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“Though we may never see pre-
cisely how the protean dancing stuff
of everything endlessly becomes
itself, we have no choice, being
human and full of desire, but to go
on perpetually seeking clarity of
vision. The ultimate form within
forms, the final shape of change,
may elude us. The pursuit of the
idea of form—even the form of
force, of endlessly interacting
process—is man’s inevitable, cru-
cial need”

John Unterecker






PREFACE

No doubt there are as many reasons for writing books as there are people
who write them. One function served by this particular work has been the
edification of its author. Translations can sometimes create a sense of
explanation, and this seemed to me particularly true of the alternative
account of mathematical constructions being produced by category
theory. Writing the book gave me a framework within which to confirm
that impression and to work through its ramifications in some detail. At
the end I knew a great deal more than when I began, so that the result is
as much a recording as a reconstruction of the progress of my own
understanding. And at the end it seemed to me that much that I had
dwelt on had finally fallen into place.

As to the more public functions of the book —1I hope that it provides
others with the prospect of a similar experience. Less presumptiously, I
have tried to write an exposition that will be accessible to the widest
possible audience of logicians — the philosophically motivated as well as
the mathematical. This, in part, accounts for the style that I have adopted.
There is a tendency in much contemporary literature to present material
in a highly systematised fashion, in which an abstract definition will
typically come before the list of examples that reveals the original
motivation for that definition. Paedogogically, a disadvantage of this
approach is that the student is not actually shown the genesis of concepts —
how and why they evolved —and is thereby taught nothing about the
mechanisms of creative thinking. Apart from lending the topic an often
illusory impression of completedness, the method also has the drawback
of inflating prerequisites to understanding.

All of this seems to me particularly dangerous in the case of category
theory, a discipline that has more than once been referred to as “abstract
nonsense”. In my experience, that reaction is the result of features that
are not intrinsic to the subject itself, but are due merely to the style of
some of its expositors. The approach I have taken here is to try to move
always from the particular to the general, following through the steps of
the abstraction process until the abstract concept emerges naturally. The
starting points are elementary (in the “first principles” sense), and at the
finish it would be quite appropriate for the reader to feel that (s)he had
just arrived at the subject, rather than reached the end of the story.

ix



X PREFACE

As to the specific treatment of category theory, I have attempted to
play down the functorial perspective initially and take an elementary (in
the sense of “first-order”) approach, using the same kind of combinatorial
manipulation of algebraic structure that is employed in developing the
basic theory of any of the more familiar objects of pure-mathematical
study. In these terms categories as structures are no more rarified than
groups, lattices, vector-spaces etc.

I should explain that whereas the bulk of the manuscript was completed
around May of 1977, the sections 11.9, 14.7 and 14.8 were written a year
later while I was on leave in Oxford (during which time I held a
Travelling Fellowship from the Nuffield Foundation, whose assistance 1
am pleased to acknowledge). The additional material was simply ap-
pended to Chapters 11 and 14, since, although the arrangement is less
than ideal, it was impractical at that stage to begin a major reorganisa-
tion. I imagine however that there will be readers interested in the
construction of number-systems in 14.8 who do not wish to wade through
the earlier material in Chapter 14 on Grothendieck topologies, elemen-
tary sites etc. In fact in order to follow the definition of Dedekind-reals in
the topos of 2-sets, and their representation as classical continuous
real-valued functions, it would suffice to have absorbed the description of
that topos given in 11.9. The full sheaf-theoretic version of this construc-
tion depends on the theory of (2-sheaves developed in 14.7, but a
sufficient further preparation for the latter would be to read the first few
pages of 14.1, at least as far as the introduction of the axiom COM on
page 362.

A point of terminology: —I have consistently used the word “categor-
ial”” where the literature uniformly employs “categorical”. The reason is
that while both can serve as adjectival forms of the noun ‘‘category”, the
second of them already has a different and long established usage in the
domain of logic, one that derives from its ordinary-language meaning of
“absolute”. Logicians have known since the work of Godel that set
theory has no categorical axiomatisation. One function of this book will
be to explain to them why it does have a categorial one.

There are a number of people who I would like to thank for their help
in the production of the book. I am indebted to Shelley Carlyle for her
skilful typing of the manuscript; to the Internal Research Committee and
the Mathematics Department of the Victoria University of Wellington for
substantially subsidising its cost; to Pat Suppes for responding favourably
to it, and supporting it; and to Einar Fredriksson and Thomas van den
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Heuvel for the expertise and cooperation with which they organised its
editing and publishing.

My involvement with categorial logic gained impetus through working
with Mike Brockway on his M.Sc. studies, and I have benefited from
many conversations with him and access to his notes on several topics. In
obtaining other unpublished material I was particularly helped by Gon-
zalo Reyes. Dana Scott, by his hospitality at Oxford, performed a similar
service and provided a much appreciated opportunity to aquaint myself
with his approach to sheaves and their logic. In preparing the material
about the structure of the continuum I was greatly assisted by discussions
with Scott, and also with Charles Burden.

Finally, it is a pleasure to record here my indebtedness to my teachers
and colleagues in the logic group at VUW, particularly to my doctoral
advisors Max Cresswell and George Hughes, and to Wilf Malcolm, for
their involvement in my concerns and encouragement of my progress
throughout the time that I have been a student of mathematical logic.

Where did topos theory come from? In the introduction to his recent
book on the subject, Peter Johnstone describes two lines of development
in the fields of algebraic geometry and category theory. It seems to me
that a full historical perspective requires the teasing out of a third strand
of events in the area of specific conern to this book, i.e. logic, especially
model theory. We may begin this account with Cohen’s work in 1963 on
the independence of the continuum hypothesis et. al. His forcing techni-
que proved to be the key to the universe of classical set theory, and led to
a wave of exploration of that territory. But as soon as the method had
been reformulated in the Scott-Solovay theory of Boolean-valued models
(1965), the possibility presented itself of replacing “Boolean” by “Heyt-
ing” and thereby generalising the enterprise. Indeed Scott made this point
in his 1967 lecture-notes and then took it up in his papers (1968, 1970)
on the topological interpretation of intuitionistic analysis.

Meanwhile the notion of an elementary topos had independently
emerged through Lawvere’s attempts to axiomatise the category of sets.
The two developments became linked together by the concept of a sheaf:
the study of cartesian-closed categories with subobject classifiers (topoi)
got under way in earnest once it was realised that they included all the
Grothendieck sheaf-categories, while the topological interpretation was
seen to have provided the first examples for a general axiomatic theory of
sheaf-models over Heyting algebras that was subsequently devised by
Scott and developed in association with Michael Fourman (cf. 14.7 and
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14.8). In this latter context (many of whose ideas have precursors in the
initial Boolean work), the earlier problem (Scott 1968, p. 208) of dealing
with partially defined entities is elegantly resolved by the introduction of
an existence predicate, whose semantical interpretation is a measure of the
extent to which an individual is defined (exists). To complete the picture,
and round out this whole progression of ideas, some unpublished work of
Denis Higgs (1973) demonstrated that the category of sheaves over B (a
complete Boolean algebra) is equivalent to the category of B-valued sets
and functions in the original Scott-Solovay sense.

And what of the future? What, for instance, is the likely impact of the
latest independence results to the effect that there exist topoi in which the
Heine—Borel Theorem fails, the Dedekind-reals are not real-closed, com-
plex numbers lack square-roots etc.? Predictions at this stage would I
think be premature —after all today’s pathology may well be dubbed
“classical” by some future generation. The intellectual tradition to which
topos theory is a small contribution goes back to a time when mathema-
tics was closely tied to the physical and visual world, when ‘“geometry”
for the Greeks really had something to do with land-measurement. It was
only relatively recently, with the advent of non-Euclidean geometries,
that it became possible to see that discipline as having a quite indepen-
deni existence and significance. Analogously, that part of the study of
structure that is concerned with those structures called ‘logics” has
evolved to a point that lies beyond its original grounding (the analysis of
principles of reasoning). But the separation from this external authority
has no more consequences as to the true nature of reasoning than does
the existence of non-Euclidean geometries decide anything either way
about the true geometrical properties of visual space.

The laws of Heyting algebra embody a rich and profound mathematical
structure that is manifest in a variety of contexts. It arises from the
epistemological deliberations of Brouwer, the topologisation (localisation)
of set-theoretic notions, and the categorial formulation of set theory, all
of which, although interrelated, are independently motivated. This ubi-
quity lends weight, not to the suggestion that the correct logic is in fact
intuitionistic instead of classical, but rather to the recognition that think-
ing in such terms is simply inappropriate —in the same way that it is
inappropriate to speak without qualification about the correct geometry.

At the same time, these developments have shown us more clearly than
ever just how the properties of the structures we study depend on the
principles of logic we employ in studying them. Particularly striking is the
fine-tuning that has been given to the modern logical/set-theoretical
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articulation of the structure of the intuitively conceived continuum (which
to Euclid was not a set of points at all, let alone an object in a topos).
Indeed it seems that the deeper the probing goes the less will be the
currency given to the definite article in references to “the continuum”.

Other areas of mathematics (abstract algebra, axiomatic geometry)
have long since become autonomous activities of mental creation, just as
painting and even music have long since progressed beyond the represen-
tational to aquire substantial (in some cases all-consuming) subjective and
intellectual components. A similar situation could be said to be arising in
mathematical logic. In the absence of that external authority (the rep-
resentation of things “out there’’) we may not so readily determine what
is worthwhile and significant, just as it is no longer so easy to understand
and make judgements about many contemporary aesthetic developments.
Were we to identify the valuable with that whose value is lasting, a
considerable period of winnowing might well be required before we could
decide what is wheat and what is chaff. Looking back over the progress of
the last two decades or so we see several strands that weave together to
present the current interest in Heyting-valued structures as the natural
product of the evolution of a substantial area of mathematical thought.
Wherever it may be heading, we may already locate its permanent
importance in the way it has brought a number of disciplines (logic, set
theory, algebraic geometry, category theory) together under one roof, and
in the contribution it has thereby made to our understanding of the house
that we mentally build for ourselves to live in.

No doubt these remarks will be thought contentious by some. I hope
that they will be found provocative as well. Should it inspire, or incite,
anybody to respond to them, this book will have fulfilled one of its
intended functions.

Wellington R. 1. Goldblatt
Autumnal Equinox, 1979



PREFACE TO THE SECOND EDITION

This edition contains a new chapter, entitled Logical Geometry, which is
intended to introduce the reader to the theory of geometric morphisms
between Grothendieck topoi, and the model-theoretic rendering of this
theory due to Makkai and Reyes. The main aim of the chapter is to
explain why a theorem, due to Deligne, about the existence of geometric
morphisms from Set to certain “‘coherent” topoi is equivalent to the
classical logical Completeness Theorem for a certain class of “geometric”
first-order formulae.

I have also taken the opportunity to correct a number of typographical
errors, and false assertions, most of which have been kindly supplied by
readers. In particular there are changes to Exercises 9.3.3, 11.5.3, 11.5.4,
14.3.4, 14.3.6, 14.3.7. Also, the statement as to the nature of the Cauchy
reals in 2-Set on page 414 requires qualification—it holds only for
certain CHA’s . For spatial CHA’s (topologies), Fourman has given a
necessary and sufficient condition for the statement to be true, which, in
spaces with a countable basis, is equivalent to local connectedness (cf. M.
P. Fourman, Comparison des réelles d’'un topos; structures lisses sur un
topos élémentaire, Cahiers top. et géom. diff., XVI (1976), 233-239).

No doubt more errors remain: for these I can only crave the indulgence
of the reader.

Wellington, 1983 : R. I Goldblatt

Xiv
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PROSPECTUS

“...all sciences including the

most evolved are characterised by

a state of perpetual becoming.”
Jean Piaget

The purpose of this book is to introduce the reader to the notion of a
topos, and to explain what its implications are for logic and the founda-
tions of mathematics.

The study of topoi arises within category theory, itself a relatively new
branch of mathematical enquiry. One of the primary perspectives offered
by category theory is that the concept of arrow, abstracted from that of
function or mapping, may be used instead of the set membership relation
as the basic building block for developing mathematical constructions,
and expressing properties of mathematical entities. Instead of defining
properties of a collection by reference to its members, i.e. internal
structure, one can proceed by reference to its external relationships with
other collections. The links between collections are provided by functions,
and the axioms for a category derive from the properties of functions
under composition.

A category may be thought of in the first instance as a universe for a
particular kind of mathematical discourse. Such a universe is determined
‘by specifying a certain kind of ““object”, and a certain kind of “arrow”
that links different objects. Thus the study of topology takes place in a
universe of discourse (category) with topological spaces as the objects and
continuous functions as the arrows. Linear algebra is set in the category
whose arrows are linear transformations between vector spaces (the
objects); group theory in the category whose arrows are group
homomorphisms; differential topology where the arrows are smooth maps
of manifolds, and so on.

We may thus regard the broad mathematical spectrum as being blocked
out into a number of ‘subject matters’ or categories (a useful way of
lending coherence and unity to an ever proliferating and diversifying
discipline). Category theory provides the language for dealing with these

1



2 PROSPECTUS

domains and for developing methods of passing from one to the other.
The subject was initiated in the early 1940’s by Samuel Filenberg and
Saunders Maclane. Its origins lie in algebraic topology, where construc-
tions are developed that connect the domain of topology with that of
algebra, specifically group theory. The study of categories has rapidly
become however an abstract discipline in its own right and now consti-
tutes a substantial branch of pure mathematics. But further than this it
has had a considerable impact on the conceptual basis of mathematics and
the language of mathematical practice. It provides an elegant and power-
ful means of expressing relationships across wide areas of mathematics,
and a range of tools that seem to be becoming more and more a part of
the mathematician’s stock in trade. New light is shed on existing theories
by recasting them in arrow-theoretic terms (witness the recent uni-
fication of computation and control theories described in Manes [75]).
Moreover category theory has succeeded in identifying and explicating a
number of extremely fundamental and powerful mathematical ideas (uni-
versal property, adjointness). And now after a mere thirty years it offers a
new theoretical framework for mathematics itself!

The most general universe of current mathematical discourse is the
category known at Set, whose objects are the sets and whose arrows are
the set functions. Here the fundamental mathematical concepts (number,
function, relation) are given formal descriptions, and the specification of
axioms legislating about the properties of sets leads to a so called
foundation of mathematics. The basic set-theoretic operations and attri-
butes (empty set, intersection, product set, surjective function e.g.) can be
described by reference to the arrows in Set, and these descriptions
interpreted in any category. However the category axioms are “weak”, in
the sense that they hold in contexts that differ wildly from the initial
examples cited above. In such contexts the interpretations of set-theoretic
notions can behave quite differently to their counterparts in Set. So the
question arises as to when this situation is avoided, i.e. when does a
category look and behave like Set? A vague answer is —when it is (at
least) a topos. This then gives our first indication of what a topos is. It is a
category whose structure is sufficiently like Set that in it the interpretations
of basic set-theoretical constructions behave much as they do in Set itself.

The word topos (‘“place”, or “site” in Greek) was originally used by
Alexander Grothendieck in the context of algebraic geometry. Here there
is a notion called a “‘sheaf” over a topological space. The collection of
sheaves over a topological space form a category. Grothendieck and his
colleagues extended this construction by replacing the topological space
by a more general categorial structure. The resulting generalised notion
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of category of sheaves was given the name “topos” (cf. Artin et al.
[SGA4]).

Independently of this, F. William Lawvere tackled the question as to
what conditions a category must satisfy in order for it to be “essentially
the same” as Set. His first answer was published in 1964. A shortcoming
of this work was that one of the conditions was set-theoretic in nature.
Since the aim was to categorially axiomatise set theory, i.e. to produce
set-theory out of category theory, the result was not satisfactory, in that it
made use of set-theory from the outset.

In 1969 Lawvere, in conjunction with Myles Tierney, began the study
of categories having a special kind of arrow, called a ‘“‘subobject clas-
sifier” (briefly, this is an embodiment of the correspondence between
subsets and characteristic functions in Set). This notion proved to be, in
Lawvere’s words, the “principle struggle” —the key to the earlier prob-
lem. He discovered that the Grothendieck topoi all had subobject clas-
sifiers, and so took over the name. The outcome is the abstract axiomatic
concept of an elementary topos, formulated entirely in the basic language
of categories and independently of set theory. Subsequently William
Mitchell [72] and Julian Cole [73] produced a full and detailed answer to
the above question by identifying the elementary topoi that are equival-
ent to Set.

As mentioned earlier set theory provides a general conceptual
framework for mathematics. Now, since category theory, through the
notion of topos, has succeeded in axiomatising set-theory, the outcome is
an entirely new categorial foundation of mathematics! The category-
theorists attitude that “function” rather than “‘set membership’ can be
seen as the fundamental mathematical concept has been entirely vindi-
cated. The pre-eminent role of set theory in contemporary mathematics is
suddenly challenged. A revolution has occurred in the history of
mathematical ideas (albeit a peaceful one) that will undoubtedly influence
the direction of the path to the future.

The notion of topos has great unifying power. It encompasses Set as
well as the Grothendieck categories of sheaves, and so brings together the
domains of set theory and algebraic geometry. But it also has ramifica-
tions for another area of rational inquiry, namely logic, the study of the
canons of deductive reasoning. The principles of classical logic are rep-
resented in Set by operations on a certain set —the two element Boolean
algebra. Fach topos has an analogue of this algebra and so one can say
that each topos carries its own logical calculus. It turns out that this
calculus may differ from classical logic, and in general the logical princ-
ples that hold in a topos are those of intuitionistic logic. Now Intuitionism
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is a constructivist philosophy about the nature of mathematical entities
and the meaning and validity of mathematical statements. It has nothing
to do, per se, with logic in a topos, since the latter arises from a
reformulation in categorial language of the set-theoretical account of
classical logic. And yet we have this remarkable discovery that the two
enterprises lead to the same logical structure. An inkling of how this can
be comes on reflection that there is a well-known link between in-
tuitionistic logic and topology, and that sheaves are initially topological
entities. Furthermore the set-theoretical modelling of intuitionistic logic
due to Saul Kripke [65] can be used to construct topoi in which the logic,
as generalised from Set, turns out to be a reformulation of Kripke’s
semantic theory. Moreover these topoi of Kripke models can be con-
strued as categories of sheaves.

These developments have yielded significant insights and new perspec-
tives concerning the nature of sets and the connection between in-
tuitionistic and classical logic. For example, one property enjoyed by the
arrows in Set is extensionality; a function is uniquely determined by the
values it gives to its arguments. Now the individuals of a topos may be
thought of as ‘generalised’ sets and functions that may well be non-
extensional. Interestingly, the imposition of extensionality proves to be
one way of ensuring that the topos logic is classical. Another way, equally
revealing, is to invoke (in arrow language) the axiom of choice.

Our aim then is to present the details of the story just sketched. The
currently available literature on topoi takes the form of graduate level
lecture notes, research papers and theses, wherein the mathematical
sophisticate will find his needs adequately served. The present work on
the other hand is an attempt at a fully introductory exposition, aimed at a
wide audience. The author shares the view that the emergence of topos
theory is an event of supreme importance, that has major implications for
the advancement of conceptual understanding as well as technical know-
ledge in mathematics. It should therefore be made available to the
philosopher-logician as well as the mathematician. Hence there are very
few prerequisites for this book. Everything - set theory, logic, and categ-
ory theory— begins at square one. Although some material may be very
familiar, it should be remembered that one of our main themes is the
development of new perspectives for familiar concepts. Hence it would
seem quite appropriate that these concepts be re-appraised and that
explicit discussion be provided of things that to many will have become
second nature.

There are a number of proofs of theorems whose length and detail
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may be discouraging. A similar comment applies to the verification of the
structural properties of some of the more complex categories (sheaves,
Kripke models). The reader is recommended to skip over all of this detail
initially and concentrate on the flow of ideas. It can often happen that
although the verifications are long and tedious, the facts and ideas are
themselves clear and readily comprehensible. Hopefully by steering a
judiciously chosen course through elementary expositions that will bore
the cognoscente, abstruse constructions that will tax the novice, and
detailed justifications that will exhaust anyone, the reader will emerge
with some insight into the “what” and “why” of this fascinating new area
of logical-mathematical-philosophical study.



CHAPTER 1

MATHEMATICS =SET THEORY?

“No one shall drive us out of
the paradise that Cantor has
created”

David Hilbert

1.1. Set theory

The basic concept upon which the discipline known as set theory rests is
the notion of set membership. A set may be initially thought of simply as a
collection of objects, these objects being called elements of that collec-
tion. Membership is the relation that an object bears to a set by dint of its
being an element of that set. This relation is symbolised by the Greek
letter € (epsilon). ““x € A” means that A is a collection of objects, one of
which is x, i.e. x is a member (element) of A. When x is not an element of
A, this is written xZ2 A. If x € A, we may also say that x belongs to A.

From these fundamental ideas we may build up a catalogue of defini-
tions and constructions that allow us to specify particular sets, and
construct new sets from given ones. There are two techniques used here.

(a) Tabular form: this consists in specifying a set by explicitly stating all
of its elements. A list of these elements is given, enclosed in brackets.
Thus

{0,1,2,3}

denotes the collection whose members are all the whole numbers up to 3.
(b) Set Builder form: this is a very much more powerful device that
specifies a set by stating a property that is possessed by all the elements of
the set, and by no other objects. Thus the property of ‘“being a whole
number smaller than four” determines the set that was given above in
tabular form. The use of properties to define sets is enshrined in the

PrINCIPLE OF COMPREHENSION. If ¢(x) is a property or condition pertaining
to objects x, then there exists a set whose elements are precisely the objects
that have the property (or satisfy the condition) ¢(x).

6
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The set corresponding to the property ¢(x) is denoted
{x: @(x)}

This expression is to be read “the set of all those objects x such that ¢ is
true of x”.

ExampiEe 1. If @(x) is the condition “x € A and x € B” we obtain the set
{x:x€ A and xe B}

of all objects that belong to both A and B, i.e. the set of objects that A
and B have in common. This is known as the intersection of the sets A
and B, and is denoted briefly by A N B.

Exampie 2. The condition “x€ A or x € B” yields, by the Comprehen-
sion Principle the set

{x:x€ A or xe B}

consisting of all of the elements of A together with all of those of B, and
none others. It is called the union of A and B, written A UB.

ExampLE 3. The condition “x& A” determines —A, the complement of A.
Thus

—A={x:x¢A}

is the set whose members are precisely those objects that do not belong to
A.

These examples all yield new sets from given ones. We may also
directly define sets by using conditions that do not refer to any particular
sets. Thus from “x# x” we obtain the set

g={x:x#x}

of all those objects x such that x is not equal to x. Since no object is
distinct from itself, there is nothing that can satisfy the property x # x, i.e.
@ has no members. For this reason @ is known as the empty set. Notice
that we have already ‘“widened our ontology” from the original concep-
tion of a set as something with members to admit as a set something that
has no members at all. The notion of an empty collection is often difficult
to accept at first. One tends to think initially of sets as objects built up in
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a rather concrete way out of their constituents (elements). The introduc-
tion of @ forces us to contemplate sets as abstract ““things-in-themselves”.
One could think of references to @ as an alternative form of words, e.g.
that “ANB =0 is a short-hand way of saying “A and B have no
elements in common”. Familiarity and experience eventually show that
the admission of @ as an actual object enhances and simplifies the theory.
The justification for calling @ the empty set is that there can be only one
set with no members. This follows from the definition of equality of sets
as embodied in the

PRINCIPLE OF EXTENSIONALITY: Two Sets are equal iff they have the same
elements.

1t follows from this principle that if two sets are to be distinct then there
must be an object that is a member of one but not the other. Since empty
collections have no elements they cannot be so distinguished and so the
Extensionality Principle implies that there is only one empty set.

Subsets

The definition of equality of sets can alternatively be conveyed through
the notion of subsets. A set A is a subset of set B, written A < B, if each
member of A is also a member of B.

ExamrLe 1. The set {0,1,2} is a subset of {0,1,2 3}, {0,1,2}c
10, 1,2, 3.

ExampLE 2. For any set A, we have A € A, since each member of A is a
member of A.

ExampLE 3. For any set A, < A, for if § was not a subset of A, there
would be an element of @ that did not belong to A. However @ has no

elements at all.
AN

Using this latest concept we can see that, for any sets A and B,
A=B if AcB and BgZA.
If A< B but A# B, we may write A< B (A is a proper subset of B).
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Russell’s Paradox

In stating and using the Comprehension Principle we gave no precise
explanation of what a “condition pertaining to objects x’” is, nor indeed
what sort of entities the letter x is referring to. Do we intend the elements
of our sets to be physical objects, like tables, people, or the Eiffel Tower,
or are they to be abstract things, like numbers, or other sets themselves?
What about the collection

V={x:x=x}?

All things, being equal to themselves, satisfy the defining condition for
this set. Is V then to include everything in the world (itself as well) or
should it be restricted to a particular kind of object, a particular universe
of discourse?

To demonstrate the significance of these questions we consider the
condition “x¢x”. It is easy to think of sets that do not belong to
themselves. For example the set {0, 1} is distinct from its two elements 0
and 1. It is not so easy to think of a collection that includes itself amongst
its members. One might contemplate something like “‘the set of all sets™.
A somewhat intriguing example derives from the condition

“x is a set derived from the Comprehension Principle by a defining
condition expressed in less than 22 words of English”.
The sentence in quotation marks has less than 22 words, and so defines a
set that satisfies its own defining condition.
Using the Comprehension Principle we form the so-called Russell set

R ={x:x¢x}.

The crunch comes when we ask “Does R itself satisfy the condition
x¢x?” Now if R¢ R, it does satisfy the condition, so it belongs to the set
defined by that condition, which is R, hence R € R. Thus the assumption
R¢ R leads to the contradictory conclusion Re R. We must therefore
reject this assumption, and accept the alternative Re R. But if Re R, i.e.
R is an element of R, it must satisfy the defining condition for R, which is
x¢ x. Thus R¢ R. This time the assumption R € R has lead to contradic-
tion, so it is rejected in favor of R¢ R. So now we have proven both
ReR and R¢ R, i.e. R both is, and is not, an element of itself. This is
hardly an acceptable situation.

The above argument, known as Russell’s Paradox, was discovered by
Bertrand Russell in 1901. Set theory itself began a few decades earlier
with the work of George Cantor. Cantor’s concern was initially with the
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analysis of the real number system, and his theory, while rapidly becom-
ing of intrinsic interest, was largely intended to give insight into proper-
ties of infinite sets of real numbers (e.g. that the set of irrational numbers
has “‘more” elements than the set of rational numbers). During this same
period the logician Gottlob Frege made the first attempt to found a
definition of “number” and a development of the laws of arithmetic on
formal logic and set theory. Frege’s system included the Comprehension
Principle in a form much as we have given it, and so was shown to be
inconsistent (contradictory) by Russell’s paradox. The appearance of the
later, along with other set-theoretical paradoxes, constituted a crisis in the
development of a theoretical basis for mathematical knowledge.
Mathematicians were faced with the problem of revising their intuitive
ideas about sets and reformulating them in such a way as to avoid
inconsistencies. This challenge provided one of the major sources for the
burgeoning growth in this century of mathematical logic, a subject which,
amongst other things, undertakes a detailed analysis of the axiomatic
method itself.

NBG

Set theory now has a rigorous axiomatic formulation - in fact several of
them, each offering a particular resolution of the paradoxes.

John von Neuman proposed a solution in the mid-1920’s that was later
refined and developed by Paul Bernays and Kurt Godel. The outcome is a
group of axioms known as the system NBG. Its central feature is a very
simple and yet powerful conceptual distinction between sets and classes.
All entities referred to in NBG are to be thought of as classes, which
correspond to our intuitive notion of collections of objects. The word
“set” is reserved for those classes that are themselves members of other
classes. The statement “x is a set” is then short-hand for “there is a class
y such that xe€y”. Classes that are not sets are called proper classes.
Intuitively we think of them as “very large” collections. The Comprehen-
sion Principle is modified by requiring the objects x referred to there to
be sets. Thus from a condition ¢(x) we can form the class of all sets
(elements of other classes) that satisfy ¢(x). This is denoted

{x:x is aset and ¢(x)}.
The definition of the Russell class must now be modified to read

R ={x:xisasetand x¢ x}.
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Looking back at the form of the paradox we see that we now have a way
out. In order to derive Re R we would need the extra assumption that R
is a set. If this were true the contradiction would obtain as before, and so
we reject it as false. Thus the paradox disappears and the argument
becomes nothing more than a proof that R is a proper class i.e. a large
collection that is not an element of any other collection. In particular
R¢R.

Another example of a proper class is V, which we now take to be the
class

{x:xisasetand x = x}

whose elements are all the sets. In fact NBG has further axioms that
imply that V=R, i.e. no set is a member of itself.

ZF

A somewhat different and historically prior approach to the paradoxes
was proposed by Ernst Zermelo in 1908. This system was later extended
by Abraham Fraenkel and is now known as ZF. It can be informally
regarded as a theory of “set-building”. There is only one kind of entity,
the set. All sets are built up from certain simple ones (in fact one can start
just with @) by operations like intersection 1\, union U, and
complementation —. The axioms of ZF legislate as to when such opera-
tions can be effected. They can only be applied to sets that have already
been constructed, and the result is always a set. Thus proper classes like
R are never actually constructed within ZF.

The Comprehension Principle can now only be used relative to a given
set, i.e. we cannot collect together all objects satisfying a certain condi-
tion, but only those we already know to be members of some previously
defined set. In ZF this is known as the

SEPARATION PRINCIPLE. Given a set A and a condition ¢(x) there exists a
set whose elements are precisely those members of A that satisfy ¢(x).
This set is denoted
{x:x € A and ¢(x)}.

Again we can no longer form the Russell class per se, but only for each
set A the set

R(A)={x:xc A and x€ x}.
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To obtain a contradiction involving the statements R(A)e R(A) and
R(A)¢ R(A) we would need to know that R(A)e A. Our conclusion
then is simply that R(A)¢ A. In fact in ZF as in NBG no set is an
element of itself, so R(A)=A. (Note the similarity of this argument to
the resolution in NBG -replacing V everywhere by A makes the latter
formally identical to the former.)

NBG and ZF then offer some answers to the questions posed earlier. In
practical uses of set theory, members of collections may well be physicial
objects. In axiomatic presentations of set theory however all objects have
a conceptual rather than a material existence. The entities considered are
“abstract” collections, whose members are themselves sets. NBG offers a
“larger” ontology than ZF. Indeed ZF can be construed as a subsystem of
NBG, consisting of the part of NBG that refers only to sets, (i.e. classes
that are not proper). We still have not shed any real light on what we
mean by a “condition pertaining to objects x”’ (since sets are never
members of themselves, the ‘“‘less than 22 words” condition mentioned
earlier will not be admissible in ZF or NBG). Some clarification of this
notion will come later when we consider formal languages and take a
closer look at the details of the axioms for systems like ZF.

Consistency

The fact that a particular system avoids Russell’s Paradox does not
guarantee that it is consistent, i.e. entirely free of contradictions. It is
known an inconsistency in either ZF or NBG would imply an inconsis-
tency in the other, and so the two systems stand or fall together. They
have been intensively and extensively studied in the last 60 or so years
without any contradiction emerging. However there is a real conceptual
barrier to the possibility of proving that no such contradiction will ever be
found. This was demonstrated by Godel, around 1930, who showed in
effect that any proof of consistency would have to depend on principles
whose own consistency was no more certain than that of ZF and NBG
themselves. In the decade prior to Godel’s work a group of mathemati-
cians lead by David Hilbert had attempted to establish the consistency of |
arithmetic and mathematics generally by using only so-called finitary
methods. These methods are confined to the description of concrete,
particular, directly perceivable objects, and principles whose truth is
evident by direct inspection. Godel showed that such methods could
never establish the consistency of any system that was powerful enough to
develop the arithmetic of ordinary whole numbers. This discovery is
regarded as one of the major mathematical events of the 20th century. Its
impact on Hilbert’s program was devastating, but many people have
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found in it a source of encouragement, an affirmation of the essentially
creative nature of mathematical thought, and evidence against the
mechanistic thesis that the mind can be adequately modelled as a physical
computing device. As Godel himself has put it, “‘either mathematics is too
big for the human mind, or the human mind is more than a machine.” (cf.
Bergamini [65]).

While it would seem there can be no absolute demonstration of the
consistency of ZF, there is considerable justification, of an experiential
and epistemological nature, for the belief that it contains no contradic-
tions. Certainly if the opposite were the case then, in view of the central
role of set theory in contemporary mathematics, a great deal more would
be at stake than simply the adequacy of a particular set of postulates.

Which of ZF and NBG is a “‘better’’ treatment of set theory? The choice
is largely a matter of philosophical taste, together with practical need. ZF
seems to enjoy the widest popularity amongst mathematicians generally.
Its principle of relativising constructions to particular sets closely reflects
the way set theory is actually used in mathematics, where sets are
specified within clearly given, mathematically defined contexts (uni-
verses). The collection of all sets has not been an object of concern for
most working mathematicians. Indeed the sets that they need can gener-
ally be obtained within a small fragment of ZF. It is only very recently,
with the advent of category theory that a genuine need has arisen
amongst mathematicians (other than set-theorists) for a means of handl-
ing large collections. These needs are met in a more flexible way by the
class-set dichotomy, and have offered a more significant role to NBG and
even stronger systems.

The moral to be drawn from these observations is that there is no
“correct’” way to do set theory. The system a mathematician chooses to
work with will depend on what he wishes to achieve.

1.2. Foundations of mathematics

The aim of Foundatijonal studies is to produce a rigorous explication of the
nature of mathematical reality. This involves a precise and formal defini-
tion, or representation of mathematical concepts, so that their inter-
relationships can be clarified and their properties better understood. Most
approaches to foundations use the axiomatic method. The language to be
used is first introduced, generally itself in a precise and formal descrip-
tion. This language then serves for the definition of mathematical notions
and the statement of postulates, or axioms, concerning their properties.
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The axioms codify ways we regard mathematical objects as actually
behaving. The theory of these objects is then developed in the form of
statements derived from the axioms by techniques of deduction that are
themselves rendered explicit.

It would be somewhat misleading to infer from this that foundational
systems act primarily as a basis out of which mathematics is actually
created. The artificiality of that view is evident when one reflects that the
essential content of mathematics is already there before the basis is made
explicit, and does not depend on it for its existence. We may for example
think of a real number as an infinite decimal expression, or a point on the
number line. Alternatively it could be introduced as an element of a
complete ordered field, an equivalence class of Cauchy sequences, or a
Dedekind cut. None of these could be said to be the correct explanation
of what a real number is. Each is an enbodiment of an intuitive notion
and we evalute it, not in terms of its correctness, but rather in terms of its
effectiveness in explicating the nature of the real number system.

Mathematical discovery is by no means a matter of systematic deduc-
tive procedure. It involves insight, imagination, and long explorations
along paths that sometimes lead nowhere. Axiomatic presentations serve
to describe and communicate the fruits of this activity, often in a different
order to that in which they were arrived at. They lend a coherence and
unity to their subject matter, an overview of its extent and limitations.

Having clarified our intuitions, the formal framework may then be used
for further exploration. It is at this level that the axiomatic method does
have a creative role. The systematisation of a particular theory may lead
to new internal discoveries, or the recognition of similarities with other
theories and their subsequent unification. This however belongs to the
“doing” of mathematics. As far as Foundational studies are concerned
the role of axiomatics is largely descriptive. A Foundational system serves
not so much to prop up the house of mathematics as to clarify the
principles and methods by which the house was built in the first place.
“Foundations” is a discipline that can be seen as a branch of mathematics
standing apart from the rest of the subject in order to describe the world
in which the working mathematician lives.

1.3. Mathematics as set theory

The equation of mathematics with set theory can with some justification
be seen as a summary of the direction that mathematics has taken in
modern times. Many will have heard of the revolution in school curricula
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called the “New Math”. This has largely revolved around the introduction
of set theory into elementary education and indicates the preoccupation
of the mathematical community with that subject. Of all the foundational
frameworks that have been proposed, the set theories have enjoyed the
widest acceptance and the most detailed attention. Systems like ZF and
NBG provide an elegant formalisation and explanation of the basic
notions that the mathematician uses. Paul Cohen, whose work on the
independence of the Continuum Hypothesis in 1963 lead to a veritable
explosion of set-theoretic activity, has said “‘by analysing mathematical
arguments logicians became convinced that the notion of ‘“set” is the
most fundamental concept of mathematics.”

Apart from, or perhaps because of, its central role in Foundations, set
theory has also dominated the stage of mathematical practise. This is not
intended to imply that mathematicians think in set-theoretical concepts,
although that is very often the case. Rather the point is that set theory is
the basic tool of communication and exposition. It has provided the
vehicle for an enormous proliferation of mathematics, both in terms of
quantity of knowledge and range of topics and applications. It would be
hard to find a recent book on any pure mathematical subject, be it
algebra, geometry, analysis, or probability theory, that used no set-
theoretical symbolism.

The group of French mathematicians who work under the name of
Nicolas Bourbaki undertook in 1935 the formidable task of producing a
“fully axiomatised presentation of mathematics in entirety”’. The result,
over 40 vyears, has been about that many volumes to date, ranging over
algebra, analysis and topology. Book 1 of this influential work is devoted
to the theory of sets, which provides the framework for the whole
enterprise. Bourbaki has said (1949) “. .. all mathematical theories may
be regarded as extensions of the general theory of sets ... on these
foundations I state that I can build up the whole of the mathematics of
the present day”.

The point to be made in this book is that the emergence of category
theory has changed the perspectives just described, and that Cohen’s
statement is no longer even prima facie acceptable. It may be the case that
the objects of mathematical study can be thought of as sets, but it is not
certain that in the future they will be so regarded. No doubt the basic

.language of set theory will continue to be an important tool whenever
collections of things are to be dealt with. But the conception of the things
themselves as sets has lost some of its prominence through the develop-
ment of a natural and attractive alternative. It seems indeed very likely
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that the role of set theory as the lingua universalis for mathematical
foundations will be a declining one in the years to come. In case the
wrong impression should have been conveyed by the last quotation
above, it should be noted that the French mathematicians have been
amongst the first to recognise this. René Thom [71] has written that ‘‘the
old hope of Bourbaki, to see mathematical structures arise naturally from
a hierachy of sets, from their subsets, and from their combination, is,
doubtless, only an illusion”. And in an address given in 1961, Jean
Dieudonné made the following prophetic statement:

“In the years between 1920 and 1940 there occurred, as you know, a
complete reformation of the classification of different branches of
mathematics, necessitated by a new conception of the essence of
mathematical thinking itself, which originated from the works of Cantor
and Hilbert. From the latter there sprang the systematic axiomatization of
mathematical science in entirety and the fundamental concept of
mathematical structure. What you may perhaps be unaware of is that
mathematics is about to go through a second revolution at this very
moment. This is the one which is in a way completing the work of the first
revolution, namely, which is releasing mathematics from the far too
narrow conditions by ‘set’; it is the theory of categories and functors, for
which estimation of its range or perception of its consequences is still too
early...”. (Quoted from Fang [70].)



CHAPTER 2

WHAT CATEGORIES ARE

‘. .. understanding consists in re-
ducing one type of reality to
another.”

Claude Levi-Strauss

2.1. Functions are sets?

A good illustration of the way in which set theory formalises an
intuitive mathematical idea is provided by an examination of the notion
of a function. A function is an association between objects, a correspon-
dence that assigns to a given object one and only one other object. It may
be thought of as a rule, or operation, which is applied to something to
obtain its associated thing. A useful way of envisaging a function is as an
input—output process, a kind of “black box” (see figure). For a given input
the function produces a uniquely determined output. For example, the
instruction “multiply by 6” determines a function which for input 2 gives
output 6 x2=12, which associates with the number 1 the number 6,
which assigns 24 to 4, and so on. The inputs are called arguments of the
function and the outputs values, or images of the inputs that they are
produced by. If f denotes a function, and x an input, then the corres-
ponding output, the image of x under f, is denoted f(x). The above
example may then be displayed as that function f given by the rule
f(x)=6x. -

If A is the set of all appropriate inputs to function f (in our example A
will include the number 2, but not the Eiffel Tower), and B is a set that
includes all the f-images of the members of A (and possibly the Eiffel
Tower as well), then we say that f is a function from A to B. This is

symbolised as f:A—B or A 45 B. A is called the domain or source of f
and B is the codomain or target.

Function

input x output f(x)
f

Fig. 2.1,
17
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How does set theory deal with this notion? To begin with we introduce
the notion of an ordered pair, as consisting of two objects with one
designated as first, and the other as second. The notation {x, y) is used for
the ordered pair having x as first element and y as second. The essential
property of this notion is that (x, y)=(z, w)if and only if x =z and y = w.

We now define a (binary) relation as being a set whose elements are all
ordered pairs. This formalises the intuitive idea of an association referred
to earlier. If R is a relation (set of ordered pairs) and (x, y)€ R (some-
times written xRy) then we think of x being assigned to y by the
association that R represents. For example the expression ““is less than”
establishes an association between numbers and determines the set

{{x, y): x is less than y}.

Note that the pairs (1, 2) and (1, 3) both belong to this set, i.e. a relation
may associate several objects to a given one.
From a function we obtain the relation

F={x, v): y is the f-image of x}.

To distinguish those relations that represent functions we have to incor-
porate the central feature of functions, namely that a given input pro-
duces one uniquely corresponding output. This means that each x can be
the first element of only one of the ordered pairs in f. That is

(*) if (x,y)ef and (x,z)ef, then y=z

This then is our set-theoretical characterisation of a function; as a set of
ordered pairs satisfying the condition (*). What happens next is a ploy
often used in mathematics —a formal representation becomes an actual
definition. It is quite common, in books at all levels, to find near the
beginning a statement to the effect that “a function is a set of ordered
pairs such that...”.

How successful is this set-theoretical formulation of the function con-
cept? Technically it works very well and allows an easy development of
the theory of functions. But there are a number of rejoinders that can be
made on the conceptual level. Some would say that the set f is not a
function at all, but is the graph of the function f. The word of course
comes from co-ordinate geometry. If we plot in the plane the points with
co-ordinates of the form (x, 6x) we obtain a straight line (see figure)
which is known as the graph of the function f(x)=6x. This usage is
carried over to more general contexts, particularly in subjects like topol-
ogy and analysis, where writers often explicitly distinguish the function
f:A — B from the graph of [ as the set {{x, f(x)): x € A}. Conflation of
the two notions can easily lead to confusion.
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6x {x,6x

Y

X
Fig. 2.2.

Another difficulty relates to the notion of codomain. Given a function f
simply as a set of ordered pairs we can readily recover the domain (set of
inputs) as the set

dom f={x:for some vy, {x, y)ef}.

But what about the codomain of f? Recall that this can be any set that
includes all the outputs of f. The outputs themselves form the so-called
range or image of f, symbolically

Im f={y: for some x, {(x, y)ef}.

In general f can be called a function from A to B whenever A =dom f
and Im f = B. Thus a function given simply as a set of ordered pairs does
not have a uniquely determined codomain. This may seem a trifling point,
but it leads to an interesting complication with the very important notion
of identity function. This function is characterised by the rule f(x)=x, i.e.
the output assigned to a given input is just that input itself. Each set A
has its own identity function, called the identity function on A, denoted
id,, whose domain is the set A. Thus the image of id, is also A, ie.
id,: A — A. On the set-theoretic account, id, ={(x, x): x € A}

Now if A is a subset of a set B, then the rule f(x)=x provides a
function from A to B. In this case we talk of the inclusion function from
A to B, for which we reserve the symbol A<sB. The use of a new word
indicates a different intention. It conveys the sense of the function acting
to include the elements of A amongst those of B. However even though
the identity function on A and the inclusion map from A to B are
conceptually quite different, as set-theoretical entities they are identical,
i.e. exactly the same set of ordered pairs.

One way to cope with this point would be to modify the definition of
function in the following way. Firstly for sets A and B we define the
product set or Cartesian product of A and B to be the set of all ordered
pairs whose first elements are in A and second elements in B. This is



20 WHAT CATEGORIES ARE CH.2,§22

denoted A X B, and so
AXB={x,y):x€ A and yeB}.

A function is now defined as a triple f =(A, B, R), where Rc AxXB isa
relation from A to B (the graph of f), such that for each x € A there is
one and only one y € B for which (x, y)e R. Thus the domain (A) and
codomain (B) are incorporated in the definition of a function from the
outset.

Although the modified definition does tidy things up a little it still
presents a function as being basically a set of some kind —a fixed, static
object. It fails to convey the ‘“operational”” or “transitional” aspect of the
concept. One talks of “applying” a function to an argument, of a function
“acting” on a domain. There is a definite impression of action, even of
motion, as evidenced by the use of the arrow symbol, the source-target
terminology, and commonly used synonyms for ‘“function” like ‘‘transfor-
mation” and “mapping”. The impression is analogous to that of a
physical force acting on an object to move it somewhere, or replace it by
another object. Indeed in geometry, transformations (rotations, reflec-
tions, dilations etc.) are functions that quite literally describe motion,
while in applied mathematics forces are actually modelled as functions.
This dynamical quality that we have been describing is an essential part of
the meaning of the word “function” as it is used in mathematics. The
“ordered-pairs” definition does not convey this. It is a formal set-
theoretic model of the intuitive idea of a function, a model that captures
an aspect of the idea, but not its full significance.

2.2. Composition of functions

Given two functions f: A — B and g: B — C, with the target of one being
the source of the other, we can obtain a new function by the rule “apply f
and then g”. For x € A, the output f(x) is an element of B, and hence an
input to g. Applying g gives the element g(f(x)) of C. The passage from x
to g(f(x)) establishes a function with domain A and codomain C. It is
called the composite of f and g, denoted geof, and symbolically defined by

the rule gef(x)=g(f(x)).
A—t B

gof g
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Now suppose we have three functions f:A— B, g:B—C,and h:C— D
whose domains and codomains are so related that we can apply the three
in succession to get a function from A to D. There are actually two ways
to do this, since we can first form the composites gof: A — C and
heg:B — D. Then we follow either the rule “do f and then heg”, giving
the function (heg)ef, or the rule “do gef and then h”, giving the
composite ho(gof).

A f B

(foB)oy
$o(Boy)

D h

In fact these two functions are the same. When we examine their outputs
we find that

[he(geof)l(x)=h(gef(x)) = h(g(f(x))),
while
[(heog)ofl(x)=hog(f(x)) =h(g(f(x))).

Thus the two functions have the same domain and codomain, and they
give the same output for the same input. They each amount to the rule
“do f, and then g, and then h.” In other words, they are the same
function, and we have established the following.

AssocIATIVE LAw FOR FUNCTIONAL COMPOSITION. he(gof)=(heg)ef.

This law allows us to drop brackets and simply write hogof without
ambiguity. Note that the law does not apply to any three functions — the
equation only makes sense when they “follow a path”, i.e. their sources
and targets are arranged as described above.

The last figure is an example of the notion of commutative diagram, a
very important aid to understanding used in category theory. By a
diagram we simply mean a display of some objects, together with some
arrows (here representing functions) linking the objects. The “triangle” of
arrows f, g, h as shown is another diagram.
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It will be said to commute if h = gof. The point is that the diagram offers
two paths from A to C, either by composing to follow f and then g, or by
following h directly. Commutativity means that the two paths amount to
the same thing. A more complex diagram, like the previous one, is said to
be commutative when all possible triangles that are parts of the diagram
are themselves commutative. This means that any two paths of arrows in
the diagram that start at the same object and end at the same object
compose to give the same overall function.

Compeosing with identities

What happens when we compose a function with an identity function?
Given f: A — B we can follow f by idg. Computing outputs we find, for
x € A, that

idg of(x)=idg (f(x)) = f(x).

Similarly, given g:B — C we can precede g by idg, in which case, for
x €B,

geidp(x) = g(idp (x)) = g(x).
Since idg °f and f have the same source and target, as do geidg and g, we

have established the following.

IpentiTy LAW FOR FuncrtoNaL ComposrrioN. For any f:A— B, g:B —
C, idgof=f, and goidg = g.

The Identity Law amounts to the assertion of the commutativity of the
following diagram
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2.3. Categories: First examples

We have already stated that a category can initially be conceived as a
universe of mathematical discourse, and that such a universe is deter-
mined by specifying a certain kind of object and a certain kind of
“function’ between objects. The less suggestive word “arrow” is used in
place of “function” in the general theory of categories (the word ‘““morph-
ism” is also used). The following table lists some categories by specifying
their objects and arrows.

CATEGORY  OBJECTS ARROWS

Set all sets all functions between sets

Finset all finite sets all functions between finite sets

Nonset all nonempty sets all functions between nonempty sets

Top all topological spaces all continuous functions between
topological spaces

Vect vector spaces linear transformations

Grp groups group homomorphisms

Mon monoids monoid homomorphisms

Met metric spaces contraction maps

Man manifolds smooth maps

Top Grp  topological groups continuous homomorphisms

Pos partially ordered sets ~ monotone functions

In each of these examples the objects are sets with, apart from the first
three cases, some additional structure. The arrows are all set functions
which in each appropriate case satisfy conditions relating to this structure.
It is not in fact vital that the reader be familiar with all of these examples.
What is important is that she or he understands what they all have in
common — what it is that makes each of them a category. The key lies, not
in the particular nature of the objects or arrows, but in the way the
arrows behave. In each case the following things occur;

(a) each arrow has associated with it two special objects, its domain
and its codomain,

(b) there is an operation of composition that can be performed on
certain pairs (g, f) of arrows in the category (when domain of g=
codomain of f) to obtain a new arrow g ° f, which is also in the category.
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(A composite of group homomorphisms is a group homomorphism, a
composite of continuous functions between topological spaces is itself
continuous etc.) This operation of composition always obeys the Associa-
tive Law described in the last section,

(c) each object has associated with it a special arrow in the category,
the identity arrow on that object. (The identity function on a group is a
group homomorphism, on a topological space is continuous etc). Within
the category the identity arrows satisfy the Identity Law described in
§2.2.

There are other features common to our list of examples. But as
categories it is the two properties of associative composition and existence
of identities that we single out for particular attention in the

AXIOMATIC DEFINITION OF A CATEGORY. A category € comprises

(1) a collection of things called ¢-objects;

(2) a collection of things called ¢-arrows;

(3) operations assigning to each €-arrow f a %-object dom f (the
“domain” of f) and a ¥-object cod f (the “codomain” of f). If a =dom f
and b =cod f we display this as

f:a—b or aL—>b;

(4) an operation assigning to each pair (g, f) of ¢-arrows with dom g =
cod f, a €-arrow g ° {, the composite of f and g, having dom(g © f)=dom f
and cod(g ° f)=cod g, i.e. g ° f:dom f — cod g, and such that the follow-
ing condition obtains:

Associative Law: Given the configuration

a-t-sbh-2tsc d

of ¢-objects and €-arrows then h o (gef)=(h°g)e°f.
The associative law asserts that a diagram having the form

f b

s

hog

(Jo8)oy
Jo(801)
o

gef

h

——C

s ¥

always commutes;
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(5) an assignment to each €-object b of a €-arrow 1, : b — b, called the
identity arrow on b, such that
Identity Law: For any ¢-arrows f:a—b and g:b—c¢

1,of=f, and go1,=g

i.e. the diagram

commutes.

2.4. The pathology of abstraction

The process we have just been through in identifying the notion of a
category is one of the basic modi operandi of pure mathematics. It is
called abstraction. It begins with the recognition, through experience and
examination of a number of specific situations, that certain phenomena
occur repeatedly, that there are a number of common features, that there
are formal analogies in the behaviour of different entities. Then comes
the actual process of abstraction, wherein these common features are
singled out and presented in isolation; an axiomatic description of an
“abstract” concept. This is precisely how we obtained our general defini-
tion of a category from an inspection of a list of particular categories. It is
the same process by which all of the abstract structures that mathematics
investigates (group, vector space, topological space etc) were arrived at.

Having obtained our abstract concept we then develop its general
theory, and seek further instances of it. These instances are called
examples of the concept or models of the axioms that define the concept.
Any statement that belongs to the general theory of the concept (i.c. is
derivable from the axioms) will hold true in all models. The search for
new models is a process of specialisation, the reverse of abstraction.
Progress in understanding comes as much from the recognition that a
particular new structure is an instance of a more general phenomenon, as
from the recognition that several different structures have a common
core. Our knowledge of mathematical reality advances through the in-
terplay of these two processes, through movement from the particular to
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the general and back again. The procedure is well illustrated, as we shall
see, by the development of topos theory.

An important aspect of specialisation concerns so-called representation
theorems. These are propositions to the effect that any model of the
axioms for a certain abstract structure must be (equivalent to) one of a
particular list of concrete models. They ‘“measure” the extent to which
the original motivating examples encompass the possible models of the
:general notion. Thus we know (Cayley’s Theorem) that any group can be
thought of as being a group of permutations of some set, while any
Boolean algebra is essentially an algebra of subsets of some set. Roughly
speaking, the stronger the abstraction, i.e. the more we put into the
abstract concept, the fewer will be the possible examples. The extreme
case is where there is only one model. A classic example of this is the
axiomatically presented concept of a complete ordered field. There is in
fact only one such field, viz the real number system.

The category axioms represent a very weak abstraction. There is no
representation theorem in terms of our original list. We talked at the
outset of “general universes of mathematical discourse”. However we
have picked out only the bare bones of our initial examples, and so little
of the flesh that the axioms admit of all sorts of “pathological” cases that
differ wildly in appearance from Set, Top, Vect ctc. One readily finds
categories that are not universes of discourse at all, in which the objects
are not sets, the arrows look nothing like functions, and the operation °
has nothing to do with functional composition. The following list includes
a number of such categories. The reader is urged to examine these
closely, to fill out the details of their definition, and to check that in each
case the Associative and Identity axioms are satisfied.

2.5. Basic examples

ExamprE 1. 1: This category is to have only one object, and one arrow.
Having said that, we find that its structure is completely determined.
Suppose we call the object a, and the arrow f. Then we must put
dom f=cod f=a, as a is the only available object. Since f is the only
arrow, we have to take it as the identity arrow on a, i.e. we put 1, =f.
The only composable pair of arrows is (f,f), and we put f o f=f. This
gives the identity law, as 1, e f=f o 1, =f o f=f, and the associative law
holds as fo(fef)=(ff)o f=f Thus we have a category, which we
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display diagramatically as

Qf

We did not actually say what a and f are. The point is that they can be
anything you like. a might be a set, with f its identity function. But f
might be a number, or a pair of numbers, or a banana, or the Eiffel tower,
or Richard Nixon. Likewise for a. Just take any two things, call them a
and f, make the above definitions of dom f, codf, 1,, and f ¢ f, and you
have produced a structure that satisfies the axioms for a category.
Whatever a and f are, the category will look like the above diagram. In
this sense there is “‘really’” only one category that has one object and one
arrow. We give it the name 1. As a paradigm description of it we might as
well take the object to be the number 0, and the arrow to be the ordered
pair (0, 0).

ExampriE 2. 2: This category has two objects, three arrows, and looks

like
O G

1

We take the two objects to be the numbers 0 and 1. For the three arrows
we take the pairs (0, 0), (0, 1), and (1, 1), putting

0,0):0—=0

0,1):0—>1

(L1):1—>1
Thus we must have

{0,0)=1, (the identity on 0)
and

(1, 1H=1,.
There is only one way to define composition for this set up:

100 1,=1
{0,1) 2 1,=(0, 1)
1, (0, 1)=(0, 1)
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and

ExampLE 3. 3: This category has three objects and six arrows, the three
non-identity arrows being arranged in a triangle thus:

N\

Again there is only one possible way to define composites.

ExaMpLE 4. Preorders in general. In each of our first three examples there
is only one way that composites can be defined. This is because between
any two objects there is never more than one arrow, so once the dom and
cod are known, there is no choice about what the arrow is to be. In
general a category with this property, that between any two objects p and
q there is at most one arrow p —>gq, is called a pre-order. If P is the
collection of objects of a pre-order category then we may define a binary
relation R on P (i.e. a set R < P X P) by putting

{p,q)c R iff there is an arrow p-—>gq in the pre-order
category.

The relation R then has the following properties (writing “pRg” in place
of “p,qye R”); it is

(i) reflexive, i.e. for each p we have pRp, and

(i) transitive, i.e. whenever pRq and qRs, we have pRs.
(Condition (i) holds as there is always the identity arrow p — p, for any p.
For (ii), observe that an arrow from p 1o g composes with one from q to s
to give an arrow from p to s).

A binary relation that is reflexive and transitive is commonly known as
a pre-ordering. We have just seen that a pre-order category has a natural
pre-ordering relation on its collection of objects (hence its name of
course). Conversely if we start simply with a set P that is pre-ordered by a
relation R (i.e. R < P X P is reflexive and transitive) then we can obtain a
pre-order category as follows. The objects are the members p of P. The
arrows are the pairs (p, q) for which pRq. {(p, q) is to be an arrow from p
to q. Given a composable pair

{p.a) (a.s)
p >q > S,
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we put
(@, s) ° {p, q)={p, s).

Note that if (p,q) and {q, s) are arrows then pRq and qRs, so pRs
(transitivity) and hence (p, s) is an arrow. There is at most one arrow from
p to g, depending on whether or not pRq, and by transitivity there is only
one way to compose arrows. By reflexivity, (p, p) is always an arrow, for
any p, and indeed {(p, p)=1,.

Examples 1-3 are pre-orders whose associated pre-ordering relation
R satisfies a further condition, viz it is

(iii) antisymmetric, i.e. whenever pRq and gqRp, we have

p=a
An antisymmetric pre-ordering is called a partial ordering. The symbol
“=” will generally be used for this type of relation, i.e. we write pEq in
place of pRq. A poset is a pair P=(P,C), where P is a set and C is a
partial ordering on P. These structures will play a central role in our study
of topoi.

The set {0} becomes a poset when we put 0E=0. The corresponding
pre-order category is 1 (Example 1). The pre-order 2 corresponds to the
partial ordering on the set {0, 1} that has 0E1 (and of course 00 and
1= 1). This is the usual numerical ordering, =<, of the numbers 0 and 1
(where “<<”” means ‘“less than or equal to”). The category 3 corresponds
to the usual ordering on the three element set {0, 1, 2}. We could continue
this process indefinitely, constructing a pre-order 4 from the usual order-
ing on {0, 1, 2, 3}, and in general for each natural number n, a pre-order n
from the usual ordering on {0, 1,2, ..., n—1}. Continuing even further
we can consider the infinite collection

0={0,1,2,3,...}

of all natural numbers under the usual ordering, to obtain a pre-order
category which has the diagram

0>1—-2—>3—>...

(composites and identities not shown).
A simple example of a pre-order that is not partially ordered would be
a two-objects, four-arrows category

C;O;{Q

which has pRq and qRp, but p#gq.
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A categorial expression of the antisymmetry condition will be given in
the next chapter, while the above numerical examples will be reconsi-
dered in Example 9.

ExampLE 5. Discrete categories. If b is an object of a category €, then the
®-arrow 1, is uniquely determined by the property expressed in the
Identity Law. For if 1':b — b has the property that

commutes for any €-arrows f and g as shown, then in the particular case
of f=1 and g=1,,

1

b——b
1I 1, 1b

b——b

1,

commutes giving 1, =1, o 1" (right triangle). But by the Identity Law
(with f=1"), 1, e 1 =1, and so 1,=1".

Since 1, is thus uniquely determined, the practice is sometimes adopted
of identifying the object b with the arrow 1, and writing b:b —b, b o f
etc. Now the category axioms require that the €-arrows include, at a
minimum, an identity arrow for each €-object (why must distinct objects
have distinct identity arrows?). € is a discrete category if these are the
only arrows, i.e. every arrow is the identity on some object. A discrete
category is a pre-order since, as we have just seen, there can only be one
identity arrow on a given object. Equating objects with identity arrows, we
see that a discrete category is really nothing more than a collection of
objects. Indeed, any set X can be made into a discrete category by adding
an identity arrow x — x for each xe€X, i.e. X becomes the pre-order
corresponding to the relation R < X X X that has

xRy iff x=y.
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Exampie 6. N: It is time we looked at some categories that have more
than one arrow between given objects. The present example has only one
object, which we shall call N, but an infinite collection of arrows from N
to N. The arrows are, by definition, the natural numbers 0, 1, 2, 3,....
Each arrow has the same dom and cod, viz the unique object N. This
means that all pairs of arrows are composable. The composite of two
arrows (numbers) m and n is to be another number. The definition is

mon=m-+n.

Thus the diagram

N—*. N
m+n m
N

commutes by definition. The associative law is satisfied, since addition of
numbers is an associative operation, i.e., m+(n+k)=(m+n)+k is true
for any numbers m, n and k.

. The identity arrow 15 on the object N is defined to be the number O.
The diagram

N—"—N

N—w—N

commutes because O+m=m and n+0=n.

ExampLE 7. Monoids. The category N of the last example is a category
because the structure (N, +,0) is an example of the abstract algebraic
concept of a monoid.

A monoid is a triple M= (M, *, ¢) where

(i) M is a set

(i1) * is a binary operation on M, i.e. a function from MxM to M
assigning to each pair (x, y)e MXM an element x * y of M, that is
associative, i.e. satisfies x * (y * z)=(x * y) * z for all x, y, ze M.

(iii) e is 2 member of M, the monoid identity, that satisfies e * x =
x * e=x, for all xeM.
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Any monoid M gives rise to a category with one object, exactly as in
Example 6. We take the object to be M the arrows M — M to be the
members of M, and put e = 1,,. Composition of arrows x, y€ M is given
by

Xoy=Xxx*y.

Conversely, if € is a category with only one object a, and M is its
collection of arrows, then (M, 2, 1,) is a monoid. All arrows have the
same dom and cod and so all pairs are composable. Hence composition ©
is a function from MxM to M, i.e. a binary operation on M, that is
associative by the Associative Law for categories. 1, is an identity for the
monoid by the Identity Law for categories.

ExampLE 8. Matr(K) (for linear algebraists). If K is a commutative ring
then the matrices over K yield a category Matr(K). The objects are the
positive integers 1, 2, 3,.... An arrow m — n iS an n X m matrix with
entries in K. Given composable arrows

B A
m——n——>p,

i.e. A a pxn matrix and B nXm, we define A~ B to be the matrix
product AB of A and B (which is p X m and hence an arrow m —> p)- The
Associative Law is given by the associativity of matrix multiplication. 1,,
is the identity matrix of order m.

In the remainder of this chapter we consider ways of forming new
categories from given ones.

ExampiLE 9. Subcategories. If € is a category, and a and b are €-objects,
we introduce the symbol €(a, b) to denote the collection of all €-arrows
with dom=a and cod=0b, i.e.

€(a, b)= {f:f is a ¢-arrow and a —> b}.

€ is said to be a subcategory of category @, denoted € <9, if

(i) every €-object is a @-object, and

(i) if a and b are any two €-objects, then €(a, b) = % (a, b), i.e. all the
€-arrows a —> b are present in %.
For example, we have Finset < Set, and Nonset < Set, although neither of
Finset and Nenset are subcategories of each other.
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€ is a full subcategory of & if € <, and

(iii) for any ¥-objects a and b, €(a, b) = P(a, b), i.e. D has no arrows
a — b other than the ones already in €.

If % is a category and C is any collection of @-objects we obtain a full
subcategory € of @ by taking as €-arrows all the %-arrows between
members of C. Thus we see that Finset and Nomset are each full
subcategories of Set.

An important full subcategory of Fimset (and hence of Set) is the
category Finord of all finite ordinals. The finite ordinals are sets that are
used in set-theoretic foundations as representations of the natural num-
bers. We use the natural numbers as names for these sets and put

0 for O (the empty set)
for {0} (={0})
for {0,1} (={0, {0}
for {0,1,2} (={0, {0}, {0, {91}

4 for {0,1,2,3}
and so on.

Proceeding ‘“‘inductively”’, where n is a natural number, we put

n for {0,1,2,...,n—1%L
The sequence of finite sets thus generated are the finite ordinals. They
form the objects of the category Finord, whose arrows are all the set
functions between finite ordinals.

Of course it is ridiculous to suggest that the number 1 is the set {0}
whose only member is the null set. The point is that in axiomatic set
theory, where we seek an explicit and precise account of mathematical
entities and their intuitively understood properties, the finite ordinals
provide such a paradigmatic representation of the natural numbers. They
have an intricate and elegant structure that exhibits all the arithmetic and
algebraic properties of the natural number system. They are related by set
inclusion and set membership as follows:

Oclc2c3c...

Oele2e3c ...

In fact the following three statements are equivalent
(a) n<m (the number n is numerically less than the number m)
(b) ncm (the set n is a proper subset of set m)
(¢) nem (nis a member of set m)
Thus n<m iff n = m.
So the ordinal (set) n ={0, 1, ..., n— 1} has the ordering < built into its
structure in a natural set-theoretic way. The corresponding pre-order

W N =
=
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category is none other than m of Example 4. Notice that if n=<m, the
pre-order n is a full subcategory of m.

ExampLE 10. Product categories. The category Set® of pairs of sets has as
objects all pairs (A, B) of sets. An arrow in Set> from (A, B) to (C,D)is a
pair {f, g) of set functions such that f: A - C and g: B — D. Composition
is defined by (f, g) o {(f', g)={ o f',g ° g'), where f o f' and g o g’ are the
functional compositions. The identity arrow on (A, B) is (id, idg).

This construction generalises: given any two categories € and %, the
product category € X% has objects the pairs (a, b) where a is a €-object
and b a @W-object. A € x%W-arrow {a, b)—(c,d) is a pair {f, g) where
f:a—c is a €¢-arrow and g:b —d a %-arrow. Composition is defined

“componentwise’” with respect to composition in €, and composition in
9.

