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PREFACE 

This book presents the discovery of non-Euclidean geometry and the 
subsequent reformulation of the foundations of Euclidean geometry 
as a suspense story. The mystery of why Euclid's parallel postulate 
could not be proved remained unsolved for over two thousand years, 
until the discovery of non-Euclidean geometry and its Euclidean 
models revealed the impossibility of any such proof. This discovery 
shattered the traditional conception of geometry as the true descrip­
tion of physical space. Mainly through the influence of David Hilbert's 
Grundlagen der Geometric, a new conception emerged in which the 
existence of many equally consistent geometries was acknowledged, 
each being a purely formal logical discipline that may or may not be 
useful for modeling physical reality. Albert Einstein stated that with­
out this new conception of geometry, he would not have been able to 
develop the theory of relativity (see Einstein, 1921, Chapter I). The 
philosopher Hilary Putnam stated that "the overthrow of Euclidean 
geometry is the most important event in the history of science for the 
epistemologist" ( 1977, p. x). Chapter 8 of this book reveals the 
philosophical confusion that persists to this day. 

This text is useful for several kinds of students. Prospective high 
school and college geometry teachers are presented with a rigorous 
treatment of the foundations of Euclidean geometry and an introduc­
tion to hyperbolic geometry (with emphasis on its Euclidean models). 
General education and liberal arts students are introduced to the 
history and philosophical implications of the discovery of non-Eucli­
dean geometry (for example, the book was used very successfully as 
part of a course on scientific revolutions at Colgate University). Math­
ematics majors are given, in addition, detailed instruction in transfor­
mation geometry and hyperbolic trigonometry, challenging exercises, 
and a historical perspective that, sadly, is lacking in most mathematics 
texts. 

I have used the development of non-Euclidean geometry to revive 
interest in the study of Euclidean geometry. I believe that this ap­
proach makes a traditional college course in Euclidean geometry more 
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interesting: in order to identify the flaws in various attempted proofs of 
the Euclidean parallel postulate, we carefully examine the axiomatic 
foundations of Euclidean geometry; in order to prove the relative 
consistency of hyperbolic geometry, the properties of inversion in 
Euclidean circles are studied; in order to justify Janos Bolyai's con­
struction of the limiting parallel rays, some ideas from projective 
geometry (cross-ratios, harmonic tetrads, perspectivities) are intro­
duced. 

I have used modified versions of Hilbert's axioms for Euclidean 
geometry, instead of the ruler-and-protractor postulates customary in 
current high school texts. The ruler-and-protractor statements are all 
included in Theorem 4.3 of Chapter 4, and from then on, measure­
ment of segments and angles can be used in the customary manner. 
Thus, the change is less significant in practice than it is in principle. 
The principle here is that in a rigorous, historically motivated presen­
tation of the foundations of geometry, it is important to separate the 
purely geometric ideas from the numerical ideas and to notice that the 
number system can be reconstructed from the geometry. 

The number system so constructed could turn out to be different 
from the familiar real number system if we drop Dedekind's axiom of 
continuity; this opens the way to the new geometries discussed in 
Appendix B. In fact, continuity arguments are only used a few times in 
this book, and for all but one of those arguments, more elementary 
hypotheses (such as the elementary continuity principle or the circu­
lar continuity principle, or Archimedes' axiom) suffice. Dedekind's 
axiom is used here only to prove the existence of limiting parallel rays 
in hyperbolic geometry (Theorem 6.6 of Chapter 6); my recent re­
search showed that even there, the elementary continuity principle 
and Aristotle's axiom suffice (but the proof is difficult). Of course, 
Dedekind's axiom is needed to obtain an axiom system that is cate­
gorical. But the remainder of the Hilbert-style axioms are closer to the 
spirit of Euclid's presentation of geometry, so that bright high school 
students and educated laymen will be able to understand this book. 

A unique feature of this book is that some new results are devel­
oped in the exercises and then built upon in subsequent chapters. My 
experience teaching from earlier versions of this text convinced me 
that this method is very valuable for deepening students' understand­
ing (students not only learn by doing, they enjoy developing new 
results on their own). If students do not do a good number of exercises, they 
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will have dijficulty following subsequent chapters. There are two sets of 
exercises for the first six chapters; the "major" exercises are the more 
challenging ones, which all students should attempt, but which math­
ematics majors are more likely to solve. This distinction is dropped in 
the last four chapters; most of the exercises for Chapters 7, 9, and 10 
are "major," whereas the exercises for Chapter 8 are unusual for a 
mathematics text, consisting of historical and philosophical essay 
topics. Hints are given for most of the exercises. A solutions manual is 
available for instructors. The first six chapters also have projects at the 
end for further research in the library. 

The main improvements in this third edition are as follows. Chapter 
1 now contains the section warning about the danger in diagrams, but 
it also contains a new section on the power of diagrams for geometric 
insight, as illustrated by two dissection proofs of the Pythagorean 
theorem. In Chapter 2 (Logic and Incidence Geometry), I have added 
a brief section on projective and affine planes. Projective geometry, 
aside from its intrinsic interest, is essential for understanding certain 
properties of hyperbolic geometry, as can be seen from the new Major 
Exercise 13 in Chapter 6 plus two sections and the K-Exercises in 
Chapter 7. In Chapter 3, the section on axioms of continuity has been 
rewritten; some of the major exercises in previous editions that stu­
dents found difficult are now worked out in that section. I also added 
Aristotle's axiom to that section, which replaces Archimedes' axiom if 
one wants to allow infinitesimals in geometry. Chapter 4 contains 
many new exercises to deepen the students' understanding. 

It is Chapter 5 (History of the Parallel Postulate) that has changed 
the most, thanks to new historical insights gleaned from the recent 
treatises by Jeremy Gray ( 1989), B. A. Rosenfeld ( 1988), and Ro­
berto Torretti (1978) (see the Bibliography). Clairaut's axiom is re­
vealed. Legendre's many attempts to prove Euclid's parallel postulate 
are studied. And the remarkable glimpse by Lambert and Taurinus of 
the possibility of a geometry on "a sphere of imaginary radius" is 
highlighted; it is justified in a new section in Chapter 7 (A Model of 
the Hyperbolic Plane from Physics) as well as in Chapter 10 (Weier­
strass coordinates). The historical part of Chapter 6 has been im­
proved. Chapters 5, 6, and 7 also have important new exercises. 
Chapter 8 (Philosophical Implications) has been marginally changed, 
and I would appreciate readers' comments, since "working mathema­
ticians" aren't particularly interested in philosophy. The rest of the 
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book has minor improvements, except that the discussion of curvature 
and geodesics (the right way to think about "straight lines") in Ap­
pendix A is much improved. 

Terminology and notation throughout the book are reasonably 
standard. I have followed W. Prenowitz and M.Jordan (1965) in using 
the term "neutral geometry" for the part of Euclidean geometry that 
is independent of the parallel postulate (the traditional name "abso­
lute geometry" misleadingly implies that all other geometries depend 
on it). I have introduced the names "asymptotic" and "divergent" for 
the two types of parallels in hyperbolic geometry; I consider these a 
definite improvement over the welter of names in the literature. The 
theorems, propositions, and figures are numbered by chapter; for 
example, Theorem 4.1 is the first theorem in Chapter 4. Such direc­
tives as "see Coxeter ( 1968)" refer to the Bibliography at the back of 
the book (the Bibliography is arranged topically rather than strictly 
alphabetically). 

Here are some suggested curricula for different courses: 

1. A one-term course for prospective geometry teachers and/or 
mathematics majors, with students of average ability. Cover 
Chapters 1 -6 and the first four sections of Chapter 7, adding 
Chapter 8 if there is time. In assigning exercises, omit the Major 
Exercises (except possibly for Chapter 1); omit most of the 
Exercises on Betweenness from Chapter 3; omit Exercises 21-
31 from Chapter 4; omit Exercises 13- 26 from Chapter 5; and 
assign only the Review Exercise and Exercises K-1, K-2, K-3, 
K-5, K-11, K-12, K-17, and K-18 from Chapter 7. 

2. A one-term course for prospective geometry teachers and/or 
mathematics majors, with better than average students. Add to the 
curriculum of ( 1) the remainder of Chapter 7 and many of the 
exercises omitted in ( 1). 

3. A one-term course for general education and/or liberal arts stu­
dents. The core of this course would be Chapters 1, 2, and 5, the 
first three sections of Chapters 6 and 7, and all of Chapter 8. In 
addition, the instructor should selectively discuss material from 
Chapters 3-6 (such as Hilbert's axioms, the Saccheri-Leg­
endre theorem, and some of the theorems in hyperbolic geome­
try), but should not impose too many proofs on these students. 
The essay topics of Chapter 8 are particularly appropriate for 
such a course. 
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4. A two-term course for mathematics majors. Cover as much of 
the book as time permits. 

Thus this book is a resource for a wide variety of students, from the 
naive to the sophisticated, from the nonmathematical-but-educated to 
the mathematical wizards. 

The late Errett Bishop once taught· a liberal arts course in logic 
during which he realized the questionable nature of classical logic and 
wrote a book about doing mathematical analysis constructively. My 
own book has evolved from a liberal arts course in geometry I taught at 
the University of California at Santa Cruz in the early 1970s, when 
that campus was infused with joyful idealism and experimentation. 
Those were the days, my friend! (Unfortunately, our campus is losing 
that spirit-except for a few bright lights such as my friends the 
visionary Ralph Abraham, producer of a gorgeous series of books on 
visual mathematics and the multidisciplinary survey Chaos, Eros and 
Gaia; and the innovative chemist Frank Andrews, teacher of creative 
problem solving and author of The Art and Practice of Loving.) I am very 
pleased by the warm reception accorded earlier editions of this book 
for its unusual combination of rigor and history. It indicates that there 
is a real need to "humanize" mathematics texts and courses. For 
example, when I taught calculus to a large class recently, I was aston­
ished at how much livelier the students (mainly nonmathematicians) 
became after they researched and then wrote essays about the history 
of calculus (many were fascinated by the strange personality of Isaac 
Newton), about the relevance of calculus to their own fields, and 
about their fear of this awesome subject. Also, such essays provide 
good practice in improving writing skills, which many students need. 
Instructors can assign essays from the Projects at the end of Chapters 
1 -6 and the topics in Chapter 8. 

The history of the discovery of non-Euclidean geometry provides a 
valuable and accessible case study in the enormous difficulty we 
humans have in letting go of entrenched assumptions and opening 
ourselves to a new paradigm. It is delightfully instructive to observe 
the errors made by very capable people as they struggled with strange 
new possibilities they or their culture could not accept- Saccheri, 
working out the new geometry but rejecting it because it was "repug­
nant"; Legendre, giving one clever but false proof after another of 
Euclid's parallel postulate; Lambert, speculating about a possible 
geometry on a "sphere of imaginary radius"; Farkas Bolyai, pub-
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lishing a false proof of Euclid's parallel postulate after his son had 
already published a non-Euclidean geometry; Gauss, afraid to publish 
his discoveries and not recognizing that his surfaces of constant nega­
tive curvature provided the tool for a proof that non-Euclidean geom­
etry is consistent; or Charles Dodgson (alias Lewis Carroll), defend­
ing Euclid against his "modern rivals." It is inspiring to witness the 
courage it took Janos Bolyai and Lobachevsky to put forth the new 
idea before the surrounding culture could grasp it, and sad to see how 
little they were appreciated during their lifetimes. 

Werner Erhard, who founded the est training taken by about a 
million people, understood the nontechnical message of this book. He 
read the Bolyai correspondence in Chapters 5 - 6 to thousands of 
people at an est gathering in San Francisco. I am happy to express my 
appreciation to him and to my students at Santa Cruz, whose enthusi­
asm for "having their minds blown" by this course has boosted my 
morale (especially Robert Curtis, who subsequently published an 
article in the Journal of Geometry on constructions in hyperbolic geom­
etry). Suggestions from readers over the years have been helpful in 
improving the book, and I do welcome them. My thanks also to all the 
friendly people at W. H. Freeman and Company who helped produce 
this book, such as the late John Staples, without whose openness to 
innovation this book might not have appeared. 

Marvin Jay Greenberg 
San Francisco, California 

June 1993 
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INTRODUCTION 

Let no one ignorant of geometry enter this door. 
ENTRANCE TO PLATO'S ACADEMY 

Most people are unaware that around a century and a half ago a 
revolution took place in the field of geometry that was as scientifically 
profound as the Copernican revolution in astronomy and, in its im­
pact, as philosophically important as the Darwinian theory of evolu­
tion. "The effect of the discovery of hyperbolic geometry on our ideas 
of truth and reality has been so profound," writes the great Canadian 
geometer H. S. M. Coxeter, "that we can hardly imagine how shock­
ing the possibility of a geometry different from Euclid's must have 
seemed in 1820." Today, however, we have all heard of the space­
time geometry in Einstein's theory of relativity. "In fact, the geometry 
of the space-time continuum is so closely related to the non-Euclidean 
geometries that some knowledge of [these geometries] is an essential 
prerequisite for a proper understanding of relativistic cosmology." 

Euclidean geometry is the kind of geometry you learned in high 
school, the geometry most of us use to visualize the physical universe. 
It comes from the text by the Greek mathematician Euclid, the Ele­
ments, written around 300 B.C. Our picture of the physical universe 
based on this geometry was painted largely by Isaac Newton in the late 
seventeenth century. 

Geometries that differ from Euclid's own arose out of a deeper 
study of parallelism. Consider this diagram of two rays perpendicular to 
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segment PQ: 

: 
In Euclidean geometry the perpendicular distance between the rays 
remains equal to the distance from P to Q as we move to the right. 
However, in the early nineteenth century two alternative geometries 
were proposed. In hyperbolic geometry (from the Greek hyperballein, 
"to exceed") the distance between the rays increases. In elliptic 
geometry (from the Greek elleipein, "to fall short") the distance de­
creases and the rays eventually meet. These non-Euclidean geome­
tries were later incorporated in a much more general geometry devel­
oped by C. F. Gauss and G. F. B. Riemann (it is this more general 
geometry that is used in Einstein's general theory of relativity) .1 

We will concentrate on Euclidean and hyperbolic geometries in this 
book. Hyperbolic geometry requires a change in only one of Euclid's 
axioms, and can be as easily grasped as high school geometry. Elliptic 
geometry, on the other hand, involves the new topological notion of 
"nonorientability," since all the points of the elliptic plane not on a 
given line lie on the same side of that line. This geometry cannot easily 
be approached in the spirit of Euclid. I have therefore made only brief 
comments about elliptic geometry in the body of the text, with further 
indications in Appendix A. (Do not be misled by this, however; elliptic 
geometry is no Jess important than hyperbolic.) Riemannian geometry 
requires a thorough understanding of the differential and integral 
calculus, and is therefore beyond the scope of this book (it is discussed 
briefly in Appendix A). 

Chapter 1 begins with a brief history of geometry in ancient times, 
and emphasizes the development of the axiomatic method by the 
Greeks. It presents Euclid's five postulates and includes one of Leg­
endre's attempted proofs of the fifth postulate. In order to detect the 

1 Einstein's special theory of relativity, which is needed to study subatomic particles, is based 
on a simpler geometry of space-time due to H. Minkowski. The names "hyperbolic geometry" 
and "elliptic geometry" were coined by F. Klein; some authors misleadingly call these geome­
tries "Lobachevskian" and "Riemannian," respectively. 
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flaw in Legendre's argument (and in other arguments), it will be 
necessary to carefully reexamine the foundations of geometry. How­
ever, before we can do any geometry at all, we must be clear about 
some fundamental principles of logic. These are reviewed informally 
in Chapter 2. In this chapter we consider what constitutes a rigorous 
proof, giving special attention to the method of indirect proof, or 
reductio ad absurdum. Chapter 2 introduces the very important notion 
of a model for an axiom system, illustrated by finite models for the 
axioms of incidence as well as real projective and affine models. 

Chapter 3 begins with a discussion of some flaws in Euclid's pre­
sentation of geometry. These are then repaired in a thorough presen­
tation of David Hilbert's axioms (slightly modified) and their elemen­
tary consequences. You may become restless over the task of proving 
results that appear self-evident. Nevertheless, this work is essential if 
you are to steer safely through non-Euclidean space. 

Our study of the consequences of Hilbert's axioms, with the excep­
tion of the parallel postulate, is continued in Chapter 4; this study is 
called neutral geometry. We will prove some familiar Euclidean theor­
ems (such as the exterior angle theorem) by methods different from 
those used by Euclid, a change necessitated by gaps in Euclid's proofs. 
We will also prove some theorems that Euclid would not recognize 
(such as the Saccheri-Legendre theorem). 

Supported by the solid foundation of the preceding chapters, we 
will be prepared to analyze in Chapter 5 several important attempts to 
prove the parallel postulate (in the exercises you will have the oppor­
tunity to find flaws in still other attempts). Following that, your Eu­
clidean conditioning should be shaken enough so that in Chapter 6 we 
may explore "a strange new universe," one in which triangles have the 
"wrong" angle sums, rectangles do not exist, and parallel lines may 
diverge or converge asymptotically. In doing so, we will see unfolding 
the historical drama of the almost simultaneous discovery of hyperbo­
lic geometry by Gauss, J. Bolyai, and Lobachevsky in the early nine­
teenth century. 

This geometry, however unfamiliar, is just as consistent as Euclid's. 
This is demonstrated in Chapter 7 by studying three Euclidean 
models that also aid in visualizing hyperbolic geometry. The Poincare 
models have the advantage that angles are measured in the Euclidean 
way; the Beltrami-Klein model has the advantage that lines are repre-
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sented by segments of Euclidean lines. In Chapter 7 we will also 
discuss topics in Euclidean geometry not usually covered in high 
school. 

Chapter 8 takes up in a general way some of the philosophical 
implications of non-Euclidean geometries. The presentation is delib­
erately controversial, and the essay topics are intended to stimulate 
further thought and reading. 

Chapter 9 introduces the new insights gained for geometry by the 
transformation approach (Felix Klein's Erlanger Programme). We 
classify all the motions of Euclidean and hyperbolic planes, use them 
to solve geometric problems, describe them analytically in the Carte­
sian and Poincare models, characterize groups of transformations that 
are compatible with our congruence axioms, and introduce the fasci­
nating topic of symmetry, determining all finite symmetry groups 
(essentially known by Leonardo da Vinci). 

Chapter 10 is mainly devoted to the trigonometry of the hyperbolic 
plane, touching also upon area theory and surfaces of constant nega­
tive curvature. Among other results, we prove the hyperbolic analogue 
of the Pythagorean theorem, and we derive formulas for the circum­
ference and area of a circle, for the relationships between right trian­
gles and Lambert quadrilaterals, and for the circumscribed cycle of a 
triangle. We define various coordinate systems used to do analytic 
geometry in the hyperbolic plane. Appendix A tells more about ellip­
tic geometry, which is mentioned throughout the book. We then 
introduce differential geometry, sketching the magnificent insights of 
Gauss and Riemann. 

It is very important that you do as many exercises as possible, since 
new results are developed in the exercises and then built on in subse­
quent chapters. By working all the exercises, you may come to enjoy 
geometry as much as I do. 

Hyperbolic geometry used to be considered a historical curiosity. 
Some practical-minded students always ask me what it is good for. 
Following Euclid's example, I may give them a coin (not having a slave 
to hand it to them) and tell them that I earn a living from it. Sometimes 
I ask them what great music and art are good for, or I refer them to 
essay topics 5 and 8 in Chapter 8. If they persist, I refer them to 
Luneburg's research on binocular vision (see Chapter 8), to classical 
mechanics, and to current research in topology, ergodic theory, and 
automorphic function theory (see Suggested Further Reading). This 
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book and the course using it provide practical-minded people an 
opportunity to stretch their minds. As the great French mathematician 
Jacques Hadamard said, "Practical application is found by not looking 
for it, and one can say that the whole progress of civilization rests on 
that principle." Only impractical dreamers spent two thousand years 
wondering about proving Euclid's parallel postulate, and if they 
hadn't done so, there would be no spaceships exploring the galaxy 
today. 



EUCLID'S 

GEOMETRY 

The postulate on parallels . . . was in antiquity the 
final solution of a problem that must have preoccupied 
Greek mathematics for a long period before Euclid. 

HANS FREUDENTHAL 

THE ORIGINS OF GEOMETRY 

The word "geometry" comes from the Greek geometrein ( geo-, 
"earth," and metrein, "to measure"); geometry was originally the 
science of measuring land. The Greek historian Herodotus (5th cen­
tury B.c.) credits Egyptian surveyors with having originated the sub­
ject of geometry, but other ancient civilizations (Babylonian, Hindu, 
Chinese) also possessed much geometric information. 

Ancient geometry was actually a collection of rule-of-thumb proce­
dures arrived at through experimentation, observation of analogies, 
guessing, and occasional flashes of intuition. In short, it was an empir­
ical subject in which approximate answers were usually sufficient for 
practical purposes. The Babylonians of 2000 to 1600 B.C. considered 
the circumference of a circle to be three times the diameter; i.e., they 
took n to be equal to 3. This was the value given by the Roman 
architect Vitruvius and it is found in the Chinese literature as well. It 
was even considered sacred by the ancient Jews and sanctioned in 
scripture (I Kings 7:23)-an attempt by Rabbi Nehemiah to change 
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the value of n to¥ was rejected. The Egyptians of 1800 B.C., according 
to the Rhind papyrus, had the approximation n - (1

9
6 ) 2 - 3.1604. 1 

Sometimes the Egyptians guessed correctly, other times not. They 
found the correct formula for the volume of a frustum of a square 
pyramid- a remarkable accomplishment. On the other hand, they 
thought that a formula for area that was correct for rectangles applied 
to any quadrilateral. Egyptian geometry was not a science in the Greek 
sense, only a grab bag of rules for calculation without any motivation or 
justification. 

The Babylonians were much more advanced than the Egyptians in 
arithmetic and algebra. Moreover, they knew the Pythagorean 
theorem- in a right triangle the square of the length of the hypote­
nuse is equal to the sum of the squares of the lengths of the legs- long 
before Pythagoras was born. Recent research by Otto Neugebauer has 
revealed the heretofore unknown Babylonian algebraic influence on 
Greek mathematics. 

However, the Greeks, beginning with Thales of Miletus, insisted 
that geometric statements be established by deductive reasoning 
rather than by trial and error. Thales was familiar with the computa­
tions, partly right and partly wrong, handed down from Egyptian and 
Babylonian mathematics. In determining which results were correct, 
he developed the first logical geometry (Thales is also famous for 
having predicted the eclipse of the sun in 585 B.C.). The orderly 
development of theorems by proof was characteristic of Greek mathe­
matics and entirely new. 

The systematization begun by Thales was continued over the next 
two centuries by Pythagoras and his disciples. Pythagoras was re­
garded by his contemporaries as a religious prophet. He preached the 
immortality of the soul and reincarnation. He organized a brotherhood 
of believers that had its own purification and initiation rites, followed a 
vegetarian diet, and shared all property communally. The Pythago­
reans differed from other religious sects in their belief that elevation of 

1 In recent years 71: has been approximated to a very large number of decimal places by 
computers; to five places, 11: is approximately 3.14159. In 1789 Johann Lambert proved that 11: 

was not equal to any fraction (rational number), and in 1882 F. Lindemann proved that 71: is a 
transcendental number, in the sense that it does not satisfy any algebraic equation with rational 
coefficients, which implies that in the Euclidean plane, it is impossible to square a circle using 
only straightedge and compass. 
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the soul and union with God are achieved by the study of music and 
mathematics. In music, Pythagoras calculated the correct ratios of the 
harmonic intervals. In mathematics, he taught the mysterious and 
wonderful properties of numbers. Book VII of Euclid's Elements is the 
text of the theory of numbers taught in the Pythagorean school. 

The Pythagoreans were greatly shocked when they discovered irra­
tional lengths, such as ..Jz (see Chapter 2, pp. 43-44). At first they 
tried to keep this discovery secret. The historian Proclus wrote: "It is 
well known that the man who first made public the theory of irration­
als perished in a shipwreck, in order that the inexpressible and unima­
ginable should ever remain veiled." Since the Pythagoreans did not 
consider ..Jz a number, they transmuted their algebra into geometric 
form in order to represent ..J 2 and other irrational lengths by segments 
(..J2 by a diagonal of the unit square). 

The systematic foundation of plane geometry by the Pythagorean 
school was brought to a conclusion around 400 s.c. in the Elements by 
the mathematician Hippocrates (not to be confused with the physician 
of the same name). Although this treatise has been lost, we can safely 
say that it covered most of Books I-IV of Euclid's Elements, which 
appeared about a century later. The Pythagoreans were never able to 
develop a theory of proportions that was also valid for irrational 
lengths. This was later achieved by Eudoxus, whose theory was incor­
porated into Book V of Euclid's Elements. 

The fourth century s.c. saw the flourishing of Plato's Academy of 
science and philosophy (founded about 38 7 s.c.). In the Republic Plato 
wrote, "The study of mathematics develops and sets into operation a 
mental organism more valuable than a thousand eyes, because 
through it alone can truth be apprehended." Plato taught that the 
universe of ideas is more important than the material world of the 
senses, the latter being only a shadow of the former. The material 
world is an unlit cave on whose walls we see only shadows of the real, 
sunlit world outside. The errors of the senses must be corrected by 
concentrated thought, which is best learned by studying mathematics. 
The Socratic method of dialog is essentially that of indirect proof, by 
which an assertion is shown to be invalid if it leads to a contradiction. 
Plato repeatedly cited the proof for the irrationality of the length of a 
diagonal of the unit square as an illustration of the method of indirect 
proof (the reductio ad absurdum-see Chapter 2, pp. 42-44). The 
point is that this irrationality of length could never have been discov-
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ered by physical measurements, which always include a small experi­
mental margin of error. 

Euclid was a disciple of the Platonic school. Around 300 B.c. he 
produced the definitive treatment of Greek geometry and number 
theory in his 13-volume Elements. In compiling this masterpiece Eu­
clid built on the experience and achievements of his predecessors in 
preceding centuries: on the Pythagoreans for Books I- IV, VII, and 
IX, Archytas for Book VIII, Eudoxus for Books V, VI, and XII, and 
Theaetetus for Books X and XIII. So completely did Euclid's work 
supersede earlier attempts at presenting geometry that few traces 
remain of these efforts. It's a pity that Euclid's heirs have not been 
able to collect royalties on his work, for he is the most widely read 
author in the history of mankind. His approach to geometry has domi­
nated the teaching of the subject for over two thousand years. More­
over, the axiomatic method used by Euclid is the prototype for all of 
what we now call "pure mathematics." It is pure in the sense of "pure 
thought": no physical experiments need be performed to verify that 
the statements are correct-only the reasoning in the demonstrations 
need be checked. 

Euclid's Elements is pure also in that the work includes no practical 
applications. Of course, Euclid's geometry has had an enormous num­
ber of applications to practical problems in engineering, but they are 
not mentioned in the Elements. According to legend, a beginning 
student of geometry asked Euclid, "What shall I get by learning these 
things?" Euclid called his slave, saying, "Give him a coin, since he 
must make gain out of what he learns." To this day, this attitude 
toward application persists among many pure mathematicians- they 
study mathematics for its own sake, for its intrinsic beauty and ele­
gance (see essay topics 5 and 8 in Chapter 8). 

Surprisingly enough, as we will see later, pure mathematics often 
turns out to have applications never dreamt of by its creators- the 
"impractical" outlook of pure mathematicians is ultimately useful to 
society. Moreover, those parts of mathematics that have not been 
"applied" are also valuable to society, either as aesthetic works com­
parable to music and art or as contributions to the expansion of human 
consciousness and understanding. z 

2 For more detailed information on ancient mathematics, see Bartel van der Waerden 
(1961). 
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THE AXIOMATIC METHOD 

Mathematicians can make use of trial and error, computation of spe­
cial cases, inspired guessing, or any other way to discover theorems. 
The axiomatic method is a method of proving that results are correct. 
Some of the most important results in mathematics were originally 
given only incomplete proofs (we shall see that even Euclid was guilty 
of this). No matter-correct proofs would be supplied later (some­
times much later) and the mathematical world would be satisfied. 

So proofs give us assurance that results are correct. In many cases 
they also give us more general results. For example, the Egyptians and 
Hindus knew by experiment that if a triangle has sides of lengths 3, 4, 
and 5, it is a right triangle. But the Greeks proved that if a triangle has 
sides of lengths a, b, and c and if a2 + b2 = c2, then the triangle is a 
right triangle. It would take an infinite number of experiments to 
check this result (and, besides, experiments only measure things 
approximately). Finally, proofs give us tremendous insight into rela­
tionships among different things we are studying, forcing us to orga­
nize our ideas in a coherent way. You will appreciate this by the end of 
Chapter 6 (if not sooner). 

What is the axiomatic method? If I wish to persuade you by pure 
reasoning to believe some statement S1, I could show you how this 
statement follows logically from some other statement S2 that you may 
already accept. However, if you don't believe S2, I would have to show 
you how S2 follows logically from some other statement S3 • I might 
have to repeat this procedure several times until I reach some state­
ment that you already accept, one I do not need to justify. That 
statement plays the role of an axiom (or postulate). If I cannot reach a 
statement that you will accept as the basis of my argument, I will be 
caught in an "infinite regress," giving one demonstration after an­
other without end. 

So there are two requirements that must be met for us to agree that 
a proof is correct: 

REQUIREMENT 1. Acceptance of certain statements called "axioms," 
or "postulates," without further justification. 

REQUIREMENT 2. Agreement on how and when one statement "fol-
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lows logically" from another, i.e., agreement on certain rules of rea­
sonmg. 

Euclid's monumental achievement was to single out a few simple 
postulates, statements that were acceptable without further justifica­
tion, and then to deduce from them 465 propositions, many compli­
cated and not at all intuitively obvious, which contained all the geo­
metric knowledge of his time. One reason the Elements is such a 
beautiful work is that so much has been deduced from so little. 

UNDEFINED TERMS 

We have been discussing what is required for us to agree that a proof is 
correct. Here is one requirement that we took for granted: 

REQUIREMENT 0. Mutual understanding of the meaning of the words 
and symbols used in the discourse. 

There should be no problem in reaching mutual understanding so 
long as we use terms familiar to both of us and use them consistently. If 
I use an unfamiliar term, you have the right to demand a definition of 
this term. Definitions cannot be given arbitrarily; they are subject to 
the rules of reasoning referred to (but not specified) in Requirement 
2. If, for example, I define a right angle to be a 90° angle, and then 
define a 90° angle to be a right angle, I would violate the rule against 
circular reasoning. 

Also, we cannot define every term that we use. In order to define 
one term we must use othef terms, and to define these terms we must 
use still other terms, and so on. If we were not allowed to leave some 
terms undefined, we would get involved in infinite regress. 

Euclid did attempt to define all geometric terms. He defined a 
"straight line" to be "that which lies evenly with the points on itself." 
This definition is not very useful; to understand it you must already 
have the image of a line. So it is better to take "line" as an undefined 
term. Similarly, Euclid defined a "point" as "that which has no part" 
- again, not very informative. So we will also accept "point" as an 
undefined term. Here are the five undefined geometric terms that are 
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the basis for defining all other geometric terms in plane Euclidean 
geometry: 

point 
line 
lie on (as in "two points lie on a unique line") 
between (as in "point C is between points A and B") 
congruent 

For solid geometry, we would have to introduce a further undefined 
geometric term, "plane," and extend the relation "lie on" to allow 
points and lines to lie on planes. In this book (unless otherwise stated) we 
will restrict our attention to plane geometry, i.e., to one single plane. So 
we define the plane to be the set of all points and lines, all of which are 
said to "lie on" it. 

There are expressions that are often used synonymously with "lie 
on." Instead of saying "point Plies on line I," we sometimes say "I 
passes through P" or "Pis incident with I," denoted P 1 I. If point Plies on 
both line I and line m, we say that "I and m have point Pin common" or 
that "I and m intersect (or meet) in the point P." 

The second undefined term, "line," is synonymous with "straight 
line." The adjective "straight" is confusing when it modifies the noun 
"line," so we won't use it. Nor will we talk about "curved lines." 
Although the word "line" will not be defined, its use will be restricted 
by the axioms for our geometry. For instance, one axiom states that 
two given points lie on only one line. Thus, in Figure 1.1, I and m 
could not both represent lines in our geometry, since they both pass 
through the points P and Q. 

FIGURE I.I m 

There are other mathematical terms that we will use that should be 
added to our list of undefined terms, since we won't define them; they 
have been omitted because they are not specifically geometric in 
nature, but are rather what Euclid called "common notions." Never­
theless, since there may be some confusion about these terms, a few 
remarks are in order. 
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The word "set" is fundamental in all of mathematics today; it is 
now used in elementary schools, so undoubtedly you are familiar with 
its use. Think of it as a "collection of objects." Two related notions are 
"belonging to" a set or "being an element (or member) of" a set, as in 
our convention that all points and lines belong to the plane. If every 
element of a set S is also an element of a set T, we say that S is 
"contained in" or "part of" or "a subset of" T. We will define 
"segment," "ray," "circle," and other geometric terms to be certain 
sets of points. A "line," however, is not a set of points in our treatment 
(for reasons of duality in Chapter 2). When we need to refer to the set 
of all points lying on a line I, we will denote that set by {I}. 

In the language of sets we say that sets S and Tare equal if every 
member of Sis a member of T, and vice versa. For example, the set S of 
all authors of Euclid's Elements is (presumably) equal to the set whose 
only member is Euclid. Thus, "equal" means "identical." 

Euclid used the word "equal" in a different sense, as in his assertion 
that "base angles of an isosceles triangle are equal." He meant that 
base angles of an isosceles triangle have an equal number of degrees, 
not that they are identical angles. So to avoid confusion we will not use 
the word "equal" in Euclid's sense. Instead, we will use the undefined 
term "congruent" and say that "base angles of an isosceles triangle are 
congruent." Similarly, we don't say that "if AB equals AC, then ~ABC 
is isosceles." (If AB equals AC, following our use of the word "equals," 
~ABC is not a triangle at all, only a segment.) Instead, we would say 
that "if AB is congruent to AC, then ~ABC is isosceles." This use of the 
undefined term "congruent" is more general than the one to which 
you are accustomed; it applies not only to triangles but to angles and 
segments as well. To understand the use of this word, picture con­
gruent objects as "having the same size and shape." 
~ Of course, we must specify (as Euclid did in his "common notions") 

that "a thing is congruent to itself," and that "things congruent to the 
same thing are congruent to each other." Statements like these will 
later be included among our axioms of congruence (Chapter 3). 

The list of undefined geometric terms shown earlier in this section 
is due to David Hilbert (1862-1943). His treatise The Foundations of 
Geometry (1899) not only clarified Euclid's definitions but also filled 
in the gaps in some of Euclid's proofs. Hilbert recognized that Euclid's 
proof for the side-angle-side criterion of congruence in triangles was 
based on an unstated assumption (the principle of superposition), and 
that this criterion had to be treated as an axiom. He also built on the 
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earlier work of Moritz Pasch, who in 1882 published the first rigorous 
treatise on geometry; Pasch made explicit Euclid's unstated assump­
tions about betweenness (the axioms on betweenness will be studied 
in Chapter 3). Some other mathematicians who worked to establish 
rigorous foundations for Euclidean geometry are: G. Peano, M. Pieri, 
G. Veronese, 0. Veblen, G. de B. Robinson, E. V. Huntington, and 
H. G. Forder. These mathematicians used lists of undefined terms 
different from the one used by Hilbert. Pieri used only two undefined 
terms (as a result, however, his axioms were more complicated). The 
selection of undefined terms and axioms is arbitrary; Hilbert's selec­
tion is popular because it leads to an elegant development of geometry 
similar to Euclid's presentation. 

EUCLID'S FIRST FOUR POSTULATES 

Euclid based his geometry on five fundamental assumptions, called 
axioms or postulates. 

EUCLID'S POSTULATE I. For every point P and for every point Q not 
equal to P there exists a unique line I that passes through P and Q. 

This postulate is sometimes expressed informally by saying "two 
points determine a unique line." We will denote the unique line that 
passes through P and Q by PQ. 

To state the second postulate, we must make our first definition. 

DEFINITION. Given two points A and B. The segment AB is the set 
whose members are the points A and B and all points that lie on the 
line AB and are between A and B (Figure 1.2). The two given points A 
and B are called the endpoints of the segment AB. 3 

Segment AB 
A c B 

---------------------- Linc AB FIGURE 1.2 A c B 

3 Warning on notation: In many high school geometry texts the notation AB is used for 
"segment AB." 
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EUCLID'S POSTULATE II. For every segment AB and for every seg­
ment CD there exists a unique point E such that B is between A and E 
and segment CD is congruent to segment BE (Figure 1.3). 

A 

FIGURE 1.3 CD= BE. 

c 

B 

D 

E 

This postulate is sometimes expressed informally by saying that 
"any segment AB can be extended by a segment BE congruent to a 
given segment CD." Notice that in this postulate we have used the 
undefined term "congruent" in the new way, and we use the usual 
notation CD = BE to express the fact that CD is congruent to BE. 

In order to state the third postulate, we must introduce another 
definition. 

DEFINITION. Given two points 0 and A. The set of all points P such 
that segment OP is congruent to segment OA is called a circle with 0 as 
center, and each of the segments OP is called a radius of the circle. 

It follows from Euclid's previously mentioned common notion ("a 
thing is congruent to itself") that OA = OA, so A is also a point on the 
circle just defined. 

EUCLID'S POSTULATE III. For every point 0 and every point A not 
equal to 0 there exists a circle with center 0 and radius OA (Figure 
1.4). 

0 '-------i A 

FIGURE 1.4 Circle with center 0 and radius OA. 
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Actually, because we are using the language of sets rather than that 
of Euclid, it is not really necessary to assume this postulate; it is a 
consequence of set theory that the set of all points P with OP = OA 
exists. Euclid had in mind drawing the circle with center 0 and radius 
OA, and this postulate tells you that such a drawing is allowed, for 
example, with a compass. Similarly, in Postulate II you are allowed to 
extend segment AB by drawing segment BE with a straightedge. Our 
treatment "purifies" Euclid by eliminating references to drawing in 
our proofs.4 But you should review the straightedge and compass 
constructions in Major Exercise 1. 

DEFINITION. The ray AB is the following set of points lying on the 
line AB: those points that belong to the segment AB and all points Con 
AB such that B is between A and C. The ray AB is said to emanate from 
the vertex A and to be part of line AB. (See Figure 1.5.) 

A 

FIGURE 1.5 Ray AB. 

DEFINITION. Rays AB and _AC are ·opposite if they are distinct, if they 
emanate from the same point A, and if they are part of the same line 
AB= Ac (Figure 1.6.). 

4 However, it is a fascinating mathematical problem to determine just what geometric 
constructions are possible using only a compass and straightedge. Not until the nineteenth 
century was it proved that such constructions as trisecting an arbitrary angle, squaring a circle, or 
doubling a cube were impossible using only a compass and straightedge. Pierre Wantzel proved 
this by translating the geometric problem into an algebraic problem; he showed that straight­
edge and compass constructions correspond to a solution of certain algebraic equations using 
only the operations of addition, subtraction, multiplication, division, and extraction of square 
roots. For the particular algebraic equations obtained from, say, the problem of trisecting an 
arbitrary angle, such a solution is impossible because cube roots are needed. Of course, it is 
possible to trisect angles using other instruments, such as a marked straightedge and compass 
(see Major Exercise 3 and Projects 1, 2, and 4), and J. Bolyai proved that in the hyperbolic plane, 
it is possible to "square" the circle.-
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B 

FIGURE 1.6 Opposite rays. 

A 
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DEFINITION. An "angle with vertex A" is a point A together with two 
distinct nonopposite rays AB and AC (called the sides of the angle) 
emanating from A.5 (See Figure 1.7.) 

A 

FIGURE 1.7 Angle with vertex A. 

We use the notations ~A, ~BAC, or ~CAB for this angle. 

DEFINITION. If two angles ~BAD and ~CAD have a common side 
AD and the other two sides AB and AC form opposite rays, the angles 
are supplements of each other, or supplementary angles (Figure 1.8) . 

• 
B A c 

FIGURE 1.8 Supplementary angles. 

DEFINITION. An angle ~BAD is a right angle if it has a supplementary 
angle to which it is congruent (Figure 1. 9). 

5 According to this definition, there is no such thing as a "straight angle." We eliminated this 
expression because most of the assertions we will make about angles do not apply to "straight 
angles." The definition excludes zero angles as well. 
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.. • • .. 
R A c 

FIGURE 1.9 Right angles <tBAD = <tCAD. 

We have thus succeeded in defining a right angle without referring to 
"degrees," by using the undefined notion of congruence of angles. 
"Degrees" will not be introduced formally until Chapter 4, although 
we will occasionally refer to them in informal discussions. 

We can now state Euclid's fourth postulate. 

EUCLID'S POSTULATE IV. All right angles are congruent to each 
other. 

This postulate expresses a sort of homogeneity; even though two 
right angles may be "very far away" from each other, they neverthe­
less "have the same size." The postulate therefore provides a natural 
standard of measurement for angles.6 

THE PARALLEL POSTULATE 

Euclid's first four postulates have always been readily accepted by 
mathematicians. The fifth (parallel) postulate, however, was highly 
controversial. In fact, as we shall see later, consideration of alterna­
tives to Euclid's parallel postulate resulted in the development of 
non-Euclidean geometries. 

At this point we are not going to state the fifth postulate in its 
original form, as it appeared in the Elements. Instead, we will present a 
simpler postulate (which we will later show is logically equivalent to 
Euclid's original). This version is sometimes called Play/air's postulate 

6 On the contrary, there is no natural standard of measurement for lengths in Euclidean 
geometry. Units oflength (one foot, one meter, etc.) must be chosen arbitrarily. The remarkable 
fact about hyperbolic geometry, on the other hand, is that it does admit a natural standard of 
length (see Chapter 6). 
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because it appeared in John Playfair's presentation of Euclidean ge­
ometry, published in 1795-although it was referred to much earlier 
by Proclus (A.D. 410-485). We will call itthe Euclidean para/le/postu­
late because it distinguishes Euclidean geometry from other geome­
tries based on parallel postulates. The most important definition in 
this book is the following: 

DEFINITION. Two lines I and m are parallel if they do not intersect, 
i.e., if no point lies on both of them. We denote this by /II m. 

Notice first that we assume the lines lie in the same plane (because 
of our convention that all points and lines lie in one plane, unless 
stated otherwise; in space there are noncoplanar lines which fail to 
intersect and they are called skew lines, not "parallel"). Notice sec­
ondly what the definition does not say: it does not say that the lines are 
equidistant, i.e., it does not say that the distance between the two lines 
is everywhere the same. Don't be misled by drawings of parallel lines 
in which the lines appear to be equidistant. We want to be rigorous 
here and so should not introduce into our proofs assumptions that have 
not been stated explicitly. At the same time, don'tjump to the conclu­
sion that parallel lines are not equidistant. We are not committing 
ourselves either way and shall reserve judgment until we study the 
matter further. At this point, the only thing we know for sure about 
parallel lines is that they do not meet. 

THE EUCLIDEAN PARALLEL POSTULATE. For every line/ and for 
every point P that does not lie on /there exists a unique line m through 
P that is parallel to /. (See Figure 1.10.) 

p 

FIGURE 1.10 Lines I and mare parallel. 

Why should this postulate be so controversial? It may seem "obvi­
ous" to you, perhaps because you have been conditioned to think in 
Euclidean terms. However, if we consider the axioms of geometry as 
abstractions from experience, we can see a difference between this 
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postulate and the other four. The first two postulates are abstractions 
from our experiences drawing with a straightedge; the third postulate 
derives from our experiences drawing with a compass. The fourth 
postulate is perhaps less obvious as an abstraction; nevertheless it 
derives from our experiences measuring angles with a protractor 
(where the sum of supplementary angles is 180°, so that if supple­
mentary angles are congruent to each other, they must each measure 
90°). 

The fifth postulate is different in that we cannot verify empirically 
whether two lines meet, since we can draw only segments, not lines. 
We can extend the segments further and further to see if they meet, 
but we cannot go on extending them forever. Our only recourse is to 
verify parallelism indirectly, by using criteria other than the defini­
tion. 

What is another criterion for Ito be parallel tom? Euclid suggested 
drawing a transversal (i.e., a line t that intersects both I and m in 
distinct points), and measuring the number of degrees in the interior 
angles a and p on one side of t. Euclid predicted that if the sum of 
angles a and p turns out to be less than 180°, the lines (if produced 
sufficiently far) would meet on the same side of tas anglesaandfi (see 
Figure 1.11). This, in fact, is the content of Euclid's fifth postulate. 

m 

FIGURE I.II 

The trouble with this criterion for parallelism is that it turns out to 
be logically equivalent to the Euclidean parallel postulate that was 
just stated (see the section Equivalence of Parallel Postulates in 
Chapter 4.). So we cannot use this criterion to convince ourselves of 
the correctness of the parallel postulate- that would be circular rea­
soning. Euclid himself recognized the questionable nature of the 
parallel postulate, for he postponed using it for as long as he could 
(until the proof of his 29th proposition). 
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ATTEMPTS TO PROVE THE 
PARALLEL POSTULATE 
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Remember that an axiom was originally supposed to be so simple and 
intuitively obvious that no one could doubt its validity. From the very 
beginning, however, the parallel postulate was attacked as insuffi­
ciently plausible to qualify as an unproved assumption. For two thou­
sand years mathematicians tried to derive it from the other four postu­
lates or to replace it with another postulate, one more self-evident. All 
attempts to derive it from the first four postulates turned out to be 
unsuccessful because the so-called proofs always entailed a hidden 
assumption that was unjustifiable. The substitute postulates, pur­
portedly more self-evident, turned out to be logically equivalent to the 
parallel postulate, so that nothing was gained by the substitution. We 
will examine these attempts in detail in Chapter 5, for they are very 
instructive. For the moment, let us consider one such effort. 

The Frenchman Adrien Marie Legendre ( 17 52-1833) was one of 
the best mathematicians of his time, contributing important discover­
ies to many different branches of mathematics. Yet he was so obsessed 
with proving the parallel postulate that over a period of 29 years he 
published one attempt after another in different editions of his Ele­
ments de Geometrie. 7 Here is one attempt (see Figure 1.12): 

11 

FIGURE 1.12 A Q 

Given P not on line/. Drop perpendicular PQ from P to I at Q. Let m 
be the line through P perpendicular to PQ. Then m is parallel to /, 

7 Davies' translation of the Elements was the most popular geometry textbook in the United 
States during the nineteenth century. Legendre is best known for the method of least squares in 
statistics, the law of quadratic reciprocity in number theory, and the Legendre polynomials in 
differential equations. His attempts to prove the parallel postulate led to two important theor­
ems in neutral geometry (see Chapter 4). 
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Adrien Marie Legendre 

since I and m have the commoIJ.l>erpendicular PQ. Let n be any line 
through P distinct from m and PQ. We must show than n meets/. Let 
PR be a ray of n between PQ and a ray of m emanating from P. There is 
a point R' on the opposite side of PQ from R such that 1:'.QPR' == 
1:'.QPR. Then Q lies in the interior of 1:'.RPR'. Since line I passes 
through the point Q interior to 1:'.RPR', I must intersect one of the 
sides of this angle. If I meets side PR, then certainly I meets n. Sup­
pose I meets side PR' at a point A. Let B be the unique point on 
side PR such that PA== PB. Then .6PQA == PQB (SAS); hence 
1:'.PQB is a right angle, so that B lies on I (and n). 

You may feel that this argument is plausible enough. Yet how could 
you tell if it is correct? You would have to justify each step, first 
defining each term carefully. For instance, you would have to define 
what was meant by two lines being "perpendicular" -otherwise, 
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how could you justify the assertion that lines I and mare parallel simply 
because they have a common perpendicular? (You would first have to 
prove that as a separate theorem, if you could.) You would have to 
justify the side-angle-side (SAS) criterion of congruence in the last 
statement. You would have to define the "interior" of an angle, and 
prove that a line through the interior of an angle must intersect one of 
the sides. In proving all of these things, you would have to be sure to 
use only the first four postulates and not any statement equivalent to 
the fifth; otherwise the argument would be circular. 

Thus there is a lot of work that must be done before we can detect 
the flaw. In the next few chapters we will do this preparatory work so 
that we can confidently decide whether or not Legendre's proposed 
proof is valid. (Legendre's argument contains several statements that 
cannot be proved from the first four postulates.) As a result of this 
work we will be better able to understand the foundations of Euclid­
ean geometry. We will discover that a large part of this geometry is 
independent of the theory of parallels and is equally valid in hyperbo­
lic geometry. 

THE DANGER IN DIAGRAMS 

Diagrams have always been helpful in understanding geometry­
they are included in Euclid's Elements and they are included in this 
book. But there is a danger that a diagram may suggest a fallacious 
argument. A diagram may be slightly inaccurate or it may represent 
only a special case. If we are to recognize the flaws in arguments such 
as Legendre's, we must not be misled by diagrams that look plausible. 

What follows is a well-known and rather involved argument that 
pretends to prove that all triangles are isosceles. Place yourself in the 
context of what you know from high school geometry. (After this 
chapter you will have to put that knowledge on hold.) Find the flaw in 
the argument. 

Given .6.ABC. Construct the bisector of <r..A and the perpendicular 
bisector of side BC opposite to <r..A. Consider the various cases (Figure 
1.13). 
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Case 2 

FIGURE 1.13 
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c 
Case 4 

Case I. The bisector of <tA and the perpendicular bisector of 
segment BC are either parallel or identical. In either case, the bisector 
of <tA is perpendicular to BC and hence, by definition, is an altitude. 
Therefore, the triangle is isosceles. (The conclusion follows from the 
Euclidean theorem: if an angle bisector and altitude from the same 
vertex of a triangle coincide, the triangle is isosceles.) 

Suppose now that the bisector of <tA and the perpendicular bisector 
of the side opposite are not parallel and do not coincide. Then they 
intersect in exactly one point, D, and there are three cases to consider: 

Case 2. The point D is inside the triangle. 

Case 3. The point D is on the triangle. 

Case 4. The point D is outside the triangle. 

For each case construct DE perpendicular to AB and DF perpen­
dicular to AC, and for cases 2 and 4 join D to B and D to C. In each 
case, the following proof now holds (see Figure 1.13): 
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DE = OF because all points on an angle bisector are equidistant 
from the sides of the angle; DA= DA, and 4:DEA and IDFA are right 
angles; hence, AADE is congruent to AADF by the hypotenuse-leg 
theorem of Euclidean geometry. (We could also have used the SAA 
theorem with DA = DA, and the bisected angle and right angles.) 
Therefore, we have AE = AF. Now, DB = DC because all points on 
the perpendicular bisector of a segment are equidistant from the ends 
of the segment. Also, DE= OF, and 4:DEB and 4:DFC are right 
angles. Hence, ADEB is congruent to ADFC by the hypotenuse-leg 
theorem, and hence FC = BE. It follows that AB = AC-in cases 2 
and 3 by addition and in case 4 by subtraction. The triangle is there­
fore isosceles. 

THE POWER OF DIAGRAMS 

Geometry, for human beings (perhaps not for computers), is a visual 
subject. Correct diagrams are extremely helpful in understanding 
proofs and in discovering new results. One of the best illustrations of 
this is Figure 1.14, which reveals immediately the validity of the 

FIGUR E 1.14 
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b 

a 

FIGURE I.IS 

Pythagorean theorem in Euclidean geometry. (Euclid's proof was 
much more complicated.) Figure 1.15 is a simpler diagram suggesting 
a proof by dissection. 

REVIEW EXERCISE 

Which of the following statements are correct? 

( 1) The Euclidean parallel postulate states that for every line I and for 
every point P not lying on I there exists a unique line m through P that is 
parallel to /. 

(2) An "angle" is defined as the space between two rays that emanate from 
a common point. 

(3) Most of the results in Euclid's Elements were discovered by Euclid 
himself. 

(4) By definition, a line mis "parallel" to a line /if for any two points P, Q 
on m, the perpendicular distance from P to I is the same as the perpen­
dicular distance from Q to /. 

(5) It was unnecessary for Euclid to assume the parallel postulate because 
the French mathematician Legendre proved it. 

( 6) A "transversal" to two lines is another line that intersects both of them 
in distinct points. 

(7) By definition, a "right angle" is a 90° angle. 
(8) "Axioms" or "postulates" are statements that are assumed, without 

further justification, whereas "theorems" or "propositions" are proved 
using the axioms. 
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(9) We call ,,/2 an "irrational number" because it cannot be expressed as a 
quotient of two whole numbers. 

( 10) The ancient Greeks were the first to insist on proofs for mathematical 
statements to make sure they were correct. 

EXERCISES 

In Exercises 1 - 4 you are asked to define some familiar geometric 
terms. The exercises provide a review of these terms as well as prac­
tice in formulating definitions with precision. In making a definition, 
you may use the five undefined geometric terms and all other geomet­
ric terms that have been defined in the text so far or in any preceding 
exercises. 

Making a definition sometimes requires a bit of thought. For exam­
ple, how would you define perpendicularity for two lines I and m? A first 
attempt might be to say that "I and m intersect and at their point of 
intersection these lines form right angles." It would be legitimate to 
use the terms "intersect" and "right angle" because they have been 
previously defined. But what is meant by the statement that lines form 
right angles? Surely, we can all draw a picture to show what we mean, 
but the problem is to express the idea verbally, using only terms 
introduced previously. According to the definition on p. 17, an angle is 
formed by two nonopposite rays emanating from the same vertex. We 
may therefore define I and mas perpendicular if they intersect at a point 
A and if there is a ray AB that is part of I and a ray AC that is part of m 
such that <t:BAC is a right angle (Figure 1.16). We denote this by 
I 1- m. 

c 

A B 

m 

FIGURE 1.16 Perpendicular lines. 
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1. Define the following terms: 
(a) Midpoint M of a segment AB. 
(b) Perpendicular bisector of a segment AB (you may use the term "mid­

point" since you have just defined it). 
(c) Ray BO bisects angle ~ABC (given that point Dis between A and 

C). 
(d) Points A, B, and Care collinear. 
(e) Lines I, m, and n are concurrent (see Figure 1.17). 

FIGURE 1.17 Concurrent lines. 

2. Define the following terms: 
(a) The triangle ~ABC formed by three noncollinear points A, B, and 

c. 
(b) The vertices, sides, and angles of~ ABC. (The "sides" are segments, 

not lines.) 
(c) The sides opposite to and adjacent to a given vertex A of ~ABC. 
(d) Medians of a triangle (see Figure 1.18). 
( e) Altitudes of a triangle (see Figure 1.1 9) . 
(f) Isosceles triangle, its base, and its base angles. 
(g) Equilateral triangle. 
(h) Right triangle. 

c 

M 

FIGURE 1.18 Median. 
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c 

A D B 

FIGURE 1.19 Altitude. 

3. Given four points, A, B, C, and D, no three of which are collinear and 
such that any pair of the segments AB, BC, CD, and DA either have no 
point in common or have only an endpoint in common. We can then 
define the quadrilateral OABCD to consist of the four segments men­
tioned, which are called its sides, the four points being called its vertices; 
see Figure 1.20. (Note that the order in which the letters are written is 
essential. For example, OABCD may not denote a quadrilateral, be­
cause, for example, AB might cross CD. If OABCD did denote a 
quadrilateral, it would not denote the same one as OACDB. Which 
permutations of the four letters A, B, C, and D do denote the same 
quadrilateral as OABCD?) Using this definition, define the following 
notions: 
(a) The angles of OABCD. 
(b) Adjacent sides of OABCD. 
(c) OppositesidesofOABCD. 
(d) The diagonals of OABCD. 
(e) A parallelogram. (Use the word "parallel.") 

A 

A 

B c B 

FIGURE 1.20 Quadrilaterals. 

D 

c 

4. Define vertical angles (Figure 1.21). How would you attempt to prove 
that vertical angles are congruent to each other? (Just sketch a plan for a 
proof-don't carry it out in detail.) 
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FIGURE 1.21 Vertical angles. 

5. Use a common notion (p. 13) to prove the following result: If Pand Qare 
any points on a circle with center 0 and radius OA, then OP = OQ. 

6. (a) Given two points A and B and a third point C between them. (Recall 
that "between" is an undefined term.) Can you think of any way to 
prove from the postulates that C lies on line AB? 

(b) Assuming that you succeeded in proving C lies on AB, ca~ou 
prove from the definition of "ray" and the postulates that AB = 
AC? 

7. If S and Tare any sets, their union (SU T) and intersection (Sn T) are 
defined as follows: 
(i) Something belongs to SU T if and only if it belongs either to S 

or to T (or to both of them). 
(ii) Something belongs to Sn T if and only if it belongs both to S 

and to T. 
Given two points A and B, consider the two rays AB and BA. Draw 
diagrams to show that AB U BA = AB and AB n BA = AB. What addi­
tional axioms about the undefined term "between" must we assume in 
order to be able to prove these equalities? 

8. To further illustrate the need for careful definition, consider the follow­
ing possible definitions of rectangle: 
(i) A quadrilateral with four right angles. 
(ii) A quadrilateral with all angles congruent to one another. 
(iii) A parallelogram with at least one right angle. 
In this book we will take (i) as our definition. Your experience with Euclid­
ean geometry may lead you to believe that these three definitions are 
equivalent; sketch informally how you might prove that, and notice 
carefully which theorems you are tacitly assuming. In hyperbolic geom­
etry these definitions give rise to three different sets of quadrilaterals 
(see Chapter 6). Given the definition of "rectangle," use it to define 
"square." 

9. Can you think of any way to prove from the postulates that for every line I 
(a) There exists a point lying on/? 
(b) There exists a point not lying on /? 
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10. Can you think of any way to prove from the postulates that the plane is 
nonempty, i.e., that points and lines exist? (Discuss with your instructor 
what it means to say that mathematical objects, such as points and lines, 
"exist.") 

11. Do you think that the Euclidean parallel postulate is "obvious"? Write a 
brief essay explaining your answer. 

12. What is the flaw in the "proof" that all triangles are isosceles? (All the 
theorems from Euclidean geometry used in the argument are correct.) 

13. If the number n is defined as the ratio of the circumference of any circle 
to its diameter, what theorem must first be proved to legitimize this 
definition? (For example, if I "define" a new number <p to be the ratio of 
the area of any circle to its diameter, that would not be legitimate. The 
required theorem is proved in Section 21.2 of Moise, 1990.) 

14. Do you think the axiomatic method can be applied to subjects other than 
mathematics? Is the U.S. Constitution (including all its amendments} 
the list of axioms from which the federal courts logically deduce all rules 
of law? Do you think the "truths" asserted in the Declaration of Inde­
pendence are "self-evident"? 

15. Write a commentary on the application of the axiomatic method finished 
in 16 7 5 by Benedict de Spinoza, entitled: Ethics Demonstrated in Geo­
metrical Order and Divided into Five Parts Which Treat (1) of God; (2) of 
the Nature and Origin of the Mind; (3) of the Nature and Origin of the 
Emotions; (4) of Human Bondage, or of the Strength of the Emotions; (5) of 
the Power of the Intellect, or of Human Liberty. (Devote the main body of 
your review to Parts 4 and 5.) 

MAJOR EXERCISES 

1. In this exercise we will review several basic Euclidean constructions with 
a straightedge and compass. Such constructions fascinated mathemati­
cians from ancient Greece until the nineteenth century, when all classical 
construction problems were finally solved. 
(a) Given a segment AB. Construct the perpendicular bisector of AB. 

(Hint: Make AB a diagonal of a rhombus, as in Figure 1.22.) 
(b) Given a line I and a point Plying on l Construct the line through P 

perpendicular to I. (Hint: Make P the midpoint of a segment of/.) 
( c) Given a line I and a point P not lying on/. Construct the line through P 

perpendicular to I. (Hint: Construct isosceles triangle ~ABP with 
base AB on /and use (a).) 
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A 

FIGURE 1.22 

( d) Given a line I and a point P not lying on /. Construct a line through P 
parallel to/. (Hint: use (b) and (c).) 

(e) Construct the bisecting ray of an angle. (Hint: Use the Euclidean 
theorem that the perpendicular bisector of the base on an isosceles 
triangle is also the angle bisector of the angle opposite the base.) 

(f) Given b.ABC and segment DE == AB. Construct a point Fon a given 
~ 

side of line DE such that b.DEF == b.ABC. 
( g) Given angle <tABC and ray DE. Construct F on a given side of line 

DE such that <tABC == <tFDE. 
2. Euclid assumed the compass to be collapsible. That is, given two points P 

and Q, the compass can draw a circle with center P passing through Q 
(Postulate III); however, the spike cannot be moved to another center 0 
to draw a circle of the same radius. Once the spike is moved, the compass 
collapses. Check through your constructions in Exercise 1 to see if they 
are possible with a collapsible compass. (For purposes of this exercise, 
being "given" a line means being given two or more points on it.) 
(a) Given three points P, Q, and R. Construct with a straightedge and 

collapsible compass a rectangle DPQST with PQ as a side and such 
that PT== PR (see Figure 1.23). 

T S 
-------------------11 

I 
I 
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I 
I 
I 
I 
I 

FIGURE 1.23 Q 

(b) Given a segment PQ and a ray AB. Construct the point Con AB such 
that PQ ==AC. (Hint: Using (a), construct rectangle DPAST with 
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?T = PQ, and then draw the circle centered at A and passing 
through S.) 

Exercise (b) shows that you can transfer segments with a collapsible 
compass and a straightedge, so you can carry out all constructions as if 
your compass did not collapse. 

3. The straightedge you used in the previous exercises was supposed to be 
unruled (if it did have marks on it, you weren't supposed to use them). 
Now, however, let us mark two points on the straightedge so as to mark 
off a certain distance d. Archimedes showed how we can then trisect an 
arbitrary angle: 

For any angle, draw a circle yof radius dcentered at the vertexO of the 
angle. This circle cuts the sides of the angle at points A and B. Place the 
marked straightedge so that one mark gives a point Con line OA such that 
0 is between C and A, the other mark gives a point Don circle y, and the 
straightedge must simultaneously rest on the point B, so that B, C, and D 
are collinear (Figure 1.24). Prove that <i:COD so constructed is one-third 
of <i:AOB. (Hint: Use Euclidean theorems on exterior angles and iso­
sceles triangles.) 

c 

FIGURE 1.24 
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~ 

d 

4. The number p = (1 + >/S)/2 was called the golden ratio by the Greeks, 
and a rectangle whose sides are in this ratio is called a golden rectangle.8 

Prove that a golden rectangle can be constructed with straightedge and 
compass as follows: 
(a) Construct a square DABCD. 

8 For applications of the golden ratio to Fibonacci numbers and phyllotaxis, see Coxeter 
( 1969), Chapter 11. 
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(b) Construct midpoint M of AB. 
(c) Construct point E such that Bis between A and E and MC= ME 

(Figure 1.25). 

FIGURE 1.25 

(d) Construct the foot F of the perpendicular from E to OC. 
(e) Then DAEFD is a golden rectangle (use the Pythagorean theorem 

for .t.MBC). 
(f) Moreover, DBEFC is another golden rectangle (first show that 

1/p=p-1). 

The next two exercises require a knowledge of trigonometry. 

5. The Egyptians thought that if a quadrilateral had sides of lengths a, b, c, 
and d, then its area S was given by the formula (a+ c) (b + d) 14. Prove 
that actually 

4S~ (a+c)(b+d) 

with equality holding only for rectangles. (Hint: Twice the area of a 
triangle is ab sin e, where e is the angle between the sides of lengths a, b 
and sin 0 ~ 1, with equality holding only if(} is a right angle.) 

6. Prove analogously that if a triangle has sides of lengths a, b, c, then its area 
S satisfies the inequality 

4S..J 3 ~ a2 + b2 + cZ 

with equality holding only for equilateral triangles. (Hint: If(} is the angle 
between sides b and c, chosen so that it is at most 60°, then use the 
formulas 

ZS= be sin(} 
Zbc cos e = b2 + c2 - a2 (law of cosines) 

cos (60° - fJ) =(cos e + ..J3 sin fJ)/2 

7. Let .6 ABC be such that AB is not congruent to AC. Let D be the point of 
intersection of the bisector of <tA and the perpendicular bisector of side 
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BC. Let E, F, and G be the feet of the perpendiculars dropped from D to 
AB, AC, BC, respectively. Prove that: 
(a) D lies outside the triangle on the circle through ABC. 
(b) One of E or Flies inside the triangle and the other outside. 
( c) E, F, and G are collinear. 
(Use anything you know, including coordinates if necessary.) 

PROJECTS 

1. Write a paper explaining in detail why it is impossible to trisect an 
arbitrary angle or square a circle using only a compass and unmarked 
straightedge; see Jones, Morris, and Pearson ( 1991); Eves ( 1963 -
1965); Kutuzov ( 1960); or Moise ( 1990). Explain how arbitrary angles 
can be trisected if in addition we are allowed to draw a parabola or a 
hyperbola or a conchoid or a lima~on (see Peressini and Sherbert, 1971). 

2. Here are two other famous results in the theory of constructions: 
(a) The Danish mathematician G. Mohr and the Italian L. Mascheroni 

discovered independently that all Euclidean constructions of points 
can be made with a compass alone. A line, of course, cannot be drawn 
with a compass, but it can be determined with a compass by con­
structing two points lying on it. In this sense, Mohr and Mascheroni 
showed that the straightedge is unnecessary. 

(b) On the other hand, the German J. Steiner and the Frenchman J. V. 
Poncelet showed that all Euclidean constructions can be carried out 
with a straightedge alone if we are first given a single circle and its 
center. 

Report on these remarkable discoveries (see Eves, 1963-1965, and 
Kutuzov, 1960). 

3. Given any D.ABC. Draw the two rays that trisect each of its angles, and let 
P, Q, and R be the three points of intersection of adjacent trisectors. Prove 
Morley's theorem9 that D.PQR is an equilateral triangle (see Figure 1.26 
and Coxeter, 1969). 

4. An n-sided polygon is called regular if all its sides (respectively, angles) 
are congruent to one another. Construct a regular pentagon and a regular 
hexagon with straightedge and compass. The regular septagon cannot be 
so constructed; in fact, Gauss proved the remarkable theorem that the 
regular n-gon is constructible if and only if all odd prime factors of n occur 

9 For a converse and generalization of Morley's theorem, see Kleven (1978). 
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A 

B-=:...---------~c 

FIGURE 1.26 Morley's theorem. 

to the first power and have the form zz· + 1 (e.g., 3, 5, 17, 257, 65,537). 
Report on this result, using Klein (1956). Primes of that form are called 
Fermat primes. The five listed are the only ones known at this time. Gauss 
did not actually construct the regular 257-gon or 65,537-gon; he only 
showed that the minimal polynomial equation satisfied by cos (2n/n) for 
such n could be solved in the surd field (see Moise, 1990). Other devoted 
(obsessive?) mathematicians carried out the constructions. The con­
structor for n = 65,537 labored for 10 years and was rewarded with a 
Ph.D. degree; what is the reward for checking his work? 

5. Write a short biography of Archimedes (Bell, 1961, is one good refer­
ence). Archimedes discovered some of the ideas of integral calculus 14 
centuries before Newton and Leibniz. 
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LOGIC A.ND 

INCIDENCE 

GEOMETRY 

Reductio ad absurdum . . . is a far finer gambit than any 
chess gambit: a chess player may offer the sacrifice of a 
pawn or even a piece, but a mathematician offers the game. 

G.H.HARDY 

INFORMAL LOGIC 

In the previous chapter we were introduced to the postulates and basic 
definitions of Euclid's geometry, slightly rephrased for greater preci­
sion. We would like to begin proving some theorems or propositions 
that are logical consequences of the postulates. However, the exer­
cises of the previous chapter may have alerted you to expect some 
difficulties that we must first clear up. For example, there is nothing in 
the postulates that guarantees that a line has any points lying on it (or 
off it)! You may feel this is ridiculous-it wouldn't be a line if it didn't 
have any points lying on it. (What kind of a line is he feeding us 
anyway?) In a sense, your protest would be legitimate, for if my 
concept of a line were so different from yours, we would not under­
stand each other, and Requirement 0-that there be mutual under­
standing of words and symbols used-would be violated. 

So let me be perfectly clear. We must play this game according to 
the rules, the rules mentioned in Requirement 2 but not spelled out. 
Unfortunately, to discuss them completely would require changing 
the content of this book from geometry to symbolic logic. Instead, I 
will only remind you of some basic rules of reasoning that you, as a 
rational being, already know. 
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LOGIC RULE o. No unstated assumptions may be used in a proof. 

The reason for taking the trouble in Chapter 1 to list all our axioms 
was to be explicit about our basic assumptions, including even the 
most obvious. Although it is "obvious" that two points determine a 
unique line, Euclid stated this as his first postulate. So if in some proof 
we want to say that every line has points lying on it, we should List this 
statement as another postulate (or prove it, but we can't). In other 
words, all our cards must be out on the table. If you reread Exercises 6, 
7, 9, and 10 in Chapter 1, you will find some "obvious" assumptions 
that we will have to make explicit. This will be done later. 

Perhaps you have realized by now that there is a vital relation 
between axioms and undefined terms. As we have seen, we must have 
undefined terms in order to avoid infinite regress. But this does not 
mean we can use these terms in any way we choose. The axioms tell us 
exactly what properties of undefined terms we are allowed to use in 
our arguments. You may have some other properties in your mind 
when you think about these terms, but you 're not allowed to use them 
in a proof (Rule 0). For example, when you think of the unique line 
determined by two points, you probably think of it as being "straight," 
or as "the shortest path between the two points." Euclid's postulates 
do not allow us to assume these properties. Besides, from one view­
point, these properties could be considered contradictory. If you were 
traveling the surface of the earth, say, from San Francisco to Moscow, 
the shortest path would be an arc of a great circle (a straight path would 

FIGURE 2.1 The shortest path between two points on a sphere is an arc of a great 
circle (a circle whose center is the center of the sphere and whose radius is the radius of 
the sphere, e.g., the equator). 
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bore through the earth). Indeed, pilots in a hurry fly their aircraft over 
great circles. 

THEOREMS A.ND PROOFS 

All mathematical theorems are conditional statements, statements of 
the form 

If [hypothesis] then [conclusion]. 

In some cases a theorem may state only a conclusion; the axioms of the 
particular mathematical system are then implicit (assumed) as a hy­
pothesis. If a theorem is not written in the conditional form, it can 
nevertheless be translated into that form. For example, 

Base angles of an isosceles triangle are congruent. 

can be interpreted as 

If a triangle has two congruent sides, then the angles opposite those sides 
are congruent. 

Put another way, a conditional statement says that one condition 
(the hypothesis) implies another (the conclusion). If we denote the 
hypothesis by H, the conclusion by C, and the word "implies" by an 
arrow ~. then every theorem has the form H ~ C. (In the example 
above, His "two sides of a triangle are congruent" and Cis "the angles 
opposite those sides are congruent.") 

Not every conditional statement is a theorem. For example, the 
statment 

If 6.ABC is any triangle, then it is isosceles. 

is not a theorem. Why not? You might say that this statement is "false" 
whereas theorems are "true." Let's avoid the loaded words "true" 
and "false," for they beg the question and lead us into more compli­
cated issues. 

In a given mathematical system the only statements we call theor­
ems1 are those statements for which a proofhas been supplied. We can 

1 Or sometimes propositions, corollaries, or lemmas. "Theorem" and "proposition" are inter­
changeable; a "corollary" is an immediate consequence of a theorem, and a "lemma" is a 
"helping theorem." Logically, they all mean the same; the title is just an indicatorof the author's 
emphasis. 
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disprove the assertion that every triangle is isosceles by exhibiting a 
triangle that is not isosceles, such as a 3-4-5 right triangle. 

The crux of the matter then is the notion of proof By definition, a 
proof is a list of statements, together with a justification for each 
statement, ending up with the conclusion desired. Usually, each 
statement in a proof will be numbered in this book, and the justifica­
tion for it will follow in parentheses. 

LOGIC RULE 1. The following are the six types of justifications al­
lowed for statements in proofs: 

( 1) "By hypothesis. . . . " 
(2) "By axiom. . . " 
(3) "By theorem ... " (previously proved). 
( 4) "By definition. . . . " 
(5) "By step ." (a previous step in the argument). 
(6) "Byrule ... oflogic." 

Later in the book our proofs will be less formal, and justifications 
may be omitted when they are obvious (Be forewarned, however, that 
these omissions can lead to incorrect results.) A justification may in­
volve several of the above types. 

Having described proofs, it would be nice to be able to tell you how 
to find or construct them. Yet that is the mystery of doing mathemat­
ics: Certain techniques for proving theorems are learned by experi­
ence, by imitating what others have done. But there is no rote method 
for proving or disproving every statement in mathematics. (The non­
existence of such a rote method is, when stated precisely, a deep 
theorem in mathematical logic and is the reason why computers will 
never put mathematicians out of business-see DeLong, 1970, 
Chapter 5). 

However, some suggestions may help you construct proofs. First, 
make sure you clearly understand the meaning of each term in the 
statement of the proposed theorem. If necessary, review their defini­
tions. Second, keep reminding yourself of what it is you are trying to 
prove. If it involves parallel lines, for example, look up previous 
propositions that give you information about parallel lines. If you find 
another proposition that seems to apply to the problem at hand, check 
carefully to see whether it really does apply. Draw pictures to help you 
visualize the problem. 
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RA.A PROOFS 

The most common type of proof in this book is proof by reductio ad 
absurdum, abbreviated RAA. In this type of proof you want to prove a 
conditional statement, H ==> C, and you begin by assuming the con­
trary of the conclusion you seek. We call this contrary assumption the 
RAA hypothesis, to distinguish it from the hypothesis H. The RAA 
hypothesis is a temporary assumption from which we derive, by rea­
soning, an absurd statement ("absurd" in the sense that it denies some­
thing known to be valid). Such a statement might deny the hypothesis 
of the theorem or the RAA hypothesis; it might deny a previously 
proved theorem or an axiom. Once it is shown that the negation of C 
leads to an absurdity, it follows that C must be valid. This is called the 
RAA conclusion. To summarize: 

LOGIC RULE 2. To prove a statement H ==> C, assume the negation of 
statement C (RAA hypothesis) and deduce an absurd statement, 
using the hypothesis H if needed in your deduction. 

Let us illustrate this rule by proving the following proposition 
(Proposition 2 .1): If I and mare distinct lines that are not parallel, then 
I and m have a unique point in common. 

Proof 
( 1) Because I and mare not parallel, they have a point in common 

(by definition of "parallel"). 
(2) Since we want to prove uniqueness for the point in common, 

we will assume the contrary, that I and m have two distinct 
points A and B in common ( RAA hypothesis). 

( 3) Then there is more than one line on which A and B both lie 
(step 2 and the hypothesis of the theorem, I =I= m). 

( 4) A and B lie on a unique line (Euclid's Postulate I). 
( 5) Intersection of I and mis unique ( 3 contradicts 4. RAA conclu­

sion). • 

Notice that in steps 2 and 5, instead of writing "Logic Rule 2" as 
justification, we wrote the more suggestive "RAA hypothesis" and 
"RAA conclusion," respectively. 
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As another illustration, consider one of the earliest RAA proofs, 
discovered by the Pythagoreans (to their great dismay). In giving this 
proof, we will use some facts about Euclidean geometry and numbers 
that you know, and we will be informal. 

Suppose ..0.ABC is a right isosceles triangle with right angle at C. We 
can choose our unit of length so that the legs have length 1. The 
theorem then says that the length of the hypotenuse is irrational 
(Figure 2.2). 

By the Pythagorean theorem, the length of the hypotenuse is .J2, so 
we must prove that .J2 is an irrational number, i.e., that it is not a 
rational number. 

What is a rational number? It is a number that can be expressed as a 
quotient plq of two integers p and q. For example, -t, ~.and 5 =tare 
rational numbers. We want to prove that .J2 is not one of these 
numbers. 

We begin by assuming the contrary, that .J2 is a rational number 
( RAA hypothesis). In other words, .J 2 =pl q for certain unspecified 
whole numbers p and q. You know that every rational number can be 
written in lowest terms, i.e., such that the numerator and denominator 
have no common factor. For example,~ can be written as~. where the 
common factor 2 in the numerator and denominator has been can­
celed. Thus we can assume all common factors have been canceled, so 
that p and q have no common factor. 

Next, we clear denominators: 

.J2q = p 
and square both sides: 

2q2 = pz. 

A 

FIGURE2.2 c 
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This equation says that p2 is an even number (since p2 is twice another 
whole number, namely, q2). If p2 is even, p must be even, for the 
square of an odd number is odd, as you know. Thus, 

p=Zr 

for some whole number r (that is what it means to be even). Substitut­
ing Zr for p in the previous equations gives 

2q2 = (2r) 2 = 4r2• 

We then cancel 2 from both sides to get 

qz = zr2. 

This equation says that q2 1s an even number; hence q must be 
even. 

We have shown that numerator p and denominator q are both even, 
meaning that they have 2 as a common factor. Now this is absurd, 
because all common factors were canceled. Thus, ,jz is irrational 
(RAA conclusion). • 

NEGATION 

In an RAA proof we begin by "assuming the contrary." Sometimes the 
contrary or negation of a statement is not obvious, so you should know 
the rules for negation. 

First, some remarks on notation. If S is any statement, we will 
denote the negation or contrary of S by -S. For example, if Sis the 
statement "pis even," then -Sis the statement "pis not even" or "pis 
odd." 

The rule below applies to those cases where Sis already a negative 
statement. The rule states that two negatives make a positive. 

LOGIC RULE 3. The statement "-(-S)" means the same as "S." 

We followed this rule when we negated the statement ",,/2 is irra­
tional" by writing the contrary as ",,/2 is rational" instead of ",,/2 is not 
irrational." 



Quantifiers Ill 45 

Another rule we have already followed in our RAA method is the 
rule for negating an implication. We wish to prove H ~ C, and we 
assume, on the contrary, H does not imply C, i.e., that Hholds and at 
the same time -C holds. We write this symbolically as H & -C, where 
& is the abbreviation for "and." A statement involving the connective 
"and" is called a conjunction. Thus: 

LOGIC RULE 4. The statement"- [ H ~ C]" means the same as" H & 
-C." 

Let us consider, for example, the conditional statement "if 3 is an 
odd number, then 32 is even." According to Rule 4, the negation of 
this is the declarative statement "3 is an odd number and 32 is odd." 

How do we negate a conjunction? A conjunction Si & S2 means that 
statements Si and S2 both hold. Negating this would mean asserting 
that one of them does not hold, i.e., asserting the negation of one or the 
other. Thus: 

LOGIC RULE 5. The statement "-[Si & S2 ]" means the same as 
"[-Si or -S2 ]." 

A statement involving the connective "or" is called a disjunction. 
The mathematical "or" is not exclusive like "or" in everyday usage. 
Consider the conjunction "1 = 2 and 1 = 3." If we wish to deny this, 
we must write (according to Rule 5) "1 =F 2 or 1 =F 3." Of course, both 
inequalities are valid. So when a mathematician writes "Si or S2" he 
means "either Si holds or S2 holds or they both hold" 

Finally let us be more precise about what is an absurd statement. It 
is the conjunction of a statement S with the negation of S, i.e., "S & 
-S." A statement of this type is called a contradiction. A system of 
axioms from which no contradiction can be deduced is called consistent. 

QUANTIFIERS 

Most mathematical statements involve variables. For instance, the 
Pythagorean theorem states that for any right triangle, if a and b 
are the lengths of the legs and c the length of the hypotenuse, then 
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c2 = a2 + b2• Here a, b, and care variable numbers, and the triangle 
whose sides they measure is a variable triangle. 

Variables can be quantified in two different ways. First, in a univer­
sal way, as in the expressions: 

"For any x, . . . . " 
"For every x, . . . . " 
"Forallx, .... " 
"Given any x, . . . . " 
"If xis any . . . . " 

Second, in an existentia/way, as in the expressions: 

"For some x, .... " 
"There exists an x . . . " 
"There is an x . . . . " 
"There are x . . . . " 

Consider Euclid's first postulate, which states informally that two 
points P and Q determine a unique line /. Here P and Q may be any 
two points, so they are quantified universally, whereas /is quantified 
existentially, since it is asserted to exist, once P and Q are given. 

It must be emphasized that a statement beginning with "For 
every . . . " does not imply the existence of anything. The statement 
"every unicorn has a horn on its head" does not imply that unicorns 
exist. 

If a variable xis quantified universally, this is usually denoted as Vx, 
(read as "for all x "). If x is quantified existentially, this is usually 
denoted as 3x (read as "there exists an x . . . "). After a variable xis 
quantified, some statement is made about x, which we can write as 
S(x) (read as "statement S about x"). Thus, a universally quantified 
statement about a variable x has the form VxS(x). 

We wish to have rules for negating quantified statements. How do 
we deny that statement S(x) holds for all x? We can do so clearly by 
asserting that for some x, S (x) does not hold. 

LOGIC RULE 6. The statement "-[VxS(x)]" means the same as 
"3x - S(x)." 

For example, to deny "All triangles are isosceles" is to assert 
"There is a triangle that is not isosceles." 
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Similarly, to deny that there exists an x having property S(x) is to 
assert that all x fail to have property S(x). 

LOGIC RULE 7. The statement "-[3xS(x)]" means the same as 
"Vx - S(x)." 

For example, to deny "There is an equilateral right triangle" is to 

assert "Every right triangle is nonequilateral" or, equivalently, to 
assert "No right triangle is equilateral." 

Since in practice quantified statements involve several variables, 
the above rules will have to be applied several times. Usually, common 
sense will quickly give you the negation. If not, follow the above rules. 

Let's work out the denial of Euclid's first postulate. This postulate 
is a statement about all pairs of points P and Q; negating it would 
mean, according to Rule 6, asserting the existence of points P and Q 
that do not satisfy the postulate. Postulate I involves a conjunction, 
asserting that P and Q lie on some line I and that /is unique. In order to 

deny this conjunction, we follow Rule 5. The assertion becomes either 
"P and Q do not lie on any line" or"they lie on more than one line." 
Thus, the negation of Postulate I asserts: "There are two points P and 
Q that either do not lie on any line or lie on more than one line." 

If we return to the example of the surface of the earth, thinking of a 
"line" as a great circle, we see that there do exist such points P and 
Q-namely, take P to be the north pole and Q the south pole. 
Infinitely many great circles pass through both poles. (See Figure 
2.3.) 

Mathematical statements are sometimes made informally, and you 
may sometimes have to rephrase them before you will be able to 

North pole 

FIGURE2.3 
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negate them. For example, consider the following statement: 

If a line intersects one of two parallel lines, it also intersects the other. 

This appears to be a conditional statement, of the form 
"if ... then ... ";its negation, according to Rule 4, would appear 
to be: 

A line intersects one of two parallel lines and does not intersect the other. 

If this seems awkward, it is because the original statement con­
tained hidden quantifiers that have been ignored. The original state­
ment refers to any line that intersects one of two parallel lines, and 
these are any parallel lines. There are universal quantifiers implicit in 
the original statement. So we have to follow Rule 6 as well as Rule 4 in 
forming the correct negation, which is: 

There exist two parallel lines and a line that intersects one of them and 
does not intersect the other. 

IMPLICATION 

Another rule, called the rule of detachment, or modus ponens, is the 
following: 

LOGIC RULE 8. If P => Q and P are steps in a proof, then Q is a 
justifiable step. 

This rule is almost a definition of what we mean by implication. For 
example, we have an axiom stating that if <r..A and <r..B are right angles, 
then <r..A == <f..B (Postulate IV). Now in the course of a proof we may 
come across two right angles. Rule 8 allows us to assert their con­
gruence as a step in the proof. 

You should beware of confusing a conditional statement P => Q 
with its converse Q => P. For example, the converse of Postulate IV 
states that if <r..A == <r..B then <r..A and <r..B are right angles, which is 
absurd. 

However, it may sometimes happen that both a conditional state­
ment and its converse are valid. In case P => Q and Q => P both hold, 
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we write simply P ~ Q (read as "P if and only if Q" or "Pis logically 
equivalent to Q"). All definitions are of this form. For example, three 
points are collinear if and only if they lie on a line. Some theorems are 
also of this form, such as the theorem "a triangle is isosceles if and only 
if two of its angles are congruent to each other." The next rule gives a 
few more ways that "implication" is often used in proofs. 

LOGICRULE9. (a) [[P~Q] & [Q~R]] ~ [P~R]. 
(b) [P& Q] ~P, [P& Q] ~ Q. 
(c) [-Q~-P] ~ [P~ Q]. 

Part (c) states that every implication P~ Q is logically equivalent 
to its contrapositive -Q ~ -P. All parts of Rule 9 are called tautol­
ogies, because they are valid just by their form, not because of what P, 
Q, and R mean; by contrast, the validity of a formula such as P ~ Q 
does depend on the meaning, as we have just seen. There are infi­
nitely many tautologies, and the next rule gives the most infamous. 

LAW OF EXCLUDED MIDDLE AND PROOF 
BY CASES 

LOGIC RULE 1 o. For every statement P, "P or -P" is a valid step in a 
proof (law of excluded middle). z 

For example, given point P and line I, we may assert that either P 
lies on I or it does not. If this is a step in a proof, we will usually then 
break the rest of the proof into cases - giving an argument under the 
case assumption that Plies on I and giving another argument under the 
case assumption that P does not. Both arguments must be given, or 

z The law of excluded middle characterizes classical two-valued logic: either a statement 
holds or it does not; there is no middle ground such as "we don't know." Constructivist 
mathematicians (such as Brouwer, Bishop, Beeson, and Stolzenberg) reject the unqualified use 
of this rule when applied to existence statements. They insist that in order to meaningfully prove 
that a mathematical object exists, one must supply an effective method for constructing it. It is 
uninformative merely to assume that the object does not exist (RAA hypothesis) and then derive 
a contradiction (so they also reject Logic Rule 6 when applied to infinite sets). The "construc­
tive" aspect of Euclid's geometry traditionally refers to "straightedge and compass construc­
tions" (see the Major Exercises of Chapter I). We will pay close attention to this aspect 
throughout this book. 
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else the proof is incomplete. A proof of this type is given for Proposi­
tion 3.16 in Chapter 3, which asserts that there exists a line through P 
perpendicular to /. 

Sometimes there are more than two cases. For example, it is a 
theorem that either an angle is acute or it is right or it is obtuse- three 
cases. We will have to give three arguments- one for each case 
assumption. You will give such arguments when you prove the SSS 
criterion for congruence of triangles in Exercise 3 2 of Chapter 3. This 
method of proof by cases was used (correctly) in the incorrect attempt in 
Chapter 1 to prove that all triangles are isosceles. 

LOGIC RULE 11. Suppose the disjunction of statements S1 or S2 

or . . . or S,, is already a valid step in a proof. Suppose that proofs of C 
are carried out from each of the case assumptions S1, S2, • • • , S,,. Then 
C can be concluded as a valid step in the proof (proof by cases). 

And this concludes our discussion of logic. No claim is made that all 
the rules of logic have been listed, just that those listed should suffice 
for our purposes. For further discussion, see DeLong ( 1970) and his 
bibliography. 

INCIDENCE GEOMETRY 

Let us apply the logic we have developed to a very elementary part of 
geometry, incidence geometry. We assume only the undefined terms 
"point" and "line" and the undefined relation "incidence" between a 
point and a line, written "P lies on I" or P I I or "I passes through P" as 
before. We don't discuss "betweenness" or "congruence" in this 
restricted geometry (but we are now beginning the new axiomatic 
development of geometry that fills the gaps in Euclid and applies to 
other geometries as well; that development will continue in future 
chapters, and the formal definitions given in Chapter 1 will be used). 

These undefined terms will be subjected to three axioms, the first 
of which is the same as Euclid's first postulate. 

INCIDENCE AXIOM 1. For every point P and for every point Q not 
equal to P there exists a unique line I incident with P and Q. 
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INCIDENCE AXIOM 2. For every line /there exist at least two distinct 
points incident with /. 

INCIDENCE AXIOM 3. There exist three distinct points with the prop­
erty that no line is incident with all three of them. 

These axioms fill the gap mentioned in Exercises 9 and 10, Chapter 
1. We can now assert that every line has points lying on it-at least 
two, possibly more - and that the points do not all lie on one line. 
Moreover, we know that the geometry must have at least three points 
in it, by the third axiom and Rule 9(b) of logic. Namely, Incidence 
Axiom 3 is a conjunction of two statements: 

1. There exist distinct points A, B, and C. 
2. For every line, at least one of these points does not lie on the line. 

Rule 9(b) tells us that a conjunction of two statements implies each 
statement separately, so we can conclude that three distinct points 
exist (Rule 8). 

Incidence geometry has some defined terms, such as "collinear," 
"concurrent," and "parallel," defined exactly as they were in Chapter 
1. Incidence Axiom 3 can be rewritten as "there exist three noncollin­
ear points." Parallel lines are still lines that do not have a point in 
common. 

What sort of results can we prove using this meager collection of 
axioms? None that are very exciting, but here are a few you can prove 
as exercises. 

PROPOSITION 2.1. If I and m are distinct lines that are not parallel, 
then I and m have a unique point in common. 

PROPOSITION 2.2. There exist three distinct lines that are not concur­
rent. 

PROPOSITION 2.3. For every line there is at least one point not lying 
on it. 

PROPOSITION 2.4. For every point there is at least one line not passing 
through it. 

PROPOSITION 2.5. For every point P there exist at least two lines 
through P. 
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MODELS 

In reading over the axioms of incidence in the previous section, you 
may have imagined dots and long dashes drawn on a sheet of paper. 
With this representation in mind, the axioms appear to be correct 
statements. We will take the point of view that these dots and dashes 
are a model for incidence geometry. 

More generally, if we have any axiom system, we can interpret the 
undefined terms in some way, i.e., give the undefined terms a particu­
lar meaning. We call this an interpretation of the system. We can then 
ask whether the axioms, so interpreted, are correct statements. If they 
are, we call the interpretation a model. When we take this point of 
view, interpretations of the undefined terms "point," "line," and 
"incident" other than the usual dot-and-dash drawings become pos­
sible. 

Example I. Consider a set {A, B, C} of three letters, which we will 
call "points." "Lines" will be those subsets that contain exactly two 
letters-{A, B}, {A, C}, and {B, C}. A "point" will be interpreted as 
"incident" with a "line" if it is a member of that subset. Thus, under 
this interpretation, A lies on {A, B} and {A, C} but does not lie on 
{B, C}. In order to determine whether this interpretation is a model, 
we must check whether the interpretations of the axioms are correct 
statements. For Incidence Axiom 1, if P and Q are any two of the 
letters, A, B, and C, {P, Q} is the unique "line" on which they both lie. 
For Axiom 2, if {P, Q} is any "line," P and Qare two distinct "points" 
lying on it. For Axiom 3, we see that A, B, and Care three distinct 
"points" that are not collinear. 

What is the use of models? The main property of any model of an 
axiom system is that all theorems of the system are correct statements 
in the model. This is because logical consequences of correct state­
ments are themselves correct. (By definition of "model," axioms are 
correct statements when interpreted in models; theorems are logical 
consequences of axioms.) Thus, we immediately know that the five 
propositions in the previous section hold in the three-point geometry 
above (Example 1). 
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Suppose we have a statement in the formal system but don't yet 
know whether it is a theorem, i.e., we don't yet know whether it can be 
proved. We can look at our models and see whether the statement is 
correct in the models. If we can find one model where the interpreted 
statement fails to hold, we can be sure that no proof is possible. You 
are undoubtedly familiar with testing for the correctness of geometric 
statements by drawing pictures. Of course, the converse does not 
work; just because a drawing makes a statement look right does not 
mean you can prove it. This was illustrated on pp. 23- 25. 

The advantage of having several models is that a statement may 
hold in one model but not in another. Models are "laboratories" for 
experimenting with the formal system. 

Let us experiment with the Euclidean parallel postulate. This is a 
statement in the formal system incidence geometry: "For every line I 
and every point P not lying on I there exists a unique line through P 
that is parallel to I." This statement appears to be correct according to 
our drawings (although we cannot verify the uniqueness of the paral­
lelism, since we cannot extend our dashes indefinitely). But what 
about our three-point model? It is immediately apparent that no par­
allel lines exist in this model: {A, B} meets {B, C} in the point Band 
meets {A, C} in the point A; {B, C} meets {A, C} in the point C. (We 
say that this model has the elliptic parallel property.) 

Thus, we can conclude that no proof of the Euclidean parallel postulate 
from the axioms of incidence alone is possible; in fact, in incidence geometry it 
is impossible to prove that parallel lines exist. Similarly, the statement 
"any two lines have a point in common" (the elliptic parallel property) 
cannot be proved from the axioms of incidence geometry, for if you 

B 

A c 
FIGURE 2.4 Elliptic parallel property (no parallel lines). A 3-point incidence 

geometry. 
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could prove it, it would hold in the usual drawn model (and in the 
models that will be described in Examples 3 and 4). 

The technical description for this situation is that the statement 
"parallel lines exist" is "independent" of the axioms of incidence. We 
call a statement independent of given axioms if it is impossible to either 
prove or disprove the statement from the axioms. Independence is 
demonstrated by constructing two models for the axioms: one in which 
the statement holds and one in which it does not hold. This method 
will be used very decisively in Chapter 7 to settle once and for all the 
question of whether the parallel postulate can be proved. 

