
Propositional and Predicate Calculus: A Model
of Argument

Derek Goldrei

Propositional and
Predicate Calculus
A Model of Argument

123

Derek Goldrei, MA, MSc
Open University
Milton Keynes
UK

Mathematics Subject Classifi cation (2000): 03B05, 03B10,03C07

British Library Cataloguing in Publication Data
Goldrei, Derek
 Propositional and predicate calculus: a model of argument
 1. Propositional calculus 2. Predicate calculus
 I. Title
 511.3
ISBN 1852339217

Library of Congress Cataloging-in-Publication Data
Goldrei, Derek.
 Propositional and predicate calculus: a model of argument/Derek Goldrei.
 p. cm.
 Includes bibliographical references and index.
 ISBN 1-85233-921-7 (acid-free paper)
 1. Propositional calculus. 2. Predicate calculus. I. Title.
QA9.3.G65 2005
511.3--dc22 2005040219

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

ISBN-10: 1-85233-921-7
ISBN-13: 978-1-85233-921-0
Springer Science+Business Media
springeronline.com

© Springer-Verlag London Limited 2005

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specifi c statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Typesetting: Camera-ready by author
Printed in the United States of America
12/3830-543210 Printed on acid-free paper SPIN 11345978

PREFACE

How to Use This Book
This book is intended to be used by you for independent study, with no other
reading or lectures etc., much along the lines of standard Open University
materials. There are plenty of exercises within the text which we would rec-
ommend you to attempt at that stage of your work. Almost all are intended
to be reasonably straightforward on the basis of what’s come before and many
are accompanied by solutions – it’s worth reading these solutions as they of-
ten contain further teaching, but do try the exercises first without peeking,
to help you to engage with the material. Those exercises without solutions
might well be very suitable for any tutor to whom you have access to use as
the basis for any continuous assessment of this material, to help you check
that you are making reasonable progress. But beware! Some of the exercises
pose questions for which there is not always a clear-cut answer: these are
intended to provoke debate! In addition there are further exercises located at The book is also peppered with

notes in the margins, like this!
They consist of comments meant to
be on the fringe of the main text,
rather than the core of the
teaching, for instance reminders
about ideas from earlier in the
book or particularly subjective
opinions of the author.

the end of most sections. These vary from further routine practice to rather
hard problems: it’s well worth reading through these exercises, even if you
don’t attempt them, as they often give an idea of some important ideas or
results not in the earlier text. Again your tutor, if you have one, can guide
you through these.

If you would like any further reading in logic textbooks, there are plenty of
good books available which use essentially the same system, for instance those
by Enderton [12], Hamilton [18], Mendelson [25] and Cori and Lascar [7].

Acknowledgments
I would like to thank all those who have in some way helped me to write Plainly the blame for any errors

and inadequacies of this book lies
entirely with me. But perhaps at
some deep and subtle level, the
fault lies with everyone else!

this book. My enthusiasm for the subject was fuelled by Robin Gandy, Paul
Bacsich, Jane Bridge, Angus Macintyre and Harold Simmons, when I stud-
ied at the Universities of Oxford and Aberdeen. Anything worthwhile I have
successfully learnt about teaching stems from my colleagues at the Open Uni-
versity and the network of mathematicians throughout the UK who support
the Open University by working as Associate Lecturers, external assessors and
examiners. They have taught me so much. It has been particularly stimu-
lating writing this book alongside producing the Open University’s course on
Mathematical Logic (with a very different angle on the subject) with Alan
Pears, Alan Slomson, Alex Wilkie, Mary Jones, Roger Lowry, Jeff Paris and
Frances Williams. And it is a privilege to be part of a university which puts
so much care and effort into its teaching and the support of its students. The
practicalities of producing this book owe much to my publishers, Stephanie
Harding and Karen Borthwick at Springer; and to my colleagues at the Open
University who have done so much to provide me with a robust and attrac-
tive LaTEX system: Alison Cadle, David Clover, Jonathan Fine, Bob Margolis
and Chris Rowley. And thanks to Springer, I have received much invaluable
advice on content from their copy-editor Stuart Gale and their anonymous,

v

Preface

very collegial, reviewers. I would also like to thank Michael Goldrei for his
work on the cover design.

Perhaps the main inspiration for writing the book is the enthusiasm and talent
for mathematical logic displayed by my old students at the Open University
and at the University of Oxford, especially those of Somerville, St. Hugh’s and
Mansfield Colleges. In particular I’d like to thank the following for their com-
ments on parts of the book: Dimitris Azanias, David Blower, Duncan Blythe,
Rosa Clements, Rhodri Davies, David Elston, Michael Hopley, Gerrard Jones,
Eleni Kanellopoulou, Jakob Macke, Zelin Ozturk, Nicholas Thapen, Matt
Towers, Chris Wall, Garth Wilkinson, Rufus Willett and especially Margaret
Thomas.

This book is dedicated to all those whose arguments win me over, especially
Jennie, Michael, Judith and Irena.

vi

CONTENTS
1 Introduction 1

1.1 Outline of the book 1

1.2 Assumed knowledge 6

2 Propositions and truth assignments 17

2.1 Introduction 17

2.2 The construction of propositional formulas 19

2.3 The interpretation of propositional formulas 31

2.4 Logical equivalence 48

2.5 The expressive power of connectives 63

2.6 Logical consequence 74

3 Formal propositional calculus 85

3.1 Introduction 85

3.2 A formal system for propositional calculus 87

3.3 Soundness and completeness 100

3.4 Independence of axioms and alternative systems 119

4 Predicates and models 133

4.1 Introduction: basic ideas 133

4.2 First-order languages and their interpretation 140

4.3 Universally valid formulas and logical equivalence 163

4.4 Some axiom systems and their consequences 185

4.5 Substructures and Isomorphisms 208

5 Formal predicate calculus 217

5.1 Introduction 217

5.2 A formal system for predicate calculus 221

5.3 The soundness theorem 242

5.4 The equality axioms and non-normal structures 247

5.5 The completeness theorem 252

6 Some uses of compactness 265

6.1 Introduction: the compactness theorem 265

6.2 Finite axiomatizability 266

6.3 Some non-axiomatizable theories 272

6.4 The Löwenheim–Skolem theorems 277

6.5 New models from old ones 289

6.6 Decidable theories 298

Bibliography 309

Index 311

1 INTRODUCTION

1.1 Outline of the book
Mathematics abounds with theoretical results! But on what basis do we trust
any of them? Normally we rely on seeing some sort of justification for results
which we, or someone we feel we can trust, can scrutinize and then verify. The
justification will normally involve some sort of argument showing that a result
holds. This book is about a mathematical model of such arguments, rather
than the mathematics being argued about. We shall not attempt to cope
with the full range of mathematical arguments, but only look at a fragment
covered by what is called the predicate calculus. The predicate calculus is an
important part of logic, the science of reasoning and the laws of thought.

The sort of argument we shall try to model is one which starts from given
assumptions and moves by steps to a conclusion. For instance, in everyday
maths we might start from the assumption that f is a differentiable function
from the set R of real numbers to itself and conclude after various steps that
f is continuous. The book is written for readers familiar with this sort of
argument. So you will know that the steps involve things like: use of the If a step seems too large to be

followed, we usually seek an
explanation using more elementary
steps.

assumption that f is differentiable; the definition of the words ‘differentiable’,
‘function’ and ‘continuous’; facts about inequalities and arithmetic involving
real numbers; and forms of reasoning enabling us to infer each step from
previous assertions in the argument. An essential feature of such an argument
is our ability to follow and agree on each step, almost in a mechanical way,
like a computer recognizing whether input data conforms to agreed rules.

Let’s expand on what we call facts about the set R of real numbers. The
modern approach to R is to describe it not in terms of its members, but
in terms of the properties its members have. We are usually given some of We shall give such axioms and

illustrate some of these inferences
soon.

their very basic properties, called axioms, from which one can infer more
complicated properties.

We have two different but connected sorts of expectation of the axioms for R:

(i) that the axioms and any statements we infer from them are true state-
ments about R;

(ii) that any statement that we feel is true about R can be inferred from these
axioms.

Investigation of the connection between these expectations is a major theme
of the book.

We have phrased our expectations above in terms of what is true about R and
what can be inferred from axioms. In this book, we shall attempt to explain
on the one hand what is meant by a statement being true in a structure like
R and, on the other, what constitutes inference using acceptable forms of
reasoning. Establishing a connection between these very different concepts,
called the completeness theorem, is a major goal of the book.

We must reiterate that what the book covers is a mathematical model. Just
as with a mathematical model of, say, the motion of the planets in the solar

1

1 Introduction

system, we shall need to make compromises and simplifications within our
model to produce something that is both mathematically tractable and pro-
vides useful insights into the actual and arguably much more complex world.
Here our model will be of truth and proof, and we shall investigate the con-
nection between them.

As we shall be modelling proofs from axioms, let us look at a set of axioms
for R that could be found in a standard textbook on real analysis.

Axioms for R

The real numbers system consists of a set S, usually written as R, with We are deliberately writing the set
as S rather than R to reinforce the
point that the axioms involve no
knowledge of what the objects in S
are. The axioms are often said to
axiomatize a complete ordered field .

binary operations + and ·, unary operations − and −1, a binary relation
≤ (besides =, equality), and special elements written as 0 and 1, such
that 0 �= 1, which satisfy the following properties.

1. For all x, y, z ∈ S, x + (y + z) = (x + y) + z.

2. For all x ∈ S, x + 0 = 0 + x = x.

3. For each x ∈ S, x + (−x) = (−x) + x = 0.

4. For all x, y ∈ S, x + y = y + x.

5. For all x, y, z ∈ S, x · (y · z) = (x · y) · z.

6. For all x ∈ S, x · 1 = 1 · x = x.

7. For all x ∈ S with x �= 0, x · x−1 = x−1 · x = 1.

8. For all x, y ∈ S, x · y = y · x.

9. For all x, y, z ∈ S, x · (y + z) = (x · y) + (x · z).

10. For all x ∈ S, x ≤ x.

11. For all x, y ∈ S, if x ≤ y and y ≤ x, then x = y.

12. For all x, y, z ∈ S, if x ≤ y and y ≤ z, then x ≤ z.

13. For all x, y ∈ S, x ≤ y or y ≤ x.

14. For all x, y, z ∈ S, if x ≤ y, then x + z ≤ y + z.

15. For all x, y, z ∈ S, if x ≤ y and 0 ≤ z, then x · z ≤ y · z.

16. (Completeness axiom) Any non-empty subset A of S which is bounded ‘Bounded above’ and so on are
defined in terms of more basic
terminology.

above has a least upper bound in S.

Within the context of a first course on real analysis, one would build up further
properties of the set S, starting with elementary properties, such as

for all x, y ∈ S, if x + y = x + z, then y = z. This is sometimes grandly called
the left cancellation law for +.

An argument proving this might run as follows. Suppose that x + y = x + z.
Then

(−x) + (x + y) = (−x) + (x + z).

By axiom 1, (−x) + (x + y) equals ((−x) + x) + y, which by axiom 3 equals
0 + y, which by axiom 2 equals y. Similarly (−x) + (x + z) = z, so the above
gives y = z, as required.

2

1.1 Outline of the book

It might be good for you to try proving a few elementary properties of S for
yourself, just to get a feeling of what sort of features of proofs our model
might have to take into account.

Exercise 1.1
Give proofs purely from these properties of each of the following. (You may
of course prove and then exploit subsidiary results, or lemmas like the left
cancellation law for + above.)

(a) For all x ∈ S, (−(−x)) = x.

(b) If x, y ∈ S satisfy x · y = 1, then y = x−1.

(c) For all x ∈ S, x · 0 = 0.

(d) For all x ∈ S, (−1) · x = −x.

Solution

We shall give a solution only for part (a).

Take any x ∈ S. Then by axiom 3,

(−x) + x = 0,

and by the same axiom used with the element −x instead of x,

(−x) + (−(−x)) = 0,

so that

(−x) + x = (−x) + (−(−x)).

By the left cancellation law for +, we can conclude that x = (−(−x)), or
equivalently (−(−x)) = x, as required.

Here are just a few of the features in arguments of this sort which we shall
try to incorporate into our mathematical model of proof.

• Proofs consist of statements, like ‘(−x) + (x + y) equals ((−x) + x) + y’,
connected by justification for these statements.

• The statements in a proof use a fairly limited technical language, including
symbols like +, · and =.

• Proofs should be presented in a way that allows others to follow each step.

• Proofs should involve no properties of the set S not ultimately traceable
back to the axioms.

• Proofs should make no assumptions about the nature of the elements x,
y, 0, 1 and so on, or the operations +, · and −, other than what we are
told about the symbols by the axioms.

• To prove a statement of the form ‘for all x ∈ S, x has some property’, take
a typical x ∈ S, show that it has the property, and conclude the property
holds for all x.

• To prove a statement of the form ‘if something then something else’,
assume the first ‘something’ and prove the ‘something else’.

Our list barely scrapes the surface of the sort of reasoning that is employed,
even in simple arguments like our solution to Exercise 1.1(a) or our proof of

3

1 Introduction

the left cancellation law for +. For instance, there are a host of ways in which
we use =, the equality symbol, like the step from

x + y = x + z

to

(−x) + (x + y) = (−x) + (x + z)

in our proof of the left cancellation law for +, and at least some of these
should be covered within our model.

Our model of proof will ultimately cope with all the features needed in these
proofs. We shall look at a formal symbolic language from which statements
like ‘for all x, (−1) · x = −x’ can be constructed and at a formal system
for proofs which can handle such statements and, indeed, for this particular
example, derive it from some of the axioms given above. But a limitation
of this model is that the formal system will not be able to derive all the
statements one can derive in everyday maths about R from the axioms we
have given, as for important technical reasons it will not be able to handle
the completeness axiom.

The axioms for R are not entirely typical of the way axioms are used in The proper technical description is
that the two sets with their
operations are isomorphic. Another
important axiom system with this
property is Peano’s axioms for the
natural numbers, which we shall
meet in Chapter 6.

modern maths, in that they have the following special property: any two
sets, equipped with suitable operations and relations, which both satisfy the
axioms, are essentially the same, so that the axioms tie down the one system.
An example of a set of axioms for which there are many essentially different
sets satisfying the axioms is obtained by taking just the first three axioms of
those given for R, which axiomatize the theory of groups, a group being the The first nine axioms are axioms

for the theory of fields. While we
hope that you have encountered
the theories of groups and fields, we
are not relying on this experience
in this book, but will give you a
brief background in Chapter 4.

name for a set and suitable operation matching the + symbol for which all
three axioms are true. Our formal proof system will be able to cope with these
axioms. Just as for the axioms for R, we shall expect a connection between
the statements we can derive from these axioms and the statements which are
true in all groups. Importantly, we shall explain what we mean by a statement
being true in a group as something more than that it can be proved from the
axioms, so that the major result, the completeness theorem, connecting the
notions of truth and proof, genuinely connects different notions.

In representing mathematical statements within a formal symbolic language,
it will be important to have strict construction rules to delineate the strings
of symbols which are to be considered as statements, for instance to exclude
the equivalent of expressions like 8) − ×5))7+ which signify nothing mean-
ingful in everyday maths. Likewise the rules have to provide expressions for
which, when meanings are given to the symbols, there is an unambiguous in-
terpretation. For instance, we want to avoid the analogue of expressions like
1 + 2× 3 in normal maths, for which it is unclear whether is meant (1 + 2)× 3
or 1 + (2 × 3). A key feature of our formal language, and indeed the formal
proof system for handling statements in it, is what we shall describe as its
mechanical nature. The rules governing which strings of symbols are formal
statements and which combinations of statements constitute a formal proof
will all be ones that a computer could be programmed to check, with no un- See Davis [10] for a very readable

account interweaving the history of
logic with the development of the
modern computer.

derstanding of any intended meanings of the symbols or rules. This aspect
of our undertaking not only predates the development of modern computers,
but has had a strong influence on both their development and how they are

4

1.1 Outline of the book

used – at a certain level, what computers do is the manipulation of strings of
symbols, e.g. 0s and 1s, according to rules, and the distinction and interplay
between the formal language and its interpretation in the real world, first
made and investigated within the context outlined in this book, has proved
to be vital in computer science.

We’ve not said what we mean by words like ‘computer’ and ‘program’ above,
and the subject of this book can be developed without ever settling their
meanings or referring to them at all. But we think that it helps to know that
there is an undercurrent of mechanical, or algorithmic, processes. Roughly
speaking, an algorithm is a finite set of instructions which, given input data,
can be followed by a person or a machine in a deterministic way, ideally so By being deterministic, if several

people follow the instructions with
the same inputs, all will obtain the
same results at each step of their
computations.

that the process arrives at a conclusion after a finite number of steps. Each
instruction should require some humanly or mechanically feasible action, for
instance adding 1 to an integer and comparing two words to see whether
one is an anagram of the other. You can see that it would be desirable to
have some sort of algorithmic procedure (that is, a procedure based on an
algorithm) for checking the correctness of a proof. The issue of whether there
is an algorithm for doing something will crop up occasionally in the book,
and we shall give (and expect from you) only very informal descriptions of
algorithmic procedures.

Bound up with this mechanical vision are ideas about finiteness. Somehow
mathematical (or any other) statements should be expressed, and their truth
or falsity decided upon, in a finite way, using a finite amount of time and You might like to suggest ways in

which an infinite amount of
information could be written on a
single A4 sheet of paper,
recoverable by someone with
appropriately acute eyesight!

paper, with only finitely many symbols on each page. The controversy and
paradoxes surrounding the development of the theory of infinite sets in the

The use of infinite sets in the
definition of the real numbers was
one of the reasons behind the
renewal of interest in the axiomatic
approach to mathematics.

latter part of the 19th century resulted in a sharpening of ideas about how
finiteness was built into mathematics. The German mathematician David
Hilbert (1862–1943), who played a key role in developing the material cov-
ered in this book, wanted to base proofs on what he called finitary methods
of reasoning. Roughly speaking, this meant producing finitely long proofs in-
volving finitely expressed statements, starting from finitely described axioms
and using a finitely many allowed rules of inference. Infinity creeps in by
putting no finite upper bounds on the number or length of any of the con-
stituent parts of the system, e.g. the alphabet of the symbols or the length
of expressions formed from this. The modern theory is very interested in the
outcome of stretching some of the features into the infinite, e.g. mathematical
theories described by infinitely many axioms, albeit that each axiom is finitely
expressed. You will see what this means as the book goes on.

The structure of the book is as follows. In Chapters 2 and 3, we shall look
at a mathematical model for dealing with very limited sorts of statements
within the framework of what is called propositional calculus. The formal
statements within this fall far short of the mathematical statements, like those
earlier about R, which are our ultimate goal. But the propositional calculus
gives us valuable experience of some of the issues and methods that will be
of importance for these more mathematical statements. In Chapter 2 we
look at the formal language for propositional calculus and the way it can be
interpreted to talk about statements as being true or false. In Chapter 3 we
look at a formal proof system for propositional calculus and the completeness
theorem connecting truth and formal proof. In Chapters 4 and 5 we look at

5

1 Introduction

our promised mathematical model of reasoning called the predicate calculus, The first published system of
predicate logic was devised by the
German mathematician and
philosopher Gottlob Frege
(1848–1925). This seminal work of
mathematical logic, entitled
Begriffsschrift (meaning
‘conceptual notation’), can be
found in Heijenoort [19], which also
contains much further source
material for material covered in
this book.

which can handle at least some interesting fragments of everyday mathematics.
In Chapter 4 we look at the formal language and how to interpret it and talk
about the truth or falsity of statements within interpretations. In Chapter 5
we look at a formal proof system for the predicate calculus and prove the
completeness theorem for it. Although the completeness theorem is an end
in itself, it has very interesting mathematical consequences. We investigate
some of these in Chapter 6.

1.2 Assumed knowledge
The book is written on the basis that you have already had some experience
of using sets and functions, and that you are familiar with a variety of math-
ematical words and notations. Perhaps most surprisingly for a book about
logic, we assume that you already know something about logic and reasoning!

What you already know about logic

An underlying feature of statements about mathematics and arguments in-
volving them is the use of words and phrases like ‘for all’, ‘if . . . then’, ‘not’
and ‘and’. These will play a major role in our model of argument and we as-
sume that you know something about how they are used in everyday maths.
We don’t expect that you will have thought about the use of these words in
quite the formal way that will be adopted later in the book, but you will know
something about what we are trying to model.

For instance, we assume that you are happy to infer from the statements

‘for all functions f : R −→ R, if f is differentiable then f is continuous’

and

‘the sine function is differentiable’

the statement ‘the sine function is continuous’.

Let us break down this inference into the small steps which we are going to
model. From the statement ‘if f is differentiable then f is continuous’ holding
in general for all functions f : R −→ R, it will hold for the sine function in
particular, so we can infer from it the statement

‘if the sine function is differentiable then the sine function is continuous’.

We assume that you are happy that this is just how we naturally use the
words ‘for all’.

From the additional statement ‘the sine function is differentiable’, the way
we use the words ‘if’ and ‘then’ enable us to infer that ‘the sine function is
continuous’. Again we assume that you are happy with this use of ‘if . . . then’.

Suppose that you are assured that

‘there is some infinite ordinal which is not a limit’

and you asked whether it follows from this that ‘all infinite ordinals are limits’. You can find out more about
ordinals in e.g. Goldrei [16].Even if you don’t know anything about infinite ordinals, we hope that you

6

1.2 Assumed knowledge

would give the answer no, on the basis of how we use the words ‘there is some’,
‘not’ and ‘for all’.

In the formal treatment of argument in this book, we shall generalize the way
these words are used in the following sort of way. Looking at the example
about ordinals, we shall regard the statement ‘there is some infinite ordinal
which is not a limit’ as a particular case of a statement of the form

‘there is some x which does not have the property φ(x)’,

where x stands for an object, here an infinite ordinal, and φ(x) stands for a
property that objects might or might not have, here that x is a limit. With
this notation, the question of whether it follows that ‘all infinite ordinals are
limits’ becomes one of whether

‘all x have the property φ(x)’.

The reason why the answer to this question is no is because from

‘there is some x which does not have the property φ(x)’

we can infer that

‘it is not the case that all x have the property φ(x)’.

We hope that, even though you might not be familiar with the abstract way
of phrasing this using φ(x) to stand for a property of x, you are comfortable
with the roles played by ‘there is some’, ‘not’ and ‘for all’ in this inference.

Likewise, from our first example about the sine function, we can abstract a
rule that from a statement of the form ‘φ(x) holds for all x’, we can conclude
that ‘φ(t) holds’ for a particular example t of the xs in question. This is indeed
one of the ways we use ‘for all’ in general. Similarly, letting θ and ψ stand
for statements, from the statements ‘if θ holds then ψ holds’ and ‘θ holds’, we
can always infer ‘ψ holds’, this being the way we use ‘if . . . then’.

From now on we shall usually rephrase ‘θ holds’, where θ is a statement, more
simply as ‘θ’, dropping the ‘holds’, and often even more simply as θ without
the quotation marks. The context will normally make it clear whether we Quotation marks ‘ and ’ will often

be useful for clarity when we are
discussing a complicated statement.

are talking about some aspect of the statement like its grammatical structure
or we are asserting it, that is, claiming that it holds or is true. So we shall
rephrase our immediately preceding observation about ‘if . . . then’ as saying
that from ‘if θ then ψ’ and θ we can infer ψ. We shall abbreviate ‘it is not the
case that ψ holds’ as ‘not ψ’ and statements like ‘it is not the case that all
x have the property φ(x)’ as ‘not for all x, φ(x)’. With conventions of these
sorts, try the following exercises.

Exercise 1.2
Let θ and ψ stand for statements. Which, if any, of the following statements
follows from one of the others?

(a) If θ then ψ.

(b) ψ implies θ. We hope that you take ‘ψ implies θ’
to mean the same as ‘if ψ then θ’.(c) If ‘not θ’ then ‘not ψ’.

(d) ‘Not ψ’ implies ‘not θ’.

7

1 Introduction

Solution

We shall show that (d) follows from (a). Suppose that (a) is true, that is,
that if θ then ψ. Now suppose that ‘not ψ’ is true. If θ is also true, then as
‘θ then ψ’ is true, ψ must also be true. But this contradicts that ‘not ψ’ is
true. Thus our supposition that θ is true leads to a contradiction, so that it
must instead be the case that θ is false, or equivalently, that ‘not θ’ is true.
We conclude that from the original supposition that (a) is true, it follows that
‘not ψ’ implies ‘not θ’.

We hope that you can see and argue persuasively that (d) follows from (a), so
that (a) and (d) are essentially equivalent. Likewise (b) and (c) are equivalent.

In our argument above that (d) follows from (a), we made use of what is known The classic proof that
√

2 is
irrational assumes that it can be
written as a fraction a/b for
integers a, b with highest common
factor 1 and then proves that 2 is a
factor of both a and b, giving a
contradiction. The classic proof
that there are infinitely many
primes assumes that there are only
finitely many primes, all listed as
p1, p2, . . . , pn, and shows (by
looking at the number
p1p2 . . . pn + 1) that there is a
prime number not in the list,
giving a contradiction.

as proof by contradiction: by showing that from various assumptions and the
assumption θ one can derive a contradiction, namely that some statement is
both true and false, we infer that ‘not θ’ follows from the other assumptions.
We hope that you have seen this sort of proof before. Famous and very antique
examples of its use are in the proofs that

√
2 is irrational and that there are

infinitely many prime numbers.

Likewise to prove from (a) that ‘not ψ’ implies ‘not θ’, we assumed ‘not ψ’
and derived from it that ‘not θ’, a style of proof with which we hope you are
familiar.

Note that there are no other pairs of statements in Exercise 1.2 which follow
from each other, even though their shapes are related. For instance, ‘ψ implies
θ’ (statement (b)) is called the converse of ‘if θ then ψ’ (statement (a)). But
in general the one does not follow from the other. For instance, taking θ
to be the statement n > 5 about an integer n and ψ to be the statement
n > 1, the statement ‘if n > 5 then n > 1’ is true, while the statement ‘n > 1
implies n > 5’ need not be true, for instance when n = 4. This provision of a
counterexample is another feature of everyday mathematical argument which
we expect you to know and understand.

Exercise 1.3
Let φ(x) stand for a statement that x has a particular property. Which, if
any, of the following statements follows from one of the others?

(a) For all x, φ(x).

(b) For some x, φ(x).

(c) For no x, φ(x).

(d) For all x, not φ(x).

(e) For some x, not φ(x).

(f) For no x, not φ(x).

Solution

We shall show that (d) follows from (c). Suppose that for no x, φ(x). Then
for any x it cannot be the case that φ(x) holds, so that ‘not φ(x)’ holds. Thus
it is the case that for all x, not φ(x). We hope that you can see that (c)

8

1.2 Assumed knowledge

follows from (d), so that (c) and (d) are equivalent. Likewise (a) and (f) are
equivalent, each one following from the other.

Assuming that there are actually some xs being talked about, it follows from
(a), namely for all x, φ(x), and taking any one of these xs, that there is some
x for which φ(x) holds, so that (b) holds. As (a) and (f) are equivalent, (b)
also follows from (f). In the same way (e) follows from each of (c) and (d).

The point about whether there are actually any numbers x being talked about
when we state that for all x, φ(x), is rather subtle. We could in principle state
that for any property φ(x) which takes our fancy

‘for all integers x which are simultaneously even and odd, φ(x) holds’,

where of course there are no such integers x! We shall avoid this problem by
insisting on the convention that we only use ‘for all x’ when there are some
xs of the sort we are talking about. With this convention we can rephrase our
curious statement above as

‘for all integers x, if x is both even and odd, then φ(x) holds’,

abiding by our convention.

We have of course just given you a small push down the road of formalizing
arguments, which will occupy much of the rest of the book, and will give
you one further push, following the theme of building on the assumption that
you already know how to argue within everyday mathematics. Consider the
following argument.

All square numbers are non-negative. (1)
All non-negative numbers have a fourth root. (2)
Therefore all square numbers have a fourth root. (3)

We hope that from your everyday experience of argument that you accept that,
as the ‘therefore’ suggests, statement (3) can be inferred from statements (1)
and (2). (We are not asking you at this stage whether you think that statement
(3) is true in its own right.) The correctness of the argument stems from its
shape, which very crudely is

All B are C.
All A are B.
Therefore all A are C.

We hope that you agree that this argument, where the third statement follows
from the first two, is correct in general, not just for our particular example.
This general argument is an example of a syllogism, as first defined and dis-
cussed by the Greek philosopher Aristotle (384 BC–322 BC), who is widely
regarded as the founder of the study of logic. Aristotle introduced the idea
of looking at the form of statements and seeing how the correctness of many
arguments stemmed from their shape, rather than the particular statements
involved. Accepting that this form of argument is correct means that if, in a
given set of circumstances, statements (1) and (2) are true, then statement
(3) must also be true.

Although not all arguments are syllogisms, they often have the same very
general shape, starting from some initial statements, called premises (here

9

1 Introduction

statements (1) and (2)), leading to a statement which is the conclusion (here
statement (3)). A desired property of an argument is that in a given set of
circumstances in which all the premises are true, the conclusion must also be
true.

Exercise 1.4

Which of the following arguments are correct, so acceptable in general?

(a) No B are C.
All A are C.
Therefore no A are B.

(b) Some A are B.
All A are C.
Therefore some B are C.

(c) Some A are B.
All C are B.
Therefore some A are C.

Solution
The arguments in (a) and (b) are both correct (and are further examples of
syllogisms). For instance, for argument (a), you might argue in your head as Our apologies if our analysis

simply made your head hurt! In
general we shall try to formalize
arguments using even smaller steps
of reasoning than this 2000 year
old example.

follows. Assume that no B are C and that all A are C. If some A is B, then
as no B is C, that A cannot be C. But all A are C, so there can after all be
no A that is B.

The argument in (c) doesn’t always hold. Consider the following example.

Some odd integers are perfect squares.
All positive powers of 4 are perfect squares.
Therefore some odd integers are positive powers of 4.

The first statement is true, e.g. the odd number 9 is a perfect square. The
second statement is true, as for any positive integer n, 4n = (22)n = 22n,
which is a perfect square. But the third statement is false, as a positive power
of 4 is even, so there cannot be an odd integer of this form.

Exercise 1.5

Consider the argument:

All square numbers are non-negative. (1)
All non-negative numbers have a fourth root. (2)
Therefore all square numbers have a fourth root. (3)

Do you think that statement (3) is true?

Solution

Note that this argument is correct: statement (3) does follow from statements
(1) and (2) simply because of the shape of the statements. But whether
statement (3) is true will depend on what sort of numbers we are talking It will also depend on what is

meant by ‘square’ and ‘fourth
root’; but these have well
established meanings, whereas
‘number’ is not at all specified here.

about. For instance it is true for real numbers. But it would usually be
regarded as false for integers, as implicit within everyday maths discussion of
this sort about integers is that the roots in question are also integers, rather
than non-integer real numbers.

10

1.2 Assumed knowledge

A point arising from the last exercise is that, while the argument is correct,
its applicability to conclude that the third statement is true depends on the
interpretation of the terms being used, most importantly here what sort of
numbers we mean. If we mean the real numbers, then statements (1) and (2)
are true, so that as the argument form is acceptable, it follows that statement
(3) is true. If we mean the integers, statement (1) is true, but statement (2)
is not, so that the argument, while correct, cannot be exploited to give any
information about the truth or falsity of statement (3).

Other assumed knowledge

Set Notation

A set X is a collection of objects called the elements , or members, of X . We
write x ∈ X to express that the object x is an element of the set X and y �∈ X When x ∈ X, we also say ‘x is in

X’ or ‘x belongs to X’.to say that y is not an element of X .

We use curly brackets, { and }, around a list of objects to signify the set of
all those objects. For instance {3, 8, 9} is the set with elements 3, 8, 9.

The order in which the elements are listed inside the curly brackets doesn’t
change the set, nor does listing some element more than once. Thus {9, 3, 7}
and {3, 3, 7, 9} both represent the same set as {3, 7, 9}. In general, two sets X
and Y are equal if and only if they contain the same elements or, equivalently,
if and only if every element of X is an element of Y and vice versa.

We use standard notation for the most common sets of numbers: N for the In this book we take N to include
all the positive integers and the
number 0.

set of natural numbers, Z for the set of all integers (positive, negative and
zero), Q for the set of rational numbers, R for the set of real numbers and C

for the set of complex numbers.

We use the notation ∅ for the empty set , the set which contains no elements.

We can also describe a set using curly brackets in terms of a property possessed
by all its elements, as with {n : n is an even integer} or, equivalently,
{n ∈ Z : n is even} for the set of all even integers {. . . ,−4,−2, 0, 2, 4, 6, . . .}.
In general we write

{x : φ(x)} The colon ‘:’ is read as ‘such that’.

for the set of all x such that φ(x) holds, where φ(x) stands for a property
which may or may not be possessed by a given object x.

We shall occasionally use standard notation for intervals of the real line:

(a, b) for the open interval {x ∈ R : a < x < b};
[a, b] for the closed interval {x ∈ R : a ≤ x ≤ b};
(a, b] and [a, b) for the half open and closed intervals {x ∈ R : a < x ≤ b}
and {x ∈ R : a ≤ x < b} respectively;

(−∞, b) and (a,∞) for the open intervals {x ∈ R : x < b}
and {x ∈ R : x > a} respectively;

(−∞, b] and [a,∞) for the closed intervals {x ∈ R : x ≤ b}
and {x ∈ R : x ≥ a} respectively.

11

1 Introduction

Given two sets X and Y , we write

X ∪ Y for the union of X and Y , that is, the set of elements belonging We shall adopt the standard
mathematical use of the word ‘or’
as allowing the ‘or both’ case –
what’s called the inclusive use of
‘or’.

to X or Y (or both);

X ∩ Y for the intersection of X and Y , that is, the set of elements be-
longing to both X and Y ;

X \ Y for the complement of Y in X , that is, the set of elements of X not
in Y .

Given a set F whose elements are sets, we write
⋃{X : X ∈ F} for the union of

all the sets in the set F, that is, the set {x : x ∈ X for some X ∈ F}. Such a set
F of sets might sometimes be indexed by another set, for instance the family
of all open intervals of R of the form (1

n+1 ,∞) for n ∈ N is effectively indexed

by the set N: in such a case we would write the family as {(1
n+1 ,∞) : n ∈ N}

and the union of the family as
⋃{(1

n+1 ,∞) : n ∈ N} (which happens to equal

the set (0,∞)).

X is a subset of the set Y means that X is a set of which every element is also
an element of Y (so that, for all x, if x ∈ X then x ∈ Y). We write X ⊆ Y
for ‘X is a subset of Y ’. A subset X of Y is said to be proper if X �= Y . The
power set of Y , written as P(Y), is the set of all subsets of Y .

We write X × Y for the Cartesian product of X and Y , that is, the set of
all ordered pairs (x, y) with x ∈ X and y ∈ Y . We use X2 as shorthand for
X × X , X3 for (X × X)× X and so on. An element (x1, x2, . . . , xn) of Xn is
often described as an n-tuple.

Function Notation

A function f from a set X to a set Y associates an element, f(x), of Y with
each element x of X . The rule of f , written as x �−→ f(x), describes this
process of association. The element f(x) of Y is called the image of x under
f . The domain of f is the set X and the codomain of f is the set Y . We use
the standard arrow notation for such a function, combining the information
of its domain, codomain and rule:

f : X −→ Y
x �−→ f(x).

If A is a subset of the domain of this function f , the restriction of f to A,
written as f |A, is the function

f |A : A −→ Y
x �−→ f(x),

that is, f |A has the same rule and codomain as f , but has its domain restricted
to A.

The image set or range of f : X −→ Y , written as Range(f), is the set of
images of f , namely {f(x) : x ∈ X}. For any subset A of the domain X the
set {f(x) : x ∈ A} is called the image set of A under f .

A function is said to be onto if for each y ∈ Y there is an x ∈ X with f(x) = y. So that f is onto exactly when
Range(f) = Y .

The function f is said to be one–one if for all x, x′ ∈ X , if f(x) = f(x′) then
x = x′ (or, equivalently, if x �= x′ then f(x) �= f(x′)).

12

1.2 Assumed knowledge

If f is a one–one function, then its inverse function f−1 is defined as the
function

f−1 : Range(f) −→ X
y �−→ the unique x such that f(x) = y.

For any subset B of the codomain Y , its inverse image set under f , written The use of f−1 in this context does
not mean that the inverse function
f−1 exists – a well-known source of
confusion!

as f−1(B), is the set {x ∈ X : f(x) ∈ B}.
If f : X −→ Y and g : Y −→ Z are functions then the composite function (or

We define g ◦ f in exactly the same
way when the domain of g contains
the range of f as a subset, rather
than requiring that the domain of
g coincides exactly with the
codomain of f .

composition of f and g) g ◦ f is the function

g ◦ f : X −→ Z
x �−→ g(f(x)).

If f is both one–one and onto, then f is a bijection. If f, g are both bijections
with the codomain of f equal to the domain of g, then the composition g ◦ f
is also a bijection.

Countable sets For background, see e.g.
Halmos [17], Goldrei [16] or
Enderton [13].A set X is finite if it is empty or there is a bijection to it from the n-element

set {i ∈ N : i < n} for some n ∈ N, where n = 0 corresponds to X being the
empty set ∅. A set is infinite if it is not finite. It is countably infinite if there
is a bijection to it from the set N of natural numbers. It is countable if it is
finite or countably infinite; otherwise it is uncountable.

Examples of countably infinite sets are N, Z and Q. Uncountable sets include
R, C, P(N) and the set of functions from N to itself.

Results about finite and countable sets include the following.

• For any finite set X , any one–one function from X to itself must be onto.
This is a version of the pigeon-hole principle.

• Any subset X of a countable set Y is also countable.

• The union X ∪ Y of countable sets X, Y is countable.

• The Cartesian product X × Y of countable sets X, Y is countable, so in
particular N × N is countable.

• The set of finite subsets of N is countable.

• The set of finitely long sequences (n1, n2, . . . , nk) of natural numbers is
countable.

• Given a countable set of symbols, the set of all finite sequences of these
symbols is countable.

• The countable union of countable sets is countable, that is, if F is a set This result is needed to prove our
major result, the completeness
theorem in Chapter 5. It depends
on a principle called the axiom of
choice. We do not assume that you
know about this principle, but
discuss it along with further facts
about infinite sets in Section 6.4 of
Chapter 6.

whose elements X are countable sets, then
⋃{X : X ∈ F} is a countable

set.

Well-order property of N

Every non-empty subset B of N contains a least element b0; that is, there is
b0 ∈ B such that b0 ≤ b, for all b ∈ B.

Mathematical induction

The principle of mathematical induction can be stated as follows: if A is a
subset of N such that 0 ∈ A and whenever n ∈ A, then n + 1 ∈ A, then A = N .

13

1 Introduction

The method of proof by mathematical induction used to show that a set A of
natural numbers with a given property is all of N is as follows. Prove that

0 ∈ A Called the basis of induction.

and that for all n ∈ A,

if n ∈ A, then n + 1 ∈ A, Called the inductive step.

and conclude from the principle of mathematical induction that A = N.

An important variant of this method of proof used often in this book is as
follows. As before, first prove that

0 ∈ A

and then prove that for all n ∈ A,

if k ∈ A for all k ≤ n, then k ∈ A for all k ≤ n + 1,

to conclude that A = N.

Exercise 1.6
Explain how the above variant of the method of proof by mathematical induc-
tion follows from the principle of mathematical induction. [Hint: You might
wish to exploit the well-order property of N.]

Further exercises

Exercise 1.7

What, if anything, is wrong with the following argument about real numbers?

Let x be a real number.
Suppose that x = 0.
Then x2 = 02 = 0 = x,
so that for all x ∈ R, x2 = x.

Exercise 1.8

What, if anything, is wrong with the following solution of the inequality√
x2 − 1 < x involving real numbers?

Let x be a real number.

If
√

x2 − 1 < x

then (
√

x2 − 1)2 < x2,

i.e. x2 − 1 < x2,

which is true for all x. Therefore all real numbers x satisfy the inequality.

Exercise 1.9
Explain why the existence of a function f : X −→ X which is one–one but
not onto means that the set X is infinite.

14

1.2 Assumed knowledge

Exercise 1.10

Explain why it follows from the set of finitely long sequences (n1, n2, . . . , nk)
of natural numbers being countable that for a given countable set of symbols,
the set of all finite sequences of these symbols is countable.

Exercise 1.11

Use mathematical induction to prove each of the following. In both cases you
should use the variant of the method where for the inductive step you assume
that the relevant property holds for all k ≤ n.

(a) The Fibonacci numbers Fn, n = 0, 1, 2, . . ., are defined by

F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn, for all n ≥ 0.

Show that

Fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1 −√

5

2

)n

,

for all n ≥ 0.

(b) A sequence {xn} of integers is defined as follows:

x0 = 1; xn = x0 + x1 + x2 + . . . + xn−1, for all integers n ≥ 1.

Show that xn = 2n−1, for all integers n ≥ 1.

Exercise 1.12
For each of the following sets of statements, what can you conclude from The examples come from

Carroll [5], one of Lewis Carroll’s
serious attempts as a
mathematician, as well as
whimsical author, to teach classical
logic exploiting symbolic reasoning.
There are many more modern
books of challenging logic puzzles,
for instance Smullyan [28] and [29],
often drawing inspiration from
Carroll’s wit.

them? In each case, give a conclusion which depends on all the statements in
the set.

(a) (1) Every one who is sane can do Logic;

(2) No lunatics are fit to serve on a jury;

(3) None of your sons can do Logic.

(b) (1) Every idea of mine, that cannot be expressed as a Syllogism, is really
ridiculous;

(2) None of my ideas about Bath-buns are worth writing down;

(3) No idea of mine, that fails to come true, can be expressed as a Syllo-
gism;

(4) I never have any really ridiculous idea, that I do not at once refer to
my solicitor;

(5) My dreams are all about Bath-buns;

(6) I never refer any idea of mine to my solicitor, unless it is worth writing
down.

Exercise 1.13
Let X be a set with n elements, where n ∈ N. How many elements are there
in each of the following sets?

(a) The set P(X) of all subsets of X .

(b) The set of all functions from P(X) to the 2-element set {0, 1}.

15

1 Introduction

Exercise 1.14

Let A, B, C be sets. Prove the following set identities.

(a) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

(b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(c) A ∩ (B ∪ A) = A

(d) A ∪ (B ∩ A) = A

Exercise 1.15

Let A and B be subsets of a set X . Prove the following set identities.

(a) X \ (A ∩ B) = (X \ A) ∪ (X \ B)

(b) X \ (A ∪ B) = (X \ A) ∩ (X \ B)

16

2 PROPOSITIONS AND TRUTH
ASSIGNMENTS

2.1 Introduction
In this chapter we shall look at statements with a very simple form and argu-
ments about them which rely only on how we use words like ‘and’, ‘or’, ’not’
and ‘implies’. We shall also look at the truth or falsity of the statements and
the validity of arguments built up from them. It is best to give one or two
examples. For instance, suppose that we are told that

‘the temperature outside is at most 20◦C or the drains smell’

and believe this statement to be true. Suppose that the weather forecast for
tomorrow predicts a temperature of over 20◦C. Then we would predict that
the drains will smell.

As another example, suppose that we are told about some function f : R −→ R

that

‘f is not differentiable or f is continuous’

and that we have the further piece of information that f is differentiable.
Then from this information we can infer that f is continuous.

These arguments cover entirely different areas of experience, but at a certain
level they have a common shape. The statement ‘the temperature outside is
at most 20◦C or the drains smell’ in the first argument is built up from two
shorter statements

‘the temperature outside is at most 20◦C’

and

‘the drains smell’

connected by the word ‘or’. The extra information that the statement ‘the Indeed we call the word ‘or’ a
connective as it connects shorter
statements to produce a longer one.

temperature outside is over 20◦C’ is true tells us that the statement ‘the
temperature outside is at most 20◦C’ is false, from which we can infer that
‘the drains smell’ will be true, using our understanding of the word ‘or’.

Similarly the statement ‘f is not differentiable or f is continuous’ is built up
from the statements

‘f is not differentiable’

and

‘f is continuous’

by connecting them with ‘or’. And given the extra information that ‘f is The ‘not’ converts ‘f is
differentiable’ into the longer
statement ‘f is not differentiable’.
We shall also describe ‘not’ as a
connective and consider it in this
chapter.

differentiable’, so that the statement ‘f is not differentiable’ is false, our un-
derstanding of the word ‘or’ helps us infer that ‘f is continuous’.

We shall summarize the common feature of these two arguments that will
particularly interest us in this chapter as follows. Using the letters p and q to

17

2 Propositions and truth assignments

stand for statements like ‘the drains smell’ and ‘f is not differentiable’, if we
believe the more complicated statement ‘p or q’ to be true and the statement
p to be false, we can infer that q is true.

There are other features of the arguments which are of interest. For instance,
one might reasonably question whether the statement ‘the temperature out-
side is at most 20◦C or the drains smell’ is actually true – it might be true
for one person’s drains but not for somebody else’s – whereas anyone who
has studied real analysis would know that for any function f : R −→ R, the
statement ‘f is not differentiable or f is continuous’ is always true. We shall
refine our description of the common features of the argument to account for
these factors by saying that

under any set of circumstances for which the statement ‘p or q’ is true
and p is false, then q is true.

This is then something to do first with how a statement is built up from its
component parts, here using ‘or’, and second how the truth of the statement
depends on the truth of these component parts. It is nothing to do with the
content of the statements for which p and q stand.

In this chapter we shall discuss a formal language within which we can build
up more complicated statements from basic component propositions using ‘Proposition’ is often used to mean

a statement about which it is
sensible to ask whether it is true or
false.

symbols like ∨,∧,→ to stand for connecting words, here respectively ‘or’,
‘and’, ‘implies’. The formal language will have construction rules to ensure
that any such complicated expression is capable of being judged to be either
true or false, given the truth or falsity of the component parts. For instance,
we want to avoid the formal equivalent of expressions like ‘or the drains smell’:
without some statement before the ‘or’, we would be reluctant to describe this
as in a fit state to be pronounced true or false. These construction rules are
described as the syntax of the language. The framework within which we give
some sort of meaning to the formal statements and interpret them as true or
false in a given set of circumstances is called the semantics of the language.
After we have established the basic rules of the language and its interpretation,
we shall move on to issues like when one statement is a consequence of others.
This will lay the ground for the discussion of a formal proof system for such
statements. We shall build on this later in the book when we discuss this idea
of consequence for much richer languages involving predicates and quantifiers
within which we can express some serious mathematical statements.

There might appear to be potential for confusion between the formal language
we study and the language we use to discuss it. The language we use for this
discussion is that of everyday mathematical discourse and is often described
as the metalanguage. We hope that we won’t confuse the two sorts of lan-
guage – usually the context will make it clear when we are talking about the
formal language. However there will be strong links between the two levels of
language. For instance, the formal rules for the use of the symbol ∧ intended
to represent the word ‘and’ will inevitably be based on how we use the word
‘and’ in everyday discourse. Also the desire to represent some part of every-
day language in a formal way can force us to tie down how we use everyday
language correctly.

What we are about to describe in this chapter, and indeed in the book as a
whole, is a mathematical model of a fragment of natural language and argu-

18

2.2 The construction of propositional formulas

ments using it, not capturing fully their richness and variety. The importance
of the model resides in the richness of the resulting theory, its applicability to
large tracts of mathematics and, historically, in giving a paradigm for more
refined modern analyses of language and argument – indeed, it is the model
used by virtually all mathematicians and users of logic. Our model will make
some hard and fast decisions about how to use terms like ‘true’, ‘false’ and
‘or’ which could legitimately be challenged in terms of how well they model
natural language. Your attitude as a reader and student should be to run with
our decisions for the purposes of this book, and probably for all the mathe-
matics you will ever do, but to have an open mind to well-reasoned objections
to them!

2.2 The construction of propositional formulas
In this section we shall describe the formal language which we shall use to
represent statements. The language will consist of some basic symbols and
we shall give rules for combining these into more complicated expressions,
giving what is called the syntax of the language. We shall describe the way in
which we shall give meaning to the formal language, that is, give its semantics,
in the following section. However, the syntax and semantics are, perhaps not
surprisingly, intertwined, so that considerations of the semantics will influence
the specification of the syntax.

We have already indicated that we shall use letters like p and q to stand for
basic component propositions, like ‘the drains smell’ and ‘f is continuous’,
and that we shall use symbols to stand for connectives like ‘or’ and ‘and’
to build more complicated propositions from these basic ones. The building
process involves stringing together these symbols and letters. We need to be
clear what is meant by a string of symbols. A string is a finite sequence of The finiteness of the sequence is of

considerable importance in this
book. There are other contexts
where it makes sense to allow
strings to be infinite.

symbols. Furthermore, we normally specify the set of symbols which can be
used to form a string and we shall do this soon. Just as in everyday language,
we have to distinguish which strings of symbols represent anything to which
we can usefully give a meaning. In most normal uses a string like)9X7a))
would normally mean nothing and signify that some error has occurred, e.g. a
cat has danced on a computer keyboard. For our purposes in this chapter, we
will have particular requirements of a statement and this will have a knock-on
effect on the strings of symbols in which we shall be interested. For instance,
we want to represent statements for which it is meaningful to talk in terms
of their truth or falsity. So we would want to exclude from our set of formal These are examples of how the

intended meaning, the semantics,
will influence the formal rules of
the syntax.

statements a string representing

‘I’ll go down to the shops and’

on the grounds that there’s something missing after the ‘and’, preventing us
from deciding on its truth on the basis of the truth or falsity of its compo-
nent parts. Just because we can utter the words in this string, we are not
necessarily stating any idea. More subtly, we want to avoid ambiguity in our
formal statements, as for instance with

‘it is snowing or the bus doesn’t come and I’ll be late for work’.

19

2 Propositions and truth assignments

The truth of this statement depends on whether its component parts are
bracketed together as

‘it is snowing or the bus doesn’t come’ and ‘I’ll be late for work’

or

‘it is snowing’ or ‘the bus doesn’t come and I’ll be late for work’.

In the case when ‘it is snowing’ is true, but both ‘the bus doesn’t come’ and
‘I’ll be late for work’ are false, the first way of bracketing the components
gives false while the second gives true. So without some form of bracketing
(perhaps done by pausing or emphasis when speaking, or extra punctuation
in writing) the original ‘statement’ is ambiguous, that is, it admits more than
one interpretation. For the precision in mathematical argument which the
framework of logic helps to achieve, such ambiguity has to be avoided and
this is one of the features we shall build into our syntax.

Exercise 2.1

Which, if any, of the following statements is ambiguous?

(a) If it is snowing and the bus doesn’t come, then I’ll be late for work.

(b) If it is snowing then the bus doesn’t come and I’ll be late for work.

Solution

We think that (a) is unambiguous, but that (b) is possibly ambiguous. In the The meaning of (b) could be made
clearer by the insertion of some
punctuation, like a comma, in an
appropriate place.

context of everyday life, we would normally interpret (b) as saying that ‘the
bus doesn’t come’ and ‘I’ll be late for work’ are both consequences of ‘it is
snowing’. But it is also possible as interpreting it as saying ‘if it is snowing
then the bus doesn’t come’ and ‘I’ll be late for work’, so that I’ll be late for
work regardless of whether it is snowing!

With considerations like these in mind, we shall define our formal statements
as follows. First we shall specify the formal language, that is, the symbols
from which strings can be formed. We shall always allow brackets – these will Later in this chapter, we shall

allow an extra sort of symbol called
a propositional constant.

be needed to avoid ambiguity. We shall specify a set P of basic statements,
called propositional variables. From these we can build more complex state-
ments by joining statements together using brackets and symbols in a set S
of connectives, which are going to represent ways of connecting statements to
each other, like ∨ for ‘or’ and other symbols mentioned earlier. We can take
any symbols we like for the propositional variables, so long as these symbols
don’t clash with those used for the brackets and the connectives. To make life
easier, we shall adopt the following convention for the symbols we’ll use.

Convention for variables

We shall normally use individual lower case letters like p, q, r, s, . . . and Use of symbols like these to
represent variable quantities is, of
course, very standard in normal
mathematics.

subscripted letters like p0, p1, p2, . . . , pn, . . . for our propositional vari-
ables. Distinct letters or subscripts give us distinct symbols. When we
don’t specify the set P of propositional variables in a precise way, we
shall use p, q, r and so on to represent different members of the set.

20

2.2 The construction of propositional formulas

Our formal version of statements, which we’ll call formulas, is given by the
following definition.

Definition Formula

Let P be a set of propositional variables and let S be the set of con- In many books the phrase
well-formed formula is used instead
of formula. The ‘well-formed’
emphasizes that the string has to
obey special construction rules.

nectives {∧,∨,¬,→,↔}. A formula is a member of the set Form(P, S)
of strings of symbols involving elements of P , S and brackets (and)
formed according to the following rules.

(i) Each propositional variable is a formula.

(ii) If θ and ψ are formulas, then so are

¬θ (θ ∧ ψ) (θ ∨ ψ) (θ → ψ) (θ ↔ ψ)

(iii) All formulas arise from finitely many applications of (i) and (ii). So all formulas are finitely long.

If we use a different set S of connectives, for instance just {∨,→}, then
clause (ii) is amended accordingly to cover just these symbols.

The intended meanings of the connectives are as follows: ∧ will be interpreted
by ‘and’, ∨ by ‘or’, ¬ by ‘not’, → by ‘implies’ and ↔ by ‘if and only if’. With
these intended meanings, you can see why clause (ii) of the definition uses
∧, ∨, → and ↔ to connect together two formulas, while ¬ connects with
only one. The brackets used in clause (ii) are a very important part of the
definition, playing a crucial part in making it possible to interpret formulas
in an unambiguous way.

Taking the set P of propositional variables to be {p, q, r}, each of the following
strings is a formula:

q (p ∨ q) ¬¬(p ∨ q) (¬p ∧ (q → r)).

Let’s check that each of these is a formula. The symbol q is a propositional
variable, so is a formula by clause (i) of the definition. Each of the symbols p
and q are propositional variables and thus formulas by clause (i), so the string
(p ∨ q) is a formula by clause (ii). A use of the ¬θ part of clause (ii), taking
θ to be (p ∨ q), gives that ¬(p ∨ q) is a formula; and one more use of the ¬θ
part of clause (ii), this time taking θ to be ¬(p ∨ q), gives that ¬¬(p ∨ q) is a
formula. Lastly, as p, q, r are formulas, ¬p is a formula by clause (ii), (q → r)
is a formula by clause (ii), and so (¬p ∧ (q → r)) is a formula by clause (ii).

On the other hand, none of the following strings are formulas:

∗ (∗ is not an allowed symbol) There are usually several reasons
why a string fails to be a formula.
In each case, we’ve just given a
single one.

→ (the only single symbol formulas consist of

a propositional variable)

q¬ (there’s nothing following the ¬)

p ∨ q (any formula using ∨ must also have some brackets)

((¬r ∧ q)) (with just one ∧ we can only have one pair of brackets.)

For these last two examples of non-formulas it is tempting to say that we We can’t promise a prize to anyone
who spots us forgetting brackets in
what we say is a formula. But
please let the author know about it.

know what they are supposed to represent, so let’s call them formulas. But
they don’t conform to our strict rules – for many purposes in this book, you

21

2 Propositions and truth assignments

should regard formulas as capable of being recognized and manipulated by
a machine, and we shall keep the instructions for such a machine simple by
careful use of brackets. These last two examples can be turned into formulas
doubtless expressing correctly what was intended by suitable bracketing as

(p ∨ q) and (¬r ∧ q).

The use of brackets is a vital part of how we avoid ambiguity. We discussed
earlier the ‘statement’

‘it is snowing or the bus doesn’t come and I’ll be late for work’.

A corresponding string is

(p ∨ q ∧ r)

and this is not a formula, for instance because any formula containing one ∨
and one ∧ would have to have two pairs of brackets (), rather than the one pair
in the string. We discussed the two obvious ways of bracketing the statements
‘it is snowing’, ‘the bus doesn’t come’,‘I’ll be late for work’ together, essentially
as one of ((p ∨ q) ∧ r) and (p ∨ (q ∧ r)). The moral is that brackets matter a
lot.

Exercise 2.2
Explain why each of the following are formulas, taking the set P of proposi-
tional variables to include p, q, r, s.

(a) (r ↔ ¬s)

(b) ((r → q) ∧ (r ∨ p))

(c) ¬¬p

Exercise 2.3

Explain why each of the following is not a formula, taking the set P of propo-
sitional variables to include p, q.

(a) p ↔ q)

(b) (p & q)

(c) ¬(p)

(d) (¬p)

(e) (p ∧ ∨q)

It’s all very well asking you to show that a short string of symbols is a formula The issue of checking whether a
string of symbols conforms to given
construction rules is of considerable
practical importance, for instance
in many uses of computers. The
details of how to do such checks are
normally quite complicated and in
this book we don’t want them to
get in the way of our main
objective, which is to investigate
the properties of strings which are
formulas.

– we hope that you had no problem doing this in the last exercise. But for a
long string, we really do need something systematic. Likewise it is, we hope,
obvious that strings like (p¬ and (p ∧ q ∨ r) are not formulas. But can we
nail down why they are not formulas in a way that will then cope with a long
string? We will answer the important question of how one tests whether a
string of symbols is a formula first at a fairly informal level and in greater
detail later in the section.

Obviously our answer must take account of the definition of a formula.

If a string consists of just a single symbol, then the string is a formula precisely
when this symbol is a propositional variable – no string in the sequence can

22

2.2 The construction of propositional formulas

be empty and if clause (ii) has been used, the resulting string consists of more
than one symbol.

When a string φ contains more than one symbol, it can only be a formula if The length of a string will be very
important when proving results
about those strings which are
formulas.

it is one of the forms ¬θ, (θ ∧ ψ), (θ ∨ ψ), (θ → ψ), (θ ↔ ψ), for some shorter
strings θ, ψ (which of course also have to be formulas). Whichever of the forms
φ is, the connective that you can see written down in the list we’ve just given,
rather than any connectives that are hidden within the strings θ and ψ, is
given a special name, the principal connective of φ.

If ¬ is the principal connective, this would easily be identified by seeing it at
the front (i.e. lefthand end) of the string; and that’s the only circumstance
under which ¬ can be the principal connective. If it is one of the other
connectives, one way by which the principal connective can be identified is by
looking at brackets. Each appearance of one of ∧, ∨,→ and ↔ brings with
it a pair of brackets (. . .). Brackets give vital information about the way a
formula has been constructed and constrain which strings can be formulas. For
instance, it is pretty obvious that any formula contains an equal number of left
brackets (and right brackets), so that any string for which this fails cannot
be a formula. A special property of brackets which identifies the principal
connective when it is one of ∧, ∨,→ and ↔ can be expressed in terms of the
number of brackets to its left. For each occurrence of these connectives, we
look at

the number of (’s to its left minus the number of)’s to its left.

For instance, in the formula

((p ∧ r) → (¬q ∨ r)),

this ‘left minus right bracket count’ for the ∧ is 2, for the ∨ near the righthand Remember that for this purpose we
ignore the ¬s.end is also 2, and for the →, which is the principal connective, is 1. What

distinguishes the principal connective when it is one of ∧, ∨,→ and ↔ is that We shall justify these results about
brackets later in this section.its ‘left minus right bracket count’ equals 1, which accords with our example.

As another example, in the formula

¬((p → ¬(r ∨ q)) → p)

the ‘left minus right bracket count’ of the leftmost occurrence → is 2, for
the ∨ it’s 3, and for the rightmost occurrence of →, which is the principal
connective, it’s indeed 1.

Actually, it can be shown that for formulas with more than one symbol whose
principal connective isn’t ¬, there is exactly one connective with ‘left minus
right bracket count’ equal to 1, which helps show that strings like

p ∧ q and (p ∧ q ∨ r)

aren’t formulas. For the string p ∧ q there is no connective for which the ‘left We haven’t exhausted here all the
ways in which a string can fail to
be a formula, but will give an
algorithm that detects all of these
later in this section.

minus right bracket count’ equals 1, while for (p∧ q ∨ r) this equals 1 for more
than one connective, both the ∧ and the ∨.

A very sketchy description of an algorithm for checking a string of symbols to
see whether it is a formula is as follows.

23

2 Propositions and truth assignments

Look to see if it has a principal connective. If so, split it into the appropriate If the principal connective is ¬, so
the string looks like ¬θ, there’s
only one shorter string, namely θ.
All the other connectives join
together two substrings, e.g. the ∧
in (θ ∧ ψ) joins together the
substrings θ and ψ with outer
brackets added. In the latter case,
if the outer brackets are missing,
the string can’t be a formula.

shorter string(s) and repeat the process: look for the principal connective for
each of these shorter string(s) and split them up accordingly, and so on. In
this way we analyse successively shorter and simpler strings until we reach
strings consisting of just a single propositional variable – the shortest legal
sort of string. If we don’t trip up at any stage of the process, e.g. by failing to
find a principal connective, and every analysis gets down to a propositional
variable, our initial string was indeed a formula. In any other case, it was not
a formula.

Let’s illustrate the process for the string (¬p∨ ((p∧ q) → ¬r)), which you can
probably see is a formula, by the following diagram.

(¬p ∨ ((p ∧ q) → ¬r))
����

����¬p ((p ∧ q) → ¬r)
����

����
p (p ∧ q) ¬r

����

����
p q r

A diagram like this is called a tree, even though you might think that it
looks like an upside-down tree! The string we are analysing is placed at the
top of the diagram. The branches of the tree go downwards and it is no
coincidence that, as our string is actually a formula, each branch ends with
a propositional variable. How do we construct the tree? We first write down
our original string (¬p ∨ ((p ∧ q) → ¬r)) and attempt to locate its principal
connective. If we find a candidate, then what we do next depends on whether
it’s one of {∧,∨,→,↔} or it’s ¬. In this case it’s ∨, one of the first sort, so
under the original string we write the two separate substrings which, when
joined together with ∨ and a pair of outer brackets added, give the original
string – here, these are the strings ¬p and ((p ∧ q) → ¬r). This gives the first
stage of the diagram:

(¬p ∨ ((p ∧ q) → ¬r))
����

����¬p ((p ∧ q) → ¬r)

We join the top string to each of these smaller strings with a line to give a
sense of them flowing directly from the top string. We repeat the process for
each of these shorter strings. One of them begins with a ¬, so there’s just
the one string, namely p to write underneath it; and this is a propositional
variable, so this (upside-down!) branch of the tree has successfully stopped
at a propositional variable. The diagram now looks like

24

2.2 The construction of propositional formulas

(¬p ∨ ((p ∧ q) → ¬r))
����

����¬p ((p ∧ q) → ¬r)

p

We now do the analysis of the other string ((p∧ q) → ¬r), finding its principal
connective to be the →, and we hope that by now you can see how we obtained
the full diagram.

Exercise 2.4
Construct a similar sort of tree for each of the following strings.

(a) ¬(¬p ↔ r)

(b) ((p ∧ r) → (¬p ↔ q))

(c) ¬((¬r ∨ (r ∧ ¬p)) ↔ ¬¬¬q)

Solution

(a)

¬(¬p ↔ r)

(¬p ↔ r)
����

����¬p r

p

(b) Not given.

(c) Not given.

As we have already observed, in this sort of diagram the constituent parts
all are formulas and the branches all end with a propositional variable. It is
helpful to have a name for these constituent parts: we call them subformulas
of the original formula. More formally, we have the following definition.

25

2 Propositions and truth assignments

Definition Subformula

For all formulas φ, their subformulas are defined as follows, exploiting
the construction rules for formulas.

1. If φ is atomic, then φ is the only subformula of itself.

2. If φ is of the form ¬ψ, then the subformulas of φ are φ and all
subformulas of ψ.

3. If φ is one of the forms (θ ∧ ψ), (θ ∨ ψ), (θ → ψ) and (θ ↔ ψ), then
the subformulas of φ are φ, all subformulas of θ and all subformulas
of ψ.

So the subformulas of (¬p ∨ ((p ∧ q) → ¬r)) are We gave the tree diagram for this
formula on page 24. Its
subformulas are all the formulas
involved at some stage of its
construction.

(¬p ∨ ((p ∧ q) → ¬r)), ¬p, p, ((p ∧ q) → ¬r),

(p ∧ q), q, ¬r, r.

Note that p occurs as a subformula in more than one place in the original
formula, but we need only list it once as a subformula.

Exercise 2.5

Give the subformulas of each of the following formulas (which appeared in
Exercise 2.4).

(a) ¬(¬p ↔ r)

(b) ((p ∧ r) → (¬p ↔ q))

(c) ¬((¬r ∨ (r ∧ ¬p)) ↔ ¬¬¬q)

We shall now tighten up on some of the details of our sketchy algorithm. First
we shall look at an example of how to prove certain sorts of result about for-
mulas, in particular the result that any formula φ contains an equal number
of left brackets (and right brackets). Although we hope that this is some-
how obvious from clause (ii) of the definition of a formula, it is instructive
to see how to justify it in a more formal way – we shall need this style of
argument several times later in the book to justify much less obvious results
about formulas! Our challenge here is to prove something about all formulas
φ, however complex and long they are. The way we shall proceed is by math-
ematical induction on the length of φ. There are several sensible measures of
the length of a formula φ, for instance the total number of symbols in it or
the height (that is, length of the longest branch) in its construction tree. Our
preferred measure of length is the number of occurrences of connectives in φ, We shall say ‘the number of

connectives’ for short.so that the length of the formula

((q ∧ ¬¬r) ∧ (p ∨ (r → ¬q)))

is 7 (consisting of 3 ¬s, 2 ∧s, 1 ∨ and 1 →). The smallest possible length of a
formula is then 0, when φ is just a propositional variable p, for some p – the
definition of formula allows no other possibility.

The structure of this sort of proof is as follows. Show first that the result
holds for all formulas of length 0 – the basis of the induction. Then we do the

26

2.2 The construction of propositional formulas

inductive step: assume that the result holds for all formulas of the given type You might like to think why our
induction hypothesis isn’t simply
that the result holds for all
formulas of length exactly equal to
n, rather than ≤ n. The reason for
this will become clear soon!

with length ≤ n – this is the induction hypothesis for n – and from this show
that it holds for all formulas of length ≤ n + 1. As we are assuming that the
hypothesis holds for all formulas of length ≤ n, this boils down to showing
that the hypothesis holds for formulas whose length is exactly n + 1. By the
principle of mathematical induction the hypothesis then holds for formulas of
all lengths, i.e. all formulas.

Let us now use this method of proof to establish the following theorem about
brackets.

Theorem 2.1

Any formula φ contains an equal number of left brackets (and right
brackets).

Proof
Our induction hypothesis is that all formulas of length ≤ n contain an equal
number of left and right brackets.

If φ is a formula of length 0, it can only be a propositional variable, thus
containing an equal number, namely zero, of left and right brackets. Thus the
hypothesis holds for n = 0.

Now suppose that the result holds for all formulas of length ≤ n. To show
from this that the result holds for all formulas of length ≤ n + 1, all that
is needed is to show that it holds for formulas of length n + 1, as those of
shorter length are already covered by the induction hypothesis for n. So let φ
be such a formula of length n + 1. As φ has at least one connective, it cannot
be simply a propositional variable, so must be a formula by an application of
clause (ii) in the definition of formula, that is, it must be of one of the five
forms

¬θ, (θ ∧ ψ), (θ ∨ ψ), (θ → ψ), (θ ↔ ψ)

where θ and ψ are formulas. We must deal with each of these possible forms.
In all five cases, as φ has n + 1 connectives, θ and ψ have at most n connectives, If φ is of the form ¬θ, then θ has

exactly n connectives. If φ is of the
form (θ ∧ ψ), the ∧ accounts for
one of the n + 1 connectives in φ,
leaving the remaining n
connectives to be distributed
somehow between θ and ψ.

so that the inductive hypothesis will apply to them.

Case: φ is of the form ¬θ

As θ has length n, by the induction hypothesis θ contains an equal number,
say k, of left and right brackets. The formation of the string ¬θ from θ doesn’t
add further brackets, so that this form of φ also contains an equal number,
namely k, of left and right brackets.

Case: φ is of the form (θ ∧ ψ)

As both θ and ψ have length ≤ n, by the induction hypothesis θ contains an
equal number, say k, of left and right brackets, while ψ contains an equal
number, say j, of left and right brackets. The formation of the string (θ ∧ ψ)
from θ and ψ adds an extra left bracket and an extra right bracket to those in
θ and ψ, so that this form of φ contains an equal number, namely k + j + 1,
of left and right brackets.

27

2 Propositions and truth assignments

It can be shown that the result holds for φ of each of the three remaining
forms, completing the inductive step. It follows by mathematical induction
that the result holds for all n ≥ 0, that is for all formulas.

Exercise 2.6
Fill in the gaps in inductive step of the proof above for the cases when φ is of
one of the forms (θ ∨ ψ), (θ → ψ), (θ ↔ ψ).

Solution

We hope that this is seen as essentially trivial, simply replacing the ∧ in the
argument for the case when φ is of the form (θ ∧ ψ) by, respectively, ∨, →
and ↔. In all but the most fastidious circles, one would merely complete the
proof given above of the theorem by saying that the other cases are similar
to that of (θ ∧ ψ)!

Exercise 2.7
(a) Use mathematical induction on the length of a formula to show that the Recall that our preferred measure

of length of a formula is the
number of occurrences of
connectives in it.

number of occurrences of the symbol ∧ in a formula φ is less than or equal
to the number of left brackets (in the formula.

(b) Does the result of part (a) hold for the symbol ¬? Justify your answer.

We shall now describe a more comprehensive algorithm for checking whether An undercurrent in the
development of the subject is
whether there is an algorithm for
generating true statements of
mathematics. For this to be
remotely feasible, we need an
algorithm for checking whether a
string of symbols is a statement,
hence our interest in this algorithm
for a very simple language.

a string of symbols is a formula. For simplicity in most of the rest of the sec-
tion, we shall suppose that the language used involves only two propositional
variables p and q, the connective ∧ and brackets. It is very straightforward to
extend our algorithm to cope with richer languages. There are several possible
algorithms and we shall go for one which treats the brackets as the crucial
component. Consider the following string, which is a formula:

(((p ∧ q) ∧ p) ∧ (q ∧ p)).

By Theorem 2.1, the number of left brackets in a formula equals the number
of right brackets. We can check this for the formula above by moving along
the string from left to right keeping a count of the difference between the
numbers of left and right brackets in the following way. Start at the lefthand
end of the string with the count at 0. Whenever we meet a left bracket, we
add 1 to the count. When we meet a right bracket, we subtract 1 from the
count. In this way we associate a number with each bracket in the string, as
follows:

(((p ∧ q)∧ p)∧(q ∧ p))
1 2 3 2 1 2 1 0

We shall call the number associated with each bracket in this way its bracket
count. The final bracket has bracket count 0, which confirms that the number
of left brackets equals the number of right brackets, as we would expect for a
formula. Furthermore, the bracket count is greater than zero for any bracket
before this final one, where it is 0. These properties apply to all formulas, not
just this one, and can be proved using mathematical induction on the length
of formulas. Of course, these properties by themselves don’t ensure that the E.g. consider the string

(p)
1 0

string is a formula.

28

2.2 The construction of propositional formulas

Another important feature of the bracket count is that it helps identify which
occurrence of the connective ∧ is the principal connective of the formula. In
our example, observe that the principal connective happens to follow a bracket
with a count of 1. This is not a coincidence. In any formula in our restricted
language containing at least one occurrence of ∧, there will be exactly one
occurrence which follows a bracket with a count of 1 and this will be the Earlier we described this

occurrence as having a ‘left minus
right bracket count’ of 1.

principal connective. This principle works for the further example

(q∧((p ∧ p)∧ q))
1 2 3 2 1 0

where the relevant bracket is a left bracket (rather than a right bracket) as
in our first example. Let’s try to explain informally why the principle holds
in general.

A formula containing an ∧ will be of the form (φ ∧ ψ), where the ∧ which is
the principal connective is the one that we can see between the φ and the ψ –
these subformulas might, of course, contain other occurrences of ∧. If the first
subformula φ contains brackets, then its bracket count is greater than zero
for any bracket before its final one, where the count is 0. Thus in the formula
(φ ∧ ψ), which has an extra left bracket at its lefthand end, all the bracket
counts for the subformula φ increase by 1. That means that the bracket count
for (φ ∧ ψ) looks something like this:

((

φ︷ ︸︸ ︷
. . . (. . .)∧(

ψ︷ ︸︸ ︷
. . . (. . .))

1 2 1 2 1 0

It starts by going straight from 1 to 2 as φ is entered. It then first goes back
to 1 at the final bracket of φ, just before the principal connective, as required.
If the subformula ψ contains brackets, the bracket counts increase – all the
counts for ψ on its own also increase by 1, so the count for (φ ∧ ψ) only gets
back to 1 at the final bracket of ψ, which is then followed by the final bracket
of (φ ∧ ψ).

We leave it to you to think about the cases when one or both of φ and ψ
contain no brackets, meaning that it is simply a propositional variable.

The algorithm will then be as follows, starting with the string which one
wishes to test to see whether it is a formula. At any stage when the algorithm
declares that the string is a formula, the process halts. Similarly it halts when
the algorithm declares that the string is not a formula.

(i) Test the lefthand symbol of the string.

(a) If it is one of p and q, check if this is the only character in the string.
If this is so, the string is a formula; if not, then it isn’t a formula.

(b) If it is ∧ or a right bracket), then the string isn’t a formula.

(c) If it is a left bracket (, then proceed to step (ii).

29

2 Propositions and truth assignments

(ii) Check whether the string ends in a right bracket). If not, the string is
not a formula. Otherwise proceed to step (iii).

(iii) Compute the bracket count. Moving along the string from left to right,
locate the first occurrence of ∧ following a bracket with count 1. If there
is no such occurrence of ∧, the string is not a formula. Otherwise, proceed
to step (iv).

(iv) Use this occurrence of ∧ to split the string into two substrings: one con-
sisting of all the symbols to the left of the ∧ except for the initial left
bracket (; and the other consisting of all the symbols to the right of the
∧ except for the final right bracket).

(v) Now apply the algorithm starting with (i) to both of these substrings. If
both substrings are formulas, then the string is a formula.

Note that at stage (v), the substrings are shorter than the original (finite!)
string, so that the algorithm will stop with a result after a finite number of
steps.

Exercise 2.8
How does our algorithm detect the case when there are two occurrences of ∧ Of course, in such a case the string

is not a formula.which follow a bracket count of 1?

Exercise 2.9

Adapt our algorithm for strings built up using the propositional variables p, q
and the connective ∧ so that it tests strings which might also include the
connective ¬.

Now that we have a definition of formula, we can look at how to interpret
formulas and discuss their truth or falsity in an interpretation. This is the
subject of the next section.

Further exercises

Exercise 2.10

Show that in all formulas θ built up using the propositional variables p, q and
the connective ∧, the bracket count is greater than zero for any bracket of θ
before its final one where the count is 0.

Exercise 2.11

Suppose that formula φ is built up using only ∧ and ∨ and has connective
length n. What can you say about the number of subformulas of φ? What
can be said if φ might include the connective ¬ as well as ∧,∨?

Exercise 2.12

Show that in all formulas θ built up using the propositional variables p and q
using the connective ∧ and containing at least one occurrence of ∧, there is
exactly one occurrence of ∧ which follows a bracket with a count of 1.

30

2.3 The interpretation of propositional formulas

2.3 The interpretation of propositional formulas
We shall now describe how to give meaning to the formal language, giving
what is called its semantics. Recall that we introduced the simplest (shortest!)
sort of formula, a propositional variable, by saying that it was intended to
stand for a basic component proposition, like ‘f is a continuous function’. In
normal mathematics, the truth of this will depend on whether the f we are
given is indeed a continuous function and, for that matter, what we mean by
a continuous function. But for propositional calculus, this level of detail of We shall be much more interested

in what each basic proposition
expresses when we look at the
predicate calculus.

how a propositional variable is interpreted is much greater than we shall need
in this chapter. For purposes like deciding whether one statement or formula
is a consequence of others within the propositional calculus, all we shall need
to know about each propositional variable is whether, in a particular set of
circumstances, it is true or false. Once we have specified how to interpret the
connectives, we can then say how the truth or falsity of more complicated
formulas depends on that of the propositional variables, which are the basic
building blocks. This in turn will allow us to say whether one formula is a
consequence of others.

Hidden in the preamble above and implicit in earlier discussions in the book
is an important decision. Under a given set of circumstances, a statement is
either true or false – one or the other, and no sort of half-truth in between.
We hope that this seems perfectly reasonable. In everyday mathematics, a
statement like ‘f is a continuous function’ is just one of true or false, depending
on the f we are given. However, there are circumstances where it might make
sense to describe the truth of a statement in a less black and white way, for
instance giving a probability that the statement is true; and one of the ways
in which you could extend your knowledge beyond this book is by learning
about other ways of analysing what is meant by truth. For the rest of this
book, our standard measure of the truth of a statement will be in terms of
the two distinct values ‘true’ and ‘false’. We shall describe each of these as a
truth value and abbreviate them by T for ‘true’ and F for ‘false’. So the set
of truth values is the two element set {T, F}.
We have talked informally about knowing whether, in a particular set of cir-
cumstances, each propositional variable is true or false. More formally and
elegantly, this set of circumstances is a function v : P −→ {T, F}, where P
is the set of propositional variables in our language. The function v gives
a truth value to each propositional variable in P , thus describing the set of
circumstances. We will explain how to extend such a function v so that it
assigns a truth value to each formula built up from P using connectives in
a set S – the function so obtained will be called a truth assignment. A key
step is to specify how to interpret the connectives. For each of these, we shall
explain how the truth of a formula φ with it as principal connective depends
on the truth of the subformulas it connects to form φ. We shall look at each
of the connectives introduced so far in the book, namely ¬, ∧, ∨, → and ↔, The issue of other reasonable

connectives used in everyday
discourse is delayed until
Section 2.5.

the intended meanings of which we have already said are, respectively, ‘not’,
‘and’, ‘or’, ‘implies’ and ‘if and only if’.

31

2 Propositions and truth assignments

¬ (negation)

A formula of the form ¬θ for some formula θ with principal connective ¬ is We may also sometimes refer to a
formula of the form ¬θ as a
negation.

called the negation of θ. We shall specify how its truth value is to be related
to the truth value of θ. As our intended way of interpreting ¬ is as ‘not’, we
want ¬θ to have the value F (false) when θ has the value T (true) and the
value T when θ has the value F , i.e. ¬θ will have the opposite value to that
assigned to θ. We can summarize this by the following table.

θ ¬θ

T F
F T

∧ (conjunction)

A formula of the form (θ∧ ψ) for some formulas θ, ψ with principal connective We may also sometimes refer to a
formula of the form (θ ∧ ψ) as a
conjunction.

∧ is called the conjunction of θ and ψ. Each of the formulas θ and ψ is called
a conjunct of (θ ∧ ψ). Our intended way of interpreting ∧ is as ‘and’, so we
shall assign (θ ∧ ψ) the value ‘true’ exactly when both θ and ψ are assigned So if one or both of θ and ψ are

false, then so is (θ ∧ ψ).the value ‘true’. We can summarize this by the following table.

θ ψ (θ ∧ ψ)

T T T
T F F
F T F
F F F

This sort of table, giving the truth values of a formula constructed from
some of its subformulas for all possible combinations of truth values of these
subformulas, is called a truth table. Here the formula (θ ∧ ψ) is given in terms
of the subformulas θ and ψ. There are four combinations of truth values for
θ and ψ, so this truth table has 4 rows. Our earlier table for negation gave
the truth values of ¬θ in terms of the values of the subformula θ, so this truth
table only required 2 rows.

∨ (disjunction)

A formula of the form (θ∨ ψ) for some formulas θ, ψ with principal connective We may also sometimes refer to a
formula of the form (θ ∨ ψ) as a
disjunction.

∨ is called the disjunction of θ and ψ. Each of the formulas θ and ψ is called
a disjunct of (θ ∨ ψ). Our intended way of interpreting ∨ is as ‘or’, but unlike
‘not’ and ‘and’ earlier, we run into the problem that there is more than one
way of using ‘or’ in English. One way, called the exclusive ‘or’, makes (θ ∨ ψ)
true when exactly one of θ and ψ is true – the truth of one of them excludes
the truth of the other. For instance, many restaurants offer a fixed price menu
with a choice of dishes for each course. The choice for each course is to be
read as a disjunction with the exclusive use of ‘or’ – you can have any one of
the soup, terrine and prawn cocktail, but only one. Another use of ‘or’ is in
what is called an inclusive way, where (θ ∨ ψ) is true when one or both of θ
and ψ are true. For instance, a common sort of argument in maths is along
the lines of ‘if x or y are even integers, then xy is even’, where ‘x or y are
even’ includes the case that both x and y are even. Because this way of using

32

2.3 The interpretation of propositional formulas

‘or’ is pretty well standard in mathematics, we shall choose to interpret ∨ in
the inclusive way, as given by the following truth table.

θ ψ (θ ∨ ψ)

T T T
T F T
F T T
F F F

→ (implication)

A formula of the form (θ → ψ) for some formulas θ, ψ with principal connective The formula θ is called the
antecedent and ψ the consequent of
the implication.

→ is called an implication. Our intended way of interpreting → is as ‘implies’,
or ‘if . . . then’, which suggests some of the rows of the truth table in the
following rather backhanded way. In normal use of ‘if . . . then’ in English,
from being told that ‘if θ then ψ’ is true and that θ is true, we would expect
ψ to be true. Likewise if we are told that θ is true and ψ is false, then ‘if θ
then ψ’ would have to be false. This then settles two of the rows of the truth
table, as follows:

θ ψ (θ → ψ)

T T T
T F F
F T ?
F F ?

It may not be immediately obvious from normal English how to fill in the
remaining two rows of the table, covering the cases where θ is false. It is a
constraint of the process of making a simple model of this fragment of natural
language and argument that we have to make some sort of decision about the
truth value of (θ → ψ) when θ is false, and our decision is to make (θ → ψ)
true on these rows, giving the following truth table.

θ ψ (θ → ψ)

T T T
T F F
F T T
F F T

This table might be made more
memorable by thinking of it as
saying that (θ → ψ) is false only
when θ is true and ψ is false –
surely circumstances when ‘θ
implies ψ’ has to be false.

The decision we have taken about the bottom two rows in this table is con-
sistent with the way we handle implication in everyday mathematics. We
frequently state theorems in the form ‘if . . . then’, for instance the following
theorem:

‘for all x ∈ R, if x > 2, then x2 > 4’.

We hope that this result strikes you not only as correct (which it is!) but as Giving the value ‘true’ to the
statement ‘if x > 2, then x2 > 4’
even when the particular value of x
makes x > 2 false is a fair reflection
that there is a correct proof of ‘if
x > 2, then x2 > 4’.

a familiar way of expressing a host of mathematical results using ‘if . . . then’.
Given that we regard this result as true, we must surely also regard

‘if x > 2, then x2 > 4’

as being true for each particular x in R, and we want the truth table for ‘if
. . . then’ to reflect this. Taking some particular values for x, for instance 3, 1

33

2 Propositions and truth assignments

and −5, this means we want our truth table for ‘if . . . then’ to give the value
T in each of the following circumstances:

when x = 3, both x > 2 and x2 > 4 have the value T ;

when x = 1, both x > 2 and x2 > 4 have the value F ;

when x = −5, x > 2 has the value F but x2 > 4 has the value T .

These cases correspond to all the rows of our truth table for → which result
in the value T .

The connective → with its intended meaning of ‘implies’ is perhaps the most
important of the connectives we have introduced. This is because a major use
of our formal language is to represent and analyze mathematical arguments
and theorems, and a salient feature of these is the use of implication both to
state and prove results.

Note that the truth of the statement (θ → ψ) does not necessarily entail any
special relationship between θ and ψ, for instance that in some sense θ causes
ψ. To test your understanding of the truth table of →, try the following
exercise.

Exercise 2.13

The British psychologist Peter Wason (1924–2003) devised a famous exper-
iment involving people’s understanding of ‘if . . . then . . . ’ as follows. The
experimenter lays down four cards, bearing on their uppermost faces the sym-
bols A, B, 2 and 3 respectively. The participants are told that each card has
a letter on one side and a number on the other side. Their task is to select
just those cards that they need to turn over to find out whether the following
assertion is true or false: ‘If a card has an A on one side, then it has a 2 on
the other side.’ Which cards should be turned over?

Solution

In the original experiment and in subsequent trials, most people selected the
A card and, perhaps, the 2 card. Surprisingly they failed to select the 3 The 2 card doesn’t need to be

turned over to test the assertion!card. According to Wason’s obituary in the Guardian (25th April 2003), the
experiment ‘has launched more investigations than any other cognitive puzzle.
To this day – and Wason’s delight – its explanation remains controversial.’

↔ (bi-implication)

A formula of the form (θ ↔ ψ) for some formulas θ, ψ with principal connective
↔ is called a bi-implication of θ and ψ. Our intended way of interpreting ↔ is
as ‘if and only if’, so we shall assign (θ ↔ ψ) the value ‘true’ exactly when the Why do you think that ↔ is

formally described as
‘bi-implication’?

truth value of θ matches that of ψ. We can summarize this by the following
truth table.

θ ψ (θ ↔ ψ)

T T T
T F F
F T F
F F T

34

2.3 The interpretation of propositional formulas

Exercise 2.14

We interpret the formula (θ ↔ ψ) as ‘θ if and only if ψ’. Write down two for-
mulas involving the connective →, one which represents ‘θ if ψ’ and the other And say which is which!

representing ‘θ only if ψ’. Often in everyday maths we interpret (θ ↔ ψ) as ‘θ
is a necessary and sufficient condition for ψ’. Which of your formulas repre-
sents ‘θ is a necessary condition for ψ’ and which represents ‘θ is a sufficient
condition for ψ’?

An important point to note about the truth tables for the connectives ¬, ∧,
∨, → and ↔ is that these are not simply conventions for the purposes of this
book when working out the truth values of formulas under an interpretation
of the formal language. They also reflect how in normal mathematics we de-
termine the truth of statements made involving their standard interpretations
as, respectively, ‘not’, ‘and’, ‘or’, ‘implies’ and ‘if and only if’. In particular
when we discuss our formalization of statements and arguments in this book,
in ‘normal’ language (what we called earlier the metalanguage), we shall use
these standard interpretations.

Now that we have said how to interpret each of the connectives, we can turn
to the interpretation of formulas in general. Our aim is to define a truth
assignment, that is a special sort of function from the set of all formulas to
the set {T, F} of truth values, which turns particular truth values given to
the propositional variables into a truth value for any formula built up from
them, exploiting the truth tables of the connectives. We shall approach this by
making more precise what we mean by exploiting these truth tables, starting
with the truth table for ∧.

Let Form(P, S) be the set of all formulas built up from propositional variables
in a set P using connectives in a set S which includes ∧. We shall say that a
function v : Form(P, S) −→ {T, F} respects the truth table of ∧ if

v((θ ∧ ψ)) =

{
T, if v(θ) = v(ψ) = T,
F, otherwise,

for all formulas θ, ψ ∈ Form(P, S). That is, the value of v((θ ∧ ψ)) is related
to those of v(θ) and v(ψ) by the truth table for ∧:

v(θ) v(ψ) v((θ ∧ ψ))

T T T
T F F
F T F
F F F

You can probably guess how we are going to exploit this definition. If we have
v(p) = v(q) = T and v(r) = F , where p, q, r are propositional variables, and v
respects the truth table for ∧, then v((p ∧ q)) = T and v(((p ∧ q) ∧ r)) = F .

Likewise we say that v respects the truth tables of ¬ and respectively ∨ if

v(¬θ) =

{
F, if v(θ) = T,
T, if v(θ) = F,

35

2 Propositions and truth assignments

and

v((θ ∨ ψ)) =

{
F, if v(θ) = v(ψ) = F,
T, otherwise,

for all formulas θ, ψ ∈ Form(P, S).

In a similar way we can define that the function v respects the truth tables
of other connectives. In the next section we shall discuss

other connectives besides ¬, ∧, ∨,
→ and ↔.Exercise 2.15

Suggest definitions for v respects the truth tables of → and ↔.

Solution

v((θ → ψ)) =

{
F, if v(θ) = T and v(ψ) = F,
T, otherwise,

and

v((θ ↔ ψ)) =

{
T, if v(θ) = v(ψ),
F, otherwise,

for all formulas θ, ψ ∈ Form(P, S).

We can now give the key definition giving the truth value of a formula under
a given interpretation of the propositional variables it contains.

Definitions Truth assignment

Let P be a set of propositional variables and S a set of connectives. A Often we shall not be very specific
about the sets P and S in this
definition, and will rely on the
context making it obvious what
these sets are being taken to be.

function v : Form(P, S) −→ {T, F} is said to be a truth assignment if v
respects the truth tables of all the connectives in S. We shall sometimes
call v(φ) the truth value of φ under v.

We shall sometimes describe this v as a truth assignment on P .

If v(φ) = T , we shall often say that ‘v makes φ true’ or that ‘v satisfies
φ’; and we adapt this terminology appropriately when v(φ) = F .

It might appear to be very cumbersome, if not downright impossible, to give
an example of a truth assignment v as we would have to give the value of
v(φ) for every formula φ, however long and complicated. Fortunately a truth
assignment v can essentially be described simply by giving the values of v(p)
for all propositional variables p. As v respects all relevant connectives, it
can be shown that v(φ) is completely determined by these values of v(p).
Furthermore, for any choice of truth values for the propositional variables,

36

2.3 The interpretation of propositional formulas

there is a truth assignment v taking these given values on the propositional
variables. This is the import of the following vital result.

Theorem 2.2

Let P be a set of propositional variables, let S be the set of connectives
{¬,∧,∨,→,↔} and let v : P −→ {T, F} be a function. Then there is
a unique truth assignment v : Form(P, S) −→ {T, F} such that v(p) =
v(p) for all p ∈ P .

Proof

Existence can be demonstrated by defining v as follows, using what is called If you are not familiar with
recursion and the recursion
principle, then you can simply take
this theorem on trust or you can
look at the details in e.g.
Enderton [12].

recursion on the length of a formula, exploiting the construction of a formula
from subformulas of shorter lengths, with propositional variables as the basic
building blocks with length 0.

For any formula of length 0, such a formula can only be a propositional variable
p in P , in which case define v(p) to be v(p).

Now suppose that v(φ) has been defined for all formulas of length ≤ n. Let
φ be a formula of length n + 1. As n + 1 > 0, φ has a principal connective
(which is unique), so is one of the forms ¬θ, (θ ∧ ψ), (θ ∨ ψ), (θ → ψ) and
(θ ↔ ψ), where θ and ψ are of length ≤ n, so that both v(θ) and v(ψ) have
already been defined. Now define v(φ) by using the appropriate row of the
truth table for its principal connective with these values of v(θ) and v(ψ).

This process, exploiting what’s called the recursion principle, defines v(φ)
for all formulas φ and thus defines a function v : Form(P, S) −→ {T, F}.
Plainly the construction guarantees that v respects the truth tables of all the
connectives in S, that is, v is a truth assignment.

We now need to prove that the function v is unique. We suppose that
v′ : Form(P, S) −→ {T, F} is another truth assignment with v′(p) = v(p) for
all p ∈ P . We shall use mathematical induction to show that for all formulas φ
of length ≤ n, v(φ) = v′(φ), where n ≥ 0. As every formula has a finite length,
this will show that v(φ) = v′(φ) for all formulas φ, so that the functions v and In general, two functions f, g are

equal if they have the same domain
A and the same effect on each
element of the domain, i.e.
f(a) = g(a) for all a ∈ A.

v′ are equal.

Any formula of length 0 has to be a propositional variable p in P , in which
case both v(p) and v′(p) are, by definition, v(p), and are thus equal.

Now suppose that for all formulas φ of length ≤ n, v(φ) = v′(φ), and that φ
is a formula of length n + 1. Then φ is one of the forms ¬θ, (θ ∧ ψ), (θ ∨ ψ),
(θ → ψ) and (θ ↔ ψ), where θ and ψ are of length ≤ n, so that

v(θ) = v′(θ) and v(ψ) = v′(ψ).

In all cases, as v and v′ are truth assignments, and so respect the truth tables
of all the connectives in S, we then have v(φ) = v′(φ). By mathematical
induction, we have v(φ) = v′(φ) for formulas of all lengths n ≥ 0, i.e. for all
formulas φ.

One way of phrasing this result is that any assignment of truth values to
the propositional variables of a language can be extended to a unique truth

37

2 Propositions and truth assignments

assignment. An important consequence of it is that the effect of a truth as-
signment v is completely determined by the values it gives to the propositional
variables, as we claimed earlier. A full explanation of this is as follows.

Given a truth assignment v, look at the restriction w of the function v to the We have used the letter w rather
than the standard notation v|P for
this restriction function in the hope
that it will make this passage
easier to read!

set P of propositional variables (which is a subset of the domain Form(P, S)
of v as each propositional variable is a formula). This means that w is the
function from P to {T, F} defined by w(p) = v(p) for all p ∈ P . Our task is to
show that the effect of v on all formulas is determined by the effect of this w
just on propositional variables. By the result above, w can be extended to a
unique truth assignment w. This means that (a) w is a truth assignment, (b)
w(p) = w(p) = v(p) for all p ∈ P and (c) w is the only truth assignment with
property (b). But the v we started with is a truth assignment and satisfies
(b). So by (c) w is v.

Now we know that a truth assignment v is determined by the values it gives
to the propositional variables, we can look at some examples. In practice
we are given the value of v(p) for each propositional variable p. How do we
then compute the truth value v(φ) for a formula φ? We exploit the fact that
a truth assignment respects truth tables and the construction of φ from its
subformulas. For a simple formula, the process is easy. For instance, suppose
that v is a truth assignment with v(p) = F, v(q) = T and that we want the
value of v((p ∧ (q → ¬p))). As v respects truth tables, we have

v(¬p) = T

v((q → ¬p)) = T

v((p ∧ (q → ¬p))) = F.