Exampie 11. Arrow categories. The category Set™ of functions has as
objects the set functions f: A — B. An arrow in Set™ from the Set™-
object f: A — B to the Set”-object g: C — D is a pair of functions {h, k)
such that

A—b C
f g
B—kX D

commutes, i.e. ge h=k o f.
For composition we put

G Dol ky=(eohleok)

The identity arrow for the Set™-object f: A — B is the function pair
(id,4, idg).

This construction can also be generalised to form, from any category €,
the arrow category €~ whose objects are all the €-arrows.
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Exampie 12. Comma categories. These can be thought of as specialisa-
tions of arrow categories, where we restrict attention to arrows with fixed
domain or codomain.

Thus if R is the set of real numbers, we obtain the category Set | R of
real valued functions. The objects are all functions f: A — R that have
codomain R. An arrow from f: A - R to g:B— R is a function k: A —
B that makes the triangle

A—k B
\%
R

commute, i.e. has g o k=F.
It is sometimes convenient to think of Set | R-objects as pairs (A, f),
where f: A — R. Then the Set | R composite of

(A, f) = (B, g) — (C, h)

is defined as [ o k: (A, f)— (C, h)

lok

A C
f Ig h
R
The identity arrow on the object f:A—R is id4 (A, ) —(A,f).
Set | R is not as it stands a subcategory of Set™ as the two have different

sorts of arrows. However, we could equate the Set | R arrow k: (A, f)—
(B, g) with the Set” arrow (k, idgp), as
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commutes iff

A—k B
f g
R—d R

does.
In this way Set| R can be ‘“construed” as a (not full) subcategory of
Set ™.

Similarly for any set X we obtain the category Set | X of “X-valued
functions”. More generally if € is any category, and a any ¢-object then
the category € | a of objects over a has the ¢-arrows with codomain a as
objects, and as arrows from f:b — a, to g:c — a the €-arrows k:b — ¢
such that

bh—E ¢

N

commutes, i.e. gock =f.

Categories of this type are going to play an important role both in the
provision of examples of topoi, and in the development of the general
theory. \

Turning our attention to domains, we define the category €Ta of
objects under a to have as objects the 4-arrows with dom=a and as
arrows from f:a — b to g:a — ¢ the ¢-arrows k:b — ¢ such that

a
Jx
b—p—¢

commutes, i.e. ko f=g.
Categories of the type €la and 4ta are known as comma categories.



CHAPTER 3

ARROWS INSTEAD OF EPSILON

“The world of ideas is not re-
vealed to us in one stroke; we
must both permanently and un-
ceasingly recreate it in our cons-
ciousness”.

René Thom

In this chapter we examine a number of standard set-theoretic con-
structions and reformulate them in the language of arrows. The general
theme, as mentioned in the introduction, is that concepts defined by
reference to the “‘internal” membership structure of a set are to be
characterised “‘externally”” by reference to connections with other sets,
these connections being established by functions. The analysis will even-
tually lead us to the notions of wuniversal property and limit, which
encompass virtually all constructions within categories.

3.1. Monic arrows

A set function f: A— B is said to be injective, or one-one when no two
distinct inputs give the same output, i.e. for inputs x, y € A,

if f(x)=f(y), then x=y.

Now let us take an injective f: A-—B and two ‘“parallel” functions
g, h:C 3 A for which

cC—t— A
h f
A—L .

commutes, i.e. feg={foh.
Then for x € C, we have fog(x)=foh(x), i.e. f(g(x))=f(h(x)). But as f
is injective, this means that g(x)= h(x). Hence g and h, giving the same
37
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output for every input, are the same function, and we have shown that an
injective f is “left-cancellable”, i.e.
whenever fog=fch, then g=h.
On the other hand, if f has this left-cancellation property, it must be
injective. To see this, take x and y in A, with f(x)=f(y).
A B

i »——- =f{y)

Fig. 3.1
The instructions “g(0) = x”, “h(0)=y” establishes a pair of functions g, h
from {0} (i.e. the ordinal 1) to A for which we have fog=foh. By left
cancellation, g =h, so g(0)=h(0), i.e. x =y.

We thus see that the injective arrows in Set are precisely the ones that
are left cancellable. The point of all this is that the latter property is
formulated entirely by reference to arrows and leads to the following
abstract definition:

An arrow f:a—>b in a category € is monic in € if for any parallel pair
g, h:c=2a of €-arrows, the equality fog=Ffch implies that g =h. The
symbolism f:a>—b is used to indicate that f is monic. The name comes
from the fact that an injective algebraic homomorphism (i.e. an arrow in a
category like Mom or Grp) is called a “monomorphism”.

ExampLE 1. In the category N (Example 6, Chapter 2) every arrow is
monic. Left-cancellation here means that

f m+n=m+p, then n=p
which is certainly a true statement about addition of numbers.

Exampie 2. In a pre-order, every arrow is monic: given a pair
g, h:c 2 a, we must have g =h, as there is at most one arrow ¢ — a.

ExampLE 3. In Mon, Grp, Met, Top the monics are those arrows that are
injective as set functions (see e.g. Arbib and Manes [75]).

ExamMpLE 4. In a comma category € | a, an arrow k from (b, f) to (c, g),

h—Fk—¢

N4

is monic in € | a iff k is monic in ¥ as an arrow from b to c.
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Exercises

In any category
(1). gof is monic if both f and g are monic.
(2) If go f is monic then so is f.

3.2. Epic arrows

A set function f: A — B is onto, or surjective if the codomain B is the
range of f, t.e. for each y € B there is some x € A such that y = f(x), i.e.
every member of B is an output for f. The “arrows-only” definition of
this concept comes from the definition of “monic™ by simply reversing the
arrows. Formally: '

An arrow f:a — b is epic (right-cancellable) in a category ¢ if for any
pair of €-arrows g, h: b= ¢, the equality g o f = h o f implies that g = h, i.e.
whenever a diagram

a ! b
f| g
b%h—’c

commutes, then g =h. The notation f:a — b is used for epic arrows.

In Set, the epic arrows are precisely the surjective functions (exercise
for the reader, or Arbib and Manes, p. 2). A surjective homomorphism is
known as an epimorphism.

In the category N, every arrow is epic, as n+m =p+m implies that
n =p. In any pre-order, all arrows are epic.

In the categories of our original list, where arrows are functions, the
arrows that are surjective as functions are always epic. The converse is
true in Grp, but not in Mon. The inclusion of the natural numbers into
the integers is a monoid homomorphism (with respect to +), that is
certainly not onto, but nevertheless is right cancellable in Meomn. (Arbib
and Manes p. 57).

3.3. Iso arrows

A function that is both injective and surjective is called bijective. If
f:A>» B is bijective then the passage from A to B under f can be
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reversed or “inverted”. We can think of f as being simply a ‘“relabelling”
of A. Any b € B is the image f(a) of some a € A (surjective property) and
in fact is the image of only one such a (injective property). Thus the rule
which assigns to b this unique a, i.e. has

glb)y=a iff f(a)=b
establishes a function B — A which has

g(fla))=a, all acA

and

f(g(b))=b, all beB.
Hence

gof=ida
and

fog =idp.

A function that is related to f in this way is said to be an inverse of f. This
is an essentially arrow-theoretic idea, and leads to a new definition.

A €-arrow f:a— b is iso, or invertible, in € if there is a €¢-arrow
g:b — a, such that gef=1, and feg=1,.

There can in fact be at most one such g, for if g'of=1,, and fog'=1,,
then g’ =1,0g"=(gof)og =geo(fog’)=ge1, =g. So this g, when it exists,
is called the inverse of f, and denoted by f~*:b — a. It is defined by the
conditions ftef=1,, fef '=1,. The notation f:a=b is used for iso’s.

An iso arrow is always monic. For if feg=feoh, and ! exists, then
g=1,0g=(f"of)og=F"o(fog)=f"o(foh)=1,°h=h, and so f is left-
cancellable. An analogous argument shows that iso’s are always epic.

Now in Set a function that is epic and monic has an inverse, as we saw
at the beginning of this section. So in Set, “iso” is synonymous with
“monic and epic”’. The same, we shall learn, goes for any topos, but is
certainly not so in all categories.

In the category N we already know that every arrow is both monic and
epic. But the only iso is 0: N — N. For if m has inverse n, mon =1y, i.e.
m—+n=0. Since m and n are both natural numbers, hence both non-
negative, this can only happen if m =n=0.

The inclusion map mentioned at the end of the last section is in fact
epic and monic, but cannot be iso, since if it had an inverse it would, as a
set function, be bijective.
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In a poset category P=(P,C), if f:p—q has an inverse f ':q—p,
then pC g and qC p, whence by antisymmetry, p = q. But then f must be
the unique arrow 1, from p to p. Thus in a poset, every arrow is monic
and epic, but the only iso’s are the identities.

Groups

A group is a monoid (M, #, e) in which for each xc M there is a ye M
satisfying x *y = e =y *x. There can in fact be only one such y for a given
x. It is called the inverse of x, and denoted x . Thinking of a monoid as a
category with one ébject, the terminology and notation is tied to its above
usage: a group is essentially the same thing as a one-object category in
which every arrow is iso.

Exercise 1. Every identity arrow is iso.
Exercise 2. If f is iso, so is f .

Exercise 3. fog is iso if f, g are, with (fog) =g 'of 1.

3.4. Isomorphic objects

Objects a and b are isomorphic in 6, denoted a = b, if there is a €-arrow
f:a—b that is iso in €, i.e. f:a=h.

In Set, A = B when there is a bijection between A and B, in which case
each set can be thought of as being a “relabelling” of the other. As a
specific example take a set A and put

B=AX{0}={x,0):xcA}.

In effect B is just A with the label 0’ attached to each of its elements.
The rule f(x)={x, 0) gives the bijection f: A — B making A =B.

In Grp, two groups are isomorphic if there is a group homomorphism
(function that “preserves” group structure) from one to the other whose
set-theoretic inverse exists and is a group homomorphism (hence is
present in Grp as an inverse). Such an arrow is called a group
isomorphism.

In Top, isomorphic topological spaces are usually called homeomorphic.
This means there is a homeomorphism between them, i.e. a continuous
bijection whose inverse is also continuous.
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In these examples, isomorphic objects “look the same’. One can pass
freely from one to the other by an iso arrow and its inverse. Moreover
these arrows, which establish a ““one-one correspondence” or “matching”
between the elements of the two objects, preserve any relevant structure.
This means that we can replace some or all of the members of one object
by their counterparts in the other object without making any difference to
the structure of the object, to its appearance. Thus isomorphic groups
look exactly the same, as groups; homeomorphic topological spaces are
indistinguishable by any topological property, and so on. Within any
mathematical theory, isomorphic objects are indistinguishable in terms of
that theory. The aim of that theory is to identify and study constructions
and properties that are “invariant” under the isomorphisms of the theory
(thus topology studies properties that are not altered or destroyed when a
space is replaced by another one homeomorphic to it). An object will be
said to be “‘unique up to isomorphism” in possession of a particular
attribute if the only other objects possessing that attribute are isomorphic
to it. A concept will be “‘defined up to isomorphism” if its description
specifies a particular entity, not uniquely, but only uniquely up to
isomorphism.

Category theory then is the subject that provides an abstract formula-
tion of the idea of mathematical isomorphism and studies notions that are
invariant under all forms of isomorphism. In category theory, “is
isomorphic to” is virtually synonymous with “is”. Indeed most of the
basic definitions and constructions that one can perform in a category do
not specify things uniquely at all, but only, as we shall see, “up to
isomorphism”’.

Skeletal categories

A skeletal category is one in which “‘isomorphic’” does actually mean the
same as ‘“is”, i.e. in which whenever a = b, then a = b. We saw in the last
section that in a poset, the only iso arrows are the identities. This then
gives us a categorial account of antisymmetry in pre-orders. A poset is
precisely a skeletal pre-order category.

Exercisk 1. For any €-objects
(i) a=a;
@) if a=b then b=a;
(iii) If a=b and b=c, then a=c.

Exercise 2. Finord is a skeletal category.
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3.5. Initial objects

What arrow properties distinguish @, the null set, in Set? Given a set A,
can we find any function ® — A? Recalling our formulation of a function
as a triple (A, B, X) with X< AxXB (§2.1), we find by checking the
details of that definition that f=(0, A, ®) is a function from ¢} — A. The
graph of f is empty, and f is known as the empty function for A. Since
@ A is empty, @ is the only subset of @ X A, and hence f is the only
function from @ to A. This observation leads us to the following:

DerFINITION. An object O is initial in category € if for every €-object a
there is one and only one arrow from O to a in €.

Any two initial €-objects must be isomorphic in €. For if 0, 0 are such
objects there are unique arrows f:0'—0, g:0— (0. But then fog:0—0
must be 1,5, as 1, is the only arrow 0 — 0, O being initial. Similarly, as 0’
is initial, gof:0'— 0’ is 1,. Thus f has an inverse (g), and f:0'=0.

The symbol O of course is used because in Set it is a name for @, and @
is initial in Set. In fact 0 is the only initial object in Set, so whereas the
initial €-object may only be “‘unique up to isomorphism”, when € = Set it
is actually unique.

In a pre-order (P, C) an initial object is an element 0 € P with 0 p for
all pe P (i.e. a minimal element). In a poset, where ““isomorphic’ means
‘“equal”, then there can be at most one initial object (the minimum, or
zero element). Thus in the poset {0,...,n—1}, 0 is the initial object,
whereas in the two-object category with diagram

- D

both objects are initial.

In Grp, and Mon, an initial object is any one element algebra (M, *, e),
i.e. M ={e}, and e=xe=e. Each of these categories has infinitcly many
initial objects.

In Set®, the category of pairs of sets, the initial object is (@}, @), while in
Set™, the category of functions, it is (@, @, @), the empty function from (0
to @0. In Set|R, the category of real valued functions, it is f={(@, R, @).
Given g: A —R, the only way to make the diagram
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commute is to put k =(@, A, ), the empty map from @ to A.

NotaTion. The exclamation mark ““!” is often used to denote a uniquely
existing arrow. We put !:0— a for the unique arrow from 0 to a. It is
also denoted 0,, i.e. 0,:0— a.

3.6. Terminal objects

By reversing the direction of the arrows in the definition of initial object,
we have the following idea:

DErINTTION. An object 1 is terminal in a category € if for every €-object
a there is one and only one arrow from a to 1 in €.

In Set, the terminal objects are the singletons, i.e. the one-element sets
{e}. Given set A, the rule f(x)=e gives a function f: A — {e}. Since e is
the only possible output, this is the only possible such function. Thus Set
has many terminal objects. They are all isomorphic (terminal objects in
any category are isomorphic) and the paradigm is the ordinal 1={0},
whence the notation.

Again we may write !:a—1 to denote the unique arrow from a to 1,
or alternatively |, :a — 1.

In a pre-order a terminal object satisfies pC 1, all p (a maximal
element). In a poset, 1 is unique (the maximum), when it exists, and is
also called the unit of P.

In Grp and Mon, terminal objects are again the one element monoids.
Hence the initial objects are the same as the terminal ones (and so the
equation 0 =1 is “true up to isomorphism’). An object that is both initial
and terminal is called a zero object. Set has no zero’s. The fact that Grp
and Men have zeros precludes them, as we shall see, from being topoi.

In Set|R, (R,idy) is a terminal object. Given (A, f), the only way to
make

A—Fk R

N
R

commute is to put k=f.

Exercise 1. Prove that all terminal €-objects are isomorphic.
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Exercise 2. Find terminals in Set®, Set”, and the poset n.

Exercise 3. Show that an arrow 1 — a whose domain is a terminal object
must be monic.

3.7. Duality

We have already observed that the notion of epic arrow arises from that
of monic by “reversing the arrows”. The same applies to the concepts of
terminal and initial objects. These are two examples of the notion of
duality in category theory, which we will now describe a little more
precisely.

If 3 is a statement in the basic language of categories, the dual of X,
3°P is the statement obtained by replacing ‘“dom” by ‘“‘cod”, “cod” by
“dom”, and “h=gof” by “h=fog”. Thus all arrows and composites
referred to by X are reversed in 3°°. The notion or construction de-
scribed by 3°P is said to be dual to that described by 3. Thus the notion
of epic arrow is dual to that of monic arrow. The dual of “initial object”
is “terminal object”, and so on.

From a given category € we construct its dual or opposite category €°°
as follows:

%€ and €¥°° have the same objects. For each €¢-arrow f:a—b we
introduce an arrow f°?:b — a in €°?, these being all and only the arrows
in ¢°°. The composite f°Pog°? is defined precisely when gef is defined in
% and has

f g
a '\f_/ bv ¢
op gOD

foPog°® =(gof)°". Note that dom f°°=cod f, and cod(f**)=dom f.
ExampeiiE 1. If € is discrete, €°° =<%.

ExamriE 2. If € is a pre-order (P, R), with R< P X P, then €°° is the
pre-order (P, R™"), where pR™'q iff qRp, i.e. R™" is the inverse relation

to R.

ExampLE 3. For any €, (€°°)°*=%.
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The dual of a construction expressed by 3 can be interpreted as the
original construction applied to the opposite category. If 3 is true of €,
2°P will be true of ¥°°. Thus the initial object @ in Set is the terminal
object of Set°®. Now if 3 is a theorem of category theory, i.e. derivable
from the category axioms, then 3 will be true in all categories. Hence 3°°
will hold in all categories of the form €°°. But any category &9 has this
form (put € = @°®), and so 2°° holds in all categories. Thus from any true
statement 3, of category theory we immediately obtain another true
statement 3°° by this Duality Principle.

The Duality Principle cuts the number of things to be proven in half.
For example, we note first that the concept of iso arrow is self-dual. The
dual of an invertible arrow is again an invertible arrow —indeed (f°°) ' =
(f ")°". So having proven

any two initial ¥-objects are isomorphic
we can conclude without further ado, the dual fact that
any two terminal €-objects are isomorphic.

The Duality Principle comes from the domain of logic. It is discussed in a
more rigorous fashion in Hatcher [68] §8.2. '

3.8. Products

We come now to the problem of giving a characterisation, using arrows,
of the product set

AXB={x,y)xcAandyeB}

of two sets A and B. The uninitiated may find it hard to believe that this
can be achieved without any reference to ordered pairs. But in fact it can
be, up to isomorphism, and the way it is done will lead us to a general
description of what a “‘construction” in a category is.

Associated with A X B are two special maps, the projections

Pa:AXB—A
and

pe:AXB—B
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given by the rules
pallx, y) =x
pe((X, y) =Y.
Now suppose we are given some other set C with a pair of maps

f:C— A, g:C— B, Then we define p:C— A XB

C

f i p 4
|

4
A< P2 Axp—P2 B

by the rule p(x)={(f(x), g(x)). Then we have p,(p(x))=f(x), and
pe(p(x))=g(x) for all xeC, so paop=f and pgep=g, i.e. the above
diagram commutes. Moreover, p as defined is the only arrow that can
make the diagram commute. For if p(x)={(y, z) then simply knowing that
pacp =1 tells us that p,(p(x)) =f(x), i.e. y=f(x). Similarly if pyep=g,
we must have z = g(x).

The map p associated with f and g is usually denoted (f, g), the product
map of f and g. Its definition in Set is (f, 2)(x) = (f(x), g(x)).

The observations just made motivate the following:

DerFNtTION. A product in a category € of two objects a and b is a
%-object axb together with a pair (pr,:axb—a, pr,:axb—b) of
%-arrows such that for any pair of €¢-arrows of the form (f:c->a,
g:c — b) there is exactly one arrow (f, g):¢c — a X b making

pra

commute, i.e. such that pr, o(f, g)=f and pr, o(f, g) = g. {f, g) is the product
arrow of f and g with respect to the projections pr,, pr,.
Notice that we said a product of a and b, not the product. This
is because aXxb is only defined up to isomorphism. For suppose
(p:d — a, q:d — b) also satisfies the definition of “a product of a X b”* and
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consider the diagram

d
i
p l qa
l (p.a)
M
afPa gxp_Ph 3p

i(prw pr,)

p ! 4
i
d

{p, q) is the unique product arrow of p and g with respect to ‘“the”
product a xb. (pr,, pt,) is the unique product arrow of pr, and pr, with
respect to “the” product d.

Now, since d is a product of a and b there can be only one arrow
s :d — d such that

o

Y

S
o
Qe
<
S

commutes. But putting s =1, makes this diagram commute, while the
commutativity of the previous diagram implies that putting s=
(Pra, P15 )°(p, q) also works (more fully — pe{pr,, pr,)°{p, 4) = pr,°(p, @) =p
etc.). By the uniqueness of s we must conclude

(pra, pro)e{p, @) =14

Interchanging the roles of d and a X b in this argument leads to {p, q)°
(pry Prp) = Tosp Thus (p, q): d = a X b, so the two products are isomorphic
and furthermore the iso (p, q) when composed with the projections for
a %X b produces the projections for d, as the last diagram but one indicates.
Indeed, {p, q) is the only arrow with this property.

In summary then our definition characterises the product of a and b
“uniquely up to a unique commuting isomorphism”, which is enough
from the categorial viewpoint.

Examprie 1. In Set, Finset, Nonset, the product of A and B is the
Cartesian product set A X B. :
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ExamprLE 2. In Grp the product of two objects is the standard direct
product of groups, with the binary operation defined “component-wise”
on the product set of the two groups.

ExampLE 3. In Top, the product is the standard notion of product space.

ExampLE 4. In a pre-order (P,C) a product of p and g when it exists is
defined by the properties

(i) pXqEp, pXqCq, ie. pXq is a “lower bound” of p and q;

(ii) if cEp and cCgq, then cCpXxgq, i.e. pxq is “greater” than any
other lower bound of p and q.
In other words pxXq is a greatest lower bound (g.l.b.) of p and q. In a
poset, being skeletal, the g.l.b. is unique, when it exists, and will be
denoted prig. A poset in which every two elements have a g.1.b. is called
a lower semilattice. Categorially a lower semilattice is a skeletal pre-order
category in which any two objects have a product.

Exampre 5. If A and B are finite sets, with say m and n elements
respectively, then the product set A X B has m Xn elements (where the
last “<>* denotes multiplication). This has an interesting manifestation in
the skeletal category Fimord. There the product of the ordinal numbers m
and n exists and is quite literally the ordinal m Xn.

Exercise 1. {pr,, pru)= 1.

pry pr,

axhZ Pl o

\ [pra

Exercist 2. If (f, g)=(k, h), then f=k and g=h.
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Exercise 3. (foh, goh)={(f, g)°h

goh b
T
d h c-——<fi§>—>a><b
\Jvra
a
foh

Exercise 4. We saw earlier that in Set, A=A x{0}. Show that if
category € has a terminal object 1 and products, then for any ¢-object
a,a=a X1 and indeed (1,,1,) is iso

a

Product maps

Given set functions f: A — B, g: C — D we obtain a function from A XC
to B XD that outputs (f(x), g(y)) for input (x, y). This map is denoted
f X g, and we have

fxgx, ) ={f(x), gy),

It is not hard to see that fXg is just the product map of the two
composites fep, :AXC—>A—>B and gop-:AXC—C—>D, so we
can define the following.

Dermnrrion If f:a— b and g:c— d are €-arrows then fXg:aXb—> ¢ X
d is the ¢-arrow (fepr,, g°pn,)
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(Of course fXx g is only defined when a X¢ and b Xd exist in €).

Exercise 5. 1, X1, =1axp

EXERCISE 6. a Xb=bh Xa.

Exercise 7. Show that (a Xb)Xc=a X (b Xc¢)

Exgercise 8. Show that (i)

C d
= I

e (8. k) aXe fxh bxd
a f b

(fxh)o(g, ky=(fog, hok) and
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(i)

(fxXh)e(gxk)=(fog) x(hok). O

The use we have been making of the broken arrow symbol - is a
standard one in category theory. When present in any diagram it indicates
that there is one and only one arrow that can occupy that position and
allow the diagram to commute.

Finite products

Given sets A, B, C we extend the notion of product to define A XB XC
as the set of ordered triples {(x, y, z). First elements come from A, second
from B, and third from C. Thus AXBXC={(x,y,z):x€ A, yeB, and
ze C}. This idea can be extended to form the product of any finite
sequence of sets A;, A,, ..., A,. Wedefine A; XA, X...XA, to be the
set

{(xl""yxm>:x1€Als x2€A2s' . 'axmeAm}

of all “m-tuples”, or “m-length sequences”, whose “i-th”’ members come
from A,

As a special case of this concept we have the m-fold product of a set A,
as the set

Am:{<x17' "5xm>:x19 X2, .- '9xm€A}

of all m-tuples whose members all come from A. Associated with A™ are
m different projection maps pr7, prs, ..., pri from A™ to A, given by
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fhe rules

prifi{xe, .« X ) =%y
prgl((xly R ) xm)) = X2
prn({Xe, ..o, X)) = X,
Given a set C and m maps f,:C— A, ..., f,.:C— A, we can then form

a product map {fy, ..., f.) from C to A™ by stipulating, for input ¢ € C,
that

<f1’ cte fm)(c) =<f1(c)7 f2(c)a .. 9fm(c)>-

The construction just outlined can be developed in any category € that
has products of any two €-objects. For a given €-object a, we define the
m-fold product of a (with itself) to be

a"=aXaX...Xa
| S —

m-copies
There is an ambiguity here. Should, for example, a® be taken as (a X a)
a or a %X(a xa)? However, Exercise 7 above allows us to gloss over this
point, since these last two objects are isomorphic.

By applying the definition of products of pairs objects to the formation
of a™ we may show that a™ has associated with it m projection arrows
prit:a™ —a,...,pr,:a™ — a, with the universal property that for any
@-arrows f,:c—a,...,f,:¢c— a with common domain, there is exactly
one (product) arrow {fy, ..., f.)>:c— a™ making

commute. For m =1, we take a' to be just a, and pr,:a —a to be 1,.
Finite products will play an important role in the “first-order’” seman-
tics of Chapter 11.

Exercise 9. Analyse in detail the formation of the projection arrows
pri...., pri, and verify all assertions relating to the last diagram. Show
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that for any product arrow

we ‘have pri*o{f,, ..., fu)=F, for 1<j=m.
Exercisg 10. Develop the notion of the product a; xa,X...Xa,, of m
objects (possibly different) and the product f; Xf,x... X fm of m arrows

(possibly different).

3.9. Co-products

The dual notion to “product” is the co-product, or sum, of objects, which
by the duality principle we directly define as follows.

DermnrrioN A co-product of €-objects a and b is a €-object a+b
together with a pair i, :a — a +b, i, : b — a +b) of €-arrows such that for
any pair of €-arrows of the form (f:a — ¢, g:b — ¢) there is exactly one
arrow [f, g]: a+b — ¢ making

a————>a+b<——b
\\[V

commute, i.e. such that [f, glei, =f and [f, glei, = ¢

o €----

[f, g] is called the co-product arrow of f and g with respect to the
injections i, and i,.

In Set, the co-product of A and B is their disjoint union, A + B. This is
the union of two sets that look the same as (i.e. are isomorphic to) A and
B but are disjoint (have no elements in common). We put

A'={a,0):ac A}=A x{0}
and
B'={b,1):be B}=B x{1}
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(why does A’NB’'=@®7?) and then define
A+B=A'UB'.

The injection i, : A — A+ B is given by the rule
is(a)=(a,0),

while iy : B— A+ B has ig(b)=(b, 1).

ExERcISE 1. Show that A+ B, i, ig as just defined satisfy the co-product
definition. (First you will have to determine the rule for the function [f, g]
in this case.)

Exercise 2. If ANB=@,show AUB=A+B. [

In a pre-order (P, &), p +q is defined by the properties
() pEp+q, q&p+q (i.e. p+q is an “upper bound” of p and q);

(i) if pCc and qCc, then p+qCc, i.e. p+q is “less than” any other
upper bound of p and q.

In other words p +q is a least upper bound (1.u.b.) of p and q. In a poset
the L.u.b. is unique when it exists, and will be denoted pLiq. A poset in
which any two elements have a 1.u.b. and a g.Lb. (§3.8) is called a lattice.

Categorially then a lattice is a skeletal pre-order having a product and
a co-product for any two of its elements.

The disjoint union of two finite sets, with say m and n elements
respectively is a set with (m plus n) elements. Indeed in Finord, the
co-product of m and n is the ordinal number m +n (where “+” means
“plus” quite literally). With regard to the ordinals 1={0} and 2=1{0, 1} it
is true then in the skeletal category Finord that

1+1=2,
while in Finset, or Set it would be more accurate to say
1+1=2

(Co-products being defined only up to isomorphism.)
Later in §5.4 we shall see that there are categories in which this last
statement, under an appropriate interpretation, is false.

ExEeRcISE 3. Define the co-product arrow f+g:a+b—c+d of arrows
f:a—c and g:b— d and dualise all of the Exercises in §3.8.
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3.10. Equalisers

Given a pair f,g: AZZB of parallel functions in Set, let E be the subset of
A on which f and g agree, i.e.

E={x:xe A and f(x) = g(x)}

Then the inclusion function i: E< A is called the equaliser of f and g
The reason for the name is that under composition with i we find that
fei=gei, i.e. the two functions are “equalised” by i. Moreover, i is a
“canonical” equaliser of f and g— if h:C— A is any other such
equaliser of f and g, i.e. foh=goh,

then h “factors” uniquely through i:E<A, i.e. there is exactly one
function k : C — E such that i o k = h. In other words, given h, there is only
one way to fill in the broken arrow to make the above diagram commute.
That there can be at most one way is clear —if i<k is to be the same as h,
then for ¢ € C we must have i(k(c))=h(c), i.e. k(c)=h(c) (i being the
inclusion). But this does work, for f(h(c))=g(h(c)), and so h(c)e E.

The situation just considered is now abstracted and applied to
categories in general.

An arrow i:e— a in € is an equaliser of a pair f,g:a — b of ¢-arrows
if

@) fei=gei, and

(if) Whenever h:c — ahasf o h =g o hin € there is exactly one € -arrow
k:c—esuchthatiok=h

!

e—i—>a__,—"b

& /

4

An arrow will simply be called an equaliser in € if there are a pair of
€-arrows of which it is an equaliser.

TueoreMm 1. Every equaliser is monic.
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Proor. Suppose i equalises f and g. To show i monic (left cancellable),
let icj=iol where j,l:c=e. Then in the above diagram let h:c — a be
the arrow icj. We have foh=fo(iej)=(fei)ej=(gei)ej=gch, and so
there is a unique k with ick = h. But ioj = h (by definition), so k must be
j. However, icl=icj=h,so k=1 Hence j =1 [

The converse of Theorem 1 does not hold in all categories. For instance
in the category N, 1 is monic (all arrows are), but cannot equalise any pair
(m, n) of arrows. If it did, we would have mel1=nel,ie. m+1=n+1,
hence m =n. But then m+0=n+0, which would imply that O factors
uniquely through 1, i.e. there is a unique k having 1+ k =0. But of course
there is no such natural number k.

Recalling that in N every arrow is epic, while O is the only iso, the next
theorem gives a somewhat deeper explanation of the situation just
described.

TueoreMm 2. In any category, an epic equaliser is iso.

Proor. If i equalises f and g, then fei=gei, so if i is epic, f=g. Then in
the equaliser diagram, put c=a, and h=1,. We have

fel,=ge1,=f, so there is a unique k with ick=1, Then ickei=
1,ci=i=1i°1,. But i is an equaliser, therefore left-cancellable, (Theorem
1), so koi=1,. This gives k as an inverse to i, SO i is is0. O

While monics may not be equalisers in all categories, they are certainly
so in Set (and in fact in any topos). For if f: E>—> A is injective, define
h:A —{0,1} by the rule h(x)=1,all x€ A, and g: A — {0, 1} by the rule

1 if xeImi

g(x):{o it x¢Imi

Then f equalises g and h.
ExeRcISE 1. Prove the last assertion.

ExEeRcISE 2. Show that in a poset, the only equalisers are the identity
arrows.
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3.11 Limits and co-limits

The definitions of the product of two objects and the equaliser of two
arrows have the same basic form. In each case the entity in question has a
certain property ‘‘canonically’, in that any other object with that property
“factors through” it in the manner indicated above. In the case of an
equaliser the property is that of “equalising” the two original arrows. In
the case of the product of a and b the property is that of being the domain
of a pair of arrows whose codomains are a and b. This sort of situation is
called a universal construction. The entity in question is universal amongst
the things that have a certain property.

We can make this idea a little more precise (without being too
pedantic, hopefully) by considering diagrams. By a diagram D in a
category € we simply mean a collection of ¢-objects d,, d,, .. ., together
with some €¢-arrows g:d; — d; between certain of the objects in the
diagram. (Possibly more than one arrow between a given pair of objects,
possibly none.)

A cone for diagram D consists of a €-object ¢ together with a €-arrow
fi :¢ — d; for each object d; in D, such that

d —5— 4

W4

commutes, whenever g is an arrow in the diagram D. We use the
symbolism {f; :c — d;} to denote a cone for D.

A limit for a diagram D is a D-cone {f; : ¢ — d,} with the property that for
any other D-cone {f!:¢'— d;} there is exactly one arrow f:¢’— ¢ such

commutes for every object d; in D.

This limiting cone, when it exists, is said to have the universal property
with respect to D-cones. It is universal amongst such cones —any other
D-cone factors uniquely through it as in the last diagram. A limit for
diagram D is unique up to isomorphism:- if {f;:c — d;} and {fi:c' — d;}
are both limits for D, then the unique commuting arrow f: ¢’----> ¢ above is
iso (its inverse is the unique commuting arrow c--->c¢’ whose existence
follows from the fact that {f!: ¢’ — d,} is a limit).
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ExamreiE 1. Given €-objects a and b let D be the arrow-less diagram
a b

A D-cone is then an object ¢, together with two arrows f, and g of the

form
a b
N A
c
A limiting D-cone, one through which all such cones factor, is none other

than a product of a and b in €.

ExampLE 2. Let D be the diagram
f

a—?—>b

A D-cone is a pair h:c — a, j:¢c — b such that

a—»b a—»b

NA N A

" commute. But this requires that j =feh = goh, so we can simply say that a
D-cone in this case is an arrow h:c¢ — a such that

c#agf_; b

commutes, i.e. feh = gch. We then see that a D-limit is an equaliser of f
and g

ExampLE 3. Let D be the empty diagram

i.e. no objects and no arrows. A D-cone is then simply a €-object ¢
(there are no f;>s as D has no d;’s). A limiting cone is then an object ¢
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such that for any other €-object (D-cone) ¢’, there is exactly one arrow
¢-->¢. In other words, a limit for the empty diagram is a terminal object!

O

By duality we define a co-cone {f; : d; — c¢} for diagram D to consist of an
object ¢, and arrows f; : d; — ¢ for each object d; in D. A co-limit for D is
then a co-cone {f;:d; — ¢} with the co-universal property that for any
other co-cone {f!:d; — c'} there is exactly one arrow f:c— ¢’ such

d;
y
P

commutes for every d; in D.

A co-limit for the diagram of Example 1 is a co-product of a and b,
while a co-limit for the empty diagram is a category € is an initial object
for €.

3.12. Co-equalisers

The co-equaliser of a pair (f, g) of parallel ¢-arrows is a co-limit for the
diagram

a:f—_,_’b
g

It can be described as a €-arrow q:b — e such that

() gef=qeg, and

(i) whenever h:b— ¢ has hof = hog in € there is exactly one €-arrow
k :e — ¢ such that

—_—

E
:l&

=

O €---ena-

commutes. The results of §3.10 immediately dualise to tell us that co-
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equalisers are epic, that the converse is true in Set, and that a monic
co-equaliser is iso.

In Set an “e-related” description of the co-equaliser comes through the
very important notion of equivalence relation. An equivalence relation on
a set A is, by definition, a relation R< A X A that is

(a) reflexive, i.e. aRa, for every a€ A;

(b) transitive, i.e. whenever aRb and bRc, then aRc; and

(c) symmetric, i.e. whenever aRb, then bRa.

Equivalence relations arise throughout mathematics (and elsewhere) in
situations where one wishes to identify different things that are ‘equival-
ent’. Typically one may be concerned with some particular property
(properties) with respect to which different things may be indistinguisha-
ble. The relation that holds between two things when they are thus
indistinguishable will then be an equivalence relation.

We have in fact already met this idea in the discussion in §3.4 of
isomorphism. Two objects in a category that are isomorphic might just as
well be the same object, as far as categorial properties are concerned, and
indeed

{{a,b):a=bin%€E}

is a relation on €-objects that is reflexive, transitive, and symmetric.
(Exercise 3.4.1).

The process of “identifying equivalent things” is rendered explicit by
lumping together all things that are related to each other and treating the
resulting collection as a single entity. Formally, for ae A we define the
R-equivalence class of a to be the set

[a]={b:aRb}

of all members of A to which a is R-related. Different elements may
have the same subset of A as their equivalence class, and the situation in
general is as follows:

(1) [a]l=[b] iff aRb
(2) if [a]#[b] then [alN[b]=9
3) acla]

(the proof of these depends on properties (a), (b), (c) above). Statement
(1) tells us that equivalent elements are related to precisely the same
elements, and conversely (2) says if two equivalence classes are not the
same, then they have no elements in common at all. This, together with



62 ARROWS INSTEAD OF EPSILON CH. 3,§3.12

(3) (which holds by (a)), implies that each a € A is a member of one and
only one R-equivalence class.

The actual identification process consists in passing from the original
set to a new set whose elements are the R-equivalence classes, i.e. we
shift from A to the set

A/R={al:ac A}

The transfer is effected by the natural map fr : A — A/R, where fg(a)=
[a], for ac A.

Thus, by (1), when aRb we have fp(a)=fg(b), and so R-equivalent
elements are identified by the application of fg.

What has all this to do with co-equalisers? Well the point is that f; is
the co-equaliser of the pair f,g: R 3 A of projection functions from R to
A, i.e. the functions

fa,b)=a
and
g(a, b)) =b.

The last paragraph explained in effect why fz °f = fr°g. To see why the
diagram

R —»2_# A -2, AR
) 'k

v

B

can be “filled in” by only one k, given heof = hog, we suppose we have a k
such that kofg = h. Then for [a]e A/R we must have k([a]) =k(fr(a))=
kofg(a)=h(a). So the only thing we can do is define k to be the function
that for input [a] gives output h(a). There is a problem here about
whether k is a well-defined function, for if [a]=[b], our rule also tells us
to output h(b) for input {a]=[b]. In order for there to be a unique output
for a given input, we would need to know in this case that h(a) = h(b).
But in fact if [a]=[b] then {(a,b)c R and our desideratum follows,
because hof=heog.

The question of “well-definedness” just dealt with occurs repeatedly in
working with so called “quotient” sets of the form A/R. Operations on,
and properties of an R-equivalence class are defined by reference to
some selected member of the equivalence class, called its representative.
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One must always check that the definition does not depend on which
representative is chosen. In other words a well defined concept is one that
is stable or invariant under R, i.e. is not altered or destroyed when
certain things are replaced by others to which they are R-equivalent.
Equivalence relations can be used to construct the co-equaliser in Set
of any pair f,g: A 2B of parallel functions. To co-equalise f and g we
have to identify f(x) with g(x), for x€ A. So we consider the relation

S={{f(x), g(x)):xc A} BXB.

S may not be an equivalence relation on B. However, it is possible to
build up S until it becomes an equivalence relation, and to do this in a
“minimal” way. There is an equivalence relation R on B such that

(i) SE€R, and

(ii) if T is any other equivalence on B such that T contains S, then
RcT
(i.e. R is the “smallest” equivalence relation on B that contains S). The
co-equaliser of f and g is then the natural map fi : B— B/R. (See Arbib
and Manes, p. 19, for the details of how to construct this R).

3.13. The pullback

A pullback of a pair a —L 5 ¢ «*— b of €-arrows with a common codomain
is a limit in 6 for the diagram
b
[g
a —L ¢
A cone for this diagram consists of three arrows f', h, g’, such that

f!

d — b
g/{ h g
a

— C

f

commutes. But this requires that h=gof' =fog’, so we may simply say
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that a cone is a pair a < d L, b of -arrows such that the “square”

_r,

a
(=

m~
—_
o —
)

S

f
commutes, i.e. fog = gof'.

Thus we have, by the definition of universal cone, that a pullback of the
pair a Ledbingisa pair of €-arrows a £ d L5 b such that

() feg'=ge°f, and

(ii) whenever a £ e L5 b are such that foh=gej, then

there is exactly one €-arrow k:e --> d such that h=g'ck and j =fck. In
other words when h and j are such that the outer “square”, or “boundary”
of the above diagram commutes, then there is only one way to fill in the
broken arrow to make the whole diagram commute.

The inner square (f, g, ', g") of the diagram is called a pullback square,
or Cartesian square. We also say that f' arises by pulling back f along g,
and g’ arises by pulling back g along f.

The pullback is a very important and fundamental mathematical no-
tion, that incorporates a number of well known constructions. It is
certainly the most important limit concept to be used in the study (and
definition) of topoi. The following examples, illustrating its workings and
generality, are commended as worthy of detailed examination.

ExampLE 1. In Set, the pullback

p—I B

d

A —

f
of two set function f and g is defined by putting

D={xy):xeA, yeB,and f(x)=g(y)}
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with f' and g’ as the projections:

fx, yN=y

g'x y)=x.
D is then a subset of the product set A XB. It is sometimes denoted
A>C<B, the product of A and B over C. Pullbacks are also known as

“fibred products” (the use of the word ““fibred” is explained in Chapter
4).

ExamrLE 2. Inverse images. If f: A — B is a function, and C a subset of
B, then the inverse image of C under f, denoted f~'(C), is that subset of A
consisting of all the f-inputs whose corresponding outputs lie in C, i.e.

FUCOYy={x:xe€ A and f(x) e C}

Fig. 3.2.
The diagram
ffo)——c
A—-B

is a pullback square in Set, where the arrows with curved tails denote
inclusions as usual, and f*(x) = f(x) for x& f™(C) (i.e. f* is the restriction
of f to f '(C)). Thus the inverse image of C under f arises by pulling C
back along f.

The dynamical quality inherent in the notion of function (cf. §2.1) is
quite forcefully present in this example of “pulling back”. It would be
quite unconvincing to suggest we were just dealing with sets of ordered
pairs.
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Examrik 3. Kernel relation. Associated with any function f: A — B isa
special equivalence relation on A, denoted R;, and called the kernel
relation of f (the kernel “congruence” in universal algebra, where it lies
at the heart of the First Isomorphism Theorem). As a set of ordered pairs
we have

Ri={(x,y):xc Aandye A and f(x) = f(y)}
or
xRy iff  f(x)=f(y).

In the light of our first example we see that
Rf _P2_, A

P: f

A B

f

is a pullback square, where p,((x, y))=x and p,({x, y)) =y, i.e. Ry arises
as the pullback of f along itself. This observation will provide the key to
some work in Chapter 5 on the “epi-monic factorisation” of arrows in a
topos.

Exameie 4. Kemnels (for algebraists). Let f:M—N be a monoid
homomorphism and

K={x:f(x)=e}
the kernel of f.

Then

0——N

is a pullback square in Mon, where O is the one-element monoid (which
is initial and terminal).

This characterisation of kernels applies also to the categories Grp and
Vect.



CH. 3, §3.13 THE PULLBACK

Exampik 5. In a pre-order (P,C0),

|

is a pullback square iff s is a product of p and q.

—_—

e

—

ExampLE 6. In any category with a terminal object, if

g

d ———bp

fJ l

is a pullback, then (f, g) is a product (g.1.b.) of a and b.

ExampLE 7. In any category, if

e a
a b

is a pullback, then i is an equaliser of f and g.

1
——

e

f

Exampie 8. THE PuriBack LEmma (PBL). If a diagram of the form

]

commutes, then

67

(1) if the two small squares are pullbacks, then the outer “rectangle”

(with top and bottom edges the evident composites) is a pullback;

(ii) if the outer rectangle and the right hand square are pullbacks then so

is the left hand square.
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The PBL is a key fact, and will be used repeatedly in what follows. Its
proof, though rather tedious, will certainly familiarise the reader with
how a pullback works.

The PBL will often be used for a diagram of the form,

e —— &

in which case when the outer rectangle and bottom square are pullbacks,
we will conclude that the top square is a pullback.

ExampLE 9. In any category, an arrow f:a—b is monic iff

1

—2 5 a

a

Jo
a —}——> b

is a pullback square.

Exercise. Show that if

A
QA e——— o

lx

is a pullback square, and f is monic, then g is also monic.

3.14. Pushouts

The dual of a pullback of a pair of arrows with common codomain is a
pushout of the two arrows with common domain:
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a pushout of b «—a-%5 ¢ is a co-limit for the diagram

g

a ——— ¢

In Set it obtained by forming the disjoint union b + ¢ and then identifying
f(x) with g(x), for each xea (by a co-equaliser).

EXERrRcISE. Dualise §3.13.

3.15. Completeness

A category € is complete if every diagram in € has a limit in €. Dually €
is co-complete when every €¢-diagram has a co-limit. A bi-complete
category is one that is complete and co-complete.

A finite diagram is one that has a finite number of objects, and a finite
number of arrows between them.

A category is finitely complete if it has a limit for every finite diagram.
Finite co-completeness and finite bi-completeness are defined similarly.

THEOREM 1. If € has a terminal object, and a pullback for each pair of
€-arrows with common codomain, then € is finitely complete. O

A proof of this theorem is beyond our present scope (and outside our
major concerns). The details may be found in Herrlich and Strecker [73],
Theorem 23.7, along with a number of other characterisations of finite
completeness.

To illustrate the Theorem, we observe that

(A) given a terminal object and pullbacks, the product of a and b is
got from the pullback of a—1<b (cf. §3.13, Example 6);

(B) given pullbacks and products, from a parallel pair f,g:a=—3b we
first form the product arrows

Aa.h A
a——axXb and a———aXxb
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and then their pullback

d—32—a

pl lﬂa, g)

a <1a’f> axb

It follows readily (8§3.8) that p = g, and that this arrow is an equaliser of f
and g.

Exercises

(1) Verify (B), and consider the details of that construction in Set.

(2) Show how to construct pullbacks from products and equalisers. A hint
is given by the description (Example 1, §3.13) of pullbacks in Set. A
co-hint appears in §3.14.

(3) Dualise the Theorem of this section.

3.16. Exponentiation

Given sets A and B we can form in Set the collection B# of all functions
that have domain A and codomain B, i.e.

B* ={f:f is a function from A to B}

To characterise B* by arrows we observe that associated with B# is a
special arrow
ev:B* XA — B,

given by the rule
ev((f, x)) = f(x).

ev is the evaluation function. Its inputs are pairs of the form (f, x) where
f: A—B and x < A. The action of ev for such as input is to apply f to x,
to evaluate f at x, yielding the output f(x)e B. The categorial description
of B# comes from the fact that ev enjoys a universal property amongst
all set functions of the form

CxA-25B.
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Given any such g, there is one and only one function §:C — B* such
that

A
L e
i B

éxA/

commutes where g Xid, is the product function described in §3.8. For
input {c,a)e CX A it gives output (g(c), id, (a))={(&(c), a).

The idea behind the definition of g is that the action of g causes any
particular ¢ to determine a function A — B by fixing the first elements of
arguments of g at ¢, and allowing the second elements to range over A. In
other words for a given ¢ e C we define g.: A — B by the rule

g(a)=g(c, a)), foreach acA.

&:C— B* can now be defined by g(c)=g., all ceC. For any {c,a)e
CXA we then get

ev((g(c), ay) = g.(a)=g(c, a))

and so the above diagram commutes. But the requirement that the
diagram commutes, i.e. that ev({g(c), a)) = g({c, a)), means that &(c) must
be the function that for input a gives output g((c, a)), i.e. g(¢) must be g,
as above. )

By abstraction then we say that a category € has exponentiation if it has
a product for any two €-objects, and if for any given ¢-objects a and b
there is a ¥-object b* and a €-arrow ev:b® X a — b, called an evaluation
arrow, such that for any €-object ¢ and ¢-arrow g:cXa — b, there is a
unique ¥-arrow g:c¢ — b* making

b%xa
1+

b

gX1,

€v
cXa /

commute, i.e. a unique g such that evo(gx1,)=g The assignment of &
to g establishes a bijection

€(cxXa, b)=%(c, b*)
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between the collection of ¥-arrows from ¢ X a to b, and the collection of
those from ¢ to b For if § = h, then evo(g X1,) = evo(hx1,),ie. g=h,
and so the assignment is injective. To see that it is surjective, take
h:c— b® and define g=eve(hx1,). By the uniqueness of § we must
have h=4g.

Two arrows (g and @) that correspond to each other under this
bijection will be called exponential adjoints of each other. The origin of
this terminology may be found in Chapter 15.

A finitely complete category with exponentiation is said to be Cartesian
closed.

Exampik 1. If A and B are finite sets with say m and n elements, then
B is finite and has n™ (“n to the power m”) elements. In the expression
n™, the “m” is called an exponent, hence the above terminology. Finerd is
Cartesian closed, and indeed the exponential is literally the number n™.

ExamprE 2. A chain is a poset P=(P,C) that is linearly ordered, i.e. has
p=q or qp for any p,q<P. If P is a chain with a terminal object 1,
then we put

1 if ptgq
q° =
qg if qcp (ie.q&p and q#p)

A chain always has products:

p it ptq

qu:g.l.iJ.ofpandqz ]
q if qCp.

We thus have two cases to consider for ev.
(i) p=q. Then g°Xp=1Xp=pq;

(ii) g=p. Then g°* Xp=qXp=q.

In either case q° X p=q and so ev is the unique arrow g° Xp — q in P.
We leave it to the reader to verify that this definition gives P exponentia-
tion. An explanation of why it works, and an account of exponentiation in
posets in general will be forthcoming in Chapter 8. 1

TueoREM 1. Let € be a Cartesian closed category with an initial object 0.
Then in €,

(1) 0=0xa, for any object a;

(2) if there exists an arrow a — 0, then a =0;

(3) if 0=1, then the category € is degenerate, i.e. all €-objects are
isomorphic;
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(4) any arrow 0 — a with dom 0 is monic;
(5) a*=a, a°=1, 1°=1.

Proor. (1) For any €-object b, €(0, b*) has only one member (as 0 is
initial). By definition of exponentiation, €(0, b*)=%(0Xxa, ). Hence the
latter collection has only one member. Thus there is only one arrow
0 X a—b, for any b. Hence 0 X a is an initial €-object, and since the latter
are unique up to isomorphism, 0=0Xa.

(2) Given f:a — 0, we show that a=0Xa, and hence by (1), a=0.
From the universal definition of product

a
f ' 1,
K1
+
0 Pre Oxa o @

pr.o{f, 1,y =1,. But (f, 1,)°pr, is an arrow from 0 X a to 0Xa, and there
is only one such, 0 X a being initial. thus (f, 1,)°pr, = 1ox,, giving (f, 1,) =
pr.t and pr,:0xXa=a.

(3) If 0=1, then for any a, since there is an arrow from a to 1, there
will be one from a to 0 whence, by (2), a=0. Thus all objects are
isomorphic to 0. Ergo they are all isomorphic to each other.

(4) Given f:0— a, suppose fog=foh, i.e.

b_g‘—’O—f>a

commutes. But then by (2), b=0, so b is an initial object and there is
only one arrow b — 0. Thus g = h, and f is left-cancellable. O

ExeRrcisE. Prove part (5) of the Theorem, and interpret (1)-(5) as they
apply to Set. O

Having reached the end of this chapter, we can look back on an extensive
catalogue of categorial versions of mathematical concepts and construc-
tions. We now have some idea of how category theory has recreated the
world of mathematical ideas, and indeed expanded the horizons of
mathematical thought. And we have seen a number of features that
distinguish Set from other categories. In Set, monic epics are iso, a
property not enjoyed by Men. It is however, enjoyed by Grp — but then
Grp is not Cartesian closed (this follows from the above Theorem — Grp is



74 ARROWS INSTEAD OF EPSILON CH. 3,83.16

not degenerate, but does have 0=1). On the other hand the Cartesian-
closed categories are not all “Set-like”. The poset n={0,...,n—1} is
Cartesian-closed (being a chain with terminal object), but has monic epics
that are not iso. It would appear then that to develop a categorial set
theory we will have to work in categories that have some other special
features in common with Set, something at least that is not possessed by
Mon, n, etc. In fact what we need is one more construction, a conceptu-
ally straightforward but very powerful one whose nature will be revealed
in the next chapter.



CHAPTER 4

INTRODUCING TOPOI

“This is the development on the
basis of elementary (first-order)
axioms of a theory of “‘toposes”
just good enough to be applicable
not only to sheaf theory, algebraic
spaces, global spectrum, etc. as
originally envisaged by Grothen-
dieck, Giraud, Verdier, and
Hakim but also to Kripke
semantics, abstract proof theory,
and the Cohen—Scott—Solovay
method for obtaining indepen-
dence results in set theory.”

F. W. Lawvere

4.1. Subobijects

If A is a subset of B, then the inciusion function A & B is injective, hence
monic. On the other hand any monic function f:C >— B determines a
subset of B, viz Im f={f(x): xe C}. It is easy to see that f induces a
bijection between C and Im f, so C=Im f.

Thus the domain of a monic function is isomorphic to a subset of the
codomain. Up to isomorphism, the domain is a subset of the codomain.
This leads us to the categorial versions of subsets, which are known as
subobjects

75
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a subobject of a €-object d is a monic €-arrow f: a>>d with codomain d.
Now if D is a set, then the collection of all subsets of D is known as the
powetrset of D, denoted P(D). Thus

P(D)={A: A is a subset of D}.

The relation of set inclusion is a partial ordering on the power set P(D),
i.e. (P(D), <) is a poset, and becomes a category in which there is an
arrow A — B iff A< B. When there is such an arrow, the diagram

I~
A

commutes. This suggests a way of defining an “inclusion” relation be-
tween subobjects of d. Given f:a>>d and g:b>>d, we put f < g iff there
is a €-arrow h:a — b such that

|

commutes, i.e. f=goh. (such an h will always be monic, by Exercise
3.1.2, so h will be a subobject of b, enhancing the analogy with the Set
case). Thus f< g precisely when f factors through g.

The inclusion relation on subobjects is

(i) reflexive; f<f, since

and
(i) tramsitive; if f< g and g<k, then f <k, since

C

™

ioh by 28 ,d if f=gehand g=koi

then f=ko(ih).
h[f
a
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Now if f< g and g<f, then f and g each factor through each other, as

in
b
5% o
a/ g=fei

In that case, h:a —> b is iso, with inverse i (exercise for the reader). Thus
when f< g and g =f, they have isomorphic domains, and so we call them
isomorphic subobjects and write f==g. Now in order for < to be anti-
symmetric, we require that when f =g, then f = g. This may not in fact be
so, indeed we may have a#b. So < will in general be a preordering on
the subobjects of d as defined, and not a partial ordering. If we left things
there, we would run into difficulties later. We really do want to be able to
think of = as being antisymmetric. The machinery that allows this was set
up in §3.12. The relation = is an equivalence relation (exercise — use (i),
(i1) above). Each f:a>>d determines an equivalence class

[fl={g: f=g},
and we form the collection
Sub(d)={[f]: f is a monic with cod f=d}.

We are now going to refer to the members of Sub(d) as the subobjects,
i.e. we redefine a subobject of d to be an equivalence class of monics with
codomain d. To obtain an inclusion notion for these entities, we put
(using the same symbol as before)

[flcle] iff fcg

Here we come up against the question mentioned in §3.12. Is the
definition, given via representatives of equivalence classes, independent
of the choice of representative? The answer is yes. If [f]=[f] and
[g]l=[g'], then fc g iff f < ¢, i.e. < is stable under = (exercise).

The point of this construction was to make < antisymmetric. But when
[fl=lg] and [g]<[f], then f< g and g<f, so f=g and hence [f]=[g].
Thus the subobjects of d, as now defined, form a poset (Sub(d), <).

This lengthy piece of methodology is not done with yet. It now starts to
bite its own tail as we blur the distinction between equivalence class and
representative. We shall usually say “‘the subobject f” when we mean
“the subobject [f]”, and “f< g” when strictly speaking “[flc[g]” is
intended, etc. All properties and constructions of subobjects used will
however be stable under = (indeed being categorial they will only be



78 INTRODUCING TOPOI CH. 4, 8§4.1

defined up to isomorphism anyway). So this abus de langage is technically
justifiable and has great advantages in terms of conceptual and notational
clarity. The only point on which we shall continue to be precise is the
matter of identity. “f=g” will be used whenever we mean that f and g
are the same subobject, i.e. [f]=[g], while “f=g” will be reserved for
when they are the same actual arrow.

Exercise 1. In Set, Sub(D)=%(D). O
Elements

Having described subsets categorially, we turn to actual elements of sets.
A member x of set A, (xe A), can be identified with the “singleton”
subset {x} of A, and hence with the arrow {x}< A, from the terminal
object {x} to A. In the converse direction, a function f:1— A in Set
determines an element of A, viz the f-image of the only member of the
terminal object 1. Thus; if category € has a terminal object 1, then an
element of a €-object a is defined to be a €-arrow x:1— a. (Note that
x:1— a is always monic — Exercise 3.6.3.)

Of course the question is—does this notion in general reflect the
behaviour of elements in Set? Must a non-initial €-object have elements?
Can two different €-objects have the same elements? Can we characterise
monic and epic arrows in terms of elements of their dom and cod? These
matters will be taken up in due course.

Naming arrows

A function f: A — B from set A to set B is an element of the set B*, i.e.
fe B*, and so determines a function 'f': {0} — B*, with 'f'(0) =f. Then if
x is an element of A, we have a categorial “element” x:{0}— A, with
£(0)=x. Since ev({f, x))=f(x) we find that ev e {('f!, x)(0) = ev('f1(0),
x(0)) = f(x) = f(x(0)), and hence we have an equality of functions:
ev o ('fl,Xy=fox.
This situation can be lifted to any category € that has exponentials. Given
a @-arrow f:a—b, let fopr,:1Xa—b be the composite fopr,:1X
a — a — b. Then the name of f is, by definition, the arrow f1:1 — b
that is the exponential adjoint of f  pr,. Thus 'f! is the unique arrow
making
b*xa

M‘
rf]X'IJ

e

opra

b
1Xa
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commute. Then we have that for any €¥-element x:1—a of aq,
ev o ('flxy=fox

Exercise 2. Prove this last statement.

4.2, Classifyihg subobjects

In set theory, the powerset 2(D) is often denoted 2°. The later symbol,
according to our earlier definition, in fact denotes the collection of all
functions from D to 2 =40, 1}. The justification for the usage is that
P(D)=2P, i.e. there is a bijective correspondence between subsets of D
and functions D — 2. This isomorphism is established as follows: given a
subset A € D, we define the function x. : D — 2, called the characteristic
function of A, by the rule “for those elements of D in A, give output 1
and for those not in A, give output 0”. i.e.

1 if xeA
0 if x€A

N
i

*0

xa0={

Fig. 4.2.

The assignment of x, to A is injective from P (D) to 27, i.e. if xo = Xz
then A = B (why?). It is also surjective, for if f € 2", then f = x,,, where

A;={x:xeD and f(x) =1}

This correspondence between subset and characteristic function can be
“captured” by a pullback diagram. The set A; just defined 1s the inverse
image under f of the subset {1} of {0, 1}, i.e.

A =f1({1),

and so according to §3.13

[

{1} ——2
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is a pullback square, i.e. A; arises by pulling back {1}< 2 along f. We are
going to modify this picture slightly. The bottom arrow, which outputs the
element 1 of {0, 1} is replaced by the function from 1={0} to 2={0, 1}
that outputs 1. We give this function the name true, for reasons that will
emerge in Chapter 6. It has the rule; true (0)=1. Then the inner square
of

B g
Nk
\34
| a—D
![ f
1] e, o

is a pullback. To see this, suppose the “outer square” commutes for some
g. Then if beB, f(g(b))=true(!(b))=1, so g(b)e A;. Hence k:B — A
can be defined by the rule k(b) = g(b). This k makes the whole diagram
commute, and is clearly the only one that could do so. It follows that if
A <D, then

A—D

1 true 2

is a puliback, since pulling true back along x, yields the set
{x: xa(x) =1}, which is just A. But more than this follows— x, can be
identified as the one and only function from D to 2 that makes the above
diagram a pullback, i.e. the only function along which frue pulls back to
yield A. If, for some f, the inner square of

is a pullback, then for x€ A, f(x)=1, so x€ A Hence A < A;. But the
outer square commutes —indeed it is a puilback as we saw above — and so
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the unique k exists with i e k=7j. Since i and j are inclusions, k must be
as well. Thus A; < A, and altogether A = A, But f is the characteristic
function of A, and so, f= x,.

So the set 2 together with the function true : 1 — 2 play a special role in
the transfer from subset to characteristic function, a role that has been
cast in the language of categories, in such a way as to lead to an abstract
definition:

DermntTION. If € is a category with a terminal object 1, then a subobject
classifier for € is a €-object  together with a €-arrow true : 1 — (2 that
satisfies the following axiom.

Q-axioM. For each monic f:a>>d there is one and only one €-arrow
X;:d — £ such that

X

true Q

is a pullback square.

The arrow x; is called the characteristic arrow, or the character, of the
monic f (subobject of d). The arrow true will often be denoted by the
letter “T7.

A subobject classifier, when it exists in a category, is unique up to
isomorphism. If T:1—  and T':1— ' are both subobject classifiers we
have the diagram

1>—"— 0

Xr

11— 0

Xt

J

1>—"— 0

The top square is the pullback that gives the character x4 of T using T’ as
classifier (remember any arrow with dom=1 is monic). The bottom
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square is the pullback that gives the character of T', when T is used as
classifier.
Hence by the PBL (§3.13, Example 8) the outer rectangle

1 —T-5 0
[ XXk
1—1— 0

is a pullback. But by the Q-axiom there is only one arrow 1 — Q making
this square a pullback, and 1, would do that job (why?) Thus x © x} =
10. Interchanging T and T’ in this argument gives

Xt xr=1a:

and so y: Q'=(.

Since T'=x4 o T we have that any two subobject classifiers may be
obtained from each other by composing with an iso arrow between their
codomains.

The assignment of x; to f establishes a one-one correspondence be-
tween subobjects of an object d, and arrows d — (2, as shown by:

TueoreMm. For f:a > d and g:b > d,
f=g it %=X
Prook. Suppose first that x; = x,. Consider

true
Q

Since x; = x,, the outer square commutes (indeed is a pullback) and so as
the inner square is a pullback there exists k factoring g through f, hence
g < f. Interchanging f and g on the diagram leads to f < g and altogether
f=g

Conversely if f=g, then the arrow k in the above diagram does exist
and is iso with an inverse k~': a =b. Using this one can show that the
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outer square is a puilback, which can only be so if x; is the unique
character of g, x; =x,. [l

Thus the assignment of x; to f (more exactly to {f]) injects Sub(d) into

€(d, ). But given any h:d — €, if we pull true back along h,

f

a ——>d

| I

1 true Q

the resulting arrow { will be monic (since true is monic and the pullback
of a monic is always itself monic~ Exercise, §3.13). Hence h must be ;.
So in a category where these constructions are possibie we get

Sub(d)=%(d, ).

NortaTtiOoN. For any €-object a, the composite true © |, of arrows !:a — 1
and true, will be denoted true,, or T,, or sometimes true!

a —— 1

true
true,

Q

Exercise 1. Show that the character of true: 1>—>Q is 14
1 : frue Q
1 true Q

ie. Xoue — 10.

Exercist 2. Show that x,, = triueqg =true ° lg.

]
Q>—"— 0

|g[ [true olg

1 true Q
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ExEercise 3. Show that for any f:a — b,

a—L )
tru& %ueb
Q

true, o f = true,. O

4.3. Definition of topos

DErINITION. An elementary topos is a category € such that
(1) & is finitely complete,
(2) & is finitely co-complete,
(3) & has exponentiation,
(4) & has a subobject classifier.

As observed in Chapter 3, (1) and (3) constitute the definition of
“Cartesian closed”, while (1) can be replaced by

1) & has a terminal object and pullbacks,
and dually (2) replaced by
2" & has an initial object 0, and pushouts.

The definition just given is the one originally proposed by Lawvere and
Tierney, in terms of which they started topos theory in 1969. Subse-
quently C. Juul Mikkelsen discovered that condition (2) is implied by the
combination of (1), (3) and (4) (cf. Paré [74]). Thus a topos can be defined
as a Cartesian closed category with a subobject classifier. In §4.7 we shall
consider a different definition, based on a categorial characterisation of
power sets.

The word “‘elementary” (which from now on will be understood) has a
special technical meaning to do with the nature of the definition of topos.
This usage will be explained in Chapter 11.

The list of topoi that follows in this chapter is intended to illustrate the
generality of the concept. By no means all of the detail is given — for the
most part we concentrate on the structure of the subobject classifier.



CH. 4,844 FIRST EXAMPLES 85

4.4. First examples

ExampLE 1. Set is a topos — the prime example and the motivation for the
concept in the first place.

Exampre 2. Finset is a topos, with limits, exponentials, and T:1—4&2
exactly as in Set.

ExampLE 3. Finord is a topos. Every finite set is isomorphic to some finite
ordinal (A =n if A has n elements). Hence all categorial constructions in
Finset “transfer’”’ into Finord (as we have already observed for product,
exponentials). The subobject classifier in Finord is the same function
true : {0} — {0, 1} as in Finset and Set.

ExaMmPLE 4. Set, the category of pairs of sets is a topos. All constructions
are obtained by “doubling up”’ the corresponding constructions in Set (cf.
Example 10, §2.5).