An axiom system is called complete if there are no independent 
statements in the language of the system, i.e., every statement in the 
language of the system can either be proved or disproved from the 
axioms. Thus, the axioms for incidence geometry are incomplete. The 
axioms for Euclidean and hyperbolic geometries given later in the 
book can be proved to be complete (see Tarski's article in Henkin, 
Suppes, and Tarski, 1959). 

Example 2. Suppose we interpret "points" as points on a sphere, 
"lines" as great circles on the sphere, and "incidence" in the usual 
sense, as a point lying on a great circle. In this interpretation there are 
again no parallel lines. However, this interpretation is not a model for 
incidence geometry, for, as was already mentioned, the interpretation 
of Incidence Axiom 1 fails to hold- there are an infinite number of 
great circles passing through the north and south poles on the sphere 
(see Figure 2.3). 

Example 3. Let the "points" be the four letters A, B, C, and D. 
Let the "lines" be all six sets containing exactly two of these letters: 

B 

D 

A c 
FIGURE 2.S Euclidean parallel property. A 4-point incidence geometry. 
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B 

D 

E 

FIGURE 2.8 Hyperbolic paralJel property. A 5-point incidence geometry. 

{A, B}, {A,C}, {A, D}, {B, C}, {B, D}, and {C, D}. Let "incidence" be 
set membership, as in Example 1. As an exercise, you can verify that 
this is a model for incidence geometry and that in this model the 
Euclidean parallel postulate does hold (see Figure 2.5). 

Example 4. Let the "points" be the five letters A, B, C, D, and 
E. 3 Let the "lines" be all 10 sets containing exactly two of these 
letters. Let "incidence" be set membership, as in Examples 1 and 3. 
You can verify that in this model the following statement about paral­
lel lines, characteristic of hyperbolic geometry, holds: "For every line I 
and every point P not on I there exist at least two lines through P 
parallel to/." (See Figure 2.6). 

Let us summarize the significance of models. Models can be used 
to prove the independence of a statement from given axioms; i.e., 
models can be used to demonstrate the impossibility of proving or 
disproving a statement from the axioms. Moreover, if an axiom system 
has many models that are essentially different from each other, as the 
models in Examples 1, 3, and 4 are essentially different from each 
other, then that system has a wide range of applicability. Propositions 
proved from the axioms of such a system are automatically correct 
statements within any of the models. Mathematicians often discover 

3 An incidence geometry with only finitely many points is called a.finite geometry. There is an 
entertaining discussion of finite geometries (with applications to growing tomato plants) in 
Chapter 4 of Beck, Bleicher, and Crowe (1969). For an advanced treatment, see Dembowski 
( 1968) or Stevenson ( 1972). See the exercises at the end of this chapter for more examples. 
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that an axiom system constructed with one particular model in mind 
has applications to completely different models never dreamed of. 

At the other extreme, when all models of an axiom system are 
isomorphic to one another, the axioms are called categorical. (The 
axioms for Euclidean and hyperbolic geometries given later in the 
book are categorical.) The advantage of categorical axioms is that they 
completely describe all properties of the model that are expressible in 
the language of the system.4 (For a simple example of a categorical 
system, suppose we add to the three incidence axioms a fourth axiom 
asserting that there do not exist four distinct points. Obviously, the 
three-point model in Example 1 is the only model, up to isomorphism, 
for this expanded axiom system.) 

Finally, models provide evidence for the consistency of the axiom 
system. For example, if incidence geometry were inconsistent, the 
supposed proof of a contradiction could be translated into proof of a 
contradiction in the utterly trivial set theory for the set of three letters 
A, B, and C (Example 1). 

ISOMORPHISM OF MODELS 

We want to make precise the notion of two models being "essentially 
the same" or isomorphic: for incidence geometries, this will mean that 
there exists a one-to-one correspondence P +-+ P' between the points 
of the models and a one-to-one correspondence I+-+ I' between the 
lines of the models such that P lies on I if and only if P' lies on/'; such 
a correspondence is called an isomorphism from one model onto the 
other. 

Example 5. Consider a set {a, b, c} of three letters, which we will 
call "lines" now. "Points" will be those subsets that contain exactly 
two letters-{a, b}, {a, c}, and {b, c}. Let incidence be set membership; 
for example, "point" {a, b} is incident with "line" a and "line" b, not 

4 This is a nontrivial (and nonconstructive) theorem of mathematical logic called Gtidel's 
completeness theorem, which says (modulo cardinality considerations) that if the system is 
categorical, then for every sentence S, there exists either a proof of Sor a proof of -S. 
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with "line" c. This model certainly seems to be structurally the same 
as the three-point model in Example 1-all we've changed is the 
notation. An explicit isomorphism is given by the following correspon­
dences: 

A~{a, b} 
B ~ {b, c} 
C ~{a, c} 

{A, B}~b 
{B, C} ~ c 
{A, C} ~a 

Note that A lies on {A, B} and {A, C} only; its corresponding "point" 
{a, b} lies on the corresponding "lines" band a only. Similar checking 
with B and C shows that incidence is preserved by our correspon­
dence. On the other hand, if we used a correspondence such as 

{A, B} ~a 
{B, C}~b 
{A, C}~c 

for the "lines," keeping the same correspondence for the "points," we 
would not have an isomorphism because, for example, A lies on {A, C} 
but the corresponding "point" {a, b} does not lie on the corresponding 
"line" c. 

To further illustrate the idea that isomorphic models are "essen­
tially the same," consider two models with different parallelism prop­
erties, such as one with the elliptic property and one with the Euclid­
ean. We claim that these models are not isomorphic: suppose, on the 
contrary, that an isomorphism could be set up. Given line /and point P 
not on it; then every line through P meets I, by the elliptic property. 
Hence every line through the corresponding point P' meets the corre­
sponding line /', but that contradicts the Euclidean property of the 
second model. 

Later on, we will need to use the concept of "isomorphism" for 
models of a geometry more complicated than incidence geometry­
neutral geometry. In neutral geometry we will have betweenness and 
congruence relations, in addition to the incidence relation, and we will 
require an "isomorphism" to preserve those relations as well. 

The general idea is that an isomorphism of two models of an axiom 
system is a one-to-one correspondence between the basic objects of the system 
that preserves all the basic relations of the system. 

Another example to be discussed in Chapter 9 is the axiom system 
for a "group." Roughly speaking, a group is a set with a multiplication 
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for its elements satisfying a few familiar axioms of algebra. An "iso­
morphism" of groups will then be a one-to-one mapping x-+ x' of one 
set onto the other which preserves the multiplication, i.e., for which 
(xy)' = x'y'. 

PROJECTIVE AND AFFINE PLANES 

We now very briefly discuss two types of models of incidence geome­
try that are particularly significant. During the Renaissance, around 
the fifteenth century, artists developed a theory of perspective in 
order to realistically paint two-dimensional representations of three­
dimensional scenes. The theory described the projection of points in 
the scene onto the artist's canvas by lines from those points to a fixed 
viewing point in the artist's eye; the intersection of those lines with the 
plane of the canvas was used to construct the painting. The mathe­
matical formulation of this theory was called projective geometry. 

In this technique of projection, parallel lines that lie in a plane 
cutting the plane of the canvas are painted as meeting (visually, they 
appear to meet at a point on the horizon). This suggested an extension 
of Euclidean geometry in which parallel lines "meet at infinity," so 
that the Euclidean parallel property is replaced by the elliptic parallel 
property in the extended plane. We will carry out this extension 
rigorously. First, some definitions. 

DEFINITION. A projective plane is a model of the incidence axioms 
having the elliptic parallel property (any two lines meet) and such that 
every line has at least three distinct points lying on it (strengthened 
Incidence Axiom 2). 

Our proposed extension of the Euclidean plane uses only its inci­
dence properties (not its betweenness and congruence properties); 
the purely incidence part of Euclidean geometry is called affine geom­
etry, which leads to the next definition. 

DEFINITION. An affine plane is a model of incidence geometry having 
the Euclidean parallel property. 
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Example 3 in this chapter illustrated the smallest affine plane (four 
points, six lines). 

Let d be any affine plane. We introduce a relation/- m on the 
lines of d to mean"/= m or/ II m." This relation is obviously reflexive 
(/ - /) and symmetric(/- m ~ m - I). Let us prove that it is transitive 
(I- m and m - n ~I- n): if any pair of these lines are equal, the 
conclusion is immediate, so assume that we have three distinct lines 
such that /II m and m II n. Suppose, on the contrary, that I meets n at 
point P. P does not lie on m, because /II m. Hence we have two distinct 
parallels n and I to m through P, which contradicts the Euclidean 
parallel property of d. 

A relation which is reflexive, symmetric, and transitive is called an 
equivalence relation. Such relations occur frequently in mathematics 
and are very important. Whenever they occur, we consider the equiva­
lence classes determined by the relation: for example, the equivalence 
class [/] of /is defined to be the set consisting of all lines equivalent to 
/-i.e., of I and all the lines ind parallel to l In the familiar Cartesian 
model of the Euclidean plane, the set of all horizontal lines is one 
equivalence class, the set of verticals is another, the set of lines with 
slope 1 is a third, and so on. Equivalence classes take us from equiva­
lence to equality: I - m <=> [/] = [ m]. 

For historical and visual reasons, we call these equivalence classes 
points at infinity; we have made this vague idea precise within modern 
set theory. We now enlarge the mode Id to a new model d* by adding 
these points, calling the points of d "ordinary" points for emphasis. 
We further enlarge the incidence relation by specifying that each of 
these equivalence classes lies on every one of the lines in that class: [/] 
lies on I and on every line m such that/ II m. Thus, in the enlarged plane 
d •, I and m are no longer parallel, but they meet at [/]. 

We want Jtl,* to be a model of incidence geometry also, which 
requires one more step. To satisfy Euclid's Postulate I, we need to add 
one new line on which all (and only) the points at infinity lie: define the 
line at infinity/.,,, to be the set of all points at infinity. Let us now check 
that Jtl,* is a projective plane, called the projective completion of d: 

Verification of 1-1. If P and Qare ordinary points, they lie on a 
unique line of d (since 1-1 holds ind) and they do not lie on/.,,,. If Pis 
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ordinary and Q is a point at infinity [ m], then either P lies on m and 
PQ = m, or, by the Euclidean parallel property, P lies on a unique 
parallel n to m and Q also lies on n (by definition of incidence for points 
at infinity), so PQ = n. If both P and Qare points at infinity, then 
PQ =Im. 

Verifteation of Strengthened 1-2. Each line mof.sd has at 
least two points on it (by 1-2 ind), and now we've added a third point 
[ m] at infinity. That Im has at least three points on it follows from the 
existence in .sd of three lines that intersect in pairs (such as the lines 
joining the three noncollinear points furnished by Axiom 1-3); the 
equivalence classes of those three lines do the job. 

Verifteation of 1-3. It holds already in .sd. 

Verifteation of the Elliptic Parallel Property. If 
two ordinary lines do not meet in .sd, then they belong to the same 
equivalence class and meet at that point at infinity. An ordinary line m 
meets Im at [m]. • 

Example 6. Figure 2. 7 illustrates the smallest projective plane, 
projective completion of the smallest affine plane; it has seven points 
and seven lines. The dashed line could represent the line at infinity, 
for removing it and the three points C, B, and E that lie on it leaves us 
with a four-point, 6-line affine plane isomorphic to the one in Example 
3, Figure 2.5. 

G 

A B D 

FIGURE 2.7 The smallest projective plane (7 points). 
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The usuaJ Euclid<!an plane, regarded just as a model of incidence 

geometry (ignoring its betweenness and congruence structures), is 
called the real affine plane, and its projective completion is called the 
real projective plane. Coordinate descriptions of these planes are given 
in Major Exercises '9 and 1 O; other models isomorphic to the real 
projective plane are described in Exercise lO(c), and a "curved" 
model isomorphic to the real affine pl_ane is described in Major Exer­
cise 5. 

Example 7. To visualize the projective completion d • of the real 
affine plane d, pict1ure d as the plane T tangent to a sph<fre S in 
Euclidean three-space at its north pole N (Figure 2.8) . If -0 is the 
center of sphere S, we can join each point P of T to 0 by a Euclidean 
line that will intersec:t the northern hemisphere of Sin a unique point 
P'; this gives a one-to-one correspondence between the points P of T 
and the points P' of the northern hemisphere of S (N corresponds to 
itself). Similarly, given ar1y line m of T, we join m to 0 by a plane TI 
·through 0 that cuts; out ·a great circle on the sphere and a .great 

FIGURE2.8 
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semicircle m' on the northern hemisphere; this gives a one-to-one 
correspondence between the lines m of T and the great semicircles m' 
of the northern hemisphere, a correspondence that clearly preserves 
incidence. 

Now if /II min T, the planes through 0 determined by these parallel 
lines will meet in a line lying in the plane of the equator, a line which 
(since it goes through 0) cuts out a pair of antipodal points on the 
equator. Thus the line at infinity of .r;I/,* can be visualized under our 
isomorphism as the equator of Swith antipodal points identified (they 
must be identified, or else Axiom 1-1 will fail). In other words, .r;I/, •can 
be described as the northern hemisphere with antipodal points on the 
equator pasted to each other; however, we can't visualize this pasting 
very well, because it can be proved that the pasting cannot be done in 
Euclidean three-space without tearing the hemisphere. 

Projective planes are the most important models of pure incidence 
geometry. We will see later on that Euclidean, hyperbolic, and, of 
course, elliptic geometry can all be considered "subgeometries" of 
projective geometry. This discovery by Cayley led him to exclaim that 
"projective geometry is all of geometry," which turned out to be an 
oversimplification. 

REVIEW EXERCISE 

Which of the following statements are correct? 

(I) The "hypothesis" of a theorem is an assumption that implies the 
conclusion. 

(2) A theorem may be proved by drawing an accurate diagram. 
(3) To say that a step is "obvious" is an allowable justification in a rigorous 

proof. 
(4) There is no way to program a computer to prove or disprove every 

statement in mathematics. 
(5) To "disprove" a statement means to prove the negation of that state-

ment. 
( 6) A "model" of an axiom system is the same as an "interpretation" of the 

system. 
(7) The Pythagoreans discovered the existence of irrational lengths by an 

RAA proof. 
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(8) The negation of the statement "If 3 is an odd number, then 9 is even" 
is the statement "If 3 is an odd number, then 9 is odd." 

(9) The negation of a conjunction is a disjunction. 
(10) The statement "l = 2 and 1 =I= 2" is an example of a contradiction. 
( 11) The statement "Base angles of an isosceles triangle are congruent" has 

no hidden quantifiers. 
( 12) The statements "Some triangles are equilateral" and "There exists an 

equilateral triangle" have the same meaning. 
( 13) The converse of the statement "If you push me, then I will fall" is the 

statement "If you push me, then I won't fall." 
(14) The following two statements are logically equivalent: If /II m, then I 

and m have no point in common. If I and m have a point in common, 
then I and m are not parallel." 

( 15) Whenever a conditional statement is valid, its converse is also valid. 
( 16) If one statement implies a second statement and the second statement 

implies a third statement, then the first statement implies the third 
statement. 

( 17) The negation of "All triangles are isosceles" is "No triangles are 
isosceles." 

( 18) The hyperbolic parallel property is defined as "For every line I and 
every point P not on I there exist at least two lines through P parallel to 
/." 

( 19) The statement "Every point has at least two lines passing through it" is 
independent of the axioms for incidence geometry. 

(20) "If /II m and m II n, then /II n" is independent of the axioms of inci­
dence geometry. 

EXERCISES 

1. Let Sbe the following self-referential statement: "Statement Sis false." 
Show that if Sis either true or false then there is a contradiction in our 
language. (This is the liar paradox. Kurt Godel used a variant of it as the 
starting point for his famous incompleteness theorem in logic; see De­
Long, 1970) 

2. (a) What is the negation of [P or Q]? 
(b) What is the negation of [P & -Q]? 
( c) Using the rules of logic given in the text, show that P ~ Q means 

the same as [-P or Q]. (Hint: Show they are both negations of the 
same thing.) 
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(d) A symbolic way of writing Rule 2 for RAA proofs is [ [H & -C] ~ 
[S & -S]] ~ [H~ C]. Explain this. 

3. Negate Euclid's fourth postulate. 
4. Negate the Euclidean parallel postulate. 
5. Write out the converse to the following statements: 

(a) "If lines I and mare parallel, then a transversal /to lines /and mcuts 
out congruent alternate interior angles." 

(b) "If the sum of the degree measures of the interior angles on one 
side of transversal tis less than 180 °, then lines I and m meet on that 
side of transversal t." 

6. Prove all five propositions in incidence geometry as stated in this chap­
ter. Don't use Incidence Axiom 2 in your proofs. 

7. For each pair of axioms of incidence geometry, construct an interpreta­
tion in which those two axioms are satisfied but the third axiom is not. 
(This will show that the three axioms are independent, in the sense that it 
is impossible to prove any one of them from the other two.) 

8. Show that the interpretations in Examples 3 and 4 in this chapter are 
models of incidence geometry and that the Euclidean and hyperbolic 
parallel properties, respectively, hold. 

9. In each of the following interpretations of the undefined terms, which of 
the axioms of incidence geometry are satisfied and which are not? Tell 
whether each interpretation has the elliptic, Euclidean, or hyperbolic 
parallel property. 
(a) "Points" are dots on a sheet of paper, "lines" are circles drawn on 

the paper, "incidence" means that the dot lies on the circle. 
(b) "Points" are lines in Euclidean three-dimensional space, "lines" 

are planes in Euclidean three-space, "incidence" is the usual rela­
tion of a line lying in a plane. 

( c) Same as in (b), except that we restrict ourselves to lines and planes 
that pass through a fixed ordinary point 0. 

(d) Fix a circle in the Euclidean plane. Interpret "point" to mean an 
ordinary Euclidean point inside the circle, interpret "line" to mean 
a chord of the circle, and let "incidence" mean that the point lies on 
the chord in the usual sense. (A chord of a circle is a segment whose 
endpoints lie on the circle.) 

(e) Fix a sphere in Euclidean three-space. Two points on the sphere 
are called antipodal if they lie on a diameter of the sphere; e.g., the 
north and south poles are antipodal. Interpret a "point" to be a set 
{P, P'} consisting of two antipodal points on the sphere. Interpret 
a "line" to be a great circle Con the sphere. Interpret a "point" 
{P, P'} to "lie on" a "line" C if one of the points P, P' lies on the 
great circle C (then the other point also lies on C). 
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10. (a) Prove that when each of two models of incidence geometry has 
exactly three "points" in it, the models are isomorphic. 

(b) Must two models having exactly four "points" be isomorphic? If 
you think so, prove this; if you think not, give a counterexample. 

(c) Show that the models in Exercises 9(c) and 9(e) are isomorphic. 
(Hint: Take the point 0 of Exercise 9(c) to be the center of the 
sphere in Exercise 9(e), and cut the sphere with lines and planes 
through point 0 to get the isomorphism.) 

11. Construct a model of incidence geometry that has neither the elliptic, 
hyperbolic, nor Euclidean parallel properties. (These properties refer to 
any line I and any point P not on /. Construct a model that has different 
parallelism properties for different choices of I and P. Five points suf­
fice.) 

12. Suppose that in a given model for incidence geometry every "line" has 
at least three distinct "points" lying on it. What are the least number of 
"points" and the least number of "lines" such a model can have? Sup­
.pose further that the model has the Euclidean parallel property. Show 
that 9 is now the least number of "points" and 12 the least number of 
"lines" such a model can have. 

13. The following syllogisms are by Lewis Carroll. Which of them are 
correct arguments? 
(a) No frogs are poetical; some ducks are unpoetical. Hence, some 

ducks are not frogs. 
(b) Gold is heavy; nothing but gold will silence him. Hence, nothing 

light will silence him. 
(c) All lions are fierce; some lions do not drink coffee. Hence, some 

creatures that drink coffee are not fierce. 
(d) Some pillows are soft; no pokers are soft. Hence, some pokers are 

not pillows. 
14. Comment on the following example of isomorphic structures given by a 

music student: Romeo and Juliet and West Side Story. 
15. Comment on the following statement by the artist David Hunter: "The 

only use for Logic is writing books on Logic and teaching courses in 
Logic; it has no application to human behavior:' 

MAJOR EXERCISES 

1. Let.iU be a projective plane. Define a new interpretation At' by taking as 
"points" of At' the lines of At and as "lines" of At' the points of At, with 
the same incidence relation. Prove that At' is also a projective plane 
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(called the dual plane of-'£). Suppose further that.,« has only finitely 
many points. Prove that all the lines in .,« have the same number of 
points lying on them. (Hint: See Figure 7.43 in Chapter 7.) 

2. Let us add to the axioms of incidence geometry the following axioms: 
(i) The Euclidean parallel property. 
(ii) The existence of only a finite number of points. 
(iii) The existence of lines /and msuch that the number of points lying 

on I is different from the number of points lying on m. 
Show that this expanded axiom system is inconsistent. (Hint: Prove that 
(i) and (ii) imply the negation of (iii) .) 

3. Prove that every projective plane ~ is isomorphic to the projective 
completion of some affine plane slJ. (Hint: As was done in Example 6, 
pick any line min~, pretend that mis "the line at infinity," remove m 
and the points lying on it, and prove that what's left is an affine plane slJ 
and that ~ is isomorphic to the completion slJ • .) A surprising discovery 
is thatslJ need not be unique up to isomorphism (see Hartshorne, 196 7). 

4. Provide another solution to Major Exercise 2 by embedding the affine 
plane of that exercise in its completion and invoking Major Exercise 1. 

5. Consider the following interpretation of incidence geometry. Begin with 
a punctured sphere in Euclidean three-space, i.e., a sphere with one 
point N removed. Interpret "points" as points on the punctured sphere. 
For each circle on the original sphere passing through N, interpret the 
punctured circle obtained by removing N as a " line." Interpret "inci­
dence" in the Euclidean sense of a point lying on a punctured circle. Is 
this interpretation a model? If so, what parallel property does it have? Is 
it isomorphic to any other model you know? (Hint: If N is the north pole, 
project the punctured sphere from N onto the plane Il tangent to the 
sphere at the south pole, as in Figure 2.9. Use the fact that planes 
through N cut out circles on the sphere and lines in Il. For a hilarious 
discussion of this interpretation, refer to Chapter 3 of Sved, 1991.) 

FIGURE2.9 
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6. Consider the following statement in incidence geometry: "For any two 
lines I and m there exists a one-to-one correspondence between the set 
of points lying on I and the set of points lying on m." Prove that this 
statement is independent of the axioms of incidence geometry. 

7. Let..« be a finite projective plane so that, according to Major Exercise 1, 
all lines in...« have the same number of points lying on them; call this 
number n + 1. Prove the following: 
(a) Each point in...« has n + 1 lines passing through it. 
(b) The total number of points in...« is n2 + n + 1. 
(c) The total number of lines in...« is n2 + n + 1. 

8. Letd be a finite affine plane so that, according to Major Exercise 2, all 
lines in d have the same number of points lying on them; call this 
number n. Prove the following: 
(a) Each point ind has n + 1 lines passing through it. 
(b) The total number of points ind is n2• 

(c) The total number of lines ind is n(n + 1). 
(Hint: Use Major Exercise 7.) 

9. The real affine plane has as its "points" all ordered pairs (x, y) of real 
numbers. A "line" is determined by an ordered triple (u, v, w) of real 
numbers such that either u =I= 0 or v =I= 0, and it is defined as the set of all 
"points" (x, y) satisfying the linear equation ux + vy + w = 0. "Inci­
dence" is defined as set membership. Verify that all axioms for an affine 
plane are satisfied by this interpretation. 

10. A "point" [ x, y, z] in the real projective plane is determined by an ordered 
triple (x, y, z) of real numbers that are not all zero, and it consists of all 
the ordered triples of the form (kx, ky, kz) for all real numbers k =I= O; 
thus, [kx, ky, kz] = [x, y, z]. A "line" in the real projective plane is 
determined by an ordered triple (u, v, w) of real numbers that are not all 
zero, and it is defined as the set of all "points" [ x, y, z] whose coordi­
nates satisfy the linear equation ux + vy + wz = 0. "Incidence" is 
defined as set membership. Verify that all the axioms for a projective 
plane are satisfied by this interpretation. Prove that by taking z = 0 as 
the equation of the "line at infinity," by assigning the affine "point" 
(x, y) the "homogeneous coordinates" [ x, y, 1], and by assigning affine 
"lines" to projective "lines" in the obvious way, the real projective 
plane becomes isomorphic to the projective completion of the real affine 
plane. Prove that the models in Exercise 10 ( c) are also isomorphic to the 
real projective plane. 

11. (a) Given an interpretation of some axioms, in order to show that the 
interpretation is a model, you must verify that the interpretations of 
the axioms hold. If you execute that verification precisely rather 



88 Ill Logie and Ineldenee Geometry 

than casually, you are actually giving proofs. In what axiomatic 
theory are those proofs given? Consider this question more specifi­
cally for the models presented in the text and exercises of this 
chapter. 

(b) Some of the interpretations refer to a "sphere" in "Euclidean 
space," presuming that you already know the theory of such things, 
yet we are carefully laying the axiomatic foundations of the simpler 
theory of the Euclidean plane. Does this bother you? Comment. 

(c) Can an inconsistent system (such as the one in Major Exercise 2) 
have a model? Explain. 

12. Just because every step in a proof has been justified, that doesn't guar­
antee the correctness of the proof: the justifications may be in error. For 
example, the justification may not be one of the six types allowed by 
Logic Rule 1, or it may refer to a previous theorem that is not applicable, 
or it may draw erroneous inferences from a definition (such as "parallel 
lines are equidistant"). Thus a second "proof' should be given to verify 
the correctness of the justifications in the first proof. But then how can 
we be certain the second "proof' is correct? Do we have to give a third 
"proof' and so on ad infinitum? Discuss. 

PROJECTS 

1. The following statement is by the French mathematician G. Desargues: 
"If the vertices of two triangles correspond in such a way that the lines 
joining corresponding vertices are concurrent, then the intersections of 
corresponding sides are collinear." (See Figure 2.10.) This statement is 
independent of the axioms for projective planes: it holds in the real 
projective plane, but there exist other projective planes in which it fails. 
Report on this independence result (see Artzy, 1965, or Stevenson, 
1972). 

2. An isomorphism of a projective plane .M onto its dual plane .M' (see 
Major Exercise 1) is called a polarity of .M. By definition of "isomor­
phism," it assigns to each point A of.Ma line p(A) of.M called the polarof 
A, and to each line m of.Ma point P(m) of .M called its pole, in such a way 
that A lies on m ifand only if P(m) lies onp(A). The conicydetermined by 
this polarity is defined to be the set of all points A such that A lies on its 
polar p(A); p(A) is defined to be the tangent line to the conic at A. Point B 
is defined to be interior to y if every line through B intersects y in two 
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FIGURE 2.10 Desargues's theorem. 

points. This very abstract definitions of "conic" can be reconciled with 
more familiar descriptions, such as (using coordinates) the solution set to 
a homogeneous quadratic equation in three variables. The theory of 
conics is one of the most important topics in plane projective geometry. 
Report on this, using some good projective geometry text such as Coxeter 
(1960). A polarity will play a crucial role in Chapter 7 (see also Major 
Exercise 13, Chapter 6) . 

3. Aristotle is considered the founder of classical logic. Up through the 
1930s, some important logicians were Leibniz, Boole, Frege, Russell, 
Whitehead, Hilbert, Ackermann, Skolem, GOdel, Church, Tarski, and 
Kleene. Report on some of the history of logic, using DeLong ( 1970) and 
his bibliography as references. 

5 The poet Goethe said: " Mathematicians are like Frenchmen: whatever you say to them, 
they translate it into their own language and forthwith it is something entirely different." 



DILBERT'S 

AXIOMS 

The value of Euclid's work as a masterpiece of logic has 
been very grossly exaggerated. 

BERTitAND RUSSELL 

FLAWS IN EUCLID 

Having clarified our rules of reasoning (Chapter 2), let us return to the 
postulates of Euclid. In Exercises 9 and 10 of Chapter 1 we saw that 
Euclid neglected to state his assumptions that points and lines exist, 
that not all points are collinear, and that every line has at least two 
points lying on it. We made these assumptions explicit in Chapter 2 by 
adding two more axioms of incidence to Euclid's first postulate. 

In Exercises 6 and 7, Chapter 1, we saw that some assumptions 
about "betweenness" are needed. In fact, Euclid never mentioned 
this notion explicitly, but tacitly assumed certain facts about it that are 
obvious in diagrams. In Chapter 1 we saw the danger of reasoning from 
diagrams, so these tacit assumptions will have to be made explicit. 

Quite a few of Euclid's proofs are based on reasoning from dia­
grams. To make these proofs rigorous, a much larger system of explicit 
axioms is needed. Many such axiom systems have been proposed. We 
will present a modified version of David Hilbert's system of axioms. 
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David Hilbert 

Hilbert's system was not the first, but his axioms are perhaps the most 
intuitive and are certainly the closest in spirit to Euclid's. 1 

During the first quarter of the twentieth century Hilbert was con­
sidered the leading mathematician of the world. 2 He made outstand­
ing, original contributions to a wide range of mathematical fields as 
well as to physics. He is perhaps best known for his research in the 
foundations of geometry as well as the foundations of algebraic num­
ber theory, infinite-dimensional spaces, and mathematical logic. A 

1 Let us not forget that no serious work toward constructing new axioms for Euclidean 
geometry had been done until the discovery of non-Euclidean geometry shocked mathemati­
cians into reexamining the foundations of the former. We have the paradox of non-Euclidean 
geometry helping us to better understand Euclidean geometry! 

z I heartily recommend the warm and colorful biography of Hilbert by Constance Reid 
(1970). It is nontechnical and conveys the excitement of the time when Gottingen was the 
capital of the mathematical world. 
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great champion of the axiomatic method, he "axiomatized" all of the 
above subjects except for physics (although he did succeed in provid­
ing physicists with very valuable mathematical techniques). He was 
also a mathematical prophet; in 1900 he predicted 23 of the most 
important mathematical problems of this century. 

He has been quoted as saying: "One must be able to say at all 
times-instead of points, lines and planes-tables, chairs and beer 
mugs." In other words, since no properties of points, lines, and planes 
may be used in a proof other than the properties given by the axioms, 
you may as well call these undefined entities by other names. 

Hilbert's axioms are divided into five groups: incidence, between­
ness, congruence, continuity, and parallelism. We have already seen 
the three axioms of incidence in Chapter 2. In the next sections we will 
deal successively with the other groups of axioms. 

AXIOMS OF BETWEENNESS 

To further illustrate the need for axioms of betweenness, consider the 
following attempted proof of the theorem that base angles of an iso­
sceles triangle are congruent. This is not Euclid's proof, which is 
flawed in other ways (see Golas, 1968, p. 5 7), but is an argument 
found in some high school geometry texts. 

Proof 
Given .6ABC with AC= BC. To prove <tA = <tB (see Figure 3.1 ): 

( 1) Let the bisector of <tC meet AB at D (every angle has a 
bisector). 

c 

FIGURE3.I A D B 
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(2) In triangles .6.ACD and .6.BCD, AC= BC (hypothesis). 
(3) <tACD = <tBCD (definition of bisector of an angle). 
(4) CD= CD (things that are equal are congruent). 

73 

(5) .6.ACD = .6.BCD (SAS). {.3, j , 3) 
( 6) Therefore, <r..A = <tB (corresponding angles of congruent tri­

angles). • 

Consider the first step, whose justification is that every angle has a 
bisector. This is a correct statement and can be ,££Oved separately. But 
how do we know that the bisector of <r..C meets AB, or if it does, how do 
we know that the point of intersection D lies between A and B? This 
may seem obvious, but if we are to be rigorous, it requires proof. For 
all we know, the picture might look like Figure 3.2. If this were the 
case, steps 2-5 would still be correct, but we could conclude only that 
<r..B is congruent to <r..CAD, not to 4'.CAB, since <r..CAD is the angle in 
.6.ACD that corresponds to <r..B. 

Once we state our four axioms of betweenness, it will be possible to 
prove (after a considerable amount of work) that the bisector of <r..C 
does meet AB in a point D between A and B, so the above argument 
will be repaired (see the crossbar theorem, later in this section). There 
is, however, an easier proof of the theorem (given in the next section). 
We will use the shorthand notation 

to abbreviate the statement "point B is between point A and point C." 

BE1WEENNESS AXIOM 1. If A * B * C, then A, B, and C are three 
distinct points all lying on the same line, and C * B * A. 

c 

FIGURE3.2 
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FIGURE3.3 A B c D E 

The first part of this axiom fills the gap mentioned in Exercise 6, 
Chapter 1. The second part (C * B * A) makes the obvious remark 
that "between A and C" means the same as "between C and A" -it 
doesn't matter whether A or C is mentioned first. 

BETWEENNESS AXIOM 2. Given aN two distinct points Band D, there 
exist points A, C, and E lying on BO such that A * B * D, B * C * D, 
and B * D * E (Figure 3.3). 

This axiom ensures that there are points between B and D and that 
the line BO does not end at either B or D. 

BETWEENNESS AXIOM 3. If A, B, and C are three distinct points lying 
on the same line, then one and only one of the points is between the 
other two. 

This axiom ensures that a line is not circular; if the points were on a 
circle, you would then have to say that each is between the other two 
(or none is between the other two- it would depend on which of the 
two arcs you look at-see Figure 3.4). 

Before stating the last betweenness axiom, let us examine some 
consequences of the first three. Recall that the segment AB is defined as 
the set of all points between A and B together with the endpoints A 
and B. The ray AB is defined as the set of all points on the segment AB 
together with all points C such that A * B * C. The second axiom 
ensures that such points as C exist, so the ray AB is larger than the 
segment AB. We can now prove the formulas you encountered in 
Exercise 7, Chapter 1. 

FIGURE3.4 
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PROPOSITION 3.1. For any two points A and B: (i) AB n BA= AB, 
and (ii) AB u BA = {AB}. 

Proof of (i): 
(1) By definition of segment and ray, ABC AB and ABC BA, so 

by definition of intersection, AB c AB n BA. 
(2) Conversely, let the point C belong to the intersection of AB 

--+ . 
and BA; we wish to show that C belongs to AB. 

(3) If C =A or C = B, C is an endpoint of AB. Otherwise, A, B, 
and Care three collinear points (by definition of ray and Axiom 
1), so exactly one of the relations A * C * B, A * B * C, or 
C *A* B holds (Axiom 3). 

(4) If A* B * C holds then C is not on BA; if C *A* B holds, 
then C is not on ~- In either case, C does not belong to both 
rays. 

(5) Hence, the relation A* C * B must hold, so C belongs to 
AB.• 

The proof of (ii) is similar and is left as an exercise. (Recall that 
{AB} is the set of points lying on the line AB.) 

Recall next that if C * A * B, then AC is said to be opposite to AB 
(see Figure 3.5). By Axiom 1, _E2ints A, B, and Care collinear, and by 
Axiom 3, C does not belong to AB, so rays AB and AC are distinct. This 
definition is therefore in agreement with the definition given in Chap­
ter 1 (see Proposition 3.6). Axiom 2 guarantees that every ray AB has 
an opposite ray AC. 

It seems clear from Figure 3.5 that every point Plying on the line I 
through A, B, C must belong either to ray AB or to an opposite ray AC. 
This statement seems similar to the second assertion of Proposition 
3.1, but it is actually more complicated; we are now discussing/our 
points A, B, C, and P, whereas previously we had to deal with only 
three points at a time. In fact, we encounter here another "pictorially 
obvious" assertion that cannot be proved without introducing another 
axiom (see Exercise 17). 

FIGURE3.S c A B 
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----s 

FIGURE 3.6 A and B are on the same side of I; C and D are on opposite sides of I. 

Suppose we call the assertion "C * A * Band P collinear with A, B, 
C ~PE AC U AB" the line separation property. Some mathemati­
cians take this property as another axiom. However, it is considered 
inelegant in mathematics to assume more axioms than are necessary 
(although we pay for elegance by having to work harder to prove 
results that appear obvious). So we will not assume the line separation 
property as an axiom; instead, we will prove it as a consequence of our 
previous axioms and our last betweenness axiom, called the plane 
separation axiom. 

DEFINITION. Let I be any line, A and B any points that do not lie 
on /. If A = B or if segment AB contains no point lying on /, we say A 
and B are on the same side of I, whereas if A =fo B and segment AB 
does intersect/, we say that A and Bare on opposite sides of I (see Figure 
3.6). The law of the excluded middle (Rule 10) tells us that A and 
B are either on the same side or on opposite sides of /. 

BETWEENNESS AXIOM 4 (Plane Separation). For every line /and for any 
three points A, B, and C not lying on /: 

(i) If A and Bare on the same side of /and Band Care on the same 
side of/, then A and C are on the same side of I (see Figure 3. 7). 

B 

A~C 
Axiom 4(i) 

FIGURE3.7 
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Axiom 4(ii) 

.. 

FIGURE3.8 B 

(ii) If A and B are on opposite sides of I and B and C are on opposite 
sides of/, then A and Care on the same side of I (see Figure 
3.8). 

COROLLARY. (iii) If A and Bare on opposite sides of I and Band Care 
on the same side of/, then A and C are on opposite sides of/. 

Axiom 4(i) indirectly guarantees that our geometry is two-dimen­
sional, since it does not hold in three-space. (Line I could be outside 
the plane of this page and cut through segment AC; this interpretation 
shows that if we assumed the line separation property as an axiom, we 
could not prove the plane separation property.) Betweenness Axiom 4 
is also needed to make sense out of Euclid's fifth postulate, which 
talks about two lines meeting on one "side" of a transversal. We can 
now define a side of a line I as the set of all points that are on the same 
side of I as some particular point A not lying on /. If we denote this side 
by HA, notice that if C is on the same side of /as A, then by Axiom 4(i), 
He =HA. (The definition of a side may seem circular because we use 
the word "side" twice, but it is not; we have already defined the 
compound expression "on the same side.") Another expression com­
monly used for a "side of I" is a half-plane bounded by I. 

PROPOSITION 3.2. Every line bounds exactly two half-planes and 
these half-planes have no point in common. 

Proof 
(1) There is a point A not lying on I (Proposition 2.3). 
(2) There is a point 0 lying on I (Incidence Axiom 2). 
(3) There is a point B such that B * 0 *A (Betweenness Axiom 

2). 
( 4) Then A and Bare on opposite sides of I (by definition), so /has 

at least two sides. 
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( 5) Let C be any point distinct from A and B and not lying on /. If C 
and B are not on the same side of /, then C and A are on the 
same side of I (by the law of excluded middle and Betweenness 
Axiom 4(ii)). So the set of points not on I is the union of the 
side HA of A and the side H8 of B. 

( 6) If C were on both sides (RAA hypothesis), then A and B would 
be on the same side (Axiom 4(i) ), contradicting step 4; hence 
the two sides are disjoint (RAA conclusion). • 

We next apply the plane separation property to study betweenness 
relations among four points. 

PROPOSITION 3.3. Given A * B * C and A * C * 0. Then B * C * D 
and A* B * D. (See Figure 3.9.) 

Proof 
( 1) A, B, C, and Dare four distinct collinear points (see Exercise 

1 ). 
(2) There exists a point E not on the line through A, B, C, D 

(Proposition 2)). 
( 3) Consider line EC. Since (by hypothesis) AD meets this line 

in point C, A and D are on opposite sides of EC. 
( 4) We claim A and B are on the same side of EC. Assume on the 

contrary that A and B are on opposite sides of EC (RAA 
hypothesis). 

( 5) Then EC meets AB in a point between A and B (definition of 
"opposite sides"). 

(6) That point must be C (Proposition 2.1). 
(7) Thus, A * B * C and A * C * B, which contradicts Between­

ness Axiom 3. 

A D 

FIGURE3.9 
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(8) Hence, A and Bare on the same side of EC (RAAconclusion). 
(9) Band Dare on opposite sides of EC (steps 3 and 8 and the 

corollary to Betweenness Axiom 4). 
( 10) Hence, the point C of intersection of lines EC and BO lies 

between Band D (definition of "opposite sides"; Proposition 
2.1, i.e., that the point of intersection is unique). 

A similar argument involving EB proves that A * B * D (Exercise 
2(b)) .• 

COROLLARY. Given A * B * C and B * C * D. Then A * B * D and 
A* C * D. 

Finally we prove the line separation property. 

PROPOSITION 3.4. If C * A * B and I is the line through A, B, and C 
(Betweenness Axiom 1), then for every point Plying on/, Plies either 
on ray AB or on the opposite ray AC. 

Proof" 
( 1) Either P lies on AB or it does not (law of excluded middle). 
(2) If P does lie on AB, we are done, so assume it doesn't; then 

P * A * B (Betweenness Axiom 3). 
( 3) If P = C then P lies on AC (by definition), so assume P =F C; 

then exactly one of the relations C *A* P, C * P *A, and 
P * C *A holds (Betweenness Axiom 3 again). 

(4) Suppose the relation C *A* P holds (RAA hypothesis). 
( 5) We know (by Betweenness Axiom 3) that exactly one of the 

relations P * C * B, C * P * B, and C * B * P holds. 
(6) If P * B * C, then combining this with P *A* B (step 2) 

gives A* B * C (Proposition 3.3), contradicting the hypoth­
esis. 

(7) If C * P * B, then combining this with C *A* P (step 4) 
gives A* P * B (Proposition 3.3), contradicting step 2. 

(8) If B * C * P, then combining this with B *A* C (hypothesis 
and Betweenness Axiom 1) gives A * C * P (Proposition 
3.3), contradicting step 4. 

(9) Since we obtain a contradiction in all three cases, C * A * P 
does not hold (RAA conclusion). 

(10) Therefore, C * P *A or P * C *A (step 3), which means 
that P lies on the opposite ray AC. • 
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FIGURE3.IO 

[~ 
A ' ...... ....._ C 

The next theorem states a visually obvious property that Pasch 
discovered Euclid to be using without proof. 

PASCH'S THEOREM. If A, B, Care distinct noncollinear points and /is 
any line intersecting AB in a point between A and B, then I also 
intersects either AC or BC (see Figure 3.10). If C does not lie on I, 
then I does not intersect both AC and BC. 

Intuitively, this theorem says that if a line "goes into" a triangle 
through one side, it must "come out" through another side. 

Proof 
( 1) Either C lies on I or it does not; if it does, the theorem holds 

(law of excluded middle). 
(2) A and B do not lie on /, and the segment AB does intersect I 

(hypothesis and Axiom 1). 
(3) Hence, A and B lie on opposite sides of I (by definition). 
(4) From step 1 we may assume that C does not lie on/, in which 

case C is either on the same side of I as A or on the same side of I 
as B (separation axiom). 

( 5) If C is on the same side of I as A, then C is on the opposite side 
from B, which means that /intersects BC and does not intersect 
AC; similarly if C is on the same side of I as B, then /intersects 
AC and does not intersect BC (separation axiom). 

(6) The conclusions of Pasch's theorem hold (Logic Rule 11-
proof by cases). • 

Here are some more results on betweenness and separation that 
you will be asked to prove in the exercises. 

PROPOSITION 3.5. Given A * B * C. Then AC = AB U BC and B is 
the only point common to segments AB and BC. 
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FIGURE3.ll 

PROPOSITION 3.6. Given A * B * C. Then B is the only point com­
mon to rays BA and BC, and AB = AC. 

DEFINITION. Given an angle <tCAB, define a point D to be in the 
interior of <tCAB if Dis on the same side of AC as Band if Dis also on 
the same side of AB as C. (Thus, the interior of an angle is the 
intersection of two half-planes.) See Figure 3.11. 

PROPOSITION 3.7. Given an angle <tCAB and point D lying on line 
BC. Then Dis in the interior of <tCAB if and only if B * D * C (see 
Figure 3.12). 

A 

FIGURE3.12 

Warning. Do not assume that every point in the interior of an 
angle lies on a segment joining a point on one side of the angle to a 
point on the other side. In fact, this assumption is false in hyperbolic 
geometry (see Exercise 36). 

PROPOSITION 3.8. If Dis in the interior of <tCAB; then: (a) so is every 
other point on ray AD except A; (b) no point on the opposite ray to 
AD is in the interior of <tCAB; and (c) if C *A* E, then Bis in the in­
terior of <tDAE (see Figure 3.13). 
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FIGURE3.13 

FIGURE3.14 

DEFINITION. Ray AD is between rays AC and AB if AB and AC are not 
opposite rays and Dis interior to 4CAB. (By Proposition 3.8(a), this 
definition does not depend on the choice of point D on AD.) 

CROSSBAR THEOREM. If AD is between AC and AB, then AD inter­
sects segment BC (see Figure 3.14). 

DEFINITION. The interior of a triangle is the intersection of the 
interiors of its three angles. Define a point to be exterior to the triangle 
if it is not in the interior and does not lie on any side of the triangle. 

PROPOSITION 3.9. (a) If a ray remanating from an exterior point of 
.D.ABC intersects side AB in a point between A and B, then r also 
intersects side AC or side BC. (b) If a ray emanates from an interior 
point of .D.ABC, then it intersects one of the sides, and if it does not 
pass through a vertex, it intersects only one side. 

AXIOMS OF CONGRUENCE 

If we were more pedantic, "congruent," the last of our undefined 
terms, would be replaced by two terms, since it refers to either a 
relation between segments or a relation between angles. We are ac-
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customed to congruence as a relation between triangles, but we can 
now define this as follows: two triangles are congroent if a one-to-one 
correspondence can be set up between their vertices so that corre­
sponding sides are congru~nt and corresponding angles are con­
gruent. When,we w:rite b.i'.\BC = b.DEF we understand that~ corre­
sponds to D, B to E, and C to F. Similar defin,itions can be given for 
congruenc~ of quadrilaterals, pentagons, and so forth. 

CONGRUENCE AXIOM 1. If A and B are distinct points and if A' is any 
point, then for each ray remanating from A' there is a unique point B' 
on rsuch that B' =I= A' and AB= A'B'. (See Figure 3.15.) 

r 

A---1----

FIGURE3.15 A' 

Intuitively speaking, this axiom says you can "move" the segment 
AB so that it lies on the ray r with A superimposed on A', and B 
superimposed on B'. (In Major Exercise 2, Chapter 1, you showed 
how to do this with a straightedge and collapsible compass.) 

CONGRUENCE AXIOM 2. If AB= CD and AB::: EF, then CD= EF. 
Moreover, every segment is congruent to itself. 

This axiom replaces Euclid's first common notion, since it says that 
segments congruent to the same segment are congruent to each other. 
It also replaces the fourth common notion, since it says that segments 
that coincide are congruent. 

CONGRUENCE AXIOM 3. If A * B * C, A' * B' * C', AB = A'B', and 
BC= B'C', then AC= A'C'. (See Figure 3.16.) 

This axiom replaces the second common notion, since it says that if 
congruent segments are "added" to congruent segments, the sums 
are congruent. Here, "adding" means juxtaposing segments along the 
same line. For example, using Congruence Axioms 1 and 3, you can 
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• • ii' 
FIGURE3.16 A' B' 

lay off a copy of a given segment AB two, three, 
new segment n ·AB. (See Figure 3.17.) 

Hiibert's -'xloms 

• C' 

, n times, to get a 

CONGRUENCE AXIOM 4. Given any ~BAC (where, b.r..definition of 
"angle," AB is not opposite to AC), and given any ray A'B' emanating 
from a point A', then there is a unique ray Al(:,' on a given side of line 
A~' such that ~B' A'C' = ~BAC. (See Figure 3.18.) 

This axiom can be paraphrased to state that a given angle can be 
"laid off" on a given side of a given ray in a unique way (see Major 
Exercise 1 ( g), Chapter 1). 

A 

FIGURE 3.17 AB" = 3 · AB. 
B B' B" 

CONGRUENCE AXIOM 5. If~ = ~B and ~A = ~C, then ~B = ~c. 
Moreover, every angle is congruent to itself. 

'This is the analogue for angles of Congruence Axiom 2 for seg­
ments; the first part asserts the transitivity and the second part the 
reflexivity of the congruence relation. Combining them, we can prove 
the symmetry of this relation: ~ = ~B ==> ~B = ~A. 

Proof 
~ = ~B (hypothesis) and~=~ (reflexivity) imply (substi­
tuting A for C in Congruence Axiom 5) ~B = ~A (transitivity). • 

(By the same argument, congruence of segments is a symmetric rela­
tion.) 
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A 

FIGURE3.18 _.....------ A' 

It would seem natural to assume next an "addition axiom" for 
congruence of angles analogous to Congruence Axiom 3 (the addition 
axiom for congruence of segments). We won't do this, however, be­
cause such a result can be proved using the next congruence axiom 
(see Proposition 3.19). 

CONGRUENCE AXIOM 6 (SAS). If two sides and the included angle of 
one triangle are congruent respectively to two sides and the included 
angle of another triangle, then the two triangles are congruent (see 
Figure 3.19). 

This side-angle-side criterion for congruence of triangles is a pro­
found axiom. It provides the "glue" which binds the relation of con­
gruence of segments to the relation of congruence of angles. It enables 
us to deduce all the basic results about triangle congruence with which 
you are presumably familiar. For example, here is one immediate 
consequence which states that we can "lay off" a given triangle on a 
given base and a given half-plane. 

COROLLARY TO SAS. Given 1:::,. ABC and segment DE := AB, there is a 
unique point Fon a given side of line DE such that l:::,.ABC == l:::,.OEF. 

A 
FIGURE3.18 

B 
B' 
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Proof 
There is a unique ray DF on the given side such that 1:'.CAB == 
1:'.FDE, and Fon that ray can be chosen to be the unique point such 
that AC== OF (by Congruence Axioms 4 and 1). Then .D.ABC == 
.D.DEF (SAS). • 

As we said, Euclid did not take SAS as an axiom but tried to prove it 
as a theorem. His argument was essentially as follows. Move .D.A'B'C' 
so as to place point A' on point A and A'B' on AB. Since AB == A'B', by 
hypothesis, point B' must fall on point B. Since <tA == 1:'.A', At(:,,' must 
fall on AC, and since AC == A'C', point C' must coincide with point C. 
Hence, B'C' will coincide with BC and the remaining angles will 
coincide with the remaining angles, so the triangles will be congruent. 

This argument is called superposition. It derives from the experience 
of drawing two triangles on paper, cutting out one, and placing it on 
top of the other. Although this is a good way to convince a novice in 
geometry to accept SAS, it is not a proof, and Euclid reluctantly used it 
in only one other theorem. It is not a proof because Euclid never stated 
an axiom that allows figures to be moved around without changing 
their size and shape. 

Some modern writers introduce "motion" as an undefined term 
and lay down axioms for this term. (In fact, in Pieri's foundations of 
geometry, "point" and "motion" are the only undefined terms.) Or 
else, the geometry is first built up on a different basis, "distances" 
introduced, and a "motion" defined as a one-to-one transformation of 
the plane onto itself that preserves distance. Euclid can be vindicated 
by either approach. In fact, Felix Klein, in his 1872 Erlanger Pro­
gramme, defined a geometry as the study of those properties of figures 
that remain invariant under a particular group of transformations. This 
idea will be developed in Chapter 9. 

You will show in Exercise 35 that it is impossible to prove SAS or 
any of the other criteria for congruence of triangles (SSS, ASA, SAA) 
from the preceding axioms. As usual, the method for proving the 
impossibility of proving some statement Sis to invent a model for the 
preceding axioms in which S is false. 

As an application of SAS, the simple proof of Pappus (A.o.300) for 
the theorem on base angles of an isosceles triangle follows. 

PROPOSITION 3.10. If in .D.ABC we have AB=: AC, then 1:'.B == 1:'.C 
(see Figure 3.20). 
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A 

FIGURE3.20 B c 

Proof 
( 1) Consider the correspondence of vertices A ~ A, B ~ C, 

C ~ B. Under this correspondence, two sides and the in­
cluded angle of ~ABC are congruent respectively to the corre­
sponding sides and included angle of ~ACB (by hypothesis 
and Congruence Axiom 5 that an angle is congruent to itself ) . 

(2) Hence, ~ABC== ~ACB (SAS), so the corresponding angles, 
4'.:B and 4'.:C, are congruent (by definition of congruence of 
triangles). • 

Here are some more familiar results on congruence. We will prove 
some of them; if the proof is omitted, see the exercises. 

PROPOSITION 3.11 (Segment Subtraction). If A * B * C, D * E * F, 
AB== DE, and AC== DF, then BC== EF (see Figure 3.21). 

PROPOSITION 3.12. Given AC:= OF, then for any point B between A 
and C, there is a unique point E between D and F such that AB == DE. 

Proof 
(1) There is a unique point Eon OF such that AB== DE (Con­

gruence Axiom 1). 
(2) Suppose E were not between D and F (RAA hypothesis; see 

Figure 3.22). 

/ 
FIGURE 3.21 A F 
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( 3) Then either E = F or D * F * E (definition of DF). 
( 4) If E = F, then B and C are two distinct points on AC such 

that AC = DF = AB (hypothesis, step 1), contradicting the 
uniqueness part of Congruence Axiom 1. 

( 5) If D * F * E, then there is a point G on the ray opposite to CA 
such that FE = CG (Congruence Axiom 1). 

(6) Then AG= DE (Congruence Axiom 3). 
(7) Thus, there are two distinct points B and G on AC such that 

AG= DE= AB (steps 1, 5, and 6), contradicting the unique­
ness part of Congruence Axiom 1. 

(8) D * E * F (RAA conclusion). • 

DEFINITION. AB< CD (or CD> AB) means that there exists a 
point E between C and D such that AB = CE. 

PROPOSITION 3.13 (Segment Ordering). (a) Exactly one of the following 
conditions holds (trichotomy): AB< CD, AB= CD, or AB> CD. 
(b) If AB< CD and CD= EF, then AB< EF. (c) If AB> CD and 
CD= EF, then AB> EF. (d) if AB< CD and CD< EF, then 
AB< EF (transitivity). 

PROPOSITION 3.14. Supplements of congruent angles are congruent. 

PROPOSITION 3.15. (a) Vertical angles are congruent to each other. 
(b) An angle congruent to a right angle is a right angle. 

PROPOSITION 3.16. For every line I and every point P there exists a 
line through P perpendicular to /. 

Proof 
( 1) Assume first that P does not lie on I and let A and B be any two 

points on I (Incidence Axiom 2). (See Figure 3.23.) 
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FIGURE3.23 

(2) On the opposite side of /from P there exists a ray AX such that 
<tXAB = <tPAB (Congruence Axiom 4). 

(3) There is a point P' on AX such that AP'= AP (Congruence 
Axiom 1). 

(4) PP' intersects /in a point Q (definition of opposite sides of/). 
(5) If Q =A, then PP' .l /(definition of .l). 
(6) If Q +A, then ~PAQ = ~P' AQ (SAS). 
(7) Hence, <tPQA = <tP'QA (corresponding angles), so PP' _l / 

(definition of _l). 

(8) Assume now that Plies on/. Since there are points not lying on 
I (Proposition 2.3), we can drop a perpendicular from one of 
them to I (steps 5 and 7), thereby obtaining a right angle. 

(9) We can lay off an angle congruent to this right angle with 
vertex at P and one side on I (Congruence Axiom 4); the other 
side of this angle is part of a line through P perpendicular to I 
(Proposition 3.lS(b)). • 

It is natural to ask whether the perpendicular to I through P con­
structed in Proposition 3.16 is unique. If Plies on/, Proposition 3.23 
(later in this chapter) and the uniqueness part of Congruence Axiom 4 
guarantee that the perpendicular is unique. If P does not lie on /, we 
will not be able to prove uniqueness for the perpendicular until the 
next chapter. 

Note on Elliptic Geometry. Informally, elliptic geometry 
may be thought of as the geometry on a Euclidean sphere with antipo­
dal points identified (the model of incidence geometry first described 
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in Exercise 9(e), Chapter 2) . Its "lines" are the great circles on the 
sphere. Given such a "line"/, there is a point P called the "pole" of I 
such that every line through Pis perpendicular to/! To visualize this, 
think of I as the equator on a sphere and Pas the north pole; every great 
circle through the north pole is perpendicular to the equator (Figure 
3.24}. 

PROPOSmON 3.17 (ASA Criterion for Congruence). Given ~ABC and 
~DEF with <r.A.:::: ~D, ~C = ~F. and AC= DF. Then ~ABC= 
~DEF. 

PROPOSITION 3.18 (Converse of Proposition 3.10). If in ~ABC we have 
~B = ~c. then AB = AC and ~ABC is isosceles. 

PROPOSITION 3.19 (Angle Addition). Given BG between BA and BC, 
fill between ED and EF, ~CBG = ~FEH, and ~GBA = ~HED. 
Then <r.A.BC =~DEF. (See Figure 3.25.) 

Proof: 
( 1) By the crossbar theorem, 3 we may assume G is chosen so that 

A* G * C. 
(2) By Congruence Axiom 1, we assume D, F, and H chosen so 

that AB= ED, GB:::: EH, and CB= EF. 
(3) Then ~ABG = ~DEH and ~GBC = ~HEF (SAS). 

3 This renaming technique will be used frequently. G is just a label for any point ¢ Bon the 
ray which intersectS AC, so we may .as well choose G to be the point of intersection rather than 
clutter the argument with a new label. 
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(4) <tDHE = <tAGB, <tFHE = <tCGB (step 3), and <tAGB is 
supplementary to <tCGB (step 1). 

(5) D, H, Fare collinear and <tDHE is supplementary to <tFHE 
(step 4, Proposition 3.14, and Congruence Axiom 4). 

(6) D * H * F (Proposition 3.7, using the hypothesis on EH). 
(7) AC= OF (steps 3 and 6, Congruence Axiom 3). 
(8) <tBAC = <tEDF (steps 3 and 6). 
(9) .6ABC = .6DEF (SAS; steps 2, 7, and 8). 

(10) <tABC = <tDEF (corresponding angles). • 

PROPOSITION 3.20 (Angle Subtraction). Given BG between BA and BC, 
EH between ED and EF, <tCBG = <tFEH, and <tABC = <tDEF. 
Then <tGBA = <tHED. 

DEFINITION. <tABC < <tDEF means there is a ray EG between ED 
and EF such that <tABC = <tGEF (see Figure 3.26). 

PROPOSITION 3.21 (Ordering of Angles). (a) Exactly one of the following 
conditions holds (trichotomy): <tP < <tQ, <tP = <tQ, or <tQ < <tP. 
(b) If <tP < <tQ and <tQ = <tR, then <tP < <tR. (c) If <tP < <tQ and 
<tQ = <tR, then <tP > <tR. ( d) If <tP < <tQ and <tQ < <tR, then 
<tP < <tR. 

B•~ c 
FIGURE3.26 
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PROPOSITION 3.22 (SSS Criterion for Congruence). Given ti.ABC and 
ti.DEF. If AB =DE, BC= EF, and AC = DF, then ti.ABC= 
ti.DEF. 

The AAS criterion for congruence will be given in the next chapter 
because its proof is more difficult. The next proposition was assumed 
as an axiom by Euclid, but can be proved from Hilbert's axioms. 

PROPOSITION 3.23 (Euclid's Fourth Postulate). All right angles are con­
gruent to each other. (See Figure 3.27.) 

Proof 
(1) Given ~BAD= ~CAD and ~FEH = ~GEH (two pairs of 

right angles, by definition). Assume the contrary, that ~BAD 
is not congruent to ~FEH (RAA hypothesis). 

(2) Then one of these angles is smaller than the other, e.g., 
~FEH < ~BAD (Proposition 3.21 (a))'~ so that by definition 
there is a ray Aj between AB and AD such that ~BAJ = 
~FEH. 

(3) ~CAJ = ~GEH (Proposition 3.14). 
(4) ~CAJ = ~FEH ~teps 1 and 3, Congruence Axiom 5). 
( 5) There is a ray AK between AD and AC such that ~BAJ = 

~CAK (step 1 and Proposition 3.21(b)). 
(6) ~BAJ= ~CAJ (steps 2 and 4, and Congruence Axiom 5). 
(7) ~CAJ = ~CAK (steps 5 and 6, and Congruence Axiom 5). 
(8) Thus, we have ~CAD greater than ~CAK (by definition) and 

less than its congruent angle ~CAJ (step 7 and Proposition 
3.8(c)), which contradicts Proposition 3.21. 

(9) ~BAD= ~FEH (RAA conclusion). • 

D H 
J K 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 

B A c F E G 

FIGURE 3.27 
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AXIOMS OF CONTINUITY 

The axioms of continuity are needed to fill a number of gaps in 
Euclid's Elements. Consider the argument Euclid gives to justify his 
very first proposition. 

EUCLID'S PROPOSITION 1. Given any segment, there is an equilateral 
triangle having the given segment as one of its sides. 

Euclid's Proof 
( 1) Let AB be the given segment. With center A and radius AB, let 

the circle BCD be described (Postulate III). (See Figure 
3.28.) 

(2) Again with center B and radius BA, let the circle ACE be 
described (Postulate III). 

(3) From a point C in which the circles cut one another, draw the 
segments CA and CB (Postulate I). 

( 4) Since A is the center of the circle COB, AC is congruent to AB 
(definition of circle). 

(5) Again, since Bis the center of circle CAE, BC is congruent to 
BA (definition of circle). 

( 6) Since CA and CB are each congruent to AB (steps 4 and 5), 
they are congruent to each other (first common notion). 

(7) Hence,!::,,, ABC is an equilateral triangle (by definition) having 
AB as one of its sides. • 

Since very step has apparently been justified, you may not see the 
gap in the proof. It occurs in the first three steps, especially in the third 
step, which explicitly states that C is a point in which the circles cut 

D 

-y' 

FIGURE3.28 
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each other. (The second step states this implicitly by using the same 
letter "C" to denote part of the circle, as in the first step.) The point is: 
How do we know that such a point C exists? 

If you believe it is obvious from the diagram that such a point C 
exists you are right-but you are not allowed to use the diagram to 
justify this! We aren't saying that the circles constructed do not cut 
each other; we're saying only that another axiom is needed to prove 
that they do. 

The gap can be filled by assuming the following circular continuity 
principle: 

CIRCULAR CONTINUITY PRINCIPLE. If a circle y has one point inside 
and one point outside another circle y', then the two circles intersect 
in two points. 

Here a point Pis defined as inside a circle with center 0 and radius OR 
if OP< OR (outside if OP> OR). In Figure 3.28, point Bis inside 
circle y', and the point B' (not shown) such that A is the midpoint of 
BB' is outside y'. This principle is also needed to prove Euclid's 22nd 
proposition, the converse to the triangle inequality (see Major Exer­
cise 4, Chapter 4). Another gap occurs in Euclid's method of dropping 
a perpendicular to a line (his 12th proposition, our Proposition 3.16). 
His construction tacitly assumes that if a line passes through a point 
inside a circle, then the line intersects the circle in two points-an 
assumption you can justify using the circular continuity principle 
(Major Exercise 1, Chapter 4; but our justification uses Proposition 
3.16, so Euclid's argument must be discarded to avoid circular reason­
ing). Here is another useful consequence (see Major Exercise 2, 
Chapter 4). 

ELEMENTARY CONTINUITY PRINCIPLE. If one endpoint of a segment 
is inside a circle and the other outside, then the segment intersects the 
circle. 

Can you see why these are "continuity principles"? For example, in 
Figure 3.29, if you were drawing the segment with a pencil moving 
continuously from A to B, it would have to cross the circle (if it didn't, 
there would be "a hole" in the segment or the circle). 

The next statement is not about continuity but rather about mea­
surement. Archimedes was astute enough to recognize that a new 



A.xloms of Continuity Ill 95 

0 
• 

B 

FIGURE3.Z9 

axiom was needed. It is listed here because we will show that it is a 
consequence of Dedekind's continuity axiom, given later in this sec­
tion. It is needed so that we can assign a positive real number as the 
length AB of an arbitrary segment AB, as will be explained in Chap­
ter 4. 

ARCHIMEDES' AXIOM. If CD is any segment, A any point, and r any 
ray with vertex A, then for every point B =I= A on rthere is a number n 
such that when CD is laid off n times on r starting at A, a point E is 
reached such that n · CD = AE and either B = E or B is between A 
and E. 

Here we use Congruence Axiom 1 to begin laying off CD on r 
starting at A, obtaining a unique point Ai on r such that AAi = CD, 
and we define 1 · CD to be AAi. Let r1 be the ray emanating from Ai 
that is contained in r. By the same method, we obtain a unique point 
A2 on ri such that AiAz = CD, and we define 2 • CD to be AA2• 

Iterating this process, you can define, by induction on n, the segment 
n · CD to be AA,,. 

For example, if AB were n units long and CD of one unit length, you 
would have to lay off CD at least four times to get to a point E beyond 
the point B (see Figure 3.30). 

FIGURE3.30 
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The intuitive content of Archimedes' axiom is that if you arbitrarily 
choose one segment CD as a unit of length, then every other segment 
has finite length with respect to this unit (in the notation of the axiom 
the length of AB with respect to CD as unit is at most n units). Another 
way to look at it is to choose AB as unit of length. The axiom says that 
no other segment can be infinitesimally small with respect to this unit 
(the length of CD with respect to AB as unit is at least 1 In units). 

The next statement is a consequence of Archimedes' axiom and the 
previous axioms (as you will show in Exercise 6, Chapter 5), but if one 
wants to do geometry with segments of infinitesimal length allowed, 
this statement can replace Archimedes' axiom (see my note "Aristot­
le's Axiom in the Foundations of Hyperbolic Geometry," Journal of 
Geometry, vol. 33, 1988). Besides, Archimedes' axiom is not a purely 
geometric axiom, since it asserts the existence of a number. 

ARISTOTLE'S AXIOM. Given any side of an acute angle and any seg­
ment AB, there exists a point Yon the given side of the angle such that 
if X is the foot of the perpendicular from Y to the other side of the 
angle, XY > AB. 

Informally, if we start with any point Yon the given side, then as Y 
"recedes endlessly" from the vertex V of the angle, perpendicular 
segment XY "increase:s indefinitely" (because it is eventually bigger 
than any previously given segment AB). This principle will be valu­
able in Chapter 5 when we examine Proclus' attempt to prove Euclid's 
parallel postulate (see Figure 5.2). The idea of the proof from Archi­
medes' axiom is that if the starting XY is not already greater than the 
given segment AB, one simply lays off enough copies of VY on ray vY 
until point Y' is reached such that the perpendicular segment dropped 
from Y' is greater than AB (see Exercise 6, Chapter 5). 

IMPORTANT COROLLARY. Let AB be any ray, P any point not collin­
ear with A and B, and 4'.:XVY any acute angle. Then there exists a point 
R on ray AB such that 4'.:PRA < <tXVY. 

Informally, if we start with any point Ron AB, then as R "recedes 
endlessly" from the vertex A of the ray, 4'.:PRA decreases to zero 
(because it is eventually smaller than any previously given angle 
4'.:XVY). This result will be used in Chapter 6. Its proof uses Theorem 
4.2 of Chapter 4 (the exterior angle theorem) and so it should be given 
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after that theorem is proved, but we sketch the proof now for conve­
nience of reference. You may skip it now and return when needed. 

Proof . 
Let Q be the foot of the perpendicular from P to AB. Since point Bis 
just a label, we choose it so that Q =fo Band Q lies on ray BA. X and Y 
are arbitrary points on the rays rands that are the sides of 4::XVY. 
Let X' be the foot of the perpendicular from Y to the line containing 
r. By the hypothesis that the angle is acute and the exterior angle 
theorem, we can show (by an RAA argument) that X' actually lies 
on r, and so we can choose X to be X'. Aristotle's axiom guarantees 
that Y can be chosen such that XY > PQ. By Congruence Axiom 1, 
there is one point Ron QB such that QR= XV. We claim that 
1:'.PRQ < 1:'.XVY. Assume the contrary. By trichotomy, there is a ray 
RS such that <tQRS = 1:'.XVY and RS either equals RP or is 
between RP and RQ. By the crossbar theorem, point S (which thus 
far is also merely a label) can be chosen to lie on segment PQ; then 
SQ is not greater than PQ. By the ASA congruence criterion, 
SQ= XY. Hence XY is not greater than PQ, contradicting our 
choice of Y. Thus 1:'.PRQ < 4::XVY, as claimed. If R lies on ray AB, 
then 1:'.PRQ = <tPRA and we are done. If not, R and Q lie on the 
opposite ray. By the exterior angle theorem, if R' is any point such 
that Q * R * R', then 1:'.PR'Q < 1:'.PRQ < XVY. We get 1:'.PBA = 
1:'.PBQ < 1:'.XVY by taking R' = B. • 

All four principles thus far stated are in the spirit of ancient Greek 
geometry. They are all consequences of the next axiom, which is 
utterly modern. 
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DEDEKIND'S AXIOM.4 Suppose that the set{/} of all points on a line I 
is the disjoint union Ii U I 2 of two nonempty subsets such that no 
point of either subset is between two points of the other. Then there 
exists a unique point 0 on I such that one of the subsets is equal to a ray 
of I with vertex 0 and the other subset is equal to the complement. 

Dedekind's axiom is a sort of converse to the line separation prop­
erty stated in Proposition 3.4. That property says that any point 0 on I 
separates all the other points on /into those to the left of 0 and those to 
the right (see Figure 3.32; more precisely,{/} is the union of the two 
rays of I emanating from 0). Dedekind's axiom says that, conversely, 
any separation of points on /into left and right is produced by a unique 
point 0. A pair of subsets Ii and I 2 with the properties in Dedekind's 
axiom is called a Dedekind cut of the line. 

Loosely speaking, the purpose of Dedekind's axiom is to ensure 
that a line /has no "holes" in it, in the sense that for any point 0 on I 
and any positive real number xthere exist unique points P _%and P%on I 
such that P _% * 0 * P % and segments P _%0 and OP% both have length x 
(with respect to some unit segment of measurement); see Figure 
3.33. 

Without Dedekind's axiom there would be no guarantee, for exam­
ple, of the existence of a segment of length n. With it, we can intro­
duce a rectangular coordinate system into the plane and do geometry 
analytically, as Descartes and Fermat discovered in the seventeenth 
century. This coordinate system enables us to prove that our axioms 
for Euclidean geometry are categoricalin the sense that the system has 
a unique model (up to isomorphism -see the section Isomorphism of 
Models in Chapter 2), namely, the usual Cartesian coordinate plane 
of all ordered pairs of real numbers. 

If we omitted Dedekind's axiom, then another model would be the 
so-called surd plane, a plane that is used to prove the impossibility of 

4 This axiom was proposed by J. W.R. Dedekind in 1871; an analogue of it is used in analysis 
texts to express the completeness of the real number system. It implies that every Cauchy 
sequence converges, that continuous functions satisfy the intermediate value theorem, that the 
definite integral of a continuous function exists, and other important conclusions. Dedekind 
actually defined a "real number" as a Dedekind cut on the set of rational numbers, an idea 
Eudoxus had 2000 years earlier (see Moise, 1990, Chapter 20). 
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trisecting every angle with a straightedge and compass (see Moise, 
1990, p. 282 ff.). The categorical natural of all the axioms is proved in 
Borsuk and Szmielew (1960, p. 276 ff.). 

Warning. If you have never seen Dedekind's axiom before, argu­
ments using it may be difficult to follow. Don't be discouraged. With 
the exception of Theorem 6.6 in hyperbolic geometry, it is not needed 
for studying the main theme of this book. I advise the beginning 
student to skip to the next section, Axiom of Parallelism. 

Although Dedekind's axiom implies the other four principles and is 
the only continuity axiom we need assume, we still refer to the others 
as "axioms." Let us sketch a proof that Archimedes' axiom is a conse- $ 
quence of Dedekind's (and the axioms preceding this section). 

Proof 
Given a segment CD and a point A on line /, with a ray r of I 
emanating from A. In the terminology of Archimedes' axiom, let I 1 

consist of A and all points B on r reached by laying off copies of 
segment CD on rstarting from A. Let I 2 be the complement of I 1 

in r. We wish to prove that I 2 is empty, so assume the contrary. 
In that case, let us show that we have defined a Dedekind cut of r 

(see Exercise 7(a)). Start with two points P, Q in I 2 and say 
A* P * Q. We must show that PQ C I 2• Let B be between P and 
Q. Suppose B could be reached, so that n and E are as in the 
statement of Archimedes' axiom; then, by Proposition 3.3, P is 
reached by the same n and E, contradicting P E I 2• Thus PQ C I 2• 

Similarly, you can show that when P and Qare two points in I 1, 

PQ C I 1 (Exercise 7 (b)). So we have a Dedekind cut. Let 0 be the 
point of r furnished by Dedekind's axiom. 

Case I. 0 E I 1• Then for some number 11, 0 can be reached by 
laying off n copies of segment CD on r starting from A. By laying off 
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one more copy of CD, we can reach a point in I 2 , but by definition of 
I 2 , that is impossible. 

Case 2. 0 E I 2• Lay off a copy of CD on the ray opposite to I 2 

starting at 0, obtaining a point P; P lies on r (Exercise 7 (b)), so 
P E I 1• Then for some number n, P can be reached by laying off n 
copies of segment CD on r starting from A. By laying off one more 
copy of CD, we can reach 0. That contradicts 0 E I 2• 

So in either case, we obtain a contradiction, and we can reject the 
RAA hypothesis that I 2 is nonempty. • 

To further get an idea of how Dedekind's axiom gives us continuity 
results, we sketch a proof now of the elementary continuity principle 
from Dedekind's axiom (logically, this proof should be given later, 
because it uses results from Chapter 4). Refer to Figure 3.29, p. 95. 

Proof' 
By the definitions of "inside" and "outside" of a circle ywith center 
0 and radius OR, we have OA < OR < OB. Let I 2 be the set of all 
points Pon the ray AB that either lie on y or are outside y, and let I 1 

be its complement in AB. By trichotomy (Proposition 3.13(a) ), I 1 

consists of all points of the segment AB that lie inside y. Applying 
Exercise 2 7 of Chapter 4, you can convince yourself that (I1, I 2 ) is 
a Dedekind cut. Let M be the point on AB furnished by Dedekind's 
axiom. Assume M does not lie on y (RAA hypothesis). 

Case I. OM< OR. Then ME I 1• Let m and r be the lengths 
(defined in Chapter 4) of OM and OR, respectively. Since I 2 with M 
is a ray, there is a point N E I 2 such that the length of MN is f ( r - m) 
(e.g., by laying off a segment whose length is f(r- m), using 
Theorem 4.3(11) ). But by the triangle inequality (Corollary 2 to 
Theorem 4.3), the length of ON is less than m + t(r- m) < m + 
(r- m) = r, which contradicts NE I 2• 
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Case 2. OM > OR. The same argument applies, interchanging 
the roles of I 2 and I 1• 

So in either case, we obtain a contradiction, and M must lie 
ony. • 

You will find a lovely proof of the circular continuity principle from 
Dedekind's axiom on pp. 238-240 of Heath's translation and com­
mentary on Euclid's Elements (1956). It assumes that Dedekind's 
axiom holds for semicircles, which you can easily prove in Major 
Exercise 4, and also uses the triangle inequality and the fact that the 
hypotenuse is greater than the leg (proved in Chapter 4). 

Euclid's tacit use of continuity principles can often be avoided. We 
did not use them in our proof of the existence of perpendiculars 
(Proposition 3.16). We did use the circular continuity principle to 
prove the existence of equilateral triangles on a given base, and Euclid 
used that to prove the existence of midpoints, as in your straightedge­
and-compass solution to Major Exercise 1 (a) of Chapter 1. But there is 
an ingenious way to prove the existence of midpoints using only the 
very mild continuity given by Pasch's theorem (see Exercise 12, 
Chapter 4). 

Figure 3.34 shows the implications discussed (assuming all the 
incidence, betweenness, and congruence axioms-especially SAS). 

Aristotle 

FIGURE3.34 
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AXIOM OF PARALLELISM 

If we were to stop with the axioms we now have, we could do quite a bit 
of geometry, but we still couldn't do all of Euclidean geometry. We 
would be able to do whatJ. Bolyai called "absolute geometry." This 
name is misleading because it does not include elliptic geometry and 
other geometries (see Appendix B). Preferable is the name suggested 
by W. Prenowitz and M. Jordan (1965), neutral geometry, so called 
because in doing this geometry we remain neutral about the one 
axiom from Hilbert's list left to be considered-historically the most 
controversial axiom of all. 

HILBERT'S AXIOM OF PARALLELISM. For every line I and every point 
P not lying on I there is at most one line m through P such that m is 
parallel to I (Figure 3.35). 

Note that this axiom is weaker than the Euclidean parallel postu­
late introduced in Chapter 1. This axiom asserts only that at most one 
line through Pis parallel to I, whereas the Euclidean parallel postulate 
asserts in addition that at least one line through P is parallel to I. The 
reason "at least" is omitted from Hilbert's axiom is that it can be 
proved from the other axioms (see Corollary 2 to Theorem 4.1 in 
Chapter 4); it is therefore unnecessary to assume this as part of an 
axiom. This observation is important because it implies that the ellip­
tic parallel property (no parallel lines exist) is inconsistent with the 
axioms of neutral geometry. Thus, a different set of axioms is needed 
for the foundation of elliptic geometry (see Appendix A). 

The axiom of parallelism completes our list of 16 axioms for Eu­
clidean geometry. A Euclidean plane is a model of these axioms. In 
referring to these axioms we will use the following shorthand: the 
incidence axioms will be denoted by 1-1, 1-2, and 1-3; the betweenness 
axioms by B-1, B-1, B-3, and B-4; the congruence axioms by C-1, C-2, 
C-3, C-4, C-5, and C-6 (or SAS). The continuity axioms and the 
parallelism axiom will be referred to by name. 

p 

FIGURE3.35 
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REVIEW EXERCISE 

Which of the following statements are correct? 

( 1) Hilbert's axiom of parallelism is the same as the Euclidean parallel 
postulate given in Chapter 1. 

(2) A* B * C is logically equivalent to C * B *A. 
(3) In Axiom B-2 it is unnecessary to assume the existence of a point E 

such that B * D * E because this can be proved from the rest of the 
axiom and Axiom B-1, by interchanging the roles of B and D and taking 
E to be A. 

( 4) If A, B, and C are distinct collinear points, it is possible that both 
A * B * C and A * C * B. 

(5) The "line separation property" asserts that a line has two sides. 
( 6) If points A and B are on opposite sides of a line /, then a point C not on I 

must be either on the same side of I as A or on the same side of I as B. 
(7) If line mis parallel to line/, then all the points on m lie on the same side 

of/. 
(8) If we were to take Pasch 's theorem as an axiom instead of the separa­

tion axiom B-4, then B-4 could be proved as a theorem. 
(9) The notion of "congruence" for two triangles is not defined in this 

chapter. 
(10) It is an immediate consequence of Axiom C-2 that if AB= CD, then 

CD=AB. 
( 11) One of the congruence axioms asserts that if congruent segments are 

"subtracted" from congruent segments, the differences are congruent. 
(12) In the statement of Axiom C-4 the variables A, B, C, A', and B' are 

quantified universally, and the variable C' is quantified existentially. 
( 13) One of the congruence axioms is the side-side-side (SSS) criterion for 

congruence of triangles. 
( 14) Euclid attempted unsuccessfully to prove the side-angle-side criterion 

(SAS) for congruence by a method called "superposition." 
(15) We can use Pappus' method to prove the converse of the theorem on 

base angles of an isosceles triangle if we first prove the angle-side-angle 
(ASA) criterion for congruence. 

(16) Archimedes' axiom is independent of the other 15 axioms for Euclid­
ean geometry given in this book. 

( 17) AB < CD means that there is a point E between C and D such that 
AB= CE. 

( 18) Neutral geometry used to be called absolute geometry; it is the geometry 
you have when the axiom of parallelism is excluded from the system of 
axioms given here. 
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EXERCISES ON BETWEENNESS 

1. Given A* B * C and A* C * D. 
(a) Prove that A, B, C, and Dare four distinct points (the proof requires 

an axiom). 
(b) Prove that A, B, C, and Dare collinear. 
(c) Prove the corollary to Axiom B-4. 

2. (a) Finish the proofof Proposition 3.1 by showing that ABU BA= AB. 
(b) Finish the proof of Proposition 3.3 by showing that A* B * D. 
(c) Prove the converse of Proposition 3.3 by applying Axiom B-1. 
(d) Prove the corollary to Proposition 3.3. 

3. Given A * B * C. 
(a) Use Proposition 3.3 to prove thatAB C AC. Interchanging A and C, 

deduce CB C CA; which axiom justifies this interchange? 
(b) Use Axiom B-4 to prove that AC CAB U BC. (Hint: If Pis a fourth 

point on AC, use another line through P to show P E AB or 
PE BC.) 

(c) Finish the proof of Proposition 3.5. (Hint: If P =I= B and PE 
AB n BC, use another line through P to get a contradiction.) 

4. Given A * B * C. 
(a) If Pis a fourth point collinear with A, B, and C, use Proposition 3.3 

and an axiom to prove that-A* B * P ~-A* C * P. 
(b) Deduce that BA C cA and, symmetrically, BC C AC. 
( c) Use this result, Proposition 3.1 (a), Proposition 3.3, and Proposition 

3.5 to prove that B is the only point that BA and BC have in 
common. 

5. Given A * B * C. Prove that AB = AC, completing the proof of Propo­
sition 3.6. Deduce that every ray has a unique opposite ray. 

6. In Axiom B-2 we were given distinct points Band D and we asserted the 
existence of points A, C, and E such that A * B * D, B * C * D, and 
B * D * E. We can now show that it was not necessary to assume the 
existence of a point C between B and D because we can prove from our 
other axioms (including the rest of Axiom B-2) and from Pasch's 
theorem (which was proved without using Axiom B-2) that C exists.5 

Your job is to justify each step in the proof (some of the steps require a 
separate RAA argument). 

5 Regarding superfluous hypotheses, there is a story that Napoleon, after examining a copy 
of Laplace's Celestial Mechanics, asked Laplace why there was no mention of God in the work. 
The author replied, "I have no need of this hypothesis." 
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Proof (see Figure 3.36): 
( 1) There exists a line BO through B and D. 
(2) There exists a point F not lying on BO. 
(3) There exists a line BF through Band F. 
(4) There exists a point G such that B * F * G. 
(5) Points B, F, and Gare collinear. 
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(6) G and Dare distinct points and D, B, and Gare not collinear. 
(7) There exists a point H such that G * D * H. 
(8) There exists a line GH. 
(9) H and F are distinct QOints. 

( 10) There exists a line FH. 
( 11) D does not lie on AA. 
( 12) B does not lie on AA. 
(13) G does not lie on AA. 
(14) Points D, B, and G determine b.DBG and AA intersects side BG 

in a point between Band G. 
(15) His the only point lying on both AA and GH. 
(16) No point between G and D lies on AA. 
( 17) Hence, AA intersects side BD in a point C between D and B. 
(18) Thus, there exists a point C between D and B. • 

7. (a) Define a Dedekind cut on a ray rthe same way a Dedekind cut is 
defined for a line. Prove that the conclusion of Dedekind's axiom 
also holds for r. (Hint: One of the subsets, say, I 1, contains the 
vertex A of r; enlarge this set so as to include the ray opposite tor 
and show that a Dedekind cut of the line I containing ris obtained.) 
Similarly, state and prove a version of Dedekind's axiom for a cut on 
a segment. 

(b) Supply the indicated arguments left out of the proof of Archimedes' 
axiom from Dedekind's axiom. 

8. From the three-point model (Example 1 in Chapter 2) we saw that if we 
used only the axioms of incidence we could not prove that a line has 
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more than two points lying on it. Using the betweenness axioms as well, 
prove that every line has at least five points lying on it. Give an informal 
argument to show that every segment (a fortiori, every line) has an 
infinite number of points lying on it (a formal proof requires the tech­
nique of mathematical induction). 

9. Given a line/, a point A on/, and a point B not on/. Then every point of 
the ray AB (except A) is on the same side of I as B. (Hint: Use an RAA 
argument). 

10. Prove Proposition 3.7. 
11. Prove Proposition 3.8. (Hint: For ProP.osition 3.8(c) prove in two steps 

that E and B lie on the same side of AD, first showing that EB does not 
meet AD, then showing that EB does not meet the opposite ray AF. Use 
Exercise 9.) 

12. Prove the crossbar theorem. (Hint: Assume the contrary, and show that 
Band C lie on the same side of AD. Use Proposition 3.8(c) to derive a 
contradiction.) 

13. Prove Proposition 3.9. (Hint: For Proposition 3.9(a) use Pasch's 
theorem and Proposition 3.7; see Figure 3.37. For Proposition 3.9(b) 
let the ray emanate from point D in the interior of bABC. Use the 
crossbar theorem and Proposition 3.7 to show that AD meets BC in a 
point E such that A* D * E. Apply Pasch's theorem to bABE and 
bAEC; see Figure 3.38.) 

14. Prove that a line cannot be contained in the interior of a triangle. 
15. If a, b, and care rays, let us say that they are coterminal if they emanate 

from the same point, and let us use the notation a * b * c to mean that b 
is between a and c (as defined on p. 82). The analogue of Axiom B-1 
states that if a * b * c, then a, b, c are distinct and coterminal and 
c * b * a; this analogue is obviously correct. State the analogues of 
Axioms B-2 and B-3 and Proposition 3.3 and tell which parts of these 
analogues are correct. (Beware of opposite rays!) 

16. Find an interpretation in which the incidence axioms and the first two 
betweenness axioms hold but Axiom B-3 fails in the following way: there 

A 
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exist three collinear points, no one of which is between the other two. 
(Hint: In the usual Euclidean model, introduce a new betweenness 
relation A * B * C to mean that B is the midpoint of AC.) 

1 7. Find an interpretation in which the incidence axioms and the first three 
betweenness axioms hold but the line separation property (Proposition 
3.4) fails. (Hint: In the usual Euclidean model, pick a point P that is 
between A and B in the usual Euclidean sense and specify that A will 
now be considered to be between P and B. Leave all other betweenness 
relations among £2ints alone. Show that P lies neither on ray AB nor on 
its opposite ray AC.) 

18. A rational number of the form a/2" (with a, n integers) is called dyadic. In 
the interpretations of Project 2 for this chapter, restrict to those points 
which have dyadic coordinates and to those lines which pass through 
several dyadic points. The incidence axioms, the first three between­
ness axioms, and the line separation property all hold in this dyadic 
rational plane; show that Pasch's theorem fails. (Hint: The lines 
3x + y = 1 and y = 0 do not meet in this plane.) 

19. A set of points Sis called convex if whenever two points A and Bare in S, 
the entire segment AB is contained in S. Prove that a half-plane, the 
interior of an angle, and the interior of a triangle are all convex sets, 
whereas the exterior of a triangle is not convex. Is a triangle a convex set? 

EXERCISES ON CONGRUENCE 

20. Justify each step in the following proof of Proposition 3.11: 

Proof 
( 1) Assume on the contrary that BC is not congruent to EF. 
(2) Then there is a point G on EF such that BC= EG. 
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(3) G =#= F. 
(4) Since AB= DE, adding gives AC= DG. 
(5) However, AC= OF. 
(6) Hence, OF= DG. 
(7) Therefore, F = G. 

Hilbert's A.xloms 

(8) Our assumption has led to a contradiction; hence, BC = EF. • 

21. Prove Proposition 3.13(a). (Hint: In case AB and CD are not congruent, 
there is a unique point F =#=Don CO such that AB= CF (reason?). In 
case C * F * D, show that AB< CD. In case C * D * F, use Proposi­
tion 3.12 and some axioms to show that CD < AB.) 

22. Use Proposition 3.12 to prove Proposition 3.13(b~ and (c). 
23. Use the previous exercise and Proposition 3.3 to prove Proposition 

3.13(d). 
24. Justify each step in the following proof of Proposition 3.14 (see Figure 

3.39). 

Proof 
Given ~BC= 1:DEF. To prove 1:CBG = 1:FEH: 
( 1) The points A, C, and G being given arbitrarily on the sides of ~BC 

and the supplement 1:CBG of ~BC, we can choose the points D, 
F, and Hon the sides of the other angle and its supplement so that 
AB = DE, CB = FE, and BG = EH. 

(2) Then, ~ABC= ~DEF. 
(3) Hence, AC= OF and~= 1::0. 
(4) Also, AG= DH. 
(5) Hence, ~ACG = ~DFH. 
(6) Therefore, CG= FH and 1:G = 1:H. 
(7) Hence, ~CBG = ~FEH. 
(8) It follows that 1:CBG = 1:FEH, as desired. • 
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25. Deduce Proposition 3.15 from Proposition 3.14. 
26. Justify each step in the following proof of Proposition 3.17 (see Figure 

3.40): 

Proof 
Given.6ABC and.t.DEFwith <i'.A = <i:D, <i:C = <i'.F, and AC= OF. To 
prove .t.ABC = .t.DEF: .-
( 1) There is a unique point B' on ray DE such that DB' = AB. 
(2) .t.ABC = .t.DB'F. 
( 3) Hence, <i:DFB' = <i:C. 
( 4) This implies FE = FB'. 
(5) In that case, B' = E. 
(6) Hence, .t.ABC = .t.DEF. • 

2 7. Prove Proposition 3 .18. 
28. Prove that an equiangular triangle (all angles congruent to one another) 

is equilateral. 
29. Prove Proposition 3.20. (Hint: Use Axiom C-4 and Proposition 3.19.) 
30. Given <i:ABC = <i:DEF and BG between BA and BC. Prove that there is 

a unique ray EH between ED and EF such that <i:ABG = <i'.DEH. (Hint: 
Show that D and F can be chosen so that AB= DE and BC= EF, and 
that G can be chosen so that A * G * C. Use Propositions 3. 7 and 3.12 
and SAS to get H; see Figure 3.25.) 

31. Prove Proposition 3.21 (imitate Exercises 21-23). 
32. Prove Proposition 3.22. (Hint: Use the corollary to SAS to reduce to the 

case where A= D, C = F, and the points Band E are on opposite sides 
of AC. Then consider the three cases in Figure 3.41 separately.) 

33. If AB < CD, prove that 2AB < 2CD. 
34. Let 0 2 be the rational plane ofall ordered pairs ( x, y) ofrational numbers 

with the usual interpretations of the undefined geometric terms used in 
analytic geometry. Show that Axiom C-1 and the elementary continuity 
principle fail in 0 2• (Hint: The setgment from (0, 0) to (1, 1) cannot be 
laid off on the x axis from the origin.) 
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35. In the usual Euclidean plane we are all familiar with, there is a notion of 
length of a segment. Let us agree to measure all lengths in inches except 
for segments on one particular line called the x axis, where we will 
measure lengths in feet, and let us now interpret congruence of segments to 
mean that two segments have the same "length" in this perverse way of 
measuring. Incidence, betweenness, and congruence of angles will have 
their usual meaning. Show informally that the first five congruence 
axioms and angle addition (Proposition 3.19) still hold in this interpre­
tation but that SAS fails (see Figure 3.42). Draw a picture of a "circle" 
with center on the x axis in this interpretation and use that picture to 
show that the circular continuity principle and the elementary continu­
ity principle fail. Show that Dedekind's axiom still holds. Draw other 
pictures to show that SSS, ASA, and SAA all fail. 

36. In Chapter 2 we displayed many models of the incidence axioms. As 
soon as we add the betweenness axioms, most of those interpretations 
are no longer models (for example, we lose all the finite models and the 
models in which "lines" are circles). Show, however, that the model in 
Exercise 9(d), which has the hyperbolic parallel property, is still a model 
under the natural interpretation of betweenness. It is called the Klein 
model and will be further studied in Chapter 7. Draw a picture to show 
that in this model, a point in the interior of an angle need not lie on a 
segment joining a point on one ray of the angle to a point on the other 
ray. 

FIGURE 3.42 
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MA.JOB EXERCISES 

1. Let y be a circle with center A and radius of length r. Let y' be another 
circle with center A' and radius oflength r', and let dbe the distance from 
A to A' (see Figure 3.43). There is a hypothesis about the numbers r, r', 
and d that ensures that the circles y and y' intersect in two distinct points. 
Figure out what this hypothesis is. (Hint: It's statement that certain 
numbers obtained from r, r', and dare less than certain others.)· 

What hypothesis on r, r', and d ensures that y and y' intersect in only 
one point, i.e., that the circles are tangent to each other? (See Figure 
3.44.) 

2. Define the rejlection in a line m to be the transformation R,,, of the plane 
which leaves each point of m fixed and transforms a point A not on mas 
follows. bet M be the foot of the perpendicular from A to m. Then, by 
definition, R,,,(A) is the unique point A' such that A' * M * A and 
A'M =MA. (See Figure 3.45.) This definition uses the result from 
Chapter 4 that the perpendicular from Atom is unique, so that the foot M 
is uniquely determined as the intersection with m. Prove that R,,, is a 
motion, i.e., that AB = A'B' for any segment AB. Prove also that AB = 
CD=> A'B' = C'D', and that <r-A = <tB => <r-A' = <tB'.(Chapter 9 will 
be devoted to a thorough study of motions; the reflections generate the 
group of all such transformations.) (Hint: The proof breaks into the cases 
(i) A or B lies on m, (ii) A and B lie on opposite sides of m, and (iii) A and B 

y' 

FIGURE3.43 

FIGURE3.44 
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lie on the same side of m. In (ii), let M, N be the midpoints of AA', BB' 
and let C be the point at which AB meets m; prove that A' * C * B' by 
showing that 4:A'CM = B'CN and apply Axiom C-3. In (iii), let C be the 
point at which AB' meets m, and use B = (B')' and the first two cases to 
show that ~ABC= ~A'B'C. Take care not to use results that are valid 
only in Euclidean geometry.) 

