qu'une abreviation byzantine; cependent cette derniere hypothese n'est guere 
vraisemblable." Tannery's argument is that the manuscript of Heron was copied more 
than two centuries earlier than those of Diophantus, at a time when Diophantus was not 
being studied; and Diophantus' procedures had been too little vulgarised for them to have 
been the source of this sign. But, one can object, these are far from the only possibilities. Also 
see Diophantus-Heath, DA, 41-4. 
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and approximating the result to within the thirty-second or less of an aroura. 
Look, for example, at line 3: We have a= 4' 8' 16' 32', e = 8' 16', so 

! (a + e) = 8 I 8 I 16 I 64 I = 41 16 I 64 I, 

while b = 2' 4' 8', d = 1, and so 

! (b + d) = 2' 4' 8' 16'. 

Now do a long multiplication sum in what is, in effect, binary representation to 
get 

2' 4' 8' 16' 
x4' 16' 64' 

8' 16' 32' 64' 
32' 64' 128' 256' 

128' 256' 512' 1024' 

8' 16' 16' 32' 64' 128' 512' 1024' 

and simplify the carries to give 4' 32' 64' 128' 512' 1024'. We do not know 
just how the taxman has performed this calculation, which here has been 
rounded up to 4 16', an approximation in his favour of 256' 1024' of an 
aroura. 

It is easy to show that the area of the field is actually i (ab sin ab + ad sin ad+ 
be sin be + ed sin ed), so the taxman' s formula will always overestimate the area 
unless the field is rectangular. Sometimes it seems that a field may be split up 
into pieces, to reduce the error; and sometimes a correction, called a 'difference 
of measurement' (diaphoron sehoinismou) may be noted, though this correction 
is itself likely to be incorrect, and the tax is still calculated on the uncorrected 
area. 29 There are also frequent arithmetical mistakes; see, for example, line 7, 
where the answer to the multiplication 

4 2' 4' x 2' 4 1 8' 64' = 4 8' 16' 32' 128' 256' 

is given by the scribe as 3 2' 4' 8' 32', and no readjustment of the doubtful 
numbers seems to lead to any approximation to the scribe's result, although the 
editor points out that the absence here of either a number, or an o, or an ou in the 
right-hand place may indicate a scribal omission of a dimension. The entry on line 
11 also seems to contain an error. But since some annual tax returns seem purely 
notional, with the same minutely detailed account being returned in consecutive 
years, perhaps it is irrelevant to pick on such small details as these. 30 

29 Sir Eric Turner commented on a preliminary version of this, in a letter written in April 
1983, a week before his death: "I wonder whether diaphoron schoinismou means 'tax-payment 
for measurement' rather than 'difference of measurement'. There are many taxes under the 
r1ame of diaphoron. Even .JI10re in the pocket of a king or inspector!" 

30 See de Ste. Croix, GRA, 59: "Mistakes in operating with fractions are particularly 
common in papyri. But it is sometimes difficult to tell how far deficiencies observable in 



234 Numbers and fractions 7.1 

This text illustrates a feature of commercial documents, that there are 
conventions restricting the range of permitted parts. In· recording and mani
pulating distances and areas, as here, fractions are always expressed in halves, 
fourths, eighths, sixteenths, ... of schoinia and arouras; while taxes and rents 
are expressed in equivalents of artabas of wheat (see Section 7.3(c), below), 
where the permitted parts are 2',4',8',5',10',3",3',6',12',24', ... which 
simplifies division by various numbers. 31 This means that approximations are 
necessary-for example, it is not possible to express the third of an aroura of 
land, or the seventh of an artaba of wheat exactly, within these restrictions
and these approximations are sometimes crude and usually in the taxman's or 
landlord's favour. 

The earliest surviving land registers such as I have described here date from 
the second century BC, but some evidence for a land survey in Egypt can be 
traced back to at least 3000 BC. The approximate formula for the area occurs in 
Problems 51-3 of the Rhind Mathematical Papyrus, where it is applied to 
isosceles triangles and trapezia, though many commentators conceal the fact 
that it is an approximation by adapting the translation, and rendering 'side' as 
'height'. After the conquest of Egypt by Alexander in 331 BC, the Greeks took 
over the existing Egyptian administration, including the land survey, merely 
imposing Greek as the official language for virtually all administrative and 
financial documents that were of concern to them. On the other hand, the 
Greeks never seemed to have operated a land survey in Greece itself, though 
there are suggestions in Proclus' Commentary on the First Book of Euclid's 
Elements that they did use the same procedure for calculating area. I shall 
return to this topic, in a discussion of Egyptian land surveys and the stories 
about the development of Greek mathematics, in Section 8.1. 

7.2 TABLES AND READY RECKONERS 

7.2(a) Division tables 

The practice of expressing fractions as sums of parts raises two distinct 
questions: how were these expressions manipulated, and how were they 
calculated? I shall deal mainly with the first question,32 and will here describe 

ancient arithmetical calculations are due to the nature of the scripts used and how far to the 
comparative indifference of the Greeks and Romans to extreme precision in such matters as 
the calculation of interest on loans." Indeed, extreme precision is unattainable within the 
conventions of commercial practice; see the next paragraph. 

31 For more details and references, see Fowler, NFA. 
32 My attitude will be analogous to that taken by most users, even most sophisticated 

mathematical users, of mathematical tables and calculating machines. Few people pause to 
think how the numbers they use were actually calculated. And this information is usually far 
from simple; I suspect that any trick or intuition that shows hope of being useful will be 
exploited, then as now. 
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some of the extensive published primary evidence most, though perhaps not all, 
of which derives from school and commercial texts. 

A preliminary grammatical observation is that the definite article plays a 
more important role in Greek than in many modern languages, and the 
sequences of the arithmoi and mere should really be thought of as 

the duet, the trio, the quartet, the quintet, ... 

and 

the half, the third, the quarter, the fifth, .... 

Since Greek is an inflected language, it is often through the case that the 
relationship of one word to another is expressed; and since the higher numbers, 
after four, are indeclinable, it is the article which will carry this information. So 
a phrase like 'the quintet' (nominative plural) must be 'o[ E', 'a[ E', or 'nl. E' 
according as the implied noun is masculine, feminine, or neuter; and this 
implied presence enhances the concreteness of the number system. Also, while 
the arithmoi take plural articles, as in this illustration, the mere take neuter 
singular articles, for example TO €. [µ,€.poc], the 5th part. 

Now consider, for example, our common fraction H· This would be 
expressed in a division table (such as will be described below33) as 

TWV 

of the 

for what we would write as 

t/3 [TO :t1 
12 [the 17th is] 

12 I I I I I I 
17 = 2+12+17+34+31+68· 

These expressions are far from unique (we could here have, among infinitely 
many others, 2' 6' 34' 102', or 3' 4' 12' 51' 68' 204') and they may be 
written out using different arrangements of diacritical marks or spaces in the 
original text, or they may be presented differently by a modern editor, with the 
more convenient and understandable format L i/3' i~' ,\{}' va' tYJ' now being 
the most common. Our ancient evidence clearly indicates that most such 
expressions would be found in tables that would have been either memorised 
or consulted. 

I shall call these tables 'division tables', rather than their more usual but 
misleading names 'tables of fractions' or 'multiplication tables'. Many of them 
have been found and published. An excerpt from a typical table reads: 

" EVaTa 

Tryc a TO fJ fJ 
To fJ xt~~ 

ninths 
of the 1 the 9 [is] 9 
[of the 6000] the 9 [is] 666 3 

33 This example comes"from P. Mich. iii 146, no. 20 in my catalogue of division tables, in 
the Appendix. Also see the following n. 34. 
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TWV f3 ~{~ 
TWV y y 
TWV 0 yB 

' L II TWV E /?] 
TWV ~ ~ 

TWV 'M 
TWV YJ Ly{~ 
Twv () a 
Twv i aB 
TWV K Mt~ 

and so on up to 
TWV l l 
Twv p wB 
TWV c KMl~ 

and so on up to 
TWV 'f p I 

TWV A pia8 
TWV B CK{3i{~ 

and so on up to 
Twv e A 

a I 

TWV µ,A pia8 

of the 2 [the 9 is] 6 is 
of the 3 [the 9 is] 3-
of the 4 [the 9 is] 3 9 
of the 5 [the 9 is] 2 is 
of the 6 [the 9 is] 3 
of the 7 [the 9 is] 3 9 
of the 8 [the 9 is] 2 3 is 
of the 9 [the 9 is] 1 
of the 10 [the 9 is] 1 9 
of the 20 [the 9 is] 2 6 is 
of the 90 [the 9 is] 10 
of the 100 [the 9 is] 11 9 
of the 200 [the 9 is] 22 6 is 
of the 900 [the 9 is] 100 
of the 1000 [the 9 is] 111 9 
of the 2000 [the 9 is] 222 6 is 
of the 9000 [the 9 is] 1000 
of the 1 0000 [the 9 is] 1111 9 

7.2 

A catalogue of published tables is given in the Appendix to this chapter, and 
hereafter I shall refer to the tables by their serial numbers in this catalogue; this 
example comes from no. 20, except that I have standardised and corrected the 
use of the fraction indicators. 34 

This table is in what I shall call 'full' format, which lists expressions up to 
10 000 nth parts; some tables stop at the entry 'of the n [the n is] l ', in what 
I shall call 'abbreviated' format. This example starts with the 'heading' 
enata, ninths, and it contains an 'initial entry' "[of the 6000] the 9 is 666 3" 
of a kind that is believed to have been used in financial calculations and to 
date from the time (up to the third century AD at the latest, and possibly 
earlier) when 6000 drachmae, equalling 1 talent, was the monetary standard. 
Although inflation and change from a 'gold', then a 'silver', standard 
rendered this entry obsolete, it continued to be copied into some of the 
tables for another five hundred years at least. There is also some variation 
in the wording of the tables. For example, the first line may be written in 
words: 

TYJc µdie TO fJ B, 

34 There is a photograph of this part of this table in Knorr, TFAEG, 145. The scribe has 
put fraction indicators on all letters occurring in the answers, irrespective of whether they are 
arithmoi or mere. 
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and the initial entry may be found as either the first or second line, and it may 
appear as: 

as: 

or as: 

TO 8 €taKicxiAtwv xt5:f 35 

The actual expressions themselves vary·from table to table; for example the 
Egyptian Rhind Mathematical Papyrus, no. 2, copied around 1650 BC from an 
older archetype, contains a table of tenths, in an extremely concise format, laid 
out exactly as in the following translation: 36 

10' 3" 30' 
5' 3" 10' 30' 
5' 10' 3" 5' 30' 
3' 15' 
2' 
2' 10' 

while the other two published tables of tenths are as follows37 (I have again 
listed the example from the Rhind Mathematical Papyrus for comparison): 

Rhind papyrus P. Mich. 146 Achmim papyrus 
(no. 2) (no. 20) (no. 12) 

1 10' 10' 10' 
2 5' 5' 5' 
3 5' 10' 5' 10' 4' 20' 
4 3' 15' 3' 15' 3' 15' 
5 2' 2' 2' 
6 2' 10' 2' 10' 2' 10' 
7 3" 30' 2' 5' 2' 5' 
8 3" 10' 30' 3" 10' 30' 2' 4' 20' 
9 3" 5' 30' 2' 3' 15' 2' 3' 15' 

The disagreements between these tables seem to indicate that we cannot easily 
argue for a continuous textual tradition: the tables must have been frequently 
recomputed, when occasion demanded. 

35 There are discussions of these features by Brashear, Crawford, and Sijpesteijn in the 
references to nos. 11, 24, 25, and 39, of the catalogue. 

36 See the facsimile and transcript in Plate 33 of Chace, RMP. Unfortunately the 
photograph of this part of the text was not reproduced in the abridged reprint of this book. 

37 The tables of tentks in nos. 6, 7, and 14 of the catalogue are incomplete or not 
transcribed. 
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These tables are very common. Some examples, like nos. 7, 12, and 20, are 
systematic and extensive ready reckoners; others, like no. 38, are less apparently 
coherent collections; many are isolated single examples. Some seem crude, in 
the sense that their entries give more cumbersome expressions, by any 
criterion, than are necessary (see, for example, no. 9; several entries of this 
table need correction and can be simplified, for instance 'of 6 the 31' is 
12' 20' 31' ( 62') 155' 186'' can also be expressed 'of 6 the 31' is 
6' 62' 93''). Many of these texts are school exercises. In all, the Appendix 
contains details of 97 publications containing 172 individual division tables, 
distributed as follows: 

3" 2' 
14 14 

3' 4' 
12 12 

5' 
5 

6' 
4 

7' 
12 

8' 
8 

9' 10' 11' 12' 13' 14' 15' 
9 6 7 7 5 7 7 

16' 17' 18' 
6 9 4 

19' 20' 23' 24' 25' 29' 30' 31' 48' 49' 90' 
5 2 I 5 2 I 2 I 2 I I 

150' 
I 

Any discussion of fractional calculations in Greek antiquity should take place 
against a background of awareness of this published material. 

7.2(b) Multiplication and addition tables 

One feature of the Greek alphabetic system is that the tables for multiplication 
by 2, 3, 4, ... , 9, by 20, 30, 40, ... , 90, and by 200, 300, 400, ... , 900 are 
completely different so this makes a complete multiplication table to be very 
long. 38 Broadly speaking, three different formats are found for these tables; the 
first, which resembles the format of a division table, is to set out a table of 
I-times, 2-times, ... , 9-times, then sometimes continuing with IO-times, 
20-times, ... , 90-times, 100-times, 200-times, ... , 900-times, 1000-times, 
2000-times, ... , 9000-times, 1 0000-times. A typical table, for example the 
80-times, is then given as: 

1TU 1T 

1T{3 p~ 
'TTY cµ, 
etc. 

80 1 80 
80 2 160 
80 3 240 

38 Many discussions of the consequences of this lack of place-value in Greek arithmetic 
have no basis in our knowledge, now, of Greek numerical practice. I recommend Smyly, 
EAGL (seen. 10, above) for an informed opinion: "I am convinced that the [Greek] notation, 
though it may be inferior in some respects to that now in use, by no means deserves the 
unlimited contempt which has been heaped upon it" (p. 515). Also de Ste. Croix, GRA, 55--6: 
"The habitual arrangement of figures in columns in our notation is not an intrinsic virtue of 
that notation but, on the contrary, an incidental defect, due, somewhat paradoxically, to the 
combination of its two greatest virtues, namely place-value and the small number of symbols 
it employs; but ... this very defect (the necessity for the arrangement of figures in columns) 
has, paradoxically again, provided a very useful stimulus towards the evolution of the 
advanced concepts of debit and credit (positive and negative entries) ... which was an 
essential preliminary to a coordinated system of book-keeping by double or even single 
entry"-and so eventually, one might add, perhaps to negative numbers. 
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In the second format, each entry is commuted and repeated. The following 
illustration of the 8-times table suggests how such a table might have been read: 

Y/a YJ oktakis mia estin okti5 
aYJ YJ hapax okti5 estin okti5 
YJ~ ls' oktakis duo estin hekkaideka 
~YJ ls' dis okti5 estin hekkaideka 

etc. 

eight-times one is eight 
once eight is eight 
eight-times two is sixteen 
twice eight is sixteen 

(We have some instances of such multiplications described in Socrates' 
encounter with the slaveboy, Meno, 8le-85d; for example, at 87d, we find 
both dis duoin and duoin dis in consecutive speeches.) The need to commute 
each entry surely arises not from ignorance of the commutativity of multi
plication, but from the need to recognise automatically the different sounds of 
the cardinal and repetition numbers. 

The third format (which occurs in conjunction with the second format in one 
of our tables, no. 51) has the following form: 

YJU YJ 8 1 8 
Y)l 7T 8 10 80 

YJP w 8 100 800 
YJU ,w 8 1000 8000 

YJ~ ls' 8 2 16 
YJK pt 8 20 160 

etc., up to multiplication by 9, 90, 900, and 9000. 

Aristotle makes a reference to multiplication tables at Topics 163b24--29: 

For just as in geometry it is useful to have been trained in the elements, and in 
arithmetic to have a ready knowledge of the multiplication table up to ten times helps 
much to the recognition of other numbers which are the result of multiplication, so 
too in arguments it is important to be prompt about first principles and to know your 
premisses by heart. 

From this we can infer that we cannot immediately dismiss the evidence I 
have been describing as being relevant only to the training of scribes and 
accountants; Aristotle's audience clearly is aware of the basics of this kind of 
material, though he implies that they may not be fluent in its practice. 

Tables of additions, in the same kinds of formats as multiplication tables, are 
also found and are listed in the Appendix to this chapter. Most of these examples 
of multiplication and addition tables seem to be more in the nature of systematic 
school exercises rather than ready reckoners intended for consultation. 

7.2(c) Tables of squares 

In contrast to our evidence about Babylonian mathematics, relatively few 
examples of other kinds of mathematical tables have been found. This may be a 



240 Numbers and fractions 7.2 

consequence of the random way in which the papyrus texts have been 
preserved; on this we can only speculate, but such Sf>eculation should be 
moderated by the fact that a substantial amount of other material, for example 
astronomical39 and astrological data, has been preserved on papyrus. Setting 
aside very fragmentary texts and marginal annotations whose interpretation is 
often very doubtful, the only examples known to me of systematic tables other 
than addition, multiplication, division, and astronomical tables are the five 
tables of squares listed in the Appendix to this chapter, of which no less than 
three are early, dating from the third to first centuries BC. This is insufficient 
evidence to support anything more than the most tentative conclusions, so 
I shall do no more than remark on the importance of squares within the 
mathematical reconstructions in Part One of this book. 

7.3 A SELECTION OF TEXTS 

7.3(a) Archimedes' Measurement of a Circle 

Consider, now, what is apparently the most blatant piece of evidence against 
my thesis that common fractions are not found in early Greek mathematics: 
Archimedes' Measurement of a Circle. 40 A typical description of part of this 
short treatise (Heath, HGM ii, 50 ff.) is as follows: 

[Proposition 3 proves] that the ratio of the circumference of any circle to its diameter (i.e. 
7T) is less than 3 ~ but greater than 3 -~¥- ... The circulation starts from a greater and a 
lesser limit to the value of yl3 which Archimedes assumes without remark to be known, 
namely 

Let us contrast this description with our received text. Take first the enunciation 
of the proposition; here, with a word-for-word literal translation, we have: 

7TUVTOC 
Of every 

KVKAOV ~ 7TEp£µ.ETpoc 
perimeter 

TfJc 8iaµ.frpov TpmA.adwv 
three-times circle the the diameter 

' ' ' €CTL Kat 
is and 

E-ri 
further 

TfJC 
of the 

8iaµ.frpov, 
diameter, 

V7TEPEXEL 
it exceeds 

€A.accovi µ€v41 ~ 
by less than 

µ.d~ovi 8€ ~ 
but by more than 

8€Ka 
ten 

€{386µ.q.i 
a seventh 

µ€p€t 
part 

€{380µ.71KocToµ.6voic 
seventy-first [parts] 

39 For astronomical material, see Neugebauer, APO, the inspiration for my catalogue in 
the Appendix. 

40 The critical edition of the text is in Archimedes-Heiberg, Opera i, 232-43, with the 
commentary from the early sixth century AD by Eutocius in Opera iii, 228-61. The Greek text, 
without critical apparatus, is reproduced in Thomas, SIHGM i, 316-33. The medieval Latin 
translations are in Clagett, AMA; see especially vol. ii. The transmission of the text has been 
studied in minute detail by Knorr, TSAMG, 421-816. Also see n.44 below. On the 
chronological problems associated with Eutocius, see the DSB, s.v. Eutocius. 

41 The Greek expression µ€v ... 0€ ... merely requires the translation 'but' later in the 
sentence. 
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and, in the English word-order 

The perimeter of every circle is three-times the diameter and further it exceeds by [a line] 
less than a seventh part of the diameter but greater than ten seventy-first [parts of the 
diameter]. 

Archimedes clearly does not here consider the ratio of circumference to 
diameter as a numerical quantity. Also the phrase 'ten seventy-first parts' 
seems to refer to the line obtained by concatenating ten copies of the seventy
first part of the diameter, rather than the common fraction W; it is a line, not a 
number. Moreover, the ratio of 10 to 71 is capable of a far wider range of 
interpretations than as a common fraction, as has already been illustrated many 
times in this book. In particular, see Sections 2.2(b) and 4(d), where some 
mathematical features of Archimedes' calculation are analysed; here I shall 
consider purely textual issues. 

Next, Archimedes' treatment of the lower bound to y'3: 1 reads, in translation: 

Let there be a circle with diameter AI' and centre E, and let I' AZ be a tangent and the 
angle ZEI' one third of a right angle. Then EZ has to Z I' the ratio that 306 has to 153, 
and EI' has to I'Z the ratio [greater than] that which 265 has to 153. 

Here we have ratios, not fractions. 
Now turn to the proof of the proposition. One feature can be seen 

immediately by consulting the admirable translation in Thomas, SIHGM i, 
316--33.42 Look at the parallel Greek and English texts on pp. 324 and 325: six 
lines of Greek text about ratios give rise to more than twenty-four lines of 
arithmetical manipulations. Most of this translation is set in square brackets; it 
does not come from Archimedes' text (Archimedes-Heiberg, Opera i, 232-43) 
but is freely adapted from Eutocius' long commentary (ibid. iii, 228-61), and 
it is these additions that make the translation intelligible to us. Now look in 
detail at a typical passage in this translation, SIHGM i, 329.19-28 = Opera i, 
242.2-5. With the interleaved material from Eutocius and elsewhere deleted, we 
read: 

AB: er< 5924~: 180 

< ~ . 5924 ~ : ~ . 780 

< 1823: 240. 

Therefore AI':I'B < 1838-fi- :240. 

42 The following corrections and minor amendments to the translation should be noted: 
p. 329 line 11. For'= 1351' read '< 1351 '. 

line 13. For 'Hence' read '[Hence'. 
line 23. On 'n . 5924i : n . 780': this is not really a translation, but a very helpful 
editorial resolution of a complicated piece of text, to be quoted below. 

p. 331 line 3. For '24' read '240'. 
line 6. This line 'Mi . 3661 -fr : !iJ . 240' is another resolution of even more complicated 
text. 
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The corresponding Greek text, with a literal translation, is as follows: 

~ Ae apa Ota TU aihd 7rpoc 
The [line] AB then for the same [reason] in relation to 

2 TYJV er EAaccova ,\6yov EXEL 1j av ,E ~KD !_ {)' 

the [line] er a less ratio has than that [ratio] which 5924 2' 4' 

3 7rpoc i/m 1j av 1aWKY 
[has] in relation to 780 or [less than] that [ratio] which 1823 

4 7rpoc cw haTEpa yap EKUTEpac 
[has] in relation to 240, each one of the two for43 of the other [line] 

5 8 iy' WCTE ~ AI' 7rpoc TYJV re 
[is] 4 13', so that the [line] AI' in relation to the re [is less] 

6 1j av ,awAYJ jj La I 7rpoc CfL 

than that [ratio] which 1838 9 11 ' [has] in relation to 240. 

This text can be pursued back to the manuscripts using the apparatus of the 
critical editions by Heiberg and Clagett.44 All of the surviving Greek texts and 
Latin translations of Archimedes, except for those found in the palimpsest 
rediscovered by Heiberg in 1906, to be described briefly below, derive from an 
archetype compiled in the ninth or tenth century which may have belonged to 
Leo the Philosopher45 and which seems to have contained, in addition to 
Archimedes' works, the commentary on Archimedes by Eutocius and a book 
by Heron. This codex disappeared in the sixteenth century, but its contents 
have been reconstructed by Heiberg from four surviving Greek copies made 
from it between 1450 and 1564; this reconstructed manuscript is Heiberg's and 
Clagett's manuscript A. 

The autograph copy survives of a careful literal Latin translation of parts of A 
made in 1269 by the Flemish Dominican monk, William ofMoerbeke; it contains 
the translation of all of the Archimedean books in A except The Sandreckoner, 
and all of Eutocius' commentaries except for that on Measurement of a Circle; 

43 This particle always comes second in a Greek phrase and first in English: 'for each one of 
the two [lines] is 4 13' of the [corresponding] other line'. 

44 The critical apparatus of Archimedes-Heiberg, Opera, must be collated with that in 
Clagett, AMA ii3, 397-9. The textual details in Archimedes-Heath, WA, should be 
ignored since they are based on Heiberg's first edition of 1880-1; there is a summary 
based on the second edition in Heath, HGM ii, 25-7 and a further account in Clagett, 
AMA ii1, 54-78. For details of Codex A up to its disappearance some time after 1584, see 
Rosie, FHCAA. 

45 So Archimedes-Heiberg, Opera iii, pp. x ff. and xxii f., Heath, HGM ii, 25 f., and Wilson, 
SB, 83; but Clagett, AMA ii1, 55 is non-committal. Clagett gives details of its probable 
contents: Archimedes, Sphere and Cylinder I and II, Measurement of a Circle, Conoids and 
Spheroids, Spiral Lines, Plane Equilibria I and II, Sandreckoner, Quadrature of a Parabola; 
Eutocius, Commentaries on Sphere and Cylinder, Measurement of Circle, Plane Equilibria; and 
Heron, On Measures. 
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this is manuscript B.46 The translation was corrected by Moerbeke himself in 
passages, distinguished by a blacker ink, that I shall refer to as B1• Then, in the 
fifteenth or sixteenth century, an unidentified hand added further annotations, 
though none of these are found in Measurement of a Circle. Finally the 
manuscript was acquired by one Andreas Coner in 1508, who added many 
more, often perceptive, annotations47 which will here be denoted by B2 . It 
appears that Moerbeke found difficulty in translating the numbers in Measure
ment of a Circle: sometimes he wrote the corresponding Greek text in the 
margin, leaving a gap in the translation and then, as B1, he subsequently 
inserted the missing text.48 The marginal Greek annotation was then erased, but 
these and other erased portions can now be read under ultraviolet light and 
they give more information about the lost archetype, manuscript A. However, 
since some of the numbers in A were already wrong or meaningless, this 
procedure did not ensure an arithmetically correct result, and Coner has clearly 
worked through the manuscript, correcting and amplifying it further. Clagett 
(AMA ii1, 55 f.) proposes that Moerbeke may not have translated Eutocius' 
commentary on Measurement of a Circle and The Sandreckoner because of his 
difficulties with Greek numerical practice. 

The third Archimedes manuscript, a palimpsest in rather poor condition 
rediscovered by Heiberg in Constantinople in 1906, is a tenth-century copy that 
has subsequently been erased to make way for a theological text of the twelfth 
or thirteenth century.49 Fortunately the original text is still legible, and Heiberg 
was able to decipher most of it with the aid of a magnifying glass. He recovered, 
in decreasing order of completeness, our second Greek version of the extant 
Sphere and Cylinder I and II, Spiral Lines, Measurement of a Circle, and Plane 
Equilibria; the first Greek texts of Floating Bodies, hitherto known only in a 
Latin translation made by Moerbeke from another Greek manuscript, 50 now 
lost; the preface and two propositions of the Stomachion, which deals with a 
kind of puzzle; and, most valuable of all, the new and unexpected Method. This 

46 Clagett calls this manuscript 0. 
47 Heiberg dated these annotations to the fifteenth century (Opera i, pp. v-vi), although he 

described Caner's acquisition of the manuscript in 1508 and his subsequent annotations 
(Opera iii, pp. xliii f.). Also Heiberg apparently frequently confused the corrections in the 
second and third hands; see Clagett, AMA ii1, 63 n. 7, 64 n. 8, 68, 73; and ii3, passim. 

48 Since the main difference between Band B1 lies in the colour of the ink, I presume that it 
must sometimes be difficult to distinguish between them. In any case, the distinction between 
them is not very great since they are both assigned to Moerbeke, and it is significant to us here 
only as an indication of his difficulties with Archimedes' text. 

49 This manuscript is described and its text of the Method is edited in Heiberg, ENA; also 
see Archimedes-Heiberg, Opera i, pp. v-vi and iii, pp. lxxxv-xc, and the supplement to 
Archimedes-Heath, WA, after p. 326. It was formerly in the Library of the Metochion of the 
Holy Sepulchre, Istanbul but now is in a private collection, except for one leaf, identified by 
N. G. Wilson, which has strayed to Cambridge University Library, Add. 1879.23; see Wilson, 
SB, 139. 

50 Heiberg calls this lo.1>t manuscript B, Clagett calls it B. It is described in Archimedes
Heiberg, Opera iii, pp. liv-lvii and Clagett, AMA ii1, 58-60. It was last mentioned in a 
catalogue of 1311. 
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palimpsest, which is not directly related to A, is called manuscript C; and those 
parts of it where Heiberg could detect the presence of text' that he was unable to 
read are identified as (C). 

The following variations in the passage above are found in the different 
manuscripts. 

line 2: 1E°':?iKOL0 1 

A had ,ETKO E 1 01 

B1 has 5324 3 4, in an unsuccessful attempt to correct the irregular51 E' 

B2 has the correct52 5924 ~ ! 
c has ,EpKO 
Eutocius' commentary has the correct ,E °':?iKO L 01 

line 4: cµ, 
A had cv 

250 
240 

B has 
B2 has 
Chas cµ, 
Eutocius has cµ, 

line 5: ~ iy' 
A had o iy' a' ac~ording to Heiberg's reconstruction but Moerbeke transcribed 

the Greek Ll iy' a', now erased, in the margin of B 
B is erased, and is presumably illegible 
B2 has rt in the erasure _ _ 
(C) is illegible,,, but the space for o [or Ll?] iy' a'53 

Eutocius has o iy' 

line 6: e ta 1 

A omitted the ta 

B has 8 ', erased, in the margin 
B1 has 9, followed by a gap 
B2 has the correct fr 
(C) has no space for the ta, and 
Eutocius has B ia', but he interprets it54 as 9' 11' 

These variations illustrate how those parts of the passage that seemed to 
suggest some kind of manipulation of fractions have all but disappeared as we 
trace the text back through the surviving manuscripts. For example, the 
fraction rt on line 5 exists in the meaningless form S or Li (?) iy' a' in A; it is 
illegible in C; and it is only found explicitly and correctly in a sixteenth-century 
addition to the Latin translation B; also the operation of multiplying by rt is 

51 Recall that the conventional way of writing this would be S~ (4' 51), in decreasing order 
of size of the parts. 

52 The word 'correct', here and elsewhere, refers of course to the generally accepted 
interpretation of the passage. 

53 The details of C are understandably sometimes left ambiguous by Heiberg. 
54 Eutocius' commentary gives a long, long multiplication for (1838 9' 11 ')2 , evaluated 

using a mixture of fractional notations, whose answer, and with it the inequality he is 
purportedly verifying, is fudged. See Archimedes-Heiberg, Opera iii, 252-3. 
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described in Greek by a phrase 'hekatera gar hekateras . . .'which is capable of 
a range of alternative interpretations. However, some evidence does survive 
from this examination: ifEutocius interpreted ,awA'Y) 8 ia' as 1839 9' 11 ',then 
this implies a misinterpretation of some such notation that he found in his 
manuscript; and there is also the corrupted evidence of a similar kind of 
notation on line 5. ss 

An even greater complication, which I shall not describe here, pervades the 
next passage in the text, whose translation appears in Thomas, SIHGM i, 
331.2-7, as 

AK: KI'< !fi. 3661fr:!fi.240 < 1007: 66, 

and I have suggested, in note 42, that the expression in the middle of this 
inequality should really be placed in square brackets as an editorial 
interpretation. 

These variant readings and later additions and corrections indicate a range 
of editorial and scribal interferences that have occurred since the now lost 
manuscript A was compiled. We have no way of assessing the extent of 
corruption already introduced in the transmission from Archimedes' own 
version up to manuscript A, but other features indicate that this could be 
considerable. For example, the order of the propositions is now clearly 
incorrect: the first two propositions were unnumbered in A, but the second 
of these uses the result proved in the third proposition, which is numbered 
y' = 3; and the second half of the proof of this third proposition is erroneously 
numbered 8' = 4.s6 Then Heron refers, at Metrica I 37, to a further proposition 
on the relationship between the area of a sector of a circle and the arc it 
subtends, and he says that it is in his version of the text; such a result is now 
only to be found in a translation from Arabic into Latin made by Gerard of 
Cremona. s7 Also Archimedes wrote in a Doric dialect, and some of his works 
still preserve this feature, but all traces of dialect have been purged from the 
Measurement of a Circle. Further, the treatise has no preface or introductory 
postulates, unlike almost all of Archimedes' other works. 

Heiberg's careful assessment of the text is: "In general, in the whole of this 
short work, the type of language suffers from so careless a brevity that one 
recognises the hand of an excerptor rather than that of Archimedes" 
(Archimedes-Heiberg, Opera i, 233 n. 3), an opinion that does not presuppose 
that the original text was meant as an elementary exercise, intended for popular 
consumption. The bolder common opinion, that Archimedes' original text was 
meant for popular consumption, I find hard to accept. Note the subtleties of 
Proposition 1, which launches immediately into a very summary description of 
an exhaustion argument of the type found in Elements XII 2, based on the 

55 The reader is also encouraged to explore the textual details of the three references to Wat 
the conclusion of the proposition. 

56 See Archimedes-Heiberg, Opera i, variant readings to 232.1, 234.18, 236.7, and 140.12. 
57 See Claggett, AMA ii1, 5, 32, 47, 57. 
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bisection arguments of X l; and note also the difficulties that Moerbeke, a 
translator of enormous experience with Greek philosophical and scientific 
works, had with his translation of Proposition 3. Our easy understanding, 
today, depends on the clarifications, commentaries, explanations, and correc
tions made by Eutocius, Coner, and other editors and inserted into the received 
text. 58 Now observe how all of these corrections have been made from within 
an arithmetised tradition of mathematics. This is very strikingly illustrated by 
Eutocius' long commentary, a detailed verification of many of the steps, 
executed throughout in compound parts, though occasionally expressed in 
the manuscripts in an abbreviated notation that resembles common fractions. I 
suggest that Archimedes' original intention may have been different; even that 
the work may originally have been the first steps in the anthyphairetic 
exploration of the ratio of circumference to diameter of a circle. And I tried 
to show, in Sections 2.2(b) and 2.4(d), how some of the mathematical features 
of the calculation which cause problems when interpreted arithmetically fit very 
naturally within an anthyphairetic context. 

7.3(b) Aristarchus' On the Sizes and Distances of the Sun and Moon 

Aristarchus' calculation in his On the Sizes and Distances of the Sun and Moon has 
survived in a less disturbed state than Archimedes' calculation. As usual, all of 
our sources are minuscule manuscripts and, of these, the oldest and best, and 
perhaps the ultimate source of all the other surviving manuscripts, is the beautiful 
ninth-century Vatican gr. 204, described briefly in Section 6.3. A Latin trans
lation by Valla was published in 1488, another by Commandinus in 1572, and 
the Greek text was first published by John Wallis in 1688; it is not quite clear 
which manuscript they used. There is a modern critical edition in Aristarchus
Heath, AS, with a very useful introduction and commentary, to which I refer 
the reader. The numbers in the different manuscripts seem to be free of 
corruption, though there are minor variations in the way they are expressed. 

We now find it natural and obvious to express Aristarchus' calculation in 
terms of manipulations of common fractions, but Aristarchus actually employs 
two distinct procedures: 

(i) To begin with, in Proposition 4 and part of 7, simple parts are expressed 
as such. Sometimes they are written out in words, as in Hypothesis 6: 

That the moon subtends one fifteenth part (7TEVTEKatDEKarnv 1.dpoc) of the zodiac, 

sometimes they are expressed as numerals, as in Proposition 4: 

But a 15' [part] (tE' [µ,£poc]) of a sign is a 180' (p7r') [part] of the whole circle of the 
zodiac. 

58 I recommend any reader who remains unconvinced to delete all editorial additions, to 
replace the numbers in the text by those in A, and then to try to understand the text without 
using any modern notations and techniques. Also Clagett's comment (AMA ii1, 51) that 
"Coner made significant corrections of these numbers, no doubt by consulting the Com
mentary of Eutocius" should be expanded slightly since, as we have seen, Coner also made 
corrections that are not found, or are incorrect, in Eutocius' commentary. 
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(ii) Compound parts are never used, with two very minor exceptions to be 
described below. Instead anything that is not a simple part is, right from the 
start, expressed as a ratio. For example: 

The diameter of the sun has to the diameter of the earth a ratio greater than that which 
19 has to 3, but less than that which 43 has to 6 [Introduction and Proposition 15]. 

When this language of ratios is in use, it is not mixed with the language of 
multiples or parts, even in the most obvious cases. See, for example, 
Proposition 7: 

But it was proved that GE has to EH a ratio greater than that which 15 has to 2; 
therefore, ex aequali, FE has to EH a ratio greater than that which 36 has to 2, that is, 
than that which 18 has to 1. 

Also see the two passages quoted in Section 2.4(c). 
We appear to have two distinct approaches: the notation of simple parts, 

which is treated as an extension of the arithmoi, and a notion of ratio, which is 
never confused with any kind of numerical quantity. While there is no difficulty 
in translating those passages that are expressed in simple parts, style i, into 
ratios, style ii, the translation in the opposite direction is less evident. So the 
simple parts seem here to be playing the role of an informal shorthand, not a 
developed language that can be used freely or manipulated. 

The first exception to this description is found, isolated, in Proposition 7: 

... the first angle GBE is a fourth part ( TErnpTOv µipoc) of a right angle. But the angle 
DBE is a 30th part (A.' µ€poc) of a right angle; therefore the ratio of the angle GBE to the 
angle DBE is that which 15 has to two (Ta lE 7rpoc Ta ovo): for, if a right angle be 
regarded as divided into 60 Ct) equal [parts], the angle GBE contains 15 (tE) of such 
[parts], and the angle DBE contains two (ovo) [parts]. 

The language is curiously tentative ("be regarded as divided"), and seems to 
indicate that though the operation of taking the ratio and simplifying it mildly 
is not a standard manipulation, yet it is not difficult to fit within a formally 
correct procedure. 

The second exception is found throughout Proposition 11: 

The diameter of the moon is less than the two 45' (ovo µE' in Vat. gr. 204; ovo 
TEccapaKocT67TEfJ.,7TTa in Wallis), but greater than the 30' (A' in Vat.; TptaKocT6v in 
Wallis), of the distance of the centre of the moon from our eye, 

and this quantity, 'two 45'', runs through the first half of the proposition. 
Again, there is no difficulty in adapting the argument to the alternative 
language of ratio, at some cost in length. 

Despite these exceptions, I do not think that we have the evidence here to 
justify seeing anything which corresponds to the manipulation of general 
fractions. And again, as I illustrated in Section 2.4(c), one of the most 
problematic features of the calculation, the derivation of the inequalities in 
Propositions 13 and J.5, fits very naturally within the context of an anthy
phairetic ratio theory, but it seems to need an anachronistic kind of 
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explanation in arithmetised mathematics, especially if it is interpreted in terms 
of inequalities between fractional quantities. 

7.3(c) P. Lond. ii 265 (p. 257) 

The papyrus, published in Kenyon, Bell, & others, GPBM ii, 257 ff. is not 
typical of the thousands of financial documents that have been found, but it 
provides a good example for illustrating the style and procedures of a 
straightforward and repetitive calculation; Plate 9 is a photograph of columns 
2 and 3, lines 22-67.59 The main reason for including it here is that it is 
sometimes cited as evidence for the Greek use of a notation for common 
fractions. 60 The papyrus is tentatively assigned, on palaeographical grounds, to 
the first century AD, and it concerns the conversion between different standards 
of artabas, a measure of wheat which was also used as a unit for expressing all 
manner of commercial transactions. This text deals with six different sizes of 
artabas,61 called dromoi, chalkoi, anelotikoi, Philippou, Gallou, and Hermou,62 

and it contains twenty-nine examples of conversions of 625 artabas of one 
standard into another. There are potentially thirty possible different such 
conversions; three of the conversions in the text are performed in two ways, 
to illustrate slightly different methods, and part of the text is missing. Other 
parts of the text are fragmentary but can generally be restored with confidence 
because of the repetitive nature of the calculations and the stylised verbal 
formulae describing the operation. In the examples that follow, I shall omit 
most of the editorial details of restorations and difficult readings, except where 
they involve the arithmetical calculations or the 'fractional' notation, our main 
concern here. The scribe has made several errors and approximations, some of 
which I shall describe. The text contains two standard abbreviations: o, for 
artabas; and /, one of the common signs for equality. 63 The names of some of 
the different artabas, and occasional other words, are also abbreviated. 64 

59 The text starts with a column of demotic, which does not appear to have been published, 
and which is not mentioned in the edition of the Greek text. Then Greek column 1 contains 
lines 1-21; 2 22--45; 3 46--67; 4 68-91; 5 92-109; 6 110-30; 7 131-50; and 8 151--62. The verso 
contains a census return in Greek, also unpublished. 

6° For an influential example, see Heath, HGM i, 44, quoted in n. 92, below. 
61 Much as today there are Imperial pints (= 20 fluid ounces: 'A pint of water weighs a 

pound and a quarter'), the US pint (= 16 fluid ounces; 'A pint's a pound and the world 
around'), the Scotch pint(= 3 Imperial pints), and other local variants. A suggestive modern 
translation of artaba might be 'bushel'. Similar conversions can be found in P. Mich iii 145. 

62 The words dromoi, chalkoi, and anelotikoi, all in the dative, are adjectives agreeing with a 
noun to be understood, probably metron. Philippou, Gallou, and Hermou are genitives 
referring either to persons or, less probably, to places. But these grammatical points are 
unimportant for my argument here. 

63 See n. 28, above. 
64 I am very grateful to T. S. Pattie for examining the original of this papyrus, and for 

confirming the following corrections to the published text: 
Line 40: There is a fraction indicator above the eta of pK~ but no traces over the rho and 
kappa. But there is a hole over these letters and very little space between this line and the line 
above. There seems no doubt that the scribe conceived this as pk~, with fraction indicators. 
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A typical sum,65 lines 25-9, with a word-for-word translation, reads: 

25 Opoµ,wl 0 XKE al I'aAAL 7TOCUl 
Dromoi artabas 625 the Gallou, how many 

7rpoc KY § (Talc p 0)66 

at the rate of 23 3 (to the 100 artabas)? 

26 WC oti 7TOlTJCUl 7TOlEl TUC 0 XKE E7Tl TUC 

As you should do. Do the artabas 625 to the 

~ )}:§ijJ'ia 
I 

27 KY TOV owfopov f3 
23 3 of the difference 14791 3. 

" I 28 TO VT WV TO p pµ,' ~ Y, \~ TUVTUC 

Of these the lOOth 147 2 3 12 These 
I I I 

( OEOElKTal ) 67 29 7rpoc8cc Talc 0 XKE ifao/3 ~ Y, If~ 
add to the artabas 625 722 2 3 42 (QED) 

or, in a more liberal translation, 

Given 625 dromoi artabas, how many in Gallou will there be, at a rate of 23 3" per 100 
artabas? (I.e. 123 3" Gallou equals 100 dromoi.) How you should go about it. 
Multiply 625 by the 23 3" which represents the difference I 14791 3". Divide by 
100 I 147 2' 3' 12'. Add the 625 I 771 2' 3' 12'. QED 

At six places only in the surviving text (on lines 40, 48, 49, 65, 66, and 139) 
there is something resembling our notation for common fractions. 68 Let us 
examine each of these examples, starting with lines 38--40: 

38 xaAKWl 0 XKE al Opoµ,wl 7TOCal 
Chalkoi artabas 625 the dromoi, how many? 

39 WC oti 7TOlTJCUl E7TEl ECTlV TO owfopov 
As you should do. Since it is the difference 

Line 48: Parts of an alpha with fraction indicator and a theta can clearly be read, so 1]~ must 
be restored. 
Line 139: There are no fraction indicators over the first iota alpha, but the second iota has 
them. 
Line 147: The papyrus is broken off after the zeta, so L could easily be restored. 
Line 160: Restore [v8 l~ 
Line 162: Restore [f a;a 
All of these corrections have been made to the quotations, below. 

65 This particular example is chosen because it contains more fractional manipulations 
than others and its text is reproduced on Plate 9. 

66 This phrase is frequently omitted. The conversion rate means that 123 ~ Gallou are equal 
to 100 dromi5i artabas., , , , 

67 The scribe wrote µ,/3 in an evident error for l/3, which is given correctly on the previous 
line. On the previous line he has omitted an accent from the gamma and many such accents 
are omitted elsewhere; I shall restore them all in all subsequent passages. All but two of the 
sums finish with dedeikta~ 'it has been shown'. 

68 The 'fractional notation' is also implausibly reconstructed by the editors on line 160, and 
it should have been reconstructed on line 162. Seen. 64, above. 
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II I 

40 7rpoc KTJ Tate p 6 fcK'YJ CTLV • p µ,opia 0 

ii8 
at the rate of 28 to the 100 arbatas, it is 100 parts which 

II 

41 ywETai L d A.{3 A.a{3E ovv TO L d A.{3 TWV 

become i 4 3i. Take therefore the i 4 3i of the 
II 

xaAKwi69 41/2 6 XKE I V7T'YJ d (~~) TOCaVTaL 8€8€LKTaL 

artabas 625 I 488 4 32; as many in dromOi QED 

Here 128 chalkoi artabas are equal to 100 dromoi; so the conversion proceeds 
by multiplying by lg~=~· But note particularly how, before this operation can 
be carried out, the fraction has to be converted into a sum of parts, 
lg~= 2' 4' 32'. This complex operation of taking the 2' 4' 32' part of some 
quantity then recurs in three subsequent calculations, on lines 71, 102, and 130, 
where it is treated just like a normal division. The example on line 102 contains 
an error 

10112 5 6 X7T' L TOVTWV TO L d A~ 
artabas 687 i of these the i 4 3i 

L d {~ A~ 
i 4 i6 3i 

8poµ,wi 

dromoi artabas 
cpA.~ 
536 

where the answer should be 537 16' 32' 64'. These calculations with 2' 4' 32' 
are straightforward and this kind of manipulation, using only the parts 
2',4', 8', 16', ... , would have been familiar from land measurements; see 
Section 7.l(d), above. 

Now look at the fourteenth sum, lines 63-7. Here the scribe abbreviates the 
procedure and leaves the answer in a non-standard form: 

63 aVTJAWTLKWL 6 XKE ai xaAKWL 7TOCaL 

Anelotikoi artabas 625 the chalkoi how many? 

64 8EL A.afk 
I I 

6 WC 7TOLTJCaL TO Ka TWV XKE 
As you should do. Take the 21st of the artabas 625 

I I 
Ka 

65 I KB L~ Ta VT a acp€A€ a7TO TWV 6 XKE 

ii 
I 29 16. These take away from the artabas 625. 

I I 

66 AOL7Tai rPlE 
Ka 
[€] TOCaVTaL xaAKWL 

ii 
There are left 595 5, as many in chalkoi. 

67 8E8ELKTaL 

QED 

69 On this line, the scribe has omitted the fraction A~ and written chalkoi for dromoi. 
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Here there are 100 chalkoi artabas to 105 anelotikoi, so 20 chalkoi to 21 
anelotikoi; hence the conversion proceeds by subtracting a 21st part of the 
anelotikoi. When the conversion factor is n to (n + 1) or (n + 1) to n, the 
calculation will be simplified, since it can proceed by subtracting an (n + l)th 
part, as here, or by adding an nth part, as in the next example. The ratios 
(n + 1) ton were well known from financial calculations of interest, and they 
have a special name, epimorios logos, with the particular examples of epitriton 
(4 to 3), epipempton (6 to 5), ephekton (7 to 6), epogodoon (9 to 8), and 
epidekaton (11 to 10) being of special importance. 70 

A similar procedure is followed in lines 46-9: 

46 xaAKWL 0 XKE aL <1>LAL7T7TL 7TOCaL 

Chalkoi artabas 625 the Philippou, how many? 

47 DEL A.afk 
,, 

0 XKE WC 7TOL7JCaL TO La TWV 

As you should do. Take the 11th of the artabas 625 
, , 
La 

48 [vs' ]8 TaVTaC acpEAE a7TO TWV 0 XKE 

i i 
56 9. These take away from the artabas 625. 

,, 
La 

49 </>~'Y/ f3 TOCaVTaL <1>LAL7r7TL DEOELKTaL 

ii 
568 2 as many in Philippou. QED 

In these last two calculations, the scribe has performed two arithmetical 
operations with the 'fractional' notation: 1 - !f = fi and 1 - -fr = fr. He per
forms a similar but more elaborate manipulation in the next example, and then 
gives an approximation to the result. So here, finally, are lines 136-41; I have 
left in the editorial details to indicate just how much of this part of the text is 
editorial restoration: 

136 [I'aAA/ 0 XKE aL <1>L]Am7TL [7rocaL] 
Gal!Ou artabas 625 the Philippou how many? 

137 [we OH 7TOL71caL] TaVTa[c xaAKLcov] 

As you should do. These convert to chalkoi 
, , , 

138 [we 7TpOKHTaLj [x]aAKWL 0 [xµ.f3 ~ r 'f?l 
as set out chalkoi artabas 642 2 3 24. 

,, 
La 

139 TOVTWV [Toj La V'YJ E [rnvrnc acpEAE] 

ii 
Of these the 11th 58 5. These take away 

70 See Sections 4.5(b) (A60 and B61 ) and 4.5( d), and Burkert, LS, 439; but Burkert's argument 
that these epimoric ratios appear in the musical fragments of Archytas and Philolaus as 
borrowings from the financial calculations of everyday speech seems very doubtful. 
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I 11 

140 a7TO TWV [x]aAKWL [o] xµ.fJ (L y Kil /] 
from the chalkoi artabas 642 2 3 24 I 

141 <1'tAL7T7TL 6 
I II 

cfJ7Ta r ~~ (/)€/)EtKTatj 

Philippou artabas 584 3 12 QED 

More than half of the calculations proceed by passing first to chalkoi 
artabas, and then into the required standard; the process is described by the 
verb xaAKLCOV ('chalkise'). In this case, the conversion from Gallou to chalkoi 
was performed in the 23rd sum, lines 122-6, and it contains a mistake and a 
skilful approximation: 64687 ...;- 100 is given 71 and subsequently used as 
642 2' 3' 24', where it should be 646 2' 3' 3~0, closer to 646 2' 3' 27'. 
The mistake, in a division by 100, is less obvious in Greek than in Arabic 
notation: 

Twv µ, ,Sx7T' TovTwv To p I xµ,/3 L ;~t,, instead of xµ,c: L ;~s. 
In line 139, fr is a reasonable and straightforward approximation for 
4 2' 3' 24' ...;- 11, since 4 2' 3' 24' is already close to 5, and this difference 
will then be divided by 11. In line 141, 3' 12' is a reasonable and straightfor
ward approximation for 2' 3' 24' - fr since fr is less than 2' by 22', close to 
24'. The approximations are not always so adept; for example, in lines 120-1, 
the result of 68570 ...;- 104 is given as 661 12', where the correct fractional result 
is -lz, which is between 18' and 17'. 

The arithmetical operation in the papyrus that generates the fractions is 
division, and these divisions are always expressed exactly as we find them in 
division tables, for example as on lines 28, 102, 64, 47, and 139 in the examples 
quoted above. The following divisions are performed in the papyrus; the 
examples cited above are marked with an asterisk: 

Division by 
4 
6 

10 
11 
20 
21 

100 
104 
128 
207 

2' 4' 32' 

On lines 
35 
22 
96 
47*, 76, 139*, 160 
12, 44, 134, 154 
64* 
4, 6, 15, 28*, 33, 126 
61, 93, 120, 149 
40* 
55, 84, 111 
41*, 71, 102*, 130 

The 'fractional' notation is associated only with the divisions by 11, 21, and 
128; I have quoted in detail all of these divisions except for that on line 76 

71 In fact this part of the text has to be reconstructed, but the scribe subsequently clearly 
uses the wrong answer. 



7.3 A selection of texts 253 

(where 595 4' -;- 11 is approximated as 54 J 1' with an error of 44' which arises 
from ignoring the fractional part 4' in the dividend) and in line 160 (where, in 
text that is lost and has been cotµpletely restored, 650 -;- 11 = 59 11 ' is then 
subtracted from 650 to laeve 591 [6). Of the other divisions, those by the more 
commonplace numbers, 4, 6, 10, 20, and 100, are all evaluated in a straightfor
ward way,72 while the seven divisions by the more unusual numbers 104 and 
207 are all expressed in conventional simple and compound parts. 

Section 7.2 described the extensive evidence we have concerning division 
tables, the ready reckoners and exercises that deal with the expressions of 
divisions as sums of parts. These division tables are sometimes quite extensive, 
though few would contain tables for division by 11 or 21 (see how the sets of 
tables in nos. 7 and 14 omit these) and none would contain tables for division 
by 104 and 207. I propose that the 'fractional' notation may plausibly have 
been used here by the scribe in the following circumstances: by convention, the 
final answer to any sum should always be presented in a standard form, as 
simple or compound parts. 73 Whenever possible, this expression should be 
precise, but approximations were permitted; and the exact value for all 
commonly occurring divisors could be got from memory or tables. The 
scribe did not have the tables for division by 11 and 21 to hand, or he could 
not remember the answers though he was aware that these tables existed; so 
where the sums required divisions by 11 or 21, the scribe approximated the 
answer or left a shorthand abbreviation in the text, to be expanded later. Where 
the scribe knew that the tables did not exist, for example for division by 104 and 
207, he always approximated the result. And I think that a close examination of 
the papyrus leads to one firm overall conclusion: that we have no good evidence 
here for the notation or manipulation of anything similar in conception to 
common fractions, beyond simple subtractions like '1 minus the 21st of 16 
leaves the 21st of 5'', which are conceived throughout as simple or compound 
parts. I shall return to this kind of explanation at several places below. 

7.3(d) MP.E.R., N.S. i 1 

This text 74 is a collection of thirty-eight easy problems in three-dimensional 
metrical geometry very much in the style of the Heronian Stereometrica; it 
has been edited with full mathematical commentary in Gerstinger & Vogel, 
MNWPER i, 11-76. It was dated by its editors, on palaeographic grounds, to 
the second half of the first century BC, but this date has now been revised by 
W. E. H. Cockle and H. Harrauer to the first century AD, at the earliest. 75 Plate 

72 With one error on division by 100 (see the comment on lines 137-8, above), and one 
approximation in the division by 20 on line 134, in a passage that has been completely 
restored by the editors (642 2' 3' 24'-;- 20 / 32 6'). 

73 Analogous conventions apply today to the presentation of answers to school mathemat
ical problems. 

74 Also known as P. Vindob. [inv.] 19996 and P. Rainer (N.S.) i 1. 
75 I am grateful to Wa1ter Cockle and Hermann Harrauer for answering my many queries 

about this text and for examining, respectively, a photograph and the original. Several of the 
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11 is a photograph of column 6, 76 which contains seven of the nine examples of 
the general 'fractional notation' that occur in this papyrns, and the remaining 
two examples (in Problem 10) arise in exactly the same context as examples in 
Problem 12, as will be described below. Hence a discussion of column 6 will 
cover all occurrences of the notation in this papyrus. The column starts in the 
middle of Problem 12 (whose beginning is lost), and Problem 13 begins in the 
middle of line 3; this is indicated by a forked paragraphus or diple 
obelismene77 under the beginning of line 3. There is another such para
graphus, not indicated by the editors, under the beginning of line 11, marking 
the end of Problem 13. 

The seven instances of the 'fractional notation' in this column are as follows: 

Problem 11: -rvs' ~is used as a label to its figure, not legible on Plate 9. This is an unusual 
way of writing the part 5', which in any case here needs emendation to yield anything 
meaningful. 

€ € 
Problem 12: f3 and 8 (twice) occur in the text, in lines 2 and 3, and ifaQr~ (in a doubtful 

reading) occurs as a label to its figure, but this also needs emendation to make 
mathematical sense. The epsilons in line 2 are written cursively while that in line 3 is 
written in two strokes, and all of them have fraction indicators. 

€ , 
Problem 13: f3 and y occur in the text, in lines 9 and 10. The epsilon is written in two 

strokes, and both the epsilon and the kappa have fraction indicators. 

Here now is a transcription and literal translation of column 6, together with 
its text figures and their labels, in which all abbreviations have been expanded. 
Note, in particular, that A is ,\om6v, '(there is) left';'\, is c1v, 'ofwhich';78 and 
y{veTai is written in full or abbreviated as I or rt. Further remarks on the 
abbreviations will be found in Section 7.4(a), below. 

[End of problem 12:] 

l (Aomov) a cLv [7TAE(vpd)rt] a [-r71AiKa(vn7)] ~ KaBE-roc 
... there is left l of which a side I l. So much [is] the height. 