A terminal object is a pair ({0}, {0}) of singleton sets. Given two arrows
{f, 2):{(A, By —=(E, F),{(h, k):(C, D) — (E, F) with common codomain in
Set?, form the pullbacks

p—1 .c 0O—>-p

i h u k

A E B—5—F
in Set. Then

@ 0y L2, (¢, D)

{, u) (h, k)

(A,B) = (EF)
will be a pullback in Set’.
The exponential has
(C, DYAB = (CA, DP)
with evaluation arrow from

(C, DY*®'x(A, B)=(C* X A, D" XB)
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to (C, D) as the pair (e, f) where e:C* XA — C and f:D® XB — D are
the appropriate evaluation arrows in Set.

The subobiject classifier is (T, T ):{{0}, {0}) — (2, 2). The category Set
plays no special role here. If €, and &, are any topoi, then the product
category &€, X &, is a topos.

ExaMPLE 5. Set™, the category of functions. The terminal object is the
identity function id,, from {0} to {0}.
Pullback: Consider the “‘cube”

N
D
g

| N

i

r

P C

q
F

f, g, h are given as Set~-objects with (i, j) an arrow from f to g, {p, q) an
arrow from h to g The rest of the diagram obtains by forming the
pullbacks

Q _S_,D P r C
u[ q u[ p
B—l>F A—1 > E

in Set. The arrow k exists by the universal property of the pullback of j
and q. Then in Set™ the arrows (u, v) and {r, s) are the pullbacks of (i, j)
and (p, q).

Classifier: If f: A — B is a subobject of g: C — D in Set™ then there is
a commutative Set diagram

A>—L > C

f g

B>1—p
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We will take the monics to be actual inclusions, so that AcC, B D
and f is the restriction of g, i.e. f(x)= g(x) for x € A. The picture is

Fig. 4.3.
An element x of C can be classified now in three ways. Either
(i) xe A, or
(i) x¢ A, but g(x)e B, or
(iii) x¢ A, and g(x)¢ B.
So we introduce a 3-element set {0, 3, 1} and define ¥:C —{0,%, 1} by

1 if (i) holds
P(x) ={§ if  (ii) holds
0 if (i) holds
We can now form the cube

’f—— {0,£, 1} Ixe
DN N

—{0, 1}

where true(0)=t (0) =1, ¢:{0,%, 1} > {0, 1} has #(0)=0, and t(1)=t(3) =
1. xg is the characteristic function of B.

The base of the cube displays the subobject classifier T:1— 2 for
Set”. T is the pair (¢, true) from 1=id, to 2 =1¢:{0,3, 1} —{0, 1}.
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The front and back faces of the cube are each pullbacks in Set. The
whole diagram exhibits (s, xg) as the character in Set™ of the monic (i, j).

Exponentiation: Let f: A — B, g: C — D be two Set”-objects. Then g’
is the Set "-object (function) g’ : E — F, where

F=D® (exponential in Set)
E is the collection of all Set”-arrows from f to g i.e.

A -t

E={h k): f g commutes}

B—*.p

and
g’ ((h, k) =k.

The product object of gf and f in Set™ is the product map
gf xf:ExXA—FXB (cf. §3.8)

and the evaluation arrow from gf Xf to g is the pair (u, v)

ExA —* - C

ngf{

FxB *— D

g

where v is the usual evaluation arrow in Set, and u takes input ((h, k), x)
to output h(x).

The constructions just given for T:1— and g’ will be seen in
Chapter 9 to be instances of a more general definition that yields a whole
family of topoi.

4.5. Bundles and sheaves

One of the primary sources of topos theory is algebraic geometry, in
particular the study of sheaves. To understand what a sheaf is requires
some knowledge of topology and the full story about sheaves and their
relation to topoi would take us beyond our present scope. The idea is
closely tied up with models of intuitionistic logic, but is much more
general than that. Indeed, sheaf theory constitutes a whole conceptual
framework and language of its own, and to ignore it completely, even at
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this stage, would be to distort the overall significance and point of view of
topos theory.

For the benefit of the reader unfamiliar with topology we shall delay its
introduction and first consider the underlying set-theoretic structure of
the sheaf concept, to be called a bundle.

Let us assume we have a collection « of sets, no two of which have any
elements in common. That is, any two members of « are sets that are
disjoint. We need a convenient notation for referring to these sets so we
presume we have a set I of labels, or indices, for them. For each index
ic I, there is a set A, that belongs to our collection, and each member of
o is labelled in this way, so we write & as the collection of all these A;’s,

A={A;:iell}.

The fact that the members of & are pairwise disjoint is expressed by
saying that for distinct indices i, je I

ANA =0

We visualise the A;’s as “sitting over” the index set I thus:

Fig. 4.4.

If we let A be the union of all the A;’s, i.e.
A ={x:forsome i, x € A;}

then there is an obvious map p: A — L If x € A then there is exactly one
A, such that xe€ A, by the disjointness condition. We put p(x)=i. Thus
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all the members of A; get mapped to i, all the members of A; to j, etc.
We can then re-capture A; as the inverse image under p of {i}, for
pi{iH={x:px)=i}=A;

The set A; is called the stalk, or fibre over i. The members of A; are
called the germs at i. The whole structure is called a bundle of sets over
the base space I. The set A is called the stalk space (’espace étalé) of the
bundle. The reason for the botanical terminology is evident — what we
have is a bundle of stalks, each with its own head of germs (think of a
bunch of asparagus spears).

This construction looks rather special, but it is to be found whenever
there are functions. We have just seen that a bundle has an associated
map p from its stalk space to the base. (If in fact every stalk is nonempty
then p will be surjective, but in general we will allow the possibility that
A; =). Conversely, if p: A — I is an arbitrary function from some set A
to I, then we can define A, to be p~'({i}), for each i€ I, and define

A={pT'(iN:ie={A;iel}.

Then s is a bundle of sets over I whose stalk space is the original A, and
induced map A — I the original p (the stalks are disjoint, as no x € A can
have two different p-outputs).

So a bundle of sets over I is “‘essentially just” a function with codomain
I The two are not of course identical conceptually. To construe a
function as a bundle is to offer a new, and provocative, perspective. To
emphasise that, we will introduce a new name Bn(l) for the category of
bundles over I, although we have already described it in Example 12 of
Chapter 2 as the Comma category Set | I of functions with codomain I.
Thus the Bn(I)-objects are the pairs (A, f), where f:A—1I is a set
function and the arrows k :(A, f) — (B, g) have k: A — B such that

A—k B
N
I
commutes, i.e. g o k=f This means that if f(x)=i, for x€ A, then
g(k(x))=1, i.e. if xe A, then k(x)e€ B,. Thus k maps germs at i in (A, f)

to germs at i in (B, g).
Now a topos is to be thought of as a generalisation of the category Set.

An object in a topos is a “generalised set”. A “set” in the topos Bn(I) is a
bundle of ordinary sets. Many categorial notions when applied to Bn(I)
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prove to be bundles of the corresponding entities in Set, as we shall now
see.

The terminal object 1 for Bn(I) is id; : I — I, and for any bundle (A, f),
the unique arrow (A, f)— (Lid;) is f: A — I itself (cf. §3.6). Now the
stalk of id; over i is id~*({i}) ={i}, which is terminal in Set. Thus the Bn(I)
terminal is a bundle of Set-terminals over I, and the unique arrow
f:(A, f)— (I id;) can be construed as a bundle

{fiiel}

of unique Set-arrows, where

fi=tf{iH —{ik

Pullback: Given Bn(I)-arrows k :{A, f)—{C, h) and 1 :{B, g)—{C, h),
so that

B

[N

A_k_,c

commutes, form the pullback

p 2., B

p I

k

A ——

in Set of k and I Then

q
P\ B&
oI ;I
A k C
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is a pullback of k and I in Bn(I), where j=fep=hokop=holoq=
g ° q. The diagram is probably more usefully given as the commutative
P ¢ B

N

Now if A, B, C; are the stalks over i for the bundles f, g, h, then the
pullback of

B

1

P*

A X G

has domain {{(x, y): x € A, y € B;, and k(x)=Il(y)} which can be seen to be
the same as

{(x,y):xeA, yeB and j(x,y)=it=j "{i}),

which is the stalk over i of j:P— L

Thus the pullback object (P, j) is a bundle of pullbacks from Set.

Subobject classifier: The classifier for Bn(I) is a bundle of two-element
sets, i.e. a bundle of Set-classifiers.

We define Q=2xI p;), where p;:2XxI—1 is the projection
pi{x, yY) =y onto the “second factor’’. Now the product set 2X1I is in
fact the (disjoint) union of the sets

O xI={0,i)iel}
and

X I={1,i):iell,

each isomorphic to I, and we visualise {2 as shown in Fig. 4.5. The stalk
over a particular i is the two-element set

0, ={0, i), (1, N =2 x{i}.
The classifier arrow T:1— £ can be thought of as a bundle of copies of
the set function true. We define T:1— 2 X1 by

T() =<1, i).

In terms of the limit approach to products, T is the product map
({true!,id;) of true o 1: I — {0} — {0, 1} and id,.
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- <7, l> ) {7} xI

(
( 0.1 ) {0} xT

D

GRS

, Fig. 4.5.

To see how T classifies subobjects we take a monic k : (A, f) > (B, g) in
Bn(I), and in fact suppose that k is an inclusion, i.e. A < B and f(x)=
g(x), all x € A. We wish to define the character x; :(B, ) > Q2=02x1IL p,)
so that

A —k B
N
‘f T Xic

v
T R — 2xI
commutes and gives a pullback in Bn(I). Now any xe B is classified

according to whether x € A or x¢ A.

Fig. 4.6.

We make y, assign as “1” or “0” accordingly, and also make these
choices in the right stalks, so that p; o x, = g. Formally, y,:B —2x1I is
the product map {x., g): B — 2X I, where y, : B — 2 is the usual charac-
teristic function of A, i.e.

(1,g(x)) if xeA
Xi(x) = .
0, g(x)y if x¢A.
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ExErcIstE 1. Verify that this construction satisfies the {2-axiom. |

Sections: The function T:I—2XI has an interesting property— for
input i the output T(i) =(1, i) is a germ at i. Such a function from the base
set I to the stalk space that picks one germ out of each stalk is called a
section of the bundle. In general s: I — A is a section of bundle f: A — I
if s(iYe A, =f'({i}), for all i € I. This means precisely that f(s(i)) =1, all i,
and hence that

] —5 5 A

mx/

commutes. So another way of looking at a section is to say that it is a
Bn(I)-arrow from the terminal (I,id;) to (A, f). Thus a section of the
bundle (A, f) is an element of the Bn(I)-object (A, ) in the sense of the
definition at the end of §4.1. But our initial picture of a section is a
bundle of germs, one from each stalk. So an “element” in Bn(I) is a
bundle of ordinary elements.

Elements of (2, i.e. arrows 1 — (2, in any topos &€ are known as the
truth-values of &, and have a special role in the logical structure of € (See
Chapter 6). We know (§4.2) that there is a bijective correspondence
Sub(1)=2(1, 2) between elements of 2 and subobjects of 1. Now in
Bn(I) a subobject k: (A, f)>>1 of 1 must have

I

commuting, so k=f. Thus a subobject of 1 can be identified with an
injective function f: A >> I, i.e. with a subobject of I in Set. The latter of
course is essentially a subset of I, and we conclude that there is a bijection

P(D=Bn(I)(1, 2)

i.e. we may identify truth-values (elements of ) in Bn(I) with subsets of
I It is instructive to spell this out fully:

Given A< let S, : I— 2X1I be the product map (xa,id;), i.e.
(1,iy if iceA

Sald)= {<0, i it i¢A
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then S, is a section of {2, whose image is shown shaded in the picture.

( ) (1}x1
C )

Fig. 4.7.

The assignment of S, :1— € to A is injective (exercise). Moreover if
S:1—Q is any section, and A ={i: S(i)=(1, i)}, then S=S§,, so the
assignment is also surjective.

Note that whereas Set has two truth values, %(I) may well be infinite (it
certainly will be if I is infinite).

Ex©eRcISE 2. What are the truth-values in Set®> and in Set™? O

Products. Let (A, f) and (B, g) be bundles over I and form the pullback

AXB B
I
h
pl g
A I

f

Then (A x B, h) is the product of (A, f) and (B, g) in Bn(I), where h =
f o p=g © g, and has projection arrows p and g. Note that the stalk (fibre)
over i is

{x, y): fx)=g(y)=i} = A;xB,

the product of the fibres over i in (A, f) and (B, g). Hence the name
“fibred product” that is sometimes used for “pullback”.

Exponentials. Given bundles f:A —1I and g:B— 1 we form their
exponential as a bundle of the exponentials B;* of the stalks of A and B.
More precisely let D, be the collection of functions k : A; — B such that

A —k . B

i

AN A

I
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commutes and so k carries A, into the stalk B; of g over i (where, as
previously, f* denotes a function that has the same rule as f but may vary
as to domain or codomain). Now the D,’s may not be pairwise disjoint, so
we define E, ={i}x D,, for each i, and then {E;:icI} is a bundle. The
induced function p: E — I where E is the union of the E;’s has p({(i, k)) = i.
(E, p) is the exponential

(B, g)*".

The evaluation arrow ev:(E p)X(A,f)—(B,g) is the function
ev: EX; A — B, where

ev({(i, k), x)) = k(x).

The reader who has the patience to wade through the details of checking
that this construction is well defined and satisfies the definition of ex-
ponentiation will no doubt get his reward in heaven. For the present he
will perhaps appreciate the advantages of the categorial viewpoint,
wherein all we need to say about the exponential, to know what it is, is
that it satisfies the universal property described in §3.16. (We shall return
to this example in Chapter 15).

FUNDAMENTAL THEOREM. Not only is Bn(I)=Set| I a topos, but more
generally if € is any topos and a an €-object, then the category € | a of
&-arrows over a (§2.5, Example 12) is also a topos.

This fact has been called the Fundamental Theorem of Topoi by Freyd
[72]. The reader can probably sort out many of the details from the
above, e.g. if T:1— (2 is the classifier in €, thenin & | a it is {T,, 1,), i.e.

T, 1

a <—“—“>> O Xa

kﬁ
a

The definition of exponentials in € | a would carry us too far afield at
present. It requires the development of a categorial theory of “partial
functions” and their classification, which will be considered in Chapters
11 and 15.

Sheaves

A sheaf is a bundle with some additional topological structure. Let I be a
topological space, with @ its collection of open sets. A sheaf over I is a
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pair (A, p) where A is a topological space and p: A — I is a continuous
map that is a local homeomorphism. This means that each point x € A has
an open neighbourhood U in A that is mapped homeomorphically by p
onto p(U) ={p(y): y € U}, and the latter is open in I The category Top(I)
of sheaves over I has such pairs (A, p) as objects, and as arrows
k:(A, p) — (B, q) the continuous maps k: A — B such that

A—% . B

nNY

commutes. Such a k is in fact an open map (as is a local homeomorphism)
and in particular Im k =k(A) will be an open subset of B.

Top(l) is a topos, known as a spatial topos. The terminal object is
id; : I — L. The subobject classifier is the sheaf of germs of open sets in L
Its construction illustrates a common method of building a bundle over L.
There will be some ambient set X and each point i € I will determine an
equivalence relation ~; on X. The stalk over i will then be defined as the
quotient set X/ ~; of equivalence classes of X under ~,.

In the present case X is the collection @ of open sets in I. At icl, we
define ~; by declaring, for U, Ve ®

U~,V iff there is some open set W such that ie W
and UNW=VNWwW

Then ~; is an equivalence relation. The intuitive idea is that U ~; V when
the points in U that are close to i are the same as those that are in V and
close to i, i.e. “locally” around i, U and V look the same, ie. the
statement “U = V”* is “locally true’ at i.

Fig. 4.8.

The equivalence class

[Ul={V: U~ V}
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is called the germ of U at i. Intuitively it “‘represents’ the collection of
points in U that are ‘‘close” to i.
We then take as the stalk over i,

0O, ={i,[U]): U open in I}.

Then (2 is the corresponding function p: I — I, where I is the union of
the stalks 2, and p gives output i for inputs from (,. The topology on I
has as base all sets of the form

(U, VI={(i,[Ul): ie V}

where V is open and U < V. This makes p a local homeomorphism, and
also makes each stalk a discrete space under the relative topology.

If we denote by @, the collection of open neighbourhoods of i then we
have the following facts about germs of open sets:

G (UL =[1], iff ieU

(i) [I]; = 6;

(i) (U], =[0], iff i isseparated from U (i.e. there exists V € @, such

that UNV =0)
[The reader familiar with lattices may care to note that the open sets in I
form a distributive lattice (@, N, U) in which @, is a (prime) filter. The
stalk (; is essentially the quotient lattice @/@,, i.e. ~; is the standard
definition of the lattice congruence determined by 0,.]

Before examining (2 as a subobject classifier we will look at truth-
values s:1— ). Such an arrow is a continuous section of (2, generally
called a global section of the sheaf. (We may also consider local sections
s:U—1I of I defined on (open) subsets U of I).

I —s 1
NIV
I

Now if U is open in I define Sy, : I — I by Sy, (i) = (i, [U],). We then find
Sy is a continuous global section, i.e. S;:1— (2. By (i) above we note
that Sy, (i) =, [I],) iff ie U. Then if s:1 — Q is any continuous section of
Q and U={i:s(i)=(, [I],)} we find that U is open (U=s"([L, I])) and
Sy, =s.

We thus have that the truth values in Top(I) are “essentially” the open
subsets of I, whereas in Bn(I) they were all the subsets of I. This will be a
continuing theme. We shall later see other constructions that have a
set-theoretic and a topological version, and find that the latter arise from
the form by replacing “subset’ by ‘“‘open subset™.
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The arrow T:1—>  is the continuous section T:I—> I that has T(i)=
{i,[I])), all ie L. Now if k is monic, where

Ack ,B
N A
I

commutes, and A is an open subset of B, we obtain the character
Xe 1 (B, @) — Q as follows.

Fig. 4.9.

If xeB, choose a neighbourhood S of x on which q is a local
homeomorphism. Then y, :B — I takes x to the germ of q(ANS) at
q(x), i.e.

Xk(x) = <Q(x): [Q(A N S)]q(x)>

Intuitively, the germ of q(A N S) at q(x) represents in I, under the local
homemorphism ¢, the set of points in A close to x. It provides a measure
of the extent to which x is in A. Whereas in set theory classification
admits of only two possibilities - either x € A or x¢ A —in a topological
context we may make more subtle distinctions by classifying according to
how close x is to A. We use the germs at q(x) as a system of entities for
measuring proximity of x to open subsets of B. A partial ordering on
2, is given by

[UlL,wE[ V] iff there is some open set W such that q(x)

eWand UNWc VN W,

i.e. iff the statement “Uc V” is locally true at g(x).
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Then the “larger” the germ of g(A N S) is in terms of this ordering, the
closer will x be to A. If in fact x € A, then g(x) € g(A N'S) and so by (i)
above, the germ of q(A N S) is as large as it could be, i.e. [q(A NS) ],y =
[I],.,- At the other extreme, if x is separated from A, then the germ of
q(A NS) is as small as it could be, i.e. [g(A NS)]=[@]. Otherwise, when
x is on the boundary of A, [q(A NS)] is strictly between the germs of ¢
and I, [@]l=[q(A NS)|=[1].

Exercisk 1. Verify that the definition of x,(x) does not depend on the
choice of neighbourhood S of x on which ¢ is a local homeomorphism.

ExercisE 2. (Alternative definition of x,.(x)). Let

U, ={ieI: for some local section s of (B,q), s(i)c A and
s(q(x)) = x}

be the set of points in I that are carried into A by some local section of
(B, q) that takes g(x) to x. Show that

[Ux]q(x) = [Q(A N S)]q(x)7

where S is as above. O

4.6. Monoid actions

Let M= (M, *, ¢) be a monoid (cf. §2.5). Then any given m e M deter-
mines a function A, : M— M, called left-multiplication by m, and defined
by the rule A, (n)=m=*n, for all neM. We thus obtain a family
{\. :m e M} of functions, indexed by M, which satisfies

(i) A, =1dp, since A, (m)=e*m=m, and

(i) Ap © A, = Anup, since A (A, (R))=m * (p * n)=(m * p) * n.
Condition (ii) in fact says that the collection of A,’s is closed under
functional composition. Indeed, it forms a monoid under this operation
with identity A,.

The notion just described can be generalised. Suppose we have a set X
and a collection {A,,: X — X: m e M} of functions A,, from X to X, the
collection being indexed by the elements of our original monoid, and
satisfying

A, =idy
A © Ay = Ay ape

The collection of A,,’s is called an action of M on the set X, and can be
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replaced by a single function A : M XX — X, defined by
Am,x)=A,(x), all meM, xeX.

The above two conditions become
Ale, x)=x

and
A(m, AM(p, x)) = A(m * p, X).

An M-set is defined to be a pair (X, A), where A :M XX — X is such an
action of M on X.

ExampLE 1. M is the monoid (N, +, 0) of natural numbers under addition.
X is the set of real numbers. A is addition:— A(m,r)=m+r.

ExampLE 2. X is the set of vectors of a vector space, M the multiplicative
monoid of its scalars, A is scalar multiplication of vectors.

ExampLE 3. X is the set of points in the Euclidean plane. M is the group
of Euclidean transformations (rotations, reflections, translations) with =*
as function composition. A(m, x) is m(x), ie. the result of applying
transformation m to point x.

ExamrLE 4. X is the set of states of a computing device. M is the set of
input words (strings) with * the operation of concatenation or juxtaposi-
tion of strings. A(m, x) is the state the machine goes into in response to
being fed input m while in state x. U

For a given monoid M, the M-sets are the objects of a category M-Set,
which is a topos. An arrow f:(X,A)—(Y,u) is an equivariant, or
action-preserving function f: X — Y, i.e. one such that

commutes for each m € M. In other words, f(A(m, x)) = w(m, f(x)), all m
and x. Composition of arrows is functional composition.
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The terminal object is a singleton M-set. We take 1= ({0}, \,) where
Ao(m, 0)=0, all m.

The product of (X, A) and (Y, ) is (X XY,8), where §,, is A, X
W : X XY = X X Y. The pullback of

(Y, )

lg
(X, \) —— (Z,y)

is (X XY, 8) with 8 as above.

Now a set BcM is called a leftr ideal of M if it is closed under
left-multiplication, i.e. if m * b € B whenever b € B and m is any element
of M. For example, M and @ are left ideals of M. We put Q= (L,;, ®)
where L), is the set of left ideals in M, and ®:MXLy,— Ly, has
o(m, B)y={n:nxmeB}. T:1—Q is the function T:{0}— L,, with
T(0)=M. Thus T picks out the largest left-ideal M of M.

To illustrate the workings of the subobject classifier, suppose
k:(X, A)»>(Y, p) is in fact the inclusion X< Y (since k is equivariant
this means w(m, x) = A(m, x), all x € X). The character y : (Y, u) — Q of
k is xi: Y — L, defined by

X(y)={m: u(m,y)e X}, all yeY.

Exercise 1. Check all the details — that  is an action of M on L,,, that
xi(y) is a left-ideal, and that x, satisfies the (-axiom. (]

Exponentiation

Our initial motivation showed that * :M X M— M is itself an action of M
on M, ie. that (M, *) is an M-set. Given (X, A) and (Y, i) we define the
exponential

Y, W)*¥ =(E, o)

where E is the set of equivariant maps f of the form f: (M, *) X (X, A\)—
(Y,n) and o,:E—FE takes such an f to the function g=
o, (f):MxX — Y given by

g(n, x)=f(m * n, x)
The evaluation arrow

v (E, o) < (X, \) — (Y, )



CH. 4,84.7 POWER OBIJECTS 103

has
ev(f, x) = f(e, x).

Then given an arrow f:(X, M) X(Y, u)— (Z, v), the exponential adjoint
f:(X, M) = (Z, v)¥* takes xe€ X to the equivariant map f, :MxY —Z
having

felm, v) = fr (%), y)-

Categories of the form M-Set provide a rich source of examples, particu-
larly of topoi that have ‘“‘non-classical”’ properties. They will be “re-
created” from a different perspective in Chapter 9.

Exercisk 2. Describe all the left-ideals in (N, +, 0).

Exercise 3. Show that M is a group iff A and @ are the only left-ideals of
M, ie. iff L, ={M,0}. X

4.77. Power objects

The exponential Q° in a topos is the analogue of 2* in Set. Since
24 =@(A) it is natural to wonder whether the object 2 behaves like the
“powerset” of the “set” a. In fact it does, as we shall see by first
developing an independent categorial description of ?(A) in Set.

Now given sets A and B there is a bijective correspondence between
the functions from B to ?(A) and the relations from B to A. Given
function f: B — P(A) define relation R, = B X A by stipulating xRy iff
yef(x), for xeB, ye A. Conversely, given Rc BX A, define fz:B~
P(A) by fr(x)={y: ye A and xRy}.

It is not hard to see that the assignments of f; to R and R; to f are
inverse to each other and establish the asserted isomorphism.

In order to capture this correspondence in terms of arrows we examine
a special relation €, from ?(A) to A. €4 is the membership relation and
contains all the information about which subsets of A contain which
elements of A. Precisely

e ={(U,x): UcA,x€ A, and x € U}.

Passing from P(A) to 2, the condition “x € U” becomes “x(x)=1",
and we see that €, is isomorphic to the set

eh={xunx»UcA xcA and xy(x)=1}c2* X A
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What is the characteristic function of €’ as a subset of 2* X A? Well it is
none other than the evaluation arrow ev:2* X A — 2, since ev(xy, X) =
xu (x). Thus we are lead to a characterisation of €/, (and hence € , up to
isomorphism) by the pullback square

€h —— 24 XA

1 true 2

Now given a relation R B XA, we have (x,y)e R iff yefr(x) iff
{fr(x), yye €4, and so R is the inverse image of €, under the map

fr X 1,4, that takes (x, y) to {fg(x), y).
So we see that (§3.13) the diagram

R & BXA

g‘ ‘fR Xid o

€4 s P(A)XA

is a pullback, where g is the restriction of fz Xid, to R. But something
stronger than this can be said — given R, then without considering what g
is, fr is the only function B — P(A) that will give a pullback of the form
of the diagram.

Exercise 1. Prove this last assertion. (]
We are therefore lead to the following definition:

DEFINITION. A category € with products is said to have power objects if to
each €¢-object a there are ¥-objects P(a) and €, and a monic €
1€, P(a) X a, such that for any €-object b, and “relation”, r: R>>b X a
there is exactly one €-arrow f, : b > P(a) for which there is a pullback in
% of the form

R >'— bxa

[ {f,xu

€, >—5 5 Pla)xa

THEOREM 1. Any topos € has power objects.
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Proor. For given &-object a, let P(a)=0% and let € : € ,>> 2% X a be
the subobject of 2° X a whose character is ev, : Q% xXa —Q, i.e.

€, >5— N*Xa

|k

1 T 0

is a pullback, where ev, is the evaluation arrow from Q% xa to . To
show that this construction gives power objects take any monic r: R—b X
a and let x,:bXa— ) be its character. Then let f,:b — Q¢ be the
exponential adjoint to y,, i.e. the unique arrow that makes

0*xa
Y
bxa X
commute. Now consider the diagram
B > 5 bXa

; lf,xu

€

! € >— O*Xa
|k
1—T—a

Since ev, ° (f, X1,) = x,, the “perimeter” of this diagram is a pullback, by
the 2-axiom. In particular it commutes, so as the bottom square is a
pullback, the unique arrow R--><, does exist to make the whole diagram
commute. But then by the PBL the top square is a pullback, as required
by the definition of power objects. Moreover simply knowing that f, is
some arrow making the top square a pullback gives both squares as
pullbacks and hence (PBL) the outer rectangle is a pullback. The (2-
axiom then implies that ev, ° (f, X1,)=x, and thus from the previous
diagram f, is uniquely determined as the exponential adjoint of x,. [

Now given power objects we can recover (2, as 2=0"'=%(1). The
monic €,—~0"'X1=0" proves to be a subobject classifier. Anders Kock
and C. Juul Mikkelsen have shown that power objects can also be used to
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construct exponentials, and that

a category € is a topos iff € is finitely complete and has power
objects

(for details consult Wraith [75]).

Currently this characterisation is being used as the definition of a topos,
it being the best in terms of brevity. Paedogogically it is not however the
best, for a number of reasons. Historically the idea of an elementary
topos arose through examination of subobject classifiers, and this path
provides the most suitable motivation. As will be evident it is the
)-axiom that is the key to the basic structure of a topos and it would
have to be introduced anyway for the theory to get off the ground.
Moreover each of the 2-axiom, and the notion of exponentiation, is
conceptually simpler than the description of power objects.

There is another more remote matter, due to the recent development
of weak set theories relating to recursion theory (admissible sets — cf.
Barwise [75]). These theories produce categories of sets without general
powerset formation. It therefore becomes of interest to study the ramifi-
cations of the )-axiom without having to relate it to the notion of
power-object.

Exercisk 2. Examine the structure of power objects in the various topoi
described in this chapter.

Exercise 3. Deduce from the discussion of this section, including the
proof of the Theorem, that a category € is a topos iff
(i) € has a terminal object and pullbacks of appropriate pairs of
arrows,
(ii) € has a subobject classifier true:1— Q
(iii) For each %-object a there is a €¥-object ° and an arrow
ey, : % Xa—  such that for each ¥-object b and “‘relation”
r:R>>b X a there is exactly one 4-arrow f,:b — 0 making

0%%xa &
f,><1a:§ 0
L
bxa

commute.

ExERcISE 4. Show that the unique arrow Q¢ — ¢ corresponding to the
relation €,>> 0% Xa is 1g.. O
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4.8. 2 and comprehension

In Lawvere [72] it is suggested that the Q-axiom is a form of the ZF
Comprehension principle. To see this, suppose that B is a set and ¢ a
property that applies to members of B. We represent ¢ in Set as a
function ¢ : B — 2 given by

1 if x has propert
o(x) :{ > PTOPETy @
0 otherwise.

Now the comprehension (seperation) principle allows us to form the
subset {x: xe B and ¢(x)} of all elements of B satisfying ¢. This set is
determined by ¢ qua function as what we earlier called A, =
{x: (x)=1}. We have ye{x: ¢(x)} iff ©(y)=1, and

(N,

A(P
1 2

is a pullback. By analogy, in a topos &, if ¢:b—> {2 is an arrow with
cod= (), we let {x:¢}:a— b be the subobject of b obtained by pulling
true back along ¢, as in

true

{x: o}
a >——b
_true o

Now in a general category, if x:1— b is an element of object b, and
f:a>>b a subobject, we define x to be a member of f, x€f, when x
factors through f, i.e. there exists k:1— a making

1
¥
a#b

commute. This naturally generalises the situation in Set.
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Applying this notion of membership to the above pullback we see that
if y:1—b is a b-element then

1
X
a>{x—:(p—}>b
| .
1 e, 0

y €{x: ¢} iff the arrow k exists to make the whole diagram commute. But
as the inner square is a pullback, k will exist (uniquely) iff the perimeter
of the diagram commutes. Hence

ye{x: o} iff @ oy=rtrue,

giving us an analogue of the set-theoretic situation.

ExerciskE 1. Take f:a>>bh, g:c>>b with fc g If xeb (ie. x:1—b, or
x €1, as above) has xef, show xe g

Exercisk 2. For any f:a>>d and x:1—d, xef iff x; o x =1rue.



CHAPTER 5

TOPOS STRUCTURE: FIRST STEPS

“The development of elementary
topoi by Lawvere and Tierney
strikes this writer as the maost im-
portant event in the history of
categorical algebra since its
creation . . . It is not just that they
proved these things, its that they
dared to believe them provable.”

Peter Freyd

5.1. Monics equalise

In §3.10 it was stated that an injective function f: A>— B is an equaliser
for a pair of functions g and h. We now see that g is xy,;:B—2 and h is
the composite of 1:B—{0} and true :{0}—{0, 1}. This situation gener-
alises directly:—

TueoreM 1: If f:a>—>b is a monic &-arrow (€ any topos) then f is an
equaliser of x; and true, = truecl,.

Proor: Since the pullback square of

commutes, and |, =l,°f, we have y;of=true,°f. Butif x;og=true,°g

f X
a>— b —— 0
x true,
\
\\ g
C

109
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then the perimeter of the first diagram must commute, since I, ° g =I.. So,
by the universal property of pullbacks, g factors uniquely through f as
required. O

CoroLLaRY: In any topos, an arrow is iso iff it is both epic and monic.

ProoF. In any category, an iso is monic and epic (§3.3). On the other
hand, in a topos an epic monic is, by the Theorem, an epic equaliser. Such
a thing is always iso (§3.10). (]

EXERCISE. true : 1 — () equalises 1, : Q2 — Q and true, : 2 — (. O

5.2. Images of arrows

Any set function f: A — B can be factored into a surjection, followed by
an injection. We have the commutative diagram

f

A B

A
f(A)
where f(A)=Imf={f(x): xc A}, and f*(x)=f(x), all x <€ A.

This “epi-monic” factorisation of f is unique up to a unique commuting
isomorphism as shown in the

Exercise 1. If hog: A—»C>—>B and h'° g A—>C>—>B are any two epi-
monic factorisations of f (i.e. f=hog=h'>g') then there is exactly one
k:C— C' such that

C’
BTN
A 3 B
g\g C %
commutes, and furthermore k is iso in Set (a bijection). O

The reader may care to develop a set-theoretic proof of this exercise
and contrast it with the “‘arrows-only’” approach to follow.

In all topoi, each arrow has an epi-monic factorisation. To see how this
works, we turn first to a different description of factorisation in Set, one
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that has a categorial formulation. Given f: A — B we define, as in §3.13,
the Kernel equivalence relation R, < A X A by

xRey iff f(x)=f(y).

Now a map h:A/R; — B is well-defined by h([x]) = f(x). Moreover h is
injective and

A—L . B

N

A/R;

commutes, where fr is the surjective natural map fg(x)=[x].
Now as observed in §3.13, R; as a set of ordered pairs yields a pullback

RfL»A

%

A

f

B

where p and g, the projections, are the kernel pair of f. The considera-
tions of §3.12 then show that fr co-equalises the kernel pair (p, q) and
that h is the unique arrow making

R, == A~ AR,
ih

f :

B

commute. This suggests that in a more general category we attempt to
factor an arrow by co-equalising its pullback along itself. However, for
technical reasons (the availability of the results of the last section) it is
simpler now to dualise the construction, i.e. to equalise the pushout of the
arrow with itself.

So, let & be any topos, and f:a — b any &-arrow. We form the pushout
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of f with f, and let im f:f(a)>—b be the equaliser of p and q (imf is
monic by Theorem 3.10.1). Since qof=pecf, there is a unique arrow
f*:a — f(a) making

fla) 2L b ==
Sy
a

commute.
ExERCcISE 2. Analyse this construction in concrete terms in Set.
Exercise 3. If p =q, then f is epic. O

THEOREM 1. im f is the smallest subobject of b through which f factors. That

is, if
a—f b
\
c
commutes, for any u and monic v as shown, then there is a (unique)
k:f(a) — ¢ making

f(fl)
V k b
N LA

C

im f
a

commute, and hence im f c v.

Proor. Being monic, v equalises a pair s,t:b=2d of Z-arrows (§5.1).
Thus sef=scvou=tovou=tof, so
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there is a unique h:r—d such that hop=s and hog=1. But then
seimf=hopoimf
=hogoim f
=toimf,

so, as v equalises s and ¢

v N SN
cﬂ——» b — d
K %nf

f(a)

we get a unique arrow k that has vek =im f. This k is the unique arrow
making the right-hand triangle in the diagram in the statement of the
theorem commute. But then vokof*=imfof*=f=ypou, and v is monic
(left-cancellable), so k o f* = u. Thus k makes the left-hand triangle com-
mute as well. O

COROLLARY. f*:a— f(a) is epic.

ProoF. Apply the image construction to f* itself, giving the commuting
diagram

g(a) .
g* imfeimg
a /“'n g
f\ im f
f(a)

where g =f*.

But im f °im g is monic, being a product of monics, and so, as im f is left
cancellable, we must have im g as the unique arrow making im feim g <
im f. But also, applying the Theorem to imf we must have imfc<
im feim g, and so im f=1im f cim g in Sub(b), hence g(a)= f(a). Thus the
unique arrow im g must be iso.

But im g is, by definition, the equaliser

g(a)""5 f(a) = 1,

q
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where p and g, the cokemnel pair of g = f*, form a pushout thus:

a1 fa)

N

flay —&—r

Since poim g =q°im g, and im g is iso, hence epic, we cancel to get p =q.
The co-universal property of pushouts then yields f* as epic (as in
Exercise 3, above). O

Bringing the work of this section together we have

THEOREM 2. im fef*:a—»f(a)>b is an epi-monic factorisation of f that is
unique up to a unique commuting isomorphism. That is, if vou:a—»c>—>b
has vou =f{, then there is exactly one arrow k : f(a)— c such that

f(a)

i
N

commutes, and k is iso.

Proor. The unique k exists by Theorem 1. But then v o k =im f is monic,
so k is monic by Exercise 2, §3.1. Also ko f*=u is epic, so dually k is
epic. Hence k, being epic and monic, is iso. (§5.1).

O

EXERCISE 4. f:a — b is epic iff there exists g: f(a)=b such that go f*=f. (1

5.3. Fundamental facts

If € is a topos then the comma category € | a of objects over a is also a
topos. As mentioned in Chapter 4, this is (part of) a result known as the
Fundamental Theorem of Topoi. The proof of this theorem involves a
construction too advanced for our present stage of development, but
yielding some important information that we shall need now. We there-
fore record these consequences of the Fundamental Theorem without
proof:



CH.5,85.4 EXTENSIONALITY AND BIVALANCE 115

Facr 1. Pullbacks preserve epics. If

a——b
g[ [f
c ——d

is a pullback square in a topos, and f is epic, then g, the pullback of f, is
also epic.

Facr 2. Coproducts preserve pullbacks. If
f !

s a —— d
gi Ik and g’\ }k
b —P e b —E e

are pullbacks in a topos, then so is

atq 1T

g+g k

b+b' LY e

Proofs of these results may be found in Kock and Wraith [71], Freyd [72],
and Brook [74].

5.4. Extensionality and bivalence

Since a general topos & is supposed to be “Set-like”, its initial object 0
ought to behave like the null set §), and have no elements. This in fact
obtains, except in one case. If there is an arrow x:1— 0, then by the
work in §3.16 on Cartesian closed categories, € is degenerate, i.e. all
&-objects are isomorphic. This happens for example in the category 1
with one object and one arrow-1 is a degenerate topos. So in a
non-degenerate topos, 0 has no elements.

Now if we call an object a non-zero if it is not isomorphic to 0, a0,
and non-empty if there is at least one €-arrow 1— a, then when & =Set,
“non-zero” and ‘“non-empty” are co-extensive. But when & =Set>, the
topos of pairs of sets, the situation is different. The object (@, {0}) is not
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isomorphic to the initial object {@, @), hence is non-zero. But an element
{f, g): {0}, {0}y — {9, {0} of (@, {0}) would require f to be a set function
{0} — @, of which there is no such thing. Thus (@, {0}) is non-zero but
empty.

EXERCISE 1. Are there any other non-zero empty objects in Set®? What
about non-empty zero objects?

EXERCISE 2. Are there non-zero empty objects in Set”? In Bn(I)? [

The question of the existence of elements of objects relates to the notion
of extensionality, the principle that sets with the same elements are
identical. For functions, this principle takes the following form (which we
have used repeatedly): two parallel functions f, g: A—3 B are equal if they
give the same output for the same input, i.e. if for each x € A, f(x) = g{x).
Categorially this takes the form of the:

EXTENSIONALITY PRINCIPLE FOR ARROWS. If f, g:a =3 b are a pair of distinct
parallel arrows, then there is an element x: 1 — a of a such that fex# gox.

(Category-theorist will recognise this as the statement “1 is a
generator”.) This principle holds in Set, but not in Set’. It is easy to see
that in the latter there are two distinct arrows from (@, {0}) to (@, 2). But
(@, {0}) has no elements at all to distinguish them.

A non-degenerate topos that satisfies the extensionality principle for
arrows is called well-pointed. The purpose of this section is to examine
the properties of such categories.

TaeoreM 1. If & is well-pointed, then every non-zero &-object is non-
empty.

Proor. If a is non-zero then 0,:0>-»a and 1,:a>»a have different
domains, and so are distinct. Hence x, :a — 2 and x; :a— (2 are
distinct (otherwise 0, =1,, hence 0=a). By extensionality it follows that
there is some x:1— a such that y, °Xx# x;_°x. In particular a has an
element, so is non-empty. ’ (|

False

In Set there are exactly two arrows from 1={0} to 2={0, 1}. One of
course is the map true, with true(0)=1. The other we call false, and is
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defined by false(0) = 0. This map, having codomain {2 is the characteristic
function of

{x:false(x)=1}=0, the null set,
so in Set we have a pullback

[ I |

! i h L false

1 true Q
Abstracting this, we define in any topos &, false:1— ( to be the unique
&-arrow such that

0,

0 —— 1

!k lfazse

11— 0

is a pullback in &. Thus false = x,,,. We will also use the symbol “ 1"’ for
this arrow.

ExampLE 1. In Set®, 1 :1— Q is {false, false):{{0}, {0}) — (2, 2).

ExampLE 2. In Bn(I), L :1—Q is 1 :I—2XI where 1(i)=/0, i), all
iel .

Exampik 3. In Top(I), L :I—1I has 1(i)=¢,[0]), the germ of @ at i.

ExampLE 4. In M-Set, 0= (0, @), with §:Mx@ — @, the “empty action”.
L:{0} = L, has 1L (0)={m: Ao(m, 0)c@t=0. O

Exercisk 3. For any &-object a,

T

1 — 0

is a pullback, i.e. xo, = L °l, (=L, =false,).
(Hint: you may need the PBL)
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ExerciskE 4. In a non-degenerate topos, true# false. O

A non-degenerate topos € is called bivalent (two-valued) if true and false
are its only truth-values (elements of ).

THEOREM 2. If & is well-pointed, then & is bivalent.

ProoF. Let f:1— £ be any element of 2 and form the pullback

a 8- 1

!k \f

T

11— 0

of f and T.

Case 1: If a=0, then a is an initial object, with g=0,. Then f=y, =
Xo, = false.

Case 2: If not a=0, then as & is well-pointed, a has an element
x:1—a (Theorem 1). We use this to show that g is epic. For, if
h,k:1=3bh have heg=keog, then hogex=kogeox. But gex:1—1 can
only be 1, (1 is terminal) so h = k. Thus g is right cancellable. Hence g is
both epic and monic (being the pullback of a monic), giving g:a=1. So a
is terminal, yielding g=1,, hence f= x, = x4, = true.

Altogether then we have shown that an element of {2 must be either
true or false. O

Now in Set, the co-product 1+1 is a two-element set and hence
isomorphic to {2 =2 (this was observed in §3.9). In fact the isomorphism
is given by the co-product arrow [T, 1 ]:1+1— O

1l —— 14+1e—— 1

i 117

'

0

But any topos € has co-products, and so the arrow [T, 1] is certainly
defined. If [T, 1]1s an iso &-arrow we will say that & is a classical topos.
Shortly we shall see that there are non-classical topoi. However we do
have

TuEOREM 3. In any topos, [T, L] is monic.
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To prove this we need to do some preliminary work with co-product
arrows. If f:a—b and g:c — b are &-arrows, we say that f and g are
disjoint if their pullback is O, i.e. if

1
0 —— ¢

! [ kg

f

a———b

is a pullback square in 4. (In Set this means precisely that ImfNIm g
— Q_)

LemMa. Iff:a >> b and g: c>—> b are disjoint monics in &, then [f, gl:a+c¢
— b is monic.

Proor. g being monic means
c c
c b
is a pullback. This, with the previous diagram, and Fact 2 of §5.3, gives
the pullback

C
_—

———»

0 [0, 1]

+c e ¢
+ b
are [f. 2]

Now [0, 1.]: 0+c=c (dual of Exercise 3.8.4), from which it can be
shown that

04>

at+c —— I gl

is a pullback (i, being the injection associated with a +c¢).
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Analogously we get

a_.;';._.)a

} lf

a+c ——~+[f,g] b

as a pullback. These last two diagrams (suitably rotated and reflected),
with Fact 2 again, give

atc BIALA . atc

j [[f, g

a+c ——'[f,g] b

as a pullback. But [i,, i ]=1,..=1,+1. (dual of Exercises 1, 4, §3.8),
and from this it follows that [f, g] is monic (cf. Example 9, §3.13). O

Now, for the proof of Theorem 3 we observed that

0o ——1

1_T_<,\Q

is a pullback, indeed this diagram gives the definition of L. Thus T and L
are disjoint monics, and so by the Lemma, [T, 1]:1+1— 2 is monic.

|
THEOREM 4. If & is well-pointed, then [T, L]: 1+1=0Q, i.e. & is classical.

Proor. In view of Theorem 3, we need only establish that [T, L] is epic,
when € is well-pointed. So, suppose fo[T, L]=g°[T, 1].

1-ts1+1 L1

fH

a



CH.5,§5.4 EXTENSIONALITY AND BIVALENCE 121

Then
feT=fo[T, L]ei
:go[T, J_]oi
:goT

and similarly, (using j), fe L =geo 1. Since T and 1 are the only elements
of 2 (Theorem 2), and neither of them distinguish f and g. the extension-
ality principle for arrows implies that f=g Thus [T, L] is right-
cancellable. O

The major link between the concepts of this section is:

THEOREM 5. A topos & is well-pointed iff it is classical and every non-zero
&-object is non-empty in &.

The “only if”” part of this theorem is given by Theorems 4 and 1. The
proof of the “if” part requires some notions to be introduced in subse-
quent chapters, and will be held in abeyance until §7.6.

The category Set” is classical, but not bivalent (it has four truth-values -
what are they?) The category Set™ of functions on the other hand is
neither bivalent (having three truth-values) nor classical (cf. Chapter 10).
To construct an example of a non-classical but bivalent topos we use the
following interesting fact:

THEOREM 6. If M is a monoid, then the category M-Set is classical iff M is
a group.

Proor. In M-Set, 1=({0}, A,) is the one-element M-set. 1+1 can be
described as the disjoint union of 1 with itself, i.e. two copies of 1 acting
independently. To be specific we put 1+1=({0, 1}, v), where y(m, 0)=0
and y(m, 1)=1, all m e M. We then have the co-product diagram

1—tu 1414

[T, 1] a

where the injections are i(0)=0 and j(0)=1, with [T, L] mapping 0 to M
and 1 to ¢ in 2 =(L,,, ®). Now if [T, L]1is iso, it is a bijection of sets, and
so La, has only two elements. Hence L,,={M, @}. Conversely if L=
{M, # then as w(m,M)=M and o(m,@#)=9, [T, L] is an equivariant
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bijection, i.e. an iso arrow in M-Set. Thus M-Set is classical iff Ly,=
{M, #}. But this last condition holds precisely when M is a group,
(Exercise 4.6.3). |

So to construct a non-classical topos we need only select a monoid that
is not a group. The natural thing to do is pick the smallest one. This is a
two element algebra which can be described simply as consisting of the
numbers 0 and 1 under multiplication. Formally it is the structure
M,=(2,-,1) where 2={0, 1} and - is defined by

1-1=1, 1-0=0-1=0-0=0,

or in a table

o o

M, is a monoid with identity 1, in which O has no inverse. The category of
M, -sets is a kind of ‘‘universal counterexample” that will prove extremely
useful for illustrative purposes. We will call it simply “the topos M,”.

The set L, of left ideals of M, has three elements, 2, §, and {0} (why is
{1} not a left ideal?). Thus in M,, 2 =(L,, &), where the action

w:2XL,— L,
defined by
w(m,B)={n:nc?2 and n - m € B},

can be presented by the table

w2 {0 ¢

0oil2 2 ¢

Now the map [T, L] as considered in Theorem 6 is not iso. To show
explicitly that it is not epic, consider f, : L, — L, defined by
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-———

/

Fig. 5.1.

fa@)=fo({0h=2
f(z ®»= 0

By the table for w, f, is equivariant, so is an arrow f, : {2 —  in M,. But
foolT, L1=1g°[T, L], while f,#1,, hence [T, L] is not right-
cancellable. Though M, is non-classical, it is bivalent. For if h:1— Q is
an M,-arrow, then h:{0}— L, is an equivariant map, so (0, h(0))=
h(Ao(0,0)) = h(0). Since (0, {0})=2#{0}, we cannot have h(0)={0}.
Thus either h(0)=2, whence h =T, or h(0)=0, whence h = 1. So M, has
only two truth-values.

By Theorem 4, M, is not well-pointed. To see this explicitly, observe
that fo#1a (fo as above), but fo°eT=1,°T (both output 2) while
faoe L =14° 1L (both output @). Thus no element of  distinguishes the
distinct arrows fq, 10 :2=330.

Exercisk 5. Show that if a =(X] A) is an object in M-Set (M any monoid)
then an element x:1—a of a in M-Set can be identified with a fixed
point of a, i.e. an element y € X such that A(m, y)=1y, all me M. O

In the light of this exercise we can show that the converse of Theorem
1 above is false. If a = (X, A) is a non-zero object in M,, then X #{). Take
some x€X, and put y=A(0,x). Then y is a fixed point of a, since
A(m, y)=A(m - 0, x)=A(0, x)=1y. In this way we see that every non-zero
object in M, is non-empty, even though M, is not well-pointed.

5.5. Monics and epics by elements

Using our notion of elements as arrows of the form 1 — a we can give
categorial definitions of “injective’” and ‘“‘surjective”.
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A €-arrow f:a — b, where € is a category with 1, is surjective if for
each y:1—b there is some x:1—a with fox=vy. f is injective if
whenever x,y:1=3a have fox=foy, then x =y.

TueoreM 1. If & is a well-pointed topos then an &-arrow f:a — b is
(i) surjective iff epic
(ii) injective iff monic.

Proor. (i) Suppose f surjective. Let g,h:b=3 ¢ be such that gef=hof. If
g# h then there is some y:1—b such that gey#heoy. But as f is
surjective, y=fox for some x:1—a. Then goy=gofox=hofox=
h ey, a contradiction. So we must conclude that g = h, and that f cancels
on the right.

Conversely assume f epic. Given y:1— b, form the pullback

C P .1

f

a ——

Now p is epic, by Fact 1 of §5.3, so if ¢=0, then p would be monic
(Theorem 3.16.1), hence iso, making 0=1 and € degenerate. So ¢ must
be non-zero, ergo (Theorem 1) there exists z:1— ¢. Then putting x =
goz we get x:1—a and fox =1y (details?).

ExeRrcISE 1. Prove Part (ii) of the Theorem.

Exercise 2. Show that in M,, f, is surjective, although not epic, and
similarly for [T, L]

ExErcisE 3. Show that f, is not monic, but is injective. [

We will return to the subject of lwell—pointed topoi and extensionality in
Chapters 7 and 12.



CHAPTER 6

LOGIC CLASSICALLY CONCEIVED

“It is not easy, and perhaps not
even useful, to explain briefly
what logic is.”

E. J. Lemmon

6.1. Motivating topos logic

In any systematic development of set theory one of the first topics to be
examined is the so-called algebra of classes. This is concerned with ways
of defining new sets, and when relativised to the subsets of a given set D
focuses on the operations of

Intersection: ANB={x:xec A and x € B}
Union: AUB={x:xc€A or xeB}
Complement: —A ={x:xecD and not xe A}

The power set P(D) together with the operations N, U, — exhibit the
structure of what is known as a Boolean algebra. These algebras, to be
defined shortly, are intimately connected with the classical account of
logical truth.

Now the operations M, U, — can be characterised by universal proper-
ties, and hence defined in any topos, yielding an ‘“‘algebra of subobjects”.
It turns out that in some cases, this algebra does not satisfy the laws of
Boolean algebra, indicating that the ““logic of the topos is not the same
as classical logic. The proper perspective, it would seem, is that the
algebra of subobjects is non-Boolean because the topos logic is non-
classical, rather than the other way round. In defining N, U, — we used
the words “and”, “or”, and “not”, and so the properties of the set
operations are determined by the meaning, the logical behaviour, of these
words. It is the rules of classical logic that dictate that (D) should be a
Boolean algebra.

The classical rules of logic are representable in Set by operations on the
set 2={0, 1}, and can then be developed in any topos &€ by using 2 in
place of 2. This gives the “logic” of &, which proves to characterise the
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behaviour of subobjects in &. It is precisely when this logic fails to reflect
all the principles of classical logic (i.e. the logic of Set) that the algebra of
subobjects in & fails to be Boolean.

In this chapter we will briefly (in spite of Lemmon’s caveat) outline the
basics of classical logic and show how it generalises to the topos setting.
Later chapters will deal with non-classical logic, and its philosophical
motivation, leading eventually to a full account of what the logic of the
general topos looks like.

6.2. Propositions and truth-values

A proposition, or statement, or sentence, is simply an expression that is
either true or false. Thus

“2+2=4"
and
“2 plus 2 equals 5”

are to count as propositions, while

“Is 2+2 equal to 4?7
and
“Add 2 and 2!”

are not.

Thus each sentence has one of two truth-values. It is either true, which
we indicate by assigning it the number 1, or false, indicated by the
assignment of 0. The set of truth-values is 2 ={0, 1} (hence the terminol-
ogy used earlier for arrows 1 — ).

We may construct compound sentences from given ones by the use of
the logical connectives ““and”, ““or”, and “not”, i.e. given sentences « and
B we form the new sentences

“a and B” symbolised “aAp”
“a or 7 symbolised “avp”
“not a” symbolised “~a”.
These are said to be obtained by conjunction, disjunction, and negation,
respectively.
The truth-value of a compound sentence can be computed from the

truth-values of its components, using some simple rules that we now
describe.
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Negation

The sentence ~a is to be true (assigned 1) when « is false (assigned 0),
and false (0) when « is true (1).
We present this rule in the form of a table

a||l~a
1 0
0 1

called the truth-table for negation. Alternatively we can regard it as
determining a function — from 2 to 2 that outputs 0 (resp. 1) for input 1
(resp. 0). This —1:2— 2, defined by -1 =0, 70 =1, is called the negation
truth-function.

Conjunction

In order for a A to be true, both of @ and 8 must be true. Otherwise
a AB is false.

Now, given two sentences «, and B, there are four ways their possible
truth-values can be combined, as in the four rows of the truth-table

a BHa/\B
1 1 1
1 0 0
0 1 0
0 0 0

for conjunction. The corresponding truth-value for a A in each row is
determined according to the above rule.

The table provides a function ~ from pairs of truth-values to truth-
values, i.e. n:2X2—2,definedby 1~n1=1,1~A0=0~1=0~0=0. This
is called the conjunction truth-function, which can also be presented in a
tabular display as
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Disjunction

a v B is true provided at least one of « and B are true, and is false only if
both of @ and B are false.
From this rule we obtain the disjunction truth-table

a BHavB
1 1 1
1 0 1
0 1 1
0 0 0

and the corresponding disjunction truth-function o :2 X2 — 2, which has
1ul=1u0=0u1=1,000=0, ie.

vl O

111 1

oOl1 o0
Implication

The implication connective allows us to form the sentence “a implies 3
symbolised “a> .

(synonyms: “if a then B”, “a only if )

The classical interpretation of the connective “implies” is that a 28
cannot be a true implication if it allows us to infer something false from
something true. So we make « = 8 false if « is true while B is false. In all
other cases a © 3 counts as true. The truth-table is

|
1 1 1
1 0 0
0 1 1
0 0 1

The implication truth function = :2X2—2 has 1=>0=0, 1=>1=0>
1=0=>0=1, or



CH. 6,863 THE PROPOSITIONAL CALCULUS 129

Tautologies

By successive applications of the rules just given we can construct a
truth-table for any compound sentence. For example

aH~a l an~a l av-~a l ana l a>(aAra)
1 ’ 0 l 0 ‘ 1 ' 1 ' 1
0 1 0 1 0 1

a BHaDB ’ B=>(a>B) IaVBlaD(aVB)

1 1 1 1 1 1
1 0 0 1 1 1
0 1 1 1 1 1
0 0 0 1 0 1

A tautology is by definition a sentence whose truth-table contains only
1’s. Thus a v ~a, a D (ara), B2 (a>DB), a>(avPB), are all tautologies.
Such sentences are true no matter what truth-values their component
parts have. The truth of « v ~a comes not from the truth or falsity of «,
but from the logical “shape” of the sentence, the way its logical connec-
tives are arranged. A tautology then expresses a logical law, a statement
that is true for purely logical reasons, and not because of any facts about
the world that happen to be the case.

6.3. The propositional calculus

In order to further our study of logic we need to give a somewhat more
precise rendering of our description of propositions and truth-values. This
is done by the device of a formal language. Such a language is presented
as an alphabet (list of basic symbols) together with a set of formation rules
that allow us to make formulae or sentences out of the alphabet symbols.
The language we shall use, called PL, has the following ingredients:

Alphabet for PL

(i) an infinite list m,, 7, ., . .. of symbols, to be called propositional
variables, or sentence letters;
(ii) the symbols ~, A, v, D;
(iii) the bracket symbols ), (.
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Formation Rules for PL-sentences

(1) Each sentence letter m; is a sentence;

(2) If « is a sentence, so is ~a;

(3) If « and B are sentences, then so are (a A B), (aVvB), (a>pB).

Notice that we are using the letters « and B8 as general names for
sentences. Thus a might stand for a letter, like r,,, or something more
complex, like (~(m, Amy,) v (7,2 7). The collection of sentence letters
is denoted @, while @ denotes the set of all sentences, i.e.

Dy ={mo, Wy, W2y . . .}
@ ={a: a is a PL-sentence}.

To develop a theory of meaning, or semantics, for PL. we use the
truth-functions defined in §6.2. By a value assignment we shall under-
stand any function V from @, to {0,1}. Such a V:®y,— 2 assigns a
truth-value V(1) to each sentence letter, and so provides a “‘meaning” or
“interpretation” to the members of @,. This interpretation can then be
systematically extended to all sentences, so that V extends to a function
from & to 2. This is done by “induction over the formation rules”,
through successive application of the rules

(@) V(~a)="1V(a)

(b) V(enB)=V(a)nV(B)

(¢) V{avp)=V(e)uV(B)

(d) V(e>B)=V(a)= V(B)
Exampre. If V(my)= V(m)=1, and V(1r,) =0, then

V(~a)=—"V(m)= —11=0
V(~m, A1) =V(~71)nV(m)=0~0=0
V(w2 (~mAmy)) = V(mg) > V(~m Am)=120=0
etc. O

In this way any V:®,— 2 is “lifted” in a unique way to become a
function V:d — 2.

A sentence a € @ is then defined to be a tautology, or classically valid,
if it receives the value “true” from every assignment whatsoever. Thus «
is a tautology, denoted Fe, iff for each value-assignment V, V(a)=1.

Axiomatics
The semantics for PL allows us to single out a special class of sentences —
the tautologies. There is another way of characterising this class, namely
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by the use of an axiom system. Axiomatics are concerned with methods of
generating new sentences from given ones, through the application of
rules of inference. These rules, allowing us to “infer”, or ‘derive”, certain
sentences, embodying principles of deduction and techniques of
reasoning.

The basic ingredients of an axiom system.then are

(i) a collection of sentences, called axioms of the system;

(ii) a collection of rules of inference which prescribe operations to be
performed on sentences, to derive new ones.

Sentences derivable from the axioms are called theorems. To specify
these a little more precisely we introduce the notion of a proof sequence
as a finite sequence of sentences, each of which is either

(i) an axiom, or

(ii) derivable from earlier members of the sequence by one of the
system’s inferential rules.

A theorem can then be defined as a sentence which is the last member
of some proof sequence. The set of theorems of an axiom system is said
to be axiomatised by that system.

There are several known systems that axiomatise the classically valid
sentences, i.e. whose theorems are precisely the tautologies of PL. The
one we shall deal with will be called CL (for Classical Logic).

The axioms for CL comprise all sentences that are instances of one of
the following twelve forms (o, 8, and vy denote arbitrary sentences).

I a>(ara)

11 (anB)2(Bra)

ol (a>B)>(ary)>(BAY)

IV (a=2B)AB>y)>(@>Yy)

v B=>(a>B)

VI (an(a=pB)=8

VII a>(avp)

VIII (avB)2>(Bva)

X  ((@>2rB=2v)>(avp)>y)

X  ~a>(a>B)
XI  (@a=>B)r(a>~B)>~a
XII av~a

The system CL has a single rule of inference;

RuLE oF DETACHMENT. From a and a O B, the sentence 8 may be derived.



132 LOGIC CLASSICALLY CONCEIVED CH. 6,863

This rule is known also by its medieval name, modus ponens, more
correctly modus ponendo ponens. It operates on a pair of theorems, an
implication and its antecedent, to ‘“‘detach’ the consequent as a new
theorem. :

By writing “f=r a” to indicate that « is a CL-theorem the rule of
detachment can be expressed as

iffeca and b (@>B), then |B.

The demonstration that the CL-theorems are precisely the tautologies
falls into two parts:

SounDNEss THEOREM. If b=t o, then a is classically valid.

CoMmpLETENEss THEOREM. If a is classically valid, then |—=¢ a.

In general a “soundness” theorem for an axiom system is a result to the
effect that only sentences of a certain kind are derivable as theorems,
while a ““completeness” theorem states that all sentences of a certain kind
are derivable. Together they give an exact characterisation of a particular
type of sentence in terms of derivability. Thus the results just quoted state
that theoremhood in CL characterises classical validity.

To prove the Soundness theorem is easy, in the sense that a computer
could do it. First one shows that all of the axioms are tautologies (the
truth-tables in §6.2 show that the axioms of the forms I, V, VII, and XII
are tautologies). Then one shows that detachment “preserves” validity,
ie. if & and a @ B are tautologies, then B is also a tautology. This implies
that a proof sequence can consist only of valid sentences, hence every
theorem of CL is valid.

The Completeness theorem requires more than a mechanical procedure
for its verification. The first result of this kind for classical logic was
established in 1921 by Emil Post, who proved that all tautologies were
derivable in the system used by Russell and Whitehead in Principia
Mathematica. Since then a number of methods have been developed for
proving completeness of various axiomatisations of classical logic. A
survey of these may be found in a paper by Surma [73].
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6.4 Boolean algebra

The set 2, together with the truth-functions —, ~, v forms a Boolean
algebra, a structure that we have mentioned several times and now at last
are going to define. The definition proceeds in several stages.

Recall from Chapter 3 that a lattice is a poset P=(P, C) in which any
two elements x, y € P have

(i) a greatest lower bound (g.1.b.), xm1y; and

(ii) a least upper bound (l.u.b.), xL1y.
xmy is also known as the lattice meet of x and y, while x1y is the join
of x and y. As observed in §§3.8, 3.9, when P is considered as a category,
meets are products and joins are co-products.

Recall from §§3.5, 3.6 that a zero or minimum for a lattice is an
element 0 having O0C x, all x € P, while a unit or maximum is an element
1 having x= 1, all x € P. A lattice is said to be bounded if it has a unit and
a zero. Categorially, 0 is initial and 1 is terminal. Now a lattice always has
pullbacks and pushouts (§3.13, Example 5 and its dual), so a bounded
lattice is precisely (§3.15) a finitely bicomplete skeletal pre-order category.

ExampLE 1. (P(D), <) is a bounded lattice. The unit is D, the zero @, the
meet of A and B is their intersection A (B, and the join is their union
AUB.

ExampLE 2. The set 2={0, 1} has the natural ordering 0 =<1 which makes
it into the ordinal pre-order 2 (Example 2, Chapter 2)

Q@
0 1

0 is the zero, and 1 the unit in this poset. x ~y is both the lattice meet
and the result of applying the conjunction truth function to {(x, y)€2 x2.
Likewise xuy is both the join of x and y and their disjunction.

ExampLe 3. If I is a topological space with @ its collection of open sets,
then (@, <) is a poset exactly as in Example 1-joins and meets are
unions and intersections, the zero is @, and the unit is I

ExampLe 4. (L, <) is a bounded lattice, where L,; is the set of left
ideals of monoid M. Joins and meets are as in Examples 1 and 3. O
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A lattice is said to be distributive if it satisfies the following laws (each
of which implies the other in any lattice):

() x{yuz)=(xmy)u(xmz)
(b) xLymz)=(xuy)m(xriz) all x, v, z.
Exampie 5. All four examples above are distributive. O

To complete our description of a Boolean algebra we need one further
notion —a lattice version of complementation.
In a bounded lattice, y is said to be a complement of x if

xuy=1
and

xmy=0.
A bounded lattice is complemented if each of its elements has a comple-
ment in the lattice.

ExampLE 6. (P(D), <) is complemented. The lattice complement of A is
its set complement —A.

ExampLE 7. (2, <) is complemented. The complement of x is its negation
—x (cf. truth-tables for a v~a, a A ~a).

ExampLE 8. In (6, <) the only candidate for the complement of Ue @ is
its set complement. But —U# @ unless U is closed. Thus (6, <) will only
be complemented in the event that every open set is also closed.

Exampre 9. If M is the monoid M, =(2, -, 1) then in (L,,, <), {0} has no
lattice complement, as {1}£ L,,. O

Exercise 1. In a distributive lattice each element has at most one comple-
ment, i.e. f xMy=xmz=0 and xLiy=xt1z=1, then y =12z [

A Boolean algebra (BA) is, by definition, a complemented distributive
lattice.