Note. In elliptic geometry the perpendicular from A to m is unique 
except for one point P called the pole of m (see Figure 3.24, where mis the 
equator and P is the north pole); the definition of reflection is modified in 
elliptic geometry so thatR,,.(P) = P. Can you see thatR,,.is then the same 
as the 180° rotation about P? Recall that antipodal points are identified. 

3. Consider the following statements on congruence: 
1. Given triangle ~ABC and segment DE such that AB = DE. Then on 

a given side of DE there is a unique point F such that AC = OF and 
BC=EF. 

2. Given triangles ~ADC and ~A'D'C' and given A* B * C and 
A'* B' * C'. If AB= A'B', BC= B'C', AD= A'D', and BD = B'D', 
then CD= C'D' ("rigidity of a triangle with a tail" -see Figure 
3.46). 

Prove these statements. Also, prove a statement 2a obtained from state­
ment 2 by substituting CD = C'D' for BD = B'D' in the hypothesis and 
making BD = B'D' the conclusion. 
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In Borsuk and Szmielew (1960), statements 1 and Z are taken as 
axioms, in place of our Axioms C-4, C-5, and C-6. The advantage of this 
change is that these new congruence axioms refer only to congruence of 
segments. Congruence of angles, ~C == ~'B'C', can then be defined 
by specifying that A and C (respectively, A' and C') can be chosen on the 
sides of 4:B (respectively, 4:B') so that AB== A'B', BC== B'C', and 
AC== A'C'. With this definition, keeping the same incidence and be­
tweenness axioms as before, show that C-4, C-5, and C-6 can be proved 
from C-1, C-2, C-3, and statements 1 and z. (Hint: First prove statement 
Za by an RAA argument. Then show that if ~BC == ~'B'C', and that if 
we had chosen other points D, E, D', and E' on the sides of 4:B and 4:B' 
such that DB== D'B' and EB== E'B', then DE== D'E'. See Figure 
3.47.) 

4. Let AB be a diameter of circle )'with center 0. The intersection a of y 
with one of the half-planes determined by AB is called an open semicircle of 
y with endpoints A, B; adding the points A, B gives the semicircle "ii. Define 
a betweenness relation# on uas follows: P # Q # R means that P, Q, and 
R are distinct points on a and Of> * oQ * oR (see Exercise 15). Specify 
also that A # P # B for any P on a. 
(a) Let M be the point on a such that MO .i AB (see Figure 3.48). Let 

AMB = AM U MB. For any point P on a, prove that ray Of> inter­
sects AMB in a point P' and that the mapping P ......+ P' is one-to-one 
from "ii onto AMB. 

(b) Define P' # Q' # R' to mean P # Q # R. If P', Q', and R' all lie on 
segment AM or all lie on MB, prove that P" # Q' # R' ~ 
P' * Q' * R'. 

M 

FIGURE 3.48 A 0 B 
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(c) Prove that Dedekind's axiom holds for AMB and hence for a (use 
Exercise 7). 

PROJECTS 

1. Report on T. L. Heath's ( 19 56) proof for the circular continuity princi­
ple. 

2. Incidence, points, and lines in the real plane IR2 were given in Major 
Exercise 9, Chapter 2. Distance is given by the usual Pythagorean for­
mula 

d(AB) = ,J (a1 - b1) 2 + (a2 - b2) 2 

where A= (a1, a2), B = (b1, bz). Define A* B * C to mean d(AC) = 
d(AB) +.d(BC), and define AB= CD to mean d(AB) = d(CD). Define 
~ABC = ~DEF if A, C, D, and F can be chosen on the sides of these 
angles so that AB = ED, CB = FE, and AC = OF. With these interpre­
tations, verify all the axioms for Euclidean geometry (see Moise, 1990, 
Chapter 26, or Borsuk and Szmielew, 1960, Chapter 4). 

3. Suppose in Project 2 the field IR of real numbers is replaced by an 
arbitrary Euclidean field F (an ordered field in which every positive num­
ber has a square root). Show that all the axioms for Euclidean geometry 
except Dedekind's and Archimedes' axioms are satisfied; show also that 
the circular continuity principle is satisfied. 

4. In Euclidean geometry, Hilben showed how to construct perpendiculars 
using ruler (marked straightedge) alone. His construction uses the 
theorem that the altitudes of a triangle are concurrent. Report on Hil­
bert's results. (Refer to D. Hilbert, 1987, p. 100.) 



NEUTRAL 
GEOMETRY 

If only it could be proved . . . that "there is a 
Triangle whose angles are together not less than two 
right angles"! But alas, that is an ignis fatuus that has 
never yet been caught! 

C. L. DODGSON (LEWIS CARROLL) 

GEOMETRY WITHOUT THE PARALLELL AXIOM 

In the exercises of the previous chapter you gained experience in 
proving some elementary results from Hilbert's axioms. Many of 
these results were taken for granted by Euclid. You can see that filling 
in the gaps and rigorously proving every detail is a long task. In any 
case, we must show that Euclid's postulates are consequences of 
Hilbert's. We have seen that Euclid's first postulate is the same as 
Hilbert's Axiom 1-1. In our new language, Euclid's second postulate 
says the following: given segments AB and CD, there exists a point E 
such that A * B * E and CD = BE. This follows immediately from 
Hilbert's Axiom C-1 applied to the ray emanating from B opposite to 
---+ • 
BA (see Figure 4.1). 

The third postulate of Euclid becomes a definition in Hilbert's 
system. The circle with center 0 and radius OA is defined as the set of 
all points P such that OP is congruent to OA. Axiom C-1 then guaran­
tees that on every ray emanating from 0 there exists such a point P. 

The fourth postulate of Euclid-all right angles are congruent­
becomes a theorem in Hilbert's system, as was shown in Proposition 
3.23. 



116 Ill Neutral Geometry 

c D 

FIGURE4.I A B E 

Euclid's parallel postulate is discussed later in this chapter. In this 
chapter we shall be interested in neutral geometry- by definition, all 
those geometric theorems that can be proved using only the axioms of 
incidence, betweenness, congruence, and continuity and without 
using the axiom of parallelism. Every result proved previously is a 
theorem in neutral geometry. You should review all the statements in 
the theorems, propositions, and exercises of Chapter 3 because they 
will be used throughout the book. Our proofs will be less formal 
henceforth. 

What is the purpose of studying neutral geometry? We are not 
interested in studying it for its own sake. Rather, we are trying to 
clarify the role of the parallel postulate by seeing which theorems in 
the geometry do not depend on it, i.e., which theorems follow from the 
other axioms alone without ever using the parallel postulate in proofs. 
This will enable us to avoid many pitfalls and to see much more clearly 
the logical structure of our system. Certain questions that can be 
answered in Euclidean geometry (e.g., whether there is a unique 
parallel through a given point) may not be answerable in neutral 
geometry because its axioms do not give us enough information. 

ALTERNATE INTERIOR ANGLE THEOREM 

The next theorem requires a definition: let t be a transversal to lines I 
and/', with t meeting I at Band I' at B'. Choose points A and Con I 
such that A * B * C; choose points A' and C' on I' such that A and A' 
are on the same side of /and such that A' * B' * C'. Then the following 
four angles are called interior: ~A'B'B, ~ABB', ~C'B'B, ~CBB'. The 
two pairs (~ABB', ~C'B'B) and (~A'B'B, ~CBB') are called pairs of 
alternate interior angles (see Figure 4.2). 



Alternate Interior Angle Theorem Ill 117 

E 

FIGURE4.2 

THEOREM 4.1 (Alternate Interior Angle Theorem). If two lines cut by a 
transversal have a pair of congruent alternate interior angles, then the 
two lines are parallel. 

Proof 
Given ~A'B'B = ~CBB'. Assume on the contrary I and/' meet at a 
point D. Say Dis on the same side of fas C and C'. There is a point E 
on BlA' such that B'E =BO (Axiom C-1). Segment BB' is con­
gruent to itself, so that .6B'BD = .6BB'E (SAS). In particular, 
~DB'B =~EBB'. Since ~DB'B is the supplement of ~EB'B, 
~EBB' must be the supplement of ~DBB' (Proposition 3.14 and 
Axiom C-4). This means that E lies on I, and hence I and /' have the 
two points E and Din common, which contradicts Proposition 2.1 of 
incidence geometry. Therefore, Ill I'. • 

This theorem has two very important corollaries. 

COROLLARY 1. Two lines perpendicular to the same line are parallel. 
Hence, the perpendicular dropped from a point P not on line I to I is 
unique (and the point at which the perpendicular intersects /is called 
its foot). 

Proof 
If I and /' are both perpendicular to t, the alternate interior angles 
are right angles and hence are congruent (Proposition 3.23). • 

COROLLARY 2. If /is any line and Pis any point not on/, there exists at 
least one line m through P parallel to I (see Figure 4.3). 
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Proof 
There is a line t through P perpendicular to I, and again there is a 
unique line m through P perpendicular to t (Proposition 3.16). 
Since I and m are both perpendicular to t, Corollary 1 tells us that 
Ill m. (This construction will be used repeatedly.) • 

To repeat, there always exists a line m through P parallel to I- this 
has been proved in neutral geometry. But we don't know that mis 
unique. Although Hilbert's parallel postulate says that m is indeed 
unique, we are not assuming that postulate. We must keep our minds 
open to the strange possibility that there may be other lines through P 
parallel to I. 

ft' arning. You are accustomed in Euclidean geometry to use the 
converse of Theorem 4.1, which states, "If two lines are parallel, then 
alternate interior angles cut by a transversal are congruent." We 
haven't proved this converse, so don't use it! (It turns out to be 
logically equivalent to the parallel postulate - see Exercise 5.) 

EXTERIOR ANGLE THEOREM 

Before we continue our list of theorems, we must first make another 
definition: an angle supplementary to an angle of a triangle is called an 
exterior angle of the triangle; the two angles of the triangle not adjacent 
to this exterior angle are called the remote interior angles. The following 
theorem is a consequence of Theorem 4.1: 
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THEOREM 4.2 (Exterior Angle Theorem). An exterior angle of a triangle is 
greater than either remote interior angle (see Figure 4.4). 

To prove ~ACD is greater than ~B and ~A: 

Proof 
Consider the remote interior angle ~BAC. If ~BAC = ~ACD, 
then AB is parallel to CD (Theorem 4.1), which contradicts the 
hypothesis that these lines meet at B. Suppose ~BAC were greater 
than ~ACD (RAA hypothesis). Then there is a ray AE between AB 
and AC such that ~ACD = ~CAE (by definition). This ray AE 
intersects BC in a point G (crossbar theorem, Chapter 3). But 
according to Theorem 4.1, lines AE and CD are parallel. Thus, 
~BAC cannot be greater than ~ACD (RAA conclusion). Since 
~BAC is also not congruent to ~ACD, ~BAC must be less than 
~ACD (Proposition 3.21 (a)). 

For remote angle ~ABC, use the same argument applied to 
exterior angle ~BCF, which is congruent to ~ACD by the vertical 
angle theorem (Proposition 3.lS(a)). • 

The exterior angle theorem will play a very important role in what 
follows. It was the 16th proposition in Euclid's Elements. Euclid's proof 
had a gap due to reasoning from a diagram. He considered the line BM 
joining B to the midpoint of AC and he constructed point B' such that 
B * M * B' and BM= MB' (Axiom C-1). He then assumed from the 
diagram that B' lay in the interior of ~ACD (see Figure 4.5). Since 
~B'CA =~A (SAS), Euclid concluded correctly that ~ACD >~A. 

The gap in Euclid's argument can easily be filled with the tools we 
have developed. Since segment BB' intersects AC at M, B and B' are 
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on opposite sides of AC (by definiti~n). Since BD meets AC at C, B 
and D are also on opposite sides of AC. Hence, B' and D are on the 
same side of AC (Axiom B-4). Next, B' and Mare on the same side of 
CD, since segment MB' does not contain the point B at which MB' 
meets CD (by construction of B' and Axioms B-1 and B-3). Also, A and 
M are on the same side of CD because segment AM does not contain 
the point C at which AM meets CD (by definition of midpoint and 
Axiom B-3). So again, Separation Axiom B-4 ensures that A and B' are 
on the same side of CD. By definition of "interior" (in Chapter 3, 
preceding Proposition 3. 7), we have shown that B' lies in the interior 
of <tACD. 

Note on Elliptic Geometry. Figure 3.24 shows a triangle on 
the sphere with both an exterior angle and a remote interior angle that 
are right angles, so the exterior angle theorem doesn't hold. Our proof 
of it was based on the alternate interior angle theorem, which can't 
hold in elliptic geometry because there are no parallels. The proof we 
gave of Theorem 4.1 breaks down in elliptic geometry because Axiom 
B-4, which asserts that a line separates the plane into two sides, 
doesn't hold; we knew points E and D in that proof were distinct 
because they lay on opposite sides of line t. Or, thinking in terms of 
spherical geometry, where a great circle does separate the sphere into 
two hemispheres, if points E and D are distinct, there is no contradic­
tion because great circles do meet in two antipodal points. 

Euclid's proof of Theorem 4.2 breaks down on the sphere because 
"lines" are circles and if segment BM is long enough, the reflected 
point B' might lie on it (e.g., if BM is a semicircle, B' = B). 



Exterior Angle Theorem 111 121 

c F 

FIGURE4.6 A B D E 

As a consequence of the exterior angle theorem (and our previous 
results), you can now prove as exercises the following familiar propo­
sitions. 

PROPOSITION 4.1 (SAA Congruence Criterion). Given AC= OF,~= 
<t:D, and <t:B = <t:E. Then MBC =~DEF (Figure 4.6). 

PROPOSITION 4.2. Two right triangles are congruent if the hypote­
nuse and a leg of one are congruent respectively to the hypotenuse and 
a leg of the other (Figure 4.7). 

PROPOSITION 4.3 (Midpoints). Every segment has a unique midpoint. 

PROPOSITION 4.4 (Bisectors). (a) Every angle has a unique bisector. (b) 
Every segment has a unique perpendicular bisector. 

PROPOSITION 4.5. In a triangle MBC, the greater angle lies opposite 
the greater side and the greater side lies opposite the greater angle, 
i.e., AB > BC if and only if <t:C > ~-

PROPOSITION 4.6. Given MBC and M'B'C', if AB = A'B' and 
BC= B'C', then <t:B < <t:B' if and only if AC< A'C'. 

B B' 

~ ~ 
FIGURE 4. 7 A C A' C' 
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MEASURE OF ANGLES AND SEGMENTS 

Thus far in our treatment of geometry we have refrained from using 
numbers that measure the sizes of angles and segments - this was in 
keeping with the spirit of Euclid. From now on, however, we will not 
be so austere. The next theorem (Theorem 4.3) asserts the possibility 
of measurement and lists its properties. The proof requires the axioms 
of continuity for the first time (in keeping with the elementary level of 
this book, the interested reader is referred to Borsuk and Szmielew, 
1960, Chapter 3, Sections 9 and 10). In some popular treatments of 
geometry this theorem is taken as an axiom (ruler-and-protractor 
postulates-see Moise, 1990). The familiar notation (~) 0 will be 
used for the number of degrees in <tA, and the length of segment AB 
(with respect to some unit of measurement) will be denoted by AB. 

THEOREM 4.3. A. There is a unique way of assigning a degree mea­
sure to each angle such that the following properties hold (refer to 
Figure 4.8): 

(0) (~) 0 is a real number such that 0 < (<tA) 0 < 180° 
(1) (<tA) 0 = 90° if and only if <tA is a right angle. 
(2) (<tAt° = (<tB) 0 if and only if <tA == <tB. 
(3) If AC is interior to <tDAB, then (<tDAB) 0 = (<tDAC) 0 + 

(<tCAB)°. 
(4) For every real number x between 0 and 180, there exists an 

angle <tA such that (~) 0 = x0
• 

(5) If <tB is supplementary to~. then (<tA) 0 + (<tB) 0 = 180°. 
(6) (<tA) 0 > (<tB) 0 if and only if <tA > <tB. 

B. Given a segment 01, called a unit segment. Then there is a unique 
way of assigning a length AB to each segment AB such that the 

FIGURE4.8 
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following properties hold: 

(7) AB is ~sitive real number and 01 = 1. 
(8) AB= CD if and only if AB= CD. 
(9) A * B * C if and only if AC = AB + BC. 

(10) AB< CD if and only if AB< CD. 

Ill 123 

( 11) For every positive real number x, there exists a segment AB 
such that AB = x. 

Note. So as not to mystify you, here is the method for assigning 
lengths. We start with a segment 01 whose length will be 1. Then any 
segment obtained by laying off n copies of 01 will have length n. By 
Archimedes' axiom, every other segment AB will have its endpoint B 
between two points B,,_ 1 and B,, such that AB,,_ 1 = n - 1 and AB,,= n; 
then AB will have to equal AB,,_ 1 + B,,_ 1B by condition (9) of 
Theorem 4.3, so we may assume n = 1 and B,,_ 1 =A. If B is the 
midpoint B112 of AB1, we set AB112 = f; otherwise B lies either in AB112 

or in B112B1, say, in AB112• If then Bis the midpoint B114 of AB112, we set 
AB 114 = t; otherwise B lies in AB114, say, and we continue the process. 
Eventually B will either be obtained as the midpoint of some segment 
whose length has been determined, in which case AB will be deter­
mined to some dyadic rational number a/2"; or the process will con­
tinue indefinitely, in which case AB will~ the limit of an infinite 
sequence of dyadic rational numbers; i.e., AB will be determined as an 
infinite decimal with respect to the base 2. 

The axioms of continuity are not needed if one merely wants to 

define addition for congruence classes of segments and then prove the 
triangle inequality (Corollary 2 to Theorem 4.3; see Borsuk and 
Szmielew, 1960, pp. 103-108, for a definition of this operation). It is 
in order to prove Theorem 4.4, Major Exercise 8, and the parallel 
projection theorem that we need the measurement of angles and 
segments by real numbers, and for such measurement Archimedes' 
axiom is required. However, parts 4 and 11 of Theorem 4.3, the proofs 
for which require Dedekind's axiom, are never used in proofs in this 
book. See Appendix B for coordinatization without continuity axioms. 

Using degree notation, <tA is defined as acute if (<tA) 0 < 90°, 
and obtuse if (<tA) 0 > 90°. Combining Theorems 4.2 and 4.3 gives 
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the following corollary, which is essential for proving the Saccheri­
Legendre theorem. 

COROLLARY 1. The sum of the degree measures of any two angles of a 
triangle is less than 180 °. 

The only immediate application of segment measurement that we 
will make is in the proof of the next corollary, the famous "triangle 
inequality." 

COROLLARY 2 (Triangle Inequality). If A, B, and Care three noncollinear 
points, then AC < AB + BC. 

Proof 
( 1) There is a unique point D such that A * B * D and BD = BC 

--+ 
(Axiom C-1 applied to the ray opposite to BA). (See Figure 
4.9.) 

(2) Then <tBCD = <tBDC (Proposition 3.10: base angles of an 
isosceles triangle) . 

(3) AD= AB+ BD (Theorem 4.3(9)) and BD BC ~P 1 and 
Theorem 4.3 (8)); substitutin_g,.gives AD =AB + BC. 

( 4) cB is between cA and CD (Proposition 3. 7); hence, 
<tACD > <tBCD (by definition). 

(5) <tACD > <tADC (steps 2 and 4; Proposition 3.21(c)). 
(6) AD> AC (Proposition 4.5). 
(7) Hence, AB+ BC> AC (Theorem 4.3(1 O); steps 3 and 6). • 

SA.CCHERI-LEGENDRE THEOREM 

The following very important theorem also requires an axiom of conti­
nuity (Archimedes' axiom) for its proof. 
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THEOREM 4.4 (Saccheri-Legendre). The sum of the degree measures of 
the three angles in any triangle is less than or equal to 180 °. 

This result may strike you as peculiar, since you are accustomed to 
the notion of an exact sum of 180 °. Nevertheless, this exactness 
cannot be proved in neutral geometry! Saccheri tried, but the best he 
could conclude was "less than or equal." Max Dehn showed in 1900 
that there is no way to prove this theorem without Archimedes' 
axiom. 1 The idea of the proof is as follows: 

Assume, on the contrary, that the angle sum of MBC is greater 
than 180 °, say 180 ° + p 0 , where pis a positive number. It is possible 
(by a trick you will find in Exercise 15) to replace MBC with another 
triangle that has the same angle sum as MBC but in which one angle 
has at most half the number of degrees as (<tA) 0 We can repeat this 
trick to get another triangle that has the same angle sum 180 ° + p 0 

but in which one angle has at most one-fourth the number of degrees 
as ( <tA) 0

• The Archimedean property of real numbers guarantees that 
if we repeat this construction enough times, we will eventually obtain 
a triangle that has angle sum 180 ° + p 0 but in which one angle has 
degree measure at most p 0 • The sum of the degree measures of the 
other two angles will be greater than or equal to 180 °, contradicting 
Corollary 1 to Theorem 4.3. This proves the theorem. 

You should prove the following consequence of the Saccheri­
Legendre theorem as an exercise. 

1 See the heuristic argument in Project 1. The full significance of Archimedes' axiom was 
first grasped in the 1880s by M. Pasch and 0. Stolz. G. Veronese and T. Levi-Civita developed 
the first non-Archimedean geometry. Also see Appendix B. 

"' 
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COROLLARY 1. The sum of the degree measures of two angles in a 
triangle is less than or equal to the degree measure of their remote 
exterior angle (see Figure 4.11). 

It is natural to generalize the Saccheri-Legendre theorem to poly­
gons other than triangles. For example, let us prove that the angle sum 
of a quadrilateral ABCD is at most 360°. Break DABCD into two 
triangles, MBC and MDC, by the diagonal AC (see Figure 4.12). 
By the Saccheri-Legendre theorem, 

(<t:B) 0 + (<t:BAC) 0 + (<t:ACB) 0 
~ 180° 

and (<t:D) 0 + (<t:DAC) 0 + (<t:ACD) 0 
~ 180°. 

Theorem 4.3(3) gives us the equations 

and 
(<t:BAC) 0 + (<t:DAC) 0 = (<t:BAD) 0 

(<t:ACB) 0 + (<t:ACD) 0 = (<t:BCD)° 

Using these equations, we add the two inequalities to obtain the 
desired inequality 

(<t:B) 0 + (<t:D) 0 + (<t:BAD) 0 + (<t:BCD) 0 
~ 360° 

Unfortunately, there is a gap in this simple argument! To get the 
equations used above, we assumed by looking at the diagram (Figure 

D 

--------------
FIGURE4.12 B c 



Saeeherl-Legendre Theorem Ill 127 

D 

FIGURE4.13 A c 

4.12) that C was interior to <tBAD and that A was interior tu <tBCD. 
But what if the quadrilateral looked like Figure 4.13? In this case the 
equations would not hold. To prevent such a case, we must add a 
hypothesis; we must assume that the quadrilateral is "convex." 

DEFINITION. Quadrilateral DABCD is called convex if it has a pair of 
opposite sides, e.g., AB and CD, such that CD is contained in one of 
the half-planes bounded by AB and AB is contained in one of the 
half-planes bounded by CD.2 

The assumption made above is now justified by starting with a 
convex quadrilateral. Thus, we have proved the following corollary: 

COROLLARY 2. The sum of the degree measures of the angles in any 
convex quadrilateral is at most 360°. 

Note. The Saccheri-Legendre theorem is false in elliptic geometry 
(see Figure 3.24.). In fact, it can be proved in elliptic geometry that 
the angle sum of a triangle is always greater than 180° (see Kay, 
1969). Since a triangle can have two or three right angles, a hypotenuse, 

2 It can be proved that this condition also holds for the other pair of opposite sides, AD and 
BC-see Exercise 23 in this chapter. The use of the word "convex" in this definition does not 
agree with its use in Exercise 19, Chapter 3; a convex quadrilateral is obviously not a "convex 
set" as defined in that exercise. However, we can define the interior of a convex quadrilateral 
DABCD as follows: each side ofDABCD determines a half-plane containing the opposite side; 
the interior of DABCD is then the intersection of the four half-planes so determined. You can 
then prove that the interior of a convex quadrilateral is a convex set (which is one of the problems 
in Exercise 25). 
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defined as a side opposite a right angle, need not be unique, and a leg, 
defined as a side of a right triangle not opposite a right angle, need not 
exist (and if opposite an obtuse angle, a leg could be longer than a 
hypotenuse). 

EQUIVALENCE OF PARALLEL POSTULATES 

We shall now prove the equivalence of Euclid's fifth postulate and 
Hilbert's parallel postulate. Note, however, that we are not proving 
either or both of the postulates; we are only proving that we can prove 
one if we first assume the other. We shall first state Euclid V (all the 
terms in the statement have now been defined carefully). 

EUCLID'S POSTULATE V. If two lines are intersected by a transversal 
in such a way that the sum of the degree measures of the two interior 
angles on one side of the transversal is less than 180 °, then the two 
lines meet on that side of the transversal. 

THEOREM 4.5. Euclid's fifth postulate~ Hilbert's parallel postulate. 

Proof 
First, assume Hilbert's postulate. The situation of Euclid V is 
shown in Figure 4.14. (<tl) 0 + (<t2)° < 180° (hypothesis) and 
(<tl) 0 +(<t3) 0 =180° (supplementary angles, Theorem4.3(5)). 
Hence, (<t2) 0 < 180° - (<tl) 0 = (<t3) 0

• There is a unique ray 
BtG' such that <t3 and <tC'B'B are congruent alternate interior an­
gles (Axiom C-4). By Theorem 4.1, B~' is parallel to/. Since 

FIGURE4.14 
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m * B~', m meets I (Hilbert's postulate). To conclude, we must 
prove that m meets I on the same side of t as C'. Assume, on the 
contrary, that they meet at a point A -on the opposite side. Then ~2 
is an exterior angle of MBB'. Yet it is smaller than the remote 
interior ~3. This contradiction of Theorem 4.2 proves Euclid V 
(RAA). 

Conversely, assume Euclid V and refer to Figure 4.15, the situa­
tion of Hilbert's postulate. Lett be the perpendicular to I through 
P, and m the perpendicular to t through P. We know that m 111 
(Corollary 1 to Theorem 4.1). Let n be any other line through P. 
We must show that n meets I. Let ~1 be the acute angle n makes 
with t (which angle exists because n =I= m). Then (~1)

0 + 
(~PQR) 

0 < 90°+90°=180°. Thus, the hypothesis of Euclid Vis 
satisfied. Hence, n meets I, proving Hilbert's postulate. • 

Since Hilbert's parallel postulate and Euclid V are logically equiva­
lent in the context of neutral geometry, Theorem 4.5 allows us to use 
them interchangeably. You will prove as exercises that the following 
statements are also logically equivalent to the parallel postulate.3 

PROPOSITION 4.7. Hilbert's parallel postulate~ if a line intersects 
one of two parallel lines, then it also intersects the other. 

PROPOSITION 4.8. Hilbert's parallel postulate ~ converse to 
Theorem 4 .1 (alternate interior angles). 

PROPOSITION 4.9. Hilbert's parallel postulate~ if tis a transversal to 
I and m, Ill m, and t l.. I, then t l.. m. 

3 Transitivity of parallelism is also logically equivalent to the parallel postulate. 
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PROPOSITION 4.10. Hilbert's parallel postulate~ if k 111, m .l k, and 
n l.. I, then either m = n or m II n. 

Th.e next proposition is another statement logically equivalent to 
Hilbert's parallel postulate, but at this point we can only prove the 
implication in one direction (the other implication is proved in Chap­
ter S; see Exercise 14). 

PROPOSITION 4.11. Hilbert's parallel postulate==> the angle sum of 
every triangle is 180 °. 

ANGLE SUM OF A TRIANGLE 

We define the angle sum of triangle MBC as (<tA) 0 + (<tB) 0 + 
(<tC) 0

, which is a certain number of degrees ~180° (by the Saccheri­
Legendre theorem). We define the defect6ABC to be 180° minus the 
angle sum. In Euclidean geometry we are accustomed to having no 
"defective" triangles, i.e., we are accustomed to having the defect 
equal zero (Proposition 4.11). 

The main purpose of this section is to show that if one defective 
triangle exists, then al/triangles are defective. Or, put in the contra­
positive form, if one triangle has angle sum 180 °, then so do all others. 
We are not asserting that one such triangle does exist, nor are we 
asserting the contrary; we are only examining the hypothesis that one 
might exist. 

THEOREM 4.6. Let MBC be any triangle and D a point between A 
and B (Figure 4.16). Then 6ABC = 6ACD + 6BCD (additivity of the 
defect). 

c 

~ 
FIGURE 4.16 A D B 
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Proof 
Since CO is interior to <tACB (Proposition 3.7), (<tACB) 0 = 
(<tACD) 0 + (<tBCD) 0 (by Theorem 4.3(3)). Since <tADC and 
<tBDC are supplementary angles, 180° = (<tADC) 0 + (<tBDC) 0 

(by Theorem 4.3(5) ). To obtain the additivity of the defect, all we 
have to do is write down the definition of the defect (180° minus 
the angle sum) for each of the three triangles under consideration 
and substitute the two equations above (Exercise 1). • 

COROLLARY. Under the same hypothesis, the angle sum of MBC is 
equal to 180 ° if and only if the angle sums of both MCD and .6BCD 
are equal to 180 °. 

Proof 
If .6ACD and .6BCD both have defect zero, then defect of MBC = 
0 + 0 = 0 (Theorem 4.6). Conversely, if MBC has defect zero, 
then, by Theorem 4.6, l5ACD + l5BCD = 0. But the defect of a 
triangle can never be negative (Saccheri-Legendre theorem). 
Hence, MCD and .6BCD each have defect zero (the sum of two 
nonnegative numbers equals zero only when each equals zero). • 

Next, recall that by definition a rectangle is a quadrilateral whose 
four angles are right angles. Hence, the angle sum of a rectangle is 
360°. Of course, we don't yet know whether rectangles exist in neu­
tral geometry. (Try to construct one without using the parallel postu­
late or any statement logically equivalent to it-see Exercise 19.) 

The next theorem is the result we seek. Its proof will be given in 
five steps. 

THEOREM 4.7. If a triangle exists whose angle sum is 180°, then a 
rectangle exists. If a rectangle exists, then every triangle has angle 
sum equal to 180°. 

Proof 
( 1) Construct a right triangle having angle sum 180 °. 

Let MBC be the given triangle with defect zero (hypothe­
sis). Assume it is not a right triangle; otherwise we are done. At 
least two of the angles in this triangle are acute, since the angle 
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sum of two angles in a triangle must be less than 180 ° ( corol­
lary to Theorem 4.3); e.g., assume <[.A and <tB are acute. Let 
CD be the altitude from vertex C (which exists, by Proposition 
3.16). We claim that D lies between A and B. Assume the 
contrary, that D *A* B (see Figure 4.17). Then remote inte­
rior angle <tCDA is greater than exterior angle <tCAB, contra­
dicting Theorem 4.2. Similarly, if A * B * D, we get a contra­
diction. Thus, A* D * B (Axiom B-3); see Figure 4.18. It now 
follows from the corollary to Theorem 4.6 that each of the right 
triangles MDC and ..6.BDC has defect zero. 

(2) From a right triangle of defect zero construct a rectangle. 
Let ..6.CDB be a right triangle of defect zero with <tD a right 

angle. Bi Axiom C-4, there is a unique ray ex on the opposite 
side of CB from D such that <tDBC = <tBCX. By Axiom C-1, 
there is a unique point E on ex such that CE = BD (Figure 
4.19) .Then ..6.CDB = ..6.BEC (SAS). Hence, ..6.BEC is also a 
right triangle of defect zero with right angle at E. Also, since 
(<tDBC) 0 + (<tBCD) 0 = 90° by our hypothesis, we obtain by 
substitution (<tECB) 0 + (<tBCD) 0 = 90° and (<tDBC) 0 + 
(<tEBC) 0 = 90° Moreover, B is an interior point of <tECD, 
since the alternate interior angle theorem implies CE II DB and 
CD II BE and C is interior to <tEBD (for the same reason). 

c 

FIGURE4.18 B 
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Thus, we can apply Theorem 4.3(3) to conclude that 
(4'.ECD) 0 = 90° = (4'.EBD) 0

• This proves that DCDBE is a 
rectangle. 

(3) From one rectangle, construct "arbitrarily large" rectangles. 

F 

More precisely, given any right triangle ..6.D'E' C', construct 
a rectangle DAFBC such that AC> D'C' and BC> E'C'. 
This can be done using Archimedes' axiom. We simply "lay 
off" enough copies of the rectangle we have to achieve the 
result (see Figures 4.20 and 4.21; you can make this "laying 
off" precise as an exercise). 

B 

E' 

A 

FIGURE4.20 
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( 4) Prove that all right triangles have defect zero. 

This is achieved by "embedding" an arbitrary right triangle 
~D'C'E' in a rectangle, as in step 3, and then showing succes­
sively (by twice applying the corollary to Theorem 4.6) that 
~ACB, ~DCB, and ~DCE each have defect zero (see Figure 
4.22). 

( 5) If every right triangle has defect zero, then every triangle has 
defect zero. 

As in step 1, drop an altitude to decompose an arbitrary triangle into 
two right triangles (Figure 4.18) and apply the corollary to Theorem 
4.6 .• 

Historians credit Theorem 4. 7 to Saccheri and Legendre, but we 
will not name it after them, so as to avoid confusion with Theorem 4.4. 

COROLLARY. If there exists a triangle with positive defect, then all 
triangles have positive defect. 

REVIEW EXERCISE 

Which of the following statements are correct? 

( 1) If two triangles have the same defect, they are congruent. 
(2) Euclid's fourth postulate is a theorem in neutral geometry. 
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(3) Theorem 4.5 shows that Euclid's fifth postulate is a theorem in neutral 
geometry. 

(4) 

(5) 

(6) 
(7) 

(8) 

(9) 
(10) 
( 11) 

(12) 

(13) 

( 14) 

( 15) 

(16) 

( 17) 
( 18) 

(19) 

(20) 

(21) 

(22) 

The Saccheri-Legendre theorem tells us that some triangles exist that 
have angle sum less than 180 ° and some triangles exist that have angle 
sum equal to 180 °. 
The alternative interior angle theorem states that if parallel lines are 
cut by a transversal, then alternate interior angles are congruent to 
each other. 
It is impossible to prove in neutral geometry that quadrilaterals exist. 
The Saccheri-Legendre theorem is false in Euclidean geometry be­
cause in Euclidean geometry the angle sum of any triangle is never less 
than 180°. 
According to our definition of "angle," the degree measure of an angle 
cannot equal 180°. 
The notion of one ray being "between" two others is undefined. 
It is impossible to prove in neutral geometry that parallel lines exist. 
The definition of "remote interior angle" given on p. 118 is incomplete 
because it used the word "adjacent," which has never been defined. 
An exterior angle of a triangle is any angle that is not in the interior of 
the triangle. 
The SSS criterion for congruence of triangles is a theorem in neutral 
geometry. 
The alternate interior angle theorem implies, as a special case, that if a 
transversal is perpendicular to one of two parallel lines, then it is also 
perpendicular to the other. 
Another way of stating the Saccheri-Legendre theorem is to say that 
the defect of a triangle cannot be negative. 
The ASA criterion for congruence of triangles is one of the axioms for 
neutral geometry. 
The proof of Theorem 4. 7 depends on Archimedes' _axiom. 
If MBC is any triangle and C is any of its vertices, and if a perpendicu­
lar is dropped from C to AB, then that perpendicular will intersect AB 
in a point between A and B. 
It is a theorem in neutral geometry that given any point P and any line/, 
there is at most one line through P perpendicular to /. 

It is a theorem in neutral geometry that vertical angles are congruent to 
each other. 
The proof of Theorem 4.2 (on exterior angles) uses Theorem 4.1 (on 
alternate interior angles). 
The gap in Euclid's attempt to prove Theorem 4.2 can be filled using 
our axioms of betweenness. 
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EXERCISES 

The following are exercises in neutral geometry, unless otherwise 
stated. This means that in your proofs you are allowed to use only 
those results that have been given previously (including results from 
previous exercises). You are not allowed to use the parallel postulate 
or other results from Euclidean geometry that depend on it. 

1. (a) Finish the last step in the proof of Theorem 4.6. (b) Prove that 
congruent triangles have the same defect. (c) Prove the corollary to 
Theorem 4.7. (d) Prove Corollary 1 to Theorem 4.3. 

2. The Pythagorean theorem cannot be proved in neutral geometry (as you 
will show in Exercise ll(d), Chapter 6). Explain why the Euclidean 
proof suggested by Figure 1.15 of Chapter 1 is not valid in neutral 
geometry. 

3. State the converse to Euclid's fifth postulate. Prove this converse as a 
theorem in neutral geometry. 

4. Prove Proposition 4. 7. Deduce as a corollary that transitivity of parallel­
ism is equivalent to Hilbert's parallel postulate. 

5. Prove Proposition 4.8. (Hint: Assume the converse to Theorem 4.1. Let 
m be the parallel to I through P constructed in the proof of Corollary 2 to 
Theorem 4.1 and letn be any parallel to/through P. Use the congruence 
of alternate interior angles and the uniqueness of perpendiculars to 
prove m = n. Assuming next the parallel postulate, use Axiom C-4 and 
an RAA argument to establish the converse to Theorem 4.1.) 

6. Prove Proposition 4.9. 
7. Prove Proposition 4.10. 
8. Prove Proposition 4.11. (Hint: See Figure 4.23.) 
9. The following purports to be a proof in neutral geometry of the SAA 

criterion for congruence. Find the flaw (see Figure 4.6). 
Given AC= DF, <r-A = <tD, <tB = <tE. Then <tC = <tF, since 

(<tC) 0 = 180° - (<r-A) 0 
- (<tB) 0 = 180° - (<tD) 0 

- (<tE) 0 = (<tF) 0 

B 
-----------~ 

FIGURE4.23 A c 



Exerelses 

A 

FIGURE4.24 

c 

G 

Ill 137 

F 

B 

(Theorem 4.3(2)). Hence, MBC == D.DEF by ASA (Proposition 
3.17). 

10. Here is a correct proof of the SAA criterion. Justify each step. (1) 
Assume side AB is not congruent to side DE. (2) Then AB< DE or 
DE< AB. (3) If DE< AB, then there is a point G between A and B 
such that AG== DE (see Figure 4.24). (4) Then D.CAG == D.FDE. (5) 
Hence, ~GC == ~E. (6) It follows that ~GC == ~B. (7) This contra­
dicts a certain theorem (which ?) . (8) Therefore, DE is not les than AB. 
(9) By a similar argument involving a point H between D and E, AB is 
not less than DE. (10) Hence, AB== DE. (11) Therefore, MBC == 
D.DEF. 

11. Prove Proposition 4.2. (Hint: See Figure 4.7. On the ray opposite to AC, 
lay off segment AD congruent to A'C'. First prove D.DAB == D.C' A'B', 
and then use isosceles triangles and the SAA criterion to conclude.) 

12. Here is a proof that segment AB has a midpoint. Justify each step (see 
Figure 4.25). 
( 1) Let C be any point not on AB. (2) There is a unique ray BX on 
the opposite side of AB from C such that ~CAB == ~BX. ( 3) There is a 

c 

FIGURE4.2S x 
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unique point Don BX such that AC = BO. ( 4) Dis on the opposite side 
of AB from C. (5) Let Ebe the point at which segment CD intersects 
AB. (6) Assume E isnotbetweenAand B. (7) Then either E=A,or E= 
B, or E *A * B, or A * B * E. (8) Ac is parallel to BO. (9) Hence, E =F A 
and E=FB. (10) Assume E* A* B (Figure 4.26). (11) Since CA 
intersects side EB of b.EBD at a point between E and B, it must also 
intersect either ED or BO. ( 12) Yet this is impossible. ( 13) Hence, A is 
not between E and B. (14) Similarly, Bis not between A and E. (15) 
Thus, A* E * B (see Figure 4.25). (16) Then <tAEC = <tBED. (17) 
b.EAC = b.EBD. (18) Therefore, Eis a midpoint of AB. 

13. (a) Prove that segment AB has only one midpoint. (Hint: Assume the 
contrary and use Propositions 3.3 and 3.13 to derive a contradic­
tion, or else put another possible midpoint E' into Figure 4.25 and 
derive a contradiction from congruent triangles.) 

(b) Prove Proposition 4.4 on bisectors. (Hint: Use midpoints.) 
14. Prove Corollary 1 to the Saccheri-Legendre theorem. 
15. Prove the following result, needed to demonstrate the Saccheri­

Legendre theorem (see Figure 4.27). Let D be the midpoint of BC 
and E the unique point on AD such that A * D * E and AD = DE. 
Then MEC has the same angle sum as MBC, and either (1'.EAC) 0 

or ( UEC) 0 is ;;2 t ( <tBAC) 0
• (Hint: First show that b.BDA = b.CDE, 

then that ( 1'.EAC) 0 + ( <tAEC) 0 = ( <tBAC) 0

.) 

B E 

FIGURE 4.27 A c 
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FIGURE 4.28 A 1 

16. Here is another proof of Theorem 4.4 due to Legendre. Justify the 
unjustified steps: ( 1) Let A1A2B1 be the given triangle, lay off n cop­
ies of segment A1A2, and construct a row of triangles AiAi+ 1B.r j = 
1, ... , n, congruent to A1A2B1 as shown in Figure 4.28. (2) The 
BiAi+ 1Bi+1, j = 1, . . . , n, are also congruent triangles, the last by 
construction ofB,.+ 1• (3) With angles labeled as in Figure 4.28, a+ y + 
<5 = 180 ° and p + y + <5 equals the angle sum of A1A2B1• ( 4) Assume on 
the contrary that~ a. (5) Then A1A2 > B1B2, by Proposition 4.6. (6) 
Also A1B1 + n · B1B2 + B,.+ 1A,.+ 1 > n · A1A2, by repeated application 
of the triangle inequality. (7) A1B1 == B,.+ 1A,.+ 1• (8) 2A1B1 > n(A1A2 -

B1B2). (9) Since n was arbitrary, this contradicts Archimedes' axiom. 
(10) Hence the triangle has angle sum ~ 180°. 

17. Prove the following theorems: 
(a) Let y be a circle with center 0, and let A and B be two points on y. 

The segment AB is called a chord of y; let M be its midpoint. If 
0 =F M, then OM is perpendicular to AB. (Hint: Corresponding 
angles of congruent triangles are congruent.) 

(b) Let AB be a chord of the circle y having center 0. Prove that the 
perpendicular bisector of AB passes through the center 0 of y. 

18. Prove the theorem of Thales in Euclidean geometry that an angle in­
scribed in a semicircle is a right angle. Prove in neutral geometry that this 
statement implies the existence of a right triangle with zero defect (see 
Figure 4.29). 

FIGURE4.29 
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FIGURE4.30 A~B 
19. Find the flaw in the following argument purporting to construct a rec­

tangle. Let A and B be any two points. There is a line I through A 
perpendicular to AB (Proposition 3.16) and, similarly, there is a line m 
through B perpendicular to AB. Take any point C on m other than B. 
There is a line through C perpendicular to /-let it intersect I at D. 
Then DABCD is a rectangle. 

20. The sphere, with "lines" interpreted as great circles, is not a model of 
neutral geometry. Here is a proposed construction of a rectangle on a 
sphere. Let a, p be two circles of longitude and let them intersect the 
equator at A and D. Let y be a circle of latitude in the northern hemi­
sphere, intersecting a and Pat two other points, B and C. Since circles of 
latitude are perpendicular to circles of longitude, the quadrilateral with 
vertices ABCD and sides the arcs of a, y, and P and the equator traversed 
in going from A north to B east to C south to D west to A should be a 
rectangle. Explain why this construction doesn't work. 

21. Prove Proposition 4.5. (Hint: If AB > BC, then let D be the point 
between A and B such that BO = BC (Figure 4.30). Use isosceles 
triangle ~CBD and exterior angle 1:BDC to show that 1:ACB > 1:A. 
Use this result and trichotomy of ordering to prove the converse.) 

22. Prove Proposition 4.6. (Hint: Given 1:B < 1:B'. Use the hypothesis of 
Proposition 4.6 to reduce to the case A= A', B = B', and C interior to 
1:ABC', so that you must show AC< AC' (see Figure 4.31). This is 
easy in case C = D, where point D is obtained from the crossbar 
theorem. In case C =I= D, Proposition 4.5 reduces the problem to show­
ing that 1:AC'C < 1:ACC'. In case B * D * C (as in Figure 4.31), you 

C'~ 

B A 
FIGURE4.31 BC= BC'. 
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FIGURE4.32 B 

can prove this inequality using the congruence ~BCC' == ~BC'C. In 
case B * C * D (Figure 4.32), apply the congruence ~BCC' == ~BC'C 
and Theorem 4.2 to exterior angle ~BCC' of D.DCC' and exterior angle 
~DCC' of D.BCC'. (The converse implication in Proposition 4.6 follows 
from the direct implication, just shown, if you apply trichotomy.) 

23. For the purpose of this exercise, call segments AB and CD semiparal­
lel if segment AB does not intersect line CD and segment CD does 
not intersect line AB. Obviously, if AB II CD, then AB and CD are 
semi parallel, but the converse need not hold (see Figure 4.33). We have 
defined a quadrilateral to be convex if one pair of opposite sides is 
semiparallel. Prove that the other pair of opposite sides is also semipar­
allel. (Hint: Suppose AB is semiparallel to CD and assume, on the 
contrary, that AD meets BC in a point E. Use the definition of quadrilat­
eral (Exercise 3, Chapter 1) to show either that E * B * C or B * C * E; 
in either case, use Pasch 's theorem to derive a contradiction.) 

24. Prove that the diagonals of a convex quadrilateral intersect. (Hint: 
Apply the crossbar theorem.) 

25. Prove that the intersection of convex sets (defined in Exercise 19, 
Chapter 3) is again a convex set. Use this result to prove that the interior 
of a convex quadrilateral is a convex set and that the point at which the 
diagonals intersect lies in the interior. 

26. The convex hull of a set of points Sis the intersection of all the convex 
sets containing S; i.e., it is the smallest convex set containing S. Prove 
that the convex hull of three noncollinear points A, B, and C consists of 
the sides and interior of MBC. 

FIGURE4.33 c D 
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27. Given A * B * C and DC .l AC. Prove that AD > BD > CD (Figure 
4.34; use Proposition 4.5). 

28. Given any triangle b.DAC and any point B between A and C. Prove that 
either DB < DA or DB < DC. (Hint: Drop a perpendicular from D to 
AC and use the previous exercise.) 

29. Prove that the interior of a circle is a convex set. (Hint: Use the previous 
exercise.) 

30. Prove that if D is an exterior point of MBC, then there is a line DE 
through D that is contained in the exterior of MBC (see Figure 4.35). 

31. Suppose that line I meets circle y in two points C and D. Prove that: 
(a) Point Pon /lies inside y if and only if C * P * D. 
(b) If points A and Bare inside y and on opposite sides of/, then the 

point E at which AB meets I is between C and D. 
32. In Figure 4.36, the pairs of angles (~A'B'B", ~ABB") and (~C'B'B", 

~CBB") are called pairs of corresponding angles cut off on I and /' by 
transversal t. Prove that corresponding angles are congruent if and only 
if alternate interior angles are congruent. 

33. Prove that there exists a triangle which is not isosceles. 

A 

FIGURE4.3S 
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FIGURE4.36 

MA.JOB EXERCISES 

1. THEOREM. If line I passes through a point A inside circle y then I 
intersects y in two points. 

Here is the idea of the proof; fill in the details using the circular continuity 
principle (instead of the stronger axiom of Dedekind) and Exercise 27 
(see Figure 4.37). Let 0 be the centerofy. Point Bis taken to be the foot 
of the perpendicular from 0 to /, point C is taken such that B is the 
midpoint of OC, and y' is the circle centered at C having the same radius 
as y. Prove that y' intersects OC in a point E' inside y and a point E outside 
y, so that y' intersects yin two points P, P', and that these points lie on the 

C E 

0 

FIGURE4.37 
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original line/. (We located the intersections of y with /by intersecting y 
with its reflection y' across /-seep. 111.) 

4. Apply the previous exercise to prove that the circular continuity principle 
implies the elementary continuity principle. (Hint: Use Exercise 27.) 

3. Let line /intersect circle yat point A. If I .l OA, where 0 is the centerofy, 
we call /tangent to y at A; otherwise I is called secant to y. 
(a) Suppose /is secant toy. Prove that the foot F of the perpendicular t 

from 0 to /lies inside y and that the reflection A' of A across t is a 
second point at which I meets y. (See Figure 4.38.) 

(b) Suppose now /is tangent toy. Prove that every point B =FA lying on I 
is outside y, and hence A is the unique point at which I meets y. 

(c) Let point P lie outside y. Proposition 7.3, Chapter 7, applies the 
circular continuity principle to construct a line through P tangent to 
y. Explain why that construction is valid only in Euclidean geometry. 
Prove that the tangent line exists in neutral ~metry. (Hint: Let 
Q =F P be any point on the perpendicular to OP through P. Prove 
that PQ does not intersect y whereas PO does. Apply Dedekind's 
axiom to ray oQ. See Figure 4.39.) Once one tangent /through Pis 
obtained, prove that the reflection of I across OP is a second one. 

4. Converse to the triangle inequality. If a, b, and care lengths of segments such 
that the sum of any two is greater than the third, then there exists a 

FIGURE4.39 
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FIGURE4.40 

triangle whose sides have those lengths (Euclid's Proposition 22). Use 
the circular continuity principle to fill the gap in Euclid's proof and justify 
the steps: Assume a ~ b ~ c. Take any point D and any ray emanating 
from D. Starting from D, lay off successively on that ray points F, G, H so 
thata = DF, b = FG, c = GH. Then the circle with center F and radius a 
meets the circle with center G and radius cat a point K, and t.FGK is the 
triangle called for in the proposition. (See Figure 4.40.) 

5. Prove that the converse to the triangle inequality implies the circular 
continuity principle (assuming the incidence, betweenness, and con­
gruence axioms). 

6. Prove: If band care lengths of segments, then there exists a right triangle 
with hypotenuse c and leg b if and only if b < c. (Hint for the "if" part: 
Take any point C and any perpendicular lines through C. There exists a 
point A on one line such that AC = b. If a is the circle centered at A of 
radius c, point C lies inside a, and hence a intersects the other line in 
some point B. Then MBC is the requisite right triangle.) 

7. Show how the previous exercise furnishes a solution to Major Exercise 
3(c) that avoids the use of Dedekind's axiom. (Hint: Let c =OP and 
b = radius of y and lay off <r..A at 0 with oP as one side.) 

8. Here is an Archimedean proof in neutral geometry of the "important 
corollary" to Aristotle's axiom, Chapter 3. We must show that given any 
positive real number a there is a point Ron line /such that ( <r..QRP) 0 < a 0 

(intuitively, by taking R sufficiently far out we can get as small an angle as 
we please). The idea is to construct a sequence of angles <r..QR1P, 
<r..QR2P, . . . each one of which is at most half the size of its predecessor. 
Justify the following steps (Figure 4.41): 

Q Ii II l:, 
FIGURE4.41 

• ., I 
Rn 
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There exists a point R1 on I such that PQ = QR1 (why?), so that 
!1PQR1 is isosceles. It follows that (~QR1P)

0 

~ 45° (why?). Next, there 
exists a point R2 such thatQ * R1 * R2 and PR1 = R1R2, sothatf1PR1R2 is 
isosceles. It follows that (~QR2P) 

0 
~ 22!0 (to justify this step, use Cor­

ollary 1 to the Saccheri-Legendre theorem). Continuing in this way, we 
get angles successively less than or equal to 11t0

, Si 0 , etc. so that by the 
Archimedean property of real numbers, we eventually get an angle 
~QR,.P with ~(QR,.P) 0 < a0

• 

PROJECTS 

1. Here is a heuristic argument showing that Archimedes' axiom is neces­
sary to prove the Saccheri-Legendre theorem. It is known that on a 
sphere, the angle sum of every triangle is greater than 180° (see Kay, 
1969); that doesn't contradict the Saccheri-Legendre theorem, because a 
sphere is not a model of neutral geometry. Fix a point 0 on a sphere. 
Consider the set N of all points on the sphere whose distance from 0 is 
infinitesimal. Interpret "line" to be the arc in N of any great circle. Give 
"between" its natural interpretation on an arc, and interpret "con­
gruence" as in spherical geometry. Then Nbecomes a model of our I, B, 
and C axioms in which Archimedes' axiom and the Saccheri-Legendre 
theorem do not hold. Similarly, if we fix a point 0 in a Euclidean plane 
and take N to be its infinitesimal neighborhood, the angle sum of every 
triangle is 180°, yet Euclid V does not hold in N (because the point at 
which the lines are supposed to meet is too far away); thus the converse to 
Proposition 4.11 cannot be proved from our I, B, and C axioms alone 
(Aristotle's axiom is needed; see Chapter 5). 

For a rigorous elaboration of this argument, see Hessenberg and Diller 
(1967) (if you can read German; if you can't, then report on Chapter 32 of 
Moise, 1990, which constructs a Euclidean ordered field that is not 
Archimedean) . 

2. Report on the proof of Theorem 4.3 given in Borsuk and Szmielew, 
Chapter 3, Sections 9 and 10. The key to the proof is that every Dedekind 
cut on the ordered set of dyadic rational numbers (see Exercise 18, 
Chapter 3) determines a unique real number. 

3. Our proof of Theorem 4. 7 used Archimedes' axiom again. Report on the 
proof in Martin ( 1982), Chapter 22, that avoids using this axiom. 
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4. Given a sphere of radius r, let Ebe any positive real number :s t nrand let 
NE be the set of all points on the sphere whose spherical distance from a 
fixed point 0 on the sphere is less than E. Interpret "line," "between," 
and "congruent" as they were interpreted for Nin Project 1. Then NE is 
not a model of our I, B, and C axioms. Tell which axioms hold and which 
ones fail. For those that fail, explain heuristically why they hold in N. 
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POSTULATE 

Like the goblin "Puck," [the feat of proving Euclid V] 
has led me "up and down, up and down," through 
many a wakeful night: but always, just as I thought I 
had it, some unforeseen fallacy was sure to trip me 
up, and the tricksy sprite would "leap out, laughing 
ho, ho, ho!" 

C. L. DODGSON (LEWIS CARROLL) 

Let us summarize what we have done so far. We have discovered 
certain gaps in Euclid's definitions and postulates for plane geometry. 
We filled in these gaps and firmed up the foundations for this geome­
try by presenting (a modified version of) Hilbert's definitions and 
axioms. We then built a structure of theorems on these foundations. 
However, the structure thus far erected does not rest on the parallel 
postulate, and we called that structure "neutral geometry." One rea­
son we postponed building on the parallel postulate is that we have 
less confidence in it than in the other axioms. 

You may feel that to deny the Euclidean parallel postulate would go 
against common sense. Albert Einstein once said that "common sense 
is, as a matter of fact, nothing more than layers of preconceived notions 
stored in our memories and emotions for the most part before age 
eighteen." 

That Euclid himself did not quite trust this postulate is shown by 
the fact that he postponed using it in a proof for as long as possible­
until his 29th proposition. In this chapter, we will examine a few 
illuminating attempts to prove Euclid's parallel postulate (many other 
attempts are presented in Bonola, 1955; Gray, 1989; and Rosenfeld, 
1988). It should be emphasized that most of these attempts were 
made by outstanding mathematicians, not incompetents. And even 
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though each attempt was flawed, the effort was usually not wasted; for, 
assuming that all but one step can be justified, when we detect the 
flawed step, we find another statement which to our surprise is equiv­
alent1 to the parallel postulate. You have the opportunity to do this 
enjoyable detective work in Exercises 8 through 13. 

PROCLUS 

Proclus (A.D. 410-485), whose commentary is one of the main 
sources of information on Greek geometry, criticized the parallel 
postulate as follows: "This ought even to be struck out of the Postu­
lates altogether; for it is a theorem involving many difficulties, which 
Ptolemy, in a certain book, set himself to solve. . .. The statement 
that since [the two lines] converge more and more as they are pro­
duced, they will sometime meet is plausible but not necessary." Pro­
clus offers the example of a hyperbola that approaches its asymptotes 
as closely as you like without ever meeting them (see Figure 5.1). 
This example shows that the opposite of Euclid's conclusions can at 
least be imagined.2 Proclus says: "It is then clear from this that we 
must seek a proof of the present theorem, and that it is alien to the 
special character of postulates." 

For over two thousand years some of the best mathematicians tried 
to prove Euclid's fifth postulate. What does it mean, according to our 
terminology, to have a proof? It should not be necessary to assume the 
parallel postulate as an axiom; we should be able to prove it from the 
other axioms. If we were able to prove Euclid Vin this way, it would 
become a theorem in neutral geometry and neutral geometry would 
encompass all of Euclidean geometry. 

The first known attempted proof was by Ptolemy. Without going 
through the details of his argument (see Heath, 1956, pp. 204-206), 
we might say that he assumed Hilbert's parallel postulate without 

1 Actually, the flawed argument only proves that the unjustified statement implies the 
parallel postulate; the converse requires further argument. I do not present any attempts that are 
uninformative. 

z Students always object to Figure 5.1 on the grounds that the hyperbola is not "straight." 
We agreed not to use this word because we don't have a precise definition. A precise definition 
can be given in differential geometry. See Appendix A. 
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realizing it. We have seen in Chapter 4 that Hilbert's parallel postu­
late is logically equivalent to Euclid V (Theorem 4.5), so that Ptolemy 
was assuming what he was trying to prove; i.e., his reasoning was 
essentially circular. 

Proclus attempted to prove the parallel postulate as follows (see 
Figure 5.2): Given two parallel lines I and m. Suppose linen cuts mat 
P. We wish to shown intersects /also (see Proposition 4.7). Let Q be 
the foot of the perpendicular from P to I (Corollary 1 to Theorem 4.1 L 
If n coincides with PQ, then it intersects I at Q. Otherwise, one ray PY 
of n lies between PQ-and a ray PX of m. Take X to be the foot of the 
perpendicular from Y to m. 

Now, as the point Y recedes endlessly from Pon n, the segment XY 
increases indefinitely in size, and so eventually becomes greater than 
segment PQ. Therefore, Y must cross over to the other side of I, so that 
n must meet /. 

The preceding paragraph is the heart of Proclus' argument; it is a 
rather sophisticated argument, involving motion and continuity. 
Moreover, every step in the argument can be shown to be correct­
except that the conclusion doesn't follow! (In Exercise 6 you are asked 
to prove Aristotle's principle that XY increases indefinitely, where 
"indefinitely" means "without bound." For example, the sequence of 
numbers f, i, k, H, fz-, . . . increases but not "indefinitely" in the 
sense of "without bound," because 1 is a bound for these numbers.) 

How could one justify the last step? Let us drop a perpendicular YZ 
from Y to /. You might then say that ( 1) X, Y, and Z are collinear, and 
(2) XZ = PQ. Thus, when XY becomes greater than PQ, XY must 
also be greater than XZ, so that Y must be on the other side of/. Here 
the conclusion does indeed follow from statements 1 and 2. The 
trouble is that there is no justification for these statements! 
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If this boggles your mind, it may be because Figure 5.2 makes 
statements 1 and 2 seem correct. You recall, however, that we are not 
allowed to use a diagram to justify a step in a proof. Each step must be 
proved from stated axioms or previously proven theorems. (We will 
show later that it is not possible in neutral geometry to prove state­
ments 1 and 2. They can be proved only in Euclidean geometry and 
only by using the parallel postulate; this makes Proclus' argument 
circular.) 

This analysis of Proclus' faulty argument illustrates how careful you 
must be in the way you think about parallel Jines from now on. You 
probably visualize parallel lines as railroad tracks, everywhere equi­
distant from each other, and the ties of the tracks perpendicular to 
both parallels. This imagery is valid only in Euclidean geometry. 
Without the parallel postulate, the only thing we can say about two 
lines that are "parallel" is that, by definition of "parallel," they have 
no point in common. You can't assume they are equidistant; you can't 
even assume they have one common perpendicular segment. As 
Humpty Dumpty remarked: "When I use a word it means what I wish 
it to mean, neither more nor less." 

WALLIS 

The next important attempt to prove the parallel postulate was made 
by the Persian astronomer and mathematician Nasir Eddin al-Tusi 
( 1201-127 4). But since his attempted proof had several unjustified 
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assumptions, let us move ahead to John Wallis (1616-1703).3 Wallis 
gave up trying to prove the parallel postulate in neutral geometry. 
Instead, he proposed a new axiom, which he felt was more plausible 
than the parallel postulate, and then proved the parallel postulate 
from his new axiom and the other axioms of neutral geometry. 

WALLIS' POSTULATE. Given any triangle b..ABC and given any seg­
ment DE. There exists a triangle b..DEF (having DE as one of its 
sides) that is similar to b..ABC (denoted b..DEF - b..ABC). (See Fig­
ure 5.3.) 

3 Wallis was the leading English mathematician before Isaac Newton. In his treatise Arith­
metica injinitorum (which Newton studied), Wallis introduced the symbol co for "infinity," 
developed formulas for certain integrals, and presented his famous infinite product formula 

1t 2·2·4·4·6·6·8· .. 
-= 
2 1·3·3·5·5·7·7··· 
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Similar triangles are triangles whose vertices can be put in one-to­
one correspondence so that corresponding angles are congruent. In 
Euclidean geometry it is proved that corresponding sides of similar 
triangles are proportional (see Exercise 18); for example, each side of 
.t.DEF might be twice as long as the corresponding side of .t.ABC. 
Thus, the intuitive meaning of Wallis' postulate is that you can either 
magnify or shrink a triangle as much as you like, without distortion. 

Using Wallis' postulate, the parallel postulate can be proved as 
follows (see Figure 5.4): 

Proof 
Given a point P not on line I, construct one parallel m to I through 

P as before - by dropping a perpendicular PQ to I and erecting 
m perpendicular to PQ. Let n be any other line through P. We must 
show that n meets I. As before, we consider a ray of n emanating 
from P that is between a ray of m and PQ; for any point Ron this ray, 
we drop RS perpendicular to PQ (see Proposition 3.16 and Corol­
lary 1 to Theorem 4.1 for the existence and uniqueness of all our 
perpendiculars). 

We now apply Wallis' postulate to .t.PSR and segment PQ. It 
tells us that there is a point T such that .t.PSR is similar to .6PQT. 

n 

FIGURES.4 Q 
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Assume T lies on the same side of PQ as R (Figure 5.5)-if not, 
reflect across PQ. 

By definition of similar trian~s, 4TPQ == <t:RPS. But since 
these angles have the r~ PQ = PS as a common side and since T 
lies on the same side of PQ as R, the only wauhey can be congruent 
is to be equal (Axiom C-4). Thus, PR= PT, so that T lies on n. 
Similarly, <t:PQT == <t:PSR, a right angle; hence, T lies on I. Thus, 
n and I meet at T; m is therefore the only line through P parallel 
to/. • 

There is no longer reason to consider Wallis' postulate any more 
plausible than Euclid V, because it turns out to be logically equivalent 
to Euclid V (see Exercise 7 (a)). 

SACCHERI 

We next consider the remarkable work of the logician and Jesuit priest 
Girolamo Saccheri (1667-1733). Just before he died he published a 
little book entitled Euclides ab omni naevo vindicatus (Euclid Freed of 
Every Flaw), which was not really noticed until a century and a half 
later, when Eugenio Beltrami rediscovered it. 

Saccheri's idea was to use a reductio ad absurdum argument. He 
assumed the negation of the parallel postulate and tried to deduce a 
contradiction. Specifically, he studied certain quadrilaterals (Figure 
5.6) whose base angles are right angles and whose base-adjacent sides 
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FIGURE5.8 Saccheri quadrilateral. 

are congruent to each other. These quadrilaterals have subsequently 
become known as Saccheri quadrilaterals (though they were studied 
many centuries earlier by the poet Omar Khayyam and by Nasir Eddin 
al-Tusi). It is easy to prove in neutral geometry that the summit angles 
are congruent (Exercise 1), i.e., 4:C == 4::0. 

There are three possible cases: 

Case 1: The summit angles are right angles. 
Case 2: The summit angles are obtuse. 
Case 3: The summit angles are acute. 

Wanting to prove the first case, which is the case in Euclidean geome­
try, Saccheri tried to show that the other two cases led to contradic­
tions. He succeeded in showing that case 2 leads to a contradiction: if 
the summit angles were obtuse, the angle sum of the quadrilateral 
would be more than 360 °, contradicting Corollary 2 to the Saccheri­
Legendre theorem (to verify the hypothesis of Corollary 2, see Exer­
cise 17). 

However hard he tried, he could not squeeze a contradiction out of 
case 3, "the inimical acute angle hypothesis," as he called it. He was 
able to deduce many strange results,4 but-not a contradiction. Finally, 
he exclaimed in frustration: "The hypothesis of the acute angle is 
absolutely false, because [it is] repugnant to the nature of the straight 
line!" It is as if a man had discovered a rare diamond, but, unable to 
believe what he saw, announced it was glass. Although he did not 
recognize it, Saccheri had discovered non-Euclidean geometry. 

4 See the translation of Saccheri's treatise by G. B. Halsted (Saccheri, 1970). 
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CLAIRAUT 

Alexis Claude Clairaut ( 1 713 - 1 7 65) was a leading French geometer. 
Like Wallis, he did not try to prove the parallel postulate in neutral 
geometry but replaced it in his 17 41 text Elements de geometrie with 
another axiom. 

CLAIRAUT'S AXIOM. Rectangles exist. 

One can argue that Euclid Vis not obvious because one might have 
to travel very far indeed to verify that the "physical lines" predicted to 
meet by that postulate actually do meet. According to Saccheri, it 
suffices to show the existence of one rectangle, which could be quite 
"small." Clairaut made that his axiom, arguing that "we observe 
rectangles all around us in houses, gardens, rooms, walls." So why 
didn't that settle the matter? Perhaps because the game of trying to 
prove Euclid V had been going on for so many centuries that it became 
a challenging obsession for mathematicians. Or did mathematicians 
finally recognize that geometry was not about "physical space"? After 
all, if you believe that a rectangle can be drawn on the ground, then 
you cannot also believe that the earth is spherical, because rectangles 
do not exist on a sphere. If you think you have drawn a "physical 
rectangle," you could be mistaken because exact measurements are 
physically impossible. Or did it finally dawn on mathematicians that 
any postulate proposed to replace Euclid V - no matter how intui­
tively appealing-was logically equivalent to Euclid V and therefore 
nothing was gained logically by the replacement? 

Let us prove that Clairaut's axiom is logically equivalent in neutral 
geometry to the parallel postulate. 

Proof 
If we assume the latter, then the existence of rectangles follows 
easily from Proposition 4.11 and Theorem 4. 7. Conversely, assume 
Clairaut's axiom. Then by Theorem 4. 7, all triangles have angle 
sum 180 °, and by introducing a diagonal, all convex quadrilaterals 
have angle sum 360°. Return to Proclus' argument as illustrated in 
Figure 5. 2. Let S be the foot of the perpendicular from Y to PQ. S is 
on the same side of m as Y and Q because SY is parallel to m 
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(Corollary 1toTheorem4.1 ). Moreover, DPXYS, which has three 
right angles, is now known to be a rectangle. You can easily prove 
(Exercise 4) that opposite sides of a rectangle are congruent, so 
PS= XY. By Aristotle's axiom (Chapter 3), Y can be chosen on the 
given ray of n so that XY > PQ. Then PS > PQ and P * Q * S. As 
above, Y is on the same side of I as S, hence on the opposite side of I 
from P. Therefore I meets n at some point between P and Y. • 

LEGENDRE 

Legendre did not know of Saccheri's work and rediscovered Sa~­
cheri's theorems in neutral geometry that are our Theorems 4.4 and 
4.7. Legendre certainly knew of Clairaut's text and rejected Clair­
aut's axiom. We already discussed, in Chapter 1, one of Legendre's 
attempts to prove the parallel postulate, whose flaw we ask you to 
detect in Exercise 8. Legendre published a collection of his many 
attempts as late as 1833, the year he died. Here is his attempt to prove 
that the angle sum of every triangle is 180°. (Using our modification of 
Proclus' argument above, we could then prove Hilbert's parallel pos­
tulate.) 

Proof (see Figure 5. 7): 
Suppose, on the contrary, there exists a triangle .6.ABC having 
defect d -=I= 0. By the Saccheri-Legendre Theorem 4.4, d> 0. One 
of the angles of the triangle-say ~-must then be acute (in 
fact, less than 60 °). On the opposite side of BC from A, let D be the 
unique point such that <tDBC = ~CB and BD = AC (Axioms 
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C-1 and C-4). Then .6ACB = .6DBC (SAS). Also BO II AC and 
BA II OC (by the alternate interior angle theorem, Theorem 4.1), 
so that D lies in the interior of the acute ~. Hence there is a line I 
through D such that /intersects side AB in a point B1 =fo A and side 
AC in a point C1 =fo A. Because of the parallel lines, we know that 
B1 =fo B and C1 =fo C. 

Suppose B1 was on segment AB. Then A and B1 would be on 
the same side of BO. Since BO II AC, A and C1 are on the same side 
of BO. Thus B1 and C1 are on the same side of BO (AxiomB-4). But 
since D lies in the interior of~' B1 * D * C1 (Proposition 3. 7). 
This contradiction shows that A* B * B1• Similarly, we have 
A* C * C1• Since .6ACB = .6DBC, the defect of .6DBC is also d. 
Therefore, by the additivity of the defect applied to the four trian­
gles into which .6AB1C1 has been decomposed, the defect of 
.6AB1C1 is greater than or equal to 2d. 

Repeating this construction for .6AB1C1, we obtain .6AB2C2 

with defect greater than or equal to 4d. Iterating the construction n 
times, we obtain a triangle with defect greater than or equal to 2"d, 
which can be made as large as we like by taking n sufficiently large. 
But the defect of a triangle cannot be more than 180 ° ! This contra­
diction shows that every triangle .6ABC has defect 0. • 

Can you see the flaw? It is easy, because we have justified every 
step but one, the sentence beginning with "Hence." That is the 
assumption you were warned in Chapter 3 not to make. Legendre 
made the same error as was made many centuries earlier by Simplicius 
(Byzantine, sixth century), al-Jawhari (Persian, ninth century), Nasir 
Eddin al-Tusi, and others. He has failed to prove in neutral geometry 
that the defect of every triangle is zero. Nevertheless, Legendre has 
succeeded in proving the following theorem in neutral geometry. 

THEOREM 5.1. Hypothesis: For any acute~ and any point Din the 
interior of 1:'.A, there exists a line through D and not through A which 
intersects both sides of ~. Conclusion: The angle sum of every 
triangle is 180 °. 

You will easily see from the Klein model in Chapter 7 that the 
hypothesis of Theorem 5.1 fails in non-Euclidean geometry (Figure 
7 .5). Let us show that the hypothesis can be proved in Euclidean geometry 
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(hence this hypothesis is another statement equivalent to Euclid V). 
Drop a perpendicular from interior point D to one of the sides of <tA, 
and let B be the foot of that perpendicular. Since <tA is acute, 
(<tA) 0 + (<tDBA) 0 = (<tA) 0 + 90° < 180°. So BO meets the other 
side of <tA, by Euclid V. • 

LAMBERT AND TAURINUS 

Regarding Euclid V, Johann Heinrich Lambert ( 1728-1777) wrote: 

Undoubtedly, this basic assertion is far less clear and obvious than 
the others. Not only does it naturally give the impression that it should 
be proved, but to some extent it makes the reader feel that he is capable 

Johann Heinrich Lambert 
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of giving a proof, or that he should give it. However, to the extent to 
which I understand this matter, that is just a first impression. He who 
reads Euclid further is bound to be amazed not only at the rigor of his 
proofs but also at the delightful simplicity of his exposition. This being 
so, he will marvel all the more at the position of the fifth postulate when 
he finds out that Euclid proved propositions that could far more easily 
be left unproved. 

Lambert studied quadrilaterals having at least three right angles, 
which are now named after him (though they were studied seven 
centuries earlier by the Egyptian scientist ibn-al-Haytham). You 
showed in Exercise 19, Chapter 4, that Lambert quadrilaterals exist. 
A Lambert quadrilateral can be "doubled" (by reflecting it across an 
included side of two right angles) to obtain a Saccheri quadrilateral. 
Like Saccheri, Lambert disproved the obtuse angle hypothesis and 
studied the implications of the "inimical" acute angle hypothesis. He 
observed that it implied that similar triangles must then be congruent, 
which in turn implied the existence of an absolute unit of length (see 
Theorem 6.2, Chapter 6). He called this consequence "exquisite" 
but did not want it to be true, worrying that the absence of similar, 
proportional figures "would result in countless inconveniences," es­
pecially for astronomers (he did not realize that an elegant non-Eucli­
dean trigonometry could be developed). 

He also noticed that the defect of a triangle was proportional to its 
area (see Chapter 10). He recalled that on a sphere in Euclidean 
space, the angle sum of a triangle formed by arcs of great circles was 
greater than 180 °, and the excess over 180 ° of the angle sum of the 
triangle was proportional to the area of the triangle, the constant of 
proportionality being the square r 2 of the radius of the sphere (see 
Rosenfeld, 1988, Chapter 1). If r is replaced by ir ( i = ..J- 1), squar­
ing introduces a minus sign that converts the excess into the defect in 
that proportionality. Lambert therefore speculated that the acute 
angle hypothesis described geometry on a "sphere of imaginary 
radius."5 

5 In fact, this idea can be explained in terms of a natural embedding of the non-Euclidean 
plane in relativistic three-space (see Chapter 7). Lambert is known for proving the irrationality 
of 7t and of rand tan x when xis rational, as well as for important laws he discovered in optics and 
astronomy. The quote is from B. A. Rosenfeld (1988), p. 100. 
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Fifty years passed before this brilliant idea was further elaborated 
in a booklet dated 1826 by F. A. Taurinus, who transformed the 
formulas of spherical trigonometry into formulas for what he called 
"log-spherical geometry" by substituting ir for r (his formulas are 
proved by a different method in Theorem 10.4, Chapter 10). Taur­
inus vacillated over whether such a geometry actually "existed." He 
sent a copy of his booklet to C. F. Gauss (see Chapter 6) and later 
burned the remaining copies in despair when Gauss did not respond. 

Lambert cautiously did not submit his Theory of Parallels for publi­
cation (it was published posthumously in 1786). It contained an erro­
neous attempt to disprove the acute angle hypothesis. Given line /and 
distance d, let us call the locus m of all points on a given side of I at 
perpendicular distance d from I an equidistant curve. The flaw in many 
early attempts to prove the parallel postulate was the tacit assumption 
that m was a line. Lambert tried to prove this assumption, but he only 
succeeded in proving that an arc of m could not be a circular arc. 
Saccheri also erred using differential calculus in his attempt to prove 
that m was a line. 6 

F A.RKA.S BOL YA.I 

There were so many attempts to prove Euclid V that by 17 63 G. S. 
Kluge! was able to submit a doctoral thesis finding the flaws in 28 
different supposed proofs of the parallel postulate, expressing doubt 
that it could be proved. The French encyclopedist and mathematician 
J. L. R. d'Alembert called this "the scandal of geometry." Mathema­
ticians were becoming discouraged. The Hungarian Farkas Bolyai 
wrote to his son Janos: 

You must not attempt this approach to parallels. I know this way to its 
very end. I have traversed this bottomless night, which extinguished all 
light and joy of my life. I entreat you, leave the science of parallels 
alone. . . . I thought I would sacrifice myself for the sake of the truth. 
I was ready to become a martyr who would remove the flaw from 

6 As an example in elliptic geometry: If /is the equator of the sphere, the equidistant curves 
are the other circles of latitude. 
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Farkas Bolyai 

geometry and return it purified to mankind. I accomplished monstrous, 
enormous labors; my creations are far better than those of others and 
yet I have not achieved complete satisfaction. . . . I turned back when 
I saw that no man can reach the bottom of the night. I turned back 
unconsoled, pitying myself and all mankind. 

I admit that I expect little from the deviation of your lines. It seems 
to me that I have been in these regions; that I have traveled past all 
reefs of this infernal Dead Sea and have always come back with broken 
mast and torn sail. The ruin of my disposition and my fall date back to 
this time. I thoughtlessly risked my life and happiness-autCaesaraut 
nihil.7 

But the young Bolyai was not deterred by his father's warnings, for 
he had a completely new idea. He assumed that the negation of 

7 The correspondence between Farkas and Janos Bolyai is from Meschkowski (1964). 
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Euclid's parallel postulate was not absurd, and in 1823 was able to 
write to his father: 

It is now my definite plan to publish a work on parallels as soon as I 
can complete and arrange the material and an opportunity presents 
itself; at the moment I still do not clearly see my way through, but the 
path which I have followed gives positive evidence that the goal will be 
reached, if it is at all possible; I have not quite reached it, but I have 
discovered such wonderful things that I was amazed, and it would be an 
everlasting piece of bad fortune if they were lost. When you, my dear 
Father, see them, you will understand; at present I can say nothing 
except this: that out of nothing I have created a strange new universe. All 
that I have sent you previously is like a house of cards in comparison 
with a tower. I am no less convinced that these discoveries will bring me 
honor than I would be if they were completed. 

We will explore this "strange new universe" in the following chapters. 
A century after Janos Bolyai wrote this letter, the English physjcist J. J. 
Thomson remarked, somewhat facetiously: 

We have Einstein's space, de Sitter's space, expanding universes, con­
tracting universes, vibrating universes, mysterious universes. In fact, 
the pure mathematician may create universes just by writing down an 
equation, and indeed if he is an individualist he can have a universe of 
his own. 

In fact, in 1949 the renowned logician Kurt Godel found a model of 
the universe that satisfies Einstein's gravitational equations, one in 
which it is theoretically possible to travel backward in time!8 

REVIEW EXERCISE 

Which of the following statements are correct? 

( 1) Wallis' postulate implies that there exist two triangles that are similar 
but not congruent. 

8 To date, attempts to refute Giidel's model on either mathematical or philosophical grounds 
have failed. See "On the paradoxical time-structures of Giidel," by Howard Stein, Journal of the 
Philosophy of Science, v. 37, December 1970, p. 589. 
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(2) A "Saccheri quadrilateral" is a quadrilateral DABDC such that 1::CAB 
and 1::DBA are right angles and AC == BO. 

(3) A "Lambert quadrilateral" is a quadrilateral having at least three right 
angles. 

(4) A quadrilateral that is both a Saccheri and a Lambert quadrilateral 
must be a rectangle. 

(5) A hyperbola comes arbitrarily close to its asymptotes without ever 
intersecting them. 

(6) Janos Bolyai warned his son Farkas not to work on the parallel 
problem. 

(7) Saccheri succeeded in disproving the "inimical" acute angle hypothe­
sis. 

(8) In trying to prove Euclid's fifth postulate, Ptolemy tacitly assumed 
what we have been calling Hilbert's parallel postulate. 

(9) It is a theorem in neutral geometry that if /JI m and m II n, then 
Ill n. 

( 10) It is a theorem in neutral geometry that every segment has a unique 
midpoint. 

( 11) It is a theorem in neutral geometry that if a rectangle exists, then the 
angle sum of any triangle is 180°. 

( 12) It is a theorem in neutral geometry that if I and mare parallel lines, then 
alternate interior angles cut out by any transversal to I and m are 
congruent to each other. 

(13) Legendre proved in neutral geometry that for any acute 1::A and any 
point D in the interior of 1::A, there exists a line through D and not 
through A which intersects both sides of 1::A. 

( 14) Clairaut showed that Euclid's fifth postulate could be replaced in the 
logical presentation of Euclidean geometry by the "more obvious" 
postulate that rectangles exist, yet mathematicians were not appeased 
by Clairaut's replacement and they continued to try to prove Euclid V. 

EXERCISES 

Again, in proofs in Exercises 1- 17 you are allowed to use only our 
previous results from neutral geometry. 

1. Let DABDC be a Saccheri quadrilateral, so that 1::B and 1::A are right 
angles and CA == DB (Figure 5.8). Prove that 1::C == .ro. (Hint: Prove 
bCAB == bDBA, then bCDB == bDCA.) Also prove that Saccheri 
quadrilaterals exist. 
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FIGURE5.8 A B 

2. Let DABDC be a quadrilateral whose base angles <r.A and <i:B are right 
angles. Prove that if AC< BD, then (<i'.D) 0 < (<i:C)° (Figure 5.9). 
(Hint: If AC == BE, with B * E * D, use Exercise 23, Chapter 4, to show 
that Eis interior to <r.ACD, then apply Exercise 1 and the exterior angle 
theorem.) 

3. With the same hypothesis as in Exercise 2, prove the converse, that if 
(<i:D) 0 < (<i'.C) 0

, then AC< BD. (Hint: Assume the contrary, which 
involves the two cases AC == BD and AC > BO. In each case, derive a 
contradiction.) 

4. The Swiss-German mathematician Lambert considered quadrilaterals 
with at least three right angles, which are now named after him (Figure 
5.10). Prove the following: 
(a) The fourth angle <i:D of a Lambert quadrilateral is never obtuse. 
(b) If <i:D is a right angle, then the opposite sides of DABCD are 

congruent (use Exercise 2 and an RAA argument). 

E 

FIGURE5.9 

D 

~ 

h 
A B 

FIGURE 5.18 Lambert quadrilateral. 
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(c) If <tD is acute, then each side adjacent to <tD is greater than its 
opposite side, i.e., DB> CA and CD> AB (use Exercise 3). 

( d) A quadrilateral is both a Lambert and a Saccheri quadrilateral if and 
only if it is a rectangle. 

We can combine statements (a), (b), and (c) of this exercise into the 
following statement: a side adjacent to the fourth angle of a Lambert 
quadrilateral is greater than or congruent to its opposite side. As you 
know, case (b) always holds if the geometry is Euclidean; in the next 
chapter we will show that case (c) always holds if the geometry is 
hyperbolic. In elliptic geometry the fourth angle of a Lambert quadri­
lateral is always obtuse, and a side adjacent to the fourth angle is always 
smaller than its opposite side. 

5. Given a right triangle b.PXY with right angle at X, form a new right 
triangle b.PX'Y' that has acute angle <tP in common with the given 
triangle but double the hypotenuse (prove that this can be done); see 
Figure 5.11. Prove that the side opposite the acute angle is at least 
doubled, whereas the side adjacent to the acute angle is at most doubled. 
(Hint: Extend side XY far enough to drop a perpendicular Y 'Z to XY. 
Prove that b.PXY == b.Y'ZY, and apply Exercise 4 to the Lambert 
quadrilateral DXZY'X'.) 

6. Use Exercise 5 to prove Aristotle's axiom (used in Proclus' argument) 
that as Y recedes endlessly from P, segment XY increases indefinitely 
(seep. 96). (Hint: Use Archimedes' axiom and the fact that 2"-+ oo as 
n-+ oo.9 ) Does segment PX also increase indefinitely? 

7. (a) Prove that Euclid's fifth postulate implies Wallis' postulate (see 
Figure 5.12). (Hint: Use Axiom C-4 and the fact that in Euclidean 

9 Euclid had a version of Archimedes' axiom in Book V, but he presented it as a "definition": 
If a < b, then there is a number n such that z•a > b. 
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geometry the angle sum of a triangle is 180 ° - Proposition 4.11.) 
(b) Suppose that in the statement of Wallis' postulate we add the 

assumption AB == DE and replace the word "similar" by "con­
gruent." Prove this new statement in neutral geometry. 

8. Reread Legendre's attempted proof of the parallel postulate in Chapter 
1. Find the flaw, and justify all the steps that are correct. Prove the 
flawed statement in Euclidean geometry. 

9. Find the unjustified assumption in the following "proof" of the parallel 
postulate by Farkas Bolyai (see Figure 5.13). Given P not on line/, PO 
perpendicular to I at Q, and line m Rerpendicular to PO at P. Let n be any 
line through P distinct from m and PQ. We must show that n meets/. Let 
A be any point between P and Q. Let B be the unique point such that 

Q 

B 

FIGURES.13 
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A * Q * B and AQ = QB.Let R be the foot of the perpendicular from A 
ton. Let C be the unique point such that A * R * C and AR = RC. Then 
A, B, and Care not collinear (else R = P); hence there is a unique circle 
y passing through them. Since /is the perpendicular bisector of chord AB 
of y and n is the perpendicular bisector of chord AC of y, I and n meet at 
the center of y (Exercise 1 7 (b), Chapter 4). 

10. The following attempted proof of the parallel postulate is similar to 
Proclus' but the flaw is different; detect the flaw with the help of 
Exercise 5. (See Figure 5.14.) Given P not on line/, PQ perpendicular 
to/atQ, and line m perpendicular to PQ at P. Letn be any line through P 
distinct from m and 'PQ. We must show that n meets/. Let PX be a ray of 
n between PQ and a ray of m, and let Y be the foot of the perpendicular 
from X to PQ. As X recedes endlessly from P, PY increases indefinitely. 
Hence, Y eventually reaches a position Y' on PQ such that PY' > PQ. 
Let X' be the corresponding position reached by X on linen. Now X' 
and Y' are on the same side of I because X'Y' is parallel to /. But Y' 
and P are on opposite sides of/. Hence, X' and P are on opposite sides 
of/, so that segment PX' (which is part of n) meets /. 

11. Find the flaw in the following attempted proof of the parallel postulate 
given by J. D. Gergonne (see Figure 5.15). Given P not on line/, PQ 
perpendicularto/atQ, line mperpendicularto PQ at P, and point A =I= P 
on m. Let PB be the last ray between PA and PQ that intersects/, B being 
the point of intersection. There exists ~oint C on I such that Q * B * C 
(Axioms B-1 and B-2). It follows that PB is not the last ray between PA 
and PQ that intersects /, and hence all rays between PA and PQ meet /. 
Thus mis the only parallel to I through P. 

12. Legendre made another attempt to prove that the defect of every trian­
gle is zero, as follows. In any triangle ~ABC, if we are given the numbers 
a, P that measure the angles at A and B, respectively, and the number x 
that measures the length of the included side AB, then by ASA the 
number y that measures the third angle is uniquely determined, so we 
can write y = f (a, p, x). Now if right angles are measured by the unit 1, 
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y is some number between 0 and 2. But xis not a dimensionless num­
ber, since it depends on the arbitrary unit of length (e.g., inch, foot, 
or meter). Thus the formula for y cannot actually contain x, and soy= 
/(a, /J). (Ifwe knew that the geometry was Euclidean, we would have 
f(a,p) = 2 - a- p.) NowletDbethe midpoint of AB. ByAxiomC-4, 
there is a unique ray DE with E on the same side of AB as C such that 
4'.:ADE = .rB. Then DE II BC, by corresponding angles (Exercise 32, 
Chapter 4), so, by Pasch 's theorem, we can choose label E for a point on 
AC. Since y =/(a, p) for any triangle, 4'.:AED =.re (i.e., ~ADE 
is similar to ~ABC). Hence DCEDB has angle sum 360°, so ~CEB 
and ~BED have angle sum 180 °. By Theorem 4. 7, all triangles have de­
fect zero. What is the flaw? (Hint: See the remarks following Theorem 
6.2.) 

13. It was stated at the beginning of this chapter that if all steps but one of an 
attempt to prove the parallel postulate are correct, then the flawed step 
yields another statement equivalent to Hilbert's parallel postulate. 
Show that for Proclus' attempt, that statement is: Given parallel lines/, 
m having a common perpendicular and a point Y not lying on I or m, if X 
(resp. Z) is the foot of the perpendicular from Y to I (resp. tom), then X, 
Y, and Z are collinear. (Hint: Use Exercise 4b.) 

14. Prove that if the defect of every triangle is 0 then Hilbert's parallel 
postulate holds (this is the converse to Proposition 4.11). (Hint: See the 
discussion of Clairaut's axiom.) 

15. You will show in Exercise 24 that the following statement can be proved 
in Euclidean geometry: If points P, Q, R lie on a circle with center 0, and 
if -rPQR is acute, then (.rPQR) 0 = t(.rPOR) 0 • In neutral geometry, 
show that this statement implies the existence of a triangle of defect 
zero (hence, by Prop. 4. 7 and Clairaut's axiom, the geometry is Euclid­
ean). 

16. (Di.fftcu/t) Here is Legendre's desperate attempt in the 12th and final 
edition of his geometry text to prove that the defect d of any triangle 
~ABC is zero. Label so that AC ;;;::: AB. Then the method of Exercise 15, 
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Chapter 4 (invented by Legendre to prove Theorem 4.4), gives us 
b.AEC having the same defect d (where AE = 2AD, D being the mid­
point of BC). From AC 2:: AB it is not difficult to show that ~EAC s 
~EAB, so that ~EAC s t~BAC. If AC ;;;::: AE, set B1 = E and C1 = C; 
otherwise, reflect b.AEC across the angle bisector of ~EAC to obtain 
b.AB1C~ith defect d, ~B1AC1 s t~BAC, C1 on ray AC, and 
AC1 2:: AB1• Iterate this construction n times to obtain b.AB.C,. with 
defect d, ~B.AC,. s z-n~BAC, and C,. on ray AC. Let n--+ oo. Since 
~B,.AC,. --. 0, the triangles b.AB,.C,. (which all have defect d) converge 
in the limit to a degenerate triangle on ray AC having angles 0°, 0°, and 
180°. Hence d= 0. Criticize this argument (Hint: Show that B,., 
C,.--+ oo.) 

1 7. Prove that a Saccheri quadrilateral is convex. Prove that a Lambert 
quadrilateral is a parallelogram and that every parallelogram is convex. 

The remaining exercises in this chapter are exercises in Euclidean geome­
try, which means you are allowed to use the parallel postulate and its 
consequences already established. We will refer to these results in Chap­
ter 7. You are also allowed to use the following result, a proof of which 
is indicated in the Major Exercises: 

PARALLEL PROJECTION THEOREM. Given three parallel lines I, m, 
and n. Let t and t' be transversals to these parallels, cutting them in 
~n~A, B, and C and in points A', B', and C', respectively. Then 
AB/BC= A'B' /B'C'. (Figure 5.16.) 

18. Fundamental theorem on similar triangles. Given b.ABC - b.A'B'C', i.e., 
given ~ == ~', ~B == ~B', and ~C == ~C'. Then corresponding sides 
are proportional, i.e., AB/A'B' = AC/A'C' = BC/B'C'. (~ee Figure 
5.17.) Prove the theorem. (Hint: Let B" be the point on AB such that 
AB" == A'B', and let C" be the point on AC such that AC" == A'C'. Use 

FIGURE S.16 
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B'-~~~~~~~~~~c 

FIGURES.17 

the hypothesis to show that ~AB"C" == ~A'B'C' and deduce from 
corresponding angles that B~C" is parallel to BC. Now apply the parallel 
projection theorem.) 

19. Prove the converse to the fundamental theorem on similar triangles. 
(Hint: Choose B" as before. Use Pasch's theorem to show that the 
parallel to BC through B" cuts AC at a point C". Then use the hypothe­
sis, Exercise 18, and the SSS criterion to show that ~ABC -
~AB"C" == ~A'B'C'.) 

20. SAS similarity criterion. If <r.A == <r.A' and AB/A'B' = AC/A'C', prove 
that ~ABC - ~A'B'C'. (Hint: Same method as in Exercise 19, but 
using SAS instead of SSS.) 

21. Prove the Pythagorean theorem. (Hint: Let CD be the altitude to the 
hypotenuse; see Figure 5.18. Use the fact that the angle sum of a 
triangle equals 180° (Exercise 8, Chapter 4) to show that ~ACD -
~ABC - ~CBD. Apply Exercise 18 and a little algebra based on 
AB = AD + DB to get the result.) 

22. The fundamental theorem on similar triangles (Exercise 18) allows the 
trigonometric functions such as sine and cosine to be defined. Namely, 
given an acute angle <r.A, make it part of a right triangle ~BAC with right 
angle at C, and set 

c 

FIGURES.IR 
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sin <r.A = (BC)/(AB) 
cos <r.A = (AC)/(AB). 

These definitions are then independent of the choice of the right trian­
gle used. If <r.A is obtuse and <r.A' is its supplement, set 

sin <r.A = +sin <r.A' 
cos <r.A = - cos <r.A'. 

If <r.A is a right angle, set 

sin <r.A = 1 
cos <r.A = 0. 

Now, given any triangle b.ABC, if a and bare the lengths of the sides 
opposite A and B, respectively, prove the law of sines, 

a sin <r.A 
b- sin 4:B · 

(Hint: Drop altitude CD and use the two right triangles b.ADC and 
b.BDC to show that b sin <r.A =CD= a sin 4:B; see Figure 5.19.) 
Similarly, prove the law of cosines, 

c2 = a2 + b2 - 2ab cos 4:C, 

and deduce the converse to the Pythagorean theorem. 
23. Given A * B * C and point D not collinear with A, B, and C (Figure 

5.20). Prove that 

AB AD sin <r.ADB 
-= 
BC CD sin 4:CDB 
AC AD sin <r.ADC 
-= 
BC BO sin 4:BDC 

(Hint: Use the law of sines to compute AB/AD, CD/BC, and BO/BC, 
and remember that sin <r.ABD = sin 4:CBD.) 

c 

FIGURES.19 D B 
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24. Let y be a circle with center 0, and let P, Q, and R be three points on y. 
Prove that if P and R are diametrically opposite, then 1'.PQR is a right 
angle, and if 0 and Q are on the same side of PR, then (1'.PQR) 0 = 
t(<tPOR) 0

• (Hint: Again use the fact that the triangular angle sum is 
180°. There are four cases to consider, as in Figure 5.21.) State and 
prove the analogous result when 0 and Q are on opposite sides of PR. 