Exercise 2.16

Suppose that v is a truth assignment with v(p) = T, v(q) = F . What is the
value of v((p ∧ (q → ¬p)))?

Solution
As v respects truth tables, we have

v(¬p) = F

v((q → ¬p)) = T

v((p ∧ (q → ¬p))) = T.

What we have done for these simple formulas is essentially to build up to
the truth value of the whole formula by working out the truth values of
its subformulas. This method works just as well for more complicated for-
mulas. Think of a formula in terms of its construction tree. Take for in-
stance the formula (¬p ∨ ((p ∧ q) → ¬r)) and the truth assignment v with
v(p) = T, v(q) = T, v(r) = F . We constructed the tree for this formula on
page 24 and reproduce it below for convenience.

38

2.3 The interpretation of propositional formulas

(¬p ∨ ((p ∧ q) → ¬r))
����

����¬p ((p ∧ q) → ¬r)
����

����
p (p ∧ q) ¬r

����

����
p q r

For the given v, we work out v(ψ) for all subformulas ψ of φ, starting from
the simplest subformulas, namely the propositional variables appearing in φ,
and work our way up the tree till we get up to v(φ). Here this gives

v(p) = T

v(q) = T

v(r) = F

v(¬p) = F

v((p ∧ q)) = T

v(¬r) = T

v(((p ∧ q) → ¬r)) = T

v((¬p ∨ ((p ∧ q) → ¬r))) = T.

In practice, when working out v(φ) for a given v and φ, all one uses are the
subformulas ψ of φ, rather than the whole tree, which saves some paper! But
the principle is the same: starting with the values of v(p) for the propositional
variables that appear in φ, work out the values of v(ψ) for progressively more
complicated subformulas of φ until one obtains the value of v(φ) itself.

Of course, once one is familiar with the game, one can often take some short-
cuts. In this example, once one has worked out that v(¬r) = T , the truth table
for → gives that v(((p ∧ q) → ¬r)) has to equal T , irrespective of the value
of v((p ∧ q)). Then, thanks to the truth table for ∨, v((¬p ∨ ((p ∧ q) → ¬r)))
has to equal T , irrespective of the value of v(¬p). But be warned that such
shortcuts cannot always be taken.

Exercise 2.17
Let v be the truth assignment defined on the set of propositional variables
{p, q, r} by v(p) = T , v(q) = F , v(r) = F . Find the truth value under v of
each of the following formulas.

(a) ¬q

(b) (¬p ∨ r)

(c) (p ↔ (¬r → s))

(d) ((q ∧ (r → ¬r)) ∨ ((p ∨ r) ↔ ¬q))

(e) (p → ((¬r → p) → (¬q ∨ r)))

39

2 Propositions and truth assignments

Solution

(a) As v(q) = F , we have v(¬q) = T .

(b) The subformulas here are p, r, ¬p, and finally the formula (¬p ∨ r) itself.
The values of these subformulas under v are

v(p) = T

v(r) = F

v(¬p) = F

v((¬p ∨ r)) = F.

(c) Not a misprint for a change, but a trick question! As we have not specified
the value of v(s), we cannot work out the value of v((p ↔ (¬r → s))).

(d) Working out the values of subformulas of

((q ∧ (r → ¬r)) ∨ ((p ∨ r) ↔ ¬q)),

we have

v(p) = T

v(q) = F

v(r) = F

v(¬r) = T

v((r → ¬r)) = T

v((q ∧ (r → ¬r))) = F

v((p ∨ r)) = T

v(¬q) = T

v(((p ∨ r) ↔ ¬q)) = T

v(((q ∧ (r → ¬r)) ∨ ((p ∨ r) ↔ ¬q))) = T.

Perhaps easier to say after the event than to spot beforehand, once one
has spotted that v(((p ∨ r) ↔ ¬q)) = T , then thanks to the truth table
for ∨, we must have

v(((q ∧ (r → ¬r)) ∨ ((p ∨ r) ↔ ¬q))) = T,

irrespective of the value of v((q ∧ (r → ¬r))). This would have been a bit
of a shortcut, but we suspect that sometimes looking for a shortcut might
take up time that could have been used working out the truth value the
slow way!

(e) Not given.

From now on, we will often not show the intermediate steps in working out
v(φ) and as your confidence increases you might find yourself doing the same.

One fact which we hope seems obvious is that the truth value of a formula
φ under a truth assignment v does not depend on the values of v(p) for
propositional variables p which do not appear in φ. Despite being obvious, it’s
worth seeing how to prove the result, which can be regarded as a consequence
of the following exercise. This exercise provides useful practice in proving
a result for all formulas of a certain sort by mathematical induction on the
length of a formula.

40

2.3 The interpretation of propositional formulas

Exercise 2.18

Let v and v′ be truth assignments which take the same values for all propo-
sitional variables except p, i.e. v(p) �= v′(p) and v(q) = v′(q) for all other
propositional variables q. Show that v(φ) = v′(φ) for all formulas φ built up
using the connectives ¬,∧,∨ in which the propositional variable p does not
appear.

Solution
We shall prove this by mathematical induction on the length of such formulas Recall that our preferred measure

of the length of a formula is the
number of occurrences of
connectives in it, here ¬,∧,∨.

φ. The induction hypothesis is that v(φ) = v′(φ) for all formulas φ in which
the propositional variable p does not appear, where φ has length ≤ n.

If φ is a formula of the given form, namely one in which p does not appear,
with length 0, then it has to be of the form q, where q is a propositional
variable other than p. Then we have v(q) = v′(q), that is, v(φ) = v′(φ) for
this φ.

Now suppose that the result holds for all φ of the given form with length ≤ n.
To prove from this the induction hypothesis for n + 1, it is enough to show
that the result holds for any formula of the given form with length n + 1.
Let φ be such a formula. As φ has length n + 1 ≥ 1, φ contains at least one
connective, so is of one of the forms ¬θ, (θ ∧ ψ), (θ ∨ ψ), for subformulas θ, ψ.
The sum of the lengths of θ and ψ is n, so that both θ and ψ have length
≤ n. Also as p does not appear in φ, it cannot appear in θ or ψ, so that the
hypothesis can be used for both these subformulas. We must deal with each
of the possible forms.

Case: φ is of the form ¬θ

By the induction hypothesis v(θ) = v′(θ), so that as v, v′ are truth assignments

v(¬θ) = v′(¬θ),

that is, v(φ) = v′(φ) for this form of φ.

Case: φ is of the form (θ ∧ ψ)

By the induction hypothesis v(θ) = v′(θ) and v(ψ) = v′(ψ), so that as v, v′

are truth assignments

v((θ ∧ ψ)) = v′((θ ∧ ψ)),

that is, v(φ) = v′(φ) for this form of φ.

The case when φ is of the form (θ ∨ ψ) is of course similar, completing the
inductive step. The result for all n ≥ 0, that is, for all formulas φ in which p
does not appear, follows by mathematical induction.

The result of this last exercise confirms our intuition that the truth value of
a formula φ under a truth assignment v depends only on the values v takes
for the propositional variables in φ. This means that we can summarize the
values φ can take under all possible truth assignments by looking only at the
different truth assignments on the finitely many variables in it. How many of
these latter assignments are there? This is the subject of the next exercise.

41

2 Propositions and truth assignments

Exercise 2.19

(a) How many different truth assignments are there on the set of propositional
variables {p, q, r}?

(b) How many different truth assignments are there on the set of propositional
variables {p1, p2, . . . , pn}, where n is a positive integer?

Solution
(a) For a truth assignment v, there are two choices for the value of v(p). For

each such choice there are then two choices for v(q). Also for each choice
of v(p) and v(q), there are also two choices for v(r), giving a total of
2 × 2 × 2 = 23 = 8 different truth assignments.

(b) Extending the reasoning above, by an easy use of mathematical induction,
we can show that there are 2n different truth assignments.

We can now summarize the truth value of a formula φ under each of the
different truth assignments on the variables in it by what is called the truth
table of φ. This extends the terminology we used for the truth tables describing
how to compute truth values for each of the connectives. If the propositional
variables in φ are amongst p1, p2, . . . , pn, the table would have the form Normally we would only list

variables that are used in φ. But
there are occasions when it is
useful to give the table using more
variables than actually appear in φ,
hence our use of the word
‘amongst’.

p1 p2 . . . pn φ

T T . . . T ?
T T . . . F ?
...

...
...

...
F F . . . F ?

where each row represents a truth assignment v giving particular truth values
to each of p1, p2, . . . , pn and then gives the corresponding value of v(φ). As
there are 2n different truth assignments on the n propositional variables, the
table would have 2n rows.

Our first example is the formula (¬(p ∨ q) → (p ∧ q)) using the propositional
variables p, q, rather than p1, p2.

p q (¬(p ∨ q) → (p ∧ q))

T T T
T F T
F T T
F F F

For instance, the second row of the truth table says that when p is given the Equivalently, the second row says
that if v is the truth assignment
such that v(p) = T and v(q) = F ,
then v((¬(p ∨ q) → (p ∧ q))) = T .

value T and q the value F , the formula (¬(p ∨ q) → (p ∧ q)) has the value T .

It often helps one to record the truth values of the subformulas of φ in the
table to enable one to compute the final values of φ itself. In the example

42

2.3 The interpretation of propositional formulas

above, this could have been recorded as follows.

p q (p ∨ q) ¬(p ∨ q) (p ∧ q) (¬(p ∨ q) → (p ∧ q))

T T T F T T
T F T F F T
F T T F F T
F F F T F F

This analysis of the subformulas could also be expressed in a more succinct
form as follows.

(¬ (p ∨ q) → (p ∧ q))

F T T T T T T T
F T T F T T F F
F F T T T F F T
T F F F F F F F

�3 �1 �2 �1 �4 �1 �2 �1

The circled numbers indicate the order in which the columns were filled in.
They are not part of the truth table and they could be left out. The values in

column �4 tell us the truth value of the entire formula corresponding to the

truth values of the propositional variables p, q in the columns labelled �1 .

Note that column �4 is that in which the principal connective, here →, of
the entire formula occurs.

Strictly speaking, the truth table is the simpler one just giving the final value
of φ for each truth assignment, although this conceals many complicated and
tedious computations.

Exercise 2.20

Give the truth table of the formula ((p → (q ∧ r)) ↔ ¬(p∨ r)) using the propo-
sitional variables p, q, r.

Solution
One way of presenting the table is as follows.

p q r ((p → (q ∧ r)) ↔ ¬(p ∨ r))

T T T F
T T F T
T F T T
T F F T
F T T F
F T F T
F F T F
F F F T

Our rough work involved producing the following table giving truth values of

43

2 Propositions and truth assignments

subformulas.

((p → (q ∧ r)) ↔ ¬ (p ∨ r))

T T T T T F F T T T
T F T F F T F T T F
T F F F T T F T T T
T F F F F T F T T F
F T T T T F F F T T
F T T F F T T F F F
F T F F T F F F T T
F T F F F T T F F F

�1 �3 �1 �2 �1 �4 �3 �1 �2 �1

There is no firm rule about the order in which one arranges the different truth
assignments into rows, but it pays to be systematic – imagine having to write
down the truth table of a formula using 10 variables and wanting to be sure
that one has correctly listed all 210 truth assignments somewhere in it! Our
preferred method is to organize the rows so that all those assignments under
which p1 takes the value T appear in the top half of the table and all those in
which it takes the value F appear in the bottom half. Then, having settled
on a particular value of p1, list all assignments in which p2 takes the value T
above those in which it takes the value F . Having settled on particular values
of p1 and p2, repeat the process for p3, and so on for further variables.

Exercise 2.21

Use the outline procedure above to list the rows of a table for a formula φ
involving the variables p1, p2, p3, p4.

Solution
p1 p2 p3 p4 φ

T T T T ?
T T T F ?
T T F T ?
T T F F ?
T F T T ?
T F T F ?
T F F T ?
T F F F ?
F T T T ?
F T T F ?
F T F T ?
F T F F ?
F F T T ?
F F T F ?
F F F T ?
F F F F ?

44

2.3 The interpretation of propositional formulas

Exercise 2.22

For each of the following formulas, give its truth table (where p, q, r, p1, p2, p3, p4

are propositional variables).

(a) (p ∧ ¬p)

(b) (p → ¬(q ↔ ¬p))

(c) ((r ∨ (q ∧ p)) ∨ (¬(q ↔ ¬r) → p))

(d) (p1 → (p3 → (¬p4 → p2)))

Solution
No solutions are given, but we hope that you found that there was only one
row in the table for (d) in which the truth value of the formula was F !

We often describe a formula in terms of other formulas, not all of which are
propositional variables, for instance (θ → (ψ∨¬θ)). Thinking of the construc-
tion tree for this formula, we can regard its basic building blocks as being the
subformulas θ and ψ. In such a case, we extend the idea of a truth table by
giving the value of the whole formula for all possible combinations of truth
values of these building blocks, in this case as follows:

θ ψ (θ → (ψ ∨ ¬θ))

T T T
T F F
F T T
F F T

Of course, if we knew more about the formulas θ and ψ, it could be that
some of the rows above could never arise. For instance, if θ was the formula
(p ∧ ¬p), which always takes the value F , the top two rows of the table would
be irrelevant. However, potentially θ and ψ could also be distinct propositional
variables, so that the whole table is potentially relevant.

Exercise 2.23

For each of the following formulas, give its truth table.

(a) (φ → (ψ → φ))

(b) ¬(¬φ ∨ φ)

(c) ((θ ∨ (φ ↔ θ)) → ¬(ψ ∧ ¬φ))

We trust that your solution to Exercise 2.23(a) showed that the formula
(φ → (ψ → φ)) is true for all possible combinations of truth values of the
subformulas φ and ψ, so that it is true under all truth assignments. Such a Strictly speaking, we should say

that a tautology is true under all
truth assignments which are
defined on a set of propositional
variables including those appearing
in the formula. However, here and
elsewhere we shall simply talk
about ‘all truth assignments’ as a
shorthand for this fuller
description.

formula is called a tautology. Likewise your solution to Exercise 2.23(b) should
have shown that the formula ¬(¬φ∨φ) is false whatever the truth value of the
subformula φ, so that it is false under all truth assignments. Such a formula
is called a contradiction. Tautologies and contradictions will prove to be of
special importance in much of the rest of the course.

Simple examples of tautologies are

(φ ∨ ¬φ), (φ → φ) and (¬¬φ ↔ φ),

45

2 Propositions and truth assignments

where φ is any formula. It is clear that they are tautologies by phrasing them It’s well worth actively
remembering these particular
tautologies and contradictions.

using the intended interpretations of the connectives, ‘φ or not φ’ and so on,
and verifying that they are tautologies by constructing their truth tables is
very straightforward. Likewise (φ ∧ ¬φ) is a pretty memorable contradiction
– it corresponds well to the way we use the word ‘contradiction’ in everyday
language.

Exercise 2.24
Show that each of the formulas (φ ∨ ¬φ), (φ → φ) and (¬¬φ ↔ φ) is a tau- As an aside, the philosopher

Ludwig Wittgenstein (1889–1951)
described a tautology as a
statement which conveys no
information. Indeed, taking φ to be
the statement ‘it will rain’,
asserting φ gives useful
information, for instance
influencing one to take an umbrella
when going outdoors. But
asserting the tautology (φ ∨ ¬φ) is
totally unhelpful in this regard!

tology and that (φ ∧ ¬φ) is a contradiction.

Exercise 2.25

Which, if any, of the following formulas is a tautology or a contradiction?

(a) (p → (p → p))

(b) ((p → p) → p)

(c) ((p → ¬p) ↔ (¬p → p))

The last exercise provides a reminder that there are formulas which are nei-
ther a tautology nor a contradiction. Tautologies and contradictions are of
particular interest in the rest of the book, but don’t forget that in general
formulas don’t have to fall into one of these categories.

Exercise 2.26

Let φ be a formula. Show that φ is a tautology if and only if ¬φ is a contra-
diction.

Solution
In conversation in a class, we would probably accept an informal (but con-
vincing!) argument based on the observation that if the value of φ on each
row of its truth table is T , then the value of ¬φ on the corresponding row
of its truth table must be F , and vice versa. However, as other problems of
this sort might not yield as easily to this sort of analysis, we shall record a
more formal way of presenting this solution in case such an approach is needed
elsewhere.

We shall show that if φ is a tautology then ¬φ is a contradiction and that if
¬φ is a contradiction then φ is a tautology.

First let us suppose that φ is a tautology. We need to show that ¬φ is
false under all truth assignments. So let v be any truth assignment. As φ
is a tautology we have v(φ) = T . Thus v(¬φ) = F (as a truth assignment
respects the truth table of ¬, but by this stage of your study, you no longer
need to say this). Hence v(¬φ) = F for all truth assignments v, so that ¬φ is
a contradiction, as required.

Conversely, suppose that ¬φ is a contradiction. Then for any truth assignment
v we have v(¬φ) = F , so that, as v is a truth assignment, we can only have
v(φ) = T . Thus v(φ) = T for all truth assignments v, so that φ is a tautology.

46

2.3 The interpretation of propositional formulas

Exercise 2.27

Let φ, ψ be formulas.

(a) Show that if φ and (φ → ψ) are tautologies, then ψ is a tautology.

(b) Is it the case that if φ and ψ are tautologies, then (φ → ψ) is a tautology?

(c) Is it the case that if (φ → ψ) and ψ are tautologies, then φ is a tautology?

Now that we have the basic ideas of how to interpret the formal language,
we can start to investigate relationships between one formula and others, to
work towards our goal of representing mathematical arguments in a formal
way. We shall begin with the idea of logically equivalent formulas in the next
section.

Further exercises

Exercise 2.28
For a formula φ built up using the connectives ¬,∧,∨, let φ∗ be constructed So if φ is the formula

((q ∨ p) ∧ ¬p),

φ∗ is

((¬q ∨ ¬p) ∧ ¬¬p).

by replacing each propositional variable in φ by its negation.

(a) For any truth assignment v, let v∗ be the truth assignment which gives
each propositional variable the opposite value to that given by v, i.e.

v∗(p) =

{
T, if v(p) = F,
F, if v(p) = T,

for all propositional variables p. Show that v(φ) = v∗(φ∗). [Hint: This is
really a statement about all formulas φ of a certain sort, so what is the
likely method of proof?]

(b) (i) Use the result of part (a) to show that φ is a tautology if and only if
φ∗ is a tautology.

(ii) Is it true that φ is a contradiction if and only if φ∗ is a contradiction?
Explain your answer.

Exercise 2.29
Suppose that we are given a set S of truth assignments with an odd number
of elements. Let D be the set of formulas of the language which a majority
of the truth assignments in S makes true. Which of the following statements
is always true? Give reasons in each case.

(a) For any well-formed formula φ, either φ or ¬φ belongs to D.

(b) If φ belongs to D and (φ → θ) is a tautology, then θ belongs to D.

(c) If φ and (φ → θ) belong to D, then θ belongs to D.

Exercise 2.30

Prove that any formula built up from ¬ and → in which no propositional
variable occurs more than once cannot be a tautology.

47

2 Propositions and truth assignments

Exercise 2.31

Let φ, ψ be formulas.

(a) If ψ is a contradiction, under what circumstances, if any, is (φ → ψ) a
contradiction?

(b) If φ is a contradiction, under what circumstances, if any, is (φ → ψ) a
contradiction?

(c) If (φ → ψ) is a contradiction, must either of φ, ψ be contradictions?

2.4 Logical equivalence
Formulas can be of great complexity and it is often very valuable to see
whether the statements they represent could have be rephrased in a simpler
but equivalent way. For instance, in normal language one would normally
simplify the statement ‘it isn’t the case that it’s not raining’ into ‘it is rain-
ing’, which conveys the same information. The corresponding formal concept
is that of logical equivalence, which we define below, and one of the recur-
ring themes in the book is whether, given a formula, one can find a ‘simpler’
formula logically equivalent to it.

Definition Logically equivalent

Formulas φ and ψ are said to be logically equivalent, which we write as As ever, we should strictly
speaking talk about all truth
assignments v on a set of
propositional variables including all
of those appearing in φ or ψ.

φ ≡ ψ, if for all truth assignments v, v(φ) = v(ψ).

For example, we have (θ ↔ χ) is logically equivalent to (¬θ ↔ ¬χ) for any
formulas θ, χ, as can be seen by comparing their truth tables:

θ χ (θ ↔ χ)

T T T
T F F
F T F
F F T

θ χ (¬θ ↔ ¬χ)

T T T
T F F
F T F
F F T

By writing the tables so that the rows giving the different combinations of
truth values for θ and χ are in the same order, it is easy to see that the
tables match, so that for all truth assignments v, v((θ ↔ χ)) = v((¬θ ↔ ¬χ)),
showing that

(θ ↔ χ) ≡ (¬θ ↔ ¬χ).

The definition of logical equivalence could be expressed in these terms, saying
that the truth tables of φ and ψ match. However, when not all the basic
building blocks of one of the formulas appears in the other, as is the case
with the logically equivalent formulas θ and ((θ ∧ χ) ∨ (θ ∧ ¬χ)), the truth
tables would have to be constructed in terms of truth values of the same
set of subformulas, in this case θ and χ. The definition in terms of truth
assignments is more elegant!

48

2.4 Logical equivalence

Exercise 2.32

Show that θ ≡ ((θ ∧ χ) ∨ (θ ∧ ¬χ)), for any formulas θ, χ.

Solution

Let v be any truth assignment. Alternatively, we could show that
the truth tables match. The truth
table of ((θ ∧ χ) ∨ (θ ∧ ¬χ)) is

θ χ ((θ ∧ χ) ∨ (θ ∧ ¬χ))

T T T
T F T
F T F
F F F

To help compare the truth tables,
we regard θ as constructed from the
subformulas θ, χ, giving the table

θ χ θ

T T T
T F T
F T F
F F F

which matches the first.

If v(θ) = F , then

v((θ ∧ χ)) = v((θ ∧ ¬χ)) = F,

regardless of whether v(χ) is true or false, so that

v(((θ ∧ χ) ∨ (θ ∧ ¬χ))) = F = v(θ).

If v(θ) = T , then regardless of whether v(χ) = T or v(χ) = F (in which case
v(¬χ) = T), exactly one of v((θ ∧ χ)) and v((θ ∧ ¬χ)) equals T , so that

v(((θ ∧ χ) ∨ (θ ∧ ¬χ))) = T = v(θ).

Thus for all truth assignments v, v(θ) = v(((θ ∧ χ) ∨ (θ ∧ ¬χ))), so that

θ ≡ ((θ ∧ χ) ∨ (θ ∧ ¬χ)).

We list a number of very useful simple logical equivalences involving ¬,∧,∨
in the following theorem. Some will seem very obvious. Some describe ways
in which the connectives interact with each other. All are worth remembering
and you will often find it helpful to exploit them.

Theorem 2.3

The following are all logical equivalences. A more accurate description of
part (a) would be that it
demonstrates the commutativity of
∧ under logical equivalence. The
normal use of commutativity is
with a binary operation ∗ on a set
S which has the property that a ∗ b
equals, rather than is equivalent to,
b ∗ a for all a, b ∈ S. Hence the
phrase ‘under logical equivalence’
is, strictly speaking, needed for this
and other parts of this theorem.

(a) (φ ∧ ψ) ≡ (ψ ∧ φ) (commutativity of ∧)

(b) (φ ∨ ψ) ≡ (ψ ∨ φ) (commutativity of ∨)

(c) (φ ∧ φ) ≡ φ (idempotence of ∧)

(d) (φ ∨ φ) ≡ φ (idempotence of ∨)

(e) (φ ∧ (ψ ∧ θ)) ≡ ((φ ∧ ψ) ∧ θ) (associativity of ∧)

(f) (φ ∨ (ψ ∨ θ)) ≡ ((φ ∨ ψ) ∨ θ) (associativity of ∨)

(g) ¬¬φ ≡ φ (law of double negation)

(h) ¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) (De Morgan’s Law)

(i) ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ) (De Morgan’s Law)

(j) (φ ∧ (ψ ∨ θ)) ≡ ((φ ∧ ψ) ∨ (φ ∧ θ)) (distributivity of ∧ over ∨)

(k) (φ ∨ (ψ ∧ θ)) ≡ ((φ ∨ ψ) ∧ (φ ∨ θ)) (distributivity of ∨ over ∧))

(l) (φ ∧ (ψ ∨ φ)) ≡ φ (absorption law for ∧)

(m) (φ ∨ (ψ ∧ φ)) ≡ φ (absorption law for ∨)

49

2 Propositions and truth assignments

Proof

We shall give an argument for part (f) and leave the rest to you as a straight-
forward exercise.

There are several acceptable ways to show that (φ ∨ (ψ ∨ θ)) ≡ ((φ ∨ ψ) ∨ θ).
One easy way is to write down the truth tables and show that these match. A
perhaps more elegant method is to argue using truth assignments as follows.

Let v be any truth assignment.

If v((φ ∨ (ψ ∨ θ))) = F , then v(φ) = v((ψ ∨ θ)) = v(ψ) = v(θ) = F , so that It would also have been acceptable
to show that v((φ ∨ (ψ ∨ θ))) = T if
and only if v(((φ ∨ ψ) ∨ θ)) = T, for
all truth assignments v, but for
these formulas involving ∨, this
would have involved more work.

v((φ ∨ ψ)) = F , giving

v(((φ ∨ ψ) ∨ θ)) = F.

Similarly, if v(((φ ∨ ψ) ∨ θ)) = F , then v(φ) = v(ψ) = v(θ) = F , so that

v((φ ∨ (ψ ∨ θ))) = F.

Thus for all truth assignments v,

v((φ ∨ (ψ ∨ θ))) = F if and only if v(((φ ∨ ψ) ∨ θ)) = F,

so that for all truth assignments v,

v((φ ∨ (ψ ∨ θ))) = v(((φ ∨ ψ) ∨ θ)),

giving that (φ ∨ (ψ ∨ θ)) ≡ ((φ ∨ ψ) ∨ θ).

You may well have noticed similarities between many of the equivalences in
this theorem involving ¬,∧,∨ and set identities involving set complement
(written as \), intersection (∪) and union (∩). For instance, the De Morgan This is one of the laws introduced

by the English mathematician
Augustus De Morgan (1806–1871)
who made many important
contributions to the growth of
modern logic.

Law

¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ)

is very similar to the set identity, for sets A, B regarded as subsets of a set X ,

X \ (A ∪ B) = (X \ A) ∩ (X \ B).

This is no coincidence, and a moment’s thought about how to express what it The sort of connection to which we
refer is that x ∈ C ∩ D if and only
if x ∈ C and x ∈ D.

means to be a member of the sets on each side of the set identity will convince
you of the strong connection between the set operators and the corresponding
logical connectives.

Exercise 2.33

Prove the remaining parts of Theorem 2.3.

There are very tempting connections between some pairs of the logical equiv-
alences in Theorem 2.3. For instance, the logical equivalence

(φ ∨ (ψ ∧ θ)) ≡ ((φ ∨ ψ) ∧ (φ ∨ θ))

of part (k) corresponds to interchanging the occurrences of ∧ and ∨ in the
equivalence

(φ ∧ (ψ ∨ θ)) ≡ ((φ ∧ ψ) ∨ (φ ∧ θ))

50

2.4 Logical equivalence

of part (j). These connections are made precise in what is called the Principle
of Duality, which can be found in Exercise 2.44 at the end of this section.

We hope that it is pretty obvious that φ ≡ ψ if and only if (φ ↔ ψ) is a
tautology. This means that each of the logical equivalences in the theorem
above corresponds to a tautology involving ↔. We think that the logical
equivalences are more memorable than the corresponding tautologies!

Exercise 2.34
Show that φ ≡ ψ if and only if (φ ↔ ψ) is a tautology, for all formulas φ, ψ.

Much of what we expect the word ‘equivalent’ to convey about formulas is
given by the results in the following exercise.

Exercise 2.35

Show each of the following, for all formulas φ, ψ, θ.

(a) φ ≡ φ

(b) If φ ≡ ψ then ψ ≡ φ.

(c) If φ ≡ ψ and ψ ≡ θ, then φ ≡ θ.

Exercise 2.35 shows that logical equivalence is what is called an equivalence
relation on the set of all formulas of the underlying language. Logically equiv- We shall look at the theory of

equivalence relations in Chapter 4.alent formulas, while usually looking very different from each other, are the
‘same’ in terms of their truth under different interpretations. The set of all
formulas logically equivalent to a given formula φ is called the equivalence
class of φ under this relation and a natural question is whether each such
class contains a formula which is in some way nice. We shall look at an
example of one way of answering such a question later in the section. In Theorem 2.5.

Also of great use are the following logical equivalences involving → and ↔,
especially those connecting → with ¬,∧,∨.

Theorem 2.4

The following are logical equivalences.

(a) (φ → ψ) ≡ (¬φ ∨ ψ) ≡ ¬(φ ∧ ¬ψ) ≡ (¬ψ → ¬φ) The formula (¬ψ → ¬φ) is called
the contrapositive of (φ → ψ).(b) (φ ↔ ψ) ≡ ((φ → ψ) ∧ (ψ → φ))

Note that we have exploited the results of Exercise 2.35 to write the result
of Theorem 2.4(a) on one line saying that four formulas are logically equiv-
alent, rather than writing down several equivalences showing that each pair
of formulas is logically equivalent. These logical equivalences give an indica-
tion of how some connectives can be expressed in terms of others – an idea
which we shall take further in the next section when we look at the idea of an
adequate set of connectives, that is, a set of connectives from which we can
generate all conceivable connectives, not just → and ↔. However, → and ↔
are such important connectives in terms of expressing normal mathematical
statements that you should not get the impression that their use is somehow
to be avoided by the use of Theorem 2.4!

51

2 Propositions and truth assignments

Exercise 2.36

Prove Theorem 2.4.

Further nice and very useful results about logical equivalence are given in the
following exercise.

Exercise 2.37
Suppose that φ ≡ φ′ and ψ ≡ ψ′. Show each of the following.

(a) ¬φ ≡ ¬φ′

(b) (φ ∧ ψ) ≡ (φ′ ∧ ψ′)

(c) (φ ∨ ψ) ≡ (φ′ ∨ ψ′)

(d) (φ → ψ) ≡ (φ′ → ψ′)

(e) (φ ↔ ψ) ≡ (φ′ ↔ ψ′)

Solution

We give the solution to part (b) and leave the rest to you.

Let v be any truth assignment.

Suppose that v((φ ∧ ψ)) = T , so that v(φ) = v(ψ) = T . We then have

v(φ′) = v(φ) (as φ ≡ φ′)

= T

and

v(ψ′) = v(ψ) (as ψ ≡ ψ′)

= T,

so that

v((φ′ ∧ ψ′)) = T.

Similarly we can show that if v((φ′ ∧ ψ′)) = T then

v((φ ∧ ψ)) = T.

Thus for all truth assignments v,

v((φ ∧ ψ)) = T if and only if v((φ′ ∧ ψ′)) = T,

so that (φ ∧ ψ) ≡ (φ′ ∧ ψ′).

The results of this exercise can be generalised to show that if θ is a formula The proof of such a result would
involve induction on the length of
the formula θ and we would have
to be more specific about the
connectives being used. We leave
an example of such a proof for you
as Exercise 2.46.

containing occurrences of φ as a subformula and all these occurrences are
replaced by a formula φ′ where φ ≡ φ′ to turn θ into the formula θ′, then
θ ≡ θ′.

The set of all propositions in a language using the set of connectives {¬,∧,∨}
We shall look at Boolean algebras
in Section 4.4 of Chapter 4.

with logical equivalence taking the place of = is an example of what is called
a Boolean algebra.

52

2.4 Logical equivalence

The essentially algebraic results of Theorems 2.3 and 2.4 and Exercises 2.35
and 2.37 provide an alternative way of showing formulas are logically equiva-
lent to that of working directly from the definition of logical equivalence. For
instance, take the logical equivalence

(φ ∧ (φ ∨ ¬φ)) ≡ φ.

Using first principles, we could argue as follows. Let v be any truth assign-
ment.

If v(φ) = T , then v((φ ∨ ¬φ)) = T , so that v((φ ∧ (φ ∨ ¬φ))) = T = v(φ).

If v(φ) = F , then v((φ ∧ ψ)) = F for any formula ψ, so that in particular
v((φ ∧ (φ ∨ ¬φ))) = F = v(φ).

Thus (φ ∧ (φ ∨ ¬φ)) ≡ φ.

Alternatively, using the algebraic results, as (φ ∨ ¬φ) ≡ (¬φ ∨ φ) (by Theo-
rem 2.3(b)), we have

(φ ∧ (φ ∨ ¬φ)) ≡ (φ ∧ (¬φ ∨ φ)) (by Exercise 2.37(c))

and by Theorem 2.3(l) we have

(φ ∧ (¬φ ∨ φ)) ≡ φ,

so that by Exercise 2.35(c) we have

(φ ∧ (φ ∨ ¬φ)) ≡ φ.

Exercise 2.38

Establish each of the following equivalences, where φ, ψ, θ and all the θi are
formulas. You are welcome to do this from first principles or by exploiting
the results of Theorems 2.3 and 2.4 and Exercises 2.35 and 2.37.

(a) ((φ ∧ ψ) ∨ ¬θ) ≡ ((φ ∨ ¬θ) ∧ (ψ ∨ ¬θ))

(b) (φ → ¬ψ) ≡ (ψ → ¬φ)

(c) (θ → (φ ∨ ψ)) ≡ (φ ∨ (ψ ∨ ¬θ))

(d) ((θ1 ∧ θ2) ∧ (θ3 ∧ θ4)) ≡ (θ1 ∧ ((θ2 ∧ θ3) ∧ θ4))

Solution

We shall give a solution to (a) and leave the rest to you.

((φ ∧ ψ) ∨ ¬θ) ≡ (¬θ ∨ (φ ∧ ψ)) (by Theorem 2.3(b))

≡ ((¬θ ∨ φ) ∧ (¬θ ∨ ψ)) (by Theorem 2.3(k)

and Exercise 2.35(c)).

But

(¬θ ∨ φ) ≡ (φ ∨ ¬θ) and (¬θ ∨ ψ) ≡ (ψ ∨ ¬θ)

by Theorem 2.3(b), so by Exercise 2.37(b)

((¬θ ∨ φ) ∧ (¬θ ∨ ψ)) ≡ ((φ ∨ ¬θ) ∧ (ψ ∨ ¬θ)).

Then by Exercise 2.35(c),

((φ ∧ ψ) ∨ ¬θ) ≡ ((φ ∨ ¬θ) ∧ (ψ ∨ ¬θ)).

53

2 Propositions and truth assignments

We have shown in Theorem 2.3(e) that (φ ∧ (ψ ∧ θ)) ≡ ((φ ∧ ψ) ∧ θ) and in
Exercise 2.38(d) you were asked to show that

((θ1 ∧ θ2) ∧ (θ3 ∧ θ4)) ≡ (θ1 ∧ ((θ2 ∧ θ3) ∧ θ4)).

These equivalences are most easily established by noticing that each of the
relevant formulas are true precisely for those truth assignments which make
each of the subformulas θi true. A generalization of these logical equivalences
is given in the following exercise.

Exercise 2.39

Suppose that the formula φ is constructed by taking subformulas θ1, θ2, . . . , θn Examples for n = 4 include
((θ1 ∧ θ2) ∧ (θ3 ∧ θ4)) and
(θ1 ∧ ((θ2 ∧ θ3) ∧ θ4)). There is a
general result for associative binary
operations similar to the ultimate
conclusion of this exercise which we
invite you to look at in
Exercise 2.45.

in that order and joining them together only using the connective ∧, with
brackets inserted in such a way as to make φ a formula. Show that φ is
true precisely for those truth assignments which make each of the subformu-
las θ1, θ2, . . . , θn true. Deduce that any two such formulas (using the same
θ1, θ2, . . . , θn in that order) are logically equivalent. [Hint: Use the version
of mathematical induction with the hypothesis that the result holds for all
k ≤ n where n ≥ 1.]

Exercise 2.40
State and prove (by any preferred method) a result similar to that in Exer-
cise 2.39 for formulas built up from n subformulas using ∨ rather than ∧.

Given the results of these exercises, it will be convenient for us to introduce
shorthand notations for a formula which is a successive conjunction of more
than two subformulas and for a formula which is a successive disjunction of
more than two subformulas.

Notation

If a formula is constructed by conjunction of θ1, θ2, . . . , θn so that they
appear in that order joined by ∧s and suitably placed brackets, we shall
write it as

(θ1 ∧ θ2 ∧ . . . ∧ θn),

that is, we ignore all the brackets around the θis except the outermost
pair. A further shorthand is to write this as

n∧
i=1

θi,

further ignoring these outermost brackets and using
∧

to represent lots

of ∧s. Similarly if the formula is constructed by disjunction, i.e. using
∨ rather than ∧, we shall write it as

(θ1 ∨ θ2 ∨ . . . ∨ θn)

and use the shorthand
n∨

i=1

θi.

54

2.4 Logical equivalence

Note that several different formulas get represented by the same shorthand. You might like to think about how
many different formulas
(p ∧ q ∧ p ∧ r) represents in this
way and, more generally, how

many are represented by
n∧

i=1

θi.

The answer will be one of what are
called Catalan numbers.

For instance, ((p ∧ q) ∧ (p ∧ r)) and (p ∧ ((q ∧ p) ∧ r)) both get represented
as (p ∧ q ∧ p ∧ r). In the contexts where we shall use these shorthands, this
won’t matter – all that will matter is that the formulas so represented are all
logically equivalent.

Many of the useful basic logical equivalences can be extended to cover con-
junctions and disjunctions of more than two subformulas, as you will see in
the following exercise.

Exercise 2.41
Establish the following logical equivalences.

(a) ¬
n∧

i=1

θi ≡
n∨

i=1

¬ θi

(b) ¬
n∨

i=1

θi ≡
n∧

i=1

¬ θi

(c)

(
n∧

i=1

θi

)
∨

⎛
⎝ m∧

j=1

ψj

⎞
⎠ ≡

n∧
i=1

m∧
j=1

(θi ∨ ψj) We are being somewhat casual
about brackets in these formulas,
in the cause of comprehensibility
we hope! The same philosophy will
pervade our solutions.(d)

(
n∨

i=1

θi

)
∧

⎛
⎝ m∨

j=1

ψj

⎞
⎠ ≡

n∨
i=1

m∨
j=1

(θi ∧ ψj)

Solution
(a) We shall use mathematical induction on n ≥ 1. For n = 1 the result is

trivially true. For the inductive step, we suppose that the result holds for
n ≥ 1 and must show that it holds for n + 1. We have

¬
n+1∧
i=1

θi ≡ ¬
((

n∧
i=1

θi

)
∧ θn+1

)

≡
(
¬

(
n∧

i=1

θi

)
∨ ¬θn+1

)
(as ¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ)).

By the induction hypothesis, ¬
n∧

i=1

θi ≡
n∨

i=1

¬ θi, so by Exercise 2.37(c) we

have (
¬

(
n∧

i=1

θi

)
∨ ¬θn+1

)
≡

((
n∨

i=1

¬ θi

)
∨ ¬θn+1

)
This is a typical use of
Exercise 2.37 to replace one
subformula by an equivalent
subformula.≡

n+1∨
i=1

¬ θi,

so that

¬
n+1∧
i=1

θi ≡
n+1∨
i=1

¬ θi,

as required. The result follows by mathematical induction.

55

2 Propositions and truth assignments

(b) Not given.

(c) This one could be done by mathematical induction on both n ≥ 1 and
m ≥ 1: first show that the result holds for n = 1 and all m ≥ 1 using
induction on m, and then assume that the result holds for some n ≥ 1
and all m and show that it holds for n + 1 and all m. However, there is
a shortcut which we will take.

First we fix m = 1 and show the result then holds for all n ≥ 1. We shall
write φ rather than ψ1 for a reason which will be revealed later! The
result holds trivially for n = 1. If the result holds for some n ≥ 1, we
then have As forecast, we shall be a bit casual

about brackets!(
n+1∧
i=1

θi

)
∨ φ ≡

((
n∧

i=1

θi

)
∧ θn+1

)
∨ φ

≡
((

n∧
i=1

θi

)
∨ φ

)
∧ (θn+1 ∨ φ)

(as ((ψ ∧ θ) ∨ φ) ≡ ((ψ ∨ φ) ∧ (θ ∨ φ)))

≡
(

n∧
i=1

(θi ∨ φ)

)
∧ (θn+1 ∨ φ)

(using the induction hypothesis and

Exercise 2.37(b))

≡
n+1∧
i=1

(θi ∨ φ),

as required. So by mathematical induction, we have(
n∧

i=1

θi

)
∨ φ ≡

n∧
i=1

(θi ∨ φ),

for all n ≥ 1.

Now to prove the required result, we replace φ in the result above by
m∧

j=1

ψj to obtain

(
n∧

i=1

θi

)
∨

⎛
⎝ m∧

j=1

ψj

⎞
⎠ ≡

n∧
i=1

⎛
⎝θi ∨

m∧
j=1

ψj

⎞
⎠ . (∗)

As (θ ∨ φ) ≡ (φ ∨ θ), the subsidiary result for m = 1 gives

φ ∨
n∧

i=1

θi ≡
n∧

i=1

(φ ∨ θi),

which, by replacing n by m, the θis for i = 1, . . . , n by ψj for j = 1, . . . , m,

56

2.4 Logical equivalence

and φ by θi gives

θi ∨
m∧

j=1

ψj ≡
m∧

j=1

(θi ∨ ψj).

Substituting this in (∗) gives the required result, namely(
n∧

i=1

θi

)
∨

⎛
⎝ m∧

j=1

ψj

⎞
⎠ ≡

n∧
i=1

m∧
j=1

(θi ∨ ψj),

for all n, m ≥ 1.

(d) Not given.

We are about to state a result involving a quite complicated description of a
particular sort of formula, as follows:

ψ is a disjunction of formulas which are conjunctions of propositional
variables and/or negated propositional variables.

What does this mean? An example of what we mean is

((p ∧ ¬q ∧ p) ∨ q ∨ (¬r ∧ s) ∨ ¬s). Recall our shorthand for ignoring
brackets in long conjunctions and
long disjunctions.Here each of (p ∧ ¬q ∧ p), q, (¬r ∧ s) and ¬s are conjunctions of propositional

variables and/or negated propositional variables – OK, you might not like
it, but each of the q and ¬s is a conjunction of just one thing! Also these
conjunctions are joined together by ∨s to form the disjunction. Such a formula
is said to be in disjunctive form. A more general version of such a form is

n∨
i=1

⎛
⎝ ki∧

j=1

qi,j

⎞
⎠ , When n = 1, no ∨ actually

appears, and an example of the sort
of formula you get is (p ∧ q ∧ ¬r).

where each qi,j is a propositional variable or its negation.

The result will also involve a corresponding form where the roles of ∧ and ∨
are interchanged. This is called a conjunctive form, which is a conjunction
of formulas which are disjunctions of propositional variables and/or negated
propositional variables, i.e. of the form

n∧
i=1

⎛
⎝ ki∨

j=1

qi,j

⎞
⎠ ,

where each qi,j is a propositional variable or its negation. An example of this
is

(p ∧ (¬q ∨ r) ∧ (r ∨ ¬p ∨ q ∨ p)).

As with disjunctive form, there are some fairly trivial formulas which are in
conjunctive form, like each of q, ¬p, (p ∧ q) (for which the kis in the general
form above all equal 1) and (q ∨ r ∨ ¬p) (for which the n in the general form
equals 1). Actually all these trivial formulas are simultaneously in both con-
junctive and disjunctive form. The result we are leading towards says that
for any given formula φ using connectives in the set {∧,∨,¬,→,↔}, there

57

2 Propositions and truth assignments

are logically equivalent formulas, one in disjunctive form and one in conjunc-
tive form, but usually these latter formulas are not the same. For instance,
((p → q) → r) is logically equivalent to

((p ∧ ¬q) ∨ r)

which is in disjunctive form and

((p ∨ r) ∧ (¬q ∨ r))

which is in conjunctive form. Now for the theorem! This result tells us that
any formula, however complicated a jumble of variables and connectives it
appears to be, is logically equivalent to a formula with a nice, orderly shape.

Theorem 2.5

Let φ be a formula using connectives in the set {∧,∨,¬,→,↔}. Then φ
is logically equivalent to a formula φ∨ in disjunctive form and a formula
φ∧ in conjunctive form.

Proof

First we remove all occurrences of ↔ in φ by replacing all subformulas of
the form (θ ↔ ψ) by ((θ → ψ) ∧ (ψ → θ)). In the resulting formula, we then These are logical equivalences in

Theorem 2.4.remove all occurrences of → by replacing all subformulas of the form (θ → ψ)
by (¬θ ∨ ψ). In this way we have produced a formula logically equivalent to
φ which only uses the connectives ∧,∨,¬. If we can prove the result for all
formulas of this type, then the result holds for the original φ.

So let’s now suppose that the connectives in φ are in the set {∧,∨,¬}. We
have to prove the result for all formulas φ of this type and to cope with
formulas of arbitrary complexity we shall use induction on the length of φ,
where, as before, our preferred measure of length is the number of connectives
in φ.

For a formula φ of this type of length 0, φ can only be a propositional variable
p, which is already in both disjunctive and conjunctive form. So p∨ = p∧ = p.

Now suppose that the result holds for all formulas using connectives in the
set {∧,∨,¬} of length ≤ n, where n ≥ 0, and that φ is a formula of this type
with n + 1 connectives. As φ has at least one connective, it must have one of
the following three forms:

(θ ∧ ψ), (θ ∨ ψ), ¬θ,

where crucially the subformulas θ and ψ have length ≤ n, so that the inductive
hypothesis applies to them. We must consider each of these three forms
separately and will leave some of the details to you. We’ll make heavy use of
some of the results of Exercise 2.41 and Exercise 2.37 to replace subformulas
by logically equivalent formulas.

58

2.4 Logical equivalence

Case: φ is of the form (θ ∧ ψ)

By the inductive hypothesis θ and ψ are logically equivalent to θ∧ and ψ∧

respectively, both in conjunctive form. Then

φ ≡ (θ ∧ ψ) ≡ (θ∧ ∧ ψ∧).

But (θ∧ ∧ ψ∧) is in conjunctive form as both θ∧ and ψ∧ are in this form. So
we can take φ∧ to be (θ∧ ∧ ψ∧).

That was rather easy, but what about φ∨? For this, first note that by the
inductive hypothesis θ and ψ are logically equivalent to θ∨ and ψ∨ respectively,
both in disjunctive form. So

φ ≡ (θ ∧ ψ) ≡ (θ∨ ∧ ψ∨).

The ∧ as principal connective of (θ∨ ∧ ψ∨) means that it is not usually in
disjunctive form, so some more work is needed. The formulas θ∨ and ψ∨ are

of the forms

n∨
i=1

θi and

m∨
j=1

ψj respectively where each θi and ψj is a conjunction

of propositional variables and/or negated propositional variables. So

φ ≡
(

n∨
i=1

θi

)
∧

⎛
⎝ m∨

j=1

ψj

⎞
⎠

and by Exercise 2.41 part (d), the formula on the right is logically equivalent
to

n∨
i=1

m∨
j=1

(θi ∧ ψj).

As each θi and ψj is a conjunction of propositional variables and/or negated

propositional variables, so is each (θi ∧ ψj). That means that

n∨
i=1

m∨
j=1

(θi ∧ ψj)

is in disjunctive form, so that we can take this formula as φ∨.

Case: φ is of the form (θ ∨ ψ)

This is left as an exercise for you.

Case: φ is of the form ¬θ

By the inductive hypothesis, θ is logically equivalent to θ∧ in conjunctive form,

which we can write as

n∧
i=1

θi, where each θi is a disjunction of propositional

variables and/or their negations. Using Exercise 2.41 part (a), we have

φ ≡ ¬ θ ≡ ¬
n∧

i=1

θi

≡
n∨

i=1

¬ θi.

59

2 Propositions and truth assignments

Each θi is a disjunction of propositional variables and/or their negations, so

of the form

ni∨
j=1

qi,j , where each qi,j is a propositional variable or its negation.

By Exercise 2.41 part (b), ¬ θi is logically equivalent to

n∧
i=1

¬qi,j . Each qi,j

is of the form p or ¬p, where p is a propositional variable. So ¬qi,j is of the
form ¬p or ¬¬p. In the latter case ¬qi,j is logically equivalent to p. For each
i, j put

ri,j =

{¬p, if qi,j is a propositional variable p,
p, if qi,j is ¬p where p is a propositional variable,

so that ri,j is always a propositional variable or its negation and is logically
equivalent to ¬qi,j . At last we have

φ ≡
n∨

i=1

¬ θi

≡
n∨

i=1

¬
ni∨

j=1

qi,j

≡
n∨

i=1

ni∧
j=1

¬qi,j

≡
n∨

i=1

ni∧
j=1

ri,j ,

which is in disjunctive form and can thus be taken as φ∨.

We shall leave it as an exercise for you to find a suitable φ∧ logically equivalent
to φ in this case.

Exercise 2.42

(a) Explain how to construct a suitable φ∧ and φ∨ in the case when φ is of
the form (θ ∨ ψ) in the proof of Theorem 2.5.

(b) Explain how to construct a suitable φ∧ in the case when φ is of the form
¬ θ in the proof of Theorem 2.5.

Exercise 2.43
For each of the following formulas, follow the method used in the proof of
Theorem 2.5 to find a disjunctive form and a conjunctive form equivalent to
it.

(a) ((p1 ∨ (p2 ↔ ¬p1)) → (¬p1 ∧ p3))

(b) (p → (q → (r ∨ ¬p)))

(c) (p ↔ ¬p)

60

2.4 Logical equivalence

A given formula will in general be logically equivalent to several different
formulas in disjunctive form. For instance,

(p ∨ (¬p ∧ q)) ≡ (p ∨ q),

where both are in disjunctive form. We shall see in the next section that
amongst these different disjunctive forms there are some that fit a standard
format, and so can be said to be in a normal form. The same thing goes for
conjunctive forms.

In this section we have looked at propositional formulas built up from the
connectives ¬, ∧, ∨, → and ↔. But these are not the only connectives we
might have introduced based on normal language. For instance, we might have
introduced connectives for the likes of ‘unless’ and ‘neither . . . nor’. In the next
section we shall look at further possible connectives in a very general way.
Then we shall discover a remarkable fact about how even very complicated
connectives can always be built up from some of the very simple ones we have
met in this section.

Further exercises

Exercise 2.44
Let φ be a formula built up using the connectives ¬,∧,∨. The dual φ′ of φ is For instance, if φ is the formula

(¬p ∧ ((p ∧ q) ∨ r)),

then φ′ is

(¬¬p ∨ ((¬p ∨ ¬q) ∧ ¬r)).

the formula obtained from φ by replacing all occurrences of ∧ by ∨, of ∨ by
∧, and all propositional variables by their negations.

(a) Show that φ′ is logically equivalent to ¬φ. (This is called the Principle
of Duality.) [Hint: Use induction on the length of φ.]

(b) Hence, using Theorem 2.4, show that if φ, ψ are formulas built up using
the connectives ¬,∧,∨, then

(φ → ψ) ≡ (ψ′ → φ′)

and

(φ ↔ ψ) ≡ (φ′ ↔ ψ′).

(c) Use the following method to show that Theorem 2.3(k) follows from The-
orem 2.3(j). Theorem 2.3(j) states that

(φ ∧ (ψ ∨ θ)) ≡ ((φ ∧ ψ) ∨ (φ ∧ θ)),

so that by the result of Exercise 2.34,

((φ ∧ (ψ ∨ θ)) ↔ ((φ ∧ ψ) ∨ (φ ∧ θ)))

is a tautology. Use the result of part (b) above and the result of Exer-
cise 2.28(b)(i) in Section 2.3 to show that

((φ ∨ (ψ ∧ θ)) ↔ ((φ ∨ ψ) ∧ (φ ∨ θ)))

is a tautology. Hence, by Exercise 2.34,

(φ ∨ (ψ ∧ θ)) ≡ ((φ ∨ ψ) ∧ (φ ∨ θ)),

which is Theorem 2.3(k).

(d) Identify other logical equivalences in Theorem 2.3 which are related in
the same way using the method of part (c).

61

2 Propositions and truth assignments

Exercise 2.45

Let X be a non-empty set and suppose that ∗ : X2 −→ X is a function with
the associative property, that is,

(x ∗ (y ∗ z)) = ((x ∗ y) ∗ z), for all x, y, z ∈ X,

where we write the image under the function of the pair (a, b) in X2 as (a ∗ b).
Let x1, x2, . . . , xn be elements of X and suppose that brackets and ∗s are For instance, for n = 4, each of the

expressions

(x1 ∗ (x2 ∗ (x3 ∗ x4)))
(x1 ∗ ((x2 ∗ x3) ∗ x4))
((x1 ∗ x2) ∗ (x3 ∗ x4))

(((x1 ∗ x2) ∗ x3) ∗ x4)
((x1 ∗ (x2 ∗ x3)) ∗ x4)

give the same element of X.

inserted into the string of symbols x1x2 . . . xn to give an expression which can
be computed using the function ∗ to give an element of X . Show that the
computations of all such expressions (for the same x1x2 . . . xn in that order)
will result in the same element of X .

[Hints: Use induction on n with hypothesis that each such expression equals
both of

(x1 ∗ (x2 ∗ (. . . ∗ (xn−1 ∗ xn) . . .)))

and

(((. . . (x1 ∗ x2) ∗ . . .) ∗ xn−1) ∗ xn).]

Exercise 2.46

Let θ be a formula built up using the connectives ¬,∧ and let φ be one of its
subformulas. We shall write θ[φ′/φ] for the formula obtained by replacing all
occurrences of the subformula φ in θ by the formula φ′. Show that if φ ≡ φ′ For instance if θ is the formula

((p ∧ p) ∧ (q ∧ ¬(p ∧ p))),

φ is the formula (p ∧ p) and φ′ is
the formula ¬¬p, then θ[φ′/φ] is
the formula

(¬¬p ∧ (q ∧ ¬¬¬p)).

then θ ≡ θ[φ′/φ]. [Hints: Fix the formulas φ and φ′ and do an induction on
the length of θ. But first be much more specific about the meaning of θ[φ′/φ]
by defining it as follows:

θ[φ′/φ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ, if φ does not occur as a subformula of θ,

φ′, if φ is the subformula θ of θ,

¬ψ[φ′/φ], if φ occurs as a subformula of θ (with
φ �= θ) and θ is of the form ¬ψ,

(ψ[φ′/φ] ∧ χ[φ′/φ]), if φ occurs as a subformula of θ (with
φ �= θ) and θ is of the form (ψ ∧ χ).

Making the description of θ[φ′/φ] makes the problem much easier to solve!]

62

2.5 The expressive power of connectives

2.5 The expressive power of connectives
So far we have looked at formulas built up using the connectives ∧, ∨, ¬, →
and ↔, which have intended interpretations corresponding to uses in everyday The correspondence between the

symbols and everyday language has
already required some firm, and
even tough, decisions, like ‘or’
being taken as inclusive rather
than exclusive and ‘implies’
carrying with it the convention
that φ → ψ is true when φ is false.

language, conveyed by their standard truth tables. Surely there are other
connectives which might arise from everyday language, in which case we might
ask the following questions.

(i) How many different connectives are there?

(ii) Can some connectives be expressed in terms of others?

(iii) Is there any ‘best’ set of connectives?

It’s not too hard to think of some further everyday connectives, although it
might be harder to settle on reasonable truth tables for them. For instance,
there are the exclusive ‘or’ (meaning ‘. . . or . . . but not both’), ‘is implied by’
and ‘unless’.

Exercise 2.47

Suggest truth tables for each of ‘φ or ψ’ with the exclusive ‘or’, ‘φ is implied
by ψ’ and ‘φ unless ψ’.

These extra connectives are all binary – they connect two propositions. How
about connectives requiring more than two propositions? They are perhaps
less everyday than the likes of ‘and’ and ‘implies’, but they do exist. Take,
for instance, ‘at least two of the following statements are true: . . . ’. This
doesn’t fit in well with the sort of construction rules we’ve had for well-formed
formulas if we leave open how many statements do follow. But we can nail
things down by specifying a natural number n (with n > 2 to make things
interesting!) and modifying this as ‘at least two of the following n statements
are true: . . . ’.

Exercise 2.48
(a) (i) How many rows would you need for the truth table of the proposition

‘at least two of the following 3 statements are true: φ, ψ, θ’?

(ii) Write down the truth table for this proposition.

(b) (i) How many rows would you need for the truth table of the proposition
‘at least two of the following n statements are true: φ1, φ2, . . . , φn’, where
n ≥ 2?

(ii) On how many of these rows would you expect the proposition to be
true?

63

2 Propositions and truth assignments

Solution

(a) (i) Each of the three propositions φ, ψ and θ could take the values T
or F independent of the values taken by the other two. Thus there are
2 × 2 × 2 = 23 = 8 different combinations of truth values to be taken into
account in the table, so that the latter needs 8 rows.

(ii) We’ve set out the rows in what we
hope is a transparently systematic
basis!φ ψ θ at least two of φ, ψ, θ are true

T T T T
T T F T
T F T T
T F F F
F T T T
F T F F
F F T F
F F F F

(b) (i) As each of the propositions φ1, φ2, . . . , φn could potentially be true
or false independent of the values taken by the others, the table would
normally require

2 × 2 × . . . × 2︸ ︷︷ ︸
n

= 2n

rows.

(ii) Not given.

Rather than producing even more baroque examples of vaguely natural con-
nectives, we’ll simply state that we’ve opened the floodgates of connectives,
laying open the possibility that there are lots of connectives of n arguments,
for arbitrarily large natural numbers n. We shall leave behind the everyday
language descriptions of connectives and concentrate on what characterizes A given truth table might have

several descriptions: e.g. ‘if
. . . then’ and ‘implies’ have the
same truth table.

them within 2-valued logic, namely their truth tables. Each truth table in
essence describes the values of a function, as in the following definition.

Definition Truth function

A truth function of n arguments is any function f : {T, F}n −→ {T, F}. {T, F}n means

{T, F} × {T, F} × . . . × {T, F}︸ ︷︷ ︸
n

.

A truth function can often be described nicely by its rule, for instance the
function of 3 arguments we saw in Exercise 2.48(a) which takes the value T
when at least two of its arguments take the value T . But as often as not, the
only way of describing a truth function is by giving its full table of values, in
the form:

x1 x2 . . . xn f(x1, x2, . . . , xn)

T T . . . T ?
T T . . . F ?
...

...
...

...
F F . . . F ?

64

2.5 The expressive power of connectives

Exercise 2.49

(a) If f is a truth function of n arguments, how many rows are there in its
table of values?

(b) Explain why the number of truth functions of n arguments is 22n

.

Clearly there are infinitely many truth functions, allowing for all possible More precisely there are countably
infinitely many truth functions.values of n. If we want to represent all of these within our formal language,

do we need a special connective symbol for each one? Or can we represent
some of them in terms of others? We have already seen how some of the
more basic connectives are interrelated, in terms of logical equivalence. For
instance, we have (φ → ψ) ≡ (¬φ ∨ ψ), so that any use of the connective →
in a formula could be replaced by a construction involving ¬ and ∨. Likewise
we can talk about a formula in the formal language representing a particular
truth function, as in the following definition.

Definition Representing a formula

Let f be a truth function of n arguments x1, x2, . . . , xn and let φ be a
formula of the formal language involving propositional variables out of
the set {p1, p2, . . . , pn}. We shall say that φ represents f if the table of
values of f

x1 x2 . . . xn f(x1, x2, . . . , xn)

T T . . . T ?
T T . . . F ?
...

...
...

...
F F . . . F ?

matches the truth table of φ in an obvious way:

p1 p2 . . . pn φ

T T . . . T f(T, T, . . . , T)
T T . . . F f(T, T, . . . , F)
...

...
...

...
F F . . . F f(F, F, . . . , F)

or, more formally, for any truth assignment v, if v(pi) = xi for
i = 1, 2, . . . , n, then v(φ) = f(x1, x2, . . . , xn).

For instance, the truth function f→ of 2 arguments given by f→(x1, x2) = F if f→ is just the truth function
corresponding to ‘implies’.and only if x1 = T and x2 = F is represented by the formula (p1 → p2). Also

the truth function of 3 arguments corresponding to the connective introduced
in Exercise 2.48(a) is represented by the formula

((p1 ∧ p2) ∨ (p2 ∧ p3) ∨ (p3 ∧ p1)).

If we were interested in whether both these truth functions could be repre-
sented in a language using a limited set of connectives, say consisting of just
¬ and ∧, then it so happens it can be done, by exploiting logical equivalences,

65

2 Propositions and truth assignments

first (φ → ψ) ≡ (¬φ ∨ ψ) (for appropriate φ, ψ) to eliminate the uses of → Of course we could have used the
logical equivalence
(φ → ψ) ≡ ¬(φ ∧ ¬ψ) to eliminate
the → directly, without going via
the use of ∨.

and then (φ ∨ ψ) ≡ ¬(¬φ ∧ ¬ψ) to eliminate the uses of ∨. But perhaps these
are just nicely behaved truth functions. With how uncomplicated a set of
connectives can we represent all truth functions?

Pretty remarkably, there are very uncomplicated and small sets of connectives
with which one can represent all truth functions. This property merits a
definition.

Definition Adequate set of connectives

A set S of connectives is adequate if all truth functions can be represented
by formulas using connectives from this set.

In many ways the nicest (to the author!) such adequate set is {¬,∧,∨}, as is
shown in the following theorem.

Theorem 2.6

The set of connectives {¬,∧,∨} is adequate.

Proof
Let f : {T, F}n −→ {T, F} be a truth function of n arguments. We shall use This proof has the bonus that it

gives an explicit construction of a
formula φ using ¬,∧,∨
representing a given truth function
f and that this formula has a
helpful standard shape.

the table of values of f to construct a formula φ using ¬,∧,∨ representing f .

x1 x2 . . . xn f(x1, x2, . . . , xn)

T T . . . T ?
T T . . . F ?
...

...
...

...
F F . . . F ?

First we deal with the case when f(x1, x2, . . . , xn) = F on all 2n rows of the
table. Simply take φ to be the formula (p1 ∧ ¬p1) – the truth table of this If you really want a formula which

involves all of the variables
p1, p2, . . . , pn, then take the
formula
(p1 ∧ ¬p1) ∧ . . . ∧ (pn ∧ ¬pn).

formula, regarded as involving variables out of the set {p1, p2, . . . , pn}, will
give the value F on all lines.

Much more interesting, and needing some real effort, is the case when the
table of values of f has some rows for which f(x1, x2, . . . , xn) = T . For each
such row, coded by a particular n-tuple 〈x1, x2, . . . , xn〉 in {T, F}n, construct
the formula θ〈x1,x2,...,xn〉 as follows:

(q1 ∧ q2 ∧ . . . ∧ qn) where qi =

{
pi, if xi = T,
¬pi if xi = F,

for i = 1, 2, . . . , n.

The key property of this formula is that the only truth assignment v that Check this!

makes it true is the one corresponding to the row coded by 〈x1, x2, . . . , xn〉 in
{T, F}n, i.e. defined by v(pi) = xi, for each i = 1, 2, . . . , n.

Now let φ be the disjunction of all the θ〈x1,x2,...,xn〉 which arise for the truth
function f . We claim that φ represents f .

66

2.5 The expressive power of connectives

Take any truth assignment v, where v(pi) = xi for each i = 1, 2, . . . , n. We
must show that v(φ) = f(x1, x2, . . . , xn) and to do this it’s enough to show
that v(φ) = T if and only if f(x1, x2, . . . , xn) = T . If v(φ) = T , then as φ is
a disjunction of formulas θ〈y1,y2,...,yn〉, one of the latter is true under v. But
then one of these θs must be θ〈x1,x2,...,xn〉. By the construction of φ, this
can only be included when f(x1, x2, . . . , xn) = T , which is what we require.
Conversely, if f(x1, x2, . . . , xn) = T , then θ〈x1,x2,...,xn〉 is one of the disjuncts
of φ; and as the truth assignment v makes θ〈x1,x2,...,xn〉 true, it must then
make φ true.

Let’s look at the φ which the proof constructs for the truth function f of 3
variables given by the following table:

x1 x2 x3 f(x1, x2, x3)

T T T T
T T F T
T F T F
T F F F
F T T F
F T F T
F F T F
F F F F

There are three rows on which f(x1, x2, x3) = T , corresponding to the triples
〈T, T, T 〉, 〈T, T, F 〉 and 〈F, T, F 〉.The corresponding θs are

θ〈T,T,T 〉 : (p1 ∧ p2 ∧ p3),

θ〈T,T,F 〉 : (p1 ∧ p2 ∧ ¬p3),

θ〈F,T,F 〉 : (¬p1 ∧ p2 ∧ ¬p3).

Thus f is represented by the formula φ obtained by taking the disjunction of
these three formulas:

((p1 ∧ p2 ∧ p3) ∨ (p1 ∧ p2 ∧ ¬p3) ∨ (¬p1 ∧ p2 ∧ ¬p3)).

Note that this formula is in what we previously called a disjunctive form, We met this in Theorem 2.5 in
Section 2.4.namely a disjunction of formulas each of which is a conjunction of variables,

possibly negated. Furthermore these latter conjunctions and the similar con-
junctions obtained for almost all other truth functions f all involve the same The exception being the case when

f(x1, x2, . . . , xn) = F for all
x1, x2, . . . , xn; but even then we
could represent f by the formula
(p1 ∧ ¬p1 ∧ . . . ∧ pn ∧ ¬pn), which
uses all of p1, p2, . . . , pn.

variables, p1, p2, . . . , pn, which merits saying that the formula is in a ‘normal
form’, to which we give a special name, as in the following definition.

Definition Disjunctive normal form

A formula is said to be in disjunctive normal form, often abbreviated as
dnf, if for some n ≥ 1 it is a disjunction of formulas of the form To avoid redundancy in a formula

in dnf, we shall also ban any of
these conjunctions from appearing
more than once in the formula.

(q1 ∧ q2 ∧ . . . ∧ qn),

where for each i = 1, 2, . . . , n, qi is one of pi and ¬pi. As an exceptional
case, we shall also say that the formula (p1 ∧ ¬p1 ∧ . . . ∧ pn ∧ ¬pn) is in
disjunctive normal form.

67

2 Propositions and truth assignments

Thus a benefit of this proof of Theorem 2.6 is that we know not only that
each truth function can be represented by a formula using ∧, ∨ and ¬, but
how to construct such a formula with a nice shape, namely one in disjunctive
normal form.

A further benefit of Theorem 2.6 is that it gives a more general result than
Theorem 2.5 in Section 2.4. The latter theorem told us that any formula built
up using connectives in the set {∧,∨,¬,→,↔} was logically equivalent to a
formula in disjunctive form. But now we can say that any formula ψ built
up using any connectives, not just these familiar ones, is logically equivalent
to a formula in dnf. All we do is take the truth function f represented by ψ
and then apply Theorem 2.6 to get a formula φ which represents f , and hence
has to be logically equivalent to ψ. We hope that after having seen the proof
of Theorem 2.6, the construction of the formulas in the dnf for ψ now seems
very natural – we just represent each truth assignment making ψ true by a
corresponding conjunction of propositional variables and/or their negations,
and then join together the relevant conjunctions by ∨s.

Exercise 2.50
Write down formulas in dnf representing each of the following:

(a) the truth function of 2 arguments represented by the formula (p1 ↔ p2);

(b) the truth function of 3 arguments represented by the formula ¬(p1 ∨ p3),
regarded as built up from variables out of the set {p1, p2, p3};

(c) the truth function f of 3 arguments where f(x1, x2, x3) is true if at least
two of x1, x2, x3 is false.

Solution

We shall give a solution to (b) and leave the others to you.

The formula ¬(p1 ∨ p3), regarded as built up from variables out of the set
{p1, p2, p3}, represents a truth function f whose table of values matches the
truth table of ¬(p1 ∨ p3) relative to these 3 variables, thus with 8 rows. The
rows on which f(x1, x2, x3) = T correspond to the truth assignments making
both p1 and p3 false, with p2 given any truth value. So the relevant triples
for the dnf are 〈F, T, F 〉 and 〈F, F, F 〉, giving the dnf

((¬p1 ∧ p2 ∧ ¬p3) ∨ (¬p1 ∧ ¬p2 ∧ ¬p3)).

There is a similar result to Theorem 2.6 in terms of conjunctive forms, which
we also met in Theorem 2.5 of Section 2.4. A formula θ is said to be in con-
junctive normal form, abbreviated as cnf, if, for some n, it is a conjunction of
disjunctions of propositional variables and their negations, where each vari-
able in the set {p1, p2, . . . , pn} appears exactly once in each disjunction, for
example

((p1 ∨ ¬p2 ∨ p3) ∧ (p1 ∨ ¬p2 ∨ ¬p3) ∧ (¬p1 ∨ p2 ∨ ¬p3)).

In the next exercise, we invite you to prove in two different ways that every
truth function f can be represented by a formula in cnf.

68

2.5 The expressive power of connectives

Exercise 2.51

(a) Prove that any truth function f can be represented by a formula φ in cnf
by negating a formula in dnf representing a suitably chosen truth function
related to f and manipulating the resulting formula.

(b) Prove that any truth function f can be represented by a formula φ in cnf
by an adaptation of the proof of Theorem 2.6, using the table of values
of the function f . [Hints: Which rows should you look at? Also for each
row you look at, try to construct in a systematic way a formula of the
form (q1 ∨ q2 ∨ . . . ∨ qn), where each qi is one of pi and ¬pi.]

(c) Write down formulas in cnf representing each of the truth functions in As a check, our cnf for (p1 ↔ p2) is

((¬p1 ∨ p2) ∧ (p1 ∨ ¬p2)).Exercise 2.50.

Once we have one adequate set of connectives, it’s easy to show that some
other set S is adequate – all one has to do is show that each of ¬,∧,∨ can
be represented by a formula using connectives in S. For instance, as we have
(φ∨ ψ) ≡ ¬(¬φ ∧ ¬ψ), so that ∨ can be represented by a formula using ¬ and
∧, the set {¬,∧} is adequate.

Exercise 2.52
Show that each of the following sets of connectives is adequate.

(a) {¬,∨}
(b) {¬,→}
(c) {|} where | is a two-place connective with truth table: The symbol | is often called ‘nand’

or ‘not (. . . and . . .)’ – you have to
say it so that the bracketing is
unambiguous! – or the Sheffer
stroke, and (φ|ψ) is logically
equivalent to ¬(φ ∧ ψ).

p q (p|q)
T T F
T F T
F T T
F F T

The following definition introduces a couple of new symbols which we shall
use occasionally later in the book.

Definitions Propositional constants

The symbol ⊥ is called the propositional constant for falsity. The symbol What distinguishes a propositional
constant from a variable is that its
truth value is the same for every
truth assignment v.

� is called the propositional constant for truth. These propositional
constants are used in the construction of formulas as though they are
propositional variables, but for every truth assignment v,

v(⊥) = F and v(�) = T.

Thus

(⊥ → (p → ⊥)), ⊥, ¬�, (q → �)

are formulas, while ⊥p and �⊥ are not. Also for all truth assignments v,

v((⊥ ∧ p)) = F, v((� ∧ p)) = v(p), v((� ∨ ⊥)) = T.

69

2 Propositions and truth assignments

Exercise 2.53

Show that the set {→,⊥} is adequate.

One of the benefits of knowing that a set of connectives is adequate comes
when devising a formal proof system for propositional calculus. A reasonable
aim for such a system is that one should be able to prove within it all tau-
tologies, while at the same time not involving too many connectives for which
the formal system would have to give rules or axiom schemes. An adequate
set of connectives will do nicely!

How might one show that a set S of connectives is not adequate? This turns
out to be less straightforward and requires a variety of tricks, depending on the
connectives involved. For instance, the set {∧,∨} is not adequate. Obviously,
if we could find a formula involving these connectives that represented ¬, the
set would be adequate. A spot of experimenting with shortish formulas using
∧ and ∨ will not come up with such a formula, but how do we know that
there isn’t some very long formula that does the job? One general principle
to answer this is to look for some special property possessed by all formulas
of a particular sort built up using connectives in S which thereby rules out
that all truth functions can be represented. In the case of S = {∧,∨}, one There are other such properties

that would do, for instance that for
any φ built up from p1, p2, . . . , pn

with ∧ and ∨, if v is the truth
assignment such that v(pi) = T for
all i = 1, 2, . . . , n, then v(φ) = T .
That would mean that no truth
function f of n arguments such
that f(T, T, . . . , T) = F can be
represented.

such property is the following.

Any formula built up using a single variable p (as many times as you like!)
with ∧ and ∨ always takes the value T under the truth assignment v such
that v(p) = T .

This means that such a formula could not represent one of the (two) truth
functions f : {T, F} −→ {T, F} such that f(T) = F , so that the set S is not
adequate.

It is pretty easy to see that this property holds, but it is a useful discipline The essence of why the property
holds is that the truth tables of
both (θ ∧ ψ) and (θ ∨ ψ) give the
value T when φ and ψ take the
value T .

to prove it properly. A key feature of the proof is that it has to encompass
all formulas φ of the sort described, and one of the standard ways of doing
this is by induction on some measure of the length of φ. Have a go at the
proof in the next exercise. In our solution we shall as ever use the number of
connectives in φ as the measure of its length.

Exercise 2.54
Prove that if φ is built up using the variable p with ∧ and ∨, and v is the
truth assignment such that v(p) = T , then v(φ) = T .

70

2.5 The expressive power of connectives

Solution

We use induction on the number n of connectives in φ. As usual with such arguments, it is
almost always essential to frame
the property of formulas φ of the
special sort so that it includes the
case when φ is a propositional
variable, which contains no
connectives – hence n = 0. For the
inductive step, the (n + 1)th
connective, in this case, joins two
formulas whose combined
connective length is n – we don’t
know how many connectives are in
each, but we do know that in each
case it’s n or less.

The base case is n = 0. The only formula of the given type with no connectives
is p and the required property, namely that if v(p) = T then v(φ) = T , holds
trivially.

For the inductive step assume that the property holds for all the formulas of
this special form with ≤ n connectives, and that φ is a formula of this type
with n + 1 connectives. Then φ has to be one of the forms (θ ∧ψ) and (θ∨ ψ),
where, as θ and ψ have the same form and at most n connectives, both have
the required property, i.e. if v(p) = T then v(θ) = v(ψ) = T . Then whichever
form φ has, the truth tables of ∧ and ∨ ensure that v(φ) = T , as required.

The result follows by mathematical induction.

Use your ingenuity to resolve the following problems and provide suitably
convincing arguments!

Exercise 2.55

Show that none of the following sets of connectives is adequate.

(a) {¬}
(b) {→}
(c) {∨,⊥}, where ⊥ is the propositional constant for falsity.

Exercise 2.56
Let S = {¬,↔}.
(a) Show that every truth function of one argument can be represented by a

formula using connectives in {¬,↔}.
(b) By finding a property possessed by all formulas built up from two propo-

sitional variables p and q using ¬ and ↔ (and verifying that this property
does indeed hold), show that the set {¬,↔} is not adequate.

Exercise 2.57

There are 16 different possible truth tables for a two-place connective ∗. For
which of these is {∗} an adequate set of connectives? In each case explain
why it gives or does not give (as appropriate) an adequate set.

An alternative approach to showing that a set S of connectives is not adequate
is to investigate, for each non-negative integer n, how many truth functions
of n arguments can be represented using S. If for some n this number is less
than 22n

, then S is not adequate. Meanwhile, knowing how many, and which,
truth functions can be represented by S is of interest in its own right.

Exercise 2.58
How many truth functions of n arguments can be represented using the set
{∧}?

71

2 Propositions and truth assignments

Solution

Our method is to investigate whether there is some sort of ‘normal’ form for Logically equivalent formulas,
regarded as using variables out of
the set {p1, p2, . . . , pn}, represent
the same truth function. So to
count the different truth functions
representable, we just want one
formula out of each class of
logically equivalent formulas.

formulas φ built up using variables in the set {p1, p2, . . . , pn} and connectives
out of the set S, in this case just the connective ∧. It would be nice if each
φ was logically equivalent to just one formula in this normal form, so that
counting the number of formulas in normal form gives the number of different
truth functions which can be represented. In this case, there are some very
useful logical equivalences involving ∧ which lead to such a normal form. They
are as follows:

(φ ∧ (ψ ∧ θ)) ≡ ((φ ∧ ψ) ∧ θ) (associativity),

(φ ∧ ψ) ≡ (ψ ∧ φ) (commutativity),

(φ ∧ φ) ≡ φ (idempotency).

Recall that the correct terminology here is that ∧ is associative, commutative
and idempotent under logical equivalence. The associativity and commuta-
tivity are particularly helpful, because using these we can show that given
any formula φ built up just using ∧, any rearrangement of the variables in φ
gives a formula logically equivalent to φ. In particular we can rearrange the
variables in φ so that all the pi, for a given i, are in the same subformula θi,
and obtain a formula logically equivalent to φ of the form

(θi1 ∧ (θi2 ∧ (. . . ∧ θik
) . . .))),

where the propositional variables appearing in φ are pi1 , pi2 , . . . , pik
, with Not all of the n propositional

variables in {p1, p2, . . . , pn} might
appear in a given φ.

i1 < i2 < . . . < ik. For example, the formula

((p3 ∧ p1) ∧ (p3 ∧ ((p4 ∧ p1) ∧ p3)))

is logically equivalent to the formula

((p1 ∧ p1) ∧ ((p3 ∧ (p3 ∧ p3)) ∧ p4)).

The idempotency of ∧ under logical equivalence then gives us that each com-
ponent θi is logically equivalent to just a single pi. Thus a given φ is logically
equivalent to a normal form which is a simple conjunction of just the pis
appearing in φ, that is,

(pi1 ∧ pi2 ∧ . . . ∧ pik
), Back to being casual about

brackets, thanks to associativity!
where the propositional variables appearing in φ are pi1 , pi2 , . . . , pik

with
i1 < i2 < . . . < ik. In the example above, this would be the formula

(p1 ∧ p3 ∧ p4).

The number of distinct formulas using variables in the set {p1, p2, . . . , pn} The set {p1, p2, . . . , pn} has n
elements, so has 2n subsets,
including the empty set.

which are in this normal form equals the number of non-empty subsets of this
set, namely 2n − 1.

The same sort of method pays dividends in many parts of the following exer-
cises.

72

2.5 The expressive power of connectives

Exercise 2.59

How many truth functions of n variables can be represented by using each of
the following sets of connectives?

(a) {∨}
(b) {¬}
(c) {¬,∧,∨}
(d) {↔}
(e) {¬,↔} The result of this gives a nice

alternative way of showing that the
set {¬,↔} is not adequate.Exercise 2.60

(a) Let f be a truth function of n arguments such that f(T, T, . . . , T) = T .
Show that f can be represented by a formula using connectives in the set
{∧,∨,→}. [Hints: f can be represented by a formula φ using {¬,∧,∨}
in dnf (or cnf, whichever you prefer). The fact that f(T, T, . . . , T) = T
gives just enough information about φ to enable all the occurrences of ¬
to be eliminated using ∧, ∨ and →, with the aid of logical equivalences
such as (¬θ ∨ ψ) ≡ (θ → ψ).]

(b) Hence show that the number of truth functions of n arguments repre-
sentable using {∧,∨,→} is 22n−1 and also find the number when using
{∧,→}.

You may be surprised to know that there is no known nice formula for the The problem for {∧,∨} is
equivalent to ones in the contexts
of Boolean algebra and sets, e.g.
how many different sets can be
created from up to n sets by taking
unions and intersections.

number of truth functions of n arguments representable using such a simple
set as {∧,∨}, which has been sought for a variety of applications, but for
which only not very good upper and lower bounds have been found.

Further exercises

Exercise 2.61
Let ∗ be a ternary connective with the following truth table.

p q r ∗(p, q, r)

T T T F
T T F T
T F T T
T F F T
F T T T
F T F T
F F T T
F F F F

(a) Prove that {∗} is not adequate.

(b) Is {∗,→} adequate? Prove your answer.

73

2 Propositions and truth assignments

Exercise 2.62

Suppose that φ is a formula in disjunctive normal form (but not necessarily
involving all the propositional variables in each disjunct). Prove that φ is a
contradiction if and only if for each disjunct ψ of φ there is some propositional
variable p such that both p and ¬p appear in ψ.

Exercise 2.63
The result that {∧,∨,¬} is an adequate set of connectives can be restated by
saying that all truth functions f : {T, F}n −→ {T, F}, for all n ≥ 0, can be
obtained by (repeated) composition of the three truth functions f∧, f∨ and
f¬ (of respectively 2, 2 and 1 arguments) corresponding to the connectives ∧,
∨ and ¬. Ignoring the particular interpretation of T and F as truth values,
we can conclude from this that the set of all functions from Xn to X , where
X is a two element set and n ≥ 0, can be obtained by composition of a finite
number (three!) of relatively simple functions. Show that the same applies for
any finite set X , that is, that there is a finite subset of the set of all functions
from Xn to X for all n ≥ 0 from which any function in the set can be obtained
by composition.

2.6 Logical consequence
In this section we shall start looking at arguments involving propositional
formulas, which will be our first step towards modelling mathematical proof.
One’s expectation of a (correct!) mathematical argument is that it should
involve statements which follow from previous statements in some sort of
convincing way, right up to the desired concluding result. It is a tall order
trying to nail down all the ways in which mathematicians are convinced by an
argument, so in this section we shall concentrate on just one requirement of a
convincing argument, as follows. One measure of a statement φ following from
statements in a set Γ is that whenever all the statements in Γ are true then Think of the statements in Γ as the

assumptions underlying the
argument.

φ must also be true. So, for instance, in everyday maths it follows from the
statement that the function f from R to R is differentiable, along with all sorts
of other tacit assumptions about the arithmetic of R, that f is continuous. It
is not the case that every function f is differentiable, but whenever one does
have an f that is differentiable, then it must also be continuous. We shall
capture this general idea by the following definition.

Definitions Logical consequence

Let Γ be a set of formulas and φ a formula involving propositional vari-
ables in a set P . Then φ is a logical consequence of Γ, or equivalently Γ
logically implies φ, when for all truth assignments v on P , if v(γ) = T Another description of Γ � φ is that

every truth assignment satisfying Γ
also satisfies φ. Informally, φ is
true whenever Γ is true.

for all γ ∈ Γ, then v(φ) = T . We write this as Γ � φ.

In the case where Γ is the empty set, we write � φ to say that for all
truth assignments v, v(φ) = T , i.e. φ is a tautology.

When φ is not a logical consequence of Γ, we write Γ �� φ. Similarly
when φ is not a tautology, we write �� φ.

74

2.6 Logical consequence

So we have

� ((p ∧ q) → p),

as the formula is a tautology. We have

{q, (r → ¬p)} � (q ∨ r)

as for each of the truth assignments v satisfying both q and (r → ¬p), v also Three of the eight different truth
assignments on {p, q, r} satisfy
both q and (r → ¬p).

satisfies (q ∨ r). Thus we have

{q, (r → ¬p)} �� (q → r)

as there is a truth assignment v satisfying both q and (r → ¬p) which does
not satisfy (q → r), for instance v defined by

v(p) = v(q) = T, v(r) = F.

Exercise 2.64
Decide which of the following logical implications hold.

(a) {p,¬r} � (q → (r → ¬p))

(b) {p, (q ↔ r)} � (q → (r → ¬p))

(c) � ((p → q) → p)

(d) {(p ∨ q)} � ((p → q) → q)

(e) {p2i : i ∈ N} � ((p17 → p14) → p87)

(f) {(p2i → pi) : i ∈ N} � ((p34 ∨ p17) → p17)

Solution
(a) In any truth assignment v satisfying all the formulas in the set {p,¬r}, we

must have v(p) = T and v(r) = F . Then v((r → ¬p)) = T , so regardless
of the value of v(q), we have v((q → (r → ¬p))) = T . Thus it is the case
that {p,¬r} � (q → (r → ¬p)).

(b) The truth assignment v defined by v(p) = v(q) = v(r) = T satisfies all
the formulas in {p, (q ↔ r)}, but v((q → (r → ¬p))) = F . So it is not the Equivalently, we have shown that

{p, (q ↔ r)} �� (q → (r → ¬p)).case that {p, (q ↔ r)} � (q → (r → ¬p)).

(c) Not given.

(d) Suppose that the truth assignment v satisfies (p ∨ q). If v(q) = T , then
v(((p → q) → q)) = T . If v(q) = F , so that v(p) = T , we have
v((p → q)) = F , so that v(((p → q) → q)) = T .

Thus in all cases where v((p ∨ q)) = T , we have v(((p → q) → q)) = T , so
that {(p ∨ q)} � ((p → q) → q).

(e) Not given.

(f) Not given.

Exercise 2.65
Is Γ �� φ equivalent to saying Γ � ¬φ?

75

2 Propositions and truth assignments

When we extend the definition of logical consequence to the more complicated,
and mathematically more useful, predicate languages in Chapter 4, you will
see that the idea does capture something of great importance. To give you a
foretaste, the set Γ might give axioms for an interesting theory, for instance
group theory, and Γ � φ will then mean that in every structure which makes
all of Γ true, i.e. in every group, the formula φ is also true. Then the property
of groups that statement φ represents holds for all groups.

In, for instance, our solution to Exercise 2.64(d), we establish a logical con-
sequence Γ � φ by direct appeal to the definition, by looking at all truth
assignments which satisfy Γ. But this is quite far from how we usually infer
statements from others within a mathematical proof. For instance, while it
is the case that a function f being continuous is a logical consequence of f
being differentiable, this is normally established by a sequence of several non-
trivial steps. In general, we tend to use quite small steps in proofs and in the
exercise below we give logical consequences corresponding to some very small
such steps. From now on in this section we shall concentrate on inferences
involving propositional formulas. Later in the book we shall look at inferences
involving a richer language, closer to one usable for everyday mathematics.

Notation

We shall sometimes cheat on set notation for the Γ in Γ � φ by dropping
some of the set brackets { }, writing e.g. We hope that the context will

make it clear what is meant.
θ, ψ � φ instead of {θ, ψ} � φ,

Γ, θ � φ instead of Γ ∪ {θ} � φ

and Γ, ∆ � φ instead of Γ ∪ ∆ � φ.

None of the parts of the next exercise should be very challenging, but even if
you don’t attempt them all, do read all the parts of the exercise as they are
potentially more important than their simplicity suggests.

Exercise 2.66
Let φ, ψ, θ be formulas. Show each of the following. With this and later exercises, turn

the symbols into natural language
when you think about the problem.
For example, you might think of
part (c) as saying that any
assignment making both the
formulas φ and ψ true must make
the formula (φ ∧ ψ) true.

(a) (φ ∧ ψ) � φ

(b) (φ ∧ ψ) � ψ

(c) φ, ψ � (φ ∧ ψ)

(d) φ � (φ ∨ ψ)

(e) φ � (ψ ∨ φ)

(f) If φ � θ and ψ � θ, then (φ ∨ ψ) � θ.

76

2.6 Logical consequence

Solution

We shall give a solution only to part (a), to give you an idea of how simple a
convincing explanation can be!

If a truth assignment v satisfies (φ ∧ ψ), then from the truth table of ∧ we
must have v(φ) = T (= v(ψ)).

These simple logical consequences are important because they illustrate how
we infer using the connectives ‘and’ and ‘or’. Here are some more simple logical
consequences of similar importance in representing small steps of inference.

Exercise 2.67
Let φ, ψ, θ, χ be formulas. Show each of the following.

(a) φ, (φ → ψ) � ψ

(b) If φ � ψ then ¬ψ � ¬φ.

(c) If φ � ψ and θ � χ, then (φ ∧ θ) � (ψ ∧ χ).

(d) If φ � ψ and θ � χ, then (φ ∨ θ) � (ψ ∨ χ).

The result of the first part of this exercise, inferring ψ from φ and (φ → ψ),
has been regarded as so important that it has been given a special name,
Modus Ponens. It is plainly a crucial feature of how to infer with →. When
we come to our formal proof system in the next chapter, we shall adopt a
formal rule of inference corresponding to Modus Ponens. One yardstick of a
formal system will be whether it can mirror other simple logical consequences
– if it cannot, what hope for deriving those that are more complicated!

We hope that it comes as no surprise that there are strong connections between
logical consequence and the connective → which represents implication. One
such connection is given by the following theorem.

Theorem 2.7

Let Γ be a set of formulas and φ, ψ be formulas. Show that We shall be very keen to match this
result within our formal system.

Γ, φ � ψ if and only if Γ � (φ → ψ).

Exercise 2.68
Prove Theorem 2.7.

Exercise 2.69

Let γ1, γ2, . . . , γn be finitely many formulas and φ a formula. Show that

γ1, γ2, . . . , γn � φ if and only if � ((γ1 ∧ γ2 ∧ . . . ∧ γn) → φ).

There are useful connections between logical consequence and logical equiva-
lence, as you can show, we hope straightforwardly, in the next exercise.

77

2 Propositions and truth assignments

Exercise 2.70

Let φ, ψ, θ be formulas.

(a) Show that φ ≡ ψ if and only if φ � ψ and ψ � φ.

(b) Suppose that φ ≡ ψ. Show that

(i) if φ � θ, then ψ � θ;

(ii) if θ � φ, then θ � ψ.

The next exercise involves a very straightforward and useful result about
cascading logical consequences. Again, this illustrates further connections
between � and →.

Exercise 2.71
(a) Let φ, ψ, θ be formulas. Show that if φ � ψ and ψ � θ, then φ � θ.

(b) Let Γ be a set of formulas and φ1, φ2, . . . , φn finitely many formulas such
that

Γ � φ1, φ1 � φ2, φ2 � φ3, . . . , φn−1 � φn.

Show that Γ � φn.

One way of using the result of the last exercise is to combine simple logical
consequences to establish a more complicated logical consequence. But not
every complicated logical consequence would necessarily get broken down in
such a linear fashion. There might be other routes, for instance as in the
following exercise.

Exercise 2.72
Let Γ, ∆ be sets of formulas and φ, ψ, θ formulas. Suppose that Γ � (φ ∨ ψ),
∆, φ � θ and ψ � θ. Show that Γ, ∆ � θ.

We have previously introduced the symbols ⊥ and � as the propositional Recall from Section 2.5 that these
propositional constants are used in
formulas just like propositional
variables, but that for every truth
assignment v, v(⊥) = F and
v(�) = T .

constants for falsity and truth, respectively. Here’s an easy exercise involving
them.

Exercise 2.73

Let φ, ψ be any formulas. Show the following.

(a) (φ ∨ ¬φ) ≡ � So � is a tautology and ⊥ is a
contradiction.(b) (φ ∧ ¬φ) ≡ ⊥

(c) ψ � �
(d) ⊥ � ψ

(e) � � ψ if and only if ψ is a tautology.

(f) ψ � ⊥ if and only if ψ is a contradiction.

78

2.6 Logical consequence

Parts (b) and (d) are of particular interest. If we have a set of formulas Γ and
a formula φ for which both φ and ¬φ are logical consequences of Γ, it is easy
to show that Γ logically implies the contradiction (φ ∧ ¬φ), so that using (b)
and (d) (and essentially the result of Exercise 2.71(b)), we can show that all
formulas ψ are logical consequences of Γ. Such sets Γ most certainly exist – for
instance, just take Γ to be the set {p,¬p} for a propositional variable p – but
they are somehow rather undiscriminating when it comes to investigating their
logical consequences! In fact, for such a set Γ, there are no truth assignments
making all of the formulas of Γ true. We shall ask you to show this, phrasing
the result using the following new terminology.

Definition Satisfiable

The set Γ of formulas is satisfiable if there is some truth assignment v
which satisfies Γ, i.e. v(γ) = T for all γ ∈ Γ.

Plainly the issue of whether there are circumstances in which all statements
in a given set can be made simultaneously true, i.e. are satisfiable, will be of
interest, for instance when the statements attempt to axiomatize a mathe-
matical theory.

Exercise 2.74

Let Γ be a set of formulas. Show that Γ � ⊥ if and only if Γ is not satisfiable.

Exercise 2.75
Let Γ be a set of formulas and φ a formula such that both Γ � φ and Γ � ¬φ. The converse result holds trivially!

Show that Γ � ψ, for all formulas ψ.

Exercise 2.76

Let Γ be a set of formulas and φ a formula. Show that Γ∪ {¬φ} is satisfiable
if and only if Γ �� φ.

Solution
We shall show that if Γ �� φ, then Γ∪ {¬φ} is satisfiable, and we leave the rest
of the proof to you!

Suppose that Γ �� φ. So it is not the case that all truth assignments v which
satisfy Γ also satisfy φ. So there is some truth assignment v which satisfies Γ
and doesn’t satisfy φ. As v(φ) �= T , this means v(φ) = F , so that v(¬φ) = T .
Therefore this v satisfies Γ ∪ {¬φ}, which is thus satisfiable.

Exercise 2.77
Let Γ be a set of formulas. Show that Γ is satisfiable if and only Γ �� φ for
some formula φ.

79

2 Propositions and truth assignments

It might be tempting to think that a set of formulas Γ for which Γ � ⊥ is in
some sense silly. But such a set is often of great value within a mathematical
proof, in the context of what is called proof by contradiction. You should This has the grander Latin name of

reductio ad absurdum.have met this before and, if you are anything like the author, have been so
excited by this method of proof that you spent a long period trying to use it
in every mathematical argument! A classical argument is that found in Euclid
(at around 300 BC) to show that there are infinitely many primes. A modern
version of this proof goes as follows.

Suppose that there are only finitely many primes, listed as p1, p2, . . . , pn.
Consider the number N = p1p2 . . . pn + 1. As division by any pi leaves re-
mainder 1, none of p1, p2, . . . , pn divides N . But N can be factorized as a
product of primes, so there is another prime dividing N not equal to one of
p1, p2, . . . , pn. This contradicts that p1, p2, . . . , pn lists all the primes. Thus
there are infinitely many primes.