ExampLE. (P(D), <) and 2=(2, <). O

If B=(B, C) is a BA then each x € B has, by the above exercise, exactly
one complement. We denote it in general by x’.
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Exercise 2. In any BA we have: (1) (x')' =x; (2) xmy=0iff yCx'; (3)
xCyiff yEx'; 4) (xmy) =x'1ay’; 5) (xuy) =x"my’. O

Boolean algebras are named after George Boole (1815-1864) who first
described the laws they satisfy in his work, The Mathematical Analysis of
Logic (1847).

6.5. Algebraic semantics

Fach BA B =(B, C) has operations — (meet), L1 (join), and ' (comple-
ment) corresponding to the conjunction, disjunction, and negation truth
functions on 2. It also has an operation corresponding to implication. The
sentence « = 3 has exactly the same truth-table as the sentence ~a v,
and hence on the classical account the two sentences have the same
meaning. So for x, ye B we define

x=>y=x"Lay.

Exercise 1. Verify that & © 8 and ~« v 8 have the same truth-table, and
hence that the definition just reproduces the implication truth-
function on 2. |

The operations on B can be used to generalise the semantics of 6.3.

A B-valuation is a function V:@,— B. This is extended to a function
V:9 — B by the rules

(@) V(~a)=V(a)

(b) VierB)=V(a)mV(B)

() Vlavp)=V(ia)1V(B)

(d) V(=)= V(a)uV(B)=Via)= V(B).
Then a sentence « is B-valid, BF a, iff for every B-valuation V, V(a)=1
(where 1 is the unit of B). Notice that a 2-valuation is what we earlier
called a value-assignment, and that 2k« iff « is a tautology.

SouNDNESS THEOREM FOR B-Vavrmrry: If Fo; a then BEao.

The proof of this is as for 2-validity. One shows that all the CL-axioms
are B-valid, and that Detachment preserves this property.

Now the zero and unit of B provide an “‘isomorphic copy” of 2 within
B. (2 is a subobject of B in the category of BA’s). In this way any
2-valuation can be construed as a B-valuation, hence BFa only if 2Fa.

A sentence will be called BA-valid if it is valid in every BA (and hence
in particular is 2-valid).
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All of these notions of validity are connected by the observation that
the following four statements are equivalent to each other:
Fera
« is a tautology
« is B-valid, for some particular B
«a is BA-valid.

Exercisk 2. (The Lindenbaum Algebra). Define a relation ~, on & by
a~ B i tsa>B and FeBoe

Show that ~_ is an equivalence relation on ¢ and that a partial ordering
is well defined on the quotient set &/~ by

[al=[B] iff tera=B

The poset B, =(P/~,, ) is called the Lindenbaum Algebra of CL. Show
that it is a BA, in which

[a]m[Bl=[anB]
[a]u(B]=[aVvB]
[a]=[~a]

[a]l=1 iff tere

Define a B_-valuation V, by V_(m;) =[], and prove that V_(a)=[«], all
sentences «. Hence show

lera iff B Fa. O

The algebra B_ can be used to develop a proof that all tautologies are
CL-theorems. The details of this can be found in Rasiowa and Sikorski
[63], or Bell and Slomson [69].

6.6. Truth-functions as arrows

Each of the classical truth-functions has codomain 2, and so is the
characteristic function of some subset of its domain. This observation will
lead us to an arrows-only definition of the truth-functions that makes
sense in any topos, through the -axiom.

Negation
—:2 — 2 is the characteristic function of the set

{x:ix=1}={0}= 2.
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But the inclusion function {0} < 2 is the function we called false in §5.4.
Hence in Set we have the pullback

(recall that false is the characteristic function of @< 1).

false
_—

true
ey

Conjunction
The only input to ~:2Xx2 — 2 that gives output 1 is (1, 1). Hence ~ = xa
where

A={1,1)}

Now A being a one-element set can be identified with an arrow 1 — 2 X2.
We see that this arrow is the product map (true, true), which takes 0 to
{true (0), true (0)), and hence

1 (true, true) %2
1 true 2

is a pullback.

Implication
= :2X2—2 is the characteristic function of

©={(0,0),(0, 1), (1, 1},

and so
® “—— 2x2

!1 ‘3,
1 true 2

is a pullback. Now @ is so named because, as a relation on 2, it is none
other than the natural partial ordering on the ordinal 2, i.e.

©@={xy):x<yin2}
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But in any lattice we in fact have
xCy iff xmy=x
(why?) so
O={x y):xny=x}
and so according to §3.10, © & 2x2 is the equaliser of

2x2 —3 2

pry

where pr; is the projection pr;({x, y)) = x.

Disjunction
v :2X2—>2is xp, where
D ={(1, 1)<1,0) (0, 1)}.

The description of D by arrows is a little more complex than in the other
cases.
Notice first that D = A U B, where

A={1,1),(1,0}, and B={(1,1),(0, 1)}.

Now A<=2x2 can be identified with the monic product map
{true,, 1,):2 — 2x2 which takes 1 to (1, 1) and 0 to {1, 0). Similarly B is
identifiable with (1,, true,). We then form the co-product

2 —— 242 «—— 2

(tmez,\'lx f %, true,)

2X2

ie. f=[(true,, 1,), (1,, true,)] and find that Im f = D. Thus we have an
epi-monic factorisation

¥

This specifies D uniquely up to isomorphism by properties that can all be
expressed in the language of categories, and so we can now define the

2+2 2X2
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Truth-arrows in a topos

If € is a topos with classifier T:1— (2;
(1) 1:Q — O is the unique &-arrow such that

1 —— Q

is a pullback in &. Thus == x,, where 1 itself is the character of !:0 — 1.
2) n:OQx€0—Q is the character in & of the product arrow
(T, T:1—=0xO.
3) u: 02 x0Q— O is defined to be the character of the image of the
&-arrow

[<T(b1Q>)<1Q:TQ>]:Q+QHQXQ
4) = :0x0 — Q is the character of
e: © —axa,

where the latter is the equaliser of

N
Ox0Q — O,
I3
~ being the conjunction truth arrow, and pr; the first projection arrow of
the product 2 X (}.

ExampLE 1. In Set, and Finset the truth arrows are the classical truth
functions.

ExampLE 2. In Bn(I), where 2 = (2 X I, p;), the stalk €, over i is 2x{i}, a
“copy” of 2. The truth arrows in Bn(I) are essentially bundles of
truth-functions, i.e. they consist of “‘copies” of the corresponding truth-
functions acting on each stalk. Thus —1: Q2 — 2 is the function from 2 X1
to 2 < I that takes (1, 1) to (0, i) and {0, i) to {1, i). ~:2XxXQ — () takes a
pair consisting of (x, i) and (y, i) to (x Yy, i) (recall that 2 xQ in Bn(l)
consists only of those pairs that belong to the same stalk in €2). The
reader can readily define the other truth arrows in Bn(I).

Thus, whereas in Set (2 is the two-element BA, in Bn(I)  is a bundle
of two-element BA’s, indexed by L
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ExampLE 3. In M-Set, where 2 =(L,,, ), the negation truth-arrow
—1:Lp,—> Ly, is defined by
—(B)y={m: me M andw, (B)=0}
={m: for all n, n * me& B}.

The conjunction arrow is given by set intersection, i.e. it is that function
from L,,xL,, to L,, that takes (B, C) to BNC.

The disjunction arrow is given by set union.

Implication = : L\, XLy, — Ly, has the description

B> C={m: ©,,(B) < 0,,(C)},

and @ is the set inclusion relation on L,,.

ExaMPLE 4. In the particular case of our canonical (counter) example M,,
the above definitions show the truth arrows to be given by the tables

- ~12 {0} ¢
2| @ 212 {0t ¢
{0} ] ¢ {0} {0} {0} ¢
) o109 ¢ 0
v 2 {0y ¢ > 2 {0} @
212 2 2 2 |2 {0y o
{0} | 2 {0} {0} o] 2 2 ¢
12 {0 ¢ @12 2 2

ExamMpLE 5. The description of truth-arrows in Tep(Il), which in itself
gives further indication of the unification achieved by the present theory,
will be delayed till Chapter 8. |

Exercise 1. Describe the truth-arrows in Set?.

Exercise 2. Describe 2 and the truth-arrows in Z,-Set, where Z,=
{2, +,0) is the monoid of the numbers 0 and 1 under addition. O

6.7. &-semantics
We are now able to do propositional logic in any topos &. Recall that a

truth value in & is an arrow 1 — £ and that (1, ) denotes the collection
of such Z-arrows.
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An Z-valuation is a function V:®P,— &(1, 1) assigning to each sen-
tence letter m; a truth value V(m;):1— . This function is extended to
the whole of @ by the rules

(@) V(~a)="1°V(a)

Via)

1 0

V(~a)
Q
(b) V(anB)=n(V(a), V(B))
1

V(a)

(V(a), V(B)

¥

Qe — AxQ

QO

pra

mn

Q

(¢) V(avp) =y (V(a), V(B))

(d) V(a=>B)== (V(a), V(B))-
In this way we extend V so that every sentence is assigned an ¥-arrow
V(ia):1— Q.

We shall say that a is &-valid, denoted &F «, iff for every &-valuation
V, V(e)=T:1—= (.

Exercisk 1. Setka iff Finsetk « iff FinordF« iff « is a tautology iff ter a.
Exercisg 2. Bn(]) k « iff (P(I), < )Ea, i.e. topos-validity in Bn(I) is equi-
valent to Boolean-algebra-validity in (?(I), <). Hence

Bn()Fa iff « is a tautology. O

In the topoi of these exercises, the system CL axiomatises the valid
sentences. The natural question is—does this always happen? We are
about to see that CL is complete for ¥-validity, i.e. that any &-valid
sentence (whatever & is) is a CL-theorem. The question then reduces
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to—“is CL sound for &-validity?” The short answer is—no! A slightly
more revealing answer is that axioms I-XI of CL are &-valid, but there
are topoi in which the “law of excluded middle”, a v ~a, is not valid. An
example is Set™, the category of set functions, for reasons that will
emerge in Chapter 10, where the full story on topos validity will be told,
at least for propositional logic.

To show that &-valid sentences are tautologies’ we need the following
result, which shows that the arrows T and L behave under the application
of the truth-arrows in & exactly as they do in Set. But first some
terminology. If (f, g):1 — QX is a “pair” of truth-values we write

frng for A~e{f,g):1—>Q

fug for ve(f, g
f>gfor =>-o(f,g) etc

TueorREM 1. In any &, T and L exhibit the behaviour displayed in the
tables

X —l°ox ~n| T 4
T 4 T T L
L T 111 4L

(i.e. TAT=T,Tnl =1 etc.)

|l T L >!T 1
TI|T T TIT 4
I e LiT T

Proor. That —o L =T follows by commutativity of the pullback that
defines — (cf. §6.6). To see why —oT= 1, consider '
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The bottom square is the pullback defining —. The top square is the
pullback (inverted) defining | as the character of !:0— 1. Hence by the
PBL, the outer rectangle is a pullback showing —1° T to be the character
of :0—1.

It would be possible to derive the other tables from the relevant
definitions, but in Chapter 7 some much deeper facts will be established
which yield these tables as a rather easy corollary. So we will leave the
details till then (cf. §7.6). O

Now suppose that V:d,— 2 is a classical value-assignment. We use V to
define an -valuation V': P, — £(1, }) by putting

, (T i V(m)=1
V(m)—{L if V(m)=0.
Lemma. For any sentence a € P,

(a) either V'(a)=T or V'(a)= L

(b) V(a)=T iff V(a)= 1.

ProoF. The statement of the Lemma is true when a = m; by definition.
The proof itself is by induction over the formation rules for sentences.
One proves the statement is true when a =~ on the inductive assump-
tion that it is true for B, is true when a = 8 Ay assuming it is true for 8
and for y etc. In view of the exact correspondence of the tables of
Theorem 1 to the classical truth-tables it should be clear why the Lemma
works, and the details are left as an exercise. O

THEOREM 2. For any topos &,
if €Fa then tera

Proor. Let V be any classical valuation and V' its associated &-valuation,

as above. Since €Fa, V'(a) =T and so by the Lemma, V(a)=1. Hence «

is assigned 1 by every classical valuation, so is a tautology, whence =t a.
[

TueoreM 3. If & is bivalent, then
gFka iff teta

Proor. Theorem 2 gives the “only if” part. Conversely, suppose =z a,
i.e. a is a tautology. If V' is any &-valuation, define a classical valuation
by V(m;,)=1 or 0 according as V'(m;)=T or L. Since & is bivalent, T and
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1 are its only truth-values, so this definition is legitimate. But then V'
and V are related as in the Lemma, so as V(a)=1, we get V(a)=T.01

This last result suggests perhaps that bivalent topoi look more like Set
than ones with more than two truth-values. However, our example M, is
bivalent and yet differs from Set in other ways, e.g. is non-classical in
having 1-+1 not isomorphic to 2. On the other hand the topos Set” is not
bivalent, but is classical, and does have its valid sentences axiomatised by
CL. We could then conclude that bivalence does not of itself lead to a
categorial axiomatisation of classical set theory. Or should we perhaps
conclude that our definition of topos validity is not the right generalisa-
tion of the notion of logical truth in Set? Read on.

Appendix

Sentences a and B are logically equivalent when they have the same
truth-table, i.e. when V(a) = V(B) for every classical valuation V. As was
mentioned above, a o 3 is logically equivalent to ~a v 8, and because of
this some presentations of CL introduce =, not as a basic symbol of the
alphabet, but as a definitional abbreviation for a combination involving ~
and v. Since a A B is logically equivalent to ~(~a v ~f), A may also be
introduced in this way. Alternatively we can start with ~ and A and
define v and o, and there are still other approaches.

The definability of > from ~ and v is reflected by the fact that in 2,
x = y=—1xuvy. In arrow-language this means that

> = U o(mXidy)

—1Xid,

2X72 2X2

>
2

Now there are topoi in which the generalised truth-arrows do not satisfy
this equation. So the question must be faced as to why the approach of
this chapter is appropriate and why we do not simply define = in & via
and U as above.

The point is that the connectives ~, A, v, © were introduced sepa-
rately, as they are all conceptually quite different, and each has its own
intrinsic meaning. The construction of the truth-table was motivated
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independently in each case. That they prove to be inter-definable is after
the fact. It is simply a feature of classical logic, a consequence of the
classical account of truth and validity. Accordingly we defined the con-
nectives independently, described them independently through the (-
axiom, and lifted this description to the general topos. In so doing we find
(in some cases) that the interdefinability is left behind. Later (Chapter 8)
we shall see a different theory of propositional semantics in which the
connectives are not inter-definable but in which they have exactly the
same categorial description that they do in Set.



CHAPTER 7

ALGEBRA OF SUBOBJECTS

“Since new paradigms are born
from old ones, they ordinarily in-
corporate much of the vocabulary
and apparatus, both conceptual
and manipulative, that the
traditional paradigm had previ-
ously employed. But they seldom
employ these borrowed elements
in quite the traditional way.”
Thomas Kuhn

7.1. Complement, intersection, union

At the beginning of Chapter 6 it was asserted that the structure of
(9P(D), <) as BA depends on the rules of classical logic, through the
properties of the connectives “and”, “‘or”’, and ‘“not”. This can be made
quite explicit by the consideration of characteristic functions. We see
from the following result just how set operations depend on truth-
functions.

TueoreM 1. If A and B are subsets of D, with characters x,:D — 2,
xg :D — 2, then
) Xoa="71°Xa
() Xans=Xxanxs (=n°(xaXxa))
(i) XauB = Xa \Xa-

Proor. If y_, (x)=1, for x€ D, then xe—A, so x¢ A, whence x.(x)=0,
80 XA (x)=1.But if x_,(x)=0, then xZ—A, so x €A, whence y.{(x)=1
and —x (x)=0. Thus x_, and —cx, give the same output for the same
input, and are identical. The proofs of (ii) and (iii) follow similar lines,
using the definitions of N, A, U, u. - O

Theorem 1 suggests a generalisation—the result in one context be-
comes the definition in another, as follows.
146
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ILet & be a topos, and d an &-object. We define operations on the
collection Sub(d) of subobjects of d in & thus:

(1) Complements: Given f:a>—> d, the complement of f (relative to d)
is the subobject —f:—a > d whose character is —1° x;. Thus —f is defined
to be the pullback

—a>~_f—*d

of T along —1°y;, yielding x_; =—1°x;, by definition.

(2) Intersections: The intersection of f:a>>d and g:b>—>d is the
subobject fNg:aNb>—>d obtained by pulling T back along x;~x, =
Ao (Xp Xg)-

anb >108, g
1Xfﬂxg
1 i Q

Hence x;n, = X N Xe-
(3) Unions: fUg:aUb>>d is the pullback of T along x;ux,=
Uo(Xfa Xg>’

fug
—

aUb d
!l leUXg
1 —1* 0
and SO Xpug = X\ Xe- O

There is in fact a completely different approach available to the
description of intersections and unions in Set.
(a) Intersection: The diagram

ANB —— B

o

A——D
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is a pullback. Now in the poset (P(D), =), ANB is the g.1.b. of A and B,
hence their product, and indeed pullback. But we are saying something
stronger than this, namely that the diagram is a pullback, not just in
(D), but in Set itself, as the reader may verify.

(b) Unions: In #(D), AUB is the co-product of A and B. This
description cannot be generalised as we do not yet know if Sub(d) has
co-products, and moreover in Set itself the co-product A +B is the
disjoint union of A and B, so A +B# A UB unless A and B are disjoint.

However, A UB can be described as the union of the images of the
inclusions f: A~ D and g:B — D, and in §6.6, in defining the disjunc-
tion arrow U, we gave a general construction for the union of two images.
We form the co-product arrow [f, g]: A + B — D, and then A U B obtains
as the image of A + B under [f, gl, i.e.

A+ L2,

f, g]*\ /

AUB

commutes as an epi-monic factorisation of [f, g].

Although we have two descriptions of N and U in Set we are about to
see that they present us with no choice in &, i.e. that they lead to the same
operations on Sub(d) (topoi really are the right generalisations of Set).
The full proof is somewhat lengthy and intricate, and so we shall confine
ourselves to outlining the basic strategy and leave the details to the reader
who has developed a penchant for “‘arrow-chasing”.

THEOREM 2. In any topos &, if f:a>—>d and g:b>—> d have pullback

c>—f’——>b

a>———d

f

then a:c>>d, where a =gof =fog' has character x;~x,. Thus x, =
Xing S0 a=fNg and there is a pullback of the form

anNh>——-b

fog
g

a>——d
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STRATEGY OF PROOF. The heart of the matter is to show that the top

square of

o
c>——d

! <Xf7 Xg)

T, T,
1 —<-)—*.(2><Q

T

1 Q0

is a pullback. The bottom square is a pullback, by definition of A, so by
the PBL the outer rectangle is a pullback, which by the 2-axiom leads to
the desired result that x, =~ {x; Xx.)- Ol

The analogous result for unions needs a preliminary

Lemma. In any &, if
f

a———b

g

¢c———d
is a pullback, then there is an arrow h:f(a) — g(c) that makes the right

hand square of

f* im f

a—L s fla)y>—"L > p

u h v

¢ —E— glc)> &g

a pullback.
Proor. Consider i
a- —— — e — 1 3
u h' v
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The right hand square obtains by pulling back im g along v, so i is monic.
The existence of f', making the whole diagram commute follows from the
universal property of the right hand square as a pullback, given that the
“boundary” of the diagram is the pullback given in the hypothesis of the
Lemma. The PBL then gives the left hand square as a pullback, and since
the latter preserve epics (Fact 1, §5.3), iof' is an epi-monic factorisation
of f. Hence there is a unique iso k:e— f(a) such that

fla)

an
S

commutes. Then h=h'ok™'is the arrow required for the conclusion of
the Lemma. =

TueoreM 3. Given f:a>>d and g:b>—>d in a topos &, then the &-arrow
a :c>—> d which is the image arrow of [f, gl:a+b—d,

a+b —»[f’g} d
[f,gR/
¢

has character x; v x,.
Thus X, = Xjug S0 @ =fU g and there is an epi-monic factorisation

a+b—"=—

N o

aUb

STRATEGY OF PrRoOF. The idea is to show that the two smaller squares of

a f d g
ngl l(xf, Xe) le"g
o Tolal <Tn’ a) Ox0 (10, Ta) 0
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are pullbacks. Since co-products preserve pullbacks (Fact 2, §5.3) we then
get a pullback of the form

a+b If. €] d

[ <Xf’ Xg)

O+0 (Ta 10) {10 To)l

02 x0
The Lemma then yields a pullback of the form

c —%

[ [ <Xf: Xg)

e—i———MQXQ

where i is the image arrow of [(Tq, 10 (10, To)l; But i is the arrow
whose character is U: 2 XQ — (), ie.

e i 0x0
1

EENY'

is by definition a pullback. Putting these last two diagrams together and
invoking the PBL shows that x, =u°{(xp Xg)- O

In view of Theorem 3 we can now describe the disjunction truth arrow
u as the character of

ST U,
QuQ JolP T )

7.2. Sub(d) as a lattice

Treorem 1. (Sub(d), <) is a lattice in which
(1) fNg is the g.l.b. (lattice meet) of f and g;
(2) fUg is the Lu.b.(join) of f and g.

Proor. (1) The characterisation of f M g as a pullback of f and g makes it
relatively easy to see why fN g is the g.1.b. of f and g. The details are left
to the reader.
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(2) The characterisation of fUg in Theorem 3 and the co-universal
property of [f, g] shows that

a —=— a+b —>— b

commutes and so each of f and g factors through fUg Thus fofUg,
g=fUg, and fUg is an upper bound of f and g. To show it is the least
such, suppose fc h and g<h. Then f and g each factor through h, so
there are h,, h, making

ha\

commute. Then

[f7 g]:[hoha) ho h‘b]
=holh, h,] (dual of Exercise 3.8.3)

and so [f, g] is the composite of
[hy, hyl:a+b—>c and h:c>—>d.

Replacing [h,, h,] by its epi-monic factorisation we get [f, g] as the
composite of

j k h
a+b>e>>c >d

for some j and k. But then j followed by hek is an epi-monic factorisa-
tion of [f, g]. By the uniqueness, up to isomorphism, of such things there



CH.7,87.2 SUB(d) AS A LATTICE 153

is an iso u such that

a+b——L—»e k C h L d
u
fug
aub

commutes. Then kou factors fUg through h, yielding fUg<h as
required. (|

Cororrary. (1) fegiff fRg=fiff fUg=g
(2) fe g iff (xp xo) factors (uniquely) through the equaliser

of ~ and pr,.

Proor. (1) In any lattice, xCvy iff xmy=x iff xL1y=1y.
(2 feg it fng=f

iff Xrng = Xr

i ~o(xp Xe) = Prao(xp Xe)

and the result follows by the universal property of equalisers. O
Part (2) of this Corollary is an analogue of the fact that in Set we have
A c B iff x, <xg (the latter meaning x, (x) < xg(x), all xe D).

TrEOREM 2. (Sub(d), <) is a bounded lattice with unit 1, and zero 0,.

Proor. Given any f:a > d, the commutativity of

d>4 g

A

a
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and of

a>—f——> d

0
shows that 0, =f and fc 1, O
Exercise 1. In Sub(d), f=1, iff f is iso, i.e. fra=d. O

Sub(d) is in fact a distributive lattice, i.e. satisfies
fRUh)=FNguUfnh).

Again this is something that could be proved directly but in fact follows
from some deeper results—this time a more detailed description of
Sub(d) to be developed in the next chapter. We leave the matter till then
(cf. §8.3).

What about complements? To date we have not used the definition
X-¢ ="1°X; The first thing we shall prove in this connection is

TueoreM 3. For f:a > d, we have

fﬂ‘-fzod.

Proor. The boundary of
—a>—t , 4
Xg

is

— ()

b= emeeaae

1 ——0
is the pullback defining —f, the bottom square is the pullback defining —,
so the unique arrow —a —> 1 makes the whole diagram commute, and the
top square a pullback.
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Then each square of

aN—a —a 1

-]

a f d Xf.(l

commutes (the left hand one is the pullback giving fN—f), so we get
Loel=xsofeg But xof=true, (Q-axiom), so xofog=true,°g=
true,—, (4.2.3). Hence the outer square of

commutes. But the inner square is a pullback, so the arrow k:aN—a —0
does exist. But then a N—a =0 (§3.16), so a N —a is an initial object and

0
0>—2>d

k
fo—f

aN—a

must commute. Thus f N —f < 0,4, and since 0, is the minimum element of
Sub(d), the result follows. ™

We seem to be well on the way to a proof that Sub(d) is a Boolean
algebra, and hence complete the analogy with (D) in Set. We know it to
be a bounded distributive lattice, with f N —f always the zero. It remains
only to show that fU —f is the unit. But we cannot do this! There are
topoi in which it is false. To give an example we need

TaeOREM 4. In Sub(Q), (for any topos),

L=-T.
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PrOOF. x, =~ (definition of —)
=—0ly
=7 xr

= X—- O

So in any topos, TU-T=TU 1. Now in our favourite example M,, 14
in Sub(£2) can be identified with the set L,,, while TU 1, as the image of
[T, L] (recall the description of the latter in Theorem 5.4.6), can be
identified with the set {M,, @} # L,. Hence

TU L #1g,

and so —T (= 1) is not the lattice complement of T in Sub({2). But then,
as the next result shows, Sub(£2) is not a Boolean algebra at all.

THEOREM 5. In any topos, if T:1— Q has a complement in Sub({2), then
this complement is the subobject L :1— ().

ProoF. If T has a complement, f say, then TNf=0g, so

0

00— a

b

1 ——0
is a pullback. The (2-axiom then gives f =y, = L1 ol, (cf. Exercise 5.4.3).
But 1 -1, obviously factors through 1, so f< L. Lattice properties then
give TUfcTU 1, and since TUf=1y, TU L =1,. But by Theorems 3
and 4 above, TN L =09, and so 1 is a complement of T. But in a
distributive lattice, complements are unique, hence f= 1. ™

7.3. Boolean topoi

A topos & will be called Boolean if for every &-object d, (Sub(d), <) is a
Boolean algebra.

TaeoREM 1. For any topos &, the following statements are equivalent:
(1) & is Boolean
(2) Sub() is a BA
(3) T:1— Q2 has a complement in Sub((2)
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(4) L:1— Q is the complement of T in Sub({2)
(5) TU L =14 in Sub(Q2)

(6) € is classical, i.e. [T, L}:1+1— Q is iso
(7) i;:1— 1+1 is a subobject classifier.

Proor. (1) implies (2): definition of “Boolean”
(2) implies (3): definition of “BA”
(3) implies (4): Theorem 7.2.5
(4) implies (5): definition of ‘“‘complement”
(5) implies (6): [T, L] is always monic, so

1+1 021 g

N o

1+1

is an epi-monic factorisation of [T, L], i.e. in Sub(), TU L =[T, L]
Then if TU L =1g, we get [T, L]=1,, making [T, 1] iso by Exercise
7.2.1.

(6) implies (7): Exercise -the essential point being that anything
isomorphic to a classifier will be one itself.

(7) implies (1): Given f:a>— d, we wish to show that fU—f=1,, and
so by the work of §7.2 —f will be a complement for f, and Sub(d) will be a
BA.

The basic strategy can be seen in the diagram

Lf,—fy’ H \ﬂ{—f

a+—a

U’%d%

If we can show that [f, —f] is epic, then the iso k as shown will exist to
factor 1, through f U —f to make fU —f=1,. We need first the following:

LemMa. In any topos,

_ 1

L

— 141
b

is a pullback, where i), i, are the two injections for the co-product 1+1.
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Proor. The square commutes as 0 is initial. It is also a pushout by the
co-universal property of the pair (i, i,). But the outer square of

0 —1

commutes, indeed is a pullback by the (2-axiom, so the unique k exists as
shown to make the diagram commute.
Then if the outer square of

|k

b
1 —1+1

commutes, k can be used to show the outer square of

commutes, giving the unique a — 0 for the previous diagram as required.

O

To finish our Theorem we shall denote by x4, L’ etc. the arrows
defined in the same way as x;, L, etc., but using i;:1 —1+1 in place of
T:1— Q. Now the Lemma tells us that i, = 1’, so by the argument at the
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beginning of Theorem 3 of §7.2,
f

—a —— d

|,

1 —25 141

is a pullback. But so is
f

a d
1 — 141

and co-products preserve pullbacks, so

a+-—a >——>[f’ ml d

!+!h 1

141>l gy

is a pullback. But [i,, i,]= 1. is epic, whence [f, —f]is the pullback of an
epic, i.e. an epic itself. O

7.4. Internal vs. External
Tuaeorem 1. If € is Boolean, then €Fav~ a, for any sentence a.

ProorF. Let V be an &-valuation. Form the pullback

f

a>—1

-

1 ——0

of T along V(a), so that x; = V(a).
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Now if & is Boolean, Sub(l) is a BA, so fU—f=1,, whence x;, ;=
X1, =T. But

Xru—f = X\ 1% Xr
= V(a)u—e V(a)
=V(av—a).

Hence Viav—~a)=T. O

One might think that if our theory was working well then the converse
of Theorem 1 should hold. However our example M, is non-Boolean,
since in it Sub(£2) is not a BA, and yet M, Fa v ~a, as observed at the end
of Chapter 6. The proof of Theorem 1 in fact only required that Sub(1)
be a BA. That this is the relevant condition is shown by

TaEOREM 2. In any topos &, the following are equivalent:
(1) gka iff Fera, all sentences a
(2) gFav~a, all a
(3) Sub(1) is a BA.

Proor. Clearly (1) implies (2). Assuming (2) we take a subobject f:a >~
1 in Sub(l) and observe that x; is a truth value 1— (). Taking an
&-valuation that has V(m)=x; we have x;, =xrv—x= V(m)u
V(mg) = V(mgVv~mg) =T=x,,. Hence fU-f=1;. This means that
Sub(1) is a BA.

Finally assume (3), in order to derive (1). The “only if” part of (1)
holds in any topos. The “if” part requires a proof that the CL-axioms are
&-valid and that detachment preserves &-validity. We shall explain later
why axioms I-XI are valid in any topos, and why Detachment is always
validity preserving. For the present we note only that the proof of
Theorem 1 shows that if Sub(1) is a BA, then axiom XII is &-valid. [

CoRoLLARY. “Sub(1) is a BA” does not imply that & is Boolean.

The situation seems at first sight anomolous (at least it did to the
author). In Set the logic is based on the BA 2, and in the general topos it
seems to be intimately related to Sub(1). In Set, Sub(1) =% (1)=2—so far
so good. But the work of the previous sections shows that the properties
of the ‘“generalised power-sets” Sub(d) are determined by Sub((2),
whereas in Set, Sub({2) is a four-element set that has played no special
role to date.
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Some clarification of this situation is afforded by the observation that
Sub(d) is a collection of subobjects of d and may well not be itself an
actual &-object. Thinking of & as a “general universe of mathematical
discourse’ then a person living in that universe, i.e. one who uses only the
individuals that exist in that universe, does not “see” Sub(d) at all as a
single entity. Sub(d) is external to &. What the topos-dweller does see is
the power object ¢, which is the “object of subsets” of the object d. 2
is an individual in the universe &, and is the internal version of the notion
of power set, while Sub(d) is the external version.

Now the Law of Excluded Middle does have an internal version. The
validity of a v ~a in Set corresponds to the truth of the equation

xu—x=1, for xe2.

The truth of this equation is equivalent to the commutativity of

2
!1
1

(since {id,, —)(x) = (x, —x)).
Now this diagram has an analogue in any topos &, and we have the
interesting

(id,,

true
—_—

THEOREM 3. Sub(Q2) is a BA iff the diagram

o 22 gx0

t k v (EM)
,

1 0

commutes.

Proor. EM commutes when
ve <1 Qs -1> = T.Q
i.e.

1Quﬁ=Tﬂ
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But we know that 15 = x,, =x., and T = x,,, SO
Sub()isaBA iff TU L =1, (87.3)
iff X = X1a
iff xroX= X,
iff 1ou1=Tg. |

Exercise 1. Show explicitly why EM does not commute in M,. [

Now in our theory of topos semantics we use the collection Z(1, (2) of
truth-values. This again is an external thing — the internal version of the
collection of arrows from 1 to 2 would be the object of truth-values
O'= 0. Also a valuation V:® — (1, ) is external, i.e. is not an actual
&-arrow.

Thus the semantical theory we have developed is an external one, and
this is why there can be topoi like M, that look classical “from the
outside” and’ yet can have non-classical properties (curiously, M, is
internally bivalent while “from the outside” (2 has three elements). We
now see that a topos also has an internal logic, in the form of commuting
diagrams like EM (cf. Exercise 2 below). It is precisely when this internal
logic is classical that the topos is Boolean.

From the viewpoint that topoi offer a complete alternative to the
category Set as a context for doing mathematics it is finally the internal
structure that is important. Nonetheless the present external theory is
very useful for elucidating the logical properties of topoi, and as we shall
see, for describing the link between topoi and intuitionistic logic.

Exercise 2. Describe the validity of the CL-axioms I-XI in terms of
commutativity of diagrams involving truth-arrows. (All of them commute
in any topos —can you prove some of them?)

7.5. Implication and its implications

In the same way that we used the truth arrows A, u, —1 to define
operations N, U, — on Sub(d) we can use implication = to define the
following operation: if f:a>>d and g:b>— d are subobjects of d, then
f B g:(a & b)>>d is the subobject obtained by pulling T back along
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Xr = Xz = = °{Xp Xz)- Thus

(aBb)> 122, 4

} } Sx

1 Q

is a pullback, 1.€. Xjoe = Xf > X
In order to study the properties of this new operation we need some
technical results.

Lemma 1. If f, g, and h are subobjects of d (in any topos), then

)] fAh=gNh iff xpch=x,°h,
and hence
2 Xk Xe =XgnXn Hf Xpoh=xg°h

Proor. (1) Consider

aﬂc>L>c bﬂc>i—>c
Nh |k gNh |h
a>—chLz b—2—"d
1 ——0 1—— 0

In each diagram the bottom squares are pullbacks by the (3-axiom, and
the top squares are pullbacks by the characterisation of intersections. So
by the PBL, x;ch =x,, and x,°h =x,,,. Thus x;oh=x,oh iff h; =h,. But
this last condition holds only if there is an iso k giving h; e k = h,, and so
hoh;eck=heoh,, ie. (fNh)ek=¢gNh, and so fNh=gNh. The argu-
ment reverses to show fNh =g h only if h, = h,. Part (2) is immediate
from (1). |

COROLLARY

fOhceg iff xneoh=x-ch
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PROOF
fOhcg iff FNh)Ng=fNh
if fng)Nh=fNh (lattice properties)
iff Xagoh=xch (Lemma). (]

TueOREM 1. In Sub(d) we have:
1) hefbgifffnheg
() fegiff f>g=14
(3) fegiff xp > x, = true,.

Proor. (1) First consider

(a2 b) 175, g

Vi Xp Xe)

'

v v

! @>—e-—+ Qx0

{ 5
1—— 0
The boundary commutes by definition of f > g. The bottom square is a
pullback, so the unique arrow j exists to make the whole thing commute.

Then the PBL gives the top square as a pullback.
The basic strategy of the main proof is seen in the diagram

C

K/ h
\(II
(apb) 128, 4

{ i k(xf, Xe)

@e(zxa;a

1

We have h = f |5 g precisely when there is an arrow k as shown making
the top triangle commute. Since the square is a pullback, such a k exists
precisely when (x;, x,)© h factors through e. By the universal property of e
as an equaliser, this happens precisely when pr,o{x;, x;)ch =" °{x;, xz)°h,
i.e. x;°h =x;ne°h But this last equality holds iff fM-h =g, by the last
Corollary.
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(2) We use part (1). Suppose f< g. Then for any h in Sub(d), fNh<
fcg so by (1), hef b g This makes f| g the unit 1, of Sub(d).
Conversely if f 5 g=1,, then fcf P g so fNfcg ie. fcg

(3) From (2), and the definition of [, since y;, = true,. O

Exercise. Give a categorial proof of part (2), by using the Corollary to
Theorem 1 of §7.2 and the diagram

d/w‘

©>——axn

l R

I’

L 0
O
CoRroOLLARY TO THEOREM 1. In Sub(d):
D 1,2 1,=021,=0, 0;,=1,
2 1, 0,=0,
Proor. (1) By part (2) of the Theorem, as 1, =1,, 0,=1,, 0, =0,.
(2) Since 1; 20, <1, & 04, part (1) gives
1N, 5 0,)=0,,
i.e.
1.2 0,20, (1, is maximum)
and hence
1(1 b Od = Od‘ D

Now in (D), A & D is —A U D. (why?) The analogous situation does
not obtain in all topoi. In M,, T B T=1, in Sub(£2) (by Theorem 1(2)),
while —TUT= 1L UT=TU 1, and we saw in §7.2 that TU 1L #1, in M,.

To determine the conditions under which B can be defined from U
and — we need

LemMa 2. (1) In any lattice, if m and n satisfy
@O xCm iff amxCTh, allx
(i) x&En iff amxCh, allx

then m = n.
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(2) In a Boolean algebra,
xC(a'Lib) iff amxEb,

and so the only m that satisfies the condition of (1)(i) is m =a'Lib.

Proor. (1) Exercise —use mC"m etc.

(2) First, by properties of Lu.b.’s and g.l.b.’s, note that if xCz, then
yrxZyrmz (any x, y, z). Next note that in a BA, armi(a’'wb)=(arma’)
(amb)=0Li(armb)=amb"h so that if xC=(a’Lib) by the foregoing we
have amxTarm(a’'Lb)Ch, i.e. amxTh. Conversely, if arixCb then
x=1mx=(@"ua)mx=(@mx)(amx)"a'L1b. |l

TureoreMm 2. In any topos &, the following are equivalent:
(1) € is Boolean
(2) In each Sub(d), f> g=—fUg
(3) In Sub()), f > g=—fUg
@ TR T=TUL.

Proor. (1) implies (2): Theorem 1(1) states that in the lattice Sub(d),
hefb g iff fNhcg But if Sub(d) is a BA, Lemma 2(2) tells us that
he—fUg iff fNhcg Lemma 2(1) then implies that f & g=—fUh.

(2) implies (3): obvious.

(3) implies (4): —TUT=TU L as noted prior to Lemma 2.

(4) implies (1): We always have T B T=1,. Use part (5) of the
Theorem in §7.3. 'l

So we see that in a non-Boolean topos, 5 does not behave like a
Boolean implication operator. What its behaviour is like in general will
be revealed in the next chapter. Before proceeding to that however, we
pause for the purpose of

7.6. Filling two gaps

1. Theorem 1 of §6.7 gave some tables for the behaviour of the
truth-values T and 1 under the arrows ~, v, and =>. We are now in a
position to show why these tables are correct.

The key lies in the lattice structure of Sub(1), where the unit is 1, and
the zero 0,. Thus we have 1,N1,=1,, while 1,N0, =0, N1,=0,N0, =
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0,. But x,, =T and x,, = 1, so we have
Tl =x1,nXo, = X1,n0, = Xo, = 4
TAT=X1,"X1, = X101, = X1, = 1

and so on, yielding the table

n| T L
TI|IT L1
114 1L

Now using the Corollary to Theorem 1 of §7.5 we find T L=y, >
Xo,=X1,20,=Xo,= L, L 2>T=Xg,p1,=X1,=7T etc. leading to

>1T L

T|T 1

Exercise. Derive the table

v | T 1
T|IT T
IR B |l

2. Theorem 5 of §5.4 asserted without proof that a classical (1+1=0Q)
topos in which every non-zero object is non-empty is in fact well-pointed.
Now if & is classical, we now know it to be Boolean by §7.3. So let us take
a pair of distinct parallel arrows f,g:a —2 b in & and look for an element
x :1-—> a that distinguishes them, i.e. has fex# gox. We let h:c>>a be
the equaliser of f and g, and —h : —c > a the complement of & in Sub(a)
(remember € is Boolean). Then —c¢ is non-zero (in Set, —c# @ as f and g
differ at some point of a). For, if —¢=0, then ~h=0,, so h=hUQ, =
hU—h=1,, whence h is iso and since feh=g-h we would get f=g.

Now if all non-zero &-objects are non-empty there must then be an
arrow y:1— —c. Then let x be —hoy:1—a. Then if fox=gox, as h



168 ALGEBRA OF SUBOBJECTS CH.7,87.17

equalises f and g there would be some z:1— ¢ such that he z =Xx. Hence
the boundary of

would commute, giving an arrow 1— 0. But this would make & degener-
ate, contrary to the fact that ¢ 0. We conclude fex# gox.

7.7. Extensionality revisited

In Chapter 5 we considered well-pointedness as a categorial formulation
of the extensionality principle for functions. For sets themselves, exten-
sionality simply means that sets with the same elements are identical. It
follows from this that identity of sets is characterised by the set inclusion
relation: A=B iff Ac B and B< A, since

A cB iff every member of A is a member of B.

This definition of the subset relation is readily lifted to the general
category. If f:a>—>d is a subobject of d, and x:1->d an element of d,
then as in §4.8 we say that x is an element of f, xef, iff x factors
through f.

1

X

k

v

a d

ie. for some k:1—a,x=f<k.

TueoreM 1. In any topos €, in Sub(d) we have

xefNng iff xef and xeg

Proor. If x factors through f Ng, then since f N g factors through both f
and g, so too will x.
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Conversely, suppose that xe f and x € g, so that

x=fok and x = goh for some elements k:1—a and h:1-—> b. But the
inner square of the diagram is a pullback (§7.1) so the arrow t exists as
shown making fNget=fok=x. This t factors x through fNg, giving
xefng. 0

A topos in which subobjects are determined by their elements will be
called extensional. That is, € is extensional iff for any Z-object d, the
condition

fcg ifft forall x:1—d, xef implies xecg

holds in Sub(d).
THEOREM 2. & is extensional iff well-pointed.

Proor. Let f,g:a =3 b be a pair of parallel &-arrows, with fox =gox, all
x:1-—>a. Let h:c>> a be the equaliser of f and g. Then if xe1,,

c >—h—> a # b

E X

1

(which holds for any x:1— a), we get x € h by the universal property of
h as equaliser. Extensionality of & then gives 1, = h, and so hek =1,, for
some k. Since foh =goh, this yields f =h upon composition with k.

Conversely, suppose that € is well-pointed. The “only if”” part of the
extensionality condition is straightforward and holds in any category. For
the ““if”” part, suppose that every x € f has x € g. In order to establish f= g,
it suffices to show fNg=f, ie. x;n =X Since in general fNgcf,
Theorem 7.5.1 (3), gives

i o(Xfﬁg, Xf> = tmed'
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Then if x:1—d is any element of d,
> O<Xfﬁg9 Xf> °X =1trueg °x
ie.
Xfag © X = X o X =true

(Exercise 3.8.3 and 4.2.3).

Now xng°x and x;ox are both truth-values 1 (2, and & is bivalent
(being well-pointed), so that each is true or false. But by Exercise 4.8.2, if
X; ° X = true, then x € f, so by our hypothesis x € g, and hence by Theorem
1, xefNg, yielding x;~,°x =true. In view of the last equation derived
above, and the table for = established in §7.6, x;~, ©x and x; cx must be
either both true, or both false.

What we have shown then is that the parallel arrows x;ng, x;:d —> (2
are not distinguished by any element x : 1 — d of their domain. Since & is
well-pointed, this implies x;~, = X, as required. 'l

Theorem 2 points up the advance of topos theory over Lawvere’s
earlier work [64] on a theory of the category of sets. That system included
well-pointedness as an axiom, but the derivation of extensionality re-
quired an essential use of a version of the “axiom of choice” (cf. Chapter
12).

It is noteworthy that the analogues of Theorem 1 for the other set
operations, viz

(a) xe—f iffnot xef
and
(b) xefUg iff xef or xeg

fail in some topoi. Take for instance any & that is Boolean but not
bivalent — the simplest example would be the topos Set® of pairs of sets.
Then & has a truth value x : 1 — 2 distinct from T and L. Then neither of

0 and \ Ky

L |-

commute, so x¢ T and x€—T (since 1 =—T always). Moreover as & is
Boolean, TU—T=1,, and so xe TU—T. Hence both (a) and (b) fail.

TuaeOREM 3. € is bivalent iff (a) holds in every Sub(d).
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ProoF. The argument just given to show that (a) fails at least in Sub({2) if
& is not bivalent works in any . On the other hand if € is bivalent, then if
y:1— 0 is a truth-value with y#T, then y= L and so —ey=T. Using
this, we find, for f:a>>d and x:1-—d,

xe—f iff x_;ex=T (Exercise 4.8.2)
iff —oxeox=T
iff xpox#T
iff not xef. 0

TueoreMm 4. & satisfies (b) for all €-objects d iff & satisfies the condition
(c):

For any truth values y:1— 2 and z:1— Q, yuz=true iff y =true or
z = true.

Proor. If (b) holds in Sub(1), then let f:a>—1 and g:b>—>1 be such
that x; =y, x, = z. Then taking x:1—>1, ie. x=1,,

yuz=T iff (yuz)ex=T
iff xpi ox=T
if xefug
iff xef or xeg
ff xpox=T or x,°ox=T

iff y=T or z=T.
Conversely if (¢) holds, then in any Sub(d) we find that

xefUg iff xp,ox=T
ff Uolxp x)ox=T
iff wolxox, x,ox)=T
ff xjex=T or x,°ox=T
iff xef or xeg 'l

A topos satisfying (c), equivalently (b), will be called disjunctive. Obvi-
ously every bivalent topos is disjunctive. However, the converse is not
true, and so (b) does not imply (a) in general. The category Set™ of set
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functions has three truth values, and so violates (a). However, it does
satisfy (c), since the disjunction arrow yields the table

where x is the third element of (2. This will perhaps be easier to see from
the alternative description of Set” to emerge from Chapters 9 and 10.
Indeed, Exercise 4 of §10.6 will provide a method of constructing an
infinity of disjunctive, non-bivalent, and non-Boolean topoi.

TuroreMm 5. If € is Boolean and non-degenerate, then & is disjunctive iff €
is bivalent.

Proor. Since fU—f=1, in a Boolean topos, for any x:1— d we have
xefU—f. Thus if &€ is disjunctive, from (b) we get xef or xe—f.
However, we cannot have x € f and x € —f, for then x € fN—f =0, and so
1=0. Thus exactly one of “xe—f” and “xe€f” obtains, making &
bivalent. O

ExERCISE. Suppose that € is well-pointed, and x € f implies x € g. Use
Theorem 5.5.1 to show that the pullback h

anb b

a>———f—>d

of g along f is iso, making fN g =f. Hence give an alternative proof that
any well-pointed topos is extensional.



CHAPTER 8

INTUITIONISM AND ITS LOGIC

“Let those who come after me
wonder why I built up these men-
tal constructions and how they
can be interpreted in some
philosophy; I am content to build
them in the conviction that in
some way they will contribute to
the clarification of human
thought.”

L. E. J. Brouwer

8.1. Constructivist philosophy

For a considerable period after the Calculus was discovered by Newton
and Leibnitz in the late 17th century, there was controversy and disagree-
ment over its fundamental concepts. Notions of infinitely small quantities,
and limits of infinite sequences remained shrouded in mystery, and some
of the statements made them look rather strange today (e.g. “A quantity
that is increased or decreased infinitely little is neither increased nor
decreased” (J. Bernoulli)). The subject acquired a rigorous footing in the
19th century, initially through the development by Cauchy of precise
definitions of the concepts of limit and convergence. Later came the
‘“arithmetisation of analysis” by Weierstrass and others, that produced a
purely algebraic treatment of the real number system. A significant
consequence of this was that analysis began to be separated from its
grounding in physical intuition (cf. Weierstrass’ proof of the existence of a
(counter intuitive?) continuous nowhere-differentiable function). This,
along with other factors like the development of non-Euclidean
geometry, contributed to the recognition that mathematical structures
have an abstract conceptual reality quite independently of the physical
world.

Also important during this time was the work of Dedekind and Peano
on the number systems. The real numbers were constructed from the
rationals, the rationals from the integers, and the integers in turn from the

173
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natural numbers. Then the Peano axioms gave an abstract account of the
nature of the natural numbers themselves. This kind of reduction contrib-
uted to the development of the idea that the whole of mathematics could
be presented in one grand axiom system that was itself founded on a few
basic notions and principles. This conception has been central to founda-
tional thinking ever since. It takes its extreme form in the “logicist™ thesis
of Frege and Russell, that mathematics is a part of logic and that
mathematical truths are derivable from purely logical principles. It ap-
pears also in the work of Hilbert, who attempted to axiomatise mathema-
tics, and prove the consistency of these axioms by finitary methods.

By the time Cantor appeared on the scene it was recognised that
references to the infinite, as in “‘the sequence n® tends to infinity as n
tends to infinity”’, could be taken as picturesque articulations of precise,
albeit complex, statements about properties of real numbers (“for all &
there exists a §...” etc.) Cantors set theory transcended this by treating
the actual infinite as an object of mathematical investigation. An infinite
collection became a ‘‘thing-in-itself”” that could serve as an element of
some other collection. The notion of number was extended from the finite
to the infinite by the development of a theory of ‘“‘transfinite” cardinal
and ordinal numbers, whose arithmetic involved operations on infinite
sets. Cantor’s attitude was that as long as statements are grammatically
correct and deductions logically sound, such statements have conceptual
significance even if they go beyond our basic intuitions about finite
numbers and collections.

The theory of sets has been enormously successful, but it has not been
without its critics. Leopold Kronecker, well known for having said “God
made the integers, all the rest is the work of man”, rejected the notions of
infinite set and irrational number as being mystical, not mathematical. He
maintained that the logical correctness of a theory does not imply the
existence of the entities it purported to describe. They remain devoid of
any significance unless they can be actually produced. Numbers, and
operations on them, must, said Kronecker, be “intuitively founded”.
Definitions and proofs must be “constructive’ in a quite literal sense. The
definition must show explicitly how to construct the object defined, using
objects already known to exist. In classical mathematics an “existence
proof” often proceeds by showing that the assumption of the non-
existence of an entity of a certain kind leads to contradiction. From the
constructivist stand-point this is not a proof of existence at all, since the
latter, to be legitimate, must explicitly exhibit the particular object in
question. Kronecker believed that the natural numbers could be given
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such a foundation, but not so for the reals. He actually attempted to
rewrite parts of mathematics from this viewpoint.

The conception of things as being “built-up” from already given
entities appears also in the reaction of Henri Poincaré to the paradoxes of
set theory. He took the view that the source of contradiction lay in the
use of impredicative definitions. These are circular, self-referential defini-
tions that specify an object X by reference to sets whose own existence
depends on that of X. Poincaré held that such definitions were inadmissi-
ble and that a set could not be specified until each of its elements had
been specified. Thus one half of Russell’s paradox (§1.1) consists in
showing that R € R. So, on this view, the definition of R is circular, since
it can only be given if R has already been defined. Poincaré maintained
that mathematics should be founded on the natural number system and
* developed without impredicative definitions. Thus the Russell class R
would not even arise as an object of legitimate study. As it turns out a
great deal more would disappear, as significant parts of the classical
analysis of the real number system depend on impredicative definitions.

The constructivist attitude, reflected in the views of Kronecker and
Poincaré, finds its most spirited expression in the philosophy of Intuition-
ism, pioneered by the Dutch mathematician 1.. E. J. Brouwer at the
beginning of this century. Brouwer rejected non-constructive arguments,
and the conception of infinite collections as things-in-themselves. But he
went further than this, to deny traditional logic as a valid representation
of mathematical reasoning. We have already noted that the so-called
“argument by contradiction” (« is true, because otherwise a contradiction
would follow) is constructively unacceptable in existence proofs. But to
Brouwer it is not an acceptable principle of argument at all. The same
goes for the law of excluded middle, a v ~a.

Now the classical account of truth as examined in Chapter 6 regards a
proposition as being always either true or false, whether we happen to
know which is the case. Moreover ~a is true provided only that « is
false. Thus “av~a” can be interpreted as saying “‘either « is true or
false” and this last sentence is true on the classical theory. To the
intuitionist however a statement is the record of a construction. Asserting
the truth of @ amounts to saying “I have made a (mental) construction of
that which « describes”. Likewise ~a records a construction, one that
demonstrates that o cannot be the case. From this view, the law of
excluded middle has the reading:

“either 1 have constructively demonstrated «, or I have construc-
tively demonstrated that « is false.” .
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Now if we take o to be some undecided statement, like Fermat’s Last
Theorem, then a v ~a is not true on this reading. The Theorem has not
been shown to be either true, or false, at the present time.

Thus according to Brouwer we cannot assert “« is true’ or “a is false”
unless we constructively know which is the case. To say that « is not true
means only that 1 have not at this time constructed «, which is not the
same as saying « is false. I may well find a construction tomorrow.

The argument by contradiction mentioned earlier can be classically
formalised by the tautology ~~a > a. To prove a, show that it cannot be
that « is false, i.e. show ~~a is true, and then conclude that a holds.
Now the- intuitionist account of implication is that to assert the truth of
a > B is to assert “I have developed a construction which when appended
to a construction for « yields a construction for 8. But then to show that
it is contradictory to assume a certain thing does not exist (~~a) does
not itself amount to producing that thing (a). Hence ~~« > a is not valid
under the constructive interpretation.

Brouwer’s view of the history of logic is that the logical laws were
obtained by abstraction of the structure of mathematical deductions at a
time when the latter were concerned with the world of the finite. These
principles of logic were then ascribed an a priori independent existence.
Because of this they have been indiscriminately applied to all subsequent
developments, including manipulation of infinite sets. Thus contemporary
mathematics is based on and uses procedures that are only valid in a more
restricted domain. To obtain genuine mathematical knowledge and deter-
mine what the correct modes of reasoning are we must go back to the
original source of mathematical truth.

Brouwer maintained that this source is found in our primary intuitions
about mathematical objects. For him mathematics is an activity —
autonomous, self-sufficient, and not dependent on language. The essence
of this activity lies in mental acts performed by the mathematician—
mental constructions of intuitive systems of entities. ILanguage is secon-
dary, and serves only to communicate mathematical understanding. It
arises by the formation of verbal parallels of mathematical thinking. This
language is then analysed and from that develops formal languages and
axiom systems.

Thus logic analyses the structure of the language that parallels
mathematical thought. None of this linguistic activity is however to be
regarded as part of mathematics itself. It has practical functions in
describing and communicating, but is not prerequisite to the activity of
performing mental constructions. The essential content of mathematics
remains intuitive, not formal.
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Having rejected classical mathematics and logic, Brouwer erected in its
place a positive and vigorous philosophy of his own. He distinguished
what he called the ‘“two acts” of intuitionism. The first act, which
demarcates mathematics as a languageless activity, is an intuitive con-
struction in the mind of ‘“‘two-ness” — the distinction of one thing and then
another in time. Our direct awareness of two states of mind-—one
succeeding the other, lies at the heart of our intuition of objects. The
second act recognises the prospect of repetition of a construction once
completed. By such iteration we are lead to an infinitely proceeding
sequence. Thus with the first act of distinguishing two states of awareness,
and the second act of repeating this process, we obtain a linear series, and
the sequence of natural numbers emerges as a product of our primary
intuitive awareness. There is no such thing to the intuitionist as an actual
completed infinite collection. However, by the generation of endlessly
proceeding sequences we are lead to a mathematics of the potentially
infinite, as embodied in the notion of constructions which, although finite
at any given stage, can be continued in an unlimited fashion.

From these ideas Brouwer and his followers have built up an extensive
treatment of constructive mathematics which is not merely a subsystem of
the classical theory, but has a character and range of concepts all of its
own, and is the subject of current research interest. The reader may find
out more about it in Heyting [66] (cf. also Bishop [67] for a constructive
approach even “‘stricter” than Brouwer’s). Another introductory refer-
ence is Dummett [77].

8.2. Heyting’s calculus

In 1930 an event occurred that greatly enhanced the general understand-
ing of intuitionism. Arend Heyting produced an axiomatic system of
propositional logic which was claimed to generate as theorems precisely
those sentences that are valid according to the intuitionistic conception of
truth. This system is based on the same language PIL. as used in Chapter 6.
Its axioms are the forms [-XI of the CL axioms (i.e. it has all the CL
axioms except a v ~a). Its sole rule of inference is Detachment. We shall
refer to this system as IL.

Of course the intuitionist only accepts formal systems as imperfect tools
for description and communication. He leaves open the possibility that his
intuitive deliberations will one day reveal as yet unheard of principles of
reasoning. According to Heyting, ‘“in principle it is impossible to set up a
formal system which would be equivalent to intuitionist mathematics . . . it
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can never be proved with mathematical rigour that the system of axioms
really embraces every valid method of proof.” Nonetheless the investiga-
tion of the system II. has proven invaluable in uncovering connections
between intuitionistic principles and aspects of topology, recursive func-
tions and computability, models of set theory (forcing), sheaves, and now
category theory. Whatever status one attaches to the constructivist view
of mathematical reality, there is no doubt that Brouwer’s efforts have lead
to the elucidation of a significant area of human thought.

Amongst the tautologies that are not IL.-theorems are av~a, ~ ~a >
a, ~avVv~~a On the other hand a®>~ ~a, ~~~a> ~a, and
~~(av~a) are derivable. None of the connectives ~, A, v, D are

definable in terms of each other in I1..

The demonstration of such things is facilitated by the use of a semanti-
cal theory that links to IL-derivability. There are several of these
available — topological, algebraic, and set-theoretic. The topological as-
pects of intuitionist logic were discovered independently by Alfred Tarski
[38] and Marshall Stone [37]. There it is shown that the open sets of a
topological space form an “algebra of sets’ in which there are operations
satisfying laws corresponding to the axioms of II.. This theme was taken
up by J. C. C. McKinsey and Tarski in their study of the algebra of
topology [44, 46]. This work involved closure algebras, which are BA’s
with an additional operator whose properties are abstracted from the
operation of forming the closure of a set in a topological space. Within a
closure algebra there is a special set of elements possessing operations 1,
L1, =, 1 obeying intuitionistic principles. McKinsey and Tarski singled
these algebras out for special attention, gave an independent axiomatisa-
tion of them, and dubbed them Brouwerian algebras. Subsequently in
[48] they showed that the class of Brouwerian algebras characterises 1L in
the same way that the class of Boolean algebras characterises CI..

The McKinsey-Tarski approach to algebraic semantics is dual to the
one used in §6.5 (an Il.-theorem is always assigned 0, rather than 1, etc.).
To facilitate comparison with what we have already done we shall discuss,
not Brouwerian algebras, but their duals, which are known as

8.3. Heyting algebras

To define these algebras we need to extend our concept of least upper
bound to sets, rather than just pairs of elements.
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If A is a subset of a lattice L=(L, ), then x € L is an upper bound of
A, denoted AC x, if yi—x whenever y € A. If moreover x—z whenever
ALz then x is a least upper bound (L.u.b.) of A.

ExercisE 1. A has at most one L.u.b.
Exercise 2. Define the notion of g.l.b. of A. 4

We say that x is the greatest element of A if x is a l.u.b. of A and also a
member of A. Thus A has a greatest element precisely when one of its
members is a L.u.b. of A.

ExerciseE 3. A gl.b. of A is the greatest element of the set of lower
bounds of A.

ExeRciSE 4. Define the least element of A. O

Now in the powerset lattice (?(D), <), —A is the greatest element
disjoint from A. That is, —A is disjoint from A, AN—A =@, and
whenever A N B =), then B < —A. This description of complements can
be set out in any lattice and sometimes it leads to a non-Boolean
operation. Hence it is given a different name, as follows:

If L=(L,2) is a lattice with a zero 0, and a<L, then beL is the
pseudo-~complement of a iff b is the greatest element of L disjoint from a,
i.e. b is the greatest element of the set {x € L: amx = 0}. If every member
of L has a pseudo-complement, L is a pseudo-complemented lattice.

Using these definitions it is not hard to verify the

Exercise 5. b is the pseudo-complement of a precisely when it satisfies
the condition:

forall xelL, x=b iff amx=0. O
ExampLE 1. (P(D), <): —A is the pseudo-complement of A.

Exampie 2. B=(B, C): in any BA,
xZa' #ff amx=0 (cf. Exercise 6.4.2)

so the Boolean complement is always a pseudo-complement.
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ExampLE 3. (L, <): In the lattice of left ideals of monoid M, —B =
{m: 0,,(B) =90} is the pseudo-complement of B. (why is C<—B iff
BNC=¢?

ExampLE 4. (O, ©): In the lattice of open sets of a topological space,
U € @ has a pseudo-complement, namely (—U)°, the interior of —U (i.e.
the largest open subset of the complement of U). We have V < (—U)° iff
UNV=@, for all open V.

ExampLE 5. Sub(d): In Sub(d), for any topos, —f:—a > d is the pseudo-
complement of f:a>—d.

Proor: We have to show that

Now if g<—f, then by lattice properties, fNg<fN—f=0, (Theorem
7.2.3), and so fNg=0,.
Conversely suppose fN g=0,. Then the top square of

is a pullback. But so is the bottom square, hence the PBL gives the outer
rectangle as a pullback. By the Q-axiom then,

X;°g =Xo, = Loy (Exercise 5.4.3)
Thus
—expeg=—10 Lol =Tel,.
But Tel, =x,°g (2-axiom) and —°x; = X, so altogether we have
X-£°8=X°8
But then Lemma 1 of §7.5 gives
~fng=gng=g.
Hence g=—fNgc—f, as required. O
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ExampLE 6. Germs. The collection @/~; ={[U];: U open in I} of germs of
open sets at i (cf. the definition of 2 in Top(l)) is a pseudo-
complemented lattice in which

0=[0], the germ of @
[UlLn[V]=[UnV]
[(ULulV]=[UuV] ‘
and the pseudo-complement of [U]; is [(—U)°]; (i.e. we have the standard
quotient lattice construction).
These operations yield the associated truth functions in Top(I). There,
—:0 — Q is the function from I to I taking the germ of U at i to the

germ of (—U)° at i. The conjunction and disjunction arrows from 2 X Q
to {2 are the above meet and join operations acting on each stalk. [l

The notion of pseudo-complement can be generalised by replacing the
zero 0 by some other element b of the lattice, to obtain the pseudo-
complement of a relative to b. This, if it exists, is the greatest element of
the set {x: arx_bh}. In other words the pseudo-complement of a rela-
tive to b is the greatest element ¢ such that armicCb. It is readily seen
that

EXERCISE 6. c is the pseudo-complement of a relative to b precisely when
it satisfies

forall x, xC=c¢ iff amxb. O
ExampLE 1. (P(D), =): —A UB is the pseudo-complement of A relative
to B.

ExampLE 2. B=(B,C): In any BA, (I.emma 2(2), §7.5)

xCa',ub iff armxCTh.

ExampiE 3. (Ly, ©): B> C={m: v, (B)< »,,(C)} has
XeB=>C iff BNXcC, all left ideals X.

ExampiE 4. (0, <): The pseudo-complement of U relative to V is
(—UU V)°, the largest open subset of —UU V.

Whenever W is open, We(-UU V) iff UNWgcV.
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ExampLE 5. (Sub(d)): Theorem 1 of §7.5 states that

hefbg it fNheg
hence > is an operation of relative pseudo-complementation.
ExampLE 6. Germs. In the lattice @/~; of germs of open sets at i,
[(—UU V)], provides [UT]; with a pseudo-complement relative to [V].

This operation, acting on each stalk, yields the truth-arrow =:Q X
Q — Q in the topos Top(I). 4

In a general lattice L, the pseudo-complement of a relative to b, when
it exists, will be denoted a = b. If a = b exists for every a and b in L, we
will say that L is a relatively pseudo-complemented (r.p.c.) lattice.

The theory of r.p.c. lattices is thoroughly discussed in Rasiowa—Sikorski
[63] and Rasiowa [74]. We list here some basic facts which the reader
may care to treat as

Exercises

If L is a r.p.c. lattice:

Exercisk 7. L has a unit 1, and for each acl, a > a=1.
Exercise 8. acb iff a=>b=1.

EXERCISE 9. bCa=b.

Exercisk 10. ari(a=> b)=armbCbh.
Exgercise 11. (a = b)mb=b.

Exercise 12. (a = b)mi(a > ¢)=a = (bric).
Exercise 13. (a > b)) ((amic) = (bric)).
Exercise 14. if b—c then a=>bCa=>c.
Exercise 15. (a = b)m(b = ¢)=(a = ¢).
ExercisE 16. (a = b)m(b > c)=(aub)> c.

Exercisk 17. a=> (b=> c)=(a > b)=>(a=> ¢). (]
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The definition of r.p.c. lattice does not require the presence of a zero.
A Heyting algebra (HA) is, by definition, an r.p.c. lattice that has a zero
0. f H=(H, D) is a Heyting algebra, we define 7: H—-H by a=a => 0.
Then —a is the Lu.b. of {x: armx =0}, i.e. "a is the pseudo-complement
of a.

Again the reader may consult Rasiowa and Sikorski [63] for details of
the

Exercises

In any HA H=(H,C):

Exercise 18. -1 =—(a > a)=0.
Exercise 19. 70=1, and if —a =1, then a =0.
ExercisE 20. aE=—a.

Exercise 21. (a > b)E(—b = —a).
ExXERcISE 22. @ =—11a.
Exercisk 23. arm—a =0.

Exgrcise 24. —(aLab)=—am—b.
ExeRcisE 25. ai—b-—(amb).
EXERCISE 26. "a11bTa = b.
ExerciseE 27. 7(ai—a)=1.
Exercise 28. maCt(a = b).