25. Prove that if two angles inscribed in a circle subtend the same arc, then 
they are congruent; see Figure 5.22. (Hint: Apply the previous exercise 
after carefully defining "subtend the same arc.") 

26. Prove that if 1'.PQR is a right angle, then Q lies on the circle y having PR 
as diameter. (Hint: Use uniqueness of perpendiculars and Exercise 24.) 

Q 

p 

Q Q 

R 

FIGURE5.21 
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FIGURE S.22 1'.PQR == 1'.PQ'R. 

MAJOR EXERCISES 

These exercises furnish the proof of the parallel projection theorem in 
Euclidean geometry (text preceding Exercise 18; also see Figure 
5.16). 

1. Prove the following results about Euclidean parallelograms: 
(a) Opposite sides (and likewise, opposite angles) of a parallelogram are 

congruent to each other. 
(b) A parallelogram is a rectangle iff its diagonals are congruent, and in 

that case the diagonals bisect each other. 
(c) A parallelogram has a circumscribed circle iff it is a rectangle. (Hint 

for the "only if" part: Opposite angles must subtend semicircles.) 
(d) A rectangle is a square iff its diagonals are perpendicular. 

2. Let k, /, m, and n be parallel lines, distinct, except that possibly I= m. Let 
transversals t and t' cut these lines in points A, B, C, and D and in A', B', 
C', and D', respectively (Figure 5.23). If AB= CD, prove that A'B' = 
C'D'. (Hint: Construct parallels to t through A' and C'. Apply Major 
Exercise 1 (a) and the congruence of corresponding angles.) 

3. Prove that parallel projection preserves betweenness, i.e., in Figure 5.16, 
if A* B * C, then A'* B' * C'. (Hint: Use Axiom B-4.) 

4. Prove the paral~e!£iection theorem for the special case in which the 
ratio of lengths AB/BC is a rational number plq. (Hint: Divide AB into p 
congruent segments and BC into q congruent segments so that all p + q 
segments will be congruent. Use Major Exercise 2, applying it p + q 
times.) 

5. The case where AB/BC is an irrational number xis the difficult case. Let 
A'B' /B'C' = x'. The idea is to show that every rational number plq less 
than xis also less than x' (and, by symmetry, vice versa). This will imply 
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x = x', since a real number is the least upper bound of all the rational 
numbers less than it (see any good text on real analysis). To show this, lay - -off on BA a segment BO of length pCB!q, and let O' be the parallel 
projection of 0 onto t'. From plq < x, deduce B * 0 *A. Now apply 
Major Exercises 3 and 4 to show that plq < x'. 10 

6. Given a segment AB of length a with respect to some unit segment 01 
(see Theorem 4.3). Using straightedge and compass only, show how to 
construct a segment of length ../a. (Hint: Extend AB to a segment AC of 
length a + 1; erect a perpendicular through B and let 0 be one of its 
intersections with the circle having AC as diameter; apply the theory of 
similar triangles to show that BO = ../a. Review the construction in Major 
Exercise 1, Chapter 1.) 

7. Prove that given any line I, two points A and B not on I are on the same side 
S of I if and only if they lie on a circle contained in S. (Hint: If A and B are 
on opposite sides of/, apply Major Exercise 1, Chapter 4. If they are on 
the same side S, let M be the midpoint and m the perpendicular bisector 
of AB. Any circle through A and B has its center on m. If AB II /, take any 
point P between M and the point where m meets /, and use the circle 
through A, Band P (see Exercise 12, Chapter 6). Otherwise, if A is closer 
to I than B, let the perpendicular from A to I meet m at 0. Show that the 
circle centered at 0 with radius OA = OB lies in S. Be sure to indicate 
where the hypothesis that the geometry is Euclidean is used; see Exercise 
P-20, Chapter 7.) 

10 This clever method of proof was essentially discovered by the ancient Greek mathemati­
cian Eudoxus-see E. C. Zeeman, "Research, Ancient and Modern," Bulletin of tlze Institute of 
Mathematics and Its Applications, 10 (1974): 272-281, Warwick University, England. 
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PROJECTS 

1. Since there is no algebra in Euclid's Elements, it was quite a feat for 
Eudoxus to have discovered a purely geometric treatment of proportions 
and similar triangles. Report on this, using Heath ( 19 56) and Moise 
(1990, Chapter 20) as references. 

2. Eudoxus was also the founder of theoretical astronomy in antiquity (his 
work later refined by Ptolemy). In his model, the universe was bounded 
by "the celestial sphere," so that the physical interpretation of Euclid's 
second and third postulates was false! Even Kepler and Galileo believed 
in an outer limit to the world. It was Rene Descartes ( 1596- 1650) who 
promoted the idea that we live in infinite, unbounded Euclidean space. 
Report on these issues, using Torretti ( 1978) as one reference. 

3. Report on several other attempts to prove the Euclidean parallel postu­
late in neutral geometry, using Rosenfeld ( 1988) as a reference. 

4. We remarked after Theorem 4.3 that the definition of n as the ratio of the 
circumference of any circle to its diameter could only be justified in 
Euclidean geotnetry, not neutral geometry. Report on the justification in 
Moise ( 1990), section 21.2, which uses the theory of similar triangles. 



THE DISCOVERY 

OF NON-EUCLIDEAN 

GEOMETRY 

Out of nothing I have created a strange new universe. 
JANOS BOLYAI 

.JANOS BOLYAI 

It is remarkable that sometimes when the time is right for a new idea to 
come forth, the idea occurs to several people more or less simulta­
neously. Thus it was in the eighteenth century with the discovery of 
the calculus by Newton in England and Leibniz in Germany, and in 
the nineteenth century with the discovery of non-Euclidean geome­
try. When Janos Bolyai ( 1802-1860) announced privately his discov­
eries in non-Euclidean geometry, his father Farkas admonished him: 

It seems to me advisable, if you have actually succeeded in obtaining a 
solution of the problem, that, for a two-fold reason, its publication be 
hastened: first, because ideas easily pass from one man to another who, 
in that case, can publish them; secondly, because it seems to be true 
that many things have, as it were, an epoch in which they are discovered 
in several places simultaneously, just as the violets appear on all sides 
in springtime. 1 

1 Quoted in Meschkowski (1964). The title of J. Bolyai's appendix is "The Science of 
Absolute Space with a Demonstration of the Independence of the Truth or Falsity of Euclid's 
Parallel Postulate (Which Cannot Be Decided a Priori) and, in Addition, the Quadrature of the 
Circle in Case of Its Falsity." 
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Janos Bolyai did publish his discoveries, as a 26-page appendix to a 
book by his father surveying attempts to prove Euclid V (the Tentamen, 
1831). Farkas sent a copy to his friend, the German mathematician 
Carl Friedrich Gauss (1777-1855), undisputedly the foremost 
mathematician of his time. Farkas Bolyai had become close friends 
with Gauss 35 years earlier, when they were both students in Gottin­
gen. After Farkas returned to Hungary, they maintained an intimate 
correspondence, 2 and when Farkas sent Gauss his own attempt to 
prove the parallel postulate, Gauss tactfully pointed out the fatal flaw. 

Janos was 13 years old when he mastered the differential and 
integral calculus. His father wrote to Gauss begging him to take the 
young prodigy into his household as an apprentice mathematician. 
Gauss never replied to this request (perhaps because he was having 
enough trouble with his own son Eugene, who had run away from 
home). Fifteen years later, when Farkas mailed the Tentamen to 
Gauss, he certainly must have felt that his son had vindicated his belief 
in him, and Janos must have expected Gauss to publicize his achieve­
ment. One can therefore imagine the disappointment Janos must have 
felt when he read the following letter to his father from Gauss: 

If I begin with the statement that I dare not praise such a work, you will 
of course be startled for a moment: but I cannot do otherwise; to praise 
it would amount to praising myself; for the entire content of the work, 
the path which your son has taken, the results to which he is led, 
coincide almost exactly with my own meditations which have occupied 
my mind for from thirty to thirty-five years. On this account I find 
myself surprised to the extreme. 

My intention was, in regard to my own work, of which very little up 
to the present has been published, not to allow it to become known 
during my lifetime. Most people have not the insight to understand our 
conclusions and I have encountered only a few who received with any 
particular interest what I comqmnicated to them. In order to under­
stand these things, one must first have a keen perception of what is 
needed, and upon this point the majority are quite confused. On the 
other hand, it was my plan to put all down on paper eventually, so that 
at least it would not finally perish with me. 

So I am greatly surprised to be spared this effort, and am overjoyed 

z For the complete correspondence (in German), see Schmidt and Stiickel (1972). 
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that it happens to be the son of my old friend who outstrips me in such a 
remarkable way.3 

Despite the compliment in Gauss' last sentence, Janos was bitterly 
disappointed with the great mathematician's reply; he even imagined 
that his father had secretly informed Gauss of his results and that 
Gauss was now trying to appropriate them as his own. A man of fiery 
temperament, who had fought and won 13 successive duels (unlike 
Galois, who was killed in a duel at age 20), Janos fell into deep mental 
depression and never again published his research. A translation of his 
immortal "appendix" can be found in R. Bonola's Non-Euclidean Ge­
ometry (1955). His father did not understand Janos' discovery and 
subsequently published another clever attempt to prove Euclid V 
(Exercise 9, Chapter 5). 

In 1851, Janos wrote: 

In my opinion, and as I am persuaded, in the opinion of anyone judging 
without prejudice, all the reasons brought up by Gauss to explain why 
he would not publish anything in his life on this subject are powerless 
and void; for in science, as in common life, it is necessary to clarify 
things of public interest which are still vague, and to awaken, to 
strengthen and to promote the lacking or dormant sense for·the true 
and right. Alas, to the great detriment and disadvantage of mankind, 
only very few people have a sense for mathematics; and for such a 
reason and pretence Gauss, in order to remain consistent, should have 
kept a great part of his excellent work to himself. It is a fact that, among 
mathematicians, and even among celebrated ones, there are, unfortu­
nately, many superficial people, but this should not give a sensible man 
a reason for writing only superficial and mediocre things and for leaving 
science lethargically in its inherited state. Such a supposition may be 
said to be unnatural and sheer folly; therefore I take it rightly amiss that 
Gauss, instead of acknowledging honestly, definitely and frankly the 
great worth of the Appendix and the Tentamen, and instead of ex­
pressing his great joy and interest and trying to prepare an appropriate 
reception for the good cause, avoiding all these, he rested content with 

3 Wolfe (1945). Gauss did write to Gerling about the appendix a month earlier, saying: "I 
find all my own ideas and results developed with greater elegance. . . . I regard this young 
geometer Bolyai as a genius of the first order." That makes it all the more puzzling why Gauss 
did not help further Janos' mathematical career. 
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pious wishes and complaints about the lack of adequate civilization. 
Verily, it is not this attitude we call life, work and merit.4 

GAUSS 

There is evidence that Gauss had anticipated some of J. Bolyai's 
discoveries, in fact, that Gauss had been working on non-Euclidean 
geometry since the age of 15, i.e., since 1792 (see Bonola, 1955, 
Chapter 3). In 181 7, Gauss wrote to W. Olbers: "I am becoming more 
and more convinced that the necessity of our [Euclidean] geometry 
cannot be proved, at least not by human reason nor for human reason. 
Perhaps in another life we will be able to obtain insight into the nature 
of space, which is now inattainable." In 1824, Gauss answered F. A. 
Taurinus, who had attempted to investigate the theory of parallels: 

In regard to your attempt, I have nothing (or not much) to say except 
that it is incomplete. It is true that your demonstration of the proof that 
the sum of the three angles of a plane triangle cannot be greater than 
180° is somewhat lacking in geometrical rigor. But this in itself can 
easily be remedied, and there is no doubt that the impossibility can be 
proved most rigorously. But the situation is quite different in the 
second part, that the sum of the angles cannot be less than 180 °; this is 
the critical point, the reef on which all the wrecks occur. I imagine that 
this problem has not engaged you very long. I have pondered it for over 
thirty years, and I do not believe that anyone can have given more 
thought to this second part than I, though I have never published 
anything on it. 

The assumption that the sum of the three angles is less than 180° 
leads to a curious geometry, quite different from ours [the Euclidean], 
but thoroughly consistent, which I have developed to my entire satis­
faction, so that I can solve every problem in it with the exception of the 
determination of a constant, which cannot be designated a priori. The 
greater one takes this constant, the nearer one comes to Euclidean 
geometry, and when it is chosen infinitely large the two coincide. The 
theorems of this geometry appear to be paradoxical and, to the unini­
tiated, absurd; but calm, steady reflection reveals that they contain 

•Quoted in L. Fejes Toth, Regular Figures (Macmillan, N.Y. 1964), pp. 98-99. 
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Carl Friedrich Gauss 

nothing at all impossible. For example, the three angles of a triangle 
become as small as one wishes, if only the sides are taken large enough; 
yet the area of the triangle can never exceed a definite limit, regardless 
of how great the sides are taken, nor indeed can it never reach it. 

All my efforts to discover a contradiction, an inconsistency, in this 
non-Euclidean geometry have been without success, and the one thing 
in it which is opposed to our conceptions is that, if it were true, there 
must exist in space a linear magnitude, determined for itself (but 
unknown to us). But it seems to me that we know, despite the say­
nothing word-wisdom of the metaphysicians, too little, or too nearly 
nothing at all, about the true nature of space, to consider as absolutely 
impossible that which appears to us unnatural. If this non-Euclidean 
geometry were true, and it were possible to compare that constant with 
such magnitudes as we encounter in our measurements on the earth 
and in the heavens, it could then be determined a posteriori. Conse­
quently, in jest I have sometimes expressed the wish that the Euclidean 
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geometry were not true, since then we would have a priori an absolute 
standard of measure. 

I do not fear that any man who has shown that he possesses a 
thoughtful mathematical mind will misunderstand what has been said 
above, but in any case consider it a private communication of which no 
public use or use leading in any way to publicity is to be made. Perhaps 
I shall myself, if I have at some future time more leisure than in my 
present circumstances, make public my investigations. 5 

It is amazing that, despite his great reputation, Gauss was actually 
afraid to make public his discoveries in non-Euclidean geometry. He 
wrote to F. W. Bessel in 1829 that he feared "the howl from the 
Boeotians" if he were to publish his revolutionary discoveries.6 He 
told H. C. Schumacher that he had "a great antipathy against being 
drawn into any sort of polemic." 

The "metaphysicians" referred to by Gauss in his letter to Taur­
inus were followers of Immanuel Kant, the supreme European philos­
opher in the late eighteenth century and much of the nineteenth 
century. Gauss' discovery of non-Euclidean geometry refuted Kant's 
position that Euclidean space is inherent in the strocture of our mind In 
his Critique of Pure Reason (1781) Kant declared that "the concept of 
[Euclidean] space is by no means of empirical origin, but is an inevi­
table necessity of thought." 

Another reason that Gauss withheld his discoveries was that he was 
a perfectionist, one who published only completed works of art. His 
devotion to perfected work was expressed by the motto on his seal, 
pauca sed matura ("few but ripe"). There is a story that the distin­
guished mathematician K. G. J. Jacobi often came to Gauss to relate 
new discoveries, only to have Gauss pull out some papers from his 
desk drawer that contained the very same discoveries. Perhaps it is 
because Gauss was so preoccupied with original work in many 
branches of mathematics, as well as in astronomy, geodesy, and phys-

5 Wolfe (1945), pp. 46-47. 
6 An allusion to dull, obtuse individuals. "Actually, the 'Boeotian' critics of non-Euclidean 

geometry-conceited people who claimed to have proved that Gauss, Riemann, and Helmholz 
were blockheads-did not show up before the middle of the 1870s. If you witnessed the 
struggle against Einstein in the Twenties, you may have some idea of [the] amusing kind of 
literature [produced by these critics] .... Frege, rebuking Hilbert like a schoolboy, also 
joined the Boeotians .... 'Your system of axioms,' he said to Hilbert, 'is like a system of 
equations you cannot solve.'" (Freudenthal, 1962) 
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ics (he coinvented an improved telegraph with W. Weber), thathe did 
not have the opportunity to put his results on non-Euclidean geometry 
into polished form. The few results he wrote down were found among 
his private papers after his death. 

Gauss has been called "the prince of mathematicians" because of 
the range and depth of his work. (See the biographies by Bell, 1934; 
Dunnington, 1955; and Hall, 1970.) 

LOBACHEVSKY 

Another actor in this historical drama came along to steal the limelight 
from both J. Bolyai and Gauss: the Russian mathematician Nikolai 
lvanovich Lobachevsky ( 1792- 1856). He was the first to actually 

Nikolai lvanovich Lobachevsky 
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publish an account of non-Euclidean geometry, in 1829. Lobachevsky 
initially called his geometry "imaginary," then later "pangeometry." 
His work attracted little attention on the continent when it appeared 
because it was written in Russian. The reviewer at the St. Petersburg 
Academy rejected it, and a Russian literary journal attacked Loba­
chevsky for "the insolence and shamelessness of false new inven­
tions" (Boeotians howling, as Gauss predicted). Nevertheless, Loba­
chevsky courageously continued to publish further articles in Russian 
and then a treatise in 1840 in German, 8 which he sent to Gauss. In an 
1846 letter to Schumacher, Gauss reiterated his own priority in devel­
oping non-Euclidean geometry but conceded that "Lobachevsky 
carried out the task in a masterly fashion and in a truly geometric 
spirit." At Gauss' recommendation, Lobachevsky was elected to the 
Gottingen Scientific Society. (Why didn't Gauss recommend Janos 
Bolyai?) 

Lobachevsky openly challenged the Kantian doctrine of space as a 
subjective intuition. In 1835 he wrote: "The fruitlessness of the at­
tempts made since Euclid's time ... aroused in me the suspicion 
that the truth . . . was not contained in the data themselves; that to 
establish it the aid of experiment would be needed, for example, of 
astronomical observations, as in the case of other laws of nature." 
(Gauss privately agreed with this view, having written to Olbers that 
"we must not put geometry on a par with arithmetic that exists purely 
a priori but rather with mechanics." The great French mathematicians 
J. L. Lagrange (1736-1813) and J.B. Fourier (1768-1830) tried to 
derive the parallel postulate from the law of the lever in statics.) 

Lobachevsky has been called "the great emancipator" by Eric 
Temple Bell; his name, said Bell, should be as familiar to every 
schoolboy as that of Michelangelo or Napoleon.9 Unfortunately, Lo­
bachevsky was not so appreciated in his lifetime; in fact, in 1846 he 
was fired from the University of Kazan, despite 20 years of outstanding 
service as a teacher and administrator. He had to dictate his last book 
in the year before his death, for by then he was blind. 

It is amazing how similar are the approaches of J. Bolyai and Loba­
chevsky and how different they are from earlier work. Both developed 
the subject much further than Gauss. Both attacked plane geometry 

8 For a translation of this paper see Bonola ( 19 5 5). 
9 Bell (1954, Chapter 14). 
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via the "horosphere" in three-space (it is the limit of an expanding 
sphere when its radius tends to infinity). Both showed that geometry 
on a horosphere, where "lines" are interpreted as "horocycles" 
(limits of circles), is Euclidean. Both showed that Euclidean spherical 
trigonometry is valid in neutral geometry and both constructed a 
mapping from the sphere to the non-Euclidean plane to derive the 
formulas of non-Euclidean trigonometry (including the formula 
Taurinus discovered-see Theorem 10.4, Chapter 10, for a simpler 
derivation using a plane model). Both had a constant in their formulas 
that they could not explain; the later work of Riemann showed it to be 
the curvature of the non-Euclidean plane. 

SUBSEQUENT DEVELOPMENTS 

It was not until after Gauss' death in 1855, when his correspondence 
was published, that the mathematical world began to take non-Eucli­
dean ideas seriously. (Yet, as late as 1888 Lewis Carroll was poking 
fun at non-Euclidean geometry.) Some of the best mathematicians 
(Beltrami, Klein, Poincare, and Riemann) took up the subject, ex­
tending it, clarifying it, and applying it to other branches of mathe­
matics, notably complex function theory. In 1868 the Italian mathe­
matician Beltrami settled once and for all the question of a proof for 
the parallel postulate. He proved that no proof was possible. He did 
this by exhibiting a Euclidean model of non-Euclidean geometry. (We 
will discuss his model in the next chapter.) 

Bernhard Riemann, who was a student of Gauss, had the most 
profound insight into the geometry, not just the logic. In 1854, he 
built upon Gauss' discovery of the intrinsic geometry on a surface in 
Euclidean three-space. Riemann invented the concept of an abstract 
geometrical surface that need not be embeddable in Euclidean three­
space yet on which the "lines" can be interpreted as geodesics and the 
intrinsic curvature of the surface can be precisely defined. Elliptic 
(and, of course, spherical) geometry "exist" on such surfaces that 
have constant positive curvature, while the hyperbolic geometry of 
Bolyai and Lobachevsky "exists" on such a surface of constant negative 
curvature. That is the view of geometers today about the "reality" of 
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Georg Friedrich Bernhard Riemann 

those non-Euclidean planes. We will describe Gauss and Riemann's 
idea only in Appendix A, since it is too advanced for the level of this 
text. A further generalization of that idea provided the geometry for 
Einstein's general theory of relativity. 

Interestingly, a direct relationship between the special theory of 
relativity and hyperbolic geometry was discovered by the physicist 
Arnold Sommerfeld in 1909 and elucidated by the geometer Vladimir 
Varieak in 1912. A model of hyperbolic plane geometry is a sphere of 
imaginary radius with antipodal points identified in the three­
dimensional space-time of special relativity, vindicating Lambert's 
idea (see Rosenfeld, 1988, pp. 230 and 270; or Yaglom, 1979, p. 222 
ff.). Moreover, Taurinus' technique of substituting irfor rto go from 
spherical trigonometry to hyperbolic trigonometry received a struc­
tural explanation in 1926-1927 when Elie Cartan developed his 
theory of Riemannian symmetric spaces: The Euclidean sphere of 
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curvature 1 /r2 is "dual" to the hyperbolic plane of curvature -1/r2 

(see Helgason, 1962, p. 206). 

HYPERBOLIC GEOMETRY 

Let us return to our elementary investigation of the particular non­
Euclidean geometry discovered by Gauss, J. Bolyai, and Lobachevsky, 
nowadays called hyperbolic geometry (see Appendix A for a discussion 
of elliptic geometry and other geometries discovered by Riemann). 
Hyperbolic geometry is, by definition, the geometry you get by assuming all 
the axioms for neutral geometry and replacing Hilbert's parallel postulate by 
its negation, which we shall call the "hyperbolic axiom." 

HYPERBOLIC AXIOM. In hyperbolic geometry there exist a line I and a 
point P not on I such that at least two distinct lines parallel to I pass 
through P (see Figure 6.1). 

We can immediately see the flaw in Legendre's attempted proof of 
the parallel postulate (Chapter 1), namely that the entire line /lies 
in the interior of -tAPB without meeting either side, a phenomenon 
Legendre assumed to be impossible. 

The following lemma (preliminary result) is the first important 
consequence of the hyperbolic axiom. 

LEMMA 6.1. Rectangles do not exist. 

In fact, we saw in Chapter 5 that the existence of rectangles (Clair­
aut's axiom) implies Hilbert's parallel postulate, the negation of the 
hyperbolic axiom (the idea of the proof is due to Proclus). 

FIGURE6.I 
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Using this lemma, we can establish a universal version of the hyper­
bolic axiom. The parallel postulate in Euclidean geometry states that 
for every line and for every point off the line, uniqueness of parallels 
holds. Its negation, the hyperbolic axiom, states that for some line /and 
some point P not on /, uniqueness of parallels fails to hold. Could it be 
possible that in hyperbolic geometry uniqueness of parallels fails for 
some I and P but holds for other I and P? We will show that this is 
impossible. 

UNIVERSAL HYPERBOLIC THEOREM. In hyperbolic geometry, for 
every line I and every point P not on /there pass through Pat least two 
distinct parallels to /. 

Proof 
Drop Rerpendicular PQ to I and erect line m through P perpendicu­
lar to "PQ. Let R be another point on /, erect perpendicular t to I 
through R, and drop perpendicular PS tot. (See Figure 6.2.) Now 
PS is parallel to /, since they are both perpendicular to t (Corol­
lary 1 to Theorem 4 .1). We claim that m and PS are distinct lines. 
Assume on the contrary that S lies on m. Then DPQRS is a rectan­
gle. This contradicts Lemma 6.1. • 

COROLLARY. In hyperbolic geometry, for every line I and every point 
P not on /, there are infinitely many parallels to I through P. 

Proof 
Just vary the point R in the above proof. • 

p 
.............. L~-----~~~~-+-~~~~~~-+-m --- ---t:j s 

Q R 

FIGURE6.2 
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ANGLE SUMS (A.GA.IN) 

Combining Lemma 6.1 with Theorem 4. 7 yields the next theorem. 

THEOREM 6.1. In hyperbolic geometry, all triangles have angle sum 
< 180°. 

If MBC is any triangle, then 180 ° minus the angle sum of MBC is 
a positive number. This number we called the defect of the triangle, and 
it plays a very important role in hyperbolic geometry (see Exercise 5 
and Chapter 10). 

COROLLARY. In hyperbolic geometry all convex quadrilaterals have 
angle sum less than 360°. 

Proof 
Given any quadrilateral DABCD (Figure 6.3). Take diagonal AC 
and consider triangles MBC and MCD; by the theorem, these 
triangles have angle sum < 180 °. The assumption that DABCD is 
convex im_Rlies that 'AC, is between AB and AD and that cA is 
between CB and CO, so that (~BAC) 0 +(~CAD) 0 =(~BAD) 0 

and (~ACB)° + (~ACD) 0 = (~BCD) 0 (byTheorem4.3(3)).By 
adding all six angles, we see that the angle sum of DABCD is 
<360° .• 

SIMILAR TRIANGLES 

Next we shall consider Wallis' postulate, which cannot hold in hyper­
bolic geometry because, as we saw in Chapter 5, it implies the Euclid-

A 

B D 

FIGURE6.3 c 
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ean parallel postulate. Thus, under certain circumstances similar tri­
angles do not exist (negation of Wallis' postulate). But we can prove 
even more: under no circumstances do similar noncongruent triangles 
exist! 

THEOREM 6.2. In hyperbolic geometry if two triangles are similar, 
they are congruent. (In other words, AAA is a valid criterion for 
congrueoce of triangles.) 

Proof" 
Assume on the contrary that there exist triangles MBC and 
M'B'C' which are similar but not congruent. Then no correspond­
ing sides are congruent; otherwise the triangles would be congruent 
(ASA). Consider the triples (AB, AC, BC) and (A'B', A'C', B'C') of 
sides of these triangles. One of these triples must contain at least 
two segments that are larger than the two corresponding segments 
of the other triple, e.g., AB> A'B' and AC> A'C'. Then (by 
definition of>) there exist points B" on AB and C" on AC such that 
AB"= A'B' and AC"= A'C' (see Figure 6.4). By SAS, 
M'B'C' = MB"C". Hence, corresponding angles are congruent: 
4:AB"C" = <tB', 4:AC"B" = <tC'. By the hypothesis that MBC 
and M'B'C' are similar, we also have 4:AB"C" = <tB, 
4:AC"B" = <tC (Axiom C-5). This implies that BC II B~C" 
(Theorem 4.1 and Exercise 32, Chapter 4), so that quadrilateral 
DBB"C"C is convex. Also, (<tB) 0 + (<tBB"C") 0 = 180° = 
(<tC)° + (<tCC"B") 0 (Theorem 4.3(2) and 4.3(5)). It follows 
that quadrilateral DBB"C"C has angle sum 360°. This contradicts 
the corollary to Theorem 6.1. • 

To sum up, in hyperbolic geometry it is impossible to magnify or 
shrink a triangle without distortion. In a hyperbolic world photogra­
phy would be inherently surrealistic! 

A 

FIGURE6.4 
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A startling consequence of Theorem 6.2 is that in hyperbolic ge­
ometry a segment can be determined with the aid of an angle; for 
example, an angle of an equilateral triangle determines the length of a 
side uniquely. This is sometimes stated more dramatically by saying 
that hyperbolic geometry has an absolute unit of length (see Gauss' 
letter to Taurinus, quoted earlier in this chapter). If the geometry of 
the physical universe were hyperbolic, it would no longer be necessary 
to keep a unit of length carefully guarded in the Bureau of Standards 
(the same is true for elliptic geometry). 

PARALLELS THAT ADMIT A COMMON 
PERPENDICULAR 

In Chapter 5, commenting on the flaw in Proclus' attempted proof of 
the parallel postulate, I remarked that it was presumptuous to assume 
that parallel lines looked like railroad tracks, that is, that they were 
everywhere equidistant from each other. Let us now make this remark 
more precise. Given lines I and I' and points A, B, C, . . . on I. Drop 
perpendiculars AA', BB', CC', ... from these points to I'. We will 
say that points A, B, C, . . . are equidistant from I' if all these per­
pendicular segments are congruent to one another (Figure 6.5). 

THEOREM 6.3. In hyperbolic geometry if I and /' are any distinct 
parallel lines, then any set of points on I equidistant from I' has at most 
two points in it. 

Proof 
Assume on the contrary there is a set of three points A, B, and C on 
I equidistant from I'. Then quadrilaterals DA'B'BA, DA'C'CA, 

~ t I I ~: 
A' B' C' 

FIGURE 6.S AA' == BB' == CC' == . . . . 
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FIGURE6.6 
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and DB'C'CB are Saccheri quadrilaterals (the base angles are 
right angles and the sides are congruent). In Exercise 1, Chapter 
5, you showed that the summit angles of a Saccheri quadrilateral 
are congruent. Thus, <r:A' AB = <tB'BA, <r:A' AC = <tC'CA, and 
<tB'BC = <tC'CB. By transitivity (Axiom C-5), it follows that the 
supplementary angles <tB'BA and <tB'BC are congruent to each 
other; hence, by definition, they are right angles. Therefore, these 
Saccheri quadrilaterals are all rectangles. But rectangles do not 
exist in hyperbolic geometry (Lemma 6.1). This contradiction 
shows that A, B, and C cannot be equidistant from /'. • 

The theorem states that at most two points at a time on I can be 
equidistant from I'. It allows the possibility that there are pairs of 
points (A, B), ( C, D), . . . on I such that each pair is equidistant from 
I' - thus, dropping perpendiculars, AA' = BB' and CC' = DD', but 
AA' is not congruent to CC'. A diagram for this might be Figure 6.6, 
which suggests that the point "in the middle" of /is closest to/', with I 
moving away from/' symmetrically on either side of this middle point. 
We will prove that this is indeed the case (Theorems 6.4 and 6.5 and 
Exercises 4 and 10). 

Note, however, that Theorem 6.3 allows another possibility, that 
there is no pair of points on I equidistant from /'! An diagram for this 
might be Figure 6. 7, where the points on I are at varying distances 
from I'; I moves away from I' in one direction and approaches I' in the 
other direction without ever meeting it. Thus, different pairs of paral­
lel lines need not resemble each other-some may look like the first 
diagram, some like the second. 

THEOREM 6.4. In hyperbolic geometry if I and /' are parallel lines for 
which there exists a pair of points A and Bon I equidistant from I', then 
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FIGURE8.7 BB'> M'. 

I and I' have a common perpendicular segment that is also the shortest 
segment between I and /'. 

Proof 
Suppose A and B on I are equidistant from I'. Then DA'B'BA is a 
Saccheri quadrilateral, where A' and B' are the feet on /' of the 
perpendiculars from A and B. Let M be the midpoint of AB and M' 
the midpoint of A'B' (Proposition 4.3; see Figure 6.8). The 
theorem will follow from the next lemma. • 

LEMMA 6.2. The segment joining the midpoints of the base and 
summit of a Saccheri quadrilateral is perpendicular to both the base 
and the summit, and this segment is shorter than the sides (see Figure 
6.8). 

Proof 
We know that 4:A = 4:B (Exercise 1, Chapter 5). Hence, 
M' AM = "6.B'BM (SAS). Therefore, the corresponding sides 
A'M and B'M are congruent. This implies M'M'M = "6.B'M'M 
(SSS). Therefore, the corresponding angles ~'M'M and 
4:B'M'M are congruent. Since these are supplementary angles, 
they must be right angles, proving MM' perpendicular to the base 

A M B 

FIGURE&.8 
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A M 
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FIGIJRE6.9 

A'B'. From the two pairs of congruent triangles, we also have 
~'MM' == 1:'.B'MM' and ~'MA == 1:'.B'MB. Adding the degrees 
of these angles, we have (~MM') 0 = (1:'.BMM') 0 (Theorem 
4.3 ( 3)), i.e., the supplementary angles ~MM' and 1:'.BMM' have 
the same number of degrees. Hence, they are right angles and MM' 
is also perpendicular to the summit AB. 

Consider next quadrilateral DA'M'MA (Figure 6.9). It has 
three right angles, so it is what we call a Lambert quadrilateral 
(Exercise 4, Chapter 5). In hyperbolic geometry the fourth angle 
must be acute, since rectangles do not exist (Lemma 6.1). You 
showed in Exercise 4(c), Chapter 5, that AA'> MM', i.e., that 
MM' is shorter than AA'. The remainder of the proof that MM' 
is shorter than any other segment between I and I' is left for Exer­
cise 3. • 

THEOREM 6.5. In hyperbolic geometry if lines I and I' have a common 
perpendicular segment MM', then they are parallel and MM' is 
unique. Moreover, if A and B are any points on I such that M is the 
midpoint of segment AB, then A and Bare equidistant from/'. 

Proof 
The fact that I and I' are parallel follows from the first corollary to 
the alternate interior angle theorem (Theorem 4.1). If I and /' had 
another common perpendicular segment NN', then DM'N'NM 
would be a rectangle, which cannot exist (Lemma 6.1). Suppose 
now that M is the midpoint of AB. Drop perpendiculars AA' and 
BB' to/. We must prove that AA'== BB'. (See Figure 6.10.) First, 
MM'M == .6.BM'M (SAS), AM'== BM', and ~M'M == 
1:'.BM'M. Therefore, (~'M' A) 0 = 90° - (~M'M) 

0 = 90° -
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A M B 

FIGURE8.IO 
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(<tBM'M) 0 = (<tB'M'B) 0 (by Theorem 4.3) so that U'M' A~ 
<tB'M'B. Hence, .6.AA'M' ~ ~BB'M' (AAS), so that the 
corresponding sides AA' and BB' are congruent. • 

LIMITING PARALLEL RA.VS 

Theorems 6.4 and 6.5 and Exercises 4 and 10 give us a good under­
standing of the first type of parallel lines. We know that such lines 
actually exist from the usual construction: start with any line I and any 
point P not on it (Figure 6.11). Drop PSJ>endicular PQ to I and let 
m be the perpendicular through P to PQ. Then m and I have the 
common perpendicular segment PQ. Pairs of points on m situated 
symmetrically about PQ are equidistant from/. By the universal hyper­
bolic theorem, there exist other lines n through P parallel to l We can­
not yet say that any such n is the second type of parallel, for n and I might 
have a common perpendicular going through a point other than P. 

How then do we know that parallels of the second type exist? Here 
the axioms of continuity come in. The following is the intuitive idea 
(see Figure 6.12). Consider one ray PS of m, and consider various rays 
between PS and©. Some of these rays, such as PR, will intersect/; 
others, such as PY, will not. A continuity argument shows that as R 
recedes endlessly on /from Q, PR will approach a certain limiting ray 

FIGURE8.ll 
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FIGURE6.12 

PX that does not meet /. The r~ PX is "limiting" in the following 
precise sense: any ray between PX and PQ intersects /, whereas any 
other ray pY such that PX is between pY and PQ does not intersect l 
The ray PX may be called the left limiting parallel ray to I through P. 
Similarly, there is a right limiting parallel ray on the opposite side of 
PQ. 

THEOREM 6.6. For every line I and every point P not on /, let Q be the 
foot of the perpendicular from P to /. Then there are two unique 
nonopposite rays PX and PX' on opposite sides of PQ that do not meet 
I and have the property that a ray emanating from P meets I if and 
only if it is between PX and PX'. Moreover, these limiting rays are 
situated symmetrically about PQ in the sense that ~PQ == ~'PQ. 

Proof 
To prove rigorously that PX exists, consider the line SQ (Figure 
6.12). Let I 1 be the set of all points Ton segment SQ such that PT 
meets/, together with all points on the ray opposite to QS; let I 2 be 
the complement of I 1 (so Q E I 1 and SE I 2). By the crossbar 
theorem (Chapter 3), if point Ton segment SQ belongs to I 1 , then 
the entire segment TQ (in fact, TQ) is contained in I 1 • Hence, 
(I1 , I 2) is a Dedekind cut. By Dedekind's axiom (Chapter 3), 
there is a unique point X on SQ such that for P 1 and P 2 on 
SQ, P 1 * X * P 2 if and only if X ::fo P 1 or P 2 , ~ E I 1 , and P 2 E I 2 • 

By definition of I 1 and I 2 , rays below PX all meet I and rays 
above PX do not. We claim that PX does not meet I either. Assume 
on the contrary that PX meets /in a point U (Figure 6.13). Choose 
any point Von /to the left of U, i.e., V * U * Q (Axiom B-2). Since 
V and U are on the same side of SQ (Exercise 9, Chapter 3), V and P 
are on opposite sides, so VP meets SQ in a point Y. We have 
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Y * X * Q (Proposition 3.7), so YE I 2 , contradicting the fact that 
pY meets I. It follows that PX is the left limiting parallel ray (we 
obtain the right limiting parallel ray in a similar manner). 

To prove symmetry, assume on the contrary that angles ~PQ 
and ~'PQ are not congruent, e.g., (~PQ) 0 < (~'PQ) 0 • By 
Axiom C-4, there is a ray between PX' and PQ that intersects I (by 
definition of limiting ray) in a point R' such that <tR'PQ = ~PQ 
(Figure 6.14). Let R be the point on the opposite side of PQ from 
R' such that R * Q * R' and RQ = R'Q (Axiom C-1). Then 
.6RPQ = .6R'PQ (SAS). Hence, <tRPQ = <tR'PQ, and by transi­
tivity (Axiom C-5), <tRPQ = ~PQ. But this is impossible, be­
cause PR is between PX and PQ (Axiom C-4). • 

Either of the congruent angles ~PQ and ~'PQ is called (by an 
abuse of language) the angle of parallelism at point P with respect to I. 
Its degree measure is usually denoted Il(PQ) 0 • Note that 
Il(PQ) 0 < 90°, for Il(PQ) 0 = 90° would contradict the universal 
hyperbolic theorem (see Exercise 7 (a)). It can be shown that as P 
varies, Il(PQ) 0 takes on all possible values between 0° and 90° (see 
Major Exercise 9). One of the greatest discoveries by J. Bolyai and 
Lobachevsky is their formula for this number of degrees (see 

p 
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Theorem 10.2 in Chapter 10). A natural unit segmentOI in hyperbolic 
geometry is any segmentOI such thatTI(OI) 0 

= 45°. Major Exercise 
5 shows that all such segments are congruent to each other. 

We have proved the existence of limiting parallel rays by a continu­
ity argument conforming to today's standards of rigor. Gauss, J. Bolyai, 
and Lobachevsky took this existence for granted, but J. Bolyai discov­
ered a simple straightedge-and-compass construction for the limiting 
rays. Let Q be the foot of the perpendicular from P to /, m the line 
through P perpendicular to PQ, R any point on I different from Q, and 
S the foot of the perpendicular from R tom (Figure 6.15). Then 
PR> QR (Exercise 3) and PS< QR (Exercise 4(c), Chapter 5, on 
Lambert quadrilaterals). By the elementary continuity principle, a 
compass with center P and radius congruent to QR will intersect 
segment SR in a unique point X between S and R. It can be proved 
that PX is the right limiting parallel ray to I through P! (The proof is 
complicated. Seep. 269 in Chapter 7, Project 4 in this chapter, or 
Theorem 10.9, Chapter 10.) 

CLASSIFICATION OF PARALLELS 

We have discussed two types of parallels to a given /. The first type 
consists of parallels m such that I and m have a common perpendicular; 
m diverges from I on both sides of the common perpendicular. The 
second type consists of parallels that approach I asymptotically in one 
direction (i.e., they contain a limiting parallel ray in that direction) 
and which diverge from /in the other direction. If mis the second type 
of parallel, Exercises 7 and 8 show that I and m do not have a common 
perpendicular. We have implied that these two are the only types of 
parallels, and this is the content of the next theorem. 
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THEOREM 6.7. Given m parallel to I such that m does not contain a 
limiting parallel ray to I in either direction. Then there exists a com­
mon perpendicular tom and I (which is unique by Theorem 6.5). 

This theorem is proved by Borsuk and Szmielew (1960, p. 291) by 
a continuity argument, but their proof gives you no idea of how to 
actually find the common perpendicular. There is an easy way to find 
it in the Klein and Poincare models, discussed in the next chapter. 
Hilbert gave a direct construction, which we will sketch. (Project 1 
gives another.) 

Proof 
Hilbert's idea is to find two points Hand Kon /that are equidistant 
from m, for once these are found, the perpendicular bisector of 
segment HK is also perpendicular tom (see Lemma 6.2). Choose 
any two points A and Bon I and suppose that the perpendicular 
segment AA' from A to m is longer than the perpendicular segment 
BB' from B tom. (See Figure 6.16.) Let Ebe the ~int between A' 
and A such that A'E = B'B. On the same side of AA' as B, let EF be 
the unique ray such that ~'EF = <i:B'BG, where A* B * G. The 
key point that will be proved in Major Exercises 2 -6 is that EF 
intersects AG in a point H. Let K be the unique r,oint on BG such 
that EH = BK. Drop perpendiculars HH' and KK' to m. The up­
shot of these constructions is that DEHH' A' is congruent to 
DBKK'B' (just divide them into triangles). Hence, the correspond­
ing sides HH' and KK' are congruent, so that the points Hand Kon I 
are equidistant from m, as required. • 

To sum up, given a point P not on/, there exist exactly two limiting 
parallel rays to /through P, one in each direction. There are infinitely 
many lines through P that do not enter the region between the limiting 

G 
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FIGURE 6.17 

rays and /. Each such line is divergently parallel to I and admits a 
unique common perpendicular with I (for one of these lines the com­
mon perpendicular will go through P, but for all the rest the common 
perpendicular will pass through other points). 

A Note on Terminology. In most books on hyperbolic geom­
etry the word "parallel" is used only for lines that contain limiting 
parallel rays in our sense. The other lines, which admit a common 
perpendicular, have various names in the literature: "nonintersect­
ing," "ultraparallel," "hyperparallel," and "superparallel." We will 
continue to use the word "parallel" to mean "nonintersecting." A 
parallel to I that contains a limiting parallel ray to I will be called an 
asymptotic parallel, and a parallel to /that admits a common perpendic­
ular to /will be called a divergently parallel line. Rays that are limiting 
parallel will be denoted by a brace in diagrams (see Figure 6.17). 

STRANGE NEW UNIVERSE? 

In this chapter we have only begun to investigate the "strange new 
universe" of hyperbolic geometry. You can develop more of this ge­
ometry by doing the exercises, reading Chapter 10, and examining 
works in the bibliography at the end of the book. You will encounter 
new entities such as asymptotic triangles, ideal and ultra-ideal points, 
equidistant curves, horocycles, and pseudospheres. 

If you consider this geometry too "far out" to pursue, you are in for 
a surprise. We will see in the next chapter that if the undefined terms 
of hyperbolic geometry are suitably interpreted, hyperbolic geometry 
can be considered a part of Euclidean geometry! 
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Meanwhile, notice how we have deepened our understanding of 
the role of the parallel postulate Pin Euclidean geometry. Any state­
ment Sin the language of our geometry that is a theorem in Euclidean 
geometry (P ~ S) and whose negation is a theorem in hyperbolic 
geometry (- P ~ - S) is equivalent (in neutral geometry) to the 
parallel postulate (by Logic Rule 9(c) ). For example, by Exercise 14, 
Chapter 5, "The angle sum of every triangle is 180°" is such a 
statement. By Exercise 12 in this chapter, "Every triangle has a cir­
cumscribed circle" is another such statement. By Theorem 5.1, 
"Every point interior to an acute angle lies on a line intersecting both 
sides of the angle in two distinct points" is a third such statement. I 
leave the enjoyment of providing a long list of such statements to you 
(Exercise 15). I urge your instructor to give a prize to the student(s) 
with the longest list. 

REVIEW EXERCISE 

Which of the following statements are correct? 

( 1) The negation of Hilbert's parallel postulate states that for every line I 
and every point P not on I there exist at least two lines through P 
parallel to /. 

(2) It is a theorem in neutral geometry that if lines /and m meet on a given 
side of a transversal t, then the sum of the degrees of the interior angles 
on that given side oft is less than 180°. 

(3) Gauss began working on non-Euclidean geometry when he was 15 
years old. 

( 4) The philosopher Kant taught that our minds could not conceive of any 
geometry other than Euclidean geometry. 

( 5) The first mathematician to publish an account of hyperbolic geometry 
was the Russian Lobachevsky. 

(6) The crossbar theorem asserts that a ray emanating from a vertex A of 
MBC and interior to <r..A must intersect the opposite side BC of the 
triangle. 

(7) It is a theorem in hyperbolic geometry that for any segment AB there 
exists a square having AB as one of its sides. 

(8) Every Saccheri quadrilateral is a convex quadrilateral. 
(9) In hyperbolic geometry if MBC and .ti.DEF are equilateral triangles 

and <r..A ::; <r..D, then the triangles are congruent. 
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(10) In hyperbolic geometry, given a line /and a fixed segment AB, the set 
of all points on a given side of I whose perpendicular segment to I is 
congruent to AB equals the set of points on a line parallel to I. 

( 11) In hyperbolic geometry any two parallel lines have a common perpen­
dicular. 

(12) In hyperbolic geometry the fourth angle of a Lambert quadrilateral is 
obtuse. 

(13) In hyperbolic geometry some triangles have angle sum less than 180° 
and some triangles have angle sum equal to 180°. 

( 14) In hyperbolic geometry if point P is not on line I and Q is the foot of the 
perpendicular from P to I, then the angle of parallelism for P with 
respect to /is the angle that a limiting parallel ray to I emanating from P 

-+ 
makes with PQ. 

(15) J. Bolyai showed how to construct limiting parallel rays using the 
elementary continuity principle instead of Dedekind's axiom. 

( 16) In hyperbolic geometry if I JI m, then there exist three points on m that 
are equidistant from I. 

( 17) In hyperbolic geometry if mis any line parallel to/, then there exist two 
points on m which are equidistant from I. 

( 18) In hyperbolic geometry if Pis a point not lying on line/, then there are 
exactly two lines through P parallel to I. 

( 19) In hyperbolic geometry if Pis a point not lying on line/, then there are 
exactly two lines through P perpendicular to I. 

(20) In hyperbolic geometry if /JI m and m JI n, then /JI n (transitivity of 
parallelism). 

( 21) In hyperbolic geometry if m contains a limiting parallel ray to I, then I 
and m have a common perpendicular. 

(22) In hyperbolic geometry if I and m have a common perpendicular, then 
there is one point on m that is closer to I than any other point on m. 

(23) In hyperbolic geometry if mdoes not contain a limiting parallel ray to I 
and if m and /have no common perpendicular, then m intersects/. 

(24) In hyperbolic geometry the summit angles of a Saccheri quadrilateral 
are right angles. 

(25) Every valid theorem of neutral geometry is also valid in hyperbolic 
geometry. 

(26) In hyperbolic geometry opposite angles of any parallelogram are con­
gruent to each other. 

(27) In hyperbolic geometry opposite sides of any parallelogram are con­
gruent to each other. 

(28) In hyperbolic geometry, let 1'.:P be any acute angle, let X be any point 
on one side of this angle, and let Y be the foot of the perpendicular from 
X to the other side. If X recedes endlessly from P along its side, then Y 
will recede endlessly from P along its side. 
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(29) In hyperbolic geometry if three points are not collinear, there is always 
a circle that passes through them. 

( 30) In hyperbolic geometry there exists an angle and there exists a line that 
lies entirely within the interior of this angle. 

EXERCISES 

The following are exercises in hyperbolic geometry. You are to as­
sume the hyberbolic axiom and you can use the theorems presented in 
this chapter as well as any theorems of neutral geometry. However, do 
not use the Euclidean theorems stated in either Exercises 18- 26 or 
the Major Exercises of Chapter 5. (We can now assert that the theor­
ems of neutral geometry are exactly those statements that are valid in 
both hyperbolic geometry and Euclidean geometry.) 

1. Prove that if DA'B'BA is a Saccheri quadrilateral (~' and 1'.:B' are 
right angles and AA' = BB'), then the summit AB is greater than the 
base A'B'. (Hint: Join the midpoints Mand M' and apply Exercise 4, 
Chapter 5, to the Lambert quadrilaterals DA'M'MA and DM'B'BM.) 

2. Suppose that lines I and /' have a common perpendicular MM'. Let A 
and B be points on I such that M is not the midpoint of segment AB. 
Prove that A and Bare not equidistant from/'. 

3. Assume that the parallel lines I and /' have a common perpendicular 
segment MM'. Prove that MM' is the shortest segment between any 
point of I and any point of I'. (Hint: In showing MM' < AA'; first dispose of 
the case in which AA' is perpendicular to I' by means of Exercise 4, Chapter 
5, and take care of the other case by Exercise 27, Chapter 4.) 

4. Again, assume that MM' is the common perpendicular segment be­
tween I and I'. Let A and B be any points of I such that M * A * B, and 
drop perpendiculars AA' and BB' to/'. Prove that AA'< BB'. (Hint: 
Use Exercise 3, Chapter 5; see Figure 6.18.) 

A B 
,.., 

FIGURE6.18 
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5. We have seen that in hyperbolic geometry the defect of any triangle is 
positive (Theorem 6.1). In Euclidean geometry all triangles have the 
same defect, namely, zero. In hyperbolic geometry could all triangles 
have the same defect? Assume that they do and use the additivity of the 
defect (Theorem 4.6) to derive a contradiction. Is there an upper bound 
for the defect of a triangle? 

6. Given parallel lines I and m. Given points A and B that lie on the opposite 
side of m from/; i.e., for any point Pon /, A and Pare on opposite sides of 
m and B and P are on opposite sides of m. Prove that A and B lie on the 
same side of /. 

7. (a) Prove that the angle of parallelism is acute by showing precisely 
how "TI(PQ) 0 = 90°" implies that there is a unique parallel to I 
throu~ P, contradicting the universal hyperbolic theorem. 

(b) Let PY be a limiting parallel ray to I through P, and let X be a 
point on this ray betwe~ P and Y (Figure 6.19). It may seem 
intuitively obvious that XY is a limiting parallel ray to I through X, 
but this requires proof. Justify the steps that have not been justi­
fied. 

Proof - - -( 1) We must prove that any ray XS between XY and XR meets /, where 
R is the foot of the perpendicular from X to/. (2) Sand Y are on the same - -side of XR. ( 3) P and Y are on opposite sides of XR. ( 4) By Exercise 6, -Sand Y are on the same side of PQ. (5) Sand Rare on the same side - - -ofXY =PY. (6) Q and Rare on the same side of PY. (7) Q and Sare on - - - -the same side of PY. (8) Thus, PS lies between PY and PQ, so it -intersects I in a point T. (9) P~t Xis exterior to ~PQT. ( 10) XS does 
~t intersect PQ. (11) Hence XS intersects QT (Proposition 3.9(a) ), so 
XS meets/. • 

p 

FIGURE6.19 
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(c) Let us assume inste~ that XY is limiting parallel to /, with 
P * X * Y. Prove that PY is limiting parallel to/. (Hint: See Figure -6.20. You must show that PZ meets /in ~oint V. Choose any S 
such that S * P * Z. Show that SX meets PQ in a point U such that -U * P * Q. Choose anvW such that U * X * W, and showthatXW - ~ -is between XY and XR so that XW meets I in a point T. Apply 
Pasch's theorem to get V.) -8. Let PX be the right limiting parallel ray to /through P, and let Q and X' 

be the feet of the perpendiculars from P and X, respectively, to I (Figure 
6.21). Prove that PQ > XX'. (Hint: Use Exercise 7 to show that <Q{'XY 
is acute and that <Q{'XP is obtuse, so that Exercise 3, Chapter 5, can be 
applied to DPQX'X.) This exercise shows that the distance from X to I 
decreases as X recedes from P along a limiting parallel ray. In fact, one 
can prove that the distance from X to I approaches zero (see Major 
Exercise 11 ) . 

9. Let MBC be any triangle, and let L, M, and N be the midpoints ofBC, 
AB, and AC, respectively. Prove that MMN is not similar to MBC. 
(See Figure 6.22.) (Hint: Otherwise defect DMBCN = 0.) Prove that 
MN is not congruent to BL by assuming the contrary and deducing that 
MBChasanglesum 180°. (Hint:ChooseDsuchthatM * N * Dand 
ND= MN. ShowthatMNM = b.CND, then thatb.MDC = b.CBM. 
Substitute appropriately in the equation 180° = (~BMC) 0 + 
(~CMD)° + (~MN) 0 to get the result.) 

FIGURE 6.21 
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-10. Assume that the parallel lines I and/' have a common perpendicular PQ. 
For any point X on /, let X' be the foot of the perpendicular from X to I'. 
Prove that as X recedes endlessly from Pon/, the segment XX' increases 
indefinitely; see Figure 6.23. (Hint: We saw that it increases in Exercise 

-+ 
<!:Prop a perpendicular XY to the limiting p~allel ray between PX and 
PX'. Use the crossbar theorem to show that PY intersects XX' in a point 
Z. Use Proposition 4.5 to show that XZ ;;;::: XY. Conclude by applying 
Exercise 6, Chapter 5, to show that XY increases indefinitely as X 
recedes from P.) 

11. This problem has five parts. In the first part we will construct a Saccheri 
quadrilateral associated to any triangle; we will then apply this con­
struction. 
(a) Given MBC, let I, J, and K be the midpoints of BC, CA, and AB, 

respectively. Drop perpendiculars AD, BE, and CF from the ver-
+-+ 

ticestolJ. Prove that AD== CF== BE, and, hence, thatDEDAB isa 
Saccheri quadrilateral (with the same area as MBC). (See Figure 
6.24.) 

(b) Prove that the perpendicular bisector of AB (i.e., the perpendicu-
+-+ -lar through K) is also perpendicular to IJ, and, hence, that IJ is -divergently parallel to AB. 

(c) Recall that we denote the length of a segment by a bar; e.g., the 

p x 

FIGURE6.23 
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B K A 

FIGURE6.24 c 

length of MN is MN (Theorem 4.3B). Prove that IJ = tED (a 
separate argument is needed in case 4:A or 4:B is obtuse and the 
diagram is different). Deduce that in hyperbolic geometry 
U <tAB. 

(d) Suppose now that 4:C is a right angle. Prove that the Pythagorean 
theorem does not hold in hyperbolic geometry. (Hint: If the 
theorem were valid for right triangles .6.BCA and .6.ICJ, then 
U = tAB could be proved, contradicting part (c) of this exercise.) 

( e) Suppose instead that AC == BC. Prove that K, F, and Care collinear 
but F is not the midpoint of CK (use Lemma 6. 2 and part (a) of this 
exercise). For application of this result to mechanics, see Adler 
(1966), pp. 192 and 253-257. 

12. In Exercise 9, Chapter 5, we saw the elder Bolyai's false proof of the 
parallel postulate. The flaw in his argument was the assumption that 
every triangle has a circumscribed circle, i.e., that there is a circle passing 
through the three vertices of the triangle. The idea of the Euclidean 
proof of this assumption is to show that the perpendicular bisector~ of 
the sides of the triangle meet in a point, and that this point is the center 
of the circumscribed circle. Figure out how Euclid's fifth postulate is 
used to prove that two of the perpendicular bisectors I and m have a 
common point (use Proposition 4.10) and then argue by congruent 
triangles to prove that the third perpendicular bisector passes through 
that point and that the point is equidistant from the three vertices. 
(Hint: Join the common point D to the midpoint N of the third side, and -prove that ON is perpendicular to the third side; see Figure 6.25.) 

13. Part of the argument in Exercise 12 works for hyperbolic geometry; that 
is, if two of the perpendicular bisectors have a common point, then the 
third perpendicular bisector also passes through that point. In hyperbo­
lic geometry there will be triangles for which two of the perpendicular 
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A 

FIGURE6.25 11 

bisectors are parallel (otherwise the elder Bolyai's proof would be 
correct). Moreover, these perpendicular bisectors can be parallel in two 
different ways. Suppose that they are divergently parallel; that is, sup­
pose that the perpendicular bisectors I and m have a common perpendic­
ular t (see Figure 6.26). Prove that the third perpendicular bisector n is 
also perpendicular to t. (Hint: Let A', B', and C' be the feet on t of the 
perpendiculars dropped from A, B, and C, respectively. Let /bisect AB 
at L and be perpendicular to t at L', and let m bisect BC at M and be 
perpendicular to t at M'. Let N be the midpoint of AC. Show by 
Theorem 6.5 that AA'== BB' and CC'== BB'. Hence, DC' A' AC is a 
Saccheri quadrilateral with N the midpoint of its summit AC. If N' is the -midpoint of the base A'C', use Lemma 6.2 to show that n = NN' is 

A N 

L' 
N' 

B B' 

_.---i~~~-T1~M~,~~~m 

c C' 

FIGURE6.26 
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FIGUREG.27 

-perpendicular to t and AC; see Major Exercise 7 for the asymptotically 
parallel case.) 

14. In Theorem 4.1 it was proved in neutral geometry that if alternate 
interior angles are congruent, then the lines are parallel. Strengthen this 
result in hyperbolic geometry by proving that the lines are divergently 
parallel, i.e., that they have a common perpendicular. (Hint: Let M be 
the midpoint of transversal segment PQ and drop perpendiculars MN 
and ML to lines m and I; see Figure 6.27. Prove that L, M, and N are 
collinear by the method of congruent triangles.) 

15. Make a long list of statements equivalent in neutral geometry to Hilbert's 
parallel postulate. This list is a reward for all the work you have done. 

16. Although the circumscribed circle may not exist for some triangles in 
hyperbolic geometry, prove that the inscribed circle always exists. 
(Hint: Verify that the usual Euclidean proof-that the angle bisectors 
meet in a point equidistant from the sides-still works. Use the crossbar 
theorem.) 

17. Comment on the following injunction by Saint Augustine: "The good 
Christian should beware of mathematicians and all those who make 
empty prophesies. The danger already exists that the mathematicians 
have made a covenant with the devil to darken the spirit and to confine 
man in the bonds of Hell." 

MAJOR EXERCISES 

- - -1. Let A, D be points on the same side of line BC such that BA II CD. Then -the figure consisting of segment BC (called the base) and rays BA and -CD (called the sides) is called the biangle [ABCD with vertices Band C 
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(see Figure 6.28). The interior of [ABCD is the intersection of the 
interiors of its angles ~BC and ~DCB; if Plies in the interior and Xis - --either vertex, ray XP is called an interior ray. We write BA I CD when 
these rays are sides_$ a biangle and when every iI_!!f rior ray emanating 
from B intersects CD; in that case, we say that BA is limiting parallel -to CD, generalizing the previous definition which required ~DCB to 
be a ri~ a~le, and we say that the biangle [ ABCD is closed at B. 
Given BA I CD, prove the follo~ng_jeneralization of Exercise 7: If 
P * B *A or if B * P *A, then PA I CD. -- --2. Symmetry of limiting parallelism. If BA I CD, then CD I BA. (In that case 
we say simply that biangle [ ABCD is closed.) ] ustify the unjustified steps 
in the proof (see Figure 6.29). 

Proof 
(1) Assume that [ABCD is not closed at C. (2) Then some interior - -ray CE does not intersect BA. (3) Point E, which so far is just a label, 
can be chosen so that ~BEC < ~ECO, by the important corollary to -Aristotle's axiom, Chapter 3. (4) Segment BE does not intersect CD. - -(5) Interior ray BE intersects CD in a point F, and B * E * F. (6) Since 
~BEC is an exterior angle for ~EFC, ~BEC > ~ECF. (7) Contradic­
tion. (I am indebted to George E. Martin for this simple proof.) • - -3. Transitivity of limiting parallelism. If AB and CD are both limiting parallel -to EF, then they are limiting parallel to each other. Justify the steps in 
the proof. (See Figure 6.30.) 

B 

FIGURE6.29 D 
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FIGURE&.30 

Proof - -(1) AB and CD have no point in common. 12) Hence, there are two 
- +:+ - - -cases, depending on whether EF is between AB and CD or AB and CD - - - -are both on the same side of EF. ( 3) IJ!.+case EF is between AB and CD, 

let G be the intersection of AC with EF. We may assume G lies on ray 
-+ -+ -+ 
EF; otherwise w_scan consider GF. (il Any ray AH interior to 1'.GAB 
must inte~ct EF in a point I. (.~})H, lying interior to 1'.CIF, must 
intersect CD. (6) Hence, any ray AH interior to 1: CAB must intersect 
-+ -+ -+ 
CD, so AB is limiting parallel to CD. • 

Step (7) is the following sublemma. That this requires such a long 
proof was overlooked even by Gauss. The proof (for which I am indebted 
to Edwin E. Moise) uses our hypotheses of limiting parallelism. If we 
had made the weaker hypothesis of just parallel lines, the sublemma 
would not follow, as you will show in Exercise K-Z(c) of Chapter 7. - - -SUBLEMMA. If AB and CD are both on the same side ofEF, we may - - -assume that CD, for example, is between AB and EF (see Figure 6.31). 

E 

A 
FIGURE8.31 
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Proof of Sublemma: -+ 

/ 1 \ It suffices to prove there is a line transversal to the three rays AB, 
~ - - -CD, EF. (2) In case A and Fare on the same side of EC, then ray EA is - - -interior to <i:E. (3) Then EA intersects CD, by symmetry. ~ So EA is 
our transversal. ( 5) In case A and Fare on opposite sides of EC, let G be -the point at which AF meets EC. (6) Choosing H such that E * F * H, -- -we have FH I AB. (7) <i:HFG > <i:E. (8) Therefore there is a ray FI - -interior to <i:HF A = <i:HFG such that <i:HF A =:o <i:E. (9) FI meets AB at -- -a point J. ( 10) FJ II EC. ( 11) EC in~rsects side AF and does not inter-
sect side FJ of MFJ. (12) Hence EC intersects AJ and is our transver­
sal. • 

Conclusion of Proof (see Figure 6.32): -(8) Then AE intersects CD in a point G, which we may assume lies on - - -ray CD.J.9) Any ray AH interior to <i:GAB intersects EF in a point I. ( 10) 
Since CD enters MEI at G and does not intersect side EI, it must - -intersect Al. ( 11) Therefore, CD is limiting parallel to AB. • 

A 

c--GI_'_,_'_,_'_,_'_,_'_,_,::::....,, ________ : 

......................... , 
',,I ___ ....._ __________ __;;..._ ____ F 

E 

FIGURE6.32 

--Note I. The last four steps did not use the hypothesis that CD I EF; 
they therefore prove that any line between two asymptotically parallel lines 
is asymptotically parallel to both and in the same direction. 

Note 2. Given rays rand s, define r - s to mean that either r C s or 
sC r or rjs. Major Exercises 1-3 show that this is an equivalence 
relation among rays. An equivalence class of rays is called an ideal point, 
or an end, and we adopt the convention that it lies on all (and only those) 
lines containing the rays making up the class. Since a point on a line 
breaks the line into two opposite rays and opposite rays are not equiva-
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lent, we see that every line has two ends lying on it. The set of all ideal 
points was named by Cayley the absolute. (This is the beginning of 
constructing a hyperbolic analogue of the projective completion of an 
affine plane described in Chapter 2; we continue the construction in 
Major Exercise 13. The absolute is analogous to the line at infinity of the 
affine plane, but the absolute could not be a new line, because it inter­
sects each old line in two points; it will turn out to be a conic in the 
projective completion.) 

If R, S are the vertices of r, s, where r I s, and Q is the ideal point 
determined by these rays, we write r = PQ and s = SQ and refer to the 
closed biangle with sides r, s as the singly asymptotic triangle ~RSQ. The 
next two exercises show that these triangles have some properties in 
common with ordinary triangles. (You can similarly define as an exercise 
doubly (two ideal points) and triply (three ideal points) asymptotic trian­
gles.) 

4. Exterior angle theorem. If ~PQQ is a singly asymptotic triangle, the 
exterior angles at P and Q are greater than their respective opposite 
interior angles. Justify the steps in the proof. 

Proof (see Figure 6.33): 
( 1) Give'.!.] * Q * P. We must show that ~RQQ is gwter than ~Q PQ. 
(2) Let QD be the unique ray on the same side of PQ as ray QQ such 
that ~RQD = JQPQ. ( 3) If U * Q * D, then ~UQP = QP!_1. ( 4) By 
Exercise 14, QD is divergently parallel to Pn. (5) Hence, QD is be­
tween QR and QQ. (6) ~RQQ > ~QPQ. • 

5. Congruence theorem. If in asymptotic triangles MBQ and M'B'Q' we 
have ~BAQ = ~B' A'Q', then ~BQ = ~'B'Q' if and only if 

p 

u 

R ----------------
----..... D 

FIGURE 6.33 
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FIGURE6.34 

AB == A'B'. Justify the steps in the proof and deduce as a corollary that 
PQ == P'Q' if and only if IT(PQ) 0 = IT(P'Q') 0

• 

Proof (see Figure 6.34): 
(1) Assume AB== A'B' and on the contrary ~ABO> ~'B'O'. (2) - -There is a unique ray BC between BO and BA such that ~BC == 

-'+ 
~'B'O'. (3) BC intersects AO in a point D. (4) Let D' be the uni-
que point on A'O' such that AD == A'D'. ( 5) Then .6.BAD == .6.B' A'D'. 
(6) Hence, ~'B'D' == ~'B'O', which is absurd. (7) Assume con­
versely that ~BO == ~'B'O' and on the contrary A'B' < AB. (8) Let 
C be the point on AB such that BC == B' A', and let CO be the ray from C 
limiting parallel to AO (see Figure 6.35). (9) Then CO is also limiting 
parallel to BO. ( 10) By the first part of the proof, ~BCQ == ~B' A'Q'; 
hence, ~BCQ == ~BAO. ( 11) But ~BCQ > ~BAO, which is a contra­
diction. • -6. Conclusion of the proof of theorem 6. 7. We wish to show that EF intersects -AG (see Figure 6.36). Justify the steps in the proof. 

Proof - -- -( 1) Let A'M be limiting parallel to EF, A'N limiting parallel to AG, and - -B'P limiting parallel to BG. (2) Since EA' == BB' and ~'EF == ~B'BG, 

A 

B 

FIGURE6.35 
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FIGURE6.36 

-+ -+ -+ 
we have ~EA'M = ~BB'P. (3) B'L differs from B'P and A'L differs 

-+ -+ -+ 
fromA'N. (4) ~MA'L = ~PB'L. (5) B'P is limiting parallel toA'N. (6) 

-+ 
Hence, ~NA'L is smaller than ~PB'L. (7) It follows that A'M lies 

-+ -+ ~ 
between A'N and A' A, so it must intersect AG in a pointJ. (8) J is on the -same side of EF as A'; hence, it is on the side opposite from A. (9) Thus, 

- -+ AJ intersects EF in a point H, which must be on EF because H is on the -same side of AA' as J. • 

Where was the hypothesis of this theorem used? 

7. In Exercises 12 and 13 we considered the perpendicular bisectors of the 
sides of D.ABC and we showed that ( 1} if two of them have a common 
point, the third passes through that point; (2) if two of them have a 
common perpendicular, the third has that same perpendicular. It fol­
lows that if two of them are asymptotically parallel, then any two of them 
are asymptotically parallel. This result can be strengthened as follows: if 
perpendicular bisectors I and m are asymptotically parallel in the direc­
tion of ideal point n, then the third perpendicular bisector n is asympto­
tically parallel to I and m in the same direction !l. Give the proof and 
justify each step. The proof is based on the following two lemmas: 

LEMMA 6.3. Given MBC. Let /, m, and n be the perpendicular 
bisectors of sides AB, BC, and AC at their midpoints L, M, and N, 
respectively. Let AC~ AB and AC~ BC (AC is the longest side}. 
Then /, m, and n all intersect AC. 

Proof 
(1} (~B} 0 

~ (~A} 
0 and (~B}° ~ (~C} 0

• (2) Hence, there is a point L' 
on AC such that ~A= ~L'BA, and a point M' on AC such that ~C = 
~M'BC. (See Figure 6.37.) (3) Then AL'= BL' and CM'= BM'. (4) 
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~ 

Thus, I is the line joining L to L' and m =MM'. (5) It follows that all 
three perpendicular bisectors cut AC. • 

LEMMA 6.4. No line intersects all three sides of a trebly asymptotic 
triangle. 

Proof-
~ 

( 1) Suppose that a line /cuts /at Q and mat P. (2) Then ray PQ of tlies 
between the rays P!l2 and P!l1 , which are limiting parallel to /. (See 
Figure 6.38.) ( 3) P!l3 , the other ray through P that is limiting parallel 

--+ 
to n, is opposite to P!l2 • ( 4) Hence, PQ1 lies between PQ and PQ3 • 

--+ --+ 
(5) Thus, PQ does not intersect n. (6) Similarly, QP does not inter-
sect n. • 

8. Given any angle <'f-A'OA. It is a theorem in hyperbolic geometry that 
there is a unique line I called the line of enclosure of this angle such that /is 

--+ --+ 
limiting parallel to both sides OA' and OA. Only the idea of the proof is 
given here; see if you can fill in the details (Wolfe, 1945, p. 97): 

Assume that A and A' are chosen so that OA = OA' (see Figure 
--+ 

6.39). Let A'Q be the limiting parallel ray to OA through A', and AI the 

FIGURE&.38 
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FIGURE 6.39 

-limiting parallel ray to OA' through A. Let the rays r and r' be the 
bisectors of <¢::.I,AQ and <¢::QA'I, respectively. The idea of the proof is to 

show that the lines m and m' containing these rays are neither intersect­
ing nor asymptotically parallel, so that, by Theorem 6. 7, they have a 
unique common perpendicular /that turns out to be the line of enclosure 
of <¢::A'OA. (See also Exercise K-11, Chapter 7; the advantage of this 
complicated proof is that it yields a straightedge-and-compass construc­
tion.) 

9. Use the result of the previous exercise to prove that every acute angle is 
an angle of parallelism, i.e., given avcute angle <¢:BOA, there 
is a unique line I perpendicular to BO and limiting parallel to - -OA. (Hint: Reflect across OB.) 

Alternatively, fill in the details of the following continuity proof 
-'-+ 

of Lobachevsky. First show that there exist perpendiculars to OB that -fail to intersect OA by the following argument. In Figure 6.40, B is the 

r 

FIGURE 6.40 0 B c R 
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foot of the perpendicular from A and OB== BB'. If the perpendicular -at B' intersects OA at A', then 

'50A'B' = '50AB' + t5AA'B' = 2'50AB + t5AA'B' > 2'50AB. -If we iterate this doubling along OB and the perpendicular always hits -OA, the defects of the resulting triangles will increase indefinitely. So 
we must eventually arrive at a point where the perpendicular fails to -intersect OA. 

Second, apply Dedekind's axiom to obtain "the first" such perpen­
dicular ray r emanating from R. - -Finally, show that r I OA. For any i~rior ra4RS, let C be the foot of 
the perpendicular from S; show that CS hits OA at some point D and 
apply Pasch's theorem to D.OCD. 

10. Let I and m be divergently parallel lines and let t be their common 
perpendicular cutting I at Q and mat P (Figure 6.41). Let r be a ray of I 
emanating from Q ands the ray of m emanating from Pon the same side 
oft as r. Prove that there is a unique point Ron rsuch that the perpen­
dicular to I through R is limiting parallel to s. Prove also that for every 
point R' on rsuch that R' * R * Q, the perpendicular to /through R' is 
divergently parallel tom. (Hint: Use Major Exercises 3 and 9.) 

11. Let ray r emanating from point P be limiting parallel to line I and let Q 
be the foot of the perpendicular from P to I (Figure 6.42). Justify the 
terminology "asymptotically parallel" by proving that for any point R 
between P and Q there exists a point R' on ray rsuch that R'Q' == RQ, 
where Q' is the foot of the perpendicular from R' to /. (Hint: Use Major 
Exercise 3 and Theorem 6.6 to prove that the line through R that is 
asymptotically parallel to /in the opposite direction from rintersects rat 
a point S. Show that ifT is the foot of the perpendicular from S to/, the -point R' obtained by reflecting R across line ST is the desired point.) 

Similarly, show that the lines diverge in the other direction. 
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12. Let I and n be divergently parallel lines and PQ their common perpen­
dicular segment. The midpoint S of PQ is called the symmetry point of I 
and n. Let m be the perpendicular to PQ through S. Let Q and Q' be the 
ideal points of/, and let I and I' be the ideal points of n (labeled as in 
Figure 6.43). By Major Exercise 8, there are unique lines "joining" 
these ideal points. Prove that (a) QI' and IQ' meet at S; (b) m is 
perpendicular to both QI and Q'I'. (Hint: Use Major Exercise 5 and 
the symmetry part of Theorem 6.6.) 

13. Projective completion of the hyperbolic plane. The ideal points were defined 
in Note 2 after Major Exercise 3. By adding them as ends to our lines, we 
ensure that asymptotically parallel lines meet at an ideal point; Major 
Exercise 11 shows that the lines do converge in the direction of that 
common end. We need to add more "points at infinity" to ensure that 
divergently parallel lines will meet. Two divergently parallel lines have 
a unique common perpendicular t. A third line perpendicular to tcan be 
considered to have "the same direction" as the first two, so all three 
should meet at the same point, just as in the projective completion of the 
Euclidean plane. We therefore define the pole P(t) to be the set of all 
lines perpendicular tot and specify that P ( t) lies on all those lines and no 
others; poles of lines are called ultra-idea/ points. Note that t =I= 
u => P(t) =I= P(u) (uniqueness of the common perpendicular), unlike 
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the Euclidean case. A "point" of the projective completion Pf' is defined 
to be either a point of the hyperbolic plane (called "ordinary") or an 
ideal point or an ultra-ideal point. 

We also add new "lines at infinity" as follows. The polar p(A) of an 
ordinary point A is the set of all poles of lines through A, and the only 
points incident with p(A) are those poles; polars of ordinary points are 
called ultra-idea/ lines. The polar p(Q) of an ideal point Q consists of Q 
and all poles of lines having n as an end; again, the incidence relation is 
E, and p(Q) is called an ideal line. The polar of an ultra-ideal point P(t) is 
just t. A "line" of Pf' is defined to be a polar of a point of Pf'. We have 
defined incidence already. The pole of p(A) is A and of p(Q) is Q. 

THEOREM. Pf' is a projective plane and pis a polarity (an isomorphism 
of Pf' onto its dual plane). 

Since the ideal points are the only points of Pf' that lie on their polars, 
the absolute y is by definition the conic determined by polarity p and 
p(Q) is the tangent line toy at Q (see Project 2, Chapter 2). If Q and I 
are the two ends of ordinary line /, then, by definition, the point of 
intersection of the two tangent lines p(Q) and p(I) is P(t), which gives 
geometric meaning to the rather abstract P(t). Moreover, the interior of 
y is the set of ordinary points, since every line through an ordinary point 
is ordinary and intersects y twice. 

Your exercise is to prove this theorem. To get you started, we show 
that Axiom 1-1 holds for Pl': 

+-+ 
(i) Two ordinary points A, B lie on ordinary line AB and do not lie on 

any "extraordinary" lines by definition of the latter. 
(ii) Given ordinary A and ideal Q, they are joined by the ordinary line 

containing ray AO (which exists and is unique by Theorem 6.6). 
(iii) Given ideal points Q and I, let A be any ordinary point and con­

sider the rays AI and AO. If these are opposite, then the line 
containing them joins n and I; otherwise, the line of enclosure 
(Major Exercise 8) of the angle determined by these coterminal 
rays joins n and I. Uniqueness ofline QI follows from the fact that 
the angle of parallelism is acute. 

(iv) Given ordinary A and ultra-ideal P(t), the line joining them is the 
perpendicular to t through A. 

(v) Given ideal Q and ultra-ideal P(t). If Q lies on t, these points lie on 
p(Q); by definition of incidence, they do not lie on any other 
extraordinary line, and they could not lie on an ordinary line u 
because u would then be both asymptotically parallel to and per­
pendicular tot. If Q does not lie on t, let A be a point on t. If ray AQ 
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is at right angles to t, the line containing A!l joins Q to P(t); 
otherwise, Major Exercise 9 ensures that there is a unique line 
u _.L t such that A!l is limiting parallel to u and u joins Q to P ( t). 

(vi) Given ultra-ideal points P(t) and P(u), /meets u either at ordinary 
point A, in which case p(A) is the join, or at ideal point Q, in which 
case p(!l) is the join, or, by Theorem 6.7, at ultra-ideal point P(m), 
in which case m (the common perpendicular tot and u) joins P(t) 
and P(u). 

PROJECTS 

1. Here is another construction for the common perpendicular between 
divergently parallel lines I and n. It suffices to locate their symmetry point 
S, for a perpendicular can then be dropped from S to both lines. Take any 
segment AB on/. Construct point Con /such that Bis the midpoint of AC 
and lay off any segment A'B' on n congruent to AB. Let M, M', N, and N' 
buhe mid~ints of AA', BB', BA', and CB', respectively. Then the lines 
MM' and NN' are distinct and intersect at S. (The proof follows from the 
theory of glide reflections, see Exercises 21 and 22 in Chapter 9; also see 
Coxeter, 1968, p. 269, where it is deduced from Hjelmslev's midline 
theorem. Beware that Coxeter's description of midlines is partially 
wrong; e.g., no midline through S cuts I and n.) 

2. M. Pieri has shown that the foundations of geometry can be built on the 
single undefined term "point" and the single undefined relation "point A 
is equidistant from points Band C." It is obviously possible to define "A, 
B, Care collinear" in terms of "betweenness," namely, "A* B * C or 
B * A * C or A * C * B." What is not obvious is that in hyperbolic geom­
etry it is possible to define "betweenness" in terms of "collinearity," as 
was done by F. P.Jenks, and that "collinearity" can in fact be taken as the 
single undefined relation for a hyperbolic geometry based on the elemen­
tary continuity principle (see Exercise K-21, Chapter 7). Report on all of 
these results, using as a reference H. Royden's paper "Remarks on Prim­
itive Notions for Elementary Euclidean and Non-Euclidean Plane Ge­
ometry" in Henkin, Suppes, and Tarski (1959), with corrections in W. 
Schwabhauser's paper "Metamathematical Methods in Foundations of 
Geometry," in Logic, Methodology and Philosophy of Science, Y. Bar-Hillel, 
ed., Amsterdam: North Holland, 1965; and Blumenthal and Menger 
(1970), p. 220. 
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3. Hilbert showed that all of plane hyperbolic geometry can be deduced 
from the incidence, betweenness, and congruence axioms, and a continu­
ity axiom asserting the existence of two non opposite limiting parallel rays 
emanating from a given point not on a given line. Report on the proof of 
Saccheri's acute angle hypothesis from these axioms (see Wolfe, 1945, p. 
78; Archimedes' axiom is not needed in this proof). Report also on the 
introduction of coordinates on the basis of these axioms (see W. Szmie­
lew, "A new analytic approach to hyperbolic geometry," Fundamenta 
Mathematicae, 50 ( 1961): 129-158), and the use of such coordinates to 
prove the circular continuity principle (see J. Strommer, "Ein elementar 
Beweis des Kreisaxiome der hyperbolischen geometrie," Acta Scientiarom 
Mathematicarom Szeged, 22, (1961 ): 190-195). 

4. If Dedekind's axiom is dropped from our axioms for hyperbolic geometry, 
then it is impossible to prove the existence oflimiting parallel rays, for W. 
Pejas has constructed a "semielliptic" Archimedean geometry in which 
the hyperbolic axiom holds but any pair of parallel lines have a unique 
common perpendicular (see Mathematische Annalen, 143 (1961 ): 233). If 
Dedekind's axiom is replaced with the elementary continuity principle, 
then a proof of the existence of limiting parallel rays has been given by 
embedding in a metric projective plane (see Hessenberg and Diller, 
196 7, p. 239). Report on these results. If you could apply Janos Bolyai's 
construction (p. 198) for a more direct proof, you would probably be 
awarded a Ph.D. (See Appendix Band M. J. Greenberg, "On J. Bolyai's 
Parallel Construction," Journal of Geometry, 12/1(1979):45-64.) 

5. In Euclidean geometry, it is impossible to trisect every angle using 
straightedge and compass alone; in hyperbolic geometry, not only is it 
impossible to trisect every angle but it is also impossible to trisect every 
segment using straightedge and compass alone! In Euclidean geometry, it 
is impossible to construct with straightedge and compass alone a regular 
4-gon having the same area as a given circle; in hyperbolic geometry, 
however, this construction is possible. Report on these results. (Use 
Martin, 1982, Chapter 34.) 



INDEPENDENCE 
OF THE PARALLEL 
POSTULATE 

All my efforts to discover a contradiction, an 
inconsistency, in this non-Euclidean geometry have 
been without success. . . . 

C. F. GAUSS 

CONSISTENCY OF HYPERBOLIC GEOMETRY 

In the previous chapter you were introduced to hyperbolic geometry 
and presented with some theorems that must seem very strange to 
someone accustomed to Euclidean geometry. Even though you may 
admit that the proofs of these theorems are correct, given our assump­
tions, you may feel that the basic assumption of hyperbolic geometry 
-the hyperbolic axiom-is a false assumption. Let's examine what 
might be meant by saying it's false. 

Suppose I assume that when I drop some object, say, a stone, it will 
"fall" upward. I can go out and drop rocks and, unless I have rocks in 
my head, I will discover that my assumption was false. 

Now what sort of experiment could I perform to show that the 
hyperbolic assumption is false, or, equivalently, to show that its nega­
tion, the Euclidean parallel postulate, is true? First of all, I would have 
to understand what this statement means. In the above example I 
understood very well the meaning of "stone" and what it means to 
"drop" one, so I could act upon this understanding. But what does it 
mean that /is a "line," that Pis a "point" not "on" I, or that there is a 
"unique parallel" to I through P? I might represent "points" and 
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FIGURE7.I Q 

"lines" with paper, pencil, and straightedge. Suppose I draw PQ 
perpendicular to I and m through P perpendicular to PQ, and then 
draw a linen through P, making a very small angle of E 0 with m. Using 
Euclidean trigonometry, I can calculate exactly how far out on n I 
would have to go to get to the point where n is supposed to intersect/, 
but if E is small enough, that point might be millions of miles away. 
Thus, I could not physically perform the experiment to prove that the 
hyperbolic axiom is false. 

But is geometry about lines that we can draw? Applied geometry 
(engineering) is; but pure geometry is about ideal lines, which are 
concepts, not objects. The only experiments we can perform on these 
ideal lines are thought-experiments. So the question should be: Can 
we conceive of a non-Euclidean geometry? Kant said no, that any 
geometry other than Euclidean is inconceivable. At the time, of 
course, no one had yet conceived of a different geometry. It is in this 
sense that Gauss, J. Bolyai, and Lobachevsky created a "new uni­
verse." 

Other questions can be raised. Mathematicians reject many of their 
own ideas because they either lead to contradictions or do not lead 
anywhere, i.e., do not prove fruitful, useful, or interesting. Does the 
hyperbolic axiom lead to a contradiction? Saccheri thought it would, 
and tried to prove the parallel postulate that way. Is hyperbolic geom­
etry fruitful, useful, or interesting? 

Let us postpone this question and take up the former: Is hyperbolic 
geometry consistent? Nowadays we refer to this as a question in meta­
mathematics, i.e., a question outside of a mathematical system about 
the system itself. The question is not about lines or points or other 
geometric entities; it is~ question about the whole system of hyperbolic 
geometry. 
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If hyperbolic geometry were inconsistent, an ordinary mathemati­
cal argument could derive a contradiction. Saccheri tried to do this and 
failed. Could it be that he wasn't clever enough, that someday some 
genius will find a contradiction? 

On the other hand, can it be proved that hyperbolic geometry is 
consistent-can it be proved that there is no possible way to derive a 
contradiction? 

We might ask the same question about Euclidean geometry-how 
do we know it is consistent? Of course, this was never a burning 
question before the discovery of non-Euclidean geometry simply be­
cause everyone believed Euclidean geometry to be consistent. Re­
markably enough, if we make this belief an explicit assumption (albeit 
a metamathematical assumption), it is possible to give a proof that 
hyperbolic geometry is consistent. Let us state this possibility as a 
theorem: 

METAMATHEMATICAL THEOREM 1. If Euclidean geometry is con­
sistent, then so is hyperbolic geometry. 

Granting this result for the moment, we get the following important 
corollary. 

COROLLARY. If Euclidean geometry is consistent, then no proof or 
disproof of the parallel postulate from the rest of Hilbert's postulates 
will ever be found, i.e., the parallel postulate is independent of the 
other postulates. 

To prove the corollary, assume on the contrary that a proof of the 
parallel postulate exists. Then hyperbolic geometry would be in­
consistent, since the hyperbolic axiom contradicts a proved result. 
But Metamathematical Theorem 1 asserts that hyperbolic geome­
try is consistent relative to Euclidean geometry. This contradiction 
proves that no proof of the parallel postulate exists (RAA). The 
hypothesis that Euclidean geometry is consistent ensures that no 
disproof exists either. • 

Thus, 2000 years of efforts to prove Euclid V were in vain. There is 
no more hope of proving it than there is of finding a method for 
trisecting every angle using straightedge and compass alone. 
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Of course, when we say this, we are assuming the consistency of the 
venerable Euclidean geometry. Had Saccheri, Legendre, F. Bolyai, or 
any of the dozens of other scholars succeeded in proving Euclid V from 
the other axioms, with the noble intention of making Euclidean ge­
ometry more secure and elegant, they would have instead completely 
destroyed Euclidean geometry as a consistent body of thought! (I urge 
you, dear reader, to go over the preceding statements very carefully to 
make sure you have understood them. If you have not understood, you 
have missed the main point of this book.) 

In the form given here, Metamathematical Theorem 1 is due to 
Eugenio Beltrami ( 1835- 1900); a different proof was later given by 
Felix Klein ( 1849- 1925). 1 Beltrami proved the relative consistency 
of hyperbolic geometry in 1868 using differential geometry (see The 
Pseudosphere, Chapter 10). Klein recognized that projective geome­
try could be used to give another proof. In 18 71 he applied the method 
Arthur Cayley used (in 1859) to express distance and angle measure 
by projective coordinates. 

To prove Metamathematical Theorem 1, we have to again ask 
ourselves, What is a "line" in hyperbolic geometry-in fact, what is 
the hyperbolic plane? The honest answer is that we don't know; it is 
just an abstraction. A hyperbolic "line" is an undefined term describ­
ing an abstract concept that resembles the concept of a Euclidean line 
except for its parallelism properties. Then how shall we visualize 
hyperbolic geometry? In mathematics, as in any other field of re­
search, posing the right question is just as important as finding an­
swers. 

The question of "visualizing" means finding Euclidean objects that 
represent hyperbolic objects. This means finding a Euclidean model 
for hyperbolic geometry. In Chapter 2 we discussed the idea of models 
for an axiom system; there we showed that the Euclidean parallel 
postulate is independent of the axioms for incidence geometry by 
exhibiting three-point and five-point models of incidence geometry 
that are not Euclidean. Here we want to know whether the parallel 
postulate is independent of a much larger system of axioms, namely, 

1 Beltrami made important contributions to differential geometry. Klein was a master of 
many branches of mathematics and an influential teacher. His book on the history of nine­
teenth-century mathematics shows how familiar he was with all aspects of the subject. Klein's 
famous inaugural address in 1872, his Erlanger Programme, made the study of groups of transfor­
mations and their invariants the key to geometry (see Chapter 9). 
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Eugenio Beltrami 

neutral geometry. We can show that it is, and by the same method­
by exhibiting models for hyperbolic geometry.2 

THE BELTRAMI-KLEIN MODEL 

For brevity, we will refer to this first model (the Beltrami-Klein 
model) as the "Klein model." We fix once and for all a circle yin the 
Euclidean plane (which Cayley referred to as "the absolute"). If 0 is 

z Unlike the situation for incidence geometry, we cannot construct a model for neutral 
geometry in which the elliptic parallel property holds, because it is a theorem in neutral 
geometry that parallel lines exist (see Corollary 2 to Theorem 4.1). If you worked through Major 
Exercise 13, Chapter 6, you will easily understand the motivation for the Beltrami·Klein model. 
It is the projective completion of the hyperbolic plane! 
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Felix Klein 

the center of y and OR is a radius, the interior of y by definition consists 
of all points X such that OX < 0 R (see Figure 7. 2). In Klein's model 
the points in the interior of y represent the points of the hyperbolic 
plane. 

Recall that a chord of y is a segment AB joining two points A and B 
on y. We wish to consider the segment without its endpoints, which we 
will call an open chord and denote by A) (B. In Klein's model the open 
chords of y represent the lines of the hyperbolic plane. The relation 
"lies on" is represented in the usual sense: Plies on A) (B means that P 
lies on the Euclidean line AB and P is between A and B. The hyperbo­
lic relation "between" is represented by the usual Euclidean relation 
"between." This much is easy. The representation of "congruence" is 
much more complicated, and we will discuss it later in this chapter 
(The Projective Nature of the Beltrami-Klein Model). 
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It is immediately clear from Figure 7 .3 that the hyperbolic axiom 
holds in this representation. 

Here the two open chords m and n through P are both parallel to the 
open chord /-for what does "parallel" mean in this representation? 
The definition of "parallel" states that two lines are parallel if they 
have no point in common. In Klein's representation this becomes: two 
open chords are parallel if they have no point in common (in the 
definition of "parallel," replace the word "line" by "open chord"). 
The fact that the three chords, when extended, may meet outside the 
circle y is irrelevant- points outside of y do not represent points of 
the hyperbolic plane. So let us summarize the Beltrami-Klein proof of 
the relative consistency of hyperbolic geometry as follows: 

First, a glossary is set up to "translate" the five undefined terms 
("point," "line," "lies on," "between," and "congruent") into their 
interpretations in the Euclidean model (we have done this for the first 
four terms). All the defined terms are then interpreted by "translat­
ing" all occurrences of undefined terms. For instance, the defined 
term "parallel" was interpreted by replacing every occurrence of the 

FIGURE7.3 
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word "line" in the definition by "open chord." Once all the defined 
terms have been interpreted, we have to interpret the axioms of the 
system. Incidence Axiom 1, for example, has the following interpreta­
tion in the Klein model: 

INCIDENCE AXIOM 1 (Klein). Given any two distinct points A and Bin 
the interior of circle y. There exists a unique open chord I of y such that 
A and B both lie on /. 

We must prove that this is a theorem in Euclidean geometry (and 
similarly, prove the interpretations of all the other axioms). Once all 
the interpreted axioms have been proved to be theorems in Euclidean 
geometry, any proof of a contradiction within hyperbolic geometry 
could be translated by our glossary into a proof of a contradiction in 
Euclidean geometry. From our assumption that Euclidean geometry 
is consistent, it follows that no such proof exists. Thus, if Euclidean 
geometry is consistent, so is hyperbolic geometry. 

We must now backtrack and prove that the interpretations of the 
axioms of hyperbolic geometry in the Klein model are theorems in 
Euclidean geometry. Let us prove Axiom 1-1 (Klein) stated above: 

Proof 
Given A and B interior to y. Let AB be the Euclidean line through 
them (see Figure 7.4). This line intersects yin two distinct points C 
and D. Then A and B lie on the open chord C) (D, and, by Axiom 1-1 
for Euclidean geometry, this is the only open chord on which they 
both lie. • 

In the second step of the proof we used a theorem from Euclidean 
geometry that states that a line passing through the interior of a circle 

D 

FIGURE7.4 
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FIGURE 7.S Limiting parallel rays. 

intersects the circle in two distinct points. This can be proved from the 
circular continuity principle (see Major Exercise 1, Chapter 4). Veri­
fications of the interpretations of the other incidence axioms, the 
betweenness axioms, and Dedekind's axiom are left as exercises; the 
congruence axioms are verified later in this chapter. 

One nice aspect of the Klein model is that it is easy to visualize the 
limiting parallel rays (see Figure 7. 5). Let P be a point interior to y 
and not on the open chord A) (B. A and B are points on the circle and 
therefore do not represent points in the hyperbolic plane; they are said 
to represent ideal points and are called the ends of the hyperbolic line 
represented by A) (B (see Note 2 following Major Exercise 3, Chapter 
6). Then the limiting parallel rays to A) (B from Pare represented by 
the segments PA and PB with the endpoints A and B omitted. It is 
clear that any ray between these limiting parallel rays intersects the 
open chord A) (B, whereas all other rays emanating from P do not. The 
symmetry and transitivity of limiting parallelism (which, as you saw in 
Major Exercises 2 and 3, Chapter 6, were tricky to prove) are utterly 
obvious in the Klein model, as is the fact that every angle has a line of 
enclosure (given ~QPR, if A is the end of PQ and B is the end of PR, 
then A) (B is the line of enclosure of ~QPR-see Major Exercise 8, 
Chapter 6). 