For the purposes of this section, the underlying structure of this proof by con- In the proof above, φ says that
there are infinitely many primes
while ∆ in some way gives more
fundamental properties of the
integers.

tradiction is as follows: to prove that φ follows from the set of formulas ∆, we
assume the negation of φ, i.e. ¬φ, and from this and ∆ derive a contradiction.
Hey presto! This means that from ∆ we can infer the hoped for φ. Formally
we have the following theorem.

Theorem 2.8 Proof by contradiction

Let ∆ be a set of formulas and φ a formula. If ∆,¬φ � ⊥ then ∆ � φ.

Proof

Suppose that ∆∪ {¬φ} � ⊥. Then by the result of Exercise 2.74, there are no
truth assignments making all of the formulas in ∆ ∪ {¬φ} true. This means
that if the truth assignment v makes all the formulas of ∆ true, v(¬φ) must
be false, so that v(φ) must be true; that is, every truth assignment satisfying
∆ also satisfies φ. Thus ∆ � φ.

Exercise 2.78
Show that the converse of the theorem above holds, that is, if ∆ is a set of
formulas and φ a formula such that ∆ � φ, then ∆ ∪ {¬φ} � ⊥.

Exercise 2.79

Let ∆ be a set of formulas and φ a formula. Show that if ∆, φ � ⊥ then
∆ � ¬φ.

Exercise 2.80

Let φ, θ be formulas such that φ, θ � ⊥. Show that φ � ¬θ and θ � ¬φ. Is it
necessarily the case that � (¬φ ∧ ¬θ)?

80

2.6 Logical consequence

When we extend our formalisation of language to predicate languages and
write down some set of formulas Γ axiomatizing something of real mathemat-
ical significance, like the theory of groups or of linear orders, we shall not only
be interested in whether a particular formula φ is a consequence of Γ but in
finding all formulas which are consequences of Γ. One tempting possibility is
that for a given a set of formulas Γ and any formula φ, we have that Γ � φ or We might even have that both

hold, so that by the result of
Exercise 2.75, Γ � ψ for all
formulas ψ. But then by
Exercise 2.74, there are no truth
assignments making Γ true.

Γ � ¬φ.

Exercise 2.81

Let Γ be the set {(p ∨ q)}, where p, q are propositional variables. Is it the
case that for all formulas φ in the language using just these two propositional
variables that Γ � φ or Γ � ¬φ?

Solution

No. Consider the formula φ given by p. Then taking the truth assignment v
defined by v(p) = F, v(q) = T , we have v((p ∨ q)) = T and v(p) = F , so that
Γ �� φ. Taking the truth assignment u defined by u(p) = T, u(q) = T , we have
u((p ∨ q)) = T and u(¬p) = F (here ¬φ is ¬p), so that Γ �� ¬φ.

So in general, given a set Γ, we should not expect that for all formulas φ,
Γ � φ or Γ � ¬φ. There are some sets Γ for which this holds, besides those for For an example giving many such

sets Γ, see Exercise 2.87 later.which there is no truth assignment making all formulas of Γ true, and they are
described as complete. We shall discuss these some more in the next chapter.

Some comments on decidability

The question of how we can tell whether φ is a logical consequence of the set See Davis [10] for some of the
history, leading up to precise
definitions of ‘decidable’ and,
indeed, of ‘algorithmic procedure’.
For the exciting theory stemming
from these ideas, see Cutland [9],
Enderton [12], Epstein and
Carnielli [14] or Kleene [22].

Γ is rather interesting. One of the hopes of those who developed the ideas of
describing interesting parts of mathematics using axioms was that the logical
consequences of these axioms would be decidable, meaning that there is an
algorithmic procedure which would, after a finite number of steps, say whether
or not a given formula φ is a logical consequence of a set of formulas Γ.

We shall have to wait till Chapter 5 for the predicate languages which we
might use to axiomatize some interesting mathematics. For the moment we
shall just discuss the decidability of Γ � φ for propositional languages.

If Γ is the empty set, there is a very straightforward algorithmic procedure for We hope that you are willing to
agree that one can give a finite set
of simple instructions for producing
the truth table of a formula φ that
can be undertaken in finitely many
steps.

deciding whether � φ, i.e. whether φ is a tautology – just construct its truth
table and check whether it takes the value T on all the finitely many rows of
this table.

What can be done when Γ is non-empty? If the set Γ is finite, we can create

the formula (
∧
γ∈Γ

γ → φ), look at its truth table and exploit the result of Ex-

ercise 2.69. The formula is a tautology exactly when Γ � φ and checking its
truth table involves just finitely many steps. For the mean-minded there is
then the further question of whether the method involving the construction As for what is practicable, you may

have observed the author’s
reluctance to produce truth tables
of long formulas or ones involving
more than 8 rows!

of a truth table is practicable. Checking whether a formula is a tautology
involves a finitely long process which is good news for many purposes. But if
there is a large number n of propositional variables involved, the number of

81

2 Propositions and truth assignments

rows in the truth table, 2n, will be so large as to make the process impractica-
ble. So there is an interest in thinking about other ways of checking whether
Γ � φ.

When Γ is an infinite set, it is highly unlikely that Γ � φ will be decidable. There’s a bit of a reminder about
the set-theoretic background and
the theory of infinite sets in Section
6.4 of Chapter 6. The ideas of
checking whether a truth
assignment satisfies infinitely many
formulas in Γ and then whether the
possibly infinitely many truth
assignments satisfying Γ also
satisfy φ are meaningful to most
modern mathematicians. But the
practicalities of doing this checking
are another matter!

For instance, suppose that the language has propositional variables in the set
{pi : i ∈ N}. An attempt by brute force of checking all truth assignments v
to see first whether v satisfies Γ and, if so, whether v also satisfies φ, is likely
to be far from an algorithmic procedure, as there are uncountably infinitely
many different truth assignments on the variables {pi : i ∈ N}, so the full check
couldn’t happen in finitely many steps. But sometimes an infinite set Γ has
a simple enough structure to make checking whether Γ � φ practicable. For
instance, if Γ is the set

{p0} ∪ {(pi → pi+1) : i ∈ N},
there is actually only the one truth assignment making all the formulas of Γ
true, namely v where v(pi) = T for all i ∈ N. So checking whether Γ � φ for a
given formula φ is simply a matter of working out the truth value v(φ) for this
v and seeing whether this is T ! There are more challenging examples of this
positive behaviour – see for example Exercise 2.86 below. But normally with
an infinite set Γ, we are doomed. For instance, it can be shown that there are
subsets I of the set N for which there is no algorithmic procedure for deciding
whether or not a given natural number is in I. Take such a set I and let Γ be
the set {pi : i ∈ I}. Then we can’t even decide whether Γ � pn for each n ∈ N

– this is equivalent to deciding whether n ∈ I – let alone whether Γ � φ for
more complicated φ.

A rather clever question which one can ask when Γ is infinite and Γ � φ is We shall address this question for
infinite Γ using the soundness and
completeness theorems in
Section 3.3 of Chapter 3.

whether all of the infinite amount of information coded in Γ is needed to
logically imply φ. Perhaps there is some finite subset ∆ of Γ for which ∆ � φ.

Exercise 2.82

Let Γ and ∆ be sets of formulas with ∆ ⊆ Γ, and let φ be a formula.

(a) Show that if ∆ � φ then Γ � φ.

(b) Give a counterexample to show that the converse of (a) is false. In general the given subset ∆ won’t
be suitable. But this doesn’t mean
that if Γ � φ there might not be
some non-trivial subset ∆ of Γ for
which ∆ � φ.

Within the predicate calculus, the logical consequences φ of a set Γ will be
of much greater mathematical interest than those we have been looking at in
this chapter. For instance, if Γ axiomatizes group theory, its logical conse-
quences will be all statements that must be true for all groups. We shall be
able to axiomatize group theory with finitely many axioms Γ. But checking
whether Γ � φ for this finite set Γ cannot be done by the same finite process
as we gave above for dealing with formulas. For a finite set of propositional
formulas Γ and a given φ, there are essentially only finitely many different
truth assignments needed to check to see whether Γ � φ. But for the axioms
of group theory, there are infinitely many groups making these axioms true
for which we would have to check whether φ is also true. This cannot give
a finite process for checking whether Γ � φ. For predicate calculus we thus
have to investigate an alternative way of establishing logical consequence. Our
chosen route is to look more closely at how we actually prove results within

82

2.6 Logical consequence

mathematics and it is both wise and very revealing to look first at how we
might formally handle proofs using the relatively simple propositional formu-
las we have to hand right now. This is what we shall do in the next chapter.
Bear in mind that our main aim will be to produce a formal proof system
within which derivations correspond to logical consequences. That such proof
systems can be found represents a considerable achievement!

Further exercises

Exercise 2.83

Which of the following sets of formulas are satisfiable? (p, q, r and the pi,
i ∈ N, are propositional variables.)

(a) {(p → q), (q → r), (r → p)}
(b) {(p ∨ (q ↔ ¬p)),¬(p ∨ q)}
(c) {(pi ↔ ¬pj) : i < j, i, j ∈ N}

Exercise 2.84

Three individuals, Green, Rose and Scarlet, are suspected of a crime. They This is based on an exercise in
Kleene [22] attributed to H. Jerome
Keisler.

testify under oath as follows.

GREEN: Rose is guilty and Scarlet is innocent.
ROSE: If Green is guilty, then so is Scarlet.
SCARLET: I am innocent, but at least one of the others is guilty.

(a) Could all the suspects be telling the truth?

(b) The testimony of one of the suspects follows from that of another. Identify
which!

(c) Assuming that all three are innocent of the crime, who has committed
perjury?

(d) Assuming that everyone’s testimony is true, who is innocent and who is
guilty?

(e) Assuming that those who are innocent told the truth and those who are
guilty told lies, who is innocent and who is guilty?

Exercise 2.85

Suppose that L is a propositional language which, besides the usual connec-
tives, also includes constants � (for true) and ⊥ (for false). For any formula
φ of L and any propositional variable p, write for short:

(φ/p) for (φ[�/p] ∨ φ[⊥/p]),

where φ[ψ/p] is the result of substituting the formula ψ for the variable p
throughout ψ. Prove the following. The desirable result of part (c),

that the logical implication of θ
from φ should somehow depend
only on propositional variables in
common to the formulas, is called
Craig’s interpolation lemma, after
the American logician Bill Craig.
The formula ψ is called the
interpolant between φ and θ.

(a) φ � (φ/p).

(b) If φ � θ and p does not occur in the formula θ, then (φ/p) � θ.

(c) If φ � θ, then there is a formula ψ involving at most the propositional
variables in common to φ and θ such that φ � ψ and ψ � θ.

(d) If φ � θ and φ and θ have no propositional variables in common, then
either ¬φ or θ is a tautology.

83

2 Propositions and truth assignments

Exercise 2.86

Consider a propositional language with variables pi for each i ∈ N. Let Γ be
the set of formulas

{(pn → pm) : n, m ∈ N, n < m}.
(a) Which of the following sets of formulas is satisfiable? In each case, justify

your answer.

(i) Γ ∪ {p0}
(ii) Γ ∪ {¬p0, p1}
(iii) Γ ∪ {¬p2, p1}
(iv) Γ ∪ {¬p1, p2}

(b) Describe all the truth assignments which satisfy Γ, explaining why they
satisfy Γ and how you know that you have found all possible assignments.

(c) For which pairs (m, n) is the formula (pn → pm) a logical consequence of
Γ and for which pairs is this not the case?

(d) Find and describe an algorithmic procedure which, for any formula φ,
decides whether Γ � φ. (For a given φ, such a procedure would have to
decide within a finite number of steps whether or not Γ � φ.)

Exercise 2.87

Suppose that the language has the set {pi : i ∈ N} of propositional variables
and let Γ be the set {qi : i ∈ N}, where qi is either pi or ¬pi for each i ∈ N.
Show that for any formula φ in this language, exactly one of φ and ¬φ is a
logical consequence of Γ.

Exercise 2.88
Suppose that Γ is an infinite set of formulas in the language with the finite set
of propositional variables {p1, p2, . . . , pn}. Is the following argument correct?

Every formula in Γ is logically equivalent to one of the 22n

formulas in
dnf using these variables, so that there is a finite set Σ of these latter
formulas such that, for all formulas φ in the language

Γ � φ if and only if Σ � φ.

As Σ is finite, there is an algorithmic procedure for deciding whether, for
any formula φ, Σ � φ. Therefore there is an algorithmic procedure which,
for any formula φ, decides whether Γ � φ.

84

3 FORMAL PROPOSITIONAL
CALCULUS

3.1 Introduction
It is time to look at a formal description of at least part of what constitutes a
mathematical argument. To some extent we have captured what we expect as
the outcome of such an argument by the idea of logical consequence. If Γ � φ,
then the truth of φ under a given set of circumstances stems from the truth
of the formulas in Γ. But the process of checking whether all truth assign- When we get to the more general

set-up of the predicate calculus, we
can write down, for instance, a set
Γ of axioms for group theory. Then
asking for this Γ whether Γ � φ
amounts to asking whether all
groups satisfy φ. Plainly
investigating the truth of φ in all
groups, one by one, is a tall order.
So we turn to something like a
proof from axioms.

ments satisfying Γ also satisfy φ does not correspond to the way we produce
arguments in mathematics. Typically a mathematical argument, aiming to
prove something, will consist of various statements, arranged in some sort of
progression and usually with accompanying justification or explanation. The
statements could have a variety of statuses. For instance, they might be as-
sumptions (like ‘suppose that f is differentiable’, ‘suppose that n < 0’): or
they might be axioms, agreed principles, about the subject matter (like ‘mul-
tiplication of real numbers is commutative’); or, normally the most interesting
bits of an argument, they follow on from previous statements, via some sort
of justification.

The range of acceptable mathematical arguments seems dauntingly large and
to make any progress we must initially take a restricted view of which features
of everyday argument to formalize. In this chapter we shall work within the
very limited context of arguments involving formulas like those we have dealt
with so far. Although such formulas are a relatively dull, though necessary,
component of interesting statements within mathematics, any attempt to for-
malize arguments must incorporate them and indeed must be the bedrock for
any formalization.

In this chapter, as already noted, we shall only work with statements that are
well-formed formulas built up from propositional variables using various con-
nectives. We will forgo the brevity of many elegant mathematical arguments
by breaking proofs down into very small steps, with only a limited number of
ways of justifying each. We are going to try to capture the idea of a formula
φ being derived within a formal proof system S from assumptions out of a
set Γ, where each step of the derivation, including φ itself, arises in one of the
following ways:

(i) as one of the assumptions out of the set Γ; Although formal systems are about
to be specified in abstract terms of
allowable strings of symbols and
manipulations involving them, for
the sake of our sanity we describe
the system using terminology
which suggests their intended
meanings. Hence our use of
‘assumption’ instead of member of
Γ, ‘rule of inference’ instead of
construction rule and so on.

(ii) as an axiom, that is, a formula previously agreed as allowable in any proof
within the system S (unlike the particular assumptions of this derivation);

(iii) as the consequence of applying a rule of inference of the system S to
formulas already derived.

Into all this will be built all sorts of finiteness conditions, for instance that
formulas are finitely long strings of symbols and that derivations consist of
finitely many steps, so that derivations are finitely rather than infinitely long.
This may strike you as entirely reasonable from your own experience! But
sense can be made of dropping such finiteness conditions. More importantly,

85

3 Formal propositional calculus

one of the main reasons for undertaking this analysis was to skirt round the
problems caused by incautious use of infinity within mathematics, by building
in finiteness where possible, though without completely ruling out the use of
infinity. As a consequence of this, once the axioms and the rules of the system
S have been specified, a derivation will turn out to be essentially a mechanical
process involving strings of symbols of a given formal language. No regard
will be given to any intended meaning of the symbols or components of the
system. Only the shape and interrelationships of the symbols, their syntax ,
will matter. The correctness of a derivation would in principle be checkable by
a machine armed with the construction rules of the system, and under suitable
conditions on the ‘size’ of the system, a machine might be able to generate all
derivations of the system. This mechanical aspect is one reason for describing
this mathematical edifice of statements or propositions as a calculus.

What might we hope for from our formal system? It would be desirable that
it should match logical consequence, so that whenever Γ � φ, there should
be some sort of corresponding formal proof of φ from the assumptions in Γ.
Likewise, when formulas are formally proved, they should in some sense or
other be true. We shall make all these requirements more precise later in this
chapter.

The shape of this chapter is as follows. In Section 3.2 we define and explore a
formal proof system for handling the propositional statements of the previous
chapter. One of the points of this formal system is that with it we should be
able to derive all tautologies and be unable to derive statements which aren’t
tautologies; and this is dealt with in Section 3.3. The detailed work in these
two sections will have a pay-off later in the book when we discuss the predicate
calculus, which is much more important and complex than the propositional
calculus, but builds on the work done in these sections. Section 3.4 could
almost certainly be omitted if one was trying to get to the predicate calculus
as quickly as possible. In this section we look at some interesting and rather
tricky issues to do with formal proof systems in general, which are much easier
to discuss in the context of propositional calculus than predicate calculus,
precisely because the former is less complex.

86

3.2 A formal system for propositional calculus

3.2 A formal system for propositional calculus
We are about to describe a formal proof system and say what is meant by
a formal derivation of a formula. Our aim is that the formal system should
match logical consequence. For a set Γ of formulas and a formula φ, we write
Γ � φ to express that φ is a logical consequence of Γ. We can regard Γ as a
set of assumptions from which φ follows. We shall use the similar notation So the symbol � refers to formal

derivations of formulas and � refers
to their interpretation using truth
assignments.

Γ � φ to express that there is a formal derivation of φ from Γ. As you will
see from the following definition of our main formal proof system S used in

From here on in this chapter, we’ll
use the letter S for this particular
system.

this chapter, a formal derivation exploits only the shape of formulas, not any
consideration of their truth or falsity.

Definitions The formal system S

The system will manipulate (well-formed) formulas in the language L
consisting of countably many propositional variables p0, p1, p2, . . . , pn, . . .
and the connectives →,¬. For simplicity we shall use lower case letters When it’s important to emphasize

that the language has countably
infinitely many variables, we’ll use
the pis.

p, q, r, . . . to stand for these propositional variables.

Let Γ be a set (possibly empty) of formulas and let φ be a formula. A
derivation of Γ � φ within S is a finite sequence of formulas

φ1, φ2, φ3, . . . , φn,

where the final formula φn in the sequence is the formula φ and the
inclusion of each formula φi can be explained in one of the following
ways:

(i) φi ∈ Γ;

(ii) φi is a formula of one of the following forms:

(Ax 1) (φ → (ψ → φ)),

(Ax 2) ((φ → (ψ → θ)) → ((φ → ψ) → (φ → θ))),

(Ax 3) ((¬φ → ¬ψ) → (ψ → φ)),

where φ, ψ, θ are any formulas of L;

(iii) there are two previous formulas in the sequence, φj and φk with
j, k < i, where φk is the formula (φj → φi).

When there is such a derivation, we shall say that Γ � φ is a formal Although ‘formal theorem’ is a bit
of a mouthful (compared to e.g.
‘theorem’), it will occasionally help
us distinguish between the results
of derivations within the system
and theorems about derivations,
seen from outside the system.

theorem of the system. We shall also say that Γ � φ is derivable and
that φ is derivable from Γ. If Γ is empty, we shall also say that φ is
derivable.

We shall use

Γ � φ

as a shorthand for ‘there is a derivation of Γ � φ’.

Our first example of a derivation is one of

{p, r, (s → q)} � (q → p).

To make this and all future derivations easier to follow, we shall write the
sequence of formulas constituting the derivation as a succession of lines down

87

3 Formal propositional calculus

the page, with the first formula in the sequence (φ1) at the top. The lines are From now on we shall refer to the
lines or steps of a derivation. The
ith line will correspond to the ith
formula in the sequence.

numbered to help keep track of how each line is explained. The explanations
of each line use a shorthand we’ll explain.

(1) p Ass
(2) (p → (q → p)) Ax 1
(3) p Ass
(4) (q → p) MP, 1, 2

If you think that line 3 looks
unnecessary, don’t worry! You are
right and we’ll comment on this
later. But it’s not incorrect.

The formula on both lines 1 and 3 (φ1 and φ3 in the sequence) is p. The
explanation for both these lines is that the formula p is an element of the set
{p, r, (s → q)} – recall that a derivation of Γ � φ can include a formula which
is an element of the set Γ, that’s (i) in the definition above. We have used
the abbreviation ‘Ass’ as a shorthand for the formula on that line being in
the relevant set Γ, because the intended interpretation of the Γ in Γ � φ is as
a set of assumptions from which we can derive φ. Hence a use of (i) within a
derivation is akin to saying that a formula is an assumption; and (i) is called
the Rule of Assumptions .

The formula on line 2 (φ2 in the sequence) is an instance of one of the forms
Ax 1, Ax 2 and Ax 3 above. Our shorthand explanation of Ax 1 just says which
of these has been used. Formulas of these forms which can be slapped down
anywhere in a derivation, and so have a privileged status, are called axioms
of the system.

The formula on line 4 (φ4 in the sequence) is explained by (iii) in the definition
above. The relevant previous lines are p (which is φ1 in the sequence) and
(p → (q → p)) (φ2 in the sequence), the latter being of the form (φ1 → φ4).
We have used the abbreviation ‘MP, 1,2’ – the 1 and 2 refer to the previous
lines being exploited, while MP stands for Modus Ponens , the inference of ψ
from φ and ‘if φ then ψ’, which we met in Exercise 2.67 in the last section.
The formal version of Modus Ponens, as described in (iii), is called a rule of It is the only rule of inference of

this system. Later we shall look at
alternative systems with more than
one rule of inference.

inference of the system.

We promised to comment on line 3 of the proof, which is just the same as
line 1. It really is redundant! There’s nothing we can derive from it that
we couldn’t have derived from line 1. But its inclusion doesn’t break any of
the rules for a derivation. (In real-life proofs one occasionally repeats lines
superfluously too!) Dropping line 3 from this derivation gives an alternative
derivation of {p, r, (s → q)} � (q → p) – a derivation with 3 lines rather than
4. In general a formal theorem has infinitely many derivations (as we ask you
to show in Exercise 3.4 below) and in this book we shan’t attempt to make
judgments whether any one of them is in some sense better than the others!

Another feature of the derivation is that it makes use of the element p of the
set {p, r, (s → q)} with the Rule of Assumptions, but makes no use of the
elements r and (s → q). A derivation of Γ � φ isn’t obliged to make use of all
the elements of Γ or indeed any of them. In this case, as the derivation only
uses p, it is also a derivation of

{p} � (q → p),

and indeed of

Γ � (q → p),

88

3.2 A formal system for propositional calculus

for any set of formulas Γ with p ∈ Γ. This reasoning leads us to a straightfor-
ward pair of general results about this formal system, as follows.

Theorem 3.1
(i) Suppose that a derivation of Γ � φ involves uses of the Rule of As-

sumptions only with the formulas θ1, θ2, . . . , θk from Γ. Then there
is also a derivation of

{θ1, θ2, . . . , θk} � φ.

(ii) Suppose that there is a derivation of Γ � φ and that ∆ is a set of This is called the thinning rule.

formulas with Γ ⊆ ∆. Then there is also a derivation of ∆ � φ.

Proof

In both cases exactly the same derivation as the original one of Γ � φ provides
the required derivation, as any use of the Rule of Assumptions involves a
formula out of the new set.

Note that like many general results about derivations which follow, the proof
of Theorem 3.1 is constructive in the sense that it gives a recipe for a new
derivation in terms of given ones. This is a desirable feature which will not,
however, be achieved in all such general results.

Theorem 3.1 is a theorem about a formal proof system, rather than a for- This is similar to our use of the
word metalanguage for the
language used to talk about a
formal system to distinguish it
from the formal language L used
within the system.

mal theorem of it. To help distinguish between these two uses of the word
’theorem’, a result about a formal system is often called a metatheorem.

Exercise 3.1

Suppose that the sequence φ1, φ2, φ3, . . . , φn is a derivation of Γ � φ (so that
φn is φ). Show that for each i = 1, 2, . . . , n − 1 there is also a derivation of
Γ � φi.

Exercise 3.2
The following sequences of formulas lack explanations for each line. For which
could explanations be added to turn the sequence into a derivation of

(¬¬q → ¬p) � (p → ¬q)?

(¬¬q → ¬p)(a)

((¬¬q → ¬p) → (p → ¬q))

(p → ¬q)

((p → ¬q) → ((¬¬q → ¬p) → (p → ¬q)))(b)

((¬¬q → ¬p) → (p → ¬q))

(p → ¬q)

((¬¬q → ¬p) → (p → ¬q))(c)

(¬p → (¬¬¬q → ¬p))

(¬¬q → ¬p)

(p → ¬q)

89

3 Formal propositional calculus

Exercise 3.3

Say something interesting about derivations that make no use of the rule of
Modus Ponens! Do likewise for derivations that make no use of either the
Rule of Assumptions or instances of any of the axioms.

Exercise 3.4

Suppose that Γ � φ (i.e. that this is a formal theorem). Show that it has
infinitely many derivations.

So far in this section, we have presented this formal system as being a par-
ticular way of shuffling symbols around, following various rules – this is an
important part of the exercise. Derivations can be produced and checked in
a mechanical way, without any regard to whether the symbols or process as
a whole mean anything in the real world. But of course we did really want
to formalize mathematical proof and we have dropped strong hints about the
ways in which features of the system have intended meanings. We want this
formal proof system to be capable of deriving Γ � φ exactly when Γ � φ. Re- In particular, taking Γ as the

empty set, the system can derive
� φ exactly when φ is a tautology.

call that Γ � φ says that every truth assignment that makes all the formulas
in Γ true also makes φ true. The formal language uses the symbols →,¬ and
with their usual interpretations: these connectives form an adequate set, so A psychological attraction of the

adequate set {→,¬}, as opposed to
say {∨,¬} is that ‘implication’
seems central to drawing
conclusions in an argument.

that the expressive power of the language is as large as we need for this aim.
It’s thus no surprise that we have chosen the axioms Ax 1, Ax 2 and Ax 3 of the
formal system to be tautologies, and that the rule of Modus Ponens matches
a strong form of the logical consequence {θ, (θ → ψ)} � ψ (as you can check
in Exercise 3.5 below). We shall show later (very straightforwardly) that if The first of these results for the

proof system is called the
soundness or correctness theorem
and the second is called the
completeness or adequacy theorem.

Γ � φ, then Γ � φ. But the reverse also holds, namely that the formal system
can derive any logical consequence Γ � φ (expressed in terms of the connec-
tives → and ¬). We think that this is pretty surprising – the system has so
few axioms and rules! Likewise we shall prove this result later, though the
proof is not at all straightforward!

Exercise 3.5
(a) Show that all instances of Ax 1, Ax 2 and Ax 3 are tautologies.

(b) Show that if Γ � θ and Γ � (θ → ψ), then Γ � ψ.

One way of describing the result of part (b) is by saying that Modus Ponens
is a valid rule of inference, in some sense preserving truth when we look at the
interpretation of formulas. When we look later at further rules of inference
in other formal systems, we shall usually want them to be valid in the same
sort of way as this.

90

3.2 A formal system for propositional calculus

Exercise 3.6

Show that the thinning rule (Theorem 3.1(ii)) is valid; that is, show that for
sets of formulas Γ, ∆ with Γ ⊆ ∆, if Γ � φ then ∆ � φ.

It’s probably good for your soul and appreciation of later results about the
system to have a go now at some derivations, using bare hands. Later results
will provide some merciful shortcuts about derivations and you might even
think that the completeness theorem spares you from ever doing any formal
derivations, as you could instead check for logical consequences – however, this
would be a misconception of the benefits and drawbacks of two very different
concepts.

Notation

As with logical consequence, Γ � φ, we shall sometimes cheat on set
notation for the Γ in Γ � φ by dropping some of the set brackets { },
writing e.g. We hope that the context will

make it clear what is meant.
θ, q � φ instead of {θ, q} � φ,

Γ, θ � φ instead of Γ ∪ {θ} � φ

and Γ, ∆ � φ instead of Γ ∪ ∆ � φ.

Also recall that the set Γ in Γ � φ could be empty, in which case we’d
write � φ.

Exercise 3.7

Give derivations of each of the following. [Some might be hard!] If we seriously had to live and work
with this proof system, then of
course we would develop lots of
proof strategies to cope with
derivations such as these. For
instance, we would systematically
record all our derivations, perhaps
giving some of them memorable
names, so that we could exploit
them in future. We don’t think
that it is worthwhile for the
purposes of studying this book.
There is, however, personal
satisfaction from creating successful
derivations and understanding
better the formal system.

(a) φ, (φ → ψ), (ψ → θ) � θ

(b) p, (p → q), (p → (q → r)) � r

(c) � (p → p)

(d) (ψ → θ), (φ → ψ) � (φ → θ)

(e) (¬¬ψ → ¬¬φ) � (ψ → φ)

(f) ¬ψ � (ψ → φ)

(g) � (ψ → (¬ψ → φ))

Solution
(a) We have lots of assumptions to play with and it turns out that we can

avoid using any instances of axioms.

(1) φ Ass
(2) (φ → ψ) Ass
(3) ψ MP, 1, 2
(4) (ψ → θ) Ass
(5) θ MP, 3, 4

91

3 Formal propositional calculus

(b) Not given. Our private solution uses no axioms. Our experience is that students
almost always produce cleverer and
more elegant solutions than ours!

(c) We’ll give this one as it’s a key lemma in a later result. In as much as
there are strategies for derivations, the chances are that one is looking for
an instance of one of the axioms that ends in ‘. . . → (p → p)’ for which the
bits before the → also look like instances of axioms, which get eliminated
by use of Modus Ponens – the allowed set of assumptions is empty, so
there’s not much to play with! As no ¬ s are involved in what we are
trying to derive, the chances are that we won’t need to use an instance of Somewhat curiously, there are

formulas built up using only → s
and no ¬ s for which Ax 3 is needed
in any derivation. An example is
the derivation of
� (((p → q) → p) → p) (Peirce’s
law). We shall investigate this
subtlety in Section 3.4.

Ax 3.

(1) (p → ((p → p) → p)) Ax 1
(2) ((p → ((p → p) → p)) → ((p → (p → p)) → (p → p))) Ax 2
(3) ((p → (p → p)) → (p → p)) MP, 1, 2
(4) (p → (p → p)) Ax 1
(5) (p → p) MP, 3, 4

(d) Not given. Our private solution includes instances of Ax 1 and Ax 2.

(e) Not given. Our private solution includes instances of Ax 3.

(f) Not given. Our private solution includes instances of Ax 1 and Ax 3.

(g) Not given. This one might be pretty hard. We’ve not even tried! But
we shall show it is derivable later.

So far we’ve either given you or, more commonly, asked you to give various
derivations. Derivations can get very complicated and impenetrable, and
could distract us from what is usually much more interesting, namely whether
a derivation exists. In the next exercise we start our move towards a variety of Recall that we are using the

notation Γ � φ as a shorthand for
saying that a derivation of Γ � φ
exists.

results of the latter sort, not necessarily requiring us to give full derivations,
but telling us that derivations exist.

Exercise 3.8

In this exercise we ask you to show how to exploit given derivations to create
another derivation.

(a) Show that if Γ � (φ → ψ), then Γ, φ � ψ.

(b) Show that if Γ � φ and ∆, φ � ψ, then Γ, ∆ � ψ.

(c) Show that if, for some ψ, Γ � ψ and Γ � ¬ψ, then Γ � φ, for any formula If we can derive both Γ � ψ and
Γ � ¬ψ for some ψ, then the set Γ
is said to be inconsistent. This
exercise shows that if Γ is
inconsistent, then any formula can
be derived from Γ.

φ. [Hint: Use a result from Exercise 3.7.]

Solution

We shall give a solution to part (a) and leave (b) and (c) to you.

Suppose that Γ � (φ → ψ) and that we have a derivation of it using k lines
(so that the formula on the kth line is (φ → ψ)). This can then be turned
into a derivation of Γ, φ � ψ by adding lines as follows.

...
...

...
(k) (φ → ψ) · · ·

(k + 1) φ Ass
(k + 2) ψ MP, k, k + 1

92

3.2 A formal system for propositional calculus

Note that the solution we gave for part (a) above is constructive: it actually
gives a recipe for creating an actual derivation from earlier ones, rather than
merely showing that a derivation exists. We hope that your solutions to parts
(b) and (c) have the same constructive character, which is highly desirable
from all sorts of perspectives which we won’t elaborate on here. Later in the The relevant result is the

completeness theorem for predicate
calculus.

book we shall encounter at least one important metatheorem about derivations
for which there is no constructive proof.

How might we make it easier to find derivations? One way is as follows. In For instance, to prove ‘If the
function f is differentiable, then f
is continuous’, one would normally
start the proof with ‘Suppose that
f is differentiable’ and then show
that f is continuous.

real maths, if you wish to prove a formula of the form ‘if φ then ψ’ (which is
the intended meaning of (φ → ψ)), one assumes φ and attempts to prove ψ.
If this is successful, we conclude that ‘if φ then ψ’. The analogue of this for
the formal system is that

if Γ, φ � ψ, then Γ � (φ → ψ).

This result does hold for the system and is usually called the deduction theorem
for the system. (It is the converse of the result of Exercise 3.8(a) above.) To
be honest, the statement of the deduction theorem doesn’t give a derivation However, the proof of the

deduction theorem, Theorem 3.3
below, will show how to turn a
derivation of Γ, φ � ψ into a
derivation of Γ � (φ → ψ).

of Γ � (φ → ψ). It just says that one exists. Nevertheless it’s no bad thing
to be able to show that something is derivable. Take for instance the task
of deriving � (ψ → (¬ψ → φ)) (which is Exercise 3.7(g)). Observe that the
principal connective of the formula (ψ → (¬ψ → φ)) is an →, so that the
deduction theorem could be of help: if one could derive Bear in mind that a derivation

with some assumptions available
for use might be easier to spot than
a derivation with none!

ψ � (¬ψ → φ),

then the deduction theorem says that one can derive

� (ψ → (¬ψ → φ)).

But why stop there? The principal connective of (¬ψ → φ) is also a →, so it
is tempting to try to derive

ψ,¬ψ � φ,

and, if successful, use the deduction theorem to conclude that one can derive

ψ � (¬ψ → φ),

leading to the desired result. Here is a derivation of ψ,¬ψ � φ.

(1) ¬ψ Ass
(2) (¬ψ → (¬φ → ¬ψ)) Ax 1
(3) (¬φ → ¬ψ) MP, 1, 2
(4) ((¬φ → ¬ψ) → (ψ → φ)) Ax 3
(5) (ψ → φ) MP, 3, 4
(6) ψ Ass
(7) φ MP, 5, 6

This derives ψ,¬ψ � φ so that two applications of the deduction theorem gives We shall make use later of the
result that ψ,¬ψ � φ is derivable.
Essentially it says that every
formula can be derived from a
contradiction.

that � (ψ → (¬ψ → φ)) is derivable.

Before we prove the deduction theorem, have a go at using it for yourself.

93

3 Formal propositional calculus

Exercise 3.9

Using the deduction theorem if you like, show that the following are derivable.

(a) � ((φ → (ψ → θ)) → (ψ → (φ → θ)))

(b) � (¬¬p → p)

(c) � (p → ¬¬p)

Solution
(a) Not given. Our private solution makes three uses of the deduction theo-

rem.

(b) Not given. Our private solution includes use of Ax 1, Ax 3 and the deduc-
tion theorem.

(c) As we can derive � (¬¬p → p), replacing both the occurrences of p by ¬p We hope that this is an obvious
result about the system: if we can
derive Γ � φ and we replace all
occurrences of the variable p in φ
and the formulas in the set Γ by a
formula θ, turning φ into the
formula φ′ and the set Γ into the
set Γ′, then we can derive Γ′ � φ′.
We’ll come back to this in
Exercise 3.15.

means we can derive � (¬¬¬p → ¬p). All we now need do is add a couple
of lines to this derivation, so assuming that we’ve obtained this last result
after k lines, the rest of the derivation looks like:

...
...

...
(k) (¬¬¬p → ¬p) · · ·

(k + 1) ((¬¬¬p → ¬p) → (p → ¬¬p)) Ax 3
(k + 2) (p → ¬¬p) MP, k, k + 1

We shall use the deduction theorem to obtain a formal analogue of proof by
contradiction, mentioned in Section 2.6 of Chapter 2. To give you a break from
the unremitting horrors of providing your own derivations in this marvellously
compact, but inherently obscure, system, we shall actually give a proof!

Theorem 3.2 Proof by contradiction

If Γ,¬φ � ψ and Γ,¬φ � ¬ψ, then Γ � φ.

Proof

We need the following lemma.

Lemma: (¬φ → φ) � φ.

Proof of lemma: Earlier we derived ψ,¬ψ � φ, for any formulas φ, ψ.
Taking the φ to be ¬(¬φ → φ) and the ψ to be the formula φ, this means
that we can derive

φ,¬φ � ¬(¬φ → φ).

One use of the deduction theorem gives

¬φ � (φ → ¬(¬φ → φ)),

and a further use of the deduction theorem gives

� (¬φ → (φ → ¬(¬φ → φ))).

94

3.2 A formal system for propositional calculus

We shall turn this derivation into one of (¬φ → φ) � φ by adding the
following lines. (We’ll simplify our line numbering by describing the line
on which � (¬φ → (φ → ¬(¬φ → φ))) is derived as line 0.)

(0) (¬φ → (φ → ¬(¬φ → φ))) · · ·
(1) ((¬φ → (φ → ¬(¬φ → φ)))

→ ((¬φ → φ) → (¬φ → ¬(¬φ → φ)))) Ax 2
(2) ((¬φ → φ) → (¬φ → ¬(¬φ → φ))) MP, 0, 1
(3) (¬φ → φ) Ass
(4) (¬φ → ¬(¬φ → φ)) MP, 2, 3
(5) ((¬φ → ¬(¬φ → φ)) → ((¬φ → φ) → φ)) Ax 3
(6) ((¬φ → φ) → φ) MP, 4, 5
(7) φ MP, 3, 6

�

Let us now prove the required theorem. We suppose that we have derivations
of both Γ,¬φ � ψ and Γ,¬φ � ¬ψ. Applying the deduction theorem to the
second of these, we can derive

Γ � (¬φ → ¬ψ).

By adding the following lines to this derivation (as before labelling the final
line of this derivation as line 0 for readability here),

(0) (¬φ → ¬ψ) · · ·
(1) ((¬φ → ¬ψ) → (ψ → φ)) Ax 3
(2) (ψ → φ) MP, 0, 1

we turn the derivation into one of

Γ � (ψ → φ).

By the result of Exercise 3.8(a), we can derive

Γ, ψ � φ.

As (by our supposition) we can also derive Γ,¬φ � ψ the result of Exer-
cise 3.8(b) (with a suitable reinterpretation of the symbols used) tells us that
we can derive

Γ,¬φ � φ,

so that by the deduction theorem we can derive

Γ � (¬φ → φ).

Combining the derivation of this with that of � ((¬φ → φ) → φ) in our lemma
above, one use of Modus Ponens gives us a derivation of

Γ � φ,

as required.

We can use this and other earlier results to obtain another metatheorem with
claims to the title of ‘proof by contradiction’:

If Γ, φ � ψ and Γ, φ � ¬ψ, then Γ � ¬φ.

We can justify this as follows. Suppose that we can derive both Γ, φ � ψ
and Γ, φ � ¬ψ. As we can derive � (¬¬φ → φ) (using the result of Exer-

95

3 Formal propositional calculus

cise 3.9(b), replacing p by φ), we can also derive ¬¬φ � φ (using the result of
Exercise 3.8(a)). Using the result of Exercise 3.8(b), we can thus derive both

Γ,¬¬φ � ψ

and

Γ,¬¬φ � ¬ψ.

By Theorem 3.2 we can then derive

Γ � ¬φ.

The use of proof by contradiction can be so subtle that it is worth showing
you one worked example before letting you loose on your own.

Example 3.1

We shall show that ¬(θ → ψ) � ¬ψ. Our strategy will be to take ψ as an extra
assumption alongside ¬(θ → ψ), derive both χ and ¬χ for some formula χ,
and use the second version of proof by contradiction above to conclude that
the negation of ψ is derivable from the single assumption ¬(θ → ψ). Consider
the following derivation.

(1) ¬(θ → ψ) Ass
(2) ψ Ass
(3) (ψ → (θ → ψ)) Ax 1
(4) (θ → ψ) MP, 2, 3

This derivation shows both that ¬(θ → ψ), ψ � ¬(θ → ψ) (using just the first
line of the derivation) and that ¬(θ → ψ), ψ � (θ → ψ). So by the second
form of proof by contradiction above, ¬(θ → ψ) � ¬ψ.

Notice the cunning way we have exploited the assumption ¬(θ → ψ), which
begins with a negation symbol. The axioms and tules of the formal system
don’t immediately give us a way of exploiting this formula. However, by
adding an extra assumption and using it to derive (θ → ψ), the unnegated
form of ¬(θ → ψ), we obtain a contradiction, from which we can conclude
something useful! �

Now it’s your turn to prove some further theorems and metatheorems!

Exercise 3.10
Show each of the following, using the deduction theorem if you like, along Our private solutions to most parts

of this exercise exploit proof by
contradiction. But not all do so – a
common mistake of most
mathematicians on meeting proof
by contradiction for the first time
is to get over-excited by the
method and try to use it where it
doesn’t help!

with any other previous results in exercises and theorems.

(a) ¬(θ → ψ) � θ [Hints: By Exercise 3.7(f), ¬θ � (θ → ψ); and use the first
form of proof by contradiction, in Theorem 3.2.]

(b) θ,¬ψ � ¬(θ → ψ)

(c) If Γ � (φ → ψ) and Γ � (ψ → θ), then Γ � (φ → θ).

(d) If Γ,¬φ � ¬ψ, then Γ, ψ � φ.

(e) If Γ, φ � ¬ψ, then Γ, ψ � ¬φ.

(f) If Γ, φ � θ and Γ,¬φ � θ, then Γ � θ.

96

3.2 A formal system for propositional calculus

Let us now prove the deduction theorem.

Theorem 3.3 Deduction theorem for this system

If Γ, φ � ψ, then Γ � (φ → ψ).

Proof

The method of proof is in many ways more significant than the detailed steps.
It won’t be sufficient simply to add steps to a derivation of Γ, φ � ψ to turn
it into one of Γ � (φ → ψ). Instead we look line by line at a derivation of
Γ, φ � ψ and show how to generate corresponding fragments of a derivation
of Γ � (φ → ψ). A derivation of Γ, φ � ψ is a sequence We’ve written this derivation as a

sequence rather than in lines just
to save space!ψ1, ψ2, . . . , ψn = ψ,

where any use of the Rule of Assumptions involves a formula in the set Γ∪ {φ}.
We shall show by mathematical induction on i = 1, 2, . . . , n (where it helps to
see i as coding the ith line of this derivation) that there is a derivation of

Γ � (φ → ψi),

and will indeed give a recipe for constructing this derivation. We could de-
scribe the method of proof as mathematical induction on the length of the
derivation of Γ, φ � ψ.

basis of induction: show how to derive Γ � (φ → ψ1);

inductive step: assuming that, for k > 1, we have derived Γ � (φ → ψi)

for all i < k, show how to derive Γ � (φ → ψk).

Each step of this process usually replaces a single step in the derivation of
Γ, φ � ψ by several steps in the derivation, as you’ll see.

Basis of induction

The first line (ψ1) of the derivation of Γ, φ � ψ could arise in two different
ways: by a use of the Rule of Assumptions; and as an axiom, i.e. an instance
of one of Ax 1, Ax 2 and Ax 3. We need to deal with each of these possibilities.

Suppose that ψ1 is an assumption, so that it’s in the set Γ ∪ {φ}. If it is in Γ
then we can derive Γ � (φ → ψ1) by

(1) ψ1 Ass
(2) (ψ1 → (φ → ψ1)) Ax 1
(3) (φ → ψ1) MP, 1, 2.

Unfortunately this derivation won’t work if ψ1 isn’t in Γ but is the assumption
φ in Γ∪ {φ} – well, it will be a correct derivation, but not one of Γ � (φ → ψ1)
as it uses an assumption not in Γ. In the case that ψ1 is φ itself, we can
exploit the result of Exercise 3.7(c) using φ replacing p to get a derivation of
Γ � (φ → φ).

The other possibility is that ψ1 is an axiom. We leave it for you to show that
Γ � (φ → ψ1) as an exercise.

97

3 Formal propositional calculus

Inductive step

We suppose that, for k > 1, we have derived Γ � (φ → ψi) for each i with
1 ≤ i < k. (You might like to imagine this as a derivation of Γ � (φ → ψ1)
followed by extra steps to turn it into one of Γ � (φ → ψ2), and so on.) We
now need to explain what to do with the kth step of the original derivation
(deriving ψk), which of course will depend on how this arose. We can deal
with use of the Rule of Assumptions or an instance of an axiom in the same
way as we did for their use on the first line of a derivation. There is one extra
possibility with which we now have to deal, namely that Modus Ponens was
used to get this kth line. This means that the kth line is ψk where there
are earlier lines ψi, ψj in the original derivation of Γ, φ � ψ where ψj is the
formula ψi → ψk. By the induction hypothesis there are derivations of

Γ � (φ → ψi)

and of

Γ � (φ → (ψi → ψk)).

All we need do to derive Γ � (φ → ψk) is to add extra lines to the new deriva-
tion so far as follows. We’ve used ni to denote the line of

the new derivation on which the
method has guaranteed to derive
(φ → ψi) and similarly with nj and
nk−1 – of course, one of i, j might
actually be k − 1, in which case the
layout of the derivation is a bit
simpler.

...
...

...
(ni) (φ → ψi) · · ·

...
...

...
(nj) (φ → (ψi → ψk)) · · ·

...
...

...
(nk−1) (φ → ψk−1) · · ·

(nk−1 + 1) ((φ → (ψi → ψk)) → ((φ → ψi) → (φ → ψk))) Ax 2
(nk−1 + 2) ((φ → ψi) → (φ → ψk)) MP, nj, nk−1 + 1
(nk−1 + 3) (φ → ψk) MP, ni, nk−1 + 2

This deals with the inductive step, so that the result follows by mathematical
induction on i = 1, 2, . . . , n.

Exercise 3.11

Complete the proof of the deduction theorem by deriving Γ � (φ → ψk) in the Perhaps it’s interesting that we
needn’t really worry here about
which of Ax 1, Ax 2 and Ax3 was
used.

case when ψk is an axiom.

Solution

One straightforward derivation is as follows.

(1) ψk Ax . . .
(2) (ψk → (φ → ψk)) Ax 1
(3) (φ → ψk) MP, 1, 2

98

3.2 A formal system for propositional calculus

Exercise 3.12
(a) Suppose that the recipe of our proof of the deduction theorem is slavishly

followed to create a derivation of Γ � (φ → ψ) from a given derivation of
Γ, φ � ψ. (This recipe includes our solutions to Exercises 3.7(c) and 3.11.)
Suppose that the latter derivation includes n1 uses of the Rule of Assump-
tions involving φ, n2 uses of the Rule of Assumptions involving formulas In any elegant derivation of

Γ, φ � ψ you might expect n1 to
equal 0 or 1. But don’t suppose
that you are given such an elegant
derivation here!

in Γ (where we’ll suppose that φ �∈ Γ), n3 uses of axioms and n4 uses of
Modus Ponens. Give a formula for the length of the resulting derivation
of Γ � (φ → ψ) in terms of n1, n2, n3, n4.

(b) See if you can find an (easy!) example of a formal theorem for which you
can find a shorter derivation of Γ � (φ → ψ) than the one generated by
the recipe in our proof of the deduction theorem.

In this section we have looked at some of what can be derived within our par-
ticular formal proof system. The rules and axioms seem very restrictive and
we have begun to compensate for these restrictions by establishing metathe-
orems, like proof by contradiction and the deduction theorem, which make it
easier for us to establish what is derivable. A key feature of these metatheo-
rems is that, while they give us a shortcut to showing something is derivable,
they all tell us how we could construct a full derivation within the original
restricted theorem, if we really wanted one. One point of Exercise 3.12 was Another point of Exercise 3.12 was

to try to improve your
understanding of the detail of the
proof of the deduction theorem!

to emphasize this feature of the deduction theorem. Thus the metatheorems
about the formal system so far have the character of extending our knowledge
of when we can derive Γ � φ by increasing our catalogue of actual deriva-
tions. But there is a completely different way of establishing whether Γ � φ,
involving the intended interpretation of the symbols using truth assignments
and logical consequence Γ � φ. This is what we shall investigate in the next
section.

At a more technical level, we shall use the method, seen in the proof of the
deduction theorem, of mathematical induction on the length of a derivation
again in later sections. For instance, we shall use it to prove metatheorems
about alternative formal systems to the one we have been looking at here.
We shall use this in the next section for one of the metatheorems about our
current system, relating the syntactic notion of derivability to the intended
interpretation in terms of validity.

Further exercises

Exercise 3.13

Suppose that Γ is a set of instances of axioms Ax 1, Ax 2 and Ax 3. Show that
for any formula φ, if Γ � φ then � φ.

Exercise 3.14
Show each of the following. You may use any of the results in this section.

(a) (φ → ψ), (φ → ¬ψ) � ¬φ

(b) � (φ → (ψ → (θ → φ)))

(c) ((p → ¬p) → p)

(d) {(pi → pi+1) : i ∈ N} ∪ {¬p5} � ¬p2

99

3 Formal propositional calculus

Exercise 3.15

We mentioned earlier that we hope it is obvious that if we can derive Γ � φ
and we replace all occurrences of the variable p in φ and the formulas in the
set Γ by a formula θ, turning φ into the formula φ′ and the set Γ into the set
Γ′, then we can derive Γ′ � φ′. Use the method of mathematical induction on
the length of a derivation to prove this result.

3.3 Soundness and completeness
In this section we shall derive two very important metatheorems about the
formal proof system S in the last section. These results show that the formal
theorems of the system exactly match their intended interpretation as logical
consequences, in the world of truth assignments. They thus connect two very
different ideas of when one statement follows from others. They foreshadow
similar results for predicate calculus later in the book, which are of much
weightier significance than within the context of propositional calculus. The
methods we shall use in this section to prove the results for propositional
calculus will be very valuable to us when we get to the predicate calculus.

The first of these metatheorems essentially says that any formal theorem of
the system S represents a logical consequence.

Theorem 3.4 Soundness theorem for S

Let φ be any formula and Γ a set of formulas. If Γ � φ, then Γ � φ. (In This is sometimes called the
correctness theorem.the case that the set Γ is empty, the result is to be read as saying that

if � φ, then � φ, i.e. φ is a tautology.)

Proof
We shall suppose that Γ � φ and show that for any truth assignment v, if v
satisfies Γ (i.e. v(γ) = T for all γ ∈ Γ), then v(φ) = T . If Γ is empty, then our argument

will show that v(φ) = T for all v.
(We can regard any v as satisfying
the empty set of formulas.)

Let

φ1, φ2, . . . , φn = φ

be a derivation of Γ � φ and v be a truth assignment satisfying Γ. We shall
use induction on the length of the derivation to show that v(φi) = T .

Basis of induction

The first line (φ1) of the derivation of Γ � φ could arise in two different ways:
by a use of the Rule of Assumptions; and as an axiom, i.e. an instance of one
of Ax 1, Ax 2 and Ax 3. We need to deal with each of these possibilities.

Suppose that φ1 is an assumption, so that it’s in the set Γ. As v satisfies Γ,
then in particular v(φ1) = T .

The other possibility is that φ1 is an axiom. All instances of Ax 1, Ax 2 and
Ax 3 are tautologies, as we asked you to show in Exercise 3.5(a) in Section 3.2.
Thus v(φ1) = T .

100

3.3 Soundness and completeness

Inductive step

We suppose that, for k > 1, we have shown v(φi) = T for each i with 1 ≤ i < k.
We shall show that v(φk) = T . The kth line of the derivation could have arisen
from a use of the Rule of Assumptions or as an instance of an axiom. In these
cases the same argument as used for the first line shows that v(φk) = T . The
one further possibility is that Modus Ponens was used to get the kth line.
That means that the kth line is φk where there are earlier lines φi, φj in the
original derivation of Γ � φ and φj is the formula (φi → φk). By the induction
hypothesis This is essentially what you were

asked to show in Exercise 3.5(b) in
Section 3.2.v(φi) = T and v((φi → φk)) = T,

so that from the truth table of → we have v(φk) = T .

This deals with the inductive step, so that the result follows by induction.

In theory one might derive Γ � φ and apply the soundness theorem as a means
of showing that Γ � φ. But for propositional formulas it’s usually somewhat By way of contrast, it might well

not be easier to test whether Γ � φ
for formulas involving predicates,
which are what we are aiming at,
using our study of propositional
formulas to help develop our ideas.

easier to test whether Γ � φ directly using truth assignments than to find
derivations in S. A more useful application of the soundness theorem is to
show when something is not derivable. For instance, let’s show that

(p → q) � ((q → p) → q)

is not derivable. Take the truth assignment v such that v(p) = v(q) = F . We
have

v((p → q)) = T and v
(
((q → p) → q)

)
= F,

so that

(p → q) �� ((q → p) → q).

By the soundness theorem, (p → q) � ((q → p) → q) cannot be derivable. It’s
handy to introduce the notation Γ �� φ for ‘Γ � φ is not derivable’, so that a This is similar to writing Γ �� φ for

φ not being a logical consequence
of Γ.

way of rephrasing the soundness theorem for this sort of application is as

if Γ �� φ then Γ �� φ.

Exercise 3.16
Decide which of the following are derivable in S. Explain each of your answers
in a way permitted by results established in the book so far. In particular,
any explanation why one of these is derivable shouldn’t exploit the complete-
ness theorem, which hasn’t yet been established – you should instead give a
derivation.

(a) ¬(q → ¬p) � ((¬q → p) → ¬(q → ¬p))

(b) � ((p → (p → ¬r)) → (q → r))

(c) {(pi → pi+1) : i ∈ N} � p3

(d) {(pi → pi+1) : i ∈ N} � (p2 → p4)

(e) {(pi → pi+1) : i ∈ N} � (p4 → p2)

101

3 Formal propositional calculus

There is another way of phrasing the soundness theorem in terms of consis-
tency, a property of formal systems which is of critical importance.

Definitions Consistency

Let Γ be a set of sentences. We say that Γ is inconsistent if there is a
formula θ for which both Of course, in the intended

interpretation θ and ¬θ are
contradictory statements.Γ � θ and Γ � ¬θ.

In the case that Γ is the empty set, we say that the system S is incon-
sistent .

We say that the set Γ is consistent if it is not inconsistent. In the case
that Γ is the empty set, we say that the system S is consistent .

For instance, the set {p,¬p} is inconsistent as there are very simple derivations
of {p,¬p} � θ and {p,¬p} � ¬θ, taking θ to be the formula p. Plainly, in
general if the set Γ contains both a formula and its negation, it is inconsistent.
Somewhat more effort is need to show that the set {¬(p → q),¬(q → r)} is
inconsistent.

Exercise 3.17

Show that the set {¬(p → q),¬(q → r)} is inconsistent. [Hint: Show that
¬(q → r) � q and ¬(p → q) � ¬q.]

An example of a consistent set is {¬(p → q),¬(r → q)} as we shall show soon.

Before we rephrase the soundness theorem in terms of consistency, we shall
explore some of the basic properties of the notion. Being told that a set Γ is You may have encountered a

similar situation if you have studied
connectedness in topology. It is
common to define ‘disconnected’ in
terms of a concrete piece of
information and then to define
‘connected’ as ‘not disconnected’.

inconsistent gives us some concrete information that there are derivations of a
certain sort involving Γ, whereas being told that Γ is consistent gives the less
tangible information denying that certain derivations exist. So it might not be
surprising that many results about consistency are proved by first rephrasing
them in terms of inconsistency, so that there are some concrete derivations to
play with!

We have already derived some useful results about inconsistency in Section 3.2.
One of these is as follows.

If, for some ψ, Γ � ψ and Γ � ¬ψ, then Γ � φ, for any formula φ, Exercise 3.8(c)

so that all formulas are derivable from an inconsistent set of assumptions.
Clearly the converse of this result also holds: if Γ � φ for any formula φ, then

102

3.3 Soundness and completeness

in particular both Γ � ψ and Γ � ¬ψ. In terms of inconsistency, this result
becomes

Γ is inconsistent if and only if Γ � φ for any formula φ,

and by negating this appropriately we have proved the following theorem
about consistency.

Theorem 3.5

Let Γ be a set of formulas (possibly empty). Then Γ is consistent if and
only if Γ �� φ for some φ.

One of the aims of formalizing mathematical argument is to provide a rigor-
ous framework for deriving results of mathematical substance, e.g. about the
integers or real numbers or geometry. We hope that it seems to you totally
undesirable that within such a framework one could prove two contradictory
statements. As most such formal frameworks in wider use incorporate a frag-
ment equivalent to the formal system S, Theorem 3.5 gives a further reason The result of Exercise 3.8(c) is

really the meaty bit here.why such a state of affairs would be undesirable: if the formal framework
is inconsistent, then every statement can be derived from it, meaning that
the mathematics has only trivial content. Being able to establish that sets
of sentences describing a mathematical theory are consistent is thus of major
importance.

Later in this section we shall require some further technical results about
consistency which we shall state as the following theorem.

Theorem 3.6

Let Γ be a set of formulas and φ a formula.

(a) Γ ∪ {¬φ} is consistent if and only if Γ �� φ.

(b) Suppose that Γ is consistent and Γ � φ. Then Γ ∪ {φ} is consistent.

Proof

(a) To get a handle on this we need to turn the required result into a statement
about inconsistency:

Γ ∪ {¬φ} is inconsistent if and only if Γ � φ.

We shall prove one half of this and leave the other for you as an exercise.
We shall show that if Γ ∪ {¬φ} is inconsistent, then Γ � φ.

Suppose that Γ ∪ {¬φ} is inconsistent. Then for some ψ we can derive
both of

Γ,¬φ � ψ and Γ,¬φ � ¬ψ.

By Theorem 3.2 of Section 3.2, we can then derive Γ � φ.

(b) This is left as an exercise for you.

103

3 Formal propositional calculus

Exercise 3.18

(a) Do the other half of the proof of Theorem 3.6(a), namely that if Γ � φ,
then Γ ∪ {¬φ} is inconsistent.

(b) Prove Theorem 3.6(b), namely that if Γ is consistent and Γ � φ, then
Γ∪{φ} is consistent. [We reckon that there is suitable machinery available
in Section 3.2 to do this quite smoothly. What will you actually attempt
to prove?]

As we are going to show that formal proof matches logical consequence, we
should expect similarities between results about formal proofs and results
about logical consequence. Results like Theorem 3.6 above which are ex- Theorem 3.6(a) turns out to match

the result of Exercise 2.76, which is
that Γ ∪ {¬φ} is satisfiable if and
only if Γ �� φ.

pressed in terms of consistency can be seen to match results in Section 2.6 of
Chapter 2 once we have established a link between consistency and satisfia-
bility of a set of formulas. The following rephrasing of the soundness theorem
gives part of this link.

Theorem 3.7

The following general statements about the system S are equivalent.

(A) For all formulas φ and all sets of formulas Γ, if Γ � φ then Γ � φ. This is the soundness theorem

(B) For all sets of formulas ∆, if ∆ is satisfiable then ∆ is consistent. Recall that ∆ is satisfiable if there
is a truth assignment v such that
v(δ) = T for all δ ∈ ∆.As the soundness theorem holds for S, statement (B) also holds for S.

Proof

We shall prove one half of this and leave the other half as an exercise for you.
We shall show that if (B) holds then (A) holds.

Suppose that (B) holds – a general principle for all sets ∆. Let φ be a formula
and Γ a set of formulas. We must show that if Γ � φ, then Γ � φ. It turns
out to be easier to prove the contrapositive of this, namely that

if Γ �� φ then Γ �� φ.

Suppose that Γ �� φ. Then there is some truth assignment v making all of Γ
true and φ false. This means that the set Γ ∪ {¬φ} is satisfiable (with this
v being a suitable truth assignment). It follows from (B) that Γ ∪ {¬φ} is
consistent. Then by Theorem 3.6(a) we can infer that Γ �� φ.

The completeness theorem will show that the converse of (B) above holds, so
that a set of formulas ∆ turns out to be consistent if and only if it is satisfiable
– another way of viewing the remarkable connection between the syntax and
semantics of the formal language!

Exercise 3.19

Prove the other half of Theorem 3.7. [Hints: Assume (A) – a general principle
for all φ and Γ. Take a set of formulas ∆ and prove (B) by showing that if
∆ is inconsistent, then ∆ is not satisfiable – assuming that ∆ is inconsistent
gives you some concrete derivations to exploit.]

104

3.3 Soundness and completeness

We can now show that the set {¬(p → q),¬(r → q)} mentioned earlier is
consistent. The set is satisfiable, using the truth assignment v defined by
v(p) = v(r) = T , v(q) = F . So using form (B) in Theorem 3.7, the set is
consistent.

As a consequence of the soundness theorem in the form (B) of Theorem 3.7,
we can now say something of fundamental importance about the system S,
as follows.

Theorem 3.8

The system S is consistent.

Proof

Take the set ∆ in (B) of Theorem 3.7 to be empty. Then ∆ is satisfied by
any truth assignment (in the sense that no such assignment makes any of the
formulas in ∆ false). Thus ∆ is consistent, using form (B) of the soundness
theorem, i.e. the system S is consistent. (If you are uneasy about the argument
saying that the empty set of formulas is satisfiable, then instead take ∆ to
be the set {(p → (q → p))}, which is more tangibly satisfiable and therefore
consistent! As the one formula in ∆ is an axiom of S, any derivation of ∆ � φ
is also one of � φ, and vice versa. So the consistency of ∆ entails that the
empty set is consistent.)

Given that the point of the system S is to give a starting point for the for-
malization of more substantial mathematics, had S been inconsistent, all our
efforts so far would have been a waste of time! But here’s a rhetorical question
for you – if we’d not set up the system with its intended meaning firmly in
mind, really guaranteeing that the soundness theorem would hold, would it Mind you, given how tricky it is to

derive desired formal theorems, you
might have found it entirely
believable that one couldn’t derive
� φ for all φ!

have been obvious from staring at the definition of the formal system that it
would be impossible to derive both � θ and � ¬θ for some θ?

Exercise 3.20
Decide which of the following sets of formulas are consistent. Explain each
answer in a way permitted by results established in the book so far. In
particular for any inconsistent set Γ, you’ll have to show that Γ � θ and Γ � ¬θ
for some θ – later on, you’ll be allowed to exploit the completeness theorem,
which tells you that inconsistency follows if Γ is not satisfiable.

(a) {(p → q), (q → r), (r → ¬p)}
(b) {¬(p → q), q}

105

3 Formal propositional calculus

Let us now state and apply the completeness theorem for the system.

Theorem 3.9 Completeness theorem for S

Let φ be any formula and Γ a set of formulas. If Γ � φ, then Γ � φ. (In This is sometimes called the
adequacy theorem.the case that the set Γ is empty, the result is to be read as saying that

if φ is a tautology, then it is derivable.)

This is a much less trivial result than the soundness theorem – the latter was a
straightforward consequence of taking axioms which are tautologies and valid
rules of inference for our formal system. In contrast, for the completeness
theorem the system has to have enough axioms and rules of inference to
derive all logical consequences; and it is in no way obvious that S does have
enough. We shall delay our proof of this theorem until the end of the section.
For the moment, let us look at some of its applications. First, let us obtain an
equivalent formulation of the statement of the theorem in terms of consistency
and satisfiability, along the lines of Theorem 3.7 for the soundness theorem.

Theorem 3.10

The following general statements about the system S are equivalent. When we prove the completeness
theorem later, we shall prove it in
form (D).

(C) For all formulas φ and all sets of formulas Γ, if Γ � φ, then Γ � φ.

(D) For all sets of formulas ∆, if ∆ is consistent, then ∆ is satisfiable.

Proof

We shall prove one half of this and leave the other half as an exercise for you.
We shall show that if (C) holds then (D) holds.

Suppose that (C) holds – a general principle for all sets Γ and formulas φ.
Let ∆ be a set of formulas. We shall prove the contrapositive of (D), i.e. we
shall suppose that ∆ is not satisfiable and show that ∆ is inconsistent.

Suppose that ∆ is not satisfiable. (Take a big breath and read on!) Take
any formula θ. Then every truth assignment which satisfies ∆ also satisfies
both θ and ¬θ!! (Well, you cannot find a truth assignment which gives a
counterexample to this last statement, as there aren’t any assignments which
satisfy ∆!) Thus we have

∆ � θ and ∆ � ¬θ.

So by (C) we have

∆ � θ and ∆ � ¬θ,

which means that ∆ is inconsistent, as required.

Exercise 3.21

Prove the other half of Theorem 3.10. [Hint: You may find Theorem 3.6
useful.]

106

3.3 Soundness and completeness

We can now answer a question raised in Section 2.6 of Chapter 2. Suppose
that Γ � φ where the set Γ is infinite. Is there some finite subset ∆ of Γ
for which ∆ � φ? By the completeness theorem we have Γ � φ. A formal
derivation of φ from assumptions Γ is finitely long so only uses finitely many
of these assumptions lying in some finite subset ∆ of Γ. This derivation also
shows that ∆ � φ. The soundness theorem then gives ∆ � φ, so the answer
to the question is yes!

One reason why we are devoting quite a lot of space to investigating the formal
system S for the propositional calculus is that this will prepare us well for
more mathematically significant work to come on the predicate calculus. We
shall prove a completeness theorem for a formal system of predicate calculus
and one of its very useful consequences is called the compactness theorem.
There is a similar result for the propositional calculus and although, like the
propositional calculus, it isn’t as useful as for the predicate calculus, it is well
worth meeting now.

Theorem 3.11 Compactness theorem

Let Γ be an infinite set of formulas in L. If every finite subset of Γ is The converse, that if Γ is satisfiable
then so is every finite subset, holds
trivially.

satisfiable, then so is Γ.

Proof
The result exploits both the soundness and completeness theorems for S, and
hinges on the following observation about consistency:

If every finite subset of Γ is consistent, then so is Γ.

Why does this hold? We shall prove it by showing that if Γ is inconsistent,
then some finite subset ∆ is also inconsistent. Suppose that Γ is inconsistent.
Then for some formula θ there are derivations of both

Γ � θ and Γ � ¬θ.

Each of these derivations is finitely long (the key point), so uses only finitely
many assumptions from the set Γ. Let ∆ be the set of the assumptions used
in one or the other of these derivations. Then the latter are also derivations
of

∆ � θ and ∆ � ¬θ,

so that ∆, which is a finite subset of Γ, is inconsistent.

Now we can prove the compactness theorem. Suppose that every finite sub- There are alternative proofs of the
compactness theorem which make
no use of the formal system S and
the completeness theorem. For one
such, see Exercise 3.28 at the end
of this section.

set of Γ is satisfiable. Then by the soundness theorem (Theorem 3.4) every
finite subset of Γ is consistent. By the observation above it follows that Γ is
consistent. So by the completeness theorem (Theorem 3.9) Γ is satisfiable.

The compactness theorem for propositional calculus can be used to prove re-
sults of mathematical significance, usually about infinite sets. We give one
example as an appendix to this section. The corresponding result for predi-
cate calculus is much more powerful and most of Chapter 6 is devoted to its
applications.

107

3 Formal propositional calculus

Exercise 3.22

Suppose that {φi : i ∈ N} is a set of formulas such that every truth assignment
makes at least one of the φi true. Show that there is an N ∈ N such that every
truth assignment makes at least one of φ0, φ1, . . . , φN true. [Hint: What can
you say about the satisfiability of the set of formulas {¬φi : i ∈ N}?]
Solution

As every truth assignment satisfies at least one of the φi, the set {¬φi : i ∈ N}
is not satisfiable. By the compactness theorem it follows that some finite
subset ∆ of {¬φi : i ∈ N} is not satisfiable. Let N be the largest i for which
¬φi is in ∆. Then

∆ ⊆ {¬φ0,¬φ1, . . . ,¬φN},
so that the set {¬φ0,¬φ1, . . . ,¬φN} is not satisfiable. But this means that
every truth assignment satisfies at least one of φ0, φ1, . . . , φN , as required.

Exercise 3.23

Show that the following general statements are equivalent. (Γ and Σ are sets There is no need for your solution
to use the completeness theorem or
any other results about derivations,
so see if you can do this purely in
terms of satisfiability, logical
consequence etc.

of formulas and φ is a formula.)

(E) For all Γ, if every finite subset of Γ is satisfiable, then so is Γ.

(F) For all Σ and φ, if Σ � φ then ∆ � φ, for some finite subset ∆ of Σ.

Let’s now move towards proving the completeness theorem for the system S.
We shall prove this in the form

for all sets of formulas ∆, if ∆ is consistent, then ∆ is satisfiable

of Theorem 3.10. We shall take a consistent set of formulas ∆ and show that
there is a truth assignment v satisfying it. It will help us first to stand this
on its head and ask whether, given a truth assignment v, there is anything
interesting about the set of formulas satisfied by v. This is one of the places
where we have to pay attention to the formal language L – obviously the
formulas available for v to satisfy depend on the propositional variables and
connectives from which formulas can be built up. Here we shall continue to
take the language L with the variables {pi : i ∈ N} and the connectives →,¬,
and we’ll continue to use letters like p to stand for one of the pis.

Notation

Let v be a truth assignment appropriate for the language L. We shall
use Σv to denote the set of formulas in L satisfied by v, that is,

Σv = {φ : v(φ) = T }.

What might we say about Σv? First, it is consistent – this follows from the
soundness theorem, as it is satisfied by v. Next, for every formula φ, exactly
one of v(φ) and v(¬φ) equals T , so that exactly one of φ and ¬φ belongs to
Σv. In some sense, as we’ll clarify in a moment, Σv is as big a consistent set

108

3.3 Soundness and completeness

of formulas as we can construct using L. It will help to have some definitions,
as follows.

Definitions Complete, maximal consistent

Let Σ be a set of formulas in a language L.

We shall say that Σ is complete for L if it is consistent and for each
formula φ in L, exactly one of φ and ¬φ belongs to Σ.

We shall say that Σ is maximal consistent for L if

(i) Σ is consistent;

(ii) for any consistent set of formulas Σ′ in L with Σ ⊆ Σ′, we have Or, equivalently, if φ is a formula
in L with φ �∈ Σ, then Σ ∪ {φ} is
inconsistent.

Σ = Σ′.

It turns out that for our language L these definitions are equivalent, as we
shall now show.

Theorem 3.12

Let Σ be a set of formulas in a language L. Then Σ is complete if and
only if it is maximal consistent (for the same language L).

Proof

We shall prove one half of this result and leave the other for you as an exercise.

Suppose that Σ is maximal consistent. Then Σ is consistent, so that for Σ to
be complete we need to show that for any formula φ, exactly one of φ and ¬φ
is in Σ. Clearly we cannot have both φ and ¬φ in Σ, as otherwise Σ would If both φ and ¬φ are in Σ, then use

of the Rule of Assumptions gives
both Σ � φ and Σ � ¬φ, so that Σ
is inconsistent.

be inconsistent. To show that one of the formulas is in Σ, we’ll look at what
happens depending on whether or not Σ ∪ {¬φ} is consistent.

If Σ ∪ {¬φ} is consistent, then as

Σ ⊆ Σ ∪ {¬φ}
and Σ is maximal consistent, we must have

Σ = Σ ∪ {¬φ},
so that ¬φ ∈ Σ.

Otherwise, if Σ ∪ {¬φ} is inconsistent, then, by Theorem 3.6(a),

Σ � φ.

But then, by Theorem 3.6(b), Σ ∪ {φ} is consistent, so using again that Σ is
maximal consistent, we have φ ∈ Σ.

Thus if Σ is maximal consistent, then it is complete.

109

3 Formal propositional calculus

Exercise 3.24

Prove the other half of Theorem 3.12, namely that if Σ is complete, then it is
maximal consistent.

So given a truth assignment v, the set of formulas Σv is complete, or equiv-
alently maximal consistent, for L. What we shall use in our proof of the
completeness theorem is a complementary result, that every complete set of
formulas is satisfied by a unique truth assignment.

Theorem 3.13

Let Σ be a complete set of formulas for the language L. Let v be the
truth assignment defined by

v(p) =

{
T, if p ∈ Σ,
F, if ¬p ∈ Σ,

for all propositional variables p in L. Then v is the unique truth assign- By unique, we mean relative to the
language L. Obviously if we add a
new propositional variable q to L,
the truth value of q under a truth
assignment is irrelevant to whether
the assignment satisfies Σ.

ment satisfying Σ.

Proof

First note that v is well-defined as a function thanks to Σ being complete – for
each propositional variable p, exactly one of the formulas p and ¬p is in Σ, so
that for each variable p there is a well-defined value of v(p). Should v satisfy
Σ, this also forces v to be the unique truth assignment satisfying Σ. This is
because if u is any truth assignment satisfying Σ, then it is forced to give the By Theorem 2.2 of Section 2.3.

same values as v to each propositional variable, so is the same assignment as
v.

We shall show that, for all formulas φ,

v(φ) = T if and only if φ ∈ Σ

by using induction on the length (number of connectives) of φ. As you will
see, some of the steps require results about our formal proof system.

The formulas of length 0 are just the propositional variables p, for which the
result

v(p) = T if and only if p ∈ Σ

holds by the definition of the assignment v.

For the inductive step, suppose that the required result holds for all formulas
in L with n or fewer connectives. Let φ be a formula with n + 1 connectives.
There are two possibilities for φ with which we must cope, depending on
whether its principal connective is ¬ or →.

The case when φ is of the form ¬θ is pleasantly straightforward. The inductive
hypothesis will apply to θ as it has n connectives. We wish to show that

v(¬θ) = T if and only if ¬θ ∈ Σ.

110

3.3 Soundness and completeness

For one way round, suppose that v(¬θ) = T . Then v(θ) = F , so that by the
induction hypothesis we have θ �∈ Σ. As Σ is complete, we must then have
¬θ ∈ Σ, as required.

For the other way round, suppose that ¬θ ∈ Σ. Then as Σ is complete, we have
θ �∈ Σ. By the inductive hypothesis we then have v(θ) = F . Then v(¬θ) = T ,
as required.

The case when φ is of the form (θ → ψ) is more complicated. As there are n
connectives distributed between θ and ψ, the induction hypothesis applies to
both these formulas. We shall deal with this case by showing that

(i) if v((θ → ψ)) = T then (θ → ψ) ∈ Σ,

(ii) if v((θ → ψ)) = F then (θ → ψ) �∈ Σ.

To show (i), note that v((θ → ψ)) = T only if v(θ) = F or v(ψ) = T . We shall
deal with these two cases separately.

In the case that v(θ) = F , the inductive hypothesis gives us that θ �∈ Σ, so as
Σ is complete we have ¬θ ∈ Σ. By an appropriate substitution, the result of
Exercise 3.7(f) of Section 3.2 gives us that

¬θ � (θ → ψ),

so that as Σ � ¬θ (by the Rule of Assumptions, as ¬θ ∈ Σ), we have

Σ � (θ → ψ).

Then as Σ is consistent we cannot have ¬(θ → ψ) ∈ Σ. As Σ is complete we
then have (θ → ψ) ∈ Σ, as required.

In the case that v(ψ) = T , the inductive hypothesis gives us that ψ ∈ Σ.
Then by the Rule of Assumptions we have Σ � ψ, so that using the axiom
(ψ → (θ → ψ)) and Modus Ponens we obtain Σ � (θ → ψ). As before, the
completeness of Σ gives us that (θ → ψ) ∈ Σ, as required.

To show (ii), note that v((θ → ψ)) = F exactly when v(θ) = T and v(ψ) = F .
By the inductive hypothesis this means that θ ∈ Σ and ψ �∈ Σ, which as Σ is
complete means that ¬ψ ∈ Σ. Could we have (θ → ψ) ∈ Σ? If we did, the
derivation

(1) θ Ass
(2) (θ → ψ) Ass
(3) ψ MP, 1, 2

would show that

Σ � ψ,

while, as ¬ψ ∈ Σ, one use of the Rule of Assumptions gives

Σ � ¬ψ,

contradicting that Σ is consistent. This means that (θ → ψ) �∈ Σ, as required.

We have dealt with all possible formulas of length n + 1 and the result, for all
φ, follows by induction.

111

3 Formal propositional calculus

Thanks to this theorem, the mapping

v �−→ Σv

is a one–one correspondence between the set of all truth assignments on the
language L and the set of all complete sets of formulas in L – the inverse map
sends a complete set Σ to the unique v satisfying it and clearly the set Σv for
this v is the original Σ.

We shall at last prove the completeness theorem! As you will see, the extra One might be tempted to think
that it is obvious that a consistent
set is a subset of some maximal
consistent set – the latter being
equivalent to a complete set. But
this is non-trivial!

ingredient we need is that a consistent set of formulas ∆ can be shown to be a
subset of some complete set Σ. It then follows from Theorem 3.13 that there
is a truth assignment satisfying Σ and thus also ∆.

Theorem 3.9 Completeness theorem for S

Let φ be any formula and Γ a set of formulas. If Γ � φ, then Γ � φ.

Proof
Using the result of Theorem 3.10, we shall prove this in the form

for all sets of formulas ∆, if ∆ is consistent, then ∆ is satisfiable.

Suppose that the set of formulas ∆ is consistent. We shall show that there
is a complete set of formulas Σ in the same language as ∆ with ∆ ⊆ Σ. A
key point is that our language L contains the countably many propositional
variables p0, p1, p2, . . . along with the connectives ¬,→, so that the set of all
formulas in L is also countable. This means that we can list all the formulas
(without repetitions) as

φ0, φ1, φ2, . . . , φn, . . .

with each formula appearing as φn for some n ∈ N. We shall exploit this list
to define a chain of sets of formulas Σn, for n ∈ N, recursively, as follows:

Σ0 = ∆,

Σn+1 =

{
Σn ∪ {φn}, if Σn � φn,
Σn ∪ {¬φn}, if Σn �� φn,

for n ≥ 0.

Now we define Σ by

Σ =
⋃

n∈N

Σn.

Clearly

∆ = Σ0 ⊆ . . . ⊆ Σn ⊆ Σn+1 ⊆ . . . ⊆ Σ

for all n ∈ N.

We shall show by induction that Σn is consistent for all n.

By definition Σ0 = ∆ and we are supposing that ∆ is consistent, so the result
holds for n = 0. For the inductive step, we’ll suppose that Σn is consistent
and show that Σn+1 is consistent. There are two cases, depending on whether
or not Σn � φn. In the first case, when Σn � φn, Theorem 3.6(b) gives us
that Σn ∪ {φn} is consistent, as Σn is consistent. In the second case, when

112

3.3 Soundness and completeness

Σn �� φn, Theorem 3.6(a) gives us that Σn ∪ {¬φn} is consistent. In both
cases we get that Σn+1 is consistent.

It follows by induction that Σn is consistent for all n ∈ N. We can use this to
show that Σ is consistent, as follows.

Suppose that Σ is inconsistent. Then for some formula θ we can derive both
Σ � θ and Σ � ¬θ. Each of these derivations is finitely long and thus uses only
finitely many assumptions out of Σ. Each of these assumptions is a φn for
some n, so appears in Σ by the stage of constructing Σn+1. As there are only Remember, every formula in the

language appears in the list as φn

for some n ∈ N.
finitely many assumptions involved in these two derivations, this means that
they are all included in the same ΣN , where N is the largest of these ns. But
then we have ΣN � θ and ΣN � ¬θ, which contradicts ΣN being consistent.
Thus Σ must in fact be consistent.

All that remains for Σ to be complete is to show that for all formulas φ,
exactly one of φ and ¬φ is in Σ. So take any formula φ. Then φ must appear
in the list of all formulas of L as φn for some n ∈ N. Then either φn or ¬φn

is inserted into Σn+1 and thus into Σ, i.e. either φ or ¬φ is in Σ. Of course,
as Σ is consistent, it cannot contain both φ and ¬φ, so we have the required
result.

Thus we have a complete set Σ such that ∆ ⊆ Σ. By Theorem 3.13 there is a
truth assignment satisfying Σ and thus satisfying our original consistent set
∆.

This is of course a very indirect way of proving that given Γ and φ such that
Γ � φ, there is a derivation of Γ � φ. Indeed the proof gives no clue what
such a derivation might look like. However, it gives a very helpful foretaste
of the proof of the corresponding result for predicate calculus later on! We’ve
included a constructive proof of a weak form of the completeness theorem as
Exercise 3.26 below.

Exercise 3.25
In our proof of the completeness theorem above, we extend the given consistent
set ∆ to a complete set Σ. The truth assignment satisfying Σ guaranteed by
Theorem 3.13 is in fact unique (relative to the language L). Does this mean
that there is only one truth assignment satisfying ∆? If you think that this
is not necessarily the case, where in our proof do we narrow ourselves down
to a single truth assignment?

Now that we have proved the soundness and completeness theorems for the
system S, we have an alternative way of phrasing the questions we asked
about decidability at the end of Section 2.6 of Chapter 2. We can now ask for
an algorithmic procedure to decide whether Γ � φ rather than whether Γ � φ.
To test whether Γ � φ superficially requires us to check each truth assignment
satisfying Γ to see whether it also satisfies φ. The mechanical nature of formal
proof suggests a different sort of procedure to check whether Γ � φ.

Consider the problem of deciding whether a single propositional formula with
variables in the set {p1, p2, . . . , pn} is derivable from the empty set of assump-
tions. It can be shown that there is a systematic process which generates a

113

3 Formal propositional calculus

list of all the formal theorems using these variables, with each theorem � φ
appearing in the list after finitely many steps. But this alone does not pro-
vide an algorithmic decision procedure – in the case that �� φ, this might only Given that the system S is

consistent, for those φ for which
� ¬φ, the latter appears in the list
of all formal theorems at some
finite stage and the consistency of
S then tells us that �� φ. But there
are plenty of formulas φ for which
neither � φ nor � ¬φ.

show up once the infinite list of all derivations has been generated. It’s not
at all obvious from inspecting just the formal system S that there is such an
algorithmic procedure. However, there is an easy algorithmic procedure for
deciding whether a formula is a tautology – just work out its truth table!

This seems to suggest an advantage to testing logical consequence rather than
derivability. But the boot is to some extent on the other foot when we are
trying to decide whether Γ � φ in the case when Γ is infinite and is even more
in favour of derivation when it comes to predicate logic, regardless of the size
of Γ.

In the next section we shall look at some further issues about propositional
calculus. We shall look at some alternatives to the formal system S and at
whether some of the axioms or rules for a given system depend on each other,
or are independent of each other.

An application of the compactness theorem

Here is an application of the compactness theorem which foreshadows more
significant applications of the equivalent theorem for predicate calculus later
in the book. It concerns partially ordered sets. If you haven’t met them
before, it might be better to skip the next bit of reading and go straight on
to Exercise 3.22. We shall discuss partially ordered sets in somewhat more
detail and from scratch in Section 4.4 of Chapter 4. If you have met partial
orders before, here’s a reminder of some definitions of and about them.

Definitions Strict partial order

Let A be a set and R a subset of A × A (so that R is a binary relation
on A). We shall write aRb as a shorthand for (a, b) ∈ R. R is a strict
partial order on A, or A is strictly partially ordered by R, if it has the
following properties:

irreflexive for all a in A, it is not the case that aRa;

transitive for all a, b and c in A, if aRb and bRc then aRc.

If a strict partial order R has the following additional property:

linear for all a and b in A, aRb or a = b or bRa,

it is a strict linear order on A, and A is strictly linearly ordered by R.

Familiar examples are the usual < on sets like N, Q and R, which are all strict
linear orders. One example of strict partial order which is not linear is ‘a is a
proper divisor of b’ on the set of positive integers. Another is ‘U is a proper
subset of V ’ on P(N), the set of all subsets of N.

It can be shown that for any strict partial order R on a finite set A, one can
find a linear order R′ on the same set which extends R, that is, such that
if aRb then aR′b. For instance, if A = {a, b, c} and R = {(a, b)}, which is a

114

3.3 Soundness and completeness

strict partial order, then adding the pairs (b, c), (a, c) to R gives a strict linear
order R′. The compactness theorem can be used to show that the same holds
for a strict partial order R on a countably infinite set A, as follows.

For each ordered pair (a, b) of elements of A, introduce a propositional variable So for each a �= b in A, we have
both symbols pa,b and pb,a.pa,b and let L be the language consisting of these variables along with the

connectives ¬ and →. As A is countably infinite, there are countably many of
these variables, so that we can regard L as a disguised version of the language
to which the compactness theorem applies. We now define a set of formulas Γ
in this language as follows, using ∧ and ∨ as abbreviations, rather than their
equivalent representations using ¬ and →:

Γ = {pa,b : a, b ∈ A, aRb} ∪ {¬pa,a : a ∈ A}
∪ {((pa,b ∧ pb,c) → pa,c) : a, b, c ∈ A}
∪ {(pa,b ∨ pb,a) : a, b,∈ A, a �= b}.

What does this Γ have to do with our problem? We shall show that Γ is
satisfiable – this is where the compactness theorem will come in. Then we
take a truth assignment v satisfying Γ and from v we can define a binary
relation R′ on A by

aR′b if v(pa,b) = T.

This will be a strict linear order on A extending the partial order R, as
required. Why? First, as v satisfies the set {pa,b : a, b ∈ A, aRb}, we have
that for all a, b ∈ A, if

aRb,

then

v(pa,b) = T,

so that by the definition of the relation R′,

aR′b.

Thus the relation R′ extends the relation R. Next, v satisfies {¬pa,a : a ∈ a},
so that for all a ∈ A it is not the case that aR′a, so that the relation R′ is
irreflexive. In a similar way, as v satisfies the rest of Γ, the relation R′ is
transitive and linear on A, so that R′ is indeed a strict linear order on A
extending R.

So how do we know that Γ is satisfiable? Take any finite subset ∆ of Γ.
Once we have shown that ∆ is satisfiable, it will follow from the compactness
theorem that Γ is satisfiable. As ∆ is finite, it involves only finitely many of
the variables pa,b, so refers only to elements in a finite subset B of A. Then
∆ must be a subset of the set ∆′ defined by

∆′ = {pa,b : a, b ∈ B, aRb} ∪ {¬pa,a : a ∈ B}
∪ {((pa,b ∧ pb,c) → pa,c) : a, b, c ∈ B}
∪ {(pa,b ∨ pb,a) : a, b,∈ B, a �= b},

and if ∆′ can be satisfied, then so can ∆. Define the subset S of A × A by

S = {(a, b) : a, b ∈ B, aRb} (or equivalently R ∩ (B × B)).

115

3 Formal propositional calculus

This set of pairs is the restriction of the strict partial order R to the finite
subset B of A, so is itself a strict partial order. It can be shown that a strict
partial order on a finite set can be extended to a linear order on the same set,
so that S can be extended to a linear order S′ on the finite set B. We then
use S′ to define a truth assignment u on the propositional variables occurring
in ∆ and ∆′ by

u(pa,b) = T if aS′b,

for all a, b ∈ B. By similar reasoning to that we used above for v and Γ, u
must satisfy ∆′ and thus also ∆. This is the last detail required to complete
our argument that R can be extended to a linear order R′ on A.

We shall prove the same result later in the book using the compactness theo-
rem for the predicate calculus, which is a much more natural environment for
axiomatizing the theory of partial and linear orders. But it is interesting to
see that the more humble propositional calculus can be used to give the same
result!

Further exercises

Exercise 3.26
In this exercise we ask you to prove a weak version of the completeness theo- This proof is based on one given by

the Hungarian logician and
computer scientist Laszlo Kalmar
(1905–1976).

rem, namely

for all formulas φ, if � φ then � φ,

in a way which is essentially constructive, i.e. lurking within the details of the
proof is a recipe for creating a derivation within S of a given tautology φ.

(a) Let φ be a formula involving variables in the list p1, p2, . . . , pn and let v
be a truth assignment. Define formulas P1, P2, . . . , Pn by

Pi =

{
pi, if v(pi) = T,
¬pi, if v(pi) = F,

for i = 1, 2, . . . , n.

Show that if v(φ) = T , then

P1, P2, . . . , Pn � φ,

and if v(φ) = F , then

P1, P2, . . . , Pn � ¬φ.

[Hints: Use induction on the length of φ. Bear in mind that for each
φ you will have to deal with what happens both when v(φ) = T and
when v(φ) = F . And, for the inductive step, when dealing with φ of
the form (θ → ψ), the case v(φ) = T splits into the subcases v(θ) = F or
v(ψ) = T . Obviously you’ll need various formal theorems of the system
S, but you’ve met them all before in one guise or other in this section and
in Section 3.2. Offhand, the following will probably help, though there
are doubtless plenty of good alternatives:

� (φ → φ), � (θ → ¬¬θ), ¬θ � (θ → ψ),

ψ � (θ → ψ), θ,¬ψ � ¬(θ → ψ);

and metatheorems like the Deduction Theorem will come in useful.]

116

3.3 Soundness and completeness

(b) Now suppose that φ is a tautology, so that v(φ) = T for truth assignments
on the variables p1, p2, . . . , pn. Show that � φ as follows.

(i) Let v and v′ be truth assignments such that

v(pi) = v′(pi) for all i = 1, 2, . . . , n − 1,

and

v(pn) = T and v′(pn) = F.

Define Pi for i = 1, 2, . . . , n− 1 as in part (a) using the values both v and
v′ give to p1, p2, . . . , pn−1. Then using the result of part (a) for v and v′,
we have derivations

P1, P2, . . . , Pn−1, pn � φ

and

P1, P2, . . . , Pn−1,¬pn � φ.

Show how to deduce that The result of Exercise 3.10(f) of
Section 3.2 might be useful.

P1, P2, . . . , Pn−1 � φ.

(ii) Explain how to repeat the process above to show that � φ.

Exercise 3.27

Suppose that, for each i ∈ N, pi is a propositional variable. Let Σ be a set
of sentences of the propositional calculus. Suppose that all truth assignments
which satisfy Σ make at least one pi true. Show that for some n ∈ N,

Σ � p1 ∨ p2 ∨ . . . ∨ pn.

Exercise 3.28
In this exercise we ask you to prove the compactness theorem within the
realm of truth assignments and satisfiability, without going via the formal
proof system.

Suppose that Γ is a set of formulas using the propositional variables pi for
i ∈ N such that every finite subset ∆ is satisfiable. This exercise will lead you
through the construction of a truth assignment v satisfying Γ. We shall define
a sequence of truth assignments {vn}n∈N where the domain of each vn is the
set {p0, p1, . . . , pn}. It might make the exercise more readable to say that a
truth assignment u agrees with vn on {p0, p1, . . . , pn} when

u(pi) = vn(pi) for i = 0, 1, . . . , n.

We shall ensure that for all n ≥ 0, vn+1 agrees with vn on {p0, p1, . . . , pn},
and we shall use these vn to define our assignment v satisfying Γ.

(a) Show that there is a truth assignment v0 defined just on the propositional
variable p0 such that any finite subset of Γ can be satisfied by a truth
assignment u agreeing with v0 on {p0}. [Hints: If taking v0(p0) = T gives
v0 the required property, then we are done. If taking v0(p0) = T does not
give v0 the required property, this means that there is some finite subset
∆0 of Γ which cannot be satisfied by any truth assignment u agreeing
with v0 on p0. In this case, set v0(p0) = F and show that for any finite

117

3 Formal propositional calculus

subset ∆ of Γ there is a truth assignment u agreeing with v0 on p0 which
satisfies the finite set ∆ ∪ ∆0.]

(b) Suppose that for n ≥ 0 the truth assignment vn has the property that
any finite subset of Γ can be satisfied by a truth assignment u agreeing
with vn on {p0, p1, . . . , pn}. Show that there is a truth assignment vn+1

agreeing with vn on {p0, p1, . . . , pn} with the property that any finite
subset of Γ can be satisfied by a truth assignment u agreeing with vn+1

on {p0, p1, . . . , pn+1}. [Hints: If taking vn+1(pn+1) = T gives vn+1 the
required property, then we are done. What can be said when taking
vn+1(pn+1) = T does not give vn+1 the required property? Why does
taking vn+1(pn+1) = F in this case give vn+1 the required property?]

(c) By parts (a) and (b) we can define a sequence of truth assignments
{vn}n∈N such that vn+1 agrees with vn on {p0, p1, . . . , pn}. Define a truth
assignment v on the set of all propositional variables by

v(pn) = vn(pn) for each n.

Note that v then agrees with each vn on {p0, p1, . . . , pn}. Show that v
satisfies Γ. [Hints: Take any formula φ ∈ Γ. Then there is a largest n for
which the variable pn appears in φ. What can be said about vn(φ)?]

Exercise 3.29
Let R be a subset of A × B, where A and B are countably infinite sets, such Regard A as a set of women and,

for each a ∈ A, Ra as the set of
men that a knows. Then the
function f gives a way for each
woman to marry one of the men
she knows and the one–one
condition on f means that this can
be done monogamously. For a
proof of the result, called the
marriage theorem, when A is a
finite set, see Wilson [30].

that

1. for each a ∈ A, the set Ra = {b ∈ B : (a, b) ∈ R} is non-empty and finite;

2. for each finite subset C of A, there are at least as many elements in the
set

⋃{Ra : a ∈ C} as in C.

It can be shown that, for each finite subset C of A, there is a one–one function
f : C −→ B such that f(a) ∈ Ra, for all a ∈ C. Assuming this result, use the
compactness theorem to show that there is a one–one function f : A −→ B
such that f(a) ∈ Ra, for all a ∈ A.