Exercisk 29. (a = b)mi(a = —b)=a. a

The six major examples of this section are all Heyting algebras. In the
case of the topos Top(I) of sheaves over a topological space we can now
describe 2 as a topological bundle of Heyting algebras, indexed by I,
each of them a quotient of the HA of open sets in L

Now that we know Sub(d) to be an HA we can return to the assertion
of §7.2 that Sub(d) is a distributive lattice. The point is simply that every
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r.p.c. lattice is distributive. A proof may be found in Rasiowa and
Sikorski, p. 59.

Now in a BA, the complement satisfies x = (x’)’. The analogous prop-
erty does not occur in all HA’s. In our example M,, in Sub({2) we have
T#—1, since T corresponds to the subset {2} of L,, while —1 corres-
ponds to {2,{0}} (the character of —1 is—1 oy, =—°—, which is the
function f, of §5.4). Since | =~—T in general, we get in M, that T# ——T.

In the general HA we always have x=——ix, but possibly not 7 —wx—x
(corresponding to ~~a D & not being an I1.-theorem). Indeed the situa-
tion is as follows:

Exercist 30. If an HA H satisfies —xZ x, all x € H, then H is a Boolean
algebra, i.e. —x is an actual complement of x. (Hint: use Exercise 27.)

O

In CL, a is logically equivalent to ~~a, as reflected in the fact that
x =—x in 2. In the internal logic of Set this means that

commutes, i.e. 1°e—=1id,. The analogous diagram does not commute in
all topoi, e.g. in M,, -1 is the function f, of §5.4 that has output 2 for
input {0}, hence —°—1# 1,. These deliberations are brought together in

THEOREM 1. In any topos & the following are equivalent
(1) & is Boolean
(2) In Sub(2), T=—1
3) e1=1,.

Proor. (1) implies (2): In general L NT=0, as shown by the pullback

0—1

|

1——0

L

defining 1. But if € is Boolean, 1 UT=1, (cf. §7.3), so that T is the
unique complement of | and hence is the pseudo-complement — 1 .
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(2) implies (3): If T=—_1, then x+=x_,, i.€.
1o =" ), =—1°.
(3) implies (1): Let f be a subobject of d. Then

X——=T1°T1°x

=xp If —0om=1g

so ——f==f, making Sub(d) a BA by the last exercise. |

Algebraic semantics

If H=(H,C) is a Heyting algebra (also known as a pseudo-Boolean
algebra) then an H-valuation is a function V:d,— H. This may be
extended to all sentences using joins LJ, meets i, relative pseudo-
complements =, and pseudo-complements —, to “‘interpret” the connec-
tives v, A, D, ~, exactly as for BA-valuations in §6.5. A sentence a is
H-valid when V(a) =1 for every H-valuation V. « is HA-valid if valid in
every Heyting algebra. We have the following characterisation result:

a is HA-valid iff Hp .

The “soundness” part of this consists in showing that the axioms [-XI are
HA-valid and that Detachment preserves this property. For the latter
observe by Exercise 8 above that if V(a)=V(a>B)=1 then V(a)C
V(B) so V(B)=1. The validity of [-XI is given by various other of the
Exercises in combination with 8, e.g. 15. for Axiom IV, 16. for IX, 29.
for XI etc.

The completeness of IL with respect to HA-validity can be shown by
the Lindenbaum algebra method of the Exercise 2 in §6.5. The relation

a~pB ff Fra>B and B2«

is an equivalence on @. The Lindenbaum algebra for IL is Hy =
(P/~p., ) where

[el=[B] iff Fra=B

H,; is an HA with m, L1 as in the Boolean case, and
[a]= [B]l=la >8]
—la]=[~a]

The valuation V(a)= [d] can be used to show

Fra iff Hy Fa,



186 INTUITIONISM AND ITS LOGIC CH. 8,883

hence any HA-valid sentence will be Hy -valid and so an IL-theorem.
Now the 2-axiom, through the assignment of y; to f establishes, (§4.2)
a bijection

Sub(d)=#&(d, Q)

which transfers the HA structure of Sub(d) to &(d, 2). Indeed the partial
ordering on the latter was described in §7.2 (Theorem 1, Corollary):
X; = X, precisely when (x;, x,) factors through e: © — 0 x Q. The Heyt-
ing operations on &(d, {2) are given by application of the truth-arrows.
Thus the lattice meet operation in &(d, ) assigns to two arrows
f,g:d=3 O, the arrow fAg= ~{f, g), the join assigns to them fug=yu
o(f, g) and so on. The definition of the operations N, U etc. on Sub(d)
shows that algebraically the two structures look the same, i.e. Sub(d) and
&(d, Q) are isomorphic HA’s, from which one sees that they validate the
same sentences.

The link between topos semantics and the present theory is that in any
&, we have

ko iff (1, NEa iff Sub(l)ka

(which clarifies further the situation described in Theorem 2 of §7.4).

Thus topos validity in € amounts to HA-validity in the HA’s &(1, Q)
and Sub(1). The point is that an &-valuation is the same thing as an
&(1, Q)-valuation, and that &-validity and (1, )-validity come to the
same thing, since the unit of the HA &(1, ) is T:1— €. This provides
the basis of Exercise 2 of §6.7, viz

Bn(DFa iff (P(), S)Fe,

since the truth-values in Bn(I) are “‘essentially”’ subsets of I Recalling
further that truth-values in Top(I) are essentially open subsets of I we
find that

Top(DkFa iff (O, S)Ea,

i.e. validity in the topos of sheaves over I is equivalent to HA-validity in
the algebra of open subsets of I

SOUNDNESs FOR &-vaLDITY. If |+t a then €Fa, for all topoi €.
Proor. If a is an IL-theorem then « is HA-valid. In particular then,

#(1, Q)Ea, and so &Fa, by the above. |

Exercise 31. Give an algebraic reason why bivalent topoi always validate
av-~—a. O
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Exponentials

The condition xCa = b iff amxEb means that in an r.p.c. lattice, when
considered as a poset category, there is a bijective correspondence
between arrows x — (a = b) and arrows arix — b (either one, or no,
arrows in each case). This is reminiscent (§3.16) of the situation in a
category € with exponentiation where there is a bijection €(x, b*)=
€(x X a, b). Now in a lattice arx = xria is the product x X a, and indeed
in an r.p.c. lattice a = b provides the exponential b®. The evaluation
arrow ev : b® X a — b is the unique arrow (a = b)ria — b, which exists by
Exercise 10 above. Conversely, exponentials provide relative pseudo-
complements, and we find that categorially a Heyting algebra is no more
nor less than a Cartesian closed and finitely co-complete poset.

The approach we have used in eliciting the HA structure of Sub(d)
differs from the original method, as described in Freyd [72]. There, |5 is
obtained via the Fundamental Theorem, and some complex machinery
that we have not even begun to consider (limit preserving functors). The
aim is to show that Sub(d) as a poset is Cartesian closed, since exponen-
tials in posets provide r.p.c.’s. By using the truth-arrow = to define |>
we have, apart from showing how the logic of & determines its subobject
behaviour, come in an easier fashion to exactly the same point. For, as
Lemma 2(1) of §7.5 indicates, a lattice can be relatively pseudo-
complemented in one and only one way.

Exercise 32. Show that any chain (linearly ordered poset) with a max-
imum 1 is r.p.c., with
_[1 if ptq
P=a= {q otherwise.
(This is the origin of Example 2, §3.16).

Exeracise 33. Distinguish between, say, T/=>T and T = T in Sub({2) (this is
why the special symbol “|=” is being used). U

8.4. Kripke semantics

In 1965 Saul Kripke published a new formal semantics for intuitionistic
logic in which PL-sentences are interpreted as subsets of a poset. This
theory arose as a sequel to a semantical analysis that Kripke had
developed for modal logic. Briefly, modal logic is concerned with the
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concept of necessity, and on the propositional level uses the language PL
enriched by a connective whose interpretation is “‘it is necessarily the case
that”. The appropriate algebraic “models” here are BA’s with an addi-
tional operation for this new connective. There is a particular modal
axiom system, known as S4, that is characterised algebraically by the class
of closure algebras. McKinsey and Tarski [48] used this fact to develop a
translation of PL-sentences into modal sentences in such a way that
IL-theorems correspond to S4-theorems. The mechanism of this transla-
tion when seen in the light of the Kripke models for $4, leads to a new
way of giving formal “meaning” to IL sentences.

One attractive feature of the new theory is that its structures, apart
from being generally more tractable than the algebraic ones, have an
informal interpretation that accords well with the intuitionistic account of
the nature of validity. In the latter, truth is temporally conditioned. A
sentence is not true or false per se, as in classical logic, but is only so at
certain times, i.e. those times at which it has been constructively deter-
mined. Now each moment of time is associated with a particular stage, or
state of knowledge. This comprises all the facts that have been construc-
tively established at that time. Sentences then true are so in view of the
existing state of knowledge. We thus speak of sentences as being ““true at
a certain stage” or ‘“‘true at a certain state of knowledge”. The collection
of all states of knowledge is ordered by its temporal properties. We speak
of one state as coming after, or being later than, another state in time. A
sentence true at a certain stage will be held to be true at all later (future)
stages. This embodies the idea that constructive knowledge, once estab-
lished, exists forever more. Having proven a, we cannot later show « to
be false.

Now the temporal ordering of states is a partial ordering, not necessar-
ily linear. The states we consider do not always follow one another in a
linear sequence because they are possible states of knowledge, not just
those that do actually occur. Thus at the present moment we may look to
the future and contemplate two possible states of knowledge, one in
which Fermat’s Last Theorem is determined to be true, and one in which
it is shown false. These states are incompatible with each other, so in view
of the “persistence of truth in time” they cannot be connected by the
ordering of states. We cannot proceed from the present to one, and then
the other.

Altogether then, the collection of possible states of knowledge is a
poset under the ordering of time. A sentence corresponds to a particular
subset of this poset, consisting of the states at which the sentence is true.
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In view of the persistence of truth in time, this set has a special property:
given a particular state in the set, all states in the future of that state
belong to the set as well. With these ideas in mind we move to the formal
details of Kripke’s semantics.

Let P=(P,C) be a poset (also called a frame in this context). A set
A c P is hereditary in P if it is closed ‘“‘upwards” under C, i.e. if we have
that

whenever pec A and plgq, then geA.

The collection of hereditary subsets of P will be denoted P*. A P-
valuation is a function V:®,—P", assigning to each m an hereditary
subset V(m;)< P. A model based on P is a pair M= (P, V), where V is a
P-valuation. This notion formally renders the intuitive ideas sketched
above. P is a collection of stages of knowledge temporally ordered by L.
V(m;) is the set of stages at which mr; is true. The requirement that V(1)
be hereditary formalises the “persistence in time of truth”. We now
extend the notion of truth at a particular stage to all sentences. The
expression “ME,a” is to be read “« is true in # at p”, and is defined
inductively as follows:

1) ME,m iff peV(m)

(2) MF,anp iff MF,a and ME,B

(3) ME,avB iff either MF,a0 or MF,B

4) ME,~a iff for all q with p=q, not MF,a

(5) MFE,a>B iff for all q with pCgq, if #MF, o then ME,B.
Thus at stage p, ~« i$ true if « is never established at any later stage, and
a > B is true if B holds at all later stages that « is true at.

a is true (holds) in the model #, denoted MFa, if ME,a for every
peP. a is valid on the frame P, PFa, if a is true in every model
M=(P, V) based on P.

“MF,a” will abbreviate “not MF,a”. Similarly “PFa”.

ExamMpLE. Let P be 2=({0, 1}, <) (0=1 as usual). Take a V with V(@)=
{1} (which is hereditary). Then with # = (2, V) we have by (1), #F, 7. But
ME, 7 and 0=1 so by (4), MF,~m. Thus by (3), M¥,mv~m, so the law
of excluded middle is not valid on this frame. Notice also .# ¥, ~, hence
ME,~~—r. Since 0 =<0, (5) then gives MF,~~m >, hence 2F ~~m > .

If we denote by (a) the set of points at which « is true in 4, i.e.
M{a)={p: MF,a} then the semantic clauses (1), (2) and (3) can be
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expressed as
1) M(m)=V(m)
(2) Ml nB)= M) N M(B)
(3) MlavB)=M(a)UHMUB).
To re-express (4) and (5) we define, for hereditary S, T,

—S ={p: for all q such that pCgq, qZ S}
and
S=> T={p: for all q with pcq, if g€ S then qe T}.

We then have

&) M(~a)="14(c)

(5") M(a>B)=M(a)= M(B).
The notation is of course not accidental. The intersection and union of
two hereditary sets are both hereditary, so the poset P"=(P", <) of
hereditary sets under the inclusion ordering is a (bounded distributive)
lattice with meets and joins given by N and U. P* is indeed a Heyting
algebra, with S = T being the pseudo-complement of S relative to T. We
have

UcsS=>T iff SNUST,  all hereditary U,
~and

-S$=S=>0,

the pseudo-complement of S (many exercises here for the reader).

Now a P-valuation V:®,—P* for the frame P is also by definition a
P*-valuation for the HA P*. This may be extended, using N, U, =1, => to
obtain elements V(a) of the algebra P* in the usual way. But V also
yields a model #=(P, V) and hence the set #(a) for each «. By
induction, using the two sets of semantic rules above, we find that for any
a,

M(a) = V(a),
and so

MEa iff Ma)=P iff V(a)=P.

But P is the unit of the lattice P*, and since this analyéis holds for all V,
we find for all « that

Pra iff P'Fq,
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i.e. Kripke-validity on the frame P is the same as HA-validity on the
algebra P*. This contributes to the verification of the basic characterisa-
tion theorem for frame validity, which is that for any «a.

Hra iff a is valid on every frame.

For the soundness part, we note that if F; @ then « is HA-valid, so for
any P, P*Ea, hence PFa. One way of proving the completeness part
would be to use the representation theory of Stone [37] to turn HA’s into
frames. The original proof of Kripke used a ‘“‘semantic tableaux™ tech-
nique. An alternative approach, based on methods first used in classical
logic by Leon Henkin [49], has subsequently been developed, and we
now describe it briefly.

First, observe that if p is an element of model ., then I, ={a: #F, a},
the set of sentences true in 4 at p, satisfies

() If by then eI}, (soundness)

(i) If Fpa>p and eI, then Bel, (closure under detachment)

(iii) there is at least one « such that a €I, (consistency)

(iv) if avpBel, thenacl, or Bel, (I, is “prime”).
I', could be called a ‘“‘state-description”. It describes the state p by
specifying which sentences are true at p. A set I'c @ that satisfies these
four conditions will be called full. In general a full set can be construed as
a state-description, namely the description of that state in which all
members of I" are known to be true and all sentences not in I' are not
known to be true. This introduces us to the canonical frame for IL, which
is the poset

Py =(Pp, <),

where P is the collection of all full sets, and < as usual is the subset
relation. The canonical model for IL is My = (P, Vi), where

Vi (m)={I": m eI},

the set of full sets having m; as a member.
An inductive proof, using facts about IL-derivability and properties of full
sets, shows that for any « and T,

My Fra iff acl’

To derive the completeness theorem we need the further result:

LiINDENBAUM’S LEMMA. b a iff a is a member of every full set,
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so that we can conclude

Fra iff MpFa.
From this we get

Fra iff PpFa
and this yields the completeness theorem. (It will also yield, in Chapter
10, a characterisation of the class of topos-valid sentences).

One of the great advantages of the Kripke semantics is that the validity

of sentences can be determined by simple conditions on frames. For
example, on the poset

P
\

ol

Qe
o2

if V(m,)={1} and V(m,)={2}, then the tautology (m; > m,) Vv (7, > m,) is
not true at 0. Notice that this frame is not linearly ordered. In fact it can
be shown that:

PE(a 2 B)v(B o a) iff P is weakly linear, i.e. whenever pC_q and pEr,
then qCr or rq.

Adjunction of the axiom (a © B)v (B 2 a) to IL yields a system, known
as LC, first studied by Michael Dummett [59]. The canonical frame
method can be adapted to show that the LC-theorems are precisely the
sentences valid on all weakly linear frames.

Exercise 1. Show PFa v ~a iff P is discrete, i.e. has pCq iff p=gq.

ExercisE 2. PE~av~~a iff P is directed, i.e. if pCq and pCvr then
there is an s with qCs and riCs.

Exercisk 3. Construct models in which a sentence of the form « > 3 has
a different truth value to ~a v . Similarly for « v and ~(~a A~f).

EXERCISE 4. “2Fa” in Chapter 6 meant “« is valid on the BA 2 ={0, 1}
Show this is the same as Kripke-validity on the discrete frame 2=1{0, 1},
but different to validity on the non-discrete frame (2, <) having 0<1.
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The Kripke semantics is also closely related to the topological in-
terpretation of intuitionism. On any frame P, the collection P* of
hereditary sets constitutes a topology (a rather special one, as the in-
tersection of any family of open (hereditary) sets is open).

Exercise 5. Show that P is the Heyting algebra of open sets for the
topology just described, i.e. —1S is the interior (—S)° of —S, the largest
hereditary subset of —S, and S = T is (—SUT)°, the largest hereditary
subset of —SUT. O

This last section has been a rather rapid survey of what is in fact quite
an extensive theory. The full details are readily available in the literature,
in the works e.g. of Segerberg [68], Fitting [69], and Thomason [68].

Beth models

Although the Kripke semantics has proven to be the most tractable for
many investigations of intuitionistic logic, there is an alternative but
related theory due to Evert Beth [56, 59] that is more useful for certain
applications (cf. van Dalen [78]). The basic ideas of Beth models can be
explained by modifying the semantic rules given in this section for Kripke
models.

A path through p in a poset P is a subset A of P that contains p, that is
linearly ordered (i.e. q=r or ri=q for each g, re A), and that cannot be
extended to a larger linearly ordered subset of P. A bar for p is a subset B
of P with the property that every path through p intersects it. Intuitively,
if P represents the possible states of knowledge that can be attained by a
mathematician carrying out research, then a path represents a completed
course of research. A bar for p is a set of possible states that is
unavoidable for any course of research that yields p, i.e. any such course
must lead to a state in B.

In a Beth model the connectives A, —, D are treated just as in the
Kripke theory. The clauses for sentence letters and disjunction however
are

AE,m; iff there is a bar B for p with B< V()

ME o\ B iff there is a bar B for p with MF,a or MF,B for
each q€B.

For further discussion of Beth models in relation to Kripke semantics
the reader should consult Kripke’s paper and Dummett [77].



CHAPTER 9-

FUNCTORS

“It should be observed first that
the whole concept of a category is
essentially an auxiliary one; our
basic concepts are essentially
those of a functor and of a

natural transformation.”
S. Eilenberg and S. MacLane

9.1. The concept of functor

A functor is a transformation from one category into another that
“preserves’ the categorial structure of its source. As the quotation from
the founders of the subject indicates, the notion of functor is of the very
essence of category theory. The original perspective has changed some-
what, and as far at least as this book is concerned functors are not more
important than categories themselves. Indeed the viability of the topos
concept as a foundation for mathematics pivots on the fact that it can be
defined without reference to functors. However we have now reached the
stage where we can ignore them no longer. They provide the necessary
language for describing the relationship between topoi and Kripke mod-
els, and between topoi and models of set theory.

A functor F from category € to category 9 is a function that assigns

(i) to each ¥-object a, a D-object F(a);

(ii) to each €¢-arrow f:a — b a B-arrow F(f): F(a) — F(b),
such that

(a) F(1,) =1y, all €-objects a, i.e. the identity arrow on a is assigned
the identity on F(a),

(b) F(g o )=F(g) o F(f), whenever g ° f is defined.

This last condition states that the F-image of a composite of two arrows
is the composite of their F-images, i.e. whenever

a—f>b

\lg

194



CH.9,§9.1 THE CONCEPT OF FUNCTOR 195

commutes in € (h=g o f), then
Fa) —£9, pp)

Fw) <P’T(g)

F(c)

. . F . . .
commutes in %. We write F: € — % or € — 9 to indicate that F is a
functor from € to 9. Briefly then a functor is a transformation that
“preserves” dom’s, cod’s, identities and composites.

ExampLE 1. The identity functor 14:€ — € has 1,(a) = a, 1(f) =f. The
same rule provides an inclusion functor € <> % when € is a subcategory
of 9. ’

ExampLE 2. Forgetful functors: Let € be any of the categories in the
original list of §2.3, say ¥ =Top. Then a €-object is a set carrying some
additional structure. The forgetful functor U:¥ — Set takes each %-
object to its underlying set, and each €-arrow to itself. Thus U “forgets”
the structure on €-objects and remembers only that €-arrows are set
functions.

ExampLe 3. Power set Functor: P :Set—> Set maps each set A to its
powerset %P(A), and each function f:A—-B to the function
P(f): P(A)—>P(B) from P(A) to P(B) that assigns to each X S A its
f-image f(X)< B.

ExamrLE 4. If P and Q are posets, then a functor F:P— Q is simply a
function F:P—> Q that is monotonic, i.e. whenever pl_q in P then
F(p)EF(q) in Q. As a special case of this consider the powerset as a
poset (PP(A), <). Given f:A— B and X, Y subsets of A, then X< Y
only if f(X)<f(Y). Thus the function P(f): P(A)— P(B) is itself a
functor between (poset) categories.

ExampLE 5. Monoid homomorphisms: A functor between monoids (M,
%, e) and (N, T, '), when these are construed as one-object categories, is
essentially a monoid homomorphism, i.e. a function F: M—> N that has

F(e)=¢'
F(x * y)=F)OF(y).
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ExampLE 6. If € has products, each €-object a determines a functor
—Xa:€— %€ which takes each object b to the object bXa, and each
arrow f:b — ¢ to the arrow fX1,:bXa—>cXa.

ExamprLE 7. Hom-functors: Given a €-object a, then €(a, —):€ — Set
takes each €-object b to the set €(a, b) of €-arrows from a to b and each
@-arrow f:b — ¢ to the function €(a, f):6(a, b) — €(a, c) that outputs
fog for mput g

a—= 5 )

14
le
C

%(a,—) is called a hom-functor because of the use of the word
“homomorphism’ in some contexts for “arrow”. €(a, b) =homy(a, b) is
known as a hom-set. There is a restriction as to when this hom-functor is
defined. The hom-sets of € have to be small, i.e. actual sets, and not
proper classes. |

Contravariant functors

The above examples are all what are known as covariant functors. They
preserve the ‘“direction” of arrows, in that the domain of an arrow is
assigned the domain of the image arrow, and similarly for codomains. A
contravariant functor is one that reverses direction by mapping domains
to codomains and vice versa. )

Thus F:€¢— % is a contravariant functor if it assigns to f:a—b an
arrow F(f):F(b)— F(a), so that F(1,) = 1g,, as before, but now

F(g ° f)=F(f) - F(g),
i.e. commuting

goes to commuting

()

F(a) F(b)

FO F(g)

F(c)
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ExampLE 8. A contravariant functor between posets is a function F: P —
Q that is antitone, i.e.

if p—q inP,then F(q)C=F(p) inQ.

ExamrLE 9. Contravariant powerset functor:
P :Set— Set

takes each set A to its powerset (A), and each f: A — B to the function
P(f): P(B) — P(A) that assigns to X < B its inverse image f *(X)< A.

ExampLE 10. Contravariant hom-functor : €(—, a) : € — Set, for fixed ob-
ject a, takes object b to €(b,a), and €-arrow f:b—c¢ to function
€(f, a):%(c, a) > (b, a) that outputs g ° f for input g

b—L ¢
o L®
a

ExampLE 11. Sub:€ — Set is the functor taking each €-object a to its
collection Sub(a) of subobjects in €, and each ¥-arrow f:a — b to the
function Sub(f):Sub(b) — Sub(a), assigning to g:c >> b the pullback
h:d > a of galong f. Of course this construction is only possible if € has

d>—" a

|t

c—5 5 p
pullbacks. It generalises Example 9. O
Exercise Verify that (1)-(11) really are functors. O

The word “functor” used by itself will always mean ‘“‘covariant func-
tor”. In principle contravariant F:€ — % can be replaced by covariant
F:%° — %, where F(a)=F(a), and for f°®:b — a in €°° (where f:a —>b
in €), F(f®)=F(f):F(b)—> F(a). We will not consider contravariant
functors again until Chapter 14.
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Now given functors F: € — 9, G : 9 — %, functional composition of F
and G vyields a functor G < F:€ — %, and this operation is associative,

Ho(GoF)=(H->G)°F.

We can thus consider functors as arrows between categories. We intui-
tively envisage a category Cat, the category of categories, whose objects
are the categories, and arrows the functors. The identity arrows are the
identity functors 1, of Example 1.

The notion of Cat leads us to some foundational problems. Set could
not be an element of the class of Cat-objects (if we regard these as
forming a class), since Set as a collection of things is a proper class, and
not a member of any collection. Moreover contemplation of the question
‘js Cat a Cat-object?” leads us to the brink of Russell’s paradox. Gener-
ally Cat is understood to be the category of small categories, i.e. ones
whose collection of arrows is a set. Further discussion of these questions
may be found in Hatcher [68] Chapter 8, (cf. also a paper by Lawvere
[66] on Cat as a foundation for mathematics).

9.2. Natural transformations

Having originally defined categories as collections of objects with arrows
between them, by introducing functors we took a step up the ladder of
abstraction to consider categories as objects, with functors as arrows
between them. Readers are now invited to fasten their mental safety-belts
as we climb even higher, to regard functors themselves as objects!
Given two categories € and 9 we are going to construct a category,
denoted Funct(€, &), or @€, whose objects are the functors from € to 9.
We need a definition of arrow from one functor to another. Taking
F:¢— % and G : ¢ — 9, we think of the functors F and G as providing
different “‘pictures” of € inside 9. A reasonably intuitive idea of “trans-
formation” from F to G comes if we image ourselves trying to super-
impose or ‘“‘slide” the F-picture onto the G-picture, i.e. we use the
structure of % to translate the former into the latter. This could be done
by assigning to each €-object a an arrow in @ from the F-image of a to
the G-image of a. Denoting this arrow by 7,, we have 7, : F(a)— G(a).
In order for this process to be “structure-preserving” we require that
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each €-arrow f:a — b gives rise to a diagram

T

q F(a) = G(a)
f F(f) G(f)
b F(b) —2— G(b)

that commutes. Thus 7, and 7, provide a categorial way of turning the
F-picture of f:a — b into its G-picture.

In summary then, a natural transformation from functor F: € — % to
functor G : ¢ — 9 is an assignment 7 that provides, for each €-object a, a
Sp-arrow 1, : F(a) — G(a), such that for any €-arrow f:a — b, the above
diagram commutes in %, i.e. 7, °© F(f) = G(f) ° 7,. We use the symbolism
r:F- G, or F>G, to denote that r is a natural transformation from
F to G. The arrows 1, are called the components of .

Now if each component 7, of 7 is an iso arrow in ¥ then we can
interpret this as meaning that the F-picture and the G-picture of € look
the same in &, and in this case we call 7 a natural isomorphism. Each
7, :F(a) = G(a) then has an inverse 7.':G(a)— F(a), and these 7,%’s
form the components of a natural isomorphism v ':G —> F. We denote
natural isomorphism by 7: F=G.

ExampLe 1. The identity natural transformation 1z:F— F assigns to
each object a, the identity arrow 1z, :F(a)—> F(a). This is clearly a
natural isomorphism.

Exampie 2. In Set, as noted in §3.4, we have A = A X1, for each set A.
This isomorphism is a natural one, as we can see by using the functor
— X 1:Set—> Set, as described in Example 6 of the last section. Given
f: A — B then the diagram

A A—2 5 Ax1
f f fxid,
B B —2 - Bx1

commutes, where 74 (x) ={x, 0), and similarly for 7. (i.e. T4 =(d L, 14)).
The left side of the square is the image of f under the identity functor.
Thus the bijections 7, are the components of a natural isomorphism T
from 1g, to —x 1. '
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ExaMpLE 3. Again in Set, we have AXB=B XA by the “twist” map
twg : A XB —> B X A given by the rule twy({x, v)) =(y, x). Now for given
object A, as well as the ““right product” functor — X A :Set— Set we have
a left-product functor A x —:Set— Set, taking B to A XB,and f:B—C
to 1, Xf:AXB—> AXC. Now for any f: B — C, the diagram

B AxB —8 , BxA
f 1AXf j‘va'IA
C AXC -, cxA

commutes, showing that the bijections twy are the components of a
natural isomorphism from A X— to — X A. [

Equivalence of categories

When do two categories look the same? One possible answer is when
they are isomorphic as objects in Cat. We say that functor F:€ — % is iso
if it has an inverse, i.e. a functor G:9 — € such that G°F=1, and
F - G =1,. We then say that € and 9 are isomorphic, € =9, if there is
an iso functor F: € — 9.

This notion of ‘“‘sameness’ is stricter than it need be. If F has inverse G
then for given ¥-object a .we have a = G(F(a)), and for D-object b,
b=F(G(b)). In view of the basic categorial principle of indistinguish-
ability of isomorphic entities we might still regard € and % as “‘essentially
the same” if we just had a = G(F(a)) in € and b = F(G(b)) in 9. In other
words € and @ are to be categorially equivalent if they are ‘“‘isomorphic
up to isomorphism”. This will occur when the isomorphisms a — G(F(a))
and b — F(G(b)) are natural.

Thus a functor F:€ — 9 is called an equivalence of categories if there
is a functor G :% — € such that there are natural isomorphisms 7: 1=
G o F, and 0:14=F ° G, from the identity functor on € to G ° F, and
from the identity functor on & to F o G.

Categories € and 9 are equivalent, € =%, when there exists an equival-
ence F:€— 9.

ExampLE. Finord=Finset. 1.et F :Finord <> Finset be the inclusion func-
tor. For each finite set X, let G(X)=n, where n is the number of
elements in X. For each X let 7 be a bijection from X to G(X), with 7
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being the identity when X is an ordinal. Given f:X — Y, put G(f)=
Ty ©f e 7. Then G is a functor from Finset to Finord.

Since
X —* F(G(X)
Wf F(G()
Y —— F(G(Y))

commutes, by definition of G(f) = F(G(f)), the 7¢’s are the components
of a natural isomorphism 7:1— F o G. But also G < F is the identity
functor on Finord. O

The notion of equivalence of categories can be clarified by considering
skeletal categories. Recall from §3.4 that these are categories in which
isomorphic objects are identical, a=>b only if a=>5. Finord is skeletal,
since isomorphic finite sets have the same number of elements. A skeleton
of a category € is a full subcategory €, of € that is skeletal, and such that
each €-object is isomorphic to one (and only one) €,-object. Finord is a
skeleton of Finset. In general a skeleton €, of € exhibits the essential
categorial structure of €. €, is equivalent to €, and the equivalence is
provided by the inclusion functor €,<>%, as may be shown by the
method of the last Example.

Any category € has a skeleton. The relation of isomorphism partitions
the collection of €-objects into equivalence classes. Choose one object
from each equivalence class and let €, be the full subcategory of € based
on this collection of choices. €, is a skeleton of € (cf. Chapter 12 for a
discussion of the legitimacy of such a selection process in set-theory).
Equivalence of categories is described in these terms by:

categories € and 9 are equivalent iff they have isomorphic
skeletons (€= iff €,=9,),

and in this sense equivalent categories are categorially “‘essentially the
same”. Note however that they need not be in bijective correspondence,
indeed need not be comparable in size at all. The collection of finite
ordinals is small, i.e. a set, identifiable with the set of natural numbers,
whereas the objects of Finset form a proper class (e.g. it includes {x}, for
each set x).

ExercisE 1. Any two skeletons of a given category are isomorphic.
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Exercise 2. In a topos &, for each object d there is a bijection Sub(d)=
#(d, Q) (84.2). Show that these bijections form a natural isomorphism
between the functors Sub: & —Set and &(—, ) : € — Set (this is a functor-
ial statement of the 2-axiom). '

9.3. Functor categories

We return now to the intention stated at the beginning of §9.2 - to define
the functor category @ of all functors from % to 9. Let F, G, H be such
functors, with natural transformations 7: F — G, o : G — H. Then for any
@-arrow f:a — b we get a diagram

T

a F(a) —=— G(a) —Z=— H(a)
f F(f) G(f) H(f)
b F(b) —2— G(b) —2— H(b)

We wish to define the composite o ° 7 of T and o, and have it as a natural
transformation. The diagram indicates what to do. For each a, put
(o ° 1), =0, ° 1,. Now each of the two squares in the diagram commutes,
so the outer rectangle commutes, giving (o © 1), ° F(f)= H(f) ¢ (0 ° 7),,
and thus the (o © 7),’s are the components of a natural transformation
o o 7:F— H. This then provides the operation of composition in the
functor category %“. For each functor F:%— % the identity trans-
formation 1.:F - F (Example 1, §9.2) is the identity arrow on the
9*%-object F.

ExErcisE 1. The natural isomorphisms are precisely the iso arrows in %%,
Exercis 2. Iet C and D be sets, construed as discrete categories with
only identity arrows. Show that for F, G:C— D there is a trans-
formation F — G iff F= G, and that the functor category D€ is the set of
functions C — D.

Exercisk 3. 7:F— G is monic in 9 if 7, is monic in & for all a. O

A number of the topoi described in Chapter 4 can be construed as
“set-valued functor” categories, as follows.



CH.9,§93 FUNCTOR CATEGORIES 203

(1) Set>. The set 2=1{0, 1} is a discrete category. A functor F:2—> Set
assigns a set F, to 0 and a set F; to 1. Since F as a functor is required to
preserve identity arrows, and 2 only has identities, we can suppress all
mention of arrows, and identify F with the pair (F,, F,). Thus functors
2 — Set are essentially objects in the category Set® of pairs of sets. Now
given two such functors F and G, identified with (F,, F,) and (G,, G,), a
natural transformation 7:F —> G has components 714: Fy— G, 7,: F, —>
G,. We may thus identify 7 with the pair {7y, T,), which is none other
than a Set’-arrow from (F,, F,) to (G,, G,).

(2) Set™. Consider the poset category 2=1{0, 1} with non-identity
arrow 0— 1. A functor F:2— Set comprises two sets F,, F,, and a
function f: F,— F;. Thus F is “essentially” an arrow f in Set, i.e. an
object in Set”. Now given another such functor G, construed as g: G, —>
G4, then a 7: F— G has components 1, T; that make

T

0 F() o GO
1 F,— G,

commute. We see then that 7, identified with (r,, 7,) becomes an arrow
from f to g in Set™, and so the latter “is” the category Set” of functors
from 2 to Set.

(3) M-Set. Let M=(M, *, e) be a monoid. An M-set is a pair (X, A)
where X is a set and A assigns to each m € M a function A,, : X — X, so
that

@i A, =idy, and

() A oA, =Apape
Now M is a category with one object, say M, arrows the members m of
M, = as a composition, and e =id,, Then A becomes a functor
A :M— Set, with A (M) = X for the one object, and A(m) = A,,,, each arrow
m. Indeed (i), (ii) are precisely the conditions for A to be a functor. Now
given any other functor p:M—>Set, with p(M)=Y, then a 7:A=>pn
assigns to M a function f: X — Y so that

M X—Y
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commutes for each m e M. But this says precisely that f is an equivariant
map from (X, A) to (Y, u). Thus M-Set is the category Set™ of functors
from M to Set.

(4) Bn(I). Taking the set I as a discrete category, a functor F: I — Set
assigns to each iel a set F,. So we can identify such functors with
collections {F;:iec I} of sets indexed by L

An object (X, f) in Bn(I) (i.e. a function f: X — I) gives a functor
f:I— Set, with f(i)=f"'{i}), the stalk of f over i.

An arrow h: (X, f)— (Y, g) is a function that maps the f-stalk over i to
the g-stalk over i, hence determines a function h; : f(i) — g(i). These h;’s
are the components for h: f = g Thus each bundle can be turned into a
functor from I to Set. The converse will only work if the F;’s are pairwise
disjoint. So given F:T—Set we define a new functor F:I— Set by
putting F(i) = F(i)*x{i} and then turn {F(i):i eI} into a bundle over L
Since F(i)=F(i)x{i}, the functors F and F are naturally isomorphic.
What this all boils down to is that the passage from (X, f) to f is an
equivalence of categories. The category Bm(I) of bundles over I is
equivalent to the category Set’ of set-valued functors defined on I. (O

These last four examples illustrate a construction that provides us with
many topoi. We have:

for any “small” category €, the functor category Set® is a
topos!

We devote the rest of this chapter to describing the topos structure of
Set®.

Terminal object

In Set® this is the constant functor 1:%€ — Set that takes every €-object to
the one-element set {0}, and every €-arrow to the identity on {0}. For any
F:% — Set the unique arrow F -1 in Set® is the natural transforma-
tion whose components are the unique functions !: F(a)— {0} for each
€-object a.

Pullback

This is defined ‘“‘componentwise”, as indeed are all limits and colimits in
Set®.
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Given 7:F— H and o:G — H, then for each ¢-object a, form the
pullback

K(a) —2 G(a)

T

F(a) < H(a)

in Set of the components 7, and o, The assignment of K(a) to a
establishes a functor K:€ — Set. Given %¢-arrow f:a — b, K(f) is the
unique arrow K(a)— K(b) in the *“cube”

K(a) —* G(a)

. G
A Ta
G(b)
F(a) H(a) o,
F(f\)\ \P\I.(ﬂ
— H(b)

given by the universal property of the front face as pullback. The A,’s and
we’s are components for A : K — F and p: K— G that make

K% .G

1

F—T——H

A

a pullback in Set®.
Exercis 4. Define the product Fx G :€ — Set of two objects in Set®.
U

Subobject classifier

To define this we introduce a new notion. For a given €-object a, let S,
be the collection of all €-arrows with domain a,

S. ={f: for some b, a—L—>bpin %}
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(S, is the class of objects for the category € 1 a of “‘objects under a”
described in Chapter 3).

We note that S, is “closed under left composition”, i.e. if f€ S,, then
for any ¢-arrow g:b—c¢, gofe S,

f

a ——————

gef Xg

C

We define a sieve on a, or an a-sieve to be a subset S of S, that is itself
closed under left composition, i.e. has g o fe S whenever feS. For any
object a there are always at least two a-sieves S, and § (the empty
sieve).

ExampiLE 1. In a discrete category, S, ={1,}, and so S, and § are the only
a-sieves.

ExampLE 2. In 2, with f:0— 1 the unique non-identity arrow there are
three O-sieves, B, So={1,, f}, and {f}.

ExampiE 3. In a one-object category (monoid) M, an M-sieve is a set
S = M of arrows closed under left composition = left multiplication. The
sieves are just the left-ideals of M. ’ O

Now we define (2:€ — Set by
0(a)={S:S is an a-sieve}

and for €-arrow f:a— b, let 2(f):02(a)— 2(b) be the function that
takes the a-sieve S to the b-sieve {b=>c:goféeS} (why is this a
sieve?)

Thus in Set™, we find that 2(M) = L,,, the set of left ideals in M, and
for arrow m:M—M, Q(m):Ly— L, takes S to {n:n * meS}=
w(m, S). So {2 becomes the action (L, @) that is the codomain of the
subobject classifier.

In Set® we define T:1-> Q to be the natural transformation that has
components T,:{0}— £2(a) given by T,(0)=S,, the “largest” a-sieve.
This arrow is the classifier for Set®. To see how T works, suppose that
7:F— G is a monic arrow in Set®. Then for each €-object a, the
component 7, :F(a)— G(a) is monic in Set (Exercise 3) and we will
suppose it to be the inclusion F(a) <> G(a). Now the character x, : G—>{2
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of 7 is to be a natural transformation with the component (x,), a set
‘anction from G(a) to 0(a). Thus (x,), assigns to each x € G(a), an
a-sieve (x,),(x). The question then is to decide when an arrow f:a — b
with domain a is in (x,),(x). For such an f, we have a commutative
diagram ,

F(a) ="~ G(a)

F(f) G

F(b) —2— G(b)
so that F(f) is the restriction of G(f) to F(a). We put f in (x,).(x) if and
only if G(f) maps x into F(b). (Compare this with the picture for Set™ in
§4.4). Thus (x.)a(x)={f:a — b: G()(x)e F(b)}.

Gfa)

Glb)

Fig. 9.1.

More generally, assuming only that 7, is a function, perhaps not an
inclusion, we put

(6)a () = {a b GPx)e Tb(F(b))}

= {a L b: for some ye F(b), G(f)(x)= Tb(y)}
Exerciskt 5. Verify that (x,),(x) is an a-sieve, and that this construction
satisfies the ()-axiom. (see §10.3)

Exercise 6. Show that it produces the classifiers for Set”, Set™ and Bn(I).

Exercise 7. Let S be an a-sieve. Define S:¢ —Set by S(b)=
S N€(a, b). Show that the inclusions S(b) <> €(a, b) are the components of
a monic Set®-arrow S>-%(a, —). Show that in fact the a-sieves are in
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bijective correspondence with the subobjects of the homfunctor €(a, —) in
Set®.

Exercise 8. Show that for each ¥-object a, ({2(a), <) is a Heyting
algebra of subsets of S,, with

—|S={a—f——>b:for any b—g—>c,g°f¢S}

S=> T={f: whenever gofeS, then go fe T}

Show that —S is the largest (union) of all the a-sieves contained in —S,
and S = T is the largest a-sieve contained in —SU T. O

The dual to the notion of sieve is called an a-crible. This is a collection
of arrows with codomain a that is closed under right-composition. Cribles
are used to show that the category of contravariant functors from € to Set
is a topos. This type of functor arises naturally in the study of sheaves,
and the work of Grothendieck et al. [SGA4] is done in terms of cribles.
We have used co-cribles because they are appropriate to the conventions
of the Kripke semantics. Cribles themselves will be discussed in Chapter
14.

Exponentiation in Set”

Let F:%—Set. For each ¢-object a, define a ““forgetful” functor
F,:%€%a — Set that takes f:a — b to F(b), and h:f — g where

a
VAR
b h c

commutes, to F(Vh).
Now given F,G :¢ — Set, define G" :¢ — Set by

G*(a)=Nat[F,, G,],

the collection of natural transformations from F, to G,.
Acting on arrows, GF takes k:a—d to a function G*(k) from
Nat{F,, G,] to Nat[F;, G,]. This takes r:F, = G, to 7': F; = G, that has
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components ;= T;., for

a_—%* .4
fok [f
b

f an object in € 1 d.

ExampiE. Let F and G be functors 2 — Set, thought of as functions
f:A—B and g:C— D (i.e. Set”-objects). Now 21 1 is the discrete
one-object category. So F, is identifiable with F(1) = B, likewise G, ‘“is”
D, and )

GF(1)=D?5, the set of functions B — D.

Now 21 0 is isomorphic to 2 itself, so F, and G, can be taken as just F
and G. Then

GT(0)=Nat[F, G]“="E,

where E is the set of Set”-arrows from f to g. Finally G* takes !:0— 1
to

E =L DE, as follows:

Given 1:F = G, corresponding to the Set-arrow {(r,, 7;) from f to g,
G¥(7) is the transformation F, — G, whose sole component is ,, since 1
corresponds to the unique member 1, of 21 1.

0 —+—1

1,01 kl

1

Thus gf({7o, T1)) = 7,, and this very complex construction has yiclded the
exponential object in Set™. O

We have yet to define the evaluation arrow ev: G¥ XF - G in Set®.
This has components ev,:G"(a)XF(a)— G(a), where ev, (T, x)=
71,(x) whenever x € F(a) and 7€ G"(a), i.e. 7:F, = G, (note that the
component 7, of the € 1 a-object 1, is indeed a function from F(a) to
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G(a). Now for a Set® arrow 7:HXF — G, the exponential adjoint
#:H — GF has components that are functions of the form

%, :H(a)— G¥(a).

For each y in H(a), 7,(y) is a natural transformation F, — G,. For each
€ 1 a-object f:a— b, 7,(y) assigns to f that function from F(b) to G(b)
that for input x € F(b) gives output

7 (HE)(y), x))

(note that 7,: H(b) X F(b) — G(b) and H(f): H(a) — H(b)).

The reader who has the head for such things may check out the details
of this construction and relate it to exponentials in M-Set, Bn(I) etc. We
shall need it only for the description of power objects in a special topos of
Kripke models in Chapter 11. Our major concern will be with the
subobject classifier of “set-valued” functor categories.



CHAPTER 10

SET CONCEPTS AND VALIDITY

171

a natural and useful
generalisation of set theory to the
consideration of ‘sets which in-
ternally develop®”

F. W. Lawvere

10.1. Set concepts

We saw in. Chapter 1 that a statement ¢(x), pertaining to individuals x,
determines a set, viz the set {x: ¢(x)} of all things of which the statement
is true. But according to the constructivist attitude outlined in Chapter §,
truth is not something ascribed to a statement absolutely, but rather is a
“context-dependent” attribute. The truth-value of a sentence varies
according to the state of knowledge existing at the time of assertion of the
sentence. In these terms we might regard ¢ not as determining a set per
se, but rather as determining, for each state p, the collection

@ ={x: ¢(x) is known at p to be true}.

¢, will be called the extension of ¢ at p.

Thus, given a frame P of states of knowledge, the assignment of ¢, to p
determines a function P —Set. Moreover, if truth is taken to ‘“persist in
time”, then if x,€ ¢, and p_gq, we have ¢(x,) true also at g, sO X4 € ¢,
Thus

(%) pq implies ¢, <S¢,

This means that ¢ determines a functor P — Set, which assigns the
inclusion arrow ¢, < ¢, to each p—q in P.

ExampLE. Let @(x) be the statement “x is an integer greater than 2, and
there are no non-zero integers a, b, ¢ with a*+b* =c*”. Fermat’s
celebrated “last theorem’ asserts that ¢ (x) holds for every integer x 2. At
the present moment it is not known if this is correct, although it is known
that ¢ is true for all x=25,000. Until Fermat’s ‘“theorem” is decided

either way we may expect the extension of ¢ to increase with time.
211
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So, corresponding to an expression ¢ we have an object in the functor
category Set®. Such an object might be though of as a “variable set”, as in
Lawvere [75, 76]. We might also call it an intensional set, or a set concept.
This terminology derives from semantic theories of the type set out by
Rudolf Carnap {47]. In such theories the extension of an individual
expression is taken to be the actual thing, or collection of things, to which
it refers. The intension on the other hand is a somewhat more elusive entity,
which is sometimes described as being the meaning of the expression.
Carnap ([47], p. 41) defines the intension of an individual expression to
be the “individual concept expressed by it”. Thus if ¢(x) is the statement
“x is a finite ordinal” then the intension of ¢ is the concept of a finite
ordinal. This is represented by the functor that assigns to each p the set of
things known at stage p to be finite ordinals. This functor can also be said
to represent the concept of the set of finite ordinals. In this way we
construe Set® as being a category of set concepts.

There are some difficulties with the theme just developed. Consider the
expression “the smallest non-finite ordinal”’. This expresses quite a differ-
ent concept to “the set of finite ordinals”, and yet the two have the same
extension, i.e. the set of finite ordinals is the smallest non-finite ordinal.
Thus two different concepts might well be represented in Set® by the
same object, i.e. Set® does not faithfully represent all concepts (for a
more basic example consider the expressions “2 plus 2”” and “2 times 2”°).

Another difficulty relates to the derivation of the principle (*) above.
The argument would seem to be simply fallacious in the event that x, is
itself the extension of some set concept, i.e. x,= 4, for some expression
Y(x). Suppose for example that ¢(x) is the statement “x ={y: y(y)}".
Then ¢, ={y5,}, the set whose only member is s, =x,, while @, ={y,}. If
Y, # 1, then x,€ ¢,. We do salvage from this however the fact that if
Y, € ¢,, then iy, € @,. Perhaps we should then replace the inclusion func-
tion of (*) by the map taking each element of ¢, to its counter-part in ¢,.
In this way ¢ would still determine a functor. Unfortunately the notion of
counterpart is ambiguous here — x, may also be the extension of some
other expression 6(x) (xo= 45, =6,) whose extension at q differs from
W (i, # 0,).

In spite of these problems, the notion of set concept would still seem
appropriate to an understanding of the objects in Set®, and to the
viewpoint that Set® is the universe for a generalised “non-extensional”
set theory. Indeed the study of Set® may help to clarify the philosophi-
cally difficult notions of “‘individual concept” and “intensional object”
(for an indication of how intractable these ideas are, read Scott [70i]).
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Certainly the notion of “‘variable structure” is a mathematically significant
one. One thinks of the concept of ‘“neighbourhood system” as rep-
resented by the assignment to each point in a topological space of its set
of neighbourhoods — or the concept of “‘tangent space” as represented by
the assignment to each point in a manifold of the space of vectors tangent
to the manifold at that point.

In this chapter we propose to look in depth at the topos structure of
Set®, and in particular the nature of its truth arrows. The conclusion we
will reach is that “the logic of variable sets is intuitionistic”.

10.2. Heyting algebras in P

Let P=(P, C) be a poset. For each peP, let

[p)={q: p=q}

be the set of P-elements “above” p in the ordering =. If g €[p) and gv,
then, by the transitivity of .=, r€[p). Thus [p) is hereditary in P ([p) eP"),
and will be called the principal P-hereditary set generated by p. Principal
sets are very useful in describing the structure of the HA P*, as seen in
the following

Exercises

Cf. §8.4 for notation.
Exercist 1. For any ScP, if [p)= S then pe S.
Exercisk 2. p=qifi[q)<[p).

Exercisk 3. The following are equivalent, for any S = P:
(i) S is P-hereditary;
(i) for all pe P, peSififp)c S;
(iii) for all pe P, pe S implies [p)<= S.

Exercist 4. For any S, T eP*,
S=>T={p:SN[p)c T}
=S={p:[p)=—-St={p:[p)NS=0} O

Now the relation = when restricted to the members of [p) is still a
partial ordering, and so we have a poset ({p), =), and a collection [p)*
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consisting of all the sets that are hereditary in [p). Now if q €[p), then the
principal set generated in [p) by q is

[@), ={r:relp) and q_r}
=[p)Nnl[q).

But by Exercise 2, this is just [q). In other words, the principal set of q in

P is the same as the principal set of q with respect to [p), [q) =[q),. From

this we obtain a detailed account of the relationship between P* and [p)™.
If S is any subset of P, put

S, =SNIp)
={q:qeS and pl;q}.

THEOREM 1. (1) If S<[p), then S=S,, and Selp)" iff SeP™;
(2) If SEP* then S, €[p)";
(3) Telp)' iff for some SeP*, T=S,;
(4) If SeP’, then S=U{S,: peP}.

Proor. (1) Clearly if S<[p), then S=SN[p). Moreover, by Exercise 3
(iii),

Selp)” iff gqeS implies [q), =S
while

SePt iff qeS implies [g)<S.

But since S<l[p), g S implies [q), =[q).

(2) Since [p)eP*, ScP" implies SN[p)cP", ie. S,eP". Since S, <
[p), the result follows by part (1).

(3) Exercise.

(4) We have to show that

qgeS iff for some p, qg€S,=SN{p).

Since in general, S, < S, the implication from right to left is immediate.
Conversely, if ge S then if S is hereditary we have gelg)< S, and so
q € S NLq), i.e. the proof is completed by taking p =gq. O

Now we know from §8.4 that the poset ([p)*, <) of hereditary subsets
of [p) under the subset ordering is a Heyting algebra (in fact—for the
interest of the reader familiar with such things-[p)* is a subdirectly
irreducible HA). The lattice meet M, and join U, are simply the opera-
tions N and U of set intersection and union. The pseudo-complement
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—,:[p)"—[p)" is defined for S<[p) by
—1,S ={q: g €[p) and [q), =S}

while the relative pseudo-complement = ,: [p)" X[p)" —[p)* has
S=>,T={q:qelp)and SN[q), = T}.

Now given any S < P, we may first relativise S to [p), i.e. form S, and
then apply —,, or we may apply —1 to S first, and then relativise. The two
procedures prove to be commutative, for P-hereditary S, and more
generally we have

TueoreMm 2. For any S, TeP*
(1 SN (T,)=(SNT),;
(2) (SHU(T,)=(SUT),;
(3) 1,(S,)=(18),;

@ (S,)=>,(T,)=(5=>T1),.

Proor. (1) Exercise.
(2 S,U,T,=S,UT,

=(SNp)u(Tnlp)
=(SuTNfp) (distributive law)
~(SUT),.

(3) Since [q)=1[q), for pCq, we have
—1,(S,)={q:q€[p) and [q) =S}
=[p)N—S
=(—8),.
(4) Exercise. O

The algebraically minded reader will note that Theorem 2 states that
the assignment of S, to S is an HA homomorphism from P* to [p)*,
which is surjective by Theorem 1 (3).

10.3. The subobject classifier in Set”

That Set® is a topos is a special case of the fact that Set® is a topos for any
small category €. The definition of the subobject classifier for Set® given
in §9.3 proves in the case € =P to be expressible in terms of the HA’s of
the form [p)*. According to §9.3, 2:P — Set has

0(p) =the set of p-sieves.
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Now a p-sieve is a subset S of
f .
P, = {f: for some g, p— q In P}

that is closed under left multiplication, i.e. has gofe S whenever fe S and
g:q—r is a P-arrow. But as P is a preorder category, there is at most
one arrow from p to g, and this exists precisely when pCq. So for a fixed
p, we may identify the arrow f:p—q with its codomain g. Hence P,
becomes

{a:pCqt=[p)!,
and the description of S as a p-sieve becomes
reS whenever geS and qCr

i.e. §'is [p)-hereditary!

Thus Q(p) =[p)*, the collection of hereditary subsets of [p).

In general for a functor F:P — Set we will write F, for the image F(p)
of p in Set. Whenever pCgq, F yields a function from F, to F,, which will
be denoted F,,. We may thus view F as a collection {F,: p € P} of sets
indexed by P and provided with “transition maps” F,,:F, — F, whenever
pCg. In particular F,, is the identity function on F,.

In the case of £, the modification as above of the definition of §9.3
shows that when p=gq, Q,,:0Q, — O, takes S€[p)* to SN[g)elq)", ie.

0,.(S)=S8,.

The terminal object for Set® is the “constant” functor 1:P—> Set having
1,={0}, all peP, and 1,,=idy for pCq. The subobject classifier
true:1— € is the natural transformation whose ‘“p-th” component
true, :{0} —> €2, is given by

true,(0) =[p).

Thus true picks out the unit element from each HA [p)*.

Now if 7:F>=> G is a subobject of G in Set® then each component T,
will be injective, and will whenever convenient be assumed to be the
inclusion function F, = G,. Again by modifying the §9.3 definition we
find that the character x,:G — £ has p-th component (x,), : G, —[p)*
given by

foreach xeG,, ), (x)={q: p=q and G,,(x)e F,}
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Fig. 10.1.

Exercise 1. Show that (x,),(x) is hereditary in [p).

Exercist 2. Show that x, is a natural transformation from G to (), i.e.
that

(X)p

P 14

0
‘ ‘qu
0

q

Q
(-D—Q

(X<)a

Q

commutes whenever p—gq. l

Notice that if x € F,, then for any ée [p), since

T

FP - GD
F, pa leq
T
Fq < a4 Gq

commutes we must have G,,(x)=F,,(x)e F,, and so g€ (x.),(x). On the
other hand if x£F, then G, (x)=x£F, and so p#(x.),(x), ie.
(x:)p(x) #[p). Altogether then we have that

F, ={x: (), (¥) = [p)} ={0, x): (xc)o (x) = true, (0)}
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and hence

Fp ci_, Gp

(x:)p
true,

{0} ——= [p)*

is a pullback in Set. Since this holds for all p,

G

is a pullback in Set®. The verification of the rest of the £-axiom is rather
delicate. Suppose o : G — {2 makes

F>——

true
—_—

F

G

[,,

1 e, 0

a pullback. Then for each g,

Fq = Gq

l o-q
trueq

o — q,

will be a pullback, and so by the nature of pullbacks in Set we may
assume

(*) F,={x: o,(x)=[q)}

Now let us take a particular p. Then whenever pgq,

O-D
G,—— Q,

Gm[ J”"“

G % ,0

q q
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commutes, and hence

ge(x.),(x) iff G, (x)eF,

iff  0,(Gu(x)=[q) (by (%))
it Q,,(c,(x)=[q) (last diagram)
it o,x)N{g)=[q) (definition Q)
iff [g)ca,(x)

iff qeo,(x) (Exercise 10.2.3)

Thus (x,),(x) = 0, (x). Since this holds of all p€ P and all x € G,,, it follows
that o =x.. '

ExampLe 1. We saw in §9.3 that the topos Set™ of set functions is
essentially the same as Set* where 2 is the poset category {0, 1} with 0=1.
In 2 we have

QO = {{07 1}5 {1}9 Q}
Q,={1}, ¢}
and Q,; maps {0, 1} and {1} to {1}, and @ to @. If we denote {0, 1}, {1} and

@ by 1, 4 and O respectively in ,, and {1} and @ in £2, by 1 and 0, Q,,;
becomes the function t providing the Set-classifier defined in §4.4.

Exampie 2. Let @o=(w, <) be the poset of all finite ordinals
0,1,2,...,m,..., under their natural ordering. Set” is described by
Maclane [75] as the category of “sets through time’, an object being
thought of as a string

Foy Fia F,

F, F, F, e F,, F..1

Now in @, [m)={m, m+1, m+2,...}. Moreover if S € is non-empty, S
has a first member mg, so that if S is hereditary, S =[mg). Thus all
non-empty hereditary sets are principal and can be identified with their
first elements. Introducing a symbol o to stand for the empty set we may
then simplify £ by identifying @" with

{071’2"“3m7"'3m}
and for m € o, putting

Q, =imm+1,... o}
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Whenever m=<n, {},,,, becomes
n if m<p=n
Q,.(p)=qp i n<p
o If p =00,

while true,,(0)=m, for each m € w.
Given 7:F>> G, the character x, has (x.).:F,, — G,,, given by

(x.)m (x) =the first n after m that has

G,.(x)e F,, if such exists,
while
(X )m(x)= if G,,.(x)ZF, whenever m<n.

Fig. 10.2.

Thus (x,)..(x) denotes the first time that x lands in the subobject F, the
“time till truth” as Maclane puts it. Maclane’s description of the subob-
ject classifier for Set” is even simpler than the one just given. The effect
of the map £2,,.., can be displayed as

0, +1 m+3

WA AVa

Q.1 m+1 m+2 m+3

8 «— 8
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The picture looks the same for each m, and indeed it is the structure of
the map that is significant, not the labelling of the entries in the “order-
isomorphic” sequences {2,, and (3,,.,. We may replace each , by the
single set

Q:{Oa 1323---700}
and each Q,,.., by the single map t:02 — £, displayed as

e

Then the object of truth values becomes, as in Maclane, the constant
functor @500 ... and the arrow true has the inclusion
{0} = Q for each component.

So now we have seen three set-theoretically distinct objects in Set” that
serve as objects of truth-values, underlining again the point that the
0-axiom characterises T:1— Q uniquely up to isomorphism only.

10.4. The truth arrows

I. False

The initial object 0:P — Set in Set” is the constant functor having 0, =@
and 0,, =id, for pCgq. The unique transformation 0 — 1 has components
¢ = {0} (i.e. the same component for each p). The character of 1:0— 1 is
false :1 — Q, with false, :{0} — €, having
false,(0)={q: p=q and 1,,(0)€0,}
={q: pCqand Oc @}
=0.

Thus false picks out the zero element from each HA [p)*.
IL. Negation
—1:02— Q is the character of false. Identifying false, with {@} <, we
find then the p-th component —, : 42, — £}, of — has
—,(S)={q: p=q and Q,,(S) {P}}

={q: pEq and SN[q) =}

=[p)yN—S

=(1S),.
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We had already used the symbol —, in §10.2 to denote the pseudo-
complementation operation in {p)*. The equation just derived shows that
the latter operation is precisely the same as the p-th component of the
negation truth arrow in Set®, and so the notation remains consistent.

1. Conjunction
The functor 2 X {2 has

(@XxQ), =(Q,, Q)
and for pCq, (2XQ),, is the product map 2, XQ,, (cf. §3.8).
The arrow (T, T):1— 2 X in Set® has components
(T,T,: {0} = Q,x0Q,

given by (T, T),(0) =([p), [p))-
Its character is the conjunction arrow

Ox050

with components ~,: 0, X}, — £}, having

(S, T)) ={q: p=q and (2,,(S), 2,,(T)) =), [}
={q: p=q and SN[g)=[q)=TN[q)}
={g:pCgand[g)< S and [q) = T}
={q:pCqandqeSand g T}
=SNTN[p)
=(SNT), ,
=SNT. (Theorem 10.2.1)

IV. Implication
The equaliser e: €>> 2 %2 of A: Q%2> Q and pr,: QX0 - O, has
as domain the functor &) :P—> Set, with
©,=US T): ~, (S, TH=S}
={(S5, T):ScTyc, X0,

and @, for pCgq, giving output (S,, T,) for input (S, T).
The components of ¢ are the inclusions e, : © ,= 0, xQ,.
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The implication arrow = :0 X - (), being the character of e, has
component =, given by

>, (S, T) ={q: pEq and (2,o(S), Lo (T e O}
={g:pCqand SN{g)=TN[q)}
={q:pCqand SN[ =T}
=(S=>T)n(p)
=(S=>T),.

Thus the p-th component of the implication arrow is the relative pseudo-
complementation for the HA [p)™.

V. Disjunction
Exercise 1. Show that the p-th component of the transformation

[(Ta, 10), {10, Ta)]

is “‘essentially” the set

{Ip), $): S Q,}ULS, [p)): Se D}

and hence that the disjunction arrow w:02XQ > has components
U, (S, TH=SUT.

It is worth pausing here to reflect on what has been accomplished. We
now know that the truth arrows in Set® are precisely those natural
transformations whose components interpret the corresponding connec-
tives on the Heyting algebras in P. But remember that the truth arrows
were defined long before intuitionistic logic and HA’s were mentioned.
They arose from a categorial description of the classical truth functions in
Set. Subsequently, when interpreted in the particular topos Set®, they
yield the intuitionistic truth functions. Thus the theory of “topos logic”
abstracts a structure common to classical and intuitionistic logic. What
better example could there be of the advancement of understanding
through the interplay of generalisation and specialisation (§2.4)?

10.5. Validity

In view of the results of the last section one would anticipate an intimate
relationship between validity in Set® and algebraic semantics on the HA’s
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[p)". In fact the main result of this section, indeed of this chapter, is the

Variorry THEOREM. For any poset P, and propositional sentence a € @,

Set’Fa  iff PEkc.

In the left-hand expression we mean topos-validity as defined in §6.7.
The right-hand expression refers to Kripke-style validity as in §8.4.

There is some choice as to how we go about proving the Validity
Theorem. We know from §8.4 that

PEa iff P'Ee,
and from §8.3 that ‘
Set’ka  iff Set®(l,Q)Ea iff Sub(l)Eka,

so we could proceed to establish relationships between the HA’s P,
Set®(1, 02), and Sub(1). Ultimately these are all variations on the same
underlying theme. We choose to approach the Validity Theorem directly
in terms of the definitions of validity concerned.

Let #=(P, V) be a model based on P, where V:9,—>P" is a P-
valuation. We use V to define a Set®-valuation V':®,—> Set*(1, ) i la
§6.7. V' assigns to each sentence letter 7 a truth value V'(7):1—>0Q in
Set®. The p-th component V'(m), {0} — €, is defined by

(*) V'(mr),(0)= V() N[p)
= V(m),
Thus V'(w), picks out the set of points in [p) at which = is true in 4.

Now if p=q then V(m)N[p)Niq)= V(w)Nlq) (Exercise 10.2.2) and
)

Vi,

{0} —= [p)*

0

Pd

{0y V™, [q)+

commutes. Hence V’(1r) is a natural transformation.

By the rules of §8.4 the model . produces for each sentence a € P a
subset #(a)={q: MF,a} of P, and hence, for each peP, a subset
M(e), = M(e)N\[p) of [p). On the other hand by the rules of §6.7, V'
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provides each e with a Set®-arrow V’'(a):1— Q and hence, for each
p €P, a function V'(a),:{0} — ,. We have

Lemma 1. For any a, the p-th component
V'(a),:{0}—[p)*
of V'(a) has V'(a),(0) = M{c),.
Proor. By induction on the formation of a. Since (7)) = V(m),fora ==

the result is immediate from (#*). If « =~g, and the result holds for S,
then

Vi(~B), = (7o V'(B)),

=,°V'(B),
and so
V!(0),(0) =,(V'(B), (0))
=—,(HU(B),) (induction hypothesis)
= (—.U(B)), (Part IT of §10.4, and
Theorem 10.2.2(3))
= M(~B), ((4), §8.4)
= Ju(a)pa
hence the result holds for a. O

Exercise 1. Complete the proof of Lemma 1 for the cases of the
connectives v, A, 2, using the other parts of §10.4, the rest of Theorem 2
of §10.2, and clauses (2'), (3", and (5') from §8.4. O

CoRroLLARY 2. Set*Fa only if PFa.

ProoF. Let 4= (P, V) be any P-based model, and V'’ the Set®-valuation
corresponding to V as in (). Since Set*Fa, V'(a) = true, and so for each
p, V'(a),(0)=true,(0)=[p). Since pe[p), Lemma 1 gives pe.tl(a), =
M(a). Thus M(a) = P. As this holds for any model on P, « is valid on P.

To prove the converse of Corollary 2, we begin with a Set®-valuation
V': ®P,— Set®(1, 2) and construct from it a P-valuation V: ®,— P*. The
arrow V'(w):1-—> £ picks out, for each g€ P, an hereditary subset
V'(1),(0) of [q). We form the union of all of these sets to get V(ar). Thus

V(m)=U{V'(m),(0): g P}
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i.e.
(%) re V(m) iff forsome q, re V'(w),(0).