Let us conclude this section by considering the interpretation in the 
Klein model of "congruence," the subtlest part of the model. One 
method of interpretation is to use a system of numerical measurement 
of angle degrees and segment lengths. Two angles would then be 
interpreted as congruent if they had the same number of degrees, and 
two segments would be interpreted as congruent if they had the same 
length (compare Theorem 4.3). The catch is that Euclidean methods 
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of measuring degrees and lengths cannot be used. If we use Euclidean 
length, for example, then every line (i.e., open chord) would have a 
finite length less than or equal to the length of a diameter of y. This 
would invalidate the interpretations of Axioms B-2 and C-1, which 
ensure that lines are infinitely long. 

We will further discuss the matter in this chapter (in the sections 
Perpendicularity in the Beltrami-Klein Model and The Projective 
Nature of the Beltrami-Klein Model), but first let's consider the 
Poincare models, in which congruence of angles is easier to describe. 

THE POINCARE MODELS 

A disk model due to Henri Poincare ( 1854-1912)3 also represents 
points of the hyperbolic plane by the points interior to a Euclidean 
circle y, but lines are represented differently. First, all open chords 
that pass through the center 0 of y (i.e., all open diameters I of y) 
represent lines. The other lines are represented by open arcs of circles 
orthogonal toy. More precisely, let 6 be a circle orthogonal toy (at each 
point of intersection of y and 6 the radii of y and 6 through that point 
are perpendicular). Then intersecting 6 with the interior of y gives an 
open arc m, which by definition represents a hyperbolic line in the 
Poincare model. So we will call Poincare line, or "P-line," either an 
open diameter I of y or an open circular arc m orthogonal to y (see 
Figure 7.6). 

A point interior toy "lies on" a Poincare line if it lies on it in the 
Euclidean sense. Similarly, "between" has its usual Euclidean inter­
pretation (for A, B, and Con an open arc coming from an orthogo~ 
circle 6 with center P, B is between A and C if PB is between PA 
and PC). 

The interpretation of congruence for segments in the Poincare model 
is complicated, being based on a way of measuring length that is 
different from the usual Euclidean way, just as in the Klein model (see 

3 Poincare was the cousin of the president of France. Like Gauss, Poincare made profound 
discoveries in many branches of mathematics and physics; he even started a new branch of 
mathematics, algebraic topology. He used his models of hyperbolic geometry to discover new 
theorems about automorphic functions of a complex variable. Poincare is also important as a 
philosopher of science (see Chapter 8). 
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p. 248). Congruence for angles has the usual Euclidean meaning, how­
ever, and this is the main advantage of the Poincare model over the 
Klein model.4 Specifically, if two directed circular arcs intersect at a 
point A, the number of degrees in the angle they make is by definition 
the number of degrees in the angle between their tangent rays at A 
(see Figure 7. 7). Or, if one directed circular arc intersects an ordinary 
ray at A, the number of degrees in the angle they make is by definition 
the number of degrees in the angle between the tangent ray and the 
ordinary ray at A (see Figure 7.8). 

Having interpreted all the undefined terms of hyperbolic geometry 
in the Poincare model, we get (by substitution) interpretations of all 

4 Technically, we say that the Poincare model is conformal-it represents angles accurately 
-while the Klein model is not. Another example of a conformal model is Mercator's map of the 
surface of the earth. 
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Henri Poincare 

the defined terms. For example, two Poincare lines are para/le/if and 
only if they have no point in common. Then all the axioms of hyperbo­
lic geometry get translated into statements in Euclidean geometry, 
and it will be shown in the section Inversion in Circles later in this 
chapter that these interpretations are theorems in Euclidean geome­
try. Hence, the Poincare model furnishes another proof that if Euclid­
ean geometry is consistent, so is hyperbolic geometry. 

The limiting parallel rays in the Poincare model are illustrated in 
Figure 7.9. Here we have chosen /to be an open diameter A) (B; the 
rays are circular arcs that meet AB at A and B and are tangent to this 
line at those points. You can see how these rays approach I asymptoti­
cally as you move out toward the ideal points represented by A and B. 

Figure 7 .10 illustrates two parallel Poincare lines with a common 
perpendicular. The diagram shows how m diverges from I on either 
side of the common perpendicular PO. 
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Figure 7 .11 illustrates a Lambert quadrilateral. You can see that 
the fourth angle is acute. By adding the mirror image of this Lambert 
quadrilateral we get a diagram illustrating a Saccheri quadrilateral 
(Figure 7.12). 

0 

FIGURE 7.11 
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FIGURE7.12 

You may be surprised that we have two different models of hyper­
bolic geometry, one due to Klein and the other to Poincare. (There is a 
third model, also due to Poincare, soon to be described.) Yet you may 
have the feeling that these models are not "essentially different." In 
fact, these models are isomorphic in the technical sense that one-to-one 
correspondences can be set up between the "points" and "lines" in 
one model and the "points" and "lines" in the other so as to preserve 
the relations of incidence, betweenness, and congruence. Such iso­
morphism is illustrated in Figure 7 .13. We start with the Klein model 
and consider, in Euclidean three-space, a sphere of the same radius 
sitting on the plane of the Klein model and tangent to it at the origin. 
We project upward orthogonally the entire Klein model onto the lower 
hemisphere of this sphere; by this projection, the chords in the Klein 
model become arcs of circles orthogonal to the equator. We then 
project stereographically from the north pole of the sphere onto the 

FIGURE7.13 
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original plane. The equator of the sphere will project onto a circle 
larger than the one used in the Klein model, and the lower hemisphere 
will project stereographically onto the inside of this circle. Under 
these successive transformations, the chords of the Klein model will be 
mapped one-to-one onto the diameters and orthogonal arcs of the 
Poincare model. In this way the isomorphism of the models may be 
established. 

One can actually prove that all possible models of hyperbolic geometry 
are isomorphic to one another, i.e., that the axioms for hyperbalic geom­
etry are categorical. The same is true for Euclidean geometry. The 
categorical nature of Euclidean geometry is established by introduc­
ing Cartesian coordinates into the Euclidean plane. Analogously, the 
categorical nature of hyperbolic geometry is established by introduc­
ing Beltrami coordinates into the hyperbolic plane (for which hyper­
bolic trigonometry must first be developed). 5 

In the other Poincare model mentioned here, the points of the 
hyperbolic plane are represented by the points of one of the Euclidean 
half-planes determined by a fixed Euclidean line. If we use the Carte­
sian model for the Euclidean plane, it is customary to make the x axis 
the fixed line and then to use for our model the upper half-plane 
consisting of all points (x, y) with y > 0. Hyperbolic lines are repre­
sented in two ways: 

1. As rays emanating from points on the x axis and perpendicular to 
the x axis; 

2. As semicircles in the upper half-plane whose center lies on the x 
axis (see Figure 7.14). 

Incidence and betweenness have the usual Euclidean interpretation. 

5 See Chapter 10 as well as Borsuk and Szmielew (1960), Chapter 6. 
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This model is conformal also (degrees of angles are measured in the 
Euclidean way). Measurement of lengths will be discussed later. 

To establish isomorphism with the previous models, choose a point 
Eon the equator of the sphere in Figure 7 .13, and let II be the plane 
tangent to the sphere at the point diametrically opposite to E. Stereo­
graphic projection from E to II maps the equator onto a line in II and 
the lower hemisphere onto the lower half-plane determined by this 
line. Notice that the points on this line represent ideal points. How­
ever, one ideal point is missing: the point E got lost in the stereo­
graphic projection. It is customary to imagine an ideal "point at infin­
ity" oo that corresponds to E; it is the common end of all the vertical 
rays. 

PERPENDICULARITY IN THE 
BELTRAMI-KLEIN MODEL 

The Klein model is not conformal. Congruence of angles is inter­
preted differently from the usual Euclidean way, and will be ex­
plained later in this chapter (p. 260). Here we will describe only those 
angles that are congruent to their supplements, namely, right angles. 

Let I and m be open chords of y. To describe when I l_ min the Klein 
model, there are two cases to consider: 

Case I. One of I and m is a diameter. Then I l_ m in the Klein sense 
if and only if I l_ m in the Euclidean sense. (See Figure 7 .15.) 

0 

FIGURE7.15 
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P(/) 

FIGURE7.18 t, 

Case 2. Neither I norm is a diameter. In this case we associate to I a 
certain point P(/) outside of y called the pole of/, defined as follows. 
Let t1 and t2 be the tangents to y at the endpoints of I. Then by 
definition P(/) is the unique point common to t 1 and t2 (t1 and t2 are not 
parallel, because /is not a diameter); see Figure 7.16. 

It turns out that I is perpendicular tom in the sense of the Klein model if 
and only if the Euclidean line extending m passes through the pole of I. 

This description of perpendicularity will be justified later (pp. 
260- 261). We can use it to see more easily why divergently parallel 
lines have a common perpendicular-Theorem 6. 7. In the hypothe­
sis of Theorem 6. 7 we are given two parallel lines that do not contain 

~, limitiJ!~- parallel rays, In the Klein model this means that we are given 
open chords I and m that do not have a common end. The conclusion of 
Theorem 6. 7 is that I and m have a common perpendicular k. How do 
we find k? Let's discuss case 2, leaving case 1 as an exercise. By the 
above description of perpendicularity if k were perpendicular to both I 
and m, the extension of k would have to pass through the pole of I and 
the pole of m. Hence, to construct k, we need only join these poles by a 
Euclidean line and take k to be the open chord of y cut out by this line 
(Figure 7.17).6 

There is a nice language that describes the behavior of pairs of lines 
in the Klein model. Let us call the points inside circle y (which 

6 If I and m did have a common end n, the Euclidean line joining P(/) to P(m) would be 
tangent to y at Q. That is why Saccheri claimed that asymptotically parallel lines have "a 
common perpendicular at infinity," and this he found repugnant. 
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P(m) 

FIGURE7.17 

represent all the points in the hyperbolic plane) ordinary points. We 
already called the points on the circle y ideal points. Let us call the 
points outside y ultra-ideal points. Finally, for every diameter of y, let 
us imagine another point "at infinity" such that all the Euclidean lines 
parallel in the Euclidean sense to this diameter meet in this point at 
infinity, just as railroad tracks appear to meet at the horizon. These 
points at infinity will also be called ultra-idea/. We can then say that 
two Klein lines "meet" at an ordinary point, an ideal point, or an 
ultra-ideal point, depending on whether they are intersecting, asymp­
totically parallel, or divergently parallel, respectively. The ultra-ideal 
point at which divergently parallel Klein lines I and m "meet" is the 
pole P(k) of their common perpendicular k (see Figure 7.17). 

This language is suggestive of further theorems in hyperbolic ge­
ometry. For example, we know that two ordinary points determine a 
unique line, and we have seen that two ideal points also determine a 
unique line, the line of enclosure ~f Major Exercise 8, Chapter 6. We 
can ask the same question about two points that are ultra-ideal or 
about two points of different species. For example, an ordinary point 
and an ideal or ultra-ideal point always determine a unique line, but 
two ultra-ideal points may or may not (see Figure 7.18). Let us 
translate back from this language, say, in the case of an ordinary point 
0 and an ultra-ideal point P(I) that is the pole of a Klein line I. What is 
the Klein line "joining" 0 to P(I)? It is the unique Klein line m 
through 0 that is perpendicular in the sense of the Klein model to the 
line I (see Figure 7 .16). We leave the other cases for exercises. 

If you did most of the exercises in hyperbolic geometry in Chapter 
6, deriving results without having reliable diagrams to guide you, the 
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Klein and Poincare models must come as a great relief. It is a useful 
exercise to take an absurd diagram like Figure 6.26 and draw those 
divergently parallel perpendicular bisectors of the triangle more accu­
rately in one of the models. It is amazing that J. Bolyai and Loba­
chevsky were able to visualize hyperbolic geometry without such 
models, especially since they worked in three dimensions. They must 
have had non-Euclidean eyesight. 

A. MODEL OF THE HYPERBOLIC PLANE 
FROM PHYSICS 

This model comes from the theory of special relativity. In Cartesian 
three-space IR3, with coordinates denoted x, y and t (for time), distance 
will be measured by the Minkowski metric 

ds 2 = dx2 + dy2- dt2• 

Then with respect to the Minkowski metric, the surface of equation 

x2 + y2 - ,2 = - 1 

is a "sphere" centered at the origin 0 = (0, 0, 0) of imaginary radius 
i = ~-1. (As was mentioned in Chapter 5, Lambert was the first to 
wonder if such a model existed.) In Euclidean terms, it is a two­
sheeted hyperboloid (surface of revolution obtained by rotating the 
hyperbola t 2 - x2 = 1 around the x axis). We choose the sheet I: 
t '?!::. 1 as our model. It looks like an infinite bowl (see Figure 7 .19). 
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Analogously with our interpretation of "lines" on a sphere in Chapter 
2, Exercise 1 O(c), "lines" are interpreted to be the sections of I cut 
out by planes through O; thus a "line" is one branch of a hyperbola 
on I. 

Here is an isomorphism of I with the Beltrami-Klein model A. The 
planet= 1 is tangent to I at the point C = (0, 0, 1). Let A be the unit 
disk centered at C in this plane. Projection from 0 gives a one-to-one 
correspondence between the points of A and the points of I (i.e., point 
P of A corresponds to the point P' at which ray OP pierces I). Simi­
larly, each chord m of A lies on a unique plane Il through 0, and m 
corresponds to the section m' of I cut out by Il. This isomorphism of 
incidence models can be used to interpret betweenness and con­
gruence on I. Alternatively, they can be defined in terms of the 
measurement of arc length induced on I by the Minkowski metric; 
then further argument is needed to verify that our correspondence is 
indeed an isomorphism of models of hyperbolic geometry. Another 
justification of I as a model of the hyperbolic plane will be given 
analytically in Chapter 10 (see the discussion of Weierstrass coordi­
nates in the section Coordinates in the Hyperbolic Plane). 

Note. From the point of view of Einstein's special relativity theory, 
I can be identified with the set of plane uniform motions, and the 
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hyperbolic distance can be identified with the relative velocity of one 
motion with respect to the other. A glossary can be set up to translate 
every theorem of hyperbolic geometry into a theorem of relativistic 
kinematics, and conversely. See Yaglom (1979), p. 225 ff. 

INVERSION IN CIRCLES 

In order to define congruence in the Poincare models and verify the 
axioms of congruence, we must study the operation of inversion in a 
Euclidean circle; this operation will turn out to be the interpretation of 
reflection across a line in the hyperbolic plane. This theory is part of 
Euclidean geometry, so we may use the theorems you proved in Exer­
cises 18- 26, Chapter 5. 

DEFINITION. Let y be a circle of radius r, center 0. For any point 
P =fo 0 the inverse P' of P with respect toy is the unique point P' on ray 
6f> such that (OP) (OP') = r 2 (where OP denotes the length of 
segment OP with respect to a fixed unit of measurement); see Figure 
7.20. 

The following properties of inversion are immediate from the defini­
tion: 

PROPOSITION 7.1. (a) P = P' if and only if P lies on the circle of 
inversion y. (b) If Pis inside y then P' is outside y, and if Pis outside y 
then P' is inside y. (c) (P')' = P. 

0 p P' 

FIGURE7.20 
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P' 

FIGURE7.21 

The next two propositions tell how to construct the inverse point 
with a straightedge and compass. 

PROPOSITION 7.2. Suppose Pis inside y. Let TU be the chord of y 
through Pwhich is perpendicular to OP. Then the inverse P' of Pis the 
pole of chord TU, i.e., the point of intersection of the tangents toy at T 
and U. (See Figure 7.21). 

Proof 
Suppose the tangent to y at T cuts oP at point P'. Right triangle 
.60PT is similar to right triangle .60TP' (since they have <tTOP in 
common and the angle sum is 180 °). Hence, corresponding sides 
are proportional (Exercise 18, Chapter 5). As OT= r, we get 
(OP)/r= r/(OP'), which shows that P' is inverse to P. Reflecting 
across OP (Major Exercise 2, Chapter 3), we see thatthe tangent to 
y at U also passes through P', so P' is indeed the pole of TU. • 

PROPOSITION 7.3. If Pis outside y, let Q be the midpoint of segment 
OP. Let a be the circle with center Q and radius OQ = QP. Then a 
cuts yin two points T and U, PT and PU are tangent toy, and the 
inverse P' of Pis the intersection of TU and OP. (See Figure 7.22.) 

Proof 
By the circular continuity principle (Chapter 3), a and y do meet in 
two points T and U. Since <tOTP and <tOUP are inscribed in 
semicircles of a, they are right angles (Exercise 24, Chapter 5); 
hence, PT and PU are tangent to y. If TU meets OP in a point 
P', then P is the inverse of P' (Proposition 7 .2); hence, P' is the 
inverse of P in y. • 
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FIGURE7.22 

The next proposition shows how to construct the Poincare line 
joining two ideal points - the line of enclosure. 

PROPOSITION 7.4. Let T and Ube points on y that are not diametri­
cally opposite and let P be the pole of TU. Then PT= PU, 
-tPTU = -tPUT, OP J_ TU, and the circle o with center P and radius 
PT= PU cuts y orthogonally at T and U. (See Figure 7.23.) 

Proof 
By definition of pole, -tOTP and -tOUP are right angles, so by the 
hypotenuse-leg criterion, .6.0TP=.6.0UP. Thus, PT= PU, 
-tOPT= -tOPU. The base angles -tPTU and -tPUT of the iso­
sceles triangle .6. TPU are then congruent, and the angle bisector 
PO is perpendicular to the base TU. The circle O is then well 
defined because PT = PU and O cuts y orthogonally by our hypoth­
esis that PT and PU are tangent to y. • 

'Y 

FIGURE7.23 



246 111 Independence of the Parallel Postulate 

LEMMA 7 .1. Given that point 0 does not lie on circle o. (a) If two lines 
through 0 intersect o in pairs of points (P 1, P 2) and (01, 0 2), respec­
tively, then (OP1) (OP2) = (001) (002). This common product is 
called the power of 0 with respect too when 0 is outside o, and minus 
this number is called the power of 0 when 0 is inside o. (b) If 0 is 
outside o and a tangent too from 0 touches oat point T, then (OT) 2 

equals the power of 0 with respect to o. 

Proof 
(a) Since angles that are inscribed in a circle and subtend the same 
arc are congruent (Exercise 25, Chapter 5), we have 

<tP 2P 102 = <tP 20102 
<tP10201 =<tP1P201 

(see Figure 7 .24). It follows that.6.0P 10 2 and .6.001P2 are similar, 
so that (OP1)/(001) = (002)/(0P2), as asserted. 

(b) Let C be the center of o and let line OC cut oat P1 and P2, 
with 0 * P 1 * C * P 2. By the Pythagorean theorem (Exercise 21, 
Chapter 5), 

(OT) 2 = (OC) 2 -=-i_CTI:._ 
= (OC - CT) (OC + CT) 
= (OC - CP1) (OC + CP2) 
= (OP1) (OP2) 

(see Figure 7.25). • 

PROPOSITION 7.5. Let P be any point which does not lie on circle y 
and which does not coincide with the center 0 of y, and let o be a circle 
through P. Then O cuts y orthogonally if and only if O passes through 
the inverse point P' of P with respect to y. 

0 

FIGURE7.24 
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FIGURE7.25 

Proof 
Suppose first that 6 passes through P'. Then the center C of 6 lies 
on the perpendicular bisector of PP' (Exercise 1 7, Chapter 4); 
hence, CO> CP (Exercise 27, Chapter 4) and 0 lies outside 6. 
Therefore, there is a point T on 6 such that the tangent to 6 at T 
passes thr~h _Q_(Proposition 7.3). Lemma 7.1 (b) then gives 
(OT) 2 = (OP) (OP') = r 2 so that T also lies on y and 6 cuts y 
orthogonally. 

Conversely, let 6 cut y orthogonally at points T and U. Then the 
tangents to 6 at T and U meet at 0, so that 0 lies outside 6. It 
follows that BP cuts 6 again at a point Q. By Lemma 7.1 (b), 
r 2 = (OT) 2 = (OP) (OQ) so that Q = P', the inverse of Piny. • 

Proposition 7.5 can be used to construct the P-line joining two 
points P and Q inside y that do not lie on a diameter of y. First, 
construct the inverse point P', using Proposition 7 .2. Then construct 
the circle 6 determined by the three noncollinear points P, Q, and P' 
(use Exercise 12, Chapter 6). By Proposition 7 .5, 6 will be orthogonal 
toy; intersecting 6 with the interior of y gives the desired P-line. This 
verifies the interpretation of Axiom 1-1 for the Poincare disk model. 
The verification is even simpler for the Poincare upper half-plane 
model: Given two points P and Q that do not lie on a vertical ray, let 
the perpendicular bisector of Euclidean segment PQ cut the x axis at 
C. Then the semicircle centered at C and passing through P and Q is 
the desired P-line. 

We could also have verified the interpretations of the incidence 
axioms, the betweenness axioms, and Dedekind's axiom by using 
isomorphism with the Klein model (where the verifications are triv­
ial). 
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We turn now to the congruence axioms. Since angles are measured 
in the Euclidean sense in the Poincare models, the interpretation of 
Axiom C-5 is trivially verified. Consider Axiom C-4, the laying off 
of a congruent copy of a given angle at some vertex A (for the disk 
model). If A is the center of y, the angle is formed by diameters and the 
laying off is accomplished in the Euclidean way. If A is not the center 
0 of y, then the verification is a matter of finding a unique circle J 
through A that is orthogonal toy and tangent to a given Euclidean line I 
that passes through A and not through 0 (since the tangents deter­
mine the angle measure). By Proposition 7 .5, J must pass through the 
inverse A' of A with respect to y. The center C of J must lie on the 
perpendicular bisector of chord AA' (Exercise 1 7, Chapter 4); call this 
bisector m. If J is to be tangent to I at A, then C must also lie on the 
perpendicular n to I at A. So J must be the circle whose center is the 
intersection C of m and n and whose radius is CA (see Figure 7.26). 

To define congruence of segments in the disk model, we introduce 
the following definition of length: 

DEFINITION. Let A and B be points inside y, and let P and Q be the 
ends of the P-line through A and B. We define the cross-ratio (AB, PQ) 
by 

(AB,PQ) = (~) (~) 
(BP) (AQ) 

(where, for example, AP is the Euclidean length of the Euclidean 
segment AP). We then define the Poincare length d(AB) by 

d(AB) = Jlog(AB,PQ)J. 

'Y 

FIGURE7.26 
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B 
'Y 

FIGURE7.27 

Notice first of all that this length does not depend on the order in 
which we write P and Q. For if (AB, PQ) = x, then (AB, QP) = 1/x, 
and jlog(l/x)I = j- log xi= jlog xj. Furthermore, since (AB, PQ) = 
(BA, QP), we see that d(AB) also does not depend on the order in 
which we write A and B. 

We may therefore interpret the Poincare segments AB and CD to 
be Poincare-congruent if d(AB) = d(CD). With this interpretation, 
Axiom C-2 is immediately verified. 

Suppose we fix the point A on the P-line from P to Q and let point B 
move continuously from A to P, where Q *A* B * P, as in Figure 
7 .27. The cross-ratio (AB, P~ill increase continuously from 1 to oo, 
since (AP) I (AQ) is constant, BP approaches zero, and BQ approaches 
PQ. If we fix B and let A move continuously from B to Q, we get the 
same result. It follows immediately that for any Poincare ray cD, 
there is a unique point Eon cD such that d(CE) = d(AB), where A 
and B are given in advance. This verifies Axiom C-1. 

We next verify Axiom C-3. This will follow immediately from the 
additivity of the Poincare length, which asserts that if A * C * B in the 
senseofthediskmodel, thend(AC) + d(CB) = d(AB). To prove this 
additivity, label the ends so that Q *A* B * P. Then the cross-ratios 
~. ~.~C, PQ), and (CB, PQ) are all greater than 1 (because 
AP> BP, BQ > AQ, etc.); their logs are thus positive and we can drop 
the absolute value signs. We have 

d(AC) + d(CB) = log (AC, PQ) + log (CB, PQ) 
= log [(AC, PQ) (CB, PQ)], 

but (AC, PQ) (CB, PQ) = (AB, PQ), as can be seen by canceling 
terms. 

Finally, to verify Axiom C-6 (SAS), we must study the effect of 
inversions on the objects and relations in the disk model. 
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DEFINITION. Let 0 be a point and k a positive number. The dilation 
with center 0 and ratio k is the transformation of the Euclidean plane 
that fixes 0 and maps a point P =I= 0 onto the unique point p• on oP 
such that op•= k(OP) (so that points are moved radially from 0 a 
distance k times their original distance). 

LEMMA 7.2. Leto be a circle with center C =I= 0 and radius s. Under 
the dilation with center 0 and ratio k, 0 is mapped onto the circle o• 
with center c• and radius ks. If Q is a point on o, the tangent too• at Q• 
is parallel to the tangent to oat Q. 

Proof 
Choose rectangular coordinates so that 0 is the origin. Then the 
dilation is given by (x, y) -- (kx, ky). The image of the line having 
equation ax + by = c is the line having equation ax + by = kc; 
hence, the image is parallel to the original line. In particular, CQ is 

~ 

parallel to C*Q•, and their perpendiculars at Q and Q•, respec-
tively, are also parallel. If ohasequation (x- c1) 2 + (y- c2) 2 = s2, 

then o• has equation (x - kc1) 2 + (y - kc2 ) 2 = (ks) 2 , from which 
the lemma follows. • 

PROPOSITION 7.6. Let y be a circle of radius rand center 0, o a circle 
of radius s and center C. Assume that 0 lies outside o; let p be the 
powerofOwith respecttoo (see Lemma 7.1). Letk = r 2/p. Then the 
image 01 of 0 under inversion in y is the circle of radius ks whose center 
is the image c• of C under the dilation from 0 of ratio k. If P is any 
point on o and P' is its inverse in y, then the tangent t' too' at P' is the 
reflection across the perpendicular bisector of PP' of the tangent too 
at P (see Figure 7.28). 

Proof 
Since 0 is outside o, oP either cuts o in another point Q or is 
tangent too at P (in which case let Q = P). Then 

OP OP' OP r 2 

--=--·-=-
OQ OQ OP P' 

which shows that P' is the image of Q under the dilation from 0 of 
ratiok = r 2/p. Hence, o• = o'. By Lemma 7.2, the tangent/ too' at 
P' is parallel to the tangent u to oat Q. Let t be tangent too at P. By 
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Proposition 7.4, /and u meet at a point R such that <tRQP = <tRPQ. 
By Exercises 4, 5, and 32, Chapter 4, /and t' meet at a point S such 
that <tSP'P = <tSPP'. Since .6PSP' is an isosceles triangle (base 
angles are congruent), S lies on the perpendicular bisector of PP'. 
Hence, t' is the reflection oft across this perpendicular bisector. • 

COROLLARY. Circle o is orthogonal to circle y if and only if o is 
mapped onto itself by inversion in y. 

Proof: 
If o is orthogonal to y and P lies on o then p = (OP) (OP') = r 2 

(Proposition 7 .5 and Lemma 7 .1), so k = 1 and o = o'. Conversely, 
if o = o', then p = r 2 and o passes through the inverse P' of Piny, so 
that by Proposition 7 .5, o is orthogonal to y. • 

LEMMA 7.3. Let 0 be the center of circle y, let P and Q be two points 
that are not collinear with 0, and let P' and Q' be their inverses in y. 
Then .6POQ is similar to .6Q'OP' (Figure 7.29). 

Q' 

FIGURE7.29 0 p P' 
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Proof __ 
The triangles have <tPOQ in common and (OP) (OP')= 
r 2 = (OQ) (OQ'). Thus, the SAS similarity criterion is satisfied 
(Exercise 20, Chapter 5). • 

PROPOSITION 7.7. Let /be a line not passing through the center 0 of 
circle y. The image of /under inversion in y is a punctured circle with 
missing point 0. The diameter through 0 of the completed circle o is 
(when extended) perpendicular to/. (See Figure 7.30). 

Proof 
Let A be the foot of the perpendicular from 0 to /, P be any other 
point on/, and A' and P' their inverses in y. By Lemma 7 .3, b.OP' A' 
is similar to b.OAP. Hence, <tOP' A' is a right angle, so that P' must 
lie on the circle O having OA' as diameter (Exercise 26, Chapter 5). 
Conversely, if we start with any point P' on o other than 0 and let 
oP' cut /in P, then reversing the above argument shows that P' is 
the inverse of P in y. • 

PROPOSITION 7.8. Let O be a circle passing through the center 0 of y. 
The image of o minus 0 under inversion in y is a line I not through O; I 
is parallel to the tangent to oat 0. 

Proof 
Let A' be the point on o diametrically opposite to 0, let A be its 
inverse in y, and I the line perpendicular to OA at A (see Figure 
7 .30). By the proof of Proposition 7. 7, inversion in y maps I onto o 
minus O; hence, it must map O minus 0 onto I (Proposition 
7.1 (c) ). • 

FIGURE7.30 
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It is obvious that reflection in a Euclidean line preserves the magni­
tude but reverses the sense of directed angles. The next proposition 
generalizes this to inversions. 

PROPOSITION 7.9. A directed angle of intersection of two circles is 
preserved in magnitude but reversed in sense by an inversion. The 
same applies to the angle of intersection of a circle and a line or of two 
lines. 

Proof 
Suppose that circles o and a intersect at point P with tangents I and 
m there. Let P' be the inverse of Piny, let o' and a' be the images of 
o and a under inversion in y, and let/' and m' be their respective 
tangents at P'. The first assertion then follows from the fact that /' 
and m' are the reflections of I and m across the perpendicular 
bisector of PP' (Proposition 7 .6). The other cases follow from 
Propositions 7.7 and 7.8. • 

The next proposition shows that inversion preserves the cross-ratio 
used to define Poincare length. 

PROPOSITION 7.10. If A, B, P, Q are four points distinct from 
the center 0 of y and A', B', P', Q' are their inverses in y, then 
(AB, PQ) = (A'B', P'Q'). 

Proof 
By Lemma 7.3, (AP)/(OA) = (A'P')/(OP') and (AQ)/(OA) = 
(A'Q')/(OQ'), whence: 

AP AP OA OQ' A'P' 
(1) -=-·-=--·=· 

AQ OA AQ OP' A'Q' 

Similarly, 
----

(2) 
BQ OP' B'Q' 
------
BP OQ' B'P'. 

Multiplying equations ( 1) and (2) gives the result. • 

PROPOSITION 7 .11. Let circle o be orthogonal to circle y. Then inver­
sion in o maps y onto y and maps the interior of y onto itself. Inversion 
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in '5 preserves incidence, betweenness, and congruence in the sense of 
the Poincare disk model inside y. 7 

Proof 
The corollary to Proposition 7 .6 tells us that y is mapped onto itself. 
Suppose that P is inside y and P' is its inverse in '5. Let C be 
the center and s the radius of '5. Let cP cut y at Q and Q', so that 
by Proposition 7.5 (CQ) (CQ') = s 2 = (CP) (CP'). Since P lies 
between Q and Q', we have the inequalities CQ < CP < CQ'. 
Taking the reciprocal reverses inequalities, and we get 
s 2/CQ > s 2/CP > s 2/CQ', which is the same as CQ' > CP' > CQ. 
Thus, P' lies between Q and Q' and therefore is inside y. 

By Propositions 7 .6, 7 .8, and 7. 9, inversion in '5 maps any circle a 
orthogonal toy either onto another circle a' orthogonal toy or onto a 
line a' orthogonal to y, i.e., a line through the center 0 of y. 
Obviously, the line a joining 0 to C is mapped onto itself and any 
other line a through 0 is mapped onto a circle a' punctured at C, 
which is orthogonal toy (by Propositions 7.7 and 7.9). In all these 
cases the above argument shows that the part of a inside y maps 
onto the part of a' inside y. Hence, P-lines are mapped onto P-lines. 

If A and B are inside y and P and Q are the ends of the P-line 
through A and B, then inversion in '5 maps P and Q onto the ends of 
the P-line through A' and B'. By Proposition 7.10, d(AB) = 
d(A'B'), so congruence of segments is preserved. Proposition 7.9 
shows that congruence of angles is also preserved. Furthermore, 
Po in care betweenness is also preserved because B is between A and 
D if and only if A, B, and Dare Poincare-collinear and d(AD) = 
d(AB) + d(BD). • 

We come finally to the verification of the SAS axiom. We are 
given two Poincare triangles MBC and b.XYZ inside y such that <):A 
= <)::X, d(AC) = d(XZ), and d(AB) = d(XY) (Figure 7 .31). We must 
prove that the triangles are Poincare-congruent. We first reduce to the 
case where A = X = 0 (the center of y): let '5 be the circle orthogonal 
toy through A and B, and a the circle orthogonal toy through A and C. 

7 It is easy to see that if, in the statement of Proposition 7 .11, bis taken to be a line through 
the center 0 of)' and "inversion" is replaced by "reflection," then the conclusion of Proposition 
7 .11 still holds. 
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Then <5 again meets <J at point A' outside y, which is inverse to A in y 
(Proposition 7.5). Let e be the circle centered at A' of radius s, 
where sz (AA_l(_A'O). Since AA' = A'O - AO, sz = (A'O)Z -
(AO) (A'O) = (A'O)Z - rz, where ris the radius of y. This equation 
shows that e is orthogonal toy (converse of the Pythagorean theorem). 
By definition of e, 0 is the inverse of A in e, and by Proposition 7 .11 , 
inversion in e maps the Poincare triangle MBC onto a Poincare-con­
gruent Poincare triangle t:.OB'C'. In the same way, Poincare triangle 
l::.XYZ can be mapped by inversion onto a Poincare-congruent Poinc­
are triangle f::.OY'Z' (see Figure 7 .31). 

LEMMA 7.4. Ifd(OB) =d,thenOB=r(ed-1)/(ed+ l) , where e is 
the base of the natural logarithm and r is the radius of y. 

Proof: 
If P and Qare the ends of the diameter of y through B, labeled so 
that Q * 0 * B * P, then d= log(OB, PQ) . Exponentiating both 
sides of this equation gives 

ed = (OB PQ) = OP . BQ = BQ = r + ~ 
' OQ BP BP r-OB 

and solving this equation for OB gives the result. • 

Returning to the proof of SAS, we have shown that we may assume 
that A X 0 . .!!y_ Lemma 7.4 and the SAS hypothesis, we get 
OB = OY, OC =OZ, and 4:BOC == 4:YOZ. Hence, a suitable Euclid­
ean rotation about 0-combined, if necessary, with reflection in a 
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diameter-will map Euclidean triangle .60BC onto Euclidean trian­
gle .60YZ. 8 This transformation maps y onto itself and the orthogonal 
circle through B and C onto the orthogonal circle through Y and Z, 
preserving Poincare length and angle measure. Hence, the Poincare 
triangles .60BC and .60YZ are Poincare congruent. • 

This verification of SAS actually proves the following geometric 
description of Poincare congruence: 

THEOREM 7.1. Two triangles in the Poincare disk model are Poin­
care-congruent if and only if they can be mapped onto each other by a 
succession of inversions in circles orthogonal to y and/or reflections in 
diameters of y. 

We will now apply the Poincare model to determine the formula of 
J. Bolyai and Lobachevsky for the angle of parallelism. Let TI(d) 
denote the number of radians in the angle of parallelism correspond­
ing to the Po in care distance d (the number of radians is nl 180 times 
the number of degrees). 

THEOREM 7 .2. In the Poincare disk model the formula for the angle of 
parallelism is e-tl = tan [TI ( d) /2]. 

In this formula e is the base for the natural logarithm. The trigono­
metric tangent function is defined analytically as sin/cos, where the 
sine and cosine functions are defined by their Taylor series expansions 
(the tangent is not to be interpreted as the ratio of opposite to adjacent 
for a right triangle in the hyperbolic plane!). 

Proof 
By definition of the angle of parallelism, dis the Poincare distance 
d(PQ) from some point P to some Poincare line/, and TI(d) is the 
number of radians in the angle that a limiting parallel ray to I 
through P makes with PQ. We may choose /to be a diameter of y 
and Q to be the center of y, so that P lies on the perpendicular 
diameter. A limiting parallel ray through P is then an arc of a circle o 
orthogonal to y such that o is tangent to I at one end I. The tangent 
line to o at P therefore meets I at some interior point R that is the 

8 This is "intuitively obvious," but will be justified by Proposition 9.5 of Chapter 9. 
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FIGURE7.32 

pole of chord PI of 6, and, by Proposition 7.4, <tRPI and <tRIP 
both have the same number of radians p (see Figure 7.32). Let 
a= Il(d), which is the number of radians in <tRPQ. Since 2Pis the 
number of radians in <tPRQ (exterior to ~PRI), we get a+ 2P = 
n/2, or p = nf 4 - a/2. The Euclidean distance PQ is r tan p, so 
that, by the proof of Lemma 7.4, 

ed= 1 + tanp 
1-tanp 

Using the formula for p and the trigonometric identity 

1 - tan(a/2) 
tan(n/4 - a/2) = 1 + tan(a/2), 

we get the desired formula after some algebra. • 

We have developed only enough of the geometry of inversion in 
circles to verify the axioms in the Po in care disk model. You will find 
further developments in the exercises and in Chapters 9 and 10. 
Inversion has many other applications in geometry, notably in Feuer­
bach's famous theorem on the nine-point circle of a triangle, the 
problem of Apollonius, and construction of linkages that change linear 
motion into curvilinear motion (see Eves, 1972; Kay, 1969; Kutuzov, 
1960; and Pedoe, 1970). 
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THE PROJECTIVE NATURE OF THE 
BELTRAMI-KLEIN MODEL 

Having verified that the Poincare disk interpretation is indeed a model 
of hyperbolic geometry, it follows from the isomorphism previously 
discussed that the Klein interpretation is also a model. 

To be more explicit, consider the unit sphere I in Cartesian three­
dimensional space given by the equation .tj + .tj + .tj = 1. Let y be 
the unit circle in the equatorial plane of I, determined by the equation 
x3 = 0 and the equation for I. We will represent both the Poincare 
disk and the Klein disk by the set 8 of points inside y, and we will take 
as our isomorphism F the composite of two mappings: If N is the north 
pole (0, 0, 1) of I, first project 8 onto the southern hemisphere of I 
stereographically from N. Then project orthogonally back upward to 
the disk 8 (see Figure 7.33). 

The isomorphism F will be considered to go from the Poincare 
model to the'Klein model. By an easy exercise in similar triangles, you 
can show that F is given in coordinates by 

F(x1 ,x2 ,0) = ( l + ~1+ .tj' l + ~2+ .tj' 0) 

Or, if we ignore the third (zero) coordinate and use the single complex 
coordinate z = x1 + ix2 , then F is given by 

FIGURE7.33 

Zz 
F(z) = 1 + JzF 

N 

----+--........ I 
,' I 
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It is clear that F maps the diameter of y with ends P and Q onto the 
same diameter (but moving the points on the diameter out toward the 
circle). Leto be a circle orthogonal toy and cutting y at points P and Q. 
We claim that F maps the Poincare line with ends P and Q onto the 
open chord P) (Q. In fact, if} is on the arc of o from P to Q inside y, then 
F(A) is the point at which OA hits chordPQ (see Figure 7.34). 

Proof 
We can prove this as follows. Suppose the center C of O has coordi­
nates (c1 , c2). By Proposition 7.3, the points P and Qare the inter­
sections with y of the circle having CO as diameter. After simplify­
ing, the equation of this circle turns out to be 

(1) .tj-c1x1 +.tj-c2x2 =0. 

Combining this equation with the equation .tj + .tj = 1 for y gives 
the equation 

(2) 

for the line joining P to Q (called the polar of C with respect to y). 
Since o is orthogonal to y, <i:OQC is a right angle, and the Pythago­
rean theorem gives 

(3) 

for the square of the radius of o. Hence, o is the circle 

(xi - c1)z + (xz - Cz)z = d + d - 1, 

which simplifies to 

(4) 

'Y 
0 

FIGURE7.34 
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If now A= (a1, a2) lies on 6 and F(A) = (b1, b2) is its image under 
F, we have forj= 1, 2 

(5) 
(6) 

It follows that 

(7) 

bi = 2a/ ( 1 + ai + a~), 
bj = a/ ( C1U1 + CzUz). 

and hence, F(A) lies on the polar of C, as asserted. • 

We now use the isomorphism Fto define congruence in the Klein 
model. Two segments (respectively, two angles) are interpreted to be 
Klein-congruent if their inverse images under Fin the Poincare model 
are Poincare-congruent (as was defined before). With this interpreta­
tion, the verification of the congruence axioms is immediate. (It fol­
lows from this interpretation that the Klein model is conformal only at 
0.) 

Next, let us justify the previous description of perpendicularity in the 
Klein model (p. 239). According to the above definition, two Klein lines 
I and m are Klein-perpendicular if and only if their inverse images 
F- 1 (/) and F- 1 (m) are perpendicular Poincare lines. There are three 
cases to consider. 

Case I. Both I and m are diameters. In this case it is clear that 
perpendicularity has its usual Euclidean meaning. 

Case II. Only I is a diameter. Then F- 1(/) =I. The only way 
F- 1 (m), an arc of an orthogonal circle 6, can be perpendicular to /is if 
the Euclidean line extending I passes through the center C of 6 (see 
Figure 7 .35). In that case the extension of I is the perpendicular 
bisector of chord m (Exercise 1 7, Chapter 4). Conversely, if I is per­
pendicular to m in the Euclidean sense, I bisects m, and hence, the 
extension of I goes through C and I is then perpendicular to arc 
F- 1(m). 
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Case III. Neither /norm is a diameter. Then F- 1 (/) and F- 1 (m) 
are arcs of circles 6 and a orthogonal toy. Suppose 6 is orthogonal to a. 
By Proposition 7.4, the centers of these circles are the poles P(/) and 
P(m) of /and m, since these circles meet y at the ends of /and m. Let P 
and Q be the ends of m. Inversion in 6 interchanges P and Q, since this 
inversion maps both y and a onto themselves (corollary to Proposition 
7 .6). But if P and Q are inverse in 6, the Euclidean line joining them 
has to pass through the center P(/) of 6 (see Figure 7.36). 

Conversely, if the extension of m passes through P ( /), then P and Q 
are inverse to each other in 6 (since points on y are mapped onto y by 
inversion in 6). By Proposition 7 .5, a is orthogonal to 6. • 

Next, let us describe the interpretation of reflections in the Klein 
model. In both Euclidean and hyperbolic geometries the reflection in a 
line mis the transformation Rm of the plane, which leaves each point of 

P(/) 

FIGURE7.38 



262 Ill Independence of the Parallel Postulate 

A 

M 

FIGURE7.37 A' 

m fixed and transforms a point A not on mas follows. Let M be the foot 
of the perpendicular from A to m. Then, by definition Rm(A) is the 
unique point A' such that A' * M * A and A'M =MA (Figure 7 .3 7). 
In Major Exercise 2, Chapter 3, you showed that reflection preserves 
incidence, betweenness, and congruence. 

Returning to the Klein model, assume first that mis not a diameter 
of y and let P be its pole. To drop a Klein perpendicular from A to m, 
we draw the line joining A and P. Let it cut mat Mand let t be the 
chord of y cut out by this Euclidean line. Let Q be the pole oft and 
draw the line joining Q and A. Let this line cut y at I and I' and let n 
be the open chord I) (I'. Draw the line joining I' and M and let it cut 
y again at point .Q. If we now join .Q and Q, we obtain a line that cuts t 
at A' and y again at .Q' (see Figure 7.38). 

CONTENTION: The point A' just constructed is the reflection in the 
Klein model of A across m. The Euclidean lines extending .QI and 
.Q'I' meet at P and .QI' meets .Q'I at point M. 

One justification for this construction is given in Major Exercise 12, 
Chapter 6. Here is another. Start with divergently parallel Klein lines 
I= .Q.Q' and n = II' and their common perpendicular t. Let I meet t 
in A' and n meet tin A, and let M be the midpoint of AA' in the sense of 
the model. Let m be the Klein line through M Klein-perpendicular to 
t; m is obtained by joining M to the pole Q of t. Ray MI' is limiting 
parallel to n. If we reflect across m, then n is mapped onto the line 
through A' Klein-perpendicular tot, namely, the line/. The end I' is 
mapped onto the end of /on the same side of tas I', namely, the point 
.Q'. Hence, ray MI' is mapped onto ray M.Q'. Now reflect across t; .Q' 
is sent to .Q, so M.Q' is mapped to M.Q. But successive reflections in 
the Klein-perpendicular lines m and t combine to give the 180 ° rota-
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tion about M. Hence, MQ is the ray opposite to MI'. Similarly, MI is 
the ray opposite to MQ'. Since reflection in m sent I' to Q' and I to Q, 
I'Q' and IQ must both be Klein-perpendicular tom and their Euclid­
ean extensions meet at the pole P of m. 

Second, let us describe the Klein reflection for the case in which mis 
a diameter of y. In this case Pis a point at infinity, tis perpendicular to 
min the Euclidean sense, and M is the Euclidean midpoint of chord t 
(since a diameter perpendicular to a chord bisects it). Chord QI was 
shown to be perpendicular to diameter m in the argument above, 
so Q is the Euclidean reflection of I across m. Hence, QQ is the 
Euclidean reflection of Qi and we deduce that A' is the ordinary 
Euclidean reflection of A across diameter m (see Figure 7 .39). 

In order to describe the Klein reflection more succinctly, let us 
return to the notion of cross-ratio (AB, CD) defined by the formula 

AC BD 
(AB, CD)==·= 

AD BC 

DEFINITION. If A, B, C, and Dare four distinct collinear points in the 
Euclidean plane such that (AB, CD) = 1, we say that C and D are 
harmonic conjugates with respect to AB and that ABCD is a harmonic 
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FIGURE7.39 

tetrad By symmetry of the cross-ratio, A and B are then also harmonic 
conjugates with respect to CD. 

_Another ~ay to write the condition for a harmonic tetrad is 
AC/AD= BC/BD. Since C and Dare distinct, one must be inside 
segment AB and the other outside (so that "C and D divide AB 
internally and externally in the same ratio"). Moreover, given AB, 
then C and D determine each other uniquely. For example, suppose 
A * C * B, and let k = AC/CB. If k < 1, then D is the unique point 
such that D *A* Band DB= AB/(1 - k), whereas if k > 1, then D 
is the unique point such that A * B * D and DB =AB/ (k - 1); see 
Figure 7.40. The case k 1 is indeterminate, for there is no point D 
outside AB such that AD = BD. Thus, the midpoint M of AB has no 
harmonic conjugate. This exception can be removed by completing 
the Euclidean plane to the real projective plane by adding a "line at 
infinity" (see Chapter 2). Then the harmonic conjugate of Mis de­
fined to be the "point at infinity" on AB. 

There is a nice way of constructing the harmonic conjugate of C 
with respect to AB with straighted~lone: Take an~o points I and 
J collinear with C but not lying on AB. Let A:f meet Bl at point Kand 

D A c B 
k = 1/2 

A c B D 
k=2 

FIGURE7.40 
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let At meet Bj at point L. Then AB meets -Kl, at the harmonic conjugate D 
ofC (Figure 7.41). 

We will justify this harmonic construction on p. 266. Meanwhile, as a 
device to help remember the construction, "project" line fD to infin­
ity. Then our figure becomes Figure 7.42. Since DA'B'K'L' is now a 
parallelogram, we see that C' is the midpoint of A'B' and its harmonic 
conjugate is the "point at infinity" D' on A~'. (This mnemonic 
device can be turned into a proof based on projective geometry- see 
Eves, 1972, Chapter 6.) 

If you will now refer back to Figure 7 .38, where the Klein reflection 
A' of A was constructed, you will see that A' is the harmonic conjugate of 
A with respect to MP. Just relabel the points in Figure 7.38 by the 
correspondences I-I', J-I, K-Q, L-Q', A-P, B-M, C-A, and D-A' to 

obtain a figure for constructing the harmonic conjugate. 

DEFINITION. Let m be a line and Pa point not on m. A transformation 
of the Euclidean plane called the harmonic homology with center P and 
axis mis defined as follows. Leave P and every point on m fixed. For 

I' 

A' C' 

FIGURE7.42 
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any other point A let the line t joining P to A meet mat M. Assign to A 
the unique point A' on t, which is the harmonic conjugate of A with 
respect to MP. 

With this definition we can restate our result. 

THEOREM 7 .3. Let m be a Klein line that is not a diameter of y and let 
P be its pole. Then reflection across m is interpreted in the Klein 
model as restriction to the interior of y of the harmonic homology with 
center P and with axis the Euclidean line extending m. If m is a 
diameter of y, then reflection across m has its usual Euclidean mean­
mg. 

To justify the harmonic construction, we need the notion of a 
perspectivity. This is the mapping of a line I onto a line n obtained by 
projecting from a point P not on either line (Figure 7.43). It assigns to 
~int A on I the point A' of intersection of PA with n. (Should 
PA be parallel ton, the image of A is the point at infinity on n.) Pis 
called the center of this perspectivity. 

LEMMA 7.5. A perspectivity preserves the cross-ratio of four collinear 
points; i.e., if A, B, C, and Dare four points on line I and A', B', C', and 
D' are their images on line n under the perspectivity with center P, 
then (AB, CD)= (A'B', C'D'). 

Proof 
By Exercise 23, Chapter 5, we have 

AC AP sin 1-:APC 
--
BC BP sin 1-:BPC 

p 

FIGURE7.43 
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and 

BD BP sin ~BPD 

AD AP sin ~APD' 

which gives 

(AB CD = (sin ~APC) (sin ~BPD) 
' ) (sin ~BPC) (sin ~APD). 

But sin ~APC = sin ~A'PC', sin ~PBD = sin ~B'PD', and so on, 
so we obtain the same formula for (A'B', C'D'). • 

Now refer back to Figure 7.41. Let fr meet KL at point M. Using 
the perspectivity with center I, Lemma 7.5 gives us (AB, CD) = 
(LK, MD), whereas using the perspectivity with center J we get 
(AB,CD) = (KL,MD).But(KL,MD) = 1/(LK,MD),bydefini­
tion of cross-ratio. Hence, (AB, CD) is its own reciprocal, which 
means (AB, CD) = 1, i.e., ABCD is a harmonic tetrad, as asserted. 
This justifies the harmonic construction on p. 265. • 

Next, we will apply Theorem 7 .3 to calculate the length of a 
segment in the Klein model. According to our general procedure, 
length in the Klein model is defined by pulling back to the Poincare 
model via the inverse of the isomorphism F and using the definition of 
length already given there. Thus, the length d' (AB) of a segment in 
the Klein model is given by d' (AB) = d(ZW) = llog(ZW, PQ )!, 
where A= F(Z), B = F(W), and PandQare the ends of the Poincare 
line through Zand W. By our earlier result illustrated in Figure 7 .34, 
P and Q are also the ends of the Klein line through A and B. 

The next theorem shows how to calculated' (AB) directly in terms 
of A, B, P, and Q. In its proof we will need the remark "the cross-ratio 
(AB, PQ) is preserved by any Klein reflection." This is clear if we are 
reflecting in a diameter of y. Otherwise, by Theorem 7 .3, the Klein 
reflection is a harmonic homology whose center R lies outside y. A 
reflection in the hyperbolic plane preserves collinearity, so for any 
Klein line I the mapping of I onto its Klein reflection n is just the 
perspectivity with center R. Therefore, Lemma 7 .5 ensures that the 
cross-ratio is preserved. 
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THEOREM 7.4. If A and B are two points inside y and P and Q are the 
ends of the chord of y through A and B, then the Klein length of segment 
AB is given by the formula 

d' (AB) = f llog(AB, PQ)I. 

Proof 
We saw in the verification of the SAS axiom for the Poincare disk 
model that any Poincare line can be mapped onto a diameter by an 
inversion in a suitable orthogonal circle. Proposition 7 .10 guaran­
tees that cross-ratios are preserved by inversions. The transforma­
tion of the Klein model that corresponds to this inversion under our 
isomorphism Fis a harmonic homology (Theorem 7.3), and this 
preserves cross-ratios of collinear points by the above remark. 
Hence, we may assume that A and B lie on a diameter. 

Let A= F(Z) and B = F(W), so that, by definition, d'(AB) = 
d(ZW). After a suitable rotation (which preserves cross-ratios), we 
may assume that the given diameter is the real axis. Its ends P and Q 
then have coordinates - 1, + 1. If Z and W have real coordinates z 
and w, then 

But 

l+z 1-w 
(ZW, PQ) =-- · --

1 - z l+w 

(AB, PQ) = 1 + F(z) 1 - F(w). 
1-F(z) 1 +F(w) 

2z 
1-F(z) = 1-1 +izl2 

1-2z+lzl2 
1 +izl2 

1+F()=1 +2z+izl2 
z 1 + lzlZ 

1 +F(z) 1 +2z+izl 2 

1 -F(z) 1 - 2z +izl2 • 

Since z is real, z = +izi and we get 

1 +F(z) =(1 +z)Z· 
1 - F(z) 1 - z 
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From this and the formula obtained from it by substituting w for z, it 
follows that (AB, PQ) = (ZW, PQ) 2, and taking logarithms of both 
sides proves the theorem. • 

Finally, let us apply our results to justify J. Bolyai's construction of 
the limiting parallel ray (p. 198). We are given a Klein line I and a 
point P not on it. Point Q on I is the foot of the Klein perpendicular t 
from P to/, and mis the Klein perpendicular to !through P. Let R be 
any other point on I and S the foot on m of the Klein perpendicular 
from R. Bolyai's construction is based on the contention that if the 
limiting parallel ray to I from P in the direction QR meets RS at X, 
then PX is Klein-congruent to QR. 

Let T and M be the poles oft and m. Let Q and Q' be the ends of 
I. If we join these ends to M, the intersections I and I' with ywill be 
the ends of the Klein reflection n of I across m. 

As Figure 7.44 shows, the collinear points Q, X, P, and I' are in 
perspective with the collinear points Q, R, Q, and Q' (in that 
order), the center of the perspectivity being M. By Lemma 7 .5, 
such a perspectivity preserves cross-ratios, so that (XP, QI') = 
(RQ, QQ'). Theorem 7.4 tells us that d'(XP) = d'(RQ), justify­
ing Bolyai's contention. (In case mis a diameter of y, Mis a point at 
infinity; then instead of Lemma 7 .5 we use the parallel projection 
theorem (preceding Exercises 18-26, Chapter 5) to deduce the 
above equality of cross-ratios.) • 

FIGURE 7.44 
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Note: The method used to prove Theorems 7.2 and 7.4 is very 
useful for solving other problems in the Klein and Poincare models. 
The idea is that the figure being studied can be moved, by a succession 
of hyperbolic reflections, to a special position where one or more of the 
hyperbolic lines is represented by a diameter of the absolute circle y 
and one point is the center 0 of y. The movement to this special 
position does not alter the geometric properties of the figure, and in 
that special position, elementary arguments and calculations based on 
Euclidean geometry can be used to solve the problem. 

For example, if P, P' =F 0, then the statement OP= OP' has the 
same truth value whether interpreted in the Euclidean, Poincare, or 
Klein senses (according to Lemma 7.4 and Theorem 7.4), and ~POP' 
has the same measure in all three senses. In particular, a hyperbolic 
circle with hyperbolic center 0 is represented in both models by a 
Euclidean circle with Euclidean center 0. 

You will see some nice applications of this method in Exercises 
K-15, K-17 through K-20, and P-5, and in Chapters 9 and 10. The 
general study of geometric motions is in Chapter 9. 

REVIEW EXERCISE 

Which of the following statements are correct? 

( 1) Although 2000 years of efforts to prove the parallel postulate as a 
theorem in neutral geometry have been unsuccessful, it is still possible 
that someday some genius will succeed in proving it. 

(2) If we add to the axioms of neutral geometry the elliptic parallel postu­
late (that no parallel lines exist), we get another consistent geometry 
called elliptic geometry. 

( 3) All the ultra-ideal points in the Klein model are points in the Euclidean 
plane outside y. 

(4) Both the Klein and Poincare models are "conformal" in the sense that 
congruence of angles has the usual Euclidean meaning. 

(5) In the Poincare model "lines" are represented by all open diameters of 
a fixed circle y and by all open arcs inside y of circles intersecting y. 

( 6) For any chord A) (B whatever of circle y, the tangents to y at the 
endpoints A and B of the chord meet in a unique point called the pole of 
that chord. 
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(7) In the Poincare model two Poincare lines are interpreted as "perpen­
dicular" if and only if they are perpendicular in the usual Euclidean 
sense. 

(8) In the Klein model two open chords are interpreted to be "perpendic­
ular" if and only if they are perpendicular in the usual Euclidean sense. 

(9) Inversion in a given circle maps all circles onto circles. 
(10} Ultra-ideal points have no representation in the Poincare models. 
( 11} Four points in the Euclidean plane form a harmonic tetrad if they are 

collinear and their cross-ratio equals 1. 
( 12} If point 0 is outside circle <5 and a tangent from 0 to <5 touches <5 at point 

T, then the power of 0 with respect to <5 is equal to the square of the 
distance from 0 to T. 

( 13} Let point P lie on circle <5 and let P' and '5' be their inverses in another 
circle y such that y does not pass through P or the center of <5. Then the 
tangent to <5' at P' is parallel to the tangent to <5 at P. 

( 14} The inverse of the center of a circle <5 is the center of the inverted circle 
<5'. 

( 15} In order for the midpoint M of segment AB to have a harmonic conju­
gate with respect to AB, for all A and B, the Euclidean plane must be 
extended to the real projective plane by adding a line of points at 
infinity. 

( 16} If a statement in plane hyperbolic geometry holds when interpreted in 
the Klein or Poincare model, then that statement is a theorem in 
hyperbolic geometry. 

The following exercises (all of which are major exercises) will be 
divided into three categories: ( 1) K-exercises, on the Klein model; (2) 
P-exercises, on the Poincare models and on circles; (3) H-exercises, 
on harmonic tetrads and theorems of Menelaus, Ceva, Gergonne, and 
Desargues. 

K-EXERCISES 

K-1. Verify the interpretations of the incidence axioms, the betweenness 
axioms, and Dedekind's axiom for the Klein model (Archimedes' 
axiom follows from Dedekind's-see Chapter 3; see Exercise 31, 
Chapter 4, for the interpretation of B-4.} 

K-2. (a} Let I be a diameter of y and let m be an open chord of y that 
does not meet I and whose endpoints differ from the endpoints of 
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I. Draw a diagram showing the common perpendicular k to I and 
m in the Klein model. (Hint: Use the pole of m and the descrip­
tion of perpendicularity in case 1, p. 238.) 

(b) Let /and m be intersecting open chords of y. It is a valid theorem 
in hyperbolic geometry that for any two intersecting nonperpen­
dicular lines there exists a third line perpendicular to one of them 
and asymptotically parallel to the other (see Major Exercise 9, 
Chapter 6). Draw the two lines in the Klein model that are 
perpendicular to I and asymptotically parallel tom (on the left 
and right, respectively). This shows that the angle of parallelism 
can be any acute angle whatever. Explain. 

(c) In the Euclidean plane any three parallel lines have a common 
transversal. Draw three parallel lines in the Klein model that do 
not have a common transversal. 

K-3. (a) In the Klein model an ideal point and an ordinary point always 
determine a unique Klein line. Translate this back into a 
theorem in hyperbolic geometry about limiting parallel rays. 

(b) Suppose the ultra-ideal points P(/) and P(m) are poles of Klein 
lines I and m, respectively. You saw in Figure 7.18 that the 
Euclidean line joining P(/) and P(m) need not cut through the 
circle y, and hence need not determine a Klein line. Show that 
the only case in which there is a Klein line joining P(/) and P(m) 
is when I and m are divergently parallel. 

(c) Suppose the ultra-ideal point P(/) is the pole of a Klein line /and 
n is an ideal point; n is uniquely determined by a ray r in the 
direction of n. State the necessary and sufficient conditions on r 
and /in order that P(/) and n determine a Klein line. Translate 
this into a theorem in hyperbolic geometry. 

K-4. Given chords I and m of y that are not diameters. Suppose the line 
extending m passes through the pole of/. Prove that the line extending 
/passes through the pole of m. (Hint: Use either Equation (2), p. 259, 
or the theory of orthogonal circles.) 

K-5. Use the Klein model to show that in the hyperbolic plane there exists a 
pentagon with five right angles and there exists a hexagon with six 
right angles. (Hint: Begin with two lines having a common perpen­
dicular. Locate the poles of these two lines, then draw an appropriate 
line through each of the poles, etc.) Does there exist, for all n ~ 5, an 
n-sided polygon with n right angles? 

K-6. Justify the following construction of the Klein reflection A' of A across 
m, which is simpler than the one in Figure 7 .38. Let A be an end of m 
and let P be the pole of m. Join A to A and let this line cut y again at <I>. 
~n <I> to P and let this line cut y at <I>'. Then A' is the intersection of 
AP with A<I>'. (See Figure 7.45.) 
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K-7. Given a segment AA' in the Klein model. Show how to construct its 
hyperbolic midpoint with straightedge and compass (see Figures 7 .38 
and 7.39). 

K-8. Construct triangles in the Klein model such that the perpendicular 
bisectors of the sides are (a) divergently parallel and (b) asymptoti­
cally parallel. (See Exercise 13 and Major Exercise 7, Chapter 6.) 

K-9. Prove the formula 

K-10. 

K-11. 

Zz 
F(z) = 1 + izl2 

for the isomorphism F of the Poincare model onto the Klein model 
(see Figure 7.33). What is the formula for the inverse isomorphism? 
Angle measure in the Klein model is defined so that F preserves angle 
measure; draw the diagram which illustrates this. 
Let A= (0, 0), B = (0, t), and let /be the diameter of)' cut out by 
the x axis. 
(a) Find the Klein length d'(AB). 
(b) Find the coordinates of the point Mon segment AB that repre­

sents its midpoint in the Klein model. 
(c) Find the equation of the locus of points whose perpendicular 

Klein distance from I equals d' (AB). (This locus is an "equidis­
tant curve" -see Chapter 10, p. 393.) 

Let n and 0' be distinct ideal points and A an ordinary point. Let P be -the pole of chord 00', and let Euclidean ray AP cut y at I. Prove that 
AI represents the bisector of 1'.:nA!l' in the Klein model (see Figure 
7.46). Apply this result to justify the construction of the line of 
enclosure given in Major Exercise 8, Chapter 6. (Hint: Use Theorem 
6.6.) 
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K-12. In Exercise 16, Chapter 6, you proved the theorem that the angle 
bisectors of a triangle in hyperbolic geometry (in fact, in neutral 
geometry) are concurrent. Using the construction of angle bisectors 
given in the previous exercise and the glossary of the Klein model, 
translate this theorem into a famous theorem in Euclidean geometry 
due to Brianchon (see Figure 7 .4 7). This gives a hyperbolic proof of a 
Euclidean theorem (for a Euclidean proof, see Coxeter and Greitzer, 
1967, p. 77). 

K-13. It is a theorem in hyperbolic geometry that inside every trebly asymp­
totic triangle ~IOA there is a unique point G equidistant from all 
sides. Show that in the Klein model this theorem is a consequence of 

FIGURE 7.47 Brianchon's theorem. 
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Gergonne's theorem in Euclidean geometry, which asserts that if the 
inscribed circle of ~PQR touches the sides at points A, I, and n, then 
segments PI, Q!l, and RA are concurrent (see Figure 7.48 and 
Exercise H-9). Show that (~AGI)° = 120° in the sense of degree 
measure for the Klein model. (Hint: To take care of the special case 
where one side of ~IQA is a diameter, apply a harmonic homology to 
transform to the case where Gergonne's theorem applies.) 

K-14. In order to express the Klein length d'(AB) = tllog(AB, PQ)I in 
terms of the coordinates (a1 , a2) of A and (b1 , b2) of B, prove that with 
a suitable ordering of the ends P and Q of the Klein line through A and 
B you have the formula 

(AB, PQ) 
= a1b1 + a2b2 - 1 - .J(a1 - bi) 2 + (a2 - b2) 2 - (a1b2 - a2b1) 2 

a1b1 + a2b2 - 1 + .J(a1 - bi) 2 + (a2 - b2) 2 - (a1b2 - a2bi) 2 

(Hint: If A and B have complex coordinates z and w, then P and Q 
have complex coordinates tz + ( 1 - t) w and uz + ( 1 - u) w, where t 
and u are roots of a quadratic equation DXZ + 2Ex + F = 0 expressing 
the fact that P and Q lie on the unit circle. Find the coefficients D, E, 
and F and show that 

B PQ 
t(l-u) E+F-.JE2-DF 

(A ' ) = = . 
u(l -t) E+F+.JE2-DF 

K-15. Use the formula for Klein length given in Theorem 7.4 to derive a 
proof of the Bolyai-Lobachevsky formula in Theorem 7.2 for the 
Klein model. (Hint: Take the vertex of the angle of parallelism a to 
be the center 0 of the absolute and show that the Klein distance d' 
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corresponding to a is given by 

d' = t log 1 + cos a. 
1-cosa 

Then use a half-angle formula from trigonometry.) 
K-16. (a) Show that a Cartesian line I of equation Ax + By + C = 0 is a 

secant of the unit circle if and only if 

A2 + B2 - cz > 0. 

We will denote the expression on the left of this inequality by 1112. 
(b) Prove that if P' = (x', y') is the Klein reflection of P = (x, y) 

across /, then 

x' = lfl2x- 2A(Ax +By+ C) 

111 2 + 2C(Ax +By+ C) 

, _ lll 2y- 2B(Ax +By+ C) 
y - 111 2 + 2C(Ax +By+ C) · 

(Hint: Use Theorem 7 .3. In case C = 0, the Euclidean reflection 
is easy to calculate. If C + 0, the pole L of I has coordinates 
(-A/C, - B!C), according to Equation (2), p. 259; you m~ 
calculate the coordinates of the point M where line LP 
meets I and then calculate the coordinates of the harmonic con­
jugate P' of P with respect to Land M.) 

K-17. The line perpendicular to the bisector of <r-A at A is called the external 
bisector of <r-A (because its rays emanating from A bisect the two 
supplementary angles to <r-A). You proved (in Exercise 16, Chapter 
6) that the (internal) bisectors of the angles of .6.ABC concur in the 
center I of the inscribed circle - this is a theorem in neutral geo­
metry. 
(a) Prove that in Euclidean geometry the internal bisector of <r-A is 

concurrent with the external bisectors of <tB and <tC. 
(b) Deduce from the Klein model that in hyperbolic geometry, the 

internal bisector of <r-A is "concurrent" with the external bisec­
tors of <tB and <tC in a point which may be ordinary, ideal, or 
ultra-ideal. (See Figure 7.49.) (Hint for (a): Use the facts that 
the bisector of an angle is the locus of interior points equidistant 
from the sides, and that external bisectors are not parallel. Hint 
for (b): Take I to be the center 0 of the absolute y and notice, 
using K-11, that the hyperbolic internal bisectors, being diame­
ters of y, coincide with the Euclidean internal bisectors. Hence, 
the hyperbolic external bisectors, being perpendicular to diame­
ters of y, coincide with the Euclidean external bisectors.) 



K-Exerclses II.I 277 

FIGURE 7.49 Three possible positions of the absolute. 

K-18. It is a theorem in Euclidean geometry that the altitudes of an acute 
triangle are concurrent and the lines containing the altitudes of an 
obtuse triangle are concurrent (see Problem 8, Chapter 9). Applying 
this theorem to the Klein model, deduce that in hyperbolic geometry 
the altitudes of an acute triangle are concurrent and that the lines 
containing the altitudes of an obtuse triangle are "concurrent" in a 
point which may be ordinary, ideal, or ultra-ideal. (Hint: Place the 
triangle so that one vertex is O; show that the Klein lines containing 
the altitudes then coincide with the Euclidean perpendiculars from 
the vertices to the opposite sides. Use the crossbar and exterior angle 
theorems to verify that for acute triangles the point of concurrence is 
ordinary.) 

K-19. It is a theorem in Euclidean geometry that the medians of a triangle 
are concurrent (see Exercise 69, Chapter 9). Show that this theorem 
also holds in hyperbolic geometry by a special position argument in 
the Klein model.9 (Hint: If 0 is the hyperbolic midpoint of AB, it is 
also the Euclidean midpoint; if P, Qare the hyperbolic midpoints of -AC, BC, use Exercise 11 (b), Chapter 6, to show that PQ is Euclid-

.-+ - -ean-parallel to AB-that is, PQ "meets" AB in the harmonic conju-
gate of 0 with respect to A and B. The result then follows from the 
harmonic construction in Figure 7.50.) 

K-20. We have defined a parallelogram to be a quadrilateral in which the 
lines containing opposite sides are parallel. 
(a) Prove that in Euclidean geometry, a quadrilateral is a parallelo-

9 Melissa Schmitz, an undergraduate student at the State University of New York at Gene­
seo, sent me a three-dimensional neutral geometry proof of this theorem due to F. Busulini. She 
also used a computer to discover that in hyperbolic geometry, the centroid does not lie two-thirds 
of the distance from each vertex to the midpoint of the opposite side (as it does in Euclidean 
geometry). Next question: Does the Euler line (Exercise 69, Chapter 9) exist in the projective 
completion of the hyperbolic plane? 
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gram if and only if opposite sides are congruent. Show that in 
hyperbolic geometry, the opposite sides of a parallelogram need 
not be congruent. 

For the remainder of this exercise, the geometry will be hyperbolic. 
(b) Given DABCD with opposite sides congruent. Prove that oppo­

site angles are congruent and that the lines containing opposite 
sides are divergently parallel (use Exercise 14, Chapter 6). Such 
a quadrilateral will be called a symmetric parallelogram. 

(c) Prove that the diagonals of a symmetric parallelogram DABCD 
have the same midpoint S, and that S is the symmetry point for 
both pairs of opposite sides (see Major Exercise 12, Chapter 6 
and Figure 6.27). 

(d) Show that the diagonals are perpendicular if and only if all four 
sides are congruent, and in that case, DABCD has an inscribed 
circle with center S. 

( e) Show that the diagonals are congruent if and only if all four 
angles are congruent; however, in that case, show that all four 
sides need not be congruent. 

(You can verify these assertions either by direct argument or by 
using the Klein model, placing S at the center 0 of the absolute and 
remarking that DABCD is then a Euclidean parallelogram.) 

K-21. It has been shown by Jenks that in hyperbolic geometry, "between­
ness," "congruence," and "asymptotic parallelism" can all be de­
fined in terms of incidence alone. (An important consequence of this 
observation is that every collineation of the hyperbolic plane is a 
motion; see Chapter 9). Here are his observations; draw diagrams in 
the Klein model to see what is going on. First, three distinct lines a, b, c 
form an asymptotic triangle abc if and only if for any point Pon any one 
of them-say, on a-there exists a unique line p =I= a through P 
which is parallel to both b and c (p is called an asymptotic transversal 
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through P). Second, ajbif and only if there exists a line csuch that a, b, 
c form an asymptotic triangle. Third, given three points P, Q, Ron a 
line m, P * Q * R if and only if given any a+ m through P, b + m 
through R, and c such that a, b, c form an asymptotic triangle, every 
line through Q meets at least one of the sides of abc. Fourth, segment 
PQ on a is congruent to segment P'Q' on d if and only if either ( 1) 
a I a' and both are asymptotically parallel to the join of the meets of the 
asymptotic transversals through P and P' and through Q and Q', or ( 2) 
both are asymptotically parallel to some line a" on which lies a seg­
ment P"Q" congruent with both PQ and P'Q' in the sense of ( 1). 
Justify ( 1) by drawing the diagram in the Klein model and applying 
Lemma 7 .5 and Theorem 7.4. 

P-EXERCISES 

P-1. Using the glossary for the Poincare disk model, translate the following 
theorems in hyperbolic geometry into theorems in Euclidean geome­
try: 
(a) If two triangles are similar, then they are congruent. 
(b) If two lines are divergently parallel, then they have a common 

perpendicular and the latter is unique. 
(c) The fourth angle of a Lambert quadrilateral is acute. 

P-2. State and prove the analogue of Proposition 7 .6 when 0 lies inside J 
and the power p of 0 with respect to J is negative. 

P-3. Let J be a circle with center C and a a circle not through C having 
center A. Let A' be the inverse of A in J and let circle a' be the image 
of a under inversion in J. Prove that A' is the inverse of C in a' and 
hence that A' is not the center of a'. (Hint: Show that any circle p 
through A' and C is orthogonal to a' by observing that the image P' of 
p under inversion in J is a line orthogonal to a.) 

P-4. Let /be a Poincare line that is not a diameter of y; /is then an arc of a 
circle J orthogonal to y. Prove that hyperbolic reflection across I is 
represented in the Poincare model by inversion in J. (Hint: Use 
Proposition 7 .10 and the corollary to Proposition 7 .6.) 

P-5. Let C be a point in the Poincare disk model. Prove that a circle 
centered at C in the sense of hyperbolic geometry is represented in 
the Poincare model by a Euclidean circle whose center + C unless C 
coincides with the center 0 of y. (Hint: First take C = 0 and use 
Lemma 7.4. Then map the set of circles centered at 0 onto the set of 
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circles with C as hyperbolic center by reflection in the Poincare line 
that is the Poincare perpendicular bisector of the Poincare segment 
OC. Apply Exercises P-3 and P-4.) 

P-6. In the hyperbolic plane with some given unit of length, the distanced 
for which the angle of parallelism TI(d)° = 45 ° is called Schweikart's 
constant. Schweikart was the first to notice that if MBC is an isosceles 
right triangle with base BC, then the length of the altitude from A to 
BC is bounded by this constant, which is the least upper bound of the 
lengths of all such altitudes. Prove that for the length function we have 
defined for the Poincare disk model, Schweikart's constant equals 
log(l + .JZ) (see Figure 7.51). (Hint: Schweikart's constant is the 
Poincare length d of segment OP in Figure 7.51. Show that the 
Euclidean length of OP is .Jz - 1 and apply Lemma 7.4 to solve for 
d.) 

P-7. Leta be a circle with center Aand radius of length rand Pa circle with 
center Ba~ radius of !en~ s. Assume A + Band let C be the unique 
point on AB such that AC2 - BC2 = r 2 - s2• The line through C -perpendicular to AB is called the radical axis of the two circles. 
(a) Prove (e.g., by introducing coordinates) that C exists and is 

unique, and that for any point P different from A and B, Plies on 
the radical axis if and only if PA2 - PB2 = r 2 - s2• 

(b) For any point X outside both a and p, let T be a point of a -such that XT is tangent to a at T; similarly let U on P be a point of - - -tangency for XU. Prove that XT = XU if and only if X lies on the 
radical axis of a and p. +-+ 

( c) Prove that if a and p intersect in two points P and Q, PQ is their 
radical axis. 

FIGURE7.51 
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(d) Prove that if a and Pare tangent at point C, the radical axis is the 
common tangent line through C. 

(e) Let X be a point outside both a and p. Prove that X lies on the 
radical axis of a and P if and only if X has the same power with 
respect to a and P (see Lemma 7 .1). 

P-8. Given two nonintersecting, nonconcentric circles a and Pwith centers 
A and B, respectively. Justify the following straightedge-and-compass 
construction of the radical axis of a and p. Draw any circle <5 that cuts a -in two points A' and A" and cuts pin two points B' and B". If A' A" and -B'B" intersect in a point P, then Plies on the radical axis; the latter is -therefore the perpendicular to AB through P. (Hint: Draw tangents 
PS, PT, and PU from_E_ to <5, a, a~ and apply Exercises P-7 ( b) and 
P-7(c) to show that PT= PS= PU. See Figure 7.52.) 

P-9. Use Exercise P-7 to verify by a straightedge-and-compass construc­
tion that in the Poincare model two divergently parallel Poincare lines 
have a common perpendicular. (Hint: There are four cases to con­
sider, depending on whether the Poincare line is a diameter of y or an 
arc of a circle a orthogonal to y, and depending on whether radical 
axes intersect or not. One case is illustrated in Figure 7 .53. In case the 
radical axes are parallel, use the fact that the perpendicular bisector of 
a chord of a circle passes through the center of the circle (Exercise 17, 
Chapter 4).) 

P-10. Given any Poincare line I and any Poincare point P not on/. Construct 
the two rays from P in the Poincare model that are limiting parallel to 
/. (If /is an arc of a circle a orthogonal toy and intersecting y at A1 and 
A2 , then the problem amounts to constructing a circle P; through P 
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that is orthogonal to y and tangent to a at A; for each of i = 1, 2. See 
Figure 7 .54, and use Proposition 7 .5.) 

P-11. Given an acute angle in the Poincare model. Construct the unique 
Poincare line that is perpendicular to a given side of this angle and 
limiting parallel to the other. This shows that the angle of parallelism 
can be any acute angle whatever. (Hint: If both Poincare lines are arcs 
of orthogonal circles a and p, let P' be the intersection with y of the 
part of a containing the given ray, and let P be the other intersection -with yof P'B, B beingthe centerof p;see Figure 7.55. Show that Pand 
P' are inverse points in circle p, then find the point of intersection of 
the tangents toy at P and P'. Compare with Major Exercise 9, Chapter 
6.) 

P-12. Given circle y with center 0. For any point P =I= 0, if P' is the inverse -of P in y, then the line through P' that is perpendicular to OP is called 
the polar of P with respect toy and will be denoted p(P). When Plies 
outside y, its polar joins the points of contact of the two tangents to y 
from P (see Figure 7 .22). When Plies on y, its polar is the tangent toy 
at P, and this is the only case in which P lies on p(P). Prove the 
following duality property. B lies on p(A) if and only if A lies on p(B). 

FIGURE7.54 

,,,- - {jl 

' \ 
P' 
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(Hint: If B lies onp(A), let B' be the foot of the perpendicular from A 
+-+ 

to OB. See Figure 7 .56. Show that l:\.OAB' is similar to l:\.OBA' and 
deduce that B' is the inverse of B in y. For the significance of this 
operation of polar reciprocation for the theory of conics, see Coxeter 
and Greitzer, 1967, Chapter 6.) 

P-13. We define three types of coaxal pencils of circles as follows: 
( 1) Given a line t and a point C on t. The corresponding tangent 

coaxal pencil consists of all circles tangent to tat C. 
(2) Given two points A and B. The corresponding intersecting 

B 

FIGURE7.58 
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coaxal pencil consists of all the circles which pass through both 
A and B, and A and B are the limiting points of this pencil. 

( 3) Given a circle y and a line t not meeting y. The corresponding 
nonintersecting coaxal pencil consists of y and all other circles t5 
such that t is the radical axis of y and '5. 

Prove the following: 
(a) Any two nonconcentric circles belong to a unique coaxal pencil. 
( b) Given a coaxal pencil C. All pairs of circles belonging to C have 

the same radical axis, and the centers of all circles in Clie on a line 
perpendicular to this radical axis called the line of centers of C. 
(Hint: See Exercise P-7). 

P-14. Prove the following: 
(a) The set of all circles orthogonal to two given circles y and t5 

tangent at C is the tangent coaxal pencil through C whose line of 
centers is the common tangent t to y and '5. 

(b) The set of all circles orthogonal to two given nonintersecting 
nonconcentric circles y and t5 is the intersecting coaxal pencil 
whose line of centers is the radical axis t of y and t5 and whose 
limiting points are the two points at which every member of this 
pencil cuts the line joining the centers of y and '5. 

(c) The set of all circles orthogonal to two given circles y and t5 
intersecting at A and B is the nonintersecting nonconcentric -coaxal pencil whose line of centers is AB and whose radical axis is 
the perpendicular bisector of AB. (See Figure 7.57.) 

P-15. Given three circles a, p, and y. Is there always a fourth circle t5 
orthogonal to all three of them? If so, is t5 unique? (Hint: Consider the 
radical axes of the three pairs of circles obtained from the three given 
circles; the center of t5 must lie on all three radical axes and must lie 
outside the three circles.) 

P-16. Given a circle y with center 0. 
(a) Given P =I= 0 and P' its inverse in y. Prove that inversion in y 

maps the pencil of lines through P' onto the intersecting coaxal 
pencil of circles through 0 and P and maps the orthogonal pencil 
of concentric circles centered at P' onto the nonintersecting 
coaxal pencil of circles whose radical axis is the perpendicular 
bisector of OP. 

(b) Given a line I through 0. Prove that inversion in y maps the 
pencil of lines parallel to I onto the pencil of circles tangent to I 
at 0. 

P-17. The inversive plane is obtained from the Euclidean plane by adjoining a 
single point at infinity oo, which by convention lies on every Euclidean 
line but does not lie on any Euclidean circle. By a "circle" we mean 
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either an ordinary Euclidean circle or a line in the inversive plane. 
Two parallel Euclidean lines meet at co when extended to inversive 
lines; as "circles" they will be considered to be tangent at co. Given an 
ordinary circle ywith center 0, define the inverse ofO in y to be co. By 
inversion in a "circle" we mean either inversion in an ordinary circle or 
reflection across a line. Prove the following: 
(a) Inversion in a given "circle" maps "circles" onto "circles." 
(b) If A and Bare inverse to each other in a "circle" a, and if under 

inversion in another "circle" Pthey map to A', B', a', then A' and 
B' are inverse to each other in a'. (Hint for (b): Show that any 
"circle" y' through A' and B' is orthogonal to a' by observing that 
inversion preserves orthogonality-use Propositions 7.5 and 
7.9.) 

P-18. In addition to the tangent, intersecting, and nonintersecting coaxal 
pencils of circles defined in Exercise P-13, define three further pen­
cils of "circles" in the inversive plane as follows: 

(4) All the circles having a given point as center 
(5) All the lines passing through a given ordinary point 
( 6) A given line and all lines parallel to it 

Furthermore, given a coaxal pencil of circles, we will consider its 
radical axis as one more "circle" belonging to the pencil. Prove the 
following: 
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(a) Two distinct "circles" belong to a unique pencil of "circles." 
(b) A pencil of "circles" is invariant as a set under inversion in any 

"circle" in the pencil. (Hint for (b): The statement is obvious for 
the three new types of pencils just introduced. For the three 
coaxal types, use the two preceding exercises.) 

P-19. Construct a regular 4-gon in the Poincare disk model. (Hint: Choose a 
point A =I= 0 on the line y = x; let B (respectively, D) be its reflection 
across the xaxis (respectively, they axis) and letC be obtained from A 
by 180° rotation aboutO. ShowthatDABCD is a regular4-gon. Note 
that as A approaches 0, <r-A approaches a right angle, while as A moves -away toward the ideal end of ray OA, <r-A approaches the zero angle.) 

P-20. Use the Poincare model to show that in the hyperbolic plane, there 
exist two points A, B lying on the same side Sofa line I such that no 
circle through A and B lies entirely within S. This shows that the result 
in Major Exercise 7, Chapter 5, is another statement equivalent to 
Euclid's parallel postulate. (Hint: Take I to be a diameter of the 
Poincare disk and use Exercise P-5.) 

ff-EXERCISES 

- -H-1. Let M be the midpoint of AB, r = MA, and let C, Don AB lie on the 
same side of M, with A, B, C, D distinct. Then C and Dare harmonic 
conjugates with respect to AB if and only if r = (MD) (MC).+-+ 

H-2. If y and <5 are orthogonal circles, AB is a diameterof y, and <5 cuts AB in 
points C and D, then C and Dare harmonic conjugates with respect to 
AB; conversely, if a diameter of one circle is cut harmonically by a 
second circle, then the two circles are orthogonal (see Figure 7.58). 
(Hint: lfT is a point of intersection of y and <5, use Lemma 7 .1 to show 

FIGURE7.S8 
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that the circles are orthogonal if and only if (OT) 2 = (OC)(OD). 
Now apply Exercise H-1.) 

H-3. Given three collinear points A, B, and C. Prove that the fourth har­
monic point D is the inverse of C in the circle having AB as diameter. 
(Hint: Use Exercise H-2 and Proposition 7.5.) 

H-4. Sensed magnitudes. Gi~n two points A, B. Assign arbitrarily an order 
(i.e., a direction) to AB. Then the length of AB will be considered 
positive or negative according to whether the direction from A to B 
is the positive or negative direction on the line. We will denote 
this signed length by AB, s21hat we have AB = - BA. If C is a third 
point on the directed line AB, we define the signed ratio in which C 
divides AB to be AC/CB. 
(a) Prove that this signed ratio is independent of the direction as­

signed to the line and that point C is uniquely determined by this 
ratio. (Note that C would not be uniquely determined by the 
unsigned ratio.) 

( b) Given parallel lines I and m. Let transversals t and t' cut I and m 
in B, C and B', C', respectively, and lettmeett' at point A. Prove 
that AB/BC= AB'/B'C' (see Exercise 18, Chap~ 5). +-+ 

H-5. Theorem of Menelaus. Given MBC and points Don BC, Eon CA, 
+-+ 

and F on AB that do not coincide with any of the vertices of the 
triangle. Define the linearity number by [ABC/DEF] = (AF/FB) 
(BD/DC) (CE/EA). Then a necessary and sufficient condition for 
D, E, and F to be collinear (Figure 7 .59) is that [ABC/DEF] = - 1. 
(Hint: If D, E, and F lie on a line/, let the parallel m to /through A 

+-+ • 
cut BC at G. Use Exercise H-4 to get CE/EA= CD/DG and AF/ 
FB = GD/DB and deduce that the l~arity number is - 1. £on­
versely, use Exercise H-4 to show that EF cannot be parallel to BC. If 
these lines meet at D', use the first part of the proof and the hypothe­
sis to show that BD/DC = BD'/D'C and apply Exercise H-4(a).) 

A 
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H-6. Theorem of Ceva. Given MBC and a third point D (respectivelv E, F) - -- -~ on BC (respectively on AC, AB). Then the three lines AD, BE, and -CF are either concurrent or parallel if and only if [ABC/DEF] = + 1 
(see Figure 7.60). (Hint: Suppose that the three lines meet at O; 
apply Menelaus' theorem to MOB and MDC to obtain two differ­
ent expressions for OD/AO, then divide one expression by the other 
to see that the linearity number is + 1. If the three lines are parallel, 
apply Exercise H-4(b). Conversely, if the linearity number is+ 1 and - -the three lines are not parallel, let BE and CF, for example, meet - -at 0, and let AO meet BC at D'. Use the first part of the proof 
and the hypothesis to show that BO/DC = BO' /D'C and apply Exer­
cise H-4(a).) 

H-7. Given four collinear points A, B, C, and D. Define their signed cross­
ratio (AB, CD) by (AB, CD)= (AC/CB)/(AD/DB). 
(a} Prove that ABCD is a harmonic tetrad if and only if (AB, CD) = 

-1. 
( b) Prove that signed cross-ratios are preserved by perspectivities 

and parallel projections (see Lemma 7.5 and the parallel projec­
tion theorem preceding Exercise 18, Chapter 5). 

H-8. Prove that ABCD is a harmonic tetrad if and only if l/AB = 
t (1/AC + 1/AD). 

H-9. Suppose the inscribed circle of MBC touches sides BC, CA, and AB 
at D, E, and F, respectively. Prove that AD, BE, and CF are concur­
rent in a point G called the Gergonne point of MBC; see Figure 7 .61. 
(Hint: By Exercise 16, Chapter 6, the center I of the inscribed circle 
lies on all three angle bisectors; this gives three pairs of congruent 
right triangles that can be used to verify the criterion of Ceva's 
theorem.) 
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FIGURE7.61 

H-10. Use the theorem of Menelaus to prove Desargues's theorem as stated 
in Project 1, Chapter 2. (Hint: Referring to Figure 2.10, apply Men­
elaus' theorem to .0.BCP, .0.CAP, and MBP, and then multiply the 
three equations to get [ABC/RST] = -1. Now apply Menelaus' 
theorem once more.) 

H-11. The theorems of Menelaus and Ceva can be applied to prove famous 
theorems of Pappus and Pascal and to prove the existence of special 
points of a triangle. Report on these results, using Kay ( 1969) or 
Coxeter and Greitzer ( 196 7) as references. 



PHILOSOPHICAL 

IMPLICATIONS 

I have had my solutions for a long time, but I do not 
yet know how I am to arrive at them. 

C. F. GAUSS 

WHAT IS THE GEOMETRY OF PHYSICAL SPACE? 

We have shown that if Euclidean geometry is consistent, so is hyper­
bolic geometry, since we can construct models for it within Euclidean 
geometry. Conversely, it can be proved that if hyperbolic geometry is 
consistent, so is Euclidean geometry, for the "horocycles" on the 
"horosphere" in hyperbolic space form a model of the lines on the 
Euclidean plane (see Kulczycki, 1961, §17). Thus, the two geometries 
are equally consistent. 

You may grant now that, logically speaking, hyperbolic geometry 
deserves to be put on an equal footing with Euclidean geometry. But 
you may also feel that hyperbolic geometry is just an amusing intellec­
tual pastime, whereas Euclidean geometry accurately represents the 
physical world we live in and is therefore far more important. Let's 
examine this idea a little more closely. 

Certainly, engineering and architecture are evidence that Euclid­
ean geometry is extremely useful for ordinary measurement of dis­
tances that are not too large. However, the representational accuracy 
of Euclidean geometry is less certain when we deal with larger dis-
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tances. For example, let us interpret a "line" physically as the path 
traveled by a light ray. We could then consider three widely separated 
light sources forming a physical triangle. We would want to measure 
the angles of this physical triangle in order to verify whether the sum is 
180° or not (such an experiment would presumably settle the ques­
tion of whether space is Euclidean or hyperbolic). 

F. W. Bessel, a friend of Gauss, performed such a measurement, 
using the angle of parallax of a distant star. The results were inconclu­
sive. Why? Because any physical experiment involves experimental 
error. Our instruments are never completely accurate. Suppose the 
sum did turn out to be 180 °. If the error in our measurement were at 
most 1/100 of a degree, we could conclude only that the sum was 
between 179.99° and 180.01°. We could never be sure that it actually 
was 180°. 

Suppose, on the other hand, that measurement gave us a sum of 
179°. Although we could conclude only that the sum was between 
178.99° and 179.01°, we would be certain that the sum was less than 
180 °. In other words, the only conclusive result of such an experiment 
would be that space is hyperbolic!1 The inconclusiveness of Bessel's 
experiment shows only that if space is hyperbolic, the defects of 
terrestrial triangles are extremely small. 

To repeat the point: Because of experimental error, a physical 
experiment can never prove conclusively that space is Euclidean - it 
can prove only that space is non-Euclidean. 

The discussion can be made more subtle. We must question the 
nature of our instruments-aren't they designed on the basis of Eu­
clidean assumptions? We must question our interpretation of" lines" 
-couldn't light rays travel on curved paths? We must question 
whether space, especially space of cosmic dimensions, cannot be de­
scribed by geometries other than these two. 

The latter is in fact our present scientific attitude. According to 
Einstein, space and time are inseparable and the geometry of space­
time is affected by matter, so that light rays are indeed curved by the 
gravitational attraction of masses. Space is no longer conceived of as an 
empty Newtonian box whose contours are unaffected by the rocks put 
into it. The problem is much more complicated than Euclid or Loba-

1 If the measurement gave us a sum of 181' with error at most .01 °, we would conclude that 
space is elliptic. 
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Albert Einstein 

chevsky ever imagined- neither of their geometries is adequate for 
our present conception of space. This does not diminish the historical 
importance of non-Euclidean geometry. Einstein said, "To this inter­
pretation of geometry I attach great importance, for should I not have 
been acquainted with it, I never would have been able to develop the 
theory of relativity." 2 

Here is the famous response of Poincare to the question of which 
geometry is true: 

If geometry were an experimental science, it would not be an exact 
science. It would be subjected to continual revision. . . . The geometri­
cal axioms are therefore neither synthetic a priori intuitions nor experimental 

z See George Gamow ( 1956), which tells how Einstein developed a geometry appropriate to 
general relativity from the ideas of Georg Friedrich Bernhard Riemann (1826-1866). 
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facts. They are conventions. Our choice among all possible conventions is 
guided by experimental facts; but it remains free, and is only limited by 
the necessity of avoiding every contradiction, and thus it is that postu­
lates may remain rigorously true even when the experimental laws 
which have determined their adoption are only approximate. In other 
words, the axioms of geometry (I do not speak of those of arithmetic) are 
only definitions in disguise. What then are we to think of the question: Is 
Euclidean Geometry true? It has no meaning. We might as well ask if 
the metric system is true and if the old weights and measures are false; 
if Cartesian coordinates are true and polar coordinates false. One geom­
etry cannot be more true than another: it can only be more convenient. [italics 
added] 3 

You may think that Euclidean geometry is the most convenient- it is 
for ordinary engineering, but not for the theory of relativity. More­
over, R. K. Lune burg contends that visual space, the space mapped on 
our brains through our eyes, is most conveniently described by hyper­
bolic geometry.4 

Philosophers are still arguing about Poincare's philosophy of con­
ventionalism. One school, which includes Newton, Helmholtz, Rus­
sell, and Whitehead, contends that space has an intrinsic metric or 
standard of measurement. The other school, which includes Riemann, 
Poincare, Clifford, and Einstein, contends that a metric is stipulated 
by convention. The discussion can become very subtle (see Torretti, 
1978, Chapter 4). 