[Hints: Let L be the language with a propositional variable pa,b for each pair
(a, b) in R. Note that as A, B are countable, so is the set of propositional
variables of L. For each a ∈ A, devise a formula θa which is satisfied by a
truth assignment v when v(pa,b) = T for exactly one of the bs in the set Ra.
Then define a set Γ consisting of all these formulas θa along with appropriate Can you see what a truth

assignment v satisfying Γ has to do
with the desired function f?

formulas that preclude, for each b ∈ B, pa,b and pa′,b being satisfied for distinct
a, a′ ∈ A. Use the compactness theorem to show that Γ is satisfiable.]

118

3.4 Independence of axioms and alternative systems

3.4 Independence of axioms and alternative
systems

In this section we shall look at some alternatives to the proof system S dis-
cussed so far. We have never claimed that the system S is a particularly
obvious formalization of ‘natural’ argument. It does however do at least one
particular job well, namely matching the intended interpretation of formulas
well enough to yield both a soundness and completeness theorem. One could
ask whether there are formal systems which would achieve the same, but
which are in some way ‘nicer’. Perhaps their axioms and rules of inference
might more obviously capture the essence of ‘implies’ and ‘not’ than Ax 1,
Ax 2 and Ax 3. Perhaps one could do with fewer axioms and rules. This last But does fewer mean better?

remark also prompts a different sort of question about the system S. Are any
parts of it redundant in the sense that one of the axioms or rules can in fact
be derived from the remaining axioms and rules of the system? Or is each of
them independent of the remainder?

This section includes several results of the sort which cover all derivations of a
given formal system. So we will make considerable use of proof by mathemat-
ical induction on the length of a derivation, which is the key way of capturing
such generality. For instance, we shall give two particular systems and use
this method to show that if Γ � φ is derivable within one of the systems, then
it is derivable in the other. It will also be used in proving analogues of the
soundness theorem aimed at showing when something is not derivable, as at
the beginning of Section 3.3.

Note that we shall only look at formal systems of the same sort as S, in the There are other useful and
important ways of treating formal
proof, for instance in the form of a
tree.

sense that their derivations are finite sequences in which each step exploits
given axioms and rules of the system. As a reminder, here is a summary of
the axioms and rules for S.

Axioms: all instances of

(Ax 1) (φ → (ψ → φ)),

(Ax 2) ((φ → (ψ → θ)) → ((φ → ψ) → (φ → θ)))

(Ax 3) ((¬φ → ¬ψ) → (ψ → φ)),

where φ, ψ, θ are any formulas of L.

Rules: Rule of Assumptions and Modus Ponens.

As you’d expect, by the Rule ofAssumptions we mean that within a derivation
of Γ � φ, a formula from Γ can be used on a line, and by Modus Ponens we
mean that if θ and (θ → ψ) appear on earlier lines of a derivation, then ψ can
be derived.

As our first example of an alternative system, let’s take the system S′ with
the same rules as S, the axioms Ax 1 and Ax 2, but, instead of Ax 3, the axiom
scheme Ax 3′ defined as follows:

(Ax 3′) ((¬φ → ψ) → ((¬φ → ¬ψ) → φ)),

for all formulas φ, ψ.

We shall use the notation Γ �S φ for derivations in the system S and the
notation Γ �S′ φ for derivations in the system S′. First observe that the
alternative axiom Ax 3′ of S′ is a tautology, so that by the completeness

119

3 Formal propositional calculus

theorem for the original system S, any instance of this axiom is a theorem of
S. You ought to expect (quite correctly!) that this means that any formal
theorem of S′ is also a formal theorem of S. Actually the converse also holds
and the system S′ is fully equivalent to S in the sense that

Γ �S φ if and only if Γ �S′ φ,

for all Γ, φ. Rather than use the sledgehammer of the completeness theorem Later we shall consider systems for
which the completeness theorem
might not hold, in which case the
method of mathematical induction
on the length of derivation is the
only available option.

for the system S to justify one way round of this, we shall use a method more
intrinsic to the nature of derivations, namely mathematical induction on the
length of derivation in S, to show that

if Γ �S φ then Γ �S′ φ,

and mathematical induction on the length of derivation in S′ to show that

if Γ �S′ φ then Γ �S φ.

We shall prove the second of these in grizzly (but, we hope, revealing) detail
and leave the first as an exercise for you. We shall assume that Γ �S′ φ and
show that Γ �S φ. As Γ �S′ φ there is a derivation

φ1, φ2, . . . , φn

in S′, where φn is φ and all the lines φi arise using one of the rules or axioms
of S′, including use of the Rule of Assumptions (which is one of the rules of
S′) with formulas out of the set Γ. We shall use mathematical induction to If you have leapt to the conclusion

that all we really need to show is
that the only feature of S′ which is
different from those of S, namely
the axiom scheme Ax3′, can be
derived in S, then well done!

show that

Γ �S φi

for each i = 1, 2, . . . , n.

Basis of induction

The first line (φ1) of the derivation of Γ �S′ φ could arise in two different
ways: by a use of the Rule of Assumptions; and as an axiom of S′, i.e. an
instance of one of Ax 1, Ax 2 and Ax3′. We need to deal with each of these
possibilities.

As S also has the Rule of Assumptions and the axiom schemes Ax 1 and
Ax 2, if any of these were used to derive φ1 in the S′ derivation, the same
justification produces a corresponding line φ1 in a derivation in S.

The other possibility is that φ1 is an instance of Ax 3′, of the form The φ in this formula is not
necessarily the same φ as derived
in the Γ �S′ φ. It’s just that I can’t
be bothered to use another Greek
letter!

((¬φ → ψ) → ((¬φ → ¬ψ) → φ)),

and our task must be to show in S that we can derive

�S ((¬φ → ψ) → ((¬φ → ¬ψ) → φ)).

This turns out to be quite reasonable, not least because we can exploit the
deduction theorem for S. First we show that from the set of assumptions
{(¬φ → ψ), (¬φ → ¬ψ), ¬φ} we can derive a contradiction – this is pretty
clear, as simple uses of MP give derivations in S of

{(¬φ → ψ), (¬φ → ¬ψ), ¬φ} �S ψ,

120

3.4 Independence of axioms and alternative systems

and

{(¬φ → ψ), (¬φ → ¬ψ), ¬φ} �S ¬ψ.

Then by Theorem 3.2 (proof by contradiction) of Section 3, which is a result Note that Theorem 3.2 is a
metatheorem specifically of the
system S. Its use here is fine, as we
are trying to find a derivation in S.
But be careful when trying to
construct derivations in other
systems, e.g. the system S′, not to
assume that the same metatheorem
necessarily holds for this other
system. It may well hold (and does
for S′), but the proof of the
metatheorem will almost certainly
be different than it was for our
original system S, as it has to
exploit the features of S′ rather
than S.

about the system S, we have

{(¬φ → ψ), (¬φ → ¬ψ)} �S φ.

A couple of applications of the deduction theorem, again a result for S, gives
the required result:

�S ((¬φ → ψ) → ((¬φ → ¬ψ) → φ)).

So in all cases we have a derivation in S of Γ �S φ1.

Inductive step

We suppose that, for k > 1, we have shown Γ �S φi for each i with 1 ≤ i < k.
We shall show that Γ �S φk. The kth line of the derivation could have arisen
from a use of the Rule of Assumptions or as an instance of an axiom. In these
cases the same argument as used for the first line shows that Γ �S φk. The
one further possibility is that Modus Ponens was used to get the kth line.
That means that the kth line is φk where there are earlier lines φi, φj in the
original derivation in S′ of Γ �S′ φ and φj is the formula (φi → φk). By the
induction hypothesis

Γ �S φi and Γ �S (φi → φk),

so that as Modus Ponens is a rule of the system S, we have a derivation in S
of Γ �S φk, as required.

This deals with the inductive step, so that the result follows by mathematical
induction, that is, if Γ �S′ φ, then Γ �S φ.

A few observations on this argument. First, once one has seen the full argu-
ment, one becomes much more confident that what is required for a convincing
argument is to show that any axiom or rule of the system S′ is a formal the-
orem or metatheorem for the system S. Of course if an axiom or rule is in
common to both systems, then this doesn’t take much doing! Second, a cau-
tionary note. To show that instances of the axiom Ax 3′ of S′ can be derived
in S, we used several results about S (the deduction theorem and proof by
contradiction) that actually required quite a lot of justification in a previous
section. So when attempting to show that formal theorems of one system are
formal theorems of another, be prepared to establish, perhaps with a lot of
effort, helpful results and metatheorems of these systems along the way. Some
of the next exercises could well give you a taste of this sort of effort (if not
for it!).

We are going to ask you to show that if Γ �S φ, then Γ �S′ φ. Your argument
would be greatly assisted if the deduction theorem, which we have proved as
a metatheorem for the system S, also holds for the system S′. It does, so our
first exercise below asks you to prove this.

Exercise 3.30

Prove the deduction theorem for the system S′, namely that if Γ, φ �S′ ψ,
then Γ �S′ (φ → ψ).

121

3 Formal propositional calculus

Solution

Our full solution would look exactly the same as the proof given for Theo-
rem 3.3 in Section 3.2, except that the one reference to Ax 3 would be replaced
by reference to Ax 3′! This reference occurs when we are covering the case
that a line Γ, φ � ψi arises because ψi is an instance of an axiom – and in our
proof it turned out not to matter what the axiom looked like. Strictly speak-
ing, we left the details to you as an Exercise 3.11, so there remain some loose
ends for you to satisfy yourself about. The real point is that the machinery There’s a subtle but important

point here that our proof of the
deduction theorem would not work
as it stands for a system which had
extra rules of inference besides
Modus Ponens. The use of one of
these extra rules to convert a line
Γ, φ � ψi into a derivation of
Γ � (φ → ψi) would require an
extra stage of argument compared
to our proof in Section 3.2.

of the system S needed to turn each line in a derivation of Γ, φ � ψ into a
corresponding line contributing to a derivation of Γ � (φ → ψ) consists of the
axioms Ax 1, Ax 2 and the rule Modus Ponens – Ax 3 isn’t needed as part of
this machinery. The proof only needs to account for a line on which Ax 3,
or indeed any other axiom, is used. So, our proof in Section 3 will actually
work for any system which includes Ax 1, Ax 2, the rule Modus Ponens and
any other axioms.

Exercise 3.31

Show that if Γ �S φ, then Γ �S′ φ. [Hints: The previous exercise shows that
the deduction theorem is also a metatheorem of the system S′, which will be
helpful. But if you want to use other metatheorems similar to those which
hold for S, don’t forget that you’ll have to show they hold for S′. For instance,
the details of the proof of Theorem 3.2 for S, proof by contradiction, make At the time of writing we had a

proof that needed none of these
fancy results about ¬! It only
needed the deduction theorem and
uses of all the rules and axioms of
S′ except Ax 2.

crucial use of Ax 3 – this isn’t surprising, as Ax 3 feels like the only part of the
system S which gives interesting properties of the ¬ symbol. So you cannot
use this, or most other results for S involving the ¬ symbol without proving
them anew in S′. With luck you won’t need all such results!]

Exercise 3.32
As the systems S and S′ are equivalent in the sense that Γ �S φ if and only if
Γ �S′ φ for all Γ, φ, the soundness and completeness theorems of Section 3.3
which hold for S must also hold for S′. Suppose that we were trying to prove
these metatheorems from scratch using the system S′. Where in the proofs
we have given of Theorems 3.4 and 3.9, and any subsidiary results that they
use, would the details of the proofs differ, to take account of the difference
between S and S′?

Solution
The only difference between the systems is the form of the axiom specifically
mentioning the negation symbol ¬, Ax 3 in S and Ax 3′ in S′.

In the proof of the soundness theorem, Theorem 3.4, this means that we have
to show that whenever an instance φk of Ax 3′ is used in a derivation of Γ �S′ φ
and v is a truth assignment satisfying Γ, then v(φk) = T . This is very easy to
show, simply by checking the truth table of φk, which is of course a tautology.

Adjusting the proof of the completeness theorem, Theorem 3.9, requires much
more thought and effort! The first line of our proof of Theorem 3.9 refers
to Theorem 3.10, which is about the equivalence of two formulations of the
completeness theorem, labelled (C) and (D). Looking at our proof of Theo-
rem 3.10, there is nothing in the displayed proof of (C) =⇒ (D) that depends
on Ax3, but the proof of (D) =⇒ (C), which is left as Exercise 3.21, requires

122

3.4 Independence of axioms and alternative systems

use of a result in Theorem 3.6, an important technical result about consistent
sets of formulas. Rather a lot of the proof of Theorem 3.6 is left to you as an
exercise! But we do show that if Γ ∪ {¬φ} is inconsistent, then Γ � φ, apply-
ing Theorem 3.2 which shows that proof by contradiction holds for the system
S: if Γ,¬φ � ψ and Γ,¬φ � ¬ψ, then Γ � φ. If you persevere and inspect the
proof of this last metatheorem in Section 3.2, you will finally see places where
we actually use Ax 3 in the derivation of Γ � φ. If we replace Ax 3 by Ax 3′ You might like to try to prove

Theorem 3.2 directly for S′ as
Exercise 3.39.

within our proof system, the shape of the derivation will almost certainly be
different, but at least we already know that there must be a derivation.

It turns out that this is the only part of the proof of Theorem 3.6 which
requires adjustment. The proof of the rest of Theorem 3.6(i) (which was left
as an exercise) need not involve Ax 3, while the proof of Theorem 3.6(ii) is
easy using the deduction theorem. Our proof of the deduction theorem for
the system S doesn’t use Ax 3, other than as one of the axioms whose use
within a formal derivation of Γ, φ � ψ has to be accounted for. So a proof
of the deduction theorem as a metatheorem about the system S′ would look
essentially the same as the one we gave for our original system S.

Furthermore, it turns out that within the rest of our proof of the completeness
theorem very few prior results are mentioned. Buried in the proof of Theo-
rem 3.13, we use the result ¬θ � (θ → ψ) of Exercise 3.7(f) of Section 3.2,
which has to exploit a negation axiom. So it is only here and in Theorem 3.6
in which there could be some dependence on Ax 3. So by showing that this
result holds for S′, our proof of the completeness theorem will suffice exactly
as it stands for S′.

A moral of the last exercise is that if you are trying to invent an alternative to
the system S intended to be capable of deriving Γ � φ precisely when Γ � φ,
then it’s easy to ensure that the soundness theorem will hold. Just make sure
than any axiom is a tautology and that any new rule of inference is valid.
But ensuring that the completeness theorem holds is somewhat harder. The
axioms and rules have to be capable of deriving various formal theorems to
underpin the construction of the chain of sets in our proof of Theorem 3.9 and
the proof that the union of the sets in the chain is a consistent set of formulas.

We shall look later at a system S′′ which at first sight seems to be equivalent to
S and S′, but turns out to lack the deductive power needed to prove the crucial
part of Theorem 3.6(a) which is needed for our proof of the completeness
theorem to work. It will transpire that this is not just a failure of our method
of proof – the completeness theorem simply doesn’t hold for S′′. We shall
demonstrate this by something similar to the soundness theorem, showing The soundness theorem for S says

that whenever Γ �S φ, then Γ � φ.
The latter property can be tested
using truth assignments, which are
‘outside’ the formal system.

that all formal theorems of S′′ have some interesting property testable from
‘outside’ the formal proof system; and then we show that there’s a tautology
which doesn’t have this special property.

Before we look at the system S′′, we shall illustrate this ‘soundness theorem’
technique in the context of a different sort of question about formal proof A similar question is whether one

of the rules of a system can be
inferred from the axioms and
remaining rules. In such a case we
describe the rule as a derived rule
of the rest of the system.

systems, as follows. Given a formal system and one of its axioms, is this
axiom redundant? That is to say, can it be derived from the remaining rules
and axioms of the system? For instance, if our original system S had included
as an extra axiom scheme all instances of the formula (φ → φ), then this would

123

3 Formal propositional calculus

have been redundant in this way – we already know that this formula (or any
other tautology) is derivable from the original rules and axioms of S. If an
axiom or rule of a system cannot be derived from the rest of the system, we
say that it is independent of the remainder of the system.

In the case of our original system S, each of its axioms and rules turns out
to be independent of the rest of the system. How does one demonstrate this?
As an example, we shall show that the axiom scheme Ax 2 is independent of
the rest of the system. Our method is to find some property possessed by
those formal theorems not involving this axiom, but which is not possessed
by all theorems of the full system. In this case the property is rather devious!
We shall define some special functions from the set of all formulas to the set
{0, 1, 2} which are rather like truth assignments, so we shall call each one a
quasi-truth assignment. For a normal truth assignment v, we can assign a
truth value in the set {T, F} to each propositional variable and then use the
standard truth table rules for the connectives ¬,→ to assign a truth value
v(φ) to each formula φ in the language. Here we shall build up a quasi-truth
assignment f from given values f(p) in the set {0, 1, 2} for each propositional
variable p to assign a value f(φ) in {0, 1, 2} for each formula φ in a similar
way, except that instead of using standard truth tables for the connectives,
we shall use the following tables for ¬,→:

φ ¬φ
0 1

1 0

2 1

φ ψ (φ → ψ)
0 0 0

1 0 0

2 0 0
0 1 2

1 1 2

2 1 0
0 2 1

1 2 0
2 2 0

This definition of quasi-truth
assignment is temporary, applicable
only to this one application!

For instance, if f is a quasi-truth assignment such that f(p) = 2 and f(q) = 1,
then

f(¬p) = 1

f((p → q)) = 0

f((¬p → (p → q))) = 0.

Let us not pretend for one moment that a quasi-truth assignment has any-
thing to do with truth! Its interpretation of the connectives ¬ and → has
nothing to do with their usual interpretations by ‘not’and ‘if . . . then’. It is
similar to a truth assignment only in that it is a function assigning values to
formulas in some set following the equivalent of truth table rules as with a
truth assignment, but not necessarily using {T, F} or the usual truth tables.

The point of these particular quasi-truth assignments is that any formula φ
which is derivable using instances of Ax 1 and Ax 3 and the rule Modus Ponens
(but no uses of the Rule of Assumptions) has the property that f(φ) = 0 for
any quasi-truth assignment f . But some instances of Ax 2 do not have this
property, so that instances of Ax 2 cannot in general be derived from the rest
of the system.

124

3.4 Independence of axioms and alternative systems

Exercise 3.33
(a) Show that for any formula φ which is derivable using instances of Ax 1 and

Ax 3 and the rule Modus Ponens, f(φ) = 0 for any quasi-truth assignment
f .

(b) Let φ be the formula

((p → (q → r)) → ((p → q) → (p → r))),

where p, q, r are propositional variables, which is an instance of Ax 2. Find
a quasi-truth assignment f for which f(φ) �= 0.

Solution
(a) Use mathematical induction on the length of any derivation of � φ which

makes no use of Ax 2, just as in a proof of the soundness theorem –
indeed, this is a sort of soundness theorem using quasi-truth assignments
where 0 is like T . The details are more complicated because there are
three ‘truth’ values rather than two, so that to check whether any quasi-
truth assignment f always gives f((φ → (ψ → φ))) = 0 requires checking
all 32 = 9 different quasi-truth assignments on φ and ψ. Likewise you
have to check whether f(((¬φ → ¬ψ) → (ψ → φ))) = 0 for all 9 different
quasi-truth assignments on φ and ψ.

(b) One suitable quasi-truth assignment f is determined by f(p) = f(q) = 0,
f(r) = 1. You can check that f(φ) = 2 �= 0.

A slightly more roundabout way of showing that Ax 2 cannot be derived from
the rest of the system is to find a formula φ derivable using Ax 2 and a quasi-
truth assignment f for which f(φ) �= 0. If the formula φ is very simple, this
roundabout method might involve less effort than finding a suitable instance
of Ax 2 and a suitable f , as you can see from the following exercise.

Exercise 3.34

(a) Find a quasi-truth assignment f for which f((p → p)) �= 0.

(b) Explain why this shows that Ax 2 is independent of the rest of the system.

Solution

(a) For the quasi-truth assignment f defined by f(p) = 1, we have

f((p → p)) = 2 �= 0.

(b) We have �S (p → p) for a propositional variable p. This was derived in Exercise 3.7(c).

Suppose that the axiom scheme Ax 2 is derivable from the rest of the
system. Then any derivation of S which uses an instance of this axiom
can be turned into a derivation of the same formula which only uses
the axioms and rule of the rest of the system. In particular there is a
derivation of �S (p → p) using the rest of the system. Then by the first
part of Exercise 3.33 we must have f((p → p)) = 0 for the f in part (a).
However, f((p → p)) = 2 �= 0, which gives a contradiction.

We can use the same sort of method to show that some rule or axiom of any
system is independent of the rest of the system. We look for a magic property

125

3 Formal propositional calculus

held by all formal theorems of the rest of the system, but not by all theorems of
the system using the rule or axiom in question. The magic property will almost
inevitably have little to do with the intended interpretations of the symbols of
the language. It might be something combinatorial, like ‘any formal theorem
avoiding use of the axiom contains an odd number of → symbols’ while the
full system includes formal theorems with an even number of these symbols
– one’s mind might have to wander away from things like the normal truth
tables.

In the next exercise, we ask you to show that Ax 3 cannot be derived from
the rest of the system. As before, the idea is to dream up some property
of all formal theorems of the rest of the system S which is not shared by
some instance of axiom Ax 3. Of course, this axiom is the only one which
does anything interesting involving the ¬ symbol, for which the intended
interpretation is as negation.

Exercise 3.35
Show that the axiom scheme Ax 3 cannot be derived from the rest of our
original system S by each of the following methods.

(a) Find a new sort of quasi-truth assignment on formulas taking the values There are only four possible tables
for ¬. One of these is the standard
interpretation of ¬ as negation, for
which (ii) cannot hold. So
experiment with the other three!

{T, F} with the usual interpretation of →, but an unusual one of ¬, with
the following properties:

(i) for each of these quasi-truth assignments f and each formula φ deriv-
able using axioms Ax 1, Ax 2 and the rule Modus Ponens, f(φ) = T ;

(ii) for some instance φ of Ax 3 and some quasi-truth assignment f ,
f(φ) �= T .

Your answer should include a demonstration of (i) and (ii).

(b) For any formula φ, let φ∗ be the formula obtained by deleting all the
negation signs from φ. Show that for any derivation of � φ which avoids
use of Ax 3, the formula φ∗ is a tautology. Now use this result to deduce
that some well-chosen instance of Ax 3 isn’t a formal theorem of the rest
of S.

Exercise 3.36

Show that the rule of Modus Ponens cannot be derived from the remainder
of the system S.

We shall now look at an interesting system S′′ which turns out to be slightly
weaker than the system S′ we met earlier by replacing Ax 3′ with the seemingly By ‘slightly weaker’ we mean that

all formal theorems of S′′ are also
formal theorems of S′, but not vice
versa.

very similar

Ax 3′′ ((φ → ψ) → ((φ → ¬ψ) → ¬φ)),

for all φ, ψ. Such formulas are all tautologies and as the completeness theorem
holds for the system S′ (as this derives precisely the same theorems as our
original system S, for which we proved completeness), all instances of Ax 3′′

must be derivable in S′. Thus all formal theorems of S′′ are also theorems of
S′. The deduction theorem holds for the system S′′, for the same reasons as
given in our solution to Exercise 3.30, which will help towards deriving the
following.

126

3.4 Independence of axioms and alternative systems

Exercise 3.37

Show that the following are derivable in S′′ for all formulas φ, ψ.

(a) �S′′ (φ → ¬¬φ)

(b) φ,¬φ �S′′ ψ

Now we’ll show that the system S′′ is indeed weaker than S.

Exercise 3.38

We shall say that a function f from the set of all propositional formulas in L Basically an 3-function f is just
like a truth assignment: the values
of f(p) for all the propositional
variables p determine the value of
f(φ) for any formula φ. The 0 in
{0, 1, 2} behaves just like true and
1 and 2 are increasing degrees of
falsity. So f((θ → ψ)) is true when
f(ψ) is no falser than f(θ), and in
particular if f((θ → ψ)) and f(θ)
are true, then so is f(ψ).

to the set {0, 1, 2} is a 3-function if f obeys the following:

f(¬φ) =

{
0, if f(φ) = 2,
2, otherwise;

f((θ → ψ)) =

{
0, if f(θ) ≥ f(ψ),
f(ψ), if f(θ) < f(ψ).

We shall write, for all formulas φ and sets of formulas Γ,

Γ �3 φ

if for all 3-functions f ,

max{f(γ) : γ ∈ Γ} ≥ f(φ).

In the case when the set Γ is empty, �3 φ means that for all 3-functions f we
have f(φ) = 0.

(a) Show that if Γ �S′′ φ then Γ �3 φ.

(b) Hence show that

(i) ��S′′ (¬¬p → p), where p is a propositional variable;

(ii) ��S′′ (((p → q) → p) → p), where p and q are propositional variables. This formula is called Pierce’s law.

The results of part (b) of Exercise 3.38 show that not all tautologies can be
derived in the system S′′, so that the completeness theorem does not hold
for it, and confirm that it is weaker than our standard system. In regard to
Pierce’s law, one might easily have imagined that the fragment of the system
S′′ consisting of the axioms Ax 1, Ax 2 and Modus Ponens would suffice for
derivations of all tautologies involving only the connective →. But the results
of this exercise show that this isn’t the case and that some quite strong form
of axiom involving negation is required for its derivation.

The result of part (b)(i) also tells us that when p is a propositional variable, As the deduction theorem holds for
S′′, if ¬¬p �S′′ p, we would have
�S′′ (¬¬p → p).

¬¬p ��S′′ p. This leads us to an example of a set Γ and formula φ such that
Γ ∪ {¬φ} is inconsistent in the system S′′ but Γ ��S′′ φ. Just take Γ to be
the set {¬¬p} and φ to be p. This means that Theorem 3.6(a) does not hold
for the system S′′, which is where our method of proof of the completeness
theorem for S breaks down for the weaker system S′′.

The real interest in the system S′′ and the tautology (¬¬p → p) not being
a theorem of it is in connection with the philosophy of mathematics called For a proper explanation of

Intuitionism, its logic and view of
mathematics, see Dummett [11].

Intuitionism. This philosophy was developed by the Dutch mathematician
L.E.J Brouwer (1881–1966) in the early part of the 20th century. Intuitionism

127

3 Formal propositional calculus

is a possible and coherent response to the philosophical questions raised by
use of the infinite in mathematics, for instance on the nature of a proof that
a mathematical object exists, whether such a proof must rely on some sort of
construction of the object and the nature of such a construction. Intuitionistic
logic is based on a particular vision of constructive proof. Most famously,
in terms of the difference between Intuitionistic logic and the logic much
more commonly used in mathematics (and in this book), a proof of ‘φ or
not φ’requires an effective means of constructing a finitely long proof of one
of φ or ‘not φ’. So, for instance, an intuitionistic proof that for all real Intuitionistic logic takes falsity, for

instance a statement like 0 = 1
about the natural numbers, as a
primitive concept and defines ‘not
φ’ as meaning that from a proof of
φ one can construct a proof of
falsity. So representing falsity by
the propositional constant symbol
⊥, ‘not φ’ is represented by
(φ → ⊥). Axiom Ax3′′ of S′′ then
stands for

((φ → ψ) →
((φ → (ψ → ⊥)) → (φ → ⊥))),

which is actually derivable from
the other axioms and rules of S′′.

numbers x, ‘x is rational or x is not rational’ would essentially require a finite
procedure which would determine, for any given x, whether it was rational
or irrational. As there is no such procedure in standard mathematics, the
statement is not an Intuitionistic theorem. Thus (p∨¬p) would not in general
be a theorem of an Intuitionsitic proof system. From this it follows that being
able to prove it is not the case that ¬p, what we would regard as proving the
statement ¬¬p, is not the same as being able to produce a proof of p, otherwise
(p ∨ ¬p) would be an Intuitionistic theorem. The system S′′ above turns out
to be Intuitionistically acceptable, although our arguments about the system
almost certainly use modes of reasoning which might not be Intuitionistically
acceptable – the Intuitionist view of mathematics is all-encompassing, and
statements about Intuitionism have to be made with care by outsiders like
the author. Nevertheless, we assert that Exercises 3.46 and 3.47, which are
further exercises about the techniques of this section, are also of interest for
what they say about other Intuitionistically acceptable proof systems.

We shall now say goodbye to the considerable intricacies of formal systems for
propositional calculus and start looking at the much richer expressive power
of the predicate calculus, in the next chapter.

Further exercises

Exercise 3.39

Show by giving a direct proof in the system S′ given at the beginning of this
section that proof by contradiction, Theorem 3.2, holds as a metatheorem
for S′. That is, show that if Γ,¬φ �S′ ψ and Γ,¬φ �S′ ¬ψ, then Γ �S′ φ.
[You may use the deduction theorem for S′, which we’ll assume that you have
shown in Exercise 3.30!]

128

3.4 Independence of axioms and alternative systems

Exercise 3.40

Suppose L is a propositional language with the single connective → and that
S1, S2 are formal systems in L defined as follows: The system S2 has rules for

handling the connective →, one
(Modus Ponens) saying how to
eliminate an → from the formula
being derived and one
(→Introduction) showing how to
introduce an → into a formula.
These seem much more natural
ways of describing formally how to
use → than using axioms like Ax 1
and Ax2, and systems based on
such rules and no axioms are
described as natural deduction.

S1 Axioms: all instances of

(Ax 1) (φ → (ψ → φ)),

(Ax 2) ((φ → (ψ → θ)) → ((φ → ψ) → (φ → θ))),

for all formulas φ, ψ, θ of L;

Rules: Rule of Assumptions and Modus Ponens.

S2 Axioms: none;

Rules: Rule of Assumptions, Modus Ponens and →Introduction,

where →Introduction is the following rule:

if Γ ∪ {θ} � φ then Γ � (θ → φ).

Show that S1 and S2 have the same set of theorems, i.e. Γ �S1
φ if and only

if Γ �S2
φ.

[Hint: As S2 has a rule of inference which modifies the set of assumptions, This hint applies more generally to
systems with rules of inference
which result in a change in the set
of assumptions.

the method of mathematical induction on the length of a derivation needs
modifying for S2 as follows. For a derivation in S2, record not only the
formulas φi in the derivation sequence, but also the sets of assumptions Γi for
each line, so that a derivation of Γ �S2

φ looks like

Γ1 �S2
φ1, Γ2 �S2

φ2, . . . , Γn �S2
φn,

where Γn = Γ and φn = φ. If the rule →Introduction is used to get line i
from line j, the set Γi will be different from, but related to, Γj according to
the rule. To show that Γ �S1

φ, use mathematical induction to show that
Γi �S1

φi for i = 1, 2, . . . , n.]

Exercise 3.41
Let S′

2 be the system with the rules of S2 in Exercise 3.40 along with the rule So S′
2 has no axioms, but only

rules.
if Γ ∪ {¬φ} � ψ and Γ ∪ {¬φ} � ¬ψ, then Γ � φ.

Show that our original system S and S′
2 have the same set of theorems.

Exercise 3.42

Recall the system S′′ which was essentially the system S1 in the Exercise 3.40
along with the axioms given by all instances of

Ax 3′′ ((φ → ψ) → ((φ → ¬ψ) → ¬φ)),

for all formulas φ, ψ.

Let S∗ be the system obtained from S′′ by replacing Ax 3′′ by the axiom

Ax 3∗ ((φ → ψ) → (¬ψ → ¬φ)).

Show that S′′ and S∗ have the same set of theorems.

129

3 Formal propositional calculus

Exercise 3.43

Let T be the formal system defined as follows:

Axioms: all instances of

1. (φ → φ),

2. (¬¬φ → φ),

3. ((¬φ → ¬ψ) → (ψ → φ)),

for all formulas φ, ψ of L;

Rule: Modus Ponens.

(a) Show that �T (φ → ¬¬φ).

(b) Show that �� (¬φ → φ).

(c) Show that �� (p → (q → p)), where p, q are propositional variables. [Hint:
Our solution uses a property of formal theorems of T that is nothing to
do with any truth tables for ¬,→.]

The following definitions will be needed for the next few exercises.

Definitions n-functions

A function f from the set of all propositional formulas in some language These definitions generalize those
of a 3-function given earlier in this
section.

to the set {0, 1, . . . , n− 1}, where n ≥ 2, is said to be an n-function if f
obeys the following:

f((φ ∨ ψ)) = min{f(φ), f(ψ)}
f((φ ∧ ψ)) = max{f(φ), f(ψ)}
f(¬φ) =

{
0, if f(φ) = n − 1,
n − 1, otherwise,

f((θ → ψ)) =

{
0, if f(θ) ≥ f(ψ),
f(ψ), if f(θ) < f(ψ).

We shall write, for all formulas φ and sets of formulas Γ,

Γ �n φ

if for all n-functions f ,

max{f(γ) : γ ∈ Γ} ≥ f(φ).

In the case when the set Γ is empty, �n φ means that for all n-functions
f we have f(φ) = 0.

Basically an n-function f is just like a truth assignment: the values of f(p) for
all the propositional variables p determine the value of f(φ) for any formula
φ. The 0 in {0, 1, . . . , n− 1} behaves just like true and 1, 2 etc. as increasing
degrees of falsity. The rules for f((φ ∨ ψ)) etc. then give the usual ones when One can think of f((φ ∨ ψ)) as the

‘truest’ of f(φ) and f(ψ).n = 2. Likewise when n = 2, Γ �n φ means the same as the usual Γ � φ.

130

3.4 Independence of axioms and alternative systems

Exercise 3.44

Suppose that the connective ↔ is defined in terms of ∧ and →, so that (θ ↔ ψ)
is an abbreviation for ((θ → ψ) ∧ (ψ → θ)). Give the rule for computing the
value of f((θ ↔ ψ)) for any n-function f .

Exercise 3.45

(a) Show that if Γ �n φ and n > m, then Γ �m φ.

(b) Suppose that m < n. Give an example of a formula φ such that �m φ but
��n φ. [Hint: Why is it the case that

�2 ((p1 ↔ p2) ∨ (p1 ↔ p3) ∨ (p2 ↔ p3))?

One explanation uses the fact that there is one more propositional variable
than the number of truth values.]

(c) Give an example of a formula φ such that �2 φ (i.e. � φ) but ��n φ for all
n > 2.

Exercise 3.46
L is a propositional language based on the connectives ¬,∨. A system N for The system I with all the rules

except (5) is Intuitionistically
acceptable.

L has the following (natural deduction) rules of inference.

(0) If φ ∈ Γ then Γ �N φ.

(1) If Γ �N φ then Γ �N (φ ∨ ψ).

(2) If Γ �N ψ then Γ �N (φ ∨ ψ).

(3) If Γ, φ �N θ and Γ, ψ �N θ then Γ, (φ ∨ ψ) �N θ.

(4) If Γ, φ �N ψ and Γ, φ �N ¬ψ then Γ �N ¬φ.

(5) If Γ �N ¬¬φ then Γ �N φ.

(a) Show that Some hints! What is the only
possibility for the first line of a
proof? What rules must be used to
obtain a formal theorem with an
empty set of assumptions? For a
derivation of �N θ where θ doesn’t
have ¬ as its principal connective,
what rule must have been used?
See also the hint for Exercise 3.40
to cope with the rules of inference
which alter the set of assumptions.

(i) �N (φ ∨ ¬φ)

(ii) φ, ψ �N ¬(¬φ ∨ ¬ψ).

(b) Show that for any n-function f , where n ≥ 2, if Γ �N φ and the proof
uses only rules (0) to (4), then max{f(γ) : γ ∈ Γ} ≥ f(φ).

(c) Let I be the system with all the rules as above except (5). Use the
previous part to show that rule (5) of N is not a derived rule of I and
that for any propositional variable p, (p ∨ ¬p) is not derivable in I.

(d) Show that for any formula φ, φ �I ¬¬φ and ¬¬¬φ �I ¬φ.

(e) Show that the soundness and completeness theorems hold for the system
N .

(f) Given a set of formulas Γ, define the corresponding set ¬¬Γ to be the set
{¬¬γ : γ ∈ Γ}. Show that Γ �N φ if and only if ¬¬Γ �I ¬¬φ.

(g) Show that � ¬φ if and only if �I ¬φ.

131

3 Formal propositional calculus

Exercise 3.47

A system N ′ for L has the following (natural deduction) rules of inference. This is very similar to the previous
exercise, but for a system N ′ using
natural deduction rules for ¬ and
∧, with the perhaps surprising
finale that the Intuitionistically
acceptable weaker system obtained
by dropping rule (5) can still derive
all tautologies expressed using
these connectives.

(0) If φ ∈ Γ then Γ �N ′ φ.

(1) If Γ �N ′ (φ ∧ ψ) then Γ �N ′ φ.

(2) If Γ �N ′ (φ ∧ ψ) then Γ �N ′ ψ.

(3) If Γ �N ′ φ and Γ �N ′ ψ then Γ �N ′ (φ ∧ ψ).

(4) If Γ, φ �N ′ ψ and Γ, φ �N ′ ¬ψ then Γ �N ′ ¬φ.

(5) If Γ �N ′ ¬¬φ then Γ �N ′ φ.

Let the system I ′ be the system with all the rules of N ′ except rule (5).

(a) Prove the soundness and completeness theorems for the system N ′.

(b) Show that rule (5) is not a derived rule of the system I ′.

(c) Show that ¬¬¬φ �I′ ¬φ.

(d) Given a set of formulas Γ, define the corresponding set ¬¬Γ to be the set
{¬¬γ : γ ∈ Γ}. Show that Γ �N ′ φ if and only if ¬¬Γ �I′ ¬¬φ.

(e) Prove that � φ if and only if �I′ φ.

(f) Does this conflict with the results about the system I in Exercise 3.46,
e.g. that the tautology (φ ∨ ¬φ) is not a formal theorem of I?

132

4 PREDICATES AND MODELS

4.1 Introduction: basic ideas
We now come to the main subject of the book, namely a type of formal
language and proof system capable of dealing with at least some interesting
mathematical statements. Just as we did in Chapter 2 for the propositional
calculus, we shall start by describing the formal language within which well-
formed formulas are created and the way in which the language is interpreted
by the analogue of truth assignments, and formulas end up being true or false
under a particular interpretation. We shall then look at the formal proof
system in Chapter 5. Before you are hit by several quite complicated-looking
formal definitions, you may find it helpful to establish in advance that you
already know how to use some of the key underlying ideas.

Suppose that we are given a set A and a binary function ∗ for combining pairs That is, ∗ is a function from A × A
to A, sometimes described as a
binary operation on A.

of elements of A to give an element of A. Now, let us ask you the following
question:

Is it true that for all x, y ∈ A, (x ∗ y) = (y ∗ x)?

We hope that your reaction is something along the lines of ‘this is a daft
question, as it all depends on what the set A is and what the function ∗
is’. We would then respond by giving you a specific set A and function ∗
on A; and then, at least in principle, provided that you had the relevant
mathematical knowledge about that A and ∗, you would be able to settle the
original question. Have a go at this for the sets A and functions ∗ in the
exercise below.

Exercise 4.1
For each of the following sets A and functions ∗ on A, decide whether it is
true that for all x, y ∈ A, x ∗ y = y ∗ x. [You might feel that for most parts,
it is enough to give your answer simply as true or false, as appropriate, with
no justification.]

(a) A = N, ∗ is +.

(b) A = Z, ∗ is −.

(c) A is the set of all 2 × 2 matrices with real coefficients and ∗ is the binary
function of matrix multiplication.

(d) A is the set of all 2 × 2 matrices with real coefficients and ∗ is the binary
function of matrix addition.

A relatively minor detail, for our current purposes, of all the functions ∗ in
the exercise above is that they are all functions from A × A to A – they have
a value for all pairs of elements of A and that value is in A itself. There are
plenty of important functions from sets of the form A × B to a set C where
A, B and C aren’t the same set; but in the interests of simplicity, we won’t
attempt to incorporate them in our model of mathematical language.

133

4 Predicates and models

The point of Exercise 4.1 is as follows. One formal language which we shall en-
counter consists of a binary function symbol ∗ and the binary relation symbol
=, along with propositional connectives like ∧ and ¬ which you have already
met, and the symbols ∀ and ∃, which are new. Within this language, one
well-formed formula φ is given by

∀x∀y (x ∗ y) = (y ∗ x).

An interpretation of this language – the counterpart of a truth assignment To distinguish between a symbol ∗
representing a function in a formal
language and its interpretation by
an actual function in a structure A,
we shall often label the latter with
a subscript for the structure, as in
∗A (or sometimes a superscript, as
in ∗A).

for interpreting a propositional formula – will be a structure A which consists
of a particular set A and a particular binary function ∗A on this A. There’ll
be specified ways of interpreting the symbols =, ∀, ∃ and the propositional
connectives – you may well have seen the symbols ∀ and ∃ used in everyday
maths to represent ‘for all’ and ‘there exists’ respectively, and that is indeed
how they are going to be interpreted here, referring to elements of the given set
A (which will get called the domain of the structure A). Also we will choose
to interpret the symbol = by equality. A formula like φ above can be used to We shall also explain why

interpreting the symbol = as
equality is a choice we make, rather
than something that is inevitably
forced on us.

represent statements about such a structure A, and we shall soon define in a
formal way what it means for a structure A to satisfy a formula φ. We shall
also describe this by saying that φ is true in A. Before we lose you in more
technicalities of the formal language and the definition of ‘satisfy’, please bear
in mind that, with any luck, you were effectively using this definition perfectly
happily to settle whether

∀x∀y (x ∗ y) = (y ∗ x)

was true in various structures A when you did Exercise 4.1 above. That’s the
real point of this exercise. You really do know in advance how to use what
may appear to be a complicated definition, because this definition models
what we do in everyday mathematics!

Another question, looking ahead! Suppose that A is the structure consisting
of the set of all 2 × 2 matrices with real coefficients with the binary function
of matrix multiplication. Is it true in this structure that We hope that even without the

formal definitions, you are reading
this formula in your head as ‘for all
y, (x ∗ y) equals (y ∗ x)’.

∀y (x ∗ y) = (y ∗ x)?

We hope that your reaction is along the lines of ‘well, it depends on which
x one takes’. For the question to be well posed, we need to amend it by
specifying a value of x. If x is interpreted by the identity matrix(

1 0
0 1

)
,

then the answer is ‘true’, while if x is interpreted by the matrix For instance, with the second
interpretation of x, interpreting y

as

(
1 0
0 0

)
gives(

0 0
1 0

) (
1 0
0 0

)
=

(
0 0
1 0

)
,

and(
1 0
0 0

) (
0 0
1 0

)
=

(
0 0
0 0

)
,

so that xy �= yx.

(
0 0
1 0

)
,

the answer is ‘false’, as there is some y for which xy does not equal yx. So
the answer to the question was sensitive to the value given to x.

Plainly there is something special about the variable x, compared to the
variable y, in the formula ∀y (x ∗ y) = (y ∗ x). Somehow the variable y is
a dummy because of the ∀y – the formula could have been rewritten with the
ys replaced by zs, as ∀z (x ∗ z) = (z ∗ x), without changing our decisions about
its truth or falsity. But the variable x needs to be given a specific value before

134

4.1 Introduction: basic ideas

we can decide whether or not the formula is true in the structure. There are
two points to this discussion. First, we will need to explain what is special We shall later describe the y here

as a bound variable and the x as a
free variable.

about variables like the x here: this is something to do with the shape of the
formula, i.e. the syntax of the formal language. In this and other ways, the
syntax is going to be more complicated than that for a propositional language.
Second, when we define what it means for a structure A to satisfy a formula
φ, we will have to build in the particular interpretation of any variables like
the x for the question ‘is it true in ...?’ to make sense.

Quite often in everyday maths we introduce a symbol for a special element of Don’t worry if you haven’t met
groups before. We shall give you a
brief introduction to them later in
this chapter.

a structure, like 0 or 1 or e for the identity element of a group, when giving
axioms for the theory. The symbol for such an element is called a constant to
distinguish it from the symbols for variables like x, y, z which can represent
any of the elements of the structure. Any interpretation of the formal language
within a set A has to assign a particular element of A to each constant symbol.
Let’s look at an example of the use of a constant symbol, adding a constant
symbol e to the language with the binary function symbol ∗ and the equality
symbol which we have used above. In this language we can express that a set
contains an identity element for the binary function ∗ (one of the axioms for
a group) using the statements

∀x((x ∗ e) = x ∧ (e ∗ x) = x). Of course, the symbol ∧ will
continue to be interpreted by ‘and’.

Without the constant symbol, we would have to write

∃y∀x((x ∗ y) = x ∧ (y ∗ x) = x), There exists y such that for all x. . .

which is perhaps a bit more cumbersome. A further advantage of the constant
symbol when writing down axioms for a group arises when writing down the
further axiom for the existence of inverses,

∀x∃y((x ∗ y) = e ∧ (y ∗ x) = e), For all x, there exists y such
that. . .

in that any interpretation has to give the same meaning to the symbol e in
this sentence as in the earlier sentence ∀x((x ∗ e) = x∧ (e ∗ x) = x). Without
a constant symbol in the language, the existence of inverses would have to
be incorporated into a statement explaining that there was an identity, with
something like

∃y(∀x((x ∗ y) = x ∧ (y ∗ x) = x) ∧ ∀z∃w((z ∗ w) = y ∧ (w ∗ z) = y)),

saying that there is a y which behaves like the identity and then asserting the
existence of inverses using this y. This isn’t wrong in any way, but again it is
a bit cumbersome.

135

4 Predicates and models

Exercise 4.2

In which of the following structures is the formula

∀x (x ∗ e) = x

true? (Our description of each structure gives its domain, i.e. the relevant set
A of elements, a description of the binary function interpreting the symbol ∗
and the particular element of A interpreting the constant symbol e.)

(a) A = Z, ∗ is +, e is 0.

(b) A = Z, ∗ is +, e is 1.

(c) A = Z, ∗ is ×, e is 0.

(d) A = Z, ∗ is ×, e is 1.

In the hope of convincing you that you know what you are doing in advance
of the proper definitions, here’s a further exercise for you. You may well
have come across what’s called a binary relation R on a set A. This just
means that R is some set of pairs of elements of A (or equivalently that R
is a subset of A × A), though usually this set of pairs is defined in terms of
some interesting mathematical property. For instance, R might be the ‘less
than’ relation defined on the set N of natural numbers, making R the set
{(a, b) ∈ N ×N : a < b}. Alternative ways of saying that the pair (a, b) is in R
include the following: a is related to b by R; aRb; and R(a, b). In the following
exercises, we will use the R(a, b) notation.

Exercise 4.3
In which of the following structures is the formula

∀x∃yR(x, y)

true? (Our description of each structure gives its domain, i.e. the relevant set
A of elements, and a description of binary relation interpreting the symbol
R.)

(a) A = N; <, i.e. the subset {(a, b) ∈ N × N : a < b}
(b) A = N; >

(c) A = N; ≤
Solution
(a) We hope that you interpreted the formula ∀x∃yR(x, y) as meaning that

for all x in A, there exists a y in A (or, equivalently, there is some y in
A) such that x is related to y by R. With A = N and R interpreted by
<, this formula is true – for each natural number x, there is a natural
number y greater than x.

(b) With this interpretation the formula is false. Although for most natural
numbers x, it is the case that there is some natural number y with x > y,
this does not hold when x is 0. That means it’s not true that for all x in
N there exists some y in N with x > y.

(c) With this interpretation the formula is true.

136

4.1 Introduction: basic ideas

Exercise 4.4

Repeat Exercise 4.3 for each of the following formulas.

(a) ∃x∀yR(x, y)

(b) ∀x∀y(¬R(x, y) → R(y, x))

So far we have given you a foretaste of the ingredients of a formal language,
namely how it is interpreted by a structure matching the language and how
you work out whether a formula in the language is true in a structure (noting
when it is sensible to expect an answer). Our intention has been to suggest
that definitions which will appear in the next section and might appear to
be quite complicated disguise some fairly natural and straightforward ideas!
As one of the aims of our enterprise is to deal with interesting mathematical
statements, let’s also acquire a feeling that we might indeed be able to use
the framework to write formulas which do express interesting mathematical
statements. One way in which we can do this is to take a familiar mathemat-
ical structure and try to represent some statements about it using a formal
language.

Let’s take the set N of natural numbers with its normal arithmetic and order.
Suppose that our formal language includes symbols for a binary function ∗,
a constant e and equality =. Then let’s interpret these symbols in the struc-
ture A with domain N , ∗ as + and e as 0. Then using ∀, ∃ and familiar
propositional connectives, with their normal interpretation, we can represent
at least some statements about natural numbers by formulas. For instance,
we can represent ‘x is even’ by the formula Note here the significance of the

domain of the structure. If the
domain had been the set of
rationals, this formula would hold
for all x.

∃y x = (y ∗ y),

as the existence of a y in the domain N such that x = y + y happens precisely
when x is even. Similarly we can represent ‘x ≤ y’ by

When a property of elements in a
structure, like ‘x is even’, can be
represented in this way by a
formula in the given language, we
say that the property is definable
within the language.

∃z (x ∗ z) = y,

as within N, any z for which x + z = y has to be greater than or equal to 0,
forcing y to be greater than or equal to x. In the next exercise, we ask you
to try to play the same game. Some ingenuity and knowledge of N might be
required!

137

4 Predicates and models

Exercise 4.5

Represent the following statements about N using the language given above
(involving ∗, e and =, interpreted respectively by +, 0 and equality). We
reckon that we can solve the parts in the order they are given, so that if you
are stumped by one part, we’ll allow you to use the result of that part in a
later part!

(a) x < y

(b) There are at least two even numbers.

(c) There are at most two even numbers. (Ok, this is false! But it is a
statement about N which one can represent using the given language.)

(d) x is divisible by 3.

(e) There is a least natural number.

(f) There is no greatest natural number.

(g) x = 1

(h) x = 2

Solution
We shall give solutions to (a) and (b), leaving the rest to you.

(a) One solution is to exploit our ability to represent x ≤ y and the fact that
x < y if and only if x ≤ y and x �= y. We can then represent x < y by

(∃z (x ∗ z) = y ∧ ¬ x = y).

There are other solutions, for instance adjusting our earlier answer for
x ≤ y by making the z non-zero, by

∃z((x ∗ z) = y ∧ ¬ z = e).

(b) We know how to represent ‘x is even’, so we can answer this with a
formula saying that there are unequal x and y which are both even. As
our representation of ‘x is even’ happens to use the variable y, we’ll avoid
confusion by altering our original plan to say that there are unequal x
and z which are both even! This gives

∃x∃z(¬ x = z ∧ (∃y x = (y ∗ y) ∧ ∃y z = (y ∗ y))).

[If you are worried about our use of ∃y twice in the answer above, you
can always change some of the ys to yet another letter, e.g. to give the
formula

∃x∃z(¬ x = z ∧ (∃y x = (y ∗ y) ∧ ∃t z = (t ∗ t))).

But we reckon that our original answer is fine. Our formula says that
there is some y such that x = y + y and that there is some y, which need
not be the same as the first y, such that z = y + y.]

138

4.1 Introduction: basic ideas

Exercise 4.6

Show that x = 0 can in fact be represented in the language above without
using the symbol e.

This game is quite challenging! It also raises interesting questions about
whether there are limitations to what statements about N we can represent
within a given language. For instance, to what extent can we represent multi-
plication within our language above? We can represent ‘x = yz’ for a specific
natural number y like 3, in this case by x = (z ∗ (z ∗ z)) – we build the 3-ness
into the construction of the formula. But can we represent ‘x = yz’ by a single
formula, not specifying in advance which specific number y is?

The standard name for the subject being developed in this and the following
chapters is the predicate calculus. One dictionary definition of a predicate is ‘Predicate’ has several other

meanings, as can be found in a
dictionary. We’ve given the
meaning relevant to this subject.

as ‘the word or words by which something is said about something’. We tend
to use the word ‘statement’ for ‘the word or words by which something is
said’. And the ‘something’ that we are going to make statements ‘about’ is
the elements of a specific set and relationships between them, like whether a
set is ordered and has a least element under that order. Such statements are
obviously much more complicated than the propositions looked at in Chapter 2 The use of ‘proposition’ for the

simpler sort of statement is pretty
well standard in the subject.

and will be expressed in a much more complicated formal language.

In this chapter we shall begin in Section 4.2 by describing the formal language
and the way it is interpreted by corresponding structures, which are the ana-
logues of truth assignments for propositional calculus. In Section 4.3 we look
at the analogue of tautologies and at logical equivalence between formulas.
The main way in which we will apply our framework of formulas in a formal
language and their interpretation by structures is to axiomatize mathemati-
cal theories. In Section 4.4 we shall look at some examples of these theories It is very likely that you have some

experience of this from elsewhere in
mathematics, perhaps seeing
axioms for a theory of order (like ≤
or < on N or R) or group theory.

and discuss one version of what can be inferred from their axioms, in terms
of logical consequence. We conclude the chapter with a look at the ideas of
substructures and isomorphisms between structures in Section 4.5.

Further exercises

Exercise 4.7
Take the set R of real numbers with its normal arithmetic and order. Suppose
that our formal language includes symbols for a binary function ∗, a binary
function ◦ and equality =. Then let’s interpret these symbols in the structure
A with domain R , ∗ is + and ◦ as ×. Represent the following statements
about R using this language. In both this and the following

exercise, we reckon that we can
solve the parts in the order they
are given, so that if you are
stumped by one part, you can use
the result of that part in a later
part! But don’t feel inhibited from
solving the parts in a different
order, if you feel that you can do
this without a circular argument.

(a) x = y − z

(b) x = 0

(c) x ≥ 0

(d) x > y

(e) x = 1

(f) x = 1/
√

2

139

4 Predicates and models

Exercise 4.8

Take the set N of natural numbers with its normal arithmetic and order.
Suppose that our formal language includes symbols for a binary function ∗,
a binary function ◦ and equality =. Then let’s interpret these symbols in
the structure A with domain N , ∗ is + and ◦ as ×. Represent the following
statements about N using this language.

(a) x = 0

(b) x = 1

(c) x ≥ y

(d) x divides y What do you think is normally
meant by x divides y in the context
of the natural numbers?

(e) x is a prime number

(f) There is no greatest prime number.

(g) There are arbitrarily large prime pairs, that is, p and p + 2 with both Both this and the next part are
famous problems of number theory
which are unresolved at the time of
writing.

prime.

(h) Every even number greater than 2 is the sum of two primes.

4.2 First-order languages and their interpretation
In this section we shall describe first-order languages and their interpretation.
This will involve several technical complications, but we hope that you will
ride over them by remembering the advice given in the introduction to this
chapter. You really do know how to use the definitions that we shall now give
– well, most of them, at least when things are kept simple!

The introduction to this chapter should have given you an idea of what sorts of
mathematical statement the formal language will represent. Each statement
will be about the elements of some set, their images under functions and
relationships between them. The most basic sort of statement will be one
of two forms: ‘this element equals that element’ and ‘this list of elements is
in the relationship R’. In the last section you saw some examples of these
basic statements, (x ∗ e) = (e ∗ x) and R(x, y). These examples happen to
involve a function of two arguments and a binary relation, but in general a
function or a relation might involve any finite number of arguments. The first
example using (x ∗ e) and (e ∗ x) illustrates that elements of the set might
not only be represented by variables like x, y, z and constant symbols like e,
but could be represented by more complicated expressions, which we shall call
terms. These are built up by applying functions to variables and constants,
and indeed by repeatedly applying functions to terms already obtained, as in
((x ∗ e) ∗ (y ∗ (z ∗ x))). The description of the formal language will start by The symbols ∃ and ∀ will always be

followed by a symbol for a variable,
like x or y or xi. We call ∃ and ∀
quantifiers. This is because we
shall interpret them as expressing a
quantity: ∃x as ‘there is at least
one x’ or, more simply, ‘there
exists an x’; and ∀x as ‘for all x’.

explaining how to construct all these terms. Then we will be able to define
the basic statements about terms, which are called atomic formulas. Finally
we will show how to build up more complicated formulas from these atomic
formulas, using the symbols ∀ and ∃ and combining known formulas with
useful propositional connectives like ¬ and →.

140

4.2 First-order languages and their interpretation

First we shall explain what sort of underlying language we shall use.

Definitions First-order language

A countable first-order language L contains countably many variable Different selections of the function,
relation and constant symbols give
rise to different languages L.

symbols x1, x2, . . . , xn, . . . and some (maybe none) of the following:

1. function symbols: f1,1, f1,2, f1,3, . . . , f2,1, f2,2, . . . ,
fn,1, . . . , fn,m, . . . ,

2. relation symbols: R1,1, R1,2, R1,3, . . . , R2,1, R2,2, . . . , In many books, the terminology
predicate symbol is used instead of
relation symbol.

Rn,1, . . . , Rn,m, . . . ,

3. constant symbols: c1, c2, c3, . . . , cn, . . .

With the addition of the binary relation symbol =, the language is said Although = is in one sense just
another binary symbol, its
intended interpretation as equality
is so important that it is worth
having a special symbol for it and
considering it in a special way.

to be a language with equality.

These symbols are called the non-logical symbols of the language. The
logical symbols of the language are the propositional connectives ∧,∨,¬,
→,↔, the quantifiers ∀, ∃ and brackets (,).

Having introduced the words ‘first-order’, we shall promptly drop them for
most of the rest of the book and just refer to a ‘language’. You should be
made aware, however, that there are other formal languages which attempt
to model different fragments of natural languages. We shall briefly mention
one such alternative, a second-order language, later.

The significance of the first subscript n in the notation fn,m and Rn,m is that We’ll also call fn,m and Rn,m

n-place symbols.it gives the number of arguments of the corresponding function or relation, as
you will see when we go on to define more complicated expressions within the
language. The second subscript m says it is the mth of the symbols requiring
n arguments.

In all the examples in the introduction to this chapter, the languages have
involved very few symbols, and that is typical of most future examples. It is,
however, harmless to look at languages with up to countably infinitely many
symbols as allowed for by our definition above. It actually makes sense to look
at languages with uncountably many symbols, and we shall come back to this
point later in the book. Later on in the book, for the sake of readability, we We shall also sometimes use

different ways of forming terms and
atomic formulas, for instance using
infix notation for function and
relation symbols of two arguments,
as in x + y and x < y, rather than
+(x, y) and < (x, y). Putting the
function or relation symbol to the
left of the arguments is called
prefix notation.

will normally use a much simpler language, with unsubscripted variables like
x, y, z and dropping the subscripts from the function and relation symbols
– we will instead specify how many arguments each symbol has, as in the
examples in the introduction to this chapter.

141

4 Predicates and models

Next we give the definition of the set of terms, the expressions that stand for
the elements of the domain of an interpretation of the language.

Definition Term

The set of terms of a language L is the set of strings of symbols formed
according to the following rules.

1. All the variable symbols x1, x2, x3, . . . and all the constant symbols
ci in L are terms.

2. If fn,m is a function symbol in L and τ1, τ2, . . . , τn are terms, then Here’s where we use that fn,m has
n arguments.fn,m(τ1, τ2, . . . , τn) is a term.

3. All terms arise from finitely many applications of 1 and 2. So all terms are finitely long.

For instance, if the language consists of the function symbols f1,1, f1,2, f3,1 and
the constant symbols c1, c2, all of the following are terms of the language:

x3, c1, f1,2(c2), f1,2(f1,1(x7)), f3,1(x1, f1,1(c2), x2).

At last we can define the basic statements of the language.

Definition Atomic formula

An atomic formula is a string of symbols of the form

Rn,i(τ1, τ2, . . . , τn), Here’s where we use that Rn,i has
n arguments.

where Rn,i is a relation symbol of the language and τ1, τ2, . . . , τn are
terms.

If the language is one with equality, then any string of the form

τ1 = τ2,

where τ1, τ2 are terms, is also an atomic formula.

If the language includes the function symbols f2,1, f3,4, the constant symbol
c1 and the relation symbols R1,1, R2,3, R3,1, all of the following are atomic
formulas of the language:

R1,1(x5), R2,3(x4, c2), R2,3(f2,1(x1, c1), f3,4(x7, x7, x6)),

R3,1(x4, x5, x3), R3,1(c1, f2,1(f2,1(x1, x3), x4), x10);

and if the language is also one with equality, then the atomic formulas include:

x3 = c1, f3,4(x1, f2,1(x1, x4), c1) = x6.

142

4.2 First-order languages and their interpretation

Finally we can define the formulas of the language.

Definition Formula

The set of formulas of a language L is the set of strings of symbols
formed according to the following rules.

1. All atomic formulas are formulas.

2. If φ and ψ are formulas and xi is a variable symbol, then so are The xi in ∀xi and ∃xi is called a
quantified variable.¬φ (φ ∧ ψ) (φ ∨ ψ) (φ → ψ)

(φ ↔ ψ) ∀xiφ ∃xiφ

3. All formulas arise from finitely many applications of 1 and 2. So all formulas are finitely long.

Examples of formulas in a language including the function symbol f1,6, the
constant symbol c3 and the relation symbol R2,4 are

R2,4(x3, f1,6(c3)) (R2,4(x1, x6) → ∀x3R2,4(f1,6(x5), x3))

∃x8(∀x1(R2,4(x1, c3) ∧ ¬R2,4(f1,6(x3), x3)) ↔ R2,4(x2, x7))

and if the language is also one with equality, the following are formulas:

f1,6(x2) = c3 (∃x2 x2 = f1,6(x3) ∨ ∀x1R2,4(x9, x1)).

Examples of non-formulas include

∀R2,4(x4, x1) (there should be a variable after the ∀)

¬ f1,6(x5, x1) = x2 (f1,6 requires one variable, not two)

∀x1 f1,6(x1) = x3 = f1,6(x2) (there’s no atomic formula using two = s).

The third of these examples of non-formulas is the only one which looks like
a reasonable mathematical statement, albeit one that fails to conform to our
construction rules; and what is doubtless intended could be expressed instead
by the legal formula

∀x1(f1,6(x1) = x3 ∧ x3 = f1,6(x2)).

As our emphasis in this book is on using correct formulas, we won’t dwell
much on analysing strings with the aim of flushing out non-formulas. Our
main aim is to help us read a formula correctly, for instance when trying to
establish its truth or falsity under an interpretation – you have already seen
this in the context of working out the truth table of a propositional formula.

143

4 Predicates and models

Exercise 4.9

What can you say about formulas in a language L which has no relation
symbols?

As we hope is clear to you from the last exercise, from now on we shall assume
that any language L contains at least one relation symbol (which might be
the symbol = if L is a language with equality).

The algorithm of Section 2.2 of Chapter 2 can be straightforwardly adapted We could extend the use of the
phrase principal connective to
include an occurrence of ∀xi or ∃xi

that is used at the start of a string
to create a formula. So testing if a
string is a formula would include
checking whether it starts with one
of ¬, ∀,∃ before we hunt for
∧,∨,→,↔; and if a string does
start with ∀ or ∃, we would check
whether what follows is a variable.

to check whether a string is a term and then whether a string is a formula.
We shall not go into the details here, which are along the same lines, but
they are more complicated thanks to needing to check whether certain strings
are terms and to allow for the extra construction rules using relation symbols
and quantifiers. From now on, with the exception of the next exercise, we
shall deal only with strings which are formulas. For formulas it will prove to
be helpful to produce a tree diagram like the one below, similar to those in
Chapter 2, to decompose a string into, and then display how it is built up
from, its constituent parts.

∀x1(R2,1(x1, f1,4(x2)) → ∃x2R2,3(x3, x2))

(R2,1(x1, f1,4(x2)) → ∃x2R2,3(x2, x3))
����

����
R2,1(x1, f1,4(x2)) ∃x2R2,3(x2, x3)

R2,3(x2, x3)

Note that in this sort of diagram the constituent parts are all formulas and the Atomic formulas play a similar role
in building up formulas to
propositional variables.

branches all end with atomic formulas – these are the basic building blocks for
formulas for this level of analysis and we don’t try to analyse the terms inside
the atomic formulas as part of the diagram. Following the terminology in the
propositional case, the constituent parts are called subformulas of the original
formula. So the subformulas of ∀x1(R2,1(x1, f1,4(x2)) → ∃x2R2,3(x3, x2)), the
formula built up in the diagram above, are all the formulas in the diagram
involved at some stage of its construction, namely

∀x1(R2,1(x1, f1,4(x2)) → ∃x2R2,3(x3, x2)),

(R2,1(x1, f1,4(x2)) → ∃x2R2,3(x3, x2)), R2,1(x1, f1,4(x2),

∃x2R2,3(x3, x2), R2,3(x3, x2).

144

4.2 First-order languages and their interpretation

Definition Subformula

For all formulas φ, their subformulas are defined as follows.

1. If φ is atomic, then φ is the only subformula of itself.

2. If φ is one of the forms ¬ψ, ∀xiψ and ∃xiψ, then the subformulas of
φ are φ and all subformulas of ψ.

3. If φ is one of the forms (θ ∧ ψ), (θ ∨ ψ), (θ → ψ) and (θ ↔ ψ), then
the subformulas of φ are φ, all subformulas of θ and all subformulas
of ψ.

Exercise 4.10

Which of the following strings of symbols are formulas? For each which is a
formula, write down all its subformulas.

(a) ∃x1(∀x3R2,2(x2, x3) ∨ (x1 = x3 → ∀x1R1,1(x1)))

(b) ∀x3(R1,2(x4) ∧ ∃x1R2,1(x1, x3) ∨ R1,1(x2))

(c) (∃x1R2,1(x1) ↔ ∀x5R1,1(f2,1(x5, x5)))

Solution
(a) For such short strings as in this exercise, we can use some simple rules

of thumb, rather than rely on a proper algorithm which will cope with
longer strings. For instance, we can attempt to break the string down
into its constituent parts, reversing the construction rule 2 for formulas,
hoping to arrive at atomic formulas. First one tries to identify the final
rule used in the construction of the formula by looking for its principal
connective (counting ∀xi and ∃xi as connectives for this purpose). For
the string

∃x1(∀x3R2,2(x2, x3) ∨ (x1 = x3 → ∀x1R1,1(x1))),

the candidate for the principal connective is the ∃x1 at the front. One
then removes this and tries the same procedure on the remaining part of
the string. The process can be illustrated by the following diagram.

∃x1(∀x3R2,2(x2, x3) ∨ (x1 = x3 → ∀x1R1,1(x1)))

(∀x3R2,2(x2, x3) ∨ (x1 = x3 → ∀x1R1,1(x1)))
����

����
∀x3R2,2(x2, x3) (x1 = x3 → ∀x1R1,1(x1))

����

����
x1 = x3 ∀x1R1,1(x1)

R2,2(x2, x3)

R1,1(x1)

145

4 Predicates and models

As can be seen, this process breaks down the string into what can be
checked to be atomic formulas, with each relation symbol followed by a
pair of brackets containing the correct number of what can be identified
as terms, and with the = symbol likewise correctly used. Thus the string
is a formula. Furthermore, the subformulas are simply all the formulas in
the diagram, namely

∃x1(∀x3R2,2(x2, x3) ∨ (x1 = x3 → ∀x1R1,1(x1))),

(∀x3R2,2(x2, x3) ∨ (x1 = x3 → ∀x1R1,1(x1))),

∀x3R2,2(x2, x3), (x1 = x3 → ∀x1R1,1(x1)),

R2,2(x2, x3), x1 = x3, ∀x1R1,1(x1), R1,1(x1).

(b) After the first obvious stage of breaking down the string by removing the
∀x3, which is the prime candidate to be the principal connective

∀x3(R1,2(x4) ∧ ∃x1R2,1(x1, x3) ∨ R1,1(x2))

(R1,2(x4) ∧ ∃x1R2,1(x1, x3) ∨ R1,1(x2))

we arrive at a string (R1,2(x4) ∧ ∃x1R2,1(x1, x3) ∨ R1,1(x2)) from which
there are two possible analyses. One analysis is We know we are heading for

trouble at this stage! An algorithm
along the lines of that in the
appendix to Section 2.2 of
Chapter 2 would follow the first of
these analyses, treating the
connective following the first
bracket with count 1 as though it
was the principal connective. The
possible appearance of brackets in
terms and after relation symbols
makes the bracket count idea more
complicated to use.

(R1,2(x4) ∧ ∃x1R2,1(x1, x3) ∨ R1,1(x2))
����

����
R1,2(x4) ∃x1R2,1(x1, x3) ∨ R1,1(x2)

?

and the other is

(R1,2(x4) ∧ ∃x1R2,1(x1, x3) ∨ R1,1(x2))
����

����
R1,2(x4) ∧ ∃x1R2,1(x1, x3) R1,1(x2)

?

In the first case, we arrive at a string ∃x1R2,1(x1, x3) ∨ R1,1(x2) which
is neither atomic nor arises from construction rule 2 for formulas. Note
that it lacks the outer brackets (,). In the second case, we can analyse
the string R1,2(x4) ∧ ∃x1 R2,1(x1, x3) no further for similar reasons. So
the original string is not a formula.

(c) One of the constituent parts is R2,1(x1), which isn’t an atomic formula –
the symbol R2,1 requires two arguments, not one. So the original string
is not a formula.

146

4.2 First-order languages and their interpretation

In the introduction to this chapter, we gave an indication of how a formal
language would be interpreted. The analogue of a truth assignment is a set A
of elements with specific functions and relations on A to interpret the function
and relation symbols of the language, and with specific elements interpreting
the constant symbols. As all these functions etc. on A give the set A some
structure, we shall use the word ‘structure’ to describe the whole specific
interpretation of the language.

Definitions Structure

A structure A for a language L is a non-empty set A, called the domain
of the structure, along with the following:

1. for each function symbol fn,m in L, there is a function fA
n,m : An −→ A;

2. for each relation symbol Rn,m in L, there is a subset RA
n,m of An; Note that the interpretation of a

relation symbol is given as a set of
n-tuples, rather than by a common
property of the n-tuples in the set.

3. for each constant symbol ck in L, there is an element c
A
k .

In general, a subset of An is called an n-place relation on A, so that the
subsets RA

n,m are just described as the relations on A, and the c
A
k s are

called constants ofA. The functions fA
n,m, relations RA

n,m and constants

c
A
k are called the interpretations in the structure A of the corresponding

symbols of L.

We shall often write structures using the notation

〈A, . . . , fA
n,m, . . . , . . . RA

n,m . . . , . . .cAk . . .〉.
For examples where we are using a very limited language and use no- Where the structure is

mathematically well-known with
familiar notations for its functions
and relations that obviously match
the symbols in L, we’ll stick with
these familiar notations. For
instance, we’ll write 〈N, +, <〉 for N

with the usual + and <
interpreting symbols f2,1 and R2,1.

tation like f , R and c rather than fn,m, Rn,m and ck, we will usually
write fA, RA and c

A for the interpretations of the symbols in A. If
we use infix notation like + or <, we may write +A and <A for their
interpretations.

If L is a language with equality, how do we interpret the = symbol? The =
symbol is really just a 2-place relation used in infix notation, writing τ1 = τ2

rather than = (τ1, τ2). As such, its interpretation in a structure 〈A, . . .〉 could
be as any subset of A2. Of course, our desired interpretation is as actual
equality on the set A (or, if you prefer, as the subset {(a, a) : a ∈ A} of A2).
A structure that does this gets a special name, as follows.

Definition Normal structure

Let L be a language with equality. A structure for L is said to be normal
if the interpretation of = is equality on its domain.

Note that we shall use = both for the relation symbol in the formal language In any normal structure
A = 〈A, . . .〉, we shall write the
interpretation of the symbol = as
=, standing for the set
{(a, a) : a ∈ A}, rather than use the
notation =A.

and its interpretation by equality on any set A. Some authors (entirely vir-
tuously) use a different symbol within the formal language to stand for the
equality relation. But we shall not, and we hope that the context will make
it clear whether we mean the symbol or its interpretation.

147

4 Predicates and models

Later in the book, when we discuss a formal proof system for predicate calculus
which includes axioms for =, we shall see that our system cannot completely
capture true equality by its axioms and rules. Indeed in Section 5.4 of Chap-
ter 5 we shall look at structures satisfying these axioms in which the symbol =
is not interpreted by actual equality, and we shall then exploit such structures
in the proof of the completeness theorem for predicate calculus in Section 5.5
of Chapter 5. However, in all other parts of the book, we shall assume that
all examples of structures for a language with equality in the book are normal.

You have essentially seen some examples of structures in the introduction to
this chapter and we’ll take the risk of not giving you any more right now. In-
stead we’ll move towards explaining when a formula is true in a structure. We
hope that the introduction has prepared you for most of the formal definition,
but there are some tedious details. For instance, if investigating the truth of
the formula ∀x1R2,1(x1, x2) in a structure A = 〈A, RA

2,1〉, you’ve been alerted
to the need to specify which element of A interprets the variable x2. But in
a more complicated formula, like

∃x2(R2,1(x2, x3) ∨ ∀x1(R2,1(x9, x1) → ∃x9R2,1(x9, x3))),

how do we systematically find the variables, which are called free variables,
for which some element of A needs to be specified? Which appearances of
the variables in a formula get interpreted by these specific elements? (Think
about the way x9 occurs in the formula above.) The answers will be forced
by the following definitions.

Definitions Free and bound variables

In any formula of the form ∀xiφ, all occurrences of the variable xi within In a formula of the form ∀xiφ
(respectively ∃xiφ), the subformula
φ is often said to be the scope of
the quantifier ∀xi (respectively
∃xi).

the string ∀xiφ are said to be bound . Similarly all occurrences of xi

within ∃xiφ are said to be bound. Any occurrence of a variable which
is not bound is said to be free.

One way to classify the occurrences of variables in a formula as free or bound is
to work through the construction of the formula from its subformulas, noting
which variables become bound when a quantifier is added to some subformula.
The analysis for the formula

∃x1(∀x3R2,2(x2, x3) ∨ (x1 = x3 → ∀x1R1,1(x1)))

is shown below. We work up the construction tree, starting with the atomic
subformulas, in which all occurrences of variables are free. Whenever a quan-
tifier is applied to a subformula, we underline all occurrences of the quantified
variable within the new subformula that is being constructed – these are now
bound occurrences of the variable. Once an occurrence of a variable becomes
bound in a subformula, it remains bound wherever this subformula is used in
the construction.

148

4.2 First-order languages and their interpretation

∃x1(∀x3R2,2(x2, x3) ∨ (x1 = x3 → ∀x1R1,1(x1)))

(∀x3R2,2(x2, x3) ∨ (x1 = x3 → ∀x1R1,1(x1)))
����

����
∀x3R2,2(x2, x3) (x1 = x3 → ∀x1R1,1(x1))

����

����
x1 = x3 ∀x1R1,1(x1)

R2,2(x2, x3)

R1,1(x1)

Those occurrences of variables which are not underlined are therefore not
bound and hence are free. Note that some occurrences in the above formula
of the variable x3 are bound and some are free – that sort of situation is not
unusual. Note also that the occurrence of x1 in the atomic subformula R1,1(x1)
lies both inside a subformula with principal connective ∀x1 (the subformula
∀x1R1,1(x1) immediately above it in the tree) and inside a larger subformula
beginning with ∃x1 (namely the whole formula). To which quantifier is this
occurrence of x1 attached? An answer is given by the following definition. This answer will be reflected in

how we give meaning to the
symbols by our definition of when a
structure satisfies a formula, as you
will see later in Exercise 4.18.

Definition The quantifier which binds a variable

Suppose that an occurrence of the variable xi is bound within a formula
φ. This occurrence must become bound at an earliest stage when work-
ing up the construction tree of φ, in a subformula ψ of the form either Equivalently, working one’s way

down the construction tree, the
occurrence of xi is bound by the
quantifier lowest down the tree
within the scope of which this
occurrence of xi lies.

∀xiθ or ∃xiθ. We then say that the occurrence of xi is bound by the
quantifier which is the principal connective of ψ.

So in our example above, the occurrence of x1 in the atomic subformula
R1,1(x1) is bound by the ∀xi in the subformula ∀x1R1,1(x1), not the ∃x1

higher up the tree.

Before we ask you to do some exercises identifying free and bound variables
in formulas, let’s indicate the point of this idea. First of all, when we want
to define whether a structure A = 〈A, . . .〉 satisfies a formula φ, we now know
how to identify which variables are free in φ and will thus require specific
interpretation by elements of the domain A. Secondly, our explanation of
when A satisfies a formula of the form ∀xiψ will reduce this to deciding
whether the shorter formula ψ is satisfied in A for all possible interpretations
in A of the free variable xi in ψ. So, for instance, the truth in A of the formula Of course, to work out the truth of

the formula, we also need a specific
interpretation of the variable x2,
which is free in the formula.

which we have just looked at,

∃x1(∀x3R2,2(x2, x3) ∨ (x1 = x3 → ∀x1R1,1(x1))),

149

4 Predicates and models

will be determined by looking at the truth of the shorter formula Indeed, we shall be looking for at
least one interpretation of x1 in A
which makes the formula true in A,
as we are going to interpret ∃x1 by
‘there exists an x1’.

(∀x3R2,2(x2, x3) ∨ (x1 = x3 → ∀x1R1,1(x1)))

for interpretations of the variable x1, which has one free occurrence (appearing
in the subformula x1 = x3).

Exercise 4.11
For each of the following formulas, classify all occurrences of variables as free
or bound.

(a) ∃x3(∀x2R1,2(f3,1(x1, x3, x2)) ↔ (∀x1R2,1(c2, x1)∧∀x5 f2,4(x3, x2) = x1))

(b) (∀x5(f1,1(x2) = x5 ∨ ∃x2R2,1(x5, x2)) → ∃x3(∀x1R2,1(x1, x2) ∨ x1 = x3))

Solution
(a) The bound occurrences of variables are those underlined in the formula

below.

∃x3(∀x2R1,2(f3,1(x1, x3, x2)) ↔ (∀x1R2,1(c2, x1) ∧ ∀x5 f2,4(x3, x2) = x1))

Note that the ∀x5 doesn’t create any other bound variables. When a Of course, for most mathematically
interesting formulas of the form
∀xiφ, φ would contain free
occurrences of xi. But our set-up
doesn’t demand that formulas
should be interesting!

formula is constructed as ∀xiφ, there is no reason why φ has to contain
free occurrences of xi.

(b) Not given.

Exercise 4.12
Write down the scope of each quantifier in the formula below and for each oc-
currence of a bound variable, indicate the quantifier by which it is bound. (The
formula involves a relation symbol R of 2 arguments and variables x, y, z.)

∀y(∃x(R(y, z) → ∃yR(x, y)) ∧ ¬∀zR(x, y))

We can now explain when a formula is true in a structure. As a formula will
in general include variables and more complicated terms, we need to define
how terms are interpreted in a structure. Terms are built up from variables Some books use the word valuation

for what we call an interpretation
of all the variables.

and constant symbols. The essence of a constant symbol c is that a structure
A = 〈A, . . .〉 includes a specified interpretation of this symbol by an element
c
A of the domain A, and once this is specified, it’s fixed forever – that’s why

the symbol is called a constant! But the variables, as the name suggests, can
be interpreted by any elements of A. So we must specify how each one is to
be interpreted and then this will then determine the interpretation of every

150

4.2 First-order languages and their interpretation

more complicated term, as per the following definition.

Definition Interpretation of terms

Let A = 〈A, . . .〉 be a structure for a language L. Suppose that the vari-
ables x1, x2, x3, . . . are interpreted respectively by elements a1, a2, a3, . . . In practice, a term involves only

finitely many variables and we only
need the interpretation of these.
We shall still use the notation �x/�a
in this case.

of A. We shall abbreviate this interpretation by �x/�a. Then the inter-
pretation in A of each term τ of the language under this interpretation
of the variables, which we shall write as τ[�x/�a]A, is defined recursively
as follows.

1a For each variable xi, we define xi[�x/�a]A = ai.

1b For each constant symbol ck, we define ck[�x/�a]A = c
A
k .

2 If fn,m is a function symbol in L and τ1, τ2, . . . , τn are terms, then

fn,m(τ1, τ2, . . . , τn)[�x/�a]A = fA
n,m

(
τ1[�x/�a]A, τ2[�x/�a]A, . . . , τn[�x/�a]A

)
.

As an example, let the language L consist of the function symbols f1,1, f2,1

and the constant symbol c1, along with equality. Let A be the structure
〈N, fA

1,1, +, 5, =〉, where fA
1,1(n) = n2, for all n ∈ N. Suppose that the variables We hope that it is obvious in the

way we have described the
structure A that + stands for the
standard function of two variables
on N interpreting the function
symbol f2,1 of two variables and
that 5 is the interpretation of the
constant symbol c1.

x1, x2, x3, . . . , are interpreted respectively by 1, 2, 3, . . ., which we shall write
as �a. Then

f2,1(c1, f1,1(x6))[�x/�a]A = fA
2,1(c1[�x/�a]A, f1,1(x6)[�x/�a]A)

= fA
2,1(c

A
1 , fA

1,1(x6[�x/�a]A))

= fA
2,1(5, f1,1(6)) (as a6 = 6)

= fA
2,1(5, 62))

= 5 + 36 = 41.

Exercise 4.13

Take the same set-up as above, so that L is the language consisting of the
function symbols f1,1, f2,1 and the constant symbol c1, along with equality;
A is the structure 〈N, fA

1,1, +, 5, =〉, where fA
1,1(n) = n2, for all n ∈ N; and the

variables x1, x2, x3, . . . , are interpreted respectively by 1, 2, 3, . . ., which we
shall write as �a. Find the values of τ[�x/�a]A for each of the following terms τ.

(a) x4

(b) f2,1(x3, c1)

(c) f2,1(f1,1(x2), f2,1(x8, f1,1(c1)))

For our main definition we shall need a variation of the τ[�x/�a]A notation to
cover the case where we are given an interpretation �a of the variables and

151

4 Predicates and models

want to alter the interpretation of one of the variables, say xi, to the element
b of A.

Definition Changing the interpretation of a term

We shall write �x/�a[xi/b] to signify that the interpretation of the variable So �x/�a[xi/b] replaces ai by b in the
ith place.xi in the interpretation �a of the variables has been changed (from ai) to

b.

So with the interpretation �a in Exercise 4.13, �x/�a[x2/87] stands for the inter-
pretation of the variables x1, x2, x3, x4, . . . , respectively as 1, 87, 3, 4 . . ., while
repeated use of the notation gives examples like

�x/�a[x2/87][x1/9][x2/1008]

which interprets the variables respectively as 9, 1008, 3, 4, Just in case you
are wondering why we have this ghastly piece of notation, bear in mind that
we shall have to explain when a formula like

(x2 = f1,1(x4) ∧ ∀x2 f1,1(x2) = f1,1(x8))

is true in a structure A = 〈A, . . .〉. To make the question of whether this
formula is true or false meaningful, we need to specify an interpretation of
the free variables within it. We can take an interpretation �a of all possible
variables, but you can see that here we are only interested in the interpretation
of x2, x4 and x8. Inevitably we shall then have to decide whether, with this
interpretation of these variables, both of

x2 = f1,1(x4)

and

∀x2 f1,1(x2) = f1,1(x8)

are true in A. The specified interpretation of x2 matters for the first of these
formulas, but is irrelevant for the second. For the second of these formulas we
shall need to override the interpretation of x2 by considering its interpretation
of all possible b in A to see whether f1,1(x2) = f1,1(x8) is true in all of these
cases, with the original specified interpretation of x8.

Now for the main definition – at last! The definition connects structures, sets The formulas are the syntax of the
language and the structures which
interpret them according to this
definition give the semantics of the
language.

with relations and functions on them out in the real mathematical world, with
strings of symbols which conform to rules for being a formula. The definition
gives meanings to the individual symbols in the language and connects these
strings with properties of any structure in which they are then true.

Just as the driver of a truth assignment v satisfying a propositional formula is
the values v gives to the propositional variables, the key part of this definition
is which atomic formulas are true in a structure for each possible interpretation
of the variables �x. The truth of more complicated formulas then follows using
our earlier truth table rules for the propositional connectives and the obvious
interpretations of the symbols ∀ and ∃, namely that ∀xiφ is true in A if and

152

4.2 First-order languages and their interpretation

only if φ is true in A for all b ∈ A, and a similar interpretation of ∃ by ‘there
exists’.

Definitions Satisfaction

Let A = 〈A, . . . , fA
n,m, . . . , . . . RA

n,m . . . , . . . cAk . . .〉 be a structure for a These definitions stem from the
work of Alfred Tarski (1902–83),
the founder of model theory, to
which Chapter 6 is a brief
introduction.

language L (with A normal if L is a language with equality). Sup-
pose that the variables x1, x2, x3, . . . , are interpreted respectively by
a1, a2, a3, . . ., which as before we’ll abbreviate as �x/�a. Let φ be a for-
mula of L. The relation

A ��x/�a φ, The symbol � is used both for a
structure satisfying a formula and
for logical consequence, Γ � φ. This
may seem potentially confusing,
but the context usually makes the
intended meaning clear.

which we shall read as

the structure A satisfies the formula φ when
x1, x2, x3, . . . , are interpreted by a1, a2, a3, . . .,

is defined recursively on the construction of φ as follows.

1. Atomic formulas:

(a) for each relation symbol Rn,m in L and terms τ1, τ2, . . . , τn,
A ��x/�a Rn,m(τ1, τ2, . . . , τn) if and only if

(τ1[�x/�a]A, τ2[�x/�a]A, . . . , τn[�x/�a]A) ∈ RA
n,m;

(b) if τ1, τ2 are terms, then A ��x/�a τ1 = τ2 if and 1(b) is relevant when L is a
language with equality and just
says that the interpretations of the
terms are equal.

only if τ1[�x/�a]A = τ2[�x/�a]A.

2. For any formula of one of the forms ¬φ, (φ ∧ ψ), (φ ∨ ψ),
(φ → ψ), (φ ↔ ψ), truth tables laws are followed, e.g.

A ��x/�a ¬φ if and only if it is not the case that A ��x/�a φ;
A ��x/�a (φ ∨ ψ) if and only if A ��x/�a φ or A ��x/�a ψ.

3. A ��x/�a ∀xiφ if and only if for all b ∈ A, A ��x/�a[xi/b] φ.

4. A ��x/�a ∃xiφ if and only if there is some b ∈ A for
which A ��x/�a[xi/b] φ.

When A ��x/�a φ, we shall also use terminology like

the formula φ is true in, or is satisfied by, the structure A when For a given formula φ, it will turn
out that we only need the
interpretation of any free variables
in φ, rather than all variables in
the language. See Theorem 4.1
later in the section.

x1, x2, x3, . . . are interpreted by a1, a2, a3,

Although the underlying idea behind this definition is very straightforward,
it is quite elaborate when written down in detail. The definition permits a
systematic approach to interpreting complicated formulas in a structure and
deciding whether or not they are true. When we look at the formal proof
system which provides one of our frameworks for establishing when one for-
mula is a consequence of another, the formal system manipulates symbols and
formulas mechanically, just as strings of symbols obey rules about allowable
shapes, not knowing how the symbols are to be interpreted. Our definition
above will prove to be very important in nailing down suitable axioms and
rules of inference for this formal system – it turns out that we’ll have to be
very careful about rules for manipulating the quantifiers.

153

4 Predicates and models

As an example of using this definition, let’s take the set-up of Exercise 4.13
above. So L is a language with equality, the function symbols f1,1, f2,1 and the
constant symbol c1; A is the structure 〈N, fA

1,1, +, 5, =〉, where fA
1,1(n) = n2, Recall our convention that all

structures for a language with
equality are normal.

for all n ∈ N; and the variables x1, x2, x3, . . . , are interpreted respectively by
1, 2, 3, . . ., which we shall write as �a.

First let us investigate whether A ��x/�a f1,1(x3) = f2,1(x4, c1). This is an
atomic formula and thus holds if and only if

f1,1(x3)[�x/�a]A = f2,1(x4, c1)[�x/�a]A,

that is, if and only if

32 = 4 + 5,

which is true. Thus it is the case that A ��x/�a f1,1(x3) = f2,1(x4, c1).

If we slightly tweak the formula in the above example and ask whether

A ��x/�a f1,1(x3) = f2,1(x7, x8),

we hope that this is pretty obviously false (as 32 �= 7 + 8). We’ll describe this
by saying that A doesn’t satisfy the given formula with the given interpre-
tation of the variables and also write it using a slash through the � symbol,
which here would get written as Notation: �� stands for ‘doesn’t

satisfy’. It also stands for ‘is not a
logical consequence’ – the context
will make the meaning clear!

A ���x/�a f1,1(x3) = f2,1(x7, x8).

Let’s look at something more complicated than an atomic formula, in partic-
ular something involving a quantifier. Is it the case that

A ��x/�a ∀x7 f1,1(x3) = f2,1(x7, x8)?

As the principal connective is ∀x7, this holds if and only if

for all b ∈ N,A ��x/�a[x7/b] f1,1(x3) = f2,1(x7, x8).

The notation �x/�a[x7/b] says that for each i except 7, the variable xi continues
to be interpreted by the element ai = i in the domain N of A, while xi is now
interpreted by the natural number b. Plainly it is not the case that 32 = b + 8
holds for all b ∈ N, so that

A ���x/�a ∀x7 f1,1(x3) = f2,1(x7, x8).

You may have noticed in this example that when testing whether

A ��x/�a ∀xiφ,

we have to check whether for all b ∈ A,

A ��x/�a[xi/b] φ,

where the notation �x/�a[xi/b] means that the value b overrides whatever value
happened to be given to the variable xi in �a. The same sort of thing happens
when testing whether A ��x/�a ∃xiφ, as you will see in the next exercise. In
both cases, the original value of xi is irrelevant when the the xis appearing in
φ are bound.

154

4.2 First-order languages and their interpretation

Exercise 4.14

Does A ��x/�a ∃x7 f1,1(x3) = f2,1(x7, x8)? (As before, the interpretation �a is
1, 2, 3,)

Solution

This time the principal connective is ∃x7. So A ��x/�a ∃x7 f1,1(x3) = f2,1(x7, x8)
holds if and only if

there is some b ∈ N,A ��x/�a[x7/b] f1,1(x3) = f2,1(x7, x8),

that is, there is some b ∈ N for which 32 = b + 8. As there is such a b, namely
b = 1, it is the case that A ��x/�a ∃x7 f1,1(x3) = f2,1(x7, x8).

You may have noticed in the last exercise that although the original question
was whether ∃x7 f1,1(x3) = f2,1(x7, x8) is satisfied in A with a particular in-
terpretation of the variables including interpreting x7 as 7, the definition of �

for a formula beginning with ∃x7 completely disregards the original interpre-
tation of the variable. This was also the case in the preceding worked example So the way the definition of �

works, if the question is whether
∀xφ, or respectively ∃xφ, is
satisfied when x is interpreted by a
particular element of the domain,
one completely ignores this
particular element and looks only
at whether φ is satisfied by all, or
respectively some, interpretations
of x by elements of the domain, not
necessarily having much to do with
the particular one given.

when the formula began with ∀x7. This is typical when resolving the truth of
formulas beginning with ∀x or ∃x. In general the only variables in a formula
which need an interpretation by elements of the domain are those appearing
in it which are free. Of course, variables can occur free in some subformulas
and bound in others, so you have to remain alert.

Exercise 4.15

Does A ��x/�a (∀x7 f1,1(x3) = f2,1(x7, x8) ∨ x7 = f2,1(x3, x4)), where as before
the interpretation �a is 1, 2, 3, . . .?

Solution

As the principal connective of the formula is ∨, it is satisfied under the given To work out the truth value of a
propositional formula under a
truth assignment, one often builds
up from the inside, obtaining truth
values for successively bigger
subformulas. But for first-order
formulas, one is likelier to work
one’s way in from the outside.

interpretation if

A ��x/�a ∀x7 f1,1(x3) = f2,1(x7, x8) or A ��x/�a x7 = f2,1(x3, x4).

Note that x7 is bound in the first of the subformulas and free in the second.
We know from earlier that A ���x/�a ∀x7 f1,1(x3) = f2,1(x7, x8). But as the
interpretations of x7, x3, x4 are respectively 7, 3, 4, we do have
A ��x/�a x7 = f2,1(x3, x4), so that

A ��x/�a (∀x7 f1,1(x3) = f2,1(x7, x8) ∨ x7 = f2,1(x3, x4)).

Exercise 4.16

Let L and A be the same language and structure as in the discussion above,
but now let �a be any interpretation in the domain N of the variables x1, x2, x3,
Let b and c be any elements of N. Show that

A ��x/�a[x1/b] ∀x7 f1,1(x3) = f2,1(x7, x8) if and only if

A ��x/�a[x1/c] ∀x7 f1,1(x3) = f2,1(x7, x8).

155

4 Predicates and models

We hope that it is obvious that the same sort of result would have held in
Exercise 4.16 for all other variables xi (as well as the x1) except for x3 and x8

which appear free in the formula. This exercise illustrates the more general
result that whether or not A ��x/�a φ for a given φ and sequence �a of elements
in the domain of A doesn’t depend on the interpretation within �a of variables
xi which don’t appear in φ as free variables. It may seem a bit grand, but
we’ll state this as a theorem.

Theorem 4.1

Suppose that A = 〈A, . . .〉 is a structure for a language L and that the
sequence �a of elements of A interprets the variables x1, x2, x3, Let φ
be a formula of L in which xi does not appear as a free variable and let
b, c ∈ A. Then

A ��x/�a[xi/b] φ if and only if A ��x/�a[xi/c] φ.

The proof of this and similar ‘obvious’ results can require considerable persis-
tence, though not necessarily great inspiration. We shall leave it to the end
of the section.

As a consequence of Theorem 4.1, when we want to know whether A ��x/�a φ,
the only variables for which we need to specify an interpretation are the
variables which appear free in φ. Indeed, if φ has no free variables, we don’t
need to specify the interpretation of any of the variables. Such a formula
merits a special name. We will thus introduce an extra definition and variants
of our notation as follows.

Definition and notation

A formula with no free variables is called a sentence.

If the formula φ has free variables included in the list x1, x2, . . . , xn, we This doesn’t mean that every one
of x1, x2, . . . , xn appears free in φ,
only that any free variable is
amongst these.

can indicate this by writing φ(x1, x2, . . . , xn). If in addition a1, a2, . . . , an

are elements of the domain of a structure A, we shall write

A �x1/a1,x2/a2,...,xn/an
φ

and

A �x1/a1,x2/a2,...,xn/an
φ(x1, x2, . . . , xn)

to indicate that A satisfies φ when x1, x2, . . . , xn are interpreted by
a1, a2, . . . , an.