Having now obtained a P-valuation V we could apply (*) to get another
Set®-valuation V", with V"(xr),(0)= V(m)N[p). However this just gives
us back the original V', as we see from

LemMA 3. For any p€ P,
V(m)N[p)=V'(x),(0),
where V(1) is defined by (x%).

Proor. It is clear from (*+) that V’'(m),(0)c V(w). But since
Viim):1= 02, V'(m),{0}—=0, and so V'(m),(0)c[p). Hence
V'(m),(0) < V(m) N[p). Conversely, suppose re V(mw)N[p). Then pCr,
and for some g, r € V'(1r),(0). Since V'(m),(0)<[q), it follows that g,
and hence

Vi, o

q

{o}

0

qr

foy Lk,

commutes, because V'(7r) is a natural transformation. Thus V'(w),(0)N
[r) = V'(m).(0).
Analogously, since pCr,

V(m),(0)N[r) = V'(m),(0).

Q,

Then, knowing that r € V'(7),(0) and r €[r), we may apply these last two
equations to conclude that r e V'(m),(0). Hence V(a)N[p)< V'(7),(0).
O

Now if V is a P-valuation, and V' is defined by (%), i.e. V'(w),(0)=
V(mr),, then by Theor_em 1(4) of §10.2,
U{V'(m),(0): pe P}=U{V(xm),: pe P}
= V(m),
so the application of (#*) just gives us V back again. The upshot of this,

and Lemma 3, is that the definitions (*) and (+*) are inverse to each other
and establish a bijection between P-valuations and Set®-valuation. Thus
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in Lemma 1 we may alternatively regard V as having been defined from
- V' by (%)

COoROLLARY 4. PEa only if Set®Fa.

Proor. Let V' be any Set®-valuation, and = (P, V) the corresponding
model defined by (*%). Since PEa, M(a)=P, and so for any p, M(a), =
M(a)N[p)=[p) = true,(0). Thus by Lemma 1, V'(a),(0) = true,(0). Hence
V'(a) = true. O

Corollaries 2 and 4 together give the Validity Theorem.

10.6. Applications

(1) The most important immediate consequence of the Validity
Theorem is the characterisation of the class of topos-valid sentences. If
Py is the canonical frame for IL described in §8.4 then, for any a € @

f;a iff PpFa,
and hence by the Validity Theorem
e iff Set*rka.
From this we get the:

CoMPLETENESS THEOREM FOR &-VALIDITY. If a is valid on every topos, then

'Ia

Together with the Soundness Theorem given in §8.3 this yields the
result that the sentences valid on all topoi are precisely the IL-theorems.

(2) It was stated in §6.7 that the category Set” does not validate
a v ~a. To see this, recall that Set™ is essentially the same as Set®. But in
the Example of §8.4 it was shown that 2F¥ « v ~a. The Validity Theorem
then gives Set*Fa v ~a.

(3) The logic LC, mentioned in §8.4, is generated by adjoining to the
IL-axioms the classical tautology

(a>B)v(B>oa)
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LC is what is known as an intermediate logic, i.e. its theorems include all
IL-theorems and are included in the CIl-theorems.
Now it is known (cf. Dummett [59] or Segerberg [68]) that

oFa iff I~
and so we have
o« iff Set”Fa,

i.e. LC is the logic of the topos of “sets through time’’ described in §10.3.
This is the appropriate context if time is considered to be made up of
discrete moments. However the logic is not altered by the assumption
that time is dense, or even continuous. If @ and R denote respectively
the posets of rational, and of real, numbers under their natural (arithme-
tic) ordering, then from Section 5 of Segerberg we conclude that

wkFa iff QFa iff RFa

and so the topoi Set®, Set®, and Set® all have the same logic.
In fact the most general conclusion we can make is that if P is any
infinite linearly order poset (i.e. p=q or gCp, for all p, g € P), then

SetP Fa lff IE .

ExercisE 1. Let {0,1,2,...,} be the modified version of @ ‘described
in §10.3. Define HA operations on this set by modifying the operations on
o". Relate these operations to the definition of the “LC-matrix given in
Dummett [59]. : O

ProBrEM. Let & be any topos, and put
L,={a:%Fa}

then L, is closed under Detachment, and is an intermediate logic. A
canonical frame P;_may be defined for L, by replacing IL by L,
everywhere in the definition of Py;.
Is there a general categorial relationship between the topoi & and
Set®?
Cl
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Exercises (for Heyting-algebraists)

ExercisE 2. Given a truth value 7:1 = Q in Set®, define S, eP* by
S, =U{r,(0): peP}.

Show that the assignment of S, to 7 gives a Heyting algebra isomorphism
Set®(1, Q) =P*.

Exercisi 3. Let o: F>=> 1 be a subobject of 1 in Set®. Then for each p,

o, can be taken as the inclusion F, <> {0}, and so we have cither F, =,
or F, ={0}=1. Define

S, ={p: F, =1}
Show that S, is hereditary and that the assignment of S, to ¢ yields an
HA isomorphism

Sub(1)=P*.

What is the inverse of this isomorphism?

ExercisE 4. Suppose that the poset P has a least (initial) element. Show
then that if S, TeP*, SUT=Pifft S=Por T=P.
Derive from this that the topos Set® is disjunctive, in the sense of §7.7.
O



CHAPTER 11

ELEMENTARY TRUTH

13

. a new theory, however spe-
cial its range of application, is
seldom or never just an increment
to what is already known. Its as-
similation requires the reconstruc-
tion of prior theory and the re-
evaluation of prior fact, an in-
trinsically revolutionary process
that is seldom completed by a
single man and never overnight.”
Thomas Kuhn.

This chapter marks a change in emphasis towards an approach that will
be more descriptive than rigorous. Our major concern will as usual be to
analyse classical notions and define their categorial counterparts, but the
detailed attention to verification of previous chapters will often be
foregone. The proof that these generalisations work ““as they should” will
thus at times be left to the reader.

11.1. The idea of a first-order language

The propositional language PL of §6.3 is quite inadequate to the task of
expressing the most basic discourse about mathematical structures. Take
for example a structure (A, R) consisting of a binary relation R on a set
A (i.e. RS AXA). Let ¢ be a particular element of A and consider the
sentence “if every x is related by R to ¢, then there is some x to which ¢
is related by R”. If the “range” of the variable x is A, then this sentence
is certainly true. For, if everything is related to ¢, then in particular ¢ is
related to ¢, so ¢ is related to something. To see the structure of the
sentence a little more clearly let

« abbreviate “for all x, xRc”
230
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and

B abbreviate “for some x, cRx”.
Then the sentence is schematised as
a>pB.

Now the semantical theory developed for PL in Chapter 6 cannot analyse
the above argument, i.e. it cannot tell us why a > 8 is true. To know the
truth value of the whole sentence we must know the values of « and B.
However these function as ‘“‘atomic’ sentences (like the letters ;). Their
structure cannot be expressed in the language PL, and the PL-semantics
does not itself explain why 8 must have the value “true” if a does. In
order then to formalise « and 8 we introduce the following symbols:

(i) a symbol V, known as the universal quantifier, and read “for all”’;

(i) a symbol 3, known as the existential quantifier, and read ‘“for
some” or “‘there exists”;

(iii) a symbol ¢, called an individual constant, which is a ‘““name” for the
element c;

(iv) a symbol R, a (two placed) relation symbol, or predicate letter,
which names the relation R;

(v) a symbol v, called an individual variable whose interpretation is,
literally, variable. It may be taken to refer to any member of A. (We shall
help ourselves to an infinite number of these variables shortly, but for
now one will do).

We can now symbolise a as (Vv)vRe, and B as (Jv)cRo.

A language of the type we are now developing is called a first-order or
elementary language. The word “‘elementary’’ here means “of elements”.
The variables of a first-order language range over elements of a structure.
In a higher-order language, quantifiers would be applied to variables
ranging over, not just elements, but also sets of elements, sets of sets of
elements, etc. However in saying that the sentence

(Vv)vRe> (v)eRo

is true of the structure or “interpretation” (A, R, ¢) it is thereby under-
stood that the variable v ranges over the elements of A. Thus we need
not include in our first order language any symbolisations of locutions like
“for all x belonging to A”. That is, the use of an elementary language
does not depend on a formalisation of set theory.

The language we have just sketched is but one among many first order
languages. The one we use will depend on the nature of the mathematical
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structure we wish to discuss. If we wanted to analyse BA’s we would need

— constants 0 and 1 to name zero and unit elements;

— functions letters for the Boolean operations. These would comprise a
one-place letter f for complementation, with f(v) read ‘“‘the comple-
ment of v”, and a pair of two-placed function letters, g and h, for
meets and joins, with g(v,, v,) read ‘“‘the meet of v, and v,”, and
h(v,, v,) read “the join of v, and v,”;

— the identity symbol =, with v, ~v, read “v, is identical to v,”.

Then, for example, the sentences

(Vo)(g(v, £(v)) = 0)

and
(Vo)(h(v, f(v))=1)

would be true of any Boolean algebra — they simply express the defining
property of the complement of an element.

In principle, functions can always be replaced by relations (their
graphs). Correspondingly, instead of introducing a function letter, say h
above, we could use a three place relation symbol S, with S(v,, v5, v3)
being read “v, is the join of v, and v,”. The last sentence would then be
replaced by

Vv)S@, v, £(v))

The most important mathematical structure as far as this book is con-
cerned is the notion of category. This too is a “first-order concept” and
there is some choice in how we formalise it. We could introduce two
different sorts of variables, one sort to range over objects and the other
over arrows, and hence have what is called a “two-sorted language™.
Alternatively we could use one sort of variable and the following list of
predicate letters:

Ob(v) “p is an object”
Arxr(v) “p is an arrow”
dom(v,, v,) “p,=dom v,” '
cod(v,, v5) “v, =cod v,”
id(vy, v5) “v;=1,,7
com(v,, Uy, V3) “Dy =15 ° V37

Amongst the sentences we would need to formally axiomatise the
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concept of a category are

Yo ((Ob(v) v AX(v)) A ~(Ob(v) AAX(D)))
(V0,)(0Ob(v,) > (Av,)id(v,, v,))
(Vv,)(Vv,)(dom(v,, v,) > Ob(v,) A Ax(v,))

(Vv,) ... Vog)eom(v,, vy, v5) AcOmM(Vs, vy, V3) ACOM(Vg, Uy, Us)
= com(1)59 U]_, v6))

The last sentence expresses the associative law— (v, °vy)° v3=
(vy © (v, © v3). The interpretation of the others is left to the reader.

Notice that with the aid of the identity symbol we can express the
statement r(v,) that an individual v, is the only one having a certain
property ¢ (this of course is vital to the description of universal proper-
ties). We put ¢(v,) = (@(v;) A (V0,)(@(v2) D v, 0,)), i.e. “v; has the prop-
erty, and anything having it is equal to v,”. The formula Jv,y(v,) is
sometimes written (3'v,)¢(v,) which is read, “there is exactly one v, such
that ¢(v,)”.

The language just outlined is rather cumbersome in distinguishing
arrows from objects. A simpler approach, mentioned earlier, is to elimi-
nate objects in favour of their identity arrows, and so assume all individu-
als are arrows. We would then use the predicate com as before, as well as
the function letters D(v) - “dom v”’, and C(v)—“cod v”’. Thus dom v is
now an arrow, namely an identity arrow. But the dom and cod of an
identity arrow ought to be itself, so we can define Ob(v) to be an
abbreviation of the expression

D@)=v) A (C(v)~).

An extensive development of this type of first-order language for
categories is presented by W. S. Hatcher [68], who uses it to discuss
Lawvere’s earlier work [64] on an elementary theory of the category of
sets. Hatcher also gives a rigorous proof of the Duality Principle, which
after all is a principle of logic (caveat — composites in Hatcher are written
the other way around, i.e. what we have been calling “g ° f” is written

113 fg”)‘
Exercise 1. Express the Identity Law in the above languages.

Exercise 2. Write down a first order sentence expressing each of the
axioms for the notion of an elementary topos.
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11.2. Formal language and semantics

All of the examples just given have a common core, one shared by all
such languages.

Basic alphabet for elementary languages

(i) an infinite list v, v,, Vs, ... of individual variables;

(ii) propositional connectives A, v, ~, D;

(iii) quantifier symbols V, I;

(iv) identity symbol =;

(v) brackets ), (.
Given this stock of symbols we can specify a particular language, intended
to describe a particular kind of structure, by listing its relation symbols,
function letters, and individual constants. Hence a first-order language is,
by definition, a set of symbols of these three kinds. For BA’s we employ
the language {0, 1, f, g, h}, while for categories we could use {com, C, D}.
In order to discuss semantic theories for elementary logic we will work
throughout with a particularly simple language, namely

Z={R, ¢

having just one (two-place) relation symbol, and one individual constant.
This will suffice to illustrate the main points while avoiding complexities
that are technical rather than conceptual.

TerwMs: These are expressions denoting individuals. For & the terms are
the variables vy, v,,... and the constant ¢.

ATtomic FORMULAE: These are the basic building blocks for sentences. For
& they comprise all (and only) those expressions of the form t=u, and
tRu, where t and u are terms.

Formurag: These are built up inductively by the rules
(i) each atomic formula is a formula;
(i) if ¢ and  are formulae, then so are (e AY), (@Vv), (¢ D ¢),
(~e¢);
(iii) if ¢ is a formula and v an individual variable, then (Vv)e and
(Fv)e@ are formulae.
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SenTENCES: If a particular occurrence of a variable in a formula is within
the scope of a quantifier, that is said to be a bound occurrence of the
variable. Otherwise the occurrence is free. Thus the first occurrence of v,
in (v, ~v,)v~3vy)v,Ru; is free, while its third occurrence is bound. A
sentence is a formula in which every occurrence of a variable is bound. A
formula that is not a sentence, i.e. has at least one free occurrence of a
variable, is called an open formula.

We will write ¢(v) to indicate that the variable v has a free occurrence
in ¢ —thereby formalising a notation we have used all along. This may be
extended to ¢(v;, ..., ;) to indicate several (or perhaps all) of the free
variables of .

INTERPRETATIONS OF £: To ascribe meanings to $-sentences we need to
give an interpretation of the symbols R and ¢, and then use these to
define interpretations of formulae by induction over their rules of forma-
tion.

A model for &£, or a realisation of ¥, is a structure A =(A, R, ¢)

comprising
(i) a non-empty set A;
(i) a relation RS A XA;

(iii) a particular individual c € A.

Now if ¢ is the sentence (Vv,)v,Re, then we may ask whether ¢ is true or
false with respect to 2. The answer is—yes, if every element of A is
R-related to ¢, and no otherwise. On the other hand if ¢(v,) is the open
formula v,Rc it makes no sense to ask whether ¢ is true or false
simpliciter. We would have to give some interpretation to the free
variable v,. We could thus ask whether o is true when v, is interpreted as
referring to the individual c. The answer then is-—vyes, if cRc, and no
otherwise. The general point then is that to give an open formula a truth
value relative to a model we have first to assign to its free variables
specific ““values” in that model.

We now introduce a method of interpreting the variables “all at once”
in %. Let x be a function that assigns to each positive integer n an
element x(n), or simply x,, of A. Such a function is called an ¥ -valuation,
and is represented as an infinite sequence x ={xy, X5, ..., X;, - - .). The i-th
member x; of this sequence is the interpretation of the variable v;
provided by the valuation x. In what follows we will have occasion to alter
valuations like x in one place only. We denote by x(i/a) the valuation
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obtained by replacing x; by the element a € A. Thus

x({a)=(x1, Xy .+ o5 Xim15 @ Xi1s - - -

Once variables have been interpreted, we can discuss matters of truth.
We are going to give a rigorous definition of the statement ““the formula ¢
is satisfied in N by the valuation x”’, which is symbolised

Ak [ x].

The definition of satisfaction is intuitively almost obvious, but to set it out
precisely is rather laborious. That such a rigorous definition really is
needed was first realised by Alfred Tarski, who gave one in [36], thereby
opening up what has become a substantial branch of mathematical logic,
known as model theory.

AtoMmic ForMULAE: Given a valuation x, each term ¢ determines an
element x, of A, defined by

{xi if 1 is the variable v;
X, = . .
“ lc if tisthe constant c.

Then
(1) A=t=~ul[x] iff x, is the same element as x,
(2) ArtRu[x] iff x,Rx,.

Thus the symbol = has a fixed interpretation on any model. It denotes
the identity relation A ={(x, y): x = y}.

ForMULAE:

B) Arpny[x] iff AE@[x] and AELH{x] -

4) Aeevi[x] iff AE@[x] or AEY[x]

(5) Uk~ [x] iff not AE@[x]

(6) ko> Ylx] iff either not AFe[x] or Ak y[x]

(7) AE(Vv,)e[x] iff for every ac A, Ak o[x(ifa)]

(8) AETw,)e[x] iff for some ac A, Ak p[x(i/a)].
In fact the satisfaction of a formula depends only on the interpretation of
free variables in that formula, as shown by the

Exercisk 1. If x and y are valuations with x; =y, whenever v; occurs free
in ¢, then

Ukop[x] iff Akel[yl g
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In view of this fact, if ¢ is a sentence (no free variables) then one of two
things can happen: either
(i) ¢ is satisfied by every valuation in %, or

(ii) ¢ is satisfied by no valuation in 9.

In case (i), we simply write Ak ¢, read “o is true in A, or “U is a model of
¢”’. In case (ii) we say that ¢ is false in U, or that ¢ fails in 2.

Now there are some open formulae that we might want to say are
simply true in . One such example is v, ~wv,—it comes out true no
matter how it is interpreted, i.e. it is satisfied by every valuation. To make
this usage precise, and to reflect the fact that only interpretations of free
variables are required we consider satisfaction of formulae by finite
sequences. The index of a formula is defined to be the number of free
variables that it has. If ¢(v;,..., ;) has index n, with v;,...,v; con-
stituting all of its variables, we write AE @[x;, ..., x, ] if Ak @[y] for some
(equivalently any) valuation y that has y;, =x;, y,, =X,,...,¥; =X,. This
means that ¢ is satisfied when v, is interpreted as x,, v, as X,, etc. Then ¢
is said to be true in A, Ak, iff forany x,,...,x, €A, Ak p[x,, ..., x. ]

ExgrcisE 2. Ak (v, ..., v ) iff UE(Vo,)(Vv,) ...V, )e.

EXERcISE 3. Ak (Vo)e[x] iff AL~ o)~ ¢[x].

11.3. Axiomatics

An $-formula ¢ is valid if it is true in all £-models. To axiomatise the
valid formulae we need to consider substitutions of a term ¢t for a variable
v in a formula ¢. We write ¢(v/t) to denote the result of replacing every
free occurrence of v in ¢ by t. This operation will “preserve truth’ in
general only if v is free for t in @. This means either that ¢ is the constant
¢, or that t is a variable and no free occurrence of v is within the scope of
a t-quantifier. This means then that t does not become bound when
substituted for a free occurrence of v.
The classical axioms for & are of three kinds.

ProposrrioNaL AxtoMs: All formulae that are instances of the schemata
I-XII of §6.3 are axioms.



238 ELEMENTARY TRUTH CH. 11, § 114

QuaNTIFIER Axioms: For each formula ¢ (v), and term t for which v is free
in o,

(un) Vo > ¢(vft),
(EG) e(v/t)y>3ve
are axioms.

(The names stand for ‘““universal instantiation” and “existential general-
isation”.)
IpentITY AxioMs: For any term ¢,
(I1) t~t is an axiom.
For any ¢(v), and terms t and u, for which v is free in ¢,
I2) (t=u)re(v/t) > @(v/u), is an axiom.
The rules of inference are,
DETACHMENT: From ¢ and ¢ > ¢ infer ¢,

and two quantifier rules:

(v) From ¢ o s infer ¢ = (Vo)is, provided v is not free in ¢

@ From ¢ > infer (3v)e 2 ¢, provided v is not free in .
Writing . ¢ to mean that ¢ is derivable from the above axioms by the

above rules, we have
Fec e iff for all £-models A, Ak .

This fact, that the class of valid ¥£-formulae is axiomatisable, is known as
Godel’s Completeness Theorem, and was first proven for elementary
logic by Godel [30]. There are now several ways of proving it, and
information about these may be found for example in Chang and Keisler
[73] and Rasiowa and Sikorski [63].

ExEeRrcise. Show that the following are CL-theorems:
t~u>u=t, t=uwA(u=u)>(t=u",

~@Av)~e>(Vv)e, (Vo)e>~Ev)~e.

11.4. Models in a topos

The interpretation of & in a topos is, like its classical counterpart, both
natural in its conception, and arduous in its detail. It is based on a
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reformulation in arrow-language of the satisfaction relation

AEo[x,,...,x,.]

In fact it is convenient to deal first with a more general notion. An integer
m =1 will be called appropriate to ¢ if all of the variables of ¢, free and
bound, appear in the list v,, v,, ..., v,,. Notice that it is permitted that
the list include other variables than those occurring in ¢, so that if m <1,
then [ is also appropriate to ¢. Now given an appropriate m, we can

discuss satisfaction of ¢ by m-length sequences. We put dFo¢[x,, ..., X,.]
iff AEe[y] for some (equivalently any) valuation y that has y, = x;
whenever v; is free in ¢ (such a v; will then occur in the list vy, ..., v,,).

Now given a model ¥ = (A, R, c¢) and a particular m, each ¢ to which m
is appropriate determines a subset, ¢™, of the m-fold product A™.
Namely,

" =Xy, X ) AR @[y, L, X T}
is the set of all m-length sequences satisfying ¢ in 2.

To know all the ¢™’s, for appropriate m’s, is to know all about
satisfaction of ¢ in Y. Moreover the rules for satisfaction for the proposi-
tional connectives correspond to the Boolean set operations on subsets of
A™. Thus the complement of ¢™ (i.e. the sequences not satisfying ¢) is
the set of sequences satisfying ~¢, the intersecting of ¢™ and ™ consists
of the sequences satisfying ¢ A ¢, and we get

m

(~e)"=—0¢
(erg)" =™ Ny™
(v =™ Uy™ ete.

(We see now the point of dealing with appropriate m’s. If m is approp-
riate to ¢ and ¢ it will be to ¢ A4 also, although the three formulae
might all have different indices.)

Tt would seem then that we could interpret ¢ in a topos as a subobject
of a™, for some object a, and then use the Heyting algebra structure of
Sub(a™) to interpret connectives, and hopefully quantifiers as well. This
approach to categorial semantics has been set out in dissertations by
students of Gonzalo Reyes and André Joyal at Montréal. The theory for
elementary logic is presented by Monique Robitaille-Giguére [75].

The alternative approach is to switch from subobjects to their charac-
teristic arrows. This accords with the propositional semantics of Chapter
6, and has the advantage for us that the interpretation of quantifiers is
more accessible to a “first principles” treatment. This latter theory has
been developed by Michael Brockway [76].
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Returning to our ¥-model ¥, we replace ¢™ by its characteristic
function fe]™: A™ — 2, where

1 if Uke[xq,...,x.]
0 otherwise

‘I(P]]m(<x1: s xm)) :{

Using the correspondence described in Theorem 1 of §7.1, we find that
[~el™==0 ol
lenyl™ =lol ~Alyl™ (= ~e dol Tyl™)
lovyl™ =l Llyl™
where 4, n, u are the classical truth functions on 2.
To treat quantifiers in this manner we consider an example. Suppose
that ¢ has just the variables v, v,, and v, and (with m =3), [¢P: A* -2

has been defined. We wish to define [Vv,oF: A>— 2. So, take a triple
<x1’ x2a x3>e A3 and let

B,={xc A: Ak o[x, x, x5}
={xeA:[oPx, x, x3)) =1}
The satisfaction definition tells us that
WEVo,0[x,, Xp, x5] iff By= A,
SO we want
1 if B,=A

0 otherwise.

|IVU2<P]]3(<X19 X2, X3)) = {

Now the assignment of the subset B, of A to the triple {x,, x,, x5)
establishes a function |¢[3 from A® to P(A). We now define a new
function V4 : P(A)— 2 by putting

V(B):{1 if B=A
A 0 if B#A (ie. B A)

Then the definition of [Vu,¢F becomes

A3 ]‘P]z g’(A)

Voo ]? Va HVUz‘P]P =V, ° |<P|g
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Under the isomorphism P(A)=2" we may construe |¢}3 as a function
A?—2%, and hence it becomes the exponential adjoint (cf. §3.16) of a
function f: A*XA —2, ie. f:A*— 2. Then f assigns a 1 or a 0 to a
4-tuple (X4, X,, X3, X4y € A* according as the function |e[3((xy, X2, X3)) = Xa,
assigns a 1 or a 0 to x,, i.e. according as [oP({(x;, x4, x5)) equals 1 or Q.
Thus if we define Ti:A*— A® by Ta({(xy, X2, X3, X)) ={X4, X4, X3), We
have that

T3

A* A®

lol?

2

commutes. But T3 can be given a categorial description. Recall from §3.8
that whenever j<m, we have a ‘“j-th projection map” pri*:A™ — A
taking each m-sequence to its j-th member. In the present case, the effect
of T3 is to place the result of the 4-th projection of a 4-sequence in its
2nd position. But (§3.8) this process can be described as a product
map — T2 is the map

A4 {prt.priprd) A2
Consequently we get a categorial definition of f, and hence of |¢[5. To
complete the picture we need such a definition for V 4. This was given by
Lawvere in [72], where he described V, as “the characteristic map of the
name of true,”. In §4.2 we described "true,' : 1 — 2, the name of true,,
as the arrow that picks true, out of 2. Since true, =y :A —2, we
identify true, with {A}<%(A). But the character of this last subobject is,
by definition, V 5. "true,! itself is the exponential adjoint of the composite

pr true

1xA—2> A 2 2, where pra({0,x))=x.

In summary then, [Vv,oP =V, o |¢|3, where V, is the character of the
exponential adjoint of true, o pr,, while |¢|3 is the exponential adjoint of
e o (pri, pra, pra).
For existential quantifiers, by analogy we have
AkTv,0[x;, x5, x5] iff B, #0

and so we put

|E|Uz<P]]3(<x1: Xy, X3)) = {1 if B,70

0 otherwise
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and hence

EN
[[31)2(9]]3
2
commutes where
1 if B#¢
3.~
AB=\g i B=0.

It follows that 3, is the character of the set
C={B: B#0
={B:for some x€ A, x< B}.
But then if € , = P(A) X A is the membership relation on A (§4.7), i.e.
€,={B,x): B A, and xe B},

we see that applying the first projection p, ((B, x)) = B from (A)X A to
P(A) yields py(e 4)=C.
Thus 3, is the character of the image of the composite

N
€A P(AYXA— P(A).

This places our account of quantifiers on an ‘“‘arrows only” basis. The
general definition of [Vu,e[", and [Jv,e]" comes from the above by
putting m in place of 4, and i in place of 2.

The function [t~ul":A™ — 2 has
1 if x,=x,

le~ul™((xs, . . -,xm>)={

0 otherwise
so

Am <p:n’ plT) A2

[t~ul” %
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commutes where p/": A™ — A, pi':A™ — A, and §, have

I (X, X)) =,
Pul(Xy o5 X)) =X,
and
1 if x=y

A.
0 if xgy' S

5.6 ) =1

8, (the “Kronecker delta”) is the character of the identity relation
(diagonal) A ={{x, y): x =y}< A”% Notice that A can be identified with
the monic (1,,1,): A — A?, that takes x to (x, x).

To define p", let f,:{0} — A have f.(0)=c.

Then

prir:A™ — A if t=v,
p= , £
“fe e A" —1——A if t=c

(Similarly for p).
To deal with the predicate letter R, let r: A — 2 be the characteristic
function of R< A X A. Then

Am <p:"’ pnT) A2'

[tRul™
2

commutes. The final notion to be re-examined is truth in a model. If
¢(v;,...,0,) has index n, then defining [¢ly: A" — 2 by

1 it Ake[x,...,x.]

0 otherwise

Ik - %) ={

we have

NEe iff forall x,,...,x, €A, lole({xy, ..., x.0=1
iff ﬂ‘PBQI: Xan
it [oly=true o~
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To describe [olly by arrows, we observe that if m is appropriate to ¢,
E[xy,...,x,] iff for any y,,...,Vy, having

Yillea e ayi,,:xm
%[‘:(P[yla RN ym]
Thus

An f Am

el el

2

commutes for any f, provided only that
AYI,
pr

f Am
R‘ /pr{: prite f=prp for 1sk=n
" :
This description fits in with the definition of truth of sentences. A
member-of A" i.e. an n-length sequence, can be thought of as a function

from the ordinal n={0, 1,...,n—1} to A. Thus, with n =0, A° is the set
of functions from the ordinal O (the initial object @) to A. Thus

AC=A%={f=1.

So if ¢ is a sentence, with index n=0, [ol:A°— 2 is a truth value
1— 2. We have

true it ko

k= {false if notUke.

But then for any m=1, any f:1— A™ makes

[[(p]lsx /[(p]l"‘
2

commute, for if Ak then [e]™ is the “constant’ function that outputs
only 1’s, while if not % Ea, then [¢]™ outputs only O’s.
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Exercise 1. Suppose that ¢(v,,..., v, ) has index n, and m is approp-
riate to ¢. Explain why

Am f An
2
commutes, where f((yy, ..., V) ={(Vi> - - -5 Yi)- O

The general definition

Let & be a topos, and a an &-object. We define several arrows related to
a.

DEerNITION 1. A, :a>— a Xa is the product arrow (1, 1,)
’ 8, :a Xa— () is the character of A,.
DEFINITION 2. YV, : 0% —  is the unique arrow making
[true 1

Qa

Va.
1 true Q
a pullback, where 'true,! is the exponential adjoint of the composite

rue, o pr,:1Xa—a— Q.

Dermamion 3. 3, :02* — Q is the character of the image arrow of the
composite p,°€,: € >> 0% Xa—> 0% where p, is the first projection
arrow, and €, (84.7) is the subobject of 2°Xa whose character is the
evaluation arrow ev, : 2* X a — ). Thus we have a diagram

S
e>>—">— ("Xa
Pa

Pa o €u(e) » B Ce), g
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where the bottom square is a pullback, and the top an epi-monic
factorisation.

DermnitioN 4. For each m and i, with 1<si<sm, T™ " :a™"'— a™ is the
product arrow

m+1 g+l m+1>

<pr 5 - -'sprt 1 3prm+1s pr1+1 3--'sprm
An &-model for &£ is a structure
A=(a,r,f.), where

(i) a is an &-object that is non-empty, i.e. €(1, a) # 0;
(ii) r:axXa—Q is an &-arrow;
(i) f.:1—a is an “&-element” of a.
Then given a term ¢ we associate with each appropriate m an arrow p",
where,
m_{ pri‘t:a™— a if t=y,
P f.ol:ta™m—a if t=c
Then for each ¥-formula ¢ and appropriate m we define an &-arrow
[e]™:a™ — Q inductively as follows:
(D) [t=ul™ =8,  {p", pi)

am P P a2

It =ul" a
0
) [eRul™=r < (pI", pI
3 [ Ayl =loI™ Algl™ = ~ o eI, [ul™)

m

a

LI

0 —OxQ— O

ln

0

@ e vyl =lel oyl
3 [~eI" ==
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©6) [o=2y¢I" =lel" > [yl
(7 Vuel™ =V, © el

a™ |<P|i 0°

A"

Vo, “
0

where || is the exponential adjoint of the composite of

Tm+1 e lm
a m+1 am Q

) Fuel™ =3, < ol

Now let ¢(v;, ..., ;) have index n. Thén let g be any arrow from a” to
a. Choose a ¢-appropriate m, and let f:a" — a™ be the product arrow

(P15 - - - s Pm)» Where
{p"k‘ia“ea, if j=i, some 1<k<n
P =

g otherwise.

Then define [¢ly:a™ — Q by

[l [oI

0

ie. [¢ly=[el™ o f. Then we define “U is an €-model of ¢ by

A g’f: ¢ lﬁ [[‘P]]El,[ = true,-.

Notice that if n=1, we could take g as any of the projection arrows
a™ — a, while if n =0, we need the assumption that a is non-empty for
there to be a g:1—a at all.

The demonstration that the definition of [¢ly does not depend on
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which g is chosen, or which appropriate m, depends on some lengthy but
straightforward exercises:

Exercrsk 2. If fh:a"= a™ have

pricef=priroch=pr;, forall 1<k<n,
then o™ o f=[el™ o h, for ¢(v,,...,v,) of index n.
Exercise 3. If m and [ are both appropriate to ¢, then

m f i

a™ —— a
/
{lee]m / fel
0

commutes provided that pr! o f =pr", whenever v, is free in ¢. Show that
such an f exists.

Exercise 4. If ¢(v,, . . ., v, ) has index n, and m is appropriate to ¢, then
. o, priv) n
a
0
commutes (cf. Exercise 1). O

From these results we obtain:

TaeoreM. If ¢ has index n, and m is appropriate to ¢, then

Ao iff loI™ = true,m

Proor. By Exercise 3 of §4.2, any arrow that ‘“factors through true is
true”, i.e. if

b —2 ¢

\ /o

commutes, then h =true,. But by the definition of [¢lly, and Exercise 4,
each of [¢lly and [¢]™ factor through each other, hence

lely=true,- iff [@]™ =true,-. O
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11.5. Substitution and soundness

An P-formula ¢ is called &-valid, €F ¢, if A F* ¢ holds for every €-model
A

THeEOREM 1. If €F¢@ and €F ¢ 2 ¢, then €F .

Proor. Let A be any €-model. Then A F¢ and AF ¢ 2 ¢, and so taking an
m appropriate to (¢ =¢), we have [¢I" = [¢I™ =l¢ > ¢I™ = true,~ (by
the Theorem at the end of the last section). But frue,~ is the unit of the
HA g(a™, 0), so (Exercise 8.3.8) in that HA, [o]™=[¢]™. But since m is
also appropriate to ¢, and k¢, we also have [¢]™ = true,~. Thus in
z(a™, Q), [yI" =true,~ and so as m is appropriate to ¢, AF . 0

So the rule of Detachment preserves &-validity. Since the propositional
connectives are interpreted as the truth arrows in a topos it should come
as no surprise that any instance of the schemata I-XI is valid in any &,
while there are topos models in which XII fails (an example will be given
later). We shall write F; ¢ to mean that ¢ is derivable in the system that
has all the rules and axioms of §11.3 except for XII. Without I1 and I2,
this is the system of intuitionistic predicate logic of Heyting [66]. Axioms
for identity equivalent to the ones given here are discussed by Rasiowa
and Sikorski [63].

SounpnNess THEOREM. If by ¢, then for any &, €E¢.

We will not prove all the Soundness Theorem, but will concentrate on
setting up the machinery that lies behind it. The method as always is to
show that the axioms are &-valid and the rules of inference preserve this
property. The strategy for the first part is to show that if ¢ is an axiom
then relative to U, [¢]™ = true,~, for some (or any) appropriate m. The
Theorem of the last section then gives A F .

To establish validity of the quantifier and identity axioms we must look
at the categorial content of the substitution process. If ¢ = ¢(v,/t), then in
Set, interpreting ¢ in ¢ as x, is the same as interpreting v; in ¢ as X, i.e.
AEPlxy, ..., %] iff AF@[x5,..., X1, X Xists - - - » X ], @and sO

Am

MN /pﬂm
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commutes, where f({x;, ..., %) ={Xes -+« Xicys X Xints -« - » Xpn)-
Correspondingly, in a general topos &, if i=<<m and ¢ is a term to which

m is appropriate (i.e. if ¢ =v; then j<m), the arrow §™[i/t]:a™ —a™ is
defined to be the product arrow

Pris .., prite, o7 P, - - P)-
SussTrrutioNn LEMMA. In any topos, the diagram

am _omfin] |

[{cp(v/rn\ ﬁpnm

commutes whenever v; is free for t in o. O
Exercise 1. pr* e 8[ifv;]= pri" o 8™ [ifv;1= pr}".
Exercise 2. If f:b—a™ has pri" o f=pr" o f, then

b

7N

wm Omliw] Y.
LA
commutes. (Interpret this in Set.)

Exercrse 3. For i, j<m,

m+1
Ti m

8li/y;]
4l +1

m+1 i m
—_—

a

m+1

a
(T, protd l

commutes.

Exercisk 4. If v; does not occur in ¢, then

e (wfo)Im o Ty =[eI™ o T,
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and hence
[Fve(v/opI™ =[Fviel™
IIVU,'@(Ui/U,‘)]]m = IIVUi<P]]m-

Consequently o™ =[yJ™ if ¢ and ¢ are “bound alphabetical variants”
of each other. [

To use the Substitution Lemma to show validity of the identity axioms
we examine the properties of the Kronecker delta.

TuaeoreMm 2. For any pair f,g:b—a, 8, °{f, g) is the character of the
equaliser of f and g.

Proor. Consider
h

c>— b

f, 2)
1, 1,) a

1 true Q

The top square is obtained by pulling {1,, 1,)= A4, back along (f, g). By
the universal property of that square qua pullback, it is an easy exercise
to show that h equalises f and g. But the bottom square is the pullback
defining &,, so by the PBL and the Q-axiom, §, ° {f, g) = x. O

CoROILARY. 8, ©{f, f)=true,, for f:b —a.
Proor. true, = x,, and 1, equalises the pair {f, f). O

From this Corollary we obtain immediately the validity of I1, i.e.
gkt~t For, [t=t]" =8, o (pl", pI"), where pi":a™ — a.
Now in Set, the formula (¢ =~ u) determines the set

D, ={xy, ..., %0 UEE=w)[x4, ..., Xu ]}
:{<x1a LR ] xm>: xt qu}'

Correspondingly in € we define d,, :d >> a™ to be the subobject whose
character is [t~ ul™.
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TueoreM 3. For appropriate m,
d™[ife] o d,, =8™[ifu] ° d.,..

Proor. Since [t=~ul™ =8, ° (p, p.y:a™ — Q, Theorem 2 tells us that d,,
equalises p, and p,, hence p, ° d,, =p, ° d,. Then

(DFiseeesPisvnsPlmy ©
=(pri°duy, .. 0 ° Qur o o5 Plim © dp)
=(Pr1© dup - - -5 Pu © Gy« 5 Pl © )
=Py ey Pus v v s Py © Qe [

CororLary. If m is appropriate to t, u, and ¢(v;), with v, free for t and u in
¢, then

le(u/OT Allt = ul™ =l /)™ ~Allt =~ ul™

Proor. Using the Substitution Lemma, we have

[e(u/OI™ © d,, =lel™ ° 8™[i/t] > d,,
=l ° 8™[i/u]° d,,
=[e@w/wl™  d,.

Since x,, =[t~ul™, Lemma 1(2) of §7.5 yields the desired result. O

Now in order to have A F[(t =~ u) A @(v;/t)]> @¢(v;/u) we require that for
some appropriate m,

[t=ul™ Ale /O Cle (v/w)I™

in the HA &(a™, ). But this follows from the Corollary, by lattice
properties, and so the schema I2 is &-valid.

We turn now to the validity of the quantifier axioms. For this we elicit
the basic properties of the quantifier arrows.

TuaeoreM 4. (1) (V, ° p,) > ev, = truegayg
(2) €U, é (aa ° pa) = tmeﬂ“xa
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Proor. (1) Consider

d—1t_ 0xa

|2
1 ltrue,! 0e

Y.
1 true ﬂ

The top square is obtained by pulling 'true,' back along p,. A now
familiar argument tells then that x; =V, ° p,. But by definition of "true,!
as the exponential adjoint of true, o pr,, the diagram

Ttrue,! X 1
1Xa —2—2> ()*Xa

true, o pr, a

0

commutes, which says precisely that the perimeter of

Ttrue,! x 1,
1Xa

pr, \u c
( € >—2— 0%Xaq

| 1

1

a

commutes, yielding an arrow 1Xa—> € that makes ‘true,! X1, factor

through <.
But consider the diagram-

f
0N*Xa

d \
(P8 pz°f)‘
%Ma

1Xa

where p,: 0% Xa — a is the 2nd projection.
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Using Exercise 8 of §3.8 we find that

(rtruea-l X 1a) ° <Ida p2° f>
—_"<rt—ruea-l ° Id: 1a ° D> ° f)

=<pa °f,p2°f>

={Pas P2 ° f (Exercise 3.8.2)
=1gaxa°f (Exercise 3.8.3)
=f

Thus f factors through ftrue,! X 1,. Since the latter factors through €,, in
Sub(02° X a) we have f < €,. Hence (Theorem 7.5.1),

Xr = Xe, = M€ qasqa,

which is the desired result.
(2) Exercise —use the diagram given with the definition of 3, to show

€, S g, where x, =3, ° p,. O
Now in Set, if we take the sequence (xy, ..., X,), form (X, ..., X, %),
and then apply T we end up with (Xy,...,% 1, X, Xis1r---» Xm)—

the overall effect is to perform 8[i/t]. Abstracting, we have

THEOREM 5. Let U7 :a™ — a™*! be the product arrow {1,~, pi™), Then

1) N
am U: a m+1
Sm[i/t“x /‘{"“
am
commutes, and

@

a™Xa fx1, 0*Xa

o o

am f Qa

commutes for any f as shown.

Proor. (1) Exercise — you will need to know 1.~ ={prt’, ..., pre).
(2) By definition of the product arrow fX1,,

Pa ° (fx1a) °© <1a"‘a P:)‘—“f ° pr °© <1a"‘a pt>
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(where pr:a™XxXa— a™ is projection)

=fo 1a"‘
=f O

Part (1) of this theorem, with the Substitution Lemma, gives

le(w/OI™ =lel™ - T/ - UM,

and since
0*Xa eu
Iw!!"xq T
/ﬂ’

m+1 (P]]m ° Tim+1

a

commutes, by definition of |¢|™ as exponential adjoint to [¢]™ o T, we
get

(/DI =ev, ° (" *x1,) > U™
Moreover by taking f=|@|™ in Theorem 5(2), we have

lol*=pa © (el"x1,) U™

Using these last two equations, and putting (Je|"X1,)° U=g, we
calculate

Vo 2 (/DI = 2 o (Vuel™ [ (v/DI™)
== o(V, ° el ev, © g)
=>o(V,°p, °8ev, °g)
= o(V,op, ev)° g
=(Yoop.>ev)eog

= frU€ e, © & (Theorem 4)
= true,m (a™ —> 0% Xa)
Hence the axiom Ul is valid. [}

ExXeRrcISE 5. Show that G is valid by an anologous argument using the
second part of Theorem 4. [

The soundness of the rules (V) and (3) are left for the enthusiastic
reader. The details have been worked out in Brockway [76].
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11.6. Kripke Models

The algebraic and topological interpretations of intuitionistic proposi-
tional logic extend readily to first-order logic. The truth-value of a
formula becomes a function [¢]™ : A™ — H, where H is a suitable Heyt-
ing algebra, e.g. the lattice of open sets of some topological space. A
comprehensive study of this type of model is undertaken by Rasiowa and
Sikorski [63] (cf. also its application to intuitionistic analysis by Dana
Scott [68].)

In his 1965 paper, Kripke gave a semantics for first-order IL that
generalises the classical notion of £-model described earlier in this
chapter. The basic idea is (or can be seen to be) that for a given poset P, a
model assigns to each p € P a classical model %,,. Atomic formulae have
their truth value at p determined by their classical truth value in %, and
then the connectives can be dealt with as in the propositional case (§8.4).
In fact Kripke’s theory did not discuss individual constants, or the identity
predicate, so in order to do so ourselves we introduce a slightly more
general notion of model than that considered previously.

Let P be a poset. An £-model based on P is defined to be a structure %A
consisting of

(a) for each pe P a classical £-model A, =(A,, R,, ¢,);

(b) for each arrow p=gq in P, a function A, : A, — A, such that

(1) if p=q then A, (c,)=c¢,
(ii) if p=gq then xR,y only if A, (x)R,A,,(¥)

(i) A, is the identity 1: A, — A,

(iv) if p=qr, then

A
A\ /
commutes. Thus (i) requires that A, take the interpretation of ¢ at p to
its interpretation at g, while by (i) A,, “preserves” the truth of atomic
formulae of the form tRu. Notice that the collection {A, :p € P} of sets
together with the transition maps A,, constitute a functor A :P— Set, i.e.
an object in the topos Set®. This is a consequence of the definition, rather

than the motivation for it. The reason why £-models are defined as above
is that this seems to be the natural way to treat = as the relation of
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identity of individuals. Kripke’s definition has in place of (b) the require-
ment that
pq implies A, A, and R, =R,

This amounts to putting A, as the inclusion A, < A,. As pointed out by
Richmond Thomason in [68], if ~ is interpreted as identity, such a model
would validate (t=u)v ~ (t=u), for distinct individuals are left distinct
by inclusions, and so remain “‘distinct forever”. Thomason’s solution is to
interpret =~ as an equivalence relation E, on A,, with perhaps E, # A.
However by introducing the transitions A,, we are able to give=its
natural interpretation and still not have the above instance of XII come
out valid. For it is quite possible to have x,#x, in A,, but A, (x)=
A,,(x,). We thus give an account of the notion that things not known to
be identical could come to be so known later, and also formalise some of
the discussion of §10.1.

Now if ¢ is an $-formula to which m is appropriate, we may define the
relation

A b=l s %]

for x,,...,x, €A, of satisfaction of ¢ in ¥ at p.

In the interest of legibility we will abbreviate A, (x) to x“

(1) If ¢ is atomic, Ak, @[x,, . .., X, Jiff A Felx,, ..., x,.]in the classi-
cal sense.

2 Ak, e Aglxy, ..., %, JIEAE, @[xy, ..., x, Jand A E, Ylxy, . .., X, ].

B Ak, oviplxy, ..., x, ] EAE @[xy,...,x]0r Ak, Ylxy, ..., X, ].

4) Ak, ~o[xy, ..., x,]iff for all g with pq, not Ak, @[x7,..., x%].

(5) Ak, @ 2 Ylx,, ..., x,] iff for all g with p=gq, if Ak, @[x,. .., x1]
then Ak, Plxf, ..., x3].

6) Ak, Jvelxy,. .., x,] iff for some acA,, Ak, o[x,,...,%_4, a,
Xir1s - > Xm]-

(7) Ak, Yoo[x,,...,x,] iff for every g with pgq, and every ac A,
Ak, o[xF, ..., x¢ 4, a, xTy, ..., X0

Thus Jvg is to be true at stage p iff ¢ is true of some individual present
at stage p, while the truth of Vv at p requires ¢ to be true not only of all
individuals present at p but also all that occur at later stages.

If ¢(v,...,v,) has index n, we put Ak, @[x,...,x] iff
Ak, o[y, ..., Yl for some (hence any) appropriate m and y;,..., ¥m
having y;, =x,,..., ¥y, =X,

Then we put Ak, ¢ (¢ is true at p) iff Ak, o[x,,...,x,] for all
Xy, ...,%, €A, and finally Ake (A is a model of ¢) iff for all peP,
Ak, ¢
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Exercise. 1. Show that this definition reduces to the classical notion of
£-model when P has only one member. '

Exercise 2. Show that if Ak, ¢[xy,...,x,] and pCg, then
Ak, o[xF,...,x3], any ¢. O

Now the P-model U is turned into a Set® model A*=(A r, f.), by taking
(i) A :P — Set as the functor associated with % described earljer.
(i) r:AXA = Q as the natural transformation with components
r,:A, XA, =, given by

rL({(x, y)=1{q: pEq and A, (x)R,A,,(¥)}.

(iii) f.:1-> A as the arrow with components (f.), :{0}— A, having
(f)p(0)=c,.

ExeRrcisE 3. Show that r,((x, y)) is an hereditary subset of [p).

ExEeRCISE 4. Show that xRy iff r,({x, y))=[p) and hence (cf. §10.3)

RpC———+ Ag

|

1M, 0

(4

is a pullback.
ExERcISE 5. Verify that r and f. are natural transformations. O

The exercises tell us how to reverse the construction. Given a Set”
model (A, r,f.) we specify 9, by defining ¢, by the equation (iii) in
Exercise 2, and defining R, by the equation in Exercise 4. This estab-
lishes a bijective correspondence between £-models U based on P and
Set®-models A* for &.

Undoubtedly the reader has anticipated that corresponding models
have the same formulae true in them. Indeed the connection is much finer
than that. Let us calculate [¢]™, relative to UA*, for ¢ an atomic formula.
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We have

Am {0, .pu) A2

IItRu]]"‘\ /
Q

where A™ is the product functor having A}'=(A,)™ etc, and
p.:A™ — A has components

(p), Ay — A,
where
(pt)p(<x17 ] xm>) = Xi-

From this we see that the component [tRull:AT— Q, assigns to
(X1, ..., X, the set

(%, %) ={q:pCq and x{Rx}
={gq:p=q and A = tRulx],..., x2]}.

This situation is quite typical, as expressed in the:

TrutH Lemma. For any ¢, and appropriate m, then relative to UA* the
Set®-arrow [o]™ : A™ — Q has p-th component

loly: AT — O,
where
Lok, .. %) ={q: p=q and A b olx3, ..., x41}.

Given the analysis of Set® in Chapter 10, the proof of the Truth Lemma
for the inductive cases of the connectives should be evident. For identities
and quantification we need to examine the arrows 84, V,, and 3,4, for a
Set®-object A :P— Set.

THEOREM 1. 8, :A XA = Q has
(8a)p 1A, XA, —Q,

given by
(3a)p(x, y)={q: pCq and x* =y}
PROOF. A, :A —>AXA has (4,), asthe map (1,14 ): A, = A (44),
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then can be identified with the identity relation A, ={(x, y): x=y}<
A, X A,. The characteristic function of this set is (8, ),, and so (cf. §10.3)

(8a)p((x, ¥)) ={q: P=q and (A, (x), Ay (YN € A}

as required. [

ExeRrcIseE 6. Use Theorem 1 to prove the Truth Lemma for the case that
¢ has the form (t=u). |

The definition of V, uses the operation of exponentiation in Set”.
Given functors F and G from P to Set, this operation produces a functor
GT :P — Set consisting of a collection {(GF), : p € P} of sets indexed by P,
together with transitions (GF),, : (G"), — (G"), whenever p_q. Now for
each p we define the restriction of F to the category [p) to be the functor
F | p:[p)— Set that assigns to each object g €[p) the set F,, and to each
arrow q — r in [p) (i.e. pCg=r) the function F,,. Similarly we define the
functor G | p, and then put

(G"),={o:F}p—G | p}

to be the set of all natural transformations from F | p to G | p. Thus an
element o of (G"), may be directly described as a collection {o,: pCq}
of functions, indexed by the members of [p), with o, : F, — G,, such that

Fq oq GC[
O-l’
F, G,

commutes, whenever pCqgCr.

Now one way of obtaining such a ¢ would be to take an arrow
7:F—= G in Set® and restrict it to the subcategory [p), i.e. let o=
{r,: pE=q}. This process also yields the transition map (G),, when pCgq.
For o €(GF), we put

(GF)pg(0)={0,: g1}

The arrow ev: G¥ XF — G has p-th component
ev, :(G"),xXF, —> G,

given by

ev, (0, x)) = 7, (x),
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for each

oe(GF), and x€cF,.

Exercise 7. Verify that (G"),,(co) is a natura. iransformation F | g —
G laq

Exercise 8. Relate this construction to its analogue for Set® in Chapter

9. 0

Now for an arrow 7:H XF > G the exponential adjoint

#:H—>G"

has as p-th component a function
7, : H, — (GF),.

For each y in H,,
(W ={ry: pq}

is a natural transformation
Flp=G!lp.

Its g-th component
o F, > G,

has, for each x€ F,,
To(x) = 7,(H,, (%), X).

The reader should now take a deep breath and go through that again.
Having done so he may test his understanding of the definition in some
further exercises:

EXERCISE 9. true, © pry : 1X A — Q has as p-th component {0} XA, — ),
the function assigning [p) to each input (0, x).

Exercise 10. The p-th component 'true, ', : {0} — (Q*), of "true,':1-—
0* may be identified with the natural transformation ¢:A | p—>Q I'p
that has o, : A, — £, where pCgq, given by o,(x)=[q), all x€ A,. Thus
a,=true, ° |, ie. "true,', (0)={true, o 1, :p=q}. O

TueoreM 2. V. : 02 — Q has

(Va1 (0%, = O,
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given by
(Va)p(a)={q:p=q, and for every r with qCr,
and every x € A,, g,(x) = [}

ProoF. For o €(Q2%),, since V, is the character of 'true,'! we have
(Va)p(0)={q: p=q and (2%),,(c) = "true,',(0)}
={q:p=q and {o,: qC=r}={true, o |, :qCr}}
={q:pCgq,and if g7 then o, =true, ° 1, }

from which the theorem follows. [

If, for each p, we define €,=(02%), XA, to be the set €,=
{0, x): 0, (x)=[p)} then

ep C(EA)D (QA)p XAp

l l(evA)p

true,
1— 0,

is a pullback, by §10.3, and the description of ev, given above. Thus the
inclusions (€, ), are the components of the “membership relation” on A,
i.e. the arrow €, : € >> 0 X A whose character is ev,. ‘

Exercise 11. The collection {€,: p € P} gives rise to a functor (Set®-
object) € as just mentioned. What are its transitions €,,?

ExercisE 12. Show that the component (p, ° € ,4), of the composite of
€4 and the first projection p, : Q4 XA — 0% has (ps © €,4), (0, x) = 0.

ExeRcisk 13. Let ¢ be the image arrow of p, © €4. Show that the p-th
component of ¢ is the inclusion

L, (QA)p,
where

i, ={o:for some x€ A, (0, x)c €} O

Tueorem 3. 3, :0* — Q has

(Fa),: (QY), > 0,
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given by
(Fa),(0)={q: p=q and for some xc A,, a,(x)=[q)}

Proor. 4, is the character of the image arrow of p, ° € .. Using
Exercise 13 then,

(Fa)(0)={q: p=q and (Q*),(0) €}
={q: p=q and for some x€ A, (o', x)e€,}
(where o’ = Q) (o) ={0,: qE1})
={q: pEq and for some x€ A, ai(x)=[q)},

and since o= g,, the result follows. O

The descriptions of ¥V, and 3, in Theorems 2 and 3 reflect the
structure of the satisfaction clauses for V and 3 in Kripke models. The
explicit link is given by

TueoREM 4. For each £-formula ¢ and appropriate m, the Set*-arrow
lof*: A™ — Q%
has as p-th component the function
fo A= (Q%),,
which assigns to {(xy, ..., X,)€ A} the natural transformation
f,(xe, ..., x . N)={0,:pEq} from Al ptoQ |p,
with o, : A, — Q, having
o, ) =lely((xy, ..., xty, x, x, ..., x3)) O

ExercisE 14. Prove Theorem 4.

Exercise 15. Show that [Fuell': Ay — Q, assigns to (x,...,X,) €AY
the collection

{g: pEq and for some x€ A,
lolfxd, .. ., xiy, %, Xy, - - xm ) =[g)}-

ExeRcISE 16. Derive the corresponding description of [Vv,¢[" in terms of
the [ols.

Exercise 17. Hence complete the inductive proof of the Truth Lemma.

|
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11.7. Completeness

Our first application of the Truth Lemma is a description of [¢ly: A" —
0, in Set®, where ¢ has index n.

TueoreM 1. [ol, : A} — Q, has
[ol, (%1, .. ., x)={q: pEq and Ak=o[x], ..., x3]
Proor. Exercise —use the fact that there is a commuting triangle

A, — AT

P
(o, ﬁ@ﬂr
QP

whenever m is appropriate to . |
TueoreMm 2. For any £-model U based on P, and associated Set® model
A*, we have for all £-formulae ¢,

Set?

Ak iff UWe— o

Proor. Take any p, and x;,...,x,€A,, where n is the index of ¢.
Then

p e[[q;]]p((xl, Lo, x,)) iff |I<P]]p(<x1, o x)=[p)

by properties of hereditary sets (§10.2, Exercise 3(ii)). Thus by Theorem
1

A=olxy, ..., %] i o, (xy, - .., x.)) = (truesn),
(X1, - ooy X))

Since this is the case for all n-length sequences from A,, we have
A= iff [ol, =(trues-),.

Since that is the case for all pe P,
ke iff [l =true,-. O

Now by the methods used by Thomason [68] (and also by Fitting [69]),
we can construct a canonical poset P, and a canonical model U, based
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on P, such that for any ¢,

(Thomason’s models interpret =~ as an equivalence relation E, on A,.
However by taking A, instead to be the set of E -equivalence classes,
and A,, the transition that maps the E,-equivalence class of x to the
E,-equivalence class of x, we realise Uy as a canonical IL-model on which
= is interpreted as the diagonal relation A.)

Now if A% is the associated model in the topos €<, = Set"=, by Theorem
2 we have

=0 iff | ¢
Hence, with the Soundness Theorem we get

From this follows a general

CompLETENESS THEOREM. If ¢ is valid in every topos, then Fy o.

An example of a topos model in which the Law of Excluded Middle
fails is now readily given. We take P as the ordinal poset 2=({0, 1}, <).
A has

%IO =<{ba C}; RO: C>
%Il = <{C}9 Rla C>9

where b and ¢ are two distinct entities, R, and R, are any relations on
Ay,={b, c} and A, ={c} of the reader’s fancy, and A, :{b, c} —{c} is the
only map it can be. Then if ¢ is the sentence (Vv)(v;=¢), ¢ is true at A,
but false at U,.

Thus we have not % k, ¢, but we do have A F, ¢, so not A F, ~ ¢, hence
not Ak, o v ~ .

Now we saw in §7.4 that, for propositional logic, a topos can validate
all instances of av —a (since Sub(1l) is a BA) but still not be Boolean
(since Sub(Q) is not a BA). This occurs for example in the topos M,.
Similarly we have M, E¢ v ~ ¢ whenever ¢ is an &-sentence, since then
[ely is a truth-value 1— Q. However the situation is not the same for
open formulae.
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TaeoreMm 3. If €Fov ~¢ for every £-formula @, then & is a Boolean
topos.

Proor. Let A be a £-model of the form {{2, r, true), i.e. a model in which
¢ is interpreted as the element true : 1 — 2 of (2. Let ¢(v,) be the formula
(vy;=¢). Then [oly:2—Q is 85°(1q, true,). By Exercise 2 of §5.1,
the equaliser of 1, and trueg is true 1— Q so (Theorem 2, §11.5) [oly =
Xerwe = 10. But HE@ v ~ @, 50 [¢ v ~ ¢l = trueg, ie.

lelyu (ol = trueq
ie.
10 U('_l ° 1Q)=truea

which by Theorem 3 of §7.4 implies that Sub(Q) is a BA. a

Exercise. The proof of Theorem 3 used the fact that £ had an individual
constant. Show that this assumption is not needed, by considering the
process of “‘adjoining’ a constant to a language. [

11.8. Existence and free logic

The assumption of non-emptiness, (&(1, a) # @), for £-models in a topos
has been needed, not just for interpreting constants, but also for our
definition of [¢ 1, and hence of truth in a model. In Set of course the only
empty object is the null set @, and if that is admitted as a model, then as
Andrzej Mostowski [51] observed, the rule of DETACHMENT no longer
preserves validity. Informally we regard any universal sentence VYvo, or
any open formula ¢(v), as being true of @, since there is nothing in @ of
which ¢ is false. On the other hand an existential statement Joe is false
in @ since the latter has no element of which ¢ is true. More formally,
since 2°={0}, V:{@} — 2 is simply the map true, while 3,:{@#} —2 is the
map false. Moreover if ¢ has index n=1, then ¢" =0, so [oly:@—2 is
the empty map, i.e. the map trues. Thus, e.g., the open formulae

(v =v)23vy(v,=0,)
and
(v, =0vy)
and true in @3, while the sentence
Jov,(v, = vy)

is false.
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There are two basic methods that have been developed of doing logic
when empty models are allowed (so called “free” logic). Mostowski modi-
fied the rule of DETACHMENT to read:

From ¢ and ¢ 2 ¢ infer s, provided that all variables free in ¢
are free in 1.

(Alternatively we allow ¢ to be detached only if Jv(v =0v) has also been
derived for each variable v that is free in ¢.)

This approach is used in the topos setting by the Montréal school (cf.
Robitaille-Giguere [75], Boileau [75]). The other method is to introduce
a special existence predicate E, with E(t) read “t exists”, and to modify
the definition of satisfaction to accommodate the possibility that “t may
not denote anything’. This notion has been studied by Dana Scott and
Michael Fourman [74], and has a very interesting interpretation for
sheaves and bundles, as well as Kripke models.

Let us consider an object a = (A, f) in the topos Bn(I) of bundles over
I. An element s:1—a of a is a global section s:I— A of the bundle,
picking one “germ” s(i) out of each stalk A;. But if the stalk is empty,
A; =@, then no such s(i) exists. So we see that if a has at least one empty
stalk (because f is not epic), that is enough to prevent there being any
elements 1 — a. (We also see that Bn(I) has many significant and non-
isomorphic objects that are empty in the categorial sense). At best we can
consider local sections s:D — A, with fes=D<]I, defined on some
subset D of I This possible if A;#0 for all i € D. Recall (§4.4 Example
6) that the set D = I can be regarded as a subobject of the terminal object
1 under the isomorphism

@ (D =Bn(I)(1, Q)=Sub(1)

that obtains for Bn(I).

A similar situation arises in the context of a Set® model (A, r, {.). If the
object (functor) A has element f, : 1 — A, then for each p, (f.),(0)e A,, so
A,#0. So if just one A, were empty, A would have no elements.
However even if A does have elements, it may be undesirable to
interpret a constant as an arrow of the form 1 — A. We may for instance
wish to expand our language ¥ to include a ““name” ¢, for a particular
element ¢, of some A,. ¢, would then be interpreted (as ¢§) only in those
A, for g €[p). Notice that [p) being hereditary can be identified (Exercise
2, §10.6) with a subobject D> 1 of the terminal object in Set®. The
interpretation of ¢, then yields an arrow f, : D — A with (f.),: D, = A,
picking out ¢ whenever pCgq, i.e. D, ={0}, and (f.), =!:0 — A, other-
wise.
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We are thus lead to replace elements 1 — a of an object a by arrows
d — a whose domains are subobjects d >> 1 of the terminal 1. Such
things are called partial elements of a. This comes from the more general
notion of partial arrow. In Set we say that f is a partial function from A to
B, written f:A~>B, if f is a function from a subset of A to B, ie.
dom f< A and cod f = B. In a general category € we put f:a~>b if fisa
€-arrow with cod f = b, and there is a ¥-monic dom f > a. Thus a partial
element of a is an arrow s:1~>qa.

Now in the Set case, if f: A~ B there may be some elements x € A
with x¢ dom f. This is often expressed as “f(x) is undefined”. But if we
introduce some new entity *, with * ¢ B, and write “f(x) = *”’ whenever
x¢dom f then we can regard f as being defined on all of A (we need
* ¢ B, or else “f(x)= *" could be compatible with x € dom f). A conve-
nient choice for * would be the null set @ (f(x) =@ means “x has null
denotation’). However it may be that ) B. We can get around this by
replacing each element y of B by the singleton subset {y} and replacing B
by the collection of these singletons, i.e. we replace B by its isomorphic
copy B'={{y}:yeB}. Then ¢ B’ so we add @ to B’ to form

B ={{y}: ye ByU{#}.
Then given f: D — B, with D c A, define f:A— B by
- {fx)} if xedomf=D
fx)= .
i} otherwise
It is clear then that
DEe—— A

f f

. AL < )
B>~ R
commutes, where ng(y)={y}, all yeB.
Moreover the pullback of n and f has domain

{y, x): {yt=F()} ={y, x): xe D and y =f(x)}
={{f(x), x): xe D}=D.
Thus, knowing f, we pull it back along n; to recover f. In fact (exercise) it
can be shown that f as defined is the only map A — B making this

diagram a pullback. Thus the arrow ng:B— B is a generalisation of
true: 1— 2. It acts as a “partial function classifier”’, providing a bijective
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correspondence between (equivalence classes of) partial maps f: A~ B
with codomain B, and ‘“‘total” maps f: A — B with codomain B.

ParTIAL ARROW CrLASSIFIER THEOREM. If & is any topos, then for each
&-object b there is an &-object b and an arrow n, : b > b such that given
any pair (f, g) of arrows as in the following diagram, there is one and only
one arrow f as shown that makes the diagram a pullback.

d >—%-

a
fJ [f
b >, p
O

The proof of this theorem is given in detail by Kock and Wraith [71].
To define m,, the arrow {-},:b — Q° is introduced as the exponential
adjoint to 8,:bXb—Q (in Set {-}, maps y to {y}). {-}, proves to
be monic, and so is { -}, 1,):b— 02° xb. The latter has a character
h:0° x b — Q and this in turn has an exponential adjoint k : Q® — QP (in
Set h is the identity on singletons and maps all other subsets of b to 9).
It is then shown that h o {-}, ={-},, so

b>— Qb :1’>A b

» h
2o

b

defining b as the (domain of the) equaliser of 14> and h, m, is the unique
arrow factoring {-}, through b.

Exercise 1. Examine the details of this construction in Set.