ElT[Ev ajva1.d-rpEL -rp{yw(vov) lco7TAEvp(ov) 
Then measure a triangle, equilateral, 

details described below, particularly of the use of fraction indicators in the 'fractional 
notation', are not included in the editio princeps and are not discernible on the photograph, 
reproduced here as Plate 11; but they can be securely read on the original. Also there is a 
revised reading in column 6, line 10: for T. ( now read '!~· These corrections have been 
incorporated in the transcription, below. Further discussion can be found in the edition of the 
verso, M.P.E.R., N.S. xv 151, which contains an extensive addition table in a later, school
boy's hand; see no. 56 in the Appendix. 

76 There is a photograph of column 10, Problems 24 and 25 and their figures, in the editio 
princeps and another photograph in Weitzmann, AB! of columns 12 (part), 13, and 14 (part), 
Problems 28-32 and the figures 12b and c, and 13. 

77 See Turner, GMA W, 14--5. 
78 For details of the second abbreviation, seen. 27, above. On the first, A. Blanchard notes: 

"Here again there is borrowing from the demotic }, sp, rationalised into a lambda by the 
Greeks and then, since the Greek abbreviations contain at least two letters, into A, f.'t.., and 
even later, into A.o1· 
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2 ov al m\\'[v]pa[l] ava 

5 
of which the sides each [are] 12. It makes 64 2, 

(c1v) 
£ 

TO Y ft Ka S TaVT' E7Tl T~v K6.8t-

5 
of which the 3rd I 21 4. This to the height 

£ 
3 rnv a I Ka 8TTJAlKa(vn1) [(~) cT]~ATJ 

5 
1 I 21 4. So much is the block. 

rnv 8(o8Hi aAATJ{i} 
[Problem 13:] If there is given another 

Tp[{y]wvo(c) ~fLlTEA0c ~ Kopv 
triangle, half-complete, the top 

4 c/>0 ava y ~ 8E /jac;:(tc] [av]a l'Y} Ta 8€ KA{µ,arn ava ta 

each [is] 3, the base each [is] 18, the slopes each [are] 11. 
acpEAE T0v Kopvcp(0v) 

Take away the top, 

5 Tay a7To Twv lTJ [(Aol7Tov) iE Ta iE] £cf>'fo(vTa) rt cKE 
the 3 f{om the 18, there is left 15. The 15 to itself I 225, 

wv To y rt oE Kai Ta i £cf>' Eia(vTa) rt p[ 
of which the 3rd I 75, and the 10 to itself I 100. 

6 U7TO TOVTWV acpEAE Ta [oE] . . . (Aol7Tov) KE 
From these take away the 75 there is left 25, 

cLv 7TAE(vpa) rt E TTJAlKa(VT'Y}) ~ KaBETOC ElTEV 
of which a side I 5. So much is the height. Then 

7 cvvBEc Ta y ~q.i Ta [t'Y}] rt ~a [ l (c1v) TO !_ rt l !_ 

put together the 3 and the 18 I 21 of which the 2 I 10 2. 
> I I ( ) ' < avaµ,ETPTJCOV Tptyw vov ov al 

Measure a triangle, of which the 

8 7TAEVpai ava [i L]rt [µ,n !_ [d] ElTEV acpEAE Ta y U7TO 
sides each [are] 10 2 I 4 7 i 4. Then take the 3 from 
Twv t'Y} [(Aol7Tov)] tE cLv To L rt ~ L 
the 18, there is left! 5 of which the 2 I 7 2 

9 £yµ,€Tptt aAAQ. [T]p[y(wvov) ?c::97!'[A]\'l!p(ov) oJ q.{ 17'A\'l!(pai) 
Measure out another friangle, equilateral, of which the sides 

255 
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WV 

I 
E 

TO y I 'Y/ f3 TaVTa 

5 
each [are] 7 2 I 25 5, of which the 3rd I 8 2. These 

I 
K 

10 7rpoc8Ec T+jt 7rpWTTJl a[A]Ao E'))_~~CEl TOl<; 1!' L 81 vc y TaVT' E7Tl T0v 

26 
add to the first, elsewhere set-out, to the 87 2 4 t 56 3. This to the 

11 Ka8Ernv EI m L d rqcwv [ T]wv 7ToD~v £cTiv ~ 7Tvpaµic 

height 5 / 280 24. Of so many feet is the pyramid. 

Line 2: For ~8, 64, read ~(3, 62. 
E 5 lE i5 E 5 

Lines 2 and 3: For Ka a, 21 4, read Ka ,, 21 7, or K a, 20 4. 
Line 4: For ia, 11, read t, 10. 
Line 10: For 7!,, 87, read µ,,, 47. 
For notes on the labels on the figures see the editio princeps. 

7.3 

The scribe is applying the same procedures for calculating pyramids that we 
find set out in the Heronian Stereometrica; see Heron-Heiberg, Schone, & 
others, Opera v, 137-61 or Heron-Bruins, CC, folios 5Y-6F. The following 
notes will explain what is happening, and the reader is referred to these texts 
and commentaries for further details: 

(i) The area of an equilateral triangle is (approximately) the 3rd plus the 10th 
of the square on the side; the scribe performs this operation, without explana
tion and with errors and approximations, on lines 2, 7-8, and 9, and each such 
operation will be analysed below. Heron's explanation of this procedure, for 
the case of an equilateral triangle of side 30 (Heron-Heiberg, Schone, & others, 
Opera V, 148.25-6 or Heron-Bruins, CC, folio 58r.19-20), is: 
' e , ' , a ~ ' ~I \ \ , ,,./..! ~ / I A , \ , \ \ / I !:; 

EVpE TJCETal TO EfJ.,tJaoov OVTWC Ta I\ E'f' EaVTa· '\· TOVTWV TO y Kat TO l" T /· 

The base will be found thus: the 30 to itself I 900. Of these the 3rd and the 10th I 390. 

[Problem 10] [Problem 12] 

[Problem 11] [Problem 13] 
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(ii) The square on the circumradius of an equilateral triangle is the 3rd of the 
square on the side (Elements XIII 12); see line 5. 

(iii) The height of these regular pyramids is calculated using the right-angled 
triangle of inclined edge, height, and circumradius of the base; see lines 5-6. 

(iv) The volume of a pyramid is the third of the base, multiplied by the 
height; see lines 2-3. 

(v) The procedure for evaluating the volume of a truncated pyramid is 
clearly described in lines 7-11. 

Every occurrence of the 'fractional notation' in the text is associated with an 
evaluation of the area of an equilateral triangle, as was described above, and 
none of these operations is explained by the scribe: 

Line 2: When the side is 12, its square is 144, of which the 3rd and 10th is 48 
and 14 and the 10th of 4, viz. 62 and the 5th of 2. The identical operation was 
performed correcrly in Problem lp, column 5.3-4, but here, in Problem 12, the 

5 5 
scribe writes 64 2 instead of 62 2. 

Line 8: When the side is 10 2', its square is 110 4', of which the 3rd and 10th 
is 36 2' 4' and 11 and the 10th of 4', which the scribe approximates as 47 2' 4' 
by neglecting the 40'. 

Line 9: When the side is 7 2', its square is 56 4', of which the 3rd and 10th is 
18 2' 4' and 5 and the 10th of the 4th of25, which is 23 2' 4' and the 8th of5, 
which is 24 4' 81. The ~cribe makes an error and gets 25 5', which h,e, then 

5 20 
divides by 3 to give 8 2. He then adds this to 47 2' 4' to give 56 3; the 
fractional part of this can be evaluated by adding the 20th of 8 to the 20th of 10 
and of 5. 

All other calculations in the text are carried out in the usual simple and 
compound parts. The text contains divisions by 3, 5 and its multiples, and 
various powers of 2. The examples of the 'fractional notation' only occur in the 
divisions into 5th parts or its multiples, and every such division by 5 or its 
multiples introduces the notation. Also every such 'denominator' has a fraction 
indicator. Thus an explanation such as was offered for the examples in P. Lond. 
iii 265 again seems to apply: that the scribe used the notation only when he did 
not know, could not find, or did not want to break off to compute, a table of 
division by 5ths or lOths. 

Fractions, expressed in parts, also arise in this papyrus when square roots are 
quoted: without any explanation, in Problem 14 the square root of 66 3" is 
taken to be 8 6', and in Problem 29 that of 200 as 14 7'. Also the rule for 
evaluating the area of an equilateral triangle is based on an approximation of 
! y'3 as 3' 10 '. All of these are good approximations. 79 

79 The anthyphaireses are as follows: )200: ./3 = [8, 6, 16], ./200: 1 = [14, 7, 28], and 
J3 : 4 = [O, 2, 3, 4] where [O, 2, 3, 4] = 13 : 30, or J3 : 1 = [1, 1,2] where [1, 1, 2, 1, 2, 1] = 26 : 15. 
See Chapters 2 and 3; here again we have another example of unexplained fluency with square 
root operations. 
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7.3(e) Demotic mathematical papyri 

The small corpus of known mathematical works written in demotic comprises 
eight texts: five of them, containing in all seventy-two short problems, 
published in Parker, DMP; two in Parker, DMPF and ME; and the division 
tables, no. 6 in the catalogue in the Appendix below.80 All of my examples here 
will be taken from DMP, and will be referred to by the problem numbers 
therein. Readers are directed to this book for photographs, transcriptions, and 
full commentaries. 

Here I shall consider only the demotic treatment of fractions. As in Greek, 
there is no specific word for 'fraction', and the demotic word r3 means 'part' or 
'fraction', or even 'number' or 'amount', according to context. 81 The treatment 
of fractions follows the familiar pattern: there are special signs for 3", 2 ', 3 ', 
and 4', and thereafter the parts are indicated by a fraction indicator, a small 
stroke, which may often be omitted, attached to the normal numeral. 82 A 
ligatured 3"6' is used to represent i, but no surviving text seems to contain a 
similar ligatured 2'4' for~. common in Greek documentary papyri. 83 

While the operation of division, 'the nth of m', is described in Greek by very 
minor variations, for example in the word order, of the basic phrase 'T<vv m TO 
n', there is a much wider range of expressions in demotic. Here are the 
translations of some examples:84 

80 The inventory numbers, locations, and dates of these texts are as follows. In Parker, 
DMP: P. (dem.) Cairo J.E. [inv.] 89127-30, 89137---43 verso; iii BC, perhaps from Herrnopolis: 
Problems 1---40. P. (dem.) B.M. [inv.] 10399, Ptolemaic, later than P. Cairo, provenance 
unknown: Problems 41-52. P. (dem.) B.M. [inv.] 10520, early(?) Roman, provenance unsure, 
possibly Memphis: Problms 53-65. P. (dem.) B.M. [inv.] 10794, uncertain date, unknown 
provenance: Problems 66-7, the division tables no. 4 in my catalogue. P. (dem.) Carlsberg 
[inv.] 30, probably ii AD, from Tebtunis: Problems 68-72. In Parker, DMPF: P. (dem.) 
Griffiths Institute [inv.] IE.7. In Parker, ME.: P. (dem.) Heidelberg [inv.] 663, Ptolemaic, 
perhaps ii or i BC, provenance unknown: three fragments of problems on a trapezoidal field. 

Also see Neugebauer, ESA, 91: "One large demotic text was found in Tiina el-Gebel, 
according to The Illustrated London News 104 (1939) and Chronique d'Egypte 14 No. 28 
(1939) 278. No information about this text could be obtained". (Hermopolis West is modern 
Tuna el-Gebel; this is surely P. Cairo, above.) I would like to thank R. A. Parker and John 
Tait for further explanations of some of this material. 

81 I was tempted to change the word 'fraction' into 'part' in several of the passages cited 
below, but have resisted this blind interference with the translations. See, for Egyptian 
numerals and fractions, Erichsen, DG, 694-706, and Gardiner, EG, 191-203. 

82 In the passages cited below, I have replaced Parker's translations ~,1,-k,;J:, ... by 
3", 2', 3', 4', .... 

83 This ligatured 3"6' is very common, and the expression 2' 4' seems to be avoided; 
for example, in Problem 23, the sum of 1, 2', 4', and 8' is then expressed as 
1 i 30' 120', and 2' 4' only seems to occur in the fragmentary and uncertain readings 
in Problems 33 and 70, while Problem 13 uses the alternative expression 3" 12'. Also 
see n. 88, below. 

84 See the discussion in Parker, DMP, 8 for further details and examples. Even within the 
text of the single scribe of Problems 1---40, we find a wide variety of different equivalent 
expressions. 
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Problems 66 and 67, the division tables, are expressed thus: 

The way of taking 150' to 10. Viz. 85 

1 result 150' 
2 result 90' 450' (sic) 
3 result 60' 300' (sic) 

Problem 13: Carry 15 3" into 100, 
Problem 3: You shall take the number 47 to 100, 
Problems 9, 10, and 46-52: You shall say: '4 is what of 5?'. Result, its 3" 10' 30'. 

259 

Six problems in DMP, numbers 2, 3, 10, 13, 51, and 72, coming from 
three different manuscripts, show the special feature that the results of 
divisions are not expressed in parts, but employ some more general 
'fractional notation'. I shall start with a complete citation of the trans
lation of Problem 3, and with brief observations on these other examples. I 
have adjusted the quotations to conform to the style of editorial indi
cations used here (described in the index to the plates, p. xxv), and the 
notation for parts (see n. 82, above); otherwise the quotations are word-for
word from DMP: 

Problem 3: 
1 If it is said to you: '[Carry 15 3" into 100]'. 
2 you shall subtract 6 fr[om 100: remainder 94] 
3 You shall say: '[6] customarily go[es into 94 

(with the) result 1]5 3"'. 
4 Bring it (to the) number 3': result 47. 
5 You shall take the l).l,ltµl;>yf 47 to 100. 
6 47 to 1 
7 94 to 2 
8 Remainder 6: result fr 
9 Result 2 f?. 

10 You shall reckon it 3 times: result 6 H-
11 You shall say: '6 H is its l).\ltµl;>yf.' 
12 You shall reckon 6 H, 15 3" times. 
13 6H to 1 
14 63~ to 10 

19 2' 
15 31 2' 47 to 5. 

11 2' 
16 Total 95 2' 47 to 15. 

17 4H to 3" 
23 2' 

18 Total 99 2' 47 to 15(3"). 

19 I . d . 2' h. h . · I 23 2' ts remam er 1s , w 1c 1s eqmva ent to 47 
20 Total 100. 

85 This word 'viz.' is tile translation of 'I', the transliteration of ( See n. 28 and its text, 
above. 
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These fractions, all with 'denominators' 47, are indicated here by underlining 
the 'numerator'. For example, in line 15, 

31 2' 19 21 is written 47 2' 19 2' 31 
47 

(read from right to left!). This same system applies to Problems 2, 3, 10, and 15, 
all from the same papyrus. In Problems 51 and 72, below, the 'denominators' 
are underlined; for example, in Problem 51, fi is written 11 5. 

Problem 2: A fragmentary part of the text, very similar to Problem 3, based on dividing 
100 by 17 3" and involving divisions by 53. 

Problem 10: A problem on division of cloth that involves division by 11, in which the 

complex expression 1 2' 1
1 ~, ~ppears. Problems 8 and 9 are very similar; they involve 

division by 6 (giving an answer ~, written as the ligatured 3"6') and by 5 (see the 
discussion below). 

Problem 13: A fragmentary and obscure problem on the division and valuation of pieces 
of cloth, in which, without any explanation, a further valuation at a rate described by the 

1 d" . . 3' 1 I 7 2' lO' . . d d h" . Id f I . comp ex 1v1s10n 5 131 1s mtro uce . T 1s y1e s a set o comp ex expressions 

involving divisions by 131. 

Problem 51: The last of a sequence of six problems. The previous five problems all ask: 
given the fraction n' which is added to 1, determine what fraction of 1 n' must be 
subtracted from it to give 1 again. The answer (n + 1 )'is verified in each case, for n = 5, 
6, 7, 8, and 9. Then Problem 51 asks: given the fraction~ which is added to 1, determine 
what fraction of 1 must be subtracted from it to give 1 again. Two of these problems will 
be quoted in full below. 

Problem 72: A fragmentary and obscure part of a problem involving proportions of 
gold, silver, copper, and lead. Without explanation in the surviving fragment, division 
by 76 is introduced and then not expressed in parts. 

Problems 13 and 72 seem to be so fragmentary and obscure as to defy 
elucidation, and I shall not consider them further here. Take now the following 
parallel extracts, from Problems 9 and 10:86 

Problem 9 
You shall say: '4 is what 

(fraction) of 5?' 
Result, its87 3" 10' 30'. Add it to 4: 

result 4 3" 10' 30' .... 
You shall reckon 4 3" 10' 30', 

5 times: result 24 .... 

Problem 10 
You shall say: '3 is what 

(fraction) of 11 ?' 
Result fr. Add it to 3: 

result 3 fr. 
You shall reckon 3 fi 

2' times: result 1 2' ~· ... 

86 The editorial apparatus, apart from indications of editorial additions, has been omitted 
from these and most of the following examples. 

87 I do not know whether the inclusion of the possessive article in this phrase in Problems 8 
and 9 (demotic "r p3y. f . .. ",translated "Result, its ... ")is noteworthy, but its exclusion 
from 10 (demotic "r ... ", translated "Result ... ") is significant. 
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In the left-hand column, the calculation involving division and multiplication 
by 5 is carried out in compound parts; in the right-hand column, division by 11 
is left in its raw state, but it is clearly conceived in simple and compound parts. 
This is further corroborated by the corresponding extract from the similar 
Problem 8, which starts: 

You shall say: '5 is what fraction of 6?' Result, its i ... , 
in which the~ is written as the ligatured 3"6', again a compound part. 

Now consider Problem 51. This follows exactly the same stereotyped verbal 
formula as the previous five problems 46-50, as can be seen in the following 
parallel quotations. 

Problem 48 
1 You are told: '7' is (the) addition: 

what is (the) subtraction?' 
2 The way of doing it. Viz. 
3 You shall add 7' to 1: result 1 7'. 
4 You shall say: '7' is what (fraction) 

of 1 7 '?' Result, its 8'. 
5 You shall say: '7' is (the) addition; 

8' is (the) subtraction.' 
6 To cause that you know it. Viz. 
7 You shall subtract 8' from 1: 

remainder 3" 12' 8'. 
8 The fraction 3" 12' 8'. Viz. 
9 Its 7' (is) 8 '. You shall add it (8 ') 

to it (3" 12' 8'): result 1 again. 

Problem 51 
You are told: 'i is (the) addition: 
what is (the) subtraction?' 
The way of doing it. Viz. 
You shall add i to 1; result 1 i· 
You shall say: 'i is what (fraction) 
of 1 i?' Result, its fr. 
You shall say: 'i is (the) addition; 
fr is (the) subtraction.' 
To cause that you know it. Viz. 
You shall subtract fr from 1: 
remainder fr. 
The fraction fr· Viz. 
Its i (is) fr. You shall add it (fr) 
to it (fr): result 1 again. 

In each of Problems 46-50, the subtraction in line 7 is expressed as a compound 
part, with the feature that, in all of the cases other than the one quoted, these 
parts involve the ligatured 3"6', translated as ~· These subtractions are as 
follows: 

Problem 46: 1 - 6' = 3" 6' 
Problem 47: 1 - 7' = 3" 6' 42' 
Problem 48: 1 - 8' = 3" 12 8' (see above88) 

Problem 49: 1 - 9' = 3" 6' 30' 45' 
Problem 50: 1 - 10' = 3" 6' 15' 
Problem 51: 1 5 - 6 -rr-rr (see above) 

It seems clear from this block of examples that again, while the scribe prefers, 
whenever he can, to express the divisions as compound parts, here also, as in 

88 Parker observes (DMP, 61, note to line 16): "For no discernible reason the scribe uses 
the clumsy fraction 3" 12' 8', with 8' in incorrect order after 12', instead of the more 
convenient~ 24'." I suggest that 3" 12' may be the standard expression for the 4th of 3. So 
to subtract 8' from 1, 1 is mentally decomposed into 3" 12' 4', then 8' is subtracted from 4' 
to give 8'; hence the form of the scribe's answer. Also seen. 83, above. 
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Problem 10, division by 11 defeats him. Similarly, in Problems 2 and 3, division 
by 53 and 47 leads to expressions which he also cannot express in parts. In all of 
these cases, he resorts to abbreviations for expressing the incomplete divisions; 
and it is these abbreviations that we interpret as a notation for common 
fractions. 

This explanation is again consistent with the proposed explanation of the 
previous texts, that, while an expression in parts is the preferred form of 
answer, in cases for which tables are not available, the divisions may very 
occasionally be left in an incomplete state. I shall now draw these conclusions 
together and indicate some of their wider implications. 

7.4 CONCLUSIONS AND SOME CONSEQUENCES 

7.4(a) Synthesis 

The evidence for the proposal that early Greek mathematicians conceived and 
used manipulations of common fractions is said to come from two sources: from 
the medieval manuscripts of scientific treatises, and from contemporary texts on 
papyrus which are mainly of a commercial and pedagogic nature; and the 
proposal is often reinforced by a more or less unconscious retrojection of our 
own ways of thinking, which usually manifests itselfin wonder that anyone of any 
mathematical insight could ever be so obtuse as to reckon in unit fractions. 89 

However, the evidence of calculations in the papyri displays almost unani
mous evidence against this proposal. The very few instances there that can be 
cited as illustrating notions for common fractions appear, on closer scrutiny, 
more probably to be abbreviations of unresolved descriptions of divisions that 
are still conceived as sums of unit fractions, and all can be more naturally 
explained as relaxations of stylistic conventions about how these divisions 
should be evaluated and expressed. Possibly the abbreviations did then evolve 
into our conceptions of common fractions, and certainly the practice and 
popularity of common fractions developed, particularly among Italian mathe
maticians, from the ninth or tenth centuries onwards. These new fractional 
notations and conceptions may then have been adopted by the scribes and 
readers of the medieval manuscripts, and so infiltrated and corrupted the 
evidence to be found there; on this more work needs to be done. 90 

89 In this section, only, I shall sometimes use the common but, I believe, misleading 
description 'unit fractions', to ensure that my proposals are clear to everybody. But I 
encourage any sympathetic reader to conceive these unit fractions, in Greek style, as the 
half, the third, the quarter, ... and their combinations, that is as meros e mere, part or parts. 

9° For example, it would be interesting to know if there is any systematic difference 
between contrasting early manuscripts, like Paris gr. 2389 and Vatican gr. 1594, which 
contain the same numerical data (here the Almagest) but expressed differently, in the old 
capital and the new minuscule scripts. Also see the notes in Diophantus-Sesiano, BFSDA, on 
the treatment of numbers and fractions in the newly discovered Arabic translation of part of 
the Arithmetica, especially on pp. 37--42 and 437 s.v.juz'. This translation was probably made 
from an earlier exemplar than the surviving minuscule Greek manuscripts (seep. 67). 



7.4 Conclusions and some consequences 263 

Of course, the manipulations of fractions expressed as unit fractions are 
(arithmetically) equivalent to the same manipulations when expressed as 
common fractions; but they will be conceived differently in the two systems. 
Some operations will come very close to each other; for example, the manipu
lation of 'the nth of m' into the equivalent 'the knth of km' is parallel to the 
identity m/n =km/kn, but very far from it in conception; and a frequent step in 
our evidence is the manipulation 'the nth of m plus or minus the nth of p is the 
nth of (m ± p )', equivalent to m/n ± p /n = (m ± p) /n. But reciprocation gives 
an example of an operation which manifests itself very differently in the two 
systems; for an illustration, the relation between f.t and 2 ~is much more evident 
than that between 3' 17' 51' and 2 3' 15' 35'. Just one example of some 
operation such as the addition, subtraction, multiplication, or division of two 
fractional quantities, expressed directly as something like, 'the nth of m 
multiplied by the qth of p gives the nqth of mp' and clearly unrelated, by 
context, to any conception in terms of simple and compound parts, could be fatal 
to my thesis that we have no good evidence for the Greek use or conception of 
common fractions. I know of no such example.91 

We can take my explanation further. First consider the form of the 

abbreviation, in which the stereotyped phrase 'Twv m TO ft' is written fh with, 
as is often expressed, 'the numerator and denominator reversed'. 92 The practice 
of writing one letter above another is very common in the abbreviations found 

91 For a recent, useful, detailed study of Greek and Egyptian fractional techniques, see 
Knorr, TFAEG. But what are presented there as manipulations of common fractions~ are 
clearly manipulations of the descriptions 'the nth of m' which are conceived throughout the 
texts under discussion in terms of unit fractions. See pp. 148-51 on the Archmim Mathemat
ical Papyrus, for example on p. 150: "Although the problems are invariably expressed in 
terms of unit-fractions and the final solutions are given in this same mode, the actual 
execution of the arithmetic operations first introduces their conversion to terms of the form 'f 
(but here~ invariably abbreviates the expression Twv a To b); and "Thus, the scribes in the 
arithmetic tradition of late antiquity present themselves as virtuosi in the art of manipulating 
unit-fractions; yet their very methods reveal this to be a superfluous art. How was it possible 
that they failed to perceive this, embellishing these techniques and so distracting from the 
teaching and development of the more general techniques of [common] fractions employed 
within their computations?" (The answer here is surely that the scribes were actually 
conceiving, teaching, and developing unit fraction techniques, and had little or no conception 
of common fractions.) 

92 See, for an influential example, Heath,' HGM i, 43 f.: "The most convenient notation of 
all [for common fractions] is that which is regularly employed b)? Diophantus, and 
occasionally in the Metrica of Heron. In this system the numerator of any fraction is written 
in the line, with the denominator above it, without accents or other marks (except where the 
numerator or denominator itself contains an accented fraction); the method is therefore 
simply the reverse of ours, but equally convenient. In Tannery's edition of Diophantus a line 
is put between the numerator below and the denominator above ... but it is better to omit the 
horizontal line (cf. P;'I = [~~in Kenyon's Papyri ii, No. cclxv.40, and the fractions in Schone's 
edition of Heron's Metrica)." In fact, these letters pKYJ and all of the other examples in P. 
Lond. ii 265 and M.P.E.R., N.S. i 1 incorporate fraction indicators; see nn. 64 and 75, above. 
Every known instance of fhis abbreviation in contemporary papyri has been discussed in 
Sections 7.3(c), (d) and (e), above. 
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in Greek papyri. See, in Plate 8, how practically every word in 0. Bodl. ii 1847 
is abbreviated in this way. For example, at the beginfling of lines 4 and 5, 

A,\(,\71) €xo(µ€v71) is written~ EX· while, in line 7, the same expression is written 

~ ~; and, in Plate 11 in the first line of column 6 of M.P.E.R. i 1, Tp{yw(vov) is 

written Tpty and lc67TAEvp(ov) is written tco7TAEVf 93 It may be that it was this 
common practice of the scribes of documentary papyri which led to the writing 
of numerical abbreviations by superposition. For example: 

(i) In the alphabetic system of numerals, ~. ~. etc. denote 1 myriad (1 0000), 
2 myriads, etc. 

(ii) In describing amounts of money measured in the xaAKovc, one-eighth of 

an obol, X· ~. etc. is very often used for 1 chalkous, 2 chalkoi, etc. 
(iii) In describing amounts of wheat, or its equivalent, measured in the 

xofvig, one-thirtieth of an artaba, the same notation x. ~. etc. is very often used 
for 1 choinix, 2 choinikes, etc. 

Moreover, in the 'fractional notation' the 'denominator' would tend to be 
placed above the 'numerator' in such an abbreviation since this 'denominator' 
is written with its long fraction indicator which proclaims its different gram
matical and conceptual status from that of the 'numerator'. As this fraction 
indicator would get in the way of anything written too close and above it, it 
would be much more conveniently situated on top. Further, in these examples 
of abbreviation by superposition, the later part of the abbreviation is usually 
written on top, and the same goes for the 'fractional' abbreviation of 'Tlov m To 
,, -ft 
n as m. 

A further argument in support of my thesis can be drawn from the full
format division tables, described in Section 7.2(a), above. Consider how such a 
table might be used to evaluate a division like the 9th of 842. From the table, we 
can read off that the 9th of 800 is 88 2' 3' 18', of 40 is 4 3' 9', and of 2 is 
6' 18'. When these are added, we get 92 2' 3' 3' 6' 9' 18' 18'; but the 
repeated parts now have to be removed, by several more steps of working. 
However, it does not take much insight to see that we can greatly simplify the 
evaluation as follows: the 9th of 800 is 88 2' 3' 28', and, also from the table, 
we recognise the fractional expression here as being the 9th of 8; similarly the 
9th of 40 is 4 and the 9th of 4. Hence the 9th of 842 is 88 + 4 and the 9th of 
8 + 4 + 2, so 93 and the 9th of 5, so 93 2' 18 '. I cannot believe that some such 
simplification was not used in practice; but that it seems never to have been 
expressed in the tables is yet another indication of the absence of any notation 

93 There are about thirty different such abbreviations in M.P.E.R., N.S. i l; they are 
listed in Gerstinger & Vogel, MNWPER, 47. For abundant other early examples of these 
abbreviations, see McNamee, AGLPO and the index of symbols and abbreviations in P. 
Lugd. Bat. xxi ( = Pestman, GZA). The whole question of abbreviations in papyri is very fully 
discussed in Blanchard, SAPDG; seen. 28, above. 
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for it, and so the absence of any conception of division in terms other than as 
sums of parts. 

Now consider the contrast between the rather rigid forms of the Greek 
expressions for division, all very minor variations of 'Twv m TO ft', that are 
found in the wealth of Greek papyrus texts,94 and the wealth of different 
expressions that have been found in the small handful of demotic texts; and the 
associated contrast of the minute proportion of Greek uses of a 'fractional 
notation' in surviving calculations with the very much greater proportion of 
demotic occurrences. The abundance of our school exercises in division 
indicates how the very rigid Greek style for expressing division seems to have 
been drummed into schoolchildren and thereafter to have determined their 
conception of fractions while, in demotic, our evidence seems to indicate a 
much looser sense of style. My explanation of the occurrences of the 'fractional 
notation' concerns this imposed sense of style: that the results of properly 
executed calculations should always be presented in standard form, as 
expressions in unit fractions, either to be recalled from memory, or looked 
up in tables, or evaluated, or approximated. If this sense of style was relaxed, so 
would the necessity of this final, often inconsequential, step be removed, and so 
unresolved phrases for 'of m the nth' could begin to appear, expressed or 
abbreviated in a variety of ways. The adoption of the demotic script rather than 
hieratic for Egyptian mathematical texts may well have left scope for the 
development of new summary notations for stereotyped common operations 
like division. In this way, it is perhaps not too surprising that our small clutch 
of surviving demotic texts should contain so many different ways of describing 
division; but I do not think this, in itself, gives evidence for an early familiarity 
with common fractions, since the expressions themselves always seem still to be 
conceived there in terms of unit fractions. 

Another way of expressing this is to view division as an implied question 
which anticipates some conventional reply, thus 'the nth of m is ... ', or 'the 
quotient (literally quotiens, how many times?) of m by n is .. .'.Answers can be 
given in many different ways-division with remainder, unit fractions, sexa
gesimal numbers,95 decimal numbers, anthyphairetic ratios, astronomical 
ratios, etc.-and only the context can determine what will be acceptable. 
Common fractions correspond to the sophisticated step of ignoring the 
interrogative aspect, and realising that the question itself can be treated as its 
own answer. In order to see that this step is meaningful and useful, we need to 
be convinced that the questions themselves can be freely manipulated; for 

94 My catalogue in the Appendix gives only a small part of this evidence, that dealing with 
systematic tables. 

95 We have the example of the completely different reaction of another ancient culture in 
the Babylonian need for and use of reciprocal and multiplication tables to resolve divisions in 
their arithmetised sexagesimal mathematics; see Neugebauer, ESA, 31-4 and 50. Observe 
how there is simply no need for a Greek reciprocal table to correspond to these Babylonian 
examples! 
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example that 'the nth of m is .. .' and 'the qth of p is .. .' can be added to give 
'the nqth of (mq + np) is .. .'.Modern mathematics has·shown, time and time 
again, how difficult such a step of treating a question as its own answer can be, 
however natural it might subsequently become, and how productive it may be 
of new concepts and developments. I do not believe that this step was taken by 
Greek mathematicians in their calculations with fractions. 

The contempt that is often expressed for the system of unit fraction 
calculations is, I believe, not entirely justified. Unit fraction expansions can 
be evaluated and manipulated by a wealth of algorithms96 and they can convey 
some information, for example of magnitude and approximation, as efficiently 
as any other representation. 97 The problems that do arise with unit fraction 
arithmetic are often exaggerated and distorted: on the one hand, unit fraction 
arithmetic is quite feasible, as our evidence of ancient commercial practice 
demonstrates abundantly, while on the other hand the problems inherent in any 
formally correct and complete description of arithmetic with real numbers are 
far greater than many mathematicians seem to believe.98 I do not deny that the 
introduction first of common fractions, then of decimal fractions, introduced a 
dramatic new fluency and confidence into mathematics, with profound con
sequences. I only wish to insist that the old unit fraction representation does 
not suffer from quite as many disadvantages as is often supposed. 

Much more could be said on the mere in Greek mathematics. For example, I 
have just alluded to the problem of the computation of the entries in the 
division tables, and there is also the issue of Euclid's use of the word mere, 
especially at the beginning of Elements VII. These issues must be deferred to 
another place. Here I shall finish with my final dialogue, a little fantasy to top 
off this heavy chapter. 

7.4(b) The slaveboy meets an accountant 
ACCOUNTANT97 : I was out at the garden of Academe on business, and I heard Plato and 

his friends discussing some of your ideas about mathematics. Then one of my scribes 

96 To begin to discuss this issue properly would double the length of this chapter. Seen. 32, 
above. 

97 For example, if sums and differences of unit fractions are permitted, the expression 
1T = 3 + 7' - 791' - 3 748 549' + · · · conveys the information about the size and best approxi
mations to 1T as succinctly and directly as any other method; more directly, for example, than 
the anthyphairesis 1T = [3, 7, 15, 1, 272, 1, 1, 1, ... ]. But the anthyphairesis can contain a lot 
more additional information. 

98 Of course a formal description of arithmetic with rational numbers is straightforward 
and so, in this sense, the unit fraction description of rational numbers does introduce 
unnecessary problems. But the theoretical description of arithmetic with decimal fractions 
is less straightforward than is generally thought; see the remarks in Sections l.2(e), 4.2, and 
9.3(a), below, and the discussion in Fowler, FHYDF. On the practical difficulties with 
sexagesimal arithmetic, see Neugebauer, HAMA ii, 590ff. ("The further one moves away 
from the productive period of Greek astronomy towards the didactic phase the more one 
finds long and clumsy explanations of sexagesimal operations. Such is the case already in the 
Commentaries to the Almagest by Pappus and Theon. Byzantine treatises are full of such 
trivia.") and pp. 968 ff. 
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had to copy out your dialogue with Socrates, so I got to read that, and I have a copy 
here. Could we go through it together, with you taking the part of Socrates? 

BOY9g: All right, though it seems a curious thing to do. Here goes. (Reading:) Tell me, 
sir, what is the relationship of size between this heap of sixty stones, and that heap of 
twenty-six stones? 

ACCOUNTANT99: Do you mean the number of times the smaller goes into the larger? 
BOY100: Try it. 
ACCOUNTANT101: It goes more than twice, but less than three-times. 
BOY102: Can you be more precise? 
ACCOUNTANT103: It goes twice with eight stones left over. 
BOY104 : Those 'eight stones' aren't related to anything now. 
ACCOUNTANT105: I just omitted to say that they're still in relation to the other heap of 

twenty-six stones. 
BOY106: Go on. 
ACCOUNTANT107: Give me time; I can go on to describe that relationship. So let's say: 

twice at the first step, and now I'll tell you about the relationship between eight stones 
and twenty-six stones. 

BOY10s: Go on. 
ACCOUNTANT109: (Putting the script to one side:) Those eight stones are less than the 

third and more than the fourth of the twenty-six stones; so the relationship is: first 
step, twice; second step, the fourth; and then a bit more. 

BOY110: (Aside:) I see what he's up to; this could be interesting. But what happens to 
arithmetike if part of a stone is still called a stone? Does it still make sense? (To the 
accountant:) Can you be more precise? 

ACCOUNTANT111: I can work ~mt how much more it is as follows: I need to take the 4th of 
1 away from the 26th of 8, which is the 13th of 4; so I need to take the 4 x 13th of 13 
away from the 13 x 4th of 4 x 4, which leaves the 52nd of 3, which is less than the 
17th and more than the 18th. So the ratio of sixty to twenty-six is expressed by: first 
step, twice; second step, the fourth; third step, the eighteenth, and a bit more which I 
can easily work out in the same way to be the four hundred and sixty-eighth exactly. 
Or, as we learned at school to say and write it: 

of 60 the 26th is 2 4' 18' 468'. 

There are lots more equivalent ways of describing the same ratio, some much more 
convenient than this: for example, a preliminary division with remainder and then a 
look at my ready reckoner gives: 

of 60 the 26th is 2 4' 26' 52'. 

What's wrong with all that? It seems just as logical and convenient as your 
anthyphairetic ratios, so why did Socrates dismiss it so contemptuously at the end 
of S3s? 

BOY112: There's the awkward operation of cutting up the unit that the philosophers 
don't like, though if the mathematicians find something that interests them, they 
might nevertheless still go ahead. You also have a problem in deciding when two 
ratios are equal; so you can define ratio, but its not entirely clear how you can go on to 
describe proportionality! But let's see what might be involved in a theory of these 
'accountant's ratios'. for a fully developed theory we'll have to investigate: 

(i) Evaluating these kinds of ratios (cf. S1-B14), 

(ii) Describing equality and order (cf. S17-B22), 
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(iii) Translating backwards (cf. B26-Sz9), and 
(iv) Arithmetic (cf. B32-S35), 

7.4 

and, on the way, we hope to pick up insights about yet undiscovered phenomena or 
appealing new ways of handling mathematical ideas and proofs. Then, we must relate 
this new definition to the other definitions of ratio. 

ACCOUNTANT113 : But before you start your abstruse investigations, and explain why 
some of these things are so difficult and so unilluminating, I'd just like to 'say that I've 
got an office full of scribes who are calculating with these kinds of expressions all the 
time, and they don't seem to have many problems in getting by. 

BOY114 : Wait a minute. Instead of doing a reciprocal subtraction process, we could 
always subtract from the same larger term. Take that ratio of eight to twenty-six that 
we have to describe [see A1 07_ 11 ]: we could say eight goes into twenty-six three-times 
with two left over; two goes into twenty-six thirteen times. Work that out and I think 
you'll find 

of 60 the 26th is 2 3' less (3.13)'. 

Think about that, and you'll see that if you don't want subtractions like that "less 
39'" to occur you will have to overshoot at each step; four-times eight overshoots 
twenty-six by six; five-times six overshoots twenty-six by four; seven-times four 
overshoots twenty-six by two; and thirteen-times two is twenty-six. So now 

of60 the 26th is 2 4' (4.5)' (4.5.7)' (4.5.7.13)'. 

Do you see what's happening? 
ACCOUNTANT115: I give up! Will you people never stick to the point? 
BOY116 : I wonder if we can relate anthyphairetic ratios to these kinds of accountant's 

ratios .... 

7.5 APPENDIX: 
A CATALOGUE OF PUBLISHED TABLES 

See Section 7 .~, above, for a general description of the tables in this appendix. 
These lists contain all the published examples I have been able to locate in 

Egyptian (hieratic and demotic), Coptic, and Greek. They are identified as 
being on papyrus (P.), ostraca (0.), writing tablets (WT.), waxen wooden 
tablets (WWT.), and as graffiti (G.). The lists are arranged alphabetically by 
language and script; museum inventory numbers are distinguished from cata
logue numbers; where the text appears in a standard edition (like The 
Oxyrhynchus Papyri, Papyri in the University of Michigan Collection, etc.) no 
further publication details are given, but otherwise they are given in detail (and 
if a reference that occurs here is not cited elsewhere, it will be given here in full 
and not listed in the bibliography); the usual name of each text is set in bold 
type; if the text appears in Pack, GLLTGRE (second edition), its reference 
number there is given; where a date or provenance is assigned or known, it is 
given; a note about the publication may be added; and each entry finished with 
a brief description. 

I have restricted this list to systematic examples of tables; there are many 
other published examples of arithmetical exercises involving calculations 
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with, or verifications of, these kinds of expressions which have not been 
included. 

The following abbreviations are used: 

ff= full format, up to the nth part of 1 0000. 
af = abbreviated format, up to the nth part of n. 
ie =initial entry, the nth part of 6000. 
BASC = Bulletin de la Societe d'Archeologie Copte. 
ZPE = Zeitschrift fiir Papyrologie und Epigraphik. 
RA = Revue Archeologique. 

7.5(a) Division tables99 

Egyptian, hieratic: 
1. P. Kahan 8, in Griffith, HPKG. A fragmentary collection of 

mathematical problems and a '2/n-table', with verifications, for 
n = 3, 5, 7, ... , 21, identical with the expressions in the Rhind 
Mathematical Papyrus; photograph. 

2. Rhind Mathematical Papyrus (= P. B.M. [inv.] 10057 and 10058, 
and a fragment in the Brooklyn Museum), in Chace, RMP; 
copied c. 1575 BC by Ahmose from an archetype some 300 years 
older. An extensive collection of 86 mathematical problems, a 
table of 10', in af no ie, quoted above, and verifications of nth 
parts of 2 for n = 3, 5, 7, ... , 99, and 101; photographs and 
facsimiles. This text, especially the '2/n-table', has provoked an 
enormous literature (bibliography to 1929 in Chace, RMP, 
abridged and extended randomly in the 1979 reprint), but with 
only occasional references to other division tables. 

3. 0. Sen-Miit 153, in W. C. Hayes, Ostraka and Name Stones from the 
Tomb of Sen-Mut (No. 71) at Thebes, New York: Metropolitan 
Museum, 1942. Fragments of a table of 7' with auxiliary red 
numbers; photograph. 

Egyptian, demotic: 
4. P. B.M. [inv.] 10794, Problems 66 and 67 in Parker, DMP, 72-3. 

Tables of 90' and 150', with entries from 1 to 10; photograph. 

99 A preliminary version of this table was published as Fowler, TP, and an addendum, 
FAT, consisting of a further 38 sets of tables, has now appeared; I have here revised my 
original proposal to refer to these as 'tables of parts', and now suggest the more conventional 
and, I hope, acceptable 'division tables'. I would like to thank the many scholars, especially 
R. S. Bagnall, B. Boyaval, W. Brashear, A. Biilow-Jacobsen, P. Cauderlier, W. E. H. Cockle, 
B. R. Goldstein, L. Koenen, P. Mertens, P. J. Parsons, T. S. Pattie, R. Pintaudi, P. J. 
Sijpesteijn, and Sir Eric Turner, who have provided information and references. Yet more 
examples are quite possiole from the unpublished residues of other papyrological collections 
around the world, or from excavations. 
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5. 

6. 

Coptic: 
7. 

8. 

9. 

10. 

11. 

Greek: 
12. 
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0. Private collection, in G. Belli & B. Costa, Una tabellina arith
metica per uso elementare scritta in demdtico, Egitto e Vicino 
Oriente 4 (1981), 195-200. Table of 2'; photograph. 

P. Unidentified example, in E. Revillout, Melanges sur la mitrologie, 
Nconomie politique, et l'historie de l'ancienne Egypte, Paris: 
Maisonneuve, 1895, pp. lxix-lxxiii. (Revillout describes it as 
"un papyrus math6matique qui m'a ete communique par 
!'Exploration Fund".) Tables of 7', 8', ... , 14', and 15' in af. 

P. B.M. MS 528, in W. E. Crum, Catalogue of Coptic Manuscripts in 
the British Museum London, 1905, and J. Drescher, A Coptic 
Calculation Manual, BASC 13 (1948-9), 137--60; c. AD 900. A 
palimpsest parchment codex; the later Coptic text contains 
multiplication tables (see no. 47, below), mathematical exercises, 
and division tables for 2', 3", 3', 7' [sic], 4', 5', 61, 8', 9', 10', 12', 
15', 16', 20', 24', and 48', in afwith ie; only the first few entries 
of the tables for 2', 15', and 48' are transcribed. Described as 
"identical with those in Greek mathematical papyrus of 
Achmim", no. 12, below. 

P. Cambridge University Library [inv.] T.-S. Ar 39: 380, in B. R. 
Goldstein & D. Pingree, More Horoscopes from the Cairo Geniza, 
Proceedings of the American Philosophical Society 12 (1981), on 
186-9. Two folia containing multiplication tables (see no. 48, 
below) and tables for 12', 24', and 48', in ff; photograph. 

0. Crum 480, in W. E. Crum, Coptic Ostracafrom the Collections of 
the Egypt Exploration Fund, the Cairo Museum, and Others, 
London, 1902. A fragmentary potsherd table of 31' in af with 
ie. Crum was unable to identify its purpose in 1902 (but see no. 7, 
above). There is a description in K. H. Sethe, Von Zahlen und 
Zahlworten bei den A/ten Agyptern, Strassbourg: Triibner, 1916, 
pp. 71-2, but some of his restorations, including the ie, are clearly 
wrong; see W. Brashear, Quisquiliae, BASC 26 (1984), 19-22. 

P. Strasbourg Bibliotheque Universitaire [inv.] 4110, same publi
cation as no. 8 above, on 176-7. Table of 24' in ff, a marginal 
annotation to an astrological text; photograph. 

0. Wadi Sarga 24-28 (= Coptica iii 24-28). Five fragmentary pot
sherds with brief traces of division tables, four with ie (on this, 
see W. Brashear, Quisquiliae, BSAC 26 (1984), 19-22) for 7' (3 
examples), 11', 25', 49', and one unidentified table. 

Achmim Mathematical Papyrus (=P. Cair. [inv.] 10758), Pack 
2306, in J. Baillet, Memoires de la Mission Archeologique 
Franfaise ix 1, Paris: Leroux, 1892; vii AD. Leather-covered 
papyrus codex containing division tables for 3", 3',4', ... , 8', 9', 
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and 10' in ff and for 11', 12', ... , 19', and 20' in af, all with ie, 
and mathematical exercises; complete facsimile. 

13. P. Berol. [inv.] 21296, in W. Brashear, Greek Papyri: Fractions and 
Tachygraphy, Anagennesis 3 (1983), 167-77; iiBC. Fragments of 
tables of 3' and 4' in ff; photograph. 

14. WT. Bodleian Gr. Inscription [inv.] 3019 in P. J. Parsons, A School-
Book from the Sayce Collection, ZPE 6 (1970), on 142-3; late 
iiiAD. Seven wooden school tablets containing a wide variety of 
exercises in Greek and Coptic; three sides contain division tables 
for 2', 3', 4', 5', 6', 8', 9', 10', and 12', in ff. Only the table for 2' 
is transcribed. 

15. P. Freib. i 1; also see W. Brashear, Greek Papyri: Fractions and 
Tachygraphy, Anagennesis 3 (1983), 167-77; ii or iBC. Fragments 
of a table of 3". 

16. WT. Louvre [inv.] AF 11961, AF11962, AF 11963, AF 11971, in B. 
Boyaval, Tablettes mathematiques du musee du Louvre, RA 
(1973), 243-60 and Le Cahier de Papnouthion et les autres 
cahires scolaires grecs, RA (1977), 215-30; P. Cauderlier, Cinq 
tablettes en bois au musee du Louvre, RA (1983), 259-80; and W. 
Brashear, Corrections a des tablettes arithmetiques du Louvre, 
Revue des Etudes Grecques 97 (1984), 214--17 (all publications 
must be consulted; photographs in RA); vi AD. Parts of a wooden 
schoolbook containing multiplication (see no. 54, below) and 
division tables: 
AF 11961 side B: table of 9' in ff with ie; 
AF 11962 side B: table of 3", with ie and verifications (or possibly 
derivations; see nos. 26 & 44, below) of each successive entry, up 
to 900. Also see AF 11963 side B, below; 
AF 11963 side A: table of 11' in af with ie, and multiplication 
tables; 
AF 11963 side B: on the basis of three legible letters, Cauderlier 
proposes a restoration of the continuation of AF 11962 side B, a 
table of 3" with verifications from 1000 up to 1 0000; 
AF 11971 side A: table of 14' in af with ie; 
AF 11971 side B: table of 17' in afwith ie. 

17. WWT. Louvre [inv.] MND 552, MND 552h, i, k, and l; same publica
tions by B. Boyaval as the previous entry; v or vi AD. Wax tablets 
containing a collection of school exercises, some arithmetical: 
MND 552k: Headed and dated, "Papnouthion son of Iboi:s, 
Mechir 21st" (incorporating a corrected reading by P. 
Cauderlier; personal communication), a table of 24', in af with 
ie, with six alternative entries for 2 (of2 the 24' is 12', or 15'60', 
or 20'30', or 30'30'60' [sic; this is the only example I know of a 
repeated part], or 45'48'60'80'90', and one lost entry). 



272 Numbers and fractions 7.5 

MND 552i: Again headed and dated Mechir 21st, a fragmentary 
table of 25' with ie, again with duplicated but largely illegible 
expressions for the 25' of 2. 

18. WT. Louvre [inv.] MND 551dl, in B. Boyaval, CR/PEL 2 (1974), 
270-1 and W. Brashear, Trifles, ZPE 56 (1984), on 64-5; 
iv-vi AD. Wooden school tablet with fragmentary table of 3" in ff. 

19. P. Mich. iii 145, Pack 2309; ii AD. Fragments of tables of 23' and 
29', and mathematical problems. 

20. P. Mich. iii 146, Pack 2310; iv AD. Long narrow papyrus roll (about 
106-75 x 9·2cm) broken at the beginning, incomplete at the end, 
containing tables for 7' (fragmentary), 8', 9' (quoted above in 
Section 7.2(a)), and 10' in ff, then 11', 12', 13', ... , 17', 18', and 
19' (heading EvvrnKatOEKaTa to a blank column) in af, all with ie 
and headings. 

21. P. Mich. iii 147, Pack 2311; early ii AD. Fragments of a table of 4'. 
22. P. Mich. xv 686; ii-iii AD. Multiplication table (see no. 55, below) 

and fragmentary division tables including a table of 30' 
increasing by halves. 

23. 0. Mich. [inv.] 9733, in H. C. Youtie, A Table of Fractions, ZPE 
18 (1975), 17-19; first half of iiiAD. Potsherd table of 3" in ff 
with ie. 

24. WT. (P.) Michael. 62, Pack 2308; viAD? Wooden tablet containing 
tables of 2', 311 , 3', and probably 4' (now illegible) in ff with ie 
and, on the other side, mathematical problems. More complete 
publication in D. S. Crawford, A mathematical tablet, Aegyptus 
33 (1953), 222-40. 

25. WT. M.P.E.R., N.S. xv 154; viiAD. Wooden tablet containing 
multiplication tables (no. 59, below) and a table of 2', in ff 
with ie TO L €~aKicxi)dwv ,I'; photograph. 

26. M.P.E.R., N.S. xv 156, first published in P. J. Sijpesteijn, Wiener 
Melange, ZPE 40 (1980), on 97-8, and re-edited in W. Brashear, 
Enchoria 12 (1984), 1-6; v-viAD. Fragment containing only 
multiplications, but very possibly coming from a table of 9' 
with verifications (or calculations) similar to those in Louvre 
AF 11962 side Band P. Wurzburg K 1024 (nos. 16 & 44, here); 
photograph. 

27. M.P.E.R., N.S. xv 158; iii AD? Minute fragment of a table of 3"; 
photograph. 

28. M.P.E.R., N.S. xv 159, first published in P. J. Sijpesteijn, Wiener 
Melange, ZPE 40 (1980), on 98-9; iii or iv AD. Table of 3" in ff 
followed by a calculation with money; photograph. 

29. M.P.E.R., N.S. xv 160; iiAD. Tables of 2' and 3' in ff; 
photograph. 

30. M.P.E.R., N.S. xv 161; vii-viii AD. Tables of 2' and 4' in ffwith 
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31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. WT. 

40. P. 
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ie, but not written out in tabular form-the only such example 
known to me; photograph. 
M.P.E.R., N.S. xv 162; first half of ix AD. Fragment of a table of 
3" in ff with ie; photograph. 
M.P.E.R., N.S. xv 163; vi AD. Fragment of tables of 3' and 4'; 
photograph. 
M.P.E.R., N.S. xv 164; vi-vii AD. Fragment of tables of3' and 4' 
in ff; photograph. 
M.P.E.R., N.S. xv 165; vi-vii AD. End of table of 5' and table of 
3", in ffwith ie; photograph. 
M.P.E.R., N.S. xv 166; iiBc. End of a table of 4' in ff; 
photograph. 
M.P.E.R., N.S. xv 167; ii AD. Fragments of tables of7', 8', and 9' 
in ff with headings; photograph. 
M.P.E.R., N.S. xv 168 verso; vii AD. Fragment of a table of 14'; 
photograph. 
M.P.E.R., N.S. xv 169 recto and verso; viiiAD. Fragment of 
tables of 13', 14', 11', 17', and 19'; photograph. 
Moen [inv.] 602, in P. J. Sijpesteijn, A Wooden Tablet in the Moen 
Collection, Chroniqued'Egypte 56 (1981), 97-101; vi or vii AD. Half 
of a wooden tablet containing part of a table of 7' in ff with ie. 
Oxy. xxxiii 2656, first published in E.G. Turner, New Fragments 
of the Misoumenos of Menander, Bulletin of the Institute of 
Classical Studies Supplement 17 (1965), on 18-19; iv or v AD. 

Tables of 13', 14', 15', 16', and perhaps 17' and 18', in afwith ie, 
headed TpeicKaiSEKaTa, etc. These tables are found in a papyrus 
codex that otherwise carried a lost play of Menander; there 
would have been space for tables of 10' to 19'. Only the table 
of 13' is transcribed. The republication as P. Oxy. xxxiii 2656 
omits the tables. 

41. P. Oxy. xlix 3456; iii or iv AD. Tables of 7' and 8' in ff, followed by 
metrological definitions. Only part of each table is transcribed. 

42. WT. University College [inv.] 36114, Pack 2312, in H. Thompson, A 
Byzantine Table of Fractions, Ancient Egypt 1 (1914-15), 52-4. 
Wooden school tablet containing tables of 15' and 16' in af with ie; 
facsimile. The editor misunderstood the initial entry, but it can 
clearly be guessed from his drawing and I have checked the original. 

43. WT. Wiirzburg [inv.] K 1014, in W. Brashear, Holz- und Wachstafeln 
der Sammlung Kiseleff, Enchoria 13 (1985), 13-23 and Tafel 1-13; 
vi-vii AD. Four writing tablets containing school exercises in 
multiplication and division. Tables of 6', 3", 51, 3' (in that 
order) in ff with ie; photographs. 

44. WT. WiirzbUrg [inv.] K 1024, in W. Brashear, Neue Griechische 
Bruchzahlentabellen, Enchoria 12 (1984), 1--6 and Tafel 1-2; 
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viii AD. Wooden tablet containing tables of 311 in ff and 11' in af, 
both with ie, with verifications (or calculafions) similar to those 
in Louvre AF 11962 side B and M.P.E.R. 156 (nos. 16 & 26, 
above); photograph. 

45. WT. SB iii 6219, first published in G. Plaumann, Antike Schultafeln 
aus Agypten, Amtliche Berichte aus den Koniglichen Kunstamm
lungen (Berlin) 34 no. 11(1913),210-23, on 222f; vii AD. Wooden 
school tablet with tables for 2' and 3", in ff with ie, and problems 
in addition and multiplication; photograph. 

7.5(b) Multiplication and addition tables 

Egyptian, demotic: 
46. P. B.M. [inv.] 10520, Problem 54, in Parker, DMP. List of multiples 

Coptic: 
47. 

48. 

49. 

50. 

Greek: 
51. 

of 16 from 1 to 16; photograph. 

P. B.M. MS 528 (=no. 7, above). Table, presumably with first page 
missing, of 7x, 8x, 9x, lOx, 20x, ... , 900x, in third format. 

P. Cambridge University Library [inv.] T.-S. Ar. 39: 380 (=no. 8, 
above). Table of lx, 2x, ... , 9x, lOx, 20x, ... , 90x, lOOx, 
200x, ... , lOOOx in third format; photograph. 

G. Monastere de Phoebammon 5 (mural no. 10), 153 (mural no. 186), 
and possibly 6 (mural no. 12), published by R. Remondon in C. 
Bachatly, Le monastere de Phoehammon dans la Thehaiile, Tome 
ii: Graffiti, inscriptions et ostraca, Cairo: Publications de la 
Societe d'Archeologie, Copte, 1965, with review by J. Schwartz 
in Chronique d'Egypte 42 no. 83 (1967), 251--4. Tables of 3x and 
4x in first format, and an unidentified table; photograph. 

0. Wadi Sarga 22 and 23 (see no. 11, above). No. 22: tables for 6x 
and 7x in first format; no. 23: tables for 7x in second format, a 
palimpsest, with this the younger text. 