When φ is a sentence, so there are no free variables in φ, we can write In some books, a sentence is called
a closed formula.simply A � φ.

When we come to axiomatizing mathematical theories, we shall normally use
sentences rather than formulas with free variables. This is because the axioms
typically express some property of all elements x of a set or assert the existence
of an element x with a special property. It’s thus natural for the corresponding
formula to bind the x with a ∀ or ∃ as appropriate.

156

4.2 First-order languages and their interpretation

The next exercise asks you to look at some slightly more complicated formulas.
So far we have only looked at formulas containing at most one quantifier.
When we look at formulas containing more than one, say

∀x1∃x2∀x3φ,

we need to take care over the letters we use to represent elements of the
structure interpreting x1, x2, x3 as we successively strip off the quantifiers.
Let A = 〈A, . . .〉 be a structure for the language and �a a sequence of elements
of the domain A interpreting the variables �x. Then

A ��x/�a ∀x1∃x2∀x3φ

if and only if for all b ∈ A,

A ��x/�a[x1/b] ∃x2∀x3φ.

This holds if and only if for all b ∈ A, there is some c ∈ A such that

A ��x/�a[x1/b][x2/c] ∀x3φ.

Notice that we have chosen the letter c, different from the letter b, for the
element of A that depends on b. This doesn’t mean that element c isn’t in
fact equal to b. It does however allow for the possibility that c might not be
equal to b. Strictly speaking, in our definition of when a formula beginning
with a quantifier is satisfied in a structure, we should have emphasised that the
element of the domain interpreting the quantified variable will not necessarily
be one of the elements previously given as interpreting one of the variables.
So, taking our example one stage further, we have

A ��x/�a ∀x1∃x2∀x3φ

if and only if for all b ∈ A, there is some c ∈ A such that for all d ∈ A,

A ��x/�a[x1/b][x2/c][x3/d] φ.

In general, checking this for a typical structure A could be quite challenging! If
you have ever studied real analysis, you might recognize that the complexity This complexity might lead one to

suspect that deciding whether a
given φ is satisfied in a structure A
is going to be very difficult,
especially if the domain of A is
infinite.

of the quantifiers is at the same level as checking whether the limit of an
infinite sequence {yn} as n → ∞ equals l, the usual definition of which is

for all ε > 0, there is an N such that for all n, if n ≥ N then |yn − l| < ε.

Exercise 4.17
As earlier, let A be the structure 〈N, fA

1,1, +, 5, =〉, where fA
1,1(n) = n2, for all

n ∈ N. For each of the following formulas φ, decide whether

A �x1/2,x2/7,x3/2,x4/3 φ.

In each case give your answer in a fairly full way, explaining each use of a part We won’t ask you to give such full
explanations in most later
exercises! But it is important that
you know in principle how to give
such explanations.

of the definition of A ��x/�a φ.

(a) ∀x1∃x2 f1,1(x1) = x2

(b) ∀x2∃x1 f1,1(x1) = x2

(c) (∃x3 f1,1(x3) = c1 → f2,1(x1, x4) = x2)

(d) ∀x2(f2,1(x2, x1) = c1 → x2 = x4)

157

4 Predicates and models

Solution

We shall do the solution to part (a) and won’t give the details of the other
solutions, but hope that you obtained the answers as to whether A ��x/�a φ as
(b) no and (c) and (d) yes. For (a) we shall argue as follows. We have

A �x1/2,x2/7,x3/2,x4/3 ∀x1∃x2 f1,1(x1) = x2

if and only if for all b ∈ N,

A �x1/2,x2/7,x3/2,x4/3[x1/b] ∃x2 f1,1(x1) = x2,

which is the same as

A �x1/b,x2/7,x3/2,x4/3 ∃x2 f1,1(x1) = x2.

This holds if and only if for all b ∈ N there is some c ∈ N such that

A �x1/b,x2/7,x3/2,x4/3[x2/c] f1,1(x1) = x2,

which is the same as

A �x1/b,x2/c,x3/2,x4/3 f1,1(x1) = x2.

As f1,1(x1) = x2 is an atomic formula, this holds if and only if for all b ∈ N

there is some c ∈ N such that

fA
1,1(b) = c,

that is,

b2 = c.

This is plainly true, as for each b ∈ N we can take c to equal the natural
number b2.

While our main interest is in the interpretation of elegantly constructed formu-
las, the definition tells us how to interpret inelegant and confusing formulas,
like

∀x1∃x1R1,1(x1).

Which of the quantifiers really dominates this? The ∀x1 or the ∃x1? There
may not be any natural answer to this problem, but the definition forces our
hand (and matches our earlier definition of which quantifier binds a bound
variable).

Exercise 4.18
Let the language L have only the relation symbol R1,1. Does the structure
〈N, {n ∈ N : n is even}〉 satisfy the formula ∀x1∃x1R1,1(x1)?

158

4.2 First-order languages and their interpretation

We can generalize the result we hope you obtained in the last exercise by use
of Theorem 4.1, which we shall now restate and prove.

Theorem 4.1

Suppose that A = 〈A, . . .〉 is a structure for a language L and that the
sequence �a of elements of A interprets the variables x1, x2, x3, Let φ
be a formula of L in which xi does not appear as a free variable and let
b, c ∈ A. Then

A ��x/�a[xi/b] φ if and only if A ��x/�a[xi/c] φ.

Proof

This is a general result for all formulas φ and the basic method for proving such
a result, as with so many earlier results about propositional formulas, is by
mathematical induction on the length of φ. As ever, there are several sensible
measures of the length of a formula: we will take the number of connectives
and quantifiers. We shall phrase the induction hypothesis as follows. For all
formulas φ of L with ≤ n connectives and quantifiers in which the variable xi

does not appear as a free variable, all structures A = 〈A, . . .〉 for L, and all
interpretations �a and b, c ∈ A,

A ��x/�a[xi/b] φ if and only if A ��x/�a[xi/c] φ.

For n = 0, φ is an atomic formula, of one of the forms Rn,m(τ1, τ2, . . . , τn) or Which, if any, of these can arise
obviously depends on what symbols
are in the specific language L.

In an atomic formula, the free
variables are simply those variables
appearing in the formula. With no
quantifiers around, all variables are
free!

τ1 = τ2, where the τi are terms, none of which involve the variable xi. An
easy induction on the length of terms not involving xi (with length measured
by e.g. the number of function symbols used in a term) shows that

τ[�x/�a[xi/b]]A = τ[�x/�a[xi/c]]A (and both equal τ[�x/�a]A),

so that in the case that φ is Rn,m(τ1, τ2, . . . , τn), we have

(τ1[�x/�a[xi/b]]A, τ2[�x/�a[xi/b]]A, . . . , τn[�x/�a[xi/b]]A) ∈ RA
n,m

if and only if

(τ1[�x/�a[xi/c]]A, τ2[�x/�a[xi/c]]A, . . . , τn[�x/�a[xi/c]]A) ∈ RA
n,m,

so that

A ��x/�a[xi/b] Rn,m(τ1, τ2, . . . , τn) if and only if

A ��x/�a[xi/c] Rn,m(τ1, τ2, . . . , τn).

Similarly, if xi doesn’t appear in τ1 or τ2, we can show that

A ��x/�a[xi/b] τ1 = τ2 if and only if A ��x/�a[xi/c] τ1 = τ2

(again with both of these holding if and only if A ��x/�a τ1 = τ2, given that xi

doesn’t appear in the terms).

Now assume that the hypothesis holds for all φ of length ≤ n in which xi

does not appear and that we have such a φ of length n + 1. We should really
discuss all possible forms of φ, depending on its principal connective, but
we shall only discuss the case when this principal connective is a universal
quantifier, when φ is of the form ∀xjψ, with xi not free in φ, and leave other

159

4 Predicates and models

cases for you as an exercise. There are two cases for ∀xjψ, one where j �= i
and the other where j = i.

In the case j �= i, the variable xi doesn’t appear free in ψ and

A ��x/�a[xi/b] ∀xjψ

if and only if

for all d ∈ A, A ��x/�a[xj/d][xi/b] ψ.

By the induction hypothesis (as ψ has length n and the hypothesis applies to
all sequences �a, thus including the sequence �a where aj is replaced by d), this
holds if and only if

for all d ∈ A, A ��x/�a[xj/d][xi/c] ψ,

hence if and only if

A ��x/�a[xi/c] ∀xjψ,

as required.

In the case j = i, when we strip off the ∀xi the initial interpretation of xi is
overridden by a general d ∈ A, so we have both that

A ��x/�a[xi/b] ∀xiψ if and only if for all d ∈ A, A ��x/�a[xi/d] ψ,

and

A ��x/�a[xi/c] ∀xiψ if and only if for all d ∈ A, A ��x/�a[xi/d] ψ,

so that

A ��x/�a[xi/b] ∀xiψ if and only if A ��x/�a[xi/c] ∀xiψ.

Exercise 4.19

Fill in some of the detail in our proof of Theorem 4.1 by justifying the inductive As the connectives ∧ and ¬ are
adequate, we can claim that the
theorem has been proved, once one
has successfully completed this
exercise!

step in the cases when the principal connective of φ of length n + 1 is one of
∧, ¬ and an existential quantifier ∃xj .

As one application of Theorem 4.1, we can show how the definition of sat-
isfaction copes with a formula which begins with an essentially redundant Such formulas are perfectly legal,

but are a bit silly! It would be poor
taste to write down such a formula
with a redundant quantifier.

quantifier, that is, has the form ∀xφ or ∃xφ, where the variable x does not
appear free in φ. Let’s consider the case of ∀xiφ, where xi does not appear
free in φ, in a language L. We shall show that for any structure A = 〈A, . . .〉
for L and sequence �a of elements of A interpreting the variables x1, x2, x3, . . .,

if A ��x/�a φ then A ��x/�a ∀xiφ. We shall ask you to show the
converse in Exercise 4.20.

Let ai be the element of A interpreting xi in the given sequence �a and let c
be any element of A. By Theorem 4.1, as xi is not free in φ, we have

A ��x/�a φ if and only if A ��x/�a[xi/c] φ, In the statement of Theorem 4.1, if
we take b to be the element ai

already interpreting xi in �a, the
sequence �a[xi/b] is simply the
original sequence �a.

so that as

A ��x/�a φ,

160

4.2 First-order languages and their interpretation

we have, for all c ∈ A, that

A ��x/�a[xi/c] φ,

which gives

A ��x/�a ∀xiφ,

as required.

Exercise 4.20
Suppose that A = 〈A, . . .〉 is a structure for a language L and that the sequence
�a of elements of A interprets the variables x1, x2, x3, Let φ be a formula
of L in which xi does not appear as a free variable. Show that

if A ��x/�a ∀xiφ then A ��x/�a φ.

We now have the basic definition of when a formula is satisfied by a structure.
In the next section we shall look at formulas that are always true and some
important equivalences between formulas.

Further exercises

Exercise 4.21

Let the language L consist of the one place relation symbol Q and the two
place relation symbol R. Which of the following formulas are true in the given
structures? Brief explanations will do.

(a) ∀x∃y(R(x, y) ∧ Q(y))

(b) ∃x∀yR(x, y)

(c) ∀x(R(x, x) → Q(x))

(d) ∀x∀y∃z((R(x, z) ∧ R(z, y)) ∨ ¬R(x, y))

Structures (giving the interpretation of Q before that of R): In the context of natural numbers
x, y in N, ‘x divides y’ means that
y = kx for some k ∈ N.A = 〈R, {x : x is rational}, <〉,

B = 〈R, {x : x is negative}, <〉,
C = 〈N, {x : x is even}, {(x, y) : x divides y}〉.

Exercise 4.22
Formalize the following statements about N using a language without equality
with a 1-place relation symbol P , a 3-place relation symbol S and a constant
symbol c. The intended interpretation is the structure A with domain N,
PA = {x : x is prime}, SA = {(x, y, z) : x + y = z}, c

A = 2. (You may abbre-
viate the formula of one part if you use it in a later part.)

(a) x equals 0. (Note that there is no symbol for 0 in the given language.)

(b) x is greater than y.

(c) Every even number greater than two is the sum of two primes.

(d) There are arbitrarily large prime pairs, where {a, b} is said to be a prime
pair if both a and b are prime and a and b differ by 2, e.g. {29, 31} and
{101, 103}.

161

4 Predicates and models

Exercise 4.23

Let τ be a term in a language L involving the variable x1. Let τ′ be a term For instance, if τ is the term
(f(x1, c, g(x3, x1), x2), where f and
g are respectively 4-place and
2-place function symbols and c is a
constant symbol, then τ′ might be
(f(x1, c, g(x3, x2), x2).

obtained by replacing some, maybe all, of the occurrences of x1 in τ by the
variable x2. Let A be a structure for L and let �a be an interpretation of the
variables �x by elements of the domain of A. Show that if a1 = a2, then

τ[�x/�a]A = τ′[�x/�a]A.

[Hints: Use mathematical induction on the number k of function symbols in
the term τ. The base case when k = 0 is in some sense the most interesting
part of the argument, as this is where the replacement of an occurrence of x1

by x2 really happens!]

Exercise 4.24
Suppose that A = 〈A, . . .〉 is a structure for a language L and that the sequence
�a of elements of A interprets the variables x1, x2, x3, Let φ be a formula
of L in which xi does not appear as a free variable. Show that

A ��x/�a φ if and only if A ��x/�a ∃xiφ.

[Hint: Use Theorem 4.1.]

Exercise 4.25

(For those with the background from e.g. set theory!)

(a) Suppose that the only function symbol contained in the first-order lan-
guage L is f1,1. Explain why the set of terms of the language is countable.

(b) Suppose that the first-order language L contains all of the function sym-
bols f1,1 f1,2, f1,3, . . . , f2,1, f2,2, . . . , fn,1, . . . , fn,m . . ., all of the rela-
tion symbols R1,1, R1,2, R1,3, . . . , R2,1, R2,2, . . . , Rn,1, . . . , Rn,m . . .
and all of the constant symbols c1, c2, c3,

(i) Explain why the set of terms of this language is countable.

(ii) Is the set of formulas of this language countable or uncountable?
Explain your answer.

Exercise 4.26

Suppose that φ is a formula in L with free variables contained in the list
x1, x2, . . . , xn and that S is a symbol of L, for either a function or relation
or constant, which does not appear in φ. Show that for any structure A for
the language L and interpretation of the free variables �x by elements �a, the Such an obvious result! So tedious

to demonstrate!truth of A �[�x/�a] φ is independent of the interpretation SA of S in A. [Hints:
Probably the most convincing method is to regard the result as one which
holds for all formulas φ not involving the symbol S and then prove it by
mathematical induction on the length of these formulas, for a fixed structure
A. One useful formulation of an induction hypothesis is as follows: the truth
of A �[�x/�a] φ is independent of SA, for all formulas φ not involving S of length
≤ n and all interpretations �a of the free variables �x – the last bit helps because
if φ has subformulas of the form ∃xψ or ∀xψ, the truth of A �[�x/�a] φ usually
involves investigating interpretations of �x by elements besides those in the
original sequence �a.]

162

4.3 Universally valid formulas and logical equivalence

4.3 Universally valid formulas and logical
equivalence

In this section, we shall look at the extension of the idea of a tautology to
formulas expressed in a first-order language. A tautology is a propositional
formula which is true under all truth assignments, i.e. all interpretations of
the language. The analogue for formulas written in a first-order language is
a universally valid formula, as per the following definition. Some authors use the phrase

logically valid instead of universally
valid.

Definition Universally valid

Let φ(x1, x2, . . . , xn) be a formula in a language L with free variables
contained in the list x1, x2, . . . , xn. We say that φ is universally valid
if for all structuresA for L (normal structures when L includes equal-
ity) and all interpretations of the variables x1, x2, x3, . . ., respectively by
a1, a2, a3, . . ., in the domain ofA, As before, we’ll abbreviate

interpreting the variables
x1, x2, x3, . . . respectively by
a1, a2, a3, . . . as �x/�a.

A ��x/�a φ(x1, x2, . . . , xn).

We hope that the importance of universally valid formulas is obvious – they
correspond to our preconceptions of statements which are always true because
of their shape, regardless of their interpretation.

A simple example of a universally valid formula (in a language including the
2-place relation symbol R) is

(∀x1R(x1, x3) → ∀x1R(x1, x3)).

This is essentially a disguised version of the tautology (p → p), with the for-
mula ∀x1R(x1, x3) substituted for the propositional variable p. It is univer-
sally valid because of the definition of � saying thatA ��x/�a (φ → ψ) when it
is the case that

if A ��x/�a φ then A ��x/�a ψ,

using the usual truth table laws for →. In this case

if A ��x/�a ∀x1R(x1, x3) then A ��x/�a ∀x1R(x1, x3)

is always true, precisely because the shape of this is ‘if p then p’ which is a
tautology. The formula is satisfied regardless of howA actually interprets R
or the value a3 given to x3.

This situation, where a formula is really a tautology involving various propo-
sitional variables disguised by substituting first-order formulas in a consistent
manner, is worth a definition.

163

4 Predicates and models

Definition Substitution instance of tautology

Suppose that φ is a tautology which is built up from propositional vari-
ables in the list p1, p2, . . . , pn and that θ1, θ2, . . . , θn are formulas of a
first-order language L. Then the formula ψ obtained by replacing each
occurrence of pi by θi, for all i = 1, 2, . . . , n, is called a substitution in-
stance of the tautology φ.

Theorem 4.2

Every substitution instance of a tautology is universally valid.

There are many universally valid formulas besides those which are substitution
instances of tautologies. Look at

(∀x1R(x1, x3) → ∀x2R(x2, x3)).

This is not a substitution instance of a tautology. However, with our experi-
ence of dummy variables in mathematics, like the x1 and x2 in this formula,
we do expect it to be true in all interpretations.

Exercise 4.27

Show that (∀x1R(x1, x3) → ∀x2R(x2, x3)) is universally valid.

Solution
We need to show that something holds for all structures for the language. So To test universal validity of a

formula φ, we need only look at
structures for the language used in
the construction of φ. The
irrelevance of other symbols was
shown in Exercise 4.26 in the
previous section.

letA = 〈A, RA〉 be any structure for the language used in this formula. Then
A is any non-empty set and RA is any 2-place relation on A (meaning a subset
of A × A). The only free variable in the formula is x3. So we need to show
that for all interpretations of x3, i.e. for all a3 ∈ A,

A �x3/a3
(∀x1R(x1, x3) → ∀x2R(x2, x3)).

The argument depends on whether or notA �x3/a3
∀x1R(x1, x3), so we split

it into two cases.

IfA ��x3/a3
∀x1R(x1, x3), then truth table laws for interpreting → vacuously

give the required result.

IfA �x3/a3
∀x1R(x1, x3), then for all a ∈ A, The interesting case!

A �x1/a,x3/a3
R(x1, x3),

which means that for all a ∈ A,

(a, a3) ∈ RA.

We can now build up a new formula satisfied byA with the given interpretation

164

4.3 Universally valid formulas and logical equivalence

of x3. Keeping an eye on the required answer, we deduce that for all a ∈ A,

A �x2/a,x3/a3
R(x2, x3),

so that

A �x3/a3
∀x2R(x2, x3).

Thanks to the truth table for →, we can then infer that in this case we also
have

A �x3/a3
(∀x1R(x1, x3) → ∀x2R(x2, x3)).

Thus the given formula is universally valid.

The cunning part of the last solution was to eliminate reference to the formal
language and obtain the information that, for all a ∈ A, the pair (a, a3) was
in RA. We then had considerable freedom about what new formula would be
true inA. We chose to obtain that for all a ∈ A,

A �x2/a,x3/a3
R(x2, x3),

because that’s what led to the answer required by the question. But we could
have equally well deduced that for all a ∈ A,

A �x11/a,x97/a3
R(x11, x97),

so that

A �x97/a3
∀x11R(x11, x97),

had we so wanted.

Exercise 4.28
Show that each of the following is universally valid. (g is a 1-place function
symbol, f is a 3-place function symbol and R a 2-place relation symbol R.)

(a) (x1 = x2 → f(x1, x2, x3) = f(x2, x1, x3))

(b) (∀x1R(x1, x3) → ∀x4R(x4, x3))

(c) (∃x1R(x1, x3) → ∃x2R(x2, x3))

(d) (x1 = x2 → (R(x1, g(x1)) → R(x1, g(x2))))

(e) (∀xR(g(x), x) → ∀x∃yR(y, x))

Solution

We give a solution only for part (a) and leave the others to you. As the
formula includes the = symbol, we need to consider normal structures for the
language of the formA = 〈A, fA, =〉. We need to show that for all suchA and
all a1, a2, a3 ∈ A,

A �x1/a1,x2/a2,x3/a3
(x1 = x2 → f(x1, x2, x3) = f(x2, x1, x3)).

If

A ��x1/a1,x2/a2,x3/a3
x1 = x2,

this result holds vacuously thanks to the truth table for →.

165

4 Predicates and models

If

A �x1/a1,x2/a2,x3/a3
x1 = x2,

then as A is a normal structure, a1 must equal a2. This means that the In a normal structure, the

interpretation =A is actual
equality on the domain A.

interpretations of the terms f(x1, x2, x3) and f(x2, x1, x3) are connected by

f(x1, x2, x3)[�x/�a]A = fA(a1, a2, a3)

= fA(a2, a1, a3) (as a1 = a2)

= f(x2, x1, x3)[�x/�a]A,

so that

A �x1/a1,x2/a2,x3/a3
f(x1, x2, x3) = f(x2, x1, x3).

Thus in this case we also have

A �x1/a1,x2/a2,x3/a3
(x1 = x2 → f(x1, x2, x3) = f(x2, x1, x3)),

showing that (x1 = x2 → f(x1, x2, x3) = f(x2, x1, x3)) is universally valid.

Alongside the idea of a formula being true in all interpretations, we have the
more modest idea of a formula being true in some interpretation, given by
the following definition.

Definition Satisfiable formula

Let φ(x1, x2, . . . , xn) be a formula in a language L with free variables
contained in the list x1, x2, . . . , xn. We say that φ is satisfiable if there
is some structure A for L and some interpretation of the variables
x1, x2, x3, . . . respectively by a1, a2, a3, . . . in the domain ofA such that

A ��x/�a φ(x1, x2, . . . , xn).

Likewise a set Γ of formulas is satisfiable if there is a structure and in-
terpretation within it of the free variables which simultaneously satisfies
all the formulas in Γ.

Exercise 4.29
Show that the following formulas are satisfiable (where f is a 2-place function
symbol and R a 2-place relation symbol).

(a) f(x1, f(x2, x3)) = f(f(x1, x2), x3)

(b) (∀x∃yR(x, y) ∧ ∀x(∃yR(x, y) → R(x, f(x, x))))

(c) ¬∀x(∃yR(x, y) → R(x, f(x, x)))

Solution
(a) One of many structures and interpretations satisfying the formula is

〈N, +, =〉 with x1, x2, x3 interpreted by 12, 4, 9 respectively.

(b) Not given.

(c) Not given.

166

4.3 Universally valid formulas and logical equivalence

Exercise 4.30

(a) Show that the formula ∃y ¬ y = y in a language L with equality is not
satisfiable (in any normal structure).

(b) Show that the formula (∀x∃y ¬x = y → ∃y ¬ y = y) is satisfiable (in some
normal structure).

Exercise 4.31
Let φ be a formula in a language L. Show that φ is universally valid if and
only if ¬φ is not satisfiable.

It will be valuable to compile – and for you to remember and recognize! –
a list of helpful and relatively simple universally valid formulas. Perhaps
the most important of these is one which corresponds to how we intend to
use the universal quantifier ∀. We are after all aiming to use the predicate
language as a framework for deriving mathematical theorems and so far we’ve
not gone much beyond exploiting the propositional connectives. One of the
most fundamental ways in which ∀ is used in reasoning was analyzed over 2000
years ago by the Greek philosopher Aristotle, one of the founders of the study
of logic, in his description of certain forms of argument called syllogisms. The
shape of probably the most important of these syllogisms is as follows.

all A’s are B’s: X is an A: therefore X is a B,

that is, if all objects of a certain sort have a property, then any particular one
of these objects has this property. Examples of this style of argument include:

all elephants have a trunk: Nellie is an elephant: therefore Nellie has a
trunk;

and, slightly disguised,

all real numbers have a cube root: therefore for any real number x, the
number x2 has a cube root.

In the framework of our formal language and structures for it, this becomes

if φ(x) holds for all x in a structure, then φ(x) holds for any particular
value of x.

A simple, but often useful, special case of this is represented by the formula

(∀xφ(x) → φ(x)),

and we would like you to show that this is universally valid.

Exercise 4.32
Suppose that the only free variable in the formula φ(x) is x. Show that the
formula (∀xφ(x) → φ(x)) is universally valid.

167

4 Predicates and models

Solution

LetA = 〈A, . . .〉 be any structure for the language. Note that there are some
free occurrences of x in (∀xφ(x) → φ(x)), namely the x in the second copy of
the subformula φ(x), so that we have to show that for all a ∈ A

A �x/a (∀xφ(x) → φ(x)).

If

A ��x/a ∀xφ(x),

then vacuously Thanks to the truth table for →!

A �x/a (∀xφ(x) → φ(x)).

The interesting case is when

A �x/a ∀xφ(x).

As x is not free in ∀xφ(x), this means that This is a consequence of
Theorem 4.1 of Section 4.2.A � ∀xφ(x).

so that for the given a ∈ A,

A �x/a φ(x).

Thus

A �x/a (∀xφ(x) → φ(x)),

as required.

Exercise 4.33
Show that if x is not free in φ, then (∀xφ → φ) is universally valid. [Hint:
Use Theorem 4.1 of Section 4.2.]

We shall be ambitious and aim to extend ‘if φ(x) holds for all x in a structure, We shall also allow φ to contain
free variables besides x. This will
cause no difficulties.

then φ(x) holds for any particular value of x’ to allow the ‘particular value of
x’ to be any term τ of the language. This key principle governing the use of
∀ then becomes

(∀xφ(x) → φ(τ)),

for any term τ, where by φ(τ) we mean the formula which results from φ(x)
by replacing all free occurrences of x by the term τ. This formula tells us how
to ‘eliminate’ the ∀x from the formula ∀xφ.

Alas, there’s an irritating complication, which we shall have to deal with at
some length. The complication is illustrated by the following example. Let
φ(x) be the innocent-looking formula

∃y ¬x = y,

for which the sentence ∀xφ(x) is satisfied in any structure with a domain
containing at least 2 elements; and for the term τ, take simply the variable y.
Then (∀xφ(x) → φ(τ)) becomes

(∀x∃y ¬x = y → ∃y¬ y = y),

168

4.3 Universally valid formulas and logical equivalence

which, as we hope you discovered in Exercise 4.30, is only satisfiable in a very
limited range of structures – it is certainly not universally valid. The problem
is something to do with the term τ being the variable y which becomes bound
by the quantifier ∃y lurking within the formula φ(x). Just in case you fear
that there are no terms τ safe to use when eliminating the ∀x in this particular
example, let us assure you that any term τ not involving y will do fine. It will
be instructive for you to work through an example with a suitable τ in the
next exercise.

Exercise 4.34
Let f be a function symbol of two arguments. Show that the formula

(∀x∃y ¬x = y → ∃y ¬ f(z, x) = y) So τ = f(z, x).

is universally valid.

Solution
LetA = 〈A, f∗, =〉 be any structure for the language involved in the formula,
where f∗ is a function from A2 to A. Note that the formula involves both z
and x as free variables (the occurrence of x in the subformula ∃y ¬ f(z, x) = y
is free), so we need to show the formula is satisfied byA for all interpretations
of these variables, say a of x and c of z, where a, c ∈ A.

If

A ��x/a,z/c ∀x∃y ¬x = y,

then vacuously Thanks to the truth table for →!

A �x/a,z/c (∀x∃y ¬x = y → ∃y ¬ f(z, x) = y).

The interesting case is when

A �x/a,z/c ∀x∃y ¬x = y.

We must show that

A �x/a,z/c ∃y ¬ f(z, x) = y.

As

A �x/a,z/c ∀x∃y ¬x = y

and the variable x is not free in ∀x∃y ¬x = y, this means that This is a consequence of
Theorem 4.1 of Section 4.2.A �z/c ∀x∃y ¬x = y.

So for the given a, c ∈ A,

A �x/f∗(a,c),z/c ∃y ¬x = y,

which means that there is some b ∈ A for which

A �x/f∗(a,c),y/b,z/c ¬x = y,

and that, accounting for the ¬ and dispensing with the formal language,

f∗(a, c) �= b

in A. Re-introducing the formal language, we can now say that for the given

169

4 Predicates and models

a, c ∈ A and the b above,

A ��x/a,y/b,z/c f(x, z) = y,

so that

A �x/a,y/b,z/c ¬ f(x, z) = y,

and for the given a, c ∈ A,

A �x/a,z/c ∃y ¬ f(x, z) = y,

as required.

In general, to rescue (∀xφ(x) → φ(τ)) as a logically valid formula, we shall add
the stipulation that the term τ doesn’t involve variables that would become
bound by quantifiers hidden inside φ(x). We shall introduce some terminology
for this situation.

Definition Freely substitutable

Let φ be a formula, x a variable and τ a term. Let φ(τ) be the formula We might say that τ has been
substituted for the free x in φ(x).obtained by replacing all the free occurrences of x in φ(x) by τ. Then τ

is said to be freely substitutable for x in φ if none of the variables in τ
becomes bound in the places where τ is substituted for the free x in φ.

In the case when x is not free in φ, the formula φ(τ) is simply the original This convention for x not free in φ
seems to make posh arguments
involving ‘freely substitutable’
more straightforward. Plainly the
interesting use of the definition is
when x is free in φ.

φ and we adopt the convention that in this case τ is said to be freely
substitutable for x in φ.

As an example of the use of this definition, take a language with equality and
including a function symbol f and relation symbol R, both of two arguments,
and let φ be the formula

(∃w∃x(R(x, y) ∨ ∀t w = t) → ∀zR(z, x)).

Note that φ has x and y as free variables. Let τ be the term f(t, w). Then
the result of substituting τ for the free x in φ is

(∃w∃x(R(x, y) ∨ ∀t w = t) → ∀zR(z, f(t, w))). The earlier occurrences of x in φ
are bound, so are not available to
be substituted by the term.The variables in τ, namely t and w, do not fall within the scope of any quan-

tifier that binds them – the free x for which τ has been substituted lies within
the scope of a ∀z, not within the scope of the ∃w, ∃x and ∀t earlier in φ which
might potentially bind the variables in τ – so τ is freely substitutable for x in
φ.

If, however, we substitute τ for the free y in φ, we obtain the formula

(∃w∃x(R(x, f(t, w)) ∨ ∀t w = t) → ∀zR(z, x)),

and the w in f(t, w) now falls within the scope of the ∃w. So τ is not freely
substitutable for y in φ.

170

4.3 Universally valid formulas and logical equivalence

Exercise 4.35

Let φ be the formula

∃y(f(x, y) = t ↔ (∃z∀xR(z, x) ∨ ∀tR(x, t))).

Which of the following terms is freely substitutable for x in φ? And which of
them is freely substitutable for z in φ? [R is a 2-place relation symbol, f is a
2-place function symbol and c is a constant symbol.]

(a) f(c, c) (b) z (c) f(y, x) (d) f(x, x)

Exercise 4.36

Our definition of ‘τ is freely substitutable for x in φ’ is relatively informal.
Give a more formal definition in terms of the number of connectives and
quantifiers in φ.

Solution

We shall work with a fixed term τ and treat all formulas as built up from the
adequate set of connectives {¬,∧} and ∀, ∃.

The term τ is freely substitutable for x in any atomic formula. (Our definition
stipulates that this happens regardless of whether x appears in the atomic
formula, although the more interesting case is when x does appear.)

If φ is of the form ¬ψ, τ is freely substitutable for x in φ exactly when τ is freely
substitutable for x in ψ. If φ is of the form (ψ ∧ θ), τ is freely substitutable
for x in φ exactly when τ is freely substitutable for x in both ψ and θ.

If φ is one of the forms ∀yψ and ∃yψ, where y is a variable other than x, τ is This is of course the most
interesting case.freely substitutable for x in φ exactly when τ is freely substitutable for x in

ψ and y does not appear in τ.

If φ is one of the forms ∀xψ and ∃xψ, τ is freely substitutable for x in φ. This uses our convention for when
x is not free in φ.

We can now state the first, and perhaps the most fundamental, universally
valid formula involving ∀ using this new terminology.

Theorem 4.3

Let φ be a formula and let the term τ be freely substitutable for x in φ.
Then

(∀xφ(x) → φ(τ))

is universally valid.

We have already proved the special case of this theorem when the term τ is
simply the variable x in Exercise 4.32. We shall now work towards the proof of
the more general result, which we shall leave as Exercise 4.37. The interesting
application of the result, and the non-trivial aspect of its proof, arises when
x is free in φ. If you inspect our solution to Exercise 4.34, where φ(x) was
the formula ∃y ¬y = x and τ was f(x, z), you might spot that the argument
hinges on showing that for all a, c ∈ A,

A �x/f∗(a,c),z/c ∃y ¬x = y,

171

4 Predicates and models

if and only if

A �x/a,z/c ∃y ¬f(x, z) = y,

that is,

A �x/f∗(a,c),z/c φ(x),

if and only if

A �x/a,z/c φ(f(x, z)).

The proof of Theorem 4.3 depends on showing the more general form of this,
which we will state as a theorem. When reading the theorem, recall that
τ[�x/�a]A stands for the interpretation in A of the term τ when the variables
in τ are interpreted by the corresponding elements in �a. Recall that we use
the notation �x/�a[x1/τ[�x/�a]A] to stand for the interpretation of the variables
in which the interpretation of x1 is altered to τ[�x/�a]A.

Theorem 4.4

Let φ be a formula, x1 a variable and τ a term which is freely substi- The statement of the theorem is
something of a mouthful; but we
hope that its meaning is clear. We
state it for the particular variable
x1 for a small bit of clarity! Note
that when x1 is not free in φ, the
result is a simple consequence of
Theorem 4.1 of Section 4.2, as the
interpretation of x1 is irrelevant to
whether A ��x/�a φ.

tutable for x1 in φ. Let A = 〈A, . . .〉 be a structure for the underlying
language L and let �a be an interpretation of the variables �x of L. Then

A ��x/�a[x1/τ[�x/�a]A] φ(x1)

if and only if

A ��x/�a φ(τ).

We shall leave the proof of this theorem as an optional exercise for you. Exercise 4.56.

Exercise 4.37

Use the result of Theorem 4.4 to prove Theorem 4.3.

Exercise 4.38
Let φ be a formula and let the term τ be freely substitutable for x in φ. Show
that

(φ(τ) → ∃xφ(x))

is universally valid.

We have dealt at length with one aspect of handling the universal quantifier
∀, namely how to eliminate it from a formula. We shall leave the reverse
process, namely how to introduce a universal quantifier in front of a formula,
till Chapter 5. For the moment, we shall ask you to do an exercise which
illustrates what won’t work!

172

4.3 Universally valid formulas and logical equivalence

Exercise 4.39

Show that the formula (φ(x) → ∀xφ(x)) is not in general universally valid.
[Hints: Take a language with equality including the constant symbol c and let
φ(x) be the formula x = c. Now find a normal structure and an interpretation
of the free variable x in which (φ(x) → ∀xφ(x)) is false.]

We shall now ask you to check some further useful universally valid formulas.

Exercise 4.40
Show that each of the following formulas is universally valid.

(a) (∃y∀xφ → ∀x∃yφ)

(b) (∀x(φ → ψ) → (∀xφ → ∀xψ))

(c) (∀xφ(x) → φ(c)), where c is a constant symbol.

(d) (∀xR(x, f(x)) → ∀x∃yR(x, y)), where f is a 1-place function symbol and
R is a 2-place relation symbol.

Many universally valid formulas are of the form (φ ↔ ψ) and as with propo-
sitional formulas, it is useful to regard the φ and ψ in such cases as equivalent
in some way. The definition below encompasses the one already encountered
for propositional formulas in Chapter 2.

Definition Logical equivalence

The formulas φ and ψ are logically equivalent, written as φ ≡ ψ, if every
structure and interpretation satisfying φ also satisfies ψ and vice versa.

Exercise 4.41
Show that φ ≡ ψ if and only if � (φ ↔ ψ).

There are many very useful logical equivalences, some of which are in the
following exercise.

Exercise 4.42

Demonstrate each of the following logical equivalences.

(a) ¬∃xφ ≡ ∀x¬φ

(b) ¬∀xφ ≡ ∃x¬φ

173

4 Predicates and models

Solution

(a) Let A = 〈A, . . .〉 be a structure for the language and let �a be any inter-
pretation of the variables �x in L by elements of A.

Suppose first that Observe that we have to exploit
our understanding of how to use
‘for all’ and ‘there exists’ in natural
language, as well as of ‘not’.

A ��x/�a ¬∃xφ.

Then it is not the case that

A ��x/�a ∃xφ,

so that it is not the case that there is some b ∈ A such that

A ��x/�a[x/b] φ.

That means whatever b ∈ A one takes,

A ��x/�a[x/b] ¬φ,

so that

A ��x/�a ∀x¬φ.

For the converse, the argument above essentially reverses. Suppose that

A ��x/�a ∀x¬φ.

Then for all b ∈ A,

A ��x/�a[x/b] ¬φ,

so that for all b ∈ A it is not the case that

A ��x/�a[x/b] φ.

Thus it is not the case that for some b ∈ A,

A ��x/�a[x/b] φ,

so it is not the case that

A ��x/�a ∃xφ,

which means that

A ��x/�a ¬∃xφ.

(b) Not given.

As ¬¬ψ ≡ ψ, it follows from this exercise that

¬∀x¬φ ≡ ¬¬∃xφ

≡ ∃xφ,

and similarly that

¬∃x¬φ ≡ ∀xφ.

This means that we could in principle represent all formulas, up to logical
equivalence, using a limited set of connectives like {¬,→} and just one of the
quantifiers ∀ and ∃, as from one of these and ¬ we can represent the other.

174

4.3 Universally valid formulas and logical equivalence

Exercise 4.43

Suppose that x is not free in φ. Show that (φ ∧ ∀xψ) ≡ ∀x(φ ∧ ψ) and
(φ ∧ ∃xψ) ≡ ∃x(φ ∧ ψ).

Solution
Let A = 〈A, . . .〉 be a structure for the language and let �a be any interpretation
of the variables �x in L by elements of A. We shall show that

if A ��x/�a (φ ∧ ∀xψ) then A ��x/�a ∀x(φ ∧ ψ),

and will leave it for you to show that

if A ��x/�a ∀x(φ ∧ ψ) then A ��x/�a (φ ∧ ∀xψ)

and that

A ��x/�a (φ ∧ ∃xψ) if and only if A ��x/�a ∃x(φ ∧ ψ).

Suppose that

A ��x/�a (φ ∧ ∀xψ).

Then

A ��x/�a φ and A ��x/�a ∀xψ.

Looking at the second of these, we have that for all b ∈ A,

A ��x/�a[x/b] ψ.

Looking at the first, as x is not free in φ, by Theorem 4.1 we have that for all
b ∈ A,

A ��x/�a[x/b] φ.

As the interpretations of the variables are the same, we can glue these together
to obtain, for all b ∈ A,

A ��x/�a[x/b] (φ ∧ ψ),

so that

A ��x/�a[x/b] ∀x(φ ∧ ψ),

as required.

As with formulas of propositional calculus, the relation of logical equivalence
is an equivalence relation on the set of formulas of a first-order language.

Exercise 4.44
Show each of the following, for all formulas φ, ψ, θ. This is the analogue of

Exercise 2.35 in Section 2.4 of
Chapter 2 for propositional
languages. The solution here needs
to account for the slightly more
complicated definition of ≡ for a
first-order language.

(a) φ ≡ φ

(b) If φ ≡ ψ then ψ ≡ φ.

(c) If φ ≡ ψ and ψ ≡ θ, then φ ≡ θ.

175

4 Predicates and models

Just as for propositional calculus, we often have a formula θ and want to For instance, if θ is the formula

∀x∃yR(x,y)

φ is the formula ∃yR(x, y) and φ′ is
the formula ¬∀y¬R(x, y), then
θ[φ′/φ] is the formula

∀x¬∀y¬R(x,y).

replace all occurrences of the subformula φ by a formula φ′. In Chapter 3, we
introduced the notation θ[φ′/φ] for the resulting formula. The main interest
here is that if φ and φ′ are logically equivalent, then so are θ and θ[φ′/φ].

Exercise 4.45

Let θ be a formula with subformula φ and φ′ any formula, where all these
formulas are built up using the connectives ¬,∧ and the quantifiers ∀, ∃. Show
that if φ ≡ φ′, then θ ≡ θ[φ′/φ]. [Hint: Adapt the hints given for Exercise 2.46
of Section 2.4 of Chapter 2.]

As for propositional formulas, we can ask the question whether the equivalence
class of formulas logically equivalent to a given formula φ contains a ‘nice’
formula. One answer is given in terms of prenex normal form, defined as
follows.

Definitions Prenex normal form

A formula φ is in prenex normal form if it has the form

Q1y1Q2y2 . . . Qnynθ,

where each Qi is a quantifier ∀ or ∃, the yis are variables and the formula
θ involves no quantifiers (often described as being quantifier-free). The
string of quantifiers [Q1y1Q2y2 . . .Qnyn is called the prefix of the formula
φ.

For instance, ∃x∀y(P (x) → ¬Q(y)) and ∀z∃x¬(Q(z) ∧ P (x)) are both in
prenex normal form. These are in fact logically equivalent formulas, so that
prenex normal forms for formulas won’t be unique.

Theorem 4.5

Any formula is logically equivalent to a formula in prenex normal form.

Proof

We shall show the result for any first-order formula φ built up using the con-
nectives ∧ and ¬ along with the quantifiers ∀ and ∃. As {∧,¬} is an adequate
set of connectives, the result then holds for all first-order formulas. The proof
will show how to construct a φ∗ in prenex normal form logically equivalent to
φ by exploiting the following logical equivalences involving quantifiers, as well
as standard ones essentially involving ¬ and ∧, like (φ ∧ ∀xψ) ≡ (∀xψ ∧ φ).

176

4.3 Universally valid formulas and logical equivalence

1. ∀xφ(x) ≡ ∀yφ(y), if x is free in φ(x) and y doesn’t appear in φ(x). If x isn’t free in φ and y doesn’t
appear in φ, then fairly trivially
∀xφ ≡ ∀yφ and ∃xφ ≡ ∃yφ.

2. ∃xφ(x) ≡ ∃yφ(y), if x is free in φ(x) and y doesn’t appear in φ(x).

3. ¬∃xφ ≡ ∀x¬φ

4. ¬∀xφ ≡ ∃x¬φ

5. (φ ∧ ∀xψ) ≡ ∀x(φ ∧ ψ), if x is not free in φ. Similarly (∀xψ ∧ φ) ≡ ∀x(ψ ∧ φ)
and (∃xψ ∧ φ) ≡ ∃x(ψ ∧ φ), if x is
not free in φ.

6. (φ ∧ ∃xψ) ≡ ∃x(φ ∧ ψ), if x is not free in φ.

The method, as you should by now expect for a result which holds for all
formulas, is mathematical induction on the length (number of connectives
and quantifiers) in φ.

The result is trivial for formulas of length 0, as these are atomic formulas,
thus involving no quantifiers and already in prenex normal form.

For the inductive step, assume that the result holds for all formulas with
≤ n connectives and quantifiers and take any formula of length n + 1. This
formula must have one of the forms ∀xφ, ∃xφ, ¬φ and (φ ∧ ψ). We shall deal
with the last of these cases and leave the rest for you as an exercise. In all
cases, our aim is to ‘factor’ quantifiers to the outside.

For the case (φ∧ ψ), by the inductive hypothesis the subformulas φ and ψ are
logically equivalent to formulas in prenex normal form, say

φ ≡ Q1y1Q2y2 . . . Qryrθ and ψ ≡ Q′
1y

′
1Q

′
2y

′
2 . . . Q′

sy
′
sθ

′,

where each Qi and Q′
j is a quantifier ∀ or ∃, and θ and θ′ are quantifier-free. By

Exercise 4.45, the formula (φ ∧ ψ) is logically equivalent to the conjunction of
these formulas in prenex normal form. We are itching to exploit equivalences
5 and 6, but have to be careful. If there is no overlap between the variables
appearing in φ and those in ψ, there is no problem. But if a quantified variable
in one appears as a variable in the other we have to be careful. For instance
if we are dealing with (∀xθ ∧ ∀xθ′), x is not free in ∀xθ, so equivalence 5 can
be used to move the ∀x from the ∀xθ′ to give

(∀xθ ∧ ∀xθ′) ≡ ∀x(∀xθ ∧ θ′);

but as x might be free in θ′, we can’t simply use equivalence 5 to manipulate
the subformula (∀xθ ∧ θ′) any further. The trick here is to use equivalence 1
to change the xs in ∀xθ into a variable appearing nowhere else in θ or θ′, and
then use equivalence 5.

More generally, if the quantified variable in one of the Q′
jy

′
js is the same as in

one of the Qiyis, then we essentially use the appropriate one of equivalences 1
and 2 in the list above to replace Q′

jy
′
j by a similar quantifier using a variable

not yet used anywhere in the formulas involved. For instance, suppose that ψ
is equivalent to ∀x∃y∀zθ′ and the variable y is one of the variables quantified
in a Qiyi in φ. We take a new variable, w say, not used in the prenex normal
forms for φ or ψ. Then by equivalence 2,

∃y∀zθ′ ≡ ∃w∀zθ′′,

where the free occurrences of y in θ′ are replaced by ws to give θ′′; and then

∀x∃y∀zθ′ ≡ ∀x∃w∀zθ′′.

177

4 Predicates and models

We can thus modify the prenex normal form for ψ so that there is no overlap
between its quantified variables and those in the prenex normal form for φ.

We still have the case where there is some overlap between a quantified variable
in the prenex normal form of one of φ and ψ with a free variable in the other,
which would again be an obstacle to using equivalences 5 and 6, which is
our ultimate aim for factoring quantifiers to the outside. But we can do the
same trick as earlier and replace the offending quantified variables by ones
which don’t appear anywhere else. Finally we can now make repeated use of
equivalences 5 and 6 to obtain a formula logically equivalent to (φ ∧ ψ) of the
form

Q1y1Q2y2 . . . QryrQ
′
1y

′
1Q

′
2y

′
2 . . .Q′

sy
′
s(θ ∧ θ′).

Exercise 4.46
Fill the gaps left in the inductive step of the proof above.

We can use the details of this proof to find a formula in prenex normal form
equivalent to

∃x¬(∀tS(t, x, y) ∧ ¬∀y∃xS(x, y, z)),

where S is a 3-place relation symbol. As the proof explains how to get the
prenex normal form of a formula from the prenex normal form of certain of its
subformulas, a practical algorithm can start from its atomic subformulas and
work through its tree diagram. Here the subformulas S(x, y, z), ∃xS(x, y, z)
and ∀y∃xS(x, y, z) are already in prenex normal form, but the next stage, the
subformula ¬∀y∃xS(x, y, z), is not. But this is logically equivalent to

∃y∀x¬S(x, y, z), We hope that your filling in the
gaps in our proof explains how we
have obtained this using
equivalences 3 and 4 in the proof.

which is in prenex normal form.

The next stage is to find the prenex normal form of the subformula

(∀tS(t, x, y) ∧ ¬∀y∃xS(x, y, z))

from those of ∀tS(t, x, y) (which is already in prenex normal form) and of
¬∀y∃xS(x, y, z), which we’re taking as ∃y∀x¬S(x, y, z). Annoyingly the quan-
tified variables in the latter formula overlap with free variables in the former.
But following the method of the proof, we note that the variables v, w appear
nowhere in ∀tS(t, x, y) or ∃y∀x¬S(x, y, z), so as

∃y∀x¬S(x, y, z) ≡ ∃v∀w¬S(w, v, z),

we can use equivalences 5 and 6 in the proof to obtain

(∀tS(t, x, y) ∧ ∃y∀x¬S(x, y, z) ≡ ∀t∃v∀w(S(t, x, y) ∧ ¬S(w, v, z)).

Using equivalences 3 and 4 in the proof then gives

¬(∀tS(t, x, y) ∧ ¬∀y∃xS(x, y, z)) ≡ ∃t∀v∃w¬(S(t, x, y) ∧ ¬S(w, v, z)),

so that a logically equivalent formula to

∃x¬(∀tS(t, x, y) ∧ ¬∀y∃xS(x, y, z))

178

4.3 Universally valid formulas and logical equivalence

in prenex normal form is

∃x∃t∀v∃w¬(S(t, x, y) ∧ ¬S(w, v, z)).

Exercise 4.47
Establish the following logical equivalences which will be useful for more di-
rectly obtaining a prenex normal form for formulas using ∨, → and ↔.

(a) (φ ∨ ∀xψ) ≡ ∀x(φ ∨ ψ), if x is not free in φ.

(b) (φ ∨ ∃xψ) ≡ ∃x(φ ∨ ψ), if x is not free in φ.

(c) (φ → ∀xψ) ≡ ∀x(φ → ψ), if x is not free in φ.

(d) (φ → ∃xψ) ≡ ∃x(φ → ψ), if x is not free in φ.

(e) (∀xψ → φ) ≡ ∃x(ψ → φ), if x is not free in φ.

(f) (∃xψ → φ) ≡ ∀x(ψ → φ), if x is not free in φ.

Exercise 4.48

For each of the following formulas using a 2-place relation symbol R, find an
equivalent formula in prenex normal form.

(a) ∀t(∃xR(x, y) ∧ ∀y(R(t, y) ∧ ¬R(z, x)))

(b) ∃y((¬∃xR(x, t) → ∀zR(x, w)) ∨ ∃xR(x, w))

Exercise 4.49

Show that any formula is logically equivalent to a formula in prenex normal
form

Q1y1Q2y2 . . . Qnynθ,

where the variables yis are distinct. [Hint: Look at Exercise 4.20 and the
preamble to it in Section 4.2.]

Prenex normal form leads to another interesting sort of formula said to be in The rest of this section might be
omitted on a first reading of the
book.

Skolem form. Although we shall only make one use of this sort of formula
in the book, discussion of it gives some useful practice with the ideas of uni-
versally valid formula and satisfiability. The key idea is introduced in the
following exercise.

Exercise 4.50

Let φ(x, y) be a quantifier-free formula with free variables x, y and let f be a
1-place function symbol which does not appear in φ.

(a) Show that (∀xφ(x, f(x)) → ∀x∃yφ(x, y)) is universally valid.

(b) Is (∀x∃yφ(x, y) → ∀xφ(x, f(x))) universally valid? Explain your answer.

(c) Show that ∀x∃yφ(x, y) is satisfiable if and only if ∀xφ(x, f(x)) is satisfi-
able.

179

4 Predicates and models

Solution

(a) Suppose that A is a structure for the language involved in the formula.
If A �� ∀xφ(x, f(x)), then trivially

A � (∀xφ(x, f(x)) → ∀x∃yφ(x, y)).

If A � ∀xφ(x, f(x)), then for all a ∈ A,

A �x/a φ(x, f(x)),

so by Theorem 4.4,

A �x/a, y/fA(a) φ(x, y).

Then for all a ∈ A, there is some b ∈ A (namely fA(a)) such that

A �x/a, y/b φ(x, y),

so that for all a ∈ A,

A �x/a ∃yφ(x, y),

so that

A � ∀x∃yφ(x, y).

(b) This is not in general universally valid. For a counterexample, suppose
that the formula φ(x, y) is R(x, y), where R is a 2-place relation symbol.
Now let A be the structure 〈N, <, fA〉 for the language consisting of R
and f , where < is the usual strict order on N and fA(n) = n for all n ∈ N.
Then

A � ∀x∃yR(x, y)

but

A �� ∀xR(x, f(x)),

so that

A �� (∀x∃yR(x, y) → ∀xR(x, f(x))).

(c) The argument in one direction is easy. If some structure A satisfies
∀xφ(x, f(x)), then as (∀xφ(x, f(x)) → ∀x∃yφ(x, y)) is universally valid,
A also satisfies ∀x∃yφ(x, y).

For the converse, suppose that A = 〈A, . . .〉 is a structure for the language
L used in the formula φ which satisfies ∀x∃yφ(x, y). The function symbol
f does not appear in L, so we shall expand the structure A to provide Suppose L and L∗ are languages

with L ⊆ L∗. If A and A∗ are
structures for L and L∗,
respectively, with the same domain
A and the same interpretations of
each symbol in L, then A∗ is called
an expansion of A.

an interpretation f∗ of f . As f is a 1-place symbol, we need f∗ to be a
function from A1 to A, that is, from A to itself. Of course we want the
expanded structure A∗ to satisfy ∀x∃yφ(x, y). So how do we define f∗(a)
for each a ∈ A? As A � ∀x∃yφ(x, y), we have for all a ∈ A

A �x/a ∃yφ(x, y),

so that for each a ∈ A there is some b ∈ A such that

180

4.3 Universally valid formulas and logical equivalence

A �x/a,y/b φ(x, y).

For each a ∈ A we shall define f∗(a) to be one of these corresponding bs.
Expanding the structure A by adding f∗ defined in this way to interpret
the symbol f , giving the structure A∗ = 〈A, . . . , f∗〉, we have

A∗
� ∀xφ(x, f(x)),

so that ∀xφ(x, f(x)) is satisfiable.

Note that the detail in our argument in (c) shows not only that ∀x∃yφ(x, y)
is satisfiable if and only if ∀xφ(x, f(x)) is satisfiable, but shows that a struc-
ture satisfying one of them essentially satisfies the other. One way round,
a structure satisfying ∀xφ(x, f(x)) also satisfies ∀x∃yφ(x, y). The other way
round, a structure A satisfying ∀x∃yφ(x, y) can be expanded to a structure
A∗ which interprets the extra function symbol in the right sort of way to
satisfy ∀xφ(x, f(x)). We shall want this level of detail later in the book.

Now is the time to own up to a subtle and controversial step in our argument
in part (c) above! This step is the one from

for each a ∈ A there is some b ∈ A such that A �x/a,y/b φ(x, y)

to saying that

for each a ∈ A we define f∗(a) to be one of these corresponding bs.

If there are several suitable bs for a given a, we’ve not given a rule for choosing
a particular one of these bs and this means one can dispute whether we have
really defined the function f∗. If the domain A has some useful in-built
structure, we could perhaps do better and be more specific about how to
define each f∗(a). For instance, if A = N, so that each b is also in N, we can
define f∗(a) as the least b such that A �x/a,y/b φ(x, y). But if A hasn’t got
the right sort of structure, there might be no nice way of tying down a special
b for each a – for instance, if A = R, subsets of R do not in general contain
a least element, so we’d need to look for a different sort of property of the bs
for a given a.

In the study of the foundations of mathematics, this is a very important issue,
bound up with the definition of infinite sets and their properties. The step
in our argument where for each a ∈ A we choose one of the corresponding bs
to be f∗(a) depends on what is called the axiom of choice, which we discuss
further in Section 6.4 of Chapter 6 when we give an outline of some of the
theory of infinite sets. Do note that many of the key results in the rest of
the book depend on the axiom of choice, hence our relaxed use of it in the
solution to Exercise 4.50(c).

The function f∗ created from the structure A and the formula ∀x∃yφ(x, y)
in Exercise 4.50(c) is called a Skolem function for this formula in A. The These functions were introduced

and exploited by the Norwegian
mathematician Thoralf Skolem
(1887–1963).

significance of this exercise is in the way that adding the function symbol
f to the language used in φ can be used to dispose of the ∃y and y in
the sentence ∀x∃yφ(x, y) and obtain a simpler sentence which is satisfiable
precisely when the original formula is satisfiable. The significant aspect of
the ‘simpler’ is that it is what is called a universal formula, namely one of

181

4 Predicates and models

the form ∀x1∀x2 . . .∀xkφ(x1, x2, . . . , xk, z1, . . . , zm), where φ is quantifier-free.
We shall investigate a nice property of universal formulas later in this chapter. In Theorem 4.7 of Section 4.5.

The idea of introducing the function symbol f to get rid of a ∃ can be extended
to more complicated sentences, in particular ones in prenex normal form. We
illustrate how in the following exercise.

Exercise 4.51

Let φ(x1, x2, x3, x4, x5) be a quantifier-free formula with free variables x1, x2,
x3, x4, x5. Let f be a 2-place function symbol and g a 3-place function symbol
not used in φ.

(a) Show that the sentence

(∀x1∀x2∀x3φ(x1, x2, x3, f(x1, x2), g(x1, x2, x3))

→ ∀x1∀x2∃y1∀x3∃y2φ(x1, x2, x3, y1, y2))

is universally valid.

(b) Show that

∀x1∀x2∃y1∀x3∃y2φ(x1, x2, x3, y1, y2)

is satisfiable if and only if

∀x1∀x2∀x3φ(x1, x2, x3, f(x1, x2), g(x1, x2, x3))

is satisfiable.

We hope that your solution to part (b) took a structure A = 〈A, . . .〉 satisfying

∀x1∀x2∃y1∀x3∃y2φ(x1, x2, x3, y1, y2)

and expanded it to a structure A∗ = 〈A, . . . , f∗, g∗〉 with f∗ and g∗ defined For those worried about this sort of
thing, the axiom of choice is
needed to define these and all other
Skolem functions.

to ensure that for all a1, a2, a3 ∈ A,

A∗
�x1/a1,x2/a2,x3/a3,y1/f∗(a1,a2),y2/g∗(a1,a2,a3) φ(x1, x2, x3, y1, y2).

The functions f∗ and g∗ are further examples of Skolem functions for a formula
in a structure, here for ∀x1∀x2∃y1∀x3∃y2φ(x1, x2, x3, y1, y2) in the structure
A. We introduced the function symbol f to correspond to the ∃y1 in the
formula

∀x1∀x2∃y1∀x3∃y2φ(x1, x2, x3, y1, y2)

and made f a 2-place symbol because the ∃y1 was preceded by two universal
quantifiers, ∀x1 and ∀x2. The interpretation of the y1 depends on the inter-
pretation of the two variable x1 and x2. We introduced the function symbol
g to correspond to the ∃y2 and made it a 3-place symbol because the ∃y2

was preceded by three universal quantifiers, with the interpretation of the y2

depending on the interpretation of the three variables x1, x2 and x3.

We shall outline how to extend these ideas to arbitrarily complex sentences.
In the one application of the construction later in the book, we shall start
with sentences not necessarily in prenex normal form. Of course, given any
sentence ψ, we can first construct a logically equivalent sentence in prenex
normal form, very roughly of the form

∀x1 . . .∃y1 . . .∀xi . . .∃yj . . . φ(x1, . . . , xn, y1, . . . , ym),

182

4.3 Universally valid formulas and logical equivalence

where φ is quantifier-free, the xis are the universally quantified variables
and the yjs are the existentially quantified variables. For the sake of no-
tational simplicity, we assume that the universal quantifiers in the prefix ap-
pear in the order ∀x1, ∀x2, . . . ,∀xn and the existential quantifiers in the order
∃y1, ∃y2, . . . ,∃ym, doubtless jumbled up with the ∀xis, just as in the formula
used in Exercise 4.51 where n = 3 and m = 2. By Exercise 4.49 we can ensure
that the quantified variables are distinct, to avoid any redundancy in this no-
tation. To simplify this prenex normal form into a universal sentence, for each
existential quantifier ∃yj we introduce a new function symbol fj of as many
arguments as there are universal quantifiers preceding the ∃yj in the prefix.
So if ∃yj is preceded by ∀x1, ∀x2, . . . ,∀xk (and earlier ∃yis), we make fj a Check that all this accords with

what we did in Exercise 4.51.k-place function symbol. We then replace the yj in φ by fj(x1, x2, . . . , xk).

There’s a technical detail we’ve avoided so far! If the first quantifiers in
the prenex normal form are not universal but existential, so that the prenex Some books regard constant

symbols as 0-place function
symbols, which might help to
simplify our description here.
Given a structure A satisfying the
original sentence ψ, we might call
the interpretations of the new
constant symbols Skolem constants
for the formula in A.

normal form looks like

∃y1∃y2 . . .∃yr∀x1 . . . φ(x1, . . . , y1, . . .),

rather than introduce new function symbols for y1, y2, . . . , yr, we replace these
variables by new constant symbols c1, c2, . . . , cr.

The point of all this is that by using these new function and constant symbols
we can construct from the original sentence ψ, via its prenex normal form, a
universal sentence ψSk of the form

∀x1 . . .∀xnφ(x1, . . . , xn, . . . , fj(x1, x2, . . . , xk), . . .)

using extra function symbols not originally in ψ, called a Skolem form for ψ,
which is satisfiable if and only if ψ is satisfiable, and such that (ψSk → ψ) is
universally valid. A proof of this result requires a straightforward extension
of the arguments in our solution to Exercise 4.50. These arguments actually
prove something a bit stronger than that ψ is satisfiable if and only if ψSk is
satisfiable. We shall state this stronger result as a theorem, as we shall use it
in Section 6.4 of Chapter 6 as one way of proving a significant result of the
subject, called the downward Löwenheim–Skolem theorem.

Theorem 4.6

Let ψ be a sentence with Skolem form ψSk, using extra function and
constant symbols not originally in ψ. Then (ψSk → ψ) is logically valid.
If A is a structure for the language of ψ which satisfies ψ, there is an
expansion A∗ of A, adding interpretations of the extra function and
constant symbols (by Skolem functions and constants), which satisfies

ψSk, while any structure satisfying ψSk also satisfies ψ.

In this section we have started to look at formulas which are ‘always true’.
These are very important in their own right and entirely non-trivial by com-
parison with propositional tautologies. The question arises of whether there is
an algorithmic procedure for deciding whether a predicate formula is univer-
sally valid. For propositional formulas there’s a straightforward procedure,
just by using truth tables. A given propositional formula φ involves only
finitely many propositional variables. So all we need to do is test its truth

183

4 Predicates and models

value under each of the finitely many different truth assignments on these
variables – if they all come out as true, the formula is a tautology, so is uni-
versally valid. But with a first-order formula φ, although it involves only
finitely many symbols in a language L, there will usually be infinitely many
possible domains for a structure for L. Also for each domain, there could
many different ways of interpreting the relation, function and constant sym-
bols appearing in φ. If our only procedure for testing the universal validity of
φ involves checking infinitely many structures, it’s unlikely that this will give
a real decision procedure. Even checking the truth of φ of the shape ∀xψ(x)
in a single structure A with an infinite domain could be unfeasible, should it
be the case that our procedure relies on testing whether A �x/a ψ(x) for all a
in this infinite domain. But don’t despair just yet! Even if there is no decision
procedure, it’s still useful and interesting to establish that particular individ-
ual formulas are universally valid! Perhaps the formal proof system which we
shall look at in the next chapter genuinely gives a better way of finding uni- This is just leading you on! There

is no algorithmic procedure which
will decide whether a predicate
formula is universally valid.

versally valid formulas (assuming that we have a soundness and completeness
theorem connecting formal theorems and universally valid formulas).

We shall turn now to the main point of our predicate language, which is
to provide a framework for expressing interesting mathematical theories and
finding their logical consequences. This is the subject of our next section.

Further exercises

Exercise 4.52

Determine whether each of the following formulas is universally valid. (P, Q
are 1-place relation symbols and R is a 2-place relation symbol.)

(a) (∀x(P (x) → Q(x)) → (∀xP (x) → ∀xQ(x)))

(b) ((∀xP (x) → ∀xQ(x)) → ∀x(P (x) → Q(x)))

(c) (∀x∃yR(x, y) → ∃y∀xR(x, y))

(d) (∀y∀xR(x, y) → ∀x∃yR(x, y))

Exercise 4.53
For each of the following formulas, what is the smallest possible (non-empty)
domain of any structure in which it is satisfiable? In each case give a specific
structure of this minimal size. (R is a 2-place relation symbol, f is a 1-place
function symbol and c is a constant symbol.)

(a) ∃x∃y(R(x, y) → ¬R(y, y))

(b) ∀x∃y ¬x = y

(c) (∀x¬ f(x) = c ∧ ∀x∀y(f(x) = f(y) → x = y))

Exercise 4.54
Let f be a function symbol of two arguments. Show that the formula

(∀x∃y ¬x = y → ∃y¬ f(y, x) = y)

is not universally valid.

184

4.4 Some axiom systems and their consequences

Exercise 4.55

In a language for first-order predicate calculus with one 2-place relation sym-
bol R, let φ denote the sentence

(∀x∃yR(x, y) ∧ (∀x∀y∀z((R(x, y) ∧ R(y, z)) → R(x, z))

∧ (∀x¬R(x, x) ∧ ∃x∀y¬R(y, x))))

and ψ the sentence

∀x∀y(¬R(x, y) ∨ ¬R(y, x)).

For each of the four combinations of one of the set {φ,¬φ} with one of the
set {ψ,¬ψ}, decide whether the combination is satisfiable. If it is satisfiable,
then give a structure satisfying it; if not, explain why not.

Exercise 4.56

Prove Theorem 4.4. [Hints: Make use of the more formal definition of ‘τ is
freely substitutable for x in φ’ in Exercise 4.36 and argue in terms of the
number of connectives and quantifiers in φ. Theorem 4.1 of Section 4.2 will
help deal with cases where x1 is not free in a formula.]

4.4 Some axiom systems and their consequences
In this section we shall look at some of the interesting mathematical theories The proper name for what we are

dealing with is first-order predicate
calculus. We will mention
second-order languages later in the
section.

that can be represented within the framework of the predicate calculus dealt
with in this book. In practice in mathematics, the word ‘theory’ tends to be
used to mean either all the mathematical consequences of a set of axioms or
all the properties shared by some class of structures. For instance, the theory
of groups can either be regarded as all consequences of a certain set of axioms Don’t worry if you don’t know

much about groups. We shall
discuss them later in this section.

or as the properties of those structures called groups.

Our preliminary definition of what we shall mean by a theory for the rest of
this book is that it is the set of all consequences of a set of sentences in a Strictly speaking we should call

these sentences non-logical axioms
to distinguish them from formulas
which are instances of axioms in
the formal proof system, like the
instance (φ → (ψ → φ)) of Ax 1.
The latter is often called a logical
axiom.

first-order language which we shall call the axioms of the theory. We shall be
more precise about what we mean by ‘consequences’ quite soon. We shall call
any structure which satisfies these sentences a model of the theory.

In this section we shall describe several standard mathematical theories by
giving axioms for them. In each case, the axioms completely determine what
mathematicians mean informally by the theory. Later in the book we shall
look at some mathematical theories described by means other than first-order
axioms for which the question arises whether there is a set of first-order axioms
that captures the essence of the theory. In such a case we shall describe the We’ll see later that several very

important mathematical theories
are not first-order axiomatizable.
Note that some authors use
‘axiomatizable’ only when there is
an algorithmic procedure for
deciding whether a sentence is one
of the axioms.

theory as first-order axiomatizable, or axiomatizable for short.

For this section, we shall look only at some mathematical theories normally
described by giving axioms for them. We start with the simple, but we hope
well-known, example of equivalence relations.

185

4 Predicates and models

Equivalence relations

Definitions Equivalence relations

Let L be a language with a binary relation symbol R. The theory of
equivalence relations has the following axioms.

1. ∀xR(x, x) (R is reflexive) In everyday mathematics, the
relation is normally written in infix
notation, using xRy instead of
R(x, y).

2. ∀x∀y(R(x, y) → R(y, x)) (R is symmetric)

3. ∀x∀y∀z((R(x, y) ∧ R(y, z)) → R(x, z)) (R is transitive)

Let A = 〈A, R∗〉, where the domain A is a non-empty set and R∗ is a
subset of A×A, be a structure satisfying the axioms – what we shall call
a model of them. Then R∗ is said to be an equivalence relation on A,
and the model A is often described (confusingly) also as an equivalence
relation.

Translating the axioms, if A satisfies the axioms, then R∗ has the following
properties:

for all a ∈ A, (a, a) ∈ R∗;

for all a, b ∈ A, if (a, b) ∈ R∗, then (b, a) ∈ R∗;

for all a, b, c ∈ A, if (a, b) ∈ R∗ and (b, c) ∈ R∗, then (a, c) ∈ R∗.

We hope that you have already encountered equivalence relations in your
mathematical studies. If not, then basically (a, b) ∈ R∗ is a way of saying
that ‘a is the same as b in a certain way’. We saw examples of equivalence
relations earlier in the book, namely the relation of logical equivalence ≡ on See Exercise 2.35 in Section 2.4 of

Chapter 2 and Exercise 4.44 in
Section 4.3 of this chapter.

the set of formulas in a propositional language and on the set of formulas of
a first-order language. Here are some further simple examples of equivalence
relations.

Example 4.1
(a) 〈A, =〉 for any non-empty set A. The three axioms are plainly satisfied Throughout this section, structures

are normal, that is, = is
interpreted as equality on the
domains of the structures.

by equality on the set A.

(b) 〈A, R∗〉, where A is the set of all lines in the plane and (a, b) ∈ R∗ if
the line a is parallel to the line b. The axioms are plainly satisfied. You
might, however, like to pause and reflect what full proofs, particularly of
transitivity, might look like, depending on how ‘parallel’ is defined.

(c) 〈{0, 1, 2, 3}, {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0)}〉. The axioms can be
checked slightly laboriously, e.g. explaining why transitivity holds for each
of the 43 different ways of interpreting the x, y, z.

(d) 〈Z, R∗〉, where (m, n) ∈ R∗ if m − n = 6k for some k ∈ Z. (The relation
can also be expressed as ‘6 divides m − n’ and as ‘m is congruent to n
modulo 6’.) Verifying that this is an equivalence relation takes some-
what more effort, and perhaps requires more ingenuity, than the previous The effort is worthwhile as this is a

mathematically important
equivalence relation.

examples. We have to check that each of the three axioms is satisfied.

For all n ∈ Z, we have n − n = 0 = 6 × 0, so that R∗ is reflexive.

186

4.4 Some axiom systems and their consequences

For all m, n ∈ Z, if (m, n) ∈ R∗, then m − n = 6k for some integer k.
Then

n − m = −(m − n) = −6k = 6(−k),

so that, as −k is an integer, (n, m) ∈ R∗. Thus R∗ is symmetric.

For all m, n, p ∈ Z, if (m, n) ∈ R∗ and (n, p) ∈ R∗, then m − n = 6k and
n − p = 6j for some integers k, j. Then

m − p = (m − n) + (n − p) = 6k + 6j = 6(k + j),

so that, as k + j is an integer, (m, p) ∈ R∗. Thus R∗ is transitive. �

Example 4.2

〈Form(P, S),≡〉, where Form(P) is the set of propositional formulas built up
from the set P of propositional variables using connectives in the set S and
≡ is logical equivalence. We asked you to show that this is an equivalence
relation in Exercise 2.35 of Section 2.4 of Chapter 2. �

Exercise 4.57
Let r be a positive integer. Show that the structure 〈Z, R∗〉, where (m, n) ∈ R∗ For the exercises in this section,

take a reasonably relaxed attitude
to the level of detail within your
solutions!

if m − n = rk for some k ∈ Z, is an equivalence relation.

Exercise 4.58

Decide which of the following structures are equivalence relations.

(a) 〈Z, R∗〉, where (m, n) ∈ R∗ if m + n = 6k for some k ∈ Z.

(b) 〈Z, R∗〉, where (m, n) ∈ R∗ if m + n = 2k for some k ∈ Z.

(c) 〈R, R∗〉, where (a, b) ∈ R∗ if a − b is rational.

(d) 〈R, R∗〉, where (a, b) ∈ R∗ if a − b is irrational.

Now that we have one example of a standard mathematical theory given by
axioms, we should give a precise definition of ‘theory’. In everyday math-
ematics, a theory is more than a set of axioms: it is really the set of all
consequences of the axioms. In a book on logic it is rather important to make
more precise what is meant by ‘consequence’ ! We have already used the word
in the context of the propositional calculus when saying that a formula φ is
a logical consequence of a set Γ, written as Γ � φ, and we shall extend this
terminology to predicate calculus. Our definition of a theory, given a set of
axioms, will then be the set of all logical consequences of the axioms.

187

4 Predicates and models

Definitions Logical consequence and theory

Let Γ be a set of formulas and φ a formula in a language L. Then φ
is a logical consequence of Γ, or equivalently Γ logically implies φ, if for
every structure A for L (normal structure when L includes equality) and
interpretation �a of the free variables �x possibly appearing in members
of Γ and φ,

if A �[�x/�a] γ for all γ ∈ Γ, then A �[�x/�a] φ.

We write this as Γ � φ. As for propositional formulas, we
write Γ �� φ when φ is not a logical
consequence of Γ.Let T be a set of sentences in the language L. The first-order theory of

For various technical reasons, it is
preferable to use sentences, i.e.
formulas with no free variables, in
our definition of ‘theory’, both for
the axioms and their consequences.

T in the language L is the set of all sentences φ in the language L which
are logical consequences of T . We shall usually call this the theory of T
for short or, even shorter, the theory T . The sentences in T are called
the axioms of the theory.

A structure A which satisfies the axioms of a theory is said to be a model
of the theory.

Exercise 4.59

Suppose T is a set of sentences in a language L regarded as the axioms of
a theory and that A is a model for these axioms. Show that A satisfies the
theory of T , i.e. all logical consequences of the axioms.

Solution
Let φ be a sentence of L. By definition of T � φ, if A satisfies T then A
satisfies φ. Thus A satisfies the theory of T .

Of course, in everyday mathematics we regard the consequences of a set of
axioms as the statements that we can prove from the axioms – that is the whole
point of the axiomatic approach – so an alternative definition of a theory could
be as the set of sentences derivable from the axioms within a formal proof
system. We shall provide a suitable proof system in the next chapter and
then prove both the soundness and completeness theorems for it, so that this
definition of a theory is equivalent to the one we have given in terms of logical
consequence. In any case, to demonstrate logical consequences, we have to
use some sort of proof at a higher level than the formal system, which in its
way is just as stringent as the formal system will be.

A simple example of a logical consequence of the axioms for an equivalence
relation is the sentence

∀x∀y∀z∀w((R(x, y) ∧ (R(y, z) ∧ R(z, w))) → R(x, w)).

In any equivalence relation A = 〈A, R∗〉, for any a, b, c, d ∈ A with all of
(a, b), (b, c), (c, d) ∈ R∗, transitivity on (b, c), (c, d) ∈ R∗ gives (b, d) ∈ R∗, so
that another use of transitivity with (a, b) ∈ R∗ gives (a, d) ∈ R∗ as required.

Logical consequence obviously has all the properties in relation to the propo-
sitional connectives that we have already discussed in Section 2.6 of Chapter 2

188

4.4 Some axiom systems and their consequences

and we shall not repeat all of these here. One important example is Theo-
rem 2.7, namely that

Γ ∪ {φ} � ψ if and only if Γ � (φ → ψ).

This result helps turn some of the universally valid formulas in the last section
into the properties of logical consequence in relation to the quantifiers. For
instance, Theorem 4.3 can be rephrased in terms of logical consequence to say
that if φ is a formula and the term τ is freely substitutable for x in φ, then

∀xφ(x) � φ(τ).

Other important results are the analogues of Exercises 2.74 and 2.75, which
we ask you to show hold for predicate languages below.

Exercise 4.60

Let Γ be a set of sentences and φ a sentence in a language L. Show that Γ � φ
and Γ � ¬φ if and only if there are no structures satisfying all of the sentences
of Γ.

Exercise 4.61

Let Γ be a set of sentences and φ a sentence in a language L. Show that if
Γ � φ and Γ � ¬φ, then Γ � ψ, for all sentences ψ in the language.

Our experience with propositional formulas should lead us to expect that for The use of the same symbol � both
for ‘satisfies’ and ‘logically implies’
can give rise to a delicious
confusion here! In the context of
‘satisfies’, for any sentence φ and
structure A for its language,
exactly one of A � φ and A � ¬φ
must hold. But in the context of
logical consequence, only for
special (what are called complete)
sets Γ does exactly one of Γ � φ
and Γ � ¬φ hold.

a given set of sentences Γ and any sentence φ in a language L, it might not
be the case that Γ � φ or Γ � ¬φ.

Exercise 4.62

Take Γ to be the set of axioms for an equivalence relation in the language
L with equality and a binary relation symbol R. Find a sentence φ in this
language such that neither Γ � φ nor Γ � ¬φ.

Solution

Take for instance φ to be the formula ∀x∃y(R(x, y) ∧ ¬x = y). With the
model A of Γ given by 〈Z, =, =〉 (essentially a special case of Example 4.1(a)
which interprets both R and = as actual equality on the set of integers), we
have

A �� ∀x∃y(R(x, y) ∧ ¬x = y),

so that Γ �� φ. With the model A (essentially in Example 4.1(d)) given by
〈Z, R∗, =〉, where (m, n) ∈ R∗ if m − n = 6k for some k ∈ Z, we have

A �� ¬∀x∃y(R(x, y) ∧ ¬x = y),

so that Γ �� ¬φ.

For Exercise 4.97 later in the book, we will rely on you knowing something
about the connection between equivalence relations and partitions, the latter

189

4 Predicates and models

defined as follows.

Definition Partition

A partition of a set A is a set P of subsets of A such that each element
of A is in exactly one of the subsets. Equivalently, P is a set of subsets
of A with the property that for all a ∈ A, there exists X ∈ P such that To capture that a is in exactly one

subset in P , we can say that a is in
at least one subset and in at most
one.

(i) a ∈ X and

(ii) for all Y ∈ P , if a ∈ Y , then X = Y .

The connections between equivalence relations and partitions are as follows.
Given an equivalence relation 〈A, R∗〉 and a ∈ A, the equivalence class of a is
the subset of A given by

[[a]] = {b ∈ A : (a, b) ∈ R∗}.
Then it can be shown that the set of all these subsets, {[[a]] : a ∈ A}, forms
a partition of A. Conversely, given a partition P of the set A, we can define
an equivalence relation R∗ on A whose equivalence classes are precisely the
subsets in P .

There is a point of interest here regardless of whether you go on to attempt
Exercise 4.97. Although we have given axioms above for a partition, we shall
have difficulty doing this within the framework of predicate calculus in this
book. In the axioms we have given above, the quantifiers ∀ and ∃ govern two
different sorts of object: elements a of A; and elements X, Y of P which are
really subsets, not elements, of A. This doesn’t fit in with our framework
where there’s only one type of element, namely a member of the domain of a
structure for the language. What we seem to need to axiomatize partitions is
a language which allows one to quantify both over elements of a set and over
its subsets. This is called a second-order language and is beyond the scope of
this book. There are some very important examples of mathematical theories
which are axiomatized in a second-order language, for instance the theory of
the real numbers for which we have given axioms in Chapter 1. We shall show
in Chapter 6 that this particular theory cannot be axiomatized in a first-order
language.

Another related point is that what in this book we are calling the theory of
equivalence relations is, using its full name, its first-order theory, i.e. all logical
consequences of the axioms expressible within the given first-order language.
It doesn’t include all the consequences of the axioms deducible in everyday
mathematics, as many of these simply aren’t expressible within the first-order
language. This will be true in general for most of the remaining axiom systems
in the book.

Our next examples are various theories of order relations.

190

4.4 Some axiom systems and their consequences

Order relations

Definitions Weak orders

Let L be a language with equality with a binary relation symbol R. The As with equivalence relations, in
everyday mathematics we express
order relations using infix notation,
xRy instead of R(x, y).

theory of weak partial order has the following axioms.

1. ∀xR(x, x) (R is reflexive)

2. ∀x∀y((R(x, y) ∧ R(y, x)) → x = y) (R is anti-symmetric)

3. ∀x∀y∀z((R(x, y) ∧ R(y, z)) → R(x, z)) (R is transitive)

A model 〈A, R∗, =〉 of the axioms is said to be a weak partial order .

The addition to the above of the following axiom:

4 ∀x∀y(R(x, y) ∨ R(y, x)) (R is linear)

gives the axioms for weak linear order and a model of the axioms is
called a weak linear order .

Note that we make consistent use of the names for certain properties of 2- The same will apply for properties
like commutativity and
associativity in axioms involving a
2-place function symbol.

place relations: ‘reflexive’ and ‘transitive’ mean the same in the weak order
axioms as they do for equivalence relations.

Example 4.3
(a) 〈A,≤, =〉 for A any of N, Z, Q and R is a weak linear order (and thus also

a weak partial order). The axioms are clearly satisfied (and are arguably
motivated by these examples).

(b) 〈A,≥, =〉 for A any of N, Z, Q and R is a weak linear order. Note that
there is no bias within the axioms that prefers interpreting R by ≤ rather
than ≥.

(c) If A is any open interval of the form (a, b) of R, or any closed interval of It will usually be clear from the
context whether (a, b) refers to an
open interval or to an ordered pair.

the form [a, b], then 〈A,≤, =〉 is a weak linear order. (It may be useful
for you later to have examples of linear orders like these, some of which
contain maximum and minimum elements, and some of which don’t!)

(d) 〈P(R),⊆, =〉, where P(R) is the set of all subsets of R, is a weak partial
order. It is not a linear order as, for instance, taking the open intervals
A = (0, 1) and B = (2, 3), neither A ⊆ B nor B ⊆ A is true.

(e) 〈{0, 1, 2}, {(0, 0), (1, 1), (2, 2), (0, 1)}, =〉 is a weak partial, but not linear,
order. �

Exercise 4.63

Let 〈A, R∗, =〉 be a weak partial order. Can there be a, b ∈ A with a �= b and
both (a, b) and (b, a) in R∗?

Solution
While not giving you the answer, it may explain the quaint terminology ‘anti- We hope that the answer is very

straightforward, thinking of logical
consequences of the axioms.

symmetric’ used to describe the second weak order axiom. The relation R∗

is as far as possible not symmetric, in the sense of the second axiom for
equivalence relations, given the limited symmetry entailed by the reflexive
property.

191

4 Predicates and models

There is some interest, and often considerable challenge, in deciding whether
some axioms of a system are logical consequences of the remaining axioms. When we have provided our formal

proof system, the equivalent
problem is whether one axiom is
derivable from the rest.

Exercise 4.64

Is the linearity axiom (axiom 4) for a weak linear order a logical consequence
of the remaining axioms (i.e. the three axioms for a weak partial order)?

Solution
Example 4.3(d) above provides an example of a structure in which the three
partial order axioms are true and in which the linearity axiom is false. So the
latter is not a logical consequence of the former.

It happens to be the case that none of the four axioms for linear order is a
logical consequence of the other three, so there is no redundancy. (We leave
the remaining cases for you as Exercise 4.96.) However, we won’t insist that
all axiomatizations of interesting theories should have this sort of property.
In real mathematics, a spot of redundancy in the axioms often makes for a
much easier life when deriving their consequences!

Exercise 4.65
For each of the following sentences, decide whether it is a logical consequence
of the axioms for a weak linear order.

(a) ∃x∀yR(x, y)

(b) ¬∃x∀yR(x, y)

(c) ∀x∃yR(x, y)

(d) ∀x∃y(¬x = y ∧ R(x, y))

Solution
(a) If we imagine that R(x, y) is interpreted by ‘x is less than or equal to y’,

then this sentence says ‘there is a least element x in the order’. This is not
a logical consequence of the axioms, as it is false in the model 〈Z,≤, =〉
of the axioms.

(b) If we imagine that R(x, y) is interpreted by ‘x is less than or equal to y’,
then this sentence says ‘there is no least element x in the order’. This
is not a logical consequence of the axioms, as it is false in the model
〈[0, 1],≤, =〉 of the axioms, taking the closed interval [0, 1] of the real
numbers.

(c) Not given.

(d) Not given

Associated with each weak order ≤ is a strict order <, meaning ‘≤ and not
=’. The axioms for strict orders are as follows. Likewise, with each ≥ there is an

associated >.

192

4.4 Some axiom systems and their consequences

Definitions Strict orders

Let L be a language with equality with a binary relation symbol S. The
theory of strict partial order has the following axioms.

1. ∀x¬S(x, x) (S is irreflexive)

2. ∀x∀y∀z((S(x, y) ∧ S(y, z)) → S(x, z)) (S is transitive)

A model 〈A, S∗, =〉 of the axioms is said to be a strict partial order .

The addition to the above of the following axiom:

3 ∀x∀y(S(x, y) ∨ x = y ∨ S(y, x)) (S is linear)

gives the axioms for strict linear order and a model of the axioms is
called a strict linear order .

Example 4.4
(a) 〈A, <,=〉 for A any of N, Z, Q and R is a strict linear order (and thus

also a strict partial order).

(b) 〈A, >,=〉 for A any of N, Z, Q and R is a strict linear order.

(c) If A is any open interval or closed interval of R, then 〈A, <,=〉 is a strict
linear order.

(d) 〈Z, S∗, =〉, where (m, n) ∈ S∗ if m is a proper divisor of n, is a strict
partial order. It is not a linear order as, for instance, taking the integers
2 and 3, neither of these is a proper divisor of the other, nor are they
equal.

(e) 〈{0, 1, 2}, {(0, 1)}, =〉 is a strict partial, but not linear, order. �

Exercise 4.66

Show that the sentence This says that the relation is
asymmetric.∀x∀y(S(x, y) → ¬S(y, x))

is a logical consequence of the axioms for a strict partial order S.

Exercise 4.67
Is 〈{0, 1, 2}, ∅, =〉 any of the following: a weak partial order; a weak linear
order; a strict partial order; a strict linear order?

Exercise 4.68
(a) Let 〈A, R∗, =〉 be a weak partial order. Define the subset S∗ of A × A by

S∗ = {(a, b) ∈ R∗ : a �= b}. Show that 〈A, S∗, =〉 is a strict partial order.

(b) Let 〈A, S∗, =〉 be a strict partial order. Show how to exploit S∗ to define
a subset R∗ of A × A such that 〈A, R∗, =〉 is a weak partial order.

(c) Does the result of part (a) extend to cover the linear property when
〈A, R∗, =〉 is a weak linear order, i.e. is 〈A, S∗, =〉 then a strict linear
order? Does your answer to part (b) extend in a similar way to cover
linearity?

193

4 Predicates and models

Given the results of Exercise 4.68, we may well refer to a partial or linear
order without specifying whether the order is weak or strict. In any specific
application we will use whichever way of describing the order is most conve-
nient. We will often use the more familiar infix notation x ≤ y for weak orders
and x < y for strict orders, rather than the prefix notation R(x, y).

There are various more specialised theories of order which are of mathematical
interest. We will describe some of these in the following exercise.

Exercise 4.69

For each of the following theories, give a model of the theory and also an
example of a linearly ordered set which is not a model of the theory.

(a) The theory of unbounded linear order, which has axioms for a strict linear
order along with

∀x∃y∃z(y < x ∧ x < z) (< is unbounded).

(b) The theory of linear order with a maximum element, which has axioms
for a weak linear order along with

∃x∀y y ≤ x.

(c) The theory of dense linear order, which has axioms for a strict linear
order along with

∀x∀y(x < y → ∃z(x < z ∧ z < y)) (< is dense).

(d) The theory of discrete linear order, which has axioms for a strict linear
order along with the axioms

∀x(∃y x < y → ∃z(x < z ∧ ∀w(x < w → (z = w ∨ z < w)))),

∀x(∃y y < x → ∃z(z < x ∧ ∀w(w < x → (w = z ∨ w < z)))).

Exercise 4.70

Write down extra axioms, besides those for a strict linear order, whose models
are linear orders with a minimum element but with no maximum element.

Exercise 4.71

(a) Let A be a model of the theory of unbounded linear order in Exer-
cise 4.69(a). Can the domain of A be finite?

(b) Let A be a model of the theory of dense linear order in Exercise 4.69(c).
Can the domain of A be finite?

Not all interesting theories of order can be axiomatized using a first-order
language. One important example of a theory which cannot be axiomatized
in this way is the theory of well-ordered sets. A weak linear order ≤ on a
set A is a well-order if every non-empty subset of A contains a least element, For instance, N with the usual ≤ is

a well-order, while Z, Q, R are not.i.e. for all B ⊆ A with B �= ∅, there is b0 ∈ B such that b0 ≤ b, for all b ∈ B.
This description involves quantifying over subsets of A as well as its elements
and is another example of an axiomatization in a second-order language. As
such, it cannot directly be translated into a first-order language. This does
not mean that there might not be some clever alternative way of axiomatizing
the theory in a first-order language. However, we shall show in Chapter 6
that such an axiomatization is in fact impossible.

194

4.4 Some axiom systems and their consequences

Boolean algebras

We shall now look at our first example of an algebraic theory, involving func-
tions on a set, not just relations.

Definitions Boolean algebras

Let L be a language with equality, 2-place function symbols + and ·, a The notation ∨,∧ is often used
instead of +, ·.1-place function symbol c and constant symbols 0 and 1. The theory of

Boolean algebras has the following axioms, using infix notation x + y and
x · y for the 2-place function symbols and writing c(x) for the 1-place
function symbol.

1. ∀x∀y∀z (x + (y + z)) = ((x + y) + z) (associativity of +)

2. ∀x∀y∀z (x · (y · z)) = ((x · y) · z) (associativity of ·)
3. ∀x∀y (x + y) = (y + x) (commutativity of +)

4. ∀x∀y (x · y) = (y · x) (commutativity of ·)
5. ∀x (x + x) = x (idempotency of +)

6. ∀x (x · x) = x (idempotency of ·)
7. ∀x∀y∀z (x + (y · z)) = ((x + y) · (x + z)) (distributivity)

8. ∀x∀y∀z (x · (y + z)) = ((x · y) + (x · z)) (distributivity)

9. ∀x∀y (x + (x · y)) = x (absorption law)

10. ∀x∀y (x · (x + y)) = x (absorption law)

11. ∀x∀y c((x + y)) = (c(x) · c(y)) (de Morgan law)

12. ∀x∀y c((x · y)) = (c(x) + c(y)) (de Morgan law)

13. ∀x (x + 0) = x

14. ∀x (x + 1) = 1

15. ∀x (x · 0) = 0

16. ∀x (x · 1) = x

17. ¬0 = 1

18. ∀x (x + c(x)) = 1

19. ∀x (x · c(x)) = 0

20. ∀x c(c(x)) = x

A model B = 〈B,+B, ·B, cB, 0B, 1B, =〉 of the axioms is called a Boolean
algebra.

Boolean algebras were devised by the English mathematician George Boole
(1815–1864), whose publication An investigation into the Laws of Thought, For a more modern edition, see

Boole [2].published in 1854, launched the modern analysis of this branch of logic. Be-
sides the great importance of Boole’s work for logic itself, his work helped
mathematicians develop the modern understanding of what is meant by an
algebra, by providing a system with algebraic laws different from standard
rules for arithmetic.

195

4 Predicates and models

Example 4.5

(a) 〈{T, F}, f∨, f∧, f¬, F, T 〉, where T, F are the standard truth values and
f∨, f∧, f¬ are the truth functions corresponding to the connectives ∨,∧,¬,
respectively.

(b) 〈P(S),∪,∩, C, ∅, S〉, for any non-empty set S, where for each X ∈ P(S)
(i.e. for each subset X of S) C(X) = S \X , the complement of X in S. �

Exercise 4.72

Show that the following sentences are logical consequences of the axioms for
a Boolean algebra.

(a) c(0) = 1 and c(1) = 0.

(b) (c(0) + c(1)) = 1

(c) ∀x∀y∀z (x · z) = ((y · (z · x)) + ((x · c(y)) · z))

Exercise 4.73

Let B = 〈B,+B, ·B, cB, 0B, 1B, =〉 be a Boolean algebra.

(a) Show that for any b, c ∈ B,

B �x/b,y/c (x · y) = x if and only if B �x/b,y/c (x + y) = y.

(b) Define a relation R∗ on B by bR∗c if B �x/b,y/c (x · y) = x. Show that
R∗ is a weak partial order on B with both a maximum and a minimum
element.

An interesting Boolean algebra underlying propositional formulas is called the
Lindenbaum algebra. Consider the set Form(P) of formulas built up from a
set P of propositional variables using the connectives ∨,∧,¬. Logical equiva-
lence on these formulas is an equivalence relation. Let F be the corresponding
set of equivalence classes, so that

F = {[[φ]] : φ ∈ Form(P)},
where the equivalence class [[φ]] of φ is defined by

[[φ]] = {ψ ∈ Form(P) : φ ≡ ψ}.
We shall define the structure F = 〈F, +F, ·F, cF, 0F, 1F, =〉, called the Lin-
denbaum algebra of Form(P), as follows. For equivalence classes [[φ]], [[ψ]], we
define

[[φ]] ·F [[ψ]] = [[(φ ∧ ψ)]].

Behind this simple-seeming definition is a significant piece of mathematics.
For this to define ·F as a function, it’s essential that there is a unique output
value for each input pair of elements ([[φ]], [[ψ]]) in the domain F . What could
go wrong is that [[φ]] = [[φ′]] and [[ψ]] = [[ψ′]], where φ′, ψ′ are different from φ, ψ, Indeed, we would normally expect

each formula φ to be equivalent to
many other formulas φ′. For
instance, φ ≡ φ′ where φ′ is (φ∧ φ).

but [[(φ ∧ ψ)]] �= [[(φ′ ∧ ψ′)]]. This would mean we had not given [[φ]] ·F [[ψ]] a
unique value. Luckily, by the result of Exercise 2.37, this state of affairs
cannot arise. If [[φ]] = [[φ′]] and [[ψ]] = [[ψ′]], we have φ ≡ φ′ and ψ ≡ ψ′. By

196

4.4 Some axiom systems and their consequences

Exercise 2.37(b), this gives (φ∧ψ) ≡ (φ′ ∧ψ′), so that [[(φ∧ψ)]] = [[(φ′ ∧ψ′)]].
Similarly we can define the functions +F and cF by

[[φ]] +F [[ψ]] = [[(φ ∨ ψ)]],

cF([[φ]]) = [[¬φ]].