ExERcISE 2. Show that
n:1— 1
is a subobject classifier in any topos. [

Returning now to free logic, a semantical theory in the classical case
may be developed by allowing variables and constants to be interpreted in
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a model A={(A,...) as elements of A U{*}. The existence predicate E is
interpreted as the set (one-place relation) A, ie. for ac AU{*}

AFEMW)a] iff acA,
while the range of quantification remains A iltself, ie.
AEVoe iffforall aeA, Akolal

Under this sémantiCS, DETACHMENT preserves validity, while the axioms Ut
and EG are modified to

(Vo)o AE(t) > @(v/t)
and

o) AE() > (Fv)e

More details of this type of theory may be found in Scott [67]— where, as
is often done, E(1) is taken to stand for a formula of the form Jv(v=1).
Moving to models % ={aq, . . .) in a general topos, we see that instead of
dealing with partial elements 1~>a as suggested by the examples discus-
sed earlier, we may deal with elements 1 — d of the “object of partial
elements of a” (d always has elements, since a has at least the partial
element 0>+>a). The interpretation of the predicate E becomes the
character e:da — {2 of the monic m, :a >> d, and each formula ¢ deter-
mines an arrow [olly: (@) — Q. Then given a partial element f.:1a>a,

domf >——1

t

fc }v <
a Na d
[e l
1 true Q

we have [E(c)]=e ° f., and so as the diagram indicates,
[E(c)] is the character of dom f. >~ 1.
Hence
AEE() iff [E(@)ly=true
iff domf.>>1=1, in Sub(1)

iff f. is a “total” element of a.
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In the case of a bundle a =(A, f), d is a bundle of (disjoint) copies of the
sets A, with 7, acting on the stalk A, being the map n 4, LA —> A,. An
element f.:1— @ is essentially a partial element f,:1~>a, ie. a local
section f. : I~> A, with

domf, ={i: f.()#P in A}
Identifying truth values with subsets of I we may then simply say that
[E(c)l,=dom £,

and

AEE(e) iff f. is a global section.

Now the set A is isomorphic in Set to A +1, the latter being the disjoint
union of A and {0}. The iso arrow in question is the co-product arrow
[N, @41, where @, :{0}— A has @, (0)=@. Thus ¢, “is” the element of
A corresponding to the partial element !:()—> A of A. The obvious
question then arises as to whether a is isomorphic to a +1 in general. If
this were so, we would have in particular 1=1+ 1. But (Exercise 2 above)
1 is an object of truth values, and we know that 2 =1+ 1 only in Boolean
topoi.

To formulate the situation precisely, let §, : 1 — a, where a is an object
of topos &, be the unique &-arrow making

0—1

| b

a>—2—>d
a pullback, and form the co-product arrow

a —— a+1l«——1

E ['ﬂa’ ¢a]

Na 9,

D e---

Lemma. In Sub(d), @, is the pseudo-complement of n,.
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Proor. If —m,:~—a>—>a is the pseudo-complement of mn,, then n,N
—n,=0; (§7.2) and so

is a pullback. But the Partial Arrow Classifier Theorem then implies that
—1, is the only arrow that makes the diagram thus a pullback.
Now consider

!
0 —— —a

The top square is a pullback (exercise), and the bottom square is the
pullback defining ¢8,. Hence by the PBL the outer rectangle is a pullback.
In view of the unique role of —n, just mentioned, it follows that

—a

commutes, showing that —n, < J,. But the pullback square defining @,
shows that n, NP, =0;. In view of the description of —n, as the largest
element of Sub(a) disjoint from 7,, we get then @, < —n,, and altogether

ga =" Na- ™

TreoreMm. In any topos &, the following are equivalent
(1) For all &-objects a, [1,, 0,]:a+1—ad is iso
2 [1,90,1:1+1—1 is iso
(3) & is Boolean.
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Proor. Clearly (1) implies (2). But (3, is defined by the pullback
0 ——
11 T
which shows that when 7, is used as subobject classifier, i.e. 1, = true,
then @, is the arrow false. Hence (2) asserts that the co-product [true,
false] is iso, which yields Booleanness as we saw in §7.3.

Finally, if (3) holds, then applying the Lemma to any &-object a, we
have

1

—e————— =
s

naUQa:naU_na:‘lﬁ'

But 7, and @, are disjoint monics, so the Lemma following Theorem 3 of
§5.4 implies that [n,, @,] is monic, and hence is its own epi-monic
factorisation, i.e. n, U@, =[n,, #.] in Sub(d). Thus 1; =[n,, §.], and so
the latter is iso (Exercise, 7.2.1). [

ExercisE 3. Let a=f:A — B be an object in the topos Set” of set
functions. Form the co-product function

[f.idg]
A+B—2"5B,

and let[f,idg]” :(A+B)  — B be defined by the ~ -construction in Set.
Then

A—2— (A+BY

f [f, idg T

Ms

B B

commutes, where g is the composite of iy : A — A +B and N, .p.
Show that n,:a — d is a partial arrow classifier with respect to a in

Set”, where d is the function [f,idz] and m, is the pair (g, ng).
Apply the construction just given to the terminal 1 in Set™ to recover

the description of the subobject classifier for Set™ given in Chapter 4.
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11.9. Heyting-valued sets

Building on the ideas of the previous section, we might regard an object
in a topos as a “‘set-like”” entity consisting of potentially existing (partially
defined) elements, only some of which possess actual existence (are
totally defined). The variables in a formula that are bound by quantifiers
are then taken to range over actually existing elements. In the context of
this “logic of partial elements” we distinguish two concepts of sameness.
The sentence Jv(v =¢) is tantamount to the assertion that the individual
¢ exists, in that it asserts that there actually exists an individual that is
equal to c. So the sentence '

) E(@=3v(v=c)

is valid on this account. Here the symbol = is the biconditional connec-
tive read ““if and only if”’. The expression ¢ = is formally introduced as
an abbreviation for the formula

(e2P)n (P> o).

In arriving at (i) we have implicitly invoked the principle that anything
equal to an existing entity must itself exist. But more strongly than this we
are going to require that elements can only be equal if they exist. Equality
implies existence, and we thus have

(i) (v=w)2E(W)AE(w)

The other notion of sameness, for which we use the symbol =, is a
weaker concept of equivalence which does not differentiate elements in
regard to their lack of existence. Thus v and w will be equivalent if
neither of them exists, or if they both exist and are equal (=). We can
express this in a positive form as “if either of them exists then they are
equal” (and hence the other exists by (ii)). Thus equivalence is character-
ised by

(iif) (v=w)=E@)VEw)>v=w).
But then we see, conversely, that we may describe equality in terms of

equivalence, since equal elements are those that exist and are equivalent,
i.e.

(iiia) (w=w)=({(v=w)AE()AE(w)).

These notions are simply illustrated in the topos Bn(I). Let f and g be
two partial elements I~ A of a bundle A — I over I, and put

[f=gl={ieI: f(i)=g()}
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THhen [f =~ g1, being a subset of I, is a truth-value in Bn(I). We regard it as
the truth-value of the statement “f = g”°, or alternatively as a measure of
the extent to which f and g are equal. The expression “f=g” is
interpreted to mean that f(i) and g(i) are both defined (i.e. i is a member
of the domains of both f and g) and they are the same element of A. In
particular we must have

[f~¢ledomfndomg
and so by the analysis of 11.8 we can put
[f =gl <[ENINTER)]

which accords with (ii} above.
Notice that

If = f1={i: f() = f()} = dom f = [E(f)]

and so [f=f] is a measure of the degree of existence of f.

For the weaker concept of sameness, we regard the local sections f and
g as equivalent if they agree whenever they are defined. Thus as a
measure of the extent of their equivalence we take those i where neither
is defined, together with those where they are both defined and agree.
Thus

[f=¢l=—(dom fUdom g)U[f =gl
=—[ENOIUVE@DU[f~=gl

which corresponds to (iii), since —-BUC =B => C in ?(I).

Analogously, in Top(I) we define a measure of the degree of equality
of partial elements (continuous local sections) of a sheaf of germs by
putting

If ~el={i: f(i) =g ()",
applying the interior operator ( )° to ensure that [f~g[ is an open set,

i.e. a truth-value. [E(Hl=[f=f] remains as dom f, since local sections
always have open domains. For equivalence we put

[f=2l=[EOIUIE@]=>[f~¢],

where B = C=(—BUC)" is the relative pseudo-complementation of
open sets in I. Notice that whereas [f~f] may be a proper subset of I
(“f=£7 is not totally true) we always have [f=fI=1
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Emerging from this discussion is a generalised concept of a “‘set” as
consisting of a collection of (partial) elements, with some Heyting-
algebra-valued measure of the degree of equality of these elements. This
notion admits of an abstract axiomatic development in the following way:

Let (2, C) be a complete Heyting algebra (CHA), i.e. an HA in which
every subset A < (2 has a least upper bound, denoted |_|A, and a greatest
lower bound, denoted [ A, in Q. (Recall the definitions of Lu.b. and g.Lb.
given in §8.3). An Q-valued set ({2-set) is defined to be an entity A
comprising a set A and a function A X A — (0 assigning to each ordered
pair (x, y) of elements of A an element [x =y], of €, satisfying

[x=ylacly =xls
‘and
[x=ylamly =zl ,Clx=z],
for all x, y, z€ A. These two conditions give the (2-validity of the
formulae
(x=y)=>(y=x)
(x=y)A(y=z)>(x=z)
that express the symmetry and transitivity of the equality relation. The
element [x = x], will often be denoted [Ex],. We introduce the definition

[[x = y]]A = (“Ex]]Al—I“Ey]]A) > [x=~ Y]IA

The A-subscripts in these expressions will be deleted whenever the
meaning is clear without them.

Exercise 1. Prove that the following conditions hold for any (2-valued
set:

[x =~ yl=[Ex]

[x = yl=[x =yl [ExI[Ey]

[ExI—x = yI=[Ey]

[x=x] is the unit (greatest element) of 0

[x=vylcly=x]

[x=ylnly=zIclx = z]

pElx=yl iff prilEx]=lx=y] and prlEyl=[x=yl O
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The justification for using the subobject-classifier symbol for our CHA
is that the £2-sets form the objects of a category, denoted (2-Set, which is a
topos, and in which the object of truth-values is {2 itself! More precisely,
this object of truth-values is the 2-set  obtained by putting

lp~qlo=(p <9

for each p, q € Q, where

pegp=@P=>9r(@=>p)

is the 2-operation that interprets the biconditional connective =. Since
the members of £ are going to serve as truth-values we will use the
symbols L and T to denote the least (zero) and greatest (unit) elements of
{2 respectively.

ExercisE 2. [p=qlo=T iff p=gq.

Exercisk 3. [Eplo=T.

Exercist 4. [p~Tlo=p.

Exercisk 5. [p~1la=—p O

An arrow from A to B in (2-Set may be thought of in the first instance
as a function f: A — B. Its graph would then be a subobject of A X B and
so should correspond to a function of the form' A X B — (2. We interpret
the latter as assigning to (x, y) the truth-value [f(x) = y], giving the degree
of equality of f(x) and vy, i.e. a measure of the extent to which y is the
f-image of x. With this idea in mind we turn to the formal definition.

An arrow from A to B in 2-Set is a function f: A X B — {2 satisfying

(iv) [x = x T f(x, YD UK, y))
™) o ypm Ly =y =f(x, y')
(vi) 6 y)mfx, yNEly = y'Ts
(vii) [x = x]s=LH{f(x, y)): ye B}

The first two conditions are laws of extensionality (indistinguishability of
equals) and assert the {2-validity of the formulae

(x=xYA(f(x)=y)2(f(x")=y)
FER)=Aly=y)>(f(x)=y")
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(which are instances of the axiom I2 of §11.3). Condition (vi) gives the
validity of the ‘“‘unique output’” property for the arrow f. It can be read
“partial elements y and y’ are each the f-image of x only to the extent that
they are equal”. To understand condition (vii) we note that the complete-
ness of the HA Q can be used to interpret an existential quantifier, by
construing the latter as a (possibly infinite) disjunction (l.u.b.). That is, the
sentence “‘there exists a y € B such that ¢(y)” is construed as “o(y,) or
¢@(y,) or @(ys) or...” where y,, v,, . . . run through all the members of B,
and hence is given the truth-value
LIfle(y)]: ye B}, or IJB le(y].
ve
(Dually, construing a universal quantifier as a conjunction, the sentence
“for all ye B, ¢(y)” would be interpreted by
[T{fle(n]: yeB}, or I—IB le(y)1)
. ve
Thus we see that (vii) gives the validity of the statement that each x € A
has some f-image y € B, i.e. f is a total function. By giving an equation of
the form [Ex] =[¢] the suggestive reading “x exists to the extent that ¢”’,
we may read (vii) as “each element of A exists to the extent that it has an
image in B”.

In summary then, an arrow from A to B is represented, via its graph, as
an extensional, functional and total {2-valued relation from A to B. But
then it is not hard to see that the equality relation on A satisfies these
properties, i.e. the function (x, y) > [x=yl, is an arrow A — A accord-
ing to (iv)—(vii). And indeed it will be the identity arrow for A, with the
truth-value of “id(x)=7vy” thus being precisely that of “x=1y”, as it
should be.

The composite of arrows f:A—B and g:B — C is the function ge°
f:AXC— Q given by

g o f(x, z)= IJB (f(x, yNm gy, z))

(compare this to the statement “for some ye B, f(x)=y and g(y)=2z").

These definitions complete the description of (2-Set as a category. In
order to describe its topos structure we will from now on use the
notations f({x, y)) and [f(x) = y] interchangeably in reference to an arrow
f:A—B.

Terminal Object: This is the -set 1 comprising the ordinary set {0} with
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[0~=0]=T. The unique arrow f: A —1 is given by

[f(x)~0l=[Ex]

i.e. “f(x) equals 0 to the extent that x exists”.

Products: A XB is the product set A XB with the -valued equality
[x, y)= ', y)=lx =x'Tarlly ~y'ls

The projection arrow pr, :AXB — A has
lpra (x, y) =zl =[x = 2l Ex]I—[Ey]l

i.e. “the A-projection of (x, y) equals z to the extent that x and y exist
and x equals z”.

Pullbacks: To realise the diagram

D—:.8B
A
; C

as a pullback we define, for x€ A and yeB
Ep((x, y) = IJC (If(x) = c]lmlg(y)=cD)

(cf. “there exists ¢ € C with f(x)=c and g(y)=c”, i.e. “f(x)=g(y)”).
Then D is the product set A X B, with

[Kx, y)=(x', y)b = Ep({x, y))
M Ep((x’, yYrlx=xT,ly=y'ls
Then in fact,
[E(x, y)lo = Ep(x, y)

Le. “(x, y) exists in D to the extent that f(x)=g(y)”.
The “projection” f' is given by

I x, y)) = 21=Ep ((x, y)rillx = zls
and similarly for g’.
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Subobjects: In Set, the pullback is a subset D of A X B specified by the
condition “f(x)=g(y)”’. We have just seen that in {2-Set, D is a kind of
subobject of A XB that has the same partial elements as the latter but
with degrees of existence determined by the pullback condition. This sort
of phenomenon is typical of the description of subobjects in (2-Set.
Intuitively, a subset of A may be represented by a function of the form
s:A — . Such a function assigns to each x€ A an element s(x) of (2,
which we think of as the truth-value of “xcs”, or as a measure of the
extent to which x belongs to the ‘“set” s. Thus we also denote s(x) by
[x € s]. Formally, a subset of an £2-set A is a function s : A — (2 that has

(viii) [x eslmx=yl=ly es] (extensional)
and
(ix) Ixesl=lBEx] (strict)

ExampLE. Let E: A — (2 be given by

E(x)=[x=x]=[Ex]
E represents the set of existing elements of A. Since

[Ex]=[xeE]l
we have that “x exists to the extent that it belongs to the set of existing
elements of A”. O

Now an arrow f:A — B can be shown to be monic just in case it

satisfies

()~ 2Imlf(y) = zI=lx ~ y]

for all x, ye A and z € B. Such an arrow corresponds to a subset of B (the
“f-image” of A), and hence to a function s;: B — (2. This is given by

si(»)= L Ifx) =yl
i.e. “y belongs to s; to the extent that it is the f-image of some x€ A”.
Thus s¢(y) is the truth-value of “y e f(A)”.

Conversely, a subset s:B— {2 of B determines a monic arrow
f.:A,>>B. A, has the same collection B of elements as B, but with
equality given by

[x=yls =[x eslnlyeslmlx~yls
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i.e. “x and y are equal in A, to the extent that they are equal in B and
belong to s”°. The “inclusion” arrow f, has

I )= yI=lx~yl,..

Exercise 6. (I) Prove that s, =s.

(i) Let f, :A; >~ B be constructed from the set s; corresponding to a
monic f:A>>B as above. Then A, has the same collection of elements
as B. Define g:A— A by

le(x)=yl=[f(x)~=yl.
Show that g is iso in {2-Set and that

commutes. [

The import of this exercise is that subobjects A >>B of B are uniquely
determined by subsets B —  of B. The latter in fact form the power
object P(B) of B. To define this, let S(B) be the collection of all subsets
s:B — Q of B. Then $(B) comprises S(B) with the equality

[s = thy ) = ’_!B (s(x) & t(x))

(cf. “for all xe B, xe 8 iff xet”).
Exeraise 7. [s=tlp@,=T iff s=t (i.e. s and ¢ are the same function).
Exercisk 8. [Eslp@, =T
ExercisE 9. [x e slls = tl=x e ] O

Now the function e: A X S(A) — Q having e({x, s)) = s(x) satisfies (viii)
and (ix), and so is a subset of the -set AX%P(A). The corresponding
subobject f, is precisely the membership relation € ,>> AX%P(A) on A.

The definition of e thus gives that ‘(x, s) belongs to €, to the same
extent that x belongs to 5.
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SuBoBIECT CLASSIFIER: The arrow frue :1— €2 has
[true(0)~pl=[p=Tla

(“p is true to the extent that p equals '(”) and so
lorue(@)~pl=( © 1) =p.

Now let f: A — D be a monic, with corresponding subset s; : D — Q of D.
The character x; :ID — € of f has

Ix:(d) = pl=[Edlpls;(d) = pla
i.e. “x;(d) equals p to the extent that d exists and p is the truth-value of
‘Cd ef(A)?’ ’,‘
Exercise 10. Show that this construction satisfies the (2-axiom.

Exercisk 11. [false(0) =pl=[p~ Lla=(p & LY=—p

EXERcISE 12. The truth arrows A, v have

[prg=rl=[pra@)=rla
Exercist 13. [pugq=rl=[(puq)=rla

Exgercise 14. Show that the r.p.c. operation = : {2 X — (2 on the HA O
is a subset of £ X in the sense of (viii) and (ix) and that the correspond-
ing subobject is ©>—>Q x Q. Show that the character of the latter, i.e.
the implication arrow =':Q xXQ — Q has

[p=>"q=rl=@=>qor=lp=>g=rla O

Object of partial elements

In Set, a “singleton” is a set with exactly one member. In the present
context of partial elements we are more interested in sets with at most
one member. Formally a subset (extensional, strict function) s : A — 2 of
A is a singleton if it satisfies

(%) [x eslmly e sl=lx =yl
1.e. “elements of A belong to s only to the extent that they are equal’.
ExampLE 1. If a € A, then the map {a}: A — 2 that assigns to x € A the

degree [x=a] of its equality with a is a singleton in this sense, with

[x efall =[x~ dl.
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ExampLE 2. Suppose A is the 2-set (with 2 =%(I)) of all local sections of
some bundle over I, as considered earlier. Included in A is the empty
section ¢ ,, the unique section whose domain is the empty subset of I. For
any other section x, we have [x ~@,]=¢. Generalising to an arbitrary
and arbitrary Q-set A, the map {#,}: A — Q assigning | toeach x€ A is
a singleton, with [xe{@g, = 1. O

Exercisk 15. If s is a singleton

[xesle=@y e slely =xD
Exercise 16. {a}={b} iff [a ~bl=[Eal=[Ebl

ExercisE 17. Let s€ S(A) and p e (). The restriction of s to p is the
function s [ p: A — Q assigning s(x)mp to x. Show that s | pe S(A) and
that s [ p is a singleton if s is. (|

Now the object A is to be regarded as the 2-set of all subsets of A that
are singletons in the present sense. Thus A is to be thought of as itself
being a subobject of 2(A) and hence corresponds to a function
sing : S(A) — (2. The formal definition, for s € S(A), is

[sesingl= Tl (Ixeslnlyesl=>x=yl)

X, yEA

(cf. “for all x, ye A, if x and y belong to s then x=7v.)
The inclusion arrow m,:A >> A of A into A has

[nala) ~sl=[Eal,mls ~{alls.s,
(“nafa) is s to the extent that a exists and s is {a}”’).
Exercise 18. [sesingl=T iff s is a singleton.
Exercisk 19. [{a} = sI=[s e singll. O
Now we know that each bundle over I gives rise to an {2-set, where
0 =2(I), whose elements are the partial sections of the bundle. Con-

versely, given an arbitrary P(I)-set A, each i €I determines an equival-
ence relation ~; on the set

A, ={xeA:ie[Ex]}
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that is defined by
x~y iff ielx=yl

We then obtain a bundle over I by taking the quotient set A;/~—; as the
stalk over the point i. These constructions may be used to establish that
the categories Bn(I) and 2 (I)-Set are equivalent. They can also be
adapted to the case of sheaves of sets of germs, showing that Top(I) is
equivalent to @-Set, where @ is the CHA of open subsets of a topological
space I. These facts are a special case of a result of D. Higgs [73] to the
effect that (2-Set, for any CHA (2, is equivalent to the category of
“sheaves over {27, Precisely what that means will be explained in Chapter 14,
where we shall see also that £2-Set is equivalent to a subcategory of itself
in which arrows A —B may be identified with actual set-functions
A — B.

Elementary Logic in (3-Set

We have been interpreting the operations [ | and || informally as
universal and existential quantifiers in order to understand the construc-
tions that define £2-Set. When we come to interpret a first-order language
in this topos, these same operations may serve to give meanings to the
formal symbols V and 3. Moreover, instead of assigning a formula an
arrow of the type A — Q, we may work directly with functions of the
form A — 2, and take advantage of the presence of the extents [Ea] of
individuals to formalize the principle that quantifiers are to range over
existing individuals, _

To illustrate this approach, suppose that our language &£ has a single
two-place relation symbol R. Our basic alphabet is presumed to include
the existence predicate E and the identity (equality) symbol =. The
symbol = for equivalence is introduced according to clause (iii) at the
beginning of this section. Alternatively, = may be defined in terms of =
by (iiia).

For this language, a model in (2-Set is a pair A =(A, r) comprising an
-set A and a subset r: AXA — Q of AXA. (By Exercise 6, r corres-
ponds to a unique subobject of A X A, hence to a unique arrow AXA —
Q, and so this approach accords within the definition of ‘“model” in
§11.4). We then extend ¥ by adjoining an individual constant ¢ for each
element ce A. A truth-value [l e 2 can then be calculated for each
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sentence ¢ by induction as follows:

Atomic Sentences:
[e=dly=[c~dl, ,
[E@)ly =[Ecla
[eRdl, =r({c, d))

Propositional Connectives:

A, VvV, D, ~ are interpreted by M, L1, >, T in Q.

Quantifiers:

Vool = 11 (E(e) > o (v/e)ky)
(“¢(c) holds for all existing ¢)

[Foely= L_,L (E(e) A o(v/0)l)
(“(¢) holds for some existing ¢”).

Satisfaction: For a formula ¢(v,,...,v,) we define Akelcy, ..., .l
where ¢4, ..., ¢, € A, to mean that [¢(v,/e,, . . ., v/e, ) =T. Then truth-
AE@-of ¢ in A can then be defined as usual by

Akoplcr,...,c,] forall ¢y, ...,c,€A.

ExERcise 20. Show that the following are true in :
(t=uwyre/u)> e(vft)
Vo,((v, =v)=(v, =) 2 (v, =)
Ve AE(t) 2 ¢(v/t)
e/ AE(t)D Fve
E@®)=3v(v=1)
Av(v=t)=Fv(v =t)
Vo, Vu, (v, = v)=(v, = v,))
Voe =Vo(E(v) > ¢)
Fue=FvEM@®)Ar @)
VoE(v)
(E(v)VE(@) 2 (v =) 2 (v =v;)
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ExErcisE 21. Show that the following rules preserve truth in U:
From o AE(v)D> ¢  infer o >Vug
From ¢y AE(w)D ¢ infer Iov>oo

provided in both cases that v is not free in ¢. O

This semantical theory will be used in Chapter 14 to define number-
systems in 2-Set. We will find it convenient there to have available the
following result, which simplifies the calculation of the truth-value of
quantified formulae in some cases by allowing the range of quantification
to be further restricted.

‘We say that a subset C of A generates the Q-set A if for each a€ A,

[Ealy= L [a=cls

ceC

ExERrcisE 22. If C generates A then

Voely = l—lc ([(E(c) = o(v/0)]y)

and

Foely= UC ([(E(c) A (v/e)k) O

11.10. Higher-order logic

In closing this chapter on quantificational logic we mention briefly the
study that has been made of the relationship between higher order logic
and topoi.

Higher order logic has formulae of the form (VX)¢ and (3X)¢, where
X may stand for a set, a relation, a set of sets, a set of relations, a set of
sets of sets of . . ., etc. So for a classical model W =(A, . ..) the range of X
may be any of P(A), P(A"), P(P(A")), etc. Analogues of these exist in
any topos, in the form of Q¢ 0%, etc., and so higher order logic is
interpretable in €. In fact the whole topos becomes a model for a many
sorted language, having one sort (infinite list) of individual variables for
each &-object. Given a theory I' (i.e. a consistent set of sentences) in this
language, a topos &, can be constructed that is a model of I'. Conversely
given a topos € a theory I'y, can be defined whose associated topos &, is
categorially equivalent to €. These resulis were obtained for the logic of



CH. 11, §11.10 HIGHER-ORDER LOGIC 287

partial elements by Fourman [74] and subsequently for the other ap-
proach to free logic by Boileau [75]. They amount to a demonstration
that the concept of ‘“‘elementary topos” is co-extensive with that of
“model for many-sorted higher-order intuitionistic free logic”, and hence
provide a full explication of Lawvere’s statement in [72] that ‘“the notion
of topos summarizes in objective categorical form the essence of ‘higher-
order logic’.” The work of Fourman incorporates a number of interesting
and unusual logical features, which we will outline briefly.

Firstly, as already noted in §11.8, variables are to be thought of as
ranging over, and constants denoting, potential elements of an &-object a.
Thus a formula is interpreted by an arrow of the form [o¢]:(@)" — O,
corresponding to the subobject of all n-tuples of potential elements that
satisfy ¢.

Next, the system includes a theory of definite descriptions as terms of
the formal language. A definite description is an expression of the form
lve, which is read “‘the unique v such that ¢”’. The expression serves as a
name for this unique v whenever it exists. The basic axiom governing this
descriptions-operator is

Vu((u =lve())=Vo(e(@)=(v=u)))

which has the reading “‘an existing element u is equivalent to the element
lvp(v) iff u is the one and only existing element satisfying ¢’ (recall that
quantifiers range over existing elements).

To interpret a definite description semantically in € suppose, by way of
example, that the €-arrow [¢]: @ — 2 has been defined, where ¢(v) has
index 1. Let f:1— Q® be the name of the arrow [¢lc n,:a — 2 (cf
§4.1). (In Set, f corresponds to the element

lol={xea: o(x)}

of the powerset of a, i.e. the subset of a defined by o).
Form in & the pullback

b—1

] jf

{ta

a -, 0“
of f along the “singleton arrow” {-},, that was defined in §11.8. (In Set
we may regard g as the inclusion b <> a, with b =|¢| if |¢| is a non-empty
singleton, i.e. if || ={x} for some x € a, and b =} otherwise). Notice that
g:1~mq, i.e. g is a partial element of a, and so corresponds to an arrow
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g:1—a. We take this g to be [lvp]l. (In Set, taking @ as aU{*},
corresponds to the element x of a if |¢|={x}, and is the “null entity” *
otherwise.)

Of course the description operator and its semantic interpretation can
be developed in the context of first-order logic. In higher order logic it
becomes particularly useful, in that is provides simple and straightforward
ways of expressing both the Comprehension Principle, and the operation
of functional abstraction, the latter being the process of defining a term
that denotes a function whose graph is specified by a formula.

To consider Comprehension, suppose by way of example that ¢(v) has
a single free variable whose range is a collection of entities of a certain
level, or type, in a higher-order structure comprising subsets, sets of
subsets, sets of sets of subsets etc. In a higher-order language there will
also be variables w that range over the subsets of the range of v. Then the
sentence

EiwVo(e(v)=w())

asserts the actual existence of the unique set whose elements are precisely
those entities that satisfy .

If instead (v, w) has two free variables, it defines a relation when
interpreted. We denote by ¢’(v) the term

we(v, w).

If the interpretation of ¢ is a functional relation (one with the unique
output property) then this term will provide a notation for function
values. Functional abstraction may now be performed by forming the
expression

luVoVw(u(o, wy=¢’(v)=w)

(which is abbreviated to Av - ¢’(v)), where u is a variable that ranges over
the relations from the range of v to the range of w. The expression
Av - ¢’(v) may be read “the function which for input v gives output
¢’ (v)”.

The details of this higher-order language and its use in characterising
topoi as models of higher-order theories may be found in Fourman’s
article “The Logic of Topoi” in Barwise [77]. This work is important for a
broad understanding of the structural properties of topoi. It offers a
different perspective to the one we are dealing with here. Our present
concern is to develop the view of a topos as a universe of set-like objects
and hence, qua foundation for mathematics, as a model of a first-order
theory of set-membership. We take this up in earnest in the next chapter.
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. the mathematics of the fu-
ture, like that of the past, will
include developments which are
relevant to the philosophy of
mathematics.... They may
occur in the theory of categories
where we see, once again, a
largely successful attempt to re-
duce all of pure mathematics to a
single discipline™.

Abraham Robinson

While a topos is in general to be understood as a “generalised universe
of sets”, there are, as we have seen, many topoi whose structure is
markedly different from that of Set, the domain of classical set theory.
Even within a topos that has classical logic (is Boolean) there may be an
infinity of truth-values, non-initial objects that lack elements, distinct
arrows not distinguished by elements of their domain etc. So in order to
identify those topoi that “look the same” as Set we will certainly impose
conditions like well-pointedness and (hence) bivalence.

However, in order to say precisely which topoi look like Set we have to
know precisely what Set looks like. Thus far we have talked blithely
about the category of all sets without even acknowledging that there
might be some doubt as to whether, or why, such a unique thing may exist
at all. We resolve (sidestep?) this matter by introducing a formal first-
order language for set-theory, in which we write down precise versions of
set-theoretic principles. Instead of referring to ‘‘the universe Set”, we
confine ourselves to discussion of interpretations of this language. The
notion of a topos is also amenable to a first-order description, as indicated
in the last chapter, and so the relationship between topos theory and set
theory can be rigorously analysed in terms of the relationship between
models of two elementary theories.

Before looking at the details of this program we need to develop two
more fundamental aspects of the category of sets.

289
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12.1 Axioms of choice

Iet f:A—» I be an epic (onto) set function. Then, construing f as a
bundle over I, we may construct a section of f, i.e. a function s:I — A
having fos=id;. The point here is that for each i € I the stalk A; over i is
non-empty (since f is onto) and so we may choose some element of A,
and take it as s(i) (unless I =0, in which case A ={ so we take s as the
empty map !:9 — @§). The section s is sometimes said to “split” the epic f.
In sum then we have produced an argument to the effect that in Set, all
epics split. We lift this now to the categorial statement

f s
ES: Each epic a— b has a section b — a with fos=1,.

ExeRrcisE 1. Show that a section is always monic. O

The principle ES is a variant of what is known as the axiom of choice.
The name relates to our making an arbitrary choice of the element s(i) of
A,. The function s, in selecting an element from each A, is called a choice
function. Informally, the axiom of choice asserts that it is permissible to
make an unlimited number of arbitrary choices. It was first isolated as a
principle of mathematical reasoning by Zermelo in 1904 and subse-
quently has been shown to be implied by, indeed equivalent to, many
substantial ‘‘theorems” of classical mathematics. To many classically
minded mathematicians the axiom of choice is a perfectly acceptable
principle. It is difficult for someone so minded to see what could be wrong
with the above argument that purports to show that ES is true of Set.

Nonetheless the status of the axiom of choice remained in doubt until
Paul Cohen [66] proved that it was not derivable from the Zermelo—
Fraenkel axioms for set theory (Gddel [40] had earlier shown that it was
not refutable by this system). The point would seem to be that the choice
function s cannot be explicitly defined in terms of any set-theoretic
operations involving f: A — I. In general we are unable to formulate a
rule for s of the form “let s(i) be the element of A; such that ¢, where ¢
is some property that demonstrably is possessed by only one element of
A;. So if we wish to include ES in our account of what Set looks like we
will simply have to take it as an axiom (unless of course we adopt some
equally “unprovable” axiom that implies it).

Now if f: A — I is a function that is not onto, then f will not have a
section. This, as explained in §11.8, is why the Bn(I)-object a =(A, f) is
empty, i.e. has no elements 1 — a. However f will have a “partial
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section” s:I~— A. For, taking the epi-monic factorisation
A—T-1
N
f(A)

of f we find that a section of the epic f* is a partial function from I to A.
Now the image f(A) is sometimes known as the support of the bundle
a. It is the subset of I

Fig. 12.1.

over which the stalks actually “sit”. As a subset of I, f(A) is identifiable
with a subobject of 1 =(I, id;) in Bn(I). Indeed since

commutes in Set, so does

a—f——>1
NS

sup(a)
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where the object sup(a) is the function (bundle) f(A) = L
Lifting this to a general topos & we define the support of an &-object a
to be the subobject sup(a) — 1 of 1 given by the epi-monic factorisation

a —— 1

N

sup(a)

of the unique arrow !:a — 1.
We may now formulate axiom

SS (supports split): The epic part a - sup(a) of the epi-monic factor-
isation of a — 1 has a section s :sup(a) — a.

Notice that a splitting s of the support of a yields a partial element
s:1~—>a of a, so the principle SS is closely related to the question of
(non) emptiness of objects. To pursue this we need axiom

NE: For every non-initial a there exists an arrow x:1— a.

LemMa. In any &, if g:a>>1 is a subobject of 1, then there exists an
element x:1—>aof aiff g=1,iffg:a=1

Proor. This is the essence of Case 2 in the proof of Theorem 5.4.2. [
CoNVENTION. € is always non-degenerate, i.e. 02 1.

NotaTioN. We write £ENE, €ESS etc. to mean that NE (SS etc.) holds
for .

TueoreMm 1. For any topos &,

ZENE iff € is bivalent and &FSS.
Proor. Suppose €ENE, and let t:1— Q be a truth-value. Pull ¢ back
along T to get g:a >>1 with x, =t Then if t# 1, a is non-initial, so by

NE there exists x : 1 — a. But then by the Lemma, g =1, so x, = x1,, L.€.
t=T. Hence & is bivalent.
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To see why supports split, consider

a———»l

NS

sup(a)

If sup(a)=0, then a =0 (Theorem 3.16.1, (2)) and so the unique arrow
sup(a)— a will split the unique a — sup(a). If not sup(a) =0, then by NE
there is an element 1-—sup(a), from which by the Lemma, sup(a) is
terminal, sup(a)=1, and hence |, is epic. Then if a=0, |, would be
monic (Theorem 3.16.1, (4)), hence altogether iso, making 0=a =1, and
thus & degenerate. SO we may invoke NE again to get an element
x :1— a. Since sup(a)=1 this yields an arrow sup(a) — a which must be
a section of the unique !:a —» sup(a).

Conversely if & is bivalent then in Sub(1), sup(a) >—» 1 can only be 0, or
1,. But if as20, then sup(a)# 0 (as above), so it cannot be 0,. We must
then have sup(a) > 1=1,, so sup(a)=1. Then if € £SS, there is an
arrow sup(a) — a, hence an arrow 1 — a. This establishes NE. -

CoRroLLARY. & is well-pointed iff &€ is Boolean (classical), bivalent, and
has splitting supports.

Proor. Theorem 5.4.5 (proven in §7.6) gives € well-pointed iff & is
classical and £+-NE. O

Even when there are more than two truth-values, the splitting of epics
in a Boolean topos has implications for extensionality. We will say that &
is weakly extensional if for every pair f,g:a= b with f#g there is a
partial element x:1~—a such that fex# gex. Recall that x:1m—a
means that cod x = a and there is a monic dom x »— 1 (hence x could not
be 1:0—a if fox# gox).

Category theorists will recognise ‘& is weakly extensional” as “Sub(1)
is a set of generators for €.

THEOREM 2. If & is Boolean and &FSS, then & is weakly extensional.

Proor. Let h:c>>a equalise f,g:a=3b, and let —h:—c>>a be the
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complement of h in Sub(a). Then as in §7.6, if f#g, —c#0. Now if
y :sup{—c) —> —c is a section of —c¢ —» sup(—c),

—c—F, 4

N
sup(—c¢)

then putting x =—hey gives x : 1m—a. If fox = gox, then reasoning as in

§7.6,
sup(—c¢) NA

a —=3 b

x would factor through h, ultimately making sup(—c)=0 and hence
—c =0. Therefore x distinguishes f and g. O

ExampLE. In general Bn(I), though Boolean, is not extensional (well-
pointed), since NE fails. However Bn(I) is weakly extensional. Given
bundles a=(A, h), b=(B, k) and distinct arrows f,g:a—=b, then the
distinguishing x : 1~w—a, as in Theorem 2, is a local section of a, defined
on a subset —C of the support h(A) of a. For each i € —C (hence A;#0),
x selects an element x; of the stalk A; that distinguishes f and g, i.e.

f(x) # g(x). 0

Returning to Set once more, let f: A — I be any function and, invoking
ES, let s:f(A)— A be a section of f*: A -» f(A). Then if A#@, by
choosing a particular x,€ A we can obtain a function f:I— A by the
rule

s(y) if yef(A)
X, otherwise.

s =|

Of course if there exists yZf(A), g will not be a section of f, since
f(g(y)) € f(A). However, starting with x € A we find that g(f(x)) = s(f(x))
lies in the stalk over f(x) so f simply takes g(f(x)) to f(x), i.e. fegef(x)=
f(x). This yields another version of the axiom of choice, due to Maclane,
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that has the categorial formulation

f
AC: If a0 then for any arrow a—b there exists b->a with

fegef=f.
TueoreMm 3. If EAC, then €ENE, €FES, and & is bivalent.

Proor. If a#0, apply AC to !:a—1 to get g:1— a. Hence NE holds.
To derive ES, observe that if f:a — b is epic, and a =0, then f is monic,
(Theorem 3.16.1), hence altogether iso, so is split by its inverse. If a0,
apply AC to get g: b — a, with fogef=f=1, of. Since f is right cancella-
ble, we get fog =1,, making g a section of f.

For bivalence, observe that if g:a>—> 1 has a0, then by AC there is
an arrow 1 — a. Hence, as in Theorem 1, g =1,. Thus Sub(1) has only the
two elements 0; and 1,. O

The argument that yields AC from ES in Set will lift to a topos only if
that topos is sufficiently “‘Set-like”. To see this, consider a set I with at
least two elements. Then Bn(I) has at least four truth-values (subsets of I)
so by the last result AC fails (alternatively observe that NE fails). But if
epics split in Set, they will in Bn(I) also. For h:(A, f) - (B, g) means
that h is an onto function with

h

A—*>» B
N
I

goh=f. But then if s:B >> A is a section of h,

B>—— A
NP4
I

will commute, making s a splitting of h in Bn(I).

Rather than rely on the assumption that ES holds in Set, we can use the
result of Godel that there exist models of formal set theory in which the
axiom of choice is true. We may then construct a category of bundles of
“sets” from such a model to obtain a topos in which ES holds but AC
fails.

Tueorem 4. If €EES, and € is well-pointed, then €EAC.
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Proor. Take f:a — b and perform the factorisation
f

a—— b

P\ s
fla)
Since & is well-pointed, it is Boolean, so imf has a complement
—im f:—f(a)>> b, with imfU—im f=1, in Sub(b). But imf and —im f
are disjoint monics (Theorem 7.2.3), and so [im f, —im f]: f(a)+—f(a) —
b is monic (Lemma, §5.4). But then

[im f, —im f]=im f U —im f =~1,,

and so this co-product arrow is iso. This allows us to use b as a
co-product object for f(a) and —f(a), with im f and —im f serving as the
associated injections.

Now suppose a#0. Then as well-pointed topoi satisfy NE, we take
some x:1—a and let h:~f(a)—a be the composite x°!:—f(a)—
1— a. Since EFES, we have also a section s:f(a)— a of *. Then

/ 3

fla)y —— Zmf —f(a)

p

feols, h]°f=lrnf°f*°[8, hleim fof*

=im fof*ogof* (im f as injection)
=im fof* (fFos =Nga)
=f

Thus g=[s, h] gives the required arrow for AC. O

The hypothesis of Theorem 4, as stated, assumes more than it need do.
We know that “well-pointed” = “NE plus Boolean”. But in the presence
of ES, the last of these conditions can be derived! We have the remarka-
ble fact, discovered by Radu Diaconescu [75], that the axiom of choice
implies that the logic of a topos must be classical.
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Tuaeorem 5. If & satisfies ES, then & is Boolean.

The basis of Diaconescu’s result is that if epics with domain d +d have
sections, then each subobject f:a>— d of d has a complement in Sub(d).
The construction, as described in Boileau [75], is best illustrated in Set,
where we can see how it produces a categorial characterisation of the
complement —A in D of a subset A < D.

(1) Form the co-product i,,i,:d =d +d, with injections, iy, i,.

In Set we take D, and D, as two disjoint “copies” of D, containing
copies A; and A, respectively of A. D+D is D, UD,.

-A
N D
/N
-A A
AN T LA D+D

Fig. 12.2.

(2) Let g:d+d — b be the co-equaliser (hence an epic) of i;of:a —
d+d and iyef:a—d+d.

In Set f is the inclusion A < D. The effect of g is to amalgamate the
two copies A, and A, of A into a single copy A'= A, and to leave —A;
and —A, as they are

D+ D
(4N N
//AI\\ ’/AZ\\\
g
v
Fig. 12.3.

(3) Let s:b>—>d+d be a section of g.
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In Set, s acts to literally split A’ into two pieces, part going into D, and
part into D,

A Wy

-A A
N /N D+D
"&7: \ - E’&?\
Fig. 12.4.

A1 is the s-image of A’ in D,, A’ the s-image in D,.
(4) Form the pullbacks of i; and i, along s

C Iy A
A
S -Ag -Ay
E— * N
A A B

Fig. 12.5.

Y

In Set the pullback of i; produces the subobject (inclusion) of D whose
domain is obtained by removing from D the part isomorphic to A%.
Similarly the pullback of i, along s yields

L——-} "~
,
s AN

Fig. 12.6.
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(5) Form the intersection (pullback) of j; and j,.
In Set this gives the intersection

—
j

|
N

10N
4
AN

Fig. 12.7.

of the domains of j, and j,, i.e. the subset —A.

The five steps of this construction can be carried out in any topos to
show that the intersection of the pullbacks of i; and i, along a section of
the co-equaliser of the diagram

f i
a>——d l: d+d
2
is a complement of f in Sub(d). Thus all elements of Sub(d) have
complements if £FES, and since Sub(d) is a distributive lattice, it must
therefore be a Boolean algebra. A detailed proof of Theorem 5, using a
modification of this construction, and due to G. M. Kelly, is given by
Brook [74]. There is also a proof given in Johnstone [77], Chapter 5.

Note that, by §7.3, for € to be Boolean it suffices to have a complement
for true : 1 — Q in Sub(2). Thus a sufficient condition for Booleanness is
that the co-equaliser of

] e, o~y 940
5]

splits.
Tueorem 6. EAC iff €FES and €ENE. O

We have already noted that topoi, e.g. Bn(I), can have splitting epics
but not be fully extensional (well-pointed). However in view of Theorem
5, we see from Theorem 2 that if £FES, then & is at least weakly
extensional, since then €SS and & is Boolean. Extensionality on the
other hand does not imply ES or AC. By Cohen’s work [66] there are
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models of set theory, hence well-pointed topoi, in which the axiom of
choice fails.

It follows from the foregoing results that AC implies Booleanness for
any topos. An independent proof of this is given by Anna Michaelides
Penk [75], who also considers a formalisation of the version of the choice
principle that reads

“for each set X# () there is a function ¢ : ?(X) — X such that
whenever B is a non-empty subset of X, o(B)e B”.

This leads to a categorial statement that is implied by AC, independent of
ES, and equivalent to AC (and ES) in well-pointed topoi.
We end this section with an illustration of a

RN\Y

“non-splitting” epic arrow 2+ —a in the topos M,. Here a=
({0,1,2},A) has A(1,x)=x, and A{0,x)=1, all xe{0, 1,2}.

ExERrcisE 2. Show that A as defined is an action on {0, 1, 2} and that the
displayed epic is an M,-arrow (equivariant). Explain why it has no
section.

ExeRcISE 3. Make a similar display of the co-equaliser of
ioT
1=0+0
ieT

in M, and explain why it has no section.

Exercist 4. Show that SS holds in M,, and (hence?) that NE does as
well.

ExercISE 5. Show that SS and (hence?) NE fail in Z,-Set where Z, is the
group

el ]
[
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of the integers mod 2 under addition. Explain why the situation is typical,
i.e. why SS and NE always fail in M-Set when M is a (non-trivial) group.

ExERrcisE 6. Carry out Exercise 3 for the topos Set™. O

12.2. Natural numbers objects

An obvious difference between Set, and the topoi Finset and Finord is
that in the latter, all objects are finite. Various definitions of ‘“finite
object” in a topos are explored by Brook [74], and Kock, Lecouturier,
and Mikkelsen [75]. Our concern now is with the existence in set theory
of infinite objects, the primary example being the set  ={0,1,2,.. .} of
all finite ordinals, whose members are the set-theoretic representatives of
the intuitively conceived natural numbers.

o can be thought of as being generated by starting with 0 and
“repeatedly adding 17, to produce the series 1=0+1, 2=1+1, 3=
2+1,.... The process of “adding 1> vyields the successor function
s 1w —> @ which for each input n€w gives output n+1. That is, s(n)=
n+1.

(Notice that n={0,...,n—1}and n+1={0, ..., n} so that an explicit
set-theoretic definition of s is available:— s(n)=n+1=nU{n})

Now the initial ordinal 0 may be identified with an arrow O:1— o in
the usual way (indeed the arrow is the inclusion {0} < ). Then we have
a diagram

(@] s
l-0—o

which was observed by Lawvere [64] to enjoy a kind of co-universal
property that characterises the natural numbers uniquely up to isomorph-
ism in Set. The property that the diagram has is that all diagrams of its
type, i.e. of the type

x f
1-A—A

factor uniquely throught it. For, given functions x and f as shown we may
use f and the element x(0) of A to generate a sequence

x(0), f(x(0)), f(f(x(0))), FFF(x(O))), . ..
in A by ‘“repeatedly applying f”’. Now this sequence can itself be
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described as a function h: o — A from o to A, displayed as
h(0), h(1), h(2), h(3),...

h is defined inductively, or recursively in two parts.
(1) We let h{(0) be the first term x(0) in the sequence, i.e.

(*) h(0)=x(0),

(2) Having defined the n-th term h(n), apply f to it to get the next
term h(n+1), ie.

h(n+1)=f(h(n)).
Since n+1=s(n), this equation becomes
(%) hes(n)=foh(n).

(*) and (*%) mean that the diagram

A—f+A

commutes, giving the “factoring” mentioned above. But also we see that
the only way for this diagram to commute is for h to obey the equations
(*) and (*%), so h can only be the function generated in the way we did
it. h is said to be defined recursively from the data x and f.

Inductive definitions of this type are called definitions by simple recur-
sion and would seem to originate with Dedekind [88]. They lead us to the
following axiom, which we have seen to be true of Set.

NNO: There exists a natural numbers object (nno), i.e. an object N with
arrows 13NN such  that for any object a, and arrows
125 a 15 a there is exactly one arrow h: N — a making

N-—“° N N9
y ; ; O :
1 th e, 1 th
x H . i x i
a ——— a N Dk

commiite.
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Exercise 1.1 1S NEN and 1S N' 2 N' are nno’s, then the
unique h in

is iso. ™

This exercise establishes that natural numbers objects are unique up to
isomorphism in any category. Arrows h:N — a with dom=N will on
occasion be called sequences.

A multiplicity of examples of nno’s is provided by

TueoreM 1. For any (small) category €, Set® ENNO.

CONSTRUCTION FOR PROOF. Let N : € — Set be the constant functor having

N(a)=w, all €-objects a
N({)=id,, all €¢-arrows f.

s:N—=N is the constant natural transformation with component
40 . N(a)— N(a) being the successor function s:w — o for each a.
O:1— N is the constant transformation with each component
O, :1(a) — N{a) being {0} => w. That this construction satisfies the axiom
NNO is left for the reader to establish (the definition of the unique h is
obvious, that it is a natural transformation is not). |

ExercisE 2. Describe the natural numbers objects in Set®, Set”, and
M-Set, in terms appropriate to the way these topoi were originally
defined. O

In Bn(I) as one would expect, N is a bundle of copies of w. Formally N
is pr;: I X — I, so that the stalk N; over i is

(i} X0 =o.

4:N— N has s ({i, n)) ={(i,n+1), i.e. 5 acts as the successor function on
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each stalk. O:1— N has O(i) =i, 0), so that

I —929 Ixe —2 Ixe

id; jp r%

I

commutes, making O and s arrows in Bn(I).
Given a bundle a = (A, g) and arrows x:1—a, f:a — a, then

IXxeo 2 IXe

ok

A—f LA

a unique arrow h:IXw — A may be defined to make the last diagram
commute. Fixing attention on the stalk over i, we recursively define h on
that stalk by

h(i, 0)=x(i)
h(i, n+1)=f(h(n,i)).

This is evidently the only way to make the diagram commute and so h
provides the unique arrow from N to a in Bn(I) defined recursively from
the data x and f.

ExercisE 3. Verify (inductively) that h: N — a, i.e. that g h =pr,.

ExercisE 4. Show that s is the product map id; Xs, and O =(id,, Oy),
where O;:I — o has O;(i)=0, all ie L O

The spatial topos Top(I) of sheaves of sets of germs over a topological
space I also has a natural numbers object — the same one as Bn(I). We
take the product topology on the stalk space I X w, assuming the discrete
topology on w. Thus the basic sets are all those of the form U X A, with U
open in I and A any subset of w. For each point (i, n), if U is any open
neighbourhood of i in I (e.g. U=1I), then UXx{n} will be an open
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neighbourhood of (i, n) in I X that projects homeomorphically

Ixw
uxin}
n !——-\——-)
w
1 L U AY J
| \ . 7 1
! 1
Fig. 12.8.

onto U. Thus pr; is a local homeomorphism. Moreover each of s=id; Xs
and O ={d; Oy;) is a product of continuous maps, hence is continuous,
i.e. a Top(I)-arrow.

Exercise 5. If x:1—a and f:a — a are Top(I)-arrows, so that x and f
are continuous, prove (inductively) that the unique h defined recursively
from x and f in Bn(I) is also continuous, hence a Top(I)-arrow. O

‘We shall reconsider the structure of nno’s in Top(I) again in Chapter
14, in relation to “locally constant natural-number-valued functions on
.

In any topos satisfying NNO a good deal of the arithmetic of the
natural numbers can be developed. This will be considered in the next
chapter. .

The co-universal property of a natural numbers object will be fully
elucidated in Chapter 15.

12.3. Formal set theory

The first-order language ¥ that we shall use for set—thedry has a single
binary predicate €, and no function symbols, or individual constants.
Thus £ ={&}.

The definition of £-model that we shall adopt is a little wider than that
of §11.2. A model is a structure A =(A, E, =), where E and = are binary



306 CATEGORIAL SET THEORY CH.12,§12.3

relations on A, such that the identity axioms I1 and I2 are valid in %
when € is interpreted as E and =~ as =. Thus we are giving up the
requirement that the identity predicate be always interpreted as the
“diagonal” relation A ={(x, y): x =y} on A. If I1 and I2 are valid then =
will be an equivalence relation, and we could, by replacing elements of A
by their =-equivalence classes, obtain a normal model in which =~ is
interpreted as the diagonal and which is semantically indistinguishable
from %Y. However it is convenient for expository purposes to allow the
wider interpretation of identity (note the parallel with the way we have
treated equality of subobjects in a category).

Using the language ¥, we are able to write out sentences (strings of
symbols) that formally express properties of sets. By considering sen-
tences that our intuitions may incline us to believe to correctly codify
ways that sets actually do behave, and by using the precise and rigorous
machinery of deduction in elementary logic, we are able to examine the
consequences of our intuitively based assumptions about sets. Thus if ¥ is
a collection of sentences expressing what we take to be truths of set
theory, and ¢ holds in all £-models of 3, then we would regard ¢ as a
truth of set theory, whatever ‘““the universe of sets” looks like.

Our intention then is to regard an #-structure A =(A, E, =) as a
formal, abstract, model or representation of the intuitively-conceived
universe of all sets, from which we developed the idea of the category Set.
There is a conceptual barrier to this that seems to belong uniquely to the
study of set theory. While we have no difficulty in thinking of, say, a
Boolean algebra as being any model of a certain group of axioms, since a
Boolean algebra is conceived of as an abstract set satisfying appropriate
laws, it is difficult not to think of a model for set theory as consisting of
very particular sorts of things, namely sets. We regard the variables
V1, U, - . . as referring to collections, whereas the individuals in 2 are just
that — individuals with no particular presupposed structure. We give the
atomic formula v,ev, its intended reading “v, is a member of v,”,
whereas all we mean is A Fv,ev,[x, x,], 1.€. x,Ex,.

Having taken pains to spell this out, we should recognise it as being,
not a source of pedantry, but rather the very essence of the enterprise
itself. By forcing ourselves to regard £ as being an abstract relation
between indeterminate things, we force ourselves to stand back from our
presuppositions about what ‘“membership” means, and thereby to identify
those assumptions and determine what they commit us to.

We must also be careful to distinguish between metalanguage and
object-language, between the language in which we speak and the lan-
guage about which we speak. The object language is the first-order
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language ¥. The metalanguage is the language we use to talk about £
and about the meanings of ¥-sentences (interpretations, models). It is the
language in which we make statements like “¢ is satisfied by every
valuation in U”. This metalanguage consists basically of sentences of
English and unformalised, intuitive, set theory, which is concerned with
actual collections. Thus the #-formulas form a collection, a model % is
based on a collection A of individuals, the relation E is a collection of
ordered pairs, and so on. These collections are described by the metalan-
guage. They are “metasets”, and we continue to use the symbol € to
denote membership of such collections. The individuals in A on the other
hand might be called “sets in the sense of 2A”’, or simply “U-sets”.

The distinction between these two levels can perhaps be made, some-
what colloquially, by contrasting our perspective, as we look at 9 “from
outside”, with that of an imaginary person who lives ““inside” U and is
aware only of the existence of the individuals in A, i.e. of the Y-sets.
While to us, A is a set—an individual in our metauniverse of metasets —
the A-person does not see A at all as an individual in his world. Rather,
A represents the whole universe for the U-person. Similarly if B is a
subset of A (i.e. B< A), the metaset B may not be an ¥-set (if B€ A).
However it is possible in some cases that B corresponds to an U-set. This
occurs when there is an U-set b (i.e. b€ A) whose E-members are just
the e-members of B, i.e. B={x: xc A and xEb}. We shall return to this
point shortly.

Now if a and b are members of A(a, b € A), then the statement “a is a
member of b when interpreted on the metalevel means a € b. However
when uttered by the A-person it means aFEb. In some models, the
standard ones, these two interpretations are the same. Thus a model is
standard if E is simply the meta-membership relation restricted to A, i.e.
the relation

el A={x,y):xeA ycA and xey}.

In a standard model, the metalevel/object-level distinction can be very
delicate. If y is an U-set, and x €y, we cannot then assume that the
statement “x € y”’ makes any sense inside . Unless x € A as well, which
is. not necessary, the Y-person will be unaware of the existence of x. Thus
he may not recognise all the y-members that we do.

We recall now the expression ¢ =y as an abbreviation for the £-
formula (¢ = ¢)A (= @).

AxioMm ofF ExTENsIONaLITY. This is the £-formula

Ext: Vo)(teu=tev)Du=nv,
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which formalises the principle that sets with the same members are equal.
In a model ¥, if xc A, let
E, ={z:z€ A and zEx}.
Then AE=Ext iff E, =E, implies x =y, for all x, y € A.

NurL Set:

ADVu)(~(uet)

“‘there exists a set with no members”. In ¥ this is true when there is some
x € A such that E, is the empty metaset.

Pairs:
YuVodVw(wet=w=uvw=1)]

“given sets x and y there exists a set having just x and y as members”,
i.e. “{x, y} exists”.

Powersers: Let “v < 1’ abbreviate the formula Yw(wev > weu), i.e. “v
is a subset of u”.
The axiom of powersets is the sentence

Yu3ItVo(vet=v < u)]

formalising the statement ‘‘for any x, there is a set whose members are
just the subsets of x”.

UNIONS:

Yu3dt[Vo(vet=Iw(weu Avew)]

Intuitively, all individuals in the universe are sets, so the members of x
are themselves collections. This axiom states the existence of the union of
all the members of x.

SeparRATION: If @(v) is a formula with free v, the following is an instance
of the Separation axiom schema

Sep,,: YuItVo(vet=veuro(®))]

i.e. “given x, there exists a set consisting just of the members of x
satisfying ¢”. Or, “given x, {y: yex & ¢(y)} exists”. This is a formal
statement of the separation principle discussed in Chapter 1.
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BounpeED SEPARATION: A formula ¢ is bounded if all occurrences of ¥V in
¢ are at the front of a subformula of ¢ of the form VYv(vet = ¢), and all
occurrences of 3 are of the form Jv(vet A¢s). Thus quantifiers in bounded
formulae have readings of the form ‘““for all v in ¢t and “‘there exists a v
in . The bounded separation (A,-separation) schema takes as axioms all
the formulae Sep,, for bounded ¢. It allows us to “separate out’” a subset
of x defined by a formula, provided that the quantifiers of that formula
are restricted to range over sets.

The system Z, of axiomatic set theory has, in addition to the classical
axioms for first-order logic with identity (§11.3), the axioms of Extension-
ality, Null Set, Pairs, Powersets, Unions, and Bounded Separation. From
Sep,, and Ext one can derive in Z, the sentence

VuIli[Vo(vet =veu Ap(v))]

that asserts the existence of a unique set having the property that its
members are precisely those members of x for which ¢ holds. Because of
this we introduce expressions of the form {u: ¢}, called class abstracts, as
abbreviations for certain #-formulae. The use of class abstracts is deter-
mined by stipulating that we write

ve{u: ¢} for olufv]
v=~{u: ¢} for Vi(tev=c¢[u/t]
{u: ¢lev for At(tevnt={u: ¢}

Class abstracts play the same sort of role in & as do the corresponding
expressions in the metalanguage. If ¢ has only the variable u free, then
intuitively {u: ¢} denotes a collection, the collection of all sets (individuals
in the universe) having the property ¢. For a model %A, {u: ¢} will
determine a metasubset of A, viz the collection

A, ={x: xec A and Ak ¢[x]}

In some cases, the metaset %, will correspond to an %-set, as above. This
occurs when there is some y € A such that %, =E, ={x: x€ A and xEy}.
Thus if ¢ is ~(u=u), we find that ¥, =@ (the empty metaset), and 2,
corresponds to an Y-set iff the Null Set axiom is true in 2.

The formula Sep, can now be given in the form

Yu3Ii(t={v: veuro@)}).

This is true in 2 when for each xe A there is some ye A such that
E,=E, N%,.
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Some familiar abstracts, and their abbreviations are

0 for

{u, v} for
{u} for
unv for
ulUv for
u—v for
Uu for
Nu for

1 for
u+1 for
P(u) for

CATEGORIAL SET THEORY

{u: ~(u=u)}
{t:t=uvt=v}
{u, u}

{t: teu ntev}

{t: teu v tev}

{t: teu A ~(tev)}
{z: At(teu A zet)}
{z:Yit(teu > zer)}

{0}

ulU{u}

{z: z<cu}

CH.12,§12.3

ExErcisk 1. Let ¢(v) be the formula v ={u: uev}. Explain why, for any
xc A, Ak @[x]. Show that ¢(v) is a theorem of first-order logic.

Exerciste 2. Let o¢(t, u,v) be the formula t=~{u, v}. Show that AF
olx, y, z]ift E, ={y, z}.

Exercise 3. Show that the Pairs axiom can be written as

YuVo3i(t ={u, v}).

ExEercist 4. Rewrite the other axioms of Z, using class abstracts. O

To formalise the notions of relation and function we denote by (u, v)
the abstract {{u}, {u, v}}. The point of this definition is simply that it
works, i.e. that we can derive in Z, the sentence

(u,v)={ wh=(u=trv=w)

which captures the essential property of ordered pairs. Then we put

{(u, v): @}
tXw
OP(u)
Rel(u)
Fn(u)
Dom(u)

for
for
for
for
for

for

{t: JuTv(t~(u, v) A @)}
{(u, v): uet Avew}
3o (u =1, v))
Yov(veu > OP(v))

Rel(u) AVoVIVwW (v, Heu Ao, wieu Dt =w)

{t: Jo({t, v)eu)}
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Im(u) for {t:Jv((v, HHeu)}
A(u) for {{v,v): veu}
veu for {{t, w): st s)eu Als, w)év}

Using these definitions we can construct from any Z,-model %A =(A, E, =)
a category &) by formalising our definition of the category Set. The
&)-objects are the U-sets, i.e. the elements a € A. The €Q)-arrows are
the triples f={a, k, b), where a, k, and b are ¥-sets, such that

Akola, k, b]
where ¢(t, u, v) is the formula
Fn(u) ADom(u) =t Alm(u) < v.

We take the domain of arrow f to be a, and the codomain to be b. The
composite of f={(a, k, b) and g=<(b, L, c), where codf=dom g, is gef=
{a, h, ¢), where he A has

Ak ylh, k, 1],

Y (t, u, v) being the formula t=veou.
The identity arrow for a is id, = {a, k, a), where, for ¢(t, u) the formula
t =A(u), we have

Akelk, al.

TreeoreMm 1. If U is a model of all the Z,-axioms, then &%) is a
well-pointed topos.

ExgercisE 5. Verify in detail that Theorem 1 holds, by formalising in &,
and interpreting in U, the descriptions of pullbacks, terminal object,
exponentials, and subobject classifier given for Set. O
AxioMm of INrmNtTY: Let inf(u) be the formula

Osu AVv(veu 2 vU{vleu).

Intuitively inf(u) asserts of a set x that the initial ordinal @ is an element
of x, and x is closed under the successor function (recall n+1=nU{n} in
Set). Hence w < x, and x has infinitely many members. The axiom of
infinity is

Inf: Ju (inf(u)).

In Z,+Inf one can derive

At (inf(t) At~ N{u: inf(u)})
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and so in any Z, model % such that A FInf, there will be an %-set that the
A-person thinks is the set of all finite ordinals. By formalising the
discussion of §12.2 we can then show that this %-set produces a natural
numbers object for €%), i.e. ERA)ENNO.

Axiom or CHoOICE: There is some choice about which sentence we use to
formalise the choice principle in classical set theory. Perhaps the simplest
is

YuVoFn(u) A ~Dom(u) = 0) AIm(u) < v >3t (Fn(r)
ADom(t) = v Alm(t) c Dom(u) Auctou = u)

which formalises the statement AC of §12.1. For a Z,-model of this
sentence we will have E)EFAC.

AxioM ofF REGULARITY:
Reg: Vu(~(u=0)>Jv(veurvNu=0))

Intuitively, Reg asserts that if x# () then x has a member y € x such that y
and x have no members in common. The basic viewpoint of set theories
of the type that we are developing is that sets are built up “from below”
by operations such as union, powerset, separation etc. Reg asserts that if
x exists, then its construction must have started somewhere, ie. we
cannot have all members of x consisting of members of x. This axiom
proscribes relationships like xex, xeyex, xeyezex, etc., as well as
“infinitely descending” membership chains x;3x,3x33 ....

AxioM ofF RerLACEMENT: Intuitively, the replacement axiom schema as-
serts that if the domain of a function is a set (individual in the universe)
then so is its range, or image. The type of function it deals with is the
functional relation defined by a formula ¢ with two free variables.

Rep, YuVoVw(e(u, v)Ae(u, w)2v=w)>Vtds(s ={v: Ju(uset
Ao, V). -

This asserts that if the ordered pairs satisfying ¢ form a relation with the
“unique output” property of functions, and if for each uet, f(u) is the
unique individual such that (u, f(u)) satisfies ¢, then the collection
{f(u): uet}is a set.

The Zermelo-Fraenkel system of set-theory, ZF, can be defined as
Zo+Inf+Reg+ Replacement. We see then that ZF is a much more
powerful system than is needed to construct topoi. The description of Set,
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when formalised, turns any model of the weaker system Z, into a
well-pointed topos. In order to reverse the procedure, and construct
models of set theory from topoi, we have to analyse further the arrow-
theoretic account of the membership relation.

12.4. Transitive sets

A set B determines a metamembership structure that can be displayed as:

level O the set B

level 1 members of B

level 2 members of members of B
level 3 : i *  members of members of

members of B

This diagram is called the membership tree of B. The tree is in fact upside
down —from each point there is a unique path upward towards the root
(top point) of the tree. The collection Ty of all points in the tree except
the top point B has a special property called transitivity. In general a set
A is transitive if it satisfies the condition

xe€A implies xc A,

i.e. if x is a member of A then all members of x are themselves members
of A. (Notice that if a model % is standard, and is based on a transitive A,
then for each YA-set x all the metamembers of x will be A-sets. Thus the
A-person will see the same members of x that we do.)