WHAT IS MA.THEMATICS A.BOUT? 

The preceding discussion sheds new light on what geometry, and in 
general, mathematics, is about. Geometry is not about light rays, but 
the path of a light ray is one possible physical interpretation of the 
undefined geometric term "line." Bertrand Russell once said that 
"mathematics is the subject in which we do not know what we are 

3 H. Poincare (1952), p. 50. See also Essay Topic 18 at the end of this chapter. 
4 R. K. Luneburg (1947), and his article in the Optical Society of America Journal, October, 

1950, p. 629. See also the articles by 0. Blank in that same journal, December, 1958, p. 911, 
and March, 1961, p. 335, and the explanation in Trudeau (1987), pp. 251-254. 
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talking about nor whether what we say is true." This is because certain 
primitive terms, such as "point," "line," and "plane," are undefined 
and could just as well be replaced with other terms without affecting 
the validity of results. Instead of saying "two points determine a 
unique line," we could just as well write "two alphas determine a 
unique beta." Despite this change in terms, the proofs of all our 
theorems would still be valid, because correct proofs do not depend on 
diagrams; they depend only on stated axioms and the rules of logic. 
Thus, geometry is a purely formal exercise in deducing certain conclu­
sions from certain formal premises. Mathematics makes statements of 
the form "if ... then"; it does not say anything about the meaning 
or truthfulness of the hypotheses. The primitive notions (such as 
"point" and "line") appearing in the hypotheses are implicitly de­
fined by these axioms, by the rules as it were that tell us how to play 
the game.5 

To illustrate how radically different is this view of mathematics, 
observe the following interaction (Torretti, 1987, p. 235). Gottlob 
Frege (1848-1925), who is considered the founder of modern math­
ematical logic, wrote to Hilbert: 

I give the name of axioms to propositions which are true, but which are 
not demonstrated because their knowledge proceeds from a source 
which is not logical, which we may call space intuition. The truth of the 
axioms implies of course that they do not contradict each other. That 
needs no further proof. 

Frege has stated the traditional view. Hilbert replied: 

Since I began to think, to write and to lecture about these matters, I 
have always said exactly the contrary. If the arbitrarily posited axioms 
do not contradict one another or any of their consequences, they are 
true and the things defined by them exist. That is for me the criterion of 
truth and existence. 

Hilbert knew that Euclidean and hyperbolic geometries were equally 
consistent, so it follows that for him they" exist" and are both "true." 
The discovery that Euclidean geometry was not "absolute truth" had 
a liberating effect on mathematicians, who now feel free to invent any 

5 For a clear exposition of this viewpoint, which is due to Hilbert, see Hempel (1945). 
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set of axioms they wish and deduce conclusions from them. In fact, this 
freedom may account for the great increase in the scope and generality 
of modern mathematics. In a 1961 address, Jean Dieudonne re­
marked on Gauss' discovery of non-Euclidean geometry: 

[It] was a turning point of capital significance in the history of mathe­
matics, marking the first step in a new conception of the relation 
between the real world and the mathematical notions supposed to 
account for it; with Gauss' discovery, the rather naive point of view that 
mathematical objects were only "ideas" (in the Platonic sense) of 
sensory objects became untenable, and gradually gave way to a clearer 
comprehension of the much greater complexity of the question, 
wherein it seems to us today that mathematics and reality are almost 
completely independent, and their contacts more mysterious than 
ever.6 

THE CONTROVERSY ABOUT THE 
FOUNDATIONS OF MATHEMATICS 

It would be misleading to say that mathematics is just a formal game 
played with symbols and having no broader significance. Mathemati­
cians do not arbitrarily make up axioms-it is unlikely that anyone 
would ever develop a geometry in which it was assumed that nonsup­
plementary right angles were never congruent to each other. Axioms 
must lead to interesting and fruitful results. Of course, some axioms 
that appear uninteresting may turn out to have surprising con­
sequences- this was the case with the hyperbolic axiom, which was 
virtually ignored during the lifetimes of Gauss, Bolyai, and Loba­
chevsky. If, however, axiom systems do not bear interesting results, 
they become neglected and eventually forgotten. 

Arguing against the description of mathematics as a "formal 
game," R. Courant and H. Robbins (in their fine book What is Mathe­
matics?) insist that "a serious threat to the very life of science is 
implied in the assertion that mathematics is nothing but a system of 
conclusions drawn from definitions and postulates that must be con-

6 j. Dieudonne, "L'Oeuvre Mathematique de C. F. Gauss," Poulet-Malassis Alen~on: 
L 'lmprimerie Alen~onnaise, ! 961. 
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sistent but otherwise may be created by the free will of the mathema­
tician. If this description were accurate, mathematics could not attract 
any intelligent person. It would be a game with definitions, rules and 
syllogisms, without motivation or goal." 

And Hermann Wey! has remarked: "The constructions of the 
mathematical mind are at the same time free and necessary. The 
individual mathematician feels free to define his notions and to set up 
his axioms as he pleases. But the question is, will he get his fellow 
mathematicians interested in the constructs of his imagination? We 
can not help feeling that certain mathematical structures which have 
evolved through the combined efforts of the mathematical community 
bear the stamp of a necessity not affected by the accidents of their 
historical birth." 7 

Axiom systems that are fruitful can also be controversial in the 
mathematical world, as are the axioms for infinite sets developed by 
Georg Cantor, E. Zermelo, and others. A controversy occurs because 
some outstanding mathematicians (such as Wey!, L. E. J. Brouwer, 
and Errett Bishop in the case of infinite sets) simply do not believe all 
these axioms. If axioms were truly meaningless formal statements, 
how could there be any controversy about them? Is there any contro­
versy about the rules of chess? It would seem that the formalist 
viewpoint-the view that mathematics is just a formal game-is a 
dodge to avoid having to face the difficult philosophical and psycho­
logical problem of the nature of mathematical creations or discoveries. 
Just what is asserted when a mathematician claims that something 
exists? When the Pythagoreans discovered that the hypotenuse of an 
isosceles right triangle was not commensurable with the leg, they tried 
to keep this discovery secret, calling such lengths "irrational." Nowa­
days we aren't upset over numbers like .Jz. Similarly, mathematicians 
have accommodated themselves to "imaginary" numbers, such as 
i = ,J- t, exploited by J. Cardan.8 

The most "fundamentalist" position on the philosophy of mathe­
matics is that of Leopold Kronecker, who dominated the German 

7 From H. Wey!, "A Half-Century of Mathematics," American Mathematica/ Monthly, 58 
(1951): 523-553. 

8 Jacques Hadamard has said about Cardan: "It would naturally be expected that the 
discovery of imaginaries, which seems nearer to madness than to logic and which, in fact, has 
illuminated the whole mathematical science, would come from such a man whose adventurous 
life was not always commendable from the moral point of view, and who from childhood suffered 
from fantastic hallucinations ... " (Hadamard, 1945). 
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mathematical world in the late nineteenth century. According to 
Kronecker, "God created the whole numbers-all else is man­
made." In particular, Kronecker repudiated Georg Cantor's theory of 
transfinite cardinal and ordinal numbers. Hilbert later defended Can­
tor, proclaiming that "no one shall expel us from the paradise which 
Cantor has created for us." Subsequently Kronecker was portrayed as 
the nasty reactionary whose rejection of Cantor's revolutionary new 
ideas drove Cantor to the insane asylum (see Bell, 1961); this is 
undoubtedly a myth, and the philosophical issues underlying the 
Kronecker-Cantor controversy are far from settled (see Fang, 1976). 

In the twentieth century, Cantor's set theory, made precise by the 
Zermelo-Fraenkel (Z-F) axioms, became the new "absolute truth" 
that was the foundation for all of mathematics. However, there was 
some controversy about one axiom, the axiom of choice (AC), and 
there was so much uncertainty about another idea of Cantor's that it 
was called a "hypothesis"-the continuum hypothesis (CH). The 
first in Hilbert's famous 1900 list of 23 problems was to prove or 
disprove CH. Forty years later, Kurt Godel created a model of the 
other Z-F axioms in which both AC and CH were true; that demon­
strated the impossibility of disproving them. History repeated itself 
when, in 1963, models were created9 in which either AC or CH or both 
were false. Thus AC and CH are independent of the other Z-F axioms 
and of each other. There exists an equally valid non-Cantorian set 
theory, just as there is an equally valid non-Euclidean geometry. 

One mystery about mathematics is perhaps the most compelling of 
all. If mathematical creations are merely arbitrary fancies, how is it 
that some turn out to have physical applications, for example, applica­
tions that enable us to calculate orbits well enough to put men on the 
moon? When the Greeks developed the theory of ellipses they had no 
inkling that it would have applications to a "space race." 10 

These questions and viewpoints are not intended to confuse you, 
but to point up the fact that mathematics is alive, ever changing, and 
incomplete. Moreover, according to a metamathematical theorem of 
Kurt Godel, mathematics is forever destined to remain incomplete. 
He proved that there will always be valid mathematical statements 

9 By Paul J. Cohen; see P. J. Cohen and R. Hersh, "Non-Cantorian Set Theory," Scientific 
American, 217 (December, 1967). 

10 See E. Wigner, "The Unreasonable Effectiveness of Mathematics," Communications in 
PureandAppliedMatlzematics, 13 (1960): 1 ff. 
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Kurt Godel 

that cannot be demonstrated from systems of axioms that are broad 
enough to include arithmetic (see DeLong, 1970). In other words, 
Godel provided a formal demonstration of the inadequacy of formal 
demonstrations! 

Perhaps the following remarks by Rene Thom are an appropriate 
reaction to Godel's incompleteness theorem: 

The mathematician should have the courage of his private convictions; 
he would then affirm that mathematical structures have an existence 
independent of the human mind that thinks about them. The form of 
this existence is undoubtedly different from the concrete and material 
existence of the external world, but it is nevertheless subtly and pro­
foundly linked to objective existence. For how else explain - if math­
ematics is merely a gratuitous game, the random product of our cere­
bral activities- its indisputable success in describing the universe? 
Mathematics is encountered - not only in the rigid and mysterious 
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laws of physics- but also, in a more hidden but still indubitable man­
ner, in the infinitely playful succession of forms of the animate and 
inanimate world, in the appearance and destruction of their symme­
tries. That's why the Platonic hypothesis of Ideas informing the uni­
verse is-despite appearances- the most natural and philosophically 
the most economical. But, at any instant, mathematicians have only an 
incomplete and fragmentary vision of this world of Ideas . . . , we 
have to recreate it in our consciousness by a ceaseless and permanent 
reconstruction. . . . With this confidence in the existence of an ideal 
universe, the mathematician will not overly worry about the limits of 
formal procedures, he will be able to forget the problem of consistency. 
For the world of Ideas infinitely exceeds our operational possibilities, 
and the ultima ratio of our faith in the truth of a theorem resides in our 
intuition-a theorem being above all, according to a long-forgotten 
etymology, the object of a vision. 11 

THE MESS 

In the first edition of this book, I ended this chapter with that inspiring 
quote from Thom (the founder of "catastrophe theory"). Further 
inquiry into these questions prompts me to a more somber conclusion. 
Namely, there is at present no intelligible account of what the state­
ments of pure mathematics are about. The philosophy of mathematics 
is in a mess! 

My claim that the formalist viewpoint is a dodge is substantiated by 
the following revealing admission by Jean Dieudonne: 12 

On foundations we believe in the reality of mathematics, but of course 
when philosophers attack us with their paradoxes we rush to hide 
behind formalism and say "Mathematics is just a combination of 
meaningless symbols," and then we bring out Chapters 1 and 2 on set 
theory. Finally we are left in peace to go back to our mathematics and 
do it as we have always done, with the feeling each mathematician has 
that he is working with something real. This sensation is probably an 

11 R. Thom," 'Modern' Mathematics: An Educational and Philosophic Error?," American 
Scientist, November, 1971, p. 695 ff. The translation here is my own from the original (in L'Age 
de Science, III (3): 225). 

1z "The work of Nicholas Bourbaki," Amer. Math. Monthly, 77 (1970): 134-145. 
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illusion, but is very convenient. That is Bourbaki's attitude toward 
foundations. 

An article by Reuben Hersh13 forcefully demonstrates the philosophi­
cal plight of the working mathematician, who is "a Platonist on week­
days and a formalist on Sundays." Hersh contends that the tension 
caused by holding contradictory views on the nature of his work must 
affect the self-confidence of a person who is supposed, above all 
things, to hate contradiction. 

Dieudonne admits that the Platonic view is probably an illusion. In 
a very interesting essay, Gabriel Stolzenberg14 argues that the illusion 
consists in being taken in by a present tense language of objects and their 
properties, a language that has the appearance- but only that-of 
being meaningful. The psychological act of accepting this appearance 
produces a notion of "reality" so strong that it becomes very difficult 
to step aside and question it. 

We have already seen examples of such illusion. If one believes that 
points and lines in the plane are "real objects," then they either satisfy 
Euclid's postulate or they don't (with the corollary belief that Euclid­
ean geometry is either "true"or "false"). Similarly, if sets are "real 
objects," then they either satisfy Cantor's continuum hypothesis or 
they don't (Godel believed that they don't). 

The fundamental illusion, according to Stolzenberg (and Brouwer 
before him), is the belief that a mathematical statement can be "true" 
without anyone being able to know it. This belief is so strong that only 
the few constructivist mathematicians have been willing to give it up. 
They contend that ":J' is true" is a signal to announce a state of 
knowing which one has attained by means of an act of proof. Stolzen­
berg ( 1978) claims (p. 265): 

What one "sees" or "discovers" at the conclusion of an act of proof is 
that a certain structure (which is constructed in the course of the proof ) 
displays a certain form: a form of the type that, according to the con­
ventions of mathematical language use that have been established, 

13 "Some Proposals for Reviving the Philosophy of Mathematics," Advances in Math., 31 
(1979): 31-50. 

14 "Can an Inquiry into the Foundations of Mathematics Tell Us Anything Interesting about 
Mind? " in Psychology and Biology of Language and Thought, Essays in Honor of Eric Lenneberg, G. 
Miller and Elizabeth Lenneberg, eds., New York: Academic Press (1978): 221-269. 
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entitles anyone who observes it to say "Y is true." But "Y is true" is 
merely what one says, not what one sees; the expression itself is merely 
the "brand name" for the type of thing that one sees at the conclusion 
of the proof. And it is a type of thing that may be seen only by con­
structing a proof- not because we need to use the proof as "a ladder" 
to get ourselves into a position to see it but rather because what one 
sees is "in" the structure that is created by the act "of making the 
proof." 

An interesting consequence of this position is that "the knower" is 
brought into the philosophy of mathematics (just as "the observer" 
has been brought into the philosophy of physics by Heisenberg's 
uncertainty principle). 

If indeed the philosophical mess is the result of a linguistic illusion, 
then deep insights are needed to develop a new language system. This 
system would not be a mere rephrasing of current usage (if it were, it 
wouldn't be worth the bother). It would be a tool to gain higher levels 
of understanding. 

On the other hand, the Platonic "illusion" has shown itself to be 
very valuable heuristically (e.g., Godel credited the Platonic view­
point for his insights). An intelligible justification for Platonic heuris­
tics may someday be found (just as one was found in the twentieth 
century by the logician Abraham Robinson for the "illusory" infini­
tesimals used in the seventeenth century by the founders of the calcu­
lus). Physics has continued to advance despite the even worse mess in 
its philosophical foundations, so the proverbial "working mathemati­
cians" will have no trouble continuing to ignore the irritating question 
of the meaning of their theorems. 

REVIEW EXERCISE 

Which of the following statements are correct? 

( 1) It is impossible to verify by physical experiments whether hyperbolic 
geometry is true because hyperbolic geometry is not about physical 
entities. 

(2) If we interpret the undefined terms of geometry physically, e.g., by 
interpreting "line" as "path of a light ray in empty space," then it 
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makes sense to ask whether this interpretation is a model of Euclidean 
geometry; however, due to experimental error, physical experiments 
could never prove conclusively that it is a model. 

(3) Hyperbolic geometry is consistent if and only if Euclidean geometry is 
consistent. 

( 4) Poincare maintained that it was meaningless to ask which geometry is 
"true," and that it only made sense to ask which geometry is more 
"convenient" for physics. 

( 5) The most convenient geometry for astrophysics is neither Euclidean nor 
hyperbolic geometry but a more complicated geometry of space-time 
developed by Einstein out of ideas from Riemann. 

(6) The Klein and Poincare models, although they appear to be different, 
are actually isomorphic to each other. 

(7) Hyperbolic geometry, although equally as consistent as Euclidean ge­
ometry, has no application to other branches of mathematics or to other 
sciences. 

SOME TOPICS FOR ESSAYS 

1. Comment on this quotation from Albert Einstein: "As far as the 
mathematical theorems refer to reality, they are not sure, and as far as 
they are sure, they do not refer to reality." (See Hempel, 1945, for a 
development of this theme.) 

2. Report on the debate about the philosophy of conventionalism, 
using Griinbaum, ( 1968), Poincare ( 1952), and Nagel ( 1939) as 
sources. 

3. Report on the use of hyperbolic geometry to describe binocular 
vision, referring to Luneburg and Blank (see note 4 in this chapter). 

4. It can be said that the discovery of non-Euclidean geometry led 
to the extensive modern development of mathematical logic. Elabo­
rate on this statement, using DeLong ( 1970), Chapters 1 and 2, as a 
source. 

5. Jacques Hadamard said: "Practical application is found by not 
looking for it, and one can say that the whole progress of civilization 
rests on that principle. . . . It seldom happens that important mathe­
matical researches are directly undertaken in view of a given practical 
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use: they are inspired by the desire which is the common motive of 
every scientific work, the desire to know and understand." 15 

Along the same lines, David Hilbert maintained that in spite of the 
importance of the applications of mathematics, these must never be 
made the measure of its value. And the mathematician Jacobi said that 
"the glory of the human spirit is the sole aim of all science." 

Nevertheless, Lobachevsky believed that "there is no branch of 
mathematics, however abstract, they may not someday be applied to 
phenomena of the real world." 

Comment on these viewpoints. 
6. Read the "Socratic Dialogue on Mathematics" in Renyi 

( 196 7), and discuss the following questions therein: 
(a) "Is it not mysterious that one can know more about things 

which do not exist than about things which do exist?" 
(b) "How do you explain that, as often happens, mathematicians 

living far from each other and having no contact independently 
discover the same truths?" 

7. Comment on the following statement by Michael Polanyi 
( 1964; see especially Chapter 6, Sections 9- 11): 

We can now turn to the paradox of a mathematics based on a system of 
axioms which are not regarded as self-evident and indeed cannot be 
known to be mutually consistent. To apply the utmost ingenuity and 
the most rigorous care to prove the theorems of logic or mathematics 
while the premises of these inferences are cheerfully accepted, without 
any grounds being given for doing so . . . might seem aftogether 
absurd. It reminds one of the clown who solemnly sets up in the middle 
of the arena two gateposts with a securely locked gate between them, 
pulls out a large bunch of keys, and laboriously selects one which opens 
the lock, then passes through the gate and carefully locks it after 
himself-while all the while the whole arena lies open on either side of 
the gateposts where he could go round them unhindered. 

8. Comment on the following statements: 

There is a scientific taste just as there is a literary or artistic one. 
Concerning the fruitfulness of the future result-about which, strictly 

15 Hadamard ( 1945); see especially Chapter 9. 
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speaking, we most often do not known anything in advance - [the] 
sense of beauty can inform us and I cannot see anything else allowing 
us to foresee. . . . Without knowing anything further we fee/that such 
a direction of investigation is worth following. . . . Everybody is free 
to call or not to call that a feeling of beauty. This is undoubtedly the way 
the Greek geometers thought when they investigated the ellipse, be­
cause there is no other conceivable way. (Hadamard, 1945.) 

We dwell on mathematics and affirm its statements for the sake of its 
intellectual beauty .... For if this passion were extinct, we would 
cease to understand mathematics; its conceptions would dissolve and 
its proofs carry no conviction. Mathematics would become pointless 
and lose itself in a welter of insignificant tautologies .... (Polanyi, 
1964.) 

We all believe that mathematics is an art. The author of a book or the 
lecturer in a classroom tries to convey the structural beauty of mathe­
matics to his readers, to his listeners. In this attempt he must always 
fail. Mathematics is logical, to be sure; each conclusion is drawn from 
previously derived statements. Yet the whole of it, the real piece of art, 
is not linear; worse than that, its perception should be instantaneous. 16 

9. Comment on the following statements. G. H. Hardy ( 1940) 
said: 

For me, and I suppose for most mathematicians, there is another real­
ity, which I will call "mathematical reality"; and there is no sort of 
argument about the nature of mathematical reality among either math­
ematicians or philosophers. . . . A man who could give a convincing 
account of mathematical reality would have solved very many of the 
most difficult problems of metaphysics. . . . I believe that mathemat­
ical reality lies outside us, that our function is to discover or observe it, 
and that the theo~ems which we prove, and which we describe grandi­
loquently as our "creations," are simply the notes of our observations. 
This view has been held, in one form or another, by many philosophers 
of high reputation from Plato onwards. . . . 

Heinrich Hertz, the discoverer or radio waves, said: 

One cannot escape the feeling that these mathematical formulas have 
an independent existence and an intelligence of their own, that they 

16 Emil Artin, "Review of Algebre by N. Bourbaki," Bulletin American Mathematical Society, 59 
(1953): 474. 
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are wiser than we are, wiser even than their discoverers, that we get 
more out of them than was originally put into them. 

10. Comment on the following remarks by Kurt Godel: 

I don't see any reason why we should have less confidence in this kind 
of perception, i.e., in mathematical intuition, than in sense perception, 
which induces us to build up physical theories and to expect that future 
sense perceptions will agree with them and, moreover, to believe that a 
question not decidable now has meaning and may be decided in the 
future. The set theoretical paradoxes are hardly any more troublesome 
for mathematics than deceptions of the senses are for physics. . . . 
Evidently the "given" underlying mathematics is closely related to the 
abstract elements contained in our empirical ideas. It by no means 
follows, however, that the data of this second kind [mathematical 
intuitions], because they cannot be associated with actions of certain 
things upon our sense organs, are something purely subjective, as Kant 
asserted. Rather, they, too, may represent an aspect of objective reality. 
But as opposed to the sensations, their presence in us may be due to 
another kind of relationship between ourselves and reality.17 

Godel in this passage speaks primarily of set theoretical intuition. As 
far as geometrical intuition is concerned, the following, according to 
Godel, would have to be added: 

Geometrical intuition, strictly speaking, is not mathematical, but 
rather a priori physical intuition. In its purely mathematical aspect our 
Euclidean space intuition is perfectly correct, namely, it represents 
correctly a certain structure existing in the realm of mathematical 
objects. Even physically it is correct "in the small." 18 

11. Comment on the following quotation from Rolf R. Loehrich: 

The communication of a new mathematical system or game meets with 
peculiar obstacles. Each mathematician has a preferred game. A new 
game may not capture his interest if it is significantly different from 
those he has been accustomed to play .... 

17 K. Godel, "What Is Cantor's Continuum Problem?" in Benacerraf and Putnam's P/z;/oso­
phy of Mathemat;cs, 2nd ed. (Englewood Cliffs, N.J.: Prentice-Hall, 1964), p. 271. 

18 Private communication to the author, October, 1973. 



306 Ill Phllosophleal Implleatlons 

A mathematical system is hardly ever presented axiomatized at its 
inception. Successful axiomatization is a fruition of an exercitium cogi­
tandi. Once a syst~m is axiomatized, mathematical activity can be 
played as a game, as a manipulation of symbols by virtue of rule-sys­
tems thought of as invented, but this does not assert that the mathema­
tician who invented or presumably discovered the system meant to play 
a game. . . . Roberts and I are convinced that there is what might be 
adequately referred to as a mathematical universe. We believe that, 
with the complex instrumentations and empirical data set forth in 
Exercitium Cogitandi, the ontological value of confrontations belonging 
to this universe can be determined with a high degree of accuracy (such 
confrontations are to be thought [of as] sign-values of signs, and these 
signs are the symbol systems as known and/or as to be invented by 
virtue of new conceptual systems with ever increasing ranges). . . . If 
this is true, then indeed a mathematician may think of himself as an 
explorer of the mathematical universe, and any new mathematical 
system functions as the inception of a possible creation of a universe 
which comprehends any of the other universes. 19 

12. Write an essay on the development of geometry in ancient 
Greece, using the resources of your school library. You may be partic­
ularly interested in the female mathematician Hypatia. 

13. Comment on the following remarks about the true role of logic 
in mathematics: 

If logic is the hygiene of the mathematician, it is not his source of food; 
the great problems furnish the daily bread on which he thrives. We have 
learned to trace our entire science back to a single source, constituted 
by a few signs and by a few rules for their use; this is an unquestionable 
stronghold, inside which we could hardly confine ourselves without risk 
of famine, but to which we are always free to retire in case of uncer­
tainty or external danger. (A. Weil, "The Future of Mathematics," 
American Mathematical Monthly, 57 (1950); 295-306.) 

All physicists, and a good many quite respectable mathematicians, 
are contemptuous about proof. (G. H. Hardy, Ramanujan, Cambridge 
University Press, New York, 1940, p. 15.) 

Discovery, after all, is more important in science than strict deduc­
tive proof. Without discovery there is nothing for deduction to attack 

19 R.R. Loehrich (with L. G. Roberts), Exercitium Cogitandi, vol. II (Center for Medieval and 
Renaissance Studies, Oxford, 1978). 
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and reduce to order. (E.T. Bell, Development of Mathematics, 2nd ed. 
McGraw-Hill, New York, 1945, p. 83.) 
14. Report on Imre Lakatos' critique of the formalist philosophy of 

mathematics and his ideas on how mathematics is discovered, as 
presented in his book Proofs and Refutations: The Logic of Mathematical 
Discovery (Cambridge University Press, 1976). Here are some perti­
nent Lakatos quotes: 

Euclid has been the evil genius particularly for the history of mathe­
matics and for the teaching of mathematics, both on the introductory 
and the creative levels. . . . The two activities of guessing and proving 
are rigidly separated in the Euclidean tradition. . . . It was the infalli­
bilist philosophical background of Euclidean method that bred the 
authoritarian traditional patterns in mathematics, that prevented pub­
lication and discussion of conjectures, that made impossible the rise of 
mathematical criticism. . . . The discovery of non-Euclidean geome­
tries (by Lobatschewsky in 1829 and Bolyai in 1831) shattered infalli­
bilist conceit. . . . There is no infallibilist logic of scientific discovery, 
one which would infallibly lead to results; there is a fallibilist logic of 
discovery which is the logic of scientific process. 

15. Write a detailed report on the theory of area in hyperbolic 
geometry using Moise (1990), Chapter 24, as a reference. 

16. Report on Bertrand Russell's doctoral dissertation An &say on 
the Foundations of Geometry (Dover reprint, 19 56). Show how Russell 
very capably refutes theories of geometry due to Kant and other 
philosophers, but then proclaims his own incorrect notion of space 
(that was later refuted by Einstein). See also the critique in Torretti 
( 1978), Chapter 4. 

17. Report on Chapter 3 of Roberto Torretti's sublime treatise 
Philosophy of Geometry from Riemann to Poincare ( 197 8). This chapter is 
on the foundations of geometry. Here is one important quote: 

The fact that these semi-circles [in the Poincare upper half-plane 
model] behave exactly like Euclidean lines with regard to every logical 
consequence of Hilbert's axioms [for neutral geometry] bespeaks a 
deep analogy between them, which can come as a shock only to the 
mathematically uneducated. To maintain that line means something 
entirely different in Bolyai-Lobachevsky geometry and in Euclidean 
geometry, is not more reasonable than to say that heart has a completely 
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different meaning in the anatomy and physiology of elephants and in 
that of frogs. 

18. To further illustrate his contention that it is meaningless to ask 
which geometry is "true," Poincare invented a "universe" U occupy­
ing the interior of a sphere S of radius R in Euclidean space, in which 
the following physical laws hold: 

(a) At any point P inside S, the absolute temperature Tis directly 
proportional to R2 - r, where r is the distance from P to the 
center of S. 

(b) The length, width, and height of an object vary directly with 
the absolute temperature of the object. 

(c) All objects in U instantaneously take on the temperatures of 
their locations. 

( d) Light travels along the shortest path from one point to another. 

Show that an inhabitant of U could not detect his change in tempera­
ture and size as he moves about with a thermometer or a tape measure, 
and that he could never reach the boundary S of his universe, so would 
consider it infinitely far away. Poincare showed that the shortest path 
in U joining point A to point B is the smaller arc of the circle through A 
and B that cuts S orthogonally. Hence, if an inhabitant interprets 
"straight line segment" in his universe to be the path of a light ray, he 
would conclude that the "true" geometry of his world was hyperbolic. 
In other words, this is a region of Euclidean space which because of 
different and undetectable physical laws appears to its inhabitants to 
be non-Euclidean. Comment, using Poincare ( 1952) as a reference, as 
well as Torretti ( 1978) and Griinbaum ( 1968). 

19. Write an essay on a topic of your own. 



GEOMETRIC 

TRANSFORMATIONS 

I have spent a lifetime applying Klein's program to 
differential geometry. 

W. BLASCHKE 

KLEIN'S ERLANGER PROGRAltlltlE 

In 1872, a year after his decisive publication of the projective models 
for non-Euclidean geometries, Felix Klein was appointed (at age 23) 
to a chair at the University of Erlangen. He delivered an inaugural 
address proposing a new unifying principle for classifying the various 
geometries that were rapidly being developed, and for discovering 
relationships between them. This Erlanger Programme has had an 
enormous impact on all of mathematics to the present day. 1 

The key notion, according to Klein, involves the group of all auto­
morphisms of a mathematical structure. In Chapter 2 we defined the 
concept of an isomorphism of one model onto another, and in Chapter 
7 we used a specific isomorphism to relate the Klein and Poincare 
models of the hyperbolic plane. An isomorphism mapping a given 
model onto itself is called an automorphism of that model; thus, an 
automorphism is a one-to-one mapping (or transformation) of each 
basic set of objects in the model onto itself which preserves the basic 
relations among the objects. 

1 For an English translation of Klein's lecture, see the Bulletin of the New York Mathematical 
Society, 2 (1893): 215-249. 
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The importance of the group of automorphisms was first recognized 
in connection with the problem of solving an algebraic equation by 
radicals. Evariste Galois (1811-1832) showed that a solution by 
radicals was possible if and only if the group of automorphisms of the 
field extension generated by the roots of the equation is a solvable 
group. This implies Abel's particular discovery that the general equa­
tion of degree 5 cannot be solved by radicals. Klein later discovered a 
relation between the group of rotations of a dodecahedron and the 
roots of the quintic equation that explained why the latter can be 
solved by elliptic functions. 

Here is an example of the simplest type of geometric automor­
phism. 

Example I. Consider models of incidence geometry (Chapter 2). 
The basic sets of objects are the sets of points and lines, and the only 
basic relation is incidence of a point and line. An automorphism Twill 
therefore map each point P and each line I onto a point P' and a line/' 
such that P lies on I if and only if P' lies on /'. By Axiom 1-1, a line is 
determined by any two points lying on it, so T is determined as a 
mapping of lines once its effect on the points is known - namely 

T(PQ) = P~'. 

Since T preserves incidence and is one-to-one on the set of lines, it has 
the property that three points 0, P, Q are collinear if and only if their 
images 0', P', Q' are collinear. Hence an automorphism of a model of 
incidence geometry is called a collineation. 

For example, in the 3-point model, every permutation of the 
three noncollinear points is a collineation. However, for the 7-point 
projective plane (Figure 9.1), you can show that, of the 7! = 5040 
permutations of the points, only 168 are collineations (Exer­
cise 1). 

It is important to note that an automorphism not only preserves the 
basic relations, but also al/the relations that can be defined from them. 
For example, a collineation of an incidence plane preserves parallel­
ism (lllm ~ /'llm'). 
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FIGURED.I 

GROUPS 

Transformations of a set onto itself can b~ multiplied by first applying 
one transformation T and then another transformation S; thus the 
composite transformation ST is defined by the equation 

(0) ST(x) = S(T(x)) 

for all x in the set. 
With this multiplication, the set Cf} of all automorphisms of a struc­

ture has itself the structure of a group, which means that the following 
properties hold: 

1. S, TE <fi ~STE Cfi. 
2. IE Cf} (where I is the identity transformatio.n that leaves all the 

objects fixed; the identity transformation satisfies IT= T = TI 
for all TE <fi). 

3. TE <fi ~ T- 1 E <fi (where the inverse T- 1 of Tis characterized 
by the equations TT- 1 = != T- 1T). 

4. S(TU) = (ST) U for all S, T, U E Cf} (this associative law is an 
immediate consequence of the definition (0) of multiplication). 

To illustrate these properties, let us consider rotations about a 
point 0, which will be rigorously defined later but can now be thought 
of as transformations that turn the entire plane through a certain angle 
about 0. If Tis the rotation through t 0 clockwise and S the rotation 
through s0 clockwise, then ST is the rotation through (s + t) 0 clock-
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wise. 1 1 is the rotation through t 0 counterclockwise. I can be thought 
of as the rotation through 0 °. 

Warning. The product ST is not, in general, equal to the product 
TS in the opposite order, as the next example shows. 

Example 2. Consider the equilateral triangle .D.ABC situated 
symmetrically about the point 0 in Figure 9.2. If we let T be the 
rotation through 120° counterclockwise about 0 and let S be the 
reflection across the vertical line AO, then TS leaves C fixed and 
interchanges A and B (in fact, TS is the reflection across CO); whereas 
ST!eaves B fixed and interchanges A and C (ST is the reflection across 
BO). 

If two transformations S, T happen to have the property ST= TS, 
we say that they commute, and a collection of transformations in which 
every pair commute is called commutative (or Abelian, after the great 
Norwegian mathematician N. H. Abel). For instance, any two rota­
tions about the same point 0 commute. 

The more structure a geometry has, the smaller is its group of 
automorphisms. Neutral geometry is incidence geometry with the 
additional relations of betweenness and congruence; hence the group 
of automorphisms of a neutral geometry is the subgroup of those collin­
eations T for which betweenness and congruence are invariant; i.e., 
for which 

FIGUREB.2 

A * B * C ~A' * B' * C' 
AB == CD ~ A'B' == C'D' 

A 
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(we will systematically use X' to denote the image of any object X-point, 
line, circle, etc. -under a transformation denoted T). We have not as­
sumed Tpreserves congruence of angles because this can be proved: If 
~BC= <t:DEF, we can assume by Axiom C-1 that AB= DE and 
BC= EF, so that AC= OF (SAS); since Tpreserves congruence of 
segments, ~A'B'C' = ~D'E'F' (SSS), hence ~'B'C' = <t:D'E'F'. 
Notice also that if a transformation preserves betweenness it must be a 
collineation (by Axioms B-1 and B-3). 

The principal objective of this chapter will be to explicitly determine all 
the automorphisms of Euclidean and hyperbolic planes and to classify them 
according to their geometric properties, particularly their invariants. 

We say that a property or relation is "invariant" under a transfor­
mation or group of transformations if the property or relation still 
holds after the transformations are applied; a geometric figure is "in­
variant" if it is mapped onto itself by the transformations. 

"Invariance" and "group" are the unifying concepts in Klein's 
Erlanger Programme. Groups of transformations had been used in 
geometry for many years, but Klein's originality consisted in reversing the 
roles, in making the group the primary object of interest and letting it operate 
on various geometries, looking for invariants. For example, the group 
PSL(2, IR) of 2-by-2 projective transformations with real coefficients 
(see Proposition 9.26) operates on both the hyperbolic plane and the 
real projective line; for the latter operation, the cross-ratio of four 
points is the fundamental invariant, whereas for the former operation, 
the length of a segment (which is calculated by means of cross-ratios in 
the Klein and Poincare models) is the fundamental invariant. 

Klein classified the following geometries as subgeometries of real 
plane projective geometry: 

1. Affine geometry is the study of invariants of the subgroup of 
those projective transformations (called affine transformations) 
which leave the line at infinity invariant. 

2. Hyperbolic geometry is the study of invariants of the subgroup 
of those projective transformations which leave a given real 
conic ("the absolute") invariant. 

3. Elliptic geometry is the study of invariants of the subgroup of 
those projective transformations which leave a given imaginary 
conic invariant. 

4. Parabolic geometry is the study of invariants of the subgroup of 
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those affine transformations (called similarities) which leave in­
variant the two imaginary circular points at infinity (seep. 362 
Coxeter, 1960). 

5. Euclidean geometry is the study of invariants of the subgroup of 
those similarities (called motions) which preserve length (which 
is defined in terms of an arbitrarily chosen unit segment). 

During the two decades preceding Klein's address, Cayley and 
Sylvester had developed a general theory of algebraic invariants to­
gether with a systematic procedure for determining generators and 
relations for them (see J. Dieudonne and J. Carrell, Invariant Theory, 
Old and New, Academic Press, 1971). Klein proposed to translate 
geometric problems in projective geometry into algebraic problems in 
invariant theory, where such problems could be solved by the known 
algebraic methods (for a readable explanation of this program, see 
Part Three of Klein's Geometry, which is Part 2 of his Elementary 
Mathematics from an Advanced Standpoint, Dover, 1948). 

Klein's idea of looking for various actions or representations of a 
group and their invariants has proved to be fruitful in many branches 
of mathematics and physics, not just in geometry. 

In physics, for example, the invariance of Maxwell's equations for 
electromagnetism under Lorentz transformations suggested to Min­
kowski a new geometry of space-time whose group of automorphisms 
is the Lorentz group; this was the beginning of relativity theory, for 
which Einstein at one point considered the name "Invarianten­
theorie." In atomic physics, the regularities revealed in the periodic 
table are a direct consequence of invariance under rotations. In ele­
mentary particle physics, considerations of invariance and symmetry 
have led to several nontrivial predictions. E. Wigner has said that in 
the future we may well "derive the laws of nature and try to test their 
validity by means of the laws of invariance rather than to try to derive 
the laws of invariance from what we believe to be the laws of nature." z 

In this chapter we will explore the insights Klein's point of view 
gives to plane Euclidean and hyperbolic geometries. From our axioms 
we will deduce a description of all possible motions, showing how they 
are built up from reflections (see Table 9.1, p. 343). Then we will 
show how to calculate using these transformations in terms of the 

z E. Wigner, "Invariance in Physical Theory," Proceedings of the American Philosophical Soci· 
ety, 93 (1949): 521-526. 
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coordinates in our models. We will implement Klein's program by 
replacing congruence axioms with group axioms. Finally, we will 
apply group-theoretic methods to questions of symmetry. 

APPLICATIONS TO GEOMETRIC PROBLEMS 

Here are some examples3 of geometric problems that can easily be 
solved using transformations; the solutions will use certain properties 
of reflections, rotations, translations, and dilations which will be dem­
onstrated in the following sections. The purpose in discussing these 
problems at this time is to illustrate concretely the power of transfor­
mation techniques. You will better comprehend the solutions after you 
study the theory that follows, and I suggest that you then reread these 
solutions and then test your understanding with Exercises 69-77. 

Problem I. Given tw~oints A, Bon the same side of line/. Find 
the point Con /such that CA and cB make congruent angles with I (if I 
were a mirror, ACB is the path of a ray of light traveling from A to B by 
reflecting in /). 

Solution. (See Figure 9.3.) Let B' be the reflection of B across/. 
Then C is the intersection of AB' with /. 

FIGIJRE9.3 

A~~ 
........ ....._ I ................. + 

........ ....._ I 
............... 

...JB' 

3 Several hundred more examples will be found in the monumental three volume treatise by 
I. M. Yaglom, Geometric Transformations, Mathematical Association of America, 1962. 
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Problem 2. Point Q is called a center of symmetry for figure F if 
whenever AA' is a segment having Q as midpoint and A is in F, then A' 
also belongs to F. Show that a figure can only have zero, one, or 
infinitely many centers of symmetry. 

Solution. Q is a center of symmetry if and only if the figure is 
invariant under the half-tum (180° rotation) H0 about Q. A triangle 
has zero, a circle has one, and a line has infinitely many centers of 
symmetry. Suppose figure Fhas at least two centers Q and Q'. Then 
H0 (Q') = Q" is a third center, H0 ,(Q") is a fourth center, etc. 

Note. The preceding problems were stated and solved in neutral 
geometry. For the remaining problems we will assume the geometry 
to be Euclidean. 

Problem 3. Let L, M, N be the respective midpoints of sides AB, 
BC, CA of .6.ABC. Let 0 1 , 0 2 , 0 3 be the circumcenters (i.e., the 
centers of the circumscribed circles) of triangles .6.ALN, .6.BLM, 
.6.CMN respectively, and let P1 , P2 , P3 be the incenters (i.e., the 
centers of the inscribed circles) of these same triangles. Show that 
.6.010 20 3 = .6.P1P2P3 • 

Solution. (See Figure 9.4.) Observe that each of the three trian­
gles is obtained from each of the others by a translation - e.:&.! trans­
lating .6.ALN in direction AB through distance AL= LB gives 
.6.LBM. This translation carries the circumscribed circle (and its 
center) of one triangle onto the circumscribed circle (and its center) of 

c 

FIGURE9.4 
L~ A L B 
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the other; similarly for the inscribed circles. Hence we not only have 
0 10 2 =AL= P1P2 , etc., giving .t:.010 20 3 ::: .t:.P1P2 P3 , but we also 
see that corresponding sides of these two triangles are parallel. 

Problem 4. Given an acute-angled triangle, find the inscribed 
triangle of minimum perimeter (Fagnano's problem). 

Solution. Consider .t:.XYZ inscribed as in Figure 9.S(a). Reflect 
X across AB to point X 1 and across AC to point Xz . Then the perime­
ter of ~XYZ is equal to the length of the polygonal path X 1 ZYX2 . If 
we fix X, this length will be minimized when Zand Y are chosen to lie 
on X1X2 , and then X 1X2 equals the perimeter of .t:.XYZ. We have 
AX,= AX= AXz and ~1AX2 = 2 4A. Ifwe nowvaryX, the sum­
mit angle of isosceles triangle .t:.X1AXz remains constant in measure 
and the base X1X2 varies in direct proportion to AX (in fact, trigo­
nometry gives us X 1 ~ 2AX sin 4A). Hence the minimum perime­
ter is achieved when AX is a minimum, and that occurs when X is the 
foot of the altitude from A (Figure 9. S ( b)). We leave for Exercise 7 4 
the verification that Y and Z must then also be the feet of the altitudes 
from B and C. Hence the unique inscribed triangle of minimum 
perimeter is the orthic or pedal triangle formed by the feet of the 
altitudes of .t:.ABC. 

Problem 5. Given three parallel lines, find an equilateral triangle 
whose vertices lie on them. 

A A 
X, "'1f\.----,,.,...__ X, 

x x 

(a) (bl 

FIGURE9.5 
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Solution. Choose any point A on the first line l Rotate the second 
line m about A through 60 ° to a new line m'. Let C be the intersection 
of m' with the third line n, and let B be the point on m obtained by 
rotating C about A through 60 ° in the opposite direction. Then b,. ABC 
is a solution. 

Problem 6. For any triangle b..ABC, construct equilateral trian­
gles on the sides of b..ABC, exterior to it. Show that the centers of 
these triangles also form the vertices of an equilateral triangle. 

Solution. Call the centers 0 1 , Oz, and 0 3 , and consider the 
rotations R1 , Rz, and R3 through 120 ° counterclockwise about 0 1 , 

Oz, and 0 3 respectively; thenR1 (A) = B,Rz(B) = C, andR3 (C) =A. 
Now RzR 1 is the clockwise rotation through 120° about the point o; 
of the intersection of two lines, one through 0 1 and the other through 
Oz, each making an angle of 60° with o7oz, so that b..010zO; is 
equilateral. Since R-; 1 is also a clockwise rotation through 120° taking 
A into C, we must have R3 1 = RzR1 and o; = 0 3 • 

Problem 7. Given a circle Kand a point Pon K. Find the locus K' 
of midpoints M of all chords PA of K through P. 

Solution. (See Figure 9.6.) Since K' is obtained from Kbydilation 
of center P and ratio t, K' is the circle with diameter OP, 0 being the 
center of K. 

Problem 8. Given any triangle b.ABC, consider its circumcenter 
0 (point of concurrence of the perpendicular bisectors of the sides), 
its centroidG (point of concurrence of the medians), and its orthocenter 
H (point of concurrence of the altitudes). You showed 0 exists in 
Exercise 12, Chapter 6. An easy argument using analytic geometry 
(Exercise 69) shows that G exists and lies f of the distance from each 
vertex to the midpoint of the opposite side; thus the dilation T of 
center G and ratio -t maps b..ABC onto the medial triangle b..A'B'C'. 
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p 

FIGUREB.8 

The problem we pose now is to show that H exists, that 0, G, and H lie 
on a line (called the Euler line of b:,.ABC), and that G lies j of the 
distance from H to 0. 

Solution. Dilation r- 1 maps b:,.ABC onto b:,.A 1B1C 1 having sides 
parallel to the respective sides of b:,.ABC and twice as long (Figure 
9. 7). b:,.ABC is then the medial triangle of b:,.A 1 B1C 1 , and the altitudes 
of b:,.ABC are the perpendicular bisectors of b:,.A 1B1C1 , hence are 
concurrent in a point H. 

The original dilation T, being a similarity, preserves perpendicular­
ity, hence maps the orthocenter H of b:,.ABC onto the orthocenter of 
the medial triangle b:,. A'B' C', which is O; since G is the center of T and 
-! the ratio, the conclusion follows from the definition of dilation. 

A, 

FIGUREB.7 
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Problem 9. Let H be the orthocenter, 0 the circumcenter, L, M, 
N the midpoints of the sides, D, E, F the feet of the altitudes of 
~ABC. Show that L, M, N, D, E, F and the midpoints of segments 
HA, HB, HC all lie on a circle whose center U lies on the Euler line 
and is the midpoint of HO (the 9-point circle of ~ABC). 

Solution. Consider the dilation T of center H and ratio 2. If we 
show that T maps all nine points onto the circumscribed circle K of 
~ABC, the conclusion will follow from Lemma 7.2, Chapter 7, ap­
plied to dilation r- 1 of ratio t (T- 1 maps K onto a circle of half the 
radius and center the midpoint of OH). Clearly Tmaps the midpoints 
of HA, HB, HC onto A, B, C on K. 

Let P be the point on K diametrically opposite to A (see Figure 
9.8). Since <i:ACP is inscribed in a semicircle, PC .l AC, hence PC 
is parallel to altitude BH. Similarly PB II CH. Thus DPCHB is a 
parallelogram, hence the midpoint of diagonal HP coincides with the 
midpoint L of BC. This shows T(L) =Pon K (and similarly for T(M) 
and T(N). 

A 

M' 

D' p 

FIGURE9.8 
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Let ray HD meet Kat D'. Since <):AD'P is inscribed in a semicircle 
of K, i)tp J_ A13' =AD J_ ot; i.e., i)tp II Dt, which implies that Dis 
the midpoint of HD' (since Lis the midpoint of HP). Thus T(D) = 
D' on K (and similarly for T(E) and T(F)). 

MOTIONS A.ND SIMILARITIES 

Henceforth the word "automorphism" will be used only for an auto­
morphism of a neutral geometry, i.e., for a transformation that pre­
serves incidence, betweenness, and congruence. 

DEFINITION. A transformation T of the entire plane onto itself is 
called a motion4 or an isometry if length is invariant under T, i.e., if for 
every segment AB, AB= A'B'. 

PROPOSITION 9.1. (a) Every motion is an automorphism. (b) The 
motions form a subgroup of the group of automorphisms. 

Proof 
(a) Let Tbe a motion. If AB== CD, then 

A'B' = AB = CD = C'D' 

so that A'B' == C'D'. That T also preserves betweenness follows 
from Theorem 4.3(9), which says that A* B * C if and only if 
AC=AB+BC. 
(b) You must verify properties 1 through 3 in the definition of a 
group, which is an easy exercise. • 

PROPOSITION 9.2. Automorphisms preserve angle measure. 

Proof 
Given an automorphism T, define a possibly new measure of <):A to 
be the measure (~A') 0 of its image under T. You will show in 

4 Some authors call these transformations rigid motions. The term "motion" as we used it 
here does not mean continuous movement of a physical body as in common usage, although it is 
suggested by the latter. 
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Exercise 3 that this new measure satisfies all the basic properties 1 
through 6 in Theorem 4.3. But that theorem says there is a unique 
degree measure with these properties. Hence ( <r..A) 0 = ( <r..A') 0

• • 

COROLLARY 1. If .6.A'B'C' is the image of .6.ABC under an automor­
phism, then .6.A'B'C' is similar to .6.ABC. 

Proof 
Corresponding angles are congruent. • 

COROLLARY 2. In a hyperbolic plane, every automorphism is a mo­
tion. 

Proof 
Theorem 6.2 says .6.ABC = .6.A'B'C', hence AB= A'B'. • 

In fact, as we have already observed using the Klein model (Exer­
cise K-21, Chapter 7), every collineation of the hyperbolic plane onto 
itself is a motion. 

Because of Corollary 1, an automorphism of a Euclidean plane is 
called a similarity; by definition, it is a collineation that preserves 
angle measure. An example of a similarity that is not a motion is the 
dilation5 with center 0 and ratio k =I= 0: if k > 0 (respectively, k < 0) 
this transformation T fixes 0 and maps any other point P onto the 
unique point P' on ray Of> (respectively, on the ray opposite to oP) 
such that 

OP' =jkjOP. 

If we introduce Cartesian coordinates with origin 0, this transforma­
tion is represented by 

(x, y) ~ (kx, ky). 

Hence, if A, B have coordinates (a1 , a2), (b1 , b2), we have 

(A'B') 2 = (ka1 - kb1) 2 + (ka2 - kb2) 2 = k2 (AB) 2; 

i.e., A'B' = jkjAB. From this you can show that Tpreserves between­
ness and congruence (Exercise 4), which is the "If'' part of the next 
proposition. 

5 This notion of dilation is more general than the one on p. 250, where only the case k > 0 
was considered. A dilation is also called a komotkety or central similarity. Note that similarities are 
characterized as collineations that preserve circles (seep. 362). 
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PROPOSITION 9.3. A transformation T of a Euclidean plane is a simi­
larity if and only if there is a positive constant k such that 

A'B'=kAB 

for all segments AB. 

Proof 
Given similarity T and segment AB, choose any point C not collin­
ear with A, B, and consider .6.A'B'C' similar to .6.ABC. By the 
fundamental theorem on similar triangles (Exercise 18, Chapter 
5), there is a positive constant k such that the ratio of corresponding 
sides of these triangles is equal to k. If Dis any other point, the same 
argument applied to .6.ACD (or .6.BCD if A, C, Dare collinear) 
gives C'D' = kCD. And if D, E lie on AB, the same argument 
applied to .6.CDE gives D'E' = kDE. Thus k is the proportionality 
constant for all segments. • 

The proof just given, together with Exercise 4, shows the following. 

COROLLARY. A one-to-one transformation T of a Euclidean plane 
onto itself is an automorphism if and only if for every triangle .6.ABC, 
we have .6.ABC - .6.A'B'C'. 

We can conclude from these results that hyperbolic planes have 
invariant distance functions AB --+ AB, whereas Euclidean planes do 
not. According to Klein's viewpoint, any function or relation that is not 
invariant under the group of automorphisms of a structure is not an 
intrinsic part of the theory of that structure; it is only part of the theory 
of the new structure described by those transformations that do leave 
it invariant. So if we want distance to be a part of Euclidean geometry, 
we would have to redefine Euclidean geometry as the study of invar­
iants of the group of Euclidean motions only. Klein suggested the name 
parabolic geometry for the study of invariants of the full group of Eu­
clidean similarities. We will not adopt this terminology, but you 
should be aware that other authors do.6 

6 Hermann Wey! contends that (for three-dimensional geometry) the group of motions is the 
group of physical automorphisms of space, because the mass and charge of an electron supply us 
with an absolute standard of length. 
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REFLECTIONS 

The most fundamental type of motion from which we will generate all 
others is the reflection Rm across line m, its axis (seep. 111). We will 
denote the image of a point A under Rm by Am. Reflecting across m 
twice sends every point back where it came from, so RmRm = I or 
Rm = ( Rm)- 1• A transformation that is equal to its own inverse and that 
is not the identity is called an involution. The 180° rotation about a 
point is another example of an involution. (You will show in Exercise 9 
that there are no other involutions.) 

A fixed point of a transformation Tis a point A such that A'= A. The 
fixed points of a reflection Rm are the points lying on m. We will use 
fixed points to classify motions. 

LEMMA 9.1. If an automorphism Tfixes two points A, B, then it is a 
motion and it fixes every point on line AB. 

Proof 
Since AB= A'B', the constant kin the corollary to Proposition 9.2 
is equal to 1. Let C be a third point on AB. Consider the case 
A * B * C (the other two cases are treated similarly). Then 
A *B * C' and AC= AC'. By Axiom C-1, C = C'. • 

LEMMA 9.2. If an automorphism fixes three noncollinear points, then 
it is the identity. 

Proof 
If A, B, Care fixed, then by Lemma 9 .1 so is every point on the lines 
joining these three points. If D is not on those three lines, choose 
any E between A and B. By Pasch 's theorem, line DE meets another 
side of ~ABC in a point F. Since E and Fare fixed, Lemma 9.1 tells 
us D is fixed. • 

PROPOSITION 9.4. If an automorphism fixes two points A, Band is not 
the identity, then it is the reflection across line AB. 

Proof 
Lemma 9 .1 ensures that every point of AB is fixed. Let C be any 
point off AB and let F be the foot of the perpendicular from C to AB. 
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Since automorphisms preserve angle measure they preserve per­
pendicularity, so C' must lie on CF. Lemma 9.2 ensures that 
C' =F C, and since CF = C'F, C' is the reflection of C across AB. • 

The next result shows that "motion" is the precise concept that 
justifies Euclid's idea of superimposing one triangle on another. 

PROPOSITION 9.5. ~ABC== ~A'B'C' if and only if there is a motion 
sending A, B, C respectively onto A', B', C' and that motion is unique. 

Proof 
Uniqueness follows from Lemma 9.2, for if Tand T' had the same 
effect on A, B, C, then r-1 T' would fix these points, hence 
r- 1T' =I and T= T'. It's clear that a motion maps ~ABC onto a 
congruent triangle (SSS). So we will assume conversely that 
~ABC== ~A'B'C' and construct the motion. We may assume 
A =F A' and let t be the perpendicular bisector of AA'. Then reflec­
tion across t sends A to A' and B, C to points B 1, C 1• If the latter are 
B', C', we're done, so assume B' =F B1• We have 

A'B' == AB == A'B1
• 

Let u be the perpendicular bisector of B'B1
, so that R,, sends B1 to B' 

(Figure 9. 9). This reflection fixes A', because if A', B1
, B' are collin­

ear, A' is the midpoint of B'B1 and lies on u, whereas if they are not 
collinear, u is the perpendicular bisector of the base of isosceles trian­
gle ~ B' A'B1 and u passes through the vertex A'. 

A' 

B'L------......1...+-----~B' 

u 

FIGUREB.9 
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Thus, the composite R.R,sends the pair (A, B) to the pair (A', B'). 
If it also sends C to C' we're done; otherwise let C" be its effect on C. 
Then 

A'C' = AC = A'C" 
B'C' = BC = B'C" 

so that b.A'B'C' = b.A'B'C". An easy argument with congruent 
triangles (see Figure 9 .10) shows that C' is the reflection of C" 
across v =A~'. Thus RvR.R, is the motion we seek. • 

COROLLARY. Every motion is a product of at most three reflections. 
This was shown in the course of the proof (where we consider the 

identity a "product of zero reflections" and a reflection a "product of 
one reflection"). 

We are next going to examine products of two reflections T = 
R1Rm. If /meets mat a point A, Tis called a rotation about A. If /and m 
have a common perpendicular t, Tis called a translation along t. Fi­
nally, in the hyperbolic plane only, if I and m are asymptotically 
parallel in the direction of an ideal point .Q, T is called a parallel 
displacement about .Q. These cases are mutually exclusive, but by 
convention the identity motion will be considered to be a rotation, 
translation, and parallel displacement (this is the case I= m). 

Proposition 9 .4 showed the importance of fixed points in describing 
motions. Another important tool is invariant lines: we say that line /is 
invariant under T if/' = I. This does not imply that all the points on I 
are fixed; it only implies that if a point on /is moved by T, it is moved to 
another point on /. For example, the only lines besides m that are 
invariant under a reflection Rm are the lines perpendicular tom ( Exer­
cise 7). 

C' 

FIGURE9.IO C" 
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ROTATIONS 

PROPOSITION 9.6. Let I .l m, let A be the point of intersection of I and 
m, and let T= R1Rm. Then for any point B =I= A, A is the midpoint of 
BB'. 

Proof 
The assertion is clear if B lies on either I or m, so assume it does not 
(Figure 9.11). 

Let C be the foot of the perpendicular from B tom. Then B' is on 
the opposite side of both I and m from B, and C' is on the opposite 
side of /from C. From the congruence <tBAC = <tB' AC' we deduce 
that these must be vertical angles, hence A, B, B' are collinear. 
Since AB= AB', A is the midpoint. • 

The motion Tin Proposition 9.6 can be described as the 180° 
rotation about A; we will call it the half-turn about A and denote it HA. 
The image of a point P under HA will be denoted PA. 

COROLLARY. HA is an involution and its invariant lines are the lines 
through A. 

PROPOSITION 9.7. A motion T =I= I is a rotation if and only if T has 
exactly one fixed point. 

B 

FIGURE9.ll 
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m 
FIGURE9.12 

Proof 
Suppose Thas only one fixed point, A, and choose B =I= A. Let /be 
the perpendicular bisector of BB'. Since AB = AB', A lies on /, and 
the motion R1T fixes both A and B. If R,T = I, then T = R1, which 
contradicts the hypothesis that Thas only one fixed point. Hence if 
m =AB, Proposition 9.4 impliesR1T= Rm, so that T= R1Rmand T 
is a rotation about A (see Figure 9 .12). 

Conversely, given rotation T= T1Rm about A, assume on the 
contrary that point B =I= A is fixed. Then B' = Bm, so that joining this 
point to B gives a line perpendicular to both I and m, which is 
impossible. • 

Note. This last argument breaks down in an elliptic plane, because, 
there, it is possible for intersecting lines to have a common perpendic­
ular. In fact, each point P has a line I called its polar such that I is 
perpendicular to every line through P (see Figure 9.13). 

In the elliptic plane, the half-turn HP about P is the same as the 
reflection R1across I. (Lemmas 9.1 and 9.2 are also false in the elliptic 
plane.) It can be shown that rotations are the only motions of an 
elliptic plane (see Ewald, 1971, p. 50). In the sphere model, with 
antipodal points identified, the motions are represented by Euclidean 
rotations about lines through the center of the sphere (Artzy, 1965, 
p. 181 ). 
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p 

I 

FIGURE9.13 

If you reread the first part of the proof of Proposition 9. 7 and refer to 
Figure 9.12, you will see that we have also proved the following 
proposition, which is the first case of the fundamental result Proposi­
tion 9 .19 on three reflections. 

PROPOSITION 9.8. If Tis a rotation about A and mis any line through 
A, then there is a unique line /through A such that T = R1R,,, . If /is not 
perpendicular to m, then for any point B =I= A, 

(4BAB') 0 = Zd0
• 

(So, for example, to express a 90° rotation about A in the form R1R,,,, 
you must choose lines I and m through A that make a 45° angle.) 

ft'arnlng. The rotation R1R,,, is not the same as the rotation R,,,R1 

unless / .l.. m. Intuitively, one of these rotations is the "clockwise 
rotation" through Zd0 about A while the other is the "counterclock­
wise rotation" through Zd0

• For more rigorous argument, note that 

(R,,,R1) (R1R,,,) = R,,,(R~)R,,, = R,,,IR,,, = R~ =I, 

so that R,,,R1 is the inverse of R1R,,,. In Exercise 9 you will show that 
the only rotation equal to its inverse is the half-turn. 

PROPOSITION 9.9. Given a point A, the set or rotations about A is a 
commutative group. 

Proof' 
The identity is a rotation about A by definition, and we have just 
shown that the inverse of a rotation about A is a rotation about A. 
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We must show that the product TT' of rotations about A is a 
rotation about A. Let T' = R1Rm. By Proposition 9.8, there is a 
unique line k through A such that T = R1R1. Then 

TT'= (R,R,) (R,Rm) = RJ(Rj)Rm = R,IRm = R,Rm, 

which is a rotation about A. To prove commutativity, apply Propo­
sition 9.8 again to get a unique linen such that T- 1 = R,,Rm. Then 
T= RmR,, and T'T= (R1Rm) (RmR,,) = Ri(R;,,)R,, = R1R,,. Since 
TT'= R,Rm, RJ(TT')Rm = RjR;,, =I. But we also have 
R,(T'T)Rm = R,(R1R,,)Rm = (R,R1) (R,,Rm) = rr- 1 =I. Hence, 
TT'= T'Tby canceling on the right and the left. • 

Warning. Rotations about different points never commute (un­
less at least one rotation is the identity). For if Tis a rotation about A 
and T' is a rotation about B, T'Tsends A to A", whereas TT' sends A to 
(A")'. Furthermore, the product of such rotations mayor may not be a 
rotation (Exercise 10). 

TRANSLATIONS 

We turn next to translations T = R1Rm, where I and m have a common 
perpendicular t. The geometric properties of translations are different 
in hyperbolic planes from those in Euclidean planes (unlike rotations, 
which behave the same in both geometries). 

I m 

• • I I 
I I 

P'I l Qm J J' .. • ., I 
Q' 1A 1B Q 

I I 
t t 

FIGURE 9.14 
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PROPOSITION 9.10. Let/ -1 tat A, m _l tat B, T= R1Rm. If Q lies on t, 
then QQ' = 2 (AB). If P does not lie on t, then P' lies on the same side 
of tas P, and PP'= 2(AB) if the plane is Euclidean, PP'> 2(AB) if 
the plane is hyperbolic. 

Proof 
(See Figure 9.14.) We will prove the assertion about QQ' when 
A * B * Q, leaving the other cases as an exercise. If BQ < AB, then 
A* Qm *Band 

QQ' = Q'A +AB+ BQ 
= QmA +AB + BQm 
= 2AB. 

If BQ =AB, then Q' A and QQ' 2 (ABl_If BQ > AB, then 
Qm*A*B and QmA=QmB-AB=BQ-AB. Hence, 
Qm * A * Q' * Q and we have 

ZBQ = QQm= QQ' + ZQ'A 
= QQ' + 2(BQ- AB), 

which gives QQ' = 2AB. 
If P does not lie on t, then P and pm lie on a line perpendicular to 

m hence parallel tot, and thus are on the same side oft; similarly, pm 
and P' are on the same side oft; so, by Axiom B-4, P and P' are on 
the same side oft. Let Q be the foot of the perpendicular from P tot. 
Since T preserves perpendicularity, Q' is the foot of the perpen­
dicular from P' to t, and since T is a motion, P'Q' = PQ. 
Thus, OPQQ'P' is a Saccheri quadrilateral. In Euclidean geometry 
it's a rectangle and its opposite sides are congruent, so 
PP' = QQ' = 2 (AB); in hyperbolic geometry, the summit is larger 
than the base (Exercise 1, Chapter 6), so PP'> QQ' = 2(AB). • 

COROLLARY. If a translation has a fixed point, then it is the identity 
motion. 

PROPOSITION 9.11. If T is a translation along t and m is any line 
perpendicular to t, then there is a unique line I -1 t such that T = 
R1Rm. 
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Proof 
Let m cut tat Q and let /be the perpendicular bisector of QQ'. Then 
R1T fixes Q. Let P be any other point on m, so that as before, 
DPQQ'P' is a Saccheri quadrilateral. Since /is perpendicular to the 
base QQ' at its midpoint, /is also perpendicular to the summit PP' 
at its midpoint (Lemma 6.2, p. 193), so that Pis the reflection of P' 
across/. Thus, R1Tfixes every point on m, whence R1T= Rm, and 

As for uniqueness, if T= R,Rm, then 

R1 = TRm=R, 

and/= k. • 

PROPOSITION 9.12. Given a line t, the set of translations along tis a 
commutative group. 

The proof is the same as the proof of Proposition 9. 9, using 
Proposition 9 .11 in place of Proposition 9 .8. • 

PROPOSITION 9.13. Let T =I= I be a translation along t. If the plane is 
Euclidean, the invariant lines of Tare t and all lines parallel to t. If 
the plane is hyperbolic, t is the only invariant line. 

Proof 
It's clear that tis invariant. In the Euclidean case,If ullt, then Tis 
also a translation along u (Proposition 4. 9), so u is invariant. In both 
cases, if u meets tat A, then A' lies on /and A' =I= A, so A' does not lie 
on u and u is not invariant. Suppose in the hyperbolic case u is 
invariant and parallel tot. Choose any Pon u; then u = PP'. But we 
have already seen that P and P' are equidistant from t, whence u and 
t have a common perpendicular m (Theorem 6.4). We've shown 
that mis not invariant, and since Tpreserves perpendicularity, m' is 
also perpendicular to t = t' and u = u'. This contradicts the 
uniqueness of the common perpendicular in hyperbolic geometry 
(Theorem 6.5). • 

PROPOSITION9.14. Given a motion T, a line t, and a point Bon t. Then 
Tis a translation along tif and only if there is a unique point A on /such 
that Tis the product of half-turns HAHB. 
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Proof 
Let m be the perpendicular to !through B. If Tis a translation along 
t, then by Proposition 9 .11 there is a unique line I _l t such that 
T= R1Rm. If I meets t at A, then HAHB = (R1R1) (R1Rm) = 
R,(R:)Rm = R1Rm = T. Reverse the argument to obtain the con­
verse. • 

HALF-TURNS 

Having shown that the product of two half-turns in a translation, we 
now naturally ask: What is the product of three half-turns? Once 
again, the answer depends on whether the geometry is Euclidean or 
hyperbolic. 

PROPOSITION 9.15. In a Euclidean plane, the product HAH8 Hc of 
three half-turns is a half-turn. In a hyperbolic plane, the product is 
only a half-turn when A, B, Care collinear, and if they are not, the 
product could be either a rotation, a translation, or a parallel displace­
ment. 

Proof 
Suppose that A, B, Care collinear, lying on t, and that/, m, n are the 
respective perpendiculars to t through these points. Then 

HAH8 Hc = (R1R1) (R,Rm) (R,,R1) 

= R,(R:)RmR,,R, 
= (R1RmR,,)R1 

= R,R,, 

where the line k .l t such that R,R,, = R1Rm is furnished by Prop­
osition 9.11. If k meets tat D, we have shown HAH8 Hc = H0 • 

Suppose that A, B, C are not collinear, that t =AB, that 
I _l tat A, and m .l tat B. We may assume C lies on m (otherwise 
replace B by the foot of the perpendicular from C tot and replace A 
by the point furnished by Proposition 9.14). Let u be the perpen­
dicular tom through C (Figure 9.15). Then 

HAHsHc = (R,R,) (R,Rm) (RmR,,) = R,(R:) (R~)R,, = R1R,,. 
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FIGURE9.15 

In the Euclidean case, /meets uata pointD and/ 1- u (Propositions 
4. 7 and 4. 9), so HA H8 He = H0 . In the hyperbolic case, I and u may 
meet, be divergently parallel, or be asymptotically parallel (Major 
Exercise 10, Chapter 6); if they do meet at point D, then HAH8 Hc 
is a rotation about D, but it is not a half-turn, because <tD is the 
fourth angle of a Lambert quadrilateral. • 

COROLLARY. In a Euclidean plane, the product of two translations 
along different lines is again a translation, and the set of all translations 
along all lines is a commutative group (proof left for Exercise 13). 

IDEA.L POINTS IN THE HYPERBOLIC PLA.NE 

We next study the effect of motions in the hyperbolic plane on ideal 
points. An ideal point Q is by definition an equivalence class of rays, 
where rays are in the same class if one is contained in the other, or if 
they are limiting parallel to each other (Major Exercises 2 and 3 of 
Chapter 6 ensure that this situation does define an equivalence rela­
tion). 

Now limiting parallelism is defined in terms of incidence and be­
tweenness (see p. 196), hence motions preserve the relation of limit­
ing parallelism. Thus, it makes sense to choose any ray rfrom the class 
Q, consider its image r' under T, and define the image 0' to be the 
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class of r'. If Q = Q' (which means that either r' is limiting parallel to 

r or one ray contains the other), we say Q is an ideal fixed point of T. 
Given a line t containing a ray r, the class of rand the class of the 

opposite ray are called the two ends of t and are said to lie on t. Two 
ideal points Q, I lie on a unique line QI (namely, if rays rE Q, sE I 
emanate from the same point and are not opposite, then QI is the line 
of enclosure of the angle formed by rands-see Major Exercise 8, 
Chapter 6). We say that Q and I are on the same side of line t if neither 
of them is an end of t and if line QI is parallel to t. This defines a 
transitive relation on the set of ideal points off t. 

PROPOSITION 9.16 

(a) The ends of mare the only ideal fixed points of the reflection 
Rm and any translation along m (=I= I). 

(b) If a rotation has an ideal fixed point, then it is the identity. 
(c) If (<I>, I, A) and (Q', I', A') are any triples of ideal points, 

then there is a unique motion sending one triple onto the 
other. 

Proof 
(a) It is clear that Rm and any translation T =I= I along m fix the 

ends I, Q of m. If any other ideal point A were fixed, then the line 
IA would be invariant; but T has no other invariant lines than m 
(Proposition 9 .13), and the only other invariant lines of Rm are the 
perpendiculars to m, whose ends are interchanged by Rm. 

(b) If a rotation about A fixes Q, then ray AQ would be invariant; 
but Propositions 9.6 and 9.8 imply that only the identity rotation 
has an invariant ray emanating from A. 

(c) There is a unique point Bon IQ such that 1'.ABQ is a right 
angle (Major Exercise 10, Chapter 6). Let B' be the point on I'Q' 
such that 1'.A'B'Q' is a right angle. Let A be any point =I= Bon BA, 
and let C be any point =I= Bon BQ. By Axiom C-1, there are unique 
points A' on B' A', and C' on B'Q', such that 

AB= A'B' and CB= C'B'. 

Then .6.ABC = .6.A'B'C' (SAS), so by Proposition 9.5, there is a 
unique motion T effecting this congruence. Clearly T sends 
(Q, I, A) to (Q', I', A'). Conversely, any such motion must send 
(A, B, C) onto (A', B', C'), so by Proposition 9.5, Tis unique. • 
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FIGURE9.18 

Note. Part (c) of this proposition can be visualized nicely in terms 
of the Klein model. Ideal points are represented by points on the 
absolute (the unit circle). There is a unique motion T mapping any 
triple of points (I, Q, A) on the absolute onto any other. The effect of 
Ton the other points can be described as follows (see Figure 9 .16). 

If P is the pole of chord QI, then line PA is Klein-perpendicular to 
QI at some point A. Then the image A' of A must be the intersection 
of Q'I' with A'P', where P' is the pole of Q'I'. Take any other point B 
on QI; say Q * B *A. By Theorem 7.4, the image B' of B is the 
unique point between Q' and A' such that cross-ratios are preserved:7 

(AB, QI) = (A'B', Q'I'). 

Let 1 be the other intersection of PA with the absolute-its image 
1' is the other intersection of P' A' with the absolute. As previously, 
we can use cross-ratios to determine the image of any point on r A. 
Finally, given any other point X (ideal or ordinary), represent it as the 
intersection of two lines, one being XP, which cuts QI at some point 
Y, and the other being XQ (or XI), which cuts r A at some point Z. 
Then X' is the intersection of P'Y' and Z'Q' (or Z'I'). 

This construction describes the motion T in terms of incidence 
alone. It suggests the conjecture that every collineation of the hyperbolic 
plane is a motion; this conjecture was demonstrated by Karl Menger 

7 The mapping of QI on to Q'I' given by this equality of cross-ratios is called a projectivity. It 
can be described more geometrically by a sequence of at most three perspectivities (see p. 266); 
this is essentially the "fundamental theorem of projective geometry" (Ewald, 1971, Theorem 
5.9.5, p. 226). 
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and his students. 8 In the Euclidean plane there are lots of collineations 
that are not motions or similarities (see Exercise 34 on affine transfor­
mations). 

PARALLEL DISPLACEMENTS 

We next study parallel displacements about an ideal point I. 

PROPOSITION 9.17. Given a parallel displacement T = R1R,,,, where I 
and m are asymptotically parallel in the direction of ideal point I. 
Then 

(a) Thas no ordinary fixed points. 
( b) Let k be any line through I and A any point on k. Then I lies on 

the perpendicular bisector h of AA' and T = R"R1 . 

(c) Thas no invariant lines. 
( d) The only ideal fixed point of Tis I. 
(e) The set of parallel displacements about I is a commutative 

group. 
(f) A motion with exactly one ideal fixed point is a parallel dis­

placement. 

Proof 
(a) Assume A is fixed. Then the line joining A to A"'= A' is 

perpendicular to both I and m, contradicting the hypothesis. 
(b) I lies on two perpendicular bisectors /and mof b.AA"'A', so 

by Major Exercise 7, Chapter 6, I also lies on the third perpendicu­
lar bisector h. Then R"T fixes A and I. By Proposition 9 .16 ( b), R"T 
cannot be a rotation about A. By Proposition 9.4, it must be a 
reflection, and by Proposition 9.16(a), it has to be the reflection 
across the line k joining A to I. (See Figure 9 .1 7.) 

(c) Suppose line /were invariant under T. Choose any point A 
lying on /and leth, kbe as in (b). Then h .l t =AA', so tis invariant 
under R" too. Hence t is invariant under R1 = R"T, which means 
either t _l k or t = k. But the asymptotically parallel lines h and k 
cannot have a common (or be) perpendicular. 

8 See L. Blumenthal and K. Menger (1970, p. 220). See also K. Menger, "The New 
Foundation of Hyperbolic Geometry," in J.C. Butcher (ed.), A Spectrum of Mathematics (Auck­
land and Oxford University Presses, 1971), p.86. The idea of the proof is given in Exercise K-21, 
Chapter 7. 
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(d) If Thad another ideal fixed point Q, then line In would be 
invariant, contradicting part ( c). 

( e) The proof is the same as the proof of Proposition 9. 9, using 
part (b) instead of Proposition 9.8. 

(f) This follows from the classification of motions (Theorem 
9.1, later in this chapter), and is inserted here for convenience. • 

GLIDES 

We come now to our final type of motion, a glide alone a line t, defined 
as a product T' = R,Tof a nonidentity translation T along /followed by 
reflection across t. (If you walk straight through the snow, your con­
secutive footprints are related by a glide.) 

PROPOSITION 9.18. (See Figure 9 .18.) Given I .l tat A, m .l tat B, 
T = R1R,,,, T' = R,T. Then 

(a) TR,= T'. 
(b) HAR,,,= T' = R,HB. 
( c) T' maps each side of t onto the opposite side. 
( d) T' has no fixed points. 
( e) The only invariant line of T' is /. 
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FIGUREB.18 

(f) Conversely, given point Band line/, let t be the perpendicular 
to I through B. Then R1H8 is a glide along t if B does not lie on /, 
and is R, if B does lie on /. 

Proof 
(a) and (b) follow from the formulas HA= R,R1 = R1R, and H8 = 
R,R,,, = R,,,R,. (c) is clear, and (d) follows from it. (e) follows from 
(c) and (d). As for (f ), if B lies on/, then H8 = R1R,, so R1H8 = 
RAR1R,) = (Rl)R, = Rr If B does not lie on I, let m =FI be the 
perpendicular to t through B; then T = R1R,,, =F I and R1H8 = 

TR,.• 

Glides are characterized in Euclidean geometry by having only one 
invariant line. In hyperbolic geometry this characteristic does not 
distinguish them from translations, so we must add the condition that 
the two sides of the invariant line are interchanged. The invariant line 
is called the axis of the glide. 

HJELMSLEV'S LEMMA. Let G be a glide, I a line not invariant under G 
and /' the image of I under G. As point P varies on I and its image P' 
varies on I', the midpoints of the segments PP' all lie on the axis tof G. 
Furthermore, those midpoints are all distinct, except in the case of 
G = HMR1, where the midpoints all coincide with M; that case occurs 
if and only if the axis t of G is perpendicular to both I and I'. 

The proof will be left for Exercise 21. The lemma gives a method of 
locating the axis of a glide. 
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CLASSIFICATION OF MOTIONS 

Our next objective is to show that every motion is either a reflection, a 
rotation, a translation, a parallel displacement, or a glide. The first 
step is to describe products of three reflections. Toward that end, we 
introduce three types of pencils of lines: 

1. The pencil of all lines through a given point P. 
2. The pencil of all lines perpendicular to a given line t. 
3. The pencil of all lines through a given ideal point I (hyperbolic 

plane only). 

Clearly, two lines I and m determine a unique pencil (if I and mare 
divergently parallel in the hyperbolic plane, they have a common 
perpendicular t by Theorem 6.6, Chapter 6). Moreover, if A is any 
point, there is a linen in that pencil through A. For the three types of 
pencils, n is: 

1. The line AP if A+ P. 
2. The perpendicular to t through A. 
3. The line AI. 

The first part of the next proposition is sometimes called "the 
theorem on three reflections." F. Bachmann takes it as an axiom for 
his development of geometry without continuity or betweenness 
axioms.9 

PROPOSITION 9.19. Let T = R1R,,,R,,. ( 1) If I, m, and n belong to a 
pencil, then Tis a reflection in a line of that pencil. (2) If I, m, and n do 
not belong to a pencil, then Tis a glide. 

This proposition is wonderful. It leads to the complete classification 
of motions. You may wonder how the axis of glide Tis related to the 
three given lines; Exercises 55 - 5 7 answer this question in the Eu­
clidean case. 

9 Bachmann introduces ultra-ideal and ideal points as pencils of the second and third types, 
and, using a technique developed by the Danish geometer J. Hjelmslev, is able to prove that the 
plane so extended is a projective plane coordinatized by a commutative field. See Appendix B. 
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Proof 
Part 1 of Proposition 9 .19 follows from Propositions 9 .8, 9 .11, and 
9 .17 ( b), so assume the lines do not belong to a pencil. Choose any 
point A on /. Let m' be the line through A belonging to the pencil 
determined by m and n (Figure 9 .19). Then line n' exists such that 

R,,,,RmR,, = R,,,. 

Let B be the foot of the perpendicular k from Aton'. Since /, m', and 
k pass through A, line h exists such that 

R1R,,,,R, = R;,. 

Then B does not lie on h (by assumption on/, m, n) so by Proposition 
9.18(f ), R;,H8 is a glide along the perpendicular to h through B. But 

R;,H8 = R;,(R,R,,,) = R,R,,,,R,R,,,,RmR,, = T. • 

Proof 
Let n be a line through A in the pencil determined by I and m. Leth 
be the line such that 

R1RmR,,=R;, 

and let k be the perpendicular to n through A. Then 

R,RmHA = R,RmR,,R, = R;,R, . • 

FIGURE9.19 
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DEFINITION. A motion is called direct (or proper or orientation-pre­
serving) if it is a product of two reflections or else is the identity. It is 
called opposite (or improper or orientation-reversing) if it is a reflection 
or a glide. 

THEOREM 9.1. Every motion is either direct or opposite and not both. 
The set of direct motions is a group. The product of two opposite 
motions is direct, whereas the product of a direct and an opposite 
motion is opposite. 

Proof 
We know that every motion is a product of at most three reflections 
(corollary to Proposition 9 .5), so by Proposition 9 .19, every motion 
is either direct or opposite. The opposite motions are characterized by 
having an invariant line whose sides are interchanged 

Given a product (R1R1) (R,,,R,,) of direct motions. If I, m, n belong 
to a pencil, R1R,,,R,, = R11 and the product reduces to R1R11 , which 
is direct. Otherwise R1R,,,R,, = R11H8 (Propositions 9 .19 and 
9.18(b)), and the corollary tells us thatR1(R11 H8 ) is direct. It follows 
that the direct motions form a group. 

The product of a reflection and a direct motion is opposite by 
Proposition 9 .19. The product of a glide and a direct motion is a 
product of five reflections, which reduces to a product of three 
reflections by the previous paragraph, hence is opposite by Propo­
sition 9.19. Similarly, a product of four to six reflections reduces to 

a product of two. • 

A 

B 

FIGURE 9.20 c 
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Note. The intuitive idea behind our classification of motions is that 
the plane can be given two distinct "orientations," so that, for exam­
ple, the vertices of .6ABC can be ordered in a "clockwise direction" 
(Figure 9.20). When the triangle is moved by a rotation, translation, 
or parallel displacement, the orientation of .6A'B'C' will remain 
clockwise, whereas under a reflection or a glide, the orientation be­
comes counterclockwise. (See Exercise 23 for further discussion of 
orientation.) 

Note. In the elliptic plane, no such invariant exists that is preserved 
by rotations and reversed by reflections, since every reflection is a 
180° rotation; there is no distinction between direct and opposite 
motions in the elliptic plane. The only motions are rotations. 

TABLE 9.1 Table of motions. 

Ideal 
Fixed Points 

Ori en- Fixed Invariant (Hyperbolic 
ta ti on Points Lines Plane) 

Identity direct all all all 

Reflection R1 opposite points on I I and all m 1- I the two ends of I 

Half-turn HA direct A all lines thru A none 

Rotation that is direct one none none 
not involu-
tory 

Euclidean direct none t and all ulJt 
translation 
along t 

Hyperbolic direct none only t the two ends of t 
translation 
along t 

Parallel dis- direct none none one 
placement 

Glide along t opposite none t the two ends of t 
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AUTOMORPHISMS OF THE CARTESIAN 
MODEL 

Our next objective is to rapidly describe the groups of motions explic­
itly in terms of coordinates in models of our geometries. We begin with 
the Cartesian model of the Euclidean plane, and we assume in both 
this section and the next that the reader has some familiarity with 
vectors, matrices, and complex numbers. 

The easiest transformations to describe are the translations. As the 
proof of Proposition 9.10 showed, a translation moves each point a 
fixed distance and in a fixed direction (in Figure 9.8, it moves the 
distance 2AB in the direction BA). This can be represented by a vector 
emanating from the origin of our coordinate system of length 2AB and 
pointing in the given direction. If the coordinates of the endpoint of 
this vector are ( e,f), then, by definition of vector addition, the transla­
tion is given by 

T(x, y) = (x, y) + (e,f) = (x + e, y + /) 
(Figure 9.21) or 

x' = x + e 
y' = y + f 

If we apply a second translation T' corresponding to the vector with 
endpoint (e',/'), then the image (x", y") of (x, y) under T'Tis given 
by 

(x",y") = (x',y') + (e',f') = (x+e+e',y+J+j'). 

Thus T' Tis the translation by the sum of the vectors determining T 
and T'. This proves the next proposition. 

(x+e,y+f) 

--

---FIGURE 9.21 (0,0) 
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0 

FIGURE9.22 

PROPOSITION 9.20. In the Cartesian model of the Euclidean plane, 
the translations form a commutative group isomorphic to the group of 
vectors under addition. 

(According to our general definition of isomorphic models, two 
groups are isomorphic if there is a one-to-one correspondence between 
them and that correspondence preserves the group laws; here the two 
groups are considered as models of the system of axioms 1 through 4 
on p. 311.) 

We say that the translations form a two-parameter group since they 
depend on two real variables ( e,f) .1° 

PROPOSITION 9.21. In the Cartesian model of the Euclidean plane, 
the translations along a fixed line form a one-parameter group isomor­
phic to the group of real numbers under addition. 

Proof 
Let (e0, Jo) be a unit vector parallel to the fixed line I (Figure 
9.22). Then the vector corresponding to a translation T along /has 
the form t(e0 ,Jo) = (te0 , tfo), where !ti is the distance translated and 
tis positive or negative according to whether the direction of trans­
lation is the same as ( e0 ,Jo) or opposite. If T' corresponds to vector 
t'(e0 ,fo), then T'Tcorresponds to vector t(e0 ,fo) +t'(e0 ,fo) = 
10 The theory of groups of transformations that depend continuously on real parameters was 

first developed by the great Norwegian mathematician Sophus Lie in the late nineteenth 
century, and has become one of the most fruitful ideas in twentieth-century mathematics and 
physics. (For example, this theory was used to predict the existence of certain subatomic 
particles-see F. S. Dyson, "Mathematics in the Physical Sciences," Scientific American, Sep­
tember 1964.) 



346 Ill Geometric Transformations 

( t + t') ( e0 ,/0). Thus assigning the parameter t to T gives the iso­
morphism. • 

We next discuss rotations about a fixed point A. Our first step is to 
reduce to the case where A is the origin 0: if not, let T be the 
translation along AO taking A to 0. Then (by Proposition 9.11) 

T= R,,,R1 = RrR,,,, 

where m is the perpendicular bisector of AO and /, /* are the perpen­
diculars to AO through A, 0. The given rotation R about A can be 
written (by Proposition 9.8) as 

R=R1R1 , 

where k passes through A. Let k* be the reflection of k across m (see 
Figure 9.23). Then R* = RrRr is a rotation about 0 and 

T-1 R*T= (R1R,,,) (RrRr) (RrR,,,) 
= R1R,,,Rr(Rr) 2 R,,, 
=Rt(R,,,RrR,,,) 
=R1R1 

=R. 

This shows that the rotation R about A is uniquely determined by the 
rotation R* about 0. Moreover, the mapping R* ~ T- 1 R*T is an 
isomorphism of the group of rotations about 0 onto the group of 
rotations about A, as you can easily verify. Thus we may assume 
A=O. 

By Proposition 9.8, the given rotation about 0 can be written as 
R = R1R,,,, where m is the x axis. If I .l m, then R is represented in 
complex coordinates as 

z~-z 

(Proposition 9.6). Otherwise, if the acute angle from m to I has 
radian measure ()/2, 0 < (}/Z < n/2, then R is represented in complex 
coordinates 11 as 

11 Recall that e;(/ = cos 8 + i sin 8. 

(if I has positive slope) 
(if /has negative slope) 
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k m /* k* 

FIGURE9.23 

(see Figure 9.6 and Proposition 9.8). Combining these cases, we see 
that rotations about 0 are uniquely represented by the transforma­
tions 

(-n<O~n). 

Since ei<f>(ei6z) = (ei<f>ei8)z, the product of two rotations about 0 corre­
sponds to the product ei<f>ei6 of complex numbers of absolute value 1. 
This proves the following proposition. 

PROPOSITION 9.22. In the Cartesian model of the Euclidean plane, 
the group of rotations about a fixed point is isomorphic to the one-par­
ameter multiplicative group 8 1 of complex numbers e;o of absolute 
value 1 (8 is the real parameter). 

Let us combine our results, using complex coordinates. If a point 
has complex coordinate z, translating it by a vector ( e0 ,Jo) is the same 
as adding to z the complex number z0 = e0 + ifo, since addition of 
complex numbers is the same as vector addition. Now if Tis any direct 
motion and Tmoves the origin 0 to the point 0' with complex coordi­
nate z0 , follow T by the translation by - z0 to obtain a direct motion 
fixing 0. This motion is a rotation about 0 by our previous results, 
hence has the form z -- ei6z. Therefore our original motion is equal to 
this rotation followed by translation by z0 • We have proved the follow­
ing proposition. 

PROPOSITION 9.23. The group of direct motions of the Cartesian 
model of the Euclidean plane is isomorphic to the three-parameter 
group given in complex coordinates by 

z -- ei6z + z0 • 
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Let us be more explicit on the multiplication law for this group. 
Let Thave complex parameters (ei8, z0 ) and T' complex parameters 
(eiB', z~). Then the image of z under T'Tis 

ei8' (ei8z + z0 ) + z~ = ei(B+B'>z + (ei8' z0 + z~) 
so the complex parameters are ( ei(B+8'), ei8' z0 + z~). In other words, 
the rotation parameters multiply, but the translation parameters do 
not add- there is a "twist" involved in multiplying z0 by eiB'. This 
accounts for the noncommutativity of the group (which technically is a 
"semidirect product" of S1 with the additive group C of complex 
numbers). 

Put another way, let T= T1 R1 and T' = T2 R2 , where the T; are 
translations and the R; rotations about 0, i = 1, 2. Then 

T'T= T2 R2 T1R1 = T2 R2 T1(/?i1R2)R1 = T2 (R2T1 l?z1)(R2 R1). 

In this last expression, the factor on the right is the productR2 R1 of the 
two rotations about 0, and the factor T2 on the left is the second 
translation. The middle factor reveals the "twist," because R2T1 Rr.- 1 

is the translation by ei8' z0 : 

R2T1 l?z1(z) = R2Ti(ri8'z) 
= R2(e-i8' z + z0 ) 

= ei8' (ri8' z + z0 ) 

= z + ei8'z0 • 

COROLLARY. Opposite motions of the Cartesian plane have a unique 
representation in the form 

Proof 
By Theorem 9 .1, all opposite motions are obtained by following all 
the direct motions with one particular opposite motion, which we 
can choose to be reflection across the X axis z ~ z. Since e'i11 = ri8, 
the complex conjugate of ei8z + z0 is ri8z + z0 , and relabeling-() 
for 8, z0 for z0 gives the result. • 

These results easily generalize to similarities. 

PROPOSITION 9.24. In the Cartesian model of the Euclidean plane, a 



Motions In the Polneare Model Ill 349 

similarity is represented in complex coordinates either in the form 

Wo =fo 0 

(in which case it is called direct), or in the form 

Wo =fo 0 

(in which case it is called opposite). The direct similarities form a 
4-parameter group. 

Here w0 ranges through the multiplicative group c• of nonzero 
complex numbers while z0 ranges through the additive group C of all 
complex numbers; the group of direct similarities is the "semidirect 
product" of c· with c. The modulus k = I Wol is the constant of pro­
portionality for the similarity. Geometrically, this representation 
means that a direct similarity is equal to a dilation centered at the 
origin followed by a rotation about the origin followed by a translation; 
an opposite similarity is equal to the reflection in the x axis followed by 
a direct similarity. The proof is left for Exercise 24. 

MOTIONS IN THE POINCARE MODEL 

We turn next to the coordinate description of hyperbolic motions, and 
for this purpose the most convenient representation is the Poincare 
upper half-plane model (seep. 23 7). Recall that the Poincare lines are 
either vertical rays emanating from points on the x axis or semicircles 
with center on the x axis. The ideal points are represented in this 
model by the points on the x axis and a point at infinity oo which is the 
other end of every vertical ray (Figure 9.24). 

00 

FIGURE9.24 
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We bave seen (Exercise P-4, Chapter 7) that hyperbolic reflections 
are represented in the Poincare disk model by either Euclidean refleo­
tions in diameters of the absolute circle }'or by inversions in circles t5 
orthogonal to }'. Let us show that in the upper half-plane model, hyperbolic 
reflections are represented by either Euclidean reflections in the vertical lines 
or by inversions in circles t5 orthogonal to the x axis, i.e., circles t5 with 
center on the x axis. 

In Exercise 38, you will show that the mapping 

E 
. i+ z 

:z -+ 1-.-
1- z 

sends the unit disk one-to-one onto the upper half-plane, sends i to oo, 
and all other points of the unit circle onto the x axis. 

The Poincare lines of the disk model are mapped onto the Poincare 
lines of the upper half-plane model-in fact, all Euclidean circles and 
lines are mapped into either Euclidean circles or lines by E, and 
orthogonality is preserved (E is conformal); see Figure 9.25. So we can 
use E as the isomorphism which defines congruence in the upper 
half-plane interpretation (just as we previously established con­
gruence in the Klein model via the isomorphism F-sce p. 258). 

For simplicity, let us agree to also caJI the Euclidean reflection in a 
Euclidean line " inversion" ; this will enable us to avoid discussing this 
special case separately. Figure 9.26 shows a hyperbolic reflection R1in 
the disk model represented as inversion. For any point A, drop hyper­
bolic perpendicular t from A to I, and let M be the foot on I of this 
perpendicular. Let a be the hyperbolic circle through A with hyperbo­
lic center M. 

0 £ _ , _ ______ .,.l -

-l=F.(-1) 0=£(-1) 1=£(1) 

l'I GIJBE 9.25 
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M 

FIGURE9.26 

In Exercise P-5 of Chapter 7 you showed that a is also a Euclidean 
circle (with a different Euclidean center). The reflection A' of A across 
I is then the other intersection of a with t. Now a is orthogonal to I 
since I is the extension of a hyperbolic diameter of a. Hence, a is 
mapped onto itself by inversion in/, and so is t (Proposition 7 .11 ), soA1 

must be the inverse of A in /. 
If we apply the mapping E, this entire figure is transformed onto an 

isomorphic figure in the upper half-plane. Thus, the argument just 
given shows that R1 is also represented in the upper half-plane model 
by inversion. • 

We next calculate the formulas for these inversions. For a vertical 
line x = k, the inversion is given by 

(x, y) ~ (Zk- x, y). 