We now define the interpretations of the constant symbols by

0F = [[(p ∧ ¬p)]],

1F = [[(p ∨ ¬p)]],

where p is any propositional variable in P .

Exercise 4.74

Explain why +F and cF above do truly define functions and why we have
unambiguously defined the interpretations of the constant symbols.

Exercise 4.75
Suppose that P consists of finitely many propositional variables p1, p2, . . . , pn.
How many elements are in the domain of the Lindenbaum algebra of Form(P)?
[Hint: All truth functions of n variables can be represented by formulas in-
volving p1, p2, . . . , pn using the connectives ∧,∨,¬.]

Infinite sets

Our next example is the theory of infinite sets. Like many, perhaps all, of the
examples so far, the interest in this theory lies not so much in the deductive
first-order consequences of the axioms, but in its models – infinite sets are
of great interest and importance within mathematics. Having said that, the
axioms for this theory will generate important results in Chapter 6. We shall
leave you to develop axioms for this theory through the following exercise.

Exercise 4.76
Let L be a language with equality.

(a) For each of the following sentences, describe the models of the sentence.

(i) ∃x1∃x2¬x1 = x2 The large ‘and’ sign,
∧

, was

introduced earlier as a shorthand
for a conjunction of several terms,
here all the formulas ¬xi = xj

where 1 ≤ i < j ≤ 3.

(ii) ∃x1∃x2∃x3

∧
1≤i<j≤3

¬xi = xj

(b) Explain how to construct for each n ∈ N a sentence (which we will refer
to as ∃≥n in later work) whose models are precisely those sets with at
least n elements.

A (correct!) sentence ∃≥n can be exploited to give a set Σ of axioms for
infinite sets, as follows:

Σ = {∃≥n : n ∈ N}.
Any model for Σ has a domain with at least n elements for each n ∈ N, so
is infinite. Likewise any structure with an infinite domain makes each of the
sentences in Σ true. Thus Σ axiomatizes the theory of infinite sets.

197

4 Predicates and models

These axioms can be exploited to give axioms for other theories.

Exercise 4.77

Write down axioms for each of the following theories. (You may use the
notation ∃≥n as a shorthand in your answer!)

(a) The theory of sets with exactly n elements, where n is a given positive
integer, in a language with equality.

(b) The theory of infinite strict linear orders, in a language with equality and
a binary relation symbol R.

Our axiomatization of the theory of infinite sets uses infinitely many axioms.
An interesting question arises of whether there is an alternative axiomatiza-
tion using only finitely many sentences. Another question is whether there
are axioms for the theory of finite sets. We shall answer these questions in
Chapter 6.

Our next examples of theories will also figure in many applications in Chap-
ter 6. They are all major objects of study in modern algebra: groups, rings
and fields.

Groups

Definitions Groups

Let L be the language with equality containing the 2-place function
symbol · and the constant symbol e. The theory of groups has the For good introductions to the

theory of groups, see e.g.
Allenby [1], Jordan and
Jordan [21], and Ledermann and
Weir [23].

following axioms. These are written using infix notation ·, so we write
(x · y) instead of ·(x, y).

1. ∀x∀y∀z (x · (y · z)) = ((x · y) · z) (· is associative)

2. ∀x ((x · e) = x ∧ (e · x) = x) (e is an identity element)

3. ∀x∃y ((x · y) = e ∧ (y · x) = e) (each element has an inverse)

A model G = 〈G, ·G, eG, =〉 of the axioms is said to be a group.

If G satisfies the additional axiom

4. ∀x∀y (x · y) = (y · x) (· is commutative),

then G is a said to be a commutative group and the theory axiomatized A commutative group is also called
an Abelian group in honour of the
Norwegian mathematician Abel.

is called the theory of commutative groups.

Example 4.6
(a) 〈Z, +, 0, =〉, 〈Q, +, 0, =〉, 〈R, +, 0, =〉 and 〈C, +, 0, =〉 are all commutative When writing abstract arguments

about groups, the use of the
notation +, 0 rather than ·, 1
depends on the context.

groups. (These are often described as the additive group of the integers
and so on.) For instance, the inverse of 3 is −3 in all of these groups.

(b) 〈Q \ {0},×, 1, =〉, 〈R \ {0},×, 1, =〉 and 〈C \ {0},×, 1, =〉 are all commu-
tative groups. (These are often described as the multiplicative group of
the non-zero rationals and so on.) The inverse of 3 is 1/3 in all of these
groups.

198

4.4 Some axiom systems and their consequences

(c) For any integer n ≥ 2, let Zn be the set {0, 1, . . . , n − 1}. The operation
+n of addition modulo n is defined on Zn by

x +n y = the remainder of x + y on division by n,

or equivalently

x +n y =

{
x + y, if x + y < n,
x + y − n, if x + y ≥ n.

Then 〈Zn, +n, 0, =〉 is a commutative group with n elements. Note that This class of examples shows that
for positive integer n, there is at
least one group with n elements.

every element of Zn can be obtained from the element 1 by repeated
use of +n, e.g. 4 = 1 +n 1 +n 1 +n 1. The element 1 is said to generate
the group and the group is said to be cyclic. The inverse element of 1,
which is n − 1, also generates the group, as does any element a for which
gcd{a, n} = 1.

(d) For any integer n ≥ 1, let Sn be the set of all permutations of the n This class of groups illustrates that
there are non-commutative groups
of arbitrarily large finite orders.
For instance, the permutation
which swaps 1 and 2 and fixes all
other i ∈ {1, 2, . . . , n} does not
commute with the permutation
which swaps 2 and 3 and fixes all
other i.

element set {1, 2, . . . , n}, i.e. all bijections from this set to itself. Sn has
n! elements. Then 〈Sn, ◦, Id, =〉 is group, where ◦ is the operation of
composition of functions and Id is the identity permutation, which maps
i to itself for each i = 1, 2, . . . , n. For n ≥ 3, Sn is a non-commutative
group.

(e) The set GL(2, R) of invertible 2× 2 matrices with entries in R along with
matrix multiplication and the identity matrix I gives an example of an
infinite non-commutative group. �

Exercise 4.78

(a) Show that the sentence

(e · e) = e

is a logical consequence of the group axioms.

(b) Show that the sentence

∀x ((x · x) = x → x = e)

is a logical consequence of the group axioms.

[Hints: If an interpretation g of x in a group G satisfies (x · x) = x, then
it also satisfies ((x · x) · y) = (x · y), when y is interpreted by the inverse
of g in G. Now exploit the group axioms.]

Exercise 4.79

(a) Show that the sentence

∀x∀y∀z ((x · y) = (x · z) → y = z)

is a logical consequence of the group axioms.

(b) The property of groups expressed in part (a) is called left cancellation.
Write down a sentence that you think should represent right cancellation.
Is it a logical consequence of the group axioms?

Exercise 4.80

Show that ∀x∀y∃z (x · z) = y is a logical consequence of the group axioms.

199

4 Predicates and models

Exercise 4.81

Show that the commutativity property ∀x∀y (x · y) = (y · x) is not a logical We have already given you a
relevant piece of information to
settle this.

consequence of the group axioms.

Exercise 4.82
Show that the following sentences are logical consequences of the group ax-
ioms.

(a) ∀y(∀x (x · y) = x → y = e)

(b) ∀x∀y∀z ((((x · y) = e ∧ (y · x) = e) ∧ ((x · z) = e ∧ (z · x) = e)) → y = z)

The last exercise shows that the identity element and inverses of elements of a
group, which exist according to the axioms, are unique. As each element g of a
group G has a unique inverse element, we would be justified in defining a new
1-place function on the group mapping g to its inverse. Indeed there is an ax-
iomatization of group theory in a language including a corresponding 1-place
function symbol. The next exercise asks you to give such an axiomatization,
as well as turn the remaining axioms into prefix notation.

Exercise 4.83
Let L be the language with equality containing the 2-place function symbol f ,
the 1-place function symbol g and the constant symbol e. Write down axioms
for group theory using prefix notation for the function symbols (so writing
f(x, y) rather than xfy) such that the interpretation in any model of g(x)
will be as the inverse element of x.

Exercise 4.84

The set Zn = {0, 1, . . . , n − 1} with the operation +n of addition modulo n See Example 4.6(c).

is a group. Give a definition of the interpretation −n of the 1-place function
symbol g in the previous exercise which makes −n(j) the additive inverse of
j for each j ∈ Zn.

After looking at an axiomatization of the theory of groups in a language with
several helpful symbols, it will be instructive for you to show that the theory
can in fact be axiomatized using relatively few.

Exercise 4.85

Give axioms for the theory of groups just the language with equality and the
single 2-place function symbol ·.

A useful logical consequence of the associativity axiom is that the combina- You were invited to show this in
Exercise 2.45 of Section 2.4 of
Chapter 2.

tion of x with itself n times results in the same element, however the xs are
bracketed. So we can use the shorthand xn for (x · (x · (x · . . .)))︸ ︷︷ ︸

n times

. Some of

200

4.4 Some axiom systems and their consequences

the results later in the book will need the idea of the order of an element in
a group.

Definition Order of group element

For an element x of a group G, if there is some positive integer n for The word ‘order’ is also used (fairly
confusingly) to describe the
number of elements in a group.
We’ll avoid this use in this book.

which xn = e, the identity element of G, the least such n is called the
order of x. In such a case, x is said to be of finite order. If there are no
such n, the element x is said to be of infinite order.

The identity element of any group is always of order 1 and is the only element
of order 1 in the group. In the multiplicative group of the non-zero rationals,
−1 has order 2 (as (−1)2 = 1, the identity element of the group) and 2 has
infinite order (as for no positive n does 2n = 1). The group GL(2, R) contains
elements of all finite orders as well as elements of infinite order. In the additive
group of the integers, every non-identity element has infinite order.

Results about orders of group elements

Let G be a group with identity element e and let x ∈ G.

1. If xk = e for some k ≥ 1, then the order of x divides k (i.e. k is an The converse is also true: xk = e
for any multiple k of the order of x.integer multiple of the order of x).

2. If G is finite with N elements, then each element of G has finite This is a corollary of a famous
theorem of Lagrange.order dividing N .

In the group 〈Zn, +n, 0, =〉, for each divisor m of n there is an element of
order m (for instance the element n/m). The permutation group S4 has
4! = 24 elements with orders 1, 2, 3, 4 and 6, all dividing 24, but no elements
of order 8, 12 or 24, so that the second result above cannot be strengthened
to say that a group with N elements must contain elements of each order
dividing N .

Exercise 4.86

Write down the orders of the elements of each of the groups 〈Zn, +n, 0, =〉 for
n = 3, 6, 12.

Exercise 4.87
Show that every non-identity element of 〈Zp, +p, 0, =〉, where p is prime, has
order p.

Solution

The group has p elements, with p prime. By Result 2 above, the order of
any element of the group divides p, and can thus only be 1 or p. Only the
identity element of a group has order 1, so that the remaining elements each
have order p.

201

4 Predicates and models

The result of Exercise 4.87 will be used in Chapter 6 whenever we require an
example of a finite group which has no non-identity elements of orders below
a given number N , by taking 〈Zp, +p, 0, =〉 for a prime p > N .

Rings and Fields

Definitions Rings

Let L be the language with equality containing 2-place function symbols For a good introduction to the
theory of rings and fields, see
Allenby [1].

+ and ·, a 1-place function symbol − and constant symbol 0. The theory
of rings has the following axioms, written using infix notation for + and
· and using (−x) for −(x).

1. ∀x∀y∀z (x + (y + z)) = ((x + y) + z) (+ is associative)

2. ∀x((x + 0) = x ∧ (0 + x) = x) (0 is an additive identity)

3. ∀x((x + (−x)) = 0 ∧ ((−x) + x) = 0) (additive inverses exist)

4. ∀x∀y (x + y) = (y + x) (+ is commutative)

5. ∀x∀y∀z (x · (y · z)) = ((x · y) · z) (· is associative)

6. ∀x∀y∀z (x · (y + z)) = ((x · y) + (x · z)) (distributive law) We say that · distributes over +.

A model R = 〈R, +R, ·R,−R, 0R, =〉 of these axioms is called a ring. +R and ·R are called the addition
and multiplication of the ring.
Thanks to axioms 1 to 4, the
structure 〈R, +R,−R, 0R〉 is a
commutative group.

With the following additional axioms using an extra constant symbol 1

7. ∀x((x · 1) = x ∧ (1 · x) = x) (1 is a multiplicative identity)

8. ∀x∀y (x · y) = (y · x) (· is commutative)

we have axioms for the theory of commutative rings with a 1. Models of The ‘commutative’ in
‘commutative ring’ refers to the ·
function. The + function is always
commutative for a ring.

the above are described as commutative rings with a 1.

Example 4.7

(a) 〈Z, +, ·,−, 0, 1, =〉 is a commutative ring with a 1. 〈Q, +, ·,−, 0, 1, =〉, Q, R and C all have an important
extra property which we shall
discuss very soon, so that they are
fields as well as rings. As Z lacks
this extra property, it is a more
classic example of a commutative
ring with a 1.

〈R, +, ·,−, 0, 1, =〉 and 〈C, +, ·,−, 0, 1, =〉 are also commutative rings with
a 1.

(b) We have already met the set Zn = {0, 1, . . . , n − 1} with the operation
+n of addition modulo n (in Example 4.6(c)). We can define a function
−n on Zn by

We hope that you obtained
something like this in your answer
to Exercise 4.84.

−n(j) = n − j for j ∈ {0, 1, . . . , n − 1}.
We can also define the operation ·n on Zn by

x ·n y = the remainder of xy on division by n, For instance, 4 ·9 7 = 1 (as
4 × 7 = 28 = 3 × 9 + 1).

where this remainder is defined to be the unique r with 0 ≤ r < n such
that for some q ∈ Z (called the quotient of xy on division by n),

xy = qn + r.

Then 〈Zn, +n, ·n,−n, 0, 1, =〉 is a commutative ring with a 1. So there is at least one ring with n
elements for each n ≥ 2.

202

4.4 Some axiom systems and their consequences

(c) The set Q[t] consists of all polynomials in the variable t with coefficients
in Q. With the normal rules for adding, subtracting and multiplying For instance, for the polynomials

f(t) = 1 + 2t and g(t) = 3 − t2,

f(t) + g(t) = 4 + 2t − t2,

f(t) − g(t) = −2 + 2t + t2

f(t) · g(t) = 3 + 6t − t2 − 2t3.

polynomials, and using 0 and 1 to represent constant polynomials taking
respectively the values 0 and 1, 〈Q[t], +, ·,−, 0, 1, =〉 is a commutative
ring with a 1. Similarly, for any commutative ring R with a 1, the set
R[t] of all polynomials in the variable t with coefficients in R can be used
as the domain of a commutative ring with a 1.

(d) The set of all 2 × 2 matrices with integer coefficients with the usual ad- For an example of matrices x, y in
this ring for which xy �= yx, see the
marginal note on page 134.

dition, multiplication and subtraction of matrices, and the zero matrix(
0 0
0 0

)
interpreting the constant 0 is a non-commutative ring.

(e) The ring in the previous example does have a multiplicative identity,

namely the identity matrix

(
1 0
0 1

)
. For an example of a non-commutative

ring with no multiplicative identity, take the set of all 2× 2 matrices with
even integer coefficients, the usual addition, multiplication and subtrac-
tion of matrices, and the zero matrix interpreting the constant 0. �

Exercise 4.88

Show that the following are logical consequences of the theory of commutative
rings with a 1.

(a) ∀x (x · 0) = 0

(b) ∀x (−(−x)) = x

(c) ∀x ((−1) · x) = (−x)

Exercise 4.89

(a) Show that the sentence ∀x∀y (x · y) = (y · x) is not a logical consequence
of the ring axioms.

(b) Show that the sentence ∀x(¬x = 0 → ∃y (x · y) = 1) is not a logical con-
sequence of the axioms for a commutative ring with a 1.

Several of our applications in Chapter 6 will involve commutative rings with
a 1 which satisfy further axioms, as follows.

Definitions Fields

Let L be the language with equality containing 2-place function symbols
+ and ·, 1-place function symbols − and −1 and constant symbols 0 and
1. The theory of fields has the axioms for a commutative ring with a 1 For any field F = 〈F, . . .〉, the

structure 〈F \ {0F}, ·F,−1
F, 1F〉 is

a commutative group, as well as
〈F, +F,−F, 0F〉 being a
commutative group.

along with the following additional axioms, where we write x−1 instead
of −1(x).

10. ∀x(¬x = 0 → ((x · x−1) = 1 ∧ (x−1 · x) = 1)
(multiplicative inverses exist for non-zero elements)

11. ¬0 = 1

A model F = 〈F, +F, ·F,−R,−1
F, 0F, =〉 of these axioms is called a field.

203

4 Predicates and models

Example 4.8

(a) 〈Q, +, ·, 0, 1,−1 , =〉, 〈R, +, ·, 0, 1,−1 , =〉 and 〈C, +, ·, 0, 1,−1 , =〉 are all fields, For Z with its normal
multiplication, there are no
multiplicative inverses for elements
other than ±1, so the ring of
integers is not a field.

where for non-zero elements a we set a−1 as the b such that ab = 1. Note
that these structures have to give 0−1 a value, but the axioms only allow
for exploitation of a−1 when a �= 0, so that the value of 0−1 can be chosen
arbitrarily, say as 0.

(b) When n is a prime number, the ring Zn in Example 4.7 contains multi- For j ∈ Zn with j �= 0, set j−1 to
be the i ∈ Zn such that j −n i = 1.
Also set 0−1 = 0, noting that 0−1

is assigned no properties from the
field axioms.

plicative inverses of non-zero elements, so that −1 can be interpreted in a
way which makes Zn a field. �

Note that the last example shows that there are finite fields of arbitrarily large
size, as there are arbitrarily large prime numbers. We shall soon ask you to
show that when n is not prime, the ring Zn is not a field.

Exercise 4.90
Show that the following sentences are logical consequences of the field axioms.

(a) ∀x(¬x = 0 → (x−1)−1 = x)

(b) ∀x∀y∀z((x · y) = (x · z) → y = z)

(c) ¬ (0−1 · 0) = 1

Exercise 4.91

(a) Show that the following is a logical consequence of the axioms for a field: This property is often described by
saying that a field has no zero
divisors. A commutative ring with
a 1 and no zero divisors is called an
integral domain.

∀x∀y((x · y) = 0 → (x = 0 ∨ y = 0)).

(b) Give an example of an integral domain which is not a field.

Exercise 4.92
(a) Explain why the ring Z6 is not a field. [Hints: Z6 is a commutative ring

with a 1, so there’s only one field axiom where something can go wrong.
Or use the result of the last exercise.]

(b) Let n be a composite positive integer, so that n = ab for integers a, b with
a > 1, b > 1. Explain why the ring Zn is not a field.

(c) Show that the ring Zp, where p is a prime, is a field. [Hint: One method
is as follows. If a ∈ {1, 2, . . . , p − 1}, show that the numbers a ·p k, for
k ∈ {1, 2, . . . , p − 1}, are distinct and non-zero. So one of them must
equal 1.]

To take us nearer to axioms for the set of real numbers, we can add further
axioms to those for fields to give them an order structure which interacts with

204

4.4 Some axiom systems and their consequences

the arithmetic operations in a suitable way, as follows.

Definitions Ordered fields

Let L be the language with equality containing 2-place function symbols
+ and ·, 1-place function symbols − and −1 and constant symbols 0 and
1 used above, with the additional 2-place relation symbol <. The theory
of ordered fields has the axioms for a field with the following additional
axioms.

12. ∀x¬x < x

13. ∀x∀y∀z((x < y ∧ y < z) → x < z)

14. ∀x∀y(x < y ∨ (x = y ∨ y < x))

15. ∀x∀y∀z(x < y → (x + z) < (y + z))

16. ∀x∀y∀z((x < y ∧ 0 < z) → (x · z) < (y · z))

A model F = 〈F, +F, ·F,−R,−1
F, 0F, <F, =〉 of these axioms is called an

ordered field.

Example 4.9

〈Q, +, ·, 0, 1,−1 , <, =〉 and 〈R, +, ·, 0, 1,−1 , <, =〉 are classic examples of an
ordered field. �

Exercise 4.93

(a) Show that the following are logical consequences of the theory of ordered
fields.

(i) 0 < 1

(ii) ∀x(0 < x → (−x) < 0)

(iii) ∀x∀y∀z((x < y ∧ z < 0) → (y · z) < (x · z))

(b) Show that there is no way of defining an order < on the set C of complex
numbers with its usual arithmetic operations to make C a complete or-
dered field. [Hint: If there was such a <, then exactly one of i < 0, i = 0
and 0 < i would be true. Show that each of these is impossible.]

These axioms for an ordered field are equivalent to most of those we gave
for the real numbers R in the Introduction to this book, lacking only the
completeness axiom, which says that any non-empty subset A of S which is
bounded above has a least upper bound in S. As this statement quantifies
over subsets as well as elements of the domain R, it cannot be represented in
a first-order language, where only quantification over elements of the domain
R is permitted. The question arises of whether there is an alternative way of
representing the completeness axiom in a first-order language; and we shall
answer this question in Chapter 6.

205

4 Predicates and models

Replacing function symbols

We give a final important example, though perhaps not quite of a math-
ematical theory in the sense of most of those above. Let the language L
contain = and a 2-place relation symbol R. What can one say about a model
A = 〈A, R∗, =〉 of the sentence

∀x(∃yR(x, y) ∧ ∀z(R(x, z) → y = z))?

The literal reading is that for each a ∈ A, there is a unique b ∈ A such that
(a, b) ∈ R∗. Within set theory, this is the classic way of representing a function See e.g. Goldrei [16].

of one variable from A to A as a set, namely as a set of pairs satisfying
this sentence. For those, like the author, accustomed to think of functions
expressed in terms of domains, codomains and rules, R∗ might be described
as the graph of a function f∗ : A −→ A, where for each a ∈ A, the value of Note that the codomain of f∗ is A

as R∗ ⊆ A × A.f∗(a) is the unique b such that (a, b) ∈ R∗. The graph of f∗ is the set of pairs
{(a, f∗(a) : a ∈ A}, which is just R∗.

Exercise 4.94

(a) Write down a sentence in the language above in which the interpretation
of R in any model is as a function onto the domain A of the model.

(b) Show that all models of the sentences

∀x∃y(R(x, y) ∧ ∀z(R(x, z) → y = z))

∀x∀y∀z((R(x, y) ∧ R(z, y)) → x = z)

∃x∀y¬R(y, x)

are infinite, i.e. have an infinite domain.

Sentences like ∀x∃y(R(x, y)∧ ∀z(R(x, z) → y = z)) provide a way of replacing
function symbols within a formal language by relation symbols.

Exercise 4.95

Write down a sentence using an (n + 1)-place relation symbol R (and = if you
wish) whose interpretation in any model 〈A, . . .〉 is as the graph of a function
from An to A.

We have probably given enough axiom systems both to give the impression
that the framework of first-order languages does permit the axiomatization of
at least some interesting mathematics, and to give some examples to exploit
in the remainder of the book. There are some very obvious questions which we
should, at least to some extent, address. Given a theory, what are its logical
consequences? Is there an algorithmic procedure to decide whether a formula
is a logical consequence of a theory? An important part of an answer is to
look at the other way, besides logical consequence, discussed in this book of
establishing whether one statement is a consequence of others, namely looking
for a derivation in a formal proof system. This is what we shall turn to in the
next chapter.

206

4.4 Some axiom systems and their consequences

Further exercises

Exercise 4.96

Show that each of the three axioms for a weak partial order is not a logical
consequence of the remaining axioms.

Exercise 4.97
(a) Let 〈A, R∗〉 be an equivalence relation. Show that the set of equivalence

classes of A, {[[a]] : a ∈ A}, forms a partition of A.

(b) Let P be a partition of the set A. A relation R∗ on A is defined by

(a, b) ∈ R∗ if and only if a and b belong to the same set in P.

Show that 〈A, R∗〉 is an equivalence relation.

(c) Construct a formula φ in the language L consisting of a binary relation
symbol R and equality = with the properties that for all finite sets A,

(i) if 〈A, R∗〉 � φ, then the number of elements of A is a multiple of 5,
and

(ii) if the number of elements of A is a multiple of 5, then it is possible
to define a relation R∗ on A such that 〈A, R∗〉 � φ.

Exercise 4.98

(a) Write down a set of axioms, Σn, for a strict linearly ordered set with at
least n elements, using a language with equality and a 2-place relation
symbol <.

(b) Let Σ =
⋃∞

n=1 Σn. Show that neither Σ � φ nor Σ � ¬φ, where φ is

∀x(∃y x < y → ∃z(x < z ∧ ∀w(x < w → (w = z ∨ z < w)))).

(c) Is there a finite set of sentences Φ such that Φ � σ for each σ ∈ Σ? Give
such a set or explain why one doesn’t exist, as appropriate.

Exercise 4.99

Consider the following sentences (where f is a 2-place function symbol).

∀x∀y∀z f(x, f(y, z)) = f(f(x, y), z)

∀y∃x f(x, x) = y

∀y∃x f(x, f(x, f(x, x))) = y

For each of these formulas state whether or not it is a logical consequence of
the other two. Justify your answers.

Exercise 4.100
Let L be the first-order language with equality which, in addition to =, has a
single unary relation symbol P and a binary function symbol f . Write down
formulas φi, i = 1, 2, 3, in L with the following properties:

(a) φ1 holds precisely when f is interpreted as a one–one and onto function; Such a function would be from A2

to A, where A is the domain of a
model.

(b) φ2 has models with size n2 for every n ∈ {1, 2, 3, . . .}, but no other finite
models;

(c) φ3 has infinite models but no finite ones.

207

4 Predicates and models

Exercise 4.101

Let T be a set of sentences in a first-order language L. Show that for all
structures A for L, A is a model of T if and only if A satisfies all the sentences
in the theory of T .

4.5 Substructures and Isomorphisms
Now that we’ve seen a few interesting first-order theories, it’s worth introduc- This section could possibly be

omitted in a first reading of the
book.

ing a couple of important ideas associated with the models of such theories,
namely ‘substructure’ and ‘isomorphism’.

Let’s look first at the idea of a substructure of a structure – a generalization
of, for instance, the idea of a subgroup of a group, should you have met this
concept before.

Definitions Substructure

Let L be a first-order language with equality and let B be a structure
for L with domain B. Let A be a non-empty subset of B. For brevity, we shall refer to the

functions, relations and constants
of B, meaning the interpretations
within B of respectively the
function, relation and constant
symbols of L.

The closure of A under the functions and constants of A is the smallest
subset, written as A, of B containing the elements of A and the constants
of B closed under these functions; that is, for each n-place function
symbol f in L, if a1, a2, . . . , an ∈ A then fB(a1, a2, . . . , an) ∈ A.

The substructure of B generated by A is the structure A for L with
domain A and the interpretations of any non-logical symbols of L given
as follows:

for any relation symbol R of n arguments,

RA = RB ∩ A
n

(i.e. all n − tuples in RB RA is called the restriction of the

relation RB to A.whose elements are in A);

for any function symbol f of m arguments,

fA(a1, . . . , am) = fB(a1, . . . , am) for all a1, . . . , am ∈ A; That is, fA is the restriction

fB|A
m .

for any constant symbol c, c
A = c

B.

A substructure of B is any structure that can arise in this way.

For example, let L be the language with equality, a binary relation symbol R,
a binary function symbol f and constant symbol c. Let B be the structure
〈Z, <, +, 5, =〉 for L and let A be the subset {2} of Z. Then the closure A of A
and the constant symbols of B, namely of the set {2, 5}, under the function(s)
of B is the set {2, 4, 5, 6, 7, 8, . . .}. The substructure A generated by A has this
set A as domain, interprets R by the relation < on this set, f by the function
+ on this set and interprets c by the number 5.

208

4.5 Substructures and Isomorphisms

Exercise 4.102

Let B = 〈B, . . .〉 be any structure for a language L with equality. For what
sort of language L will the domain of the substructure of B generated by any
subset A of B always be equal to A?

Solution

The only sure guarantee is for the language L to contain only relation symbols
– no function or constant symbols!

More interestingly (if you have studied some group theory), let L be the
language with equality, a binary function symbol f , a unary symbol g and
constant symbol c, and let B be the additive group of integers, expressed as a
structure 〈Z, +,−, 0, =〉 for L. For any subset A, the substructure generated
by A must contain 0 and be closed under both + and −, so must be a subgroup A subgroup of a group G is a subset

of G which is a group with the
operations of G. Also the subgroup
of G generated by a subset A is the
smallest subgroup of G containing
the elements of A.

of B: it is the subgroup a student of group theory would expect, that generated
by A in the normal sense. In general, for any structure B for L which is a
group, interpreting f as the group operation, g by the inverse element function
and c as the identity element of the group, any substructure of it must be a
subgroup.

Exercise 4.103

Let L be the language with equality, a binary function symbol f and constant
symbol c, and let B be a structure for L which is a group, interpreting f as the
group operation and c as the identity element. Is it true that any substructure
of B is a subgroup of B?

Solution

No, it’s not true in general. Take, for instance, B to be the additive group of
integers, expressed as a structure 〈Z, +, 0, =〉 for L and let A be the subset
{2} of Z. Then the domain of the substructure generated by A is the set Remember that the domain

consists of the closure of A along
with the constants of B, so that
here 0 must be included.

{0, 2, 4, . . .} which is not a subgroup of B – it’s not closed under inverses,
thanks to leaving the unary function symbol for such inverses out of the lan-
guage L.

Exercise 4.104

For each of the following languages L and theories T expressed in the obvious Using the terminology of this
exercise, the results above could be
expressed as follows: if
L = {+,−,0, =} and T is the
theory of groups, then every
substructure of a model of T is also
a model of T ; but if L = {+,0, =}
and T is the same theory, then
substructures of models of T need
not be models of T .

way using the language, decide whether all substructures of models of T are
also models of T ; and if this is not the case, then could you adjust the language
used so that this became true?

(a) L = {<, =} and T is the theory of linear orders.

(b) L = {<, =} and T is the theory of linear orders with a least element.

(c) L = {+, ·,−,0, =} and T is the theory of rings.

(d) L = {+, ·,−,0,1, =} and T is the theory of fields.

(e) L = {+, ·,−,−1 ,0,1, =} and T is the theory of fields.

209

4 Predicates and models

The magic ingredient to ensure that all substructures of a model of T are also
models of T is given in the following theorem.

Theorem 4.7

Let L be a first-order language with equality. Let A,B be structures for
L with domains A, B respectively such that A is a substructure of B.

(a) For any quantifier-free formula φ(x1, x2, . . . , xn) and Recall the convention that writing
a formula as φ(x1, x2, . . . , xn)
signifies that the free variables in φ
are some or all of the x1, x2, . . . , xn.

a1, a2, . . . , an ∈ A,

A �x1/a1,x2/a2,...,xn/an
φ(x1, x2, . . . , xn) if and

only if B �x1/a1,x2/a2,...,xn/an
φ(x1, x2, . . . , xn).

(b) For any formula ∀y1 . . .∀ykφ(y1, . . . , yk, x1, x2, . . . , xn), where Recall that this is called a
universal formula.φ(y1, . . . , yk, x1, x2, . . . , xn) is quantifier-free, and

any a1, a2, . . . , an ∈ A,

if B �x1/a1,x2/a2,...,xn/an
∀y1 . . .∀ykφ(y1, . . . , yk, x1, x2, . . . , xn)

then A �x1/a1,x2/a2,...,xn/an
∀y1 . . .∀ykφ(y1, . . . , yk, x1, x2, . . . , xn).

(c) If a theory T can be axiomatized by universal sentences, that is,
sentences of the form ∀y1 . . .∀ykφ where φ is quantifier-free and its
free variables are included in the list y1, . . . , yk, then for any model
of T , all of its substructures are also models of T .

We shall leave the proof of the theorem for you as an exercise. The result of
part (c) (which we hope you can see follows immediately from part (b)) means
that for many of the theories axiomatized in Section 4.4, all substructures of
models of the theory are also models of the theory.

Exercise 4.105

Prove Theorem 4.7.

Exercise 4.106
For which of the theories axiomatized in Section 4.4 are all substructures of
models of the theory also models of the theory?

Solution

Several of the theories are axiomatized using universal sentences, for example,
the theories of: equivalence relations, partial orders and linear orders (weak
and strict), Boolean algebras, rings, fields, ordered fields. All these theories
must then have the required property for substructures of models. We hope
that your solution to Exercise 4.83 gave an axiomatization for group theory
consisting of universal sentences.

Exercise 4.107

Let B be a structure for a language L and A a substructure of B. Let θ be an
existential sentence of L, that is a sentence of the form ∃y1 . . .∃ykφ, where φ
is quantifier-free and its free variables are included in the list y1, . . . , yk. Show
that if A � θ, then B � θ. [Hint: Exploit Theorem 4.5(b).]

210

4.5 Substructures and Isomorphisms

We shall exploit some of these facts later in the book. Perhaps surprisingly
there is a converse result to this consequence of Theorem 4.7(c), namely:

If T is a theory such that for all models of T , every substructure is also a
model of T , then T can be axiomatized using universal sentences.

We shall prove this later in the book. In Theorem 6.14 in Chapter 6.

Now let’s look at the idea of ‘isomorphism’ of two structures for the same
language L. We shall extend the familiar ideas from branches of maths like
group theory. In the latter, a group is essentially defined as a set G with a
binary operation ∗ obeying various axioms. All the information about the
group follows from the table, called the Cayley table, giving the values of
g ∗ g′ for all g, g′ ∈ G. Two groups, say G, ∗ and H, ◦, are isomorphic if there
is a bijection θ from G to H via which the Cayley tables of G and H match;
that is, for all g, g′ ∈ G, θ(g ∗ g′) = θ(g) ◦ θ(g′) – the group H is essentially
the group G with different names for its elements. The bijection θ is called
an isomorphism. Regarding these groups as structures for a language with
equality and a binary function symbol f , interpreted by the function ∗ on
G and the function ◦ on H , the interpretations of the symbol f match via
the bijection θ. An isomorphism between two structures for a more general
language L is likewise a bijection between their domains which makes their
interpretations of all the function, relation and constant symbols match, as
given more formally in the following definition.

Definitions Isomorphism

Let L be a first-order language with equality and let A, B be structures
for L with domains A, B respectively. The structures A and B are
isomorphic if there is a function θ : A −→ B, said to be an isomorphism
from A to B, with the following properties:

(i) θ is a bijection between A and B;

(ii) for any relation symbol R of n arguments and all a1, a2, . . . , an ∈ A,
(a1, a2, . . . , an) ∈ RA if and only if (θ(a1), θ(a2), . . . , θ(an)) ∈ RB;

(iii) for any function symbol f of m arguments and all a1, a2, . . . , am ∈ A,

θ(fA(a1, a2, . . . , am)) = fB(θ(a1), θ(a2), . . . , θ(am));

(iv) for any constant symbol c, θ(cA) = c
B.

We hope that you will have encountered the idea of isomorphisms before and
appreciate the importance of their use in classifying the different models of a Classification seems to be a key

enterprise in the study of just
about any subject!

theory – for the purpose of classification, isomorphic structures are ‘essentially
the same’.

211

4 Predicates and models

Example 4.10

(a) Let L consist only of the equality symbol. Then 〈A, =〉 and 〈B,=〉 are
isomorphic when there is a bijection between A and B, i.e. they have the
same number of elements.

(b) Let L be a language with equality, a 2-place function symbol f and a
constant symbol c. Let A be the set Z4 = {0, 1, 2, 3} and recall that with
the operation +4 of addition modulo 4 this forms a group. Let B be the Rot(�) is the set of rotational

symmetries of a square centred on
the origin.

set Rot(�) = {r0, rπ/2, rπ, r3π/2}, where rθ is the rotation of the plane R2

about the origin through an angle θ anti-clockwise: with the operation ◦
of composition of functions, this also forms a group.

(i) The structures A = 〈Z4, +4, 0, =〉 and B = 〈Rot(�), ◦, r0, =〉 are iso-
morphic. One isomorphism θ from A to B has rule

θ(k) = rkπ/2, k = 0, 1, 2, 3.

These structures are groups and isomorphism as structures coincides with
the usual notion of group isomorphism.

(ii) The structures A = 〈Z4, +4, 1, =〉 and B = 〈Rot(�), ◦, r3π/2, =〉 are

also isomorphic. An isomorphism is the function θ′ defined by θ and θ′ are the two standard
group-theoretic isomorphisms
between the group 〈Z4, +4, 0, =〉
and the group of rotations of the
square.

θ′ : Z4 −→ Rot(�)

0 �−→ r0

1 �−→ r3π/2

2 �−→ rπ

3 �−→ rπ/2.

In contrast to the previous example, we would probably not describe the
structures as groups, because of the perverse interpretations of the con-
stant symbols as non-identity elements; but the definition of isomorphism
for structures for the language still applies.

(iii) The structures A = 〈Z4, +4, 2, =〉 and B = 〈Rot(�), ◦, r3π/2, =〉 are
not isomorphic. The only bijections from Z4 to Rot(�) which preserve the
interpretations of the function symbol f are the θ and θ′ in the preceding
examples, neither of which preserve the interpretation of the constant
symbol c. �

We mentioned earlier the idea of a cyclic group, that is, one for which there
is an element g ∈ G such that every element of G is gn for some n ∈ Z. (The
element g is then said to generate the cyclic group.) Both the groups in
Example 4.10(b) are cyclic. The element 1 (and also the element 3) gener-
ates 〈Z4, +4, 0, =〉 and rπ/2 (and also r3π/2) generates B = 〈Rot(�), ◦, r0, =〉.
It is no surprise that these groups are isomorphic as it can be shown that,
in general, if two cyclic groups have the same number of elements, they are A complete classification of cyclic

groups is given by the groups
〈Zn, +n, 0, =〉 for each integer
n ≥ 1 and the additive group of
integers 〈Z, +, 0, =〉.

isomorphic. Thus one can classify cyclic groups by giving, for each possi-
ble number of elements, one example of a cyclic group with that number of
elements.

212

4.5 Substructures and Isomorphisms

Exercise 4.108

Let L be a language with equality, a 2-place relation symbol R and a constant
symbol c. All the structures for L in this exercise interpret R as a linear
order.

(a) Show that the structures 〈N, <, 0, =〉 and 〈{2− 1
n+1 : n ∈ N}, <, 1, =〉 are

isomorphic.

(b) Which pairs, if any, of the following structures are isomorphic?

〈N, <, 0, =〉
〈N, >, 0, =〉
〈{2} ∪ {2 − 1

n+1 : n ∈ N} , <, 2, =〉
〈{−1} ∪ {2 − 1

n+1 : n ∈ N} , <,−1, =〉
〈{2} ∪ {2 + 1

n+1 : n ∈ N} , >, 2, =〉

Exercise 4.109

(a) Suppose that θ : A −→ B is an isomorphism from A to B. Show that the
inverse function θ−1 is an isomorphism from B to A.

(b) Show that ‘A is isomorphic to B’ is an equivalence relation on the class
of all structures for L.

As you’d expect, a major result about isomorphism is that isomorphic struc-
tures satisfy the same formulas, in the following sense.

Theorem 4.8

Suppose that θ : A −→ B is an isomorphism between structures
A = 〈A, . . .〉 and B = 〈B, . . .〉 for a language L. Then for any formula
φ(x1, x2, . . . , xn) with free variables amongst x1, x2, . . . , xn,

A �x1/a1 x2/a2 ...xn/an
φ(x1, x2, . . . , xn)

if and only if

B �x1/θ(a1) x2/θ(a2) ...xn/θ(an) φ(x1, x2, . . . , xn),

for all a1, a2, . . . , an ∈ A.

In particular A and B satisfy the same set of sentences. Remember that a sentence is a
formula with no free variables.

213

4 Predicates and models

Exercise 4.110

Prove Theorem 4.8 for a language L with equality, a 3-place relation symbol We hope that proving this for a
limited number of symbols will give
you enough of an idea of how to
prove it for a more general
language.

R, a 2-place function symbol f and a constant symbol c.

[Hints: First deal with terms. Show that for any term τ(x1, x2, . . . , xk) in-
volving variables out of the list x1, x2, . . . , xk and a1, a2, . . . , ak ∈ A, we have
θ(τA(a1, a2, . . . , ak)) = τB(θ(a1), θ(a2), . . . , θ(ak)): this requires an induction
on the number of function symbols in the term τ. This will contribute to
showing that the required result holds for all atomic formulas φ, remembering
that these include all formulas of the form τ1 = τ2, where τ1, τ2 are terms, as
well as formulas of the form R(τ1, τ2, τ3), where τ1, τ2, τ3 are terms. The full
result can then be proved by mathematical induction on the number of logical
connectives in φ.]

As already mentioned, isomorphism is a natural idea for classifying the models
of a theory. Pretty well all the theories in Section 4.4 have lots of non-
isomorphic models. For instance, in Chapter 6 we shall see that once such a
theory has an infinite model, it must have models of all large enough infinite
cardinalities; and once two models have different cardinalities, there can be
no bijection between them, hence no isomorphism. This means that two of Two sets have the same cardinality

(i.e. size) when there is a bijection
from one to the other.

the most important mathematical theories, those of the natural numbers and
the real numbers, cannot be axiomatized in a first-order language, as both
theories have axiomatizations in a richer language with exactly one infinite
model up to isomorphism.

However, there are some first-order theories which have just one model up
to isomorphism of a particular infinite cardinality. We would like to end
this section by looking at one such theory, the theory of unbounded dense
linear order. Following the terminology introduced in parts (a) and (c) of
Exercise 4.69 of Section 4.4, this theory, in the language with equality and
the 2-place relation symbol <, has axioms for a strict linear order along with

∀x∃y∃z(y < x ∧ x < z) (< is unbounded)

and

∀x∀y(x < y → ∃z(x < z ∧ z < y)) (< is dense).

Examples of models of this theory include each of the reals R, the open interval
(0, 1) of R, the rationals Q, the open interval Q ∩ (0, 1) of the rationals and
the subset Q ∩ ((0, 1) ∪ (2, 3)) of Q, all with their usual order, of course. All
models of the theory are infinite, thanks to the unboundedness axiom. What
is surprising is that all countable models, like the last three of the examples We ask you to construct

isomorphisms to show that these
three countable examples are
isomorphic in Exercise 4.111.

we’ve just given, are isomorphic, which we’ll state as a theorem.

Theorem 4.9

Let 〈X, <X , =〉 and 〈Y, <Y , =〉 be two unbounded dense linear orders
with X and Y both countably infinite. Then these structures are iso-
morphic.

214

4.5 Substructures and Isomorphisms

The proof of this theorem is left as an exercise for the interested reader in
Exercise 4.112 below. The result has an interesting impact on the logical
consequences of this theory, as we shall discuss at the end of Chapter 6.

Further exercises

Exercise 4.111
In this exercise, we ask you to show that the countable unbounded dense
linear orders 〈Q, <, =〉, 〈Q ∩ (−1, 1), <, =〉 and 〈Q ∩ ((0, 1)∪ (2, 3)), <, =〉 are
isomorphic by constructing suitable isomorphisms. (Although this result fol-
lows from Theorem 4.9, the proof of the theorem, which we shall guide you
through in Exercise 4.112, is not entirely helpful in constructing suitable iso-
morphisms in a nice form!)

(a) Show that the function

f : R −→ (−1, 1)

x �−→ x

1 + |x|
is an isomorphism between 〈R, <, =〉 and 〈(−1, 1), <, =〉, where both sets
are ordered by the usual <.

(b) Exploit this function f to find an isomorphism between 〈Q, <, =〉 and
〈Q ∩ (−1, 1), <, =〉.

(c) Find an isomorphism between 〈Q, <, =〉 and 〈Q ∩ (0, 1), <, =〉.
(d) Find an isomorphism between 〈Q, <, =〉 and 〈Q ∩ ((0, 1) ∪ (2, 3)), <, =〉.

[This part requires some sneakiness compared to the previous parts!]

Exercise 4.112
In this exercise we ask you to prove Theorem 4.9. The theorem was first
proved by Cantor, the founder of modern set theory (and some more!). His
method is quite nicely described as a ‘back and forth’ argument. We shall
take you through it, asking you to fill in some of the gaps.

We are given two countable unbounded dense linear orders 〈X, <X , =〉 and
〈Y, <Y , =〉. As the sets X and Y are countable, their elements can be listed
as

x0, x1, x2, . . . , xn, . . . and y0, y1, y2, . . . , ym, . . . ,

where every element of X appears exactly once in the list as an xn for some
n ∈ N and each element of Y appears exactly once in the list as a ym for some
m ∈ N.

The method of proof is to construct both an isomorphism f : X −→ Y and
its inverse function g : Y −→ X by recursion. That is to say, for the function We’ll use the notation g for the

inverse function rather than f−1 as
we think it might avoid a bit of
confusion.

f , we shall define the initial value of f(x0) and then, for each n ∈ N, define
f(xn+1) in terms of the values of f(x0), f(x1), . . . , f(xn). As every element
of X appears exactly once as an xn, this will define f as a function on X .
We shall define g as a function on Y in a similar way. In each step of the
process, we must ensure that f is order-preserving on {x0, x1, . . . , xn}, i.e. if
xi <X xj then f(xi) <Y f(xj) for i, j ∈ {0, 1, . . . , n}, and likewise that g is

215

4 Predicates and models

order-preserving on {y0, y1, . . . , yn}. At the same time we must ensure that
g is constructed to be the inverse function of f , so that if f(xi) is defined to
be yj , then g(yj) is defined to be xi; and likewise if g(yj) is defined to be xi,
then f(xi) is defined to be yj.

To get started, define f(x0) to be y0 and g(y0) to be x0. Defining g(y0) as anything other
than x0 would, of course, destroy
any prospect of g being f−1.Now suppose that f(x0), f(x1), . . . , f(xn) and g(y0), g(y1), . . . , g(yn) have both

been defined so that the following are all satisfied:

(i) the order structure of the elements f(x0), f(x1), . . . , f(xn) in Y matches Note that we are not saying that
for each i ∈ {0, 1, . . . , n} the value
of f(xi) has to be yj for some
j ∈ {0, 1, . . . , n}. For general
listings x0, x1, x2, . . . , xn, . . . and
y0, y1, y2, . . . , ym, . . . this would be
impossible to achieve. So if
f(xi) = yj where i ≤ n and j > n,
then at the stage of the
construction defining g(yj) we have
to remember to define it as xi to
keep our aim that g should be f−1

on track.

that of the corresponding elements x0, x1, . . . , xn in X , i.e. if xi <X xj

then f(xi) <Y f(xj) for i, j ∈ {0, 1, . . . , n};
(ii) the order structure of the elements g(y0), g(y1), . . . , g(yn) of X matches

that of the corresponding elements y0, y1, . . . , yn in Y , i.e. if yi <Y yj then
g(yi) <X g(yj) for i, j ∈ {0, 1, . . . , n};

(iii) if for an i ∈ {0, 1, . . . , n} it happens to be the case that f(xi) is defined
to be yj for some j ∈ {0, 1, . . . , n}, then g(yj) is defined to be xi;

(iv) if for a j ∈ {0, 1, . . . , n} it happens to be the case that g(yj) is defined to
be xi for some i ∈ {0, 1, . . . , n}, then f(xi) is defined to be yj .

Now for your task! Show how to define first f(xn+1) so that (i) and (iii) Defining f(xn+1) is the ‘forth’ and
g(yn+1) is the ‘back’ of the ‘back
and forth’ argument.

above are true with n + 1 in place of n; and then define g(yn+1) so that (ii)
and (iv) are true with n + 1 in place of n. Plainly it is at this stage that you
will need to exploit the unbounded dense linear orders <X and <Y . Then tie
up the ends of the argument to explain why 〈X, <X , =〉 and 〈Y, <Y , =〉 are
isomorphic.

216

5 FORMAL PREDICATE CALCULUS

5.1 Introduction
We shall now look at a formal proof system which matches our idea of logical Historically, formal systems have

been a major object of study in
their own right, as a framework for
the formal treatment of
mathematics and now for the
automation of proofs. Establishing
completeness was a non-trivial task
and indeed the definition of
satisfiability used in the text came
even later in the development of
the subject.

consequence in the previous chapter. This particular system is the main focus
of our discussion of formal systems. We’re going for a single system which will
match logical consequence as dealt with in Chapter 4 and provide soundness
and completeness theorems similar to those for the propositional calculus, so
that for all sets of sentences Γ and sentences φ,

Γ � φ if and only if Γ � φ.

Although the notions of logical consequence and formal proof are connected
by the soundness and completeness theorems, they are very different con-
cepts. To test whether Γ � φ, we have to investigate each model of Γ to see
if it also satisfies φ. This could involve checking infinitely many models and For instance, the theory of groups

has infinitely many non-isomorphic
models.

plainly wouldn’t give a practical algorithmic procedure for deciding whether
φ is a logical consequence of Γ. In everyday maths we do know some mathe-
matical consequences of theories described by axioms, so our knowledge must
come from other means. The other means – the whole point of the approach
described in the book – is some form of proof involving small steps using in-
ferences regarded as acceptable by the mathematical community (or at least
enough of it!). That there is some relatively easy to describe formal proof sys-
tem of this sort which matches logical consequence for first-order languages is
a major result.

Let’s look at an example of a fairly informal mathematical proof from axioms.
We shall take the first three of our axioms for rings on page 202, in the
language L with equality including the 2-place function symbol +, the 1-
place function symbol − and constant symbol 0, adapting the axioms so that
they only use the connectives ¬,→ and the quantifier ∀, giving the following
five axioms.

1. ∀x∀y∀z (x + (y + z)) = ((x + y) + z) These sentences can be used as
axioms for the theory of groups.2. ∀x (x + 0) = x

3. ∀x (0 + x) = x

4. ∀x (x + (−x)) = 0

5. ∀x ((−x) + x) = 0

A consequence of these axioms is ∀x((x + x) = x → x = 0) and we might
demonstrate this informally as follows.

Suppose that x is any element satisfying

(x + x) = x.

Then ‘adding’ −x to the right on each side of the equation gives

((x + x) + (−x)) = (x + (−x)).

217

5 Formal predicate calculus

Using Axiom 1 the lefthand side of this equation equals (x + (x + (−x))), so
that the equation becomes

(x + (x + (−x))) = (x + (−x)).

Using Axiom 4, this becomes

(x + 0) = 0,

which using Axiom 2 gives

x = 0.

As we have shown x = 0 from the assumption that (x + x) = x, this means
we have shown that

((x + x) = x → x = 0).

As x is a typical element, this must hold for all x, so that

∀x((x + x) = x → x = 0).

To help see some of the features a formal proof system might require to handle
such a proof, we shall rewrite this argument a bit more formally, numbering
lines and giving reasons for each line, just as our formal system for proposi-
tional calculus would lead us to expect.

(1) (x + x) = x Assumption
(2) ((x + x) + (−x)) = (x + (−x)) Adding (−x) to the right of each

side of the equality in 1
(3) (x + (x + (−x))) = ((x + x) + (−x)) Special case of Axiom 1
(4) (x + (x + (−x))) = (x + (−x)) Substituting one side of 2 for

itself in 3
(5) (x + (−x)) = 0 Special case of Axiom 4
(6) (x + 0) = 0 Substituting one side of 5 for

itself in 4
(7) (x + 0) = x Special case of Axiom 2
(8) x = 0 Substituting one side of 7 for

itself in 6

We conclude that ((x + x) = x → x = 0) and as x was a typical element we
have ∀x((x + x) = x → x = 0).

This informal proof gives us some ideas of what we should expect our formal
system to handle. First of all, to prove something holds ‘for all x’, we normally
show it holds for a typical x and then conclude it holds for all x. So our
system will probably need a rule or axiom which allows us to make this step
generalizing a result to cover all x. Next, guided by the presence of → in
the statement of what we wanted to show for each typical x, we assumed
(x + x) = x and tried to prove from this assumption that x = 0, aiming to
conclude that ((x + x) = x → x = 0) held using no assumptions. So we want
the deduction theorem to hold for our system. Next, given that our axioms Here, from ∀x (x + 0) = x, we

happened to want to infer only
that (x + 0) = x. But we might
have wanted to replace x by a more
complicated term, say (y + z) and
infer that ((y + z) + 0) = (y + z).

all have the character of ‘for all x something holds’, we wanted to conclude
that this something held for a specific x – another feature on the wish list
for our system! Then we want to be able to make all sorts of substitutions
of equal quantities, one for the other, in statements we have already derived.

218

5.1 Introduction

Lastly, as on line 2, we want to be able to do the same thing to each side of
an equality to get a new equality.

These considerations give some idea of what our shopping list will be when
designing our formal system, which will be an extension of our system S for
propositional calculus in Chapter 3. Many of the issues discussed in relation As with propositional calculus, the

formal system will have a
mechanical aspect. Derivations will
be generated by, and checked
against, syntactic rules. So we shall
have a framework in which
questions about decidability are
natural, for instance whether there
is an algorithmic procedure for
deciding whether a given formula is
derivable.

to propositional calculus will be helpful here.

We will clearly need extra axioms and/or rules to cope with interesting prop-
erties of quantifiers. We will go initially for a system just using ∀ along with
propositional connectives ¬,→. Given what we know about logically equiv-
alent formulas, we can use ∃x as a shorthand for ¬∀¬x. Similarly we can
use (φ ∧ ψ), (φ ∨ ψ) and so on for well-known equivalents expressed using the
adequate set of connectives ¬ and →. With the soundness theorem in mind,
we should obviously go for axioms/rules that are valid. But however we do
it, there are awkward pitfalls to be avoided. For instance, we saw in our
simple proof above that to handle the universal quantifier ∀, we need ways of
moving both from the general to the particular (from ∀xφ infer that φ holds
for a particular x), and from the particular to the general (from φ holding
for a typical x, infer that ∀xφ holds). Plainly, given that ∀ is the principal
extra logical symbol added to those used for propositional calculus, rules for
handling ∀ will be of the greatest importance. A first stab at formal rules for
handling the universal quantifier ∀ might be the following:

(i) from Γ � ∀xφ(x) infer Γ � φ(τ) for any term τ; Rule (i) tells us how to eliminate
∀x from a formula and Rule (ii)
tells us how to introduce it into
one.

(ii) from Γ � φ infer Γ � ∀xφ.

Both of these rules go awry unless there’s some sort of restriction.

Exercise 5.1

By asking whether Rule (i) above is valid, we really mean the following: is it
the case that

if Γ � ∀xφ(x) then Γ � φ(τ),

for any term τ? Show that this is not the case and suggest how the rule might
be adjusted to give a valid rule.

Solution

You might well suspect from the discussion in Section 4.3 of Chapter 4, that
we could run into trouble if the term τ isn’t freely substitutable for x in φ.
This is indeed the case. For instance, if φ(x) is the formula ∃y ¬x = y and Γ
is the set {∀xφ(x)}, then trivially

Γ � ∀xφ(x).

But it is not the case that

Γ � φ(y),

where the term τ has be taken to be the variable y – you will recall that the
variable y cannot be freely substituted for x in the formula ∃y ¬x = y. Any
(normal) structure with domain consisting of two or more elements satisfies
Γ, but does not satisfy φ(y).

219

5 Formal predicate calculus

Given our discussion in Section 4.3, adding the requirement that the term τ
can be freely substituted for x in φ is likely to produce a valid rule.

Rule (ii) corresponds to saying that

if Γ � φ then Γ � ∀xφ.

This rule corresponds to the normal way of arguing in mathematics that
starts by proving a statement about a typical or general element x of some
set A and concludes that the statement holds for all x in A. This process is
called generalization and is a vital requirement for any proof system handling
predicates.

Alas, as it stands this rule isn’t valid. For instance, suppose that the language
includes a constant symbol c. Then trivially

x = c � x = c,

but

x = c �� ∀xx = c.

In any structureA with domain consisting of two or more elements, the for-
mula x = c is satisfied by interpreting x as c

A, but the formula ∀xx = c is
not satisfied.

The real problem with the rule is that if Γ � φ and the variable x occurs free
in both φ and some of the assumptions in Γ, this is tantamount to assuming An easy way to avoid problems

with generalization is to make all
the assumptions in Γ sentences, i.e.
formulas with no free variables.
This will rarely impoverish the
theory being developed and we
shall often do it.

some special properties of x and inferring a further special property φ(x) of
that x. The x isn’t a general element and we cannot then infer ∀xφ(x). To
rescue the rule, we shall require the variable x not to occur free in any of the
assumptions in Γ.

We have given a hint of both some of the complications which we are going to
have to resolve with our formal proof system and some of the properties that
we want it to have. It’s now time to plunge into the icy water of the system
itself! In Section 5.2 we shall describe the formal proof system and do some
derivations within it. In Section 5.3 we shall look at the soundness theorem
for the system. In Section 5.4 we shall grasp the nettle of structures which do
not interpret the = symbol by actual equality on their domains (so are not
normal structures). Finally in Section 5.5 we shall prove the completeness
theorem for the system.

220

5.2 A formal system for predicate calculus

5.2 A formal system for predicate calculus
Our formal proof system, building on the system S of Chapter 3, is described
in the following definitions. First we give the definition for a first-order lan-
guage which doesn’t involve equality and then we extend this to cover the use
of equality.

Definitions Formal system for predicate calculus

Let Γ be a (possibly empty) set of formulas and let φ be a formula, all
in a first-order language L. A derivation of Γ � φ is a finite sequence of
formulas

φ1, φ2, φ3, . . . , φn,

where φn is the formula φ and the inclusion of each formula φi can be
explained in one of the following ways:

(i) φi ∈ Γ; This is just the Rule of
Assumptions, Ass, as before.
Unlike propositional calculus, the
set Γ could be something
interesting, like the axioms for a
mathematical theory!

(ii) φi is a formula (an axiom) of one of the following forms:

(Ax 1) (φ → (ψ → φ)),

(Ax 2) ((φ → (ψ → θ)) → ((φ → ψ) → (φ → θ))),

(Ax 3) ((¬φ → ¬ψ) → (ψ → φ)),

(Ax 4) (∀xφ(x) → φ(τ)), where τ is a term freely substitutable for x The interesting case of Ax 4 is
when x is actually free in φ.in φ,

(Ax 5) (∀x(φ → ψ) → (φ → ∀xψ)), where x is not free in φ,

where φ, ψ, θ are any formulas of L;

(iii) there are two previous formulas in the sequence, φj and φk with This is just the rule of Modus
Ponens, MP, as before.j, k < i, where φk is the formula (φj → φi);

(iv) φi is of the form ∀xφj , where φj is a previous formula in the se- This is called the rule of
generalization, abbreviated as Gen.quence, i.e. where j < i, and the quantified variable x does not ap-

pear free in any formula in the set Γ.

As with propositional calculus, we shall use Γ � φ as a shorthand for
‘there is a derivation of Γ � φ’.

In addition, if we have a derivation Γ0 � φ obeying the conditions (i) This is the thinning rule for the
system. For propositional calculus
this was a metatheorem about the
system, but for predicate calculus
it is built into the system. We shall
discuss the reason for this in a
moment.

to (iv) above for some subset Γ0 of Γ, we shall also declare that Γ � φ.
Thanks to this, if we have a derivation of Γ � φ, this means that there
is a derivation following conditions (i) to (iv) of Γ0 � φ for some subset
Γ0 of Γ.

As you can see, axiom Ax 4 and the rule Gen seem to address the issues of The extra axioms and rule for
handling ∀ are much more natural
than the propositional calculus
axioms!

respectively how to eliminate a universal quantifier from, and introduce one
to, a formula; and axiom Ax 5 tells us how ∀ interacts with →.

What we have given above deals with how to use ¬, → and ∀ in formal
proofs, but doesn’t tell us anything about how to deal with the special relation
symbol = for equality. If the language L includes = and we want the symbol

221

5 Formal predicate calculus

to correspond as much as possible to equality, our formal system has the
following additional features.

Definition Axioms for equality

If the language is one with equality, then the formal system has the
following additional axioms:

(Ax 6) ∀xx = x,

(Ax 7) (x = y → (φ(x, x) → φ(x, y))), for all atomic formulas φ, where The formula φ is allowed to involve
variables besides x.φ(x, y) is obtained by substituting the variable y for some (not

necessarily all) of the occurrences of the variable x in φ(x, x).

Axiom Ax 7 attempts to capture the principle that if two objects are equal, For a penetrating and witty
analysis of the caution needed in
the application of this principle,
that of substituting equals for
equals, see Frege [15].

then any property of one is a property of the other. Examples of instances of
axiom Ax 7 in a language with equality including a 3-place relation symbol R
and a 2-place function symbol f are

(x = y → (R(t, x, f(x, y)) → R(t, y, f(y, y)))),

where all occurrences of x are substituted by y, and

(x = z → (f(x, x) = x → f(z, x) = x)),

where just one occurrence of x is substituted by z.

In Section 5.4 we shall discuss the limitations of these extra axioms for equal-
ity. Basically it is possible to interpret the symbol = within a structure by
a relation on the domain which isn’t true equality, but which satisfies these
axioms. That’s why we introduced the concept of a normal interpretation
which does always interpret = by equality; and for almost all purposes in this
book we consider only normal interpretations. A key part of the soundness
theorem for our formal system, which we shall deal with in the next section,
is of course that the equality axioms Ax 6 and Ax 7 are true in any normal
interpretation.

While we hope that you are expecting both a soundness and completeness
theorem for this system, we also hope that you find it remarkable that there
is any system at all, let alone one with such a short description, for which the
completeness theorem holds. These rules and axioms really are sufficient to
give a formal derivation Γ � φ for any logical consequence Γ � φ, for all sets of For certain technical reasons, we

shall confine the completeness
theorem to apply to sentences, i.e.
formulas with no free variables.

sentences Γ and sentences φ. To take a very simple example of how surprising
this is, the axiom scheme Ax 7 allows equal quantities to be substituted for
each other only in atomic formulas. This axiom doesn’t say that this can be
done for more complicated formulas. Yet we shall see later that it can be done
for all of these, with some sensible restrictions, achieving the goal that if two
objects are equal, then any property of one expressible in the formal language
is a property of the other.

222

5.2 A formal system for predicate calculus

As an example, we shall give a derivation of

∀xφ(x) � ∀yφ(y),

for any formula φ(x) in which x appears as a free variable and for any variable
y which doesn’t appear in φ(x),

(1) ∀xφ(x) Ass
(2) (∀xφ(x) → φ(y)) Ax 4
(3) φ(y) MP, 1, 2
(4) ∀yφ(y) Gen, 3

Note that line 2 is a legitimate instance of axiom Ax 4 as the variable y is
freely substitutable for x in φ (because y doesn’t appear in φ(x), so cannot
become bound by a hidden ∀y). Also as the variable y is not free in the one
assumption ∀xφ(x) (again because y doesn’t appear in φ(x) and thus not in
∀xφ(x)), the use of Gen on line 4 is correct.

Let’s use this derivation as an example to explain why we have built the
thinning rule into the definition of Γ � φ. If x appears as a free variable in
φ(x) and y doesn’t appear in φ(x), then we have

∀xφ(x) � ∀yφ(y).

This will follow from the soundness theorem for the system, but it is also
easily verified directly from the definition of logical consequence. It follows
straightforwardly from the properties of logical consequence that Any interpretation satisfying ∆

and ∀xφ(x) automatically satisfies
∀xφ(x) and must thus satisfy
∀yφ(y), as ∀xφ(x) � ∀yφ(y).

∆, ∀xφ(x) � ∀yφ(y)

for any set of formulas ∆ – we might say that the thinning rule applies to
logical consequence – and it would then be desirable, given that we want a
completeness theorem for the system, that

∆, ∀xφ(x) � ∀yφ(y).

Without the thinning rule for the formal system, we would run into trouble if
the set ∆ contained any formulas involving y as a free variable, for instance
just the formula φ(y). Our derivation of ∀xφ(x) � ∀yφ(y) wouldn’t give a
derivation of φ(y), ∀xφ(x) � ∀yφ(y) because the use of Gen on line 4 would
then quantify a variable appearing free in one of the assumptions, albeit an
assumption not exploited anywhere in the derivation! But thanks to the
thinning rule, we can say that

φ(y), ∀xφ(x) � ∀yφ(y),

because there is a derivation of ∀yφ(y) using a subset of the set of assumptions.

We shall plainly have to take a bit of care with the rule Gen, which is such
a vital feature of the system. Because of the potential complication of free
variables appearing in assumptions when trying to use Gen, we shall often As we can always give axioms for

the mathematical theories in which
we are interested using sentences,
this is no great restriction.

confine our attention to sets of assumptions consisting entirely of sentences,
i.e. formulas with no free variables.

Let’s now get back to the formal proof system and what can be done with
it. Rather than leave you to flounder with proofs from first principles, we Metatheorems like proof by

contradiction and the deduction
theorem would be handy for our
new system!

shall get straight into some of the metatheorems which help show what is
derivable and which give recipes for constructing an actual derivation within

223

5 Formal predicate calculus

the original system. Given our discussion about possible complications with
the rule Gen and how in practice we shall avoid them by using sentences as
assumptions, our first metatheorem will explain just how this works.

Theorem 5.1

Suppose that Γ is a set of sentences and that Γ � φ. Then for any
variable x, we have Γ � ∀xφ.

Proof

Suppose that we have a derivation of Γ � φ using k lines with φ appearing as
the kth line. Then we adjust the derivation by adding an extra line as follows.

...
...

...
(k) φ · · ·

(k + 1) ∀xφ Gen

As there are no free variables in any assumptions from Γ appearing in the
derivation, the use of Gen on line k + 1 is correct, so that we have a derivation
of Γ � ∀xφ.

One often uses the following special case of Theorem 5.1, the proof of which
we leave as an exercise for you.

Exercise 5.2

(a) Suppose that � φ, where φ may include free variables. Show that � ∀xφ,
for any variable x.

(b) Suppose that � φ(x1, x2, . . . , xn), where φ has free variables in the list
x1, x2, . . . , xn. Show that

� ∀x1∀x2 . . .∀xnφ(x1, x2, . . . , xn).

Just as for propositional calculus, we have an analogue of Theorem 3.1(i) of
Chapter 3:

Theorem 5.2

Suppose that a derivation of Γ � φ involves uses of the Rule of Assump-
tions only with the formulas θ1, θ2, . . . , θk from Γ. Then it is also a
derivation of

{θ1, θ2, . . . , θk} � φ.

Proof

If Γ � φ, then there is a derivation following conditions (i) to (iv) of Γ0 � φ for
some subset Γ0 of Γ. The sequence of formulas in this derivation involves only
finitely many formulas, and in particular involves only finitely formulas using
the rule Ass, say θ1, θ2, . . . , θk. The same sequence then gives a derivation of
{θ1, θ2, . . . , θk} � φ.

224

5.2 A formal system for predicate calculus

Next we turn to formulas which are instances of tautologies. All tautologies
can be derived within our system S for propositional calculus, according to
the completeness theorem in Chapter 3. What happens with our system for
predicate calculus?

Exercise 5.3

Show that for any formula ψ, � (∀xψ → ∀xψ).

Solution

The formula is a substitution instance of the tautology (p → p) obtained by
substituting ∀xφ for p. We know from Chapter 3 that there is a derivation
of (p → p) within the system S consisting of Ax 1, Ax 2, Ax 3 and Modus See Exercise 3.7 of Chapter 3 for a

derivation.Ponens, all of which are part of our proof system for predicate calculus. By
replacing all occurrences of p in this derivation by ∀xψ, we thereby obtain a
predicate calculus derivation of � (∀xψ → ∀xψ).

The result of this exercise is a special case of the following more general result.

Theorem 5.3

Let φ be a substitution instance of a tautology built up using →,¬. We shall ultimately allow the use
of other standard propositional
connectives, to be treated as
abbreviations for the usual
complicated logical equivalents
built up using →,¬. As {→,¬} is
an adequate set of connectives,
Theorem 5.3 tells us that we can
derive all instances of tautologies
involving connectives like ∧,∨,↔
as well as →,¬.

Then � φ.

We shall ask you to prove this theorem in a moment – not much more is
involved than in our solution to Exercise 5.3 exploiting results about the
system S for propositional calculus in Chapter 3, but a certain amount of
caution is needed, as we shall explain in the context of other metatheorems
for our system for predicate calculus.

To what extent do other results about the formal system for propositional
calculus in Chapter 3 hold for the system for predicate calculus? Obviously, it
would be highly desirable that many of them do hold. Well, there’s good news.
For instance, the deduction theorem will hold for this system: if Γ, φ � ψ then
Γ � (φ → ψ) with all its benefits in terms of finding derivations. But there’s
slightly bad news ...!

Exercise 5.4

Does the deduction theorem hold for our system of predicate calculus simply
because it holds for the fragment of propositional calculus that lives inside it?

Solution
Alas, no! We have to look at how the deduction theorem for propositional
calculus was proved, as Theorem 3.3 of Chapter 3. The method was to look at
each line in the derivation of Γ, φ � ψ, say the ith line Γ, φ � ψi, and show how
to derive a corresponding line Γ � (φ → ψi) in a derivation of Γ � (φ → ψ).
This meant accounting for whatever justification was used to obtain the line
Γ, φ � ψi in the original proof. Our system for predicate calculus includes
extra ways for justifying lines within a derivation, namely additional axioms
and the extra rule Gen. So the deduction theorem needs a new proof.

225

5 Formal predicate calculus

Exercise 5.5

Prove the deduction theorem for our system of predicate calculus: for all
formulas φ, ψ and sets of formulas Γ, if Γ, φ � ψ then Γ � (φ → ψ). [Hints:
It’s not at all bad! It’s really only the new rule of Gen that needs work. The
proof of Theorem 3.3 does almost all that’s required and the extra axioms
turn out not to require extra work – do it for yourself and you’ll see!]

Exercise 5.6
Prove Theorem 5.3. [Hints: Adapt our solution to Exercise 5.3. Why can the
completeness theorem for propositional calculus (Theorem 3.9 of Chapter 3)
be exploited without worries about Gen?]

So the general message is that if a result about our formal system for the
propositional calculus required an induction on the length of a derivation,
accounting for all the ways in which a line in a derivation can be justified,
then a new proof will be needed for our predicate calculus system.

Exercise 5.7

Does the derived rule of proof by contradiction hold for our system of predicate
calculus? Recall the statement of the rule for our system of propositional
calculus in Theorem 3.2 of Chapter 3: if Γ,¬φ � ψ and Γ,¬φ � ¬ψ, then
Γ � φ.

Solution

The answer is yes! But why?

Similarly, the rule of proof by contradiction holds in the form: if Γ, φ � ψ and
Γ, φ � ¬ψ, then Γ � ¬φ.

A whole host of results about the formal system S for propositional calculus
must also hold for the predicate calculus. If all the formulas involved are
sentences, the statements of these results will be essentially identical. Take
for instance all the results of Exercise 3.8 of Chapter 3, which we state as a
theorem.

Theorem 5.4

Suppose that Γ, ∆ are sets of sentences, and φ, ψ sentences, in a language
L.

(a) If Γ � (φ → ψ), then Γ, φ � ψ.

(b) If Γ � φ and ∆, φ � ψ, then Γ, ∆ � ψ.

(c) If, for some ψ, Γ � ψ and Γ � ¬ψ, then Γ � φ, for any formula φ. Just as for propositional calculus, if
both Γ � ψ and Γ � ¬ψ for some ψ,
we shall call the set Γ inconsistent.

Proof

The proofs of these results essentially require suitable adjustment and joining
together of given derivations. As all the formulas given as assumptions, or
being turned into assumptions, are sentences, no problem can arise with any
use of the rule Gen when these derivations are adjusted.

226

5.2 A formal system for predicate calculus

There can be complications with the proofs of each of the above if we drop
the constraint that all the formulas involved are sentences. We shall ask you
to investigate this in the next exercise, but reiterate that for most of our uses
of the predicate calculus we shall stick to sentences to avoid these pitfalls.

Exercise 5.8
For each part of Theorem 5.4, give an example why a proof of the correspond-
ing result in Exercise 3.8 of Chapter 3 could become more complicated if the
requirement that all formulas are sentences is dropped.

Solution

We shall deal with part (a) and leave the rest for you.

Suppose that the formulas in Γ, φ, ψ involve free variables. It is conceivable
that a derivation of Γ � (φ → ψ) involves a use of Gen on a variable free in
φ but not in any formula in Γ. Then the sort of straightforward adjustment
of the derivation to give a derivation of Γ, φ � ψ given in our solution to
Exercise 3.8 of Chapter 3 would involve a use of Gen where the variable is now
free in one of the assumptions (namely φ), so wouldn’t give a derivation. For
instance, take a language including the one-place relation symbol P , the empty
set for Γ, and the following derivation of � ((P (x) → P (x)) → ∀x(P (x) →
P (x))).

(1) (P (x) → P (x)) instance of
tautology

(2) ∀x(P (x) → P (x)) Gen
(3) (∀x(P (x) → P (x)) → ((P (x) → P (x)) → ∀x(P (x) → P (x)))) Ax 1
(4) ((P (x) → P (x)) → ∀x(P (x) → P (x))) MP, 2, 3

Following the method given in our solution to Exercise 3.8(a) entails simply
adding the extra lines

(5) (P (x) → P (x)) Ass
(6) ∀x(P (x) → P (x)) MP, 4, 5

While this might at first sight look like a derivation, it now involves an incor-
rect use of the rule Gen – what was correct in the derivation given by lines 1
to 4 is no longer correct within the longer derivation with its extra assumption
– funny old world, eh!

In this case, lines 1 and 2 give a correct derivation of � ∀x(P (x) → P (x)), so
by the thinning rule for our system there is a derivation of
(P (x) → P (x)) � ∀x(P (x) → P (x)), just not the derivation that the solution
to Exercise 3.8(a) would lead one to expect.

We shall not harp on these problems, but will usually avoid them in some
way, for instance (as we said earlier) by having assumptions which are sen-
tences or sometimes by not using assumptions at all – another sure way of
not worrying about the use of the rule Gen! Speedily moving on from all this
awkwardness, let’s give another example of what is derivable, using some of
these metatheorems and the calculus with equality. We shall show that

� ∃xx = x,

recalling that ∃x is an abbreviation for ¬∀x¬. First we produce the following

227

5 Formal predicate calculus

derivation.

(1) ∀x¬x = x Ass
(2) (∀x¬x = x → ¬x = x) Ax 4
(3) ¬x = x MP, 1, 2
(4) ∀xx = x Ax 6
(5) (∀xx = x → x = x) Ax 4
(6) x = x MP, 4, 5

On both lines 2 and 5, the term x
is guaranteed to be freely
substitutable for x, so we have
correct instances of Ax 4.

This derivation shows that both ∀x¬x = x � ¬x = x (from lines 1 to 3) and
∀x¬x = x � x = x, so that by the rule of contradiction there is a derivation
of

� ¬∀x¬x = x,

i.e. of � ∃xx = x, as required. This example suggests that to derive some-
thing of the form Γ � ∃xφ, a useful strategy is to try to derive a contradiction
from the assumptions Γ, ∀x¬φ and then use the rule of contradiction to obtain
that Γ � ¬∀x¬φ is derivable.

Feel free to use the metatheorems we have already justified in subsequent
exercises!

Exercise 5.9
Suppose that the variable x is not free in any of the formulas γ1, γ2, . . . , γn

and that

� (γ1 → (γ2 → (. . . → (γn−1 → (γn → φ)) . . .))).

Show that

� (γ1 → (γ2 → (. . . → (γn−1 → (γn → ∀xφ)) . . .))).

Exercise 5.10
Show that there are derivations of each of the following. As ever in this chapter, ∃x is an

abbreviation for ¬∀x¬.(a) � (φ(τ) → ∃xφ(x)), where the term τ is freely substitutable for x in φ.

(b) � (∀xφ → ∃xφ), for any φ.

(c) (∃xφ → ψ) � ∀x(φ → ψ), where x is not free in ψ.

(d) ∀x(φ → ψ) � (∃xφ → ψ), where x is not free in ψ.

(e) � ∃x(φ → ∀xφ), for any formula φ.

Solution

(a) We wish to derive � (φ(τ) → ¬∀x¬φ(x)) and would like to relate the for-
mula to something we already know about. When trying to derive some-
thing of the form (θ → ¬ψ), it sometimes pays to exploit the tautology
((ψ → ¬θ) → (θ → ¬ψ)), although it often leaves one no better off than
when one started! Here, however, it does get one onto a useful track. As
the term τ is freely substitutable for x in φ, we can derive

� ∀x¬φ(x) → ¬φ(τ)

in just one line, as the formula is an instance of axiom Ax 4. As we can

228

5.2 A formal system for predicate calculus

derive the following substitution instance of the tautology above,

((∀x¬φ(x) → ¬φ(τ)) → (φ(τ) → ¬∀x¬φ(x))),

one use of Modus Ponens gives us

� (φ(τ) → ¬∀x¬φ(x)).

(b) Not given. Our derivation exploits proof by contradiction, as with several
of the other parts of this exercise.

(c) First we shall show that

(¬∀x¬φ → ψ),¬ψ � ¬φ.

This is given by the following derivation.

(1) (¬∀x¬φ → ψ) Ass
(2) ((¬∀x¬φ → ψ) → (¬ψ → ∀x¬φ)) instance of tautology
(3) (¬ψ → ∀x¬φ) MP, 1, 2
(4) ¬ψ Ass
(5) ∀x¬φ MP, 3, 4
(6) (∀x¬φ → ¬φ) Ax 4
(7) ¬φ MP, 5, 6

Then by the deduction theorem there is a derivation of

(¬∀x¬φ → ψ) � (¬ψ → ¬φ),

which by using the instance of a tautology ((¬ψ → ¬φ) → (φ → ψ)) can
be turned into a derivation of

(¬∀x¬φ → ψ) � (φ → ψ). (∗)
As the variable x doesn’t appear free in ψ (given) and of course doesn’t
appear free in ¬∀x¬φ (thanks to the presence of the ∀x), x doesn’t appear
free in the assumption (¬∀x¬φ → ψ), so that the rule Gen can be used
to turn the derivation at (∗) into one of

(¬∀x¬φ → ψ) � ∀x(φ → ψ),

i.e. of (∃xφ → ψ) � ∀x(φ → ψ), as required.

(d) Not given.

(e) Not given.

We shall need the following result when we prove the completeness theorem.

Theorem 5.5

Let Γ be a set of formulas and φ, ψ formulas in a language L. Suppose
that the variable x does not appear free in any formula in Γ or in ψ, but
appears free in φ. Then

if Γ, φ(x) � ψ then Γ, ∃xφ(x) � ψ.

229

5 Formal predicate calculus

Proof

We shall suppose that Γ, φ(x) � ψ and then show that Γ,¬∀x¬φ(x) � ψ. What
we shall actually aim to show first is that

Γ,¬ψ � ∀x¬φ(x),

as then the deduction theorem gives

Γ � (¬ψ → ∀x¬φ(x)),

so that using the substitution instance

((¬ψ → ∀x¬φ(x)) → (¬∀x¬φ(x) → ψ))

of the tautology ((¬θ → χ) → (¬χ → θ)) and Modus Ponens gives

Γ � (¬∀x¬φ(x) → ψ),

from which we obtain

Γ,¬∀x¬φ(x) � ψ,

as required.

To get from Γ, φ(x) � ψ to Γ,¬ψ � ∀x¬φ(x), we use the deduction theorem
to obtain

Γ � (φ(x) → ψ)

and then use the substitution instance

((φ(x) → ψ) → (¬ψ → ¬φ(x)))

of the tautology ((θ → χ) → (¬χ → ¬θ)) and Modus Ponens to obtain

Γ � (¬ψ → ¬φ(x)).

As the variable x doesn’t appear free in any formula in Γ or in ψ, we can use
the rule Gen to obtain

Γ � ∀x(¬ψ → ¬φ(x)).

A (somewhat rare!) exploitation of axiom Ax 5, using the fact that x is not
free in ψ, gives

Γ � (∀x(¬ψ → ¬φ(x)) → (¬ψ → ∀x¬φ(x))),

and Modus Ponens gives

Γ � (¬ψ → ∀x¬φ(x)),

from which we obtain

Γ,¬ψ � ∀x¬φ(x).

Putting this all together, we obtain Γ, ∃xφ(x) � ψ,

So far we have looked mostly at derivations which don’t make special use of
the axioms for the equality symbol. Given that almost all the axiom systems
for mathematical theories in Section 4.4 of Chapter 4 involved =, we should
now turn to derivations involving the symbol.

While axioms Ax 6 and Ax 7 are plausibly valid, they seem (to the author!)
very weak. For instance, Ax 7 only caters for atomic formulas. This axiom

230

5.2 A formal system for predicate calculus

represents the informal notion that if x equals y and φ holds for x, then φ holds We might express this use of = as
the substitution of equal quantities,
one for another, preserving the
truth of a statement.

for y too. Surely we want this to hold for all formulas φ, however complex,
subject to what we hope by now seems sensible caution about what is freely
substitutable for x in φ. What’s more, surely we are interested in the case
where x equals some complicated term τ, not simply a variable y. It turns
out that all these desires are fulfilled within our formal system, as the next
few exercises and theorems will establish.

Theorem 5.6

The following are derivable within the formal system with equality.

(i) � τ = τ, for all terms τ.

(ii) � (x = y → y = x).

(iii) � (x = y → (y = z → x = z))

Proof
For (i), the following simple derivation based on eliminating the ∀x in the
axiom ∀xx = x establishes the result. We hope that by now you are

becoming accustomed to the use of
Ax 4 and MP to eliminate the ∀x
from a formula ∀xφ previously
obtained in a derivation.

(1) ∀xx = x Ax 6
(2) (∀xx = x → τ = τ) Ax 4
(3) τ = τ MP, 1, 2

For (ii), given that → is the principal connective of what we want to derive,
the chances are that we should first try to derive x = y � y = x and then use
the deduction theorem to conclude that � (x = y → y = x); and this is what
we shall do. We are going to exploit Ax 7 and will have to use a little bit of
cunning in our choice of the atomic formula φ in it.

(1) x = y Ass
(2) (x = y → (x = x → y = x)) Ax 7
(3) (x = x → y = x) MP, 1, 2
(4) ∀xx = x Ax 6
(5) (∀xx = x → x = x) Ax 4
(6) x = x MP, 4, 5
(7) y = x MP, 3, 6

As you can see, the formula φ in Ax 7 was chosen to be x = x, which we know Note that using the formula y = y
(also easily derivable from Ax6)
would not have worked.
(x = y → (y = y → y = x)) is not a
correct instance of Ax 7. The order
of the variables in the initial x = y
matters!

is easily derivable from Ax 6. As we are assuming x = y, the formula on line
2, is a correct instance of axiom Ax 7 likely to lead by use of Modus Ponens
to the desired y = x.

Thus we have derived x = y � y = x and by the deduction theorem there is a
derivation of � (x = y → y = x).

(iii) is left as an exercise for you.

231

5 Formal predicate calculus

Exercise 5.11

Show that there are derivations of each of the following.

(a) � (x = y → (y = z → x = z))

(b) � (x = y → f(x, y, x) = f(y, x, y)), where f is a 3-place function symbol.

(c) � ∃xx = τ, for any term τ not involving x.

Solution
(a) The appearance of → as principal connective (and its further occurrence)

suggests trying to derive x = y, y = z � x = z and two uses of the deduc-
tion theorem. Here is such a derivation. Note the choice of the formula
x = y for φ in the instance of Ax 7 on line 3. The formula y = z would have

been no good as φ as the formula
(x = y → (y = z → x = z)) isn’t an
instance of Ax 7.

(1) x = y Ass
(2) y = z Ass
(3) (y = z → (x = y → x = z)) Ax 7
(4) (x = y → x = z) MP, 2, 3
(5) x = z MP, 1, 4

(b) Not given. A spot of cunning is needed for the choice of φ in Ax 7, just
as in the proof of Theorem 5.6(ii).

(c) Not given.

Now we shall extend Ax 7 to cover all formulas φ, not just the atomic formulas
covered by the axiom.

Theorem 5.7

Suppose that L is a language with equality. Then

� (x = y → (φ(x, x) → φ(x, y))),

for all formulas φ, where φ(x, y) is obtained by substituting the variable
y for some (not necessarily all) of the free occurrences of the variable x
in φ(x, x), provided that y is freely substitutable for these occurrences
of x.

Proof
We shall use mathematical induction on the length of φ, i.e. the number of
connectives and quantifiers in φ.

The base case is when φ is an atomic formula, i.e. of length 0, in which case
the derivation consists of just the one line, namely the relevant instance of
Ax 7.

For the inductive step we suppose that the result holds for all φ of length ≤ n
and look at each possibility for φ of length n + 1. There are three cases to
consider, but before we do this we need the following cunning observation. The
inductive hypothesis is that for all φ of length ≤ n with some free occurrences
of x for which y is freely substitutable, we have

� (x = y → (φ(x, x) → φ(x, y))).

232

5.2 A formal system for predicate calculus

The x and y here stand for any variables; and for φ(x, x) of length ≤ n, the
formula φ(x, y) has the same length. This means that the inductive hypothesis
also includes the supposition that

� (y = x → (φ(x, y) → φ(x, x))),

as the xs are freely substitutable for the free ys in such a φ(x, y). This follows
from the condition on the substitutability of y for the free x in the original
φ(x, x). This means that for any φ of length ≤ n with some free occurrences
of x for which y is freely substitutable, not only that

� (x = y → (φ(x, x) → φ(x, y))),

but, as we have a derivation of � (x = y → y = x), that by combining deriva-
tions appropriately we can obtain The combination exploits the

standard propositional calculus
result that if � (θ → ψ) and
� (ψ → χ), then � (θ → χ).

� (x = y → (φ(x, y) → φ(x, x))),

for such a formula φ. This will be of great help, as you will now see.

Case when φ is of form ¬ψ

In this case, as ψ has length n and the ¬ doesn’t alter whether any occurrences
of variables in ¬ψ are free or bound, the inductive hypothesis gives us that

� (x = y → (ψ(x, x) → ψ(x, y))),

and our cunning observation tells us that

� (x = y → (ψ(x, y) → ψ(x, x))).

Routine use of this and the instance of a propositional tautology

((ψ(x, y) → ψ(x, x)) → (¬ψ(x, x) → ¬ψ(x, y)))

then tells us that we can derive

� (x = y → (¬ψ(x, x) → ¬ψ(x, y))),

as required.

Case when φ is of form (θ → ψ)

This is left as an exercise.

Case when φ is of form ∀zψ

How we deal with this case depends on which variable z is.

If the variable z is x, then φ(x, x) contains no free occurrences of x and so
φ(x, y) is then just the same formula as φ(x, x), namely ∀xψ. As (∀xψ → ∀xψ)
is a tautology it’s very easy to show that � (x = y → (∀xψ → ∀xψ)).

If the variable z is y, then there are no occurrences of x in ∀yψ for which y can
be freely substituted for x, so that again the formula φ(x, y) is just the same
formula as φ(x, x) and it’s easy to show that � (x = y → (φ(x, x) → φ(x, y)).

Finally there’s the case when z is neither of x and y. We shall write φ(x, x)
as ∀zψ(x, x). As z is neither x nor y, so doesn’t affect which free occur-
rences of x may be freely substituted by y, the result of replacing some of
the free occurrences of x in φ(x, x) by y, where y is freely substitutable for
these occurrences of x, is ∀zψ(x, y). We now take the assumptions x = y and

233

5 Formal predicate calculus

∀zψ(x, x) and using the instance (∀zψ(x, x) → ψ(x, x)) of Ax 4 (that is, we
remove the ∀z and leave the zs in ψ(x, x) as z), a straightforward use of MP
gives a derivation of

x = y, ∀zψ(x, x) � ψ(x, x).

By the induction hypothesis, there is a derivation of

� (x = y → (ψ(x, x) → ψ(x, y))).

Gluing these together appropriately and using MP twice gives a derivation of

x = y, ∀zψ(x, x) � ψ(x, y).

As there are no zs free in the assumptions, we can use Gen to obtain a
derivation of

x = y, ∀zψ(x, x) � ∀zψ(x, y),

and two uses of the deduction theorem give

� (x = y → (∀zψ(x, x) → ∀zψ(x, y))),

as required.

We can extend the result of Theorem 5.7 to cover substitution in formulas by
a general term τ, not just a variable y.

Theorem 5.8

For all formulas φ and terms τ

� (x = τ → (φ(x, x) → φ(x, τ))),

where φ(x, τ) is obtained by substituting the term τ for some (not nec-
essarily all) of the free occurrences of the variable x in φ(x, x), provided
that τ is freely substitutable for these occurrences of x.

Proof
Let y be a variable which may be freely substituted for x in φ. Then Theo- Taking y to be a variable not

occurring in φ is always a safe
choice here!

rem 5.7 tells us that there is a derivation of

� (x = y → (φ(x, x) → φ(x, y)))

involving no assumptions. We shall add a few extra lines to this derivation as
follows.

...
...

...
(k) (x = y → (φ(x, x) → φ(x, y)))

(k + 1) ∀y(x = y → (φ(x, x) → φ(x, y))) Gen, k
(k + 2) (∀y(x = y → (φ(x, x) → φ(x, y)))

→ (x = τ → (φ(x, x) → φ(x, τ)))) Ax 4
(k + 3) (x = τ → (φ(x, x) → φ(x, τ))) MP, k + 1, k + 2

As there are no assumptions, Gen
can be used with no problems.

The condition on τ guarantees that the use of Ax 4 on line k + 2 is correct.

234

5.2 A formal system for predicate calculus

Exercise 5.12

Fill in the detail of the inductive step in the proof of Theorem 5.7 for the case
when φ is of form (θ → ψ).

For the sort of theorem that we discussed in the introduction to this chapter,
we really want to be able to exploit results about what follows when two terms
τ1 and τ2 are equal, not just when two variables (or a variable x and a term
τ as in Theorem 5.8) are equal. We state these results as theorems and leave
their proof to you as exercises.

Theorem 5.9

For any terms τ1, τ2, τ3 in a language L with equality,

� (τ1 = τ2 → (τ2 = τ3 → τ1 = τ3)).

Exercise 5.13
Prove Theorem 5.9. [Hint: Look for a use of Gen similar to that in the proof
of Theorem 5.8 applied to the result of Exercise 5.11(a).]

Theorem 5.10

Let τ1, τ2 be terms and φ a formula with x amongst its free variables in a
language L with equality. Suppose that the formula φ(x, τ1) is obtained
by substituting the term τ1 for some (not necessarily all) of the free
occurrences of x in φ(x, x) and that the formula φ(x, τ2) is obtained by
substituting the term τ2 for the same occurrences of x. If both τ1 and
τ2 are freely substitutable for these occurrences of x in φ, then

� (τ1 = τ2 → (φ(x, τ1) → φ(x, τ2))).

Just in case the statement of this theorem seems a bit mysterious, we shall
give an example of its use, from which we hope it will become clearer just how
valuable it is. In everyday maths we might want to exploit an identity like

x2 − 1 = (x − 1)(x + 1)

to show that

x2(x2 − 1) = x2(x − 1)(x + 1).

In the formal system it is Theorem 5.10 which permits us to do this. Taking When the set of assumptions is the
set of axioms of a theory T and
T � φ, where φ is a sentence,we
shall often call φ a theorem of T .
The soundness and completeness
theorems will guarantee that the
theorems of T coincide with its
logical consequences.

T to be the axioms for the theory of commutative rings with 1 on page 202,
and using the formal language for rings (+, ·,−,0,1, =) we would be able to
derive

T � ((x · x) + (−1)) = ((x + (−1)) · (x + 1)).

To make the step to

T � ((x · x) · ((x · x) + (−1))) = ((x · x) · ((x + (−1)) · (x + 1))),

235

5 Formal predicate calculus

we proceed as follows.

First we use Theorem 5.6(a) to derive

T � ((x · x) · ((x · x) + (−1))) = ((x · x) · ((x · x) + (−1))). You’ll see why we chose this
formula in a moment!

Now for the use of Theorem 5.10! Take φ(x, x) to be the magic formula

((x · x) · ((x · x) + (−1))) = ((x · x) · x)

where it’s the underlined x which we are going to substitute separately by the
terms τ1 and τ2, where τ1 is ((x · x) + (−1)) and τ2 is ((x + (−1)) · (x + 1)).
Theorem 5.10 then says that there is a derivation of

� (τ1 = τ2 → (((x · x) · ((x · x) + (−1))) = ((x · x) · τ1)

→ ((x · x) · ((x · x) + (−1))) = ((x · x) · τ2)))

that is,

� (((x · x) + (−1)) = ((x + (−1)) · (x + 1))

→ (((x · x) · ((x · x) + (−1))) = ((x · x) · ((x · x) + (−1)))

→ ((x · x) · ((x · x) + (−1))) = ((x · x) · (x + (−1)) · (x + 1)))).

Combining these derivations with a couple of uses of Modus Ponens gives the
required result, that

T � ((x · x) · ((x · x) + (−1))) = ((x · x) · (((x + (−1)) · (x + 1)))).

See whether you can see how to exploit Theorem 5.10 in the following exercise
and then see if you can prove the theorem.

Exercise 5.14

For the theory T above, we have

T � (−(x + 1)) = ((−x) + (−1)).

Explain how to use Theorem 5.10 to show that

T � ((−(x + 1)) · y) = (((−x) + (−1)) · y).

Exercise 5.15

Prove Theorem 5.10. [Hints: Replace by a new variable y those occurrences
of x which are to be substituted, apply Theorem 5.8 to this new formula with
the term τ2 and then use the trick in the proof of Theorem 5.8.]

236

5.2 A formal system for predicate calculus

Solution

Given the formula φ(x, x), replace those occurrences of x for which the terms
τ1, τ2 are to be substituted by a variable, y say, not occurring in any of
φ(x, x), τ1, τ2, and thus obtain the formula φ(x, y). Then by Theorem 5.8
we have a derivation of

� (y = τ2 → (φ(x, y) → φ(x, τ2)))

involving no assumptions. To this derivation, we add the lines

...
...