P. Baden iv 644, complete publication in F. Bilabel, Berichtigung
sliste ii part 2, 177-81. Table of2x, 3x, ... , 9x, lOx, 20x, ... , 
90 x, 100 x, 200 x, 300 x, 400 x, 500 x in second format; then 2 x, 
3x, ... , 9x, lOx, 20x, 30x in third format. 

52. WWT. Leiden Papyrological Institute, in E. Boswinkel, Schuliibungen 
auf 5 Leidener Wachstiifelchen, Proceedings of the XIV Inter-

53. 

national Congress of Papyrologists, Oxford 1974, London: 
British Academy, 1975, on 25-28; after 212AD. Five school 
tablets, one containing a table of 1 x 40 to 10 x 40 in second 
format. 

P. Lond. iii 737 (p. xxx), published as M.P.E.R., N.S. xv 150; iii AD. 
Table ofn + m for 1 ~ n ~ m ~ 9, then similarly for 10 + 10, ... , 
10 + 90, 20 + 20, ... , 20 + 90; photograph. 
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54. WT. Louvre [inv.] AF 11961, 11962 , and 11963 (=no. 16, above). 
AF 11961A: tables for 2x, 3x, ... , 8x, in second format. 
AF 11962 A: traces of tables, illegible at beginning, for [8 x ], 9 x, 
10 x, 20 x, ... , 50 x, in second format. 
AF 11963 A: tables of 5000x, 6000x, ... , 9000x in first format. 

55. P. Mich. xv 686 (=no.22, above). Fragments of a multiplication 
table up to 1 0000 x 4 in first format. 

56. M.P.E.R., N.S. xv 151, the verso of M.P.E.R. i 1; iAD. Addition 
table in same format as no. 53, above, continuing (with gap for 
30+ and 40+) up to 1000 + 1000; photograph. 

57. M.P.E.R., N.S. xv 152; ii-iii AD. Fragments of tables of multiples 
and squares. The multiplication table gives 7 x 8, 7 x 9, 7 x 10, 
8 x 1, ... , 8 x 10, 9 x 1, ... , 9 x 10, 10 x 1, ... , 10 x 10 in first 
format, followed immediately by the squares (see no. 68, below); 
photograph. 

58. M.P.E.R., N.S. xv 153; ii AD. Fragment of a table of 20 x 500, 
20 x 5000, 20 x 6, 20 x 60, . . . , 20 x 9000 in third format; 
photograph. 

59. WT. M.P.E.R., N.S. xv 154; viiAD. Wooden tablet with tables of7x, 
8x, and 9x, for 1, 2, ... , 9 in second format, and a table of 2' 
(no. 25, above); photograph. 

60. M.P.E.R., N.S. xv 157; ix-xAD. Fragment of tables for 2x and 
3 x in third format; photograph. 

61. P.S.I. viii 958, Pack 2307; iv AD. Table headed 7TOAV1rAaciacµoc, 
'multiplication', starting with some unsystematic entries for 
smaller numbers, then systematically for 30x, 40x, ... , 90x, 
lOOx, 200x, 300x, ... , lOOOx, 2000x, 3000x, and 4000x in 
second format. 

62. WWT. 

63. WWT. 

64. WT. 

SB iii 6215, first published in G. Plaumann, Antike Schultafeln 
aus Agypten, Amlichte Berichte aus den Koniglichen Kunstsamm-
lungen (Berlin) 34 no. 11 (1913), 210-23, on 216. Wax tablet with 
addition table, 8 + 1 to 8 + 9; photograph. 
Wurzburg [inv.] K1013, in W. Brashear, Holz- und Wachstafeln 
der Sammlung Kiseleff, Enchoria 13 (1985), 13-23 and Tafel 
1-13; iv-v AD. Parts of five wax tablets containing school 
exercises including two simple addition tables, second format; 
photographs. 
Wurzburg [inv.] K1014, see previous entry and no. 43 for pub
lication and details. The multiplications are: side lB, 60 x 1, 
60 x 2, . . . , 60 x 10, in first format, then similarly 70 x, 80 x, 
90x, lOOx, 200x, and 300x; side 2A, 400x, 500x, 600x, then 
reverting to 20 x, 30 x, 40 x, 50 x; Side 3B (fragment), 700 x 3, ... , 
700 x &, 800 x 8, . . . ' 900 x 4, 1000 x 4, . . . ' 1000 x 10, 
3000 x 1, ... , 3000 x 7; photographs. 
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7.5(c) Tables of squares 

Coptic: 
65. G. Monastere de Phoebammon 16 (mural no. 97) (see no. 49, 

Greek: 
66. 

67. 

68. 

69. 

above). Tables of squares for 10, 11, ... , 29, and 30; photograph. 

P. Un livre d'ecolier du IIr siecle avant J.C., ed. 0. Gueraud & P. 
Jouguet, Cairo: Institut Frarn;ais d'Archeologie Orientale, 1938 
(=P. Cairo J.E. [inv.] 65445), lines 216-34. Tables of squares of 
1, 2, ... , 10, 20, ... , 100, 200, ... , 800; complete facsimile, and 
photograph in Neugebauer, ESA. 

P. Haun. iii 49; ii BC? Table of squares for 1, 2, ... 9, 10, 11, 12, ... , 
19, 20, 30, and 40; photograph. 
M.P.E.R., N.S. xv 152; ii-iii AD. Multiplication table (see no. 57, 
above) and two tables of squares, first in the form 1 1, 4 2, 
9 3, ... ' 100 10, 400 20, ... ' 6400 80, 10000 100, 
4 0000 200, . , 25 0000 500, then in the form 1 x 1 1, 

( ::.~~ ~ ~ ~} photogc:ph 1 0000 x 1 0000 1 0000 0000 

P.S.I. vii 763, Pack 2315; iBc. Fragment of a mathematical 
lesson, partly in question and answer form. Lines 5 to 11 deal 
with squares, but not in tabular form: hapax hen a dis duo S tris 
tria ennea () tetrakis tessara tS' pentakis pente KE ... , up to dekakis 
deka p. 

This catalogue has now been extended to Item no. 107 in Fowler, 'Further 
arithmetical tables'. 



PART THREE 

LATER DEVELOPMENTS 

Doubtless a vigorous error vigorously pursued has kept the 
embryos of truth a-burning: the quest for gold being at the 
same time a questioning of all substances. 

George Eliot, Middlemarch, Chapter 48. 

The topic of this third part may be paraphrased as ancient and modern 
reactions to anthyphairesis. In Part One, I proposed that early Greek 
mathematicians made remarkable investigations and discoveries about ratio, 
especially anthyphairetic ratios; but when we look to the later Greek com
mentators to find their reactions to this work, we draw a blank. So, in Chapter 
8, as an illustration of what we do find, I take three themes that are discussed in 
later antiquity, and set them against the early evidence and my interpretation 
here. I would have liked to have included discussions of several other topics 
such as analysis and synthesis, the nature of the early Elements (stoicheia), the 
role of problems, the deductive method, and so on, and I do not even begin 
the evaluation of the effects of my proposals on the chronology of the period; 
but restrictions of space impose, once again, their limits. The purpose of 
these analyses is to illustrate the quite serious discrepancies between the 
preoccupations of later commentators and the earlier evidence, such as we 
now possess. 

With the exception of Pappus and Eutocius, the later Greek commentators 
were not mathematicians. By contrast, many Arab commentators of the 
eleventh and twelfth centuries were mathematicians in their own right, and I 
would also have liked to have included a discussion of four known Arab 
commentators who do refer to anthyphairesis. Unfortunately the time is not 
yet ripe: more work needs to be done on the manuscripts before one can do 
more than give a precis of published summaries of the topic. Meanwhile I 
commend the interested to the discussion and translation in Plooij, ECR, and 
to the translation of Omar Khayyam-Amir-M6ez, DDE. 

Chapter 9 gives detailed proofs of the main mathematical results underlying 
the reconstruction, and sketches the history of their development since the 
seventeenth century. Although it is highly mathematical and is presented in the 
modem idiom, and its historical content relates only to the period from the 
seventeenth century .up to today, it is far from irrelevant to my historical 
argument about Greek mathematics. For we can see how anthyphairesis, in this 
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new manifestation of continued fractions, intrigued and inspired many of the 
most powerful and influential mathematicians of the seventeenth, eighteenth, 
and nineteenth centuries. yet if we take a modern textbook of mathematics or a 
general history of mathematics (our latter-day equivalents of Pappus' Collec
tion and Eudemus' History, respectively) and search for any hint of the richness 
of this theory or its historical importance, we are very very unlikely to find 
anything. A satisfactory explanation would perhaps lead even further afield, 
into a study of the psychology and sociology of mathematicians, but some 
awareness of this modern void should take the edge off our surprise about this 
lack of comment in late antiquity. Chapter 10 consists of new material for this 
second edition, and the Epilogue looks back on my personal involvement in 
this story. 



8 

LATER INTERPRET A TIO NS 

8.1 EGYPTIAN LAND MEASUREMENT 
AS THE ORIGIN OF GREEK GEOMETRY? 

It has been an oft-repeated story since antiquity that the origins of Greek 
geometry are to be found in Egyptian land measurement; for a discussion of 
some of the texts, see Heath, HGMi, 121-8. The earliest such possible reference 
comes from Herodotus, Histories ii, 109, written in the fifth century BC: 

This king [the semi-mythical Sesostris] moreover (so they said) divided the country among 
all the Egyptians by giving each an equal square parcel of land, and made this his source 
of revenue, appointing the payment of a yearly tax. And any man who was robbed by 
the river of a part of his land would come to Sesostris and declare what had befallen him; 
then the king would send men to look into it and measure the space by which the land 
was diminished, so that therefore it should pay in proportion to (kata logon) the tax 
originally imposed. From this, to my thinking, the Greeks learnt the art of geometrica; 
the sunclock and the sundial (polis kai gnomon), and the twelve divisions of the day, 
came to Hellas not from Egypt but from Babylonia [Herodotus-Godley, Hi, 397-9]. 

(The "equal square parcel of land" here should not be taken too literally, and 
the "sunclock and sundial" is more probably the hemispherical bowl and 
pointer that make up an early sundial; see Goldstein & Bowen, NVEGA, 332 
n. 9.) Another version of this story is given in Proclus' Commentary on the First 
Book of Euclid's Elements, written and compiled from various source materials 
a thousand years later: 

We say, as have most writers of history, that geometria was first discovered among the 
Egyptians and originated in the remeasuring of their lands. This was necessary for them 
because the Nile overflows and obliterates the boundary lines between their properties. 
It is not surprising that the discovery of this and the other sciences had its origin in 
necessity, since everything in the world of generation proceeds from imperfection to 
perfection. Thus they would naturally pass from sense-perception to calculation 
(logismos) and from calculation to reason. Just as among the Phoenicians the necessities 
of trade and exchange gave the impetus to the accurate study of number, so also among 
the Egyptians the invention of geometria came from the cause mentioned. Thales, who 
had travelled to Egypt, ... [Proclus-Morrow, CFBEE, 64--5], 

and there now follows the celebrated summary of early Greek mathematics that 
is believed to derive from Eudemus. However, this introduction shows clear 
neo-Platonic characteristics and we have no reason to doubt that it was written 
by Proclus himself. 

Let us confront thi8' story with what we know about land measurement in 
Ptolemaic Egypt, at a period when records become available. In view of what 
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we shall find, it is worth noting immediately that Aristotle proposes a different 
explanation at Metaphysics 981 b23, in the context of his Critical history of the 
development of philosophy: 

Thus the mathematical sciences originated in the neighbourhood of Egypt, because there 
the priestly class was allowed leisure, 

while Plato, at Phaedrus 274c-275b (quoted above in Section 1.2(e)), has 
Socrates relate the myth that geometry was one of the arts invented by the 
Egyptian god Theuth. To this Phaedrus replies: 

It's easy for you, Socrates, to make up tales from Egypt or anywhere else you fancy. 

The style of early Greek mathematics was described in Section l .2(b ), where 
Elements I 35: 

Parallelograms which are on the same base and in the same parallels are equal to one 
another, 

was taken as a characteristic example. Proclus says of this proposition: 

It may seem a great puzzle to those inexperienced in this science that the parallelograms 
constructed on the same base [and between the same parallels] should be equal to one 
another. For when the sides of the areas constructed on the same base can be increased 
indefinitely ... we may well ask how areas can remain equal when this happens. For if 
the breadth is the same (since the base is identical) while the side becomes greater, how 
could the area fail to become greater? This theorem, then, and the following one about 
triangles belong among what are called the 'paradoxical' theorems in mathematics 
[Proclus-Morrow, CFBEE, 396]. 

It may seem a great puzzle to us that Proclus should express such surprise over 
this result and go on to discuss it and the succeeding propositions at such great 
length, when he is able to regard, for example, the fact that the angle sum of a 
triangle is equal to two right angles (see Elements I 17 and his commentary on 
it) as reasonably straightforward. 

But we can understand something of this surprise when we consider the 
evidence of Egyptian land surveying, as was described and illustrated in Section 
7 .1 ( d). If the nominal area of a field is taken to be the product of the average of 
the lengths of opposite sides, then there is something to reconcile between the 
propositions of the mathematicians and the practice of the accountants and 
tax collectors. It might be objected that this evidence relates to Egyptian, not 
Greek, practice, and that we have no evidence of land surveys in Greece. But 
Proclus, born in Lycia, resident in Athens, goes on to tell a story that indicates 
that it was not unknown to the Greeks: 

The participants in a division of land have sometimes misled their partners in the 
distribution by misusing the longer boundary line; having acquired a lot with a longer 
periphery, they later exchanged it for lands with a shorter boundary and so, while 
getting more than their fellow colonists, have gained a reputation for superior honesty 
[Proclus-Morrow, CFBEE, 403]. 
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Herodotus gives another example in which size was measured by perimeter: 
three times he called Sardinia "the biggest island in the world" (Histories i, 170, 
v, 106, and vi, 2) when, even in Herodotus' world, Sicily had a greater area 
though a smaller perimeter. (Sardinia: 9187 square miles and 830 miles 
circumference v. Sicily: 9860 square miles and 680 miles circumference; see 
Rowland, BIW for further literary and geographical details.) Thucydides 
indicates the obvious way in which such perimeters are estimated by a maritime 
nation; at the beginning of Book 6 of his History of the Peloponnesian War we 
read: 

The voyage round Sicily takes rather under 8 days in a merchant ship, yet, in spite of the 
size of the island .... 

Of course, the mathematicians whose work was later compiled in the 
Elements knew better. But, within a tradition of non-arithmetised geometry 
and given Plato's attitude to practical mathematics (see Section 2.2 and the end 
of my S35, above), the issue of land measurement would have held little interest 
for them. Heron, who worked in the later tradition of arithmetised, metrical 
geometry that arose as a combination of Greek geometrical and Babylonian 
arithmetical mathematics, describes correctly how to calculate the precise 
numerical area of irregular quadrilaterals at Metrica I, 14---16. 

Did, then, the Greeks discover geometry from Egyptian land measurement? 
We have so little reliable information about this question that we shall 
probably never be able to give a sure answer, but I very much doubt the 
story. Even Plato and Aristotle do not seem to know enough to be able to go 
beyond myths and generalities. And go back and look again at the texts quoted 
above: Herodotus only says it if the Greek word geometria is translated as 
'geometry' (as in Heath's discussion, at HGM i, 121-8) rather than 'land 
measurement' (as, for example, in the translation of Godley, in the Loeb 
Classical Library edition, which I have used here); the same ambiguity is found 
in the French geometre. In Proclus, the word is surely correctly translated as 
'geometry', but in line 2 of 0. Bodl. ii 1847 (see Plate 8 and Section 7.l(d)) it 
clearly must refer to land measurement. So, for example, Herodotus could be 
contrasting the way that the Greeks learned the measurement of space from 
Egypt and the measurement of time from Babylon. As to any proposal that the 
Greeks realised that the basic formula of Egyptian land measurement was 
wrong, and discovered geometry by trying to correct it, we have no evidence to 
justify this interpretation, and it runs counter to what evidence we do have. 

It may be of interest to describe briefly the medieval European tradition of 
land surveying. Elaborate surveys of large estates were being made in France in 
the ninth century, and a survey of unparalleled scope and completeness 
covering practically the whole of England was made by order of William the 
Conqueror in 1086: the Domesday Survey. These are usually described as land 
surveys (see, for example, the OED, s.v. Domesday), but the precise measure
ment of land plays little or no part in them and they are more accurately 



282 Later interpretations 8.1 

described as surveys of actual or potential sources of revenue. Take, for 
example, the Domesday Book, which embodies the resttlt of the Domesday 
Survey. There are regional variations in the entries; this having been said, a 
typical entry reads: 

The Bishop of Worcester holds Hantone [Hampton Lucy]. There are xii hides. There is 
land for xxii ploughs. ii are in the demesne, and iiii serfs. And there are xxii villeins and ix 
bordars with a priest who have xxiiii ploughs. There is a mill worth vi shillings and viii 
pence, and xv furlongs of meadow in length and one furlong in breadth. In Warwick iii 
houses worth xvi pence. Wood i league long and another broad. In King Edward's time 
it was worth iiii pounds, and afterwards the same, now it is worth xx pounds. The same 
bishop holds and held Stratforde. There are xiv and a half hides ... [translation adapted 
from Victoria County History, Warwickshire i, p. 302]. 

The land is described as being for so many ploughs; often woods are described 
as for so many pigs, while in this extract the 'league' used to describe the wood 
probably had no precise measured length and the wood itself is very unlikely to 
have been rectangular, or even four-sided. The 'hide' is a unit of assessment, 
divided into four 'virgates', each of which contained thirty 'acres'; but these 
were fiscal units, not measures of area, and the acre was the smallest unit used 
to describe the tax on a holding. There are no maps. 

During the thirteenth and early fourteenth centuries, local standards of linear 
measure were gradually introduced and applied in England, but they were 
not generally converted into measurements of area; nor could they be, in the 
absence of any precise way of measuring angles; nor did they need to be in the 
context of medieval farming, in which valuable arable land was cultivated in 
narrow strips and other small parcels, mostly rectangular. No further new 
techniques were applied to surveying during the fourteenth and fifteenth 
centuries, and there is no trace of the growth of a class of professional 
surveyors. The earliest English printed treaties on surveying (by Sir Anthony 
Fitzherbert in 1523 and Richard Benese in 1537) show little advance on 
thirteenth-century practice, but new methods, particularly of measuring 
angles, were developed in Germany and the Netherlands, and reached England 
through books printed in the 1550s. However, two points about these works 
should be emphasised: first, as some of the writers themselves remark, there is 
an enormous gap between the theory and practice of surveying; and, second, 
the increastng accuracy was probably directed towards the new techniques of 
map-making. Up to the mid-sixteenth century, the result of any kind of survey 
would be written text, much in the medieval tradition of the Domesday Book; 
even during the reign of Elizabeth I, most estate surveys were of this form, and 
very few estate maps survive from before 1550. However, from the 1580s 
onwards, the results of detailed surveys began to be embodied in maps, without 
any accompanying written text. There was then an explosion in the use of maps 
in general, and, with it, a new phase of development began. 

The development of the linear measurement of land is described in Jones, 
LME, and a history of map-making and description of all surviving medieval 
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English local maps, in Harvey, HTM and Harvey & Skelton, LMP ME. I would 
like to thank Paul Harvey for help; this summary is almost entirely based on 
information provided by him. 

8.2 NEUSIS-CONSTRVCTIONS IN GREEK GEOMETRY 

It is widely believed that Greek geometry was restricted to (unmarked) ruler
and-compass constructions. In fact, our evidence is much more diverse than 
this, and the repertoire of basic constructions should certainly also include the 
neusis-construction, in which a line is drawn 'verging' or 'inclining' (neuein) 
towards-that is, passing through-a given point and intercepting two given 
curves or straight lines in a given line segment. In vulgar terms, one might 
imagine putting a nail at the given point, marking off the given segment on a 
ruler, and then rotating the ruler against the nail until the intercept between the 
two given curves is this marked segment. An example will illustrate clearly what 
is involved. 

Our earliest detailed description of a piece of Greek geometry comes at 
third hand. It is found in Simplicius' commentary on Aristotle's Physics, 
where Simplicius quotes, with his interpolations, a passage from Eudemus' 
History of Mathematics which describes Hippocrates' Quadrature of Lunes. 
(A lune is a plane region bounded by two arcs of circles; Hippocrates 
described three such regions that can be made equal to rectilinear plane 
figures, and hence can be squared.) For a discussion of the historical, textual, 
and mathematical aspects of this passage, see Heath, HGM i, 183-200. A 
purged version of the text is given in Thomas, SIHGM i, 234--53, from which 
the following extract is taken. 

A K r 

If [the outer circumference of the lune] were less than 
a semicircle. Hippocrates solved (kateskeuasen, con
structed) this also, using the following preliminary con
struction. Let there be a circle with diameter AB and 
centre K. Let I' L1 bisect BK at right angles; and let the 
straight line EZ be placed between this and the circum
ference verging (neuousa) towards B so that the square 

B on it is one-and-a-half (hemiolos, half-whole) times the 
square on one of the radii .... 

In other words, draw the line EZB, through B and such that EZ is equal to the 
specified line. 

This particular construction can in fact be accomplished by ruler-and
compass methods, as follows. For any line EB, verging towards B, the 
angle E in the semicircle will be a right angle, so the triangle AEB and 
ZI'B will be similar: Hence (BZ + EZ). BZ =AB. BI'= r2, where r is the 
radius of the semicircle. Thus, if so required, we can perform the following 
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ruler-and-compass construction. First construct, separa~ely, a line E'Z' such 
that E'Z'2 = ~r2 (using the techniques of Elements II 14), and a line B'Z' 
such that B'Z'2 + B'Z'. E'Z' = r2 . (This is the elliptic application of areas 
discussed in Section 5.2(d), and performed in Fig. 5.4(c). Alternatively a 
construction can be manufactured around the configuration of Elements II 6; 
see Heath, TBEE i, 386 ff. for details.) If we then locate Z on LJI' so that 
BZ = B'Z', we shall have EZ 2 = ~r2 , as required. However, neither Hippo
crates nor Simplicius makes any attempt to provide such a ruler-and-compass 
justification of this neusis-construction, even though the text elsewhere gives 
elaborate descriptions of matters that are far less obvious than this. The 
neusis-construction seems to be invoked as a permitted construction in its 
own right. 

Each neusis-construction needs some kind of verification that a solution is 
possible. For example, here in Hippocrates' Quadrature, we need to observe 
that the line AB will intercept a segment AI' equal to ~r, greater than v'(~)r, 
while a line through the intersection of I' LI and the circle will have a zero 
intercept. So, by some principle of continuity, an intermediate line with the 
required intercept will exist. Such an implied condition is analogous to the 
diorismos in the formal division of a Euclidean proposition (see the description 
in Proclus-Morrow, CFBEE, 203 f. quoted in Heath, TBEE i, 129 f. and the 
examples in Elements I 22 and VI 28), but no such condition is, to my 
knowledge, considered in any surviving neusis-construction. Nor do I know 
of any ancient discussion of the underlying principle of continuity, in any 
context; see, for example, how Elements I 1 assumes without comment that the 
two circles will intersect-but the circles will intersect only if their radii satisfy 
some implied diorismos; and then, here again, something like the principle of 
continuity is also needed. 

Archimedes uses neusis-constructions freely in his Spiral Lines: the 
construction appears in Propositions 5, 6, 7, 8, and 9, and some of 
these propositions play crucial roles later in the book. This time the 
neusis-construction in Propositions 5, 6, and 7 cannot be carried out by 
ruler-and-compass methods. This has provoked comment and criticism 
from Pappus, in late antiquity, that Archimedes was using; methods 
inappropriate to the problem (see below), and ancient and modern com
mentators have shown how Archimedes' material can be reworked by 
reformulating the later propositions of the treatise which depend on these 
neusis-constructions so that the properties of the spiral can be established 
differently, by ruler-and-compass methods; see Archimedes-Heath, WA, 
Chapter 5; Heath, HGM ii, 556-61; and Knorr, ANCSL for examples, 
discussions, and references. 

Proposition 8 of another work loosely attributed to Archimedes, the Book of 
Lemmas, which survives only in an Arabic translation, describes a geometrical 
configuration that can immediately be used to give a neusis-construction for 
trisecting an angle. The statement of this proposition is: 
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If AB is any chord of a circle whose centre is 0, and if 
AB be produced to C so that BC is equal to the 
radius; if further CO meet the circle in D and be 
produced to meet the circle a second time in E, the arc 
AE will be equal to three-times the arc BD. 

The proof is straightforward: if EF is parallel to AB then, since OE= OF= 
OB= BC, we easily see that the angle DOF is twice BOD, from which the 
result follows. We can use this configuration to trisect an angle as follows: set 
up the figure so that AOE is the angle to be trisected and EOD is the 
diameter produced beyond D. Then use a neusis-construction to insert the 
line CB, verging towards A, between the circle FDB and the extension of line 
BC; BOD is then one-third of AOE. This construction cannot now be 
performed by ruler-and-compass methods, though it can be related to con
struction involving conic sections. For discussion of the Book of Lemmas and 
this kind of construction, see Archimedes-Heath, WA, pp. xxii f. and 301-18, 
and Hogendijk, HTATGIG. 

Apollonius, a younger contemporary of Archimedes, wrote a work On 
Neuses, in two ~ooks. This is lost, but we have a description of Pappus 
which seems to indicate that it was an investigation of the techniques that 
would be needed to carry out different kinds of neusis-constructions. See 
Heath, HGM ii, 189-92 for a description. 

Nicomedes, a younger contemporary of Apollonius, defined the conchoid, a 
curve based on a neusis-construction, which he used to provide a construction 
for duplicating the cube; the procedure is described both in Pappus' Collection 
and Eutocius' Commentary on Archimedes' Sphere and Cylinder and is 
excerpted in Thomas, SIGHM i, 296--309. The conchoid is the locus of 
points which, along with a given straight line, cut off a given segment on all 
lines which verge towards a given point, and it can then be used to determine a 
particular neusis-construction. Nicomedes, as reported by Eutocius, describes 
in some detail an instrument for drawing the conchoid on the basis of which it 
is possible to reconstruct, with some confidence, his arrangement of sliding 
slotted rulers; see Archimedes-Heiberg, Opera iii, 99, or Heath, HGM i, 239. 

In broad terms, we see three phases of development. The early geometers, 
from Hippocrates to Archimedes, seem to have used the neusis-construction 
freely, as a basic construction of mathematics. This was followed by a period, 
represented by Apollonius and Nicomedes, in which the scope and impli
cations of the construction were investigated, and its relation with other 
constructs was explored. Finally, in late antiquity, we find Pappus laying 
down formal criteria that the use of constructions must satisfy. In this last 
phase, Pappus does not mince his words in his explicit criticism of Archimedes 
and Apollonius: 
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It seems to be a grave error into which geometers fall whenever anyone discovers the 
solution of a plane problem by means of conics or linear curves;or generally solves it by 
means of a foreign kind, as is the case, for example, (i) with the problem in the fifth Book 
of Conics of Apollonius relating to the parabola, and (ii) when Archimedes assumes in 
his work on the spiral a neusis of a solid character with reference to a circle; for it is 
possible without calling in the aid of anything solid to find the [proof of] the theorem 
given by the latter [sc. Archimedes], that is, to prove that ... [Archimedes-Heath, WA, 
pp. ciii f. or Heath, HGM ii, 68 or Thomas, SJHGM i, 246-53]. 

I shall not digress here to describe and explore Pappus' description of plane, 
solid, and linear constructions; nor shall I discuss the status of other kinds of 
constructions such as Archytas' duplication of the cube; nor shall I describe 
how tenuous is the evidence for the criticism that Plato is said to have directed 
against the use of mechanical constructions in geometry; nor shall I describe the 
other evidence we have for more exotic mechanical devices and constructions in 
geometry, such as the device attributed by Eutocius to Plato for duplicating the 
cube, or the mysterious 'horn ruler' invoked in Proposition 4 of Diodes' On 
Burning Mirrors. (On these matters see the references already cited; Niebel, 
UBGKA; Steele, URZLGM; and the further references contained therein.) I 
shall take the well-founded example of the neusis-construction as an illustration 
of the proposal, accepted by most modern commentators, that more general 
kinds of constructions than ruler-and-compass constructions were admitted 
freely into early Greek geometry (see Knorr, ANCSL, 86-9 for a discussion), 
and will now turn to a consideration of Euclid's Elements. 

Although the Elements is set in the middle of the period when neusis
constructions were freely used, yet we find there no reference to or use of 
them. Let me dispose first of one common explanation of this, that the 
Elements provides only an introduction to the basic techniques of mathematics, 
preparing the way for further treatises that will deal with the more advanced 
problems where neusis-constructions will find their proper place. First, to 
describe the Elements as restricted to basic mathematics seems to me to be a 
short-sighted judgement based only on the contents of the first few books. The 
material in Books X, XII, and XIII can scarcely be called straightforward, 
basic, or easy; see, for example, the discussion in Chapter 5, above. Next, ifthe 
aim of the Elements were pedagogical, with Euclid the supreme teacher (but see 
Section 5.2(a) for damning comments on Book X, about a quarter of the bulk 
of the Elements), then surely his treatment would anticipate the later enlarge
ment of the geometrical repertoire, and would prepare the reader for the 
introduction to more general constructions. But the Elements does precisely 
the opposite: in Book I, Propositions 1-3, we find the most restricted possible 
interpretation of the Postulates, in which the notional, unmentioned 'compass' 
(see Postulate 3) cannot be used as dividers, to move around freely the endpoints 
of a line. Far from anticipating a relaxation of the scope of geometrical 
constructions, this sets the scene for the most severely constrained interpretation 
of Euclidean compasses. (A possible explanation of these propositions is, I feel, 
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to set up a complete theory of transformation and application of lines founded 
on the most basic interpretation of the first three postulates, as a model for the 
later theory of application of rectilinear areas and for the unachieved theory of 
application of volumes.) Further, the argument that neusis-construction 
belongs only to the more advanced parts of geometry does not stand close 
scrutiny. See, for example, Aristotle, Posterior Analytics, I 10, 76a30 f.: 

By first principles in each genus I mean those the truth of which it is not possible to 
prove. What is denoted by the first [terms] and those derived from them is assumed; but, 
as regards their existence, this must be assumed for the principles but proved for the rest. 
Thus what a unit is, what the straight [line] is, or what a triangle is [must be assumed]; 
and the existence of the unit and of magnitude must also be assumed, but the rest must 
be proved. Now of the premisses used in demonstrative sciences some are peculiar to 
each science and others common [to all], the latter being common by analogy, for of 
course they are actually useful in so far as they are applied to the subject-matter included 
under the particular science. Instances of first principles peculiar to a science are the 
assumptions that a line is of such-and-such a character, and similarly for the straight 
Oine]; whereas it is a common principle, for instance, that, if equals be subtracted from 
equals, the remainders are equal. But it is enough that each of the common principles is 
true so far as regards the particular genus [subject-matter]; for [in geometry] the effect 
will be the same even if the common principle be assumed to be true, not of everything, 
but only of magnitudes, and, in arithmetic, of numbers. 

Now the things peculiar to the science, the existence of which must be assumed, are 
the things with reference to which the science investigates the essential attributes, e.g. 
arithmetic with reference to units, and geometry with reference to points and lines. With 
these things it is assumed that they exist and that they are of such-and-such a nature. 
But, with regard to their essential properties, what is assumed is only the meaning of 
each term employed: thus arithmetic assumes the answer to the question what is [meant 
by] 'odd' or 'even', 'a square' or 'a cube', and geometry to the question what is [meant 
by] 'the alogon' or 'deflection' (keklasthai) or [the so-called] 'verging' (neuein) [to a 
point]; but that there are such things is proved by means of the common principles and 
of what has already been demonstrated. Similarly with astronomy. For every demon
strative science has to do with three things, (1) the things which are assumed to exist, 
namely the genus [subject-matter] in each case, the essential properties of which the 
science investigates, (2) the common axioms so-called, which are the primary source of 
demonstration, and (3) the properties with regard to which all that is a.ssumed is the 
meaning of the respective terms used. There is, however, no reason why some sciences 
should not omit to speak of one or other of these things [Aristotle-Heath, WA, 50 f.; 
there is a longer extract in Thomas, SIHGM i, 418 ff]. 

Aristotle's reference to neusis-construction as an essential attribute for study is 
all the more relevant when we consider that he probably learned his mathe
matics during his nearly twenty-year association with the Academy, up to 
Plato's death, exposed to the ideas of Theodorus, Archytas, Theaetetus, and 
Eudoxus. Thus this passage gives yet further direct evidence of the basic role of 
neusis-constructions in geometry during the pre-Euclidean period. 

Consider the constructions invoked by Euclid. First, the scope of the 
Elements is not restricted to ruler-and-compass constructions. While the 
mean, third, and fourth proportionals for lines are constructed in detail by 
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(implied) ruler-and-compass methods in Book VI 11-13, there are not, and 
there cannot be, similar constructions to back up the use of the fourth 
proportional to two circles and a square in XII 2, and to various three
dimensional figures in XII 5, 11, 12, and 18. While these latter fourth 
proportionals do not have ruler-and-compass constructions, their existence is 
assumed, without any constraints. (A separate issue, which I have set to one 
side above and shall continue to ignore here, is how one can talk of three
dimensional figures being 'constructed' in any sense of the word; here the same 
kinds of difficulties that apply to, for example, Archytas' duplication of a cube 
are also found throughout the construction of the regular polyhedra in 
Elements XIII.) 

We can perhaps discern a later historical stratum: those parts of the Elements 
that invoke these more general kinds of constructions might be associated with 
the innovations due to Eudoxus. Even if this is indeed the case, our question 
still applies in a modified form: why do the earlier, pre-Eudoxan parts of the 
Elements make no reference to neusis-constructions? 

An answer to this can only be very speculative. With this qualification, and 
viewing the issue from the vantage point of the reconstruction proposed here, 
we see how the basic geometry that is developed in Books I, III, VI, and XI is 
applied, in Books II, IV, X, and XIII, in contexts which have very strong 
anthyphairetic overtones. I have illustrated throughout Chapters 2 and 5 and 
will go on to describe in Chapter 9 in more detail how quadratic problems and 
only quadratic problems are amenable to anthyphairetic analysis. The geo
metrical translation of what I have here loosely called 'quadratic prob
lems' is 'ruler-and-compass constructions'; so, I propose, the bias of the 
Elements towards ruler-and-compass constructions and its exclusion of 
neusis-constructions may be a consequence of its anthyphairetic origins. 

As the anthyphairetic preoccupations faded away, as new techniques were 
introduced, particularly by Eudoxus, as the geometrical language that had 
been developed was applied to wider and wider contexts, particularly by 
Archimedes and Apollonius, so would these underlying constructions move 
into prominence and be of interest in their own right. There would then be a 
tendency towards an exploration and classification of the underlying geo
metrical procedures, as in what I called above the second and third phases of 
development. It is a commonplace in mathematics for the initial developments 
to be prompted by some quite specific problem which then fades away; that 
which is left, if successful, then often acquires an autonomous existence as a 
'theory' in its own right. The eighteenth- and nineteenth-century investigations 
of a vibrating string, which provoked the creations of analysis and eventually 
Cantor's set theory, give one good such example; many more could be cited 
without difficulty. Thus the apparent concern for ruler-and-compass construc
tions in the Elements may well be the influence of the language developed 
around the successful treatment of anthyphairetic phenomena, and the 
absence of higher degree constructions may reflect the paucity, even today, 



8.3 The discovery and role of the phenomenon of incommensurability 289 

of any anthyphairetic results about anything other than linear or quadratic 
phenomena. 

8.3 THE DISCOVERY AND ROLE OF THE 
PHENOMENON OF INCOMMENSURABILITY 

8.3(a) The story 

Part of every literate person's intellectual baggage, along with the second law of 
thermodynamics and the principles of relativity and indeterminacy, is some 
version of the story of the discovery of incommensurability by Pythagoras or 
the Pythagoreans and of the role this discovery played in Greek mathematics. 
Here, to end this last chapter on Greek mathematics, I shall describe and 
discuss our evidence on this topic. I shall continue to take pains to maintain the 
perspective of this book, and so will distinguish between that evidence which 
comes, or purports to come, from the early period, up to the time of Euclid and 
Archimedes, and that found only in later sources. 

I shall only give a summary treatment, and direct the reader to the account in 
Knorr EEE, Chapter 2, for further details and references. I will not attempt to 
deal further with the philological issues concerning the words (a)summetros, 
(ar)rhetos, (a)logos, diametros, and diagonios, etc., beyond the comments given 
earlier and listed in the Index. I start by reviewing the treatment of the subject 
in authors up to Proclus, in late antiquity. Every reference to anything that may 
be connected with the topic will, I hope, be included somewhere in this list, and 
I shall also include occasional examples of the many important witnesses whose 
surviving writings do not mention the topic. 

8.3(b) The evidence 

(i) Democritus (fl. c. 460 BC) wrote a treatise in two books called Peri alogon 
grammon kai naston, 'On unreasonable/unutterable/irrational/ . . . lines and 
solids'. Our source is Diogenes Laertius, Lives of the Eminent Philosophers, 
IX47 (Diels & Kranz, FV ii, Fragment A33, p. 91.20 = Fragment Bllp, 
p. 141.24; Diogenes-Hicks, LEP ii, 458-9). Diogenes is a gossipy and uncritical 
compiler of anecdotes, perhaps of the third century AD, though we know 
nothing with confidence of his dates and origins. Here he is quoting, perhaps 
accurately, a catalogue of titles of Democritus' works by Thrasyllus of 
Alexandria (died AD 36), who also catalogued and arranged Plato's dialogues. 
We know of Democritus' ideas only through secondary reports and brief 
quotations, and none of the ninety treatises in this catalogue, twelve of them 
described as mathematical, have survived. In particular, we know nothing 
about the contents of this treatise, and it is not even certain that it had anything 
to do with the topic of incommensurability. A conspectus of scholarly attitudes 
to Democritus' mathematics can be found in Guthrie, HGP ii, 484-8; for a 
succinct assessment'see the OCD, s.v. Democritus: "Little is known (though 
much is written) about the mathematics of Democritus." 
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(ii) Plato: Our first unequivocal and explicit reference to incommensurability 
is in Plato, at Theaetetus 147d-148b, where the topic is liandled confidently in 
the context of Theodorus' geometry lesson to the young Theaetetus. This 
passage gives no indication that the phenomenon itself posed any fundamental 
conceptual difficulty for mathematicians; rather, it is presented as a source of 
interesting and fruitful problems. There is a playful metaphorical allusion at 
Republic VII, 534d; it enters the construction of the nuptial number, Republic 
VIII, 546b-d, in a passage which prompts the later descriptions of side and 
diagonal numbers in the commentaries of Theon of Smyrna and Proclus; it is 
discussed at Parmenides l 40b-d; and there is a reference in the possibly 
spurious Hippias Major, 303b-c, to sums of incommensurable lines that is 
reminiscent of the classification of Elements X. Finally, in Plato's last dialogue, 
at Laws VII 8 l 7e-820e, there is a celebrated passage that talks of "Ignorance 
[which] seemed to me worthy not of human beings but of pigs, and I felt 
ashamed not for myself alone but for all the Greeks". The context is a 
curriculum similar to that of Republic VII, but at a lower level, for the basic 
education of the citizens of the state. The Athenian Stranger talks not only of 
the measurability of line with line, surface with surface, and volume with 
volume, but also: 

Again, what of the relations of surface and line to volume, or of surface and line to one 
another; do not all we Greeks imagine that they are measurable (metreta) in some way or 
another. ... Then if this is absolutely impossible, though all we Greeks, as I was saying, 
imagine it possible, are we not bound to blush for them all as we say to them, "Worthy 
Greeks, this is one of the things of which we said that ignorance is a disgrace and that to 
know such necessary matters is no great achievement" [820a-b; translation from 
Thomas, SIHGM i, 20-7]. 

The matter at issue here is not simply the topic of commensurability and 
incommensurability of homogeneous magnitudes, and it may instead be related 
to the everyday techniques of measuring and comparing areas that I described 
in Sections 7.l(d) and 8.1, above. 

(iii) One of Aristotle's favourite mathematical illustrations is the incom
mensurability of the diagonal, which he cites about thirty times, at Prior 
Analytics 4la23-30, 46b26-37, 50a37-8, 65bl6-21; Posterior Analytics 
7lb25-6, 89a29-32; Topics 106a38-bl, 163all-13; Sophistical Refutations 
170a25-6, 176b20; Physics 221b23-25, 222a3-7; De Caelo 28la6--7, b5-6, 
bl2-14; De Anima 430a30-1; Generation of Animals 742b27-28; Metaphysics 
983a12-21, 1012a31-3, 1017a34-5, 1019b24-7, 1024b19-21, 1047b6--12, 
105lb20-1, 1053a17-8; Nicomachean Ethics 1112a21-3; Eudeman Ethics 
1226a2-4; and Rhetoric 1392al5-8, while in a few other places such as 
Metaphysics 1004bll-12, 1021a3-6 (see Section 2.1 above), and 106lbl, he 
introduces (in)commensurability in other contexts. A typical example occurs in 
Metaphysics 983al2-20: 

Yet the acquisition of it [sc. knowledge, episteme] must in a sense end in something 
which is the opposite of our original inquiries. For all men begin, as we said, by 
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wondering that things are as they are, as they do about self-moving marionettes, or 
about the solstices or the incommensurability of the diagonal; for it seems wonderful to 
all who have not yet seen the reason, that there is a thing which cannot be measured even 
by the smallest unit. But we must end in the contrary and, according to the proverb, the 
better state, as is the case in these instances too when men learn the cause; for there is 
nothing which would surprise a geometer so much as if the diagonal turned out to be 
measurable (metreta). 

(This and the other translations from Aristotle have been taken from the 
edition of W. D. Ross, and they have all been adapted slightly as will be 
explained below. I have here also adjusted the translation of the last word, 
which is the same as that found at Plato's Laws VII, 819e-820c, quoted above.) 
Often Aristotle's reference is very short and stereotyped: estin he diametros 
asummetros, 'the diagonal is incommensurable'. Sometimes he adds bits of 
extra perplexing information, as at Metaphysics 1053a14--20: 

But the measure is not always one in number-sometimes there are several; e.g. the 
quarter-tones (not to the ear, but as determined by the ratios) are two, and the articulate 
sounds by which we measure are more than one, and the diagonal and its side are 
measured by two quantities, and all spatial magnitudes reveal similar varieties of unit. ... 

Here there is variation between the manuscripts that makes the original text 
unsure; the critical editions should be consulted for details. But one point seems 
clear from the grammar of the undisputed text of the Greek, and it seems to be 
supported by the example of the quarter-tones: that the meaning is not that 
there is one measure for the side, and another for the diagonal. The translation 
should better read "the diagonal is measured by two quantities *and [so is] the 
side ... * ... ", where the asterisks indicate the uncertain text. 

In the large majority of these examples where Aristotle writes of 'the 
diagonal', he does not mention 'the side,' he pleura. The only places where 
these words occur are Topics 106a38, 163a13; Physics 221 b25; Generation of 
Animals 742b28; Nicomachean Ethics 1112a23; and the doubtful passage of 
Metaphysics 1053a18, just cited. However, there seems no doubt that 'the side' 
is always understood, as passages such as Topics 163all-13 make clear. 

For example if he had to show that the diagonal is incommensurable with the side, and 
were to beg that the side is incommensurable with the diagonal. ... 

More curious is that Aristotle nowhere says explicitly that he is talking of a 
square. I have excised these words 'the side' and 'of the square' from the quoted 
translations whenever they are not found in Greek text. 

Three examples, all in the Prior Analytics, give more information about 
Aristotle's method of proof. One of these, at 65b16--21, is of doubtful use for 
further reconstruction since it is an example of an incorrect proof: 

The most obvious case of the irrelevance of an assumption to a conclusion which is false 
is when a syllogism drawn from middle terms to an impossible conclusion is independent 
of the hypothesis, as we•have explained in the Topics. For to put that which is not the 
cause as the cause, is just this: e.g. if a man, wishing to prove that the diagonal is 
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incommensurate, should try to prove Zeno's theorem that motion is impossible, and so 
establish a reductio ad impossibile: for Zeno's false theorem has uo connexion at all with 
the original assumption. 

The other two passages give more details of the argument. At Prior Analytics 
41a23-30 he writes: 

For all who effect an argument per impossibile infer syllogistically what is false, and 
prove the original conclusion hypothetically when something impossible results from the 
assumption of its contradictory; e.g. that the diagonal is incommensurate, because odd 
numbers are equal to evens if it is supposed to be commensurate. One infers syllo
gistically that odd numbers come out equal to evens, and one proves hypothetically the 
incommensurability of the diagonal, since a falsehood results through contradicting this: 

and at 50a35-8: 

In the latter [sc. arguments which are brought to a conclusion per impossibile], even if no 
preliminary agreement has been made, men still accept the reasoning, because the falsity 
is patent, e.g. the falsity of what follows from the assumption that the diagonal is 
commensurate, viz. that then odd numbers are equal to evens. 

So Aristotle has in mind an indirect argument per impossibile (i.e. reductio ad 
absurdum) involving odd and even numbers; but, beyond that, he gives no 
details. 

(iv) Eudemus: The lost History of Mathematics by Eudemus is cited several 
times, either directly or indirectly, by Proclus in his Commentary on the First 
Book of Euclid's Elements. One passage, the so-called Catalogue of Geometers, 
speaks of Pythagoras and the discovery of incommensurability: 

Following upon these men, Pythagoras transformed mathematical philosophy into a 
scheme of liberal education, surveying its principles from the highest downwards and 
investigating its theorems in an immaterial and intellectual manner. He it was who 
discovered the alogon pragmateia [see below] and the structure of the cosmic figures 
[65.15-21] 

(This translation is adapted from Proclus-Morrow CFBEE, 52-3.) The word 
alogi5n is frequently emended to analogi5n, as Proclus-Friedlein, PEEC, 65.19 
and Morrow's translation (there "the doctrine of proportionals"), but alogi5n is 
in fact the reading of all manuscripts; see Wasserstein, THTN, p. 165 n. 3 (on 
p. 166) and the following reference. The first sentence was shown, by Vogt and 
Sachs, not to have been in Eudemus' original text, but to have been an addition 
copied from lamblichus (see (xiv), below), and the second sentence is 
almost certainly a neo-Platonic gloss, perhaps by Proclus himself; see 
Burkert, LSAP, 409-12 for a discussion and references. So Eudemus' summary 
of the beginnings of Greek mathematics may have contained no reference to the 
discovery of incommensurability. 

On the evidence of Proclus' writings, Eudemus' History does not seem to 
have contained any direct reference to incommensurability. For Proclus cites 
Eudemus by name in his Commentary on pp.125.7, 299.3, 333.6, 352.14, and 
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419.15, and discusses topics related to incommensurability on pp. 6, 60, 65 (see 
above), and 74; but Proclus never cites anything by Eudemus on incom
mensurability. I know of no other fragment of Eudemus that introduces 
the topic, but unfortunately Eudemus-W ehrli, ER, does not contain any 
indexes so I cannot be certain. 

(v) Euclid: The topic of incommensurability appears in the Elements only in 
Books X and XIII, which were described in Chapter 5, above. The first place 
that exhibits an incommensurable magnitude is X 10, a proposition that may 
have been interpolated; see the note in Heath, TBEE iii, 32-3. At the end of 
Book X, we find a proposition with two alternative demonstrations that the 
diagonal and side of a square are incommensurable; this proposition is 
unnumbered in the manuscripts but is now generally known as X 117 
(Euclid-Stamatis, EE iii, 231-4). It is very rarely translated, though a complete 
French translation can be found in Euclid-Peyrard, OE, and a translation of 
the first demonstration and paraphase of the second are given in Knorr, EEE, 
23 and 230-1. This proposition is almost certainly an interpolation made after 
the time of Alexander of Aphrodisias; see (xiii) below. 

(vi) Archimedes only refers to (in)commensurability once, when describing 
the principle of the balance, at Plane Equilibria I, Propositions 6 and 7; these 
texts are excerpted in Thomas, SIHGMii, 208-17. Proposition 7 is corrupt and 
garbled, and has provoked an enormous literature; see Knorr, APEPT for a full 
discussion and references. 

(vii) Apollonius wrote an extension of the theory of Elements X. We have 
reports of this from Proclus, who refers to: 

Material that Apollonius has elaborated at considerable length about unordered 
irrationals (Proclus-Morrow, CFBEE, 74), 

and from Pappus (see (xvi), below). Nothing of this work survives, and I know 
of no reference to incommensurability anywhere in Apollonius' extant writings. 

(viii) Heron of Alexandria (first century AD): The only places in the large 
amount of heterogeneous material that has been transmitted to us under the 
name of Heron where the topic of incommensurability is mentioned are 
passages appended, perhaps during the eleventh century AD, to the Defini
tions (Heron-Heiberg, Opera iv, 84--6 and 136-40). This appended material 
also contains an abbreviated version of Eudemus' Catalogue of Geometers 
(Opera iv, 108; see (iv), above) which does not mention the discovery of 
incommensurability. 

(ix) Plutarch (AD c. 50-c. 120) often introduces mathematical topics of 
popular interest in his writings. For example, Moralia viii 2 is a dialogue: 
"What Plato meant by saying that God is always doing geometry", (to which 
Plutarch adds "if indeed this statement is to be attributed to Plato"!), where 
we read: 

Therefore Plato himst!lf censured Eudoxus and Archytas and Menaechmus for 
endeavouring to solve the doubling of the cube by instruments and mechanical 
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constructions, thus trying dicha logou [see below] to find two mean proportionals, so far 
as that is allowable [translation from Thomas, SJHGM i, 386 ff.]. 

This passage, whose syntax is fragmented, has led editors to propose the 
emendations: oi' cL\6yov, 'by irrational means', as in this translation, or 
owAoyov, 'by means of reason', or dvaAoyov 'in proportion', for the manu
script's Otxa ,\6yov, 'in separation from reason'; see the critical edition 
Plutarch-Huberg, M iv, 262, for details. The passage has the appearance of a 
gloss, which disturbed the syntax of the sentence when someone later tried to fit 
it into the text. 

His Numa 22 contains the first but the least precise mention of the secrecy of 
the Pythagoreans, their reluctance to write things down, and the betrayal of this 
secrecy: "And when their treatment of the abstruse and mysterious processes of 
geometry had been divulged to a certain unworthy person, they said the 
gods threatened to punish such lawlessness and impiety with some signal and 
widespread calamity"; see Burkert, LSAP, 457 and 461. 

I know of no other passage in Plutarch that could be making any reference to 
incommensurability. 

(x) Nicomachus of Gerasa (AD c. 50-150), an early neo-Pythagorean 
writer of introductory books on arithmetic, geometry, and music theory, 
which are then often quoted by later neo-Pythagoreans, does not mention 
incommensurability in any of his surviving writings. 

(xi) Theon of Smyrna (fl. AD c. 125) does not mention incommensurability in 
his surviving complete work, Expositio Rerum Mathematicarum ad Legendum 
Platonem Utilium, or, to my knowledge, in any fragments. 

(xii) Athenagoras of Athens (second half of the second century AD) reports 
an aphorism attributed to Lysis, a Pythagorean of c. 425 BC: arrhetos arithmos 
theos, 'God is an irrational/ineffable/inexpressible/ ... number'. Athenagoras' 
own direct or indirect source is almost certainly a neo-Pythagorean forgery 
which may have been influenced by a Jewish intermediary. (See Diels & Krantz, 
FV i, 421.5; and Thesleff, PTHP, 114 and IPWHP.) A translation of the 
complete report is: 

Lysis and Opsimus define as God, the former irrational number, the latter the excess of 
the greatest of the numbers over the [number] nearest to it; and if the greatest number, 
according to the Pythagoreans, is the ten, this being the tetraktys and containing all the 
harmonic ratios, and the nine lies close beside it, then God is [a] unit, that is [a] one; for 
the greatest [number] exceeds the nearest [number] by [a] one, that being the smallest 
number. 

This fragment has no value for matters connected with the discovery and 
early role of incommensurability, and it may have had nothing to do with 
mathematics, in the sense of my use of the word in this book. 

(xiii) Alexander of Aphrodisias (early third century AD): The first explicit 
proof of the incommensurability of the diagonal and side of a square is found in 
Alexander's commentary on Prior Analytics 41a26 (Alexander-Wallies, !AP 
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260.7-261.28). There is no generally available translation of this long proof, but 
there is a paraphrase and full discussion in Knorr, EEE, 228-31, which should 
be consulted for further details of the following summary. Alexander's proof is 
not the same as those at Elements X 117, though it includes three citations from 
the Elements that agree, word for word, with our manuscripts; from this we 
infer that his proof must post-date the composition of those parts of the 
Elements. Also, since Alexander's other dozen citations of the Elements also 
correspond to our text, we infer that his version of the Elements did not include 
X 117; so this proposition was probably interpolated sometime between 
Alexander and Theon of Alexandria (late fourth century AD), whose recension 
of the Elements has been transmitted to us in all but one of our Euclidean 
manuscripts. Knorr proposes, very plausibly, that X 117 was interpolated into 
the Elements as a result of the continuing activity of later Aristotelian 
commentators. For example Philoponus (sixth century AD) also discusses 
incommensurability in his commentary on the Posterior Analytics, on 71al 7 
(Philoponus-Wallies, !AP, 12.4-17.9; see especially 16.22-25) and on 7lb25 
(!AP 26.17-27.11; see especially 26.25-27). 

(xiv) Iamblichus (AD c. 250-c. 325): The first surviving stories of the 
circumstance and impact of the discovery of incommensurability are found 
in the neo-Pythagorean commentator Iamblichus, who gives five mutually 
inconsistent accounts which permute stories of the discovery, the construction 
of a dodecahedron, the career of Hippasus, and the death at sea of a 
Pythagorean; these passages are quoted in Section 10. l(c) below. Also see 
Burkert, LSAP, Chapter 6; Knorr, EEE, Chapter 3; O'Meara, PR; and 
Mueller, MPPC. 

(xv) Pappus of Alexandria (fl. AD c. 320) opens his Commentary on Book X of 
Euclid's Elements, which survives only in an Arabic translation, with a version 
of the story. Since Pappus is rare among these later commentators in being an 
able mathematician, and since this reference occurs in a commentary on 
Euclid's treatment of incommensurable magnitudes, it is worth quoting the 
passage in full (Pappus-Thomson & Junge, CPBXEE, 63-4, with the editor's 
emphases, parentheses, and expansions): 

Book I of the treatise of Pappus on the rational and irrational continuous quantities, 
which are discussed in the tenth book of Euclid's treatise on the Elements: translated by 
Abu 'Uthman Al-DimishqI. 
§1. The aim of Book X of Euclid's treatise on the Elements is to investigate the 
commensurable and incommensurable, the rational and irrational continuous 
quantities. This science (or knowledge) had its origin in the sect (or school) of 
Pythagoras, but underwent an important development at the hands of the Athenian, 
Theaetetus, who had a natural aptitude for this as for other branches of mathematics 
most worthy of admiration. One of the most happily endowed of men, he patiently 
pursued the investigation of the truth contained in these [branches of] science (or 
knowledge), as Plato bears witness for him in the book which he called after him, and 
was in my opinion the chief means of establishing exact distinctions and irrefragable 
proofs with respect to the above-mentioned quantities. For although later the great 
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Apollonius whose genius for mathematics was of the highest possible order, added 
some remarkable species of these after much laborious application, it was nevertheless 
Theaetetus who distinguished the powers (i.e. the squares) which are commensurable in 
length, from those which are incommensurable (i.e. in length), and who divided the more 
generally known irrational lines according to the different means, assigning the medial 
line to geometry, the binomial to arithmetic, and the apotome to harmony, as is stated 
by Eudemus, the Peripatetic. Euclid's object, on the other hand, was the attainment of 
irrefragable principles, which he established for commensurability and incommen
surability in general. For rationals and irrationals he formulated definitions and 
(specified) differences; determined also many orders of the irrationals; and brought to 
light, finally, whatever of finitude (or definiteness) is to be found in them. Apollonius 
explained the species of the ordered irrationals and discovered the science of the 
so-called unordered, of which he produced an exceedingly large number by exact 
methods. 
§2. Since this treatise (i.e. Book X of Euclid.) has the aforesaid aim and object, it will not 
be unprofitable for us to consolidate the good which it contains. Indeed the sect (or 
school) of Pythagoras was so affected by its reverence for these things that a saying 
became current in it, namely, that he who first disclosed the knowledge of surds or 
irrationals and spread it abroad among the common herd, perished by drowning: which 
is most probably a parable by which they sought to express their conviction that firstly, 
it is better to conceal (or veil) every surd, or irrational, or inconceivable in the universe, 
and, secondly, that the soul which by error or heedlessness discovers or reveals anything 
of this nature which is in it or in this world, wanders [thereafter] hither and thither on 
the sea of non-identity (i.e. lacking all similarity of quality or accident), immersed in 
the stream of the coming-to-be and the passing-away, where there is no standard of 
measurement. This was the consideration which Pythagoreans and the Athenian 
Stranger held to be an incentive to particular care and concern for these things and to 
imply of necessity the grossest foolishness in him who imagined these things to be of no 
account. 
§3. Such being the case, he of us who has resolved to banish from his soul such a 
disgrace as this, will assuredly seek to learn from Plato, the distinguisher of accidents, 
those things that merit shame, and to grasp those propositions which we have 
endeavoured to explain, and to examine carefully the wonderful clarity with which 
Euclid has investigated each of the ideas (or definitions) of this treatise (i.e. Book 
X) .... 