In terms of the single complex coordinate z = x + iy, this becomes 

z~Zk- z. 
For consistent notation later on, set b = Zk and write this as 

z~- z+b. 
For a circle centered at (k, 0) of radius r, make a change of coordi­

nates x' = x - k, y' = y (i.e., translate the center to the origin); the 
complex coordinate change is z' = z - k. Then, by definition of in­
version, the image w' of z' is determined by the two equations 

lz'l lw'I = rZ 

z' w' 

f;'i- lw'I' 
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whose solution is 

z' r2 z' _ 
w' =iw'I-=--= r 2/z' 

lz'I lz'l lz'I 
since lz'l 2 = z'z'. So in the original coordinate system with w = 
w' + k, we get 

r 2 kz + r 2 -kZ 
w = -_-+ k= --_---

z - k z-k 

For convenience, we set c = 1 Ir, a = kc, and b = r ( 1 - a 2). The in­
version then takes the form 

az+b 
z-+ - , 

cz-a 

which includes the previous case when we set c = 0 and a = -1. We 
have shown 

PROPOSITION 9.25. In the Poincare upper half-plane model of the 
hyperbolic plane, reflections are represented in complex coordinates 
by 

az+b 
z-+-_-­

cz-a 

(where a, b, care real numbers). 

a2 +be= 1 

We can next determine the representation of all the direct hyper­
bolic motions, since they are products of two reflections. The calcula­
tion is simplified by the following general observations. 

For any coefficient field K (such as the field IR of all real numbers or 
the field C of all complex numbers), we define the projective lind/>1 (K) 
over K to be KU {oo}, where "oo" just means another point not in K. 
Each point on this "line" will be assigned homogeneous coordinates 
[ x1 , x2], where x1 , Xz EK and are not both zero. These coordinates will 
only be determined up to multiplication by a nonzero scalar A.; that is, 

A. =F 0. 

Specifically, the point x EK is assigned the homogeneous coordinates 

[x, 1] = [A.x, A.] A.=FO 
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while the point oo is assigned the homogeneous coordinates 

[1, O] = [A., O] 

We will operate on the points of @>1 (K) with nonsingular 2 X 2 matri­
ces with coefficients in K, in the usual way that matrices operate on 
vectors: 

[ :~: :~~] [ :~] = [ :~::: ! :~~:~]. 
where the brackets around the matrix again mean that its entries are 
only determined up to multiplication by a nonzero scalar. These 
operators are called projective transformations, and they form a group 
under matrix multiplication denoted PGL(2, K). Now, a linear frac­
tional transformation 

ax+b 
x--+---

cx+d 

defined on K can be obtained by operating on the homogeneous 

coordinates [ x, 1] of x with the projective transformation [ ~ ~], 
obtaining [ax+ b, ex+ d], and then dehomogenizing the coordi­
nates to get [(ax + b) I (ex + d), 1]. Viewed thusly it becomes clear 
that the composite of two such linear fractional transformations can be 
calculated by multiplying the two matrices, so the composite is again a 
linear fractional transformation. 

Returning to our representation of reflections, we have the added 
complication of the complex conjugate z occurring in the formula of 
Proposition 9.25; but it is clear that for a product of two reflections, the 
two conjugations cancel each other, with the coefficients being unaf­
fected because they are real numbers. Furthermore, the condition 
a2 +be= 1 in Proposition 9.25 means that the matrix 

of the transformation has determinant -1. By the formula 

det (AB) = (det A)(det B) 

for the determinant of a product of matrices, we see that the product 
will have determinant + 1. 
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We claim that conversely, every linear fractional transformation 
with real coefficients and determinant + 1 is a product of two hyper­
bolic reflections, i.e., the matrix equation 

[
a' 
c' 

II] [a b]- [x y] -a' c -a - u v 

can be solved for the eight unknowns on the left, given the four real 
numbers on the right: 

Case I. u :::fo 0. Then a solution is c' = 0, a' = -1, c = u, a= - v, 
b' = (x-v)lu, b= vll-y. 

Case 2. u = 0 and y = 0. We may assume x > 0. Then a solution is 
a= 0 =a', c = ..Jx = b', c-1 = b = c'. 

Case 3. u = 0 and x = v = 1. Then a solution is c = 0 = c', a = 
-1=a',II=0 and b = -y. 

Case 4. u = 0. This follows from the preceding cases because 

[x y ] = [x 0 ] [ 1 ylx] 
0 x- 1 0 x- 1 0 1 

and we know that a product of four reflections reduces to a product of 
two (Theorem 9.1.). 

We have proved the next proposition. 

PROPOSITION 9.26. In the Poincare upper half-plane model of the 
hyperbolic plane, the direct hyperbolic motions are represented by all 
the linear fractional transformations 

(a, b, c, d, real). 

ax+b 
z-+--­

cz+d 
ad-be= 1 

This group is denoted PSL(2, IR), and is called the projective special 
linear group over the real field. It is a 3-parameter group (one of the 
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four parameters being eliminated by the condition that the determi­
nant be + 1) .12 

We can next obtain all opposite hyperbolic motions by multiplying 
all the direct motions by one fixed opposite motion. For the latter, let's 
use the reflection in the y axis, z -- - z. The result is 

-az+b 
z-- -+d' -cz 

which after relabeling gives the next proposition. 

PROPOSITION 9.27. In the Poincare upper half-plane model of the 
hyperbolic plane, the opposite hyperbolic motions are represented by 
all the mappings 

(a, b, c, d real). 

az+b 
z-- cz+d ad-bc=-1 

We can combine the direct and opposite motions and represent 
them by all real projective transformations of the real projective line 
£il>1 (IR), with the matrices representing direct or opposite motions 
according to whether the determinant D is positive or negative, since 

[
a b] = [al../IDI bl../IDI] 
c d c!../IDI dl../IDI 

and the matrix on the right has determinant + 1. 

COROLLARY. The group of all hyperbolic motions is isomorphic to 
PGL(Z, IR). 

This isomorphism suggests analogies between one-dimensional 
real projective geometry and two-dimensional hyperbolic geometry. 13 

For example, Proposition 9.16(c) corresponds to the theorem in pro­
jective geometry that for any two triples of points on the projective 

12 SL(Z, IR) is the group of all Z X Z real matrices of determinant + 1. It is extremely 
important in analytic number theory-see the book by S. Lang devoted entirely to this group 
(Addison Wesley, Reading, Mass., 1975). 

13 Klein's Erlanger Programme pointed out many other analogies between geometries whose 
groups are isomorphic, e.g., the analogies among the inversive plane (Exercise P-17, Chapter 7), 
the one-dimensional complex projective geometry g>t (C) (which from the real point of view is a 
geometry on a sphere), and three-dimensional hyperbolic geometry. 
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line, there is a unique projective transformation mapping one triple 
onto the other (see Exercise 65). Also, projective transformations are 
classified by their fixed points. The equation for a fixed point is 

ax+b 
x=---

cx+d 

or 

cx2 + (d-a)x-b=O 

showing that the number of finite fixed points is 0, 1, or 2. Since 

[~ ~][~] =[~]. 
we see that oo is a fixed point if and only if c = O; in that case, the 
quadratic equation above becomes linear, and if the transformation is 
not the identity, it has a finite fixed point only when a:::/= d. 

Our classification of hyperbolic motions showed that the number of 
ideal fixed points is 0 for rotations, 1 for parallel displacements, and 2 
for reflections, translations, and glides. 

Example 3. Let us determine the group of all parallel displace­
ments about oo. We just showed that these are represented by matrices 
with c = 0 and a = d; they form the group of mappings 

z--+ z + b, 

which is isomorphic to the one-parameter additive group of all real 
numbers (these are Euclidean translations along the x axis). 

Example 4. Consider next the two ideal fixed points 0 and oo and 
the group of hyperbolic translations along the Poincare line joining 
them (the upper half of they axis). They are represented by matrices 
with c = b = 0 and ad= 1; they form the group of mappings 

and since a2 can be any positive number, this group is isomorphic to 
the multiplicative group of all positive real numbers. By taking the 
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logarithm, this group in turn is isomorphic to the additive group of all 
real numbers, just as in the Euclidean case of translations along a fixed 
line-Proposition 9.21. (The mappings are Euclidean dilations cen­
tered at 0.) 

Example ii. Finally, let us determine the group of all hyperbolic 
rotations about the point i in the upper half-plane. They are the direct 
motions that fix i: 

. ai+ b 
t= ci+d 

soa = dand b= -c, with 1 =ad- be= a2 +b2• Ifwe set a= cos(}, 
b = - (sin 0), rotations about i are represented by 

(cos O)z - sin(} 
z---+ . . 

(sm O)z +cos (} 

But the matrix 

[
cos (} - sin (}] 
sine cos e 

is just the matrix of Euclidean rotation through (} about the origin in 
the Cartesian model of the Euclidean plane. Thus these two groups 
are isomorphic to each other and to the multiplicative group 81 of all 
complex numbers of modulus 1. 

Note. In the representation of hyperbolic rotations in Example 5, 
when e = n, z is mapped to z and we get the identity rotation, whereas 
the Euclidean rotation through n is a half-tum. So in order to have a 
one-to-one (instead of two-to-one) mapping of the group of hyperbolic 
rotations about i onto the group of Euclidean rotations about 0, we 
must represent the hyperbolic rotation through e by 

e) . e cosz z-smz 
z ---+ • 

(sin ~)z +cos~ 
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CONGRUENCE DESCRIBED BY MOTIONS 

In neutral geometry, motions can be used to define congruence of 
arbitrary figures, namely S is congruent to S' if there is a motion T 
mapping S onto S'. By Proposition 9.5, this definition gives the same 
congruence relation for triangles as before (hence, the same con­
gruence relation for segments and for angles). 

A particularly important figure is a.flag, which is defined to consist 
of a point A, a ray AB emanating from A, and a side S of line AB 
(Figure 9.27). 

LEMMA 9.3. Any two flags are congruent by a unique motion. 

Proof 
Choose B' so that AB = A'B'. Choose any point CE S, and let C' be 
the unique point in side S' of A~' such that b.ABC = b.A'B'C' 
(Corollary to SAS, Chapter 3). By Proposition 9.5, there is a unique 
motion Ttaking A, B, C respectively into A', B', C', and this maps 
flag ABU S onto A'B' US'. • 

We say that the group of motions operates simply transitively on the 
flags. This property expresses the homogeneity of the plane, and 
corresponds to our physical intuition of performing measurements by 
moving a rigid ruler around. This property is crucial in our next 
theorem, which answers the converse question: Given a model .Ji, for 
our incidence and betweenness axioms, and given a group cg of be­
tweenness-preserving collineations of .Ji,. Define congruence by the 
action of~; e.g., define AB = A'B' to mean that some transformation T 
in cg maps segment AB onto segment A'B' (similarly for angles). What 
additional assumptions on cg guarantee that with this definition, our 
Congruence Axioms C-1 through C-6 hold in .11,? 

FIGURE9.27 A 
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THEOREM 9.2. Assume the group <§ of betweenness-preserving col­
lineations satisfies the following conditions: 

(i) <§ operates simply transitively on the flags. 
(ii) For any two points A, B, there is at least one transformation TE<§ 

which interchanges A and B. 
(iii) For any two rays r, semanating from the same vertex, there is at 

least one transformation TE <§ which interchanges rand s. 

Then, with congruence defined in terms of the action of<{}, Axioms 
C-1 through C-6 hold, and<§ is the group of motions. 

We know that these conditions are necessary for the group of 
motions-condition (i) by our lemma, condition (ii) using the reflec­
tion across the perpendicular bisector of AB, and condition (iii) using 
the reflection across the bisector of the angle r U s. 

Proof 
The proof that the conditions are sufficient proceeds in 10 steps. 

Step I. Congruence is reflexive, symmetric, and transitive (in 
particular, C-2 and C-5 hold).<{} is a group of automorphisms. 

For if T maps S onto S', then T-t maps S' onto S; and if T' maps 
S' onto S", then T'Tmaps S onto S". Obviously, I maps S onto S. 
(We use here the condition that<{} is a group.) If S== S', i.e., 
S' =TS, and UE <fi, then US'= (UTU-t)US, so US== US'; this 
shows that U is an automorphism. 

Step 2. Existence of reflections. 
Let point P lie on line /. Let St , S2 be the two sides of/, and let rt , 

r2 be the two rays of I emanating from P. By condition (i), there is a 
unique TE<§ which interchanges St and S2 and leaves rt invariant. 
Since T2 leaves rt and St invariant, T2 =I (by (i)). We claim Tfixes 
every point of /: By definition of T, P is fixed. Since Tis between­
ness-preserving, r 2 is also invariant under T. Suppose point A on /is 
moved to A', and say P *A* A'. Then (A')'= A since T2 =I, so 
P' *(A')'* A', contradicting the assumption that Tpreserves be~ 
tweenness. Since the reflection R1 is the involutory automorphism 
that leaves each point of I fixed, we may write T = R1• 
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Step 3. Let r be a ray of line/, and let r' be any ray. Then there 
are exactly two transformations in Cfi that map r onto r', and they 
both have the same effect on the points of I. 

For by condition (i), given a side S of I, the two transformations 
are uniquely determined by which side of I' (r' C /') Sis mapped 
onto. If Tis one such transformation, the other is TR" and they both 
agree on/. 

Step 4. If AB = CD, then there are exactly two transformations 
in Cf} sending A to C and B to D, and they agree on AB. 

By definition of =, there is a transformation Tin Cf}, mapping 
segment AB onto segment CD. If Tsends A to D and B to C, follow 
T by a transformation in Cfi that interchanges C and D (condition 
(ii)). We can therefore assume A goes to C and B to D. Since 
betweenness is preserved, ray AB is mapped onto ray CO. Hence, 
step 3 applies. 

Step 5. Congruence Axiom C-1 holds. (This follows from steps 
3 and 4.) 

Step 6. Congruence Axiom C-3 holds. 
Let Tsend A to A' and B to B'. If A* B * C, then Tmaps ray BC 

onto ray B'C1
, where A'* B' * C'. If BC= B'C', then there is a 

motion T' sending B to B' and C to C'. By step 3, T and T' agree at 
every point on the line through A, B, C. Hence they both send A to 
A' and C to C', so AC= A'C'. 

Step 7. Congruence Axiom C-4 holds. 
Given ~BAC, ray A""T(:,', and side S' of A""T(:,'. Let S be the side of 

AC on which B lies. Let Tin Cfi be the unique transformation which, 
according to condition (i), maps (AC, S) onto (A""T(:,', S'). If B' is the 
image of B under T then ~BAC = ~B'A'C'. Conversely, if this 
congruence is effected by a transformation T', where B' lies in S', 
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then T' maps (AC, S) onto (A'C', S'), so by the uniqueness part 
of condition (i), T = T', and ray A'B' in S' is uniquely determined. 

Step 8. If <tBAC == <tB' A'C', there is a unique transformation in 
<[}sending AB to A'B', and AC to A'C'. 

By definition of congruence, there is a TE <[} mappi!!& <tBAC 
onto <tB' A'C'. If T maps AC onto A'B' and AB onto A'C', then 
condition (iii) allows us to follow T with a transformation in <[} 

interchanging the two sides of <tB' A'C'; so we can assume T 
sends AC to A'C' and AB to A'B'. Then uniqueness was shown in 
the proof of step 7. 

Step 9. Congruence Axiom C-6 (SAS) holds. 
Given AB==A'B', <tBAC==<tB'A'C', and AC==A'C'. Let 

these congruences be effected by transformations T1 , T2 , T3 E <fi, 
where by steps 4 and 8, we may assume T1 sends A to A' and B to B', 
T2 sends AB to A'B' and AC to A'C', and T3 sends A to A' and C 
to C'. By step 3, T2 agrees with T1 on AB, and T2 agrees with T3 on 
AC. Hence, T2 sends B to B' and C to C', so that via T2 we have 
BC== B'C', <tABC == <tA'B'C', and <tACB == <tA'C'B'. 

Step 10. <fi is the group of all motions. 
Choose a flag F. A motion T transforms Finto F', and by condi­

tion (i), an automorphism T' E <[} has the same effect; by Lemma 
9.2, T= T', so every motion belongs to <fi. By Lemma 9.3 and the 
same argument, every member of <fi is a motion. • 

Theorem 9.2 is one step in Klein's program to describe the geome­
try in terms of action of a group. F. Bachmann (1973) carries the 
program further by describing points, lines, and incidence in terms of 
involutions in the group- see Exercise 50 and Ewald ( 1971). 

Note on Similarities. A pointed flag is a figure consisting of an 
ordered pair of distinct points A, B together with a specific side S of 
line AB. Every flag with vertex A supports infinitely many pointed 
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flags corresponding to the various choices of point B on the ray of the 
flag. It is easy to show that for any two pointed flags in the Euclidean 
plane, there is a unique similarity mapping one onto the other 
(namely, follow the motion given by Lemma 9.3 with a dilation cen­
tered at the vertex). This leads to the following nice characterization: 
similarities are collineations which map circles onto circles. 

Proof 
Let Tbe such a collineation. In Major Exercise 7, Chapter 5, you 
showed that given any line /, two points off I are on the same side S 
of /if and only if they lie on a circle contained in S. Hence T maps S 
onto aside S' of I'. Also, if Tmapscircle yontocircle y', then Tmaps 
the interior of y onto the interior of y' - because a point P not on y 
lies in the interior of y if and only if every line through P intersects y. 
Next we claim that Tmaps perpendicular lines onto perpendicular 
lines. This is because a collineation maps parallelograms onto par­
allelograms, a parallelogram in the Euclidean plane has a circum­
scribed circle iff it is a rectangle (Major Exercise 1, Chapter 5), and 
since T preserves circles, it must map rectangles onto rectangles. 
Moreover, since a square is characterized as a rectangle with per­
pendicular diagonals, T maps squares onto squares. Talso maps the 
center of a square onto the center of the image square (since it is the 
intersection of the diagonals) and the midpoints of the sides onto 
the midpoints of the sides (since they form squares with the 
center). 

Now let us work with Cartesian coordinates. Consider the basic 
pointed flag F consisting of the origin (0, 0), the unit point ( 1, 0) on 
the x axis, and the side S of the x axis containing the unit point (0, 1) 
of the y axis. Our transformation T maps F onto some flag F'; let U 
be the unique similarity which maps F' back onto F. We will show 
that UT is the identity, so that Tis equal to the similarity inverse to 
U: UT fixes ( 0, 0) and ( 1, 0) and maps each side of the x axis onto 
itself. By the remark above about squares, the points (0, 1), ( 1, 1), 
(0, - 1), and ( 1, -1) must also be fixed, as must the midpoints and 
centers of these squares. We can infer successively that all points 
whose coordinates are integers, half-integers, or dyadic rationals 
are fixed by UT. Since each point in the plane is interior to an 
arbitrarily small circle through three fixed points, it must be fixed. 
(This neat proof is due to Werner Fenchel, 1989.) • 
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SYMMETRY 

We conclude this chapter with a brief discussion of symmetry, which is 
one of the main applications of the transformation approach to geome­
try. 

Given a plane figure S, the motions that leave S invariant {i.e., that 
map S onto itself) are called symmetries of S; clearly the symmetries of 
Sform a group. Intuitively, the larger this group is, the more symmet­
rical is the figure. 

For example, a circle y is highly symmetric. Its symmetry group 
consists of all rotations about the center 0 of y and all reflections across 
lines through O; this group has the cardinality of the continuum. 

A square seems to be fairly symmetric, yet we will show it only has 
eight symmetries {see Example 6 later in this section). 

The frieze pattern shown in Figure 9.28 has a countably infinite 
group of symmetries: it consists of all integer powers T• of a fixed 
translation Twhich shifts the pattern one unit to the right. 

The first problem is to find a minimal set of generators of the group of 
symmetries. This means finding as small a collection of symmetries as 
possible with the property that all other symmetries can be expressed 
as products of the symmetries in this collection and their inverses. For 
the frieze pattern in Figure 9.28, there is a single generator T (or 1 1) : 

A second problem is to describe the basic relations among the 
generators. For the generator T above, there is no relation: all the 
powers of Tare distinct. Consider, however, Figure 9.29. 

The only symmetries of these figures are the identity/, the rotation 
R about the center 0 through 120° clockwise, and the rotation R2 

about 0 through 240° clockwise.Risa generator of this group and 
satisfies the relation R3 =I. We say this group is cyclic of order 3. 

More generally, a group is called cyclic of order n if it has a single 
generator and n elements; it is called infinite cyclic if it has a single 
generator and infinitely many elements {the group of symmetries of 

r r r r r ... 
FIGURE 9.28 
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0 

(a) (b) (c) 

FIGURE9.29 

the frieze pattern in Figure 9.28 is infinite cyclic). Let us denote by C,, 
any cyclic group of order n generated by a rotation through (360/n) 0 

about some point. The constructions in Figure 9.29 can be general­
ized from 3 ton to obtain a figure having C,, as its symmetry group. The 
graph in Figure 9.29(b) is called a triquetrom; its generalization to 
n = 4 is a swastika. The Zn-sided convex polygons obtained from 
generalizing Figure 9.29(c) are called ratchet polygons. 

A third basic problem is to describe the structure of the symmetry 
group, showing if possible that it is isomorphic to some familiar group. 

Example 6. We will solve these problems for the group of sym­
metries of a square. 

Any symmetry must leave the center 0 fixed (since, for example, 0 
is the intersection of the diagonals, and each diagonal must be mapped 
onto itself or the other diagonal). Hence, the symmetries must either 
be rotations about 0 or reflections across lines through 0. The only 
rotations about 0 that are symmetries are/, R, R2, R3, where R can be 
taken to be the counterclockwise rotation through 90°; these form a 
cyclic subgroup of order 4. There are also four reflections that are 
symmetries: the two reflections across diagonals c, d and the two 
reflections across the perpendicular bisectors a, b of the sides (see 
Figure 9.30). Let Tbe anyone of these reflections; e.g., T= Re. Then 
{R, T} is a minimal set of generators of the group. 

For R can be written in four ways as a product of reflections, 

R = R11Rd = RcR/J = RaRc = RdRa, 
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FIGURE9.30 

so that 

a 

TR = RARcR") = (RYR" = R" 
TR2 = (TR)R = Rb(RbRd) =Rd 
TR3 = (TR2)R = Rd(RdRa) =Ra. 

The basic relations between these generators are 

R4 = I 
T2 =I 
RT= TR 3 

Ill 365 

(the last because RT= (Ra Re) Re= Ra= TR3). This last relation 
shows that the group is noncommutative. It is denoted D4 , and is 
called the dihedral group of order 8. 

More generally, if n ~ 3, D,, denotes the group of symmetries of a 
regular n-gon. It has 2n symmetries and is generated by two elements 
{R, T}, where R is rotation about the center of the n-gon through 
( 360/n) 0 , and Tis reflection across a line joining a vertex to the center. 
For n = 2, D2 denotes the group generated by a half-tum Hp and a 
reflection across a line through P, while for n = 1, D1 denotes a cyclic 
group of order 2 generated by a reflection. 

The following remarkable theorem has been attributed to Leon­
ardo da Vinci. 
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THEOREM 9.3. In both the Euclidean and hyperbolic planes, the only 
finite groups of motions are the groups C,, and D,, (n ~ 1 ). 

The proof will be based on the following series of lemmas, Lemmas 
9.4 through 9.9. 

LEMMA 9.4. A finite group of motions cannot contain nonidentity 
translations, parallel displacements, or glides. 

Proof: 
The point is to show that if Tis any of these three types of motions, 
no power T", n =I= 0, of Tis equal to the identity/. We will show this 
in case T= R1Rm, Ill m, leaving the case of a glide for Exercise 18. 
By Exercise 7, we can also write T = R1R1, where k is the reflection 
of m across /, so that 

Repeating this argument, we can show by induction that for any 
positive integer n, we can write 

T 11 =R11 Rm, 

where h lies in the half-plane bounded by m and containing /-in 
particular, h II m, so T" =I= I. Applying this result to T-1 we get 
T" =I= I for negative n as well. 

Now if Tbelonged to a finite group, we would have T" = Tm for 
distinct integers n, m; hence, T"-m = /, a contradiction. • 

LEMMA 9.5. If a finite group of motions contains rotations, all those 
rotations have the same center. 

Proof: 
Let T be a rotation about A, U a rotation about B =I= A, and let 
I= AB. By Proposition 9.8, there is a .unique line m through A 
(respectively, n through B) such that T= R1Rm (respectively, U= 
R1R,,). Then u- 1T- 1UT, which belongs to the finite group, is equal 
to (R,,R1Rm) 2, which is a translation (see Exercise 15). This contra­
dicts Lemma 9.4 unless the translation is the identity, but in that 
case UT= TU, which can only happen when at least one of U, Tis 
the identity (see warning after Proposition 9.9). • 
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LEMMA 9.6. If a finite group of motions contains reflections, the axes 
of those reflections are concurrent. 

Proof 
Otherwise we would obtain a contradiction of the previous lemmas, 
since the group must contain the products R1Rm. • 

LEMMA 9.7. If a finite group of motions contains a rotation and a 
reflection, then the center of the rotation lies on the axis of the 
reflection. 

Proof 
Otherwise the product of the rotation and the reflection would be a 
glide (Proposition 9.19), contradicting Lemma 9.4. • 

COROLLARY. A finite group of motions of order> 2 has a unique fixed 
point. 

Proof 
Since the order is> 2, the group must contain a nonidentity rota­
tion (by Lemmas 9.4 and 9.6), and every symmetry in the group 
fixes the center of that rotation, which is uniquely determined (by 
Lemmas 9.4, 9.5, and 9.7). • 

LEMMA 9.8. If a finite group of motions of order n contains only 
rotations, then it is cyclic or order n. 

Proof 
The cases n = 1 or 2 are trivial, so assume n > 2. Let 0 be the 
center of all the rotations (Lemma 9.5). Choose any point P1 ::/= 0. 
The images P 1 , . . . ,P 0 ofP1 under the rotations in our group are 
all distinct, since the rotations are distinct (Exercise 19). We as­
sume these images numbered so that (<t:P10P2) 

0 is the minimum of 
all the degrees (<t:P,OPj) 0

• LetRbe the rotation taking P1 to P2 • We 
claim that R generates the group. 

Let Q; be the image of P1 under R;-i, i = 1,2 ... (so that 
01 = P1, Oz= P2). Then 

(<t:Q,OQ;+1) 0 = (<t:P10P2) 
0 
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for each i. If some Pi were not among the Q/s, ray OPi would lie 
between some oQ;and 00;+1 , hence (~PiOQ;) 0 would be smaller 
than (~P10P2) 

0
, contradicting our choice of P2 • Therefore, every 

rotation in our group is equal to a power of R. • 

LEMMA 9.9. If a finite group of motions contains a reflection, then it is 
a dihedral group D,,. 

Proof 
Partition the group<§ into its set qjJ of direct motions and its set~ of 
opposite motions. Let n be the number of elements in qj). By 
Lemma 9.8, qjJ is a cyclic subgroup of order n generated by a 
rotation R. Let Tbe any reflection. Then the opposite motions in~ 
are also reflections and since the product of two of them is a direct 
motion, they can be written uniquely in the form 

TR;, i = 0, 1, ... , n. 

This is the group D,,. • 

Thus, Theorem 9.3 is proved. 
Much is known about particular types of infinite groups of motions. 

For instance, a frieze group is a group of motions that has an invariant 
line t and whose translations form an infinite cyclic group ( T) gener­
ated by one particular translation T along t. It is not difficult to prove 
that there are exactly seven frieze groups in Euclidean or hyperbolic 
planes: 

1. (T). 
2. The group ( T, R,), generated by T and the reflection across t. 
3. The group (T, R,,), generated by T and a reflection across a 

perpendicular u to t. 
4. The infinite cyclic group ( G) generated by the unique glide G 

such that G2 = T. 
5. The group ( T, HA) generated by Tand a half-turn about a point 

Aon t. 
6. The group (T, HA, R,). 
7. The group ( G, HA). 

(For the proof, see Martin, 1982, and Exercise 60.) 
Another type of infinite group is called a wallpaper group, whose 
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subgroup of translations is generated by two translations along distinct 
intersecting lines. In the Euclidean plane, there are exactly 17 wallpaper 
groups. The ornamental patterns designed on the walls of the Alham­
bra in Spain by the Moors illustrate these 17 groups. 

The classic treatise on symmetry is Hermann Weyl's Symmetry. 14 

You will find therein a discussion of the 17 wallpaper groups, plus an 
analysis of three-dimensional symmetry, including the generalization 
of our Theorem 9. 3 to three dimensions. Most important, you will find 
a fascinating treatment in words and pictures of how these purely 
mathematical abstractions relate to the physical universe in the form 
of crystals, biological specimens, and works of art throughout the 
ages. 15 

REVIEW EXERCISES 

Which of the following statements are correct? 

( 1) In the Cartesian model, the equations for reflection across they axis are 
y' = y and x' = - x. 

(2) In the Cartesian model, the equations for the 90° clockwise rotation 
about the origin are y' = x and x' = -y. 

(3) In the Euclidean plane, a similarity that is not a motion must be a 
dilation. 

( 4) In the Cartesian model, the equations for the translation moving the 
origin to ( 1, 1) are y' = y + 1 and x' = x + 1. 

( 5) An involution is a transformation equal to its own inverse but not equal 
to the identity. 

( 6) If a motion leaves a circle invariant, it must be a rotation about the 
center of the circle. 

(7) In the Cartesian model, if k is the x axis, I the line y = x, m they axis, 
and n the line y = - x, then R1R1R,,, = R •. 

(8) In the Cartesian model, the equations for the half-turn about the point 
(1, 0) are x' = -x+ 2 and y' =-y. 

14 Hermann Weyl, Symmetry (Princeton University Press, 1952). 
15 Other excellent references on this subject are: J. N. Kapur, Transformation Geometry 

(Affiliated East-West Press, 1976); Joe Rosen, Symmetry Discovered (Cambridge University 
Press, 197 5); E. H. Lockwood and R.H. Macmillan, Geometric Symmetry (Cambridge University 
Press, 1978); and I. Stewart and M. Golubitsky, Fearful Symmetry: ls God a Geometer? (Black­
well, 1992). 



370 Ill Geometric Transformations 

(9) In the Cartesian model, the glide along the x axis mapping (0, 1) to 
( 1, - 1) is given by the equations x' = x + 1 and y' = -y. 

( 10) If A, A' are distinct points in the Euclidean plane, there is a unique 
translation Tsuch that T(A) =A', i.e., the group of translations oper­
ates simply transitively on the points. 

( 11) If A, A' are distinct points in the hyperbolic plane, there are infinitely 
many translations T such that T(A) = A'. 

(12) In neutral geometry, if A, A' are distinct points and 0 is any point on 
the perpendicular bisector of AA', then there is a unique rotation T 
with center 0 such that T(A) =A'. 

(13) In neutral geometry, the set of all translations is a group. 
(14) In neutral geometry; if the product of two rotations is a nonidentity 

translation, then the rotations are half-turns about distinct points. 
(15) In hyperbolic geometry, for any two distinct points A, A', there are 

exactly two parallel displacements Tsuch that T(A) =A'. 
(16) In Euclidean geometry, the product of a non identity rotation and a 

translation is a rotation. 
( 17) Reflections in distinct lines never commute. 
(18) In hyperbolic geometry, the product of two rotations about the same 

point could be any of the three types of direct motion. 
( 19) In Euclidean geometry, the set of all half-turns and all translations is a 

group. 
(20) If R1R,,,R. is a glide, then lines/, m, and n do not lie in a pencil. 
(21) In the Cartesian model, the equations for a direct similarity have the 

form x' = ax - by + e, y' = bx+ ay + f, where a2 + b2 =fo 0, and all 
lengths are multiplied by k = ,,/a2 + b2 under this transformation. 

(22) A rotation through angle() can be written as a product of reflections in 
two lines which meet and form an angle 0. 

(23) The group of motions operates simply transitively on the set of all 
equilateral triangles whose sides have length 1. 

(24) In hyperbolic geometry, the group of motions operates simply transi­
tively on the set of all ordered triples of distinct ideal points. 

(25) A finite group of motions cannot contain more than one half-turn. 
( 26) In the Poincare upper half-plane model, the linear fractional transfor­

mation 

3z+4 z---­
z+l 

represents a direct hyperbolic motion. 
(27) In the Poincare upper half-plane model, the transformation z - z - 1 

represents a parallel displacement about oo. 
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(28) In the Cartesian model, the product of a translation along the x axis 
with the reflection across the y axis is a reflection. 

(29) The group of symmetries of a regular pentagon is cyclic of order 5. 
(30) No opposite motion commutes with a nonidentity direct motion. 
( 31) In Euclidean geometry, two figures are congruent if and only if there is 

an automorphism mapping one onto the other. 
(32) Given a triangle, if there exists a reflection leaving the triangle invar­

iant, then the triangle is isosceles. 
(33) If A and A' are any two points on opposite sides of line t, then there 

exists a glide Talong /such that T(A) =A'. 
(34) In the Cartesian model, the equations for rotation through angle () 

about the origin are x' = x cos () + y sin ()and y' = x sin () - y cos (). 
( 35) In neutral geometry, if a motion has a unique invariant line, then it is a 

glide. 
( 36) A motion that is a product of an odd number of reflections is opposite. 
(37) In the Cartesian model, the equations for reflection across the line 

y = x are y' = x and x' = y. 
( 38) In Euclidean geometry, the group of symmetries of a quadrilateral has 

order ~ 4 if and only if the quadrilateral is a rectangle. 
(39) In hyperbolic geometry, the group of symmetries of a quadrilateral 

must have order< 4. 
(40) In Euclidean geometry, if the group of symmetries of a convex quadri­

lateral has order 2, then the quadrilateral must be an isosceles trape­
zoid. 

( 41) In Euclidean geometry, the group of symmetries of every triangle has 
order~ 3. 

(42) In neutral geometry, if there exists an automorphism that is not a 
motion, then the geometry is Euclidean. 

( 43) In neutral geometry, the product of reflections in two parallel lines is a 
translation. 

(44) In neutral geometry, an automorphism with exactly one fixed point 
must be a rotation. 

(45) In the Cartesian model, an opposite similarity that fixes the origin 0 is 
equal to a product DR, where D is a dilation centered at 0, R is a 
reflection in a line through 0, and D and R commute. 

(46) In the Poincare upper half-plane model, the transformation 

represents a reflection. 

6.Z-4 z-----
8z-6 

(47) In the Cartesian model, for any complex number z0 , the transforma­
tion z - z + z0 represents a reflection. 
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( 48} In Euclidean geometry, a betweenness-preserving transformation that 
doubles the length of every segment must be a similarity. 

( 49} In hyperbolic geometry, there is no collineation that doubles the length 
of every segment. 

( 50} In neutral geometry, every motion either has an invariant line or a fixed 
point or both. 

EXERCISES 

Outline: Exercises 2-22 consist of supplementary results and proofs 
left to the reader on the classification of motions; Exercise 23 is an 
essay question on orientation; Exercises 24- 33 give more informa­
tion on similarities; Exercises 34- 35 are about linear and affine trans­
formations; Exercises 36- 38 discuss Mobius transformations; Exer­
cises 39-49 deal with orbits of groups of transformations (particularly 
with horocycles and equidistant curves in the Poincare model); Exer­
cise 50 exhibits algebraic equations in the group of motions and their 
geometric meaning; Exercise 51 refers to invariant sets of transforma­
tions; Exercise 52 presents another attempt to prove the parallel 
postulate using rotations, and Exercise 53 shows what happens when 
translations are used; Exercises 54- 5 7 determine the axis of a glide in 
the Euclidean plane; Exercise 58 presents a natural hyperbolic trans­
formation that is not a collineation; Exercises 59-61 are about sym­
metry; Exercises 62 -63 give some unusual models; Exercise 64 raises 
the question of two-dimensionality in incidence planes; Exercises 
65-68 are fundamental for one-dimensional projective geometry; 
and Exercises 69- 77 are applications to the 9-point circle and other 
topics in Euclidean geometry. 

1. Show that there are 168 collineations of the 7-point projective plane 
(Figure 9.1 }. (Hint: A collineation is uniquely determined by its effect 
on four points, no three of which are collinear.} 

2. Prove that the set of all automorphisms of a model of neutral geometry is 
a group, and that the set of motions is a subgroup. 

3. Finish the proof of Proposition 9.2. 
4. Prove that a transformation of the plane that multiplies all lengths by a 

constant k > 0 preserves betweenness and congruence of segments. 
5. Prove that a reflection is a motion. 
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6. In a Euclidean plane, prove that b.ABC - b.A'B'C' if and only if there 
is a similarity sending A, B, C respectively onto A', B', C', and that 
similarity is unique. (Hint: Use Lemma 9.2, Proposition 9.5, and Exer­
cise 20 of Chapter 5.) 

7. Prove that the invariant lines of a reflection R,,, are m and all lines 
perpendicular to m. Prove also that R,,,R1R,,, = RJ!', where k* is the 
reflection of k across m. 

8. Prove the corollary to Proposition 9.6. 
9. Prove that if an automorphism is an involution then it is either a reflec­

tion or a half-turn. (Hint: If A and A' are interchanged, show that the 
midpoint of AA' is fixed, and apply Propositions 9.4 and 9.6.) 

10. Show that the product T'T of rotations about distinct points can be any 
of the three types of direct motions. (Hint: Apply Proposition 9.8 to the 
line joining the centers of rotation.) 

11. Prove that a nonidentity rotation that is not a half-turn has no invariant 
lines. (Hint: Apply Proposition 9.8.) 

12. Let T be a translation along t, I a line that is not invariant under T. If I 
meets t (automatic in case the plane is Euclidean, by Proposition 9.13), 
prove that /JI/'. Suppose now the plane is hyperbolic. If /is asymptoti­
cally parallel tot in direction n, prove that I' is also (in particular, Ill I' ) . 
If I is divergently parallel to t, show by diagrams from a Poincare model 
that I' could either meet /, be divergently parallel to /, or be asymptoti­
cally parallel to /. 

13. Prove the corollary to Proposition 9.15. 
14. Show that in the hyperbolic plane, the product of translations along 

distinct lines could be any of the three types of direct motions, and that 
two such translations do not commute unless at least one of them is the 
identity. (Hint: Apply the warning after Proposition 9. 9 to the invariant 
lines.) 

15. If R1 , R2 , R3 are reflections, prove that (R1 R2 R3) 2 is a translation. (Hint: 
Use Propositions 9.18 and 9.19.) 

16. Let T, T' be glides along perpendicular lines. Prove that TT' is a 
half-turn if and only if the plane is Euclidean. (Hint: Use Propositions 
9.15 and 9.18.) 

17. In the hyperbolic plane, prove that every direct motion can be expressed 
as a product of three half-turns. (Hint: Refer back to Figure 9.9. Show 
that for any two lines /, u, there is a perpendicular m to u that is diver­
gently parallel to /.) 

18. If Tis a glide and n =I= 0, prove that P =I= I. (Hint: This has already been 
proved for translations.) 

19. If rotations T, T' about 0 have the same effect on a point P =I= 0, then 
T= T'. 
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20. If Tis any motion, A any point, and I any line, prove that THA1 1 is a 
half-turn and that TR1r- 1 is a reflection. 

21. Prove Hjelmslev's lemma (p. 339). (Hint: See Figure 9.31.) 
22. (Hjelmslev's theorem) Let/and I' be distinct lines and let The a motion 

transforming I onto I'. As point P varies on I and its image P' under T 
varies on/', the midpoints of the segments PP' are either distinct and 
collinear or else they all coincide. (Hint: Show that you can assume that 
Tis an opposite motion and apply Exercise 21 if Tis a glide.) 

23. How would you go about precisely defining the notion of an "orienta­
tion" of the (neutral) plane? The requirements are that you must be 
able to show there are exactly two "orientations," which are inter­
changed by opposite motions and preserved by direct motions. (If your 
definition uses words such as "clockwise" or "counterclockwise," you 
must define them precisely.) Making this notion precise is surprisingly 
tricky. It can be done in several ways, all of which appear artificial -see 
Ewald ( 1971), p. 65, for one. Perhaps the reason for the artificiality is, as 
Hermann Wey! says, that "to the scientific mind there is no difference, 
no polarity between left and right. . . . It requires an arbitrary act of 
choice to determine what is left and what is right; . . . in all physics 
nothing has shown up indicating an intrinsic difference of left and right." 
(See Weyl's Symmetry, pp. 16-38, for a fascinating discussion of this 
problem, illustrated with examples from physics, biology, and art. The 
Nobel Prize-winning work of C. N. Yang and T. D. Lee, done after 
Weyl's death, does indicate a physical difference between left and right 
at the subatomic level.) 

24. Prove Proposition 9.24. (Hint: Follow the given similarity by a transla­
tion, a rotation about 0, and a dilation centered at 0-if necessary-to 
obtain a similarity fixing 0 and 1; then apply Lemma 9 .1.) 

/' 

/ 
Q' 

M/ / p P' 

/ 
/ 

/ 
Q 

(a) (b) 

FIGURE9.31 
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25. Prove that every similarity that is not a motion has a unique fixed point. 
(Hint: Use Proposition 9.24. For a synthetic proof of this, see Coxeter, 
1969, p. 72.) 

26. Prove that the reflections in the Cartesian model are characterized 
among all opposite motions z --+ eiflz + z0 by the equation 

eiflz0 + z0 = 0 

and that the axis of such a reflection is the line 

2(yy0 + xx0 ) = x~ + y~ 
if z0 = x0 + iy0 =I= 0, whereas if z0 = 0, it is the line 

y cos (0/2) - x sin (0/2) = 0. 

(Hint: If z0 =I= 0, the axis must pass through z0 /2 and be perpendicular 
to the line joining 0 to z 0 ; if z 0 = 0, the axis passes through ei(BtZ).) 

Conversely, given a line ax+ by= c, find z0 and 0 for the reflection 
across this line. 

27. What is the representation in complex coordinates of a dilation of ratio k 
whose center has complex coordinate z1? 

28. The definition of direct and opposite similarities given in Proposition 
9.24 depended on the representation in complex coordinates. Prove 
that a coordinate-free description is given as follows: a similarity is direct 
(respectively, opposite) if and only if it is the product of a dilation with a 
direct (respectively, opposite) motion. Prove also that if AB and A'B' are 
any two segments, there is a unique direct similarity taking A to A', and B 
to B'. 

29. Let y1 and Yz be circles in the Euclidean plane with distinct centers 0 1 , 

Oz and distinct radii r1 , rz. Prove that there are two dilations D1 , Dz 
which transform y1 onto Yz. (Hint: Choose any point A onJ'J, and let A1 , 

Az be the ends of the diameter of Yz, which is parallel to 0 1A; then OzA 1 

(respectively, OzA2) will be the image of01A under D1 (respectively, 
Dz).) The centers of D1 and Dz are called the centers of similitude of the 
two circles. (See Coxeter, 1969, p. 71, for an application to the famous 
9-point circle.) 

30. Given any .6.ABC in the Euclidean plane, let A', B', C' be the midpoints 
of its sides, labeled so that the medians are AA', BB', CC'. Show that 
there is a unique dilation of ratio -t taking .6.ABC onto M'B'C'. 
(Hint: See Problem 8, p. 318, and Coxeter, 1969, p. 10.) 

31. Show that the set of all dilations (with all possible centers and ratios) is 
not a group, whereas the set of all translations and dilations (of a Euclid­
ean plane) is a group, and that this group is noncommutative. 

32. Prove that dilations are geometrically characterized among all similari-
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ties by the two properties of (i) mapping each line/onto a line equal to or 
parallel to /; and (ii) having a fixed point. 

33. A point at infinity for the Cartesian plane is an equivalence class of all 
lines equal to or parallel to some given line, and the line at infinity is the 
set of all points at infinity (compare Chapter 2). Since automorphisms 
(in fact, collineations) of the Cartesian plane preserve parallelism, they 
induce transformations of the line at infinity onto itself, and we can 
investigate the fixed points at infinity of these transformations. Show 
that an automorphism which (i) fixes every point at infinity is either a 
dilation or a translation; (ii) fixes two points at infinity is an opposite 
similarity (if/, mdetermine the two fixed points, then I l_ m); (iii) has no 
fixed points at infinity is either a rotation that is not the identity and not a 
half-tum, or the product of such a rotation with a dilation. 

(Hint: In the representation Proposition 9.24 gives for similarities, 
let w0 = a + Pi; if the similarity is direct, it takes lines of slope m onto 
lines of slope (p + am)/(a - Pm), whereas if the similarity is opposite, 
it takes lines of slope m onto lines of slope (p- am)l(a +Pm).) 

34. A linear transformation of the Cartesian plane is a transformation T given 
in coordinates by 

where the matrix 

x' =aux+ a12Y 
y' = a21 x + a22y, 

has nonzero determinant. In vector notation, the transformation has the 
form 

z' = Az. 

An affine transformation is a linear transformation followed by a transla­
tion: 

z-+Az+ z0 • 

Prove that an affine transformation is a collineation and that the set of all 
affine transformations is a group (called the affine group). It can be shown 
that, conversely, every collineation of the Cartesian plane is an affine 
transformation-see Artzy (1965), p. 155. 

35. Give an example of a linear transformation of the Cartesian plane that 
fixes exactly one point at infinity. 

36. Linear fractional transformations 

az+b 
T:z-+--­

cz+d 
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with complex coefficients and nonzero determinant 

<5= ad- be 

are called Mobius transformations or !tomographies. Show that such a 
transformation with c :/= 0 can be factored into a composite 

T= T4 T3 T2 T1 , 

where T1 is the translation z--+ z + (ale), T2 is the similarity z--+ 
(-<51c2)z, T3 is mapping z--+ z-1, and T4 is translation z--+ z +(die). 

3 7. Show that a Mo bi us transformation maps the set of all circles and lines in 
the Cartesian model onto itself, preserving orthogonality. (Hint: In case 
c :/= 0, use the factorization in the previous exercise, observing that T3 is 
the composite of inversion in the unit circle with reflection across the x 
axis and using Exercise P-17, Chapter 7. In case c = 0, use the fact that 
Tis an automorphism of the Cartesian model.) 

38. Show that the mapping 

E 
.i+z 

:z-+1-.-
1- z 

has all the properties claimed on p. 350. (Hint: Calculate the real and 
imaginary parts of E(z) and use the previous exercise.) 

39. Let C§ be a subgroup of the group of motions. For any point P, the orbit 
C§P of P under Cfi is defined to be the set of all images of P under motions 
in Cfi. For example, if C§ is the entire group of motions, then CfiP is the 
entire plane. Let C§ be the group of all rotations about a point O; if 
P :/= 0, prove that the orbit CfiP is the circle through P centered at 0. 

40. Let C§ be the group of all translations along a line t. If P lies on t, prove 
that CfiP = t. Suppose P doesn't lie on t. Show that C§P is the unique 
parallel tot through Pin case the plane is Euclidean, and show that C§P is 
the equidistant curve to t through P if the plane is hyperbolic. 

41. Let Q be an ideal point, and A be an ordinary point in the hyperbolic 
plane. Define the horocyde through A about Q to consist of A and all 
points A' such that the perpendicular bisector of AA' passes through Q. 
Prove that this horocycle is the orbit of A under the group C§ of parallel 
displacements about Q. (Hint: Use Proposition 9 .1 7.) 

42. Let/Jm, "meeting" at ideal point n, let A I/, and let B be the foot of the 
perpendicular from A to m. By the method of Major Exercise 11, Chap­
ter 6, there is a unique point Pon m such that PQ = AB, where Q is the 
foot of the perpendicular from P to/. Lett be the perpendicular bisector 
of AP. Prove that tis the symmetry axis of I and m-i.e., that R1(/) = m 
- and hence, if we fix A and Q and let m vary through all lines through 
Q, the locus of such co11espondingpoints P (as Gauss called them) fills out 
the horocycle through A centered at Q. (Hint: Show that AB meets PQ 
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in a point C, and use Major Exercise 5, Chapter 6, and AAA to show that 
~CPB = ~CAQ and hence CI t and <tPAQ = <tAPB. Deduce that t 
lies between I and m and so passes through 0. See Figure 9.32.) 

43. Prove that the symmetry axes t, u, v of the pairs of sides of a trebly 
asymptotic triangle are concurrent in a point G that has the properties 
described in Exercise K-13 of Chapter 7. See Figure 7.48. (Hint: Show 
first that t meets u at some point G, then that R,(u) = v, so that G = 
R,(G) lies on v also.) Show that RvR.R,= R •. (Hint: Use the theorem 
on three reflections.) We have succeeded in proving the result of Exer­
cise K-13 without resorting to Euclidean geometry. 

44. Prove that all horocycles are congruent to one another. (Hint: Use the 
fact that all rays are congruent to one another- Lemma 9.3.) 

45. In the Poincare upper half-plane model, let t be the upper half of they 
axis. Show that the equidistant curves oft are the nonvertical rays in the 
upper half-plane emanating from 0. (Hint: See Example 4, p. 356.) 

46. In the Poincare upper half-plane model, show that the horocycles about 
oo are the horizontal lines in the upper half-plane. (Hint: See Example 3, 
p. 356.) Show that the horocycles about x0 are the circles in the upper 
half-plane tangent to the x axis at x0 • (Hint: Use the inversion z-+ z--1 

in the unit circle to map oo to 0 and the horocycles about oo to the 
horocycles about O; then use the parallel displacement z-+ z + x0 .) 

47. In the Poincare upper half-plane model, prove that the equidistant 
curves are either ( 1) nonvertical rays emanating from a point on the x 
axis; or (2) intersections with the upper half-plane of circles cutting the x 
axis in two points with the centers of the circles not lying on the x axis. 
(Hint: Use a real linear fractional transformation to map the upper-half 
of the y axis onto any other Poincare line, and apply Exercises 45 and 
37.) 

48. In the Poincare upper half-plane model, show that a hyperbolic circle is 
represented by a Euclidean circle. (Hint: Use the isomorphism E with 

FIGURE 9.32 m 



Exercises Ill 379 

the Poincare disk model and Exercise P-5, Chapter 7.) Find the Euclid­
ean radius and Euclidean center of the hyperbolic circle of hyperbolic 
center i passing through 2i. (Hint: See Example 5, p. 357) 

49. Use the Poincare upper half-plane model to demonstrate that in the 
hyperbolic plane, three points lie either on a line, a circle, an equidistant 
curve, or a horocycle. 

50. In this exercise, verify the following translation of geometric statements 
into algebraic equations in the group of motions (which leads to new 
proofs of geometric theorems-see Bachmann, 1973): 

(1) Plies on I~ (HpR1) 2 =I. 
(2) I 1- m ~ (R1R,,,) 2 =I. 
(3) /, m, n belong to a pencil~ (R1R,,,R,,) 2 =I. 
(4) /is the perpendicular bisector of AB~ R1H8 R1HA =I. 
(5) Let m and n be intersecting lines. Then /is a bisector of one of the 

angles formed by m and n ~ R1R,,,R1R,, =I. (Describe I geo­
metrically in case this equation holds and m II n.) 

(6) Mis the midpoint of AB~ HMHeHMHA =I. 
(7) I 1- AB ~ (R1HAH8 ) 2 = I. 
(8) (HAR1R,,,) 2 = I~ A lies on a common perpendicular to I and m. 
(9) Given A =I= B. In Euclidean geometry, HA RIHA= H8 R1H8 ~ 

I= AB or /jl_AB. In hyperbolic geometry, the equation 
holds ~I= AB. 

(10) In hyperbolic geometry, A, B, Care collinear~ (HAH8 Hc) 2 =I. 
( 11) Assume A, B, C not collinear and that G is the centroid of~ ABC 

(the point of intersection of the medians). Then in Euclidean 
geometry, HpHcHpH8 HpHA =I~ P = G. J.!::!int: Recall that 
HpH0 is the translation by a vector of length 2PQ in the direction 
of ray QP.) 

(12) Given DABCD in the Euclidean plane. Then HAHeHcHo = 
I~ DABCD is a parallelogram. 

51. A set 9' of transformations is called invariant under a group 'Ii of trans­
formations if for every SE9' and TE'IJ, TS1 1 belongsto9'. (In case 9' 
is a subgroup of 'Ii and is invariant under 'Ii, then 9' is called a normal 
subgroup.) For instance, you showed in Exercise 20 that the sets of 
half-turns and reflections are each invariant under the group of motions. 
Determine whether each of the following sets is invariant under the 
indicated groups: 

(i) 9' = all rotations about one given point, <fi =all motions. 
(ii) 9' = all rotations about all points, <fi = all motions. 
(iii) 9' = all translations along one given line, <fi = all motions. 
(iv) 9' = all translations along all lines, <fi = all motions. 
(v) (Euclidean geometry) 9' =all motions, <fi =all similarities. 
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(vi) (Euclidean geometry) fJ' =all dilations, 'IJ =all similarities. 
(vii) (Hyperbolic geometry) fJ' =all parallel displacements, 'IJ =all 

motions. 
(viii) fJ' =all glides, 'IJ = all motions. 

(ix) (Euclidean geometry) fJ' =all direct motions, 'IJ = all similari­
ties. 

(x) (Euclidean geometry) fJ' = all rotations about 0, 'IJ = all similar­
ities having 0 as a fixed point. 

(xi) (Euclidean geometry) fJ' =all translations along t, 'IJ =all simi­
larities having t as an invariant line. 

52. In 1809, B. F. Thibaut attempted to prove Euclid's parallel postulate 
with the following argument using rotation; find the flaw. Given any 
triangle .6.ABC. Let D *A* B, A* C * E C * B * F (see Figure 9.33). 
Rotate AB about A through ~DAC to lt;; then at C, rotate AC to 
BC through ~ECB; finally, at B, rotate BC to AB through ~FBA. 
After these three rotations, AB has returned to itself, and has thus 
been rotated through 360°. Adding up the individual angles of rotation 
gives 

[180° - (~) 
0

] + [180° - (~C) 
0

] + [180° - (~B)°] = 360° 

so that the angle sum of .6.ABC is 180°, and Euclid's parallel postulate 
follows. 

53. Given .6.ABC in the hyperbolic plane, let T1 be the translation along 

AB taking A to B, T2 the translation along BC taking B to C, and T3 

the translation along AC taking C to A. Show that T3T2T1 is a rotation 
about A through d 0

, where d 0 is the defect of .6.ABC. 
54. Given .6.ABC that is not a right triangle. Let a= BC, b =AC, c =AB, 

and let D, E, F be the feet of the perpendiculars from A, B, C to a, b, c. 
We know from Proposition 9 .19 that the product G = R,,R6 R, of the 
reflections in the sides of .6. ABC is a glide. Assume the geometry is 
Euclidean. Prove that the axis of G is the line t = OF. (Hint: Show that 
right triangles .6.ABE and .6.ACF are similar, then that .6.AEF -

FIGURE 9.33 F 
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A A 

(a) (b) 

FIGURE9.34 

~ABC; hence, <tAEF = <tB, <tAFE = <tC. Applying the same argu­
ment to ~BFD and ~CED, deduce <tAFE = <tBFD, <tAEF = <tCED, 
<tBDF = <tCDE. From these congruences deduce that line tis invariant 
under G. See Figure 9.34.) 

55. With the same notation as in the previous exercise, assume that ~ABC 
is acute-angled, and let G = TR,, where Tis a translation along t. Show 
that this translation is in the direction FD through a distance equal to the 
perimeter of ~DEF. (Hint: Determine the image of Funder G.) 

56. With the same notation as above, determine the axis of Gin case ~ABC 
is a right triangle. (Hint: It depends on whether or not <tB is right; use 
Hjelmslev's Lemma, p. 339, applied to line AB.) 

57. Given three lines a, b, cin the Euclidean plane such that a II c, bmeetscat 
A, and b meets a at C. (See Figure 9.35.) 
(i) If bis perpendicular to both a and c, prove that bis the axis of the 

glide R11 R6 R, and R11 R6 R, = R11 R,R6 = R6 R11 R,. 
(ii) If bis not perpendicular to a and c, let D, F be the feet of the 

FIGURE9.35 



382 Ill Geometric Transformations 

perpendiculars from A, C to a, c. Prove that OF is the axis of glide 
R4 R6R,. (Hint: Use Hjelmslev's lemma to show that F and D lie on 
the axis.) Prove that the axis of glide RaRcR,, (respectively, RcR

0
R,,) 

is the line through D (respectively, F) parallel to b. (Hint: Find the 
midpoint of C and its image, and the midpoint of A and its image.) 

58. Given ideal point Q in the hyperbolic plane and distance d, define a 
transformation T that sends point P onto the unique point P' on ray PO 
such that PP' = d. (The analogous transformation in a Euclidean plane 
would be a translation through distance d.) Describe T explicitly in the 
Poincare upper half-plane model when Q = oo (Hint: The Poincare 
distance from x + iy to x + iy' is Jlogy/y'J.) Show that Tis not a collinea­
tion by showing that the image under T of a line not through oo is not a 
line. 

59. Instead of generating the dihedral group D. by one reflection and one 
rotation, show that it can be generated by two reflections, and give the 
three basic relations for these generators ( n > 1). 

60. Find the symmetry group of each of the following infinite patterns 
(describe the group by generators and relations): 

(i) LL LL L . 
(ii) Lr Lr L ... 

(iii) v v v v v . . 
(iv) N N N N N .. 
(v) VA VA V .. . 

(vi) DD DD D .. . 
(vii) H H H H H . . . 

61. Which pairs of groups in the previous exercise are isomorphic? (Hint: 
See Coxeter, 1969, p. 48.) 

62. Refer to the model in Exercise 35, Chapter 3, in which length has been 
changed along the x axis, causing the SAS criterion to fail. Show that the 
only similarities that are automorphisms of this model are the ones that 
leave the x axis invariant. 

63. Suppose the model in the previous exercise is modified so that length 
along three nonconcurrent lines is converted to three different units of 
measurement from the unit on all other lines. Show that the identity is 
the only automorphism of this model (hence "nothing can be moved" in 
this model, everything is invariant, and Klein's Programme gives no 
insight into the "geometry"). 

64. Define an incidence plane to be a model of incidence geometry which is 
two-dimensional in the following sense: if/, m, n are three lines forming a 
triangle and P any point, then there exists a line t through P such that t 
meets IU m Un in at least two points. (See Figure 9.36.) Show that a 
model of both the incidence and betweenness axioms is automatically 



Exercises Ill 383 

FIGURE9.36 

two-dimensional. Let The a one-to-one mapping of the set of points of 
an incidence plane onto itself such thatifO, P, Qare collinear, then their 
images O', P', Q' are collinear. Prove that, conversely, if O', P', Q' are 
collinear, then so are 0, P, Q. Is there a model of incidence geometry 
that is not two-dimensional in which this converse fails? (I don't know 
the answer.) 

65. Prove the following analogue of Proposition 9 .16 ( c) in one-dimensional 
projective geometry over an arbitrary field K: for any two triples of points 
on the projective line 9J>1 ( K), there is a unique projective transforma­
tion mapping one triple onto the other. (Hint: This is an exercise in 
two-dimensional linear algebra, based on the fact that there is a unique 
nonsingular 2 X 2 matrix mapping one pair of linearly independent 
vectors onto another-see Ewald, 1971, p. 215.) 

66. Given four points P1, P2 , P3, P4 on the projective line 9J>1(K), let the 
homogeneous coordinates of P; be [s;, I;] for i = 1, 2, 3, 4. Define the 
cross-ratio (P1P2 , P3P4) by 

I;: ~:I I;: ~:I 

I

Xz lzl ls1 11 I= (P1Pz, P3P4), 

S3 /3 S4 /4 

where the four terms in this ratio are 2 X 2 determinants (which are not 
zero because the points are distinct). If a projective transformation maps 
point P; onto Pj, i = 1, 2, 3, 4, prove that the cross-ratio is preserved: 
( P 1 P 2 , P 3P 4) = ( P~ P~, P;P~). (Hint: If M is a matrix of the projective 
transformation, each determinant occurring in the formula for ( P~ P~, 
P;P~) is the product of <let M with the corresponding determinant in the 
formula for (P1P2 , P3P4).) 
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6 7. Since the determinants in the formula for cross-ratio of Exercise 66 may 
be negative (when K is a subfield of the field IR of real numbers), this 
cross-ratio is not the same as the positive cross-ratio defined on p. 248. 
Show that for points =I= oo, this cross-ratio is the same as the signed 
cross-ratio defined in Exercises H-4 and H-7, Chapter 7. (Hint: Use 
inhomogeneous coordinates [s;, 1].) 

68. Deduce from Exercises 65 ad 66 that if (P 1 , P 2 , P 3) and ( P~, P2, P;) are 
any two triplets of points on fiJ>1 ( K), if Tis the unique projective trans­
formation carrying the first triple onto the second, and if P 4 is any fourth 
point, then the image P~ of P 4 under Tis uniquely determined by the 
equation 

(P1P2 , P3P4) = (P~P2, P;P~). 

This shows that the cross-ratio is the fundamental invariant of the one­
dimensional projective group. 

Note: The remaining exercises are in Euclidean geometry. 

69. Prove that the medians of a triangle concur at a point G that is 1 the 
distance from each vertex to the opposite midpoint. (Hint: Use analytic 
geometry.) For which triangles does the Euler line (see Problem 8, p. 
319) pass through a vertex? 

70. Show that the center U of the 9-point circle is the harmonic conjugate of 
the circumcenter 0 with respect to the orthocenter H and the centroid G 
(see Problems 9 and 8, pp. 320 and 319). 

71. Show that the dilation T' with the centroid G as center and ratio - 2 also 
maps the 9-point circle onto the circumcircle (hence, in the terminology 
of Exercise 29, G and H are the two centers of similitude of these circles). 

72. Show that the distance from the circumcenter 0 of a triangle to a side is 
half the distance from the orthocenter H to the opposite vertex. (Hint: 
See Problem 8, p. 319.) 

7 3. Justify all the assertions in the solutions to Problems 1-9, pp. 315-321 
that have not been justified there. 

74. Finish the solution to Problem 4, p. 317, by showing that ifX, Y, Z are 
the feet of the altitudes, then Y and Z lie on X1X2 • (Hint: Use the 
congruences given in the hint to Exercise 54.) 

7 5. Given line /, two points A and B on the same side of/, and a positive 
number d. Find a segment XY on I of length d such that the polygonal 
path AXYB is as short as possible. (Hint: Use the same method as in the 
solution to Problem 1, p. 315, with a glide reflection along I through 
distance d instead of the reflection in /.) 

76. Report on Feuerbach's theorem, which states that the 9-point circle is 
tangent to the inscribed circle and the three escribed circles (see H. 
Eves, 1972; or D. C. Kay, 1969). 
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77. Let .6ABC be any triangle whose largest angle is< 120°. For any point 
P, let d(P) =PA+ PB+ PC. Prove that there is a unique point P0 at 
which the function d(P) achieves its minimum value, that P0 lies in the 
interior of .6ABC, that it can be constructed with straightedge and 
compass, that 

and that 

d(P0)
2 = a2 + b2 

- 2ab cos ( C + ~), 

where a= BC, b =AC. (Hint: Rotate .6ABC about each of its vertices 
through 60 °. See Kay ( 1969), p. 271, where P 0 is called the Fermat point, 
or H. Rademacher and 0. Toeplitz, The Enjoyment of Mathematics, 
Princeton University Press, 1957, p. 33.) 



FURTHER 
RESULTS IN 
HYPERBOLIC 

The theorems of this geometry appear to be 
paradoxical and, to the uninitiated, absurd; but calm, 
steady reflection reveals that they contain nothing at 
all impossible. 

C. F. GAUSS 

In this chapter we will penetrate more deeply into the "strange new 
universe" of hyperbolic geometry. To facilitate this adventure, we will 
sometimes glance quickly at certain unusual forms, not pausing for 
rigorous proofs of existence; at other times we will be more rigorous 
but allow ourselves to operate within the Klein or Poincare models 
where our familiar Euclidean tools are available, instead of laboriously 
reasoning directly from the hyperbolic axioms. Hopefully, by the end 
of this excursion, the terrain will become sufficiently familiar to you 
that you will be comfortable enough to make further explorations with 
other guides. 

AREA AND DEFECT 

In 1799, in answer to a letter from Farkas Bolyai in which Bolyai 
claimed to have proved Euclid's fifth postulate, Gauss wrote: 

. . . the way in which I have proceeded does not lead to the desired 
goal, the goal that you declare you have reached, but instead to a doubt 
of the validity of [Euclidean] geometry. I have certainly achieved 
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FIGURE IO.I Area = bh. 

results which most people would look upon as proof, but which in my 
eyes prove almost nothing; if, for example, one can prove that there 
exists a right triangle whose area is greater than any given number, then 
I am able to establish the entire system of [Euclidean] geometry with 
complete rigor. Most people would certainly set forth this theorem as 
an axiom; I do not do so, though certainly it may be possible that, no 
matter how far apart one chooses the vertices of a triangle, the triangle's 
area still stays within a finite bound. I am in possession of several 
theorems of this sort, but none of them satisfy me. 1 

One of the most surprising facts in hyperbolic geometry is that there 
is an upper limit to the possible area a triangle can have, even though 
there is not an upper limit to the lengths of the sides of the triangle. 

To see how this can be, we have to review the way in which area is 
calculated in Euclidean geometry. The simplest figure is a rectangle, 
whose area we calculate as the length of the base times the length of 
the side (Figure 10 .1). This formula is arrived at by noticing that 
exactly bh unit squares fill up the interior of the rectangle, where a unit 
square is a square whose side has length one. Keep in mind that the 
unit of length is arbitrary, so that if we measure area in square inches, 
we get a different number than if we measure in square feet (but the 
latter number is always proportional to the former, the proportionality 
factor being 144 = 122). 

From the area of a rectangle we can calculate the area of a right 
triangle. A diagonal of a rectangle divides it into two congruent right 
triangles, and since we want congruent triangles to have the same 
area, the area of the right triangle must be half the area of the rectan­
gle. (See Figure 10.2.) 

We can decompose the interior of an arbitrary triangle into the 
union of the interiors of two right triangles by dropping an appropriate 

1 R. Bonola (1955). 
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FIGURE I0.2 Area = tbh. 

altitude. Since we want the area of the whole to be the sum of the area 
of its parts, we find the area of the triangle to be }bi h + fb2h, and since 
b = bi + b2 , we again get half the base times the height for the area of 
a general triangle (Figure 10.3). 

You can see that by taking band h to be sufficiently large, the area 
fbh can be made as large as you like. 

So why doesn't this work equally well in hyperbolic geometry? 
Because the whole system of measuring area is based. on square units, 
and as we have seen (Lemma 6.1) rectangles (in particular, squares) 
do not exist in hyperbolic geometry. 

What then does "area" mean in hyperbolic geometry? We can 
certainly say intuitively that it is a way of assigning to every triangle a 
certain positive number called its area, and we want this area function 
to have the following properties: 

1. Invariance under congroence. Congruent triangles have the same 
area. 

2. Additivity. If a triangle Tis split into two triangles Ti and T2 by a 
segment joining a vertex to a point of the opposite side, then the 
area of Tis the sum of the areas of Ti and T2 (Figure 10 .4). 

Having defined area, we then ask how it is calculated. It can be 
proved rigorously that in hyperbolic geometry the area of a triangle 
cannot be calculated as half the base times the height (see Moise, 
1990, p. 411). So how do you calculate it? Here we find one of the 

b, b, 

FIGURE 10.3 Area= tbh where b = b1 + b2 • 
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FIGURE 10.4 Area T= area T1 +area T2 • 

most beautiful aspects of mathematics, a direct relationship between 
two concepts that at first seem totally unrelated. You may have recog­
nized this relationship in reading area properties 1 and 2, for in 
Theorem 4. 7 and Exercise 1, Chapter 4, we proved that the defect also 
has these properties. Recall that in hyperbolic geometry the angle sum 
of any triangle is always less than 180 ° (Theorem 6.1), so that if we 
define the defect to be 180° minus the angle sum, we get a positive 
number. When a mathematician sees two functions with the same 
properties, he suspects they are related. Gauss discovered this rela­
tionship as early as 1794 (he was only 17 years old), and called it the 
first theorem in the subject. 2 

THEOREM 10.1. In hyperbolic geometry there is a positive constant k 
such that for any MBC 

1C 
area(MBC) = 

180 
k2 X defect(MBC). 

For the proof, which is not difficult although it is somewhat lengthy, 
see Moise ( 1990, p. 413). The theorem says that the area of any 
triangle is proportional to its defect, with proportionality constant 
( nl 180) k2• This constant depends on the unit of measurement, i.e., on 
whichever triangle is taken to have area equal to 1. 

We can now see why there is an upper limit to the area of all 
triangles. Namely, the defect measures how much the angle sum is 

z This theorem seems to imply that Euclidean and hyperbolic area theories have little in 
common. Yet J. Bolyai discovered a wonderful theorem on area that is valid in hotlz geometries. 
Define the area of a polygon to be the sum of the areas of the triangles used to triangulate the 
polygon. (It is not difficult to show that this definition does not depend on the choice of 
triangulation.) Bolyai' s theorem states that two polygons Sand S' have the same area if and only 
if for some n, polygon S (respectively, S') has a triangulation {T1 , ••• , T.} (respectively, 
(T;, ... , T~}) such that 1j =i Tj for all}= 1, ... , n. (For a proof, see E. E. Moise ( 1990, 
pp. 394-410). To appreciate the depth of this theorem, try to prove it for two rectangles in the 
Euclidean plane.) 
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less than 180. Since the angle sum can never get below 0, the defect 
can never get above 180. Thus, we have the following corollary. 

COROLLARY. In hyperbolic geometry the area of any triangle is at 
most nk2• 

Of course, there is no finite triangle whose area equals the maximal 
value nk2, although we can approach this area as closely as we wish 
(and achieve it with an infinite trebly asymptotic triangle). However, 
J. Bolyai showed how to construct a circle of area nk2 and a regular 
4-sided polygon with a 45 ° angle that also has this area (see Exercise 
29 or Bonola, 1955, pp. 106-110). 

If we interpret hyperbolic geometry in our physical world, it is clear 
that since defects of terrestrial triangles are immeasurably small, 
while their areas are measurable, the proportionality constant k2 must 
be extremely large. According to Kulczycki ( 1961, pp. 153-155) the 
measurements of the parallaxes of fixed stars "elicit that the constant k 
is not less than about six hundred trillion miles." Thus, k2 > 36 X 
1028• These measurements are based on the fact that the right triangle 
whose one side is half the major axis of the earth's orbit around the sun 
and whose opposite vertex is at a fixed star has defect less than the 
parallax of the star (Figure 10.5). Of course, since Einstein, we do not 
use hyperbolic geometry to model the geometry of the universe. 

C Star 

FIGURE 10.5 Defect (6.ACM) 0 = 90° - (1:CAM) 0 
- (1:ACM) 0 < 90° -

(1'.:CAM) 0 =parallax. 
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THE ANGLE OF PARALLELISM 

Recall that given any line I and any point P not on/, there exist limiting 
parallel rays PX and i>Y to I that are situated symmetrically about the 
perpendicular PQ from P to I (Figure 10.6; see Chapter 6). We proved 
that -O(PQ == <tYPQ (Theorem 6.6), so either of these angles can be 
called the angle of parallelism for P with respect to /. 

It is not difficult to show that the number a of radians in the angle of 
parallelism depends only on the distance d from P to Q, not on the 
particular line /or the particular point P (see Major Exercise 5, Chap­
ter 6). In the notation used after the proof of Theorem 6.6, a = 
(n/180)Il(PQ) 0

• 

The following formula relating a and dwas discovered by J. Bolyai 
and Lobachevsky. 

THEOREM 10.2. Formula of Bolyai-Lobachevsky: 

a 
tan - = e-d!l 

2 

where k is the constant whose square occurs in the proportionality 
factor of area to defect in Theorem 10.1. 

This is certainly one of the most remarkable formulas in all of 
mathematics, and it is astonishing how few mathematicians know it. In 
this formula the number e is the base for the natural logarithms (e is 
approximately 2. 718 . . . ) , and tan a/2 is the trigonometric tan­
gent of half of a. Proofs of this formula will be found in Kulczycki 
(1961, §20) and in Borsukand Szmielew (1960, Chapter6, §26). We 
have checked this formula for the Poincare disk model (where k = 1) 
-see Theorem 7.2, p. 256. 

p 

FIGURE 10.8 

~ 
x y 
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CYCLES 

The various proofs of the Bolyai-Lobachevsky formula (Theorem 
10.2) all make use of a curve that is peculiar to hyperbolic geometry, 
called either a limiting curve or a horocycle in the literature. It is ob­
tained as follows (see also Exercises 41-44, Chapter 9). 

Start with a line /, point Q on /, and erect perpendicular PQ to I 
through Q. Then consider the circle o with center P and radius PQ, 
which is tangent to I at Q (see Figure 10. 7). Now let P recede from I 
along the perpendicular. The circle o will increase in size, remaining 
tangent to I, and will approach a limiting position as P recedes arbi­
trarily far from Q. In Euclidean geometry the limiting position of o 
would just be the line /, but in hyperbolic geometry the limiting 
position of o is a new curve h called a limiting curve or horocycle. 

We can visualize this in the Poincare model as follows. Let /be a 
diameter of the Euclidean circle y whose interior represents the hy­
perbolic plane, and let Q be the center of y. It can be proved that the 
hyperbolic circle with hyperbolic center P is represented by a Euclid­
ean circle whose Euclidean center R lies between P and Q (Exercise 
P-5, Chapter 7); see Figure 10.8. 

As P recedes from Q toward the ideal point represented by S, R is 
pulled up to the Euclidean midpoint of SQ, so that the horocycle his a 
Euclidean circle tangent toy at Sand tangent to I at Q. It can be shown 
in general that all horocycles are represented in the Poincare model by 
Euclidean circles inside y and tangent toy. Moreover, all the Poincare 
lines passing through the ideal point Sare orthogonal to h; a hyperbolic 
ray from a point of h out to the ideal point Sis called a diameter of h (see 
Chapter 9, Exercises 41, 44, and 46). 

p 

FIGURE 10.7 Q 
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s 

Q 

FIGURE 10.8 

In the Poincare model two horocycles tangent toy at Sare said to be 
concentric (see Figure 10.9). It is by studying the ratio of correspond­
ing arcs on concentric horocycles that the Bolyai-Lobachevsky for­
mula can be derived (see Kulczycki, 1961, §18). 

There is an analogous construction in hyperbolic space called the 
horosphere. Instead of taking the limit of circles to get the horocycle, 
one takes the limit of spheres to get the horosphere or limiting sutface. 

Another strange curve in hyperbolic geometry that has no Euclid­
ean counterpart is the equidistant curve (Figure 10.10). Start with a 
line I and a point P not on /. Consider the locus of all points on the same 
side of I as P and at the same perpendicular distance from I as P. In 
Euclidean geometry this locus would just be the unique line through P 
parallel to /, but in hyperbolic geometry it is not a line, it is the 
hypercycle, orequidistantcurv~ throughP. 

In the Poincare model let A and B be the ideal endpoints of /. It 
turns out that the equidistant curve to I through P is represented by 

s 

FIGURE 10.9 Concentric horocycles. 
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p 

Q 

FIGURE IO.IO Equidistant curve. 

the arc of the Euclidean circle passing through A, B, and P (Chapter 9, 
Exercises 40, 45, and 47). This curve is orthogonal to all Poincare 
lines perpendicular to the line I. 

In the Euclidean plane three points either lie on a uniquely deter­
mined line or on a uniquely determined circle. Not so in the hyperbo­
lic plane - look at the Poincare model. A Euclidean circle represents: 

1. A hyperbolic circle if it is entirely inside y; 
2. A horocycle if it is inside y except for one point where it is tangent 

to y; 
3. An equidistant curve if it cuts y nonorthogonally in two points; 
4. A hyperbolic line if it cuts y orthogonally. 

It follows that in the hyperbolic plane three noncollinear points lie 
either on a circle, a horocycle, or a hypercycle accordingly as the 
perpendicular bisectors of the triangle are "concurrent" in an ordi­
nary, ideal, or ultra-ideal point-see the last section of this chapter. 

THE PSEUDOSPHERE 

One of the difficulties with the Poincare model is that, although it 
faithfully represents angles of the hyperbolic plane (i.e., it is a confor­
mal model), it distorts distances. So it is natural to ask whether another 
model exists that also represents hyperbolic lengths faithfully by Eu­
clidean lengths. If there is such a model, it would be called isometric. 
An equally natural idea is to seek as a model some surface in Euclidean 
three-dimensional space. The lines of the hyperbolic plane would 
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FIGURE 10.11 

then be represented by geodesics on the surface, and we would expect 
the surface to be curved so as to mirror our expectation that hyperbolic 
lines are "really curved." (See Appendix A for the definition of "geo­
desic." If a shortest path exists on a surface between two given points, 
it must be an arc of a geodesic; but conversely, an arc of a geodesic 
need not be the shortest path, for on a sphere, there are two arcs of one 
great circle joining two points, and if the points are not antipodal, one 
arc is shorter.) 

A difficult theorem of Hilbert (see Do Carmo, 197 6, p. 446) states 
that it is impossible to embed the entire hyperbolic plane isometrically 
as a surface in Euclidean three-space. On the contrary, it is possible to 
embed the Euclidean plane isometrically in hyperbolic space, as the 
surface of the horosphere (see Kulczycki, 1961, § 17). This result, 
proved by both J. Bolyai and Lobachevsky, was already recognized by 
Wachter in 1816.3 

But all is not lost. It turns out to be possible to embed a portion of 
the hyperbolic plane isometrically in Euclidean space, the portion 
called a !torocyclic sector, bounded by an arc of a horocycle and the two 
diameters cutting off this arc. Such a sector in the Poincare model is 
shown in Figure 10.11. 

The surface that represents this region isometrically is called a 
pseudosp!tere. It is obtained by rotating a curve called a tractrix around 
its asymptote. It looks like an infinitely long horn. (In this representa­
tion the two diameters of the horocyclic arc have been identified-

3 For those who understand this language, strangely enough there does exist a continuously 
differentiable embedding of the hyperbolic plane into Euclidean three-space. This was proved 
in 1955 by N. Kuiper, using analytic methods (see lndagariones Ma1/wna1icae, 17: 683). It is 
known that no "nice," e.g., C2, embeddings exist. 
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FIGURE 10.12 

pasted together-so that the mapping of the sector into Euclidean 
space is actually only an embedding of the region between the diame­
ters.) The tractrix is characterized by the fact that the tangent from 
any point on the curve to the vertical asymptote has constant length a.• 
See Figure 10.12. 

F. Minding was the first to publish an article about the pseudo­
sphere, in 1839, but Gauss had written an unpublished note about it 
around 1827, calling it "the opposite of a sphere." Curiously, neither 
of them recognized that it could be used to prove the consistency of 
hyperbolic geometry, as Beltrami did in 1868. The pseudosphere is 
related to the hyperbolic plane as a cylinder is to the Euclidean plane. 

The representation on the pseudosphere enables us to give some 
geometric meaning to the fundamental constant k that appears in 
Theorems 10.1and10.2. The point is that there is a way (discovered 
by Gauss) of measuring the curvature of any surface. We cannot give 
the precise definition, since it involves a knowledge of differential 
geometry (see Coxeter, 1969; Hilbert and Cohn-Vossen, 1952; or 
Appendix A of this book). In general, the curvature K varies from point 
to point, being close to zero at points where the surface is rather flat, 
large at points where the surface bends sharply. For some surfaces the 
curvature is the same at all points, so naturally these are called surfaces 
of constant curvature K. An important property of such surfaces is that 
figures can be moved around on them without changing size or shape. 

4 The Dutch physicist Huygens called the tractrix the "dog curve" because it resembles the 
curve described by the nose of a dog being dragged reluctantly on a leash. 
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In 1827, Gauss proved (for constant K) a fundamental formula 
relating the curvature, area, and angular measure. He took a geodesic 
triangle MBC with vertices A, B, and C and sides geodesic segments. 
By integration, he calculated the area of the triangle. He determined 
that, if (4:AY denotes the radian measure of angle A, then 

KX area MBC = (4:Ay+ (<tBy+ (<tCy- n. 

He then showed what this meant by considering the three possible 
cases: 

Case I. K is positive, hence, both sides of the equation are positive. 
In this case Gauss' formula shows that the angle sum in radians of a 
geodesic triangle is greater than n (or in degrees, greater than 180 °), 
and that the area is proportional to the excess (the number on the right 
side of the equation), with a proportionality factor of 1 I K. An example 
could be the surface of a sphere of radius r, whose curvature is K = 
l/r2• The larger the radius, the smaller the curvature, and the more 
the surface resembles a plane. (Gauss' formula in the special case of a 
sphere was already discovered by Girard in the seventeenth century.) 
According to a theorem of H. Liebmann, H. Hopf, and W. Rinow, 
spheres are the only complete surfaces of constant positive curvature 
in Euclidean three-space, so that the elliptic plane cannot be embed­
ded in Euclidean three-space either. 

Case 2. K = 0. In this case Gauss' formula shows that the angle 
sum in radians is equal to n. An example would be the Euclidean 
plane; another example is an infinitely long cylinder. 

Case 3. K is negative. In this case Gauss' formula shows that the 
angle sum in radians is less than n, and the area is proportional to the 
deject. An example of such a surface is the pseudosphere. Since the 
pseudosphere represents a portion of the hyperbolic plane isometri­
cally, we can compare Gauss' formula with the formula in Theorem 
10.1 relating area to defect. The comparison gives K = -1 /k2. Thus, 
- 1 I k2 is the curvature of the hyperbolic plane. 
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Here we can recapture the analogy with case 1 by setting r = ik, 
where i = .J-1. Then K = l /r2 , so that the hyperbolic plane can be 
described as a "sphere of imaginary radius r = ik," as Lambert noticed 
(see Chapter 5). 

Finally, notice that ask gets very large, the curvature K approaches 
zero, and the geometry of the surface resembles more and more the 
geometry of the Euclidean plane. It is in this sense that Euclidean 
geometry is a "limiting case" of hyperbolic geometry. 

We will also see in the next sections that the geometry of an "infini­
tesimal region" in the hyperbolic plane is Euclidean. 

HYPERBOLIC TRIGONOMETRY 

Trigonometry is the study of the relationships among the sides and 
angles of a triangle. We reviewed a few formulas of Euclidean trigo­
nometry in Exercises 22 and 23 of Chapter 5. There, the theory of 
similar triangles, which is only valid in Euclidean geometry, was used 
to establish definitions. It defined, for example, the sine of an acute 
angle to be the ratio of the opposite side to the hypotenuse in any right 
triangle having that acute angle as one of its angles (similarly for the 
cosine, tangent, and other trigonometric functions). We will need to use 
these functions for hyperbolic trigonometry. What can this mean, 
when these functions have been defined in Euclidean geometry? 

An evasive answer is to do hyperbolic trigonometry only in a confor­
mal Euclidean model such as a Poincare model; since angles are 
measured in the Euclidean way, the sine, cosine, and tangent of an 
angle have their usual Euclidean meaning. This answer will have to 
suffice for those readers who have not yet studied infinite series. 

The rigorous answer is to redefine these trigonometric functions 
purely analytically, without reference to geometry, and then apply 
them to the different geometries. The definition is in terms of the 
Taylor series expansions: 

xZn+l 
sinx= L (-1)"---

n=o (2n+l)! 

xZ" 
cos x= L (-1)"--

,,-o (Zn)! 
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(and tan x =sin xlcos x, etc.). In good calculus texts, one can find 
proof that these series converge for all x (by the ratio test). Good 
calculus texts will also show bow to develop all the familiar formulas 
for these circular functions (so called because x =cos fJ and y =sin fJ 
are parametric equations for the Cartesian unit circle x2 + y2 = 1; in 
particular, this equation and the Pythagorean theorem imply that a 
right triangle in the Euclidean plane with legs of length sin fJ and cos (} 
has hypotenuse of length 1, so that sin fJ is indeed the ratio of opposite 
side to hypotenuse for the appropriate acute angle in that triangle). 

Hyperbolic trigonometry involves, in addition to the circular func­
tions, the hyperbolic functions, defined analytically by 

(1) 
r-e-" 

sinh x = 
2 

r+e-" 
cosh x= 

2 

(and tanh x = sinh x/cosh x, etc.). These functions were introduced 
by Lambert. Their graphs are shown in Figure 10.13. The hyperbolic 

y=cosh x 

y=I 

/ 
/ 

y 

I 
I 

I 

I 
I 
I 

I y=sinh x 
I 

I 
I 

,,___.__~ ....... ;. ................................ . 
I 

/ 

I 

I y=-1 
·································"/········· ............................................... . 
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sine and cosine have the Taylor series expansions 

(2) 
oo xZ•+l 

sinhx= ~(Zn+ l)! 
oo xZ• 

cosh x= L -(Z )I' .-o n. 

which are obtained from the expansion of the circular sine and cosine 
by omitting the coefficients (-1 )"; this can be seen by recalling that 
the Taylor series for the exponential function is 

oo x" 
e"=L1· 

.-on. 

In fact, by introducing the imaginary number i = ,/-1 we see that 

. h .. x 
Sill X = t Sill-: 

t 

x 
cosh x =cos-:. 

t 

The name "hyperbolic functions" stems from the identity 

(3) 
eZ" + 2 + e-Zx eZ" - 2 + e-Zx 

cosh2 x - sinh2 x = - = 1 
4 4 

from which the parametric equations x = cosh () and y = sinh () give 
one branch of the hyperbola x2 - y2 = 1 in the Cartesian plane. (Here 
the number () has the geometric interpretation of twice the area 
bounded by the hyperbola, the x axis, and the line joining the origin to 

the point (cosh 8, sinh 8). There is an analogous interpretation for() 
for the circular functions when we replace the hyperbola with the 
circle.) 

(You may well wonder what this hyperbola in the Cartesian model 
for Euclidean geometry has to do with hyperbolic geometry! Nothing, 
so far as I know. Felix Klein coined the names "hyperbolic" and 
"elliptic" geometries because lines in these geometries have two and 
zero ideal points at infinity, respectively; this is analogous to affine 
hyperbolas and ellipses, which have two and zero points at infinity, 
respectively. A Euclidean line has only one ideal point, and this is 
analogous to an affine parabola, which has one point at infinity.) 

Here is a list of identities for hyperbolic and circular functions that 
will be used in the sequel. (Define tanh x = sinh x/cosh x.) 
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Hyperbolic 

cosh2 x - sinh2 x = 1 

1 - tanh2 x = sech2 x 

sinh (x ± y) = sinh x cosh y 
± cosh x sinh y 

cosh (x ± y) =cosh x cosh y 
± sinh x sinh y 

tanh x + tanh y 
tanh (x + y) = ------'--

1 + tanh x tanh y 

x coshx-1 
sinh2 - = ----

2 2 

x cosh x + 1 
cosh2 - = ----

2 2 

x cosh x- 1 
tanh2 - = ----

2 cosh x + 1 

x sinh x 
tanh-=----

2 coshx+l 
coshx-1 

sinh x 

x x 
sinh x = 2 sinh - cosh -

2 2 

sinh x ± sinh y 
= 2 sinh t (x ± y) cosh t (x + y) 

cosh x + cosh y 
= 2 cosh t (x + y) cosh t (x - y) 

cosh x - cosh y 
= 2 sinh t (x + y) sinh t (x - y) 

Ill 

Circular 

cos2 x + sin2 x = 1 

1 + tan2 x = sec2 x 

sin (x ± y) =sin x cosy 
±cos x sin y 

cos (x ± y) = cos x cosy 
+sin x sin y 

401 

tan x +tan y 
tan (x + y) = ------'--

1 - tan x tan y 

x 1-cosx 
sin2 -=----

2 2 

cosZ~= 1 +cosx 
2 2 

Z
x 1-cosx 

tan -= 
2 l+cosx 

x smx 
tan-= 

2 l+cosx 
1-cosx 

Sill X 

x x 
sin x = 2 sin - cos -

2 2 

sin x ±sin y 
= 2 sin t (x ± y) cost (x + y) 

cosx+cosy 
= 2 sin t (x + y) cost (x - y) 

cos x-,cos y 
= 2 sin t (x + y) sin t (x - y) 

We are going to state the formulas of hyperbolic trigonometry under the 
simplifying assumption that k = 1 (where k is the constant in Theorems 
10.1and10.2 and in case 3,p. 397); this can be shown to mean that we 
have chosen our unit of length so that the ratio of the length of 
corresponding arcs on concentric horocycles is equal to e when the 
distance between the horocycles is 1. This choice is entirely analogous 
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to the choice of unit of angle measure such that a right angle has 
(radian) measure n/2-it makes the formulas come out nicely. For 
example, the area of a triangle is equalto its defect under this conven­
tion (Theorem 10.1), provided we now (and henceforth) measure 
defect in radians instead of degrees. Furthermore, the fundamental 
formula of Bolyai-Lobachevsky for the radian measure of the angle of 
parallelism (Theorem 10.2) becomes 

(4) TI(x) = 2 arctan e-". 

Straightforward calculation using double angle formulas for the circu­
lar functions then yields the following formulas: 

(5) 
(6) 
(7) 

sin TI(x) = sech x = 1/cosh x 
cos TI(x) = tanh x 
tan TI(x)= csch x = 1 /sinh x. 

Thus, the function TI provides a link between the hyperbolic and 
circular functions. 

Given MBC, we will use the standard notation a = BC, b = AC, 
c =AB for the lengths of the sides. We will write expressions such as 
cos A to abbreviate "cosine of the number of radians in <r..A," and we 
repeat that this does not mean the ratio of adjacent side to hypotenuse 
in a hyperbolic triangle. We will develop the first formulas ( 10) of 
hyperbolic trigonometry from the Poincare model, i.e., using Euclid­
ean geometry; after that we can deduce the remaining formulas with­
out referring to the Poincare model. For segments that are part of 
diameters of the absolute circle K, there is ambiguity in the notation 
for length; as in Chapter 7, we will write AB for the Euclidean length 
and d(AB) for the Poincare length. We will take Kto have radius 1. For 
a segment OB with one endpoint at the center 0 of K, the proof of 
Lemma 7.4, p. 255, showed that 

d(OB) = 1 +OB 
e -· 

1-0B 

Writing, for brevity, x = d(OB) and t =OB in this formula, a little 
algebra gives the basic relations 

(8) . h 2t sm x=--1 - ,2 
1+12 

coshx=--1 - ,2 



Hyperbolic Trigonometry Ill 403 

so that 

(9) 
2t 

tanh x = --= F(t) 
1 + ,z ' 

where F is the isomorphism of the Poincare model onto the Klein 
model defined in Chapter 7, p. 258. 

THEOREM 10.3. Given any right triangle MBC, with <tC right, in the 
hyperbolic plane (with k = 1). Then 

( 10) 

(11) 

(12) 

Proof 

. A sinh a sm =--
sinh c 

cos A= tanh b 
tanh c 

cosh c = cosh a cosh b = cot A cot B 

cos A 
cosha=--

sin B 

Before indicating a proof of this theorem, let us compare these 
formulas to the formulas for a Euclidean right triangle. The first 
equality in formula ( 11) is the hyperbolic analogue of the Pythago­
rean theorem; for if we expand both sides in Taylor series using (2), 
the formula becomes 

1 +fez + ... = 1 + f (aZ + bZ) + ... 
And if we neglect the higher-order terms (when MBC is suffi­
ciently small), this reduces to 

cZ = aZ + bZ. 

Similarly (when ..6.ABC is sufficiently small), formula (10) be­
comes approximately 

. A a sm =-
c 

b 
cos A=-. 

c 

Let us be more precise: Consider right triangles with fixed <tA and 
with c~ 0. Then by Proposition 4.5, a~ 0 (since a< c). By for­
mula (2) and the geometric series formula, 

1 1 1 
-- - = - ( 1 - u + u2 - u3 + · · · ) , 
sinh c c( 1 + u) c 
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where Jim u = 0. Thus, 
c--+O 

"h ( 2 4 ) sm a ___ a 1 +_a +_a + 2 3 + · · · (1-u+u -u · · ·) 
sinh c c 3! 5! 

and we see that 

I
. a 

1
. sinh a . 

1m - = 1m -.-- = sm A. 
c--+O C c--+O s1nh C 

A similar argument applies to cos A. So it is appropriate to say that the 
hyperbolic trigonometry of "infinitesimal" triangles is Euclidean. 

Formula (12) and the second equality in formula (11) have no 
counterparts in Euclidean geometry because in Euclidean geome­
try the angles do not determine the lengths of the sides. 

All the geometry of a right triangle is incorporated in formula 
( 10), for all the other formulas follow from ( 10) by pure algebra and 
identities. Namely, the identity sin2 A + cos2 A = 1 and ( 10) give 

tanh2 b + sinh2 a 
1=---

tanh2 c sinh2 c 

sinh2 c = cosh2 c tanh2 b + sinh2 a 

1 + sinh2 c = cosh2 c ( ;~:~: ~) + 1 + sinh2 a 

cosh2 c cosh2 b = cosh2 c sinh2 b + cosh2 a cosh2 b 
cosh2 c(cosh2 b- sinh2 b) = cosh2 a cosh2 b 

cosh2 c = cosh2 a cosh2 b, 

which gives the first equality in ( 11). Applying ( 10) to B instead of 
A gives 

. B sinh b 
Sin =--

sinh c 

so that we get (12): 

cos A tanh b sinh c cosh c --= ----= --= cosh a 
sin B tanh c sinh b cosh b · 

Multiplying this by the analogous formula for cosh b yields the 
second equality in ( 11). 
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Finally, to prove formula (10), we do the geometry under the 

assumption that vertex A of the right triangle coincides with the 
center 0 of the absolute (this can always be achieved by a suitable 
inversion as in the proof of SAS, p. 254. The points B', C' in Figure 
10.14 are the images of B, C under the isomorphism F (see also 
Figure 7.33). From Euclidean right triangle ~B'C'O and formula 
(9) we get 

OC' tanh b 
cos A===--. 