...
(k) (y = τ2 → (φ(x, y) → φ(x, τ2)))

(k + 1) ∀y(y = τ2 → (φ(x, y) → φ(x, τ2))) Gen, k
(k + 2) (∀y(y = τ2 → (φ(x, y) → φ(x, τ2)))

→ (τ1 = τ2 → (φ(x, τ1) → φ(x, τ2)))) Ax 4
(k + 3) (τ1 = τ2 → (φ(x, τ1) → φ(x, τ2))) MP, k + 1, k + 2

As there are no assumptions, Gen
can be used with no problems.

obtaining the required result.

We are now in a position to return to the example used in the introduction to
this chapter and show how the sentence ∀x((x + x) = x → x = 0) is derivable
within our system from various axioms. The axioms in question were as
follows, in the language L with equality including the 2-place function symbol
+, the 1-place function symbol − and constant symbol 0.

1. ∀x∀y∀z (x + (y + z)) = ((x + y) + z)

2. ∀x (x + 0) = x

3. ∀x (0 + x) = x

4. ∀x (x + (−x)) = 0

5. ∀x ((−x) + x) = 0

Let’s call the set of these axioms GP, as they do axiomatize the theory of
groups. We wish to show that GP � ∀x((x + x) = x → x = 0). The axioms
of the theory can of course be used as assumptions in a derivation. When we
use them in this way, we shall justify the line by saying that the formula is
an axiom of GP; but really it is just an assumption out of the set GP. First

237

5 Formal predicate calculus

we derive GP, (x + x) = x � x = 0 as follows.

(1) (x + x) = x Ass
(2) ((x + x) = x → (((x + x) + (−x)) = ((x + x) + (−x))

→ ((x + x) + (−x)) = (x + (−x)))) Theorem 5.10
(3) (((x + x) + (−x)) = ((x + x) + (−x)) → ((x + x) + (−x)) = (x + (−x))) MP, 1, 2
(4) ((x + x) + (−x)) = ((x + x) + (−x)) Theorem 5.6(a)
(5) ((x + x) + (−x)) = (x + (−x)) MP, 3, 4
(6) ∀x∀y∀z (x + (y + z)) = ((x + y) + z) GP axiom 1
(7) (∀x∀y∀z (x + (y + z)) = ((x + y) + z) → ∀y∀z (x + (y + z)) = ((x + y) + z)) Ax 4
(8) ∀y∀z (x + (y + z)) = ((x + y) + z) MP, 6, 7
(9) (∀y∀z (x + (y + z)) = ((x + y) + z) → ∀z (x + (x + z)) = ((x + x) + z)) Ax 4

(10) ∀z (x + (x + z)) = ((x + x) + z) MP, 8, 9
(11) (∀z (x + (x + z)) = ((x + x) + z) → (x + (x + (−x))) = ((x + x) + (−x))) Ax 4
(12) (x + (x + (−x))) = ((x + x) + (−x)) MP 10, 11
(13) ((x + x) = x → ((x + (x + (−x))) = ((x + x) + (−x))

→ (x + (x + (−x))) = (x + (−x)))) Theorem 5.10
(14) ((x + (x + (−x))) = ((x + x) + (−x)) → (x + (x + (−x))) = (x + (−x))) MP, 1, 13
(15) (x + (x + (−x))) = (x + (−x)) MP, 12, 14
(16) ∀x (x + (−x)) = 0 GP axiom 4
(17) (∀x (x + (−x)) = 0 → (x + (−x)) = 0) Ax 4
(18) (x + (−x)) = 0 MP, 16, 17
(19) ((x + (−x)) = 0 → ((x + (x + (−x))) = (x + (−x)) → (x + 0) = 0)) Theorem 5.10
(20) ((x + (x + (−x))) = (x + (−x)) → (x + 0) = 0) MP, 18, 19
(21) (x + 0) = 0 MP, 15, 20
(22) ∀x (x + 0) = x GP axiom 2
(23) (∀x (x + 0) = x → (x + 0) = x) Ax 4
(24) (x + 0) = x MP, 22, 23
(25) ((x + 0) = x → ((x + 0) = 0 → x = 0)) Theorem 5.10
(26) ((x + 0) = 0 → x = 0) MP, 24, 25
(27) x = 0 MP, 21, 26

Now by the deduction theorem, there is a derivation of

GP � ((x + x) = x → x = 0),

and as all the axioms of GP are sentences, the rule Gen can be used to give
a derivation of

GP � ∀x((x + x) = x → x = 0).

You might like to try one or two formal derivations from these axioms GP for
groups yourself.

Exercise 5.16

Show that there are derivations of each of the following. Please continue for the rest of this
section to use results about the
formal proof system obtained so
far, rather than the completeness
theorem, which we haven’t yet
proved (and which would save you
many agonies for this exercise!).

(a) GP � (0 + 0) = 0

(b) GP � ∀y∀z((0 + y) = (0 + z) → y = z)

(c) GP � ∀x∀y∀z((x + y) = (x + z) → y = z)

Let us look at more examples of formal proofs within other mathematical
theories axiomatized in Section 4.4 of Chapter 4.

238

5.2 A formal system for predicate calculus

Exercise 5.17

Let SPO be the following set of sentences in a language with equality and
binary relation symbol S: SPO expresses the transitive

property without using the
connective ∧.{∀x¬S(x, x), ∀x∀y∀z(S(x, y) → (S(y, z) → S(x, z)))}.

Then SPO gives axioms for the theory of strict partial order as introduced on
page 193. Show that there are derivations of each of the following.

(a) SPO � ∀x∀y(S(x, y) → ¬x = y)

(b) SPO � ∀x∀y∀z(S(x, y) → (S(y, z) → ¬x = z))

(c) SPO, ∀x∃yS(x, y) � ¬∀x∀y x = y

Solution
(a) We shall assume S(x, y) and x = y and derive a contradiction, so that we

can conclude that SPO � (S(x, y) → ¬x = y). Two uses of the rule Gen
will then give the required result.

First we have the derivation

(1) S(x, y) Ass
(2) x = y Ass
(3) (x = y → (S(x, y) → S(y, y))) Ax 7
(4) (S(x, y) → S(y, y)) MP, 2, 3
(5) S(y, y) MP, 1, 4

which shows that

S(x, y), x = y � S(y, y),

so that by the thinning rule

SPO, S(x, y), x = y � S(y, y).

We also have the derivation

(1) ∀x¬S(x, x) axiom of SPO
(2) (∀x¬S(x, x) → ¬S(y, y)) Ax 4
(3) ¬S(y, y) MP, 2, 3

which shows, again using the thinning rule, that

SPO, S(x, y), x = y � ¬S(y, y).

Proof by contradiction thus tells us that there is a derivation of

SPO, S(x, y) � ¬x = y,

and by the deduction theorem we then have a derivation of

SPO � (S(x, y) → ¬x = y).

As the assumptions in SPO are all sentences, two applications of Theorem
5.1, first with the variable y and then with x, give

SPO � ∀x∀y(S(x, y) → ¬x = y),

as required.

(b) Not given.

(c) Not given.

239

5 Formal predicate calculus

Exercise 5.18

Let Equiv be the following set of sentences in the language L with equality
and a binary relation symbol R: As for SPO, we have written the

transitive axiom avoiding the use of
∧.{∀xR(x, x), ∀x∀y(R(x, y) → R(y, x)), ∀x∀y∀z(R(x, y) → (R(y, z) → R(x, z)))}.

Then Equiv gives axioms for the theory of equivalence relations as introduced
on page 186. Use results about the formal proof system (i.e. not the com-
pleteness theorem, which we are pretending we don’t know about) to show
that there are derivations of each of the following.

(a) � (∀x¬∀yR(x, y) → ¬∀x∀y x = y) These formulas are logically
equivalent to
(∀x∃y¬R(x, y) → ∃x∃y¬x = y)
and (∃x∀yR(x, y) → ∀z∀yR(z, y)).

(b) � (¬∀x¬∀yR(x, y) → ∀z∀yR(z, y))

Solution
We shall give a solution to (a) and leave (b) to you.

With a use of the deduction theorem in mind, we shall assume ∀x¬∀yR(x, y)
and try to derive ¬∀x∀y x = y. As what we are trying to derive starts with
a ¬, we shall also assume ∀x∀y x = y and try to derive a contradiction. Here
goes!

(1) ∀x¬∀yR(x, y) Ass
(2) ∀x∀y x = y Ass
(3) ∀xR(x, x) Axiom of Equiv
(4) (∀x¬∀yR(x, y) → ¬∀yR(x, y)) Ax 4
(5) ¬∀yR(x, y) MP, 1, 4
(6) (∀x∀y x = y → ∀y x = y) Ax 4
(7) ∀y x = y MP, 2, 6
(8) (∀y x = y → x = y) Ax 4
(9) x = y MP, 7, 8

(10) (∀xR(x, x) → R(x, x)) Ax 4
(11) R(x, x) MP, 3, 10
(12) (x = y → (R(x, x) → R(x, y)) Ax 7
(13) (R(x, x) → R(x, y)) MP, 9, 12
(14) R(x, y) MP, 11, 13
(15) ∀yR(x, y) Gen

Note that as all assumptions are sentences, we can’t run into trouble with
Gen! From this derivation, with judicious use of the thinning rule, we can
conclude that there are derivations of both

Equiv, ∀x¬∀yR(x, y), ∀x∀y x = y � ¬∀yR(x, y)

and

Equiv, ∀x¬∀yR(x, y), ∀x∀y x = y � ∀yR(x, y).

Proof by contradiction then gives us a derivation of

Equiv, ∀x¬∀yR(x, y) � ¬∀x∀y x = y

and the deduction theorem then gives that there is a derivation of

Equiv � (∀x¬∀yR(x, y) → ¬∀x∀y x = y).

240

5.2 A formal system for predicate calculus

As we have already hinted, just as with the propositional calculus we shall step
outside our formal system and see what is derivable within it by looking at
the completely different notion of logical consequence and connecting this to
formal derivation by soundness and completeness theorems. But it is valuable
to have a brief look at a few more metatheorems that provide shortcuts to
establish what can be derived within the system and which give us a recipe for
actually constructing a derivation using just the basic features of the system.

From our experience of derivations so far, we could nominate a couple of
derived rules of inference as contained in the following exercise.

Exercise 5.19

In both parts of this exercise, you should explain how to obtain the desired
derivation from any given derivations. (So no cheating by saying ‘it follows
from the soundness and completeness theorems’, which in any case we’re pre-
tending you don’t know about yet!)

(a) Let Γ be a set of formulas, φ(x) a formula and τ a term which can be
freely substituted for x in φ(x). Show that if Γ � ∀xφ(x), then there is a This is often called the universal

elimination rule.derivation of Γ � φ(τ).

(b) Let Γ be a set of formulas and φ a formula in a language with equality, and
let τ1, τ2 be terms. Suppose that the formula φ(x, τ1) is obtained by sub-
stituting the term τ1 for some (not necessarily all) of the free occurrences
of x in φ(x, x) and that the formula φ(x, τ2) is obtained by substituting
the term τ2 for the same occurrences of x. Then suppose that both τ1

and τ2 are freely substitutable for these occurrences of x in φ. Show that This shortcut based on
Theorem 5.10 is often called the
substitution rule.

if Γ � τ1 = τ2 and Γ � φ(x, τ1), then there is a derivation of Γ � φ(x, τ2).

As well as sensible shortcuts such as these, the system could be expanded to
cope more directly with connectives besides ¬,→ and with the quantifier ∃.
You can find rules for dealing with ∨ and ∧ in Exercises 3.46 and 3.47 at the
end of Chapter 3, as well as some further rules, besides various forms of proof
by contradiction, for dealing with ¬. As for rules for handling ∃, one rule,
stems from the result of Exercise 5.10(a) and can be stated as follows.

If the term τ is freely substitutable for x in φ, and Γ � φ(τ), This is often called the existential

introduction rule.then Γ � ∃xφ(x).

A matching rule for ∃ is given by Theorem 5.5.

Let Γ be a set of formulas and φ, ψ formulas in a language L. Suppose This is often called the existential

hypothesis rule.that the variable x does not appear free in any formula in Γ or in ψ, but
appears free in φ. If Γ, φ(x) � ψ then Γ, ∃xφ(x) � ψ.

We are not going to pursue the use of these rules any further in this book,
despite the fact that most of the axiom systems we discussed in Section 4.4
of Chapter 4 used the extra symbols within the axioms. Plainly, if you were
going to use the formal proof system for real mathematical derivations, you
would probably want to exploit these rules and more.

241

5 Formal predicate calculus

Further exercises

Exercise 5.20

Under the standard interpretations of the usual connectives and quantifiers,
some of the following attempts at rules of inference are valid and some are
invalid. Sort out which are which, giving reasons for your answers. In the
invalid cases try to suggest reasonable corrections.

(a) If Γ, φ � ψ, then Γ,¬φ � ¬ψ.

(b) If Γ � (φ ∨ ψ), then Γ � φ and Γ � ψ.

(c) If Γ, φ � ψ and Γ, ψ � θ, then Γ � (φ → θ).

(d) If Γ � ∀xφ(x) and Γ, φ(τ) � ψ, where τ is a term, then Γ � ψ.

(e) If Γ, ∀xφ(x) � ∀xψ(x), then Γ � ∀x(φ(x) → ψ(x)).

(f) If Γ � ∃xφ(x), then Γ � (∃x∃y ¬x = y ∨ ∀xφ(x)).

Exercise 5.21

Suppose that φ is a substitution instance of a tautology. Show that � ∀xφ
and � ∃xφ.

Exercise 5.22
Show that there are derivations of each of the following.

(a) � (∀x∀yφ → ∀y∀xφ)

(b) � ∀x(φ → ψ) � (∀x¬ψ → ∀x¬φ)

(c) ∃x¬ψ � (∀x(¬φ → ψ) → ∃xφ)

(d) � (∀z(P (z, z) → Q(z)) → ∀x(∀yP (x, y) → Q(x))), where P is a 2-place
relation symbol and Q is a 1-place relation symbol.

(e) � ((φ → ∀xψ) → ∀x(φ → ψ)), where x is not free in φ.

5.3 The soundness theorem
In this section we shall prove the soundness theorem for our formal proof sys-
tem for predicate calculus. We shall also investigate structures for a language
with equality which satisfy the equality axioms but are not normal, that is,
they don’t interpret the = symbol by actual equality on their domains.

The statement of the soundness theorem is the same as for the propositional
calculus, namely that if Γ � φ then Γ � φ, for any formula φ and set of formulas
Γ. The structure of its proof is just the same as for the propositional calculus
in Section 3.3 of Chapter 3. We take a structureA for the relevant language
and an interpretation �a of all the variables �x and show by mathematical
induction on the length of formal derivations that if A satisfies Γ with this
interpretation, then it satisfies φ. The details of the proof are very similar to
the propositional calculus case, but the argument must deal with the extra
ways in which lines can be derived using the axioms and rule (generalization)
which do things with the universal quantifier ∀.

242

5.3 The soundness theorem

Theorem 5.11 Soundness theorem

For all formulas φ and sets Γ of formulas in a first-order language L, if
Γ � φ then Γ � φ.

Proof
We shall give an outline of the proof and leave you to fill in the details as an
exercise.

If Γ � φ, then there is a subset Γ0 of Γ for which there is a derivation of Γ0 � φ The point about taking the subset
Γ0 is that there is no risk that the
rule Gen has been used with a
variable free in some formula in Γ0.

following conditions (i) to (iv) in the definition of Γ � φ. We shall prove that
Γ0 � φ, from which it follows, using the definition of logical consequence, that
Γ � φ.

Just as with the result for propositional calculus, we take a structureA for L
and an interpretation �a of the free variables occurring in Γ0 and φ such that
A ��x/�a γ, for all γ ∈ Γ. We take a derivation

φ1, φ2, . . . , φn = φ

of Γ0 � φ and use induction to show that A ��x/�a φi for all i = 1, 2, . . . , n.

The cases when a line is an assumption in Γ0 or an instance of one of Ax 1,
Ax 2, Ax 3 or follows from an application of MP are dealt with just as in the
proof of the soundness theorem for propositional calculus in Chapter 3.

Theorem 4.3 of Section 4.3 of Chapter 4 deals with the case when a line is an
instance of axiom Ax 4. Exercise 4.47(c) of the same section effectively deals
with the case when a line is an instance of axiom Ax 5 – make sure that you
see why!

If the language L includes equality, our definition of universally valid and
logical consequence is in terms of normal structures. For a normal structure,
it is immediate that

A ��x/�a x = x,

which deals with any use of axiom Ax6 in the derivation. We shall leave
dealing with instances of Ax 7 as an exercise for you.

Probably the most interesting case to deal with is a use of the rule of gener-
alization. That means that the line has the form

Γ0 � ∀xφ,

where there is an earlier line of the form Γ0 � φ with the variable x not free in
any formula in Γ0. By the inductive hypothesis for this earlier line, we have

Γ0 � φ

and from this we have to show Γ0 � ∀xφ. If x is not free in φ, this is par-
ticularly easy to show using the application of Theorem 4.1 of Section 4.2
of Chapter 4 discussed immediately following Exercise 4.19 on page 160. We
shall leave you to think about the more interesting case when x is free in φ.

243

5 Formal predicate calculus

Exercise 5.23

(a) Let L be a language with equality,A = 〈A, . . . ,=〉 a normal structure for
L and �a any interpretation of the variables �x by elements of A. Show that
A satisfies any instance of axiom Ax 7 with this interpretation, that is,

A ��x/�a (x = y → (φ(x, x) → φ(x, y))),

for any atomic formula φ, where φ(x, y) is obtained by substituting the
variable y for some (not necessarily all) of the occurrences of the variable
x in φ(x, x). [Hints: As L might include some function symbols, you have
to allow for involvement of more complicated terms within φ than simply
variables or constant symbols. The result of Exercise 4.23 of Section 4.2
of Chapter 4 will be very helpful.]

(b) Write out a proper proof of Theorem 5.11. [Hint: We have filled one
major gap in part (a) of this exercise. The most significant remaining gap
requires showing that if Γ0 � φ, where x is not free in any formula in Γ0,
then Γ0 � ∀xφ.]

As with propositional calculus, the soundness theorem gives a very valuable
way of showing when Γ �� φ. When Γ axiomatizes a specific mathematical
theory and one knows a few models of the theory, this often gives us a quick
way of dismissing some statements as theorems. For instance, let SLO be the
theory of strict linear orders with axioms given on page 193 using a binary
relation symbol S. We might ask whether

∀x(∃tS(x, t) → ∃y(S(x, y) ∧ ∀z(S(x, z) → (y = z ∨ S(y, z)))))

is a theorem of SLO, that is, whether

SLO � ∀x(∃tS(x, t) → ∃y(S(x, y) ∧ ∀z(S(x, z) → (y = z ∨ S(y, z))))).

This sentence essentially says that for each x that is not a maximal element,
there is a least y greater than x. Recalling that 〈Q, <, =〉 is a model of the
theory and noting that this property fails for Q, we have If x, y are rationals with x < y,

there are infinitely many rationals
z such that x < z < y.SLO �� ∀x(∃tS(x, t) → ∃y(S(x, y) ∧ ∀z(S(x, z) → (y = z ∨ S(y, z))))),

so that by the soundness theorem

SLO �� ∀x(∃tS(x, t) → ∃y(S(x, y) ∧ ∀z(S(x, z) → (y = z ∨ S(y, z))))).

Exercise 5.24
Let SLO be the theory of strict linear order as above. Show that none of the
following statements are theorems of SLO.

(a) ∀x∃yS(x, y)

(b) ∃x∀y(¬x = y → S(x, y))

(c) ∀x∀y(S(x, y) → ∃z(S(x, z) ∧ S(z, y)))

244

5.3 The soundness theorem

Exercise 5.25

Let GPs be the theory of groups as axiomatized on page 198. Show that none
of the following statements are theorems of GPs.

(a) ∀x∀y (x · y) = (y · x)

(b) ∃x(¬x = e ∧ (x · x) = e)

As for the propositional calculus, there is another way of phrasing the sound-
ness theorem in terms of consistency.

Definitions Consistency

A set Γ of first-order formulas is inconsistent if there is a formula θ for
which both

Γ � θ and Γ � ¬θ.

In the case that Γ is the empty set, we say that the system S is incon-
sistent .

We say that the set Γ is consistent if it is not inconsistent.

Exercise 5.26
Suppose that Γ is a set of formulas and φ a formula such that Γ � ∀xφ and
Γ � ∀x¬φ. Show that Γ is inconsistent.

There are several useful results about consistency similar to those we obtained
for the propositional calculus in Section 3.3 of Chapter 3. These are left for
you as the following exercises.

Exercise 5.27
Suppose that Γ is a set of sentences and φ is a sentence. Show the following. These results could have been

stated in terms of formulas rather
than sentences. However, we shall
only need the results for sentences
and their proofs could well be
simpler without the worry of free
variables!

(a) Γ ∪ {¬φ} is consistent if and only if Γ �� φ.

(b) Γ ∪ {φ} is consistent if and only if Γ �� ¬φ.

(c) If Γ is consistent and Γ � φ, then Γ ∪ {φ} is consistent.

Given that the set of sentences Γ might now represent something quite inter-
esting mathematically (in comparison to propositional formulas), these results
are correspondingly more interesting. For instance, we showed earlier that

SLO �� ∀x(∃tS(x, t) → ∃y(S(x, y) ∧ ∀z(S(x, z) → (y = z ∨ S(y, z))))),

so that the set of sentences

SLO ∪ {¬∀x(∃tS(x, t) → ∃y(S(x, y) ∧ ∀z(S(x, z) → (y = z ∨ S(y, z)))))}
is consistent.

245

5 Formal predicate calculus

We can now rephrase the soundness theorem in terms of consistency, just as
we did for the propositional calculus.

Theorem 5.12

The following general statements about formulas in a first-order lan-
guage L are equivalent.

(A) For all formulas φ and all sets of formulas Γ, if Γ � φ then Γ � φ. This is the soundness theorem.

(B) For all sets of formulas ∆, if ∆ is satisfiable then ∆ is consistent. Recall that ∆ is satisfiable if there
is a structure for L and an
interpretation of any variables
appearing free in ∆ satisfying all
δ ∈ ∆.Exercise 5.28

Prove Theorem 5.12.

As was the case with our formal proof system for propositional calculus, we
can exploit the soundness theorem in the form (B) of Theorem 5.12 to infer
that our formal proof system for predicate calculus is consistent.

Theorem 5.13

The formal proof system for predicate calculus is consistent, i.e. there is
no formula φ for which there are derivations � φ and � ¬φ.

Proof

Take the set ∆ in (B) of Theorem 5.12 to be empty. Then ∆ is satisfied by
any structure (in the sense that no structure makes any of the sentences in
∆ false). Thus ∆ is consistent, using form (B) of the soundness theorem, i.e.
the formal system is consistent.

This chapter will conclude with a proof of the converse to the soundness the-
orem, namely the completeness theorem for our system, showing that every
consistent set of sentences ∆ in a language L has a model. When L is a
language with equality, our construction will first show that ∆ has a model
which satisfies the equality axioms Ax 6 and Ax 7, but which isn’t a normal
structure, that is, it doesn’t interpret the = symbol by actual equality. How-
ever, from this non-normal structure we can create a normal model satisfying
the same sentences, ia particular those in ∆. In the next section, we shall
look at non-normal structures which satisfy the equality axioms and at how
to construct from them these corresponding normal structures.

246

5.4 The equality axioms and non-normal structures

5.4 The equality axioms and non-normal structures
Throughout the book so far we have chosen to interpret languages with equal-
ity by normal structures. These are structures of the form 〈A, . . .〉 where the For the purpose of formalising

everyday mathematics, it’s entirely
natural to constrain the
interpretation of the equality
symbol in this way.

symbol = is interpreted by actual equality on the set A, that is the relation
given by the set of pairs {(a, a) : a ∈ A}. As part of the proof of the soundness
theorem, we have shown that all instances of the equality axioms Ax 6 and
Ax7 of our formal proof system for such languages are satisfied by all normal
structures A for all interpretations �a of any free variables �x in the formu-
las. However, there are also structures which aren’t normal, i.e. in which the
equality symbol is not interpreted by actual equality on the domain, which
also satisfy these axioms, and this is what we shall discuss in this section.

Rather than the mouthful ‘A satisfies θ for all interpretations �a of any free
variables �x in the formula θ’, we shall say that a structureA satisfies a formula Note the subtle difference between

‘A satisfies θ’ here and ‘θ is
satisfiable’, meaning that there is
some structureA such that

A ��x/�a θ

for some sequence �a.

θ if for all interpretations �a of the free variables in L,

A ��x/�a θ.

We shall mainly use the terminology for formulas θ which are instances of
axioms, especially the two equality axioms. With this terminology, it is
straightforward to show that if the free variables in θ are included in the
list x1, x2, . . . , xn, then

A satisfies θ if and only if A � ∀x1∀x2 . . .∀xnθ.

Then we can rephrase the definition of a formula θ being universally valid by
saying that all structuresA for the relevant language satisfy θ.

Let us give an example of a non-normal structure which satisfies the equality
axioms. Suppose that the language L contains only the relation symbol =.
For any set A with more than one element, let A be the structure 〈A, A×A〉, If A has just one element and =A

is A × A, i.e. {(a, a)}, then =A is
actual equality on A, so thatA fails
to be an example of a non-normal
structure!

so that the interpretation =A of the relation symbol = is the set of all pairs
(a, b) with a, b ∈ A. Axiom Ax 6 is satisfied byA as the set =A includes the
pair (a, a) for each a ∈ A. As the only atomic formulas are of the form x = y
for some variables x, y, it is easy to see that all instances of axiom Ax7 are
also satisfied byA.

Let’s investigate non-normal structures for more complicated languages. Sup-
pose thatA = 〈A, . . .〉 is a non-normal structure for a language L with equal- A non-normal means that there are

at least two distinct elements
a, b ∈ A with (a, b) in the set of
pairs =A.

ity satisfying the axioms for equality, Ax 6 and Ax 7. We shall investigate the
properties of this structure and show that from it one can create a normal
structure satisfying the same sentences. This has the consequence that if a
theory has a model, perhaps one that isn’t normal, then it also has a normal
model.

Our first observation is that although it is not normal, asA satisfies Ax 6 and A non-normal structure need not
satisfy axioms Ax6 and Ax7. For
instance, if =A doesn’t include
(a, a) for some a ∈ A, then Ax6 is
not satisfied. However, in this book
we are only interested in
non-normal structures which do
satisfy the equality axioms.

Ax7 it is still the case that if Γ � φ andA satisfies Γ, thenA satisfies φ. The
details of the proof of the soundness theorem still work for such a structure. In
the proof of the soundness theorem, all structures satisfy axioms Ax1 to Ax 5
– these axioms don’t rely on any specific properties of the relation symbol =
or on how it is interpreted in a structure. Likewise the validity of the rules MP
and Gen doesn’t rely on how a structure interprets =. Also we are assuming
that this structureA does satisfy axioms Ax 6 and Ax 7 (which of course we

247

5 Formal predicate calculus

had to make efforts to justify for a normal structure). Thus we can exploit
the soundness theorem for thisA.

Let’s write =A for the interpretation of = in the structureA, and write a =A b
for (a, b) ∈ =A. First observe that =A is an equivalence relation on A, as
follows. We are assuming thatA satisfies Ax 6, which is the reflexive property
for =A. As we can exploit the soundness theorem and we are assuming thatA
satisfies Ax 7 as well as Ax 6,A satisfies any formula derived within the formal
system. So, by Theorem 5.6(ii) and (iii), =A also has the symmetric and
transitive properties and is thus an equivalence relation. Equivalent elements
of A have a very strong relationship with each other as given by the following
theorem.

Theorem 5.14

LetA = 〈A, . . . ,=A〉 be a non-normal structure satisfying axioms Ax 6
and Ax 7. Let φ(x1, x2, . . . , xn) be a formula of L with free variables
included in the list x1, x2, . . . , xn. Let a1, a2, . . . an and b1, b2, . . . , bn be
elements of A such that ai =A bi for each i. Then

A �x1/a1,x2/a2,...,xn/an
φ(x1, x2, . . . , xn)

if and only if

A �x1/b1,x2/b2,...,xn/bn
φ(x1, x2, . . . , xn).

Proof
We shall give an outline of the proof.

Suppose that

A �x1/a1,x2/a2,...,xn/an
φ(x1, x2, . . . , xn).

We shall show that

A �x1/b1,x2/b2,...,xn/bn
φ(x1, x2, . . . , xn)

by making repeated use of Theorem 5.7. Let y1, y2, . . . , yn be variables ap-
pearing nowhere in the formula φ(x1, x2, . . . , xn), so that each yi can be freely
substituted for xi in φ. By Theorem 5.7 we can derive

� (x1 = y1 → (φ(x1, x2, . . . , xn) → φ(y1, x2, . . . , xn))),

so that by the soundness theorem

A �x1/a1,x2/a2,...,xn/an,y1/b1 (x1 = y1 → (φ(x1, x2, . . . , xn)

→ φ(y1, x2, . . . , xn))).

As a1 =A b1, we have

A �x1/a1,x2/a2,...,xn/an,y1/b1 x1 = y1,

so that as (by our initial supposition)

A �x1/a1,x2/a2,...,xn/an,y1/b1 φ(x1, x2, . . . , xn)

248

5.4 The equality axioms and non-normal structures

it follows that

A �x1/a1,x2/a2,...,xn/an,y1/b1 φ(y1, x2, . . . , xn).

As there are no free occurrences of x1 in φ(y1, x2, . . . , xn), we have

A �y1/b1,x2/a2,...,xn/an
φ(y1, x2, . . . , xn).

We now replace the y1s in φ(y1, x2, . . . , xn) by the original x1s and conclude
that

A �x1/b1,x2/a2,...,xn/an
φ(x1, x2, . . . , xn).

Next, by using the result

� (x2 = y2 → (φ(x1, x2, . . . , xn) → φ(x1, y2, . . . , xn)))

given by Theorem 5.7 and the fact that a2 =A b2 we can show that

A �x1/b1,x2/b2,x3/a3...,xn/an
φ(x1, x2, . . . , xn).

By continuing in this way we show that all the ais can be replaced by bis so
that

A �x1/b1,x2/b2,...,xn/bn
φ(x1, x2, . . . , xn).

Plainly the argument is symmetrical in the ais and bis, so that the required
if and only if result is thus proved.

We shall use this result to show that given any non-normal structureA satisfy-
ing the equality axioms, we can construct a normal structure with properties
strongly associated to those ofA as follows.

Definition Normal contraction

Let A = 〈A, . . . ,=A〉 be a non-normal structure for a language L with
equality which satisfies the equality axioms, so that =A is an equivalence
relation on A. The normal contraction ofA is the structure [[A]] for L
defined as follows. Its domain, which we shall write as [[A]], is the set of
all equivalence classes of =A, that is The equivalence class [[a]] of a ∈ A

is the set {b ∈ A : (a, b) ∈ =A}.
Equivalence classes were mentioned
in Section 4.4 on page 190.

[[A]] = {[[a]] : a ∈ A}.
We shall interpret the = symbol in [[A]] by actual equality on the set
[[A]]. For each remaining n-place relation symbol R, we shall specify its
interpretation by

([[a1]], [[a2]], . . . [[an]]) ∈ R[[A]] if and only if (a1, a2, . . . , an) ∈ RA,

for all a1, a2, . . . , an ∈ A. For each m-place function symbol f , we shall
specify its interpretation as the function f [[A]] : [[A]]m −→ [[A]] given by

f [[A]]([[a1]], [[a2]], . . . , [[am]]) = [[fA(a1, a2, . . . , am)]],

for all a1, a2, . . . , am ∈ A. For each constant symbol c let c
[[A]] be the

element [[cA]].

There’s a massive sleight of hand above as these definitions of the interpreta-
tions of the symbols only make sense thanks to Theorem 5.14. For instance,

249

5 Formal predicate calculus

suppose that R is a 2-place relation symbol and a1, a2, b1, b2 are elements
of A such that a1 =A b1 and a2 =A b2. That means that the ordered pair
([[a1]], [[a2]]) of elements of [[A]] is the same as the ordered pair ([[b1]], [[b2]]). For
our definition of R[[A]] to make sense, we need it to be the case that

(a1, a2) ∈ RA if and only if (b1, b2) ∈ RA.

Otherwise, supposing that one has (a1, a2) ∈ RA and (b1, b2) �∈ RA, the first
gives that

([[a1]], [[a2]]) ∈ R[[A]],

while the second gives

([[b1]], [[b2]]) �∈ R[[A]],

which is impossible given that ([[a1]], [[a2]]) = ([[b1]], [[b2]]). But by Theorem 5.14
applied to the atomic formula R(x1, x2), this situation cannot arise and we
have genuinely defined interpretations in [[A]] of all the symbols.

We then have the following theorem connecting the structuresA and [[A]].

Theorem 5.15

LetA = 〈A, . . .〉 be a non-normal structure for a language L with equality
satisfying the equality axioms and let [[A]] be its normal contraction.
Then for all formulas φ(x1, x2, . . . , xn) with free variables included in
the list x1, x2, . . . , xn and all a1, a2, . . . an ∈ A,

[[A]] �x1/[[a1]],x2/[[a2]],...,xn/[[an]] φ(x1, x2, . . . , xn)

if and only if

A �x1/a1,x2/a2,...,xn/an
φ(x1, x2, . . . , xn).

Exercise 5.29
Prove Theorem 5.15. [Hints: For the sake of economy assume that all formulas
have been built up using a small adequate set of connectives, say ¬ and ∧,
and ∀. It’s then a straightforward mathematical induction on the length of
all formulas φ, with some use of Theorem 5.14.]

An important corollary of Theorem 5.15 is thatA and its normal contraction
satisfy the same sentences. This proves the following theorem.

Theorem 5.16

Let T be a theory in a language L with equality. If T has a non-normal Recall that a theory is a set of
sentences, namely all the logical
consequences of some given set of
(non-logical) axioms.

model satisfying the equality axioms, then T has a normal model.

The construction of a normal contraction and Theorem 5.15 also give an idea
of how to construct non-normal models of a theory T . We start with a normal
model B of the theory, add extra elements to its domain and make these mimic
the behaviour of some of the original elements in such a way that the new

250

5.4 The equality axioms and non-normal structures

structureA is non-normal and that its normal contraction [[A]] is isomorphic
to the original B. Then by Theorem 5.15A and B satisfy the same sentences,
so thatA is a non-normal model of T .

We shall illustrate the process with the theory of strict partial order in the
language with binary relation symbol S and equality (see page 193) and the
normal model B = 〈{0, 1}, <, =〉. This just has the two element set {0, 1} as
domain with the usual < on this set, so that SB consists of just the one pair
(0, 1), and of course the usual =.

We shall create a non-normal structure A as follows. Let its domain be the
set A = {0, 0′, 0′′, 1, 1′}. Let SA be the set

{(0, 1), (0′, 1), (0′′, 1), (0, 1′), (0′, 1′), (0′′, 1′)}
and =A the set

{(0, 0), (0′, 0′), (0′′, 0′′), (1, 1), (1′, 1′),

(0, 0′), (0′, 0), (0′, 0′′), (0′′, 0′), (0′′, 0), (0, 0′′), (1, 1′), (1′, 1)}.
Given that the only essentially different atomic formulas in this language are
x = x, x = y, S(x, x) and S(x, y) it is easy to check thatA satisfies the equality
axioms Ax 6 and Ax 7 – we have rigged it so that each of the ‘equal’ elements
0, 0′, 0′′ has the same relationship under SA to the ‘equal’ elements 1 and
1′. So =A is an equivalence relation and the normal contraction [[A]] ofA is
the set {[[0]], [[1]]} with the one pair, namely ([[0]], [[1]]), in S[[A]], so that [[A]] is
isomorphic to the original B.

Exercise 5.30
Create a non-normal model for the axioms of group theory in the language
L with equality containing the 2-place function symbol · and the constant
symbol e (see page 198) which has a domain with 5 elements and with a
normal contraction isomorphic to the cyclic group Z2 with two elements.

The discussion illustrates the limitations of the axioms for equality. They are
sufficient to ensure that elements of a structureA = 〈A, . . . ,=〉 satisfying Ax 6
and Ax 7 which have different properties expressible within the language are
not equal. That is, if a, b ∈ A and there is some formula φ(x) such that

A �x/a φ(x) and A ��x/b φ(x), In this case, not only are a and b
plainly unequal, but this shows up
within the interpretation =A of =
withinA.

then

A �x/a,y/b ¬x = y,

regardless of whetherA is normal. But without the insistence that the struc-
tureA is normal, the axioms can’t truly distinguish between unequal elements
a, b of A which have exactly the same properties expressible within the lan-
guage. That is, ifA is not normal, one can have a, b ∈ A with

A �x/a,y/b x = y

such that for all formulas φ(x, x1, . . . , xn) and all c1, . . . , cn ∈ A,

A �x/a,x1/c1,...,xn/cn
φ(x, x1, . . . , xn)

251

5 Formal predicate calculus

if and only if

A �x/b,x1/c1,...,xn/cn
φ(x, x1, . . . , xn).

5.5 The completeness theorem
In this section we shall prove the completeness theorem for the formal system,
which we state as follows.

Theorem 5.17 Completeness theorem

For all sentences φ and sets Γ of sentences in a first-order language L, if Also called the adequacy theorem.

Γ � φ then Γ � φ.

We have stated the result for sentences (formulas with no free variables) to
avoid complications that might arise in derivations using the rule of general-
ization if free variables occur in assumptions. We shall lose some information
as a consequence about what is derivable from assumptions involving free
variables, but our applications of the result will always be to sentences, so no
matter. As with the propositional calculus, we have a result connecting two
ways of viewing the completeness theorem, given in the next exercise.

Exercise 5.31

Prove that the following statements are equivalent.

(C) If Γ � φ then Γ � φ, for all sentences φ and sets Γ of sentences.

(D) If ∆ is consistent then ∆ has a model, for all sets ∆ of sentences.

[Hint: The result of Exercise 5.27(a) in Section 5.3 will be of use for part of
the argument.]

Version (C) above of the completeness theorem can be paraphrased as saying
that the formal proof system has got enough axioms and rules of proof to be
able to prove everything that’s valid. This is pretty remarkable, given the
relative simplicity of the formal proof system. It also serves as a reminder
that, just as with the proof of the completeness theorem for the propositional
calculus, there will be key points of the proof where we rely on the formal
proof system having enough power to produce certain derivations.

Proof of the completeness theorem

Let’s now look at a proof of the completeness theorem. The result was proved
by the Austrian mathematician and logician Kurt Gödel (1906–1978) in 1930,
the first of his results which have had a major impact on modern mathematics
and logic. We shall base our proof on one produced subsequently by the Amer- In this book, we are not assuming

knowledge of the theory of infinite
sets beyond routine manipulation
of countable sets. However, we do
discuss uncountable sets and the
completeness theorem for
uncountable languages in
Section 6.4 of Chapter 6.

ican logician Leon Henkin in 1949. The method extends what we used earlier
to prove the completeness theorem for propositional calculus. Importantly,
we shall prove the theorem in detail only for sets of sentences in a countable
language. As for the propositional calculus, we shall prove the theorem in
the version (D) given in Exercise 5.31 above, showing that a consistent set of
sentences ∆ has a model.

252

5.5 The completeness theorem

It is worth recapping the method we used to prove the theorem for propo-
sitional calculus. Given a consistent set ∆ of propositional formulas in a
language L, we first extended ∆ to a complete set of formulas Σ in the same
language. We then used this set Σ to define a truth assignment v by

v(p) =

{
T, if p ∈ Σ,
F, if ¬p ∈ Σ,

and then showed that for all formulas φ,

v(φ) = T if and only if φ ∈ Σ.

As the original set ∆ is a subset of Σ, this truth assignment v satisfies ∆,
proving the theorem.

We shall adapt this method for the predicate calculus, extending a consistent
set ∆ of sentences in a language L to a complete set of sentences Σ from which
we define a structure – the equivalent of a truth assignment – which satisfies all
sentences in Σ, including all those in ∆. Unsurprisingly there’s a complication
for the predicate calculus in that we shall have extra requirements on Σ besides
being a complete set, usually requiring that Σ uses a larger language than the
original language L, as you shall soon see.

As our method will involve several enlargements of the original language and
several extensions of the original set of sentences, it will make sense for the
rest of this discussion to call the original language and set of sentences in
it L0 and ∆0 respectively, leaving the symbols L and ∆ available for any of
the languages or sets along the way. We shall need the same concepts of a
complete and maximal consistent set as for the propositional calculus, but we
shall use them for sentences in each language L, rather than for formulas,
which in the current context could involve inconvenient free variables.

Definitions Complete, maximal consistent

The set Σ of sentences in L is complete for L if it is consistent and for
each sentence φ in L, exactly one of φ and ¬φ belongs to Σ. Also Σ is
maximal consistent for L if Σ is consistent and for any consistent set of Or, equivalently, Σ is consistent

and if φ is a sentence in L with
φ �∈ Σ, then Σ ∪ {φ} is inconsistent.

sentences Σ′ in L with Σ ⊆ Σ′, we have Σ = Σ′.

As for propositional calculus, these definitions are equivalent, as you can now
show.

Exercise 5.32

Let Σ be a set of sentences in a language L. Show that Σ is complete if and
only if it is maximal consistent (for the same language). [Hints: Think about
whether you can exploit the proof of the equivalent result for propositional
calculus, Theorem 3.12 of Section 3.3 of Chapter 3. See also Exercise 5.27 in
this section. Using sentences rather than formulas of the predicate language L
is helpful in that we thereby avoid complications which could otherwise occur
in the use of the rule Gen.]

253

5 Formal predicate calculus

Exercise 5.33

Let Σ be a complete set of sentences and φ a sentence in a language L such
that Σ � φ. Show that φ ∈ Σ.

Given our original consistent set of sentences ∆0 in a countable language L0,
we shall show how to add extra constant symbols to L0 to give a countable
language L∗ and construct a set of sentences ∆∗ in L∗ with the following
properties:

(1) ∆0 ⊆ ∆∗ and ∆∗ is complete (and thus also maximal consistent) for
L∗;

(2) If φ(x) is a formula in L∗ with one free variable x such that the sen- The φ appearing as a subscript in
the constant symbol cφ is short for
φ(x) for whichever variable x
stands for. We shall regard e.g.
∃x1φ(x1) and ∃x2φ(x2), where x1

is free in φ(x1) and x2 is free in
φ(x2), as giving rise to distinct
constants cφ(x1) and cφ(x2), for
those with very sharp eyesight. In
general, each different formula gives
rise to a distinct constant symbol.

tence ∃xφ(x) is in ∆∗, then there is a corresponding constant symbol
cφ in L∗ such that the sentence φ(cφ) is also in ∆∗.

We shall call the second property for ∆∗ the witness property on the grounds
that the constant symbol cφ provides a specific witness to the existence of
some x such that φ(x) is in the set ∆∗.

We shall show how to find the language L∗ and sentences ∆∗ later, but for
the moment let’s concentrate on how to create from them a special structure
A which satisfies ∆∗ and thus also satisfies the original set ∆0. In the case
that the original language L0 includes the = symbol, our structure A will not
necessarily be a normal model. But we will ensure that it satisfies the equality
axioms Ax 6 and Ax 7, so that by Theorem 5.16 in Section 5.4, the normal
contraction of A is a normal model of ∆∗.

To start, we shall get a feeling for how many new constant symbols will have
been introduced to the language L∗ for ∆∗ to have the witness property.
We shall assume that the original language L0 includes at least one relation
symbol R, as if it has no relation symbols, there will be no formulas to disturb
our peace! Take φ(x) to be the formula

(R(x, x, . . . , x) → R(x, x, . . . , x)). Using x for all the arguments of R.

As this is a substitution instance of a tautology, we have � ∃xφ(x), so that
∆∗ � ∃xφ(x). As ∆∗ is complete, the result of Exercise 5.33 gives that
∃xφ(x) ∈ ∆∗. Then by the witness property the language L∗ includes a corre-
sponding constant symbol cφ. By taking other formulas ψ(x) involving R and For instance, using the same φ(x)

as earlier, we can take

(φ(x) → φ(x)),

((φ(x) → φ(x)) → (φ(x) → φ(x))),

and so on.

a free variable x which are substitution instances of tautologies, for which we
will also have ∃xψ(x) ∈ ∆∗, the witness property ensures that the language
L∗ includes infinitely many corresponding constant symbols cψ.

We shall now specify the domain A of our special structure A corresponding
to ∆∗ by

A = {τ : τ is a term of L∗ containing no variables}.
A term containing no variables is often called a closed term. As L∗ contains In fact, with the original language

L0 being countable, our
construction will make L∗ a
countably infinite set.

infinitely many constant symbols, each of which is a closed term, the domain
A is an infinite set. There is a risk that one might become confused between
closed terms τ regarded as members of the set A and their use within formulas
of L∗; but we hope that the context will make it clear in which sense they are
being used.

254

5.5 The completeness theorem

Observe that if f is an n-place function symbol of the language L∗ and This means that f is a function
symbol of the original language L0,
as L∗ differs from L0 only by
having extra constant symbols.

τ1, τ2, . . . , τn are closed terms, then f(τ1, τ2, . . . , τn) is also a closed term.
This enables us to define the interpretation of the function symbol f in the
structure A by

fA(τ1, τ2, . . . , τn) =def f(τ1, τ2, . . . , τn),

for all closed terms τ1, τ2, . . . , τn ∈ A. As the righthand side is in A whenever
the terms τi are in A, this does indeed define a function fA on An.

We shall now define the interpretation in A of relation symbols of L∗. For an As for function symbols, the
relation symbols of L∗ are those of
the original language L0.

n-place relation symbol R, we define RA by

(τ1, τ2, . . . , τn) ∈ RA if and only if R(τ1, τ2, . . . , τn) ∈ ∆∗,

for all closed terms τ1, τ2, . . . , τn ∈ A. Note that as the τi are closed terms, the
formula R(τ1, τ2, . . . , τn) is a sentence, so that it makes sense to talk in terms
of whether it belongs to ∆∗, which is a set of sentences. For the moment we
are treating the symbol =, should L0 be a language with equality, simply as
a 2-place relation symbol, so that the interpretation =A might not be true
equality on the set A.

Lastly we must define the interpretation of constant symbols in the language
L∗. We adopt the obvious interpretation of each constant symbol by itself There are inevitably extra constant

symbols in L∗ compared to the
original language L0.

(which is of course a closed term), that is,

c
A =def c,

for each such constant symbol – the righthand side is indeed an element of A
as constant symbols are closed terms.

The structure

A = 〈A, RA . . . , fA . . . , cA . . .〉
defined in this way is often called the canonical structure corresponding to the
set ∆∗ of sentences.

As we have indicated, the point of the structure A is given in the following
theorem.

Theorem 5.18

For all formulas φ(x1, x2, . . . , xn) of L∗ with free variables in the list
x1, x2, . . . , xn, and elements τ1, τ2, . . . , τn of A, Note that as the τi are closed

terms, φ(τ1, τ2, . . . , τn) is a
sentence, which might thus be a
candidate for membership of the
set ∆∗ of sentences.

A �x1/τ1,x2/τ2,...,xn/τn
φ(x1, x2, . . . , xn)

if and only if

φ(τ1, τ2, . . . , τn) ∈ ∆∗.

255

5 Formal predicate calculus

Proof

The result is analogous to Theorem 3.13 for propositional calculus in Chapter 3 There is an interesting difference
between Theorem 3.13 and
Theorem 5.18. In the former, given
a complete set of propositional
formulas Σ, there is a unique truth
assignment v satisfying Σ. But in
Theorem 5.18 there is no claim
that A is the only structure
satisfying ∆∗. In general there will
be several different
(non-isomorphic) structures
satisfying this set, as you will see in
the next chapter when we discuss
the Löwenheim–Skolem theorems.

and the proof follows similar lines, using mathematical induction on the length
of formulas. Every formula is logically equivalent to one built up using only
the connectives ¬,→ and the quantifier ∃, and it will be sufficient to prove
the result for formulas of this more limited type. Our induction hypothesis
for k ≥ 0 is that the result holds for all formulas with ≤ k connectives and
quantifiers and all τ1, τ2, . . . , τn ∈ A for all n ≥ 0. Let’s give an example to
explain why the hypothesis allows for all τ1, τ2, . . . , τn ∈ A for all possible n.
Suppose that the language includes a relation symbol R with 3 arguments
and that φ(x1) is the formula ∃x2∃x3R(x1, x2, x3) with just one free variable.
Then to test whether

A �x1/τ1
φ(x1),

we shall need to know whether for some τ2 ∈ A, A satisfies a formula with
fewer connectives, namely ∃x3R(x1, x2, x3), but with two, rather than the
original one, free variables needing interpretation by τ1, τ2, respectively.

For k = 0, the formula φ is atomic, and the result holds by definition of the
interpretation RA of each relation symbol R (including = if this is one of the
symbols of the language).

Now suppose that the result holds for all formulas of length ≤ k and that φ
has length k + 1. We shall leave the cases when φ is one of the forms ¬θ and
(θ → ψ) as an exercise for you, as these are essentially the same as in the
proof of Theorem 3.13. The new case is when φ(x1, x2, . . . , xn) is of the form
∃xψ, which we shall look at now.

Let’s look first at the case when the variable x does not occur free in ψ. Then
by the result of Exercise 4.24 in Section 4.2,

A �x1/τ1,x2/τ2,...,xn/τn
∃xψ

if and only if

A �x1/τ1,x2/τ2,...,xn/τn
ψ,

which by the induction hypothesis holds if and only if

ψ(τ1, τ2, . . . , τn) ∈ ∆∗.

We shall leave it for you to show that this holds if and only if

∃xψ(τ1, τ2, . . . , τn) ∈ ∆∗

as Exercise 5.35, which then deals with the situation of x not free in ψ.

The interesting case is of course when x is free in ψ. As we are taking the free All we said was that the free
variables of ∃xψ appeared in the
list x1, x2, . . . , xn, which doesn’t
mean that all of these are free
variables. So in principle one of the
xi isn’t free in ∃xψ and the x could
be this xi! Our argument can
easily be adjusted to cope with
such a case.

variables in ∃xψ to be in the list x1, x2, . . . , xn, we shall assume for simplicity
that x isn’t one of these variables.

Suppose that

A �x1/τ1,x2/τ2,...,xn/τn
∃xψ.

Then for some closed term τ in A,

A �x1/τ1,x2/τ2,...,xn/τn,x/τ ψ,

256

5.5 The completeness theorem

so that, by the induction hypothesis,

ψ(τ1, τ2, . . . , τn, τ) ∈ ∆∗.

By the result of Exercise 5.10(a) in Section 5.2, This result can be used as the term
τ is closed, so can be freely
substituted for x in
ψ(τ1, τ2, . . . , τn, x).

� (ψ(τ1, τ2, . . . , τn, τ) → ∃xψ(τ1, τ2, . . . , τn, x)),

so that

∆∗ � (ψ(τ1, τ2, . . . , τn, τ) → ∃xψ(τ1, τ2, . . . , τn, x)),

and as

∆∗ � ψ(τ1, τ2, . . . , τn, τ) (as ψ(τ1, τ2, . . . , τn, τ) ∈ ∆∗)

a use of MP gives

∆∗ � ∃xψ(τ1, τ2, . . . , τn, x).

As ∆∗ is complete, the result of Exercise 5.33 gives

∃xψ(τ1, τ2, . . . , τn, x) ∈ ∆∗,

as required.

For the converse, suppose that

∃xψ(τ1, τ2, . . . , τn, x) ∈ ∆∗.

Then by the witness property of ∆∗ (perhaps its crucial use in this proof!), The subscript ψ in cψ is short for
ψ(τ1, τ2, . . . , τn, x).there is a constant symbol cψ in L∗, which is of course also a closed term,

such that

ψ(τ1, τ2, . . . , τn, cψ) ∈ ∆∗.

By the induction hypothesis,

A �x1/τ1,x2/τ2,...,xn/τn,x/cψ
ψ(x1, x2, . . . , xn, cψ),

so that by the basic definition of A � ∃xψ

A �x1/τ1,x2/τ2,...,xn/τn
∃xψ.

The following exercises all relate to details of the proof of Theorem 5.18, so
that ∆∗ is a complete set of sentences in the language L∗ with the witness
property.

Exercise 5.34

Prove the inductive step of Theorem 5.18 in the case when φ of length k + 1
is one of the forms ¬θ and (θ → ψ).

Exercise 5.35
Suppose that θ is a sentence of L∗. Show that for any variable x, As θ is a sentence, x cannot be free

in θ. This exercise fills in a small
detail in the proof of Theorem 5.18.θ ∈ ∆∗ if and only if ∃xθ ∈ ∆∗.

257

5 Formal predicate calculus

Solution

Suppose that ∃xθ �∈ ∆∗ or, equivalently, that

¬∀x¬θ �∈ ∆∗.

Then as ∆∗ is complete, we have

∀x¬θ ∈ ∆∗,

so that

∆∗ � ∀x¬θ.

But

∆∗ � (∀x¬θ → ¬θ) (using Ax4)

so that by MP

∆∗ � ¬θ.

By Exercise 5.33 we then have ¬θ ∈ ∆∗, so that as ∆∗ is complete and ¬θ
is a sentence, we have θ �∈ ∆∗. From this we can infer that if θ ∈ ∆∗, then
∃xθ ∈ ∆∗.

Conversely, suppose that θ �∈ ∆∗, so that as ∆∗ is complete we have ¬θ ∈ ∆∗

and thus

∆∗ � ¬θ.

As ∆∗ consists of sentences, so that x is not free in a member of ∆∗, use of
the rule Gen gives

∆∗ � ∀x¬θ,

so that by Exercise 5.33

∀x¬θ ∈ ∆∗,

and as ∆∗ is complete, we have

¬∀x¬θ �∈ ∆∗,

or, equivalently, ∃xθ �∈ ∆∗. This shows that if ∃xθ ∈ ∆∗, then θ ∈ ∆∗.

The point of Theorem 5.18 is of course that as the set ∆∗ includes the original
consistent set ∆0, the canonical structure A is a model for ∆0. If L0 is not
a language with equality, we have proved version (D) of the completeness
theorem. What happens for a language with equality?

Let L0 be a language with equality. We shall show that the canonical structure
A, which is a model of ∆0 but not in general normal, satisfies the equality
axioms Ax6 and Ax7. It will then follow from Theorem 5.16 of Section 5.4
that ∆0 has a model, namely the normal contraction [[A]] of A.

258

5.5 The completeness theorem

Consider axiom Ax 6. A simple proof using no assumptions,

(1) x = x Ax 6
(2) ∀xx = x Gen, 1,

shows that � ∀xx = x, so that

∆∗ � ∀xx = x,

which, as ∀xx = x is a sentence, ∆∗ is complete and using Exercise 5.33, gives

∀xx = x ∈ ∆∗,

so that

A � ∀xx = x.

But this means that A satisfies x = x. Similarly, by placing sufficient universal
quantifiers in front of any instance of axiom Ax7 to obtain a sentence which
must be derivable using no assumptions and hence from the complete set ∆∗,
we can show that A satisfies each instance of this axiom. Thus A satisfies the
equality axioms and its normal contraction [[A]] is then a model of ∆0.

Exercise 5.36
Suppose that L0 and thus L∗ are languages with equality. The normal con-
traction on A has as domain the set of equivalence classes of the set of closed
terms of L∗ under the equivalence relation =A. Show that each equivalence
class contains at least one constant symbol.

Solution
Take any closed term τ of L∗. Then by Exercise 5.11(c) of Section 5.2,

� ∃xx = τ,

so that by the now familiar argument using that ∆∗ is complete,

∃xx = τ ∈ ∆∗.

Then by the witness property, there is a constant cx=τ in L∗ such that

cx=τ = τ ∈ ∆∗,

which by definition of =A gives

(cx=τ, τ) ∈ =A .

Thus the equivalence class [[τ]] in the domain of the normal contraction of A
contains the constant symbol cx=τ.

This last exercise shows that the domain of the normal contraction [[A]] of
A, for a language with equality, consists of the equivalence classes [[cx=τ]] If the original language L0 contains

no function or constant symbols,
then the domain of A is actually
the set of the new constant
symbols cφ.

determined by the new constant symbols added to the original language L0

to produce the language L∗. There is an alternative normal model of ∆∗

which could have been constructed directly from these new constant symbols,
rather than via equivalence classes of closed terms; but we suspect it is messier
proving that this structure is a model of ∆∗.

We have yet to prove that the special set of sentences ∆∗ and language L∗

exist, so we turn to this now. We shall need to make repeated use of two

259

5 Formal predicate calculus

results, each explaining that a consistent set of sentences can be extended to
another consistent set of a special nature. The first is as follows.

Theorem 5.19

Let Σ be a consistent set of sentences in a countable language L. Then Here the language L is a general
(countable) language.there is a complete set Σ′ of sentences in L such that Σ ⊆ Σ′.

Proof
As L is countable we can enumerate the sentences of L as

φ0, φ1, φ2, . . . , φn,

Define a sequence of sets of sentences {Σn}n∈N recursively by This is the same construction as
done in the proof of Theorem 3.9
for the formal system S for
propositional calculus in
Chapter 3. The proof is essentially
identical, but we have to check that
details which depend on what’s
derivable in S still hold for our
system of predicate calculus.

Σ0 = Σ,

Σn+1 = Σn ∪
{ {φn}, if Σn � φn,
{¬φn}, if Σn �� φn,

for n ≥ 0.

and put

Σ′ =
⋃
n∈N

Σn.

First we can show that each Σn is consistent, using mathematical induction,
which we leave as an exercise for you.

It follows that Σ′ is consistent, as if Σ′ is inconsistent, there are derivations
of Σ′ � θ and Σ′ � ¬θ for some formula θ. These derivations are finitely long,
so exploit just finitely many assumptions from Σ′, each of which appears in a
Σn for some n. Taking N to be the largest of these finitely many ns, we have
ΣN � θ and ΣN � ¬θ, so that ΣN is inconsistent, contradicting that each Σn

is consistent.

Lastly we show that Σ′ is complete. Take any sentence φ in the language L.
Then φ must be a φn for some n, so that one of φ and ¬φ must have been
put into Σn+1 and thus in Σ′. As Σ′ is consistent, we cannot have both φ and
¬φ in Σ′, so that exactly one of them is in Σ′, as is needed to show that Σ′ is
complete.

Exercise 5.37
Show that each set Σn in the proof of Theorem 5.19 above is consistent. [Hints:
The same proof as in that of Theorem 3.9 does work, but you will need to check
that details depending on facts about derivations for propositional calculus
also hold for our system of predicate calculus. As we are handling sentences
of the language L, rather than formulas which might have free variables, we
avoid potential complications over the use of the rule Gen.]

260

5.5 The completeness theorem

The second result which we shall use repeatedly is as follows.

Theorem 5.20

Suppose that Γ is a consistent set of sentences in a countable language
L. For each sentence ∃xφ(x) in Γ, introduce a new distinct constant The constant cφ ‘witnesses’ the

sentence ∃xφ(x).symbol cφ. Let L+ be the union of L with the set of all such cφ. Now

define a set Γ+ of sentences of L+ by

Γ+ = Γ ∪ {φ(cφ) : the sentence ∃xφ(x) ∈ Γ}.
Then Γ+ is consistent.

Proof

The proof makes use of the following variant of Theorem 5.5.

Suppose that the constant symbol c occurs neither in any sentence in the To obtain this result from
Theorem 5.5, treat the symbol c as
a new variable symbol. As c

appears nowhere in Γ of σ, a very
innocuous proof by induction on
the derivation of Γ, φ(c) � σ
treating c as a constant shows that
Γ, φ(c) � σ treating c as a variable.

set Γ nor in the sentence σ. Then

if Γ, φ(c) � σ then Γ, ∃xφ(x) � σ.

Suppose that Γ+ is inconsistent. Then some formula θ and its negation ¬θ
are both derivable from Γ+. These derivations use between them only finitely
many assumptions from Γ+, so only finitely many formulas of the form φ(cφ)
where ∃xφ(x) ∈ Γ, let’s say φ1(cφ1

), φ2(cφ2
), . . . , φn(cφn

). So both θ and ¬θ
are derivable from Γ∪ {φ1(cφ1

), φ2(cφ2
), . . . , φn(cφn

)}. By Theorem 5.4(c) we
can then derive

Γ, φ1(cφ1
), φ2(cφ2

), . . . , φn(cφn
) � σ,

for any sentence σ, and in particular we can construct σ to be a contradiction
chosen so that the constants cφi

for i = 1, 2, . . . , n, which by construction
don’t appear in Γ or in φj(cφj

) for any j �= i, also do not appear in σ. Then
repeated use of the variant of Theorem 5.5 above gives that

Γ, ∃xφ1(x), ∃xφ2(x), . . . ,∃xφn(x) � σ.

But as Γ � ∃xφi(x) for each i, Theorem 5.4(b) gives us that Γ � σ, contra-
dicting that Γ is consistent.

Before exploiting these results to construct L∗ and ∆∗, we need to look at the
sizes of the sets involved. The key result is that for a language with countably Recall that countable means finite

or countably infinite.many symbols, the set of finitely long strings of these symbols is also countable,
and in fact is countably infinite. As all sentences are amongst these strings,
the set Σ′ constructed in the proof of Theorem 5.19 is countable. Likewise
there are countably many sentences ∃xφ(x) in the set Γ in Theorem 5.20, so
that countably many constant symbols cφ are added to the language L to
obtain L+, which is thus also a countable language.

261

5 Formal predicate calculus

We can now show how to construct the language L∗ and the complete set ∆∗

with the witness property. Define a sequence of sets of formulas {∆n}n∈N and
one of languages {Ln}n∈N as follows:

∆0 is the original consistent set ∆ and L0 is the original countable lan-
guage.

Given the set of sentences ∆n in the countable language Ln, let ∆′
n be a

complete extension of ∆n in this language, as exists using Theorem 5.19.
Then taking the set Γ in Theorem 5.20 to be this ∆′

n and L to be Ln,
let Ln+1 be the language L+

n constructed by adding constants to Ln and
∆n+1 the set (∆′

n)+ given by the proof of Theorem 5.20.

Now put

∆∗ =
⋃
n∈N

∆n and L∗ =
⋃
n∈N

Ln.

Of course you still have to check that with this language L∗, ∆∗ is complete
and has the witness property!

Exercise 5.38
Show that with ∆∗ and L∗ as constructed above, ∆∗ is complete and has
the witness property. [Hint: You’ll need to check that each ∆n and ∆′

n is
consistent and that the relevant languages are countable along the way.]

Note that each language Ln above is countable and L∗ is defined as the count-
able union of countable sets, so that the set of closed terms of L∗ is countable.
That means that the domain of the canonical model A is countable; and in
the case when L0 is a language with equality, the normal contraction [[A]] also
has a countable domain. Note that in the latter case, the domain of [[A]] could
be finite rather than countably infinite. This is because the complete set ∆∗

could include sentences of the form cφ = cψ, in which case the equivalence
classes [[cφ]] and [[cψ]] are equal. As the domain of [[A]] is, by Exercise 5.36, es-
sentially the set of [[cφ]] for the extra constant symbols cφ in L+, it could thus
be that be that distinct constant symbols don’t give rise to distinct elements
of the domain.

Putting together all the results of thus section, we have essentially proved
version (D) of the completeness theorem in Exercise 5.31 for a countable
language.

Theorem 5.21 Completeness theorem

If ∆ is a consistent set of sentences in a countable language, then ∆ has
a countable model.

Now that we have both a soundness and completeness theorem, we can answer
the informal question of whether a sentence φ follows from a set of sentences
Γ either by showing that Γ � φ or that Γ � φ. Once one holds, the other must
also hold. It is not entirely clear to the author that if one knew that one of
these held, one would then try to show the other held from first principles.

262

5.5 The completeness theorem

For instance, there might be non-trivial results well-known from everyday
maths and expressible using a first-order language for which the ‘normal’
mathematical proof seems a long way from a derivation within our formal
system; and yet by the completeness theorem, such a derivation must exist.
An example is a result about groups which we gave in Chapter 4. If you
know some group theory, the result in question is normally seen as an easy
consequence of Lagrange’s theorem. This theorem cannot be expressed in a Lagrange’s theorem says that for

any subgroup H of a finite group
G, the number of elements in H
divides the number of elements of
G. This involves both quantifying
over subsets of G and counting
elements, so would be tricky, if not
actually impossible, to represent
using a first-order language.

first-order language, but some of its consequences can, in particular Result 2
which we gave on page 201 in Section 4.4 of Chapter 4:

if G is a finite group with N elements, then each element of G has finite
order dividing N .

For any given positive integer N , we can write down a first-order sentence
φ which expresses that G has exactly N elements and that for all x, the
product of x with itself N times equals the identity element e of the group.
Letting GPs be the set of axioms for groups given on page 198 and using
our knowledge of everyday group theory, we thus have GPs � φ. If you know
some group theory and are very keen, you might like to see whether you can
construct a formal derivation of GPs � φ!

A perhaps rather loose thought on the author’s part is that the formal system
seems prima facie a likelier environment within which to provide an algorith-
mic procedure to decide whether some sentence is derivable than checking for
its validity by seeing whether it holds in every possible structure for the lan-
guage – there will surely be infinitely many of the latter structures, which will
be hard to catalogue, whereas it might be feasible to catalogue all derivations
in a systematic way. It turns out that there is no such algorithmic decision This is the content of what is

called Church’s theorem, after
Alonzo Church (1903–1995).

procedure, but we won’t prove this major result in this book.

The completeness theorem is a great result in its own right and would make
a worthy result with which to culminate this book. However in the next,
final, chapter, we shall explore some of the consequences of the completeness
theorem, in particular the compactness theorem which says that a set of sen-
tences has a model if every finite subset has a model. This innocent sounding
result has all sorts of interesting ramifications, as you will soon see, and is a
stepping stone to one of the most important modern areas of study in logic,
called model theory.

263

5 Formal predicate calculus

Further exercises

Exercise 5.39

Suppose that L is the language with just the = symbol and Σ be the set
consisting of the single formula ∀x1∃x2 ¬x1 = x2.

(a) Suppose further that the sentences of L are enumerated as φ0, φ1, φ2, . . . ,
φn, . . ., where φ0 is the sentence

∃x1∃x2∃x3∃x4

∧
1≤i<j≤4

¬xi = xj

and φ1 is the sentence

∀x1∀x2∀x3∀x4∀x5

∧
1≤i<j≤5

xi = xj .

(i) What are the corresponding sets Σ0, Σ1 and Σ2 given by the con-
struction in the proof of Theorem 5.19?

(ii) Suppose that L and Σ are taken as the L0 and ∆0, respectively, with
the same enumeration of the sentences of L0, and that the language L∗

and complete set ∆∗ with the witness property are then constructed as
on page 262 in our proof of the completeness theorem. What can you say
about the possible sizes of the domain of the canonical model A of ∆∗

and of its normal contraction [[A]]?

(b) Now suppose that L and Σ are again taken as the L0 and ∆0, respectively,
but with some different enumeration of the sentences of L0, and that L∗

and ∆∗ are then constructed as on page 262. What can you say about
the possible sizes of the domains of the canonical model A of ∆∗ and its
normal contraction [[A]] in general?

264

6 SOME USES OF COMPACTNESS

6.1 Introduction: the compactness theorem
In this chapter we shall have a further look at the expressive power of first-
order languages. We have already looked at the use of such languages to
provide axioms for various mathematical theories, in Section 4.4 of Chapter 4.
Our formal proof system for predicate calculus of course gives us a framework
for establishing the deductive power of such axioms. However, thanks to
the completeness and soundness theorems, we have a connection between the
deductive theory and the structures which satisfy the axioms, usually called
the models of the theory. These models provide a rich source of exploration
into the power of axioms and are the basis of model theory, a modern area
of mathematical research which has grown from (and perhaps outgrown) its
historical roots in the foundations of mathematics. The jumping off point
for model theory is the compactness theorem, which is a consequence of the
completeness and soundness theorems, just as for propositional calculus. Theorem 3.11 of Chapter 3.

Theorem 6.1 Compactness theorem

Let Γ be a set of sentences in a first-order language L. If every finite So far, we have only proved the
completeness theorem for a
countable language. Our proof of
the compactness theorem thus only
works for a countable language.
We shall discuss uncountable
languages in Section 6.4. Until
then, all our applications will use
countable languages.

subset of Γ has a model, then so does Γ.

Proof

Suppose that Γ doesn’t have a model. Then by the completeness theorem Γ
is inconsistent. Thus there are proofs of Γ � θ and Γ � ¬θ for some sentence
θ. These proofs are finitely long, so each involves at most finitely many
assumptions from Γ. Putting these assumptions together gives a finite subset
∆ such that the two proofs above are also proofs of ∆ � θ and ∆ � ¬θ. Thus
∆ is inconsistent. By the soundness theorem we then have that ∆ has no Using version (B) of the soundness

theorem in Exercise 5.12 in
Section 5.3 of Chapter 5.

models.

This shows that if Γ has no models then some finite subset of Γ has no models,
which is equivalent to what we are trying to prove.

Exercise 6.1
Is the converse of the compactness theorem true?

Exercise 6.2
Show that for all sets of sentences Σ and sentences φ, if Σ � φ then ∆ � φ, for
some finite subset ∆ of Σ.

This chapter will consist mainly of applications of the compactness theorem.
We shall illustrate a variety of ways of using the theorem, sometimes proving
the same result in different ways – please bear with this seeming redundancy,
but it’s all in aid of gaining experience in using the theorem.

265

6 Some uses of compactness

Several of the results in this chapter will concern theories and it is time to
revisit the ways in which the word ‘theory’ is used. We began Section 4.4
of Chapter 4 by mentioning that in mathematics ‘theory’ tends to be used
to mean either all the mathematical consequences of a set of axioms or all
the properties shared by some class of structures. We then put our money
on the first of these meanings and defined a first-order theory as the set of We also then used the word

‘theory’ as shorthand for a
first-order theory, but will make
more use of the fuller description
to aid clarity.

all sentences which are logical consequences of a given set of sentences (its
axioms). But in this chapter we shall also look at the second meaning, as so
many important mathematical theories are described in this way, for instance
the theory of the real numbers and the theory of finite groups. The question
arises of whether each theory with this second meaning can be axiomatized
in a first-order language, so that it is also a theory with the first meaning
of the word. In Sections 6.3 and 6.4 we shall give some important negative
answers to this question. Before then, in Section 6.2, we shall gain experience
of using the compactness theorem by asking the question about first-order
theories for which we have an infinite set of axioms of whether they can also be
axiomatized by a finite set of axioms, again obtaining some negative answers.
More positively, we shall use the compactness theorem in Sections 6.4 and 6.5
to obtain models of first-order theories with interesting properties, giving an
idea of what model theory is really all about. We conclude the chapter and
book in Section 6.6 with a brief look at the decidability of some first-order
theories.

6.2 Finite axiomatizability
A first-order theory is finitely axiomatizable if there is some finite set of axioms
for it. Most of the examples of theories in Section 4.4 of Chapter 4 were given Of course, if a theory is finitely

axiomatizable, then by taking the
conjunction of these axioms, it can
be axiomatized by a single
sentence!

by a finite set of axioms, but some were not. When we are given a theory
with infinitely many axioms, the question arises of whether there is some
alternative and finite set of axioms for it. In this section we shall look at a
use of the compactness theorem to show that for certain theories there can be
no such finite axiomatization.

Let’s look at the example of the theory of infinite sets, which in Section 4.4
we axiomatized by the set Σ, where One suitable version of the

sentence ∃≥n is

∃x1∃x2 . . . ∃xn

∧
1≤i<j≤n

¬ xi = xj .
Σ = {∃≥n : n ∈ N},

with the sentence ∃≥n expressing that ‘there are at least n elements’. Is there
an alternative finite set of axioms for this theory?

First note that no finite subset of Σ will do. Why not?

Exercise 6.3
Let ∆ be a finite subset of the set Σ = {∃≥n : n ∈ N}. Show that ∆ has a Thus ∆ does not axiomatize the

theory of infinite sets.finite model.

Solution
As ∆ is a finite set, there is a largest n for which ∃≥n appears in ∆. As any
other sentence in ∆ is a ∃≥m for m < n, any set with at least this number n
of elements would be a model of ∆.

266

6.2 Finite axiomatizability

But could there be some different, cunningly constructed, finite set of sen- Actually, if there was such a finite
set, then there would also be a
finite subset of Σ itself which
would axiomatize the theory. This
is left for you as Exercise 6.12.

tences axiomatizing the theory? If so, we could take the conjunction of these
finitely many sentences and obtain a single sentence, σ say, which axiomatizes
the theory. It turns out that no such σ can exist, as follows, in an argument
exploiting the compactness theorem

Theorem 6.2

There is no finite set of axioms for the theory of infinite sets.

Proof

Suppose that there is a sentence σ which has the same effect as Σ, namely
axiomatizing the theory of infinite sets. Consider the set of sentences Γ, where

Γ = Σ ∪ {¬σ}
= {∃≥n : n ∈ N} ∪ {¬σ}.

The construction of Γ ensures that it has no models! Any model of Σ, and
thus also of σ, is an infinite set, while a model of ¬σ must be something
that isn’t an infinite set – so Γ has no models. But we shall show that any
finite subset of Γ has a model, contradicting the compactness theorem. The
key assumption behind this argument, that the theory can be axiomatized by
finitely many sentences and thus their conjunction σ, must then be false.

Let ∆ be a finite subset of Γ. Γ includes infinitely many sentences of the form
∃≥n, so that as ∆ is finite there must be a largest n for which ∃≥n ∈ ∆. We
want a model for ∆ and need to allow for the possibility that ∆ includes the A finite subset of Γ might or might

not include some of the ∃≥ns and
the ¬σ of Γ. Our argument copes
with a worst-case scenario when ∆
includes all of these.

sentence ¬σ of Γ. This gives two requirements for a model of ∆: it has at least
this largest n elements (which caters for any other sentences ∃≥m for m < n
which might appear in ∆); and it isn’t an infinite set. These are perfectly
compatible constraints. Take any n element set: this will be a model of ∆.

As every finite subset of Γ has a model but Γ has no models, this contradicts
the compactness theorem. We conclude that the theory of finite sets cannot
be axiomatized by finitely many axioms.

Exercise 6.4
Suppose that, in the proof above, the finite subset ∆ of Γ contains none of
the ∃≥ns. Show that ∆ has a model.

Solution

If ∆ contains no ∃≥ns, it is either empty (so vacuously has models) or just
consists of ¬σ, so any finite non-empty set is a model of ∆.

There are other first-order theories which can be axiomatized using infinitely
many axioms, but are not finitely axiomatizable. Two of these are explored We shall be building on work done

in Section 4.4 of Chapter 4.in the following exercises. Inevitably, they rely on you knowing various bits of
mathematics! In each case, you must first show that there is some infinite set
of axioms for the theory – it’s not so much the case that you’re asked to find
an infinite set of axioms: rather it’s that the only set of axioms it’s easy to

267

6 Some uses of compactness

think of happens to be infinite! – and then show that there cannot be a finite
set of axioms. This essentially means there’s no single sentence (a boring long
conjunction!) which on its own axiomatizes the theory, by a similar argument
to Theorem 6.2 above. The first example is the theory of torsion-free groups.

Definition Torsion-free groups

A group is torsion-free if it contains no element of finite order besides Every group must contain an
identity element, which has order 1.its identity element.

Simple examples of such groups are Z, Q and R under addition. The group
with only one element (which must be the identity element of the group) is
trivially a torsion-free group. All other examples have an infinite number of
elements, with each non-identity element having infinite order.

Exercise 6.5

Let L be a language (chosen to be suitable for axiomatizing the theory of
groups) with equality, a binary function symbol ·, intended to be used for the
group operation using infix notation, and a constant symbol e, intended to
represent the identity element of the group.

(a) (i) Write down axioms for group theory using this language.

(ii) Write down a sentence to represent the statement that, for a given
n ∈ N with n > 1, there is no element of order n. [Hints: You are welcome
to use xn as a shorthand for (x · (x · (x · . . .)))︸ ︷︷ ︸

n times

. You may find it helpful

to exploit Result 1 on page 201 that if in a group xk = e, where e is the This result and other relevant facts
about groups can be found in
Section 4.4 of Chapter 4.

identity element of the group, then the order of x divides k (but might
not be k itself). And don’t forget that as e2 = e, en = e for all n ≥ 1.]

(iii) Hence write down an infinite set of axioms for the theory of torsion-
free groups.

(b) Show that the theory of torsion-free groups is not finitely axiomatizable.
[Hints: Structure your argument like the proof of Theorem 6.2. There
are suitable examples of groups in Section 4.4 of Chapter 4 which have at Exploit Exercise 4.87.

least one non-identity element of finite order, so are not torsion-free, but
with all such elements of at least some appropriately chosen large order.
These will be needed to provide suitable models of the finite subsets ∆.]

The next example is the theory of fields of characteristic 0. We gave axioms for The symbols + and · are intended
to represent the addition and
multiplication of a field, − and −1

the additive and multiplicative
inverses, and the constant symbols
0 and 1 the additive and
multiplicative identities.

the theory of fields in Section 4.4 of Chapter 4 using a language with equality,
binary function symbols + and ·, unary function symbols − and −1 and con-
stant symbols 0 and 1. We shall first explain what is meant by ‘characteristic’
and get to the point about finite axiomatizability in Exercise 6.10.

We have seen some examples of fields in Section 4.4. For some of these ex-
amples, there is a finite sum of the multiplicative identity 1 of the field which
equals its additive identity 0; that is, there is some positive integer n for which

1 + 1 + 1 + . . . + 1︸ ︷︷ ︸
n

= 0;

268

6.2 Finite axiomatizability

and if there is such an n, there is a smallest such n > 0 with this property
for that field. For instance, in the field Z5, consisting of the set {0, 1, 2, 3, 4} Recall that for any integer n ≥ 2,

the ring Zn is the set
{0, 1, 2, . . . , n − 1} with addition
and multiplication modulo n. If n
is prime, this ring is a field.

with addition and multiplication modulo 5, the multiplicative identity is 1,
the additive identity is 0 and 1 + 1 + 1 + 1 + 1 = 0, so adding 1 to itself 5
times gives 0, while for no smaller positive n does adding 1 to itself n times
give 0. Of course, there are fields for which there is no such n > 0, for instance
Q, R and C: in each of these fields, adding 1 to itself finitely many times never
gives 0. The following definition distinguishes between fields on this basis.

Definition Characteristic

Let F be a field with additive and multiplicative identities 0 and 1
respectively. If there is some positive integer n such that

1 + 1 + 1 + . . . + 1︸ ︷︷ ︸
n

= 0,

then F is said to have finite characteristic and the least such positive n Some books use characteristic
infinity, ∞, rather than
characteristic 0. We use the 0,
despite the number 0 sounding like
a finite characteristic!

is called the characteristic of F . If there is no such n, then F is said to
have characteristic 0.

We ask you to explore the idea of characteristic in the next few exercises,
which we hope are straightforward.

Exercise 6.6
Suppose that F is a field with characteristic n > 0. Show that for all elements
x ∈ F :

(a) x + x + x + . . . + x︸ ︷︷ ︸
n

= 0;

(b) x + x + x + . . . + x︸ ︷︷ ︸
kn

= 0, for all k ∈ Z.

Exercise 6.7
Suppose that F is a field and that there are positive integers m, n with m < n
such that

1 + 1 + . . . + 1︸ ︷︷ ︸
m

= 1 + 1 + 1 + . . . + 1︸ ︷︷ ︸
n

,

where 1 is the multiplicative identity of F . Show that F has finite character-
istic.

As a consequence of the last exercise, if a field has characteristic 0, then the
elements

0, 1, 1 + 1, 1 + 1 + 1, . . . , 1 + 1 + 1 + . . . + 1︸ ︷︷ ︸
n

, . . .

of the field are distinct, so that the field is infinite.

269

6 Some uses of compactness

Exercise 6.8

Show that if F is a finite field, then it has finite characteristic. There are infinite fields with finite
characteristic. See Exercise 6.22.

It turns out that only certain positive integers can arise as the characteristic
of a field.

Exercise 6.9
(a) Show that the field Zp, where p is a prime, has characteristic p.

(b) Let F be a field.

(i) Suppose that n is a composite positive integer with n = ab for integers
a, b with a ≥ 2, b ≥ 2. Explain why

1 + 1 + 1 + . . . + 1︸ ︷︷ ︸
n

= (1 + 1 + . . . + 1)︸ ︷︷ ︸
a

(1 + . . . + 1)︸ ︷︷ ︸
b

,

where 1 is the multiplicative identity of F .

(ii) Suppose that n ≥ 2 is an integer such that

1 + 1 + 1 + . . . + 1︸ ︷︷ ︸
n

= 0.

Show that the characteristic of F is one of the primes dividing n. [Hints:
If n is composite, use part (b)(i) and the result of Exercise 4.91(a) in
Chapter 4.]

The result of the last exercise can be summarized as the following theorem.

Theorem 6.3

Let F be a field with finite characteristic n. Then n is a prime.

We have also shown that for each prime p, there is at least one field with
characteristic p, namely Zp. An observation stemming from this which will
be useful later is that there are fields of arbitrarily large finite characteristic.

We can now get back to the business of finite axiomatizability, armed with
these various facts. Our goal is to show that the theory of fields of character-
istic 0 is axiomatizable, but not finitely axiomatizable.

Exercise 6.10
(a) Given a positive integer n, write down a set of axioms for a field whose

characteristic is not n. Hence write down a set of axioms (rather likely
to be an infinite set!) for the theory of fields of characteristic 0.

(b) Show that the theory of fields of characteristic 0 is not finitely axioma-
tizable. [Hints: Structure your argument like the proof of Theorem 6.2.
You’ll need to exploit the fact established above that there are fields of
characteristic p for all primes p.]

270

6.2 Finite axiomatizability

Here’s an interesting general result about finite axiomatizability.

Theorem 6.4

Suppose that a theory T can be axiomatized using a first-order language
L by a set of sentences Σ and that Λ is a set of sentences in L such that
for all structures A for L, A is a model for Σ if and only if it is not a We could regard Λ as axiomatizing

the theory ‘not T ’.model of Λ. Then the theory T is finitely axiomatizable.

Thus if θ is the conjunction of
these finitely many axioms of T ,
then ¬θ axiomatizes ‘not T ’.The proof of this theorem requires a reasonably similar compactness argument

to those earlier in this section and the next exercise leads you through it.

Exercise 6.11
Suppose that there are sets of sentences Σ and Λ in the language L such that
for all structures A for L, A is a model for Σ if and only if it is not a model
of Λ, where the set Σ axiomatizes the theory T . We shall assume that T is
not finitely axiomatizable and obtain a contradiction.

(a) Under the assumption that T is not finitely axiomatizable, Σ must of
course be an infinite set. Show in addition that any finite subset of Σ
must have a model which is not a model of T .

(b) Still assuming that T is not finitely axiomatizable, apply the compactness
theorem to the set Γ, where Γ = Σ∪Λ to obtain the desired contradiction.
[Hints: What models does Γ have? What does part (a) tell us about finite
subsets of Γ?]

We can infer from Theorem 6.4 that at least one reasonable-sounding math-
ematical theory cannot be axiomatized in a first-order language, namely the
theory of finite sets. The complementary theory, the theory of infinite sets,
can be axiomatized, but not finitely axiomatized, in a language with equality.
Theorem 6.4 then prevents the theory of finite sets from being axiomatizable.

The question arises of whether other mathematical theories of interest cannot
be axiomatized in a first-order language. The answer is ‘yes’, but we’ll need
something more subtle than Theorem 6.4. Knowing that, say, the theory
of fields of characteristic 0 is axiomatizable but not finitely axiomatizable,
leads, via this theorem, to the result that the complementary theory is not
axiomatizable. But this complementary theory is that of all structures which
aren’t fields of characteristic 0, including ones that aren’t fields at all, as well
as fields that are of finite characteristic – this theory isn’t so interesting! Of
more interest, were it true, would be a result that one cannot axiomatize fields
of finite characteristic. This is what we’ll investigate in the next section.

Further exercises

Exercise 6.12
Suppose that a theory T can be axiomatized by a set of sentences Σ in a
language L. Show that T is finitely axiomatizable if and only if there is some
finite subset of Σ which axiomatizes T .

271

6 Some uses of compactness

6.3 Some non-axiomatizable theories
We saw at the end of the last section that the theory of finite sets cannot
be axiomatized in a first-order language with equality. In this section we
shall use the compactness theorem to show that there are further examples of
interesting mathematical theories which aren’t first-order axiomatizable.

One method of showing that a theory cannot be axiomatized in a language
L is as follows. Assume that it can be axiomatized by a set of sentences
Σ and bolt onto Σ a cunningly chosen infinite set of sentences to get a set
Γ with the property that Γ has no models but every finite subset ∆ of Γ
does have a model. This contradicts the compactness theorem and we can
conclude that no set of axioms Σ exists. We shall illustrate this method with
the theory of finite sets – yes, we know we’ve already shown that this cannot
be axiomatized, doubtless using a method which is in some sense equivalent
to the one we are about to use! – and give you a more interesting example to
sort out by this method.

Suppose that the theory of finite sets can be axiomatized by a set of sentences
Σ in some first-order language L with equality. Guided by the principle of A nice feature of this method is

that it covers languages of
arbitrary complexity.

this method that we want to end up with a set Γ which has no models, the
cunning sentences to bolt on are the very useful ∃≥ns saying, for each natural
number n, ‘there are at least n elements’. So define

Γ = Σ ∪ {∃≥n : n ∈ N}.
Any model of Γ would be a model of Σ, hence a finite set, and thereby couldn’t
make all the ∃≥ns true: so no models of Γ exist. But a, we hope by now famil-
iar, argument shows that every finite subset of Γ has a model, contradicting
the compactness theorem. Thus no set Σ exists axiomatizing the theory.

Exercise 6.13

Show that if ∆ is a finite subset of Γ above, then ∆ has a model.

Solution

If ∆ is finite, then there is a largest n for which ∃≥n appears in ∆. As ∆ is As in our earlier worked examples,
we consider only a worst-case
scenario when ∆ includes some
∃≥ns.

then a subset of Σ ∪ {∃≥m : m ≤ n}, it is enough to show that this latter set
has a model, as the model will also be a model for ∆. Such a model would
need to be finite, to be a model for Σ, but also contain at least n elements, to
cope with the ∃≥ms for m ≤ n – this is no problem! Just take any n-element
set!

Let’s try out this method on something a bit more interesting, namely the
theory of fields of finite characteristic. It’s easy to write down axioms for the
theory of fields of characteristic p for a fixed prime p. It’s easy to adapt this
to axiomatize fields of one of a finite number of finite characteristics. But can
we axiomatize at one go all fields of all possible finite characteristics?

272

6.3 Some non-axiomatizable theories

Exercise 6.14

Let L be a language with equality including constant symbols 0,1, binary
function symbols + and · and anything else you’d expect for fields.

(a) Let p be a prime number. Write down a sentence which, when added to
the axioms for the theory of fields, gives a set of axioms for the theory of
fields of characteristic p.

(b) Let p1, p2, . . . , pn be finitely many prime numbers. Explain how to adapt
your solution to part (a) to axiomatize the theory of fields of characteristic
one of p1, p2, . . . , pn.

(c) Adapt the method used for the non-axiomatizability of the theory of finite
sets to show that the theory of fields of finite characteristic cannot be
axiomatized. [Hints: Our solution bolts on certain well-chosen sentences
which use 0, 1, + and =. Also we know that for each prime p there is at
least one field of characteristic p, namely Zp.]

We don’t think that this method quite works for the next new example of a
non-axiomatizable theory we’d like you to look at, namely the theory of groups
in which every element has finite order. An extra ingredient is required,
namely introducing extra constant symbols to the language and exploiting
them in a clever way – this technique turns out to be a vital tool in many other
applications of compactness, as we’ll see later. Inevitably, our first illustration
of this refinement is with the good old theory of finite sets, for which you’ve
already seen two different arguments showing it’s not axiomatizable!

As before, we shall assume that the theory of finite sets is axiomatizable by a
set of sentences Σ in a language L with equality and go for a contradiction.
This time, we add some new constant symbols to the language: our argument
will use the countably many extra symbols cn, for n ∈ N, giving an enriched If L includes some constants cn, we

just choose some other symbols!language L′. We’ll now add extra sentences to Σ using these new symbols
to get a set Γ with no models, but such that every finite subset of Γ has a
model, giving us the familiar contradiction of the compactness theorem. In
particular, we’ll take Γ defined by

Γ = Σ ∪ {¬ ci = cj : i �= j, i, j ∈ N}.
Any potential model A of Γ has to be a structure for the enriched language Whether or not A satisfies Σ in L

doesn’t depend on how it interprets
the extra symbols in L′, by
Exercise 4.26 in Section 4.2 of
Chapter 4.

L′, which means that A has to specify which element of its domain interprets
the constant symbol ci for each i ∈ N. The sentences ¬ ci = cj for i �= j force
such a model to interpret the cis by distinct elements of its domain, so that its
domain is forced to be infinite. But this is incompatible with being a model
for Σ, which has only finite models. So Γ has no models.

Exercise 6.15
Show that if ∆ is a finite subset of the set Γ above, then ∆ has a model.
Conclude that the theory of finite sets is not axiomatizable.

273

6 Some uses of compactness

Let’s use this refined method to show that the theory of groups where every
element has finite order is not first-order axiomatizable. The models of this
theory include all finite groups, as by Result 2 on page 201 in Section 4.4
of Chapter 4, the order of an element of a finite group divides the number
of elements in the group. But there are also infinite groups in which every
element has finite order. Take for instance the group G with domain all
rationals in the interval [0, 1) with operation ⊕ defined in terms of the usual
+ on Q by

a ⊕ b =

{
a + b, if a + b < 1,
a + b − 1, if a + b ≥ 1,

in which a typical element expressed in lowest terms as
m

n
has order n. (Those More fully, m and n are integers

with 0 ≤ m < n and gcd(m, n) = 1.with a suitable background in group theory might recognize this as the quo-
tient group Q/Z, where Q is the group of rationals under addition and Z is
the subgroup of all integers.) This group contains elements of all possible
finite orders.

Assume that the language L includes the binary function symbol · for the
group operation and the constant 1 for the identity. We’ll allow ourselves to
use the notation xn as a shorthand for (x · (x · (x · . . .)))︸ ︷︷ ︸

n times

. Let’s suppose that

the theory of these groups can be axiomatized in L by a set of sentences Σ
and go for a contradiction by the sort of methods we’ve used so far.

Exercise 6.16
(a) Show that Γ defined by

Γ = Σ ∪ {∃x ¬ xn = 1 : n ∈ N}
has a model. (This means that Γ fails to give us a set of sentences with
no models, so is no use for our method!)

(b) Add a new constant symbol c to the language. Find a set of sentences Γ in
the enriched language extending the set Σ such that Γ has no models, but
every finite subset of Γ does have a model. [Hints: Find sentences which
ensure that in any group G which is a model of these, the interpretation
c
G of c has infinite order. You’ll also need to recall suitable examples of

groups to show that any finite subset of a well-chosen Γ has a model.]

The result of Exercise 6.16 contradicts the compactness theorem, so that the
theory of groups in which every element has finite order cannot be axiomatized
in a first-order language.

Our next example is the theory of well-ordered sets. As we mentioned in
Section 4.4 of Chapter 4, a well-order on a set A is a linear order on A for
which every non-empty subset B of A contains a least element. Somewhat
trivially, every finite linear order is a well-order, as any non-empty subset Another example of an infinite

well-order is the subset

{m − 1
n

: m, n = 1, 2, 3, . . .}
of the set of rationals Q with its
usual order.

contains finitely many elements, so must have a minimum element. Any non-
trivial example thus has to be infinite and the classic example is the set N of
natural numbers with the usual order. The standard axiomatization of the

274

6.3 Some non-axiomatizable theories

theory of well-order can be done in a second-order language, quantifying over
subsets B as well as elements b of the domain, using an axiom like

∀B(B �= ∅ → ∃b0(b0 ∈ B ∧ ∀b(b ∈ B → b0 ≤ b)))

alongside the usual first-order axioms for a linear order. We will use the
same method as above for groups of finite order to show that the theory of
well-order is not axiomatizable in any first-order language.

Exercise 6.17

Let L be a language with equality and including a binary relation symbol <
suitable for axiomatizing strictly linearly ordered sets.

(a) Suppose that Σ is a set of sentences in L which axiomatizes the theory of
well-order. Add infinitely many new constant symbols cn for all n ∈ N to As earlier, if the language already

uses some of the symbols cn, just
use other new symbols.

L to get the language L′. Define

Γ = Σ ∪ {cn+1 < cn : n ∈ N}.
(i) Explain why Γ has no models.

(ii) Show that every finite subset ∆ of Γ has a model.

(b) Explain why the theory of well-order is not axiomatizable in L.

We shall make further use of this method of adding new constant symbols
and sentences involving them in the next two sections.

Actually, the intended method for obtaining the result about fields of finite
characteristic in Exercise 6.14 could be regarded as an illustration of this
refined method based on adding constant symbols, in the following sense.
Suppose that for some reason, the given language for representing the theory
of fields didn’t include the constant symbols 0 and 1 intended to represent the
additive and multiplicative identities of the field. It’s still perfectly possible You could try writing down the

axiom that every non-zero element
has a multiplicative inverse using
the language with just the binary
function symbols + and ·, if you’d
like the practice.

(but perhaps a bit more tedious) to write down axioms for fields: for instance,
the sentence

∃x∀y(x + y = y ∧ y + x = y)

captures that there is an additive identity. One can still capture the property
that a field has characteristic p, where p is prime, by the sentence

∃x(∀y(x + y = y ∧ y + x = y) ∧ ∀z(z + z + z + . . . + z︸ ︷︷ ︸
p

= x)),

which will imply that the multiplicative identity (as a particular z here) when
added to itself p times gives the additive identity. If we’d used such a language
for fields, then to show that the theory of fields of finite characteristic is not
axiomatizable we could have added ‘new’ constant symbols 0 and 1 to the
language and then bumped up any presumed set of axioms Σ for this theory
with suitable sentences involving these new constants to get a Γ with no
models etc., pretty well as we hope you did in Exercise 6.14.

