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PREFACE

This book presents the discovery of non-Euclidean geometry and the
subsequent reformulation of the foundations of Euclidean geometry
as a suspense story. The mystery of why Euclid’s parallel postulate
could not be proved remained unsolved for over two thousand years,
until the discovery of non-Euclidean geometry and its Euclidean
models revealed the impossibility of any such proof. This discovery
shattered the traditional conception of geometry as the true descrip-
tion of physical space. Mainly through the influence of David Hilbert’s
Grundlagen der Geometrie, a new conception emerged in which the
existence of many equally consistent geometries was acknowledged,
each being a purely formal logical discipline that may or may not be
useful for modeling physical reality. Albert Einstein stated that with-
out this new conception of geometry, he would not have been able to
develop the theory of relativity (see Einstein, 1921, Chapter I). The
philosopher Hilary Putnam stated that ‘‘the overthrow of Euclidean
geometry is the most important event in the history of science for the
epistemologist” (1977, p. x). Chapter 8 of this book reveals the
philosophical confusion that persists to this day.

This text is useful for several kinds of students. Prospective high
school and college geometry teachers are presented with a rigorous
treatment of the foundations of Euclidean geometry and an introduc-
tion to hyperbolic geometry (with emphasis on its Euclidean models).
General education and liberal arts students are introduced to the
history and philosophical implications of the discovery of non-Eucli-
dean geometry (for example, the book was used very successfully as
part of a course on scientific revolutions at Colgate University). Math-
ematics majors are given, in addition, detailed instruction in transfor-
mation geometry and hyperbolic trigonometry, challenging exercises,
and a historical perspective that, sadly, is lacking in most mathematics
texts.

I have used the development of non-Euclidean geometry to revive
interest in the study of Euclidean geometry. I believe that this ap-
proach makes a traditional college course in Euclidean geometry more
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interesting;: in order to identify the flaws in various attempted proofs of
the Euclidean parallel postulate, we carefully examine the axiomatic
foundations of Euclidean geometry; in order to prove the relative
consistency of hyperbolic geometry, the properties of inversion in
Euclidean circles are studied; in order to justify Janos Bolyai’s con-
struction of the limiting parallel rays, some ideas from projective
geometry (cross-ratios, harmonic tetrads, perspectivities) are intro-
duced.

I have used modified versions of Hilbert’s axioms for Euclidean
geometry, instead of the ruler-and-protractor postulates customary in
current high school texts. The ruler-and-protractor statements are all
included in Theorem 4.3 of Chapter 4, and from then on, measure-
ment of segments and angles can be used in the customary manner.
Thus, the change is less significant in practice than it is in principle.
The principle here is that in a rigorous, historically motivated presen-
tation of the foundations of geometry, it is important to separate the
purely geometric ideas from the numerical ideas and to notice that the
number system can be reconstructed from the geometry.

The number system so constructed could turn out to be different
from the familiar real number system if we drop Dedekind’s axiom of
continuity; this opens the way to the new geometries discussed in
Appendix B. In fact, continuity arguments are only used a few times in
this book, and for all but one of those arguments, more elementary
hypotheses (such as the elementary continuity principle or the circu-
lar continuity principle, or Archimedes’ axiom) suffice. Dedekind’s
axiom is used here only to prove the existence of limiting paralle] rays
in hyperbolic geometry (Theorem 6.6 of Chapter 6); my recent re-
search showed that even there, the elementary continuity principle
and Aristotle’s axiom suffice (but the proof is difficult). Of course,
Dedekind’s axiom is needed to obtain an axiom system that is cate-
gorical. But the remainder of the Hilbert-style axioms are closer to the
spirit of Euclid’s presentation of geometry, so that bright high school
students and educated laymen will be able to understand this book.

A unique feature of this book is that some new results are devel-
oped 1n the exercises and then built upon in subsequent chapters. My
experience teaching from earlier versions of this text convinced me
that this method is very valuable for deepening students’ understand-
ing (students not only learn by doing, they enjoy developing new
results on their own). If students do not do a good number of exercises, they
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will have difficulty following subsequent chapters. There are two sets of
exercises for the first six chapters; the “major” exercises are the more
challenging ones, which all students should attempt, but which math-
ematics majors are more likely to solve. This distinction is dropped in
the last four chapters; most of the exercises for Chapters 7,9, and 10
are ‘“‘major,” whereas the exercises for Chapter 8 are unusual for a
mathematics text, consisting of historical and philosophical essay
topics. Hints are given for most of the exercises. A solutions manual is
available for instructors. The first six chapters also have projects at the
end for further research in the library.