Pappus here tells a version of the story of the discovery and then, in §2, he 
reports another story that "became current" among the Pythagoreans about 
the disclosure of the discovery to which he assigns a symbolic meaning, since he 
says that it is unlikely to be literally true. So Pappus, who also had access to 
Eudemus' History in some form or another, is uncertain of the details and 
circumstances of the discovery of incommensurability, and of its effect on the 
wider mathematical community; this also confirms further that Eudemus' 
History did not seem to contain details of the story (see (iv), above). Pappus' 
story also occurs as an anonymous scholium to Elements X (see Euclid
Heiberg, Opera v, 417). 

Unfortunately Pappus' commentary is of little help in understanding 
Elements X. 
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(xvi) Proclus (AD c. 410--85); see (iv), above, and the passage from his 
commentary on Platos' Republic, quoted in Section 3.6(b), above. 

8.3(c) Discussion of the evidence 

I shall focus my brief discussion of the evidence on two issues that play a 
prominent role in the received interpretation: did the discovery of incommen
surability reveal a fatal flaw in the Pythagorean programme of describing 
everything by number, and what might have been the details of Aristotle's 
proof per impossibile of the incommensurability of the diagonal? These 
questions are usually taken as basic to any reconstruction of pre-Euclidean 
mathematics, and some interpretations of the received answers are often taken 
as the fundamental facts of the subject. 

First, the Pythagorean programme. Our most important early source of 
information is Aristotle, especially in the Metaphysics. For example, we find 
there several versions of what has become the concise and celebrated epitome of 
Pythagorean philosophy: 

They [sc. the Pythagoreans] reduce all things to numbers [1036bl3], 

The Pythagoreans, also, believe in one kind of number-the mathematical; only they say 
it is not separate but sensible substances are formed out of it. For they construct the 
whole universe out of numbers-only not numbers consisting of abstract units; they 
suppose the units to have spatial magnitude. But how the first one was constructed so as 
to have magnitude, they seem unable to say [1080bl6-21], 

and 

These thinkers [sc. the Pythagoreans] identify number with real things; at any rate they 
apply their propositions to bodies as if they consisted of those numbers [1083bl 7-19]. 

(For further comments, see Huffman, PCPP, and Zhmud, AN.) 
Aristotle's polemical method, particularly in the Metaphysics, is to give a 

prejudiced summary of his predecessors' philosophies, through which he can 
point out the flaws in their point of view. See, for a further example, one of his 
longer descriptions of Pythagorean mathematics: 

Contemporaneously with these philosophers [sc. Leucippus and Democritus] and before 
them, the so-called Pythagoreans, who were the first to take up mathematics, not only 
advanced this study, but also having been brought up in it they thought its principles 
were the principles of all things. Since of these principles numbers are by nature the first, 
and in numbers they seemed to see many resemblances to the things that exist and come 
into being-more than in fire and earth and water (such and such a modification of 
numbers being justice, another being soul and reason, another being opportunity-and 
similarly almost all other things being numerically expressible); since, again, they saw 
that the modifications and the ratios of the musical scales were expressible in num
bers;-since, then, all other things seemed in their whole nature to be modelled on 
numbers, and numbers seemed to be the first things in the whole of nature, they 
supposed the elements of numbers to be the elements of all things, and the whole heaven 
to be a musical scale ana a number. And all the properties of numbers and scales which 
they could show to agree with the attributes and parts and the whole arrangement of the 
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heavens, they collected and fitted into their scheme; and if there was a gap anywhere, 
they readily made additions so as to make their whole theory coherent. E.g. as the 
number ten is thought to be perfect and to comprise the whole nature of numbers, they 
say that the bodies which move through the heavens are ten, but as the visible bodies are 
only nine, to meet this they invent a tenth-the 'counter-earth'. We have discussed these 
matters more exactly elsewhere [985b23-986al2]. 

This and other passages, and his further objections to Platonic philosophy (see, 
for example, 987b23-988a16, 1080b16-35, and 1090a16-1091a23) make it quite 
clear that Aristotle is vehemently opposed to such a numerical explanation of 
nature. For example: 

Mathematics has come to be identical with philosophy for modern thinkers [sc. Plato 
and the Academy], though they say that it should be studied for the sake of other things 
[992a32-bl], 

followed, a few lines later, by the complaint that in such a programme: 

The whole study of nature has been annihilated [992b8-9]. 

I have described in the previous section how Aristotle's favourite mathematical 
illustration is the incommensurability of the diagonal, which he cites eight times 
in the Metaphysics alone. It is therefore curious that Aristotle nowhere points 
to the phenomenon of incommensurability as a fatal flaw in the Pythagorean 
programme, of which he is so unequivocally critical. 

Not only Aristotle, but every witness up to the time of Iamblichus, is silent 
on the issue of the impact of the discovery; the only possible exception is Plato, 
at Laws VII, 817e-820e, in a passage which deals with topics more basic and 
more general than incommensurability. Finally, we have no explicit evidence 
about the details of the Pythagorean technique for handling proportions or 
ratios which is, today, often said to have been shown to be inadequate by the 
discovery of incommensurability; and to talk of such a theory is to appeal to a 
speculative reconstruction. Throughout this book, I have tried to respect the 
overall texture of this early evidence; for example, since our best and earliest 
sources do not make the topic of incommensurability a subject of special notice, 
no more have I. It is a fact of mathematical life, as Aristotle in effect points out 
repeatedly, that the ratio of two lines may not be expressible as a ratio of two 
arithmoi; but there is no difficulty in expressing any ratio of lines using only the 
arithmoi (and of completely expressing the ratio of any two expressible lines in a 
finite number of steps). Only when mathematics becomes fully arithmetised and 
deductive does the dichotomy between commensurable and incommensurable 
ratios pose a serious and subtle problem for the foundations of this arith
metised mathematics. I have given here, in this book, an extended illustration 
of a kind of non-arithmetised mathematics where the split between the tractable 
and intractable occurs at a different place, just beyond the ratios of expressible 
lines, and have argued that we do have abundant evidence, in Plato and Euclid, 
of explorations of the nature of this dichotomy. 
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Now consider Aristotle's comment on the proof of incommensurability per 
impossibile via odd and even numbers. To widen the context of the discussion I 
shall start by describing two further proofs which, I shall propose, might also fit 
Aristotle's remarks. (Another relevant proof is in Waskies, ENH.) The first 
begins in the conventional way, so I will model it on the first demonstration of 
Elements X 117 (in the translation of Knorr, EEE, 23): 

Let it be proposed to us to prove that in square figures the diagonal is incommensurable 
in length with side. 

Let ABCD be a squa~e, of which AC is the diagonal. I say that AC is incommensur
able in length with AB. ·For if possible, let it be commensurable. I say that it will follow 
that one and the same number is odd and even. Now it is manifest that the square on AC 
is the double of that on AB. Since AC is commensurable with AB, then AC will have the 
ratio to AB of one number to another. Let these numbers be [m and n]. ... And since AC 
is to AB as [m] is to [n], so also the square on AC is to that on AB as the square of[m] is 
to that of [n]. The square on AC is double that on AB, so the square of[m] is double that 
of[n]. [So the odd number of factors of 2n2 is equal to the even number of factors of m2 .] 

The prolixity of an argument often hides the point of the proof, so here, again, 
is this first proof. The square number m2 will have an even number of factors, 
since each factor is repeated twice; but 2n2 will have an odd number of factors, 
since it has the additional factor of 2. Hence, if m2 = 2n2 , an odd number will 
be equal to an even number. 

The second proof is based on the method of diagonals and sides explained 
in Section 2.2(a). Consider the example of the pentagon. From Fig. 8. l(a), we 
see that, starting from a smaller pentagon with side s and diagonal d, we 
construct a larger pentagon with side S = s + d and diagonal D = s + 2d. Now 
suppose that the ratio of the diagonal to side of the smaller pentagon is 
commensurable, so we can express s = mb and d = nb for some common 
measure b. Then d: s = n: m will have one of the following forms: either 
even : even, or even : odd, or odd : even, or odd : odd. Suppose, for example, 
that d: sis even: odd. Then, for any other pentagon whatsoever with sides' and 
diagonal d', s' and d' will be commensurable and ifs'= m'b' and d' = n'b', 

(a) 

(a) 
S=s+d 

D=s+2d 

@+o e @+o 0 @+o 0 

o e e o o o 

e o o 

(b) (c) 

FIG. 8.1 

(b) 
•If d:s=e:o 
then D : S = o : o 

(c) 
If d:s=o:e 
then D : S = e: o 

(d) 

(d) 
If d:s = o:o 
then D : S = o : e 
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s d 

(a) 
S=s+d 
D=2s+d 

FIG. 8.2 

(b) 

(b) 
If d:s=e:o 
then D : S = e: o 

8.3 

then d': s' = n': m' will be either also even: odd or even: even, because, if it 
were odd: even or odd: odd, then odd numbers would be equal to even 
numbers. (For example, if e1: 01 = 02: e1, then e1. e1=01.02.) But, from 
Fig. 8. l(b), we see that our assumption that d: s is even: odd implies that 
D: S = (s + 2d): (s + d) is odd: odd; and so that this case cannot occur. Of the 
four possible cases ford: s, we can eliminate the case of even: even by removing 
factors of two, in the usual way; but then all of the other three cases lead to 
contradictions, as is illustrated in Figs 8.l(b), (c), and (d). So, per impossibile, 
the ratio d: s cannot have been commensurable in the first case. 

Let us try the same procedure on the diagonal and side of a square. This time 
we appeal to the construction of Fig. 8.2(a), described by the prescription 
S = s + d, D = 2s + d. But, now, when d: sis even: odd, we again have D: Sis 
even : odd, so no contradiction can be deduced by this method for the diagonal 
of a square. 

If we analyse this kind of argument further, we find that the only kind of 
relations S = as+ bd, D = cs+ fd that will yield contradictions are of the 
forms: 

S = os+od 

D = os+ed 

and S = es+od 

D = os+od. 

(The argument is summarised in Table 8.1; for example, the case we have just 
considered, that of the square, is inconclusive because of the exception listed in 
row 2, column 4, of Table 8.l(b).) However, the generalised side and diagonal 
relationships that were explored in Section 3.6 are all of the form S = as+ bd, 
D = nbs + ad and so none of these can give rise to a contradiction since, for 
them, S = as + ... , D = ... + ad. 

With these two different proofs per impossibile in mind, I shall draw my 
discussion to a close. Our first detailed evidence about Aristotle's proof comes 
from Alexander of Aphrodisias, and it seems clear from the way he constructs 
his argument that neither he nor his source had any account of Aristotle's proof 
before them. It is quite possible that Aristotle's proof did indeed deal with the 
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TABLE 8.1. The inconclusive cases in the proof of incommensurability of d: s by 
the generalised method of diagonal and sides: Proofs per impossibile can only be 

constructed for the cases marked * 

d s es+ed es+od os+ed os+od 

e 0 e e 0 0 

0 e e 0 e 0 

0 0 e 0 0 e 

(a) Odd and even sides and diameters: 
the parity of as + bd as a & b and s & d are even or odd 

~ es+ed es+od os+ed os+od 

e:o-+e:e e:o-+ e:e e:o-+ e:o e:o-+e:o 
es+ed o:e-+e:e o:e-+e:e 

o:o-+e:e o:o-+e:e 

e:o-+e:e e:o-+e:e e:o-+e:o e:o-+ e:o 
es+od o:e-+o:e o:e-+o:e 

o:o-+o:o o:o-+o:o 

os+ed o:e-+e:e o:e-+e:e * 
O:O-+O:O o:o-+o:o 

os+od o:e-+o:e * o:e-+o:e 
o:o-+ e:e o:o-+ e:e 

(b) The inconclusive cases for d: s-+ D: S 

square, and that a brief description of it had been passed down as something 
like 'if the diagonal of a square is commensurable with the side then, since the 
square on the diagonal is twice the square on the side, odd numbers will be 
equal to even numbers'. But, as my first alternative proof shows, such a 
summary description is ambiguous, since it could equally well refer either to 
the numbers themselves, or to the number of their factors; and it is not 
inconceivable that one proof could be confused with the other during trans
mission. There is a historical observation to be made about the alternative 
proof by factorisation, that Euclid does not give a theory of factorisation in 
the Elements and, indeed, the topic of unique factorisation does not become 
fundamental in number theory before the time of Gauss (see Knorr, PIGNT, 
for a brief discussion~; but this does not, I think, completely rule the alternative 
proof out of serious consideration as a plausible reconstruction. 
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Also, it could be significant that Aristotle never says that he is referring to the 
diagonal of a square since there is at least one simple proof that does not work 
for the square, as my second alternative proof illustrates. (Indeed I do not know 
of any figure other than a pentagon for which this method does work as a 
proof ofincommensurability.) One could then go on to invent explanations for 
Aristotle's omission, for example that ifhe had specified the pentagon, then this 
might have complicated his illustration by introducing Pythagorean overtones 
which, for some further reason about which we can then speculate further, 
Aristotle wished to avoid. But our early evidence is so scanty, our late evidence 
so doubtful, that it is difficult to pin these speculations down to anything more 
substantial. 

Given the tenuous nature of this evidence and the range of its possible 
interpretations, it seems unwise to base a reconstruction of early Greek 
mathematics on speculative assumptions about Aristotle's proof of the incom
mensurability of the diagonal, or the circumstances and effects of the first 
realisation of the basic fact of incommensurability. And since our earliest and 
more direct sources do not seem to give any special attention to the discovery 
and its impact, perhaps it also should play a subordinate role in our recon
struction. There lies behind my alternative reconstruction here the suggestion 
of excitement over another discovery, that of the power, surprise, and promise 
of anthyphairetic mathematics, especially the potential in exploring and 
generalising the periodicity of the anthyphairetic ratios Jn: Jm. But this 
promise has still to be realised, even today. In the next chapter I shall describe 
some of the very few further steps that have been carved out in the uphill 
struggle to anthyphairetic enlightenment. 



9 

CONTINUED FRACTIONS 

I am sure that, after close examination, you will like the article 
unless you allow yourself to be put off by the words 'continued 
fractions', which I too used to recoil from. 

(Minkowski to Hilbert, 30 December 
1899, translated from Minkowski, 

Briefe an David Hilbert, 118.) 

The mathematical techniques developed and deployed so far in the historical 
reconstructions of this book have not been arithmetised; that is, they have not 
been expressed in terms of some model, explicit or implicit, of the real numbers 
and its arithmetic. This chapter will be different. My aim is to prove the main 
results underlying the reconstruction and to describe some of the more recent 
investigations into the subject, and I shall give this modern theory in the 
arithmetised style in which it is now conceived, expressed in the modern 
algebraic idiom. So the formulae in this chapter, and this chapter only, 
should be regarded as abstractions of the underlying arithmetic of real 
numbers. 1 

The mathematico-historical essay that follows makes no pretensions to being 
more than an introductory sketch to a selection of accessible topics relating to 
continued fractions and their role in my reconstructions of Greek mathematics. 
Some parts of the picture have been explored and described in detail; in 
particular, all aspects up to 1731 (the date of Euler's first reference to continued 
fractions), and the role of continued fractions in number theory up to 1801 (the 
date of Gauss's Disquisitiones Arithmeticae). Beyond that, the subject cries out 
for adequate historical investigation. 2 

I shall start the historical account at the beginning of the seventeenth 
century, and so will omit any discussion of the ascending continued fractions 

1 The difficulties in describing the real numbers lie not so much in labelling the actual 
numbers themselves-for some of the techniques described here, like anthyphairetic and 
astronomical ratios, will provide immediate solutions to this-but, first, in describing how to 
perform arithmetical operations on these numbers, and, second and much later, in establish
ing the completeness of the reals. It does not generally seem to be appreciated that Dedekind 
was the first person to give a satisfactory solution to both of these problems; see Section l .2(e), 
above, and, for an informal illustration of the problems with arithmetic, my FHYDF. 

2 Brezinski, HCF is a first step in this direction, but the book is mainly a catalogue of 
names and references, with some extracts, and it contains little analysis of this material. My 
articles ATUWT, DT, NCRR2, and CF deal with developments up to the time of Euler. 
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of Fibonacci (seen. 11, below), or the work ofBombelli and Cataldi. My aim is 
to describe some of the contributions of Euler, Lagrange, and Gauss in the 
context of the work which more closely preceded and succeeded them. 

9 .1 THE BASIC THEOR Y 3 

9. l(a) Continued fractions, convergents, and approximation 

Let x0 be a real number, and set 

xo =no+ <f>o, 

where n0 is the largest integer less than or equal to x0 , written n0 = l x0J; so ¢0 is 
the fractional part of x0 , 0 ~ ¢0 < 1. If</>; =f. 0 then, similarly, write 

1/</>0 = x 1 = n1 + ¢1, 

l/</>1 = X2 = n1 + ¢2, 

etc.; 

but if some </> K = 0, the process will terminate with 

l/<PK-1 = XK = nK. 

Now eliminate the </>;s: 

1 1 1 
Xo=no+ xi =no+---1 =no+ 1 =etc., 

n1 +- n1 +---
x2 1 

n1+
X3 

to get the continued fraction expansion for x. For typographical convenience, 
this will hereafter be set out as follows: 

1 1 1 1 1 1 
xo =no+-= no+---= no+-----= etc. 

x1 n1+x2 n1+n2+x3 

Note that, as thus described, n0 is an integer, n; (i ~ 1) is a positive integer, and, 
if the continued fraction terminates with nK, then nK ~ 2; these conditions 
describe a simple continued fraction in its standard form. We shall consider 
these simple continued fractions, together with the similar expressions in which 

3 For a lucid introductory account of the mathematical theory of continued fractions, see 
Davenport, HA; more details can then be sought in the standard references such as Chrystal, 
TA; Hardy & Wright, !TN; and Perron, LK. However great may be the general neglect of the 
history of continued fractions, most of the developments of this section have received the 
attention they deserve. My brief historical notes can be supplemented by, for instance, 
Dickson, HTN ii, Chapters 2 and 7; Diophantus-Heath, DA, 277-92; Whiteside, PMTLSC 
(see especially pp. 195-6, 207-13, and 241); and for a magisterial treatment that sets the 
material on number theory in the widest mathematical and historical context, Weil, NT (see 
the General Index, s.vv. 'continued fractions', '"Pell's equation"', and 'Ricatti'). 
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the terms n; are regarded as indeterminates ('variables') that might take real 
(i.e. non-integral, as with the Xk above, and even negative) values, and will only 
make occasional reference to general continued fractions: 

m1 
no+ m2 

n1+--
n2 + ·. 

h. h "11 b m1 m2 w 1c w1 e set out as no+ ni+ nz+ · · · · 
We immediately relate the continued fraction algorithm to the Euclidean 

algorithm4 applied to a and b. Suppose 

a = nob+ c where c < b, 

b = n1c + d where d < c, 

c = n1d + e where e < d, 

etc., 

where the process terminates if any remainder is zero. Then 

a/b =no+ c/b, i.e. 

b/c=n1+d/c, i.e. 

c/d = n1 + e/d, i.e. 

etc., 

a/b =no+ </>0 where </>0 = c/b, 

1/¢0 = n1 + </> 1 where </> 1 = d/c, 

1 J</>1 = n1 + </>2 where </>2 = e / d, 

and the same integers n0 , n1, n1, ... now describe either the pattern of the 
Euclidean algorithm applied to a and b or the continued fraction expansion of 
the real number a/b. 5 So the expressions no+ ni'+ n;+ ... and [no,n1,n2, .. . ] 
now refer to the same thing. I shall, very shortly, say precisely what the three 
dots mean. 

PROPOSITION (see Elements X2 & 3) The continued fraction of a real 
number xo terminates if and only if x0 is rational. 
PROOF Since xk = nk + l/xk+1, Xk+I will be rational if and only if Xk is 
rational so, in particular, the algorithm can terminate only if x0 is rational. 
Now suppose x0 is rational, x0 = a/b, where a and b are integers, b 
positive. Since the remainders of the Euclidean algorithm, applied to a and 
b, decrease in size (see B24 in Section 1.3, above), the algorithm must 
terminate. QED 

4 It is ironic that the name 'Euclidean algorithm' is now used for the arithmetised version 
of Euclid's geometrical anthyphairesis!. 

5 In arithmetised geometry these letters a, b, c, . .. might, for example, denote ambiguously 
either lines or the lengths of these lines, and a/ b always denotes the quotient of their lengths. 
There has been a tendency since the seventeenth century to regard a: b and a/b as 
synonymous; but a/b has no conventional meaning in non-arithmetised geometry, such as 
has been described in the historical reconstructions in this book. 
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Apart from the ambiguity in the last term of a terminating continued 
fraction, that 

[no,n1, ... ,nK] = [no,n1, ... ,nK - 1, l], 

the expression as a simple continued fraction is unique. 6 This follows because, if 

1 1 1 1 
no+---- ... =mo+---- ... , 

n1+ n2+ m1+ m2+ 

then, since the expression (l/n1+)(l/n2+) ... will always be less than 1 and 
both n0 and mo are integers, we must have n0 = m0. Subtracting this term and 
reciprocating, we get 

1 1 1 
n1 +---- ... =m1 +---- ... , 

n2+ n3+ m2+ m3+ 

and the argument repeats itself. To complete this proof we must show, in the 
standard style of arithmetised mathematics, that any such non-terminating 
expression [O, n 1, n2, ... ] converges to some real number less than one; this 
result will be established below. 

The convergents (see Sections 2.3(b) and (c)) of the continued fraction 
[n0 , n1, n2, ... ] are got by truncating and then evaluating the resulting ex
pression as a common fraction in its lowest terms: 

[no, n1, ... , nk] =Pk/ qk· 

In fact, any straightforward evaluation of a terminating simple continued 
fraction will give a common fraction in its lowest terms, or, when the n; are 
regarded as indeterminates, a quotient of two polynomials in the n; with no 
common factor. This more general point of view, that the n; are regarded as 
indeterminates, will often be taken in the following propositions. 

PROPOSITION (see Section 2.3(c) and Table 2.4) Fork~ 0 

Pk= nkPk-1 + Pk-2 

qk = nkqk-1 + qk-2, 

where P-1 = q_2 = 1, P-2 = q_1 = 0. 
PROOF I shall adopt the approach of Euler (see, for example, UNAPPS, 
§19 ff.) and evaluate the Pk and qk as polynomials in the indeterminates 
n0, n1, ... , nk. To emphasise this point of view, write 

[ l _Pk(no,n1, ... ,nk) 
no, n1, ... , nk - ( ) , 

Qkno,n1, ... ,nk 

6 It is easily seen that this result is false if the n, can take zero or negative values. For 
example [ ... ,x,O,y .. . ] = [ ... ,x+ y, .. . ]; [ ... ,x,-y] = [ ... , (x- 1), 1, (y-1)] (Galois 
refers to this, at the end of his DTFCP, as "la formule connue"); [ ... , x, -y, -z] = 
[ ... , x - 1, 1, y - 2, 1, z - 1 ]; etc. In fact we can take any sequence of non-zero numbers 
no, ni, ... , nk. write x = [no, ni, ... , nk, y], and solve this for y. 
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where Pk(n0, ... , nk) and Qk(n0, ... , nk) are the polynomials. For example, 
we immediately evaluate that 

Po(no) no P1(no,n1) non1 + 1 
Qo(no) 1 ' Q1 (no, n1) n1 

and 
P2(no, n1, n2) non1n2 +no+ n2 
Q2(no,n1,n2) n1n2 + 1 

The result that 

Qk(no, n1, . .. , nk) = Pk-I (n1, n2, ... , nk) 

now suggests itself; it can be verified by observing that 

Pk(no, ... ,nk) ( 1 1) Qk-1(n1, ... ,nk) 
( ) =no+-- ... - =no+ ( ) 

Qkno, ... ,nk n1+ nk Pk-1n1, ... ,nk 

n0Pk-1(n1, ... ,nk) + Qk-1(n1, ... ,nk) 
Pk-I (n1, ... , nk) 

(yVe suppose here and will shortly prove that the Pk and Qb as defined by the 
proposition, do not have any common factor.) We also deduce that 

Pk(no, ... ,nk) = n0Pk-1(n1, ... ,nk) + Pk-2(n2, ... ,nk), 

with P _1 = 1, P -2 = O; and a similar result for the Qks with Q-1 = 0, Q-2 = 1. 
This is very close to what we want to prove. 

We now deduce that the polynomial Pk(no, ... , nk) is got by adding together 
the following terms: the product n0n1 ... nk; every product that arises by 
omitting any pair of consecutive terms; every product that arises by omitting 
any two separate pairs of consecutive terms n; and n;+1, n1 and n1+1; products 
omitting three separate pairs, etc., where, if k + 1 is even, the empty product that 
arises by omitting all the terms has the conventional value 1. Since P0 (n0 ) and 
P1 (no, n1) are of this required form, and Pk satisfies the recurrence relation just 
established, we get an immediate verification of this description of Pk. 

From this it follows that 

Pk(no,n1, ... ,nk) = Pk(nk.nk-1, ... ,no) 

and hence we can manipulate the recurrence relation into the form 

Pk(no,n1, ... ,nk) = nkPk-1(no, ... ,nk-1) + Pk-2(no, ... ,nk-2), 

as required. QED 

REMARK The Pk are sometimes called Euler or Gauss brackets. They were 
introduced by Euler, who used the notation (n0,n1, ... ,nk) for them; Gauss 
wrote them as [no,n1, ... ,nk] (see Section 2(d), below). They satisfy many 
identities, first explor.ed by Euler. For example the basic generating relation: 

Pk( no, ... , nk) = nkPk-1 (no, ... , nk-1) + Pk-2(no, ... , nk-2) 
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can be generalised to 

Pk(no, ... ,nk) = P1(no, ... ,n1)Pk-1(n1+1, ... ,nk) 

+P1-1(no, ... ,n1-1)Pk-1-1(n1+2, ... ,nk)· 

Later the corresponding polynomials for a general continued fraction 
no+ n~~ n~~ .•. were seen by Sylvester (1853), Muir (1874), and others to be 
expressible as special kinds of determinants, called continuants, from which 
many further identities can be generated. For a historical account see Muir, TD. 

CoROLLAR Y Fork ;?: 2, Pk+I >Pk, qk+I > qk. 

CoROLLAR Y Fork;::: 0, 

Xk+IPk +Pk-I 
Xo=-----

Xk+lqk + qk-1 

PROOF Apply the proposition to [no,n1, ... ,nk,Xk+il = xo. QED 

COROLLAR y (see Section 2.4(f)) For k;::: 0, Pk+lqk - Pkqk+I =(-It 
Hence Pk and qk. as calculated by the recurrence relation of the proposition, 
are coprime, either as numbers or as polynomials. 
PROOF 

Pk+lqk - Pkqk+I = (nk+IPk + Pk-1)qk - Pk(nk+lqk + qk-1) 

= -(pkqk-1 - Pk-lqk) 

= (-ll(p1qo -poq1) =(-It 

Hence any common factor of Pk and qk must also divide 1; so Pk and qk are 
co prime. QED 

CoROLLAR Y (see S21-B24 in Section 1.3) 

Po P2 P4 Ps p3 Pl - < - < - < ... < Xo < ... < - < - < -
qo q1 q4 qs q3 q1 

where if x0 is rational and so its continued fraction terminates, then x0 is equal 
to the last convergent, xo = [no,n1, ... ,nK] = PK/qK; while if xo is irrational, 
thenpk/qk converges to x0 ask increases. 
PROOF 

Pk+I Pk Pk+lqk - Pkqk+I (-ll 
----

and so this difference is positive if k is even, negative if k is odd. Moreover, the 
numbers qk increase ask increases, so the difference between consecutive terms 
will decrease as k increases. Hence we get the chain of inequalities. 

If x0 is rational, its continued fraction will terminate and, by the definition of 
the convergents, it will be equal to its last convergent. If x0 is irrational, the qk 
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will increase without limit, so the difference between consecutive terms, which 
bracket xo, will tend to zero. Hence the convergents Pk/ qk will, indeed, 
converge to x0 ask increases. QED 

REMARK This corollary describes the usual meaning m arithmetised 
mathematics of the three dots in expressions like 

xo = [no,n1,n2, .. . ], 

that either the sequence terminates, in which case it is an arithmetical (or 
algebraic) identity, or it does not terminate and the numbers [no], [no, ni], 
[n0 , n1, nz], ... tend arithmetically to x 0. The chain of inequalities implies 
that n0 :( x :( no+ 1, where the left-hand equality can only hold if x = [n0], 

the right-hand if x = [no, l] = [no+ l] in standard form. 

CoROLLAR Y (see Section2.2(b)(vii)) Ifn0, n1, nz, ... is any non-terminating 
sequence of integers with n; ~ 1 for i ~ 1, then the continued fraction 
[n0 , n1, nz, ... ] converges to some irrational number xo. 
PR o o F The convergents satisfy the inequalities of the previous corollaries; so 
Po/qo, P2/q2, p4/q4, ... , being a bounded increasing sequence, converges to 
a limit; also pifq1, p3/q3, p5/q5, ... , being a bounded decreasing sequence, 
also converges to a limit; and these two limits must be equal since we can make 
Pk/qk - Pk+i/qk+I as small as we please. Finally, since the continued fraction 
expansion is unique, we must have xo = [n0 , n1, nz, ... ] and so, since this does 
not terminate, x0 is irrational. QED 

In fact, consecutive convergents also improve in accuracy, and we can give 
close estimates of their error and deduce that, in some very precise sense, they 
give the best approximations to x0 by rational numbers; see Sections 2.2(b)(iii) 
and (iv) above. For, since 

either we can rewrite this to give 

Pk qk-1 (Pk-I ) 
Xo - qk = Xk+lqk qk-1 - Xo 

whence, since 0 < qk-1 < Xk+lqk. we get: 

CoROLLAR Y When k ~ 1, 

lxo - Pkl < Jxo - Pk-II· 
qk qk-1 

Or, alternatively, we can evaluate 

xo _Pk-= Pk-lqk - Pkqk-1 = ± 1 
qk qk(Xk+lqk+qk-1) qk(Xk+lqk+qk-1)' 
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and hence, since nk+I ~ Xk+I < nk+1 + 1 and qk-1 < qk fork;::;, 2, we have the 
estimates of Sections 2.2(b )(iii) and (iv): 

CoROLLAR Y If k;::;, 2, 

1 2 < lxo - Pkl < _1_ < _1_2. 
(nk+I + 2)qk qk qkqk+I nk+lqk 

Or we can manipulate the formulae to prove that the convergents provide the 
best approximations: 

COROLLARY 
b > qk. 

If lxo - ~I < lxo -~I, where~ is a convergent of x0 , then 

PROOF Suppose, first, that a/b and Pk/qk lie on the same side of xo, for 
example thatpk/qk < a/b < xo <Pk+1/qk+I· Then 

O < <!_ _ Pk < Pk+I _ Pk = _1_. 
b qk qk+I qk qkqk+I 

Hence 

and since aqk - bpk is an integer, b > qk+I · 
Now suppose that they lie on opposite sides, for example that Pk/ qk < xo < 

a/b <Pk-I/ qk-1, where the final inequality follows from the previous corollary 
but one. Then, by what we have just proved, b > qk. QED 

HISTORICAL NOTES The convergents to a simple continued fraction, as 
such, seem to have first been defined in the West since the Renaissance by 
Daniel Schwenter in his Geometriae Practicae of 1618 and Deliciae Physico
Mathematicae of 1636, and for a general continued fraction by Wallis, in his 
Arithmetica Infinitorum (1658)-where the expression 'continued fraction' first 
appeared-though no general algebraic formulae are given before Euler. 
Approximation methods which turn out to be closely related to the continued 
fraction process are rather older; see the next section for an early example. 

Wallis devoted Chapters 10 and 11 of his Treatise of Algebra of 1685 to the 
problem of the "Reduction of Fractions or Proportions to smaller Terms, as 
near as may be to the just Value", that is to approximating a given fraction or 
decimal number by a fraction whose denominator should not be greater than 
some given number, say 999. The problem, he said, was sent to him in 1663 or 
1664; it is due to a certain Dr Davenant and it arose in connection with 
Metius's approximation of TT by ij~. Wallis' procedure is tantamount to the 
computation of the terms, convergents, and intermediate convergents (see the 
next section) of the continued fraction expansion, and it is usually described in 
these terms, but I have argued in my ATUWT that this is not the case; indeed 



9.1 The basic theory 311 

Wallis himself says as much, in a letter to John Collins (see my article, 
pp. 211-12). His procedure is based on manipulations of the decimal expansion 
of the given common fraction. Then, in Chapter 11, he demonstrates his 
procedure on van Ceulen's thirty-five decimal-place value of 'TT, augmented 
by a final approximate place: 

3· 14159 26535 89793 23846 26433 83279 50288 ! 
from which, at first sight, it seems that he deduced that 

7T= [3, 7, 15, 1,292, 1, 1, 1,2, 1,3, 1, 14,2, 1, 1,2,2,2, 1,84, 

2, 1, 1, 15,3, 13, 1,4,2,6,6, 1 (should be 99), ... ] 

with a tabulation of 494(!) convergents and intermediate convergents. How
ever, if one follows through his calculation in detail (he explains that he has 
suppressed the numerical evaluations, for "it is not necessary to trouble the 
Reader with so oft repeating those long Numbers. But it is easy[!] for any who 
will give himself that trouble to restore them when he pleaseth"), one can see 
that he knows precisely when he has reached the limit of the accuracy of van 
Ceulen's approximation, and he disowns the accuracy of the final place of his 
expansion7 which should, in any case, read [ ... , 6, 6, 3 or more, ... ]. 

Approximation using the continued fraction process is handled fluently, with 
descriptions of proofs, by Huygens, in his Descriptio Automati Planetarii 
(written between 1680 and 1687 but only published posthumously in 1703), 
in connection with the problem of selecting gear ratios for a planetarium. 8 The 
procedure is then formalised and developed by Euler and Lagrange; the latter 
called it "une des principales decouvertes de ce grand geometre [sc. Huygens]" 
in §7 of his Additions to Euler's Algebra; see Weil, NT, 120, for further 
references and a brief comment. 

As illustrations of the understanding and use of continued fractions just 
before the introduction of Euler's formalism, here are two extracts from Roger 
Cotes. First, his discovery of the surprising behaviour of e, published first in his 
article 'Logometrica' and repeated in his posthumous Harmonia Mensurarum 
(1722): 

The major term 2·71828 &c. [= e] should be divided by the minor 1 ... and once more 
the minor by the number which is left, and this again by the last remainder, and so 
continue forward; and the quotients 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 
14, 1, 1, 16, 1, 1 &c. will be produced. Having made these calculations, we must set out 
two columns of ratios, of which one contains the terms which have a ratio greater than 
the true one (rationes vera majores), and the other contains the terms which have a ratio 
less than the true one (rationes vera minores), beginning the computation with the ratios 
1 to 0 and 0 to 1, which are most remote from the true one, and having started there, 

7 The error in this fina!Jerm seems to have been noticed first in Lehmer, EALN. 
8 The technique can now be found in any good advanced manual of engineering workshop 

practice. Some such procedure is also needed for the Antikythera mechanism; see Price, GG. 
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continuing to deduce the remaining ratios, which approach ever closer to the true one .... 
[There follows here a long verbal description of the following table:] 

Rationes Vera Majores Rationes Vera Minores 
0 1 

1 Ox2 2 0 
2 1 2 1 x l 
3 1x2 6 2 
8 3 8 3 x 1 

11 4xl 11 4 
76 28 19 7x4 
87 32 x 1 87 32 

106 39 106 39 x 1 
193 71 x 6 

The application of these approximations is widespread, wherefore I have given a 
somewhat prolix exposition of their invention, by the method which seems to me 
simplest and easiest. The celebrated men Wallis and Huygens have dealt with the same 
arguments, slightly differently [Harmonica Mensurarum, 7-9].9 

Next, there is an extract from Cotes's correspondence with Newton over the 
second edition of the Principia: 10 

I find that 25 & 21 express the proportion of yl yl2 to 1 as nearly as it is possible for so 
small numbers to do it, whence it is probably y1 the exact proportion of the diameter of 
the Hole to y" diameter of y" Stream is that of yl yl2 to 1, & then y" proportion of 44 to 
37 will be much nearer the truth than y1 of 25 to 21. 

In fact y'y'2=[1,5,3,1, 1,40, ... ], with convergents ~. *· fi, and~ and, 
because of the next large term of 40, ~ will be a very good estimate: 
42!372 < (y'y'2-~) < 40! 372 < 1·8 x 10-5. 

Finally, as a postscript to this sketch of the early history of continued 
fractions and approximations, I note that, rather later, Lagrange wrote a 
modest little article, EANTF (1799), in which he described different approaches 
to a similar problem, that of approximating a given common fraction by sums 
and differences of other particular kinds of fractions: 

!!_ = mo ± m1 ± m2 ± ... , 
q no n1 n1 

9 I am grateful to Ronald Gowing for sending me material on Cotes; the translation is by 
him. I have slightly rearranged the order and presentation of Cotes's text: the table precedes 
its description in the original, and I have introduced a one-line displacement between the two 
columns of the table to clarify his procedure. Cotes also gives a similar description, with table, 
in which the intermediate convergents are calculated. Incidentally, I do not believe that Cotes 
continued his numerical calculation up to the terms " ... 16, 1, 1, &c"; this is surely an 
'induction', seventeenth-century style, because the sequence given exactly fills one line of text 
in the original. 

10 Quoted from Westfall, NR, 711, where an explanation of the context can be found. The 
letter is dated 31 March 1711. For more details, see my NCRR2. 
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under various different conditions on the ms and ns. Within this general 
framework, he described expressions like 

p m1 m1 m3 
-=mo±-±2±-3 ± ... ' 
q n n n 

which is a generalisation of the sexagesimal or decimal expansion to base n with 
positive or negative terms; or its more general form 

!!..=mo±m'± m1 ±~± ... , 
q n1 n1n2 n1n2n3 

an expansion to changing bases, as with Imperial measures; 11 then 

p 1 1 1 
-=mo±-±--±--± ... , 
q n1 n1n2 n1n2n3 

an expression in sums and differences of unit fractions (precisely the procedure 
described at B114 in Section 7.4(d), above), one example of which he gave being 

1 1 1 1 
7T= 3 +7-7x 113-7x 113x4739+7x 113x4739x47051 +. · · 

(contrast note 97 to Chapter 7, above). He then gave a treatment of continued 
fractions approached via the problem of constructing approximations, similar 
in spirit but different in its details from the algorithms of Section 2.3. The 
article is not of great importance mathematically and seems generally to have 
been forgotten, but parts of it echo and develop themes that have been raised 
here, particularly in some of my slaveboy's remarks and questions. 

9.l(b) The Parmenides proposition and algorithm12 

The historical reconstructions in this book have not been based on the 
continued fraction algorithms that I have so far been describing, 13 but on the 

11 These kinds of expansions are, in fact, expressions as ascending continued fractions, 

mo±m1±m2± .... 
n1 n2 

They were considered by Fibonacci and other Italian mathematicians up to the sixteenth 
century; see my DT for a brief discussion. 

12 This section is inspired by Fletcher, AV, and owes a lot to the meticulous account in 
Stark, INT, Chapter 7. Readers should consult these for more detailed explanations and 
illustrations. 

13 This, it seems to me, is a fatal flaw in most of the other detailed anthyphairetic 
reconstructions of early Greek mathematics known to me. I repeat, yet again, a theme that 
runs throughout this book: we have no evidence to indicate that early Greek mathematics was 
arithmetised, either in conception or in underlying motivation, and we know much which 
suggests that it was not. Therefore the description so far in this chapter is simply irrelevant to 
early Greek mathematics. Of course, the later Greek mathematics, for example of Heron, 
Ptolemy, and Diophantua, is clearly deeply influenced by Babylonian arithmetised techni
ques, but anthyphairesis does not seem to play any practical or theoretical part during this 
later period. See Section 10.5, below. 
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y 

0 x 

FIG. 9.1. The Parmenides algorithm 

generation of approximations by the Parmenides proposition; see Section 2.2, 
above, where the use of the Parmenides proposition to compute approxi
mations and continued fraction expansions is explained. Let us now investigate 
these propositions and algorithms in more detail. We suppose, for simplicity, 
that xo is positive. 14 

THE PARMENIDES PROPOSITION If p_ < ~ then p_ < p+r < ~. 
q s q q+s s 

PROOF p+r - p_ = qr-ps > 0 since p_ < '1. 
q+s q q(q+s) r s QED 

THE PARMENIDES ALGORITHM Ifp/q is an underestimate and r/s is an 
overestimate for xo, then (p+r)/(q+s) will be a better approximation than 
that original estimate which lies on the same side of xo. Start the algorithm with 
the formal universal estimates 0/1 < xo < 1/0. 

I shall develop the properties of the Parmenides algorithm using coordinate 
geometry and properties of the integer lattice, the set of all points having 
integer coordinates, a description first set out in Smith, NCF. Take the line 
Y = x0 X in the positive quadrant of the (X, Y)-plane (see Fig. 9.1); then our 
aim is to find lines joining the origin to points of the integer lattice whose slopes 
will closely approximate the slope x0 of this given line. 

If OA, where A= (q,p), is the underestimate in the algorithm, and OB, 
where B = (s, r), is the overestimate, then the Parmenides proposition states 
that the slope of the diagonal OC, the vector sum of OA and OB, lies between 
the slopes of OA and OB. In the case illustrated in Fig. 9.1, OC will then be a 
better estimate than OB. So, at the next step of the algorithm, we repeat the 
operation with the points A and C. Figure 9.2 illustrates the process applied to 
xo = y'3, and the annexed table lists the successive approximations; it is 
identical in content to Table 2.1, save for the mild inconvenience that the 
slope p / q corresponds to the point ( q, p) but the ratio p: q. Note also that we 

14 When x0 is negative, a similar description can be given for the fourth quadrant X ,:; 0, 
Y ;:;: 0. Or we can work with -xo. 
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y 

under over 

(1, 0) (0, 1) 
(1, 1) 

(1, 2) 
(2, 3) 
(3, 5) 

(4, 7) 
(7, 12) 
(11, 19) 

(15, 26) 
etc. 

(0,1) 

x 

FIG. 9.2. Approximations to J3 

distinguish p/q, 2p/2q, 3p/3q, etc., since they correspond to different 
approximating points in the integer lattice; for this reason, I shall generally 
refer to (q, p) rather than the fraction p/ q. Also observe that if (q, p) and (s, r) 
are the current estimates, then q :::; sand p :::; r, or q ~ sand p ~ r, where both 
inequalities are strict after the initial estimates have been superseded, so 
thereafter any estimate will lie above and to the right of any earlier estimate. 
I always suppose that this configuration holds. 

If A and B are the current approximations, and C the new approximation 
(as in Fig. 9.1), then call OAB the approximating triangle and OABC the 
approximating parallelogram. I shall base the analysis of the Parmenides 
algorithm on: 

PrcK's THEOREM The area ofa simple polygon whose vertices are lattice 
points is equal to half of the number of points on the perimeter, plus the 
number of points inside, minus one. 

A satisfactory discussion and proof of this result would lead us too far from 
our main interest; for further details see, for example, Coxeter, JG, 209-10, or 
Varberg, PTR. 

PROPOSITION The approximating triangle and parallelogram contain no 
points of the integer lattice. 
PROOF Each step eifthe algorithm replaces the approximating triangle OAB 
by OAC or OBC, and each of these triangles is half of the approximating 
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parallelogram OABC; so the area of the approximating triangle is unchanged. 
Since it starts with A= (1, 0) and B = (0, 1), its area wilralways be!- Since its 
three vertices are lattice points, Pick's theorem tells us that it can have no lattice 
points inside. QED 

0 

(b) 

Fm. 9.3. Typical runs of estimates in the Parmenides algorithm. (The thickness and 
areas of the parallelograms in all figures except Fig. 9.2 have been greatly exaggerated 
and distorted to make the drawings possible. The axes have been omitted since they will 

also have been distorted in direction and scale) 

(a) A run of n underestimates A, A', ... , A (n-1), followed by a new overestimate 
B1 = (q+ns,p+nr) 

(b) A run of n overestimates B, B ', ... , B (n-1), followed by a new underestimate 
A1 = (nq+s,np+r) 
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Characteristic sequences of steps are illustrated in Fig. 9.3. Consider Fig. 
9.3(a): the estimates A= (q, p) and B = (s, r) give rise to a run of n under
estimates A, A', A", ... ,A(n-I), followed by a new overestimate B1 = 
(q+ns,p+nr). Each of the triangles OAA',OA'A", ... ,OA(n-l)B1, being 
half of its corresponding approximating parallelogram, will contain or meet no 
lattice point other than its three vertices. Hence neither the triangle OAB1 nor 
OB1nB-which has the same area and the same number of perimeter lattice 
points-will contain or meet any other lattice points than 0, A, A', A", ... , 
A(n- I), B1, nB, ... , 3B, 2B. B. Figure 9.3(b) illustrates the similar case of a run 
of n overestimates followed by an underestimate. 

Hence the procedure will generate the configuration of Tables 2.2 and 2.3 
from which, if we extract only the run-end estimates, we get the more schematic 
configuration of Table 2.4; but this describes precisely the calculation of the 
convergents of our basic continued fraction algorithm. Hence the two proce
dures are equivalent. Thus the estimates that occur at the end of the runs of the 
Parmenides algorithm are the convergents of the continued fraction expansion 
of x0 = [no, n1, n1, ... ], while the other estimates are the so-called intermediate 
convergents, defined by 

(m) 

ptm) = [no,n1, ... ,nk+1,m] where 1:::::; m < nk. 
qk 

The way the current and run-end estimates alternate around the line Y = xo X 
illustrates clearly the way the intermediate convergents and convergents altern
ate around xo. 

The approximating parallelograms in a correctly drawn figure quickly 
become very, very long and thin; see, for example, Fig. 9.2. To make drawings 
possible, gross distortions have had to be introduced into almost all of the 
figures here. However the proofs ultimately depend on the careful use of words 
like 'above', 'below', 'inside', and 'outside' in contexts that are not affected by 
these distortions. This point is examined carefully in Stark, INT. 

So far we have been considering angular approximations to the line 
Y = xoX, i.e. approximations of the form I xo - p /qi. We now show that the 
continued fraction process actually locates those points of the integer lattice 
which lie closest to the line Y = x0 X, although it is in practice more convenient 
to work with the vertical distance from the point ( q, p) to Y = x0 X, given by 
I xoq - Pl (see, for example, the line AD in Fig. 9.3(a)); this is the shortest 
distance multiplied by a constant, sec x0 . Clearly points which are close to the 
line Y = xo X will generate good angular approximations, though not neces
sarily conversely: consider ( nq, np) for large n. 

PROPOSITION If A= (q, p) and B = (s, r) are the current under- and 
overestimates to xo, with q < s (so A is a convergent) then 
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for every F = (u, t) different from A and B with t ~ s. If, further, B is a 
convergent, then 

lxos - rl < lxoq - Pl· 

PROOF We suppose that A lies below Y = xoX and B lies above. Since 
q < s, A must be a run-end estimate (i.e. a convergent), while B may or may not 
be a run-end estimate (i.e. it is either an intermediate convergent or a 
convergent). We therefore have a situation analogous to that shown in Fig. 
9.3(b) in which any one of the B, B', ... , B(n-I) can now play the role of B. 
This figure is incorporated in Fig. 9.4, in which B(iv) is chosen to typify the 
point B. We have shown, in Fig. 9.3(b), that the only lattice points in or on the 
parallelogram OnAA1B are the marked points 0, A, 2A, ... ,nA, A1, B(n-IJ, 
B(n-Z), ... , B. If, as in Fig. 9.4, we now tile the plane with translates of the 
parallelogram, the points of the integer lattice will lie, similarly, on the sides of 
the translated parallelogram. (We see clearly here an effect of the distortion in 
this figure. The axes have been omitted from these figures since they, too, will 
be distorted in direction and scale.) 

Suppose first that the point F = (u, t) lies below Y = xoX. Then, since t ~ s, 
it must lie on or below the line OA and before the line X = s; and, by 
hypothesis, it is not equal to A. Since the slope of Y = x0 X is greater than 
the slope of OA, F must therefore be further away than A from Y = xoX. 

Next suppose that F lies above Y = xoX, in which case it must lie on or 
above the line containing B, and it is not the point B itself. Now the lattice 

Fm. 9.4 
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points before B are further from Y = x0 X than is A, because Y = x0 X cannot 
pass through the small shaded triangle in Fig. 9.4, congruent to OAD, where 
D = (q, x0q), the point vertically above A. Hence F must again lie further from 
Y = x0 X than does A, and again we have 

lxoq- Pl< lxou - ti. 
Finally, if B is a run-end estimate, then line Y = x0 X will pass through the 

corresponding small triangle congruent to OAD with vertex at A1. Hence 

QED 

PROPOSITION (see Section 2.2(b)(ii)) If A= (q, p) and B = (s, r) are 
successive convergents to xo then 

I xo - !!_ I < 2_ 
q q2 

and at least one of them satisfies 

I xo - !!_ I < _1 
q 2q2 

and 

or 

lxo - ~I< 2-, 
s s2 

lxo -~I <-1 . 
s 2s2 

PROOF See Fig. 9.5, in which we suppose that A is an underestimate, Bis an 
overestimate, and q < s. Then the error in each estimate is less than 
I~ - ~I = lqr;;sl = fs x area of the approximating triangle OAB = fs. So, since 
q < s, 

I xo - !!_ I < 2_ . 
q q2 

Now suppose that both 

I xo - !!._ I ;:?: _1_ 
q 2q2 

and I xo - ~ I >- _1_ . 
s "'2s2 ' 

we shall derive a contradiction by analysing Fig. 9.5 more closely, and showing 
that these inequalities imply that the triangle OAB is too big. 

y B=(s,r) 

o~ x 
FIG. 9.5 
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Let C be the point (q, x0q), vertically above A, and D be (s, x0 s), vertically 
below B; and let AB intersect Y = xo X in E. Then, by oui' assumed inequalities 

AC= lxoq- Pl~ 1/2q and BD = lxos - rl ~ 1/2s. 

Since q < s, and A and B are both convergents, AC> BD; so, since the 
triangles ACE and BDE are similar, ACE is larger than BDE. Next 

area OAC = !q.AC ~ ! and area ODB =!s.BD ~ !· 

Hence 

area OAB = area OAC + area OBD 

+(area ACE- area DBE)>!+!=!, 

which gives the required contradiction. 

There is an important converse to this result: 

PROPOSITION If r/s satisfies 

lxo -~I <-l-
s 2s2 

then r / s is a convergent of xo. 

QED 

PR o o F Suppose that r / s is in its lowest terms, and that A = ( q, p) is the last 
convergent (i.e. that with largest q) such that q :::::; s. We will then prove, by 
contradiction, that r/s = p/q. For suppose that r/s =f. p/q, i.e. ps - qr =f. O; 
then, since ps - qr is an integer, lps - qrl ~ 1, so triangle OAB (where 
B = (s, r)) will have area~!· But we shall show that the assumption on B 
does not allow this. As in the previous proposition, this assumption implies that 
lsxo - rl < 1/2s, i.e. BD < 1/2s in Figs 9.6(a) and (b). 

We consider the case where p/q < xo, i.e. A lies below Y = xoX; the case of 
p/q > xo is similar. We investigate separately the three situations where 
r/s:::::; p/q < xo; p/q < r/s:::::; xo; and p/q < Xo < r/s. 

0 
(a) (b) 

Fm. 9.6 
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First suppose r/s :::( p/q < x0 , Fig. 9.6(a). Then A lies inside or on the edge 
OB of triangle OBD, so 

area OAB <area OBD = !s. BD < i, 
which shows this case cannot occur. 

Next suppose p/q < r/s :::( xo, Fig. 9.6(b). Then 

area OAB = area OAE + area AEB 

= !q .AE +!(s - q) .AE 

= !s. AE < !s. AC< !s. BD < i, 
which again cannot occur. (Note that both of these contradictions would follow 
from the weaker hypothesis that I xo - r / s I < 1 / s2 .) 

Finally, suppose that p/q < r/s < xo; here see Fig. 9.5, but in a different 
interpretation from that in the previous proposition. Let (p', q') be the 
convergent following (p, q), so that q :::( s < q'. Then, by the last proposition 
but one, AC< BD. So, since triangles ACE and BDE are similar, ACE is 
smaller. Then 

area OAB =area OAC +area ODB - (area BDE - area ACE) 

< !q. AC+ !s. BD = ! 

and again we have a contradiction. QED 

H 1sToR1 c AL No TE s Chuquet described the Parmenides algorithm under 
the name La regle des nombres moyens in his Triparty of 1484: 

This rule serves to find as many numbers intermediate between two neighbouring 
numbers as one desires. By its means it is possible to find many more numbers and to do 
more calculations than are found by the rule of three or by one position or by two 
positions .... Numerator is added to numerator, and denominator to denominator 
[Chuquet-Flegg, Hay, & Moss, NC, 90]. 

There was some sixteenth-century exploration of this technique by Juan de 
Ortega and Buteo (see Dickson, HTN ii, 350---1 for references), but modern 
commentators often seem not to have realised its potential. For example, the 
DSB, s.v. Chuquet, says of it: " ... this rule, together with a lot of patience, 
makes it possible to solve any problem allowing of a rational solution .... Since 
he was little concerned about rapid methods of approximation, Chuquet 
throughout his work used nothing but this one rule .... " 

The geometrical description of continued fractions in terms of the integer 
lattice is sometimes attributed to Klein, but the idea is to be found twenty years 
earlier in Smith, NCF, and then, shortly afterwards, in Poincare, GFC. Klein 
made the following additional observation: 

Imagine pegs or needleS' affixed at all the integral points, and wrap a tightly drawn string 
about the sets of pegs to the right and then to the left of the ray [ Y = x0 X], then the 
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vertices of the two convex string-polygons which bound our two points sets will be 
precisely the points (qk, Pk) whose coordinates are the nurnerat@rs and denominators of 
the successive convergents to x0, the left polygon having the even convergents, the right 
one the odd. This gives a new and, one may well say, an extremely graphic definition of a 
continued fraction [Klein, EMAS i, 44; he illustrates it by Fig. 9.2, above]. 

The approach of the Parmenides algorithm is closely related to the properties 
ofFarey series, on which see, for example, Dickson, HNTi, 155-8, or Hardy & 
Wright, !TN, Chapter 3 (and do not miss the note to §3.1). 

Lagrange opened his Additions to Euler's Algebra with a discussion of 
approximations of the form I xoq - p I, and he showed that the best such 
approximations correspond to the convergents of the continued fraction 
expansion of xo. This was extended in Smith, NCF, to the more complicated 
situation of approximations of the form I xo - p / q I, whose solution involves 
the intermediate convergents. This, incidentally, gives a complete solution to 
Dr Davenant's problem, which was described in the Historical Notes to the 
previous section. 

9.l(c) The quadratic theory 

Let us start with an example such as delighted eighteenth-century (and, in a 
different guise, seventeenth-century) mathematicians. This is taken from Euler, 
UNAPPS (1767) §14, but expressed in the notation that has been established 
here. 

Take xo = y'54; then 

no= 7 and 
1 y'54 + 7 x, = y'54- 7 = 5 

so n1 = 2 and 
5 5( y'54 + 3) - y'54 + 3. 

X2 = y'54- 3 = 45 9 

so n1 = 1 and 
9 9( y'54 + 6) - y'54 + 6. 

X3 = y'54 - 6 = 18 2 

so n3 = 6 and 
2 2( y'54 + 6) y'54 + 6 

X4 = y'54 - 6 = 18 9 

so n4 = 1 and 
9 9( y'54 + 3) y'54 + 3 

Xs = y'54- 3 = 45 5 

sons= 2 and 
5 5( y'54 + 7) = y'54 + 7; X6 = y'54- 7 = 5 

1 
so n6 = 14 and X7 = y'54 _ 7 = x1. 