Let’s now look at a different method exploiting a result which is a foretaste
of a very important consequence of compactness, which we’ll look at in the

275

6 Some uses of compactness

next section. The method involves straightforward application of the following
result.

Theorem 6.5

Let Σ be a set of sentences in a first-order language L with equality. If
Σ has models of arbitrarily large finite domain, then it has an infinite
model.

Proof

The proof requires use of the compactness theorem and for a change we’ll use
it in a positive way, not to obtain a contradiction as in all our applications
of it so far. From now on, most of our uses of compactness will be similarly
positive.

The proof also uses a very familiar looking set of sentences Γ defined by

Γ = Σ ∪ {∃≥n : n ∈ N}.
For a change we actually want to show that Γ does have a model, as such a
model would have to be infinite – and that’s what we are looking for. So let
∆ be any finite subset of Γ. Then as ∆ is finite there is a largest n such that
∃≥n is in ∆. We are given that Σ has arbitrarily large finite models, so in
particular it has a model with at least n elements – this model must then also
be a model of ∆.

As every finite subset of Γ has a model, the compactness theorem tells us that
Γ also has a model, which in turn means that Σ has an infinite model.

We can now provide yet another argument that the theory of finite sets cannot
be axiomatized in a first-order language! This theory has arbitrarily large
finite models, so that if it was axiomatizable, then by Theorem 6.5 its axioms
would have an infinite model, contradicting that the axioms are for the theory
of finite sets. Theorem 6.5 can be used in a similar way to show that neither
of the theories of finite groups and of finite fields can be axiomatized in a first-
order language – because both theories have arbitrarily large finite models.

The business of cardinalities of models, if any exist, is taken a lot further in
the next section.

We shall end this section with a theorem that supersedes much of the work We don’t apologize for making you
trawl through results with specific
theories, even though this theorem
gives a shortcut. The extra bit of
experience of these theories is
probably good for you!

we have asked you to do earlier to show that certain theories were not axiom-
atizable.

Theorem 6.6

Suppose that T is a theory in a language L with finitely many axioms.
Suppose that Σ and Λ are sets of sentences with the property that for
all models A of T ,

A � Σ if and only if A �� Λ.

Then both the theories T ∪ Σ and T ∪ Λ are finitely axiomatizable.

276

6.4 The Löwenheim–Skolem theorems

Exercise 6.18

Prove the above theorem. [Hint: The set of sentences T ∪Σ∪Λ has no models,
so there are finite subsets Σ′ of Σ and Λ′ of Λ such that T ∪ Σ′ ∪ Λ′ has no
models. What can one say about models of T ∪ Σ′ and T ∪ Λ′?]

As a consequence of this theorem, when one has a theory which can be ax-
iomatized but not finitely axiomatized, what we might describe as its comple-
mentary theory cannot be axiomatized at all. For instance, take T to be the
theory of fields, which can be finitely axiomatized, and Σ to be the theory of
fields of characteristic 0. We showed in Exercise 6.10 that this theory can be
axiomatized but not finitely axiomatized. Suppose that the theory of fields
with finite characteristic could be axiomatized by a set Λ. As all fields have
characteristic 0 or a finite number (namely a prime), we then have that for
all fields A, i.e. all models A of T ,

A � Σ if and only if A �� Λ.

Then by Theorem 6.6 both Σ and Λ could be finitely axiomatized, contradict-
ing that Σ cannot be. The resulting contradiction leads to the conclusion that
there is no such Λ axiomatizing the theory of fields of finite characteristic.

Exercise 6.19

Use Theorem 6.6 and relevant results from Section 6.2 to show each of the
following theories cannot be axiomatized.

(a) The theory of finite sets.

(b) The theory of groups with at least one non-identity element of finite order.

6.4 The Löwenheim–Skolem theorems
In this section we look at two major results about the possible sizes of the
infinite models of a first-order theory.

Inevitably we shall require some knowledge of the theory of infinite ‘size’,
properly called the theory of cardinal numbers, which would normally be There are plenty of books on set

theory, e.g. those by Enderton [12],
Halmos [17] and Goldrei [16].
There are some useful potted
accounts, e.g. in Cameron [4].

acquired from the study of set theory. Likewise we shall need some knowledge
of the theory of ordinal numbers. We shall summarize most of what we need
to know without giving very much background. Some of the marginal notes
will give extra detail or give caveats. We hope that the main results of the
section can be appreciated without having previously studied cardinal and
ordinal numbers. If you do happen to have the necessary background, do see
whether you can flesh out our sketchy details!

277

6 Some uses of compactness

Set theory background

The most commonly used framework for the theory of cardinal numbers is
Zermelo–Fraenkel set theory (abbreviated as ZF) which is based on various
first-order axioms expressed in a language with equality and the 2-place rela-
tion symbol ∈, intended to represent ‘is an element of’. To give you a flavour
of the simpler axioms and the use of this language, one axiom is

∀x∀y(x = y ↔ ∀z(z ∈ x ↔ z ∈ y)),

with the intended interpretation that two sets are equal if and only if they
contain the same elements; and another is

∃x∀y ¬ y ∈ x,

with the intended interpretation that there is an empty set. Overall the
intended interpretation of the theory is the universe of sets, with ∈ interpreted We use the term ‘universe’ of sets

as the existence of a ‘set of all sets’
would result in contradictions,
most famously Russell’s paradox.

as ‘is an element of’. We are not even going to attempt to explain what ‘sets’
are! They are an undefined concept of which all that can be said is that
their properties are the logical consequences of the Zermelo-Fraenkel axioms.
This approach – explaining important mathematical objects in terms of the
properties they have and basing all mathematics on the logical consequences
of these properties – is central to the development of much of what is in
this book. It is perhaps unsurprising, with the benefit of hindsight, that
this approach, previously adopted for the likes of N and R, should then be
used for set theory. The basis of modern set theory is the work of Cantor in The German mathematician Georg

Cantor (1845–1918) in addition
initiated the theory of point-set
topology.

the second half of the 19th century on infinite sets and two sorts of infinite
number, cardinals and ordinals. This work produced exciting results, which
we shall be using, but was and remains something of a minefield in terms of
its potential for generating contradictions and paradoxes, not to mention a
spot of controversy. Hence the adoption of the axiomatic approach to attempt
to place it on a secure foundation.

Some of the behaviour of sets that we have been educated to expect and
exploit is uncontroversial, for instance pretty well anything to do with finite
unions and intersections of finite sets. But the existence of any infinite set at
all was very controversial and our casual acceptance and manipulation of sets
like N, Q and R perhaps testifies to the influence of our education as much
as to the power of the underlying ideas! The modern theory of infinite sets
is usually based on the Zermelo-Fraenkel axioms and their underpinning of
Cantor’s theory. Much of this theory is based on a principle of Zermelo called
the axiom of choice (usually abbreviated as AC), given as follows.

Axiom of choice

Suppose that F is a set of non-empty sets. Then there is a function This can all be expressed in the
first-order language using ∈ and =.h : F −→ ⋃F, called a choice function on F, such that for each A ∈ F,

h(A) ∈ A.

The function h ‘chooses’ an element, namely h(A), for each member of the set We used AC in our solution to
Exercise 4.50 in Section 4.3 to
construct a Skolem function.

F. The axiom doesn’t say how the choice is made, only that such a function
exists. Broadly speaking, AC isn’t needed to justify the existence of a choice
function when the set F is finite or when the sets A ∈ F all have enough

278

6.4 The Löwenheim–Skolem theorems

‘useful’ structure to define the function, rather than just say it exists. But One sort of useful structure on the
sets A is that they are all
well-ordered, so h could choose the
least element of each of them.

AC is needed when F is infinite and its elements A aren’t equipped with
enough structure. As many of the most important results in this book make
use of infinite sets (e.g. infinite lists of formulas, as well as structures with
infinite domains), these results are crucially underpinned by the theory of the
Zermelo-Fraenkel axioms along with the axiom of choice, usually abbreviated
as ZFC , with AC playing a critical role.

The main results we need are as follows. First of all, we can compare the sizes
of sets using the following relations involving sets X and Y .

Definitions Comparing sizes of sets

We say that X ≈ Y if there is a bijection from X to Y .

We say that X � Y if there is a one–one function from X to Y ; and
that X ≺ Y if X � Y and it is not the case that X ≈ Y .

The relation ≈ is easily shown to be an equivalence relation on sets. Important
examples involving infinite sets include

N ≈ Z ≈ Q ≈ N × N,

which are all countable sets, and ‘Countable’ includes finite as well
as sets of the same size as N.

P (N) ≈ 2
N ≈ R ≈ R

2,

where for any set X , P(X) is the set of all subsets of X and 2
X is the set of In general, for any sets X, Y , the

set Y X is the set of all functions
from X to Y .

all functions from X to the two element set 2 = {0,1}.
The relation � on sets is easily shown to be reflexive and transitive and is
almost anti-symmetric – the Schröder–Bernstein theorem shows that if X � Y
and Y � X then X ≈ Y (rather than the X = Y required by anti-symmetry).
This can all be proved without using AC. Without AC, we cannot prove what
looks like the linearity axiom, namely that for all sets X, Y , one of X � Y The principle X � Y and Y � X

for all sets X, Y is called
dichotomy. It is equivalent to AC.

and Y � X holds. But with AC, we can prove that this holds.

A very important result, Cantor’s theorem, is that

X ≺ 2
X ,

for all sets X . One consequence of this is the existence of infinite sets that Another example of an
uncountable set consists of all
truth assignments on a countable
set of propositional variables
{pi : i ∈ N}, which are essentially
functions from {pi : i ∈ N} to the
two element set {T, F}.

aren’t countable, for instance R. Another consequence is that there is no
‘largest’ set – if there was such a set X , then

X ≺ 2
X (by Cantor’s theorem)

� X (as X is the largest set),

so that X ≺ X , which is a contradiction (thanks to the definition of ≺).
Important examples include X ≺ N, for all finite sets X and

N ≺ R ≺ 2
R ≺ 2

2
R

.

279

6 Some uses of compactness

With AC we can define a special class of sets, called the cardinal numbers, or
cardinals for short, which measure all possible sizes of sets. We can define for
each set X its cardinal number Card(X) in such a way that

• X ≈ Card(X); So there’s a cardinal number for
every set and there’s only one
cardinal number of each size.

• if Card(X) ≈ Card(Y) then Card(X) = Card(Y).

Using the Schröder–Bernstein theorem for cardinals, these results mean that if
Card(X) � Card(Y) and Card(Y) � Card(X) then Card(X) actually equals
Card(Y). Putting this all together, the relation � defines a linear order on
the class of all cardinals – actually it defines a well-order on these too. We’ll
often use Greek letters like κ, λ, µ to stand for cardinal numbers and write ≤
(<) instead of � (≺).

For finite sets X , Card(X) is simply defined as the (natural) number of ele- The ordinal numbers are another of
Cantor’s ground-breaking
creations. An ordinal α is a set
which is well-ordered by the
membership relation (the usual ∈)
such that for each β ∈ α, β ⊆ α.
What makes an ordinal α initial is
that for each β ∈ α we have β ≺ α.
The set N, regarded as an ordinal,
is the smallest initial ordinal.

ments in the set. For infinite sets X , Card(X) is usually defined to be a special
well-ordered set called an initial ordinal. The smallest infinite cardinal is the
cardinal of N and thus also of all countably infinite sets. It is usually written
as ℵ0. (ℵ is the first letter of the Hebrew alphabet and is pronounced ‘alef’.)
All larger cardinals must be uncountable. The next larger cardinal after ℵ0 is
written as ℵ1, the next larger as ℵ2 and so on. As N ≈ ℵ0 and R ≈ 2

N, we can
use the ℵ notation to describe the cardinality of the set of real numbers by
Card(R) = 2

ℵ0 . An important mathematical problem which is not resolved
within the theory ZFC is which of the ℵs is the cardinal of R. As R is also
known as the continuum, the hypothesis that 2

ℵ0 = ℵ1, the first uncountable Both the continuum hypothesis
and its negation can be shown to
be consistent with ZFC , always
assuming that ZFC is itself
consistent. In this book, we shall
avoid results requiring a decision
about the continuum hypothesis.

cardinal, is called the continuum hypothesis.

There is an arithmetic on cardinal numbers defined as follows.

Definitions Cardinal arithmetic

Let κ, λ be cardinals (so they are also sets). Then operations of +, · and
exponentiation are defined by:

κ + λ = Card((κ × {0}) ∪ (λ × {1})), i.e. the cardinal of the union

of disjoint sets of cardinal κ and λ;

κ · λ = Card(κ × λ), i.e. the cardinal of the set of pairs κ × λ;

κλ = Card
(
κλ

)
, i.e. the set of all functions from λ to κ.

With AC, simple additions and multiplications of infinite cardinals don’t gen-
erate larger cardinals. We have, provided that at least one of κ, λ is infinite,
that

κ + λ = κ · λ = max{κ, λ}.
However, thanks to Cantor’s theorem, exponentiation often gives larger car-
dinals: provided 2 ≤ κ < λ, we have κ < κλ.

The intertwining of the axiom of choice with the theory of cardinals is quite This equivalence can be
demonstrated within the
framework of the Zermelo-Fraenkel
axioms.

considerable. For instance, AC is equivalent to the statement that X ×X ≈ X
for all infinite sets X , that is, κ · κ = κ for all infinite cardinals κ.

280

6.4 The Löwenheim–Skolem theorems

Cardinalities of infinite models of a theory

We can now turn to the major business of this section, which is to look at two
major results about the possible infinite cardinalities (within the framework
of ZFC) of models of a theory, should it have any infinite models at all.

Exercise 6.20

(a) Give an example of a first-order theory with only finite models.

(b) Give an example of a first-order theory with only infinite models.

Although the main application of these results that we’ll discuss here will be
yet more negative results about whether certain theories can be axiomatized,
the results really open up a door in the study of models of theories. The
results are usually called the Löwenheim–Skolem theorems: one theorem is The original Löwenheim–Skolem

theorem is what we call the
downward result. It was an
important milestone in the
development of the subject,
overtaken subsequently by Gödel’s
completeness theorem, which is a
stronger result. Leopold
Löwenheim (1878–1957) was a
German mathematician.

described as ‘upward’ and the other as ‘downward’, for reasons which will
become obvious. Perhaps the most important of the two in modern model
theory is the upward theorem, as it holds out the prospect of an unlimited
number of models for most theories; and it’s the one whose proof exploits the
compactness theorem. We shall state and prove it before we deal with the
downward result.

Theorem 6.7 Upward Löwenheim–Skolem theorem

Let T be a theory in a first-order language L with equality. If T has an As ever, when L is a language with
equality, ’model’ means a normal
model, unless we say otherwise.

infinite model, then T has models of arbitrarily large infinite cardinality,
i.e. for any infinite cardinal κ, there is a model of T whose domain is a
set of cardinality at least κ.

Proof
Suppose that T has an infinite model – call this model B – and let κ be an
infinite cardinal.

As we mentioned earlier, many – maybe most – applications of compactness
involve adding new constant symbols to the language. That’s what we’ll
do here. Add to the language L a set {cα : α ∈ κ} of new distinct constant Recall that the cardinal κ is also a

set.symbols not already in L. Define a set of sentences Γ in the enlarged language
by

Γ = T ∪ {¬ cα = cβ : α �= β, α, β ∈ κ}.
Then any model A for Γ is not just a model of T , but also has to have Slightly more poshly, if A has

domain A and interprets each cα

by c
A
α , then the map

f : κ −→ A

α �−→ c
A
α

is a one–one from κ to A, so that
κ � A.

enough distinct elements in its domain to interpret the constants cα, α ∈ κ
in a way that satisfies all the sentences ¬ cα = cβ whenever α �= β. Thus the
cardinality of A would be at least κ as required.

We shall show that Γ indeed has a model by using the compactness theorem.
Let ∆ be any finite subset of Γ. As ∆ is finite, it can involve at most finitely
many of the sentences ¬ cα = cβ. Any model of ∆ would need a domain with
enough distinct elements with which to interpret the cγs involved in these
finitely many sentences to make these latter true; but that only requires the
model to have at least some large finite domain. Of course, any model of ∆

281

6 Some uses of compactness

must also be a model for whichever axioms of T are in ∆. Luckily we are
assuming that T has an infinite model B, making these sentences in ∆ true.
So as the domain of B is infinite, we can expand the structure B to interpret
those cγs appearing in ∆ by different elements of its domain (as there are only
finitely many of these cγs), thereby obtaining a model for ∆.

The required result now follows by the compactness theorem.

As we can axiomatize theories like those for groups and fields which have
known infinite models, we can deduce from the upward Löwenheim–Skolem
theorem that there arbitrarily large groups and fields – without having to
construct them!

There’s a somewhat important detail required for the proof above which we
neither mentioned nor justified, taking the view that mere details shouldn’t
get in the way of such a good story! However, now is the place to remind
that while we have stated and used the compactness theorem for an arbitrary
first-order language, we have effectively only proved it for languages with at In the proof of Theorem 6.7, by

introducing the new constant
symbols {cα : α ∈ κ} for an
arbitrarily large cardinal κ, we have
made the language uncountable.

most countably many symbols – the proof of the compactness theorem (in
Section 6.1) exploits the completeness theorem and we have proved the latter
only for countable languages. The completeness theorem does however hold
for uncountable languages. We shall state the theorem for languages with
equality and give a sketch proof which you can fill out if you have enough
background in set theory.

Theorem 6.8 Completeness theorem for uncountable languages

If ∆ is a consistent set of sentences in an uncountable language L, then
∆ has a model. If L is a language with equality, then ∆ has a normal
model.

Proof
We’ll give only a brief idea of how this might be proved on the basis of our proof
of the completeness theorem in Section 5.5 of Chapter 5. This proof starts
with a consistent set of sentences ∆0 in a language L0. It then interleaves
processes of

extending a consistent set Σ of sentences in some language L to a maximal This was done in Theorem 5.19 in
Section 5.5.consistent set Σ′ in that language

and

taking a consistent set Γ of sentences, adding to the language L extra This was done in Theorem 5.20.

constant symbols for each sentence in Γ beginning with a ∃ to obtain a
larger language L+ and adding sentences exploiting these constants to
‘witness’ these particular ∃s to obtain a larger consistent set Γ+.

This interleaving is done often enough (countably many times) to build up
the original ∆ into a complete set ∆∗ in an enlarged language L+ with lots
of new constant symbols. We then construct the canonical structureA with
domain the set of of closed terms of L+ which is a model of ∆∗ and thus of

282

6.4 The Löwenheim–Skolem theorems

∆0. If the original language L includes =, the normal contraction [[A]] ofA is
a normal model of ∆∗ and ∆0.

Our proof of Theorem 5.19 was given for a countable language. The proof for
an uncountable language of cardinality λ would be along essentially the same
lines. A finite or countable language has countably infinitely many sentences,
and correspondingly a language with λ symbols has the same number λ of
sentences. As the cardinal λ is an initial ordinal, we can list the sentences of The members of an infinite cardinal

λ fall into three sorts. There is the
natural number 0 which is the least
element of λ. Next are ordinals
which are successors: for α, β ∈ λ,
β is called the successor of α if β is
the least element of λ greater than
α, in which case β is written as α+.
The remaining elements µ of λ are
called limit ordinals, which can be
characterised as not equal to 0 and
such that for any α < µ, one also
has α+ < µ.

such a language in order as {φα : α ∈ λ}. We then construct sets Σα for α < λ
corresponding to this listing taking Σ0 to be Σ, defining Σα+ from Σα and
φα in the same way that Σn+1 was defined from Σn and φn in the proof of
Theorem 5.19, and the extra definition to cope with limit ordinals µ < λ of Σµ

as
⋃

α<µ Σα. The set Σ′ is defined essentially as in the proof of Theorem 5.19

to be
⋃

α<λ Σα. Proving that each Σα and Σ′ are consistent is virtually the
same as in our earlier proof.

The proof of Theorem 5.20 stays the same for an uncountable language, but
the statement of the theorem changes to saying that if the original language
L has uncountable cardinality λ, adding the new constant symbols gives a
language L+ of the same cardinality λ. This is essentially because at most λ
sentences of L begin with a ∃, so that the new language has cardinality λ + λ,
which equals λ.

The interleaving of these results to expand ∆0 into the complete set ∆∗ in the
enlarged language L+ still only has to be done countably many times. This is
because sentences are only finitely long, so that the process of ‘witnessing’ all
existential quantifiers is completed after countably many passes through the
cycle. Just as in the proof of the completeness theorem, a canonical structure
A is constructed out of the set of closed terms of the enlarged language L+,
treating the = symbol, if included in the language L, as any old 2-place relation
symbol at this stage, so that the domain ofA has cardinality λ. Theorem 5.18
can be used as it stands to show that A is a model for ∆∗ and thus of the
original consistent set ∆. Finally if L is a language with equality, then the
normal contraction [[A]] ofA is a normal model of ∆, just as in Section 5.5 of
Chapter 5.

Combining this with the completeness theorem for countable languages, we
obtain the full version of the completeness theorem.

Theorem 6.9 Completeness theorem for an arbitrary language

For all sentences φ and sets Γ of sentences in a first-order language L, Note, just to tie these results with
our earlier comments on the set
theoretic background, that both
the completeness and compactness
theorems for arbitrary languages
are equivalent to AC. In the proof
of Theorem 6.8, AC is needed at
the stage of listing the sentences of
the language as {φα : α ∈ λ}.

possibly uncountable, if Γ � φ then Γ � φ.

Armed with this version of the completeness theorem, we can then prove the
compactness theorem for an arbitrary language. We state it below. Its proof
is identical to the one given in Section 6.1 except that the reference made

283

6 Some uses of compactness

to the completeness theorem should now be to the one above, which covers
uncountable as well as countable languages.

Theorem 6.10 Compactness theorem for an arbitrary language

Let Γ be a set of sentences in a first-order language L, possibly uncount-
able. Then if every finite subset of Γ has a model, so does Γ.

Our proof of the next theorem, the downward version of the Löwenheim– We give a sketch of Skolem’s
original proof of the theorem, done
(in 1920) some years before the
completeness theorem was proved,
at the end of this section.

Skolem theorem, relies on details within the proof of the completeness theorem
for uncountable languages above.

Theorem 6.11 Downward Löwenheim–Skolem theorem

Let T be a theory in a first-order language L with equality of cardinality
λ (meaning that the set of symbols of L has this cardinality, which could
be finite). If T has a model, then T has a model of cardinality at most
max{λ,ℵ0}.

Proof

We shall need the following detail which can be extracted from the end of
our proof of Theorem 6.8 for an uncountable language of cardinality λ. The
domain of the canonical structureA consists of the closed terms of the lan-
guage L∗ and has cardinality λ. As the complete set ∆∗ in the language L∗

may include sentences saying that some of these closed terms are equal, the
cardinality of the normal contraction [[A]] ofA could be smaller than λ, so that
this model has cardinality at most λ.

Now to prove the downward Löwenheim–Skolem theorem! Suppose that T
has a model. Then by the soundness theorem T is consistent. If the language The soundness theorem doesn’t

depend on the cardinality of the
language.

L has only finitely or countably many symbols, Theorem 5.21 tells us that
T has a countable model, that is, one of cardinality at most ℵ0. If the lan-
guage L is uncountable, our initial remark in this proof shows that T has a
model of cardinality at most λ. Thus T has a model of cardinality at most
max{λ,ℵ0}.

The upward and downward Löwenheim–Skolem theorems can be combined to
give something that we can call the full Löwenheim–Skolem theorem:

Theorem 6.12 Full Löwenheim–Skolem theorem

Let T be a theory in a language L with equality of cardinality λ. If T
has an infinite model and κ is any cardinal with max{λ,ℵ0} ≤ κ, then
T has a model of cardinality precisely κ.

284

6.4 The Löwenheim–Skolem theorems

Proof

Suppose that T has an infinite model and max{λ,ℵ0} ≤ κ. Add to the lan-
guage a set of κ new constant symbols {cα : α ∈ κ} and define Γ by

Γ = T ∪ {¬ cα = cβ : α �= β, α, β ∈ κ}.
As T has an infinite model, the upward Löwenheim–Skolem theorem says that
it also has a model of cardinality at least κ, so that Γ has a model. Then
by the downward Löwenheim–Skolem theorem Γ also has a normal model of
cardinality at most max{κ,ℵ0}; but the inequalities between the cγs in Γ
guarantees that this model has size at least κ, so it must have cardinality
exactly κ.

So there are groups and fields of all infinite cardinalities – both theories can
be axiomatized in finite languages, i.e. λ is finite, so the max{λ,ℵ0} in the
statement of the full Löwenheim–Skolem theorem equals ℵ0, and the κ can
thus be any infinite cardinal.

We can now explain a remark we made in Section 5.5 of Chapter 5 alongside
the proof of Theorem 5.18. This theorem essentially showed that a special
structure A satisfied a complete set of sentences ∆∗ and the remark was that
this structure was in general not unique. You can now see why this is so. If
∆∗ has an infinite model, then it has models of all infinite cardinalities, rather
than a unique model.

As a by-way, the next exercise gets you to prove that the full Löwenheim–
Skolem theorem implies a statement about infinite cardinals equivalent to the
axiom of choice, giving one of the links in a proof of the equivalence of AC to
all sorts of things via the route

AC ⇒ completeness ⇒ compactness

⇒ Löwenheim–Skolem ⇒ . . . ⇒ AC.

Exercise 6.21
One equivalent of AC is the statement that κ · κ = κ for all infinite cardinals See e.g. Goldrei [16] for a proof

that this is equivalent to AC.κ. As κ is a set, this really means that there is a bijection between κ × κ and
κ for each of these infinite sets κ. Let L be the language with equality and a
2-place function symbol f . By considering models of the sentence

(∀x∀y∀x′∀y′(f(x, y) = f(x′, y′) → (x = x′ ∧ y = y′)) ∧ ∀z∃x∃y f(x, y) = z),

show that the full Löwenheim–Skolem theorem implies this equivalent of AC.
[Hint: Think about whether the sentence has a countably infinite model.]

The Löwenheim–Skolem theorems have a variety of positive applications,
showing for many theories the existence of infinite models of given cardi-
nalities, as in the following exercise.

285

6 Some uses of compactness

Exercise 6.22

Let L be a language with equality and binary function symbols + and · and Actually, there is a straightforward
direct construction of a field as
required in (b). Let Zp[t] be the
ring of polynomials in t with
coefficients in Zp. Then the set of
quotients

{f/g : f, g ∈ Zp[t], g �= 0}
with the natural addition and
multiplication of rational functions
is a countably infinite field of
characteristic p. (The g �= 0 above
means g is not the zero
polynomial.)

constant symbols 0 and 1. Let p be a prime number.

(a) Write down axioms in L for the theory of fields of characteristic p.

(b) It can be shown that for each positive integer n there is exactly one
field (up to isomorphism) of characteristic p with pn elements. Use this
information to show that there is a countably infinite field of characteristic
p. [Hints: First show that there is an infinite model of the theory and
then use the downward Löwenheim–Skolem theorem to get a countable
model.]

The Löwenheim–Skolem theorems also have a variety of negative applications,
in the sense of showing that certain mathematical theories cannot be axiom-
atized in a first-order language. For instance, the theory of countably infinite
groups cannot be axiomatized in this way – any such axioms would have infi-
nite models, for instance the group 〈Z, +, =〉 of integers under addition, so by
the upward Löwenheim–Skolem theorem would also have uncountable mod-
els, which cannot be models of the desired theory, simply because we insisted
that the groups should be countably infinite. Such theories are perhaps just
a tad artificial, but the Löwenheim–Skolem theorems can be used to show
that some very important theories are not first-order axiomatizable. These
are well-known theories which have the properties that all models are isomor- A theory for which all its models

are isomorphic is called categorical.phic and the one model (up to isomorphism) is infinite. This would appear to
contradict the upward Löwenheim–Skolem theorem, as follows: if the cardi-
nality of this one infinite model is κ, the upward Löwenheim–Skolem theorem
says that there is a model of cardinality at least 2

κ; but this model cannot
be isomorphic to the unique model as they are of different cardinalities – an
isomorphism of models is, amongst other things, a bijection between their
domains. From this contradiction one concludes that these theories cannot
be axiomatized in a first-order language. What sort of theories come into this
category? The most interesting ones are the well-known axiomatizations of
the natural numbers and of the real numbers.

The natural numbers can be axiomatized as follows by Peano’s axioms. The Italian mathematician
Giuseppe Peano (1858–1932)
introduced much of the notation
used in modern mathematical
logic. Peano’s axioms, along with a
proof that any two models of them
are isomorphic, can be found in
many books, e.g. Goldrei [16].

Peano’s axioms for the natural numbers

X is a set with a special element 0X ∈ X and a function s : X −→ X
such that the following also hold:

1. the function S is one–one, i.e. for all x, y ∈ X , if S(x) = S(y) then
x = y;

2. for all x ∈ X , 0X �= S(x);

3. for all subsets A ⊆ X , if A contains 0X and contains S(x) whenever This axiom is the principle of
mathematical induction.x ∈ A, then A is all of X .

This set of axioms can be shown to be categorical and has the infinite model
N with the usual 0 and successor function. Our argument above using the up-
ward Löwenheim–Skolem theorem shows that there is no such axiomatization

286

6.4 The Löwenheim–Skolem theorems

of the natural numbers in a first-order language. So where do Peano’s axioms
fail to be first-order? The problem lies with the final axiom, the induction
principle, which might be written symbolically as

∀A((0 ∈ A ∧ ∀x(x ∈ A → s(x) ∈ A) → ∀x x ∈ A).

There’s nothing wrong with ∈ as a binary relation symbol, s as a unary
function symbol and 0 as a constant symbol. But this sentence involves
quantification not only over elements x of the domain of any interpretation The reason that the usual axioms

for well-ordered sets are not all
first-order, which we asked you to
explain in Exercise 6.17 in the last
section, is the same: the
well-ordering property conceals
quantification over (non-empty)
subsets.

(the ∀x), but also over subsets A of the domain (the ∀A). This sort of sentence
belongs in a second-order language, which allows quantification over subsets,
rather than a first-order language.

Exercise 6.23
Axioms for the real numbers which are categorical are given in Chapter 1, the
introduction to this book. Which ones fail to be first-order?

Solution

The only axiom which is not first-order is axiom 16, the completeness axiom:
any non-empty subset A of S which is bounded above has a least upper bound
in S. The ‘bounded above’ and ‘has a least upper bound’ can be dealt with
in a suitable first-order language, but the ‘any non-empty subset’ requires
quantification over subsets as well as elements.

Exercise 6.24
Show that it is impossible to give axioms in a first-order language which
describe R in the way as the standard axioms given in Chapter 1.

A consequence of the downward Löwenheim–Skolem theorem, called Skolem’s
paradox, concerns the Zermelo–Fraenkel axiomatization of set theory, ZF .
This axiomatization is done using a first-order language with equality and
the 2-place relation symbol ∈ and has an infinite model (or so we believe!).
So by the downward Löwenheim–Skolem theorem ZF has a countable model.
But this seems to contradict results like Cantor’s theorem which, given that
there are some infinite sets, entails the existence of uncountable sets, e.g.
once N is a set, P(N) is an uncountable set. Surely in any model of the ZF
axioms, there should be some uncountable sets: so how can a model only be
countable? The resolution of the paradox is rather subtle. The statement
N ≺ P(N) says that there is a one–one function from N into P(N), but that
there is no bijection between the sets: the one–one function and any possible
bijection would themselves be sets, namely sets of ordered pairs. All of these
statements could be true in a countable model, provided the domain contains This is a considerable

simplification, of course! The
model also has to recognize certain
elements of the domain as subsets
of its representation of N and then
ensure these elements are in its
representation of P(N), and so on.

elements corresponding to N and P(N), an element which the model thinks is
a set of pairs representing a one–one function from N to P(N) and no element
which it thinks codes a bijection between the sets.

To end the section, it is interesting to see how Skolem proved the downward
Löwenheim–Skolem theorem well before the completeness theorem for predi-
cate calculus, which is what our proof above exploits, had been proved. We
shall sketch the proof for a theory T in a countable language L. We suppose
that T has an infinite model A and want to show T has a countable model.

287

6 Some uses of compactness

For each sentence ψ ∈ T we construct a Skolem form ψSk for ψ, as discussed
at the end of Section 4.3 of Chapter 4, making sure that the function and
constant symbols added to the language to produce each ψSk are distinct
from each other. By Theorem 4.6 of Section 4.3, for each ψ ∈ T there is an
expansion A∗ of A, adding interpretations of the extra function and constant As we mentioned in Section 4.3,

this requires use of AC.symbols, which satisfies ψSk. As the extra symbols for each ψSk are distinct
from each other, these expansions of A don’t conflict with each other over the
interpretations of these symbols. This means that these expansions can be
bundled together to give a single expansion ASk of A for the language LSk

obtained by adding all the new function and constant symbols to L such that
ASk satisfies ψSk for all ψ ∈ T .

Now let B be any substructure of ASk, so B is a structure for the language
LSk. As each ψSk is a universal sentence, Exercise 4.7(b) of Section 4.5 of

Chapter 4 tells us that B satisfies ψSk. Then as (ψSk → ψ) is universally valid
(also by Theorem 4.6), this means that B satisfies ψ for each ψ ∈ T , so that
B is a model of T .

All we need to do now is investigate possible cardinalities of the substructures
B. First note that as the original language L is countable, and any sentence of
L is a finite string of symbols in L, there are at most countably many sentences
ψ in T . As production of the prenex normal form and then the Skolem form
of each ψ adds only finitely many extra function and constant symbols, there
are at most countably many extra function and constant symbols added to L
to give the language LSk. Now let C be any countable subset of the infinite
domain A of both the structures ASk and A. As there are at most countably
many terms in any countable language (as each term is just a finite string of

symbols), the substructure B of ASk generated by C is countable.

Putting it together, if the theory T has an infinite model A, it also has a
countable model.

Further exercises

Exercise 6.25
Show that none of the following theories can be axiomatized in a countable
first-order language.

(a) The theory of all uncountable sets.

(b) The theory of countable linearly ordered sets.

(c) The theory of vector spaces over the field R of real numbers. To do parts (c) and (d) of this
exercise, one needs some
elementary knowledge of vector
spaces.

(d) The theory of finite-dimensional vector spaces over the finite field Zp,
where p is a prime number.

288

6.5 New models from old ones

6.5 New models from old ones
The compactness theorem has many positive consequences. One is to show
the existence of models of a theory T with some special property, using the
method of adding new constant symbols and new sentences involving them.
We have already seen several examples of this method, for instance in the
proof of the upward Löwenheim–Skolem theorem where the special property
is having a certain minimum size, and we shall look at further applications of
it in this section.

An outline of the method of adding new constant symbols is as follows. We
have a theory T in a first-order language L with some known models and In this section we’re interested in

theories which are first-order
axiomatizable. In Section 6.3 we
were essentially using this
technique to show that some
mathematical theories were not
axiomatizable: we assumed the
theory could be axiomatized,
added new constants to the
language and sentences involving
them in a clever way so that any
model of them could not also be a
model of the theory, and arrived at
a contradiction via the
compactness theorem.

we want to show that T has some sort of special model. This can often be
achieved by adding new constant symbols to L and (usually infinitely many)
sentences involving them to T , so that any model of this extension of T is
what’s required. If any finite subset of the extended theory can be shown to
have a model, probably using one of the known models, then the compactness
theorem tells us that the special model exists.

In the proof of the upward Löwenheim–Skolem theorem, Theorem 6.7, enough
new constant symbols, namely κ of them, are added to L and sentences saying
that they are unequal are added to T . As T has an infinite model, it is always
possible to find a model for any finite subset of the extended theory. So by
the compactness theorem the extended theory has a model, which is thus a
model for T with at least κ distinct elements.

See if you can apply this technique in the next few exercises.

Exercise 6.26

Let L be a language with equality including a binary function symbol · and The set-up here has a great deal in
common with Exercise 6.16 in
Section 6.3. The main point of the
current exercise is in part (a), using
the compactness theorem in a
positive way to show the existence
of a special model of the theory.

constant symbol c.

(a) Let T be a theory in this language with axioms including those for groups
such that the models of T include all the finite cyclic groups. Show
that T has a model which is a group with an element of infinite order.
[Hint: Use a new constant symbol c and introduce sentences to force any
interpretation of c to have infinite order.]

(b) Use the result above to show that the theory of groups where every ele-
ment has finite order is not axiomatizable.

(c) This part is a digression from the theme of this section, but useful practice!
Take the same theory T as in part (a). Devise suitable sentences involving
no new constant symbols which when added to T have an infinite model This model will be a torsion-free

group.in which every non-identity element has infinite order. (As ever, you’ll
probably need the compactness theorem to show that this model exists.)

Let’s move to an application of the technique of some mathematical signifi-
cance. This is cast in the form of an exercise.

289

6 Some uses of compactness

Exercise 6.27

Let OF be the theory of ordered fields expressed in the language L with Axioms for this theory were given
on page 205 in Section 4.4 of
Chapter 4.

equality containing 2-place function symbols + and ·, 1-place function symbols
− and −1, constant symbols 0 and 1 and the 2-place relation symbol <.

(a) Prove that any model of OF has characteristic 0. [Hint: You may find Although the theory of fields of
characteristic 0 cannot be finitely
axiomatized, it is of interest to see
how an extension of the field
axioms by finitely many axioms can
entail the characteristic 0 property.

the logical consequence of T that 0 < 1 useful. This was the result of
Exercise 4.93(a)(i) in Section 4.4.]

(b) Use the method of adding new constant symbol(s) to show that there
exists a model A of OF in which there is an element c with 0 <A c such
that for no natural number n does c <A n

A hold in A. (We are using n

as a shorthand for (1 + 1 + . . .1)︸ ︷︷ ︸
n

, so that n
A is the interpretation in A

of this term.)

(c) Deduce that in the model A of part (b) there is an element d such that
0 <A d <A (nA)−1 holds in A for all natural numbers n.

If you have studied real analysis, you should have met the Archimedean prop-
erty of the fields Q and R:

if a > 0 and b is any member of the field, then there is some n ∈ N such
that n · a > b.

Exercise 6.27 shows that there is an ordered field A which does not have this
property (by taking 1A as a and c as b). We call A a non-Archimedean ordered
field. If we identify each element n

A with the natural number n, we could
then regard the element c of A as an infinite element, regarding an element
a as finite if there is some n ∈ N for which −n

A <A a <A n
A. It is easy and

fun to see that A contains many more infinite elements, e.g. c− 1 and c2. An
element like d in part (c) of Exercise 6.27 is called an infinitesimal element.

The result of Exercise 6.27 is of considerable interest. In the original formu-
lation of the differential and integral calculus, vital use was made of infinites-
imals, meaning infinitely small quantities. Although many powerful and now
familiar results were obtained thereby, this use of the infinitely small led to
confusion and, arguably, to contradictions. The process of making calculus
more rigorous in the 19th century resulted in the banishment of infinitesimals
– definitions of various forms of limit in real analysis are all couched in terms
of ordinary real numbers, albeit arbitrarily small positive ones. The existence See for instance Robinson [26]

or [27], works by the founder of the
theory of non-standard analysis,
Abraham Robinson (1918–1974).

of infinitesimals shown in Exercise 6.27 within a modern mathematical frame-
work enabled the renewal of the study of the calculus using infinitesimals in
a subject called non-standard analysis.

The basis of a further rich vein of modern model theory in the study of the
arithmetic of the natural numbers is given in the following exercise.

290

6.5 New models from old ones

Exercise 6.28

Let L be a language with equality, binary function symbols + and · and con-
stant symbols 0 and 1, suitable for expressing statements about the arithmetic
of N, the natural numbers. Let N be the structure with domain N and the
usual interpretations in N of these symbols: N is called the standard model
of this arithmetic. Let T be the set of all sentences in L true in N, giving a
theory we shall call complete arithmetic. Show that there are countable mod-
els (described as non-standard) of T which are not isomorphic to N. [Hints:
Every element of N in the standard model is of the form 1 + 1 + 1 + . . . + 1︸ ︷︷ ︸

n

for n ∈ N. How would you set about creating a model in which there is some
element not of this form? Once you have such a model, don’t forget the detail
that a countable model is required!]

The set of sentences true in a structure is often of great interest, so merits a
definition and some notation.

Definition Theory of a structure

Let A be a structure for a language L. The theory of A, written as
Th(A), is the set of sentences of L true in A.

So taking L to be the language with equality and +, ·,0,1 as in Exercise 6.28
and N the standard model of arithmetic, Th(N) is the theory complete arith-
metic.

Exercise 6.29

Let L be the language with equality, symbols +, ·,0,1 as above and the binary
relation symbol < and let R be the structure with domain R, the set of real
numbers, and the usual interpretations in R of these symbols. Show that
Th(R) has a model of the same cardinality as the continuum R which is not
isomorphic to R.

A different sort of application of the compactness theorem is as follows. We We first proved this result in
Section 3.3 of Chapter 3 using the
compactness theorem for
propositional calculus. But the
result is more naturally proved
within the framework of predicate
calculus.

shall show that a strict partial order < on a set A can be extended to a strict
linear order <′ on the same set; that is, <′ is a strict linear order on A and
for all a, b ∈ A, if a < b then a <′ b.

It can be shown that this result holds for any finite partially ordered set. We
shall use this fact to show that it holds for any (in particular infinite) partially
ordered set. The argument will exploit the compactness theorem.

Let A = 〈A, <A, =〉 be a strict partial order. We add to the language the set With this notational convention
using boldface symbols, the
constant symbols corresponding to
distinct elements a, a2, b of A are,
respectively, a, a2,b.

{a : a ∈ A} of new distinct constant symbols corresponding to the elements of
A. Let Σ be the set of sentences

Σ = SLO ∪ {a < b : a <A b} ∪ {¬a = b : a �= b},
where SLO is the set of axioms for a strict linear order.

291

6 Some uses of compactness

We shall first show that any finite subset of Σ has a model. Any such sub-
set ∆ involves at most finitely many of the new constant symbols, let’s say
a1,a2, . . . ,an, corresponding to the elements a1, a2, . . . , an in a finite subset
A′ of A. The sentences involving these constant symbols in ∆ must be a
subset of

{a < b : a <A b, where a, b ∈ A′} ∪ {¬a = b : a �= b, where a, b ∈ A′}.
These latter sentences effectively describe the substructure A′ of A generated
by the subset A′. As the axioms of a strict partial order are universal, the
result of Theorem 4.7(b) of Chapter 4 tells us that A′ is also a strict partial
order (ordered by the restriction of <A to A′). We are given that any finite
partial order can be extended to a linear order on the same set, so that taking
this extension for the finite set A′ we obtain a model for the given finite subset
∆ of Σ.

It follows by the compactness theorem that Σ has a model Note that C is a structure for the
bigger language including the extra
constant symbols.C = 〈C, <C, =, {aC : a ∈ A}〉,

which is thus a strict linear order. We shall exploit this model to show that
the order <A on A can be extended to a linear order on A. We define a
relation <∗ on A by

a <∗ b if and only if a
C <C b

C,

for all a, b ∈ A. Note that <∗ extends the original partial order <A, as if for
any a, b ∈ A, a <A b, then

a < b ∈ Σ,

so that as C is a model of Σ

a
C <C b

C,

so that by definition

a <∗ b.

But the definition also guarantees that the structure 〈A, <∗, =〉 is isomorphic The sentences {¬ a = b : a �= b}
were included in Σ to ensure that
a �−→ aC is a bijection (needed for
the isomorphism), by preventing
the interpretation of a,b in C for
distinct a, b in A being the same
element of C.

to the substructure of C generated by the subset {aC : a ∈ A} consisting of
the interpretations in C of the new constant symbols. As the language has
no function symbols, the domain of this substructure is simply {aC : a ∈ A}
itself. As the axioms of the theory of strict linear order are universal, the
substructure is a strict linear order, again using Theorem 4.7(b) of Chapter 4.
Thus <∗ extends the original partial order on A to a linear order, as required.

There are other examples of this sort, where we are given a structure A for a
language L which is a model for a theory T and want to show that A has a
particular property. If this property holds for all finitely generated substruc-
tures of A, then by adding constants and clever sentences involving them,
using compactness to find a model and then taking the right substructure of
it, one can often show that the original structure also has this property. We
shall look at one example, which is called a colouring of a graph.

For our purposes here, a graph is a non-empty set with a symmetric binary
relation on it.

292

6.5 New models from old ones

Exercise 6.30

Let L be a language with equality and a binary relation symbol E. Using the
above description of a graph, give axioms for the theory of graphs.

Solution
We just need the one axiom to express the symmetry property:

∀x∀y(E(x, y) ↔ E(y, x)).

If G = 〈G, EG, =〉 is a graph, it is customary in graph theory to call an element
of G a vertex of the graph, and if (a, b) ∈ EG (so that also (b, a) ∈ EG) to say
that the vertices a, b are connected by an edge. If you have never met any
graph theory before, this might seem rather dull so far. But imagine that See Exercise 6.36 for more about

graphs which do represent maps, as
not every graph does represent a
map. But every map gives a graph!
For more about graph theory, see
the excellent introduction by
Wilson [30]. For a history of the
Four Colour Conjecture and its
proof, see Wilson [31].

the elements of G are countries on a map, for instance of Europe, and that
(a, b) ∈ EG whenever the countries a and b share a common boundary. This is
the background for the Four Colour Conjecture, now proved, which says that
each country on the map can be coloured with one of four colours in such a
way that countries with a common boundary have a different colour. As an
abbreviation, we shall say that the corresponding graph is 4-colourable.

Exercise 6.31

Suppose that the language L with equality and the binary relation symbol
E now also includes the 1-place relation symbols C1, C2, C3, C4 and that the
intended interpretation of Ci(x) is that the vertex (or country) x has colour i,
for i = 1, 2, 3, 4. Write down sentences to express that a graph is 4-colourable.

Solution
One of the sentences needed might be ∀x∀y((E(x, y) ∧C2(x)) → ¬C2(y)). We
leave the rest to you.

Now for the example in the spirit of this section, given as an exercise! Note
that if G = 〈G, EG, =〉 is a graph, then as the axiom for the theory of graphs is
universal, every substructure of G is also a graph, normally called a subgraph For any subset H of G, the

subgraph generated by H has
domain H .

of G.

Exercise 6.32

Let G = 〈G, EG, =〉 be a graph with the property that every finite subgraph
is 4-colourable. Show that G is 4-colourable. [Hints: Take the language with
equality and the relation symbols E, C1, C2, C3, C4 and add new distinct con-
stant symbols for each element of G. Now construct a set Σ of sentences in-
cluding axioms for the theory of 4-colourable graphs, sentences E(a,b) when-
ever (a, b) ∈ EG and sentences ¬a = b for each a �= b in G. Show that Σ has
a model and use this model to show that the original graph G is 4-colourable.]

The idea of adding new constant symbols for each element of a structure A and
using these symbols to write sentences which express some of the properties

293

6 Some uses of compactness

of the corresponding elements of A is very fruitful in model theory. One way
of doing this is given in the following definition.

Definition Diagram of a structure

Let A = 〈A, . . .〉 be a structure for a language L with equality. Let L(A)
be the language obtained by adding to L new distinct constant symbols We shall use the same convention

with boldface symbols as earlier,
e.g. a, a2,b for distinct elements
a, a2, b of A.

for each element of the domain A. The diagram of A, written as ∆(A),
is the set consisting of all sentences in the language L(A) of the form

φ(a1,a2, . . . ,an)

where φ is atomic and A �x1/a1,x2/a2,...,xn/an
φ(x1, x2, . . . , xn) and also

all sentences of the form

¬φ(a1,a2, . . . ,an)

where φ is atomic and A ��x1/a1,x2/a2,...,xn/an
φ(x1, x2, . . . , xn).

An alternative way of describing the diagram of A, ∆(A), is as the set of all
atomic sentences and negated atomic sentences of the language L(A) true in
the expansion of A obtained by interpreting the extra constant symbols by
the corresponding elements of A. So, for instance, if L is the language with
equality with the binary symbol < and A = 〈A, <A, =〉 is a structure for L,
the diagram of A would be the set This set includes the sentences

which we used in our earlier
example about extending a partial
order into a linear order.

{a < b : (a, b) ∈ <A} ∪ {a = a : a ∈ A}
∪ {¬a < b : (a, b) �∈ <A} ∪ {¬a = b : a �= b}.

The main point of the definition is given by the following theorem, which says
that any structure satisfying the diagram of A must contain a substructure
which is isomorphic to A.

Theorem 6.13

Let A,B be structures for the language L with equality with domains
A, B respectively. Let {ba : a ∈ A} be elements of B such that the ex-
pansion B∗ of B to the language L(A) obtained by interpreting each new
constant symbol a by ba (for the a ∈ A corresponding to a) is a model
for ∆(A), the diagram of A. Then A is isomorphic to the substructure
C of B generated by {ba : a ∈ A}.

Proof
We shall sketch a proof.

First note that the domain of the substructure C is the set {ba : a ∈ A} itself,
as we can show that {ba : a ∈ A} is closed under the interpretation of any
function and constant symbols of the original language L. For instance, if f is
a 2-place function symbol in L and a1, a2, a3 ∈ A with a3 = fA(a1, a2), then
the set includes elements ba1

, ba2
, ba3

. As one of the atomic sentences in the
diagram ∆(A) is a3 = f(a1,a2) and B∗ is a model of the diagram, we have

294

6.5 New models from old ones

ba3
= fB(ba1

, ba2
). So the set {ba : a ∈ A} is closed under the function fB.

Likewise, if c is a constant symbol of the original language L interpreted in A
by a, then one of the atomic sentences in the diagram ∆(A) is a = c for some
a ∈ A, and the corresponding element ba interprets the constant symbol c in
B.

Now we know the domain of the substructure C, the obvious candidate for the
isomorphism is the map

θ : A −→ {ba : a ∈ A}
a �−→ ba

We need θ to be a bijection (property (i) in the definition of an isomorphism).
It is plainly onto. As for the one–one property, if a1, a2 ∈ A with a1 �= a2,
then ∆(A) includes ¬a1 = a2 (which is the negation of an atomic sentence),
so that as B∗ is a model of ∆(A), ba1

�= ba2
, so that θ(a) �= θ(a2). Thus θ is

one–one.

From our earlier discussion of the interpretation of the 2-place function symbol
f we have

θ(fA(a1, a2)) = ba3
, where a3 = fA(a1, a2)

= fB(ba1
, ba2

)

= fC(ba1
, ba2

)

= fC(θ(a1), θ(a2)),

which gives an example to show that property (iii) of an isomorphism is sat- You will note that the
mathematically very useful method
of proof by example is not a
feature of our formal proof system!

isfied. Likewise, it follows from our discussion of any constant symbol c of L
that θ(cA) = c

B = c
C, so that property (iv) of an isomorphism is satisfied.

We leave checking an example of the remaining property of an isomorphism,
for relations symbols, as an exercise for you.

Exercise 6.33

Complete the sketch proof of Theorem 6.13 by showing that the function θ
obeys property (iv) of an isomorphism in the case of a 3-place relation symbol
R of the language L, that is, show that

(a1, a2, a3) ∈ RA if and only if (θ(a1), θ(a2), θ(a3)) ∈ RC.

Exercise 6.34
Suppose that the theory T in a countable language L has a countably infinite
model A. Show that for any infinite cardinal κ, T has a model of cardinality
κ containing a substructure isomorphic to A.

In Chapter 4 we proved that if a theory T can be axiomatized by universal In Theorem 4.5(c).

sentences, then for any model of T , all of its substructures are also models of
T . To conclude this section, we shall use the idea of a diagram to prove the
converse of this theorem.

295

6 Some uses of compactness

Theorem 6.14

Let T be a theory in a language L with equality whose models are closed
under substructures, that is, if B is a model of T and A is a substructure
of B, then A is a model of T . Then T can be axiomatized by a set of
universal sentences in L.

Proof
We define a set T∀ of universal sentences by

T∀ = {ψ : ψ is a universal sentence and T � ψ}.
We shall show that T∀ axiomatizes the theory T , that is, A is a model of T if
and only if A is a model of T∀.

Plainly the definition of T∀ ensures that any model of T is a model of T∀. It’s
the other direction which needs the work! So suppose that A is a model of
T∀. We must show that A is a model of T . Consider the set of sentences

Σ = T ∪ ∆(A)

in the language L(A). If Σ has a model, then this model is the expansion
of a structure B for the language L to the language L(A) obtained by giving
an interpretation ba for each new constant symbol a. Then by Theorem 6.13
the substructure of B generated by {ba : a ∈ A} is isomorphic to A. Also as
T ⊆ Σ and the only symbols used in T are in the language L, B is a model
of T . By supposition, any substructure of B is a model of T , so that as A
is isomorphic to such a substructure, A is a model of T (by Theorem 4.8 of
Chapter 4). Thus so long as Σ does have a model, we have proved that every
model of T∀ is a model of T , proving the theorem.

We shall show that Σ does have a model by supposing it doesn’t and obtaining
a contradiction. If Σ has no models, then by the compactness theorem, there
is a finite subset Σ′ of Σ with no models. For this Σ′

T ∪ Σ′

has no models. As Σ′ is finite, it involves only finitely many sentences from
∆(A) which we can list as

φ1(a1,a2, . . . ,an), φ2(a1,a2, . . . ,an), . . . , φr(a1, a2, . . . ,an),

where the (finitely many) new constants involved in Σ′ are included in the
list a1,a2, . . . ,an and each φj(x1, x2, . . . , xn) is an atomic formula of L or its
negation. Then

T ∪ {φ1(a1,a2, . . . ,an), φ2(a1,a2, . . . ,an), . . . , φr(a1,a2, . . . ,an)}
has no models. As none of the constant symbols ai are in L, so none appear
in a sentence in T , we can infer that

T ∪ {∃x1∃x2 . . .∃xn

r∧
j=1

φj(x1, x2, . . . , xn)}

296

6.5 New models from old ones

has no models, so that

T � ¬∃x1∃x2 . . .∃xn

r∧
j=1

φj(x1, x2, . . . , xn),

or equivalently,

T � ∀x1∀x2 . . .∀xn¬
r∧

j=1

φj(x1, x2, . . . , xn).

But each of the formulas φj is atomic or the negation of an atomic formula,
so that the formula

¬
r∧

j=1

φj(x1, x2, . . . , xn)

is quantifier-free. Therefore

∀x1∀x2 . . .∀xn¬
r∧

j=1

φj(x1, x2, . . . , xn)

is a universal sentence, and as it is a logical consequence of T , it is in the set
T∀ and thus is true in A. But as each φj(a1,a2, . . . ,an) for j = 1, 2, . . . , r is Recall that A is a model of T !

in the diagram of A,

A �x1/a1,x2/a2,...,xn/an
φj(x1, x2, . . . , xn)

for each j, so that

A �x1/a1,x2/a2,...,xn/an

r∧
j=1

φj(x1, x2, . . . , xn),

contradicting that

A � ∀x1∀x2 . . .∀xn¬
r∧

j=1

φj(x1, x2, . . . , xn).

We can conclude that for each model A of T∀, Σ does have a model.

The method of adding constants, the concept of diagram and, above all, the To read more about model theory,
see e.g. Bridge [3], Cori and
Lascar [8], Hodges [20], Marker [24]
and Chang and Keisler [6].

use of the compactness theorem are major jumping off points for the modern
subject of model theory.

Further exercises

Exercise 6.35
Let A = 〈A, . . .〉 be a structure for a countable language L with equality and
let L(A) be the language obtained by adding to L new distinct constant
symbols for each element of the domain A. Let ThL(A)(A) be the set of all
sentences φ(a1,a2, . . . ,an), where φ(x1, x2, . . . , xn) is a formula of L with free
variables in the list x1, x2, . . . , xn and Each model of ThL(A)(A) has a

substructure isomorphic to A and
is called an elementary extension of
A.

A �x1/a1,x2/a2,...,xn/an
φ(x1, x2, . . . , xn).

Show that if A is infinite, then ThL(A)(A) has models of all infinite cardinal-
ities.

297

6 Some uses of compactness

Exercise 6.36

The generalization of the idea of a graph which can represent a map of coun-
tries on the globe is called a planar graph. Crudely speaking, this means that
one can draw a diagram representing the vertices and edges of the graph in
a plane with any two edges meeting each other only at vertices common to
them both – an idea which makes sense at least for finite graphs! It can be
shown that a graph is planar if and only if it contains no subgraphs of one of See e.g. Wilson [30].

the following two types.

1. Five vertices with each pair of vertices connected by an edge; This is called the complete graph
K5.

� �

�

� �

�
�

�
�

�
�

��

�
�

�
�
�

�
�
�
�
�
�
�
��

�
�

�
�

�
�

��

�
�
�
�
�

�
�

�
�
�

�
�
��

�
�

�
��

�
�

�
��

2. Six vertices grouped into two sets A and B each with three vertices, such This is called the complete

bi-partite graph K3,3.that each vertex in A and each vertex in B are connected by an edge, but
the vertices in A are not connected to each other and the vertices in B
are not connected to each other.

� � �

� � �

	
	

	
	

	
	

������������

	
	

	
	

	
	

������������

B

A

(a) Let L be a language with equality and a binary relation symbol E. Using
the above result about planar graphs, give axioms for their theory.

(b) Let G = 〈G, EG, =〉 be a graph with the property that every finite sub-
graph is planar. Show that G is planar.

6.6 Decidable theories
We shall conclude the book by looking at the decidability of some first-order
theories. To say that a theory T in a language L is decidable means that
there is some algorithmic procedure which, given a sentence φ of L, decides
after a finite number of steps of this procedure whether or not φ is a logical
consequence of T . You can perhaps imagine how desirable it might seem that
interesting mathematical theories, for instance, the theory of the real numbers
or number theory, are decidable. Famously, these theories are not decidable,
but there are nevertheless some positive results which we shall discuss in this
section.

298

6.6 Decidable theories

Our first positive results about decidability will stem from an important
model-theoretic result, Vaught’s test, for the statement of which we need
some new definitions.

Definitions κ-categorical, complete theory

Let T be a consistent theory in a language L and κ an infinite cardinal.
T is κ-categorical if all models of T of cardinality κ are isomorphic.

T is complete if for each sentence φ of L, exactly one of φ and ¬φ is a This use of the word ‘complete’ is
very similar to its use in describing
a complete set of sentences. The
connection is that the logical
consequences of a complete theory
form a complete set of sentences.

logical consequence (or equivalently a theorem) of T .

Theorem 4.9 of Chapter 4 tells us that the theory of unbounded dense linear
orders is ℵ0-categorical. As we ask you to show as an exercise, a simple but
important source of examples of a complete theory is obtained by taking, for
any structureA, the theory ofA, Th(A).

Exercise 6.37
LetA be a structure for a language L. Show that Th(A), the set of sentences This is why we can describe Th(N)

as complete arithmetic.of L true inA, is complete.

Exercise 6.38

The theory of infinite sets is axiomatized by the set of sentences {∃≥n : n ∈ N}.
For which infinite cardinals κ, if any, is this theory κ-categorical?

Theorem 6.15 Vaught’s test

Let T be a consistent theory in a countable language L with no finite The result, first proved by the
American logician Robert Vaught,
applies more generally when the
language has cardinality λ and κ is
an infinite cardinal with κ ≥ λ.

models. If all models of T of cardinality κ are isomorphic, for some
infinite κ, then T is complete.

Proof
Let φ be any sentence of L. We need to show that either T � φ or T � ¬φ. As T is consistent, it has a model,

so that we cannot have both T � φ
and T � ¬φ.Suppose that neither T � φ nor T � ¬φ. We shall show that this gives a

contradiction. As T �� φ, T ∪ {¬φ} has a model. Similarly as T �� ¬φ, T ∪ {φ}
has a model. As these models are both infinite (by the given property of T),
the full Löwenheim–Skolem theorem (Theorem 6.12 of Section 6.4) ensures
that each set has a model of cardinality κ. These models are isomorphic, so
by Theorem 4.8 of Section 4.5 they satisfy the same sentences. But one model
satisfies the sentence ¬φ while the other satisfies φ, giving a contradiction as
required.

Thus, using Vaught’s test, the theory of dense linear orders (in the language
{<, =}) and the theory of infinite sets (in the language {=}) are both com-
plete.

Knowledge that a theory T is complete can sometimes be exploited to show
that it is decidable. The key extra ingredients are that the theory T is in a

299

6 Some uses of compactness

countable language L and, of crucial importance, that it has a decidable set of
axioms, that is to say, there is an algorithmic procedure for deciding whether
a sentence of L is one of the axioms for T . The countability of the language
means that there is an algorithmic procedure for listing all finite sequences of
formulas and then deciding which are formal derivations from assumptions –
this would plainly be impossible for an uncountable language. The decidability
of the set of axioms then means there is an algorithmic procedure for deciding If T wasn’t complete, and neither

of φ and ¬φ was a theorem of T ,
this listing procedure wouldn’t
generate either sentence, but we’d
only be aware of this at the end of
an infinite process. This doesn’t in
itself mean that T isn’t decidable,
as there might be a completely
different procedure which shows up
after finitely many steps that
neither φ nor ¬φ is a theorem.

which of these formal derivations uses these axioms as assumptions and is thus
a theorem of T . It can thus be shown that there is an algorithmic procedure
which lists all the theorems of T in such a way that theorem T � φ appears
in the list after finitely many steps. Given the extra information that T is
complete, to decide whether φ or ¬φ is a theorem, we generate this list of
theorems and as one of these is a theorem (thanks to T being complete), one
of these will materialize in the list after finitely many steps. Hence if T is a
complete theory in a countable language with a decidable set of axioms, then
T is decidable.

The theory of dense linear orders has finitely many axioms and we hope that it
is plausible that there is an algorithmic procedure which will decide whether a
formula is one of these axioms. Although there are countably infinitely many
axioms for the theory of infinite sets, the axioms ∃≥n are of a very regular
shape and again we hope it is plausible that there is an algorithmic procedure
which will decide whether a formula is one of these axioms. So both theories
are also decidable, as well as complete.

As a further example, we shall look at a theory which attempts to axiomatize
the theory of the successor function on the natural numbers N.

Let T be the theory in the first-order language with equality with a 1-place
function symbol s and a constant symbol 0 with the following axioms:

1. ∀x¬ s(x) = 0

2. ∀x∀y(s(x) = s(y) → x = y)

3. ∀y(¬ y = 0 → ∃x y = s(x))

4. ∀x ¬x = sn(x), for all positive integers n, where sn(x) denotes s applied s2(x) means s(s(x)), s3(x) means
s(s(s(x))) and so on.to x successively n times.

Exercise 6.39
Explain why T has no finite models.

One countably infinite model is 〈N, S, 0, =〉, where S : N −→ N is the successor
function defined by S(n) = n + 1, for all n ∈ N.

Furthermore, any modelA = 〈A, S, a0, =〉 must contain the subset of distinct Why are the elements Sn(a0) for
n ≥ 0 distinct?elements

{a0, S(a0), S(S(a0)), . . . , S
n(a0), . . .},

so contains a substructure isomorphic to 〈N, S, 0, =〉. Now suppose that such
a model contains an element a which isn’t one of the elements Sn(a0) for some
n ≥ 0 (where S0(a0) = a0). Then the model contains not only Sn(a) for each
n ≥ 1, but (as a �= a0) an element b ∈ A such that S(b) = a. Could b equal

300

6.6 Decidable theories

Sk(a0) for some k ≥ 0? No, as if b = Sk(a0), then a = S(b) = Sk+1(a0), con-
tradicting our original assumption about a. Write b as S−1(a) – a reasonable
notation because S(S−1(a)) = S(b) = a = S0(a). Similarly b must equal S(c)
for some c ∈ A which we shall write as S−2(a). We leave you to convince
yourself that A contains distinct elements in the set {Sk(a) : k ∈ Z}, which
is a set disjoint from {Sn(a0) : n ∈ N}, so that the model A also contains a
subset isomorphic to a copy of the set Z of integers with the ‘+1’ function. If
the model contains an element c which isn’t this copy of Z or in the copy of
〈N, S, 0, =〉, then c lives in a further copy of Z, and so on.

Exercise 6.40

(a) Classify the countably infinite models of T (i.e. ones with a countably
infinite domain). That is, give an example of each possible countably
infinite model, avoiding examples which are isomorphic to earlier models
in your list.

(b) Find a countably infinite modelA of T such that any countable model of
Σ is isomorphic to a substructure ofA.

We hope that you discovered in the last exercise that any model of T consists
of a substructure isomorphic to 〈N, S, 0, =〉 along with disjoint copies of Z

with the +1 function. The arithmetic of cardinal numbers means that the
only way to construct a model of T with cardinality 2

ℵ0 , the cardinality of
the continuum R, is to take the union of a copy of 〈N, S, 0, =〉 with 2

ℵ0 copies
of Z with the +1 function. It follows that all models of cardinality 2

ℵ0 are
isomorphic. One concrete representation of the model is the structure

〈R \ {k ∈ Z : k < 0}, S, 0〉, The set R \ {k ∈ Z : k < 0} is the
set of real numbers, excluding the
negative integers.where S is the function defined on the domain by s(x) = x + 1. So by Vaught’s

test, T is complete. As we hope that it is plausible that there is an algorithmic
procedure which will test whether a formula is one of the axioms of T , T is
decidable.

We prefaced this last example by saying that the axioms of T were an attempt
to axiomatize the theory of the successor function on the natural numbers
N, by which we mean the theory Th(〈N, S, 0, =〉). Now that we know T is
complete, we can conclude that our attempt was successful, as we ask you to
show in the following exercise.

Exercise 6.41
Show that the set S of logical consequences of T coincides with the theory
Th(〈N, S, 0, =〉).
Solution

First note that 〈N, S, 0, =〉 is a model for T and hence for all its logical con-
sequences, so that S ⊆ Th(〈N, S, 0, =〉). But T and Th(〈N, S, 0, =〉) are com-
plete theories for the same language, so that S must equal Th(〈N, S, 0, =〉).

301

6 Some uses of compactness

The theory T we have just considered can be regarded as a first step towards
trying to axiomatize the theory of the natural numbers. Of course, we know
from Section 6.4 that the theory of the natural numbers cannot be axioma-
tized using a first-order language in such a way that the only model is the
standard modelN. But we can investigate just how much of the theory one
can axiomatize in such a language. For instance, we do have the first-order
theory Th(N), complete arithmetic. As the underlying language is finite, so
countable, if there was a decidable set of axioms for this complete theory, then
Th(N) would be decidable. However, it can be shown that there are no such
axioms. One way to establish this involves looking at the following fragment
of the theory of natural numbers, the theory Q.

Definition The theory Q

The system Q has the following seven axioms expressed in a language This system was devised by the
American mathematician Raphael
Robinson (1911-1995).

with equality and two 2-place functions + and ·, a 1-place function s
and constant symbol 0.

∀x∀y(s(x) = s(y) → x = y)

∀x ¬ 0 = s(x)

∀x(¬ x = 0 → ∃y x = s(y))

∀x (x + 0) = x

∀x∀y (x + s(y)) = s((x + y))

∀x (x · 0) = 0

∀x∀y (x · s(y)) = ((x · y) + x)

All the axioms of Q are easily seen to be true in the standard model of complete When we defined the standard
model N on page 291, we did so
relative to a slightly different
language, but with essentially the
same expressive power.

arithmetic N = 〈N, +,×, 0, S〉, where S is the successor function defined by
S(n) = n + 1. So the theory Q is consistent. The theory is on the surface
very weak, in the sense that one cannot prove a very rich selection of theorems
from these axioms. Its theorems include

Q � (s(0) + s(s(0))) = s(s(s(0))), Likewise it can be shown that for
any natural numbers m, n,

Q � (sn(0) · sm(0)) = sn+m(0),

Q � (sm(0) · sn(0)) = sn+m(0),

Q � (sn(0) · sm(0))

= (sm(0) · sn(0)),

but, despite this,

Q �� ∀x∀y(x · y) = (y · x).

See Exercises 6.45 and 6.46 for
practice on theorems and
non-theorems of Q.

Q � (s(s(0)) + s(0)) = s(s(s(0))),

and so it includes

Q � (s(0) + s(s(0))) = (s(s(0)) + s(0)).

More generally, using the abbreviation sn(0) for s(s(. . . s(0) . . .))︸ ︷︷ ︸
n

(0) for any

natural number n (with the convention that s0(0) stands for 0),

Q � (sn(0) + sm(0)) = (sm(0) + sn(0)),

for any specific positive integers m, n. But it can be shown that

Q �� ∀x∀y(x + y) = (y + x),

that is, we cannot prove in Q that addition is in general commutative. But
Q does have the very significant property that any consistent theory with See, for instance, Enderton [12] or

Epstein and Carnielli [14] for
details.

axioms including those of Q is undecidable. So, in particular the theory
Th(N), complete arithmetic, is undecidable. Another consequence is that

302

6.6 Decidable theories

the first-order predicate calculus is undecidable, as follows. Let φ to be the This is Church’s theorem. The
American mathematician Alonzo
Church (1903–1995) was one of the
key founders of the modern theory
of computability and decidability.

conjunction of the finitely many axioms of Q. Then for any sentence θ in the
same language as Q, the sentence (φ → θ) is decidable if and only if φ � θ is
decidable, i.e. one can decide whether θ is a theorem of Q – but the latter
isn’t decidable, so the former isn’t either.

Despite the impossibility of deciding Th(N), there is considerable value in For a very accessible account of
some fragments of Th(N) which
are decidable, see Enderton [12].

studying fragments of the theory and we would like to mention the most
important of these, which is the first-order language version of the Peano
axioms. As we saw on page 286 in Section 6.4, Peano’s axioms for the natural
numbers give a categorical set of axioms for N in a language which is not first-
order, and by the upward Löwenheim–Skolem theorem there is no possible set
of axioms in a first-order language. It is not the first two of Peano’s axioms
which are a problem. If we take the first-order language L with equality, a
1-place function symbol s, the two 2-place function symbols + and ·, and
constant symbol 0, these axioms can be represented by

1. ∀x∀y(s(x) = s(y) → x = y)

2. ∀x¬0 = s(x)

As remarked in Section 6.4, it is the third of Peano’s axioms, the principle of
mathematical induction, which presents a problem. This says

for all subsets A ⊆ X , if A contains 0X and contains S(x) whenever x ∈ A,
then A is all of X .

This can be rephrased in terms of the property P (x) possessed by the elements
x in a set A as P (x) holds exactly when x ∈ A.

for all properties P of elements x ∈ X , if P (0X) holds and whenever P (x)
holds then P (S(x)) also holds, then P (x) holds for all x ∈ X .

Quantifying over properties P is no more first-order than quantifying over
subsets, as well as elements, of the domain of any interpretation. However,
this second formulation does lead us to some useful first-order axioms for a
fragment of the theory of the natural numbers, as follows. For each first-order
formula φ(x) with one free variable x, consider the sentence

((φ(0) ∧ ∀x(φ(x) → φ(s(x)))) → ∀xφ(x)).

This asserts the induction principle for the property represented by the first-
order formula φ(x). The first-order theory with axioms consisting of all sen-
tences of this form, i.e. corresponding to all formulas φ(x) in L with one free
variable, along with the first two for the function symbol s, is given the special
name Peano Arithmetic. Despite inevitably failing to axiomatize the natural The failure is thanks to the

Löwenheim–Skolem theorems.numbers and nothing but, this theory is powerful enough to derive a consid-
erable part of the standard mathematical theory of the natural numbers.

We shall end the section with a proof that the monadic first-order calculus
is decidable. The proof has nothing to do with compactness, and illustrates
that the solution of one genuinely interesting sort of problem, in this case
about decidability, isn’t always linked to some other very clever and impor-
tant piece of mathematics (here, compactness). The description monadic just
means that the language consists only of 1-place relation symbols, so there’s
nothing like equality in the language. The issue we consider is whether there

303

6 Some uses of compactness

is a decision procedure that establishes whether or not, for a given formula
φ(x1, x2, . . . , xm) with free variables amongst x1, x2, . . . , xm,

� φ(x1, x2, . . . , xm).

Our procedure will be essentially one of brute force! We shall see whether for
all structures A for the language involved in φ (so just finitely many relations
are involved) and interpretations �a of the free variables, it is the case that
A ��x/�a φ. If this is always the case then φ is universally valid. We hope
that you are highly sceptical that this will work! There are surely structures
with domains of all possible sizes, finite and infinite, and on any given domain
there are surely many different ways of interpreting the relation symbols and
interpreting the free variables. Also testing truth for infinitely many structures
and interpretations cannot give an algorithmic procedure, which must come
to a conclusion in a finite number of steps. However, it turns out that there
are essentially only finitely many structures, each with a finite domain and
thus finitely many different ways of interpreting the free variables, for which
one has to test the truth of φ.

Let’s look at the case where φ involves just three 1-place relation symbols
R1, R2, R3. Take any structure for this language, A = 〈A, A1, A2, A3〉, where Of course, as the Ri are 1-place

relation symbols, the Ai are
subsets of A.

the domain A might be any set, perhaps infinite. In the following sense, the
language cannot tell the difference very well between distinct elements of A.
All that one can say about an element a of A is whether or not it is in the
subset Ai for each of i = 1, 2, 3. So if two distinct elements a and b have the There are similarities between

what follows and the discussion
about non-normal structures in the
Section 5.4.

same pattern of behaviour in regard to being in or out of each Ai, there’s
no formula in the language which can tell them apart – remember that the
language doesn’t contain any useful symbol like equality, which would at once
allow a and b to be told apart by the formula ¬ x = y, in the sense that we
then have A �x/a,y/b ¬ x = y. More precisely we define a relation ∼ on A by

a ∼ b if and only if for each i = 1, 2, 3, both of a and b So if a, b are in A2 and A3, while
neither is in A1, then a ∼ b.are in Ai, or neither are.

This is easily shown to be an equivalence relation. We then define a structure
B = 〈B, B1, B2, B3〉 with domain B consisting of the equivalence classes [[a]]
of ∼ and with Bi = {[[a]] : a ∈ Ai} for each i = 1, 2, 3. Note that there are at
most 23 = 8 equivalence classes of ∼, as for each element a of A, there are two
possibilities, a in Ai or not in it, for each of the three subsets A1, A2, A3. So the
set B has at most 8 elements. One can then show that for all φ(x1, x2, . . . , xm)
in this language and all interpretations a1, a2, . . . , am of the free variables
x1, x2, . . . , xm,

A �x1/a1,x2/a2,...,xm/am
φ(x1, x2, . . . , xm)

if and only if

B �x1/[[a1]],x2/[[a2]],...,xm/[[am]] φ(x1, x2, . . . , xm).

Thus rather than test whether φ(x1, x2, . . . , xm) is satisfied in the perhaps
infinite set A for all possible interpretations of the variables x1, x2, . . . , xm, all
we need to test is whether the formula is satisfied in the set B with at most
8 elements for all possible interpretations of these variables – and if B has
k elements, with k ≤ 8, there are a mere km such interpretations, doubtless
possibly a large number, but finite!

304

6.6 Decidable theories

To test for � φ(x1, x2, . . . , xm), we need to look at all possible structures A, Plainly there are infinitely many
possible domains with up to 8
elements. But there are only
finitely many structures with such
domains up to isomorphism; and
isomorphic structures satisfy
precisely the same formulas, by
Theorem 4.8 of Section 4.5.

but this now means looking only at all possible structures for the language
with up to 8 elements. There are only finitely many of these, up to isomor-
phism. For each there are just finitely many possible interpretations of the
free variables. And voila! an algorithmic decision procedure.

Exercise 6.42
For the language above, how many essentially different structures, i.e. not
double-counting ones which are isomorphic, does it have with a two-element
domain?

Solution

Take the domain to be {a, b}. The interpretation of R1 can be any of the
22 = 4 subsets of the domain. Similarly the interpretation of each of R2 and R3

can be any of the 4 subsets of the domain. So the number of distinct structures
with this domain is 4 × 4 × 4 = 64. But some of these are isomorphic! For
instance the structures An example of a structure not

isomorphic to this one is
〈{a, b}, ∅, {a}, {a, b}〉.〈{a, b}, {a}, ∅, {a, b}〉

and

〈{a, b}, {b}, ∅, {a, b}〉
are isomorphic, via the isomorphism θ, where θ(a) = b and θ(b) = a. We think
that there are 36 distinct structures up to isomorphism.

Perhaps you would like to check the details in a slightly more general setting,
with n 1-place relation symbols, in the following exercise.

Exercise 6.43

Let L be a language (without equality) consisting only of finitely many 1-place
relation symbols P1, P2, . . . , Pn.

(a) Let A = 〈A, A1, A2, . . . , An〉 be a structure for L. Define a binary relation
∼ on the domain A by

a ∼ b if and only if for each i ∈ {1, 2, . . . , n}, both of a and b

are in Ai, or neither are.

Show that ∼ is an equivalence relation on A.

(b) Let B be the set of equivalence classes of ∼ on A, i.e. B = {[[a]] : a ∈ A}.
For each i ∈ {1, 2, . . . , n}, define the subset Bi of B by Bi = {[[a]] : a ∈ Ai}.
Now let B be the structure 〈B, B1, B2, . . . , Bn〉.
(i) Explain why B is a finite set and give an upper bound for its size.

(ii) You have shown that the domain B of B is finite. Explain briefly why
for any formula φ(x1, x2, . . . , xm) with free variables amongst x1, x2, . . . , xm

and b1, b2, . . . , bm ∈ B, there is a procedure involving finitely many steps This is a result that holds for all
languages, not just the special sort
which we are considering here.

that establishes whether or not

B �x1/b1,x2/b2,...,xm/bm
φ(x1, x2, . . . , xm).

305

6 Some uses of compactness

(iii) Show that for each i ∈ {1, 2, . . . , n} and all a ∈ A, A subtle point! Plainly, by
definition, if a ∈ Ai then [[a]] ∈ Bi.
But a particular property of ∼ is
needed to guarantee that the
converse holds.

a ∈ Ai if and only if [[a]] ∈ Bi.

(iv) Show that for any formula φ(x1, x2, . . . , xm) with free variables
amongst x1, x2, . . . , xm and all a1, a2, . . . , am ∈ A,

A �x1/a1,x2/a2,...,xm/am
φ(x1, x2, . . . , xm)

if and only if

B �x1/[[a1]],x2/[[a2]],...,xm/[[am]] φ(x1, x2, . . . , xm).

[Hint: What is the basic technique for proving something for all formulas
φ?]

(c) By exploiting relevant previous parts of this exercise, describe an al-
gorithmic procedure which decides whether or not, for a given formula
φ(x1, x2, . . . , xm),

� φ(x1, x2, . . . , xm),

i.e. φ(x1, x2, . . . , xm) holds under all possible interpretations.

(d) Is the following sentence using the 1-place relation symbols R1, R2 uni-
versally valid?

∀x3((∀x1(R1(x1) ∧ R2(x1)) ∨ ¬R2(x3))

→ (∃x2(R1(x2) ↔ ¬R2(x2)) ∨ ∃x4(R2(x4) ∧ ¬R1(x3))))

You might like to think briefly why this technique for deciding formulas in
a language with only 1-place relation symbols is likely to be of no use for
a language with as little as just one binary relation symbol. In fact, the
predicate calculus with just one binary relation symbol is undecidable. But
that shouldn’t deter you from further study into first-order theories and model
theory. Good hunting!

Further exercises

Exercise 6.44

(a) Devise axioms for each of the following theories:

(i) dense linear order with a minimum element and unbounded above;

(ii) dense linear order with a maximum element and unbounded below;

(iii) dense linear order with distinct minimum and maximum elements.

(b) Show that each of the above theories has a countable model.

(c) Explain briefly how to adapt the argument of Exercise 4.112 in Section 4.5
of Chapter 4 to show that for each of the above theories, all countable
models are isomorphic.

(d) By Theorem 6.15, Vaught’s test, each of the above theories is complete.
You should have been able to find just finitely many axioms for each of

306

6.6 Decidable theories

the theories, so each theory is decidable, as is the theory of unbounded
dense linear orders (by Theorem 4.9).

(i) Devise axioms for the theory of dense linear orders with at least two Treating a one-element set as a
dense linear order seems a bit silly!elements.

(ii) Is it the case that any two countable models of this theory are iso-
morphic?

(iii) Show that this theory is decidable by outlining an algorithmic pro-
cedure for deciding whether a sentence is one of its theorems.

Exercise 6.45
Give formal proofs of the following theorems of Q.

(a) Q � ¬ s(0) = s(s(s(0)))

(b) Q � (s(0) + s(0)) = s(s(0))

(c) Q � (s(0) + s(s(0))) = (s(s(0)) + s(0))

(d) Q � (s(s(s(0))) · s(s(0))) = s(s(s(s(s(s(0))))))

Exercise 6.46

A non-standard structure N ∗ for the language underlying Q is as follows. Its
domain is the set N ∪ {α, β}, where α, β are distinct elements not in N. The
symbol 0 is interpreted as the number 0, and the functions which are the
interpretations of the symbols s + · are given by the following tables.

x 0 1 2 . . . n . . . α β

S(x) 1 2 3 . . . n + 1 . . . α β

b
+ 0 1 2 . . . n . . . α β

0 0 1 2 . . . n . . . β α
1 1 2 3 . . . 1 + n . . . β α
2 2 3 4 . . . 2 + n . . . β α

a
...

...
...

...
...

...
...

m m m + 1 m + 2 m + n β α
...

...
...

...
...

...
...

α α α α . . . α . . . β α
β β β β . . . β . . . β α

b
· 0 1 2 . . . n . . . α β

0 0 0 0 . . . 0 . . . α β
1 0 1 2 . . . n . . . α β
2 0 2 4 . . . 2n . . . α β

a
...

...
...

...
...

...
...

m 0 m 2m mn . . . α β
...

...
...

...
...

...
...

α 0 β β . . . β . . . β β
β 0 α α . . . α . . . α α

(a) Show that N ∗ is a model of Q.

(b) Show each of the following.

(i) Q �� ∀x¬x = s(x)

(ii) Q �� ∀x∀y(x + y) = (y + x)

(iii) Q �� ∀x∀y(x · y) = (y · x)

307

BIBLIOGRAPHY
1. Reg Allenby Rings, Fields and Groups, Arnold, 1983.

2. George Boole The Laws of Thought, Dover, 1973.

3. Jane Bridge Beginning Model Theory, Oxford University Press, 1977.

4. Peter J. Cameron Sets, Logic and categories, Springer, 1999.

5. Lewis Carroll Symbolic Logic, Dover, 1958.

6. C.C.Chang and H.J.Keisler Model Theory, North-Holland, 1990.

7. René Cori and Daniel Lascar Mathematical Logic: a Course with Exer-
cises, Part I, trans Donald Pelletier, Oxford University Press, 2000.

8. René Cori and Daniel Lascar Mathematical Logic: a Course with Exer-
cises, Part II, trans Donald Pelletier, Oxford University Press, 2001.

9. Nigel Cutland Computability: An Introduction to Recursive Function The-
ory, Cambridge University Press, 1980.

10. Martin Davis The Universal Computer, Norton, 2000.

11. Michael Dummett Elements of Intuitionism, Oxford University Press,
1977.

12. Herbert B. Enderton A Mathematical Introduction to Logic, Academic
Press, 1972.

13. Herbert B. Enderton Elements of Set Theory, Academic Press, 1977.

14. Richard Epstein, Walter Carnielli Computability: Computable Functions,
Logic and the Foundations of Mathematics, Wadsworth, 1999.

15. Gottlob Frege Grundlagen der Arithmetik (Foundations of Arithmetic),
Translated by JL Austin, Blackwell Publishers, 1980.

16. Derek Goldrei Classic Set Theory, Chapman and Hall, 1996.

17. Paul R. Halmos Naive Set Theory, Van Nostrand, 1960.

18. A.G.Hamilton Logic for Mathematicians, Cambridge University Press,
1978.

19. Jean van Heijenoort From Frege to Gödel, a Source Book in Mathematical
Logic 1879–1931, Harvard University Press, 1967.

20. Wilfrid Hodges A Shorter Model Theory, Cambridge University Press,
1997.

21. Camilla Jordan and David Jordan Groups, Arnold, 1994.

22. Stephen Cole Kleene, Mathematical Logic, Wiley, 1967.

23. Walter Ledermann, Alan Weir Introduction to Group Theory, Longman,
1996.

24. David Marker, Model Theory: an Introduction, Springer, 2002.

25. Elliott Mendelson Introduction to Mathematical Logic, Van Nostrand,
1964.

309

Bibliography

26. Abraham Robinson Introduction to Model Theory and to the Metamathe-
matics of Algebra 2nd edition, North Holland, 1965.

27. Abraham Robinson Non-standard Analysis, North Holland, 1966.

28. Raymond Smullyan What is the Name of this Book?, Penguin, 1990.

29. Raymond Smullyan To Mock a Mockingbird: And Other Logic Puzzles,
Oxford University Press, 2000.

30. Robin Wilson Introduction to Graph Theory, Longman 1996.

31. Robin Wilson Four Colours Suffice, Allen Lane (Penguin) Books, 2002.

310

INDEX
+n, 199
−n, 200
L(A), 294
Rn,m, 141
X ≈ Y , 279
X ≺ Y , 279
X � Y , 279
X \ Y , 12
X × Y , 12
X2, 12
Ax1 to Ax 3, 87
Ax1 to Ax 5, 221
C, 11
Card(X), 280
Γ � φ, 74, 188
Γ �� φ, 74, 188
Γ �� φ, 101
Γ � φ, 87, 221
Γ �S φ, 119
N, 11
P(Y), 12
Q, 11
Q[t], 203
R, 11
Range(f), 12
Th(A), 291⋃{X : X ∈ F}, 12
Z, 11
n∧

i=1

θi, 54

n∨
i=1

θi, 54

⊥, 69
cn, 141
·n, 202
A ��x/�a φ, 153
A �x1/a1,x2/a2,...,xn/an

φ, 156
N, 291
N ∗, 307
∅, 11
≡, 48
∃≥n, 197
∈, 11
κ-categorical, 299
〈A, . . . , fA

n,m, . . . , . . . RA
n,m . . . , . . .cAk . . .〉, 147

�, 74, 153
�∈, 11
��, 74, 154

��, 101
A, 208
φ represents f , 65
φ(x1, x2, . . . , xn), 156
� φ, 87
ψSk, 183
⊆, 12
τA[�x/�a], 151
θ[φ′/φ], 62, 176
�, 69
�x/�a, 151
�x/�a[xi/b], 152
{, }, 11
{x : φ(x)}, 11
a ∩ b, 12
a ∪ b, 12
f : X −→ Y , 12
f(x), 12
f |A, 12
f−1, 13
f−1(B), 13
fn,m, 141
g ◦ f , 13
n-function, 130
n-place relation, 147
n-place symbols, 141
n-tuple, 12
x �−→ f(x), 12
F , 31
T , 31
Form(P, S), 21
Γ �n φ, 130
ZFC , 279
4-colourable, 293

absorption law, 49
AC, 278
adequacy theorem

for predicate calculus, 252
for propositional calculus, 106

adequate, 66
algorithm, 5
algorithmic procedure, 5
antecedent, 33
anti-symmetric, 191
Archimedean property, 290
associativity of ∧,∨, 49
Assumptions, Rule of, 88
atomic formula, 142

311

Index

axiom
logical, 185
non-logical, 185

axiom of choice, 181, 278
axiomatizable, 185
Axioms Ax 6 and Ax7, 222
axioms of a theory, 188
axioms of system S, 88

bi-implication, 34
bijection, 13
binary operation, 133
binary relation, 136
Boolean algebra, 195
bound by, 149
bound variable, 148
bracket count, 28

canonical structure, 255
Cantor’s theorem, 279
cardinal, 280
Cartesian product, 12
Catalan number, 55
categorical theory, 286
characteristic of a field, 269
choice function, 278
closed formula, 156
closed interval, 11
closed term, 254
closed under substructures, theory, 296
closure, 208
cnf, 68
codomain, 12
commutative group, 198
commutative ring with a 1, 202
commutativity of ∧,∨, 49
compactness theorem, 265

for an arbitrary language, 284
for propositional calculus, 107

complement, 12
complete

set of formulas, 109
set of sentences, 253
theory, 299

complete arithmetic, 291
completeness theorem, 262

constructive proof in propositional case, 116
for an arbitrary language, 283
for an uncountable language, 282
for predicate calculus, 252
for propositional calculus, 106, 112

composite function, 13
composition, 13
conclusion, 10
conjunct, 32
conjunction, 32
conjunctive form, 57
conjunctive normal form, 68
connective, 20
consequent, 33
consistent, 102, 245
consistent, maximal, 109, 253
constant, 135
constant symbol, 141
continuum hypothesis, 280
contradiction, 8, 45

proof by, 8, 80, 94, 95
contrapositive, 51
converse, 8
correctness theorem, 100
countable, 13, 279
countably infinite, 13
counterexample, 8
Craig’s interpolation lemma, 83
cyclic group, 199

De Morgan Laws, 49
decidability, 81
decidable, 81
deduction theorem, 93, 97
definable, 137
dense linear order, 194
dense linear order, unbounded, 214
derivation, 87, 221
derived rule, 123
diagram, 294
discrete linear order, 194
disjunct, 32
disjunction, 32
disjunctive form, 57
disjunctive normal form, 67
distributivity, 49
dnf, 67
domain, 12, 147
double negation, 49
dual, 61
Duality, Principle of, 61

element, 11
elementary extension, 297
empty set, 11
equivalence class, 190
equivalence relation, 186

312

Index

exclusive ‘or’, 32
existential hypothesis rule, 241
existential introduction rule, 241
existential sentence, 210
expansion, 180

field, 203
field axioms, 203
field, ordered, 205
finite, 13
finitely axiomatizable, 266
first-order axiomatizable, 185
first-order language, 141
first-order theory, 188
formal language, 20
formal proof system S, 87
formal theorem, 87
formula, 21, 143

well-formed, 21
free variable, 148
freely substitutable, 170
function, 12

composite, 13
inverse, 13
one–one, 12
onto, 12
range of, 12

function symbol, 141

generalization, 221
generator of cyclic group, 199
graph, 292

planar, 298
graph of a function, 206
group, 198

cyclic, 199
group axioms, 198

idempotence of ∧,∨, 49
image, 12
image set, 12
implication, 33
inclusive ‘or’, 32
inconsistent, 102, 226, 245
independent, 124
inference, rule of, 88
infinite, 13

countably, 13
infinitesimal, 290
infix notation, 141
initial ordinal, 280

integral domain, 204
interpolant, 83
interpretation of symbol, 147
intersection, 12
interval, closed, 11
interval, open, 11
Intuitionism, 127
inverse function, 13
irreflexive, 114
isomorphic, 211
isomorphism, 211

Löwenheim–Skolem theorem, 284
Löwenheim–Skolem theorem, downward, 284
Löwenheim–Skolem theorem, upward, 281
language with equality, 141
length of a formula, 26, 159
Lindenbaum algebra, 196
linear order

strict, 114, 193
weak, 191

logical axiom, 185
logical consequence, 74, 188
logical symbols, 141
logically equivalent, 48, 173
logically implies, 74, 188
logically valid, 163

mathematical induction
principle of, 13
proof by, 14

mathematical induction on length of derivation, 97
maximal consistent, 109, 253
maximum, 194
member, 11
metalanguage, 18
metatheorem, 89
model, 188
Modus Ponens, 77, 88
monadic, 303
MP, 88

natural deduction, 129
negation, 32
non-Archimedean ordered field, 290
non-logical axiom, 185
non-logical symbols, 141
non-standard analysis, 290
non-standard model of arithmetic, 291
normal contraction, 249
normal structure, 147

313

Index

one–one, 12
onto, 12
open interval, 11
order of an element, 201
ordered field, 205
ordinal, 280

partial order
strict, 114, 193
weak, 191

partition, 190
Peano Arithmetic, 303
Peano’s axioms, 286
Pierce’s law, 127
pigeon-hole principle, 13
power set, 12
predicate, 139
predicate symbol, 141
prefix notation, 141
prefix of formula, 176
premise, 9
prenex normal form, 176
principal connective, 23, 144
product, Cartesian, 12
proper subset, 12
propositional constant, 69
propositional variable, 20

quantified variable, 143
quantifier, 140
quantifier-free, 176
quasi-truth assignment, 124

range, 12
reductio ad absurdum, 80
reflexive, 186
relation symbol, 141
respects a truth table, 35
restriction

of a function, 12
of a relation, 208

ring, 202
commutative with a 1, 202

ring axioms, 202
rule of a function, 12
Rule of Assumptions, 88
rule of inference, 88

satisfiable, 79, 166
satisfies, 36, 153, 247
Schröder–Bernstein theorem, 279
scope, 148

second-order language, 190
sentence, 156
set, 11
Skolem form, 183
Skolem function, 181
soundness theorem, 100, 243
standard model of arithmetic, 291
strict linear order, 193
strict partial order, 114, 193
string, 19
structure, 147
subformula, 26, 145
subgraph, 293
subgroup, 209
subset, 12
substitution instance of a tautology, 164
substitution rule, 241
substructure, 208
successor, 302
syllogism, 9
symmetric, 186

tautology, 45
substitution instance of, 164

terms, 142
theorem

formal, 87
of a theory T , 235

theory, 188, 266
closed under substructures, 296

theory of A, 291
thinning rule, 89, 221
torsion-free group, 268
transitive, 186
tree, 24
truth assignment, 36
truth function, 64
truth table, 42

for ↔, 34
for →, 33
for ∧, 32
for ¬, 32
for ∨, 32

truth value, 31

unbounded dense linear order, 214
unbounded linear order, 194
uncountable, 13
union, 12
universal elimination rule, 241
universal formula, 181

314

Index

universal sentence, 210
universally valid, 163

valid rule of inference, 90
valuation, 150
Vaught’s test, 299

weak linear order, 191

weak partial order, 191
well-formed formula, 21
well-order, 13, 194
witness, 261
witness property, 254

315

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