OB' tanh c 

Let B" be the other intersection of 00 with the orthogonal circle 
K1 containing Poincare line BC. By Proposition 7 .5, p. 246, B" is the 
inverse of B in K, so that 

- - - 1 1-11- 2 
BB"= OB" - OB= - - t = --= --

t t sinh x 

in the notation of formula (8) . In the standard notation, 

BB" = -
2
- and CC" -

2 
sinh c - sinh u· 

G 

FIGURE 10.14 
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Let Bi be the foot of the perpendicular from the center Oi of Ki to 
BB", so that Bi is the midpoint of BB" (base of isoceles triangle). 
Then 4'.:BOiBi = 4'.:B (=4'.:GBBi in Figure 10.14, where GB is the 
tangent to Ki at B), because both these angles are complements of 
4'.:BiBOi. Hence, 

BB BB" BB" sinh b 
sinB=--i =--=--=--

OiB 20iC CC" sinh c. 

Since 4'.:B is an arbitrary acute angle in a right triangle, we can 
relabel, interchanging A and B, to get the second formula in 
(10) .• 

THEOREM 10.4. For any MBC in the hyperbolic plane (with k = 1 
and standard notation for the sides) 

( 13) 

( 14) 

(15) 

cosh c = cosh a cosh b - sinh a sinh b cos C 

sin A sin B sin C 
--=--=--
sinh a sinh b sinh c 

h 
_cosAcosB+cosC 

cos c- . A . B . 
sm sm 

Formula ( 13) is the hyperbolic law of cosines and formula ( 14) is the 
hyperbolic law of sines; they are analogous to the Euclidean laws and 
reduce to the latter for "infinitesimal" triangles as before. Formula 
(15) has no Euclidean analogue. 

This theorem can be proved by dropping an altitude to create two 
right triangles and by applying the preceding theorem, some algebra, 
and identities such as 

cosh(x + y) = cosh x cosh y + sinh x sinh y. 

We leave the details as an exercise. 

Note on Elliptic Geometry. Analogously, elliptic geometry 
with k = 1 can be developed from its model on a sphere of radius 1 
with antipodal points identified (see Kay, 1969, Chapter 10). The 
elliptic law of cosines is 

cos c = cos a cos b + sin a sin b cos C 
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and the elliptic law of sines is 

sin A sin B sin C 
--=--=--
sm a sin b sin c 

In a triangle with right angle at C, the elliptic analogue of formula ( 10) 
IS 

. sma 
smA=-.­

sm c 

tan b 
cos A=--. 

tan c 

In each of these formulas, if we replace the ordinary trigonometric 
functions by the corresponding hyperbolic trigonometric functions 
whenever the argument is the length of a side, we get the formulas 
above for hyperbolic geometry with k = 1. 

CIRCUMFERENCE AND AREA OF A CIRCLE 

THEOREM 10.5. The circumference C of a circle of radius ris given by 
C= Zn sinh r. 

Proof 
Of course C is defined as the limit lim p,, of the perimeter p,, of the 

regular n-gon inscribed in the circle (Figure 10.15). Recall first 

FIGURE IO.IS 
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how the formula C = Znr is derived iri Euclidean geometry. From 
Figure 10 .15 and Euclidean trigonometry we see that 

n [n 1 (n)J 1 (n)s p,, = rZn sin - = rZn - - - - + - - -
n n 3! n 5! n 

... ] 
= Znr - Zrn2 [~ - _!_ (!:)3 + ... ] 

n2 3! 5! n 

lim p,, = Znr. ,, ...... ,,,, 

In the hyperbolic case, we use instead formula ( 10) of Theorem 
10.3 to get 

sinh (pf Zn) = sinh r sin ( nl n), 

which expanded in series becomes 

./!__ [ 1 + _!_ (./!_)2 + _!_ (./!_)4 + ... ] 
Zn 3! Zn 5! Zn 

=!:sin r [1 - _!_ (!:)
2 

+ _!_ (!:)
4 

- • • ·] 
n 3! n 5! n 

(where p = p,, for typographical simplicity). Multiplying both sides 
by Zn and taking lim gives the formula we seek. (Note once more 

that for a circle of "infinitesimal radius," the hyperbolic formula 
reduces to the Euclidean formula.) • 

This theorem enables us to rewrite the law of sines ( 14) in a form that 
is valid in neutral geometry. 

COROLLARY (J. Bolyai). The sines of the angles of a triangle are to one 
another as the circumference of the circles whose radii are equal to the 
opposite sides. 

Bolyai denoted the circumference of a circle of radius r by Or and 
wrote this result in the form 

Oa:Ob:Oc= sin A: sin B:sin C. 

Consider next formulas for area. By Theorem 10.1 and our conven­
tion k = 1, the area Kofa triangle is equal to its defect in radians, i.e., 

K = n - A - B - C. 
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Let us calculate this defect for a right triangle with right angle at C, so that 
K = n/2 - (A+ B). 

THEOREM 10.6. tan K/2 = tanh a/2 tanh b/2. 

(For Euclidean geometry, the formula for area K is K/2 = a/2 · b/2.) 

Proof 
Here are the main steps in the proof: 

h
z a hz b ( cosh a) - 1 ( cosh b) - 1 

tan - tan - = ----------
2 2 (cosh a) + 1 (cosh b) + 1 

-

1 - sin(A + B) cos (A - B) 

1 + sin(A + B) cos (A - B) 

1-cosK 

l+cosK 

K 
= tan2 -2. 

Steps 1 and 4 are just identities for tanh2 (x/2) and tan2 (x/2), 
respectively. Step 2 follows from substituting formula ( 12) for 
cosh a and cosh b and doing a considerable amount of algebra 
using trigonometric identities. 5 And step 3 just uses the identity 
cos (n/2 - x) =sin x. • 

THEOREM 10.7. The area of a circle of radius r is 4n sinh2 (r/2). 

Proof 
Here again we define the area A of a circle to be the limit lim K,, of 

tt--+00 

the area K,, of the inscribed regular n-gon. Referring to Figure 10.15 
again, using the previous theorem, and writing a, K,p, for a,,, K,,,p,,, 
we have 

K p a 
tan - = tanh- tanh-. 

4n 4n 2 

5 See Exercise 5. From now on, you will be offered the opportunity to exercise your algebraic 
technique to fill in such gaps. 
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If we multiply both sides by 4n and pass to the limit as n ~ oo, we 
obtain 

(16) 
r 

A= Ctanh-
2' 

using Jim p,, = C, Jim a,, = r, continuity of tan and tanh, and the 
11-+00 11-+00 

sen es 

4n tan ..!:._ = K + K (..!:....)
2 

+ 
4n 3 4n 

4n tanh .!!_ = p - /!... (L)2 

+ · · · . 
4n 3 4n 

Then we substitute in (16) the formula for Cfrom Theorem 10.5 
and use the identities 

h 
r sinh r 

tan -=----
2 cosh r+ 1 

sinh2 r = cosh2 r - 1 

2 sinh2 !:... = cosh r- 1 
2 

to obtain Theorem 10.7. • 

By expanding this formula in a series we can see how much larger is 
the area of a hyperbolic circle than a Euclidean circle with the same 
radius: 

A= n (rz + ~; + · · · )· 

Note on Elliptic Geometry. The formulas for circumfer­
ence and area of a circle of radius rare 

C= Zn sin r 

A= 4n sinZ (r/2). 

Bolyai's formula is valid in elliptic geometry (so it is indeed a theorem 
in absolute geometry). 



Saccherl and Lambert Quadrilaterals Ill 411 

SA.CCHERI A.ND LAMBERT qUA.DRILA.TERA.LS 

We next consider a Saccheri quadrilateral with base b, legs of length a, 
and summit of length c. You showed in Exercise 1, Chapter 6, that 
c > b. We now make this more precise. 

THEOREM 10.8. For a Saccheri quadrilateral, 

.he h 'hb 
Sill Z = COS a Sill Z. 

(Since cosh2 a= 1 + sinh2 a> 1, this tells us that sinh (c/2) > 
sinh (b/2), hence c > b.) 

Proof 
Theorem 10.8 is proved by letting d =AB' and()= (~' AB'Y in 
Figure 10.16, applying formula (13) from Theorem 10.4 to get 

cosh c = cosh a cosh d - sinh a sinh d cos 8. 

using formulas ( 10) and ( 11) from Theorem 10.3 to get 

cos () = sin (!!.. - ()) = sinh a 
2 sinh d 

cosh d = cosh a cosh b, 

and eliminating d to obtain 

FIGURE 10.16 

cosh c = cosh 2 a cosh b- sinh2 a 
= cosh2 a(cosh b- 1) + 1. 
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Finally, the identity 

gives the result. • 
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2 sinh2 .:_ = cosh x - 1 
2 

COROLLARY. Given a Lambert quadrilateral, if c is the length of a side 
adjacent to the acute angle and b is the length of the opposite side, 
then 

sinh c = cosh a sinh b, 

where a is the length of the other side adjacent to the acute angle (in 
particular, c > b). 

The corollary follows from representing the Lambert quadrilat­
eral as half of a Saccheri quadrilateral (see Figure 10.17). • 

There are additional remarkable formulas for Lambert quadrilat­
erals that we will derive next. They are based on the concept of 
complementary segments: these are segments whose lengths x, x• are 
related by 

( 17) 

The geometric meaning of this equation is shown in Figure 10.18, 
where the "fourth vertex" of the Lambert quadrilateral is the ideal 
point n. 

If we apply our earlier formulas (4) through (7) for the angle of 
parallelism, we obtain 

(18) 

a 

FIGURE 10.17 

c 

sinh x• = csch x 

T ---------, 
I 
I 
I 
la 
I 
I 
I 

L...l..h ___ _.__c.._ _________ _d 
b 
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x 

FIGURE 10.18 

( 19) 
(20) 

(21) 

x* 

cosh x• = coth x 
tanh x• = sech x 

x• 
tanh- = e-" 2 . 

Ill 413 

For example: sinh x• =cot Il(x*) =tan Il(x) = csch x by (7); for­
mula (21) follows from ( 18), ( 19), and the identity 

tanh (t/2) = (sinh t)/(1 + cosh t). 

THEOREM 10.9 (Engel's Theorem). There exists a right triangle with the 
parameters shown in Figure 10.19 if and only if there exists a Lambert 
quadrilateral with the parameters shown in Figure 10.20. Note that 
PQ is a complementary segment to the segment (not shown) whose 
angle of parallelism is ~A. 

The geometric meaning of Engel's theorem is shown in Figure 
10.21. It includes J. Bolyai's parallel construction (Figure 6.16), for if 

A 

FIGURE I0.19 
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R 

FIGURE 10.20 b 

B = X is the point between R and S such that PX = QR, Engel's 
theorem says (<tBACY= TI(PQ*), and since (<tQPXY= n/2 -
(<tBACy, (<tQPXY = TI(PQ), i.e., PX is limiting parallel to QR. 

Engel's theorem also says that the ray emanating from R limiting 
parallel to sP makes an angle with RS that is congruent to <tABC; and 
that the ray emanating from X limiting parallel to sP makes an angle 

--+ 
with XS that is congruent to the acute <tR of the Lambert quadrilat-
eral. 

Proof 
For the proof, start with a Lambert quadrilateral labeled as in 

P=A S=C 
FIGURE 10.21 
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R 

s--------P FIGURE 10.22 u 

Figure 10.22. We've already shown that 

(i) 
(i') 

sinh w = cosh z sinh v 
sinh z = cosh w sinh u. 
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Let (}=(~SPRY, d= PR. By Theorem 10.3, sinh w =sin(} 
sinh d= cos (n/2 - {}) sinh d= tanh v cosh d= tanh v (cosh u 
cosh w) , so that 

(ii) 

and by symmetry 

(ii') 

tanh w = tanh v cosh u 

tanh z = tanh u cosh v. 

Let <P =(~Ry. By the law of sines and Theorem 10.3, 

sin <P =sin (~QSRY =cos (~PSQY = tanh u 

sin QS sinh z sinh z tanh QS sinh z 

so by (i') and Theorem 10.3 we have 

••• • ,J,. tanh u cosh QS tanh u (cosh u cosh v) cosh v 
(111) sm 'P = = =---

and by symmetry 

(iii') 

sinh z sinh u cosh w cosh w 

• ,J,. cosh u 
Sm<p=--. 

cosh z 

Now let X be the point between R and S such that PX = z, and 
consider right triangle b.PSX (Figure 10.21). By (i'), (ii'), and 
(iii'), respectively, we get (using Theorem 10.3) 
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so that 
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. sinh u 
sm ( <tPXSY = -.-- = sech w 

smh z 
tanh u 

cos ( <tXPSY = --= sech v = tanh v* 
tanh z 

- cosh z 
cosh XS = --= csc </> 

cosh u 

(<tPXSY= Il(w) 
(<tX~~y = TI(v*) 

TI(XS) = </> 

by formulas (5), (6), and (5), respectively. Thus, if we relabeled P 
as A, X as B, and S as C, we would obtain right triangle MBC 
corresponding to our given Lambert quadrilateral as asserted. 

Conversely, given right triangle .6PSX, we can recover DPQRS 
by setting R equal to the unique point on SX such that TI(RS) = 
( <tPXSYand setting Q equal to the foot of the perpendicular from 
R to the line through P perpendicular to PS. • 

The correspondence in Theorem 10. 9 provides for a whole series of 
existence theorems. For example, it says that from the existence of a 
right triangle with parameters (a, TI(m), c, TI(/), b) we can deduce the 
existence of a Lambert quadrilateral with parameters(/*, c, TI(a), m, 
b), as in Figure 10.20, ordering the parameters by a clockwise pro­
gression in the figure. Now read the parameters backwards! This gives 

b 

FIGURE I0.23 
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FIGURE 10.24 a 

Figure 10.23, from which we deduce the existence of a second right 
triangle in Figure 10.24, having parameters (a, Il(c), m, Il(b*), /*). 

We can continue the process of reading these parameters back­
wards, obtaining a second Lambert quadrilateral, etc. We then end up 
with the existence of five Lambert quadrilaterals and four other right 
triangles which are implied by the existence of the first right triangle. 
The results are summarized in the following tabulation. 

MBC, 1'.:C right Lambert DSPQR, 1'.:R acute 

BC 1'.:B AB 1'.:A AC PQ QR 1'.:R RS SP 

a TI(m) c TI(/) b I* c TI(a) m b 

a TI(c) m TI(b*) I* c• m TI(/*) b* a 

I* TI(m) b* TI(a*) c• m• b* TI(c*) a• I* 

c• TI(b*) a• TI(/) m• b a• TI(m*) I c• 

m• TI(a*) I TI(c) b a I TI(b) c m• 

Note also that since Theorem 10.3 gave us formulas showing how a 
right triangle is uniquely determined by any two of its five parameters, 
Theorem 10.9 gives us the same result for a Lambert quadrilateral 
(e.g., starting with u and v, w is given by (ii), z by (ii'), and </> by (iii) in 
the proof of Theorem 10.9). 

COORDINATES IN THE HYPERBOLIC PLANE 

Choose perpendicular lines through an origin 0 and fix coqrdinate 
systems on each of them so that they can be called the u axis and v axis. 
For any point P, let U and V be the perpendicular projections of P on 
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p 

0 u u 

FIGURE I0.25 

these axes, and let u and v be the respective coordinates of U and V. 
We then have a Lambert quadrilateral DUOVP. We label the remain­
ing sides with coordinates w, z such that 

(22) tanh w = tanh v cosh u 
tanh z = tanh u cosh v 

(see Figure 10.25). Formulas (ii) and (ii') in the proof of Theorem 
10.9 showed that if Pis in the first quadrant (i.e., u > 0 and v > 0), 
then w =PU and z = PV. We also set 

(23) 
(24) 

x = tanh u, 
T= cosh u cosh w, 

y = tanh v 
X=xT, Y=yT. 

Then we call ( u, v) the axial coordinates, ( u, w) the Lobachevsky coordi­
nates, (x, y) the Beltrami coordinates, and (T, X, Y) the Weierstrass 
coordinates of point P. The latter two are the most important coordi­
nate systems, as is shown by the next long theorem. 

THEOREM 10.10 (still assuming k = 1). Assigning to each point P its pair 
(x, y) of Beltrami coordinates gives an isomorphism of the hyperbolic 
plane onto the Beltrami-Klein model. In particular, Ax+ By+ C = 0 
is an equation of a line in Beltrami coordinates if and only if A2 + 
B2 > C2, and every line has such an equation. The distance P1P2 

between two points is given in terms of Beltrami coordinates by 
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(25) PP Pt · P2 

cosh t 2 = II Pt llllP2ll' 

where P; = ( 1, X;, J;), the inner product Pt · p2 is defined by 

Pt· P2= 1-xtxz-YtYz· 

and llhll =>Ip;· P;· Similarly, if A;x + B;y + C; = 0 are the equations 
of two lines I;, i = 1, 2, intersecting in a nonobtuse angle of radian 
measure e, then 

(26) 

where now the inner product is defined by 

It · 12 = AtA2 + BtB2 - CtC2 

and 111;11 = >/I; • I; (in particular, 0 = It · 12 is the necessary and suffi­
cient condition for the lines to be perpendicular). 

Assigning to each point Pits triple ( T, X, Y) of Weierstrass coordi­
nates maps the hyperbolic plane onto the locus 

T?;;. 1, 

which is one of the two sheets of a hyperboloid in Cartesian three­
space. The equation of a line in Weierstrass coordinates is linear 
homogeneous (i.e., of the form AX+ BY+ CT= 0). 

Before giving the proof, note that the Weierstrass representation 
gives one interpretation of the hyperbolic plane as a "sphere of imagi­
nary radius i." Namely, if we replace the usual positive definite qua­
dratic form X 2 + Y 2 + T 2 (that measures distance squared from the 
origin) with the indefinite quadratic form X 2 + Y 2 - T 2, then the 
sphere of radius i with respect to this "distance" has equation 

xz+ y2-T2=i2=-l, 

which is the equation of a hyperboloid. This indefinite metric is the 
three-dimensional analogue of the metric determined by the form 
X 2 + Y 2 + Z2 - T 2 in four-dimensional space-time, which is used 
for special relativity (see Taylor and Wheeler, 1992). Note that the 
"lines" in the Weierstrass model are intersections with the sheet of 
the hyperboloid of Euclidean planes through the origin. To picture 
this model, just imagine one branch of the hyperbola T 2 - X 2 = 1 in 
the ( T, X) plane rotated around the Taxis. See Figure 7 .19. 
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Proof 
The proof of Theorem 10 .10 is based on the trigonometry of Lam­
bert quadrilaterals obtained in the preceding theorem. 

As the graph in Figure 10.13 showed, u ~ tanh u is a one-to-one 
mapping of the entire real line onto the open interval (- 1, 1). That 
the pairs (x, y) of Beltrami coordinates satisfy x + y2 < 1 follows 
from the fact that the perpendiculars to the axes at U and V inter­
sect if and only if lul < lvl* (see Figure 10.18), i.e., 

tanh2 u < tanh2 I vi* = sech2 v = 1 - tanh2 v 

(using formula (20) ). 
To derive the distance formula, introduce polar coordinates (r, 8) 

for point P in Figure 10.25 defined by 

r=OP 

8 _ {<t(XOPV 
-<t(XOPV 

if v ~ 0 

if v ~ 0. 

The relations with axial coordinates are then 

(27) 
tanh rcos (} = tanh u = x 
tanh r sin 8 = tanh v = y 

by formula ( 10) for the cosine of an angle in a right triangle and the 
identity sin 8 =cos (n/2 - 0). Hence, 

tanh2 r= tanh2 u + tanh2 v = x2 + y2• 

From the identity sech2 r = 1 - tanh2 r, we get 

cosh r= (1 - x2 - y2)-112 = llPll-1 

if p = ( 1, x, y), which is the distance formula when P 1 = P and 
P2 = 0. For general P1 and P2 , (27) gives 

cos (82 - 81) =cos 81 cos 82 +sin 81 sin 82 

= X1X2 + Y1Y1 

tanh r 1 tanh r2 • 

Suppose first 0, P1 , P2 are collinear, so that cosh P1P2 = 
cosh (r1 + r2). Since cos (82 - 81) = + 1, 

cosh P1P2 = cosh r1 cosh r2 - sinh r 1 sinh r2 cos (82 - 81) 

= cosh r1 cosh r2 [1 - tanh r 1 tanh r2 cos (82 - 81)]. 
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But this formula also holds when 0, P1 , P2 are not collinear by the 
law of cosines ( 13). Substituting the two preceding formulas gives 
the desired formula (25). 

To show that the mapping P---+ (x, y) sends hyperbolic lengths 
onto Klein lengths means reconciling formula (25) with the for­
mula in Exercise K-14, Chapter 7. This follows from a calculation 
based on the formula 

(28) 
tanh P1Pz = [(xi - Xz)z +(Yi - Yz)z - (x1Yz - XzY1)zp1z 

Pi • Pz 
and the identity 

1 1 + t 
arctanh t = - In --. 

2 1 - t 
(29) 

Formula (28) is obtained from (25) by means of the identity 
tanh2 t = 1 - cosh-2 t. (The term in brackets on the right side of 
(28) could be written as (p1 · Pz) 2 - llp1ll 2 llPzlf. Incidentally, the 
t occurring in formula (29) explains why the factor t appeared in 
the formula for Klein length in Theorem 7.4, p. 268.) 

Because P---+ (x, y) is an isometry, it is a collineation, so lines in 
the hyperbolic plane are mapped onto chords of the absolute in the 
Klein model, which have linear equations as described in the 
theorem. 

The formula ( 26) for cos 8 is an assertion about angle measure in 
the Klein model, once we pass to that model by means of the 
isomorphism P---+ (x, y). Suppose the two lines meet at point P0 

with coordinates (x0 , y0 ) and suppose we write the ith line as P:P;, 
where P; has coordinates (x;, y;), i = 1, 2. Then the coefficients in 
the equation for the ith line are given by A;= y1 - Yo, B; = x0 - X;, 
C; = X;Yo - Y;Xo. Suppose P 0 = 0, the center of the absolute. Then 
formula (26) reduces to 

X1Xz + Y1Yz 
COS 8 = (xi + yf} llZ(x~ + y~) l/Z' 

which is the Euclidean formula for the cosine of the angle <tP10P2 • 

But the Klein model is conformal at the special point 0, so we have 
verified ( 26) in this case. 

If P0 =I= 0, let us find a hyperbolic motion Tsuch that T(O) = P0 , 

and let Q; = r- 1 ( P;). Since T preserves angle measure, all we then 
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have to do is show that formula (26) is equal to the cosine of 
<tQ 1 OQ z. The natural candidate for Tis the reflection across the 
perpendicular bisector of OP0 • We need two lemmas (which are 
generalized in Exercise 9). 

LEMMA 10.1. The coordinates of the Klein midpoint M of 0 and Pare 

( 1 :llpll' 1 }llPll) 
where llPll = ,,/1 - x2 - y2 and P has coordinates (x, y). 

Proof 
Let r =OP; we've seen that cosh r = llPll-1, x = tanh r cos 8, y = 
tanh r sin 8. The coordinates (x', y') of M are then given by x' = 
tanh (r/2) cos 8, y' = tanh (r/2) sin 8; i.e., x' = x tanh (r/2)/ 
tanh r, y' = y tanh (r/2)/tanh r. But 

tanh (r/2) · sinh r . _co_s_h_r 

tanh r cosh r+ 1 sinh r 

( 
1 )-1 = 1 +-- = (1 +llpll)-1 .• 

cosh r 

LEMMA 10.2. The perpendicular bisector of OP0 has equation 
x0x + YoY + llPoll- 1=0, where llPoll = ,,/1 - (x5 + y5) and P0 has 
coordinates ( x0 , Yo). 

Proof 
The perpendicular bisector of OP 0 passes through the midpoint and 
has slope - x0/y0 (since Klein perpendicularity is the same as Eu­
clidean perpendicularity when one chord is a diameter of the abso-
1 ute). • 

If we now apply the general formula for reflection in the Klein 
model that you checked in Exercise K-16, Chapter 7, then Lemma 
10.2 implies that reflection across the perpendicular bisector of 
OP0 is given by 

x' = x[llPolF - llPollJ - Xo(XoX + YoY + llPoll - 1) 

llPolF - II Poll+ [Ii Poll - 1] (xox + YoY + llPoll - 1) 
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y' = y[llpolf - llPolll - Yo(xox + YoY + llPoll- 1) 
llPolf - llPoll + [i!Poll - 1] (xox + YoY +II Poll - 1) . 

423 

Using these formulas, another long calculation shows that formula 
(26) is equal to the cosine of <tQiOQ2 • 

As a check on the formula, note that cos 8 = 0 if and only if 
Ai A2 +Bi B2 + Ci (-C2) = 0, which equation says line Ii passes 
through the pole (A2 , B2 , -C2) of line /2 • 

We leave the assertions about the Weierstrass coordinates as an 
exercise. • 

THE CIRCUMSCRIBED CYCLE OF A TRIANGLE 

You learned in Exercise 9, Chapter 5, that the existence of a circum­
scribed cirnle for every triangle is equivalent to the Euclidean parallel 
postulate. The circumscribed circle exists if and only if the perpendic­
ular bisectors of the sides are concurrent in an ordinary point (Exer­
cise 12, Chapter 6). In Exercise 13, Chapter 6, and Major Exercise 7, 
Chapter 6, you showed that the perpendicular bisectors are always 
"concurrent" in an ideal or ultra-ideal point if the circumscribed circle 
does not exist. 

In the ultra-ideal case, you showed (see Figure 6.26) that the 
vertices A, B, C of the given triangle are all equidistant from the 
common perpendicular tto the perpendicular bisectors. This implies 
that they lie on an equidistant curve having t as an axis. According to 
our definition of "equidistant curve," it is required that A, B, Call lie 
on the same side of t. 

Some authors (e.g., Coxeter, Sommerville) define "equidistant 
curve" differently; i.e., they define it to be the locus of all points at the 
same distance from an axis t, no matter which side oft. These authors 
would designate our" equidistant curve" one of the two "branches" of 
theirs. Let us call the equidistant curve of Coxeter and Sommerville a 
doubly equidistant curve, indicating the union of two equidistant curves 
having the same axis, each being the reflection of the other across the 
axis. In Exercise 11 (a), Chapter 6, you showed that every triangle is 
circumscribed by three doubly equidistant curves whose axes are the 
lines that join pairs of midpoints of the sides (Figure 6.24). 
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Refer to the Poincare upper half-plane model: the Euclidean circle 
through A, B, and C is a hyperbolic circle if it lies entirely in the upper 
half-plane (compare Exercise P-5, Chapter 7, and Exercise 48, Chap­
ter 9); it is a horocycle with ideal center n if it is tangent to the x axis at 
Q (Exercise 46, Chapter 9), and its arc in the upper half-plane is an 
equidistant curve otherwise (Exercise 47, Chapter 9). 

Figure 10.26 shows the three doubly equidistant curves and a 
hyperbolic circle circumscribing MBC in this model. 

The next theorem gives trigonometric criteria to decide which type 
of cycle circumscribes MBC. 

THEOREM 10.11. With standard notation for MBC, let a be the 
length of a longest side, so that ~ is a largest angle. The cycle 
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A 

FIGURE 10.27 

circumscribing MBC is a 

Horocycle <=* sinh !!... 
Circle } 

Equidistant curve 2 

Proof 

< 

> 
< 

> 
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Consider first the case where the perpendicular bisectors are 
asymptotically parallel through an ideal point Q. According to 
Lemma 6.3, p. 215, Figure 10.27 holds, where A', B', C' are the 
midpoints. This shows that (~V= (<tC'AQV+ (<tB'AQY= 
Il(c/2) + TI(b/2). 

In case the perpendicular bisectors have a common perpendicu­
lar t, Figure 10.28 holds. 

Since <tC' AQ > <tC' AA and <tB' AQ > <tB' AI, we see that 

(<tAV> (<tC'AAY+ (<tB'AIV= TI(c/2) + TI(b/2). 

In case the perpendicular bisectors meet, we must have 

(<tAV < TI(c/2) + TI(b/2), 

since this is the only other possibility. Thus, the second criterion is 
established. 
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The derivation of the first criterion in terms of hyperbolic sines 
from the second criterion involves a calculation using identities and 
our earlier formulas. First, by the hyperbolic law of cosines ( 13), 

A 
_ cosh b cosh c - cosh a 

cos - . h b . h sm sm c 

= ( 2 sinh2 % + 1) ( 2 sinh2 ~ + 1 )- ( 2 sinh2 ~ + 1) 
. b b . c c 

4 smh z cosh z smh 2 cosh 2 

2 sinh2 !!._ sinh2 !... + sinh2 !!._ + sinh2 !... - sinh2 !!.. 
2 2 2 2 2 

. b . c b c 
2 smh z smh z cosh z cosh z 

Second, by the identity for cos (x + y) and formulas (5) and (6), 

cos [TI ( % ) + TI ( f)] 
=cos TI (i) cos TI (t )- sin TI (i) sin TI (t) 

b c 1 
= tanh - tanh - - -----

2 2 b c 
cosh 2 cosh 2 

.hb.hc 1 sm -sm --
2 2 --------

b c 
cosh z cosh z 

The first criterion then follows from these equations after some 
algebra. • 

COROLLARY. An isosceles triangle whose base is not longer than its 
sides (in particular, an equilateral triangle) has a circumscribed circle. 
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A 

FIGURE I0.28 

If the base is longer than the sides, then the circumscribed cycle is a 

~~~~~ycle }- cosh a { < } 4 cosh b - 3 
Equidistant curve > 

where a is the length of the base, and b the length of a side. 

We leave the proof for Exercise 10. 

Our final theorem gives a lovely formula relating the radius of the 
circumscribed circle to the area (which equals the defect) of a triangle. 

THEOREM 10.12. If MBC has a circumscribed circle of radius R, then 
with standard notation, the area K of MBC is given by 

a b c 
. K tanh z tanh z tanh z 

sin-= 
2 tanh R 

(30) 

Note. If we only look at the leading terms in the power series 
expansion of sin and tanh (i.e., we only look at an "infinitesimal" 
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hyperbolic triangle), this formula reduces to the Euclidean formula 

K
=abc 

4R. 

In Euclidean geometry we could replaceKbytbc sin Aand solve for R; 
in hyperbolic geometry, Exercise 28 provides a formula for R purely in 
terms of the sides of the triangle. 

Here is a proof of the Euclidean formula. Choose B to be a vertex 
such that the diameter BO of the circumscribed circle K intersects side 
AC. Then <i:D of .L}.BDC and <i:A subtend the same arc BC of K, so 
sin A= sin D =a/ZR (since <i:BCD is right, being inscribed in a 
semicircle). Substitute for sin A in K = fbc sin A to get the formula. 

The proof of Theorem 10.12 will be indicated in Exercises 20-28. 

REVIEW EXERCISE 

All statements in these exercises refer to hyperbolic geometry (unless 
explicit mention of other geometries is made.) Which of the following 
statements are correct? 

( 1) The area of a triangle is proportional to its defect. 
(2) The angle of parallelism Il(x) in radians relates the circular and hyper­

bolic functions by means of an equation such as tanh x =cos Il(x). 
(3) In all right triangles having a fixed number of radians for ~ (and 

standard notation, right angle at C), the ratio ale is the same, and is 
called the sine of ~-

( 4) J. Bolyai discovered a formulation of the law of sines that is valid in 
neutral geometry. 

( 5) The segment length x• complementary to xis uniquely determined by 
the formula Il(x*) = n/2 - Il(x). 

(6) The equations relating Beltrami coordinates to Lobachevsky coordi­
nates are x = tanh u and y = tanh v. 

(7) With standard notation, if a is a largest side of MBC, then the cy­
cle circumscribing MBC is a circle if and only if sinh (a/2) > 
sinh (b/2) + sinh (c/2). 
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(8) The representation by Weierstrass coordinates helps make sense of 
Lambert's description of the hyperbolic plane as a "sphere of imagi­
nary radius i." 

(9) The curvature of the hyperbolic plane is l/k2, wherek2 times the defect 
in radians equals the area of a triangle. 

(10) The analogue of the Pythagorean theorem is the formula cosh c = 
cosh a cosh b (for a right triangle with right angle at C, standard nota­
tion, k = 1). 

EXERCISES 

1. Verify all the identities for hyperbolic functions listed in the table on 
p. 401. 

2. Verify formulas (5), (6), (7) in which TI provides a link between hyper­
bolic and circular functions. Graph the function TI(x}. 

3. The proof of Theorem 10.3 required a complicated argument using the 
Poincare model. Give a different proof using the Klein model. (Hint: 
According to the note at the end of Chapter 7, you can assume A = 0, 
the center of the absolute. Show that cos A = AC/ AB and 
sin A= BC/AB (Euclidean lengths}, AB= tanh c(wherec= d'(AB} is 
the Klein length}, AC= tanh b, and BC= (1 -AC2} 112 tanh a= 
tanh a/cosh b (use Theorem 7.4). Conclude by deducing the formula 
cosh c = cosh a cosh b from the Pythagorean theorem. See Figure 
10.29.) 

4. Prove Theorem 10.4. 

FIGURE 10.29 

B 

. ""~ tanh a sech b 

A=O~C 
\ tanh b I 
\ I 
\ I 
1 \ I sech b 

\ I ,, 
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5. Verify step 2 in the proof of Theorem 10.6. 
6. Verify formulas (18) through (21) for complementary lengths. Graph 

the function 

r+l f (x) = x• =In--. 
r-1 

7. Prove the assertions about Weierstrass coordinates in Theorem 10.10. 
(Hint: Derive the equation of a line in Weierstrass coordinates from the 
equation of a line in Beltrami coordinates.) 

8. Verify formulas (28) and (29) in the proof of Theorem 10.10 and use 
them to reconcile with the distance formula in Exercise K-14, Chapter 7. 

9. Generalize Lemmas 10.1 and 10.2 by showing that if (x1 , y1) and 
(x2 , y2) are distinct points in the Klein model, then the midpoint and 
perpendicular bisector of the segment they determine are given respec­
tively by 

(
x,sz + XzSi YiSz + YzSi) 

Si + Sz ' Si + Sz 

(XiSz - XzSi)x + ( YiSz - YzSi)Y + (si - Sz) = 0 

wheres;= ,/1 - x7- Yl, i = 1, 2. (Hint: Use Lemma 10.2 to find the 
point Qin the Cartesian plane where the perp~dicular bisectors of OP 1 

and OP2 meet. Then joining Q to the pole of PiP2 gives the perpendicu­
lar bisector of PiP2 , and intersecting it with PiP2 gives the midpoint.) 

10. Prove the corollary to Theorem 10.11. 
11. In a right triangle with right angle at C, prove that the circumscribed 

cycle is a 

~:~!~cle }-::.. {::} ( ~r. 
Equidistant curve 2 > 2 

(Hint: Apply the second criterion of Theorem 10.11 with ~C the largest 
angle, using the fact that TI is a decreasing function. Or else argue 
directly from the definition of complementary lengths.) 

12. Verify A. P. Kotelnikov's rule for remembering the relations among the 
parts of a right triangle with the right angle at C, standard notation (x* 
denoting the complementary length to x): in Figure 10.30, the sine of each 
angle is equal to the product of the tangents of the two adjacent angles and is 
equal to the product of the cosines of the two opposite angles. For example, 

sin A= tan TI(a*) tan TI(c) =cos TI(b*) cos B. 

(This rule is the hyperbolic analogue of the rule John Napier published 
in 1614 for the trigonometry of a right triangle on a unit sphere in 
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FIGURE 10.30 

Euclidean space. For Napier's rule, use a, b, A', c', B' in cyclic order, 
where A' denotes the complementary angle to 4:A and c' = n!Z - c. J. 
Bolyai and Lobachevsky discovered that spherical trigonometry in hy­
perbolic space is the same as in Euclidean space.) 

13. In Euclidean geometry, every circle can be inscribed in a triangle (the 
tangents at three appropriate points on the circle meet to form a trian­
gle). Show that in hyperbolic geometry (with k = 1), an inscribed circle 
of a triangle must have diameter less than In 3. (Hint: In Figure 10.32, 
show that (4'.AIB'Y + (~BIC'Y+ (~CIA'Y = n,and that each of these 
three angles is Jess than Il(r); then apply the Bolyai-Lobachevsky for­
mula to find x such that Il(x) = n/3.) 

14. Show that (with k = 1) a trebly asymptotic triangle has an inscribed 
circle of diameter In 3 (see Exercise K-13, Chapter 7). Show that the 
area of this circle is 

Zn (J3 -1) 
and its circumference is Znl../3 (use Theorems 10.5 and 10.7). 

15. Show that for any three positive numbers a, p, y such that n < 
a + P + y, there exists a triangle having these numbers as the radian 
measures of its angles. (Hint: Use Theorem 10.4.) 

16. In a singly asymptotic triangle ABQ, if c = AB, then 

h 
_cosAcosB+l 

cos c- . A . B . sm sm 

(Hint: Let C approach Qin formula (15), Theorem 10.4. For a proof 
without using continuity, note that when 4:A and ~B are acute, 

c= n-1(a) + n-1(ft), 

where a= (4'.Ay, P =(~BY-see Figure 10.31.) Show that the gen-
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A 

B"--~~~~~~~~~~~~~~~.-

FIGURE I0.31 

eralization of the Bolyai-Lobachevsky formula to the case when P < n/Z 
IS 

a p 
tan - = e-c cot -z z· 

17. Write down equations which show how the side and the angle of an 
equilateral triangle determine each other. 

18. (a) In a right triangle with standard notation and right angle at C, show 
that tan A = tanh a/sinh b. 

(b) Deduce that in an isosceles triangle with baseband side a, summit 
at B, and one base angle at A, 

B . b 
tanh a cos z = tan A smh z 
. b B 

sm A cosh - = cos - . 
2 2 

(Hint: Drop the altitude to the base.) 
19. In a right triangle MBC with right angle at C (and standard notation), 

show that 

. K sinh a sinh b 
sm = 

1 + cosh a cosh b' 

where K =the area= the defect of MBC. (Hint: Use Theorem 10.3 
and trigonometric identities.) 

20. Given MBC, if h is the length of the altitude from vertex B, show that 
(in standard notation) the product sinh b sinh his independent of the 
choice of which vertex is labeled B; this is the hyperbolic analogue 
of the Euclidean theorem that bh is constant. (Hint: Show that 
sinh b sinh h = S sinh a sinh b sinh c, where S is the constant ratio oc­
curring in the law of sines.) The next exercises will shed light on the 
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geometric significance of the constant t sinh b sinh h, which we will 
denote by H (for Heron); by the hint, 2H = sin C sinh a sinh b = 
sin B sinh c sinh a = sin A sinh b sinh c. 

In Exercises 21 -28, swill denote the semiperimeter f (a+ b + c) of 
.6ABC. 

21. Show that (in standard notation) 

. A 
sin-= 

2 
A 

cos-= 
2 

sinh (s - b) sinh (s - c) 

sinh b sinh c 

sinh s sinh (s - a) 

sinh b sinh c 

(Hint: Square both sides; use identities and Theorem 10.4.) 
22. Show that H = .Jsinh s sinh (s - a) sinh (s - b) sinh (s - c). (Hint: 

Use the identity sin A= 2 sin (A/2) cos (A/2). 
23. "Infinitesimally," the Heron is equal to .J~s(-s~--a)_(_s ___ b_)-(s---c-). Show 

that in Euclidean geometry, this quantity is equal to the area of MBC. 
(Hint: See Coxeter, 1969, p. 12.) 

24. Suppose the inscribed circle of MBC has radius rand touches BC at A', 
CA at B', and AB at C'. Show that in neutral geometry, 
AB' = s - a = AC', BC' = s - b = BA', CA' = s - c = CB' (see Fig­
ure 10.32). (Hint: Review the construction of the inscribed circle in 
Exercise 16, Chapter 6.) 

25. Deduce from Exercise 24 that in hyperbolic geometry 

tanh r sinh s = H 

whereas in Euclidean geometry rs = the area of MBC. (Hint: In 
hyperbolic geometry, use Exercises 18, 21, 22, and 24 to compute 
tan (A/2) sinh (s - a); in Euclidean geometry, add up the areas of 
triangles IAB, IBC, and ICA in Figure 10.32.) 

c 

FIGURE 10.32 
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26. Prove Gauss' equations: 

cosh t c sin t (A+ B) = cosh t (a - b) cost C 
cosh t c cost (A+ B) = cosh t (a+ b) sin t C 
sinh t c sin t (A - B) = sinh t (a - b) cost C 
sinh t c cost (A - B) = sinh t (a+ b) sin t C. 

(Hint: Use identities such as 

sinh x + sinh y = 2 sinh t (x + y) cosh t (x - y) 

and analogous identities for the circular functions, then apply the half­
angle formulas of Exercise 21.) 

27. Show that a hyperbolic analogue of Heron's Euclidean area formula in 
Exercise 23 is the formula 

.K H 
smz-= a b c' 

2 cosh z cosh z cosh z 
where K =area= defect of MBC. (Hint: Use Gauss' equations, the 
identity sin K/2 =cos t(A + B + C), other trigonometric identities, 
and the formula H = t sin C sinh a sinh b.) 

28. If MBC has a circumscribed circle of radius R, show that 

. a . b . c 
2 smh Z smh Z smh Z 

tanh R = -------­
H 

which by Exercise 27 is equivalent to formula (30) of Theorem 10.12. 
(Hint: In Figure 10.33 sin A = sin (ft' + y'), H = t sin A sinh b sinh c; 

FIGURE 10.33 
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use Theorem 10.3 to determine cos y' and cos P', and use Exercise 18 to 
determine sin y' and sin P', obtaining with the help of identities the 
formula 

H h R [ y . h b + p · h c] · b · c tan = cos z sm z cos z sm z 2 smh z smh z. 
Show finally that the term in brackets equals sinh a/2 by using Theorem 
10.3 to derive expressions for sinh a/2, sinh b/2, and sinh c/2 and plug­
ging in sin (Y + P)/2 =sin a/2.) 

29. Let QIA be a trebly asymptotic triangle and MBC its pedal triangle 
formed by the feet of the perpendiculars from each ideal vertex to the 
opposite side. Since all trebly asymptotic triangles are congruent to one 
another by Proposition 9.16(c), MBC is equilateral. Show that in the 
Poincare upper half-plane model, the radian measure (} of an angle of 
MBC is given by tan t(} = tor tan (} = f, sin (} = f, cos (} = !, and the 
length cof a side is given by cosh c= }. Deduce that a circle whose radius is 
a side of MBC has area equal to 1C. Show further that the Heron H, the 
circumradius R, and the inradius r of MBC are given by 

H=t 
tanhR=t 
tanh r= t. 

(Hint: There are many ways to obtain these results using the previous 
exercises and the models. In the Poincare upper half-plane model, 
taking n =;:; 1, I = oo, A = 1 gives A = i, B = 1 + 2i, £. = - 1 + 2i. 
Show that BC is the upper semicircle of x2 + y2 = 5, AB the upper 
semicircle of (x - 2) 2 + y2 = 5, and that the tangents to these circles at 
B have slopes -t, f, respectively. 

This and the double angle formulas yield the assertions about 0. 
Exercises 18(a), 20, 25, and 28 can then be applied. Or use the Klein 
model, choosing !lIA so that the origin is the incenter and circumcenter 
of MBC.) 

Exercises 30- 33 develop some more trigonometric formulas that 
William Thurston uses in his application of hyperbolic geometry to 
topology; see Casson and Bleiler ( 1988). 

30. Given a quadrilateral with two adjacent right angles, labeled as in Figure 
10.34. Prove that 

cosh d = cosh a cosh b cosh c - sinh a sinh c. 

(Hint: Imitate the proof of Theorem 10.8.) 
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c 

b 

FIGURE I0.34 a 

31. Given a pentagon with at least four right angles, labeled as in Figure 
10.35. Prove that 

sinh e cosh a = sinh c cosh b. 

(Hint: Drop altitude h from the fifth vertex to the opposite side and 
apply the corollary to Theorem 10.8 to the two Lambert quadrilaterals 
obtained.) 

32. Given a pentagon with five right angles (in Exercise K-5, Chapter 7, you 
showed that such pentagons exist), labeled as in Figure 10.36. Prove 
that 

cosh d = sinh a sinh b = coth c coth e. 

(Hint: Here is one method; perhaps you can find one simpler: first apply 
Exercise 31 five times to all the combinations of four consecutive sides; 
then by considering the broken lines in Figure 10.36 and Exercise 30 
and Theorem 10.3, deduce the equations 

(
cosh c) . ( sinh c) cosh a cosh b --h- - smh a --h-
cos e cos e 

( 
cosh e) . ( sinh e) = cosh d = cosh a cosh b --h- - smh b --h- . 
cos c cos c 

FIGURE 10.35 
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FIGURE I0.36 

Substitute for the terms in parentheses from four of the earlier equations 
and do some algebra using the identity cosh2 x = 1 + sinh2 x to get the 
result.) 

33. In an all right-angled hexagon (again review Exercise K-5, Chapter 7) 
labeled as in Figure 10.3 7, prove the following remarkable analogues of 
the laws of sines and cosines given in Theorem 10.4 for a triangle: 

sinh a sinh b sinh c 
---=--=--
sinh a sinh p sinh y 

cosh p cosh y + cosh a 
cosh a = . h p . h . sm sm y 

(Hint: First show that the common perpendicular segment of length h 
falls inside the hexagon as shown; then apply Exercise 32 to the two all 
right-angled pentagons to get two expressions for cosh h and obtain the 
"law of sines"; for the "law of cosines," apply Exercise 32 to get expres­
sions for cosh a, cosh p, cosh a, and cosh h, use Exercise 31 to eliminate 
sinh c1 , and use the identity for sinh Yz = sinh (y - yi).) 

FIGURE 10.37 
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The dissertation submitted by Herr Riemann offers 
convincing evidence . . . of a creative, active, truly 
mathematical mind, and of a gloriously fertile 
imagination. 

c. F. GAUSS 

ELLIPTIC GEOMETRY 

In Euclidean geometry there is exactly one parallel to a line /through a 
point P not on I; in hyperbolic geometry there is more than one 
parallel. A third geometry could be studied, one in which there is no 
parallel to /through P, i.e., a geometry in which parallel lines do not 
exist. 

However, if we simply add the latter as a new parallel axiom to 

replace the other parallel axioms, the system we get is inconsistent. In 
Corollary 2 to Theorem 4.1 we proved that parallel lines do exist in 
neutral geometry, so that we would get a contradiction by adding such 
a parallel axiom. 

To avoid this, we have to modify some of our other axioms. We can 
see what modifications need to be made by thinking of the surface of a 
sphere and interpreting "line" as "great circle." Then, indeed, there 
are no parallel lines. But other things change as well. It is impossible to 
talk about one point B being "between" two other points A and Con a 
circle. So all the axioms of betweenness have to be scrapped. They are 
replaced instead by seven axioms of separation. In Figure A.1, A and C 
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A 

B 

c 

FIGURE A.I D 

separate Band Don the circle, since you can't get from B to D without 
crossing either A or C. 

Let us designate the undefined relation "A and C separate Band 
D" by the symbol (A, CI B, D). The separation axioms are then: 

SEPARATION AXIOM 1. If (A, BI C, D), then points A, B, C, and Dare 
collinear and distinct. 

SEPARATION AXIOM 2. If (A, B I C, D), then (C, DI A, B) and 
(B, AIC, D). 

SEPARATION AXIOM 3. If (A, BI C, D), then not (A, CI B, D). 

SEPARATION AXIOM 4. If points A, B, C, and D are collinear and 
distinct, then (A, BI C, D) or (A, CI B, D) or (A, DI B, C). 

SEPARATION AXIOM 5. If points A, B, and Care collinear and distinct, 
then there exists a point D such that (A, BI C, D). 

SEPARATION AXIOM 6. For any five distinct collinear points A, B, C, 
D, and E, if (A, BID, E), then either (A, BI C, D) or (A, BI C, E). 

To state the last axiom, we recall the notion of a perspectivity from one 
line onto another (from Chapter 7). Let I and m be any two lines and 0 
a point not on either of them. For each point A on I the line OA 
intersects min a unique point A' (Figure A.2; remember the elliptic 
parallel property); the one-to-one correspondence that assigns A' to A 
for each A on I is called the perspectivity from I to m with center 0. 
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B 

FIGURE A..2 

SEPARATION AXIOM 7. Perspectivities preserve separation; i.e., if 
(A, B JC, D), with /the line through A, B, C, and D, and if A', B', C', and 
D' are the corresponding points on line m under a perspectivity, then 
(A', B' IC', D'). 

Without the notion of betweenness we have to carefully reformu­
late all the geometry using that relation. For example, the segment AB 
consists of the points A and B and all points between them. Yet this 
doesn't make sense on a circle. We can only talk about the segment 
ABC determined by three collinear points: it consists of the points A, B, 
and C and all the points not separated from B by A and C. 

Similarly, we have to redefine the notion of a triangle, since its sides 
are no longer determined by the three vertices (see Figure A.3). 

Once these notions have been redefined, the axioms of congruence 
and continuity all make sense when rephrased, and can be left intact. 

There is still a difficulty with Incidence Axiom 1, which asserts that 
two points do not lie on more than one line. This is false for great 
circles on the sphere, since antipodal points (such as the poles) lie on 
infinitely many lines. 

FIGURE A..3 Two different "triangles" with the same vertices. 
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A' 

FIGURE A .. 4 A and A' are identified. 

Klein saw that the way to remedy this is to identify antipodal points; 
i.e., just as we interpret " line" to mean "great circle" in this model, 
we interpret "point" to mean " pair of antipodal points" (Figure A.4) . 
This means that in our imagination we have pasted together two anti­
podal points so that they coalesce into a single point. It can be proved, 
as you might guess, that such pasting cannot actually be carried out in 
Euclidean three-dimensional space. But we can still identify antipodal 
points in our minds-every time we move from one to the other we 
think of ourselves as being back at the original point. 

In making these identifications we discover another surprising 
property: a line no longer divides the plane into two sides, for you can 
"jump across" a great circle by passing from a given point to its now 
equal antipodal point that used to be on the other side. If we cut out a 
strip from this plane, it will look like a Mobius strip, which has only 
one side (see Figure A.5) . The technical name for this property of 
"onesidedness" in nonorientability. 

I 
I 
I 
\ 
\ 
\ 
\ 

\ 

FIGURE A.S Mobius strip. 

' ' 
---------

_ .... / 
/ 

/ 
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FIGVREA.6 

To sum up, the axioms of plane elliptic geometry consist of the 
same incidence, congruence, and continuity axioms as neutral geom­
etry (with the new definitions of segment, triangle, etc.). The 
betweenness axioms are replaced by separation axioms, and the paral­
lel postulate is replaced by an axiom stating that no two lines are 
parallel. The model, which shows that elliptic geometry is just as 
consistent as Euclidean geometry, consists of the great circles on the 
sphere with antipodal points identified. 1 

As you might expect from this model, it is a theorem in elliptic 
geometry that lines have finite length. Moreover, all the lines perpen­
dicular to a line I are not parallel to each other but are concurrent, i.e., 
all the perpendiculars to I have a point in common called the pole of I. 
In the model, for instance, the pole of the equator is the north (or, 
what is the same, the south) pole. 

Another model for plane elliptic geometry (due to Klein) is 
conformal-like the Poincare model for hyperbolic geometry, angles 
are accurately represented by Euclidean angles. In this model 
"points" are the Euclidean points inside the unit circle in the Euclid­
ean plane as well as pairs of antipodal points on the circle; "lines" are 
either diameters of the unit circle or arcs of Euclidean circles that meet 
the unit circle at the ends of a diameter (see Coxeter, 1968, Section 
14.6). This representation shows clearly that the angle sum of a 
triangle is greater than 180° in elliptic geometry (see Figure A.6). 

Elliptic geometry becomes even more interesting when you pass 
from two to three dimensions. In three dimensions orientability is 
restored and a new kind of parallelism occurs. Two lines are called 

1 The geometry of the sphere itself is sometimes misleadingly called "double elliptic geom­
etry." 
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Clifford-parallel if they are equidistant from each other; the lines are 
joined to each other by a continuous family of common perpendicular 
segments of the same length. Such lines cannot lie in a plane (in an 
elliptic plane two lines must intersect), so they are skew lines. More­
over, in general, in elliptic space for any point P not on a line /there 
exist exactly two lines through P that are Clifford-parallel to I, called 
the right and left Clifford parallels to I through P. We say "in general" 
because there is a special line I*, called the absolute polar of I: if Plies 
on /*, there is only one Clifford parallel to I through P, which is I*. 
(Naturally, this is difficult to visualize! See Coxeter, 1968, Chapter 
7.) 

Elliptic space is finite but unbounded-finite because all lines 
have finite length and look like circles, and unbounded because there 
is no boundary, just as on the surface of a sphere there is no boundary. 
In a universe having this geometry, with light rays traveling along 
elliptic lines, you could conceivably look through a very powerful 
telescope and see the back of your own head! (Although you might 
have to wait a few billion years for the light to travel all the way 
around.) 

RIEMA.NNIA.N GEOMETRY 

It is impossible to rigorously explain the ideas of Riemannian geome­
try without using the language of the differential and integral calculus, 
so in this appendix we can only attempt to understand very roughly 
the intuitive idea. The basic notion we shall attempt to grasp is cur­
vature. 

The two simplest smooth one-dimensional figures in the Euclidean 
plane are a line and a circle. We think of a line as being "straight" i.e., 
not curved, so that if we were to assign any numerical curvature k to a 
line, we would assign the value k = 0. A circle y, on the other hand, is 
certainly "curved," and how much it is curved depends on its radius r. 
The larger the radius of y, the more y approaches a line, i.e., the less it 
curves; it is therefore natural to define the curvature k of a circle of 
radius r by k = l/r (the curvature is inversely proportional to the 
radius); see Figure A. 7. 
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r 

FIGURE A. 7 Curvature k = llr. 

Consider next an arbitrary smooth curve yin the Euclidean plane. 
By "smooth curve" we mean one that has a continuously turning 
tangent line at each point. The tangent to a point on a circle is the 
perpendicular to the radius at that point. We can define the tangent to 
a point P on general curve y as follows. P and another point Q on y 
determine a line I. We fix point P and let Q approach P. The limiting 
position achieved by line I as Q approaches P is by definition the 
tangent line t to y at P (see Figure A.8). 

Besides the fixed point P, we can also consider two other points P1 

and P 2 on y. These three points determine a circle ~. Fix P and let P 1 

and P 2 both approach P along y. The limiting position of circle ~ as 
P 1 and P 2 approach P is the circle that" best fits" the curve y at P, and 
is called the osculating circle to y at P (from the Latin osculari, "to 
kiss"); see Figure A. 9. It is reasonable to define the curvature of y at P 
as the curvature of its osculating circle at P, i.e., the reciprocal k = 1 Ir 
of the radius r of the osculating circle (r is also called the radius of 
curvature of y at P). 

FIGIJREA.8 
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FIGUREA.9 

It is clear from Figure A.10 that the osculating circle will vary in size 
as we move along the curve y, so that the curvature kvaries from point 
to point along y. Notice also that the tangent toy at a point Pis also the 
tangent to the osculating circle at P. 

Notice also in Figure A.10 that the osculating circle may be on 
different sides of the curve y. It is convenient to redefine curvature so 
that it is positive on one side of yand negative on the other. Once this is 
done, it becomes clear that in Figure A.10 there must be a point I 
between A and B on y at which the curvature is zero, since we assume y 
is smooth enough for the curvature to vary continuously. This point I is 
called a point of inflection, and at such a point the osculating "circle" 
degenerates into a line, the tangent line at I (see Figure A.11). 

What we have said about plane curves applies equally well to curves 
in Euclidean space, with the following modifications. The osculating 
circle lies in a unique plane through P called the osculating plane Il of y 
at P (except in the degenerate case of a point P at which y has 
curvature zero). Since Il varies with P if y is not a plane curve, we no 
longer have a smooth way to assign positive and negative values to the 

B 

FIGURE A.IO 
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FIGURE A.II Point of inflection k = 0. 

curvature. We assign a curvature vectork lying in the osculating plane, 
emanating from P and perpendicular to the tangent line to y at P 
(which also lies in the osculating plane), of length llr and pointing 
toward the center of the osculating circle (called the center of curva­
ture). If y has curvature zero at P, we take k to be the zero vector. 

We next pass to smooth surfaces embedded in Euclidean three­
dimensional space. "Smooth" now means that there is a continuously 
turning tangent plane for each point P of the surface. The tangent plane 
Tat P separates Euclidean three-space into two half-spaces, one of 
which we arbitrarily consider positive and the other negative. Then we 
can define a signed curvature k to any curve y through P lying on the 
given surface I which is positive or negative according as the center of 
curvature of y at Plies in the positive or negative half-space. (For these 
signs to vary smoothly with P, we have to orientthe surface, which can 
always be done locally-i.e., in a neighborhood of P.) 

Consider the line through P that is perpendicular to T, called the 
normal line at P. A plane that contains the normal line intersects the 
surface in a plane curve. We can imagine this plane rotating around 
the normal line, and as it does so, it will cut out different curves on the 
surface passing through P. We have already explained how to define 
the curvature at P for each of these normal sections. In general, these 
curvatures will vary as we rotate around the normal line. (In the 
special case of a sphere these curvatures are constant and equal to the 
reciprocal of the radius of the sphere, since the curves cut out are all 
great circles on the sphere.) It can be proved by methods of differen­
tial geometry that these curvatures achieve a maximum value k1 and a 
minimum value k2 as we rotate, and the corresponding normal sections 
(called principal curves) are perpendicular to each other. The product 
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FIGIJaE A.12 

K - k1k2 of these maximum and minimum curvatures is now called the 
Gaussian curoature (after Gauss, who first studied it), or simply "the 
curvature," of the surface at the point P. Once again, K will in general 
change as P varies over the surface~ if K happens to stay constant, we 
obtain the three geometries discussed in Chapter 10, accordingasKis 
negative (pseudosphere), zero (plane), or positive (sphere). 

In Figure A.12, the tangent plane, normal line, and principal curves 
for a saddle-shaped surface arc shown. For point Pon this surface the 
Gaussian curvature will be a negative number, according to our con­
vention, since the osculating circles for the two principal curves lie on 
different sides of the tangent plane. On the other hand, for the egg­
shaped surface in Figure A.13, the two principal curves lie on the same 
side of the tangent plane, so the Gaussian curvature is positive. 

FIGIJaE A.II 
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Refer back to the picture of a pseudosphere in Figure 10.12, which 
is obtained by revolving a tractrix around its asymptote. At any point 
on this surface, it can be shown that the two principal curves are the 
(horizontal) circle of revolution through that point and the (vertical) 
tractrix through that point. Since these curves lie on opposite sides of 
the tangent plane, we see that the surface curvature is negative. As we 
move up the surface, the circle shrinks and its curvature increases 
indefinitely, while the tractrix flattens and its curvature decreases to 
zero (the curvature of its asymptote); this makes it plausible that the 
product K of the principal curvatures could stay constant (but of 
course the proof of that requires a calculation). 

Similarly, in the case of a cylinder obtained, say, by rotating a 
vertical line around a parallel vertical line, the principal curves at any 
point are the horizontal circle and the vertical line, which has curva­
ture k2 = O; hence, the Gaussian curvature K = k1kz at any point on a 
cylinder will also be zero (see Figure A.14). We can better grasp this 
surprising result if we think of a cylinder as a "rolled-up plane." 
Surely, in any sensible definition of surface curvature a flat plane 
should be assigned zero curvature. In the process of "rolling-up" a 
rectangular plane strip the arc lengths and angles between curves on 
the strip are not changed, and in this sense the "intrinsic geometry" is 
not changed. Gauss was looking for a definition of surface curvature 
that depended only on the intrinsic geometry of the surface, not on the 
particular way the surface was embedded in Euclidean three-space. 
He was able to prove that his curvature K did not change if the surface 
was subjected to a "bending" in which arc lengths and angles of all 
curves on the surface are left invariant. Thus, K describes the intrinsic 
curvature of the surface independent of the way it is bent to fit into 
Euclidean three-space. This is all the more remarkable because the 
principal curvatures k1 and kz may change under such a "bending"; 
nevertheless, their product K = k1kz stays the same. Gauss was so 
excited about this result that he named it the theorema egregrium, "the 
extraordinary theorem." In a letter to the astronomer Hansen he 
wrote: "These investigations deeply affect many other things; I would 
go so far as to say they are involved in the metaphysics of the geometry 
of space." 

Gauss also solved the problem of determining this intrinsic curva­
ture K without reference to the ambient three-space. Imagine a two­
dimensional creature living on a surface and having no conception of a 
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FIGURE i\.14 Gaussian curvature of a cylinder is zero. 

third dimension, being unable to conceive of the normal lines we used 
to define the curvature K. How could this creature calculate K? We 
will have to use the language of the differential calculus to give Gauss' 
answer. 

In the Euclidean plane a point is determined by its x and y coordi­
nates. If these coordinates are subjected to infinitesimal changes de­
noted dx and dy, then the point moves an infinitesimal distance ds 
whose square is given by the Pythagorean formula ds2 = dx2 + dy2• 

Now on a smooth surface a point will also be determined locally by two 
coordinates x and y. If these coordinates are subjected to infinitesimal 
changes dx and dy, then the point moves a distance ds on the surface 
whose square is given by the more complicated expression 

ds2 = E dx2 + 2 F dx dy + G dy 2 , 
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where E, F, and G may vary as the point varies. The functions E, F and 
G could in principle be determined by the two-dimensional creature 
making measurements on his surface. Gauss then showed that his 
curvature K is given in terms of E, F, and G by a not-too-complicated 
formula (see Lanczos, 1970, p. 183). Thus, the creature could also 
calculate K from this formula and discover that his world was curved, 
although he would have difficulty visualizing what that might mean. 

Although this talk about a two-dimensional creature may seem 
bizarre, it is not, as Riemann demonstrated. Riemann reasoned that 
we are in an entirely analogous situation, living in a three-dimensional 
universe in which an infinitesimal change in distance ds is given by an 
analogous formula involving the three infinitesimals dx, dy, and dz: 

ds2 = g11 dx2 + g22dy2 + g33dz2 + Zg23dy dz+ Zg31dz dx 
+ Zg12dx dy. 

From this formula Riemann was able to define a "curvature tensor" 
analogous to the Gaussian curvature for a surface, only more compli­
cated: Gauss' curvature involved only a single number K, whereas 
Riemann's depended on six different numbers. Riemann discovered 
this curvature almost accidentally in his research on heat transfer. In 
fact, he developed such a curvature tensor for abstract geometries of 
any dimension n, and Einstein was able to apply Riemann's ideas to his 
four-dimensional space-time continuum. 

So we are in the same position as that poor two-dimensional crea­
ture. We can make measurements to determine the Riemannian cur­
vature of our universe. Astronomers have been performing such mea­
surements. If we find that the Riemannian curvature is not zero, we 
know that the geometry is not Euclidean. However, this does not 
mean that our space is embedded in some higher-dimensional physi­
cal space in which it is somehow "curved." When we say, loosely, that 
"space is curved," we mean only that its geometric properties differ 
from the properties of Euclidean space in a very specific way given by 
Riemann's formulas. 

It was in his 1854 inaugural lecture Ueber die Hypothesen welche der 
Geometrie zugronde /iegen ("On the hypotheses that form the founda­
tion for geometry") that Riemann introduced the idea of an n-dimen­
sional space whose intrinsic geometry is determined by a quadratic 
formula for the infinitesimal change in distance ds. Such a structure is 
now called a Riemannian manifold (see Spivak, 1970, or Do Carmo, 
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1976, for the definition). Different manifolds yield different geome­
tries, so that Riemann discovered an infinite number of new geome­
tries. 

Let us return to the two-dimensional case of a surface I. For each 
point Pon I and each curve y lying on I and passing through P, the 
curvature vector k decomposes naturally into a vector sum 

k=k,,+kg 

of its projection k,, on the normal line and its projection kg on the 
tangent plane T to I at P; these projections are called, respectively, 
the normal and tangential curvature vectors. The length of kg is called 
the geodesic curvature kg of the curve y at P relative to I. We call y a 
geodesic if kg = 0. In that case, y has zero curvature relative to the surface 
I; it may have nonzero curvature relative to Euclidean three-space, 
but then its curvature vector points along the normal line to the 
surface at P. Another way to describe a geodesic y that has nonzero 
k = k,, is that its osculating plane II at P is perpendicular to the 
tangent plane T (since II contains the normal line at P). From this 
description we see immediately that the geodesics on a sphere are its 
great circles (II 1- Tiff II passes through the center of the sphere); 
Figure A.15. 

This description of geodesic curvature refers to the ambient Eu­
clidean three-space. But F. Minding in 1830 showed that it too is an 
intrinsic quantity for I: it depends only on the functions E, F, and G 
and the curve y. Hence the notion of "geodesic" can be defined on a 
Riemannian manifold. And it gives us the correct interpretation of the 
heretofore confusing term straight line on such a manifold. Riemann 
recognized that the geodesics would be of finite length if the curvature 
of the surface was greater than some positive constant. 

A proposed alternative interpretation of the term "straight line 

FIGUREA.15 
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segment" is "the shortest path on the surface joining two points on the 
surface." It can be proved that if such a shortest path exists, it must be an 
arc of a geodesic. But a shortest path may not exist: let I be a punctured 
plane or a punctured sphere; two points on opposite sides of the 
puncture cannot be joined by a shortest path on I. On complete mani­
folds (meaning that e.very Cauchy sequence of points converges), it 
can be proved that shortest paths always exist (theorem of Hopf­
Rinow) . However, an arc of a geodesic need not be the shortest path: 
consider the longer great-circular arc joining two nonantipodal points 
on a sphere, or consid1er the helical arc joining two points on a vertical 
line on the cylinder in Figure A.16. So the definition of "geodesic" 
(found in several books by nonmathematicians) as "the shortest path" 
is inadequate because: it excludes such arcs. 

It is important to inote that, although we have emphasized Rie­
mann's generalizatiorn of Gauss' ideas from two dimensions to higher 
dimensions, Riemann's formulation gives new information about sur­
faces that cannot be embedded in Euclidean three-space. For example, 
the hyperbolic plane c:an be described as a complete two-dimensional 
Riemannian manifold of constant negative curvature, and the elliptic 
plane can be describe:d as a complete two-dimensional Riemannian 
manifold of constant positive curvature on which any two points lie on 
a unique geodesic. Neither of these manifolds can be analytically 
embedded in Euclide:an three-space. 

Some idea of Riemann's influence on modern mathematics can be 
gleaned from the following list of concepts, methods, and theorems 

x 

FIGURE A.18 A helix is a geodesic on a cylinder. 
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that have been named after him: Riemannian curvature of Rieman­
nian manifolds, Riemann integral, Riemann-Lebesgue lemma, Rie­
mann surfaces, Riemann-Roch theorem, Riemann matrices, Riemann 
hypothesis about the Riemann zeta function, Riemann's method in 
the theory of trigonometrical series, Riemann's method for hyperbolic 
partial differential equations, Riemann mapping theorem, and 
Cauchy-Riemann equations. 2 

z For the story of Riemann's difficult life, see Bell (1961); for a mathematically precise 
treatment of Riemannian geometry, including an explanation of what Riemann said in his 
famous 1854 inaugural dissertation lecture, see Spivak (1970), Vol. 2; for applications to the 
theory of relativity, see Lanczos ( 1970); for an intuitive discussion of how gravity can be 
explained in terms of the curvature of space, see the last part of Taylor and Wheeler ( 1992). 



GEOMETRY 

WITHOUT 

CONTINUITY 

Any serious student should become familiar with the 
great discovery, made at the end of the last century, 
that large parts of geometry do not depend on continuity. 

H. BusEMANN AND P. J. KELLY 

If Euclid could have returned to life at the beginning of the twentieth 
century and heard the criticisms made of the gaps in his work, he 
undoubtedly would have accepted the incidence, betweenness, and 
congruence axioms that replaced his first four postulates. A model of 
those axioms is called an H-plane ("H" for Hilbert, Hessenberg, and 
Hjelmslev). However, it is easy to imagine Euclid bristling at Dede­
kind's continuity axiom, although he could be expected to admit 
Archimedes' axiom and the elementary continuity principle. 

Much work has been done in the last century to develop geometries 
without continuity assumptions. The most comprehensive such trea­
tise is F. Bachmann's Aufbau der Geometric aus dem Spiegelungsbegrijf 
(Construction of Geometry based on the Concept of Reflection, 
197 3), in which plane geometries based only on axioms of incidence, 
perpendicularity, and reflections are studied.1 Bachmann is justified 
in calling this study plane absolute geometry, since it includes elliptic, 
hyperbolic, and Euclidean geometries as special cases (as well as other 
unusual geometries). Bachmann has succeeded in dispensing with 
betweenness axioms as well as continuity axioms. It is unfortunate 

1 For a presentation of Bachmann's axioms in English, see Ewald (1971 ). I. M. Yaglom, in 
the foreword to the Russian translation of Bachmann's book, caIIs it "indisputably the most 
significant development in the foundations of geometry in decades." You were introduced to 

Bachmann's methods on pp. 340-342 and in Exercise SO of Chapter 9. 
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that he calls models of his axioms "metric" planes - since "metric 
spaces" have a quite different meaning in which a "metric" measures 

' distance by real numbers; I propose calling them absolute planes. 
The key ideas for this study are: 

1. Embed the absolute plane in a projective plane. 
2. Show that the points and lines in this projective plane have 

homogeneous coordinates from some field K (as in Major Exer­
cise 10, Chapter 2). 

3. Show that two lines are perpendicular if and only if their coordi­
nates satisfy a particular homogeneous quadratic equation. 

4. Use algebra to get further information about the absolute plane. 

This program has been completely successful in classifying H­
planes (the problem of determining all absolute planes remains un­
solved). In particular, it is shown that (up to isomorphism) the only 
H-planes in which Archimedes' axiom and the elementary continuity 
principle hold are either the Cartesian model or the Klein model over 
an Archimedean Euclidean field K (Archimedean ordered field in 
which every positive element has a square root). This result is particu­
larly remarkable because it gives the existence of limiting parallel rays 
in the non-Euclidean case without appealing to Dedekind's continuity 
axiom (compare the proof of Theorem 6.6, p. 196). 

Let us describe the embedding briefly. The intuitive idea comes 
from our discussion of the Klein model, in which new "ideal" and 
"ultra-ideal" points are introduced so that lines that were previously 
parallel now meet when extended through these new points (see 
Major Exercise 13, Chapter 6, and p. 240). Abstractly, the new points 
are simply pencils of lines. The old points are in one-to-one corre­
spondence with the pencils of the first kind, i.e., A corresponds to the 
pencil p (A) of all lines through A. 

An ultra-ideal point is a pencil of the second kind; it is a pole P ( t), 
which for a fixed line t consists of all the perpendiculars to t. But the 
pencils of the third kind must be described carefully to avoid circular 
reasoning. We described such a pencil in Chapter 9 (p. 340) as con­
sisting of all lines through a fixed ideal point, the ideal point being 
defined as an equivalence class of limiting parallel rays. Since we don't 
know limiting parallel rays exist now, we instead use the theorem on 
three reflections (Proposition 9.19) as our definition: the pencil p(lm) 
determined by parallel lines I and m which do not have a common 
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perpendicular consists of all lines n such that the product 

R1R,,,R,, 

is a reflection. Certain properties that were previously obvious now 
require a considerable amount of ingenuity to prove -for example, if 
h, k E p (Im), then p (hk) = p (Im). Hjelmslev discovered how to prove 
that a pencil of the first kindp(D) and a pencil of the third kindp(a' c') 
have a unique line b in common (see Figure B.1). He dropped per­
pendiculars a, c from D to a', c' at points A, C, then dropped perpen­
dicular d from D to AC. Then the line bis uniquely determined by the 
equation 

RaR/JRc=Rd. 

We now know the new points of our projective plane. Our old lines 
a can be extended to new lines I (a) so that any pencil containing a is by 
definition incident with l(a). But we need more new lines to fill out 
our projective plane. For example, for any old point A, the polar l(A), 
consisting of all poles of lines through A, should be a new line; in the 
Klein model, this line lies entirely outside the absolute circle (in the 
Cartesian model, it's the line at infinity); see Figure B.2. 

But how are we to describe the lines in the Klein model that are 
tangent to the absolute circle, and how are we to verify the axioms for a 
projective plane? To accomplish this, Hjelmslev discovered a remark­
able device: he fixed a point 0 and fixed a pair u, v of nonperpendicu-

FIGURED.I D 



Geometry Without Continuity Ill 457 

FIGURE B.2 The polar of a point. 

Jar lines through 0-think of these lines as determining an acute 
angle 0. He then defined a transformation that fixed 0 and sent any 
A :::/= 0 to the midpoint A• of the segment joining A to its image under 
rotation RuR., about 0 through angle 20 (Figure B.3); this transfor­
mation is called the half-rotation (or snail map) about 0 corresponding 
to u, v. 

Hjelmslev observed that in the Klein model, half-rotations extend 
to collineations of the projective plane, and that any projective line 
except /(0) could be mapped onto an extended Klein line /(a) by a 
suitable half-rotation about 0. So he proposed to call a set of pencils a 
"line" if it is mapped onto some /(a) by some half-rotation about 0, or 
if it is /(0). With this definition, he was then able to verify the axioms 
for a projective plane. 

The execution of idea 2-construction of the field K of 
coordinates - requires even more technique. The key tool is a com­
plicated theorem of Hessenberg, which generalizes the Euclidean 
theorem that tells when a quadrilateral can be circumscribed by a 

A 

FIGUREB.3 
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p 

FIGURE B.4 Pappus' theorem. 

Geometry Without Continuity 

Q R 

circle. The method of constructing K is the standard method for any 
affine plane in which Pappus' theorem holds (Ewald, 1971, Chapter 
3); here the affine plane is obtained by removing the polar /(0) of 0, 
and Pappus' theorem states: Let P, Q, R lie on a, P, Q, R lie on b, such 
that a does not meet bin any of these six points (Figure B.4). If PQ II 
PQ and QR II QR, then PR II PR. Bachmann's approach is to verify 
Pappus' theorem by brute force; there is another approach due to 
Lingenberg that I believe gives more insight (see Lenz, 196 7, p. 
206 ff., on the Euclidean "pseudoplane"). Pappus' theorem implies 
that the definition given for "lines" in our projective plane does not 
depend on the choice of 0. 

If we started with an H-plane, it is then possible to define an order 
on Kin terms of the betweenness relation in the H-plane. We need 
only specify the set P of positive scalars (since x < y <=> y - x > 0). 

Choose any two points A, B from the H-plane. For any third point X 
collinear with A, B, the ratio 

AX:BX 

is defined to be that unique scalar in K which, multiplying the vector 
from B to X, gives the vector from A to X. We then define P to consist 
of 1 and all ratios AX: BX as X runs over all third points on the affine 
line AB that do not lie between A and B (this includes all ideal and 
ultra-ideal points on AB). It can be shown from invariance of the ratio 
under parallel projection that this definition of P does not depend on 
the choice of A, B. 

Moreover, a theorem of Menelaus (compare Exercise H-5, Chapter 
7) can be proved for these ratios, and can be used to demonstrate that 
P has all the properties required for a set of positive numbers that 
makes K an ordered field (see Lenz, 196 7, p. 223 ff.). In turn, this 
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enables us to extend the betweenness relation to all triples of collinear 
points in the affine plane, and to show that the H-plane is embedded 
as a convex open subset of the affine plane, containing the origin 0. 
The embedding is locally Euclidean at 0 in that perpendicularity for 
lines through 0 has the familiar meaning from Cartesian analytic 
geometry. 

It can be proved (from free mobility-Lemma 9.3, p. 358) that the 
fieldKis Pythagorean (the sum of two squares is a square), butKis not 
Euclidean unless the elementary continuity principle holds (a neat 
algebraic criterion for this geometric property). 

As for idea 3 on our list, further argument shows that there is a 
constant k E K such that lines having homogeneous coordinates 
[ a1 , a2 , a3 ], [ b1 , b2 , b3 ] are perpendicular if and only if 

a1b1 + a2b2 + ka3b3 = 0. 

Here "perpendicularity" has been extended to all pairs of lines in the 
projective plane, and there may exist certain lines (called isotropic) 
that are perpendicular to themselves (e.g., when k = -1, the line 
[O, 1, -1], i.e., y = 1). To each line [ a1 , a2 , a3 ] is associated its pole 
[a1 , a2 , ka3 ] (except for line at infinity [O, 0, 1] when k = 0), and we 
see that the perpendiculars to this line are precisely the lines passing 
through its pole; isotropic lines pass through their own poles, and for 
k =F 0, the locus of poles of isotropic lines is given by the affine equa­
tion 

xz + yz =-k-1 

and may be called the absolute. The points (x, y) in the H-plane satisfy 
the inequality !kl (x2 + y2

) < 1. 
The fourth angle of a Lambert quadrilateral is acute, right, or 

obtuse accordingly ask< 0, k = 0, or k > 0. If k = 0 and the H-plane 
fills up the affine plane, we obtain the generalized Euclidean plane over 
K. However, if k = 0, if K is non-Archimedean, and if we restrict our 
H-plane points to those (x, y) that are infinitesimal, we obtain Dehn's 
semi-Euclidean plane, in which the Euclidean parallel postulate fails 
but rectangles exist. 

If k = - 1, the absolute is the unit circle, and if every point in its 
interior belongs to the H-plane, we obtain the generalized hyperbolic 
plane over K, provided K is Euclidean. In case K is non-Archimedean, 
we can again restrict (x, y) to infinitesimal values, obtaining Schur's 
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semihyperbolic plane, in which limiting parallel rays do not exist, even 
though the elementary continuity principle holds (the ideal points fill 
up an entire region inside and on the absolute). 

If neither k nor - k is a square (so K is not Euclidean), yet every sum 
1 + kx2 is either a square or ktimes a square, the points ( x, y) satisfying 
x2 + y2 < lk- 1 I form a semielliptic H-plane, in which parallel lines have 
a unique common perpendicular (the absolute is empty). 

Finally, if K is non-Archimedean, k = 1, and (x, y) are again re­
stricted to infinitesimal values, we obtain Dehn's non-Legendrian 
plane, in which the fourth angle of a Lambert quadrilateral is obtuse. 

You can see that there are some unusual H-planes, most of them 
living on non-Archimedean fields; on Archimedean fields, only Eu­
clidean, hyperbolic, and semielliptic planes survive. For the complete 
algebraic classification of H-planes (discovered by W. Pejas, 1960), 
see Hessenberg and Diller (1967). For an introduction to absolute 
plane geometry in English, see Chapter 5 of Bachmann, Behnke, and 
Fladt ( 19 7 4). Finally, for an expanded version of this appendix, see 
my article "Euclidean and Non-Euclidean Geometries without Con­
tinuity," American Mathematical Monthly, November 1979. 



SUGGESTED 
FURTHER 
READING 

1. If you want to fill in the few gaps in this book (such as the proof 
of Theorem 4.3), see Borsuk and Szmielew ( 1960), where it is proved 
that their axioms for Euclidean and hyperbolic geometries (equivalent 
to ours) are categorical. For hyperbolic area theory, see Moise ( 1990). 
For more on hyperbolic constructions and trigonometry, see Martin 
( 1982). For hyperbolic space, see Fenchel ( 1989). Lively presenta­
tions of the non-Euclidean revolution and its philosophical implica­
tions can be found in Gray ( 1989) and in Trudeau ( 1987). A delight­
ful spoof on Lewis Carroll and an introduction to the Poincare model 
are in Marta Sved ( 1991). More advanced Euclidean geometry will be 
found in Kay ( 1969), Coxeter and Greitzer ( 196 7), and Pedoe 
(1970). 

2. For more on the history of non-Euclidean and other geometries, 
see Rosenfeld ( 1988) and the survey article by Milnor ( 1982). The 
classic by Bonola (1955) includes translations of the original articles 
by Bolyai and Lobachevsky. For a biting account of the confused 
reaction to non-Euclidean geometry by nineteenth-century scholars, 
see Freudenthal (1962). 

3. You will want to know more about projective geometry, the 
study of which will illuminate the mysterious cross-ratio used to define 
length in the Klein and Poincare models (Chapter 7). Projective 
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geometry, as a science independent of Euclidean geometry, blos­
somed in the first half of the nineteenth century; in the latter half, 
Klein and Cayley showed that projective geometry plays a dominant 
role in the classification of the other geometries (by means of projec­
tive metrics). For introductory expositions, see Coxeter (1974 and 
1960), Ewald (1971), or Hughes and Piper (1973). For advanced 
treatments, see Coxeter (1968), Klein (1968), or Cartan (1950). For 
superb illustrations, see Whicher ( 1971). 

4. Once you have mastered the calculus, you can begin differential 
geometry using Do Carmo (1976) or O'Neill (1966) and then ad­
vance to Helgason (1962) and Spivak (1970). 

5. If you are curious about the application of non-Euclidean geom­
etry to general relativity and cosmology, see Lanczos ( 197 0) or Taylor 
and Wheeler ( 1992) or the fine introductory article by Roger Penrose 
"The Geometry of the Universe," in Mathematics Today: Twelve Infor­
mal Essays, L.A. Steen, ed., Springer-Verlag, New York, 1978. Appli­
cations to classical mechanics will be found in Arnold and Avez 
( 1968), as well as Bottema and Roth ( 1979). 

6. Learn some group theory and then read about its connections to 
geometry in Artin (1957), Bachmann, Behnke, and Fladt (1974), 
Benson and Grove ( 1970), and Schwerdtfeger ( 1962). 

7. Few mathematicians know about the interaction between ge­
ometry and art; see Bouleau ( 1963), Ghyka ( 1977), Hambidge 
( 196 7), and Rhodos ( 196 7) for this subject. 

8. For use of hyperbolic geometry in advanced research, see Cas­
son and Bleiler ( 1988), Gallo and Porter ( 1987), Milnor ( 1982), and 
Fenchel ( 1989). 
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AXIOMS 

INCIDENCE AXIOMS 

AXIOM 1-1. For every point P and for every point Q not equal to P there 
exists a unique line I incident with P and Q. 

AXIOM 1-2. For every line /there exist at least two distinct points that 
are incident with /. 

AXIOM 1-3. There exist three distinct points with the property that no 
line is incident with all three of them. 

BETWEENNESS AXIOMS 

AXIOM B-1. If A* B * C, then A, B, and Care three distinct points all 
lying on the same line, and C * B * A. 

AXIOM B-2. Given any two distinct points B and D, there exist points 
A, C, and E lying on BO such that A * B * D, B * C * D, and 
B*D*E. 
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AXIOM B-3. If A, B, and C are three distinct points lying on the same 
line, then one and only one of the points is between the other two. 

AXIOM B-4. For every line I and for any three points A, B, and C not 
lying on/: 

(i) If A and Bare on the same side of I and Band Care on the same 
side of /, then A and C are on the same side of /. 

(ii) If A and Bare on opposite sides of I and B and Care on opposite 
sides of /, then A and C are on the same side of /. 

CONGRUENCE AXIOMS 

AXIOM C-1. If A and Bare distinct points and if A' is any point, then for 
each ray r emanating from A' there is a unique point B' on r such that 
B' =F A' and AB == A'B'. 

AXIOM C-2. If AB== CD and AB== EF, then CD== EF. Moreover, 
every segment is congruent to itself. 

AXIOM C-3. If A* B * C, A'* B' * C', AB== A'B', and BC== B'C', 
then AC== A'C'. 

AXIOM C-4. Given anungle 4:'.BAC (where by definition of "angle" 
AB is not opposite to AC), and given any ray A'B' emanating from a 
point A', then there is a unique ray A"""1:,' on a given side of line A~' 
such that 4:'.B' A'C' == 4:'.BAC. 

AXIOM C-5. If <tA == 4:'.B and <tA == 4:'.C, then 4:'.B == 4:'.C. Moreover, 
every angle is congruent to itself. 

AXIOM C-6 (SAS). If two sides and the included angle of one triangle 
are congruent respectively to two sides and the included angle of 
another triangle, then the two triangles are congruent. 
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CONTINUITY AXIOMS 

DEDEKIND'S AXIOM. Suppose that the set{/} of all points on a line /is 
the disjoint union I 1 U I 2 of two nonempty subsets such that no point 
of either subset is between two points of the other. Then there exists a 
unique point 0 on I such that one of the subsets is equal to a ray of I 
with vertex 0 and the other subset is equal to the complement. 

ARCHIMEDES' AXIOM. If CD is any segment, A any point, and r any 
ray with vertex A, then for every point B =I= A on r there is a number n 
such that when CD is laid off n times on r starting at A, a point E is 
reached such that n · CD = AE and either B = E or B is between A 
and E. 

ARISTOTLE'S AXIOM. Given any side of an acute angle and any seg­
ment AB, there exists a point Yon the given side of the angle such that 
if X is the foot of the perpendicular from Y to the other side of the 
angle, XY > AB. 

PARALLELISM AXIOMS 

HILBERT'S PARALLEL AXIOM FOR EUCLIDEAN GEOMETRY. For 
every line I and every point P not lying on I there is at most one line m 
through P such that m is parallel to /. 

EUCLID'S FIFTH POSTULATE. If two lines are intersected by a trans­
versal in such a way that the sum of the degree measures of the two 
interior angles on one side of the transversal is less than 180 °, then the 
two lines meet on that side of the transversal. 

HYPERBOLIC PARALLEL AXIOM. There exist a line I and a point P not 
on I such that at least two distinct lines parallel to I pass through P. 



p I I 
{/} 
AB 
PQ 

A8 
<tA 
lllm 
I J_ m 
b.ABC 
DAB CD 

SUT 
Sn T 
H~C 

RAA 
-s 

slf, * 
A*B*C 
AB<CD 

SYMBOLS 

P is incident with I (p. 12) 
the set of points lying on line I (p. 13) 
segment with endpoints A and B ( p. 14) 
line through P and Q ( p. 14) 
congruent ( p. 15) 
ray emanating from A through B (p. 16) 
angle with vertex A (p. 17) 
line I parallel to line m (p. 19) 
line I perpendicular to line m ( p. 27) 
triangle with vertices A, B, C ( p. 28) 
quadrilateral with successive vertices A, B, C, D 

(p. 29) 
union of Sand T (p. 30) 
intersection of Sand T (p. 30) 
statement H implies statement C (p. 40) 
reductio ad absurdum method of proof (p. 42) 
negation of statement S ( p. 44) 
equivalence relation (p. 59) 
projective completion of d (p. 59). 
point B is between points A and C ( p. 7 3) 
segment AB is smaller than segment CD ( p. 88) 



Symbols 

<tABC < <i:DEF 
n·CD 
tf_A)o 
AB 
'5ABC 
.b.DEF-MBC 
Il(PQ) 0 

[ABCD 
rjs 
p(A) 
A)(B 
P(/) 
(AB, CD) 
d(AB) 
Rm 
d'(AB) 
I 
HA 
{!f't (K) 
PGL(Z, K) 
PSL(2, IR) 
C,, 
D,, 
sinh x 
cosh x 
tanh x 
Il(x) 
(<i'.A'AB'V 
k=l 

x• 
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angle ABC is smaller than angle DEF ( p. 91) 
segment CD laid off n times (p. 95) 
number of degrees in angle A (p. 122) 
length of segment AB ( p. 122) 
defect of triangle ABC (p. 130) 
triangle ABC is similar to triangle DEF (p. 152) 
number of degrees in angle of parallelism asso-

ciated to PQ (p. 197) 
biangle ABCD (p. 209) 
ray r is limiting parallel to rays (p. 210) 
polar of the point A (p. 220) 
open chord with endpoints A and B (p. 228) 
pole of the chord I (p. 239) 
cross-ratio of ordered tetrad ABCD (p. 248) 
Poincare length of Poincare segment AB (p. 248) 
reflection across line m ( p. 111, 261) 
Klein length of segment AB (p. 268) 
the identity transformation ( p. 311) 
half-tum about A (p. 327) 
projective line over K (p. 352) 
projective group over K (p. 353) 
the real projective special linear group (p. 354) 
cyclic group of order n (p. 364) 
dihedral group of order Zn (p. 365) 
hyperbolic sine of x (p. 399) 
hyperbolic cosine of x (p. 399) 
hyperbolic tangent of x (p. 399) 
angle of parallelism in radians ( p. 402) 
radian measure of <i:A' AB' ( p. 397) 
normalization of the plane curvature to be - 1 

(p. 401) 
complementary length to x (p. 412) 
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Absolute, the 213, 227, 459 
Absolute geometry 102, 410, 454, 

460 
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Alternate interior angle theorem 

116 
Altitudes 28 
Analytic geometry 98, 384 
Angle bisectors 28 

See also Concurrent lines 
Angle sum 125-127, 130-134, 

158, 189, 291,397 
Angles 17 

acute 123 
base 13, 28, 86 
corresponding 142 
degree measure 122 
exterior 118, 213 
interior 116 
obtuse 123 
of parallelism 197 

remote interior 118 
right 17 
supplementary 17 
vertical 30, 88 
See also Trisection 

Antipodal points 64 
Archimedes' axiom 95-96, 99, 

123, 125, 133, 139, 145-146, 
166, 222,455,459-460 

Area 386-390, 397, 409-410 
Automorphisms 309-311, 321-

324, 344-349, 372-373,382 
Axioms 10 

independence of 54, 64, 68, 225, 
297 

list of 469-471 

Base 28, 155 
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axioms 7 3 - 77 
undefined for points 12, 7 3 
defined for rays 82 
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Biangle 209 
Brianchon's theorem 274 

Cartesian model 114, 344- 349 
Categorical axiom system 56, 98, 

237 
Center of symmetry 316 
Centers of similitude 375, 384 
Centroid 277, 318, 379 
Ceva's theorem 288 
Chord 64, 139 
open 228 

Circles 15, 111 
circumscribed 207, 394, 423-

428, 430, 434 
inscribed 209, 288, 431, 433 
inside and outside of 94 
nine-point 320, 379 
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281-284, 286 
osculating 444 

Circular continuity principle 94, 
101, 110, 114, 143-145, 222, 
244 
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Circumference 176, 407-408 
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Desargues's theorem 68, 289 
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Pappus' theorem 458 

Collineation 310, 322, 336, 358, 
362,376, 382 

Commute 312 
Complementary segments 412 
Complete axiom system 54 
Complete Riemannian manifold 
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Concentric horocycles 393, 401 
Concurrent lines 28 

altitudes 277, 318 
angle bisectors 209, 276 
medians 277, 379 
perpendicular bisectors 207, 394 
Ceva's criterion 288 
Gergonne point 288 
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307 
Pseudosphere 395-397 
Pythagorean theorem 7, 26, 43, 

114, 171-172, 207, 403 
Pythagorean field 459 

Quadrilateral 29 
convex 127, 141, 170 
diagonals of 29, 141 
Lambert 160, 165-166, 170, 

194, 198, 203, 235, 412-417 
Saccheri 155, 160, 164, 170, 

192-193, 203,206, 235,411 
Quantifiers 45 - 48 

Radians 256, 402 
Radical axis 280-281, 284 
Radius 15 
Rays 16 
coterminal 106 
limiting parallel 195- 198, 210, 

231, 234 
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opposite 16, 7 5 
Rectangle 30, 131, 156, 174, 187 
Reductio ad absurdum (RAA) 42 
Reflections 111, 324-326 
Bachmann's equations 379 
in Cartesian model 3 7 5 
in Klein model 261 - 266 
in Poincare models 253-256, 352 
theorem on three 340, 455 

Relativistic three-space 160, 186, 
241-243 

Riemannian geometry 450-452 
Rotations 255, 326-330, 373, 380 
in Cartesian model 346 - 34 7 
in Poincare model 357 

Saccheri-Legendre theorem 125, 
134 

Segments 14 
semiparallel 141 

Semiperimeter 433 
Sides 
of an angle 1 7 
of a line (same and opposite) 7 6-

77 
of a quadrilateral 29 
of a triangle 28 

Similarity 314, 322 - 323, 348 -
349,362,375,380 

Simply transitive operation 358 
Special relativity 2, 242 
Stereographic projection 67, 236-

238 
Straight 12, 17, 39, 149, 451 
Superposition 86 
Symmetric parallelogram 278 
Symmetries 363-369, 382 
Symmetry axis of asymptotic paral-

lels 377 

111 483 

Symmetry point of divergent paral­
lels 219 

Tractrix 395-396 
Transformation 309 

affine 313, 376 
identity 311 
inverse 311 
linear 376 
linear fractional 353 
Mobius 377 
projective 313, 353, 383-384 

Translations 326, 330-333, 373, 
380 

in Cartesian model 344-345 
in Poincare model 356-357 

Transversal 20 
Triangle inequality 100, 124 
Triangles 28 

asymptotic 213 
equilateral 28, 93, 317, 435 
isosceles 13, 23-25, 28, 86, 426 
medial 318 
pedal 317, 435 
right 28 
similar 153, 170-171, 190, 322 

Trichotomy 88, 9t 
Trisection of angles 16, 33, 35, 99, 

222 
Two-dimensionality 7 7, 382 

Ultra-ideal point 219- 221, 240-
241, 455 

Undefined terms 11 - 12 
Universal hyperbolic theorem 188 

Vectors 344 

Wallis' postulate 152 
Weierstrass coordinates 418 
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