Hence y'54 = [7, 2, 1, 6, 1, 2, 14], where the bar indicates that the term will 
repeat indefinitely. 
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Euler frequently gives such examples to illustrate the algorithm. Here, in 
UNAPPS, he starts with his favourite but less illuminating example J13, and 
then gives J61 and J67, all in complete detail; then he goes on to J31, J46, 
and J54 in slightly abbreviated format; then he gives a table of the expansions 
of Jn for 2 :'( n :'( 120, n not a square (see Table 3.1, above) and describes their 
form when n = m2 + 1, m2 + 2, m2 + m - 1, m2 + 2m, 4m2 + 4, 9m2 + 3, and 
9m2 + 6; these correspond, of course, to the hypotheses of Section 3.3, above. 15 

We can describe the process in general as follows: 
Let x0 = (ao + b0 Jn)/c0 , where n is not a square (or, equivalently, xo is the 

irrational solution of some quadratic equation with integer coefficients). 16 At 
each step of the algorithm we write 

where nk = l Xkj. Then 

and so we get a quadratic surd of the same kind, in which the new coefficients 
ak+1, bk+1, and Ck+! are simple functions of the ak. bk. and ck. However, it will 
now be found that these coefficients grow rapidly in size as they pick up new 
common factors at each step. In the example of J54, above, these factors were 
divided out at each step; in the general case we must be a bit more subtle to 
ensure that this will happen. 

Manipulate the surd into the form xo = (ao + Jn)/co where n is not a square 
and c0 divides n - a5; this can be done by writing 

ao + boJn 
Co 

and note that, by fortunate chance, Jn = (0 + Jn)/ 1 is already in this required 
form. Now look at the step from Xk to Xk+I: 

15 An understanding of the material that follows will be greatly enhanced by 
exploring some numerical examples of this, and other such, algorithms. A programmable 
pocket calculating machine gives an advantage undreamt of by previous generations of 
mathematicians. 

16 All letters except x,y, and z will hereafter denote integers; n and m will denote positive 
integers, except that n0 , the initial term of the expansion, may sometimes be negative; and .Jn 
is always the positive square root. 
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if ck divides n - (nkck - ak)2, we can then write this as 

llk+I + y'n 
Xk+I =----

Ck+I 

9.1 

But Ck+!= (n - ak+i)/ck divides n - ak+i if and only if Ck divides n - llk+i = 

n - ak - ck(nk - ck), i.e. if and only if Ck divides n - ak, which we have 
arranged to be so. Hence Xk+i will indeed again be a surd of the required 
form. Let us state this formally: 

ALGORITHM FOR QUAD RA TIC SURDS Express the quadratic surd in the 
form xo = (ao + y'n)/co where n is not a square and co divides n - a5. For 
k ~ 0 let 

nk = l xkJ , the integer part of xk. 

ak+I = nkck - ak, and 

Ck+I = (n - ak+1)/ck. 

Then Xk+I will again be of the required form, and hence xo = [no,n1,n2 , .. . ]. 

There is a remarkable theory of continued fractions of quadratic surds. We 
start with an easy result: 

PR o Po s 1T1 o N If the continued fraction of x0 is eventually periodic, 

then x0 is a· quadratic surd. 
PROOF Observe first that 

yor1 + r1-1 
Yo= [mo,mo, ... ,m1] = [mo,m1, ... ,m1,Yo] =---

Yos1 + s1-1 

where r1-if s1-1 and rif s1 are the last two convergents of the first period of Yo· 
Hence Yo satisfies the quadratic equation 

s1y2 + (s1-1 - r1)y- r1-1 = 0. 

Since the coefficient of y2 and the absolute term have opposite signs, there 
will be one positive and one negative root; so y0 must be the positive root. 
Finally 

Yo Pk+ Pk-I 
xo = [no, n1, ... , nk. Yo] = -----

Yoqk + qk-1 

is again a quadratic surd. QED 

The converse of this proposition is also true, but the proof is much more 
difficult. 
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PROPOSITION (Lagrange, AMREN (1770)) The continued fraction of a 
quadratic surd is eventually periodic, 

PROOF We shall prove that, in the notation above for the algorithm for 
quadratic surds, there is an index K such that, for all k ;::, K, 1 ~ ak < Jn and 
1 ~ ck < 2Jn. Hence some Xk must eventually recur as x1 with I > k, and we 
shall then have xo = [no,n1, ... ,nk, ... ,n1-iJ. 

The surd x0 = ( ao + Jn)/ co is one root of some quadratic equation 
Ax2 +Bx+ C = O; the other root, called the (algebraic) conjugate of x0 , will 
then be x~ = (ao - Jn)/co. Write, similarly, xUor the conjugate of Xk. Now call 
Xk a reduced quadratic surd if Xk > 1 and -1 < x~ < 0. Then, if Xk is reduced: 

Xk - X~ > 0, so Jn/ck> 0, so Ck > 0, 

Xk + X~ > 0, so ak/Ck > 0, so ak > 0, 

x~ < 0, so ak <Jn, and 

Xk > 1, so ck < (ak +Jn) < 2Jn. 

These are precisely the inequalities we wish to establish. 
Now suppose Xk is reduced. Then Xk+I = 1/(xk - nk) > 1, and x~+I = 

-1/(nk - xU, where -1 < x~ < 0 and nk;::, 1. Hence -1 < x~+I < 0. Thus if 
Xk is reduced, Xk+I will also be reduced. 

It remains to show that some Xk is reduced. Observe first that Xk ;::, 1 for all 
k;::, 1. Next, we have shown that 

Xk+IPk +Pk-I 
Xo = ' 

Xk+lqk + qk-1 

and so the similar relation holds between x6 and x~+i · Hence 

, _ x6qk-I - Pk-I __ qk-1 (x6 -Pk-i/qk-1) 
Xk+I - I - I I . x0qk - Pk qk x0 - Pk qk 

Now both Pk/qk and Pk-i/qk-1 tend to xo as k increases, and they lie on 
opposite sides of x0 . Hence the quantity in brackets will tend to 1, and will 
eventually alternate on each side of 1. Also 0 < qk-I < qk. So, eventually, some 
xk will satisfy -1 < xk < 0 and the corresponding XK will be reduced. Hence 
the proposition is proved. QED 

PROPOSITION (Galois, DTFCP (1829)) A quadratic surd x0 has a purely 
periodic continued fraction expansion if and only if it is reduced, and the purely 
periodic number got by reversing the period is then -1 / x6. 
PROOF Suppose that xo = [no,n1, ... ,nk]; observe that for this to be a 
simple continued fraction, we must have no ;::, 1, so xo > 1. Now consider the 
two equations 

x = [no,n1, ... ,nkox] and y = [nkonk-1, ... ,no,y]. 
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We have seen in the previous proposition but one that these are each quadratic 
equations of which one root is positive, the other roof is negative. We now 
relate their roots. 

so 

so 

Manipulate the first equation as follows: 

1 
x=no+-

n1+ 

1 1 
--=-n1--
no - x n1+ 

1 1 1 -- --- = -n2 - -
n1 +no - x n3+ 

and so, eventually, 

1 1 1 

' -x 

or, writingy = -1/x, y = [nk,nk-1, ... ,no,y]. Hence, ifthe roots of the first 
equation are xo and x~, then the roots of the second are -1 / xo and -1 / x~. 
Since -1 / xo is negative, its conjugate -1 / x~ must be positive; it is also greater 
than 1. Hence -1 < x~ < 0, and xo is reduced. 

Conversely, suppose that x0 is reduced; we show that its continued fraction 
expansion is purely periodic. We know, from Lagrange's theorem, that it is 
eventually periodic, so that Xk = x1 for some k and l with k < l. Now 
Xk = nk + l/xk+I, so x£ = nk + l/x£+i · Write Yk for -l/x£; then, since x£ 
and x£+1 lie between -1 and 0, Yk is greater than 1, and we have the relation 

1 . 1 
-- = nk - Yk+I, i.e. Yk+I = nk +-. 

Yk Yk 

Hence nk is the integer part of Yk+I· Now if Xk and xz are equal, then x£ and x{ 
will be equal, hence Yk and yz will be equal, and hence nk-1 and nz-1 will be 
equal. But 

Xk-1 = nk-1 + l/xk and xz-1 = n1-1 + l/x1, 

so Xk-1 and x1-1 will be equal. Repeating this argument, we will get 
eventually that x0 and Xf-k are equal, so the continued fraction is purely 
periodic. QED 

PROPOSITION If n/m is a positive rational number greater than 1 whose 
square root is irrational, then 

and conversely, if x0 has an expansion of this form, then it is the irrational 
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square root of a rational number greater than 1. (For numbers between 0 and 1, 
the expansion starts with a zero term.) 
PROOF Consider Yo= y'(n/m) +no, where no= lv'(n/m)J; its conjugate 
no - y'(n/m) lies between -1 and 0, and so Yo is a reduced quadratic surd. 
Hence, by Galois' theorem, its continued fraction will be purely periodic, of 
the form 

while 
1 

y'( / ) = [nk,nk-1, ... ,2no]. nm -no 

From this second expansion we get, by reciprocating and adding 2n0, 

y'(n/m) +no= [2no,nkonk-J, ... ,2no], 

and since the expansion is unique, we see that n1 = nko n1 = nk-1, etc. 
Conversely, suppose that 

xo = [no,n1,n2, ... ,n2,n1,2no]. 

Then Yo = xo +no is purely periodic, so its conjugate root y~ is given by 

1 
-, = [n1,n2, ... ,n2,n1,2no], 

Yo 

soy~= 2no - Yo· Hence Yo is the positive root of (y - Yo)(y - 2no +Yo) = 0, 
i.e. of y2 - 2noy + y0y~ = 0. Hence y =no+ -Jzo for some rational number zo, 
and xo = -Jzo. QED 

PROPOSITION (see Section 2.4(e)) If 

y'n = [no, n1, n1, ... , n1, n1, 2no] 

and Pk/ qk = [no, n1, ... , n1, ni] is the penultimate convergent of the first 
period of the expansion (so the period contains k + 1 terms), then 

Pk - nqk = (-l)(k+l). 

Similarly, for the penultimate convergent of the second period, 

2 2 ( 1 )2k+2 1 P2k+1 - nq2k+1 = - = ' 
and so on for each succeeding period; so the signs alternate if k is even, and are 
still all positive if k is odd. 
PROOF We have 

where 

y'n = xo = Xk+IPk +Pk-I, 
Xk+lqk + qk-1 
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Hence 

that is 
Jn(noqk + qk-1 - Pk)+ (nqk - no pk - Pk-1) = 0. 

Since Jn is irrational, this implies that 

noqk + qk-1 - Pk= nqk - no pk - Pk-I = 0. 

Now substitute for Pk-I and qk-1 inpkqk-1 -Pk-lqk = (-l)k+I. We get 

p~-nq~=(-l)k+I. QED 

PROPOSITION Every solution of x2 - ny2 = ±1 arises as a convergent 
of Jn. 
PROOF First suppose p2 - nq2 = 1. Then, since p > qJn > q, 

Hence, by an earlier proposition, p / q is a convergent of Jn. 
Next, if p2 - nq2 = -1, then nq2 - p2 = 1. Again, since qJn > p > q, 

p 1 1 1 
Jn --q = q(qJn + p) < 2pq < 2q2' 

and the result again follows. QED 

H 1sToR1 c AL REM ARK s The material of this section first manifested itself 
in connection with Fermat's challenge of 1657 concerning the so-called Pell's 
equation, x2 - ny2 = 1 (see Section 2.4(e), above, for quotations and further 
details). Euler was the first to publish a continued fraction description of the 
'English solution' (by Brouncker & Wallis) in his UNAPPS, written in 1759 but 
not published until 1767. The first actual proof that Pell's equation can always 
be solved was by Lagrange, SPA, written in 1768 but not published until 1773; 
it was very long and, after an initial step in which continued fractions were used 
to find a subsidiary equation x 2 - ny2 = r with an infinite number of solutions, 
it was based on his rediscovery of the 'Indian solution'. (The introduction to 
this article is quoted in n. 55, below). By the time this article was published, 
Lagrange had found another, simpler and clearer, proof, based on the proper
ties of the continued fraction expansion of quadratic surds; the most succinct 
exposition of the idea of this proof is in §37 of Lagrange's Additions to Euler's 
Algebra. The story continues with further contributions by Euler, Lagrange, 
Legendre, Galois, and others. A masterly account, with its full mathematical 
and historical context, can be found in Weil, NT 

I shall not attempt to summarise or select further episodes from this rich 
picture, beyond the following comment. An important development in this 



9.1 The basic theory 329 

story occurs with the publication of Euler's UNAPPS, in which we find one of 
the first published systematic explorations of the properties of the continued 
fraction expansion of a quadratic surd. Euler's motivating problem is the 
solution of Pell's equation, but most of the article is taken up in describing the 
algorithm for evaluating the continued fraction expansion of Jn, in tabulating 
many results, and in inferring some properties, exactly parallel to those that 
underlie my exploration of the dimension of squares, in Section 3.3, above. 
Euler then turns to Pell's equation, and the first cases he considers are again 
directly analogous to the further developments I proposed in Section 3.4. He 
explores those cases when the period of the expansion of Jn contains 1, then 2, 
then 3, and so on up to 8 terms, displaying the solution in each case, and then 
finishes by inferring the general procedure and tabulating the solutions. The 
first complete proofs of the behaviour he has uncovered, by Lagrange, follow a 
completely different path just as, in Section 3.6, the general proofs of the 
dimension of squares are resolved by other very circuitous means. Euler is rare 
among mathematicians in having the desire and facilities to lay before his 
readers his infectious enthusiasm for the initial steps of exploration and 
conjecture that precede much of deductive mathematics; if all we possessed 
on number theory up to the early nineteenth century was Gauss's Disquisitiones 
Arithmeticae (see Section 9.2(d), below), then it would be very difficult to 
reconstruct this early heuristic phase. 

For Greek mathematics, we know very little of the developments that led up 
to the Elements and any reconstruction must therefore of necessity be very 
speculative. This being admitted, I have tried to show how one can find hints of 
a similar substrate of problems, explorations, and conjectures that eventually 
give rise to some of the most formal and arid parts of the Elements, for example 
Books II and X. And I was again surprised to discover subsequently how the 
analogous explorations by eighteenth-century mathematicians followed a very 
similar path; and then to see the extent to which the greater part of these 
explorations and manipulations has already been set aside and forgotten by 
later generations of mathematicians. 

9.l(d) Analytic properties17 

As so far described, most of the developments can be loosely categorised as 
arithmetical and number theoretical. In addition, alongside, and even m 
advance of, these discoveries, there was a developing analytic theory of 
continued fractions, starting with Brouncker's discovery of 1654 that 

1T 1 1 32 52 
----

4 1 + 2+ 2+ 2+ ... ' 

17 Here I use the words 'analysis' and 'analytic' in their modern sense, as connected with 
limiting processes, infinite operations, the theory of functions, the use of the calculus, etc. 
Seventeenth-century use of 'analysis' was different, and started from speculations about the 
lost methods used by the Greeks in their mathematical discoveries. 
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an illustration of the promise in passing between expressions as infinite 
products, continued fractions, and infinite series. ·Another such hint, 
perhaps the first suggestion of interesting analytic behaviour involving simple 
continued fractions and in itself as surprising as the expansion of y'n, was 
the expansion 

e = [2, 1,2, 1, 1,4, 1, 1,6, 1, .. . ] 

first uncovered by Cotes in 1714. These results in arithmetic and analysis 
excited and inspired Euler and Lambert no less than the number-theoretic 
explorations; in fact Euler's first references to continued fractions are found in 
his correspondence in connection with the Riccati differential equation and the 
expansion of e. 18 This is not the place to attempt a survey of these and later 
analytic developments, 19 and I shall restrict myself here to two very brief 
observations about the analytic theory during the eighteenth century. 

First, it is an immediate consequence of a proof of the expansion of e that 
it is irrational (see Section 2.2(v)(vii), above), and indeed this is how it and 
associated results were first used by Lambert and Euler. Second, as an 
illustration of this developing analytic theory, let me describe Chapter 18, 
'De Fractionibus Continuis', of Euler's Introductio in Analysin lnfinitorum, his 
influential introductory text on the techniques of the newly developing subject 
of analysis. 

The chapter opens with a description of the convergents of both simple and 
general continued fractions, and then passes immediately to transformations 
between the convergents of continued fractions and the partial sums of infinite 
series. These are then applied to several examples: 

1 1 1 1 4 9 16 
log 2 = 1 -2+3-4+ l+l+l+l+l+···' 

7T 1 1 1 1 1 9 25 49 
-=1--+---+ -----
4 3 5 7 1 + 2+ 2+ 2+ 2+ ... ' 

7T m7T 1 1 1 1 1 
-cot-=----+------+----
n n m n-m n+m 2n-m 2n+m 

1 m2 (n - m)2 (n + m)2 (2n - m)2 (2n + m)2 

m+ n-2m+ 2m+ 
1 1 1 1 

n-m+ n-2m+ 

1 2 3 

... ' 

4 
-= 1--+---+ ... ' 
e l! 2! 3! 

whence 

2m+ 
1 

e-l l+ 2+ 3+ 4+ 
... ' 

18 See Euler, FCD, or Euler-Wyman & Wyman, ECF, for further details. The reference to 
the correspondence with Goldbach can be found in the note in the Opera Omnia to §28, or in 
Weil, NT, 183 or 230. 

19 At this point, historical work on the topic starts to become seriously deficient. The broad 
lines of development can be inferred from Perron, LK; and the later part of the sketch in 
Brezinski, LHCF, expanded in his HCF, is biased towards analytic properties. I know of no 
other general historical surveys of the subject. 
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and more. Only at this stage does Euler turn to periodic simple continued 
fractions and quadratic surds, which he introduces with a view to making some 
remarks about convergence and approximation; for elsewhere in this chapter, 
as throughout his works, he spends little time on such justifications of his 
manipulations, though he operated with a sure intuition for what was permitted 
or not. The chapter finishes with some comments on the conversion of decimal 
fractions into continued fractions, which he illustrates on the expansion of 

e-l 
- 2- = [O, 1, 6, 10, 14, 18, 22, ... ], 

7T = [3, 7, 15, 1, 292, 1, 1, ... ], 

and an astronomical illustration, the ratio of the day to the solar year, 
[365, 4, 7, 1, 6, 1, 2, 2, 4, ... ], and the Julian and Gregorian calendars. 

Such was the basic introduction that Euler set out. It is attractive, accessible, 
and directed more to describing manipulations than offering rigorous proofs. It 
is really more arithmetic than analysis, for he considers only numbers that arise 
in analytic contexts, like e and TT, rather than the functions of analysis like 

t [ -I 3 -I 5 -I 7 -I ] co anx = x , - x , x , - x , ... , 

such as appear abundantly in his articles, and which were also used by 
Lambert. It is an inspiration to further investigation. 

I refer those readers who are rightly dissatisfied with this hors d'oeuvre to the 
comprehensive descriptions of the theory that has subsequently developed, for 
example in Jones & Thron, CF; Henrici, ACCA ii; Perron, LK; or Wall, ATCF; 
and I shall give examples of more ambitious analytic manipulations in Sections 
9.3(b) and (c) below. 

9.l(e) Lagrange and the solution of equations 

The solution of a general polynomial equation with integer coefficients is a 
pervasive theme in mathematics. One approach-solution in radicals-reaches 
a climax in the work of Galois, and Lagrange played no small part in this 
development with his long survey article RRAE. This successful resolution, 
albeit negative, of this much studied problem has subsequently overshadowed 
many of the previous developments and rendered them obsolete or irrelevant. 
So, for example, the already obsolete theory of the construction of equations, 
initiated by Descartes, has now disappeared almost completely from the view of 
even all but the most specialised histories of mathematics (for discussion, see 
Bos, AMRDMT); and Lagrange's other approach, which I shall now briefly 
describe, has now also almost vanished, even though it is a very serviceable 
technique for computing the roots of equations. 

Lagrange's work is contained in a series of memoirs that start with his REN 
(1769), followed a year later by AMREN, almost twice as long as the original 
memoir, then followed by further memoirs, all of them published by the Berlin 
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Academy; then later all of this material was brought together into a full-length 
treatise, TREN (1798), with a second edition in 1808. His treatment ranges 
widely, but its focus is the following observation. Take the equation 

akxk + ak-1 xk-I + · · · +a, x + ao = 0 

and suppose, for simplicity, that it has only one positive root x0 , which we can 
further suppose is greater than 1 (otherwise replace x by 1/x). Then 
no :( xo < no + 1 for some no. So, writing xo = no + 1 / x1, we see that x1 will 
be the unique positive root, in fact greater than 1, of a new equation 

where 

bkxk + bk_,xk-I + · · · + b1x +ho= 0, 

bk = akn~ + ak_,n~-I + · · · + ao, 

bk-I = kakn~-I + (k - 1 )ak-1n~-2 + · · · + a1, 

etc. 

This equation, again, will have only one positive root x 1, again greater than 1, 
so we can again express this as x1 = n1 + 1/x2 , etc. Thus we evaluate the 
solution of the original equation as a continued fraction, x0 = [n0 , n1, nz, ... ]. 
Lagrange dealt with many other aspects of this procedure, and also described 
procedures for evaluating the approximations n0 , for computing coefficients of 
the new equation, for separating roots that lie close together, for finding 
complex roots, and so on. 

The first illustration that he gives is of the time-honoured cubic equation 
x3 - 2x - 5 = 0 which, since Newton's time, had been the standard test for 
methods of solving equations (see Whiteside, PMTLSC, 206). He gets 
x = [2, 10, 1, 1, 2, 1, 3, 1, 1, 12, ... ] from which he evaluates the convergents 
and gives estimates of their errors. But here, in a deliberate reference to what I 
have earlier called the problem of the dimension of cubes (see Section 4.3, 
above), I shall illustrate the process on the equation x3 - 2 = 0. 

We start by writing out the formulae explicitly for k = 3. The equation 

f(x) = a3x3 + azx2 + a,x + ao = 0, 

in which we may suppose a3 > 0, becomes, under the transformation 
x -+ n + 1 / x, the equation 

-(a3n3 + azn2 + a1 n + ao)x3 

- (3a3n3 + 2a2n + a1)x2 - (3a3n + az)x - a3 = 0. 

Since we have supposed thatf(x) = 0 has only one positive root which satisfies 
n < xo < n + 1, and since a3 > 0, we must have f(n) < O; thus again 
b3 = -f(n) > 0. We then iterate the procedure. 

Consider now x3 - 2 = 0. Then 1 < xo < 2 so no= l; b3 = 1, b2 = -3, 
b1 = -3, ho = -1; then the positive root x 1 of x3 - 3x2 - 3x - 1 = 0 satisfies 
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TABLE 9.1. Evaluation of v2 = [1, 3, 1, 5, 1, 1, ... ] 
by Lagrange's algorithm 

k Equation nk 

0 x3 -2=0 1 
1 x3 - 3x2 - 3x - 1 = 0 3 
2 10x3 - 6x2 - 6x - 1 = 0 1 
3 3x3 - 12x2 - 24x - 10 = 0 5 
4 55x3 - 8lx2 - 33x - 3 = 0 1 
5 62x3 + 30x2 - 84x - 55 = 0 1 
etc. 

3 < x1 < 4, so n1 = 3, etc. The first six steps are set out in Table 9.1; we get 
ij2 = [1, 3, 1, 5, 1, 1, ... ] . The arithmetical operations can be considerably 
refined and economised to make this a practical algorithm for hand or machine 
calculation. 20 

Lagrange's treatise contains a rich study of general properties of polynomial 
equations, dealing, for example, with positive and negative, and real and 
complex, roots, but all directed towards describing and analysing his algorithm 
for expressing the solutions as continued fractions-a procedure that he clearly 
considered as important and valuable. (Some of this work is taken up and 
extended by Legendre, Fourier, Vincent, and others; see, for example, Serret, 
CAS, Chapters 6 and 7. It has even been argued, in Grabiner, CB, that 
Lagrange's statement and use of the intermediate value theorem led Bolzano 
and Cauchy to their pioneering work on the foundations of analysis.) 
Lagrange's treatises also contain the first proof of the periodicity of the 
expansion of a quadratic surd, at AMREN, §§32-43 or TREN, §§52-59. 
Hence, he observes, the method will identify all linear and quadratic rational 
irreducible factors of the polynomial, since the corresponding roots, being 
rational numbers or quadratic surds, will be revealed by his procedure.21 He 
then concludes: 

It is to be hoped that one may also find some characteristic that may serve to reveal the 
rational divisors of third, fourth, ... degrees, which the given equations may have. This 

2° For a succinct modern description of this and other continued fraction algorithms, see 
the exercises to Knuth, ACP ii, §4.5.3; this is exercise 20. A detailed practical implementation 
is given in Rosen & Shallit, CFA. Also seen. 32, below. 

21 It must be added that this information will not be effectively computable, since we have 
no idea how far the computation must be extended for the periodicity to reveal itself. 
Lagrange was well aware of this problem, and described mathematical techniques for 
identifying periodicity, based on the idea of generating functions. For comments on this 
problem of recognising'periodic behaviour, see Ferguson, RRQN, and Fowler, BTEE2, 
34. 
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seems to me to be a topic very worthy of the attention of mathematicians [AMREN §49, 
or TREN, §64].22 

As I shall describe in Section 9.3(b), below, the search for some such criterion, 
based on some generalisation of continued fractions, is still active, but has not 
really yielded the results that Lagrange had hoped. 

9.2 GAUSS AND CONTINUED FRACTIONS 

9.2(a) Introduction 

At the end of the eighteenth century, a chorus of mathematicians sang forth 
the wonders of continued fractions. If we restrict our attention to material 
published more or less in the previous fifty years, we see, in the front rank: 
Euler, with his Introductio in Analysin Infinitorum (1748) and Anleitung zur 
Algebra (1770), as well as a bundle of articles on the topic; Lambert, who, in 
several articles, discussed the expansion of functions as continued fractions, 
including details of convergence, and then proved the irrationality of numbers 
connected with exponential and trigonometric functions; Lagrange, with his 
Additions, De !'analyse indeterminee (1773) to the French translation of Euler's 
Algebra, his Traite de la resolution des equations numeriques de tous les degres 
(1769-98), and a series of memoirs that build on and establish rigorously results 
uncovered by Euler; and Legendre, with Recherches d'Analyse Indeterminee 
(1785) and Essai sur la Theorie des Nombres (1798) which are, in great part, 
based on continued fraction techniques. Around them are a host of supporting 
figures. 

Gauss (1777-1855) was heir to this material, and one can be sure that he 
assimilated it. For example, continued fractions play a significant part in his 
published work in analytic contexts, in connection with hypergeometric series 
and numerical integration, and we know from his unpublished notes that he 
investigated the probability theory of continued fractions over a twelve-year 
period, at least. But his enormously influential book on number theory, the 
Disquisitiones Arithmeticae, makes almost no reference to continued fractions. I 
shall now look in turn at Gauss's treatment of each of these topics. 

9 .2(b) Continued fractions and the hypergeometric series 

Many elementary functions of analysis are particular cases of the 
hypergeometric series 

a/3 a(a + 1)/3(/3 + 1) 2 
F(a,{3,y,x)=l+-x+ 21 ( l) x +···, y .y y+ 

22 "Il serait a souhaiter que l'on put trouver aussi quelque caractere qui put servir a faire 
reconnaitre les diviseurs commensurables du troisieme, quatrieme, ... degre, lorsqu'il y en a 
dans I' equation proposee; c'est du moins une recherche qui me parait tres-digne d'occuper les 
Geometres." 
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which, for a, f3, and y different from 0, -1, -2, -3, ... , is an infinite series 
which converges for Ix I < 1. The proposal to generalise the geometric series 
goes back to Wallis' Arithmetica Infinitorum, while the study of this particular 
generalisation was initiated by Euler. Gauss's mastery of the topic was 
complete. 23 

The hypergeometric satisfies many identities. Here we shall start from 

a(y- f3) 
F(a,{3,y,x) = F(a,{3 + 1,y + 1, x) - y(y + l) F(a + 1, f3 + 1,y + 2,x)x, 

which we write as 

F(a, f3 + 1, y + 1, x) _ (i _ a(y - f3) F(a + 1, f3 + 1, y + 2, x) x)-I 
F(a,{3,y,x) - y(y+l) F(a,{3+1,y+I,x) ' 

whence, by exchanging a and f3, and then replacing f3 by f3 + 1 and y by y + 1, 
we get 

F(a+ 1,f3+ 1,y+2,x) 
F(a,f3+ 1,y+ 1,x) 

= (i- (f3+ l)(y-a+ 1) F(a+ I,f3+2,y+3,x) x)-I 
(y+ l)(y+2) F(a+ 1,{3+ 1,y+2,x) 

Now apply these identities turn and turn about to give 

F(a,f3+ 1,y+ 1,x) 
F(a, {3, y, x) 

a(y-f3) (f3+1)(y-a+l) 
---x -------x 

1 y(y+l) (y+l)(y+2) 
1- 1- 1-

(a + 1) ( y - f3 + 1) (f3 + 2) ( y - a + 2) --'------'--"'------'-----'- -"----'---'-'--------'- x 
(y+2)(y+3) (y+3)(y+4) 

1- 1-

This is the formal derivation of Gauss's continued fraction, to be found in his 
DGCSI; it is a development of a procedure of Lambert's, who described an 
algorithm for manipulating two power series analogous to the Euclidean 
algorithm. While the hypergeometric functions converge only for Ix I < 1, the 
continued fraction converges for most complex values of x (specifically, when x 
is not real with 1 :::;; x < oo, or not equal to an isolated set of values), and so it 
provides an analytic continuation of F( a, f3 + 1, y + 1, x) / F( a, {3, y, x) outside 
the unit circle, thus possibly providing a meaning for the series in regions where 
it is divergent. (This convergence theory was not considered by Gauss; it was 
later investigated by Riemann, in SQSI, a posthumously published paper 

23 For details of the early and rich theory of the hypergeometric function, from Wallis to 
Gauss, see Dutka, EHHF. The manipulations that follow are described and explained at 
greater length in Wall, ATCF, Chapter 18. 
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completed by Schwarz, and by Heine; then the question was finally settled in 
Thomae, KGQ.) 

Put a= 1, f3 = 0, y = 1, and write -x for x. Then, since 

F(l 1 2 -x) = 1 - ~ + x3 
- .. • = log(l + x) 

' ' ' 2 3 x 

and F(l, 0, 1, -x) = 1, we get, after a little adjustment, 

x 12x 12x 22x 22x 
log(l +x) = 1+ 2+ 3+ 4+ 5+ · · ·' 

provided xis not real and ~ -1. Or, put a = !, f3 = 0, y = !, and write x2 for x. 
Then since 

( I 3 2) - 1 1 + X F 2 , 1, 2 ,x - -2 log-1 -
x -x 

and F(!,O,!,x2) = 1, we get, again after adjustment, 

1 + x 2x 12x2 22x2 32x2 

logl-x=l- 3- 5- 7- .... 

For another illustration, write x/ a for x, 

( x) /3 /3(/3 + 1) x2 a+ 1 
F a,f3,y,~ = 1 +y x + y(y + l) 2! . -a-

/3(/3+1)(/3+2) x3 (a+ l)(a+2) 
+ y(y+ l)(y+2) 3T · a2 + ... ' 

and now let a tend to infinity, to give the closely related function 

/3(/3 + 1) x2 

<P(f3,y,x) = 1+y(y+1) 2! + .... 

In particular <P(l, 1, x) =ex. So do the same to Gauss's continued fractions. 
We first take the expansion for F( a, f3 + 1, y + 1, x/a)/ F( a, f3, y, x/a) and let a 
tend to infinity to get 

<P(/3+ 1,y+ 1,x) 
<P(/3, y, x) 

(y-/3) (/3+1) 
---x x 
y(y+l) (y+l)(y+2) 

1- 1+ 1-

(y-/3+1) (/3+2) 
~-~--x ~~.,-,---~x 

(y+2)(y+3) (y+3)(y+4) 
1+ 1-

then set f3 = 0, write y for y + 1, and adjust to give 

... ' 

<P(l,y,x) =-1 ~ _x_ ~ ~ (y+l)x ~ .... 
1- y+ y+ 1- y+2+ y+3- y+4+ y+5-
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Now set y = 1 to give 
x 1 x x x x x x 

<I>(l, l,x) = e = 1- 1+ 2- 3+ 2- 5+ 2-

If, finally, we set x = 1 and adjust the expression to eliminate the negative terms 
and zero terms, exactly as Lagrange tells us in his AMREN §§50-67 or TREN 
§§65-76,24 we get 

e= [2,1,2,1,1,4,1,1,6,1, ... ]. 

These manipulations are offered here as illustrations of Gauss's fascination 
with the hypergeometric function and mastery of the idiom of continued 
fractions, as displayed in his memoir DGCSI of 1813. 

In the memoir MNIVAI (1816) on numerical integration, Gauss used 
continued fractions to initiate what has developed into an important and far
reaching technique. He took the expansion of log( ( 1 + x) / ( 1 - x)) from his 
earlier memoir DGCSI and rewrote it, by replacing x by x-1, as 

x+ 1 1 1 1 1 Ll LJ Ll Ll 
log -- = - + - + - + ... = - Ll 1.:2. i.:.l. 1.:.2. 

x - 1 x 3x3 5x5 x- x- x- x- x-

The kth convergent of this continued fraction can then be expressed as a 
rational function, a quotient of a polynomial of degree k - 1 by a polynomial 
of degree k; and if this rational function is developed as a power series, its terms 
will agree with the original power series up to degree 2k, the best that one can 
hope for in general. (This kind of approximation is now called a Pade 
approximant, and rapidly growing interest in this topic, together with the 
stimulus provided by automatic computation, has given rise to a recent revival 
of interest in the analytic theory of continued fractions.) Gauss then calculated 
the poles and residues of this convergent, which he used as the nodes and 
weights for what is now known as the Gaussian method of numerical inte
gration. The procedure was later developed by Jacobi and Christoffel, and 
eventually led to the Runge-Kutta method of integrating differential equations; 
and it is connected with the general theory of orthogonal polynomials. 

Two entries in Gauss's celebrated Tagebuch bear further witness to his interest 
in the manipulation of infinite series into continued fractions, and in divergent 
series. The sixth note, dated 23 May 1796 (and so written less than two months 
after the notebook was started, and just after his nineteenth birthday), recorded: 
The transformation of the series 1 - 2 + 8 - 64 + ... into the continued fraction 

2 2 8 12 32 56 128 
1+ 1+ 1+ 1+ 1+ 1+ 1+ T+ ... , 

1 1 2 6 12 28 
1 - 1+1. 3 - 1. 3. 7 + 1. 3. 7. 15 - ... = 1+ 1+ 1+ 1+ 1+ 1+ ... ' 

and others, 

24 These kinds of identities are described in n. 6, above. 
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while, on 16 February 1797, he returned to the subject: 

An amplification of the penultimate proposition on page 1, namely 

From this all series where the exponents form a series of the second order are easily 
transformed. 

For discussion of these entries, I refer the reader to the commentary by 
Schlesinger in Gauss, Werke x1, 490-3 and 513-14. 

9.2(c) Continued fractions and probability theory 

Gauss initiated the probability theory of continued fractions, though he 
published nothing on the topic. An entry in his Tagebuch for 25 October 
1800 records: Problema e calculo probabilitatis circa fractiones continuas olim 
frustra tentatum solvimus (We are solving problems in the calculus of prob
abilities about continued fractions that once we attempted in vain). A work
book for 5 February 1799 records an earlier attempt at a solution, in which he 
calculated and tried to explain some functions P(n, x) which will be described 
below in his words. His calculation finishes with Tam complicatae evadunt, ut 
nulla spes superesse videatur (They come out so complicated that no hope 
appears to be left); see Werke x, 552-6 for the text and commentary. On 30 
January 1812, the day he read his DGCSI to the Gottingen Scientific Society, 
he described the problem in a letter to Laplace: 

... I do recall however an intriguing problem which I worked on 12 years ago, but which 
I did not then succeed in resolving to my satisfaction. Perhaps you might take the 
trouble of spending some moments with it: in that case I am sure that you will find a 
more complete solution. Here it is. Let M be an unknown quantity, between 0 and 1, for 
which all values are either equally probable, or are distributed according to a given law. 
Suppose it converted into a continued fraction 

1 
M=--

a'+_l __ _ 
a"+ etc. 

What is the probability, if we terminate the expansion at a finite term a(n), that the 
remaining fraction 

a(n+l) + 1 
-a(,--n+---,2~) -+-e-tc-. 

should lie between 0 and x? I denote this by P(n, x). When all the values of Mare equally 
probable, so that 

P(O,x) = x, 
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then P( 1, x) is a transcendental function depending on the function 
1 1 1 

l+-+-+···+-
2 3 x 

which Euler called inexplicable and on which I have just given some researches in a 
memoir presented to our scientific society which will soon be published. 25 But for larger 
values of n, the exact value of P(n, x) seems intractable. However I have found by very 
simple arguments that for infinite n we have 

P(n,x) =log(! +x)/log2, 

but my attempts to evaluate 

P(n,x)-log(l +x)/log2 

when n is very large but not infinite have been unfruitful [Gauss, Werke x1 , 371--4].26 

He never published his "raisonnements tres simples". The first proof of the 
limiting distribution log ( 1 + x) /log 2 = log2 ( 1 + x) was given by Kuz'min in 
1928, while the final question about the asymptotic behaviour was only 
resolved in 1974, by Wirsing. The classical exposition is in Khinchin, CF; 
and a convenient account of recent developments can be found in Knuth, ACP 
ii, §4.5.3, where it is interesting to compare the treatments in the first edition of 
1969 (which concludes "The world's most famous algorithm [sc. Euclid's 
algorithm] deserves a complete analysis!") and the second edition of 1981 
("Fortunately it is now possible to supply rigorous proofs, based on careful 
analysis by several mathematicians"). To say more here would take much 
space, so I shall restrict myself to a few illustrations. 

First, an illustration of Gauss's result: if we take a real number x at 
random27-and it must be emphasised that most of the numbers we have 
considered so far, such as rational numbers, quadratic surds, e, tanh 1, etc. do 
not behave like these randomly chosen numbers-and look at the terms of its 
continued fraction, then we should expect that: 

about logd = 41·50% of the nk should be 1, 

about log2 ~ = 16-99% of the nk should be 2, 

about log2 ~ = 9·31% of the nk should be 3, 

etc. 

25 This is Gauss, DGCSI; Euler describes this 'inexplicable function' in, for example, 
his !CD, Chapter 16. Just as the gamma function is defined by extending n! = 1. 2. 3 ... n 
to non-integral arguments, so this inexplicable function is the extension of 1+2-1+ 
3-1 + ... + n- 1 to non-integral arguments. 

26 Gauss's original, in French, is also quoted in my REGM, 826-7. 
27 In modern terms, the following results will hold for all x not belonging to some set of 

Lebesgue measure zero. On the other hand, it must be emphasised that no example is known 
of any number, arising in any other context, which has been proved to display any of the 
following kinds of typical behaviour. See Section 9.2(e), below. 
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So we should expect more than two-thirds of the terms of the expansions of 
randomly chosen numbers to be 1, 2, or 3. Next, Levy pfoved in 1929 that we 
should expect that the convergents should satisfy 

v(n1,n2 ... nk) ____, c 

where 

oo [ 1 ] log2 r 
c = g 1 + r(r + 2) = 2·685 55 ... , 

while the arithmetic mean should grow like log2 k. Finally, the work of Dixon, 
Heilbron, Knuth, Mendes France, and Wirsing, since around 1970, enables us 
to give some kind of answer to my slaveboy's reflection at B24 of Section 1.3, 
above: we should expect the number of terms in the terminating expansion 
of m/n, averaged over all m less than and prime to n, for large n, to be 
approximately equal to (12/7T2) log2 n + 1·46708 ... , and further closer 
estimates can be given for the error. 28 

9.2(d) Gauss's number theory 

Gauss had a complete mastery of the techniques of continued fractions and a 
profound insight into their properties; the descriptions so far illustrate this 
clearly. And continued fractions played a very significant role in the number 
theory of Gauss's predecessors; we only need to look at Legendre's Essai sur 
la Theorie des Nombres of 1798 to see this illustrated at length. Yet there is 
only one explicit reference to continued fractions in Gauss's Disquisitiones 
Arithmeticae of 1801, and this found in a historical passage and contains a 
confusing typographical error! Three other passages introduce material 
closely related to continued fractions, without explicating the connections. 
Here are the details. 

In §27, Gauss describes how to solve ax = by ± 1 in integers by the 
Euclidean algorithm, and he defines the Euler brackets. 29 But he says 
nothing of continued fractions or convergents, and only identifies the 
process as "the known algorithm for finding the greatest common divisor 
of two numbers". A footnote gives two further identities for these brackets, 
without explanation of context or proof. Then, in §28, which I shall now 
quote in full with my annotations, we find the only explicit mention of 
continued fractions. 

Euler was the firsta to give the general solution for indeterminate equations of this type 
(Comment. Petrop. T.VII p. 46b). The method he used consisted in substituting other 
unknowns for x, y and it is a method that is well known today. Lagrange treated the 

28 Simple upper bounds for the number of steps can be given, based on the fact that the 
longest expansions occur with the quotient of successive Fibonacci numbers [l, I, ... , I]= 
Fk/Fk-1· 

29 See Section 9.l(a), above: [no, ... ,nk] = Pk(no, ... ,nk)/Pk-1(n1, ... ,nk)· Euler uses 
the notation (n0, ... , nk) and Gauss uses the notation [n0 , ... , nk] for my Pk(no, ... , nk)· 
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problem a little differently. As he noted, it is clear from the theory of continued fractions 
that if the fraction b /a is converted into the continued fraction 

1 
a+l 

[3+_1 __ 
y +etc. 

+l --x 
(L+-

n 

and if the last part, x/n,C is deleted and the result reconverted into a common fraction, 
x/y, then ax= by± 1, provided a is prime relative to b. For the rest, the same algorithm 
is derived from the two methods. The investigations of Lagrange appear in Hist. de !'Ac. 
de Berlin Annee 1767 p. 175,d and with others in Supplementis versioni gallicae Algebrae 
Eulerianae adiectise [Gauss-Clarke, DA, 28]. 

Notes: 
a This is corrected in Gauss's Additamenta as follows: "The solution of the indeterminate 

equation ax= by± 1 was not first accomplished by the illustrious Euler (as stated in this 
section) but a geometer of the seventeenth century, Bachet de Meziriac, the celebrated editor 
and commentator of Diophantus. It was the illustrious Lagrange who restored this honour to 
him (Add a l'Algebre d'Euler p. 525 [§45], where at the same time he indicates the nature of 
the method). Bachet published his discovery in the second edition of the book Problemes 
plaisans et delectables qui sefont par /es nombres (1624). In the first edition (Lyon, 1912) which 
was the only one I saw, it was not included, although it was mentioned" [Gauss-Clarke, DA, 
461]. 

b I have given all of the citations in the form used by Gauss, and will identify them in notes; 
abbreviated titles can be found in the Bibliography. This is 'Solutio problematis arithmetici de 
inveniendo numero, qui per datos numeros divisus, relinquat data residua', Opera Iii, 18-31. 

c This final x/n should, of course, be 1 /n; and this error is not corrected in the two pages of 
errata bound in the end of the volume, nor in the version reprinted in Werke i. This is the only 
explicit continued fraction to be found in the Disquisitiones Arithmeticae, though the topic is 
implicitly contained in his occasional use of Euler brackets, as I shall explain below. 

d 'Sur la solution des problemes indetermines du second degree', Oeuvres ii, 377-535. 
e I.e. Lagrange's Additions to Euler's Algebra, §§42-5. 

Section 5, §§153-265, of the Disquisitiones is devoted to solving equations of 
the second degree in two variables. A hint of continued fractions appears in 
§199 which starts "In practice, more suitable formulae can be developed". 
These formulae are expressed in terms of the Euler brackets, which were 
introduced in §27 and developed further in §189, and which Gauss identifies 
retrospectively in a footnote to the passage to be quoted next. 

In §202, we find another historical review. Again I shall quote in full, with my 
annotations: 

A particular case of the problem of solving the equation t 2 - Du2 = 1 had already been 
treated in the last century. That extremely shrewd geometer Fermat proposed the 
problem to the English analysts, and Wallis called Brouncker the discoverer of the 
solution which he reported in Alg. Cap. 98, Opp. T. II p. 418 sqq;a Ozanam claims that it 
was Fermat;b and Eulef", who treated of it in Comm. Petr. VIp. 175, Comm. nov. XIp. 
28," Algebra P. Ilp. 226, Opusc. An. Ip. 310d claims that Pell was the discoverer, and for 
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that reason the problem is called Pellian by some authors. All these solutions are 
essentially the same as the one we would have obtained if iR §198 we had used the 
reduced form with a = 1; but no one before Lagrange was able to show that the 
prescribed operation necessarily comes to an end, that is that the problem is really 
soluble. e Consult Melanges de la Soc. de Turin T. IV p. 19/ and for a more elegant 
presentation, Hist. de !'Ac. de Berlin, 1767, p. 237.g There is also an investigation of this 
question in the supplementis ad Euleri Algebramh which we have frequently commended. 
But our method (starting from totally different principles and not being restricted to the 
case m = 1) gives many ways of arriving at a solution because in §198 we can begin from 
any reduced form (a, b, -a') [Gauss-Clarke, DA, 185]. 

Notes: 
a This is Chapter 98, 'A method of Approaches for Numerical Questions; occasioned by a 

problem of Mons. Fermat' of the Latin translation of Wallis' Treatise of Algebra . .. (1685), 
which appeared in his Opera Omnia Mathematica ii (1693). 

b J. Ozanam, Nouveaux elements d'algebre (1702), described a solution of Pell's equation 
identical with Brouncker's, illustrated it with the cases n = 23 and 19, and attributed it to 
Fermat. Weil, NT, 93, observes: "Did he know more than we do, or had he merely misread 
the Commercium Epistolicum?" 

c Gauss inserts a footnote that reads: "In this commentary the algorithm we considered in 
§27 is used with similar notation. We neglected to note it at that time." The algorithm in 
question is the basic algorithm for computing the Euler brackets: Pk+1(n0 , ... ,nk,nk+l) = 

nk+1Pk(no, ... , nk) + Pk-1 (no, ... , nk-1), P _1 = 1, Po(no) =no. 
d These articles by Euler are, respectively, 'De solutione problematum Diophanteorum per 

numeros integros', Opera Iii, 6-17; UNAPPS; VAA II ii, Chapter 7; and 'Nova subsida pro 
resolutione formulae axx + 1 = yy', Opera Iiv, 76-90. 

e Gauss's italics. He inserts a footnote: "What Wallis, Zoe. cit. pp. 427-8, proposes for this 
purpose carries no weight. The paralogism consists in the fact that on p. 428, line 4, he 
presupposes that, given a quantity p, integers a, z, can be found such that z /a is less than p 
and that the difference is less than an assigned number. This is true when the assigned 
difference is a given quantity but not when, as in the present case, it depends on a and z and 
this is variable." Also see n. 55, below. 

f Lagrange, SP A. 
g Lagrange, 'Sur la solution des problemes indeterminees du second degree', Oeuvres ii, 

377-535. 
h Lagrange, Additions to Euler's Algebra, §§85-7. 

What has happened? 
The majority of the significant discoveries and developments in the theory of 

continued fractions in number theory, in the seventh and eighteenth centuries, 
have centred on the solution of Pell's equation x2 - ny2 = 1. But Pell's 
equation is only one example of a very general class of problems of finding 
for what integers p the equation ax2 + bxy + cy2 = p can be solved in integers. 
This more general approach focuses attention on the so-called binary quadratic 
forms 

F(x,y) = ax2 + bxy + cy2, 

and, as number theory developed, so more and more general examples of 
binary quadratic forms came to be considered: Fermat only dealt with some 
specific examples x2 + ay2; Euler extended this systematically to the class 
ax2 + by2; and Lagrange, in his Recherches d' Arithmetique (1775) with the 
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supplement of 1777, embraced the set of all binary forms. Lagrange is still 
inspired by his use of continued fractions in Pell's equation, which he called "la 
clef de tousles autres problemes de ce genre",30 and Legendre, in his ETN(Part 1, 
§XIII), made their role even more prominent. But Gauss's intuition seems to have 
been that little further significant progress was possible using this technique; and, 
with his eyes on the most general theory, he seems not to want to distract his 
reader into any byways, especially since he may have come to believe that 
however charming these byways may be, further progress along them will be 
extremely difficult if not impossible. He reformulated the proofs of his number 
theory so as to omit any use of or intuitions about continued fractions, and 
only included the briefest mention of them in those passages which sketch the 
history of the subject and give algorithms for finding solutions. 

For tiros, I recommend the basic introduction to binary quadratic forms in 
Davenport, HA, Chapter 6; and for a combined historical and mathematical 
treatment, I again direct everybody to Weil, NT. The final appendix of this 
latter book ('A proof of Lagrange's on Indefinite Binary Quadratic Forms', 
pp. 350-9) and its back-references give a detailed description of the evolution of 
the continued fraction process into the new theory of binary quadratic forms 
that rendered it obsolete. 

9.2(e) Gauss's legacy in number theory 

We see number theory today through Gauss's eyes. For example, unique 
factorisation into products of primes is, today, the fundamental theorem of 
arithmetic (i.e. arithmetike!), and it is generally referred to as such; but this 
theorem and attitude is not to be found explicitly before the Disquisitiones 
Arithmeticae, and it may be a historical error to look for it in Greek 
mathematics, behind what is preserved in the Elements. 31 So, as Legendre's 
Essai sur la theorie des nombres went through revisions, emerging as a two
volume treatise Theorie des Nombres in its third edition of 1830, its influence 
declined, and slowly Gauss's point of view came to dominate the subject. We 
see here, once again, the same evolutionary process that operated earlier with 
Euclid's Elements and Ptolemy's Syntaxis, in which new definitive treatments 
supersede, dominate, and can even annihilate their predecessors. Continued 
fractions moved from being a central source of insight and problems to being 
merely a collection of special techniques to be applied in a few restricted 
contexts; and, for the most part, that is how they are perceived today. More
over, during the eighteenth and early nineteenth centuries, number theory had 
provided a central, coherent, and accessible nucleus to a developing theory of 
continued fractions; when this base was dismantled, the other topics in the 
theory were marginalised. But many natural problems connected with the 
process remain unresolved, and are still studied ardently by mathematicians. 

30 In the introduction t~ his SPA (quoted inn. 55, below), his first article on the topic. 
31 For a discussion, see Knorr, PIGNT. 
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Let me illustrate one such problem, what I called, in Section 4.3, the problem 
of the 'dimension of cubes': Formulate and prove any 'hypothesis about the 
continued fraction expansion of vn. A natural first step is to compute some 
terms of some simple example, and Lagrange's algorithm (see Section 9.l(e) 
above) provides the means:32 

vi2=[1,3,1,s, 1, 1,4, 1, 1,s, 1, 14, 1, 10,2, 1,4, 12,2, ... J. 
But, faced with such irregular behaviour, we cannot at first formulate anything 
other than very coarse questions like: Are these terms bounded, or can limits be 
given their growth? Even then, it is only very recently that any kind of answer 
to such basic questions has been found, and the bounds that have been found 
are themselves also very coarse: nk ~ abk (see Davenport & Roth, RAAN, and 
Baker, RACTAN). These proofs depend on Roth's theorem, a deep result on 
Diophantine approximation, which means that, in general, the values of a and b 
cannot be effectively computed. Recently an elementary proof of such a result 
for some cube roots, which does not use much beyond the techniques described 
in Section 1, has been given in Wolfskill, GBPQCN. But let me emphasise: we 
still do not know any example of an algebraic irrational of degree higher than 
two whose terms either are bounded, or are not bounded. 

Lagrange's optimistic hope about recognising algebraic numbers, quoted at 
the end of Section 9 .1 ( e ), suggests another approach: Can the classical 
continued fraction algorithm be extended so as to identify other algebraic 
numbers than the rationals and quadratic surds? This runs against the spirit of 
Gauss's work in number theory, and so I shall defer comment on it to Section 
9.3(b). 

Another approach to the expansion of v2 is suggested by the later develop
ments in Gauss's unpublished work on probability theory: Does this expansion 
conform to the expected behaviour of a typical number? I know no evidence 

32 In fact there is no real difficulty in extending the procedure for computing a quadratic 
surd to the case of a cubic surd. Here is an algorithm which covers three indices and expresses 
the (k + l)th coefficient in terms of the kth and (k - l)th: If Xk = (ad2 + bd + ck)/dk where 
g ={In and n is not a cube, and Xk = nk + x;;~ 1 , then, fork ~ 1, 

ak+I = nkak + ak-1 

bk+I = nkbk +bk-I 

Ck+I = nidk - 2nkCk - nk-ldk-1 +Ck-I 

dk+I = -n'fdk +3nick- 3nk(ck-1 -nk-1dk-1) +dk-1· 

When the algorithm is started with ao =co = 0, bo =do = 1, i.e. xo = Yen, so a1 = 1, b1 =no, 
co= n~, do= n - ng, then ak = qk-i. bk= Pk-I, and b'k - na'k = (-1) dk. Such three index 
algorithms are well known for quadratic surds-see, e.g., Chrystal, TA ii, 454-5-and their 
derivation would have been immediately accessible to Euler, but I know of no published 
description of them for cubic or higher order irrationalities. The higher order versions are 
most conveniently expressed in terms of determinantal identities, as Bernard Teissier has 
explained to me. 
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that Gauss computed any terms of the expansion of v2, but I would be very 
surprised if he, and Lagrange and Euler before him, did not do so;33 but it 
would be very difficult, using only hand calculations, to get enough statistical 
evidence to be suggestive. However, since the development of automatic 
computers, the numerical exploration of continued fractions has become a 
minor industry. The first such investigation, a weekend's calculation on one of 
the first electronic computers, is reported in von Neumann & Tuckerman, CFE 
(19S5); their one-page article is inconclusive ("We do not know whether this 
deviation [from the expected distribution] is significant"). These explorations 
were extended in Richtmyer, Devaney, & Metropolis, CFEAN. A more recent 
example of the genre, Lang & Trotter, CFSAN, is longer and more compre
hensive (they list one thousand places of the expansions of y;2, v3, v4, vs, 
and v7, and other numbers, together with statistical and theoretical analyses), 
but is scarcely more conclusive in proportion to its length and electronic effort. 
A systematic search by Delone & Faddeev, TITD, of all cubic forms 
x 3 +ax+ b = 0, where I a I and I b I ~ 9, yielded nothing of interest (though 
some examples, like v2 and vs, seem to contain more large terms than one 
might expect). Then, in 1964, Brillhart hit on one spectacular example that had 
just evaded the earlier search, that the expansion of the real root 
x3 - 8x - 10 = 0 has some extraordinarily large terms: n121 = 16 467 250, 
n33 = 1 501 790, n 161 = 325 927; and five other nk with k ~ 139 are greater 
than 20000. Moreover the discriminant of x3 - 8x - 10 is -4 x 163, and -163 
is a very significant discriminant for quadratic forms. A beautifully lucid 
explanation of why these results are so surprising and how they are connected 
is given in Churchhouse & Muir, CFANMI; and a more sophisticated 
mathematical exploration can be found in Stark, EECFFB.34 This one extra
ordinary example enables us to perceive dimly some of the subtle and 

33 See how, when there is some systematic behaviour to be found, Euler will often describe 
it. For example in his FCD, §§21-2, he calculates or infers that y'e =[!,I, I, I, 5, I, I, 9, I, 
I, 13, .... J and (Ve - 1)/2 = [O, 5, 18, 30, 42, 54, ... ]. 

34 The discriminant of the binary quadratic form f(x,y) = ax2 + bxy + cy2 is the poly
nomial D = b2 - 4ac. If D = 0, then f is a perfect square or, equivalently, f(x, I) = 0 has 
coincident roots. If D < 0 and a> 0, thenf(x,y) > 0 for all (x,y) cf (0, O); it is called positive 
definite. The theory of binary quadratic forms divides the forms into equivalence classes 
under a very natural transformation of coordinates by unimodular transformations and the 
class number is the number of equivalence classes. It has been long known that, for negative 
discriminants, the class number is finite and is equal to one for D = -1, -4, -7, -8, -II, 
-19, -43, -67, and -163; also that class number one implies that the algebraic numbers in 
Q(y'D) have unique factorisation; but it was only in 1967 that Stark gave a generally 
acceptable proof that -163 is the largest negative class one discriminant. 

The discriminant of a binary cubic form f(x,y,z) = ax3 + bx2y + cxy2 + dy3 is 
D = 18abcd + b2 c2 - 27a2 d 2 - 4ac3 - 4b3 d; hence the discriminant for Brillhart's cubic is 
-4 x 163; but -163 has no special significance for the discriminants of cubic forms. Not 
unrelated to the eventual explanation is also the fact that exp (7Ty'l63) is very close to an 
integer, exp(7ry'l63) = 262537412640768743·999999999999250 .... I hope that these 
tantalising titbits encourage the interested reader to consult, at least, Churchhouse & 
Muir, CFANMI. 
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complicated features that may eventually be involved if continued fraction 
expansions of higher degree irrationals are ever to be understood. 