Now if x appears in Ty at say level n, then all the members of x appear
in Ty at level n+1. So Ty is transitive. But if A is any transitive set that
contains B, it follows that Ty < A. The assumption that B = A means that
all level 1 points of Ty are in A. Then if all level n points are in A,
transitivity of A puts all level n+1 points in A. Thus by an inductive
proof we show that Ty is contained in all transitive sets containing B. It is
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the “smallest” transitive set containing B, and so is called the transitive
closure of B.

Axtom of TraNnsTiviTy: We write Tr(u) for the formula Vo (veu > v cu).
The axiom of transitivity is

TA: Yt3du(t < u ATr(u))
In Z,+TA we can derive
ViFtut curnTr(u)AVo(t <o ATr(v) Du < v))

which, under interpretation, states that the transitive closure of any set
exists as an individual in the universe.

ExEercise 1. Derive, in Z,+TA,
Vidu(u=N{v: t v ATr(v)}) a

The role of trees in describing membership is this: A e B iff the
membership tree of A is isomorphic to the tree of all points below a
particular level 1 point of the B-tree. This observation was lifted to the
topos setting by William Mitchell [72] and Julian Cole [73] to define the
notion of “&-tree”” and thereby construct models of set-theory from
Boolean topoi.

An alternative approach to a topos-theoretic reconstruction of set
theory was subsequently developed by Gerhard Osius [74], based on a
characterisation of those Set-objects that are transitive as sets. Transitiv-
ity of A simply means that if x € A then x € P(A), i.e. A is transitive iff
A < P(A). This property gives transitive sets a tractability not enjoyed by
sets that are not “‘closed under €. The relations EC A XA on a set A
are in bijective correspondence with the functions rg : A — P(A). Given
E, then rg assigns to y€ A the subset

re(v)={x: x< A and xEy}=E, of A.
In the case that E is the membership relation
el A={xy):x€A,ycAand xey},
we find that
ro(y)={x:xe A and x € y}.
But if A is transitive, this simplifies : x € y implies x € A for ye€ A, and so

re()={x:xeyl=y.
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Thus we see that for transitive A, the membership relation € [ A on A
gives rise to the inclusion A < P(A) as r., making A a subobject of
P(A).

Now let us consider the problem of defining “membership’ in a topos
&. We already know what x € f means if x is an “element” 1 — a of an
&-object a, and f:b >> a is a subobject of a (§4.8). But what about g€ f,
where g:c>— a is some other subobject of a?

Returning to Set, we see thatif g: C <> A and f: B < A are subsets of
A, then if C is going to be an element of B, C < B, then since BC A we
will have Ce A, so there will be an arrow §:{0}— A with g(0)=C. But
then, knowing that ¢ exists, i.e. C€ A, deciding whether C € B is equival-
ent to deciding whether g €f, i.e. whether

g factors through f.
Thus the question of membership of C in B can be resolved in the

language of arrows once we know, categorially, whether ¢ exists. In the
event that A is transitive, the problem can be transferred into ?(A) and
restated. In general, g:C < A, as a subset of A, corresponds to an
“element” 'g':1—%P(A) of the powerset of A, where 'g'(0)=C. Iden-
tifying P(A) with 2%, we see that 'g' becomes 'x,!, the name of
Xe A — 2 as defined in §4.1. Then if there is an inclusion 7. : A < P(A),
we have that Cc A, i.e. § as defined is an arrow from 1 to A, iff 'gler,,
that is, Cc A iff ¢ exists to make

8 \g]

AT, pA)

Tg! factor (uniquely) through r..
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Altogether then, for transitive A, we can characterise the “local set
theory” of subsets of A. For f:B < A and g:C < A, we have ge
fiff Ce B iff the name of g factors through r_of,

Befl sAacr’ |, g

ie. iff Igler.of.

Characterising the local set theory of an object (set) is, as Osius notes,
sufficient for the needs of the “working mathematician”, who tends to
deal with any given problem within the context of some fixed “universal”
set A. But the “global” question of membership for & can be reduced to
the local one. First we need to deal with equality of subobjects. If
f:b>>a and g:c>— a have the same codomain, we know what it means
for f and g to represent the same “‘subset” — it means that f = g in Sub(a).
But f:b > a and g:c>~> d may still represent the same set, even if they
have distinct codomains. In Set, the codomains of f: B>» A and g: C >~
D may overlap, and indeed we may have f(B)= g(C)< A N D, in which
case we would want to put f= g. But it is clear in this situation that if T is
any set that includes both A and D (e.g. T= A U D), so that there are
inclusions i:A < T and j: D < T, then f(B)=g(C)ift i(f(B)=j(g(C)).
Thus f=giffin Sub(T), iecf=jog.

So the identification of subobjects —the general definition of f=g—is
resolved by localising to the set-theory of any object that includes the
co-domains of both f and g. The global membership for Set can now be
described as follows. For f:B>> A and g:C>> D we put

gef iff for some transitive T including both A and D, in
P(T) we have [j(g(C) = T]e[i(f(B)) = T]. :

Here i and j are the inclusion as above. For a suitable T we may use the
transitive closure of A U D. Although the arrows f and i(f(B)) <> T are
not the same thing, the definition of membership is justified precisely
because they are equal as subobjects, i.e. they bear the relation “=" to
each other. Similarly the arrows g and j(g(C)) < T represent the same
set.

Exercise 2. Verify this last statement.
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Exercise 3. Show that the definition of gef does not depend on the
choice of appropriate T.

Exercise 4. For any sets A, B, show A eBiffid, eidg.

Exercisk 5. Let T, be the transitive closure of A, so that A < T,. Show
that gef iff for some h: Y & T4, g=h and in P(T,), he (f(B) < T,).
Thus gef iff g is “equal” to a member of f(B) in T,. O

In lifting these considerations to a topos &, we take an €-object a that
is the domain of a subobject r:a > ° of its own power object. Then a
“membership” relation €, can be defined on Sub(a) by putting, for
f:b>>a and g:c>—>a,

ge.f iff 'gleref

1
/X
f r

b5 a>—"—-0°

i.e. iff [g! factors through ref, where 'g' =x,! is the exponential adjoint
of x,°opry:1xXa— Q.

Although this definition can be made for any r of this form, the simple
requirement that r be monic does not capture the essence of transitivity.
Indeed, it does not even capture the fact that for transitive A, A = P(A)
arises from the metamembership relation € | A. For if ¥ =(A, E, A) is any
normal #-model, then since rz(y)={x:x€ A and xEy}=E,, rs: A —
P(A) will be monic if (and only if) % FExt.

So the problem remains of determining when r: A >> P(A) represents
the membership relation of a transitive set.

CoLLAPSING LEMMA (Mostowski [49]). Let E€ A X A be a relation on A.
Then there exists a transitive set B such that

(A,E)=(B,e | B)
iff
(1) E is extensional, and
(2) E is well-founded. O
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Here, (1) means that rg : A — P(A) is monic. Well-foundedness means
that every non-empty subset of A has an E-minimal element. That is, if
C < A and C#{, there exists x € C such that E, N C =, so that if yEXx,
then y& C.

The sense of isomorphism in (A, E)=(B,c | B) is that “E-
membership” within A looks exactly like “c-membership” within B. This
requires that there be a bijective map f: A =B such that

(%) xEy iff f(x)ef(y), allx,yin A.

For such an f, the diagram

A f B

5 .

PA) 2, pB)

commutes, where Pf assigns to Ce P(A) (i.e. C< A) its f-image f[C]=
{f(y): ye Cte P(B). The diagram requires, for x € A, that

fIE.]=f(x)

i.e.
{f(y): yEx}={z: ze f(x)},

which for bijective f is equivalent to ().

Mostowski’s lemma has been stated as a fact about our metaset-
theory. It can be expressed as a sentence of the formal language Z£. “E is
a relation on A” would be replaced by “Rel(u)Au <= v Xv”, € | B would
be replaced by an abstract of the form € | t ={(u, v): uet Avet Auev},
and so on. The resulting formal sentence can then be derived only if we
assume the full strength of the ZF axioms. Thus Mostowski’s “theorem”
is a theorem only if our metaset-theory satisfies all the ZF-axioms.

Note that the lemma implies in particular that € | B is well-founded
on B. This in fact can be deduced if we assume our metaset-theory
satisfies the Regularity axiom. For then if C < B is non-empty there will
be some x € C with xN C=@, so that if y ex, y2 C, making x €-minimal
in B.

Now a well-founded relation E on A can be used to define functions
with domain A by ‘“‘recursion” in a similar manner to the operation of
nno’s. The intuitive idea is that in order to define f(x), where f: A — B,
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we make the inductive assumption that f(y) has been defined for all yEx,
i.e. f is defined for all “E-members” of x. We then input the collection
{f(y): yEx} to some other function g and let f(x) be defined to be the
resulting output. Thus

f()=g{f(y): yEx}) = g(flE.])
ie.
(%) f(x)=g(Pf(E.))

Since we want f(x) € B, and since Pf(E, ) ?(B), g has to be a function
from 2(B) to B. Equation (*=*) states that the diagram

A f B

e g

P(A) —— P(B)

commutes. But, given g, if f exists to make this diagram commute then it
is uniquely determined by the equation (**).

TueOREM 1. E is well-founded on A iff for any set B and function
g:P(B)— B there exists exactly one function f: A — B making the last
diagram commute.

A proof of this result is given by Osius in [74]. Again the statement can
be expressed as an ¥-sentence, but this time it can be derived just using
Zy-axioms. Thus we see that in ZF, transitive sets are essentially exten-
sional (monic) well-founded relations, and that well-foundedness can be
characterised, even in Z,, by an arrow-theoretic property.

This will lead us to a definition of “transitive sets” in a topos, for which
we will also appeal to the following description of inclusions between
transitive sets.

TueoreM 2. If A and B are transitive then

A—F~ B

PA) —— P(B)
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commutes iff A< B and f is the inclusion A = B.

Proor. If f is the inclusion, it is clear, for xe A (hence x< A) that
flx]={y: y ex}=x, so the diagram commutes. On the other hand, if the
diagram does commute, then f(x)= f[x], for all x € A. To show that f is
the inclusion we have to show that f(x)=x, all x in A, or that

C={x:xcAand f(x)#x}=0

To do this we need to assume € [ A is well-founded.
Then if C were a non-empty subset of A it would have an element x,
that is e-minimal in C. Thus x, # f(x,), but (using transitivity)

yex, implies y2C, andso f(y)=y.
But then f(xy) = flx]={f(y): y e xo} ={y: y € xo} = x4, a contradiction. [J

Theorem 2 can be expressed as an #-sentence derivable in Z,+Reg
(Regularity being used to give well-foundedness of € | A). The proof of
the theorem indicates what lies behind Theorem 1, i.e. how inductive
definitions and constructions depend on the property of well-foundedness
for their validity.

12.5. Set-objects

Ivacges: If f:a—b is an arrow in topos &, then for each subobject
g:c > a of a we define the image f[g]:f(g(c))>> b of g under f to be
the monic part of the epi-monic factorisation

Thus f[g]=im(f°g).

This construction establishes a map from Sub(a) to Sub(b), that in fact
has an internal version 0Q:0°%— 0" In Set f is the function
Pf:P(A)— P(B) used in the last section.

Now by the identification of subobjects with their characters, the image
construction assigns to each h:a— Q an arrow f[h]:b— . Then,
starting with f:a-— b we form 1xf:0%xa — 0°xb and then take the
image 14. X flev,] of ev, : 2* X a — Q under 1g. Xf.
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Q7 is then defined as the unique arrow making

0°xb
ev,
.Qf><1,J 0
0 xb/"“xf[e”“]

commute, i.e. 27 is the exponential adjoint of 15. X fev,].
Exercist 1. If f:a>> b is monic, then fl[g]=fc-g.
Exercise 2. Verify that the definition of 2f-characterises Pf in Set.

Exercise 3. Show that 2" =1,., and that if

commutes, then so does
0° Of Qb
\ lﬂg
Qh
QC
ie. Q&f=02.07,
Exercisk 4. Given ¢>> a EN b, show

Pgt 0°
.

flel' ™ b
commutes. O

DEFINITION. A transitive set object (tso) is an &-arrow r:a >— (° that is
(1) extensional, i.e. monic, and
(2) recursive, i.e. for any &-arrow of the form g:Q°—b there is
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exactly one €-arrow f:a — b making
f

a——— b
Qa .Qf Qb
commute. (f is said to be defined recursively from g over r:— [ =rec,(g)).

ExercisE 5. 0— 09 is a tso.

Exercise 6. L :1— "' is a tso (why is this so in Set?) O
If r:a—0° and s:b— 0P are “relations” then h:a—b is an in-
clusion from r to s, written h:r Sss, iff
a ._h_, b
h
Qa Qb

commutes. We write r = s if there exists an inclusion h:r < s.
Exercise 7. Show that (0 — Q%< (r:a >> 0%), for any tso r.

EXERCISE 8. rer.

ExercIsE 9. resct implies r<=t. (cf. Exercise 3) Cl

An inclusion between transitive set-objects, if it exists, is unique. To
see this, we introduce a construction that assigns to each monic s:b >~
QP° a unique arrow §:0°—b, where b is the codomain of the partial
arrow classifier m, :b — b described in §11.8. The arrow

Q0" - 0°
will in fact be monic, since m, is (Osius [74], Proposition 5.8(a)). § is then
defined as the unique arrow making

b : Qsos QB

b >—% §
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a pullback (note that {2™os is monic iff s is monic).

THEOREM 1. If r:a — 0° is recursive, and s:b >> QP extensional, then
(1) f:a— b is an inclusion iff

f

SN

b Nb

~
=

0° o v am QE

commutes, iff n, of =rec,(8).
(2) If r<s then there is a unique inclusion r < s of r into s.

Proor. (1) Consider

0° 0P O Ql;

The right hand square always commutes, by the definition of §. Then if f
is an inclusion, the left hand square commutes, hence the whole diagram
does. Conversely, if the perimeter of the diagram commutes then this
means precisely that the perimeter of the diagram

QmoQfor
a
K

M

—
iy
3
o

commutes, and so by the universal property of the inner square as
pullback, the unique k exists as shown to make the whole diagram
commute. Then 1,°k =f, and so k =f. Hence from the upper triangle

Q“bosof:()"boﬂfor

Since 2™ is monic, this gives sof =7 or, i.e. the left hand square of the
previous diagram commutes, making f an inclusion.
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To complete part (1), note that since 2™ =" o Qf recursiveness of
r implies the diagram commutes precisely when n, of is the unique arrow
defined recursively from § over r.

(2) If f,:r < s and f,:r <> 5, then by (1), n, of; =, of> =rec,(8). Since
7, is monic we get f; =f,. O

TuEOREM 2. If r and s are tso’s, then
(1) If r<s, the (unique) inclusion r < s is monic.
(2) If rescr, then r=s, ie. the inclusions r < s and s <> r are iso.

Proor. (1) Consider

a f b 8 a

0° Qf Qb 0r Qd

Here 7 is defined by the construction prior to Theorem 1, so fefd™or=
n.°1, =mn,. Hence

a—22 5 G

rl ]f‘
Qa L0 N Qa

commutes, showing that n, is the arrow rec, ().

In the previous diagram, f is the inclusion r < s, so the left hand
diagram commutes. g is defined to be the arrow rec,(#) given by recursion
from 7 over s. But then the whole diagram commutes, and so gof=
rec, () = mn,. Thus gof is monic, so f itself must be monic (Exercise 3.1.2).

(2) If res<r, then from

a < f p—8 a

(S

0° or v 0z 0°

we see that gof:r < r. But obviously 1,:r <> r, so by Theorem 1 (2),
gof=1,. Similarly feg =1,, hence f:a=b, with f and g inverse to each
other. Cl
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Thus, defining r=s iff r= s and s = r leads to a definition of equality of
(isomorphism classes of) transitive set-objects, with respect to which the
inclusion relation becomes a partial ordering. Osius then gives construc-
tions for

(i) the intersection rNs:aNb— Q°"° which proves to be the great-
est lower bound of r and s in the inclusion ordering of tso’s; and

(ii) the union rUs:aUb — 0", which is the least upper bound of r
and s.

For (1), the cube

anb b
81 h

H Ny

1 s
a v f b

Qanb 0= Qb

. am

0° o QE

is formed by first defining f to be rec,(§), and obtaining the top face as the
pullback of f along m,. Thus the right-hand face is the square defining §,
the front face the square defining f. The bottom square then proves to be
a pullback whose universal property yields the unique arrow aNb >
02" making the whole diagram commute. This arrow is rNs.

For (ii), a U b comes froﬁ the pushout

anb

I.A

of g, and g,, with rUs arising from the co-universal property of push-
outs.
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DEFINITION. A set-object in a topos & is a pair (f, r) of &-arrows of the
form

r
br—>a—>0°%

where r is a transitive set-object.
Equality of set-objects is defined as follows: (f, r) =, (g, s) iff for some
tso t:e — Q° such that r<t and s<t,

f

hb>——a
i
e

e 4T

c>—2-—d

we have i[f]=j{g] in Sub(e), (i.e. iof=jog, since i and j are monic)
where i and j are the inclusions i:¥ <>t and j:s< ©

Osius establishes that the definition is independent of the choice of the
tso t containing r and s: the condition holds for some such 1 iff it holds for
all such t (hence iff it holds when t=rUs).

Exercise 10. (f, r)=,(g, r) iff in Sub(a), f=g.

Exercisk 11. Suppose that fler and 'g'€s, i.e. there are commutative
diagrams

7 ¥

a—— 0° d—— ¢

for certain elements f and g Show that fe,1,, g, 1, For t such that
rct and s <t, show

(f’ r)zg(grs) iﬁ iof:jog’

ie.

/\
\/

commutes. _ O
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‘“Membership” for set objects is defined by

(g, )Eg(f, 1)

iff for some tso t:e—€° such that r<t and s<St, joge,icf,

VA
io t
b>——f—>e%——>ﬂe

i.e. 'jog! factors through teiof

Again the definition is independent of the choice of ¢, and can be given
with t=rUs.

Equivalent definitions of (g, s)E.(f, r) are

(1) There exist set objects (g, t) and (f', t) with

(8 s)=¢(g', 1), (=" 1
and
g’ et.f’a
and
(ii) There exists g’:¢’>—> a such that
(g, 5)=¢(g', 1)
and
g'e.f.
Exercise 12. For set objects (g, r), (f, r),
(& NE(f,r) iff ge.f. O
We now have a definition of an £-model
A@) = <Asg, E,, zsg>,

where A, is the collection of all set objects in &. Notice that the definition
has been given for any topos &. Osius proves

TueoreM 3. If & is well-pointed, then W(¥) is a model of all of the
Zy-axioms, together with the axiom of Regularity and the Transitivity
axiom (TA). If NNO (respectively ES) holds in & then the Axiom of
Infinity (respectively Axiom of Choice) holds in A(%). O
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It is also shown that for each tso r:a > Q¢ the set object (1,,r) is a
“transitive set” in the sense of A(&), i.e. the L-formula Tx(u) is satisfied
in A(%) when u is interpreted as the A(&)-set (1, 7).

12.6 Equivalence of models

We now have two construction processes

A—& )
e—->A®)

of well-pointed topoi from models of Z, and conversely. It remains to
determine the extent to which these constructions are inverse to each
other.

To do this we will need to assume that Mostowski’s lemma is true in
. Rather than confine ourselves to ZF-models, we take the statement of
the lemma as a further axiom.

Ax1oM OF TRANSITIVE REPRESENTATION: This is the £-sentence that for-
mally expresses the statement

ATR: Any extensional, well-founded relation r:A — P(A) is
isomorphic to the membership relation r. : B < P(B) of some
transitive set B.

B is called the transitive representative of r.

The system Z is Z,+Reg+TA+ ATR.

Now let us assume A =(A, E, =) is a Z-model. If b A is an A-set,
then, working “inside” U, from Z,+TA there will be an A-set a that is
the transitive closure of b in the sense of U, and so there will be an
A-inclusion f:b <> a. Moreover by Ext and Reg the 2-membership
relation r, : a—%(a) on the A-transitive object a will be Y-monic and A-
well-founded, hence UA-recursive. But the UA-functions f and r, will be
arrows in the topos @), and so (f, r,» will be a set-object in &%), i.e. an
individual (“set”) in the £-model A(€RN)). Putting Ob(a)=f, r,) gives a
transformation from £-model A to £-model A(EA)) that satisfies

a=c iff Ob(a) @0 Ob(c)
and

aEc iff Ob(a)Egg,Ob(c).
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In the opposite direction, given a set-object X =(f:b>>a, r:a>> 02%) in
A& ), then r is a monic, recursive arrow in £A), i.e. an extensional,
well-founded relation in . Since ATR holds in U there is some A-
transitive set c€ A, and an A-bijection g:a—>c¢ that makes r U-
isomorphic to the A-membership relation on c. We let St(X) be the A-set
“g(f(a))”, i.e. the A-image of b in ¢ under the A-function geof.

In view of Theorem 2 of §12.4, transitive representatives are unique

(in Z) and so this gives us a map St from (&) to A that can be shown
to satisfy

Xe=pop Y it St(X)=St(Y)
and
XE. oY iff St(X)ESt(Y).
Moreover Ob, and St are “almost inverse” in the sense that we have
a=St(Ob(a))
and
X =40 Ob(St(X))
Were we to “normalise” U and A(E(RA)) by replacing individuals by their
=-equivalence classes we would obtain two fully isomorphic £-models.
Exercise 1. Show, for any £-formula ¢, that
AkRgla] iff AEEA))Fe[Ob(a)]
and

ARA)F[X] iff AR [SH(X)].

ExEeRrcisE 2. Show
Akpla]l iff WAF@[St(Ob(a))]
and

ARA)Fe[XT iff AEAN)Fe[Ob(SH(X))]. U

Beginning now with a well-pointed topos &, a transformation
F:2(®)) — & is defined as follows. If X is an £®(%)) object then X is
an A(E)-set, i.e. a set-object (f,r), where f:b>>a and r:a— 0* are
g-arrows. We put F(X)=dom f=b.
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Osius shows how to define F on Z((%))-arrows so that it becomes a
functor from ZQU(¥)) to €. The image of F in & proves to be a full
subcategory of & containing those &-objects b that are partially transitive.
Partial transitivity of b means that there exists a tso r:a — Q% in &, and
an &-monic f:b >> a from b to a. This makes (f, r) a set-object, i.e. an
object in £(A(&)), with F(f,r)=b.

AXIOM OF PARTIAL TRANSITIVITY:
APT: Every object is partially transitive.

Notice that if U is any Z-model, then the topos &) of A-sets and
A-functions always satisfies APT. The definition of Ob(b) shows that
every b is partially transitive.

Now if £F APT, then the functor F described above will be “onto” —its
image is the whole of €. Moreover F will then be an equivalence of
categories, as defined in Chapter 9. Thus & and €QU(¥)) are equivalent
categories. They are “isomorphic up to isomorphism”. By identifying
isomorphic objects in each we obtain two (skeletal) categories that are
isomorphic in the category Cat of all small categories. Furthermore if & is
partially transitive (i.e. £F APT) then the functor F can be used to show
that the axiom ATR of tranmsitive representation holds in (%), and so
A(¥) is a Z-model. For, if R is an extensional well-founded relation on X
inside A(Z) then R corresponds to an A(&)-function r: X — P(X) which
becomes a tso in €RL(&)). F transfers this to a tso t:a — ¢ in &. The set
object (1,, t) then proves to be the transitive representative of X in ().

In summary then, there is an exact correspondence between models of
the set theory Z and well-pointed, partially transitive, topoi. The concept
of a “well-pointed partially transitive topos” can be expressed in the
first-order language of categories, and so we have an exact correspon-
dence between models of two first-order theories. Indeed the whole
exercise can be treated as a syntactic one, the set-theoretic definition of
“function (arrow)” and the categorial definition of “set-object” providing
theorem-preserving interpretations of two formal systems in each other.

The theory as developed may be extended to stronger set theories. A
categorial version of the Replacement schema can be defined to charac-
terise those topoi that correspond to models of ZF. Further results of this
nature are given in Section 9 of Osius. In the event that epics split in
well-pointed &, the axiom APT is redundant. By lifting to & the set-
theoretic proof that any object A has a well-ordering (and hence yields a
tso A — P(A)), it can be shown from ES that all objects are partially
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transitive. Thus well-pointed topoi satisfying ES correspond exactly to
models of ZC (Z-+axiom of choice).

A fuller account of the technical details of the theory just described,
including proofs of the main results, is to be found in Chapter 9 of
Johnstone [77].



CHAPTER 13

ARITHMETIC

“Abstraction is a crucial feature
of [rational] knowledge, because
in order to compare and to clas-
sify the immense variety of
shapes, structures and phenom-
ena around us we cannot take all
their features into account, but
have to select a few significant
ones. Thus we construct an intel-
lectual map of reality in which
things are reduced io their general
outlines.”

Fritjof Capra

13.1. Topoi as foundations

Category theory promotes the viewpoint that the concept of “arrow” be
taken as fundamental in place of “membership”, and the development of
topos theory substantiates that position. By imposing natural conditions
on a topos (extensionality, sections for epics, natural numbers object), we
can make it correspond precisely to a model of classical set theory. Thus,
to the extent that set theory provides a foundation for mathematics, so
too does topos theory. What then are the attractions of this new system?

The first thing one could point to is that the concepts of topos theory
are natural ones to the practising mathematician. Category theory was
originally developed as a language for use in the areas of topology and
algebra. The alternative account it has subsequently produced of the
nature of mathematical structures and their essential features is a most
compelling one. Entities are characterised by their universal properties,
which specify their role in relation to other entities. Thus it is the
universal property that a product has that most effectively conveys its
usage and function in relation to the two objects from which it is
obtained. Once this ‘“‘operational” description is known, its internal
structure — the way it was constructed —is of lesser importance.

332
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It was suggested in Chapter 1 that the purpose of foundational studies
is to provide a rigorous explication of the nature of mathematical con-
cepts and entities. There is of course no single correct way to do this. Set
theory offers one approach, topos theory another. As against either one
might retort that we really know what such things as whole numbers are,
and always have. And yet as long as there are mathematicians, there will
be new and different attempts to define and describe them. Contexts and
perspectives change in the light of new knowledge. Forms of language
change to deal with new perspectives. Whenever this occurs, old ideas are
re-examined in a different light. To some people, discovering topoi will
constitute a revelation. Just re-expressing familiar ideas in a new lan-
guage, relating them to different concepts, somehow carries the force of
explanation, even if the new new concepts themselves ultimately require
explaining. It may well be, in the future, that those bought up on a solid
diet of “arrow-language” will seek to reappraise what to them will have
been standard fare. When that happens, new concepts, and new founda-
tions will emerge.

One of the new analyses of mathematical structure developed by the
categorial foundation is an alternative account of what sets are and how
they behave. Instead of the “universe of (ZF) sets” we are offered the
“category of sets”. In formal theories like ZF a set is an entity that has
members that have members that have members that have .... The
membership structure determined by a set can be very rich indeed (think
about the membership tree for example of ?(w)). The informal picture
that the ZF-set-theorist has of his universe is an open-ended cone

———

4]
Fig. 13.1.
with the null set at the base point. Starting with @, all the individuals in

the universe are built up by repeatedly forming powersets and taking
unions. As these operations are iterated, sets of greater and greater
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complexity appear at higher and higher levels that pile up in the cone ad
infinitum.

Now the elements of the collections that are used in mathematics are
indeed often sets themselves. Thus a topology is a collection of subsets, as
is a powerset, and a Heyting algebra P*. An analyst deals daily with
collections of functions, and with function(al)s whose inputs are them-
selves functions. Rarely however does one find in practice the need for
more than three or four levels of membership. Even then one can
distinguish these examples of the use of set theory from the actual
conception, the essential idea, of what a set is. As Lawvere [76] puts it,
‘“an abstract set X has elements each of which has no internal structure
whatsoever”. A set, “naively”, is a collection of indeterminate, quite
arbitrary, things. Indeed in algebra the word ““abstract” is used to convey
precisely that sense. One studies abstract group theory when one studies
groups as collections that support a certain algebraic structure, the nature
of the elements of those collections being immaterial. In general topol-
ogy, the elements of a topological space are universally called “points”,
therein a point being, as it was for Euclid, “that which has no parts”.
Likewise, in the category of sets, a set is an object X that has elements
1— X, these elements being fundamental and indivisible. Topos theory
has shown us how to develop foundations for standard mathematical
concepts in these terms.,

Intuitive set theory is, and will doubtless remain, central to our
metalanguage for the doing of mathematics. It is part of the language in
which we speak, whether the object of our discourse be geometry,
algebra, or foundations, whether the objects about which we speak be
topological spaces, groups, or sets. Seen in this way, topos theory stands
not so much as a rival to set theory per se as an alternative to formalised
set theory in presenting a rigorous explication, a foundation, of our
intuitive notion of “‘set”.

One of the most significant achievements of topos theory is to have
crystallised the core of basic set theory in one concept that is manifest in
such hitherto diverse contexts. Thus we can apply the “set of points”
notion and our familiarity with it to the structures of algebraic geometry,
intuitionistic logic, and monoid representations. In this chapter we shall
look briefly at how the foundations of the arithmetic of natural numbers
can be lifted to any topos with a natural numbers object. The power of
the axiomatic method, and the ability of abstraction to simplify and get at
the heart of things will perhaps be brought home if one reflects that a
“npatural number”, i.e. element 1 — N of N, referred to below might in
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fact be anything from a continuous function between sheaves of sets of
germs (local homeomorphisms) to an equivariant mapping of monoid
actions, or a natural transformation between set-valued functors defined
on an arbitrary small category.

13.2. Primitive recursion

Throughout this section, & denotes a topos that has a natural numbers
object 13 N4 N So for any diagram 15ala in € we have a

unique “&-sequence” h: N — a defined by simple recursion from f and x,

i.c. making
o

1 h h

N

a —— a

commute.

Now there are many basic arithmetical functions that can be defined
inductively by more complex forms of recursion than that captured by the
axiom NNO. Consider, for example, the process of forming the sum m+n
of two numbers. We may do this by holding m fixed and “repeatedly
adding 1 to m” to generate the sequence

mm+l,m+2, ..., m+n,...
Then m+n is defined by “‘recursion on n” from the equations
m+0=m
and
m+n+)=m+n)+1
i.c.
m+s(n)=s(m+n).

The form of these equations is the same as those that defined the unique
h:IXw—> A used to verify NNO for Bn(I) in §12.2, and readily general-
ises. The “‘parameter” m is replaced by an element x of an arbitrary set
A, and in place of m +n we define a function h(x, n) with inputs from
A X, and outputs in some other set B. To start the induction on n we
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need a function of the form hy: A — B so that we can put
(D h(x, 0) = ho(x).

Then, assuming a function f: B — B has been given, repeated application
of f will generate h. Thus we put

@) h(x, n+1)=f(h(x, n)).
By (1) and (2) the diagram

14 Xs
<1A,yvA><m AXw
A h h

N
B f B

commutes, and defining h by these equations is the only way that it can
commute.

In the case that hy is id, :w — @ and f is the successor function
S 1w — o, the unique h defined recursively from h, and f by (1) and (2) is
the addition function +:0 X — .

TI-'IlEOREM 1. (Freyd [72). If &FNNO, then for any diagram
a’sbLs b there is exactly one €-arrow h:a X N — b such that

1 X4
axXN ‘i axXN

(h,y

a h h
XA

commutes, where O, is the composite of a—>1% N.

b ———— b

CONSTRUCTION FOR PrROOF. h is the “twisted” exponential adjoint of the
unique sequence N — b® that makes

ny & N

1
hy! e

b* ——— b*
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commute. Here ¢ is the exponential adjoint of foev:b* Xa—b

b*xa —2— b
foev f
b

In Set, foev maps (g, x)€ B* XA to f(g(x))€B, so that f* maps ge B*
to

A—8 B
feg f
B
fege BA. a

Applying Theorem 1 to a diagram of the form b pts b, the unique

h:bXN — b defined by recursion from 1, and f has in Set the recur-
sive equations

hix,0)=x
h(x, n+1)=f(h(x, n)).
Thus for fixed x, h generates the sequence

x, f(), f(FGe)), FEECED), - - -

and so h is called the iterate of f.
The iterate of the successor arrow s:N — N is, by definition, the
addition arrow @ :N XN — N.

Exercise 1. What does @ look like in Set® and Bn(I)?

Exercisk 2. Let i(f) be the iterate of f. Show that
bxNxN DX, N

1, x® {i )

1
bx N i b

commutes.
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Exercisk 3. Explain why Exercise 2, in the case f =4, gives the ‘‘associa-
tive law for addition”.

ExEercisE 4. Show that

beﬂ» bxN

i(f)l {i(f)
f

b b
and

bxN &IL bxN

1b><a{ ll(f)

bxN —D
comiute.

EXERCISE 5. Show that (O, 15)° O ={1y, On)° O ={0, O).
EXxERCISE 6. ©{0, O)=0.
ExErcisE 7. (0+m =m). Show that
N Ot NN
k A
N
commutes.
Exercise 8. (Commutativity of Addition)
NxN 20, Ny N
&N B
N
commutes. il
The basic idea of recursion captured by Theorem 1 is that h(x, n),

having been defined, serves as input to some function f to obtain
h(x, n+1) as output. But there are some functions with natural inductive
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definitions in which h(x, n+1) depends, not just on h(x, n), but also on x
and n in a very direct way, i.e. we need to input one or both of x and n as
well as h(x, n) to get h(x, n+1). Take for example the multiplication
xXn of x by n, i.e. “x added to itself n times”. This is given by the
equations

xx0=0

xX(n+D)=x+(xXn)
i.e.

xXs(n)=f(x,x xXn)

where f is the addition function.
For an example in which h(x, n+1) depends directly on n consider the
predecessor function p:w — @ that has p(n)=n—1 (unless n=0, in
which case we put p(n)=0). Recursively p is specified by

p(0)=0

pln+1)=n.
These two considerations may be combined into one: given functions

he:A— B and f: A Xw XB — B we define h:A Xo — B, by “primitive
recursion”, through the equations

h(x, 0) = hg(x)
hix, n+1)={f(x, n, h(x, n)).

By putting h, as O, :@ — o and f as the “2nd projection” pri: o’ — o,
the resulting h is the predecessor function p. Using the same hg, but with
f the composite of

{pry, prs) +
(1)3 1 3 (1)2

(]

we recover the multiplication function as h.

Privrrive RecURsioN TueoreM (Freyd [72]). If €ENNO, then for
any &-arrows hg:a—b and f:a XN Xb— b there is a unique Z-arrow
h:a XN — b making

1. X,
XN axN 22, axN

a

(1., O,

a / lh (1QXN,h)l lh
.

b aXNxb——f——+b

commute.
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CONSTRUCTION FOR ProOF. By Theorem 1, there is a unique h' such that

1
axXN a X7 axXN
(uV
a n h'
<1a’ oaam

axXNXxXhb Leripra ), axXNXb

commutes.
In Set {pry, pr,, f) takes <{x, n, y) to {x, n, f(x, n,y)). Hence h’ has the
equations

h'(x, 0)=(x, 0, ho(x))
h'(x,n+1)={(x, n, f(x, n, k' (x, n))).

The desired &-arrow h is the composite
axN —H  axNxb

S

b
of h' and the projection to b. il

CoroLLARY. If h is defined recursively from hy, and f as in the Theorem,
then for any elements x:1—a and y:1— N of a and N we have
(@) heo(x,0)=heox

1
<x,<?/ %c’x
h

axXN ——

(i) holx,s0y)=f(x,y, ho(x,y))
(x,y,holx, y)

1 aXNXB
<x,4°v>l lf
axN h b

ProoF. Apply the elements x:1—a and (x,y):1— a XN to the two
diagrams of the Primitive Recursion Theorem, and use the rules for
product arrows given in the Exercises of §3.8.
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The original formulation of the Primitive Recursion Theorem, in the
context of well-pointed categories, is due to Lawvere [64] and states that
there is a unique h satisfying the two conditions of the corollary. A full
proof of this is given by Hatcher [68], wherein extensionality is invoked
to show uniqueness of h.

Some special cases

(1) (Independence of n). Given hg:a—b and f:a Xb— b, there is a
unique h:a X N — b making

1, X35
axXN axXN ——— axXN

(14 Oy}
a / Jh (pr,, h)l {h
T f

b axXb —— b
commute. (h is obtained by primitive recursion from h, and
f0<praa prb>:a XNXb - ba USing 1a><N=<pra9 prN>)

(2) (Independence of x). Given hy:a—b and f:NXb— b there is a
unique h:a XN — b making

1, X4

axXN aXN —— gXxXN
<1a’oa>
a h (prN,h)l lh
h
s b Nxb—1
commute.

(3) (Dependence only on n). Given hy:1—b and f: N — b there is a
unique h:N — b such that

N —~—> N
o
1 h Rﬁ
b

commute (this comes from Case (2), defining h':1 XN — b from h, and
feopry :NxXb — b and using the isomorphism 1 x N =N).

(4) (Iteration). Theorem 1 is itself a special case: given
he:a—b, f:b— b, the unique h:a X N — b is defined by primitive recur-
sion from hy and fopr,:a X N xXb — b.
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Using the Primitive Recursion Theorem and its special cases, we can
define in any topos with a natural numbers object analogues of many
arithmetical operations.

DEerFmrTioN (Predecessor). p: N—N is defined by recursion from O:
1— N and 1y :N— N (Case (3)) as the unique arrow that exists to make

N N —2—> N
O
1/ o 1&%
RN N

commute.

COROLLARY. 4 iS monic.

ProOOF. If sof=q40g, posof=pogog, ie. In°of=1x°g

Exercise 9. Show that p is epic. U

DermarioNn (Subtraction). — :N XN — N is the iterate of p, ie. the
unique arrow for which

NxN IxX4, NXN

N

N
commutes.

Exgrcise 10. Verify that in Set

{m—n if m=n
m-n= .
0 otherwise.

ExERcISE 11.

NxN X9, NxN

<@’ pr2) <@’ pr2>

NxN 2%, NxN

commutes.
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Exercise 12. ((n+1)=1=n). The diagram

N O NN

AL
N
commutes.

TueoreM 2. (1) [(m+1D=n+1)=m= n]

NxN 22X, NxN
N

commiutes.
@ [((m+n)~n=m]

NxN &P NN

P A

commutes.
Proor. (1) Consider

NXN 224, NxN

A

1 N><N -

ﬂX1N

NXN N

343

That the upper triangle commutes is a standard exercise (3.8.8) in product

arrows. For the other triangle we have

pXInosXIn=posXyely
=1 X1y

=Tyun-

(3.8.8)
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But the lower part of the diagram commutes by the second diagram of
Exercise 4 above (tipped over). Hence the boundary of the diagram
commutes as required.

(2) Consider

NXN 222, Ny N

. 0/ @, pry @®, pry

<1N’ ON>

N NxN 2% NxN

Tn

N '~ N

The upper square commutes by Exercise 11, the lower one by part (1) of
this theorem. The lower triangle is part of the definition of -, and for the
upper triangle we have

D, pra)o(1n, On) =B °{1n> On), Prao{1n, On))
=1 On) (definition D).

Thus the whole diagram commutes, showing (Theorem 1) that = o(®, pr,)
is the unique iterate of 1. But it is a simple exercise that the iterate of 1
is pr;: NXN— N. d

COROLLARY.

1)  NxN&rm GoN
\ /*,p@)
NXN

commutes.
2) B, pro):NXN—->NXN and {pr,®):NXN-—>NXN are both
monic.

Proor. (1)

<;a pr2>°<®7 pr2>
=(=oAD, pra), pr.°{D, pro))
={pry, pr2) (Theorem, part (2))

=Tnxn-
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(2) From (1) (as in the proof that s is monic), we get (B, pr,) monic.
But then, since

NxN P20 o N

<EB,prN .AB, bry)

NXxXN

commutes, using Exercise 8, and so too does

NxN &) yon

<Pr1’ 69\>\ Arz, Pr1>

NXN

the fact that the twist arrow {pr,, pr,) is iso means that (pr,, P) is monic.
O

Order relations

The standard ordering =< on w yields the relation
L={m,n): m=n}.

Since, in general, m<n iff for some p e w, m+p =n, we have
L={m,m+p): m,pco}

But {(m, m+p) is the output of the function {(pr,,D): w X w — » X w, for

input {m, p), so we have the epi-monic factorisation

{pry, ®
DX — 0o X®w

{pry, @N /
L

Thus in € we may define the order relation on N to be that subobject of
N XN that arises from the epi-monic factorisation of {(pr,,®). Since, as
we have just seen, this arrow is monic already, we may take it to
represent the order on N.

The strict order < on @ is given from = by the condition

m<n if m+isn
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Thus in € we define &: N XN >> N XN by the diagram

NxN 2%, NxN

o\, oo

NXN
aX 1y is monic, being a product of monics, and so € is indeed a
subobject of N X N.
Exercise 13. Define the &-arrows corresponding to the relations
{{m, n): m=n}
and
{m, n): m>n}

on . O

DEermnrrion  (Multiplication). @: N XN — N is defined recursively from
Oy and @ (Special Case (1)) as the unique arrow making

NxN NXN 2%, NxN

(10 On)
I;\I,/ ® (pr1,®)[ l@
o~

N N XN N

commute.

ExerciskE 14. Show that, for x:1— N and y:1 - N

NXNM NxXN

K\
A’ )

1
(x, y)Ye{pr,, D) iff for some z:1— N, Do(x, z)=1y.

Exercise 15. Show that (x, y)e © iff for some z, @o{s°x, z)=1.

Exercise 16. Show for any x:1-— N, that
Rolx,s°0)=x.
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Exercise 17. Define in € analogues of the following arithmetical arrows
in Set
@) exp(m, n)=m"

({f) Jm —n= {n —m otherwise
(iii) max(m, n)=maximum of m and n
(iv) min(m, n)=minimum of m and n. O

m—n if m=n

Further information about recursion on natural numbers objects in
topoi is given by Brook [74], on which much of this section has been
based.

13.3. Peano postulates

In Set one can prove of the system 12 655w that

(1) s(x)#0, all xew.

2) s(x)=s(y)only if x=1y, all x, y € w.

(3) if A cw satisfies

(i) O A, and
(i) whenever x € A then s(x)e A,
then A = w.

Statement (3) formalises the principle of Finite Mathematical Induc-
tion. Any natural number is obtainable from 0 by repeatedly adding 1 a
finite number of times. (i) and (ii) tell us that this process always results in
a member of A.

The three statements (1), (2), (3), known as the Peano Postulates,
provide the basis for an axiomatic development of class1ca1 number
theory. They characterise @ in Set, in the sense that if 1—->w — o'
was any other system satisfying the analogues of (1), (2), (3), then the
unique h:@ — o' for which

(O]
lh
o'

(O]
e
1 {
o~
commutes would be iso (i.e. a bijection) in Set. (1)’ and (2)' are used to

show that h is injective, and (3)' applied to h(w) < o' shows that h(w)=
o', i.e. h is surjective.

s

,
s 4
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In this section we show that an nno in any topos satisfies analogues of
(1), (2), (3). We will then appeal to some deep results of Freyd [72] to
show that the notion of a natural numbers object is exactly characterised
by categorial Peano Postulates.

It should be clear to the reader how the condition “s{x)# 0”’ abstracts
to

PO: O£4, le.

1
7N
N—4>N

does not commute for any “natural number” x:1— N.
Alternatively, Postulate (1) asserts that

s~'{oh =9,

where s '({0})={xecw:s(x)=0} is the inverse image of {0} under s.
According to §3.13, the inverse image of a subset of the codomain arises
by pulling the inclusion of that subset back along the function in question.
Hence we contemplate another abstraction of Postulate (1)

P1:
0 1
is a pullback.

Postulate (2) states precisely that the successor functlon is injective, and
so becomes

——

P2: N 4 N is monic.

In Postulate (3), the subset A< is replaced by a monic f:a — N.
Hypothesis (i) becomes Ocf, i.e. there is some x :1— a for which

/\

a>——>N

commutes. Hypotheses (ii) states that s(A)= A, where s(A)=
{s(x): x € A} is the image of A under s. Recalling the discussion of images
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at the beginning of §12.6, s{A) generalises to s[f] =im(s°f), and since 4
and f are monic, 4[f]=scf. Thus (ii) becomes the statement that in

Sub(N), gof<f, ie.

a
%Kf
Cl)—L)N

commutes for some g.
Altogether then Postulate (3) becomes

P3: f
For any subobject a>>N of N, if

@i O€f, and
(i) aof<f
then f=1y.

THEOREM 1. Any natural numbers object 13N5N satisfies PO, P2,
and P3.

Proor. PO: If gox = O for some x:1— N, then
pesex=p°O

and so
Tvex=0

ie.

x=0 (by definition of p)
But then we have 50O = sox = O, and so if h is defined by recursion

MN—‘»N
| {

fh =

0 0
from false and — we would have
true = o false
=hogoO
=hoO

= false
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which would make & degenerate.
P2: 5 was shown to be monic in the last section.
P3: Suppose f< 1y, and there are commuting diagrams

1 a
(&) g °
YN wa YN
a )—L——> N a —f-> N
Let h be defined from x and g by simple recursion and consider
N —“2 N
2
1—%*5a—Ff—>a
}.\ f f
)

N—d*N

The upper triangle and square commute by definition of h, the lower two
by the previous diagrams. Hence the whole diagram commutes, revealing
foh as the unique arrow defined by recursion from O and s. But
obviously these last two arrows recursively define 1,. Hence

N
v\
a>——f——+N

commutes, showing that 1y =f, and so 1y =f. d
Exercise 1. Derive PO from PI. (]

The elements of N in Set are of course just the finite ordinals n € w.
Correspondingly, in € we define, for each n € w, an arrow n: 1 — N by
n=s040,, 0500
e —_——
n times

The arrows n will be called the finite ordinals of €. Using these, and the
more general natural numbers x:1— N of &, we can formulate two
variants of the third Peano postulate.
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P3A:
For any a>—£>N, if

(i) Oe€f, and
(i) xef implies soxef, all 13N

then f: 1N

P3B: For any a>LN, if

(i) O€<f, and
(ii) me f implies sonef, al new
then f=14.

Exercise 1. Show that in Bn(I), n is the section of pr; : I X @ — I that has
n(i) =i, n), all i.

ExeRcise 2. Show that in Bn{(w), the diagonal mapA:w > wXw is a
natural number A:1— N, with A#n, all n.

Exercise 3. Show that P3B implies P3A and P3A implies P3 in general.
ExercisE 4. Show that P3B holds in Set® and in Bn(I) and Top(I).

Exgercise 5. Use Theorem 7.7.2 to show that in a well-pointed topos P3
implies P3A. O

Before examining P1, we look at two further properties of @ in Set.
First we observe that
id !
0 —3 o — {0}
S

is a co-equaliser diagram in Set. For if

id

(.OS:‘“:(.O—!—){O}

A

fos=feid, =f, then for each n € w, f(n+1)=Ff(n), and hence (by induc-
tion) f(n)=f(0) all n. Thus f is a constant function with f(0) its sole
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output. Putting x(0)=f(0) then makes the last diagram commute, and
clearly x is uniquely defined and exists iff fos =f.
Thus we formulate

Fi: N 51 is the co-equaliser of s and 1y.

EXEeRcISE 6. According to §3.12 the codomain of the co-equaliser of id,,
and s is the quotient set /R, where R is the smallest equivalence relation
on o having nRs(n), all n € @. Show that there is only one such R, namely
the universal relation R = X w, having o/ R ={w}, a terminal object in
Set. o

Since, in Set, Ims ={1, 2, 3, .. .}, we have {0} UIm s = ». But (Postulate
(1)) {0}NIm s =0, and so the union is a disjoint one —{0}+Im s ={0}U
Im s = w. Identifying {0} with O:1 — ® and Im s with the monic s we
have

[0,s]: 1+ =,
and thus we formulate

F2: The co-product arrow [O, s]:1+N — N is iso.
TueoREM 2. F1 and F2 hold for any natural numbers object.

Proor. F1: Suppose that

_L, !

=

R

fos=f Put x=7f-O,
1
AR
N—f-> a

N —N

yf f

so that

4
1(1
—
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commutes. But

__.)N

T
§

1

7
N

commutes, and so by the axiom NNO,

—“_,a

N —_
X
f
a

commutes as required. That there can be only one such x making this
diagram commute follows from the fact that !: N — 1 is epic. To see why,

observe that
\ J‘
1

commutes, and use the fact that 1, is epic (or derive the result directly).

F2: Lett:1+ N — 1+ N be the arrow jo[O, 4]

1 — 4N —L N

[0, 4]
o L 4

1+N
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where i and j are the injections. Let g be defined by recursion from i and
t, and consider

N—ﬁ*N

1 —t 14N 1+N

x [O, 5] [O, <]

N_ﬂ_,N

Since i is an injection, [O, s]ei=O. Since j is an injection, [O, s]ot=
[O, 5]°jolO, s]=4°[O, s]. Hence the whole diagram commutes. NNO
then gives [O, s]eg =1x-

Now the diagrams

N_d__,N

jh

and

oo~

O™ 44N 5 14N

both commute. The first is left as an exercise. For the second, observe
from the previous diagram that rog=geos. This yields toges=goasos as
desired, and also tegeO=goscO. But togeO=jo[O, s]logeO=
jeln°O=j°O, hence joO=gos°0, as also desired.

From these last two diagrams, NNO gives gos =j. From the previous
one we have geO=1. Thus go[O, s]=[g° O, gos]=[i, j]=1,.n- Thus we
have shown that g is an inverse to [O, 5], making the latter iso. O

Exercise 7. In deriving F1 we used the fact that 1: N — 1 is epic. Show in
any category with 1, that if a is non-empty, i.e. has an element x:1— a,
then !:a — 1 is epic. O
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Lemmva. In any topos, if
d —%- g
1
b bk, ¢

is a pushout with g monic, then h is monic and the square is a pullback.

Proor. By the Partial Arrow Classifier Theorem (§11.8), using the clas-
sifier m, :b — b associated with b, we have a diagram

d
fl
b

~£2 5 a
kl\;
c

h

—_

Ny

whose boundary is a pullback. The co-universal property of pushouts then
implies the existence of the unique x as shown to make the whole
diagram commute. That the original square is also a pullback is then a
straightforward exercise. Finally, since xoh = 1, is monic, h must be too.
O

TueorREM 3. Any natural numbers object satisfies

P1:

0 — 1

..

N—— N
is a pullback.

Proor. Since, by F2 we have an isomorphism [O, 4]:1+N— N, it is
readily established that

1S N&EN
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is a co-product diagram in €. The co-universal property of co-products
then makes it immediate that the diagram for P1 is a pushout, and so the
result follows by the Lemma, since 0 — 1 is monic (§3.16). O

TuaeoreM 4. The conditions P1, P2, and P3 together imply F1 and F2 for
any diagram

19NN

in a topos.

Proor. F1: Suppose that fes={, and let g:b >> N be the equaliser

b 8 N —N 1

N

a
of f and foO-°ly. Let foOeoly=h. Then since

N\ /b

Iy O =1,, it follows that hoO =f<O. Since g equalises f and h, O must
then factor through ¢, hence O € g.

Next, observe that

N A
1

lyoo=ly, from which it follows readily that hecsocg=hog But heg=
fog=foscg. Thus ho(sog)=fo(sog), implying that sog must factor
through the equaliser g, i.e. sog < g The postulate P3 then gives g =1,
so that g is iso, in particular epic, the latter being enough to give
f=h=fcO-°l,. Hence
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commutes. But !: N — 1 is epic, since N has the element O:1— N, and
so foO is the only element of a that will make this diagram commute.
This establishes F1.

F2: By P2 and P1, s and O are disjoint monics, so the Lemma
associated with Theorem 5.4.3 gives [O, 5] as monic. To prove F2 then, it
suffices to show that [O, 4] is epic.

Suppose then that fo[O, s]=g°[O, 4]

1 —t > 14N —— N

NS

N

il

a

From the diagram we see that foO=goO and fos=gos Then if
h:b>> N equalises f and g we must have O € h, and since then fosch =
goseh, soh factors through h, ie. soch<h. Postulate P3 then gives
h =1y, from which f=g follows. Thus [0, 4] is right cancellable.

CoroLLARY. In any topos &, the following are equivalent for a diagram of
the form 19NN

(1) The diagram is a natural numbers object.

(2) The diagram satisfies the Peano Postulates P1, P2, and P3.

(3) The diagram satisfies the Freyd Postulates F1 and F2.

Proor. (1) implies (2): Theorems 1 and 3.
(2) implies (3): Theorem 4.
(3) implies (1): Freyd [72], Theorem 5.4.3. O

The equivalence of (1) and (3) established by Freyd requires techniques
beyond our present scope. Freyd also establishes the equivalence in any
topos of

(a) there exists a natural numbers object,

(b) there exists a monic f: a >> a and an element x:1 — a of its domain
for which

1
lx
a

_

Q — O

N
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is a pullback, and

(c) there exists an isomorphism of the form 1+a=a.

With regard to (c), observe that in Finset, where there is no nno,
isomorphic objects are finite sets with the same number of elements, and
1+a has one more element than a.

The intuitive import of (b) is that the sequence x, f(x), f(f(x)), ... has
all terms distinct and so forms a subset {x, f(x), ...} of a isomorphic to w.
The natural numbers object then arises as the “intersection” of all
subobjects g:b ~— a that contain this set, i.e. have xeg and foegc g
These ideas are formalised in another approach to the characterisation of
natural numbers objects developed by Osius [75].

Exercise 8. Derive P1 and P2 directly from F2. O



CHAPTER 14

LOCAL TRUTH

“a Grothendieck topology ap-
pears most naturally as a modal
operator, of the nature ‘it is loc-
ally the case that’”

F. W. Lawvere

The notion of a topological bundle represents but one side of the coin
of sheaf theory. The other involves the conception of a sheaf as a functor
defined on the category of open sets in a topological space. Our aim now
is to trace the development of ideas that leads from this notion, via
Grothendieck’s generalisation, to the notion of a “‘topology” on a categ-
ory and its attendant sheaf concept, and from there to the first-order
concept of a topology on a topos and the resultant axiomatic sheaf theory
of Lawvere and Tierney. The chapter is basically a survey, and its
intention is to direct the reader to the appropriate literature.

14.1. Stacks and sheaves

Let I be a topological space, with @ its set of open subsets. & becomes a
poset category under the set inclusion ordering, in which the arrows are
just the inclusions U < V.

A stack or pre-sheaf over I is a contravariant functor from @ to Set.
Thus a stack F assigns to each open V a set F(V), and to each inclusion
U < V a function Fy; : F(V) — F(U) (note the contravariance — reversal
of arrow direction), such that

(i) Fy=idy, and

(1) if U= VW, then

/ \

. w
commutes, i.e. Fiy=Fy o Fy.

F(V)

359
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ExampLE. Let f: A — I be a sheaf of sets of germs over I, as in Chapter
4. Define a stack F;:® — Set as follows.

F:(V)=the set of local sections of { defined on V
={V 3 A:s is continuous and f o s=V < I}

For an inclusion U <>V, Fy; is the “restricting” or “localising” map that
assigns to each section s: V— A over V its restriction s | U: U — A to
U. Identifying sections s with their images s(I) = A we have the picture

Fig. 14.1.

which indicates the origin of the word “stack”. F; is the stack of sections
over I. The category St(I) has as objects the stacks F:® — Set and as
arrows 7:F — G the natural transformations, i.e. collections {1, : U< @}
of functions 7y : F(U) — G(U) such that

\V4 F(V) —2— G(V)
J o e
U FU) —— G(U)

commutes whenever U< V.,
Now a contravariant functor @ — Set can be construed as a covariant
_functor from @°®, the opposite category to 6, to Set (cf. §9.1). Thus St(I)
is equivalent to the topos Set®”
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Exercise 1. Let h: (A, f) — (B, g) be an arrow in the spatial topos Top(I)
of sheaves of sets of germs over I For each open V, define hy : F;(V) —
F,(V) to be the function that maps a section s € F;(V) to

N2

Ve

hos, i.e hy(s)=hos. Verify that hes is a section of g, i.e. hy(s) € F,(V),
and that the hy’s, for all Ve @®, form the components of an arrow
7, : Fy = F, in St(I). Show that the assignments f~— F; and h — 7, consti-
tute a functor & from Top(I) to St(I). O

Now given a stack F, the question arises as to when F is (isomorphic to)
a stack of sections, i.e. when is there a sheaf of germs f such that in St(I),
F=F. The answer is to be found in the answer to another question about
the behavior of local sections of f:A-—I Suppose that
{V.2>A :xe X} is a collection of local sections of f, indexed by some
set X, and that each of their domains V, is a subset of some open set V.
Thus, for all x, s, € F(V,) and V, € V. The question is—when can we
“paste” together all of the sections s, to form a single sections: V— A€
F;(V). The rule defining the desired s is this: if i€V, choose some V,
that has i € V,, and put s(i) = s, (i). In order to have dom s = V we require
that each i € V be a member of at least one V,. This means that V is the
union of the collection of V. ’s, i.e. V=U{V,:xe X}={i: for some x € X,
ie V.}. In general a collection of open sets whose union is V will be
called an open cover of V.

In order for s to satisfy the ‘“‘unique output” property of functions, the
definition of s(i) should be independent of the choice of V, containing i.
Thus if i € V, and i€ V,, we require s, (i) =s,(i). So any two of our local
sections s, and s, must agree on the part V, NV, of their domains that
they have in common. In symbols —

for all x, yeX, s VeV, =5, V. OV,

Under this “compatibility” condition, s will be a well-defined member of
F;(V), with s | V, =s,, all x. Moreover s is the only section over V whose
restriction to V, is always s,. For, if t:V— A has t | V, =5, all xe X,
then ¢ =s.
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Now the compatibility condition on the s,’s can be expressed in terms
of the restricting maps Fg; of a functor F. We let Fi: F(V,)— F(V,NV,)
and F}:F(V,)— F(V,NV,) be the F-images of the inclusions V, N
V,=V, and V. NV, & V,, and F, :F(V)— F(V,) the image of V, <
V. Then what we have shown is that the following condition obtains for
the case that F is of the form F.

COM: Given any open cover {V,:xe X} of an open set V, and any
selection of elements s, € F(V,), for all x € X, that are pairwise
compatible, i.e. F;(s.)=Fi(s,) all x, y € X, then there is exactly
one s € F(V) such that F (s)=5s, all xe X.

Notice that COM is a statement that can be made about any stack
F:0 — Set. Any F satisfying COM will be called a sheaf of sections over
I, and the full subcategory of St(I) generated by those objects that satisfy
COM will be denoted Sh(I).

Exercisk 2. Show that the constant stack 1: @ — Set, where 1{U) ={0}, is
a sheaf.

Exercise 3. Consider the space I=1{0, 1}, with @ =%(I) (the discrete
topology). Let F(U)={0,1}, all Uc® and F{=f{, all U<V, where
f(0)=f(1)=0. By considering the cover {{0}, {1}} of I, show that F is not a
sheaf, i.e. COM fails.

Exercise 4. Why must F(@), for any sheaf F, be a one-element set?

Exercise 5. Show that

F(V)
F*
F(V) * s F(V,)

commutes whenever V, € V,, and so F(V), together with the maps F,, for
all xe X, forms a cone for the diagram consisting of the objects F(V,)
and the arrows F3. Show that COM is equivalent to the condition that
this cone be universal for that diagram, i.e. that F(V) be the limit of the
diagram, denoted F(V)=lim,.x F(V,) (cf. §3.11). O

Now given an arbitrary stack F:® — Set, a corresponding sheaf of
germs pr:Ap— 1 may be defined. For each i€l the collection
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{F(V):ie V} of F-images of neighbourhoods of i, together with their
associated restricting maps, forms a diagram in Set. The stalk over i in Ag
is defined to be the co-limit, denoted lim,.y F' (V) of this diagram.
Explicitly, an equivalence relation ~; is defined on U{F(V): i € V} thus: if
s, € F(V,) and s, € F(V,) (where V, and V, are i-neighbourhoods), we
put

iff Fi(s,)=Fi(s,), forsome i-neighbourhood

V.,eV.NV,.

Sx i Sy

Intuitively, F(s,) is the “localisation” of the element s, € F(V,) to V,.
Thus s, ~; s, when they are “locally equal™, that is when they have the
same localisation to some i-neighbourhood. The equivalence class [s]; of
se€ F(V) under ~,, i.e. the set [s), ={t: s ~; t}, is called the germ of s at i.
The stalk for pg over i is then the set F, ={(i,[s],): sc U{F(V): ic V}L
The stalk space is the union Az = U{F,: i€}, and pg is the projection of
Ar onto I For each open Ve® and scF(V), let N(s, V)=

{i, [s],): i€ V}. The collection of all N(s, V)’s generates a topology on Ag
making pg a local homeomorphism.

Exercise 6. Verify that —; is an equivalence relation.

Exercise 7. Define pL, : F(V)— F, by
pi(s) =G, [s]), all seF(V).

\/

commutes when U < V, so that the p%’s form a co-cone for the diagram
based on {F(V):ie V}. Prove that this co-cone is co-universal for the
diagram, so that F, is its co-limit, F;=lim;.v F(V). (cf. §3.11).

Show that

F(V)

Exercise 8. If s F(V), define sy, : V— Ag by putting s, (i) ={,[s])=
piAs), for all i€ V. Show that sy, is a section of the sheaf pg:A— L

Exercise 9. Let F,_ be the sheaf (stack) of sections of the sheaf of germs
pr. For each V, define o :F(V)— F, (V) by putting, for scF(V),
oy (s) =sy, where sy, is the section of p, defined in Exercise 8. Show that
the o’s form the components of an arrow o : F — F,_ in St(I).
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Exercisk 10. Let 7:F — G be an arrow in St(I). Define h, : Ap — Ag as
follows: if (i, [s];) is a germ at i in Ap, with s € F(V) say, let h_(i) be the
germ (i, [1,(s)].) in Ag, where 1y is the component F(V)— G(V) of .
Show that

commutes, and that h, is a Tep(I)-arrow from pg to pg.

Exercise 11. Verify that the constructions F+> pg, T+ h, constitute a
functor % from St(I) to Top(I).

Exercise 12. Let f: A — I be any sheaf of germs over I, F; its stack of
sections, and pg, : Ag, —> I the associated sheaf of germs. Define a map
k:A — Ag as follows. If a € A, use the local homeomorphism property
of f to show that f has a local section s: V — A through a, i.e. a es(V).
Let k(a)=(f(a), [skw) be the germ of s at f(a).

A

¢ vy
f(a) I
Fig. 14.2.

Check that the definition of k(a) does not depend on which section
through a is chosen. Show that

A k- A
I

commutes, so that k is a Top(I)-arrow from f to pg,
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Exercise 13. Prove that the map k of the last exercise is a bijection, and
hence is an iso arrow in Top(I), making f=pg.

Exercise 14. Let oy, : F(V)— F, (V) be the component of o:F-»>F,_
defined in Exercise 9. Show that o+, is a bijection iff the condition COM
holds for open covers of V. Hence show that ¢ is iso iff the stack F is a
sheaf, i.e. that F=F, iff F belongs to Sh(I). O

Exercises 1 and 11 provide us with functors &:Tep(I)— St(I) and
%:St(I) — Top(I), with the image of ¥ being (contained in) Sh(I). By
Exercise 13,

f=%(¥(f), all Top(I)-objects f.
However by Exercise 14, for FeSt(I), we have
F=%(4(F)) iff FeSh(I).

Thus &, and the restriction of ¢ to Sh(I) are equivalences of categories
(§9.2). They establish that the category of sheaves of sections over I is
equivalent to the topos of sheaves of germs over L

We conclude this brief introduction to stacks and sheaves with two
major illustrations of the behaviour of Sh(I)-objects.

I. NNO in Sh(D

The category Sh(I) has a natural numbers object —the sheaf of locally
constant natural-number-valued functions on I Specifically N : @ — Set is
the sheaf that has

N(V)={V 5 w: g is continuous},

where o is presumed to have the discrete topology, and Ni{(g)=¢g | U
whenever Uc V.

The requirement that g be continuous for the discrete topology on @
means precisely that g is locally constant, i.e. that for each i€V there
is a neighbourhood U, of i, with i € U, € V, such that g | U, is a constant
function. Thus there is a number g € @ such that g(i)=g for all ie U.
This condition on g can be interpreted as saying that the statement “g is
constant” is locally true of its domain V;, i.e. true of some neighbourhood
of each point of V.
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The arrow O:1— N has component Oy, :{0}— N(V) picking out the
constantly zero function V— @ on V. The V-th component s, : N(V) —
N(V) of the successor arrow for Sh(I) has sy,(g) =scg, where s 10 — @ is
the successor function on w. (Note that sog is locally constant if g is).

Exercise 15. Verify the axiom NNO for this construction.

Exercisk 16. For ne€ w, let ny: V-— o have ny(i)=mn, all i e V. Explain
how the ny’s provide the components for the ordinal arrow n:1— N in

Sh(I).

Exercise 17. If ge N(V) show that V has an open cover {V, :x e X} of
pairwise disjoint sets, i.e. V,NV, =0 if x#y, on each of which g is
actually constant. d

Now let pr; : IX @ — I be the sheaf of germs that is the nno for Top(l),
as described in §12.2. For each continuous g:V — @, the product map
(idy, g): V-—> I X @ is readily seen to be a section of pry, i.e. an element of
the stack F,, (V) of sections over V. Indeed this construction gives a

bijection N(V)=F, (V) for each Ve ®, hence in Sh(I) we have N=
F,,=%(pry), so that in Top(I), G(N)=%4(F(pry)) = pr:

Exercise 18. Let pn:Axn— I=%(N) be the sheaf of germs of locally
constant w-valued functions. Define f:IXw— Ay by f({i, 