9.3 TWO RECENT DEVELOPMENTS 

9.3(a) Continued fraction arithmetic 

I have already described some of the difficulties that seem to lie in the 'Way 
of an algorithm for continued fraction arithmetic; see Sections _4.2 (espe
cially the discussion of B32_34) and 4.5(b). Lagrange refers to the problem in 
his UFCCI: "Since the form of continued fractions is ill-adapted to 
algebraic manipulations, we shall reduce these fractions to common 
fractions .... " (Oeuvres iv, 327-8). The first approach to any such algorithm 
seems to be in Hurwitz, KEZE (1981) and KTAR (1986). We find there the 
basic rules:35 

and 

2[no,2n1 + l,x2] = [2no,n1, 1, l,!(x2 - 1)], 

to which, to make the calculation explicit, we can add 

! [2no, xi] = [no, 2x1], 

and 

With these, and also the relations described in n. 6, above, we can now double 
or halve any simple continued fraction. For example, take one of Euler's 
favourite examples: 

!(e- 1) = [O, 1,6, 10, 14, ... ]. 

This gives 

e - 1 = 2[0, 1, 6, 10, ... ] 

= [0,0, 1, 1,![5, 10, 14, ... ]] 

= [1, 1,2, 1, 1,![9, 14, ... ]] 

= [1, 1,2, 1, 1,4, 1, ... 'l,2t, 1, ... ] 

35 I know of no earlier occurrence of these rules, though they would have been quite 
accessible to Euler and Lagrange, and Euler several times juxtaposed the expansions of e and 
!(e - l); see, for example, Section 9.l(d), above. 
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and so the expansion of e. Hurwitz also investigated these kinds of numbers xo, 
which have the property that there is a set of polynomials Pl, p2, ... , Pm such 
that, after some initial acyclic terms, their expansion becomes 

Xo = [ ... ,p1(l),p2(l), ... ,pm(l),p1(2),p2(2), ... ,pm(2),p1(3) .. . ]. 

For example, fore, m = 3 and Pl (t) = p3(t) = 1, p2(t) = 2t; while for! (e - 1), 
m = 1 and p 1 (t) = 4t + 2; and for quadratic surds, the polynomials are all 
constant. He showed that if xo is such a number, and Yo=:= (a+ bxo)/(c + dxo) 
where the integers a, b, c, and d satisfy ad - be =/:- 0, then Yo will also have the 
same property, though usually for a different value of m.36 This, together with 
the fact that e, e2, and ;:/ e are of this kind, explains in part the expansions of 
many exponential and hyperbolic numbers. Numbers which display this kind of 
regular behaviour are now known as Hurwitz numbers. 

The problem of arithmetic was again raised in Whittaker, TCP (1915): 

The great impediment to the use of continued-fractions in Theory of Functions and 
Differential Equations is the want of algorithms for adding, multiplying, and differen
tiating them. The object of the present paper is to supply in some measure this deficiency. I 
think it would be a mistake to propose the problem in the form: Given two continued
fractions, to find a third continued-fraction which is equal to their sum or product ... for I 
doubt ifthe problems so formulated possess any simple solutions. But Sylvester showed 
long ago [in 1853] that any continued-fraction may be regarded as the quotient of two 
determinants [see the remark in Section 9.l(a), above, on continuants]; and if we regard 
continued-fractions in this light, advancing boldly from their theory to the theory of 
determinants, and aiming to express the products or sums of derivates of continued
fractions in the form of determinants, the situation becomes much more promising ... 

Then, in the body of the article, Whittaker discusses only differentiation of a 
certain type of function expressed as a continued fraction, and makes no 
attempt to consider continued fraction arithmetic. 

General algorithms for evaluating sums and products are given in Hall, 
SPCF (1947), and Raney, CFFA (1973), but the description of Khinchin, CF, 
quoted above in Section 4.2, applies to these: they are "exceedingly complicated 
and unworkable in computational practice". Yet a simple algorithm exists! It 
was found by R. W. Gosper in the 1970s and has not yet been properly 
published, though enough details are given in Knuth, APC ii, §4.5.3, Exercise 
15, with its answer, to reconstruct the procedure.37 Here it is: 

36 If ad - be = 0, then the transformation degenerates in y0 = constant. There is an older 
result, due to Serret, that the tails of the expansions of two numbers x0 and y0 are eventually 
equal (i.e. XK+; = YL+; for j = 0, 1, 2, .... ) if and only if there exist integers a, b, c, and d 
such that ad-be= ±1 andy0 = (a+bx0 )/(c+dxo); see the third edition of Serret, CAS i, 
34--7. (This textbook contains an influential account of continued fractions which then forms 
the basis of later textbooks, for example Chrystal, TA. Serret was also the editor of 
Lagrange's collected works.) 

37 I would like to thank Bill Gosper warmly for sending me unpublished material on 
continued fractions and.allowing me to describe his algorithm here. Also many thanks to 
Mike Paterson for explaining much, here and elsewhere, about continued fractions and 
algorithms. 
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Consider the problem of evaluating the continued fraction expansion of the 
real number • 

a + bx + cy + dxy 
z---------

- a'+ b'x + c'y + d'xy' 

given the continued fraction expansions of x and y; it will become clear that 
the algorithm itself can be described purely in terms of integer arithmetic 
and manipulations of the expansions xo = [no, n1, n1, ... ] and Yo = 
[m1, m2, m3, ... ] of x and y. 38 By choosing appropriate initial values of a, 
b, ... , d', we then get procedures for evaluating the sum (0 + lx + ly + Oxy)/ 
(1 +Ox+ Oy + Oxy), the difference, the product, etc., of two continued frac
tions. I shall describe the algorithm in terms of inputting the terms of x and y, 
and outputting the terms of z. For convenience, suppose that everything is 
positive, though there is no real difficulty in adapting the procedure to negative 
values. 

First consider the simpler case of z =(a+ bx)/(a' + b'x). Inputting a term 
of the expansion of x corresponds to supplying the information that 
x = n + l/x' where 1 :( x', and so 

a+b(n+_!_) x' b+(a+nb)x' z - --~--~ - -------
a' +b' n+-

- ( 1) - b' + (a'+ nb')x' · 
x' 

This step has the effect of replacing the matrix of coefficients [ ;, :, ] by 

[ b' a + nb ] , which contains more information about z. This step can be 
b a' +nb' 

repeated indefinitely; it generalises the procedure of calculating the convergent, 
when z = x = ~;ix, and it can be conveniently set out as in the following 

x · _ 9+4y'2 ; _ [ ] ) example of the calculation of z - 1+2v'2. (Recall that v 2 - 1, 2, 2, 2, .... 

x 1 2 2 
Matrix of 9 4 13 30 73 

coefficients 1 2 3 8 19 

(For example, at the last step an input of 2 has changed the coefficients 

[
13 30 ] into [ 30 73 ];here73=2x30+13andl9=2x8+3.) 
3 8 8 19 
Next consider the output of z. We know that 0 :( x :( oo; hence z will lie 

between a/a' and b/b'. 39 Hence if a/a' and b/b' have the same integer partp, 

38 I shall drop the suffixes on Xn and Xn+I and refer to the basic step of the continued 
fraction algorithm as x = n + l/x'. 

39 In fact 1 ~ x ~ oo, so z will actually lie between (a+b)/(a' +b') and b/b', but the 
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TABLE 9.2 

Input x 

1 2 2 2 2 
9 4 13 30 73 

;:... 1 2 3 8 19 
~ 3 6 16 38 92 0.. ...... 

2 3 8 19 ;:; 
0 

4 6 16 
1 2 3 

we know that z = p + 1 / z' with z' > 1, and so the next term of the expansion of 
z will be p. This gives 

1 a+bx a' +b'x so z' - ..,.-----..,...-------p+----
z' - a' +b'x' - (a - pa')+ (b + pb')x' 

and hence the effect of outputting the term p will be to replace the matrix 

[ a b ] [ a' b' ] . 9+4J2. by , , . Look agam at the example of l+2 12, 
a' b' a - pa b - pb v 

sufficient input has been made above to determine that the initial term of the 
output is 3. We can now incorporate the operation of extracting this output and 
continue the calculation further, as in Table 9.2 where the input is written 
horizontally and the output vertically. In this example, with the last displayed 

[6 16] output, the matrix of coefficients reverts to an earlier value of 2 3 , so an 

input of 2, 2 will then again generate an output of 4, 1. Hence the output is 
periodic, with 

9+4y'2 -
1 +2y'2=[3,1,4, l]. 

Now consider the case of 

a + bx + cy + dxy 
z= . 

a'+ b'x + c'y + d'xy 

Here we can write the coefficients in 2 x 2 x 2 array, [aa' dbb'] in which we 
cc' d' 

think of the primed coefficients of the denominator as lying below the 

weaker condition is more convenient for hand calculation. These statements are slightly more 
complicated if any of the a, b, a', and b' can take negative values. 
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coefficients of the numerator. (It is sometimes convenient, in hand calculations, 
to use two colours to distinguish alternate layers.) We t'hen can immediately 
verify the following operations: 

Input x = n + __!,, and [aa' 
x cc' 

a+ nb a'+ nb' l · 
c+ndc' +nd' 

1 [aa' Input y = m +1 , and 
y cc' 

becomes [ c c' 
<J + mca' +me' 

d d' l 
b+mdb' +md' 

1 
Output z = p + 1 , and 

z 
[
a' 

bb' l a - pa' 
becomes 

dd1 C / c-pc 

bb-pb'] · 

dd-pd' 

Again, if the coefficients are all positive, the value of z will lie within the 
smallest interval containing a/a', b/b', c/c', and d/d'. When sufficient input 
has been made to determine the value of p, it can be outputted. Observe that the 
previous one-variable calculation is, in effect, a vertical slice through the plane 
y = 0 of the two-variable calculation. 

Finally, if x terminates, the most convenient way of incorp[o;;tinib~lis is, 

after the final input, to replace the matrix of coefficients by 

[ 
b , b , l cc' dd' 

b b ; and similarly for terminating y. 
dd' dd' 
Table 9.3 sets out the first few steps of the calculation of .,/2 x J3; alternate 

layers of the calculation are set in roman and italic type. The periodic inputs 
provoke an output of [2, 2, 4, 2, 4, ... ], but the apparent periodicity of this 
output will not show up, this time, in the recurrence of a matrix of coefficients, 
and I cannot conceive of any way of proving, within the restriction of integer 
arithmetic, that the output will indeed be periodic. 

The algorithm can easily be extended to accept a general continued fraction 

m1 m2 
xo=no+----

n1+ nz+ 

as input, and Gosper has used it in this form to compute and analyse 204 103 
terms of 7T, by converting a Ramanujan expansion for 7r/4, similar to 
Brouncker's expansion but converging much more quickly, into a simple 
continued fraction; see Gosper, TSCFP. This calculation has now been 
modified by him to exploit fast Fourier transform integer arithmetic and 
extended to 17 million terms, and on this evidence, 7T appears to exhibit the 



TABLE 9.3. [1, 2, 2, 2, 2, 2, 2, 2, 2, ... ] x [l, 1, 2, 1, 2, 1, 2, 1, 2, 1, ... ] = [2, 2, 4, 2, 4, ... ]. Alternate layers are shown in 
roman and italic type; outputs are encircled 

--

Input x 

2 2 2 2 2 2 2 2 etc. 

01 Oo 01 02 0 5 

Oo lo lo 3o 7 0 

32 7 5 

62 14 5 
2 156 3 3515 5 

@ 
218 5 4920 9-2 4823 2 55 6 

"" @ 
"El 
p., 

2213 55239 1325914 ~ 2 141 37 ....., 

8216 196 43 
2 2234639 53312341 292121 50 707 283141 

© @ 
3056257 72916665 394187 20 954 439 76 

2 495 90 1161293 2817676113 67951645 215 

© 

etc. 
682110 1600369 3882848490 936420651104 
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behaviour of a typical number, in the sense of Section 9.2(c), above; its only 
anomaly may be that it conforms too closely to this typ!cal behaviour! 

9. 3(b) Higher dimensional algorithms 

We can describe the classical Euclidean algorithm as follows: given (x0 ,y0 )

two positive integers, or two positive real numbers, or two lines, or two areas, 
etc.-then, at each step, if the smaller term is non-zero, subtract it from the 
larger; ifit is zero, terminate. We have seen that this simple algorithm possesses 
a host of remarkable properties, some of which we can enumerate as follows: 

(i) When x 0 and y0 are integers, it will terminate with the non-zero term 
equal to the greatest common factor or measure of x 0 and y0 ; this is Elements 
VII 1. 

(ii) It will terminate if and only if x 0 /y0 is rational. In this case, the last 
non-zero term will be the greatest common measure of xo and yo, and the last 
convergent will be equal to x0 /y0 , expressed as a common fraction in its lowest 
terms; see Elements X 2, 3, and 5. We can generalise this by saying that the 
algorithm will terminate if and only if there are integers no and mo such that 
no xo - mo Yo = 0, a condition now expressed today by saying that xo and Yo are 
linearly dependent over the integers; and the algorithm can be extended to 
evaluate the least such (n0 , mo), from which all others can be calculated. 

(iii) The procedure will generate best possible approximations. There are 
various ways of describing this precisely. For example, in the geometrical 
description of Section 9.l(b), above, we can say that the algorithm will locate 
those lattice points (p, q) that lie closest to the ray through 0 and (x0 ,y0 ). 

(iv) If x 0 and y0 are not linearly dependent over the integers, but are 
quadratically dependent, so there are integers ao, ho, and c0 such that a0 x6 + 
boxoyo + coy6 = 0, then the algorithm will become periodic. 

How far can we generalise some or all of these properties to apply to higher
dimensional situations (x0 , y0 , ... , z0)?40;For example, there is no difficulty in 
generalising (i), and Euclid already presents one such generalisation at Elements 
VII 3: given three integers (x0 , y0 , z0 ), apply the classical two-dimensional 
algorithm to (x0 ,y0 ), which will then terminate with the non-zero term w0 . 

Then apply the algorithm to (w0 , z0 ); this will terminate with the highest 
common factor of x 0 , y0 , and z0 . In this manner, it is clear that Euclid now 
knows that this algorithm will apply in any dimension (xo,Yo, ... ,zo), and he 
uses the general form in VII 33. Then he applies the i:tlgorithm to three mutually 
commensurable magnitudes in Elements X 4 and this time he notes, in a porism, 
that the procedure is general. 

It is easy to see that, in three or more dimensions, (ii), generalised as 
'termination if and only if linearly dependent', and (iii) are incompatible. 

40 I would like to thank and acknowledge the help I have had in understanding these higher 
dimensional algorithms from letters and unpublished work by George Bergman, Helaman 
Ferguson, and Rodney Forcade. 
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Look at the problem geometrically, as described in Section 9.l(b), above. In 
the two-dimensional case, if noxo - moyo = 0, then the line Y = (xo/Yo)X 
will pass through the lattice point (n0 , mo), and a terminating algorithm will 
reveal this best possible approximation. But in three or more dimensions, we 
can have examples like (1, J2, 1 + J2) which are linearly dependent but 
which do not lie on any ray through the origin and a lattice point.41 Hence 
any algorithm that reveals this linear dependence by terminating will not go 
on to generate an infinite sequence of improving rational approximations by 
lattice points. 

Before going further, let me describe two more algorithms. First, Brun's 
algorithm (see Brun, GK and AETQN, and, for a nice elementary exposition 
and proof, Ferguson, RRQN42): Given (x0 ,y0 , ... ,z0 ), at each step of the 
algorithm, if every term is non-zero, subtract the second largest term from the 
largest; if any term is zero, terminate. The algorithm will satisfy (i) for any set of 
integers; and it will satisfy (ii) for triples, but may fail to satisfy it for 
quadruples or more of real numbers. (Ponder that: if xo is the solution of a 
quadratic equation, and we apply the algorithm to (1, xo, x5), then it will 
terminate; if x0 is a solution of a cubic equation and we apply the algorithm to 
(1, x0 , x5, x6), it may or may not terminate. For a specific example, the 
algorithm will not terminate if x0 is the largest root of x3 - 3x2 + 1 = 0.) 
The algorithm will only generate best approximations in special circumstances, 
and I do not know when it will exhibit periodic behaviour. 

Contrast Brun's algorithm with the following: given (x0 ,y0 , ... , z0 ), at each 
step of the algorithm, if every term is non-zero, subtract the smallest non-zero 
term from the largest; if any term is zero, terminate. Again it is easy to see that 
this will satisfy (i), but, beyond that, its behaviour is completely different from 
Brun's algorithm. For example, applied to (1, J2, 1 + J2), it is easy to see that 
it will not terminate. I do not know its further properties. 

So far I have been describing Euclidean-type algorithms based on subtrac
tion. There are also continued-fraction-type algorithms which involve division, 
generalisations of the basic step Xk = lxkJ + l/xk+1, and which may also 
possibly involve renormalisation (such as replacing (xo,Yo, ... , z0 , w0 ) by 
(xo/wo,Yo/wo, ... , zo/wo), thus seeming to deal with one less dimension). 
The Jacobi-Perron algorithm is an example of such a division algorithm. In its 
normalised form it is as follows. Given (xo,yo, ... ,zo), if xo is not an integer, 

41 We might write 1: y/2: (1 + y/2) =/= p: q: r for any integers p, q, and r, in a notation that 
suddenly stretches all the discussions of ratio in this book. Also note that simultaneous 
approximation has entered briefly into the discussion of Callippus' calendar in Section 2.4(b) 
and could very easily have been introduced by my Eudoxus in Section 4.4(b); and it is built 
into the well-tempered diatonic scale which is based on the approximation of 4: 7: 12 for 
log~: log~: log2, which could have entered the discussion with my Archytas in Section 
4.5(b). Euclid appears to introduce proportionality (or ratio?) between three or more terms in 
VII 33, without any furtl)er comment or explanation. 

42 Ferguson comments, in his RRQN: "It seems to be easier to reprove Brun's algorithm 
independently than to find and read the original!" 
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replace each term by its fractional part, shift one place to the left, insert a 1 in 
the final place, and divide by xo - l xoJ. Thus • 

(
Yk - lYkJ · Zk - l Zkj 1 ) 

(xk, Yk, ... , zk) -t l J , ... , l J , l J . 
Xk - Xk Xk - Xk Xk - Xk 

If we perform this curious ritual on the singleton (xo), we get 
Xk+I = (xk - [xk])-1, the classical continued fraction algorithm.43 But why 
should such a complicated generalisation have provoked so much investigation 
and counterproposal, as indeed the Jacobi-Perron algorithm has? 

The periodicity of the Euclidean algorithm for quadratic surds, property (iv), 
is a most remarkable mathematical phenomenon. It lies at the heart of my 
proposed reconstructions of Greek mathematics. It was clearly a property that 
fascinated Euler and Lagrange, as I have tried to illustrate in Section 9.1 above. 
That Gauss may have thoroughly understood this mathematical fact and its 
implications, but yet been unable to extend this kind of behaviour to any other 
algebraic numbers, may have been one of the reasons why he purged continued 
fractions from his number theory in favour of the more general and promising 
theory of quadratic forms, and turned instead towards the probability theory of 
continued fractions. Lagrange posed his problem about higher-degree algebraic 
numbers, quoted in Section 9.l(e) above, from firmly within the context of 
periodic continued fractions. Seventy years later, in 1839, Hermite posed 
exactly the same kind of question, again making explicit reference to the 
periodicity of the continued fraction expansion of quadratic surds, to Jacobi, 
who responded with his algorithm, an unnormalised three-dimensional version 
of that described above, and with examples of cases where it was and was not 
periodic. Jacobi's algorithm was published only posthumously in 1869 in an 
article, ATKA, completed by Heine from Jacobi's notes, and it was later 
generalised and studied intensively by Perron, who proved that it will converge, 
though it may not generate the best possible approximations, except for very 
special cases in low dimensions. And the fundamental issue of its periodicity 
still remains unresolved, despite much effort. 44 

43 For a more sympathetic geometrical description of the Jacobi-Perron algorithm as a 
generalisation of the Parmenides algorithm, and related comments, see Pisot, SM. 

44 For references and details of the history and theory of the Jacobi-Perron algorithm, see 
Berstein, JP A. Higher dimensional algorithms seem to inspire a purple prose; Berstein refers 
to the attempts to generalise this periodic theory in terms of "Dantesque despair" of 
"abandoned hope", relieved only by the "great master" Jacobi and the nonagenarian 
Perron "still working feverishly on the periodicity question of the Jacobi algorithm", 
which, however, is "still waiting for the master-mind to decipher it completely" (see the 
historical sketch, pp. 1-10). One can also detect the excitement in the warm but sober letters 
of Minkowski to Hilbert: "I am nearly finished with the continued fractions for two real 
numbers; this final version of this examination will, I think, be pretty instructive. It is very 
similar to the Jacobi algorithm; however my algorithm has a few more frills ( Chicanen) which 
allow for all sorts of questions to be asked which would be arbitrary for Jacobi's algorithm. 
Hermite has now scrutinised that part of my book which I have sent him. He wrote very 
delightedly to the translator about it: Je crois voir la terre promise, etc." (Minkowski to 
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Now we come to the final irony. By setting condition (iv) aside, so turning 
away from the fascination of the periodicity of the classical algorithm, and by 
concentrating on the subtractive formulation of the Euclidean algorithm, 
rather than division and a continued fraction algorithm, a new and successful 
kind of generalisation to all dimensions has been found by Ferguson and 
Forcade; see GEA and MEA.45 These algorithms, though complicated, are 
geometrical and illuminating, and already seem to be more successful than the 
earlier attempts at periodic algorithms, as some of the results described in 
Ferguson, Bailey & Arno, APSLQ, demonstrate. 

Hilbert, 20 August 1894). Alas, on 10 February 1896, he was to write: "The complete 
presentation of my investigations on continued fractions has reached almost a hundred 
printed pages but the all-satisfying conclusion is still missing: the vaguely conceived 
characteristic criterion for cubic irrational numbers." (Both extracts translated from Min
kowski, BDH, 62 and 77.) Also see the next note. 

45 In an unpublished historical survey of higher dimensional algorithms Ferguson and 
Forcade call periodicity a "fluorescent red herring", and a "track laid by Lagrange down 
..yhich many more trains were to roar impressively if fruitlessly". Of the Jacobi-Perron 
algorithm, they observe "there is undoubtedly a hoary counterexample of degree seven 
involving five digit coefficients". Minkowski's algorithm (see the previous note) does in 
some sense answer Lagrange and Hermite's question and also sets strict limitations on the 
scope of periodicity; but it is not the iterative kind of algorithm considered here. A modern 
account of Minkowski's algorithm and a report of extensive computer explorations using 
the Jacobi-Perron algorithm can be found in Ferguson, ACGLSE. 
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APPENDIX: 
NEW MATERIAL ADDED TO· THE 

SECOND EDITION 

10.1 A NEW INTRODUCTION: THE STORY OF THE 
DISCOVERY OF INCOMMENSURABILITY 1 

10.l(a) The standard story 

Here is something that most mathematicians and historians of mathematics 
might say about the beginnings of Greek mathematics: 

The early Pythagoreans based their mathematics on commensurable magnitudes (or on 
rational numbers, or on common fractions min), but their discovery of the phenomenon 
ofincommensurability (or the irrationality of y'2) showed that this was inadequate. This 
provoked problems in the foundation of mathematics that were not resolved before the 
discovery of the proportion theory that we find in Book V of Euclid's Elements. 

You must, at some time or another, have heard, or perhaps even have said, 
something like this; I have, but I shall try here to summarise why I now disagree 
with everything in this line of interpretation. This section will refer to many parts 
of the book where the assertions are developed in greater detail, and so will 
involve a certain amount of repetition. I arrange my comments under various 
headings. 

10.l(b) Some general remarks about our evidence 

Our evidence about Greek mathematics in general comes in very disparate 
forms, and almost all of it has been subject to an unknown amount of editing 
and interference. In particular, our late sources-editions, compilations, and 
commentaries dating from the second century AD onwards-are manifestly of 
very variable quality; it can often be difficult to separate what is reliable from 
what may not be, and these decisions may be subjective, depending on our own 
prior attitudes to meaning and relevance. So here, in the first phase of my 
reconstruction, I put almost all of this late material to one side as far as 
possible, and ignore it. 2 This is very drastic, and the reconstruction should go 
on to discuss, even to explain, this tendency to include unreliable opinions; 

1 This section is an adaptation of my self-contained article SDIR. 
2 At the outset, I must admit that one and only one piece of evidence of late provenance 

plays a crucial role, namely the material on 'side and diagonal' numbers and lines, found in 
Theon of Smyrna, lamblichus, and Proclus. See the General Index, s.v. side and diagonal. 



10.1 Discovery of incommensurability 357 

there will be an example of this later, in Section 10. l(e), on the changing 
role of arithmetic. Moreover, some of the relevant evidence in early sources, 
in particular in Euclid and Plato, comes in homogeneous slabs which often 
fit rather awkwardly in the various versions of the received interpretation. 
In some measure to redress the balance after my radical approach to the 
late texts, I endeavour to follow the principle that, if any one piece of such 
an early slab enters the reconstruction in a significant way, then the 
proposal should also engage with the whole of its context. For example, 
any important use of any aspect of the curriculum in Plato's Republic VII 
should also connect with the whole curriculum, especially since Plato insists 
on its unity (see Chapter 4); any significant application of a proposition in 
Elements II should eventually involve all 14 of them (see Chapter 3); 
anything about Elements XIII, the book which contains the construction 
of regular solids and a lot more, should say something about Book X, the 
classification of incommensurables, and perhaps also about Books II and IV 
(see Chapter 5). 

Please note: I am not saying that all early evidence is all good, all late 
evidence is bad. I am saying that our evidence is a hotchpotch that we cannot 
sort out until later in the project, but the best evidence is likely to be found in 
the coherent but often seemingly marginal chunks of early provenance, so let us 
start from this material, taken all of a piece. It is a methodological principle, 
not a simple value judgement of the evidence. 

But now to the opening assertion: my principal objection to it is that it is 
founded entirely on late evidence and speculation, uncorroborated to a 
remarkable extent by any of our earlier sources, so it forms a very insubstantial 
base on which to base a substantial part of our reconstructions of Greek 
mathematics. I shall spell this out in more detail, and then propose an 
alternative starting point. 

10. l(c) Our evidence concerning incommensurability and associated topics 

On Pythagoras and the early Pythagoreans, see Burkert, LSAP, Chapter VI. I 
subscribe fully to his general conclusion, that the only kind of scientific 
activities and discoveries we can attribute with confidence to the early 
Pythagoreans are some remarkable findings in music theory and acoustics, 
the most remarkable being that consonance is associated with some small 
integers. Most, if not all, of the mathematical stories have the ring of later 
legendising: "The beginnings of the development that is brought to a climax by 
Eudoxus was not far from Theodorus of Cyrene .... The thesis of the [early] 
Pythagorean foundation of Greek geometry cannot stand, any more than the 
legend of a great mathematics held secret" [LSAP, 464]. 3 His explanation for 

3 I like Reviel Netz' fotmulation of Burkert's conclusions: "Pythagoras the mathematician 
finally died in 1962!" See Netz, SDGM. 
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the universality and tenacity of the general belief is succinct and convincing: 
"What is the origin of the firmly rooted conviction that Pythagoreanism was 
the source of Greek mathematics? This question is easy to answer: it came 
from the educational tradition. Everyone comes upon the name of Pythag
oras for the first time in school mathematics; and this has been true from the 
earliest stages of the Western cultural tradition" (p. 406), and he goes on to 
catalogue examples from the early fifth century onwards. Plate 9 shows an 
earlier illustration of what Burkert is describing, though this is not referring 
to Pythagoras the mathematician. It is a standard kind of school exercise in 
grammar from the second century AD: a paradigm of Greek inflections, 
showing all of the different cases through variations of a simple sentence, this 
one about Pythagoras the philosopher. 4 Pupils who have worked through 
something like this will have his name branded in their minds for the rest of 
their lives. 5 

For these reasons, there are only isolated and very brief references to 
Pythagorean science in the book: see the General Index for a complete list. 
In particular, consider: 

The Pythagorean theory of proportion based on commensurable magnitudes. I 
know of no explicit evidence for this, early or late. From what I can work out, 
the thinking goes something like this: we, since medieval times, have learned at 
school about common fractions, that is !;f s, so that is what the Pythagoreans 

4 There are discussions of this tablet in Sedley, PGT and PGTDA. It may even tell us a bit 
about how Pythagoras was regarded in the third century AD. Compare today; how might the 
gap in the following sentence be filled: 'Pythagoras the *** was born in Samos and later went 
to Croton'? Various possibilities, arranged alphabetically, are: leader, mathematician, music 
theorist, mystic, philosopher, scientist, shaman, .... Thanks to several helpers, I was able to 
organise a simple and non-scientific survey over the Internet and, of around 190 replies, 40% 
said mathematician or some variant of that (geometer, mystic geometer, triangle theorist, ... ), 
28% said philosopher or some similar variant, 12% philosopher-mathematician, and the rest 
a very mixed bag of activities-number freak, bean-hater, vegetarian, polymath, new ager, .... 
One person said music-theorist, another father of acoustics, and these two were the only 
references to what may be the early Pythagoreans' most significant contribution to our 
scientific heritage. It is also perhaps worth noting that, from the first century up to the eighth 
and beyond, 'mathematician' (mathematikos) had very strong overtones of 'caster of 
horoscopes' and 'astronomer/astrologer'; and these last two words were interchangeable, in 
both Latin and Greek. And much later, in the sixteenth century, John Dee, who wrote the 
Preface and most probably participated in the editing of the first English translation of the 
Elements, made by Henry Billingsley and published in 1570, was an adept of these arts. I 
would like thank Lorenzo Smerillo for telling me about some of the detail of these very 
interesting developments of later antiquity. 

5 I speak from personal experience. Arthur Mee's Children's Encyclopedia, a standard 
reference for my generation, had a similar though less subtle set of variations on the first verse 
of Thomas Gray's Elegy Written in a Country Churchyard: "The curfew tolls the knell of 
parting day, I The lowing herd wind slowly o'er the lea, I The ploughman homeward plods 
his weary way, I And leaves the world to darkness and to me." I have never read the poem, 
but will never forget this opening verse. 



10.1 Discovery of incommensurability 359 

must have used, especially since we find these fractions later in Greek mathe
matics and Greek accounting. Occasionally this opinion gets expressed in print; 
see, for example, van der Waerden, SA, p. 115: 

It is probable that it was calculation with fractions which led to the setting up of 
[Elements Book VII, which van der Waerden attributes to the early Pythagoreans]. 
Fractions do not occur within the official Greek mathematics before Archimedes but, in 
practice, commercial calculations had to use them. 

I discuss this topic at some considerable length, in Chapter 7 and elsewhere, 
summarise the argument in the article LFGM, and come to the following 
conclusions. Fractions do occur in 'official mathematics', even, in a limited 
way, in the Elements: see the use of the word meros, plural mere, translated as 
'part' and 'parts', especially in Book VII. For example, VII 37 and 38 talk of 
'homonymous parts', of three and the third, four and the quarter, etc., and 
these mere, 'unit fractions', are an ingredient of the way fractions are described 
in Greek. But I do not think there is any unambiguous evidence for 'common 
fractions' ~ s, in any of our early texts including commercial calculations, and 
their apparent appearance in the late Byzantine copies which account for 99% 
or more of our evidence may instead be as scribal abbreviations. Our plentiful 
surviving explicit evidence is that Greek fractional practice was exactly the 
same as Egyptian practice: fractions were expressed as sums of different mere, 
as 'Egyptian fractions'. The details of this argument are long, painful, and 
contentious because, while we have many different kinds of evidence, most of it 
is of the wrong sort or it comes from the wrong place or the wrong time. And if 
you find the full conclusions of this overall thesis too much to swallow, we here 
need only a much weaker version of it, that the Greek mathematicians before 
Plato and Eudoxus used not common fractions, but Egyptian fractions. I 
return to fractions and arithmetic later in this section. 

Note how, everywhere, 'Greek' as in 'Greek mathematics' simply means 
'written in Greek', although almost all of our evidence has been transmitted via 
Egypt, and then via the whole eastern Mediterranean, and that, of course, 
complicates the argument; see Chapter 6. And, concerning the Greek use of 
fractions and division, I think that Diophantus needs a separate discussion, 
strongly influenced as he seems to have been by Mesopotamian mathematics, 
as also have the later Greek astronomers. 

The topic of incommensurability. In Section 8.3 I review all of the evidence on 
this topic for the thousand-year period up to Proclus and, there and here, I refer 
readers to another such review in Knorr, EEE, Chapter 2. Here are some 
conclusions of these investigations: 

(i) In the first surviving explicit mention of incommem.surability,6 in Plato's 
Theaetetus (147aff.), the topic is handled confidently as a source of interesting 

6 I here leave to one side the notorious 'nuptial number' at Republic 546c, with its talk of 
the 'rational and irrational diameters of five'. 
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mathematical research. Incidentally, as to the date of Theaetetus' death, 
369 BC, which is generally regarded as one fixed poitlt, perhaps the only 
secure fixed point, in the shifting sands of the incommensurability issue, there 
is now one specialist on pseudo-Pythagorean texts who dissents from this 
common view: "I find it essential to note that historians of mathematics who 
take it for granted that Theaitetos was still alive in the 370s must be wrong. 
He made some important discoveries as a young man, and Plato and his 
friends were deeply impressed by this. But he is likely to have died in 390Bc." 
(Thesleff, PC, 18, n. 47.) 

(ii) There is a reference in the Hippias Major (whose authenticity and date 
have been vigorously debated, though it seems now accepted that it is an early 
dialogue by Plato) where, in a passage that revolves around properties of 
individuals and their combinations, Socrates says (303b): "Or is there nothing 
to prevent this, as in the case that when given things are both collectively even, 
they may perhaps individually be odd, or perhaps even, and again, when things 
are individually irrational [arrhetos, 'inexpressible' in the translation of Chapter 
5] quantities they may perhaps both collectively be rational [rhetos, 'expres
sible'], or perhaps irrational [alogos] ... ?" This latter remark is reminiscent of 
the kind of manipulation used extensively in Elements X (see Chapter 5); 
compare ( y'2 + 3) + ( 4 - y'2) and y'2 + y'3. 

(iii) The celebrated passage in Plato's Laws (817eff.) where Plato talks of 
"ignorance ... not worthy of human beings but pigs" may not be referring to 
incommensurability in our sense here, but something else, very possibly the 
kind of techniques used in land measurement, where again things are not what 
mathematicians and historians of mathematics seem to assume they ought to be 
when, for instance, they parade stories from commentators about Egyptian 
land measurement as the origin of mathematics; see Section 8.1. 

(iv) Aristotle's favourite mathematical illustration is "the incommen
surability of the diagonal" as something all mathematicians know; but he 
never suggests that it is or ever was a disaster for any mathematical theory, even 
though, in closely related passages, especially in the Metaphysics, he is highly 
critical of the Pythagoreans. Curiously, Aristotle never specifies that he is 
talking of the diagonal of a square. Twice, both times in Prior Analytics, at 41a 
23 ff. and 50a 35 ff., he says something like: "from the assumption that the 
diagonal is commensurate, it follows that odd numbers are equal to evens", but 
gives no more details of what he means by this. I find Knorr's proposal (EEE, 
228-32) completely convincing: that the two clumsy versions of the usual so
called Pythagorean proof, which revolve around this statement, may have been 
tacked on to the end of Elements X sometime after the time of Alexander of 
Aphrodisias in the third century AD, in response to the needs of Aristotelian 
commentators, and that Alexander himself cobbled together the further variant 
of this proof to be found in his own commentary. However, other natural 
mathematical explanations of this remark by Aristotle about odd and even 
numbers are possible, and our evidence for any interpretation of it is so tenuous 
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as to be unreliable as a basis for further reconstruction (see Section 8.3(c)). I 
will come back again to Aristotle later, in the next section. 

(v) No surviving fragment or testimony ofEudoxus mentions incommensur
ability: the word-index to Eudoxus-Laserre, FEK, does not contain the words 
(a)summetros, (ar)rhetos, or alogos! To us, it may seem blindingly obvious that 
the principal achievement of the Eudoxan theory of Elements V must have been 
to accommodate ratios of incommensurable magnitudes, but no ancient source 
says that, and Section 4.4(b) tells this story of the antecedents to Book V 
Definition 5 differently; see, in particular, p. 121, at the end of a difficult 
passage in B6s: "Those [commensurable ratios] introduce complications, and I 
think incommensurable ratios may be easier to handle"!7 

(vi) Proclus, the source of most of our information about pre-Euclidean 
mathematics, never quotes anything from Eudemus on incommensurability, 
though he cites Eudemus by name several times, and also writes about 
incommensurability several times. The one apparent exception to this, the 
passage in the catalogue of geometers where Eudemus appears to refer to 
Pythagoras 

Following upon these men [Thales, Mamercus, and Hippias of Ellis], Pythagoras 
transformed mathematical philosophy into a scheme of liberal education, surveying its 
principles from the highest downwards and investigating its theorems in an immaterial 
and intellectual manner. He it was who discovered the doctrine of proportionals and the 
structure of the cosmic figures [65.15-21] 

is almost certainly an interpolation in Eudemus' text; and the remark there that 
Pythagoras discovered the "doctrine of proportionals" is a modern editorial 
emendation, ava;\6ywv for d,.\6ywv, of this interpolated text. 8 This is a good 
and clear illustration of how history can sometimes be manufactured by 
commentators, late and modern, who may adjust a text to fit with their own 
interpretations. 

(vii) A proper discussion of this word alogos, often translated as 'incom
mensurable' and sometimes as 'rational' though neither word does justice to 
the range of its uses and meanings, will take us on a very long excursion 
into Elements Book X; see Chapter 5. Let us here just look very briefly at 
Euclid: as far as I am aware, the only time the topic of incommensurability 
appears anywhere in Euclid's works is in Elements, Books X and XIII, 
which in fact form our only coherent slab of early evidence on the topic of 

7 There is a shorter, simpler, and more straightforward account of the difficult arguments 
of this section in Fowler, EPP. 

8 Eudoxus-Laserre 65.16, translation from Proclus-Morrow, 52-3, which refers to Heath, 
HGM i, 84-5 (and also see 141) for a brief discussion of the passage and an (optimistic!) 
discussion of the textual emendation; there are many other translations, e.g. Thomas, 
SIHGM, 148-9. There is a thorough discussion of all aspects of the passage in Burkert, 
LSAP, 409-12, which concludes: "Thus its 'authority' is precisely reversed .... Nothing is left 
of the supposed testimorry ofEudemus to the achievement of Pythagoras in the foundation of 
mathematics." 
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incommensurability, and a very massive, very coherent slab it is, in bulk and 
content well more than a quarter of the Elements, but-most versions of the 
incommensurability story fail to do more than just mention it in passing. For 
proposals about the role of Book X in my story, see the beginning and end of 
Chapter 5. 

(viii) The source of most of the stories about Pythagoras, Pythagoreanism, 
and incommensurability is Iamblichus, On the Pythagorean Life, so perhaps it 
is worth quoting the relevant passages in full (Iamblichus-Clark, IPL, 30 and 
102-3): 

§18 (88) ... As for Hippasus, he was indeed a Pythagorean, but because he was the first 
to make public the sphere constructed from twelve pentagons he was lost at sea for his 
impiety: he got the reputation of having discovered it, but it all came from 'that man'
that is what they call Pythagoras: they do not use his name. 

§34 (246) ... The first man to reveal the nature of commensurability and incommensur
ability9 to those unworthy to share his teachings was so much detested, they say, that not 
only was he excluded from their common life and meals, but they built him a tomb as if 
their former companion had left human life behind. (247) Some say the supernatural 
power took revenge on those who published Pythagoras' teachings. The man who 
revealed the construction of the 'twenty-angled shape' was drowned at sea like a 
blasphemer. (He told how to make a dodecahedron, one of the 'five solid figures', 
into a sphere.) Some say this fate befell the man who told about irrationality and 
incommensurability. 

This farrago of mutually inconsistent stories, which appear for the first time in 
a source of doubtful reliability and relevance dating from some nine centur:ies 
after the time of Pythagoras, is the main evidential base for much of what has 
been written about the discovery of incommensurability! Compare O'Meara, 
PR, the most recent and authoritative study of the role of mathematics in 
neo-Pythagoranism, which does not even seem to mention incommensurability. 

10.l(d) The supposed effects of the discovery ofincommensurability 

The foundation crisis. I find Freudenthal, CFMA, Knorr, EEE 306--12, and 
other writers convincing when they argue that, far from being a period of crisis 
and confusion, the early fourth century was an extraordinary period of 
creativity, especially in Plato's circle; we have no historical evidence for any 
of the postulated difficulties of a 'foundation crisis'. But I want to go further 
and explore the possibility that the discovery was no more than an incidental 
event in the early development of mathematics. So let us now look at the 
evidence concerning the effects of the discovery. This will involve tracking over 
some of the same material again. 

9 The translation here has "symmetry and asymmetry", but surely (in)commensurability is 
the appropriate translation here of (a)summetros, as in the phrase "irrationality (alogos) and 
incommensurability" at the end of the passage. The later "twenty-angled shape", eikosago
non, the regular polyhedron with twenty comers, is a non-standard name (perhaps found only 
here in Iamblichus) for dodekahedron, the regular polyhedron with twelve faces. 
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As far as I know, no Greek text, early or late, tells us clearly of the 
mathematical difficulties raised by incommensurability. Aristotle wrote of the 
innocent's surprise, and the way it then gives way to a more informed 
appreciation: 

All men begin ... by wondering that the matter is so (as in the case of automatic 
marionettes or the solstices or the incommensurability of the diagonal; for it seems 
wonderful to all men who have not yet perceived the explanation that there is a thing 
which cannot be measured even by the smallest unit). But we must end in the contrary 
and, according to the proverb, the better state, as is the case in these instances when men 
learn the cause; for there is nothing which would surprise a geometer so much as if the 
diagonal turned out to be measurable (Metaphysics 983al2-20, tr. Ross, with a slight 
adjustment; seep. 291). 

Pappus wrote much later, in his Commentary on Book X of Euclid's Elements, 
I.2, of how thereafter: 

the soul ... wanders hither and thither on the sea of non-identity ... immersed in the 
storm of the coming-to-be and the passing-away, where there is no standard of 
measurement 

from which passage I shall grasp, below, the only mathematical straw, the last 
four words: "there is no standard of measurement". There is the similar 
Scholium 1 to Book X, quoted in part in the Introduction to Book X in 
Euclid-Heath, TBEE iii, 1-10, where there is a long discussion that is 
remarkable for its lack of any hard evidence. ' 0 And Proclus, CF BEE, 60, wrote: 

The statement that every ratio is expressible (rhetos) belongs to arithmetic only, and not 
to geometry, for geometry contains inexpressible ratios (arrhetos logos), 

but this is not, very much not, the terminology of Elements X, which is built on 
a completely different meaning for expressible incommensurable lines and 
ratios; see Chapter 5. 

So, prompted by Aristotle, let us try to "perceive the explanation" and 
"learn the cause" of incommensurability. But first, may I persist a bit longer 
with a variation on the issue of the effects of the discovery of this section. 

10.l(e) Objections to some proposed interpretations 

When we, today, look for reasons why the discovery of incommensurability 
would create serious difficulties for pre-Euclidean mathematics, a whole range 
of possibilities now seems to be on offer, some of which we now attribute to 
later commentators. With some overlap, and with my comments, there are the 
following: 

(i) The Proclus objection: Incommensurable ratios cannot be expressed in 
(or by) numbers. Surely that is nonsense! We express them in numbers, and 

1° Contrast this with the sparse sections in Thomas, SJHGM i, 110-11 and 214-17, on 'The 
Irrational', where this scholium and a passage from Aristotle, Prior Analytics 4la26-7, are the 
only texts excerpted. 
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much of mathematics is, ultimately, numbers. Early Greek mathematicians 
could have expressed them in numbers. We have no explicit evidence that they 
did this, let alone how they did it, but I am arguing for a speculative 
interpretation in which they were expressed in numbers in various different 
ways. This book is full of examples. 

(ii) Incommensurable ratios could not be fitted within the pre-Eudoxan 
style and scope of mathematics. That is false! The definition for lines that 
a : b : : c : d means that the rectangle with sides a and dis equal to the rectangle 
with sides b and c uses only believed-to-be early ingredients in a believed-to-be 
early way, and will handle most of what we need for the Elements, perhaps 
everything except for the operation of compounding ratios, on which Euclid's 
own treatment is strange and unsatisfactory; see Section 4.S(c). But we have no 
evidence that this was an early definition. 

(iii) Incommensurability showed the inadequacy of the Pythagorean doc
trine that "all is number". Therefore, some add, it had to be concealed. 
Curiously, Aristotle, our principal early witness from whom we learn of this 
"all is number", never advances this criticism, even though all of this material 
comes together in the Metaphysics. We find there lots of mentions of 
incommensurability, we find summaries and harsh criticisms of Pythagorean 
philosophy, but we do not find this objection. (Zhmud, AN, has even 
proposed that this formula "all is number" was Aristotle's own invention.) 
And, I would add, incommensurability need not show the inadequacy of the 
doctrine that "all is number", pace Proclus; indeed, in my reconstruction, the 
behaviour of the anthyphairetic ratios of y'n: y'm might even strongly 
reinforce such a doctrine, and give a satisfactory mathematical explanation, 
possibly the first, of the 'expressible' lines that underlie Elements X and XIII; 
see Chapters 3 and 5. 

(iv) The discovery ofincommensurability showed that the (Old Babylonian?) 
arithmetical basis of geometry was inadequate, so geometry had to be 
reformulated purely geometrically, 'ror example as in Elements II. But we 
have absolutely no direct evidence of this supposed early, possibly Old 
Babylonian, arithmetical basis of early Greek mathematics, so this is pure 
speculation. Also, there are other explanations of the role of Elements II; see, 
for example, Chapter 3. I shall return to this issue below, when I discuss the role 
of the arithmetisation of geometry. 

(v) Incommensurable ratios can only be approximated, while Greek mathe
matics aimed for precision. This assertion runs counter to our evidence: 
Archimedes is interested in approximation. Also Aristarchus and then, later, 
Hypsicles, Hero, Ptolemy, and so on. Moreover, the fraction 1/3 can only be 
approximated in the Greek system of land measurement which, by convention, 
only uses the parts 2', 4', 8', 16', ... (see Section 7.l(d)) and, for those who 
argue for the early influence of Old Babylonian mathematics (see the 
previous paragraph), the fraction 1/7 does not exist or (very rarely) has to he 
approximated in sexagesimal arithmetic. So Greek mathematics was involved 
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in approximation, and the necessity of approximating simple numerical ratios 
was a well-known phenomenon. 

(vi) The discovery put into question the basic idea of ratio. I prefer to 
reformulate this, since no early text seems to express this concern: hints of it 
seem to surface first in later commentators like Iamblichus and Pappus, and 
then grow thereafter. So, in the next section, I shall take up the issue yet once 
more, this time from a different viewpoint. 

10.l(f) Our difficulties in defining ratio 

The previous two sections argued that only later commentators seem concerned 
with difficulties that incommensurability appears to pose when defining ratio. 
So let me rephrase the assertion just made in (vi), and ask: Why do none of 
the early testimonies seem concerned with our manifest problems arising 
from incommensurability? This emphasises that the difficulties may be our 
difficulties, not necessarily theirs; they may have had different ways of thinking 
about things. I finish this section by introducing this theme. 

Incommensurability does present a problem to arithmetised mathematics, 
though ultimately I think it turns out that the problem was already lurking 
there even for commensurable manipulations. Arithmetised geometry is how 
we tend to think of geometry today: a line has a length, a number; a rectangle 
has an area, again a number which is equal to the product of the lengths of its 
sides; ratios are defined arithmetically, as quotients of numbers; and so on; see 
the General Index, s.v. arithmetised mathematics, for more examples and 
comments. So geometry becomes translated into the arithmetical manipulation 
of numbers-addition, subtraction, multiplication, division, taking roots, 
etc.-and then this arithmetic is later abstracted into algebra. For example, 
the so-called Pythagoras' theorem becomes a2 + b2 = c2, where the usual 
interpretation of this statement involves the lengths (i.e. numbers) a, b, and c 
of the sides of the triangle. It then seems that the numbers associated with 
things like .,/2 are rather complicated, so complicated that filling in all of these 
irrational numbers properly could not be done before the middle of the 
nineteenth century. Dedekind, the first, tells us that he succeeded on 24 
November 1858. 

But read Dedekind carefully, and you will see that there were equally serious 
problems with arithmetic. I go yet further than this, and argue that there need 
be no real problems in defining the numbers themselves, for example as decimal 
sequences, or sexagesimal sequences, or anthyphairetic sequences, or the 
astronomical sequences of Section 4.5, or other such descriptions, but a precise 
description of their arithmetic, even of the arithmetic of the rational numbers 
when they are not being conceived as common fractions, seems intractable. 11 

Hence the crucial role of my proposal that early Greeks did not use common 
fractions, so they \YOuld not think of ratios in any way like our rational 

11 For discussions and examples, see my FHYDF and DT. 
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numbers, and so would not think that arithmetic was a natural and obvious 
basis on which to build their mathematics. 

To pursue this theme further, early Greek geometry seems to me to be not 
arithmetised to a remarkable extent, 12 but then this changes as arithmetisation 
is gradually introduced. There are two different traditions in this later 
arithmetisation. The first is the astronomical one, using Old Babylonian 
sexagesimal numbers, which is not attested in Greece before Hypsicles and 
Hipparchus in the second century BC; it may have been transmitted much 
earlier, but that is pure speculation (see Section 7. l(a), note 7). The second is 
the Graeco-Egyptian unit fraction tradition which we find in our earliest 
testimonies like the Hibeh Papyrus (see Section 7. l(c)), then later in the 
Heronian Corpus, and in Ptolemy alongside the sexagesimal astronomical 
calculations. The arithmetic of both poses theoretical problems, and both are 
spectacularly absent from the geometry of the Elements: they seem to be 
irrelevant to the proportion theory of Book V and remote from the spirit of 
the treatment of incommensurability of Book X. No wonder commentators 
from antiquity onwards, who seem to work in a vaguely arithmetised geometry, 
have a hard time, and no wonder there seems to be some confusion. 

So let us try to purge our mind of this arithmetised geometry. (I did not find 
this easy and it took me some years spent with some good alternatives.) One 
problem we then face is defining ratio or proportion, and note that this 
problem is not now directly concerned with incommensurability. I have already 
pointed out that we have no real difficulty in fitting proportionality into the 
pre-Eudoxan style of mathematics, but our only evidence on how early Greek 
mathematicians actually handled ratio or proportion is the celebrated passage 
in Aristotle's Topics 158b 29 ff. on antanairesis/anthyphairesis (quoted and 
discussed in Sections 1.2(d) and 2.1, and the basis of my first dialogue in 
Section 1.3), which suggests the use of the so-called Euclidean algorithm: given 
two numbers or two lines (or, with a bit of technique at our disposal, two more 
complicated geometrical objects), then count: 

• how many times the second line can be subtracted from the first line; 
• how many times the remainder can be subtracted from the second line; 

12 The only arithmetised passage I know, anywhere up to Archimedes and beyond, is in 
Plato's Meno, 82cff., where Socrates says to the slaveboy: "Now if this side is two feet long, 
and this side the same, how many feet will the whole be"; and the passage continues in this 
arithmetised vein for the slaveboy's first two attempts. (I thank Wilbur Knorr for pointing 
this out to me in January 1991 in a train somewhere between Verona and Venice; I had used 
this passage for the introduction to the book without appreciating this feature!) The switch to 
geometry is then indicated by Socrates when he tells the slave boy: "If you don't want to count 
it up, just show me on the diagram" (84a). And I think one can explain this singular exception 
by observing that the slaveboy is not a mathematician-that is the point of the episode. Note 
that an arithmetisation of aspects of everyday life occurs when a barter economy gives way to 
the use of money, which seems to have happened in Greece by the 7th or 6th century BC, 

though taxation and other documents are very often set out in terms of measures of wheat; see 
Section 7.3( c ). 
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• how many times the next remainder can be subtracted from this remainder; 
etc. 

and this gives a string of numbers, possibly infinite, that characterise the 
relationship of size between the two things, and which is here called the 
'anthyphairetic ratio'. 

For example, the ratio of 60 to 26 will be twice, three-times, four-times 
exactly. Do the process for two numbers, and you will quickly see that it must 
stop after a finite number of steps because, if not, "an infinite series of numbers 
will [arise], each of which is less than the other, which is impossible in numbers" 
(as formulated in Elements VII31). Now do it with two lines. Early Greek 
geometers seem to take little notice of the philosopher's problems and their 
lines can be chopped up indefinitely, so the possibility of the anthyphairesis 
going on indefinitely presents itself. If you are a geometer, possessed of a bit of 
technique, and this question poses itself, you will soon find examples of it 
happening. Thus, as Aristotle might be saying, we could "learn the cause" and 
"perceive the explanation" ofincommensurability in this way of thinking about 
the ratios of lines. But if, as Pappus might be saying, we involve geometry in 
"standards of measurement", which I take here as a hint of arithmetisation, 
then we encounter problems, as I have tried to explain. 

10. l(g) Some examples of anthyphairetic geometry 

Here are some illustrations taken from Chapters 1-4. First, consider the 
problem of 'the diagonal and the side': draw any regular polygon, and evaluate 
the anthyphairetic ratio of one of its diagonals and its side. The easiest and best 
known example is the pentagon, so I leave that for the reader, and will consider 
here the square. We easily see that the side S of a square goes once, but not 
twice, into its diagonal D (this follows from Socrates' comments at Plato's 
Meno, 82a-85d), and so the ratio of diagonal to side is once, followed by the 
ratio of side to diagonal-minus-side. We are now faced with the evaluation of 
this ratio, and some may feel that, like Meno at 84a, we have made little 
progress: "It's no use Socrates, I just don't know". But, just as Socrates 
unblocks that impasse by conjuring a clever figure out of thin air, so I here 
draw Fig. 10.1. Starting from the small diagonally placed square in the left
hand corner, with side s and diagonal d, we construct a larger square whose 
side S is s+d, and check that its diagonal D is 2s+d. 13 (Note how the 
symbols, here and below, are pure shorthand for lines and contain no hint of 
arithmetisation.) 

With one eye on Fig.10.1, and with the insight that the ratios are unaffected 
by the scale or orientation of the figures involved (but see Section 4.5(e)), we 
take up our problem again, and see that the ratio of big side to big diagonal
minus-side is the same as the ratio of little side-plus-diagonal to little side; and 

13 This is my proposed interpretation of the figure being described in the texts on side and 
diameter lines; see note 2, above. 
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we can now evaluate this as twice, followed by the ratio of little side to little 
diagonal-minus-side which is-scale and orientation aside-what we just 
started from. Hence the ratio of side to diagonal-minus-side is twice, twice, 
twice, twice, continuing thus indefinitely, and so the ratio of diagonal to side of 
a square is once, twice, twice, twice, .... 

Let me now evaluate this same ratio another way; or, to be more exact, let me 
give another proof that the ratio of diagonal-plus-side to side is twice, twice, 
twice, twice, . . . Start with a square P and, by adding on a gnomon 
Q + R + S = P, as in Fig. 10.2, construct a larger square of size 2P, whose 
side will therefore be the diagonal of the original square; and then append a 
rectangle T equal to Q, as shown. Then the ratio of diagonal-plus-side to side 
will be the ratio of AD to BC, which we immediately see is twice, followed by 
the ratio of BC to CD. The required proof will now follow if we can show that 
the ratio of BC to CD is equal to the ratio of AD to BC; or, equivalently, by a 
standard result, the theory of geometrical proportions (see Elements VI 16; this 
manipulation was described earlier, in Section 10. l(e)), that the rectangle with 
sides AD and CD is equal to the square with sides BC, that is T + Q + R = P; 
but this underlies our construction, since T = Q = S. QED 

The case of the ratio of the longer diagonal to the side of a hexagon gives rise 
to the ratio y'3 to 1, where y'3 denotes the side of the 3-fold square (which can 
be constructed using Elements II 14); and this example can be generalised to the 
investigation of the ratios like Jn to Jm-the problem of 'the dimensions of 
squares' of Chapter 3. We first use numerical techniques very close to those 
found in Elements VII to explore and conjecture what the answer might be. The 
second kind of proof above then deals with the simpler cases; next, a 
comparison of the mechanisms of Fig. 10.2 and Elements II 11 gives us insight 
into the particular example of the ratios n-times, n-times, n-times, ... ; and, 
finally, yet more heuristic exploration, followed by a generalisation of Fig. 10.1, 
gives a complete solution of this remarkable problem and a new interpretation 
of the whole of Elements II. 

An analogous problem of 'the dimension of cubes' beckons, but proves to be 
of such redoubtable difficulty that in fact it remains unsolved today and Plato's 
remarks at Republic 528b--c are still perfectly applicable; see Section 4.3. We 
can also explore related problems such as 'the circumdiameter and side' of 
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polygons or polyhedra and see where they lead: they can provide explanations 
of the roles of Elements IV, X, and XIII; see Chapter 5. And the similar 
problem of 'the perimeter and the diameter' might be what lay behind 
Archimedes' original calculation in his Measurement of a Circle; see Section 
2.2(b). 

Developing these ideas takes us into a different world. The ingredients are all 
early Greek, but they are fitted together to create a completely different picture. 
It is mathematically appealing, amazingly coherent (too coherent, in fact, for 
my comfort), and consonant with a quite extraordinary breadth of our evid
ence. And the topic with which I started, the simple discovery of incommensur
ability, plays no significant part in it, which is why this book contains no 
discussion of it beyond the bald and sceptical catalogue of our evidence in 
Section 8.3. 

As far as this topic of the discovery of incommensurability is concerned, the 
most significant change in the text of the second edition of this book is a little 
addition to the first of my dialogues, where my slaveboy describes this 
anthyphairetic definition of ratio under Socrates' prompting. They start 
doing it on numbers (heaps of stone, in fact) and the slaveboy realises that 
the anthyphairetic process must terminate. Then Socrates introduces the 
possibility of doing it with lines. At this point, at the end of B36 in Section 
1.3, a new short sentence has been added: "I wonder if it can then go on 
forever." That is my slave boy realising one of the causes and explanations of 
incommensurability, and it is just a passing remark on the way to discovering 
much more remarkable things alluded to in S37-S43, alongside which this simple 
fact of incommensurability fades into insignificance. 

10.2 RA TIO AS THE EQUIV AL ENCE CLASS 
OF PROPORTIONALITY 

By basing the discussion of ratio in Section l.2(d) on Elements V, Definition 3 
and Aristotle, Topics 158 f., I managed to sidestep the question: Does Euclid 
not here appeal to equivalence relations and classes? The reason for raising this 
issue here is that Book V, which deals with proportion theory, contains the 
remarkable Definitions 5 and 6: 

[Four] magnitudes are said to be in the same ratio [or proportional], the first to the 
second and the third to the fourth when, if ... 

where the relation of proportionality that this goes on to define is clearly, at 
least to us, symmetric and reflexive. Then Proposition 11 proves that 

Ratios which are the same with the same ratio are also the same with each other 

which shows that it is also transitive. So is this not an explicit verification that 
proportionality is an equivalence relation, which then leads naturally to the 
definition of ratio as 'an equivalence class? Many mathematicians think so, but 
let us look at some other similar manipulations in the Elements. 
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First, there is the treatment of parallels in Book I. Pr?position 30 reads: 

Straight lines parallel to the same line are parallel to one another, 

which expresses the transitivity of the relation of being parallel; but here we 
find no appeal to its equivalence class, nor any name for it such as 'direction' or 
'point at infinity'. Indeed its very definition, I Definition 20: 

Parallel straight lines are straight lines which, being in the same plane and being 
produced indefinitely in both directions, do not meet one another 

shows that the relation is not even reflexive. 
Many propositions with a similar structure to this occur in Book X, the 

massive classification of some kinds of incommensurable lines described here in 
Chapter 5. We have, for example, a straightforward instance of transitivity in 
Xl2: 

Magnitudes commensurable with the same magnitude are commensurable with one 
another, 

and the relation is clearly reflexive and symmetric; so will we not find here an 
equally natural appeal to the equivalence class containing a given magnitude, 
corresponding to our important idea of the set of rational numbers with the 
size of that magnitude as unit? Here the answer is again a firm though 
complicated 'No'. Book X is based on the choice of an 'assigned line' in 
X Definition 3: 

. . . Let then the assigned straight line be called rational (rhetos, better translated 
'expressible'), and those lines that are commensurable with it, whether in length and 
square or in square only, rational, but those which are incommensurable with it 
irrational (algos, 'without words', 'unreasonable'). 

Hence the side and the diagonal of a square with rational side are rational, and 
the underlying equivalence class in Book X, if we insist on imposing this point 
of view, is not the one that seems natural and familiar to us. For example, as we 
shall see in Chapter 5, the sum and the difference of two incommensurable 
rational lines is not rational, and this remark is the opening step of the 
classification of Book X. 

Finally, Euclid always considers individuals, never sets. We see this most 
clearly again in Book X, which sets up a complicated set of relationships 
between lines-medial, binomial, major, apotome, minor, etc.-and the typical 
format, in X 23-70 and 66-103, reads: 

A straight line commensurable with a medial/major/minor/ ... straight line is a medial/ 
major/minor/ ... , 

while the propositions that show that all of these classes are disjoint are also 
phrased in terms of individuals, for example X 72/73, 111, and 111/112: 

The binomial straight line and the irrational straight lines after it are neither the same 
with the medial nor with one another. 
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The apotome is not the same with the binomial straight line. 
The apotome and the irrational straight lines following it are neither the same with the 
medial straight line nor with one another. 

In conclusion, nowhere do we find any appeal to sets of objects, so nowhere 
could we find equivalence classes. This is an obstacle to the development of a 
general idea of the equivalence class that will hold for more than two thousand 
years. 

Some early examples of equivalence-class-style arguments do occur in 
contexts where some specific well-defined concrete set underlies the subject
Gauss's number theory in his Disquisitiones Arithmeticae is an outstanding 
example-but the general technique of appealing to equivalence classes 
appeared only around the time of Dedekind, when set theory began to be 
introduced as a basis for mathematics in general, and it took some time to 
become established. This gives a good example of a piece of mathematics that 
has been popularised only recently, but which has already been retrospectively 
written back into the 'history' of the subject, even back to Euclid, and all this 
has happened almost within my own lifetime, in a process that is every bit as 
efficient and thorough as the work of the thought police in George Orwell's 
Nineteen Eighty-Four. 

10.3 FURTHER REFLECTIONS ON THE METHOD 
OF GNOMONS, THE PROBLEM OF THE 

DIMENSION OF SQUARES, AND THEODORUS' 
LESSON IN THEAETETUS, 147c-158b 

10.3(a) Introduction 

Both of the following two sections fit best after Section 3.4, though they draw 
on attitudes and material developed elsewhere in the book. Both were in my 
mind as I was writing, but I did not include them for a variety of reasons: to be 
appreciated, they need some familiarity with and tolerance of my main 
argument, something that was not evident at the time; they would distract 
the main thrust of the argument by engaging too soon with some of the great 
and contentious issues of the subject; I did hope then that someone else would 
see and develop them, as there is no better way of generating acceptance of an 
idea than by letting others contribute to its construction in some significant way 
(though I regret that only Benno Artmann has briefly taken up this silent 
invitation, then to put it on one side in favour of his own attractive proposal14); 

my book already seemed too long; and the proposal of the first section, below, 
is speculative to a much greater extent than anything else in this book while, as 
to the second, the reader will see my feelings about it towards the end of the 
section. 

14 See note 20 below. 
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10.3(b) From heuristic to deduction via algorithms 

Greek mathematics up to the time of Archimedes and Apollonius is unique 
among other ancient mathematical traditions in many respects: it was deductive, 
geometrical, non-arithmetised, and associated with an aristocracy rather than a 
scribal tradition, with all of these features to an extreme degree. Contrast this 
with neighbouring developments: setting aside all questions of chronology, Old 
Babylonian mathematics was algorithmic, profoundly arithmetised with only a 
modest and metrical involvement in geometry, 15 and associated with a govern
mental scribal class, while Egyptian mathematics was also arithmetised, though 
with a different way of representing numbers and doing arithmetic; it had a rather 
more geometrical involvement, though again metrical and non-deductive; and its 
scribes seemed to have some religious affiliations and a higher status in society. 16 

But very many details of the Greek tradition are lost. If they did work on 
some collection of problems, as Plato and Aristotle repeatedly tell us they did 
or ought to do, 17 then all that seem to survive of these are the three great 
problems of circle squaring, cube duplication, and angle trisection, and it is 
difficult to see how a tyro might cut his teeth on these, or even what a well
established practitioner might do with them on the Greek equivalent of a 
Monday morning. If they did have heuristic methods, then these have almost 
completely disappeared; we have the solitary exception of Archimedes' Method, 
and this text is so sophisticated that I know of no single result outside those 
described by Archimedes where it has been proposed as a preliminary explora
tory technique. Moreover, Greek mathematics developed a deductive pro
cedure, but our sources do not tell us how this came about. There are several 
strategies that we can take towards these issues. Consider deduction: we can 
proceed as if this was born ex ovo, or we can leave the topic aside as still being 
beyond our evidence and understanding (more or less the position I took when 
I wrote the book), or we can speculate about the origin of this unique feature. 
The current dominant speculation seems to be that Greek mathematics grew 
out of Old Babylonian mathematics, under the stimulus of problems raised by 
the Greek discovery of the phenomenon of incommensurability. But we have 

15 An extreme example of this dissociation from geometry can be found in later Babylonian 
astronomy: it is almost unbelievable to us that detailed computational astronomy can be 
pursued with not the slightest apparent involvement of some geometrical model. 

16 There is also the issue of our evidence: for Old Babylonian mathematics we have 
hundreds, if not thousands, of clay tablets, primary source material; almost all Greek 
mathematics is known through secondary sources, most of them closer in time to us than 
to their archetypes (see Chapter 6); and, for Egyptian mathematics, we have only a small 
handful of texts. Some of these textual issues are discussed in Chapters 6 and 7. 

17 For just one set of examples, see Plato's curriculum in Republic VII, quoted extensively 
in Chapter 4: "It is by means of problems, then, as in the study of geometry, that we will 
pursue astronomy too" (Section 4.4(a)), or "But [music theorists] do not ascend to generalised 
problems and the consideration which numbers are inherently concordant and which not and 
why in each case" (Section 4.5(a)). 
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absolutely no evidence whatsoever for this mathematical contact between the 
two cultures (if anything, our Greek sources emphasise contacts with Egypt, 
and this is corroborated to some extent by their joint way of handling 
fractions), and I believe that the story of the discovery of incommensurability 
owes more than is commonly realised to later invention and speculation than to 
reliable evidence, as I have just argued in Section 10.1. We can further add the 
Greek disdain for other languages and cultures, and the disdain of the early 
Greek aristocracy for trade and writing. Indeed, the hypothesis of the Old 
Babylonian roots of Greek mathematics seems to me to be something that flies 
in the face of much that we do know of early Greek society and mathematics. 

I shall briefly propose here an alternative speculation concerning the origin 
of deduction and the development of other features of early Greek mathe
matics. It starts with a problem that already has a very characteristic Greek 
flavour; it pursues its exploration using an algorithmic procedure that leads to 
the appearance of a compelling pattern, followed by the realisation of the need 
for a proof (this distinction between true judgement and proof being the topic 
of Plato's Theatetus); it then moves on to the discovery of one such method of 
proof and some of its many consequences; then on to its limitations, and the 
discovery of extensions of all of this: better techniques for resolving this 
problem, and further problems, some eventually soluble, others not; and 
then, finally, the disappearance of the original motivating problem. Many of 
the details of this were already described and discussed in the first edition of 
this book; I now put the pieces together. 

The problem is, of course, the dimension of squares; the algorithm is the 
procedure for evaluating anthyphaireses; the compelling pattern is the appear
ance of an apparent periodicity; the next stage is the realisation that, no matter 
how far this algorithmic procedure is continued, it will not constitute a proof; 
the next unrecorded and often unremarked episode may have been the slow and 
often painful realisation, typical everywhere of deductive mathematics, that the 
methods used so far seem insufficient to construct such a proof, so a complete 
change of technique, viewpoint, and language is needed; then follows the turn 
towards geometry which resolves a part of the investigation. Finally, geometry 
becomes a theory in its own right, and only vestiges remain of the original 
problems, which may be forgotten since they have been solved and then 
assimilated into the mainstream, or forgotten because they may seem unpro
ductively insoluble, even with the newly developed techniques, or merely just 
forgotten. I have set my illustration of this process in the context of the problem 
of squares, but several others places within my reconstruction might equally 
plausibly follow the same kind of path, and there is no reason why these should 
not develop in parallel. 

Of these consequences of this evolution, the most general and far reaching, 
apart from the introduction of proof into mathematics, possibly even for the 
first time, could be the need for some developed kind of geometry, and an 
understanding of just why geometry is 'true' and 'reliable', for it lies at the basis 
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of the proof. This deductive geometry may at first appear as a language needed 
for the solution of this and other such kinds of problems, but its investigation 
would be a topic of interest in its own right; then it could develop and becomes 
a mathematical topic of independent interest, and a new great mathematical 
theory would then have been born. 18 

I do not want to develop further what I have just outlined, as it is speculative 
to a much greater extent than the other aspects of the reconstruction. But I 
would like readers to bear it in mind as the story develops. 

10.3(c) A compendium of examples 

Let us draw up a systematic list of the results we have now established for the 
expansions of y'n: 1, starting from n = 2: 

y'2: 1 = [1, 2]: see Fig. 3.15 and also the cases of y'5: 1 (hereafter 5, etc.), 10, 
and 17. 

y'3: 1=[1,1,2]: see Fig. 3.16, and 6, 8, 11, 12, 15, and 20, especially 15. 
y'4: 1 = [ 2 ], a commensurable ratio. 
y'5: 1 = [2, 4]: see 2. 
y'6: 1 = [2, 2,4]: see 3 and 15. 
y'7: 1 = [2, 1, 1, 1, 4 ]: see below. 
y'8: 1 = [2, 1,4]: see 3 and 15. 
y'9 : 1 = [ 3], a commensurable ratio. 

y'lO: 1 = [3, 6]: see 2. 
y'll: 1 = [3, 3, 6 ]: see 3 and 15. 
y'l2: 1 = [3,2,6]: see 3 and 15. 
y'l3: 1=[3,1, 1, 1, 1, 6]: see below. 
y'l4: 1=[3,1,2, 1, 6]: see below. 
y'l5: 1 = [3,1,6]: see 3 and Fig. 3.17. 
y'l6: 1 = [ 4 ], a commensurable ratio. 
y'l7: 1 = [4,8]: see 2. 
y'l8: 1 = [4,4,8]: see 3. 
y'l9: 1=[4,2,1,3, 1,2,8]: see below. 
y'20: 1 = [4, 2, 8 ]: see 3 and 15. 

Nature has been very kind and helpful to us most of the time in this sequence 
of examples. There are the exceptional cases of the squares 4, 9, and 16, which 

18 This process of the shift from a specialised language to the establishment of a theory is 
now commonplace in mathematics. I here cite only one example; there will be more discussion 
of this in Section 10.5. The eighteenth- and nineteenth-century studies of vibrating strings and 
heat conduction led to new techniques which ultimately developed independently as our E-8 
analysis; then problems within this analysis, about the behaviour of trigonometric series, led 
to transfinite arithmetic and a new branch of logic; further problems led to the beginnings of 
point set topology-and the list can be continued much further. How many of those who 
teach these theories, let alone of those who learn them, realise that, ultimately, they arise from 
the investigation of a vibrating string? 
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we ignore hereafter; then we start with the simplest cases ( y'2 + 1) : 1 = [2] 
and ( y'3 + 1) : 1 = [ 2,1] whose periods are short and contain the smallest 
possible numbers, and practise on these before meeting more complicated 
examples; for example [1, T,2] before [2, 2, 4 ], [3, 3,6], etc. This allows some 
automatism to develop, and enables us to see generalities emerging; for 
example, it quickly becomes evident that y'(n2 + 1): 1 = [n, 2,n] and 
y'(n2 +2):1 = [1,n,2n]. In this way, we build up our confidence before we 
tackle the more complicated cases of y'7: 1, y'l3: 1, y'14: 1, and y'19: 1. By a 
fortunate accident of nature, these also present themselves roughly in order 
of increasing difficulty, though there is not here the nursery case of an 
example with three terms in its period, so a cautious reader should first try 
y'5:y'2=[1,1,l,4]; see Fig. 3.20. Apart from these four cases, every 
expansion above has a figure associated with it, or is referred to a case or 
cases with a figure. For completeness, let us now deal with the figures and 
associated arguments for these final cases. 

PROPOSITION y'7: 1=[2,1, 1, 1, 4 J, i.e. (y'7 + 2) = [ 4, 1, 1, 1 ]. 
PROOF See Fig. 10.3: start with the square Pon the assigned line AB= 1, the 
four-fold square P4 on AC= 2, and add a gnomon Q + R + Q = 3P to give the 
square P7 on the line AD= y'7. Add S + T + U + T + S = 2P to give the 
square P9 on the three-fold line AE = 3, so AB = BC = CE = 1. Adjoin 
FA= 2. At this stage, ignore the dashed and dotted lines in the figure. Check 

F A B C G HD E 

s 

p 

FIG. 10.3. ( J7+2):1 = [4, 1,"T,T] 
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that CD < CE < 2CD (if the gnomon Q + R + Q had width! AB, it would be 
too small; if width AB, too big). Start the anthyphairesiS': 

(J7+2):1 = FD:AB = [4,AB: CD], since CD< AB= CE, 

AB:CD = CE:CD = [1,CD:DE], since DE< CD. 

Now let DG =DE, i.e. 'fold back' the last gnomon, generating the dashed 
lines in the diagram. We check CD< 2DE, i.e. CD< 2(AB - CD), i.e. 
3CD < 2AB (since if Q + R + Q had width ~AB it would be too big). So do 
the next subtraction: 

CD:DE = [1,DE:CG]. 

Now let GH = GC, i.e. 'fold forward' the last remainder, generating the 
dotted lines in the diagram. Once again, check that GD = DE < 2GH, i.e. 
(AB - CD)< 2(CD - DE)= 2(CD - (AB - CD)), i.e. 3AB < 5CD, since if 
Q + R + Q had width ~AB, it would again be too small. So the final subtrac
tion step is: 

DE:CG = DG:CG = [1,CG:HD]. 

Putting all these subtraction steps together, we get: 

(J7+2):1 = FD:AB = [4, 1, 1, 1,CG:HD], 

so we finally prove that 

CG:HD = FD:AB, i.e. rectangle (CG,AB) =rectangle (FD,HD). 

By a careful consideration of the figure, we see that this is the same as: 19 

(T+R)-(U +T) = (2S+T)- [(2Q+R)-(2S+T)], 

i.e. 
2Q + 2R = 4S + 2T + U, 

so, adding 2T + U to each side, 

(Q + R + Q) + (2T + U + R) = 2(S + T + U + T + S), 

i.e. 
3P+P = 4P. 

PROPOSITION ,/14:1 = [3,1,2,1,6], i.e. (,/14+3):1 = [6,1,2,1]. 

QED 

This is similar to J7 : 1 except that, at the penultimate stage where we 
checked that CD< 2DE, we now have to check that 2DE <CD< 3DE. This 
shows that, at this step of the anthyphairesis, the first 'folded-back' gnomon 
has to be subtracted twice. The reader is strongly encouraged to supply the 
details, to see just how terms larger than one in the anthyphairesis introduce 
complications into the argument, but that this case is still perfectly feasible. 

19 Note that these last steps are cutting up and rearranging rectangular areas, not doing 
algebra in our modern sense. 
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FIG. 10.4. (y'13 + 3): 1=[6,1,T,T,T] 

PROPOSITION y'l3: 1 = [3, 1, 1, 1, 1, 6], i.e. ( y'l3 + 3): 1 = [ 6, 1, 1, 1, 1 ]. 

PROOF See Fig. 10.4. 
The basic construction: to the nine-fold square P9, add a gnomon Q + R + 

Q = 4P, then a further gnomon S + T + U + T + S = 3P. Label the points as 
shown; thenAB1 = B1B2 = B1C =CE= 1, andAD = y'13. Adjoin AF= 3. 

Preliminary checks, with the now routine steps elided: CD< AB1 = 
CD< 2CD (since ... , etc.); DE< CD < 2DE, i.e. (AB1 - CD) <CD < 
2(AB1 - CD), i.e. etc. Fold DE back to DG, and check that DE= DG < 
CD < 2DG, i.e. (CD - DE) < CD < 2(CD - DE), etc. Fold CG forward to 
GH and check that CG = GH < GD < 2GH, i.e. etc. Finally-this is the 
new step-fold HD back to HI and check that HD= HI< HG< 2HI, i.e. 
(CD - CH)< CG< 2(CD - CH), i.e. (CD - 2(CD - DE))< (CD - DE)< 
2( ... ), i.e. 3DE < 2CD and 3CD < 5DE, i.e. 3(AB1 - CD)< 2CD and 
3CD < 5(AB1 - CD), i.e. 3AB1 < 5CD and 8CD < 5AB1, etc. Do not 
forget that DG = DE, GH = GC, and HI = HD! 

Anthyphairesis: ( y'l3 + 3) : 1 =FD: AB1 = [6, AB1 : CD] = [6, 1, CD: DE] = 
[6, 1, 1,DE(= GD) :CG]= [6, 1, 1, 1,CG(= GH) :HD] =[6, 1, 1, 1, 1,HD:GI]. 

Periodicity: Now verify that HD: GI = FD: AB1, i.e. rectangle (HD, AB1) = 
(GI, FD), i.e. (study the figure carefully!), 

(U + T) - [(T + R) - (U + T)] 
-= (2S + T)] - 2[(2S + T) - {(2Q + R) - (2S + T)}]; 
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. . 
i.e., rearrangmg, 

6S + 4T + 2U = 4Q + 3R. 

But, adding 2T + U to both sides, we confirm this, since 

3(2S + 2T + U) = 2(2Q + R) + (2T + U + R), i.e. 3 x 3P = 2 x 4P + P. 

QED 

I think that anyone who works carefully through the details of this proof will 
confirm that it is intelligible. But, at this point I stop drawing diagrams and 
giving proofs, since nature's kindness is at an end: the next untreated case is 
y'l 9 : 1 = [4, 2, 1, 3, 1, 2, 8], which presents the dual complications of a longer 
period containing several terms greater than 1. Though it is still just about 
possible to verify the much simpler examples y'21 : y'8 = [1, 1, 1, 1, 1, 1, 2] and 
y'55: y'8 = [2, 1, 1, 1, 1, 1, 4] (though I do not know if such examples could be 
constructed without the aid of algebra), I do not think that I can draw the 
figure and prove this final remaining example of y'19: 1 by this method. Once 
again, we are at an impasse: it is not sufficient to assert airily that this method 
can, in principle, go on to deal with these cases. It is necessary to change tack 
and search for a new approach that will resolve this and other similar problems, 
and such a new method is described in Section 3.6; it involves completely new 
material and is rather sophisticated, but I think that it still lies well within the 
capacities of Greek mathematics. But let us set this new development to one 
side for the moment, and return to our original approach. 

10.3(d) The geometry lesson 

One of the most extensively debated of pre-Euclidean questions has been the 
interpretation of Theaetetus' description of a geometry lesson that he and his 
friend attended: 

Theodorus was proving for us via diagrams something about powers, in particular about 
the three-foot-power and the five-foot-power-demonstrating that these are not com
mensurable in length with the one foot power-and selecting each power individually in 
this way up to the seventeen-foot-power; but in this one for some reason he encountered 
difficulty [or: he stopped] [Theaetetus 147d-148b]. 

Whole books have been inspired by or written around this passage: the latest 
and greatest is Knorr's EEE (from which this translation has been taken), the 
book which, more than anything else, was the stimulus for my own venture into 
Greek mathematics. Knorr reviewed all significant prior explanations of the 
mathematics underlying this passage,20 and its relevance to our understanding 

20 Subsequent ones are in Artmann, PTTDD, Caveing, DZV, and Kahane, TTCQR. 
(Artmann's attractive method is based, literally, on drawing diagrams and then producing 
anthyphairetic proofs based on information they suggest; my objection to it is that, like most 
other anthyphairetic proofs, it requires additional features to deal with the case of 13; I am 
almost, but not completely, persuaded that further such developments would not deal with 
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of early Greek mathematics, and he gave his own interpretation, a historically 
plausible procedure that grinds to a halt with the case 17. The final phrase in 
this passage is, however, still disputed: €v of: TaVTTJ 1Twc EVECXETO, "in this one 
for some reason he encountered difficulty" in Knorr's very precise rendering, 
but translated by others with a rather more vague sense. Burnyeat sets out a 
range of possibilities: 

The sentence could mean three things: (a) "at that point for some reason [sc. for no 
particular reason that Theaetetus knows of] he stopped", (b) "at that point for some 
reason [sc. for some particular reason] he stopped", (c) "at that point he somehow got 
tied up", 

and 

If the context implies anything on the matter, it rather implies that there was no 
difficulty at 17. 21 

I have just set out a sequence of proofs based on diagrams that snarls up at 
the case of Jl9, and so may be a possible candidate for anthyphairetic 
explanation of this passage.22 Is it viable? Alas, I think not: 

(i) It is susceptible to many of the objections to the whole class of 
anthyphairetic interpretations of the passage; see Knorr, EEE, 118-26. How
ever, it has some very distinct advantages over them: all of its details are fully 
laid out here; all the cases are treated by a consistent geometrical technique; 
and the objection that it does not fit the style of fourth-century mathematics 
disappears within the context of my reconstruction. In truth, most other 
anthyphairetic techniques already run into difficulties with Jl3, or they 
change to a new method for this case, or they avoid it by invoking an 
unacceptable use of algebraic manipulation. 

the case of 19. Caveing's proposal, based on a suggestion ofltard's, is most ingenious: he sets 
out an arithmetical proof which breaks down at 17 that p 2 = Nq2 is imposible in integers; 
therefore "Theodorus stopped at 17 because he had shown that his [geometrical] method 
worked successfully for this number". He does not then go on to analyse what Theodorus' 
proof might have been, but this interpretation does open the door to the whole class of 
anthyphairetic proofs, provided-see above-they can realistically deal with the case of 13. 
Kahane's ingenious method is based heavily on subtle properties of the quadratic extensions 
of the rationals, and relies on arithmetico-algebraic techniques; it could perhaps be rephrased 
to remove some of these anachronistic features but would, I think, even then be a non-starter 
as a historical reconstruction.) Also see Hoyrup, DBT, to which my subsequent note DMS 
brings us back to one of the considerations which opened this section: do we have any real 
evidence that Greek mathematics was influenced by the earlier Old Babylonian mathematics? 

21 From Burnyeat, PSTM: first quotation, 503-4 (translation (c) is taken from Plato, 
Theaetetus, tr. McDowell), and second quotation, 513. Also see the subsequent exchange in 
Knorr, MPP, with a reply by Burnyeat. There is a striking and important difference between 
Knorr and Burnyeat's approaches: Knorr is, as always, concerned with the technical 
mathematical details of the passage while Burnyeat leaves this aspect to one side in favour 
of philosophical issues, and the difference led to this regrettable altercation between them. 

22 There are nice summaries of typical supporting arguments for reconstructions in 
Artmann, PTTDD, 17-18 and 20-22. 
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(ii) It does not just prove incommensurability, as Theaetetus describes 
Theodorus' lesson. It does very much more, and actually evaluates the precise 
pattern of the anthyphairesis. 

(iii) It does not encounter difficulty with y'l 9 : 1 "for some (obscure) 
reason", as the passage may hint. It is obvious to someone who tries to press 
the procedure on this case why the method breaks down. 

(iv) The case of y'l8: 1 presents no difficulty, an objection to almost all 
other interpretations which never seems to me to be really satisfactorily 
explained. 

(v) I am still emotionally attached to Knorr's interpretation and still find 
that it fits our evidence closer than any other interpretation so far offered, 
though I increasingly find its mathematical content unsatisfactory; I feel 
uncomfortable with it, though do not want to analyse it more precisely than 
that, as a piece of mathematics of its period. But I would have no objection to 
being persuaded that mine is a reasonable and plausible interpretation! 

10.3(e) The overall structure of the Theaetetus 

Plato's Theaetetus presents us with many puzzles, and I would like to finish this 
section with a very brief discussion of some that are relevant to our approach 
here. Theaetetus was renowned as a mathematician but, while the dialogue is 
seen as an encomium to him, it only contains this explicit appeal to mathe
matics. 23 Moreover the bulk of the dialogue is given over to Socrates demon
strating that he is not a very acute philosopher. There seems to be an 
inconsistency: we would expect more mathematics and less philosophy. But it 
may indeed contain more mathematics than is generally realised. 

First, there is the fine detail of its language, which seems in places to have 
strong mathematical overtones; there are some remarks on that in Section 
5.2(a). Next, there is the question it is built around, of the difference between 
compelling belief, Plato's 'true judgement', and proof, Plato's 'logos' or 
'account', of which, as I have remarked, the problem of the dimension of 
squares provides a very striking illustration, the best that I know of within the 
plausible context of Greek mathematics. And, finally, there is the overall 
structure of the dialogue, which proceeds with Theaetetus making a series of 
four assertions that Socrates demonstrates to be wrong, and finishing with 
some progress towards an answer but, however, no actual correct answer. It has 
been suggested in Brown, TKCL, that this structure is itself a mathematical 
analogy, and Plato is here making reference to approximation by a sequence of 
harmonic and arithmetic means. The suggestion is very attractive, but this 
mechanism of implementing it rather clumsy, which may be why it does not 
seem to have been taken seriously. However, as a reference to anthyphairesis as 

23 There is some circularity in this assertion: An important piece of the evidence for 
Theaetetus as a mathematician is this eponymous dialogue, which is the most mathematical 
of Plato's dialogues, in part because it is dedicated to the mathematician Theaetetus. 
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a method of approximation, if anthyphairesis was then a well-known technique 
used by mathematicians and, in particular, a technique on which Theaetetus 
had made significant contributions, it looks spot on.24 

10.4 ELEMENTS 

10.4(a) Pre-Euclidean Elements 

The topic of this section can be described by a minor variation of the opening of 
Section 6.2. Suppose we take a collection of texts relating to the early 
developments of Greek mathematics-the pre-Euclidean Elements, for 
example; what, precisely, are we considering? I shall look at aspects of our 
evidence about early elements from this point of view, and will only give my 
own position very briefly at the end, after a long review of the evidence. 

10.4(b) Lexica, dictionaries, and the scholarly literature 

Before starting, it is worth consulting the standard reference books. 
Liddell, Scott, & Jones, Greek-English Lexicon, has a substantial entry on 

GTOLXELov. The first and last senses and the beginning of II 3 are given verbatim 
below, the rest are summarised very briefly, and I have expanded the abbrevia
tions: 

I. In the form of a sun-dial, the shadow of the gnomon, the length of which in feet 
indicated the time of day, oTav fi DEKa:rrow TO CTOLXEtov when the shadow is ten feet 
long, Aristophanes, The Ecclesiazusae 652, vide Scholia; 07TYJll{K av ELKOCL 7TODWll .. TO 
CTOLXEtov v Eubulus 119.7, cf. Philemo 83. 

II 1. A simple sound of speech ... strictly different from letters (ypaµ,µ,arn) .•. though 
frequently not distinguished from them (as by Plato, Theaetetus le, Cratylus 426d, ... ). 

2. In Physics, the ultimate components of matter, reduced to four by Empedocles, who 
called then pi~wµ,aTa, the word CToixda being first used (according to Eudemus, apud 
Simplicius, In Physica 7 .13) by Plato, Theaetetus 20 le, Politicus 278d, Timaeus, 48b, cf. ... 

3. The elements of proof, e.g. in general reasoning the 7TpwToi coA.A.oyicµ,o{, Aristotle 
Metaphysics 1014b 1; in Geometry the propositions whose proof is involved in the 
proofs of other propositions, ib. 998a 26, 1014b 36; title of geometrical works by 
Hippocrates of Chios, Leon, Theudios, and Euclid, Proclus, in Euclid, pp. 66, 67, 
68 f.: hence applied to whatever is one, small, and capable of many uses, Aristotle, 
Metaphysics 1014b 3; to whatever is most universal, e.g: the unit and the point, ibidem 6; 
the line and the circle, Idem Topics 158b 35; ... 

4. Generally, elementary or fundamental principle ... 

24 Malcolm Brown has often urged me to develop this argument fully, but I have always 
been daunted by the prospect of a detailed struggle with this dialogue. There is an interesting 
suggestion in Artmann, PTTDD, p. 29, concerning Plato's substantial discussion of 
Protagoras' claim that "Man is the measure (metron) of all things": Theodorus has shown 
that there are many line segments with no common measure (again metron), so was Plato 
here, in a subtle way, subverting his teacher's thesis? Moreover Theodorus is himself declared 
to be the metron of geometrical diagrams, the judge of their validity (169a). 
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5. UCTEpwv CTOlXELa the Stars ... 

6. CTOlXEloV = api8µ,6c, as etymology of CrnixaOEVC, Sdtolia Dionysius Thrax 
p. 192 H. 

So we should not expect to have to look very widely in our pursuit of 
mathematical elements: the discussion will be dominated by Proclus, Plato, 
and Aristotle. But there are the curious first and last of these senses that we 
should not completely lose sight of, though they do look to be usages on the 
very fringes of the wide semantic shadow of the word. 

We must also be aware of what our modern understanding of the translation 
of cToixEfov might bring to the discussion. The Oxford English Dictionary takes 
more than two pages over element, elemental, elementary, etc., far too much to 
begin to summarise here, and most of it not directly relevant to our purpose. 
But readers are encouraged to consult these items, if only to find how they will 
have to search through them closely to find what does interest us here. Only at 
the very end of the entries (this is a historical dictionary and the entries are as 
far as possible arranged chronologically as determined by the date of the first 
quotation supporting each sense, so these are the most recently introduced 
meanings) do we find: 

element 14a. t[i.e. obsolete] The letters of the alphabet (obsolete). Hence, the rudiments 
of learning, 'the 'A.B.C.'; also the first principles of an art or science. 

14b. Euclid's Elements: the title of a treatise on the rudiments of Geometry. 

and 

elementary 7a. Of the nature of elements or rudiments, rudimentary, introductory. 

Hence we should not forget that these are relatively recent senses that have 
come to dominate our understanding of this cluster of English words, and try 
to approach the older and different Greek evidence with an open mind 
concerning the possibility of different connotations. 

The standard, pre-eminent, long scholarly article on the topic, whose last 
quarter deals with the mathematical usages of the word, is Burkert, SSS. He 
demonstrates that crnixEiov did not originally mean 'letter' and then was 
generalised; rather, its original meaning was of a line of things in order: a 
column of soldiers, a row of stakes in the ground, etc., whence "arguments set 
in a line" (Burkert, LSAP, 402). But, much as I admire, respect, and have been 
influenced by Burkert's great book on Pythagoreanism, I find the sections of 
this earlier article that deal with mathematics are based more on assertion than 
evidence and argument, and feel that it represents a different scholarly 
tradition. I encourage others to read and judge it, but will not attempt a 
summary of it here. 

10.4(c) Proclus 

Our main source of evidence is, of course, the second Prologue of Proclus' 
Commentary on the First Book of Euclid's Elements, first in the passage where 
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he is believed to be quoting Eudemus, and then in the long passage where he 
discusses the nature of elements. Here are some extracts from the Eudemus 
passage, 66 ff. All passages will be quoted in the translation of Morrow: 

Hippocrates wrote a book on elements, the first of whom we have any records who did 
so. 

Younger than Leodamus were Neoclides and his pupil Leon, who added many 
discoveries to those of their predecessors, so that Leon was able to compile a book of 
elements more carefully designed to take account of the number of propositions that had 
been proved and of their utility. 

Theudius of Magnesia . . . produced an admirable arrangement of the elements and 
made many partial theorems more general. 

Hermotimus of Colophon pursued further the investigations already begun by Eudoxus 
and Theaetetus, discovered many propositions in the Elements,25 and wrote some things 
about locus problems. 

We know nothing more than is given here by Proclus about Leon, Theudius, 
and Hermotimus, though what is evident from these brief extracts is that he 
does say that Theudius and, perhaps, Hermotimus were associates of Plato, 
"making their inquiries in common". So Proclus-Eudemus are telling us-but 
can we trust them?-that the writing and perfecting of elements was a 
particular feature of the mathematical activity of the Academy. However, 
although it is generally agreed that Theaetetus and Eudoxus made very 
substantial contributions to Euclid's Elements (to Books X and XIII, and V 
and XII respectively, at least), and Archytas is believed to have contributed to 
the arithmetical Books VII-IX, no hint whatsoever of that is suggested here. 

Proclus then goes on to give two substantial sections devoted to the purpose 
and arrangements of Elements, especially Euclid's Elements. Here he is clearly 
setting out much more in his own opinions, rather than quoting ancient 
sources; for example: "Looking at the subject matter, we assert that the 
whole of the geometer's discourse is obviously concerned with the cosmic 
figures" (70.23-25), a neo-Platonic opinion with which few who have made a 
close study of the whole work would agree. One should rather bear in mind 
Proclus' own relation to the material and the nature of his understanding of 
mathematics. There is a vivid description of this in Mueller, MPPC, 307-8:26 

Whatever the precise character of his mathematical training, it seems reasonable to 
assume that Proclus came to mathematics late and that the mathematics he was given 

25 I have adopted Morrow's use here (but not always elsewhere) of 'elements' when we 
cannot be specific about just what is being considered, and 'Elements' when we are talking 
about a particular book with that word in its title. But I do not know how he could justify 
the fine gradation of nuances here: "on elements", "of elements", "the elements", then "the 
Elements". • 

26 Also see Mueller, IPEC, for a discussion of Proclus' sources in his First Prologue. 
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was elementary and dryly formalistic. This mathematics was presumably the best or 
close to the best available in his lifetime, and so was the mathematics he taught his own 
students. The contrast between Proclus' situation and Plato's is instructive. Plato lived at 
a time when mathematical knowledge was expanding rapidly, and technical advance 
mingled with philosophical speculation to create a sense of unlimited possibility. Not 
until the early modern period, when mathematics again enters a period of rapid 
expansion, do we find as convincing a proclamation of the broad powers of mathe
matical science as we find in Plato's Republic. . . . For Proclus Plato's word is 
authoritative .... But for Proclus and his predecessors and contemporaries mathematics 
was a closed-off subject to be formalised and reflected on, but not to be developed and 
advanced. Moreover, it seems likely that for many of them mathematics was closed off 
in another sense: namely incomprehensible, even at the level taught by Proclus and 
Theon. If Theon's description of his students isn't taken to be sufficient evidence for this 
claim, the way that he and Proclus present the subject surely is; one doesn't dot i's and 
cross t's for students who are following along well. 

Notwithstanding this, modern commentators have made much of Proclus' 
comments here. Burkert, SSS, for example, discusses at length the passage: 

The term 'element', however, can be used in two senses as Menaechmus tells us. For 
what proves is called an element of what is proved by it; ... But in another sense 
'element' means a simpler part into which a compound can be analysed [72.23-73.6], 

and reasonably so, since the reference to Menaechmus may indicate that 
Proclus is here referring to some other source-but an unknown source of 
unknown reliability, transmitted by Proclus with an unknown degree of 
distortion. Moreover, this quotation is doing no more than referring to two 
of the well-established meanings of 'element', attested in other quotations. And 
the useful general discussion in Artmann, EEP, is carried out in the spirit of 
Proclus' description, possibly in Proclus' own words, of how: 

Of those who have attempted [the proper selection and arrangement of elements,] some 
have brought together more theorems, some less; some have used rather short 
demonstrations, others have extended their treatment to great lengths; some have 
avoided the reduction to impossibility, others proportion; some have devised defences 
in advance against attacks upon the starting points; and in general many ways of 
constructing elementary expositions have been individually invented [73.17-25]. 

Here I shall take a description that I hope will embody the main features 
of the general opinion concerning pre-Euclidean elements and Euclid's 
Elements, which is strongly based on Proclus' Commentary, and analyse its 
presuppositions in detail. Here it is: 

GENERAL OPINION: Pre-Euclidean Elements were books on geometry and arithmetic 
which looked like Euclid's Elements, but with different contents, arrangements, and 
proofs, and sometimes arranged according to different principles; but Euclid's Elements 
is superior to all of its predecessors. Here "looked like" means with propositions 
arranged in logical order, and with each proposition structured in the distinctive style of 
the Euclidean proposition. However, some of these features may have taken some time 
to become established. 
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I shall concentrate here on those main features of Euclid's Elements that these 
early Elements may reasonably be expected to resemble: the structure of a 
Euclidean proposition, and the logical structure of the whole, but will not 
discuss their contents in any detail. 

10.4(d) The logical structure of Euclid's Elements 

Euclid's Elements has an almost universal reputation, even among historians of 
mathematics, for its relentlessly logical arrangement, and this reputation is 
justified for its first book, the only book that many look at, once it has got itself 
under way.27 But thereafter things are not quite so straightforward. Mueller has 
tried to tease out the structure of the work in his massive Philosophy of 
Mathematics and Deductive Structure in Euclid's Elements, and here are a 
couple of his conclusions: 

Propositions [of books III, IV, and VI] with no future use are proved ... Needed 
propositions are not always supplied explicitly ... In addition, in the first part of III and 
in VI, little attention is paid to logical sequence ... Euclid clearly thinks of subject 
matter as a more important organising principle than deductive relevance-a fact which 
makes it difficult to read the Elements straight through [PMDSEE, 204]. 

The logical structure of books VIII and IX is puzzling, to say the least. Certain groups of 
propositions cohere, but the internal and external arrangement of the groups is not 
always perspicuous, and the details of the argumentation sometimes leaves much to be 
desired [PMDSEE, 83]. 

Elaborations of these remarks and further such comments can be found on 
pp. 158 (on book VI), 177-9 (on III), 197 (III again), 211 (on XI), and elsewhere. 

So Euclid's Elements may aspire to a logical structure and achieve it for much 
of the time, but let us not exaggerate this too much. And, since no pre
Euclidean Elements survive, to say more about this feature of them would be to 
hang speculation on misrepresentation. 

10.4(e) The Euclidean proposition 

The most characteristic feature of Euclid's Elements is the structure of each 
proposition, and again it is Proclus the formalist who describes this: 

Every problem and every theorem that is furnished with all its parts should contain the 
following elements: an enunciation (7rpoTacic), an exposition (€Kfhcic), a specification 
(owpiq,1,oc), a construction (KaTacKrn~), a proof (a7ToOEL~ic), and a conclusion 
(cvµm£pacµa) ... [Proclus-Morrow, CFBEE, 203-4]. 

Not all Euclidean propositions exhibit this structure,28 and far from all of 
Greek mathematics begins to conform to these rules; for example, Archimedes 
has a much looser style. But, since we are looking here at the evidence for the 
predecessors of the Euclidean style, we shall look for pre-Euclidean evidence of 

27 There is, for example, a bit of trouble about the intersections in I 1, and the role of 
movement in I 4. • 

28 For a simple example, the conclusion is an almost word-for-word repetition of the 
enunciation, but our manuscripts occasionally omit this, finishing with Kat Ta J(ijc, 'and the 
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this striking detail of the style. 29 And it will not be necessary to look for the 
whole shooting-match; it will be sufficient to look for its' distinctive and useful 
opening feature, the enunciation or protasis.30 But please be sure about my aim 
here. I do not deny that there was substantial pre-Euclidean mathematics; quite 
the reverse, in fact. What I want to explore is the much more narrow and 
limited question of whether there is any evidence that this mathematical activity 
was striving towards the style and content of Euclid's Elements. 

10.4(f) Pre-Euclidean evidence on elements and mathematical style 

The first problem is that we know nothing about Euclid, not even the date of 
the Elements, so we adopt the conventional view, and look for evidence up to 

rest'; seeX2, 6, 7-9, 11, 13-20includingthelemma to 17, 25, 91, 100, andXI35 and 37. (This 
list is complete.) There is some variation among the manuscripts used by Heiberg, of which 
the following is a summary of the most important features. The Viennese ms. V shows the 
most variety, completing the enunciation in X 6-8 and 13, adding a bit more of the very long 
enunciations of9, 11, 14, 15, 17, 91, and 100, and making no change or even omitting some of 
the abbreviated enunciation in 16, 19, and 20. Also V sometimes adds 07TEp EDEL DEitai (X2, 
6, ... , though I cannot completely understand Heiberg-Stamatis' apparatus at X 2) and 
sometimes doesn't (X 7, 8, ... ). The 'Theonine' group of mss. BFVb make few systematic 
alterations: in x 9 they add 07TEp EDEL DEftai; in x 91 and 100 they complete the enunciation 
but don't add o7TEp EDEL DEftai; and in XI 35 they omit T'ijc 7rpoTacEwc 'of the protasis' which 
is in P (and where Heiberg uniquely and inexplicably adds 07TEp EDEi DEftai in brackets). Pis 
the most important manuscript in Heiberg's edition, and he usually gives it as his main text 
except, for example, when all other texts are united against it; this also happens in X 25, where 
P has the complete enunciation but no o7TEp EDEL DEftai, V simply adds 07TEp EDEL DEi:tai after 
f.gijc, and there are minor variations in F. But what is remarkable is that none of these scribes 
and editors systematically restore this most evident and automatic feature of Euclidean 
style in all cases; this is perhaps an indication of the general stability of the transmission 
process, apart from scribal errors. Heath has a much more robust approach: he abbreviates 
the whole conclusion to "Therefore, etc." from I 4 onwards, and abbreviates 07TEp EDEl DEi:tai 
or 7Toiijuai to QED. or F. from I 5; see his notes in TBEE i, 249 and 252. 

29 A study of the fine detail of Greek mathematical style is given by Reviel Netz in a 
forthcoming book The Shaping of Deduction in Greek Mathematics. 

30 This feature has been convenient from earliest times, in that a memorandum of the 
Elements can be given by just listing the enunciations, perhaps also including the diagrams. 
We find this in the papyrus P. Bero! 17469 (see Plate 4), a fragment containing the diagrams 
for I 8-10 and the enunciations of 9 and 10, and possibly also in P. Oxy I 29 (see Plate 2 and 
Section 6.2, above); the Bologna ms. b, which may derive from a pre-Theonine source (see 
Heath, TBEE i, 49), starts with all of the definitions and enunciations of the Elements and 
the Data; the early Latin version known as 'Boethius II' contains, amongst other things, the 
enunciations of almost all propositions of Books I-IV, but only the proofs of I 1-3; from the 
12th century and the first Latin translation by Adelard of Bath up to the Renaissance, some 
believed that Euclid may have been the author of only the definitions, postulates, common 
notions, and enunciations, and that the proofs were added by later commentators (see 
Clagett, MLT, 19); and, for the latest example, Mueller's PMDSEE finishes with such a 
62-page Appendix called 'The Contents of the Elements', though the author well knows 
that this is not the case, nor is it really a table of contents! There is a more recent German 
style of setting out mathematics, generally called 'Satz-Beweis' style, that has some 
affinities with protasis-style. Its premier exponent was Edmund Landau (see his Grundlagen 
der Analysis (1930), tr. F. Steinhardt, Foundations of Analysis (1951)), but Landau does 
occasionally permit himself a short remark! 
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300 BC. We shall find that the only evidence for protasis-style in this period will be 
in Aristotle, and most of that, and that part which is indubitably due to Aristotle, 
will not be in mathematics but in logic, in his Prior Analytics.31 Outside Aristotle, 
the evidence will be in music, with Aristoxenus' Elements of Harmony, Book 
III; or in contexts which may not actually be pre-Euclidean, like Autolycus, On 
Risings and Settings and On the Heavenly Spheres. As to 'Elements', the only 
book with a title using this name might actually have acquired this title later: 
Aristoxenus' Elements of Harmony. Here are the details: 

Plato and the Academy: Notwithstanding Proclus-Eudemus' description of 
the element-writing activity practised in the Academy, there is no evidence of 
protasis-style in Plato's writings, nor even any parody of it, for example in the 
Parmenides. There is much talk of elements, 32 which can be roughly divided 
between the following periods: 

• Early, in the Cratylus, in contexts such as "And the original elements are 
letters" [434b]. 

• Middle, as in Socrates' dream, at Theaetetus 201-2, an extract of which will 
be quoted later. 

• Late, in the Sophist, Philebus, Timaeus, and Laws, for the four elements, or 
five in the Epinomis. For example: "And for these reasons, and out of such 
elements which are in number four, the body of the world was created, and it 
was harmonised by proportion ... " [Timaeus 32c]. 

The mathematical passages at Meno 82b-85b (on doubling a square) and 
86e-87b (on the use of hypotheses) are not cast in Euclidean style. And 
nowhere do we find a hint of any book which has Elements in its title. An 
even stronger indication of this can be found in the Thirteenth Letter, to 
Dionysius: 

I am sending you some Pythagorean (treatises, IIvBayopEta) and some classifications 
(oiaipEcEtc). I am also sending you a man ... who will perhaps be useful to you and 
Archytas .... His name is Helicon ... a pupil of Eudoxus .... Take lessons of him, in 
addition to the rest of your philosophic training ... and not only benefit yourself but 
add to your reputation (d.1oo~flc33) [360b-e]. 

This letter may be a forgery, but that would not lower its evidential status since 
it would then have been composed to correspond as closely as possible in style 
and content to the period. Although the argument has been developed that 
Book VII was a (Pythagorean?) Elements of Arithmetic used by Archytas in his 

31 I would like to thank Ian Mueller for pointing this very important collection of examples 
out to me. 

32 I have used the useful, though surely far from complete, index in the Bollingen edition, 
Plato, CD. A much more thorough search could be made using Brandwood, WIP. 

33 Malcolm Brown (unpublished) sees this as a conscious pun on Eudoxus. 
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composition of the archetype of Elements VIIl,34 we do not find the name 
'Elements' used here. Moreover the role of Helicon underlines what we might 
now forget, with our efficient and user-friendly writing systems and our 
written-, print-, and computer-based intellectual culture of the alphabet: that 
writing in Plato's time was inefficient, requiring a lot of papyrus for its 
generously laid-out majuscule script; unfriendly, with its unspaced script that 
could be very difficult to decipher; fragile; lengthy to duplicate; and generally 
denigrated by Plato (see the Seventh Letter 341 and Phaedrus 274-5; this topic 
is discussed in Section l.2(e) and Chapter 6). It was then probably more useful 
as an aide-memoire than the primary way of transmitting information. More
over, during Plato's time, most mathematicians were either based around 
Athens or, like Archytas, in direct contact with Athens, so for whom would 
this writing be executed? This situation will change with Aristotle, with his 
projects to collect and classify knowledge and practice of all kinds, and then 
change even more dramatically with the foundation of Alexandria by his pupil. 
So let us now turn to him. 

Aristotle and the Lyceum: Again, we find many references to 'elements' 
throughout Aristotle,35 especially in Physics, Metaphysics, and Rhetoric, and 
these usages cover the whole spectrum of meanings of the word except as its use 
in the title of a book. Here are just a few examples:36 

If one entertains the same notions as Empedocles and has the same views about the 
elements as he, is he unanimous with Empedocles? Surely not! [Magna Moralia 
1212al5]. 

There is the argument that one who knows the letters (crnixEi'a) knows the whole word, 
since the word is the same thing as the letters which compose it . . . This whole 
commonplace is fallacious [Rhetoric 140la29]. 

Evidently, then, these thinkers [the Pythagoreans] also consider that number is the 
principle both as matter for things and as forming their modifications and states, and 
hold that the elements of number are the even and the odd ... and the whole heaven, as 
has been said, is numbers [Metaphysics 986al 7-21]. 

The elements of geometrical proofs, and in general the elements of demonstrations, have 
a similar character; for the primary demonstrations, each of which is implied in many 
demonstrations, are called elements of demonstrations; and the primary deductions, 
which have three terms and proceed by means of one middle, are of this nature 
[Metaphysics 1014a35]. 

34 See Artmann, EEP, for more details. 
35 Again, I have used the useful, though surely incomplete, index in the second, Bollingen, 

edition, Aristotle-Barnes, CW. 
36 It is perhaps of interest also to list the passages cited by Burkert, in his SSS: 

Categories 14a38 f.; Posterior Analytics 84b 19 f.; Topics l 58b34 f.; Metaphysics 998a23 f. 
and 1014a35f.; and Rhetoric 1396b22f. and !403al8f. 
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But, as I remarked above, the Prior Analytics does exhibit something close to a 
sustained Euclidean style of exposition, with enunciations, proofs with con
siderations of different cases, and alternative proofs. I choose just one example 
from scores, the figures known as 'disamis' and 'datisi': 37 

[Enunciation:] If one term is related universally to the middle, the other in part only, 
when both are affirmative there must be a deduction, no matter which is universal. 

[Setting-out. First Possibility:] For if R belongs to every S, P to some S, P must belong 
to some R. 

[Proof:] For since the affirmative is convertible, Swill belong to some P, consequently 
since R belongs to every S, and S to some P, R must also belong to some P; therefore P 
must belong to some R. 

[Second Possibility:] Again ifR belongs to some S, and P to every S, P must belong to 
some R. 

[Proof:] This may be demonstrated in the same way as the preceding. 

[Alternative Proof:] And it is possible to demonstrate it also per impossibile and by 
exposition, as in the former cases [28b5f.]. 

There is no conclusion ("Therefore, etc.", a la Heath) and no diagram,38 but 
most of the rest is there. And, what is more, we have a kind of symbolic 
manipulation such as we will not find in mathematics until the end of the 
sixteenth century.39 Then there is the same kind of structure on a larger scale: 
each of Chapters 4 to 6 starts, for each figure, with a kind of enunciation, and 
then finishes with a kind of conclusion. There is also the same kind of use of 
protasis-style in the Meteorologica Book III, at 373a3-19: 

... if the lines start from the same point and end at the same point and are equal, the 
points which form an angle will always lie on a circle. 
Let ACB and AFB be lines each of which goes from the point A to the point Band forms 
an angle ... , 

and in the locus problem at 375bl6-376bl2: 

The rainbow can never be a circle nor a segment of a circle greater than a semicircle. The 
consideration of the diagram will show this and all the other properties of the rainbow. 
Let A be a hemisphere resting on the circle of the horizon, let its centre be K and let G be 
another point on the horizon ... , 

37 There is an explanation of these scholastic names in the introduction of the Loeb 
Classical Library edition of the Prior Analytics, vol. i of their Aristotle collection, p. 197. 

38 The diagrams are not mentioned by Proclus in his description of the parts of a 
proposition, but every proposition of Euclid's Elements has one, most of them make essential 
use of them, and the proofs in the Meteorologica, to be quoted below, explicitly refer to 
diagrams. The important role of diagrams is also analysed in Netz, SDGM; he thinks that the 
Prior Analytics may originally have had schematic diagrams. 

39 Why did these first steps towards a symbolic logic not develop into some rich and 
sophisticated language, as symbolic algebra did very quickly after its introduction at the end 
of the sixteenth century7'I can offer no insights into this, and would welcome a discussion of 
the contrast by someone more competent than me. 
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but doubts have been cast over the authorship of this book of the 
Meteorologica. 40 

But all of this evidence seems to show that there is a possibility that Aristotle 
and the Lyceum may play a more important role in the development of the 
Euclidean style than is generally credited. Further reinforcement of this can be 
found in Aristoxenus, another member of the Lyceum, in his Elements of 
Harmony iii. Here is a typical example: 

A tone is placed next to a ditone, only above it. 
Suppose it is placed below. The consequence will be that ... Since this is unmelodic, a 
tone placed immediately below a ditone must be unmelodic too, 

where we also find a fluent proof by contradiction. However the evidence for 
Aristoxenus as the author of a book called 'Elements of . . .'is less clear, since 
this name may well have been given later, when the tradition of using this word 
in technical treatises had been established; see Barker, GMW ii, 177 and 146, 
n. 121. 

Hippocrates and Archytas: We now turn to the only other pre-Euclidean 
authors of whom we may have any surviving mathematical texts. Once again, 
our ultimate source is Eudemus, who may or may not have modernised his 
sources-but if he did not, he is not only the first known historian of 
mathematics, but also the first for a long time who gives us his material 
straight, without rewriting it!-and again later commentators who quote 
Eudemus may also alter it in the transmission. Simplicius, the source of most 
of our fragments of Eudemus, is sometimes explicit about this: 

I shall set out what Eudemus wrote [about Hippocrates' Quadrature of Lunes] word for 
word, adding only for the sake of clearness a few things taken from Euclid's Elements on 
account of the summary style of Eudemus, who set out his proofs in abridged form in 
conformity with the ancient practice.41 He writes thus in the second book of his History 
of Geometry ... 

40 See, for example, the long discussion of this in Knorr, ATGP, 102-8, which refers back to 
earlier discussions; here are a few quotations from it: "This passage is unique in the 
Aristotelian corpus in that it provides a full geometric demonstration, and all the more 
remarkable in that the manner of proof is identical to that employed a century later by 
Apollonius in his second book On Plane Loci" (p. 103); "In speaking of the 'Aristotelian 
writer', I betray a reluctance to take Aristotle as author of this solution" (p. 107); "If these 
considerations do not quite rule out the authenticity of Meteorologica Book III, they surely 
deserve more serious attention than Aristotle scholars tend to afford them. . .. But the 
suggestion of its nonauthenticity at once raises the question of dating. It has already been 
observed that the Meteorologica appears to be a composite document, different sections 
reflecting times ranging from the mid-350's to the late 340's. Conceivably, then, some of its 
parts might be later still, and some might even be the work of disciples after Aristotle's death 
in 322. If so, how much later? If the passage on the locus problem derives from the 3rd century, 
near or even after the date of Apollonius, then its significance for the history of ancient geometry 
diminishes almost to nil" (p. 108). However, Knorr finally plumps for a date at the end of the 
fourth century, and its author a disciple of Aristotle, working from an unknown source. 

41 This appears to mean that Eudemus is ancient for Simplicius (c. 800 years earlier), 
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so the text is corrupt, on its own admission. Much effort has been spent in 
trying to purge it of the additions, and there is no agreement over this; but it 
does seem that, taking the broad view of common agreement, the result is not in 
protasis-style. Here, for example, is the opening section, as presented in Knorr, 
IC 127-8, in which text that has been seriously proposed to be Simplicius' 
addition by some scholar, though not necessarily by all of them, has been set in 
italic:42 

He made a beginning, and of the things useful for these [constructions] he first set out 
that [l] similar segments of circles have to each other the same ratio as their bases in 
power. This he proved from the proof that [2] the diameters have in power the same ratio 
as the circles, which Euclid placed second in the tenth [twelfth!] book of the Elements, 
giving as its protasis thus: [2a] Circles are to each other as the squares on the diameters. [3] 
For as the circles are related to each other, so also the similar segments. [4] For similar 
segments are those which are the same part of the circle, for instance, the semicircle to the 
semicircle and the third part to the third part; because [5] also similar segments admit of 
equal angles. Now, [6] those [angles] of semicircles are right, and those of greater 
[segments] are less than right, and by as much as the segments are greater than the 
semicircles; and those [angles] of lesser [segments] are greater and by as much as the 
segments are less [than the semicircles]. Having proved this first he then proved that [7] if 
a lunule has a semicircle as its outer arc, its quadrature might be effected in a certain 
way. He did this by ... [61.5-18] 

This is indeed a sequence of protases, but most of them may be inserted by 
Simplicius, and even the remaining may be Simplicius-Eudemus' rendering of 
what Hippocrates wrote. the exposition then continues, not as protasis and 
proof, but in a loosely discursive style. And the same thing is found in our only 
other substantial pre-Euclidean fragment that we know, directly or indirectly, 
from Eudemus, namely the solution of the duplication of the cube by Archytas, 
which opens: 

5. The solution of Archytas, according to Eudemus. Let the two given straight lines be 
ALI, I'; it is required to find two mean proportionals between ALI, I'. Let the circle 
ABLIZ be described ... 

In other words, no surviving fragment of mathematics transmitted by Eudemus 
is in protasis-style. Even our oldest primary Euclidean text, the very fragment
ary collection of ostraca from Elephantine Island, dated to c. 225 BC, which 
contains material cognate with Elements XIII 10 and 16, is not in protasis-

though how much more ancient these practices are than Eudemus seems undecidable. But 
this then also means that the 'abridged ancient practice' was still current in the last half of the 
fourth century, very close to the supposed time of Euclid, though it is not clear how much it 
refers to the style of philosophers rather than mathematicians. 

42 There is another translation and discussion of this extract in Mueller, PMDSEE, 
199-202. The matter of purging the text of its additions has been discussed by Allman, 
Becker, Bulmer-Thomas, l)iels, Tannery, Heiberg, Rudio, Heath, Knorr, etc. The question 
carries a certain charge; for instance, several of these items involve proportions, so what kind 
of evidence does this give us of the proportion theory that Hippocrates was using? 
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style.43 What is more, none of these pieces of pre-Euclidean mathematics that 
we have-Plato's duplication of a square, Aristotle's rainbow locus, Hippo
crates' quadrature locus, and Archytas' duplication of a cube--describe 
material to be found in Euclid's Elements. We might propose that the Elements 
constitutes material that was developed to deal with these three problems, but 
that also is speculative-no ancient author says so, and the Elements does not 
even contain a proposition setting out Hippocrates' first move, that of reducing 
the problem to finding two mean proportionals, nor about his Quadrature of 
Lunes, which looks like an associated problem of squaring; nor does it seem to 
explain Book X and cognate material. Yet more, Sense 6 of the Greek-English 
Lexicon, quoted at the beginning of this article, offers us some strange 
reflections on the word. This comes from the scholia to Dionysius Thrax (an 
influential second-century BC Alexandrine grammarian) of unknown author
ship and date, which give a wide variety of explanations for the word cToixEfov: 
for example, the word came from dpi8µ,6c, since there was a certain local Zeus 
called CToixooEvc who numbered and ordered the people (so here the scholiast 
had to admit that the relevant sense is 'order', but his idea seems to be that the 
numerals were introduced first, and then they came to be used as letters); or 
there was an Athenian called CToixEfov, who may have invented letters, etc. 
But various things emerge from all these attempted, and not very convincing, 
explanations: already in antiquity the scholiast(s) were puzzled by the usages of 
this word and knew very little or nothing about their origins, and they did not 
bring the mathematical or other books called Elements into their discussion.44 

10.4(g) When, where, and why was the Euclidean style introduced, and when were 
mathematics books first called Elements? 

My position on the question of the introduction of protasis-style in mathe
matics and the naming of mathematical treatises as Elements seems to me the 
only one permissible in the face of this lack of evidence: apart from Aristotle, 
there is no clear contemporary evidence concerning these, even where we might 
expect to find it, before Aristoxenus, Autolycus, and Euclid, so there is very 
little more that one can say on the topic. There are even problems with all of 
these authors: the name of Elements of Harmonics might have been given to 
Aristoxenus' treatise after the tradition of naming books Elements of . .. had 
been established; the evidence that Autolycus pre-dates Euclid's Elements is no 
more convincing than the other way round;45 and we know nothing of the 

43 These are published in Mau & MUiler, MOBS; see Section 6.2 and Dorandi, TPDEE. 
44 This last argument has been put together by Reviel Netz, whom I thank greatly. 
45 See Heath, HGM i, 348-53. The argument that Autolycus precedes Euclid is based on 

the fact that some of Autolycus' propositions appear in Euclid's Phaenomena, an argument 
that can just as easily be applied the other way round. Autolycus' dates are c. 315-c. 240Bc; 
and we do not know the relation between Euclid's Elements and Phaenomena, for example 
which of them came first, or even whether they were actually written by the same person or 
persons. 
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composition-place, date, and author or authors-of Euclid's Elements. And I 
do not know whether the use in mathematics of protasis-style could be an 
importation of its use in logic by Aristotle, and know of no discussion of this. 

And yet there is a psychological need to think or say something more, so 
let me finish this section with some dreams. First Socrates' dream, Theaetetus 
201c-202c:46 

If you have had a dream, let me tell you mine in return. I seem to have heard some 
people say that what might be called the first elements (stoicheia) of which we and all 
other things consist are such that no account (aloga) can be given of them. Each of them 
just by itself can only be named .... But when we come to things composed of these 
elements, then, just as these things are complex, so are the names combined to make an 
account (logos), a description being precisely a combination of names. Accordingly, 
elements (stoicheia) are inexplicable (aloga) and unknowable, but they are perceived, 
while complexes are knowable (gnostai) and explicable (rhetai), and you can have a true 
notion of them. 

So the inexplicable elements, name-like, are combined into descriptive com
plexes, knowable in some deep sense, not unlike letters that can be combined 
into words, which form descriptions, explanations, and proofs.47 Moreover 
Plato's Theaetetus seems to be one of his most mathematical dialogues, and 
Brown, TKCL, has even proposed that it proceeds by a process of successive 
approximation, never arriving at an end, on a conscious analogy with a 
mathematical process; see Section 10.3(c). Now my ratios are descriptions
principally anthyphairetic ratios, associated with Theaetetus, and the astro
nomical ratios, associated with Eudoxus-and these descriptions are all 
successions of numbers, set out in some form or another, as extended explana
tions of the ratio. And, in the Greek of this period, numbers were represented 
by the letters of the alphabet. And what then makes these descriptions not only 
true judgements, but also enables us to give an account of them and thus tum 
them into knowledge in the sense of the Theaetetus, is the way that we can 
construct mathematical proofs of some of their quite remarkable properties, 
and many of these proofs again proceed via approximations and are con
structed around gnomon ('knowable') arguments; again see the first meaning of 
stoicheia in Section 10.4(b), above. We find here many of the well-attested 
meanings of 'element' coming together, and my dream is that these early 
elements were indeed the study of these kinds of ratios. A very substantial 
part of Euclid's Elements would then be the language and methods that were 

46 It is in this passage, rich in mathematical terms, that, according to Liddell, Scott, & 
Jones, GEL, citing Eudemus-Simplicius (see Section (b), above), that we first find the use of 
a-roixEfa as the ultimate constituents of matter. 

47 Before embarking on my own dream, let me dream on behalf of Reviel Netz. In his 
SDGM he develops the argument that the study of lettered diagrams was crucial in the 
development of the Greek deductive process. So his candidate for elements as letters 
combined into descriptive complexes could be the lettered diagram. But dreaming on 
behalf of others is surely a chancy business! 
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developed to investigate and extend this study of ratios, as this book 
attempts to illustrate with its preoccupation with Books II, IV, X, and 
XII, plus a brief mention of Book V in connection with astronomical ratios; 
then, in a process that we will find time and time again in the future 
development of mathematics, the original motivating problems fall away and 
are forgotten, leaving this language as a 'theory' in its own right, to be 
developed and used in other contexts, as will be described in more detail in 
the following section. 

10.5 ... BUT WHY IS THERE NO EVIDENCE 
FOR THESE RA TIO THEORIES? 

At first sight, the single most serious objection to the reconstructions of early 
Greek mathematics developed here must be that if the exploration of ratio 
theories in general and anthyphairesis in particular did play a role such as I 
have proposed, then why do our sources, both early and late, not refer to these 
topics? Here, then, are some reactions to this issue. 

First, our sources are not silent. Some of them may be explicitly referring to 
these topics, if only we could understand them; in other cases, we get a 
comprehensive and straightforward explanation of otherwise perplexing fea
tures when the material is explained from this point of view. For example, two 
perplexing fragments of Archytas concern logistike and logismos; and Plato 
may tell us a great deal more about this 'ratio theory', in his many further 
references, if only we interpret him correctly.48 Aristotle, in possibly our most 
explicit piece of information-perhaps even our only surviving explicit piece of 
information-about any early definition of ratio, tells us of antanairesis.49 

Euclid never gives us motivation for any of the mathematics he presents, but 
the only mathematically meaningful explanation of the basic distinction 
between the rhete and alogoi lines of Elements X and XIII that I know is the 
one based on anthyphairesis described above in Chapter 5; and I believe that 
further relevant material can be found in Elements VII. The idiosyncratic 
features of Archimedes' Measurement of a Circle fit more naturally in an 
anthyphairetic context than an arithmetised one, as I have tried to illustrate in 
Sections 2.2(b) and 2.4(d). Nicomachus, one of our earliest commentators on 
arithmetike, writing in the second century AD, gives a discussion of what he 
called antaphairesis and an elaboration of the classification into multiple, 
epimoric, and epimeric ratios. 50 The later Arab commentators, some of 
whom are beginning to be revealed as considerable mathematicians in their 
own right, do several times invoke anthyphairesis in their commentaries on 

48 See the catalogue in the Appendix to Chapter 4, and the proposals in that chapter. 
49 Aristotle, Topics VIII3, 158b29-35, quoted in Section 1.2(d), above. 
50 See Nicomachus-D'Ooge, IA, I xiii and xvii seqq., and Section 4.5 above, especially 

Aso-Bs3. 
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Elements V. 51 The systematic way of calculating gear ratios such as are found in 
the Antikythera mechanism uses anthyphairesis. 52 And suggestive material on 
astronomical ratios is found in the fifth and fourth centuries BC, and on musical 
ratios throughout early and late antiquity. 53 

Nevertheless, the situation is curious. If anthyphairesis, for example, did 
provide an impetus to the development of mathematics, as in my reconstruc
tion, then why does nobody tell us this more clearly? I shall approach this more 
refined version of the question from several different directions. I consider first 
the question in its historical context of early Greek mathematics; then consider 
the reactions of the later commentators; then introduce and develop an analogy 
from more recent times. 

So, first, consider our early sources. My study here has been restricted to 
only a part of the evidence deriving from Plato and his friends, who met in 
their suburb of Athens and communicated amongst themselves by conver
sations and letters; from Archimedes, whose isolation from the mathemati
cians of Alexandria is testified by the prefaces to his works; and from the 
elusive figure of Euclid. We know the names and, sometimes, a few details of 
the work of many other mathematicians, working in other places, or at other 
times, or on other topics; and we also know that my small, selected group of 
mathematicians were not working exclusively or even primarily on mathe
matics, or exclusively on the topics in mathematics that I have been 
considering. So we should not think of the mathematicians of the fourth 
and third centuries BC as a homogeneous group, in close and constant 
contact; and the specialism of my study here should not be thought of as 
reflecting any exclusive specialism of its restricted cast of characters. And in 
this Greek world of intense intellectual, artistic, and political exploration, the 
excitement of the explosion of ideas across such a vast front might leave little 
time for, and less interest in, a clear and correct historical account by the 
participants. 

Now turn to the later commentators, from whom the main structure of the 
received interpretation derives. If they had got main details of their story right, 
if they still had reliable sources and had been able to use them with insight, then 
there might not be the fundamental problems about understanding early Greek 
mathematics that still face us today. But we cannot have that confidence, since 
a long process of refinement and critical analysis of their writings has only led 

51 The Arabic commentaries on ratio are summarised and discussed in Plooij, ECR. Also 
see Omar Khayyam-Amir-M6ez, DDE. 

52 See Price, GG, especially p. 58: "In this [now lost] planetarium Archimedes would have 
used, perhaps for the first time, sets of gears arranged to mesh in parallel planes, and he 
would have been led to the rather elegant number manipulation which is necessary to get a set 
of correct ratios for turning the various planetary markers". This is, of course, the same kind 
of investigation that we later find in Huygens, DAP; see the Historical Notes to Section 
9.l(a), above. 

53 See the references in Sections 4.4 and 4.5. 
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to deeper and deeper problems and controversies. 54 If we.did have a consistent 
and convincing knowledge of early Greek mathematics, there would be only the 
details to resolve and historians would have moved on to other fields. But this is 
manifestly not the case; it is still not possible to arrive at any general consensus 
even over some of the most fundamental issues. 

The proposals set out here are only the beginning of a longer argument, since 
they have so far not taken into account the reactions of these later comment
ators whose possible misunderstandings can, I believe, be retrospectively 
understood and, to some extent, explained. To introduce my brief discussion 
here of this, which will be based on an analogy with more recent times, I first 
propose an experiment to my reader. I have tried, in the previous chapter, to 
indicate how the study of continued fractions, our version of anthyphairetic 
ratio theory, runs broad and deep through our mathematical heritage since the 
Renaissance, how some of the most influential and celebrated mathematicians 
have drawn inspiration from, and made contributions to, the theory, and how 
its properties lie behind some well-known and widely studied parts of mathe
matics today. But take down the fattest general history of mathematics from 
your shelf and look up 'continued fractions', 'Euclidean algorithm', or any 
other such synonym in the index; go to your nearest specialised mathematics 
library and search there; ask your neighbourhood mathematician for informa
tion about the subject; and so on. See if any of these sources give any hint of 
any of these developments. You will, I anticipate, be unlikely to find much 
beyond a general discussion of Pell's equation. Why do our commentators 
and compilers today make so little reference to this important theme in the 
modern history of the subject? There have been, since the seventeenth century, 
increasingly coherent communities of professional mathematicians and his
torians, drawn together through increasingly elaborate networks of personal 
and professional publications. So do we have any good reason to expect that 
the much more isolated ancient commentators and compilers could have done 
better? 

It is a commonplace of the contemporary mathematical community that 
mathematical research fills out a broad spectrum. At one end are the informal 
and ephemeral activities oflectures, letters, and conversations, where underlying 
motivation is discussed, promising problems are formulated with suggestions 
for solution, blind alleys are described, and on, and where communication is 
carried out quickly and efficiently in what is often an inchoate, fragmentary, 
ambiguous, improvised language. The other end of the spectrum is dominated 
by the published tradition. Here much of the accompanying matter of the 
informal tradition is suppressed, and only successful investigations are pre
sented, however irrelevant they may be to the original motivating problems. 

54 The discussion, in Section 3.6(b) and Chapter 8 above, gives an indication of some of the 
difficulties with this material, and the Epilogue, Chapter 11 below, reflects on some of these 
differences. 



10.5 Why is there no evidence? 397 

Few unsuccessful investigations, however relevant, get published because, quite 
simply, what can one say beyond that one has not succeeded?55 The published 
works are set out in a very formal style, often involving a highly developed 
symbolic language that may be accessible only to those other mathematicians 
who specialise in the immediate topic. It is then only possible to get behind this 
published presentation and uncover with certainty the unexpected deeper 
motivations and the unpublished record of failed investigations when we can 
back up this published record with the conversations, letters, working papers, 
and rubbish baskets that belong to the informal tradition. Moreover, published 
mathematics can remain unread or unassimilated, even when it comes from the 
pen of a master. There are few who have the time, breadth of interest, and 
ability to work through the eighty-nine volumes of Euler's collected works, or 
the insight to understand Riemann's single volume, or the patience and 
persistence to read Elements X. 

Such is the situation today and I see little reason to expect anything different 
at the dawn of this kind of mathematics; surely no one can believe that there 
was not some rich prehistory to what we find in Euclid's Elements. But 
nothing of what was then written has survived in its original form: still less can 
we, or could the later commentators, know of the conversations in the garden 
of Academe and elsewhere. In the case of early Greek mathematics, the 
important informal tradition has been completely lost. 

Within the Elements we find ourselves facing a further barrier. No 
mathematician I can conceive talks like this: 

If a straight line be bisected and a straight line be added to it in a straight line, the 
rectangle contained by the whole with the added straight line and the straight line 
together with the square on the half is equal to the square on the straight line made up of 
the half and the added straight line [Elements II 6], 

though, unfortunately, many write thus, confident thereby of their place in an 
ancient tradition. The convoluted language is necessary here because formal 
Euclidean style does not allow any reference to any specific figure in its 
enunciation. 56 But many of the explorations and algorithms I have described 
in Part One simply cannot be expressed within the constraints of this formal 

55 Occasionally, however, an unsuccessful investigation may succeed in diverting mathe
matical activity away from the problem in hand. Poincare's proof of the impossibility of one 
kind of solution of the three-body problem diverted attention away from the 2300-year-old 
mathematical study of the movement of sun and moon and towards topology;· and I have 
proposed in Section 9.2(d), above, that Gauss's explorations of continued fractions in number 
theory, of which to my knowledge no trace survives, may have led him to develop further and 
promote the theory of quadratic forms. 

56 The formal style of the Elements, in particular the structure of a Euclidean proposition, 
apparently as strict as a piece of music in the strictest of classical styles and as often broken in 
practice, is described in Heath, TBEE i, Chapter 9, 114--51, and Mueller, PMDSEE, Chapter 
1, 1-57. Here, again, ovr main source is Proclus, Commentary on the First Book of Euclid's 
Elements, 203-5. See the discussion of one aspect of it in the previous Section 10.4, and the 
drastic revision of the usual attitude to it in Netz, PDMP. 
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Euclidean style; see S27, in Section 1.3. Moreover, while these algorithms and 
explorations play an essential role in the understanding of anthyphairetic ratio 
theory, they have no part in the associated deductive theory. Observe, for 
example, how in Chapters 2 to 5 I have described and used in a fundamental 
way, but have not proved, any of the surprising and important behaviour that 
we observe in the Parmenides algorithm: that its run-lengths do in fact generate 
the anthyphairesis, that its behaviour will in fact be periodic when applied to 
Jn : Jm, that it will in fact always generate solutions to Pell's equation, and so 
on. 57 Here again, it is not easy to see how to give a deductive proof of these 
results without using the machinery of symbolic algebra and complete induc
tion, let alone to see how this, also, could be expressed in formal Euclidean 
style. This then becomes the kind of material that belongs to the mathe
matician's craft, the everyday skills that are learnt orally, which are an 
essential part of his trade, but which often die along with the community that 
is investigating a particular corner of mathematics. 

There is a further characteristic of continued fractions that makes them all 
the more prone to periods of fascination followed by neglect. On the one hand, 
the route via continued fractions is one of the quickest into the mathematical 
way of thinking. The Parmenides algorithm applied to Jn : Jm-or any of its 
equivalent manifestations-leads directly into subtle, surprising, and useful 
mathematics whose exploration will initiate and train a gifted novice. Further 
exploration will reveal rich further developments, and promise of continuing 
spectacular progress. But continued fractions are also the quickest route to a 
second mathematical phenomenon: the unsolved problem and, worse, the 
unfruitful unsolved problem. Mathematics can be a gratuitous activity and 
mathematicians are often wilful, as Plato complained at Republic VII, 528b-c. 

57 This is exactly the kind of criticism that Lagrange levelled against earlier treatments of 
Pell's equation and continued fractions. See, for example, the introduction to his SPA: 
"Given any non-square positive integer, find a square integer such that the product of these 
two numbers, increased by one, will be a square number. This is one of the problems that Mr. 
Fermat proposed, as a kind of challenge, to English mathematicians, in particular to Mr. 
Wallis who was the only one, to my knowledge, who resolved it or at least who published its 
solution. (See Chapter 98 of his Algebra and letters 17 and 19 of his Commercium 
Epistolicum.) But his method only consists of a kind of groping (tdtonnement) by which he 
arrives at the solution only in an uncertain manner, without knowing that he will actually ever 
get there. However, one should above all show that the solution of the problem is always 
possible, whatever the given number, a proposition that is generally regarded as true but 
which has to my knowledge not yet been firmly and rigorously proved. It is true that Mr. 
Wallis claims to have proved it, but by an argument that mathematicians find very 
unsatisfactory and which to me seems to beg the question (see Chapter 19 of his Algebra 
[and, in Section 9.2(d), above, Gauss's note e to the Disquisitiones Arithmeticae, §202]). Thus 
the problem has not yet been satisfactorily resolved in a way that leaves nothing to be desired. 
This is what determined me to make it the object of my study, the more so since the solution 
of this problem is like a key to all other problems of this type." (The original French is quoted 
in my BTEE2, 205 n. 18.) In fact many of the explorations before Lagrange were in the nature 
of what I have called 'heuristics' but which Lagrange characterised, here and elsewhere, by the 
very Lagrangian word 'tiitonnement' 
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When the scent of an unsolved problem goes stale, when a new and promising 
point of view is revealed elsewhere, they will move off in another direction. The 
general ignorance of and little progress made in understanding the continued 
fraction expansion of higher-degree algebraic numbers, or higher-dimensional 
continued fractions, since the time of Gauss, despite the concentrated effort of 
a few maverick mathematicians, give us clear illustrations of stale problems 
and mathematicians' reactions to them. I have proposed here that analogous 
problems could also have arisen in the Greek context and they would, by the 
same token, have gone stale there too. In a process that is found many times 
throughout mathematics, the original problems themselves then disappear but 
the language that has developed in the pursuit of their solution lives on, 
transformed into the status of a theory. Many of the great theories of modern 
mathematics arose in this way, and I suggest that the same may have happened 
with early Greek mathematics, with geometry and arithmetike. 

So far in this final section I have considered only anthyphairetic ratio theory; 
but similar comments apply with even more force to the astronomical and 
musical ratio theories whose reconstruction I sketched in Chapter 4. Astro
nomical ratio theory, as I described it in Section 4.4, is so subtle that it scarcely 
gets beyond the stage of a definition and initial exploration before it peters out; 
though, as I suggested at Es7 and developed in my EPP, it may not have 
disappeared but survived, transformed, as the proportion theory of Elements V. 
And the bridge between musical ratio theory and the other ratio theories
namely, arithmetic with ratios-is so well hidden in the mathematical jungle 
that my proposed investigation could never have got beyond a few, faltering 
steps. 

In addition to these general characteristics of the mathematical context, there 
is a further specific historical development that would compound the possibility 
of a later misunderstanding of any early Greek work on ratio theories. I have 
here throughout insisted on the non-arithmetised character of early Greek 
mathematics. We have abundant evidence of an earlier, profoundly arith
metical, Babylonian mathematics, but our historical record so far shows no 
explicit trace of any influence of Babylonian techniques on early Greek 
mathematics or astronomy. 58 Then, in the second century BC, with Hipparchus 
and Hypsicles, we find the first Greek usage of sexagesimal fractions; and 
thereafter Greek mathematics and science, as seen in the works of Ptolemy, 
Heron, Diophantus, and the later commentators, becomes a powerful 
mixture of the arithmetical and geometrical points of view. Now the attitudes 
and problems associated with different kinds of non-arithmetised and arith
metised mathematics can sometimes be very different, even incompatible; 
and this is particularly so for the case of ratio theories. Arithmetised ratio 
theory makes a sharp distinction between commensurable (our 'rational') and 

58 This is a typical example of a fundamental issue on which there is no general consensus. 
For a brief summary of the different positions, see Berggren, HGM, 397-8. 
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incommensurable (our 'irrational') ratios, the former being amenable to basic 
mathematical techniques, the latter requiring a much ~ore subtle treatment; 
then when the ratios are conceived as sexagesimal or decimal numbers, there 
are other kinds of distinctions, such as whether the ratios terminate or not, or 
are periodic or not. To be sure, the dichotomy between commensurable and 
incommensurable also manifests itself in other ratio theories, for example as 
terminating or non-terminating anthyphairetic ratios, but this distinction is 
much less striking than the difference between anthyphairetic ratios of the form 
Jn: Jm (Euclid's rhetos) and most of the rest (Euclid's alogos), a difference 
which lies at the heart of my reconstruction here. Reciprocally, the difference 
between J2: 1 and {/2: 1 is much less striking within an arithmetised ratio 
theory than an anthyphairetic theory. Or, for astronomical ratios, commensur
ability will manifest itself as a periodicity, with or without coincidences, but it is 
difficult, without very careful analysis, to comprehend the general commen
surable astronomical ratio; here the understandable astronomical ratios are 
practically confined to multiple, epimoric, and multiple epimoric ratios. 59 Now 
arithmetised mathematics leads to a kind of algebraic reasoning that is absent 
from non-arithmetised mathematics, since the arithmetised operations which 
are then generalised and abstracted to give this algebra either are completely 
absent, or have a very special character, specific to each context. 60 So it may 
become difficult to appreciate the motivation, strengths, and weaknesses of one 
approach from within the context of another. For example, the ratio of the 
diagonal to side of a square poses a serious problem of understanding to 
arithmetised ratio theory; in the non-arithmetised anthyphairetic ratio theory, 
once an appropriate figure has been drawn, it becomes a basic and vivid 
example which marks an entrance into the theory. Elements V, Definition 5, 
posed a conundrum in arithmetised mathematics that was not really under
stood before Dedekind, but it corresponds to the first insight into the nature of 
astronomical ratios. Algebraic manipulations are abstractions from arithmetic; 
but the problem of describing the basic arithmetical operations within anthy
phairetic ratio theory has only recently been solved, and I know of no such 
algorithms for astronomical ratio theory. Now extend these specific examples 
to a more global point of view: if, as I have proposed, early Greek mathematics 
was non-arithmetised, then we may not be able to understand or translate its 
motivations and some of its methods into our arithmetised point of view. So 
there would be a tendency for it to be misunderstood from the second century 
BC onwards. 

So while I can understand a sceptical reader remaining worried by the lack of 
any clear and explicit anthyphairetic explanation of early Greek mathematics in 
the last two thousand and more years, I cannot agree that this absence is fatal 
to my reconstruction. Most of what has been said on the topic in this period has 

59 Witness the complications of the descriptions in E67 and B68 of Section 4.4(b). 
60 See Section 4.5(b), As6-88· 
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been speculation, much of it has not been written by mathematicians, and most 
of it comes from within alien and incompatible mathematical traditions. 
However much it may tell us about the intellectual climate of the times at 
which it was written and of its author's ideas, most of it may be simply 
irrelevant to early Greek mathematics. I hope it is clear, too, that I am aware 
that however plausible and appealing my proposals here might be, they too 
may be irrelevant or wrong, like so many before them; though while I can see 
the possibility of quite drastic revisions to their details, I am not yet aware of 
any cogent arguments for rejecting them outright. And I do not think that one 
should confuse the exploration of the documented stages of some intellectual 
development, such as we have for some episodes in mathematics since the 
seventeenth century, with the kind of plausible rational reconstructions that 
have been attempted here. But, given the state of our evidence, no other 
approach to early Greek mathematics is possible. 

I have dwelt very little on the historical and biographical aspects of early 
Greek mathematics here. Our sources give us very little reliable biographical 
information, even about matters as basic as chronology, and most of the details 
have to be reconstructed. In a subject with the logical coherence of mathe
matics, there is a tendency for the mathematical reconstruction to precede and 
determine the biographical reconstruction; for example, details about the 
discovery of incommensurability tend to affect reconstructions of pre-Socratic 
philosophy and mathematics, and the reconstructions of proportion theory 
have had an important part in the biographical reconstructions of the fifth 
and fourth centuries BC. 61 The drastic revision of the reconstruction of pre
Euclidean mathematics proposed here will provoke some revision of the 
historical picture, but I did not wish to complicate the issue by introducing 
these matters at this stage. However, I cannot resist finishing with a historical 
analogy. It is a convenient tendency, sometimes not without truth, to personify 
trends and locate movements in individuals. In this spirit, it is tempting to 
speculate that, just as I have suggested that Gauss rewrote number theory 
without continued fractions and thus may have prompted the decline in their 
study, so Eudoxus may have rewritten anthyphairetic and astronomical ratio 
theories as proportion theory with the same effect; and that both worked with a 
deep understanding of what they were omitting. 

61 See, for example, Knorr, EEE, Chapter 2, and de Santillana, EPSC. 



11 

EPILOGUE: 
A BRIEF INTELLECTUAL 
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I've said it once, I've said it twice, 
What I tell you three times is true. 

Lewis Carroll, The Taming of the Snark1 

Since the publication of 'Ratio in early Greek mathematics', my first article 
on Greek mathematics, the attitude towards these proposals among 
specialists has gradually changed from rank incredulity, from a refusal to 
begin even to take the first step towards considering the details of the 
interpretation, to a kind of distant respect.2 People take anthyphairesis 
seriously,3 and have now even begun to consider the possibility of the use 
of anthyphairesis as providing some way of thinking about ratio; but hardly 
any specialist has accepted that it could have played a role as precise and 
detailed as I have proposed. There is no real evidence for it, they say; it is far 
too elaborate a speculation to be acceptable, too much an importation of 
modern ideas into the past. Some of these objections have just been 
addressed, in Section 10.5; let me now, in a brief autobiographical sketch, 
describe my evolving attitude to these issues. 

What changed my attitude towards early Greek mathematics from that of an 
amateur dilettante to someone obsessively gripped by the fascination of the 
topic was the material in the second of the two linked articles on Elements II: 
BTEE and BTEE2. We community of historians of Greek mathematics are still 
far from the beginnings of any agreement about the role of Book II, and some 

1 This is asserted twice in the poem, but not three times! This extract comes from the 
beginning, in Fit the First; then see Fit the Fifth:" 'Tis the note of the Jubjub! Keep count, I 
entreat./ You will find I have told you it twice./ 'Tis the song of the Jubjub! The proof is 
complete./ If only I've stated it thrice." It might also be said to describe the structure of a 
Euclidean proposition, with its three statements of what is to be proved and then has been 
proved, in its enunciation, its setting out, and its conclusion. (Lewis Carroll, under his own 
name Charles Dodgson, wrote several pamphlets on Euclid's Elements for the use of 
undergraduates; see Dodgson-Abeles, MPCLD.) 

2 One notable exception was Berggren, HGM, which gave a reasonable precis of the aims 
of the interpretation but ended with a tone of what I take to be a muted but qualified 
scepticism. It would be a very useful contribution if this general survey could now be brought 
up to date. 

3 The pioneer here was Becker, in his ESL 
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of the disagreements have been acrimonious.4 Many of those who have studied 
this topic have proposed some role or another for Book II, though usually for 
some but not all of the propositions, and this is just what I did in the first of 
these two articles. It gave some kind of context for everything except II 12 and 
13, which, however, were easy to explain away glibly in the traditional way: 
"Only 12 and 13 do not appear to be relevant to anthyphairesis, and these 
propositions are generally accepted as generalisations of Pythagoras' theorem 
in their own right" (BTEE, 22). They were just two more instances within Book 
II of propositions that are unused elsewhere within and beyond the Elements, 
but these particular ones are closely related to this central and important 
result. 5 Here, from the most thorough modern study of the details of Elements, 
is Mueller, PMDSEE, 301, on the same issue: 

... II 8 is a good example of the problematic character of Book II as a whole. II 9, of 
which the unused II 10 is a counterpart, is cited only in the problematic lemma before 
X 60; and II 12, of which the unused II 13 is a counterpart, provides a possible 
explanation (given by a scholiast) for a problematic inference in XII 17. However the 
presence and position of propositions 12 and 13 may be sufficiently explained by the fact 
that they are completions of the Pythagorean theorem, but are proved by methods 
appropriate to Book II, 

and his discussion goes on to consider and reject the main explanation of parts 
of Book II as the Greek counterpart to our algebra, the so-called 'geometric 
algebra'. And not only are some of these propositions of Book II unused within 
the Elements itself; the minutely detailed study of the role of the Elements and 
other early texts by Pappus, started in Saito, IPPC, has so far not unearthed 
any use by Pappus of II 7, 11, 12, and 13, though his published investigations 
have so far dealt only with Book 7 of the Collection. 

The geometry needed in this investigation of an important collection of 
examples of anthyphairetic ratios was Pythagoras' theorem,6 together with the 
figures associated with the other propositions of Book II apart from 12 and 13. 
Nothing more was needed: these figures contained all of the basic ingredients of 
the successively more complicated figures used in the proofs of the quite 
astonishing periodic behaviour of the anthyphairesis of a substantial subset 
of the corpus of incommensurable ratios Jn: Jm. But these proofs used two 
methods that got progressively more difficult to apply and then became 
unworkable in the cases where the expansions got more complicated; see 
Chapter 3, above. For example, the first method was defeated by ,/19: 1. It 
was disappointing that the problem was left incomplete, but that is a common 

4 These rival interpretations are something that I have not mentioned in this book and do 
not intend to mention here. For sober discussions of some of the issues, see Mueller, 
PMDSEE, 41-5 & 301-2, Artmann, EEP, and, again, Berggren, HGM. 

5 In our terms today, they are equivalent to the generalisation of the so-called Pythagoras' 
theorem to the cosine rule for oblique- and acute-angled triangles. 

6 It can plausibly be argued that there was originally a version of this between Propositions 
8 and 9; see the end of Section 3.2, above. 
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feature of mathematical explorations. But I then discovered, and described in 
BTEE2, how II 12 and 13 could play an absolutely cerrtral and essential role 
within a proposed interpretation of the successful continuation of this 
programme, in a generalisation of my interpretation of the geometrical side
and-diagonal configuration. To begin with, I treated this as a mathematical 
curiosity but, after further explorations, I became more and more persuaded 
that it could have some plausible historical relevance. This was yet one more 
example of the way that this programme of the exploration of early ratio 
theories 7 provided a coherence across a wide range of our evidence. It was also 
another example of my evolving interpretive principle that homogeneous slabs 
of evidence should be taken as a whole (see the new appendix, Section 10. l(b ), 
for a description of this). Here, in this book, the main such slabs are Plato's 
curriculum, Elements II, and then the larger complex of Elements II, IV, X, and 
XIII (see Chapters 3, 4, and 5, which make up the central part of the 
interpretation). Another methodological principle is that of difficilior lectio, 
that the more obscure and awkward difficult versions of some bit of evidence 
should not be ignored or emended, but fitted if possible into the interpretation, 
for sometimes these carry the original intention that editors have been unable 
to understand and therefore have not smoothed out. For example, there is the 
awkward definition of synthesis to be found in Book XIII of the Elements, but 
consigned to an Appendix by Heiberg and so treated by Heath only in his 
notes; see TBEE iii, 442, where he comments: "There must apparently be some 
corruption in the text; it does not, in the case of synthesis, give what is wanted." 
This 'corrupt' Euclidean version of the text fits with the development of my 
anthyphairetic interpretation of Book II, and is discussed in BTEE, 19-22.8 

Our knowledge of the details of pre-Euclidean mathematics is so sketchy that 
the various interpretations are more like religious beliefs than positions that 
can be defended in ways that go beyond faith; and the biggest influence on 
religious inclination tends to be the environment in which one grows up. To 
expect others to be persuaded into another interpretation is to expect some
thing like a religious conversion, a tall order indeed. I have never in any serious 
way, beyond publications and talks at academic meetings, tried to create such 
an environment in which to nurture young and unformed talent to my point of 

7 I emphasise the plural as there are several examples of ratio theories described here; see, 
for example, the discussion in Chapter 4 of the different parts of Plato's curriculum. Some 
seem to think that anthyphairesis generates the only proposed ratio theory. 

8 I described briefly another way in which emendation can be used to create historical 
evidence in Section 10.l(c)(iv), but did not develop this beyond a bit of moralising. Another 
example of difficult text that is therefore often written off as spurious or misreported is 
Archytas Fragment B4 (see Section 4.6(b)), but there is no point in my discussing this 
particular text further until my interpretation of logistiki! has had further examination. This 
topic has been discussed in Mueller, ME, who rejects my point of view; he sets the issue in the 
context of school education in mathematics, but approaches it from the opposite direction 
from that I take: he considers the literary evidence, I look at our material evidence from the 
schoolroom. Both are unlikely to give us more than a hint of what actually went on. 
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view; I have declined to take on graduate students on this topic, or have put 
almost impossible conditions on their doing so. And even a successful graduate 
of these studies is virtually unemployable in the late twentieth-century 
academic world. I grew up an innocent (but an innocent already in secure 
employment!), with little knowledge and no real beliefs concerning Greek 
mathematics-my historical taste originally lay in nineteenth- and early 
twentieth-century analysis-and it was reading Wilbur Knorr's The Evolution 
of the Euclidean Elements, jumping in at the deep end, that kindled my latent 
interest. My original project was to provide a more accessible account of the 
material in Knorr's book, directed towards mathematicians who were, as I had 
been, on the whole uninformed and uninterested in the subject beyond using it 
to spice their lectures with stereotyped and unreliable stories about Pythagoras 
and Euclid. It was while working on this expository project that I had my 
revelation early one morning in May 1978:9 if anthyphairesis was used in the 
context of a pre-Euclidean proof of Elements VI 1, as Aristotle tells us at Topics 
158b 29 that it was, in our only explicit evidence about this important issue, 
then was it used to define proportion, as seems almost universally believed by 
those who are inclined to assign any role to it, 10 or could it have been used to 
define ratio? That is, the pattern of the anthyphairesis might be worth exploring 
within the context of early Greek mathematics, since either interpretation fitted 
within Aristotle's testimony. This new point of view led to the first article, 
REGM, which was, in effect, a programme for further exploration; BTEE was 
the first of a projected series of articles on the details of the programme; and the 
programme was eventually extended and a substantial part of it carried 
through in the first edition of this book. 

By the time of my heightened commitment to this interpretation that arose 
from the material of BTEE2, I had gained a little more historical maturity and 
had come to realise that, while historical red herrings may be easy to create, 
they may also be impossible to extirpate, especially if they are appealing, 
attractive, and fill some needed slot; the stories about Pythagoras and Euclid 
are fine examples of this. The anthyphairetic interpretation is so attractive and 
appealing that my responsibility was to investigate the historical context in 
much greater detail, and this involved exploring several other fields that were 
completely new to me. 

Arithmetic, like religion, is also strongly dete~ined by the environment in 
which one grows up. As soon as a society develops some kind of bureaucratic 
complexity, arithmetic plays an important role in everybody's life, as many 
commodities of everyday use and importance acquire a numerical value, taxes 
are calculated numerically, etc., and practical procedures for handling ratios 

9 I wish I kept a diary and so could locate the exact day. The time was around 5 am, and I 
was lying in bed! 

10 Many scholars, affer initial enthusiasm, seem to distance themselves from this kind of 
interpretation as it fails to live up to its initial promise. 
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and proportions are developed. 11 So what was the arithmetical base of Greek 
society?-for that might influence the way mathematicians, even sophisticated 
mathematicians, might think about numbers and fractions. 12 The common, 
usually unconscious, assumption on this issue seems to be that the Greeks, 
being an intelligent society, calculated using our system of common fractions, 
our way of describing the rational numbers; by contrast the Egyptians, being 
less concerned with mathematical sophistication, used the cumbersome and 
unhelpful 'unit fractions'. 13 This view, though only occasionally articulated, is 
ubiquitous. For example, it lies behind the assertion that Pythagoras, or the 
Pythagoreans, or someone else, discovered that the 'rational' numbers were 
insufficient for geometry, that the diagonal of a square is 'irrational', and so 
directed mathematics away from arithmetic and towards geometry. 

The conclusions of these investigations into school arithmetic are described 

11 The 'rule of three' -if eight cows cost a farmer twelve pounds, then how much would six 
cows cost?-a staple of the schoolroom since medieval times and earlier, is a good illustration 
of this. 

12 A more recent illustration of this kind of phenomenon may well be found in the 
introduction of decimal fractions into the West at the end of the sixteenth century. The first 
treatment setting out the details in a straightforward way was not addressed to specialists: 
Simon Stevin's De Thiende of 1585 was published in the vernacular (in Dutch; then later in the 
same year in French; and then in an English translation by Richard Norton in 1608) and was 
addressed to "Astronomers, Land-meters, Measurers of Tapestry, Gaugers, Stereometers in 
general, Money-Masters, and to all Merchants" (see Stevin-Struik, PW, vol. ii, or many other 
places). Decimal fractions gave a new fluency to arithmetic which permitted, perhaps for the 
first time, the feelings that all such calculations could now be taken for granted, and this paved 
the way to the next stage, their abstraction into symbolic algebra. There was an explosive 
development of these algebraic manipulations that was complete by the time of Descartes' La 
Geometrie in 1637, and it is a remarkable coincidence, if coincidence it be, that the people who 
contributed to this development-principally Stevin himself, Viete, and Harriot-were them
selves calculittors. (One can see the same kind of evolution later in the young Newton's 
annotations and arithmetical explorations of Wallis' Arithmetica Infinitorum, and the way his 
theory of infinite series is directly based on the procedures of decimal manipulations.) This 
confidence in decimal arithmetic still lies, I believe, behind our basic intuitions, even today, 
underlying the real numbers, even though it is a delusion: there is no algorithm for generating 
the digits of an arithmetical operation on two decimal numbers, even for the decimal expansions 
of rational numbers. For more comments, see the references to Dedekind in the Index. 

13 A most misleading name, for there is no 'unit' in their basic fractional sequence, which is 
more like 'the half, 'the third', 'the quarter', ... , what I refer to, in translation of their Greek 
name mere, as 'parts'. And see van der Waerden, quoted in Section 4.5(c) above, for what I 
believe to be the kind of assumption described here. An even more explicit instance can be 
found in Toomer, MA, 45: "The truth is that Egyptian mathematics remained at too low a 
level to be able to contribute anything of value. The sheer difficulties of calculation with such 
a crude numerical system and primitive methods effectively prevented any advance or interest 
in developing the science for its own sake. It served the needs of everyday life (it is only a 
relatively advanced technology, such as was never achieved in the ancient world, which 
demands more than the most elementary mathematics), and that was enough. Its interest for 
us lies in its primitive character, and what it reveals about the minds of its creators and users, 
rather than its historical influence." This was written more than 25 years ago and may not 
represent its author's later point of view; it is given here only as an illustration of an attitude 
to the Egyptian fractional system. 
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in a series of articles (NFA, TP, HP, LFGM, FAT), and brought together in 
Chapter 7 of this book. Our evidence comes from the wrong time and place, but 
is unambiguous: Greek school arithmetic was exactly the same as Egyptian 
arithmetic. In this representation of fractional quantities, every basic arith
metical operation-addition, subtraction, multiplication, and division-is far 
from routine and automatic, and the abstraction of fractional quantities into 
something approaching our idea of the field of rational numbers is simply out 
of the question in that historical context. These assumptions about, and 
sometimes unconscious applications of, our own arithmetical intuitions to 
the past may be very misleading. Another topic involving the role of arithmetic 
is the postulated early influence of Old Babylonian arithmetical techniques on 
early Greek mathematics. T4ere is little about this in this book since we have 
so far absolutely no direct evidence that this happened; it is another example 
of a purely speculative proposal, attractive to our point of view but implausible 
within the Greek context, such as we know it. 

Another issue that needed exploration was the status of the material evidence 
that we possess-just what are our texts and how credible are our stories about 
the historical figures involved? This was fascinating; not only did I once again 
find myself in a totally new field but, once again, I enjoyed the unstinted and 
generous help of classicists and papyrologists. Here the conclusion seems to be 
that the texts, once they pass from the hands of their last editors, seem to be 
transmitted reasonably accurately, but we have almost no control over the period 
from their composition up to that last editorial stage, nor can we be confident that 
many relevant texts have not been lost in the winnowing entailed by the process of 
copying and recopying. 14 As to the stories about historical figures such as 
Pythagoras, Plato, Aristotle, Archimedes, etc., most of them belong to a tradition 
that grows and grows with time; 15 often a nugget of solid information may be 
carried within that tradition, though identifying that nugget can be problematic. 

I returned from the exploration of these historical issues with even more 
confidence in the plausibility of the overall nature of my proposals, a realisa
tion that their scope may be even wider than I had thought, and the feeling that 
they were no more speculative than many parts of the received interpreta
tions-indeed that perhaps they were often less so. This gave me the resolve to 
bring a substantial part of them together into a whole. The first edition of this 
book was the outcome. 

14 One outstanding example of something that has disappeared at some unknown time is 
Eudemus' History of Mathematics. Even Proclus may not have had a copy, for it is not 
unlikely that his quotations came via Geminus, though it might be difficult to establish this 
with any confidence; in any case, no Byzantine copy is known, not even at second hand, and I 
do not think that any Arabic translation is known, though there are still very many 
unexplored Arabic texts. 

15 Detailed examinations of this 'expansion of the tradition' of Pythagoras are given in 
Burkert, LSAP, of Plato in Riginos, PA CL WP, and of Archimedes in the first chapter of 
Dijksterhuis, A. 
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abbreviations 232, 254, 263--4 
Alexandrian Library 216-7 
algebra 9, 20, 69, 90-2, 102, 135, 166, 193, 

365-6, 379, 398 
algorithm v. algorism 62; see also Euclidean 

algorithm 
alogos 111, 161-95, 289-97, 361, 394; see also 

logos 
analogon 15-16, 297-8, 294 

antanairesis 31, 61, 394 
antaphairesis 31 
anthuphairesis 31, 61, 394, 384 
anthyphairesis, see ratio (anthyphairetic), 

Euclidean algorithm 
Antikythera mechanism 223, 395 
apotome, see incommensurable 
application of areas 176-7 
approximation 37-41, 43-55, 58-60, 62, 

309-13, 313-14, 364--5, 380-1, 393-4 
Arabic astronomy and mathematics 9, 124, 

277, 394--5 
area 8, 11 
arithmeo 114--15 
arithmetic 8-9, 114, 134, 138-9, 196, 267, 

346-52, 365-6,405 
arithmetike 13-15, 20-1, 28, 108-9, 110-12, 

129-32, 394 
v. arithmetic 110-11, 129-30 

practical v. theoretical 106 
arithmetised mathematics 8-10, 23, 32, 42, 

52-3, 172-3, 189-91, 194, 196, 227,246, 
248,281, 298, 303-5, 313, 365-6, 372, 
389-400; see also geometry 

arithmos 13-15, 129, 235, 294 
arrhetos 98, 162-3, 190, 191-3, 294, 360-1, 

394 
(a)summetros 289, 290-2 
astronomy 

Academic 113, 117-25 
Egyptian and early Greek 121-5 
later 124--5 
see also calendars, parapegma 

auxe 114--5 

Babylonian mathematics 9, 124, 195, 223, 265, 
364, 366, 372-3, 399 

binomial, see incommensurable 
Brun's algorithm 353--4 

calendars, cyclical 51-2, 63, 121-5; see also 
parapegma 

circumdiameter and side 27, 152-5, 184--6, 368 
circumference and diameter 9, 27, 35-41, 53-5, 

240-6, 369, 
codex 207-8, 217 
commensurable, see incommensurable 
compounding, see ratio 
congruence 11, 27 
continued fractions 9, 30, 44, 60, 61, 281-2, 

303-55, 396, 398 
analytic theory 329-41 
approximation 309-313, 352-5 
arithmetic with 111-12, 346-52 
ascending 303, 312-13 
convergents 43-4, 47-9, 306-13, 384 
general 305, 329-30, 334--8 
higher dimensional 352-5 
probability theory 116, 338-40 
quadratic theory 322-9 
simple 304 
see also ratio (anthyphairetic), Euclidean 

algorithm 

deductive mathematics 117, 281, 372-4 
Demotic papyri 257-61 
dia ton arithmon v. grammiin 97, 102 
diagonal and side, see side and diagonal 
diagiinios 61, 289 
diagramma 33 
dialogues, see slaveboy 
diametros 61, 289 
diaphoron schoinismou 233 
diastema 129, 141-2 
dimension of cubes 27, 115-17, 131, 159, 

344--5, 368 
dimension of squares 27, 34, 65-102, 114--15, 

368, 371-8 
diorismos 176, 288-9 
division 234--8, 252-3, 268-76 
Domesday Book 282 
dreaming 393--4 
duplication of cube 114, 285, 293 

Egyptian mathematics 9, 257-61, 265, 279-81, 
359, 366, 372, 407 

elegant mathematics 98-101 
elements 381-94 
epimorion, see ratio (epimoric) 
equations 

construction of 331 
solution of 331-4, 323 

equality (isos) 11-13, 27-8 
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equivalence relations and classes 19, 27, 111, 
369-71 

Eratosthenes ratio 50--1, 63 
errors 144, 230, 233, 244-6 
Euclidean algorithm 30, 305, 352-5, 366-7, 

396 
Euler (or Gauss) brackets 314, 349 
even and odd 31, 106, 112-13, 292, 299-302, 

360 
evidence 7-8, 196-276, 356-62, 394-401, 404, 

407 
expressibles, see ratio 

factorisation 299, 301, 343 
Farey series 30, 43, 322 
financial accounts 106-7, 111-12 
foundations crisis 16-17, 294, 302-4, 362 
fractions 14-15, 108-9, 133-4, 196, 227-76, 

399-400, 406 
and arithmetic 8-9, 27, 110--11, 133-4, 135 
common 19, 133-5, 227-8, 240-1, 262-6, 

358-9 
decimal 27 
fractional quantities 8-9, 227, 246-7 
parts, or unit fractions 14-15, 39, 227-38, 

262-6, 359, 366 
sexagesimal, see Babylonian mathematics 
see also arithmetic, arithmetised 

mathematics, ratio 

Galois theory 339 
Gauss (or Euler) brackets 314, 349 
geometrical algebra 102, 189, 403 
geometrike 130--2, 199-204, 279-81 
geometry 

arithmetised v. non-arithmetised 8-14, 189, 
190-1, 194, 253-7 

plane and solid 113-7 
gnomon 66, 69, 74-83, 368-9, 371-8 
golden section 102; see also ratio (extreme and 

mean) 
greater and less 50-5, 106, 110, 112-13, 130 

Hurwitz numbers 346-7 
hypergeometric series 334-7 

incommensurable 16-17, 40, 161-95, 350, 
357--67, 378-80, and passim 

apotome 156, 167, 170 
bimedial 179 
binomial Ill, 167, 170, 178 
discovery of 16-17, 109, 289-302, 356-69 
major/minor 155, 180 
medial 169 
rational/irrational 162-3 
rhetos and alogos 155, 162-3, 191-3 

inscriptions 199-204, 206 

irrational 62, 162-3, 352-3, see also 
incommensuraMe 

isos 10-11, 12, 28-9 

Jacobi-Perron algorithm 353-4 

land measurement 231-4, 279-81, 360 
lattice points 314, 352 
less and greater 50--5, 106, 110, 112-13, 130 
logismos, see logistike 
logistike 2, 21-2, 105-13, 145-50, 394, 404 

practical v. theoretical 106-12 
logos 15-16, 20, 56, 105-6, 141-2, 289, 380; 

see also ratio 

manuscript.figures 65, 99 
means 62, 127 
meros 14-16, 227-9, 359 
methodological considerations 8, 66, 356-7 
Metonic cycle 51-2 
metretike 106, 291 
minuscule script 207, 217-20 
morion, see meros 
music theory 138-46 
myriads 226, 264 

neusis-constructions 283-9 
non-arithmetised mathematics, see 

arithmetised mathematics 
non-Euclidean geometry 152-3, 147-8, 280 
numbers 8-10, 222-76, 363 

fractional 227-76 
Greek 13-15, 222-40 
(ir)rational 40, 62, 172, 305--6 
large 158, 226-7 
place-value 238 
real 9, 27, 30, 303 
repetition 15, 28, 30, 108 
sexagesimal 195, 222, 267, 268; see also 

Babylonian mathematics 
see also fractions 

obliquity of ecliptic 50--1, 63 
odd and even, 31, 106, 112-3, 292, 299-300, 

360 
ostraca 206, 209 

Pade approximant 337 
palimpsest 216, 243-4 
palindromes 74, 102 
paper, introduction of 218 
papyrus 206-16, 388 

referencing system 61, 205 
parapegma 121-4, 209, 229-30 
parchment 216 
Parmenides proposition and algorithm 42-8, 

64, 127' 313-22, 398 
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parts, see fractions, meros, Egyptian 
mathematics 

Pell's equation 55-8, 64, 116, 328-9, 341, 396, 
398 

periodic phenomena 33-4, 57-8, 71-4, 124, 
142, 302, 324-8, 333-4, 352-5, 373, 398, 
403 

pi 9, 40, 268, 311, 329, 350; see also 
circumference and diameter 

Pick' s theorem 315--6 
Plato 

Academy 103-4, 199-204, 387-8, 395, 397 
and Aristotle 204, 287, 388-90 
aristocratic atitude 27, 203 
and astronomy 117-8 
curriculum in Laws VII 104, 290, 298 
curriculum in Republic VII 104-48, 357 
and mathematics 103-5 
and music theory 125--6 
inscription 199-204 

probability theory 116, 338-40 
problems 8, 117, 118, 125--6, 146-8, 286, 290, 

372-3, 399 
proportion 15-20, 31, 203 

Eudoxan 16-17 
see also ratio 

protasis 385-94 
Ptolemaic astronomy 9, 124, 218, 223 
Pythagoras' theorem 20--1, 33, 70, 104, 403 
Pythagorean science 7-8, 97-8, 125--6, 145, 

289,292, 294, 295--6, 297-8, 357-8, 362, 
405 

quadratic forms 342-3, 345, 397 
quadratic problems 161, 288-9, 322-9 

see also continued fractions (quadratic 
theory) 

ratio 15, 24-7, 365, 394-400, and passim 
accountant's 26, 267-8 
anthyphairetic 24-7, 31-64, 157-61, 367, 

373, 402, and passim 
astronomical 26, 119-25, 395 
commensurable 32, 41, 121, 127 
comparison of 30-1, 47 
compounding 19-20, 111-2, 126-9, 133-8, 

146 
in the Elements 15-20, 135 

epimoric 128-9, 139-41, 250 
expressible 165, 191 
extreme and mean 86-92, 102, 156 
and fractions 9, 108-9, 133-8, 195, 240--1, 

246-7 
musical 26, 127-9, 146 
musical anthyphairetic 130 
musical astronomical 130 
noem 85-92 
v. proportion 15-20, 63, 405 
reduction 52, 54-5 
synthesis 84-92 
theory, see logistike 
in the Topics 17-19, 31 

see also alogos, analogos, logos, 
proportion, (ar)rhetos 

rational 40, 62, 162-3, 172, 352-3 
rhetos 98, 162-3, 190, 191-3, 294, 360-1, 394 
ruler-and-compass constructions 283, 286-9 

side and diagonal 27, 32-5, 56-7, 61, 97-101, 
305-6, 367, 400,404 

generalised 93-101 
numbers v. lines 56-7, 97-9, 100-1 

slave boy 
and the accountant (A9rB11s) 266-8 
and Archytas (A70-A96) 126-33 
and Eudoxus (B44-E69) 118-21 
in the Meno 3-7 
and Socrates (S1-S43) 24-7, 45-6, 111 

stoicheia 163, 381-94 
suntithemi 137-8; see also ratio 

(compounding) 
surds 156-7, 171-3, 190, 333-9, 354-5 
symbolic notation 22-3, 67-9, 133, 166, 397 
synodic month 51, 122 
synthesis 84-92, 137, 404 

tables 234-40, 268-76 
ton m to n 235-6, 258, 263-6 
Topics proposition 17-18, 19, 28, 135, 167, 

366,405 
trisection 28 9 

writing 22, 28-9, 204-21 

Zenon archive 31, 61 