The main improvements in this third edition are as follows. Chapter
1 now contains the section warning about the danger in diagrams, but
it also contains a new section on the power of diagrams for geometric
insight, as illustrated by two dissection proofs of the Pythagorean
theorem. In Chapter 2 (Logicand Incidence Geometry), I have added
a brief section on projective and affine planes. Projective geometry,
aside from its intrinsic interest, is essential for understanding certain
properties of hyperbolic geometry, as can be seen from the new Major
Exercise 13 in Chapter 6 plus two sections and the K-Exercises in
Chapter 7. In Chapter 3, the section on axioms of continuity has been
rewritten; some of the major exercises in previous editions that stu-
dents found difficult are now worked out in that section. I also added
Aristotle’s axiom to that section, which replaces Archimedes’ axiom if
one wants to allow infinitesimals in geometry. Chapter 4 contains
many new exercises to deepen the students’ understanding.

Itis Chapter 5 (History of the Parallel Postulate) that has changed
the most, thanks to new historical insights gleaned from the recent
treatises by Jeremy Gray (1989), B. A. Rosenfeld (1988), and Ro-
berto Torretti (1978) (see the Bibliography). Clairaut’s axiom is re-
vealed. Legendre’s many attempts to prove Euclid’s parallel postulate
are studied. And the remarkable glimpse by Lambert and Taurinus of
the possibility of a geometry on *“‘a sphere of imaginary radius” is
highlighted; it is justified in a new section in Chapter 7 (A Model of
the Hyperbolic Plane from Physics) as well as in Chapter 10 (Weier-
strass coordinates). The historical part of Chapter 6 has been im-
proved. Chapters 5, 6, and 7 also have important new exercises.
Chapter 8 (Philosophical Implications) has been marginally changed,
and I would appreciate readers’ comments, since ‘‘working mathema-
ticians” aren’t particularly interested in philosophy. The rest of the
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book has minor improvements, except that the discussion of curvature
and geodesics (the right way to think about “straight lines’’) in Ap-
pendix A is much improved.

Terminology and notation throughout the book are reasonably
standard. I have followed W. Prenowitz and M. Jordan (1965) in using
the term “‘neutral geometry” for the part of Euclidean geometry that
is independent of the parallel postulate (the traditional name “abso-
lute geometry’’ misleadingly implies that all other geometries depend
on it). [ have introduced the names “asymptotic” and ‘“divergent” for
the two types of parallels in hyperbolic geometry; I consider these a
definite improvement over the welter of names in the literature. The
theorems, propositions, and figures are numbered by chapter; for
example, Theorem 4.1 is the first theorem in Chapter 4. Such direc-
tives as ‘‘see Coxeter (1968)” refer to the Bibliography at the back of
the book (the Bibliography is arranged topically rather than strictly
alphabetically).

Here are some suggested curricula for different courses:

1. A one-term course for prospective geometry teachers and/or
mathematics majors, with students of average ability. Cover
Chapters 1-6 and the first four sections of Chapter 7, adding
Chapter 8 if there is time. In assigning exercises, omit the Major
Exercises (except possibly for Chapter 1); omit most of the
Exercises on Betweenness from Chapter 3; omit Exercises 21 -
31 from Chapter 4; omit Exercises 13- 26 from Chapter 5; and
assign only the Review Exercise and Exercises K-1, K-2, K-3,
K-5, K-11, K-12, K-17, and K-18 from Chapter 7.

2. A one-term course for prospective geometry teachers and/or
mathematics majors, with better than average students. Add to the
curriculum of (1) the remainder of Chapter 7 and many of the
exercises omitted in (1).

3. Aone-term course for general education and/or liberal arts stu-
dents. The core of this course would be Chapters 1,2,and 5, the
first three sections of Chapters 6 and 7, and all of Chapter 8. In
addition, the instructor should selectively discuss material from
Chapters 3-6 (such as Hilbert’s axioms, the Saccheri-Leg-
endre theorem, and some of the theorems in hyperbolic geome-
try), but should not impose too many proofs on these students.
The essay topics of Chapter 8 are particularly appropriate for
such a course.
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4. A two-term course for mathematics majors. Cover as much of
the book as time permits.

Thus this book is a resource for a wide variety of students, from the
naive to the sophisticated, from the nonmathematical-but-educated to
the mathematical wizards.

The late Errett Bishop once taught-a liberal arts course in logic
during which he realized the questionable nature of classical logic and
wrote a book about doing mathematical analysis constructively. My
own book has evolved from a liberal arts course in geometry [ taught at
the University of California at Santa Cruz in the early 1970s, when
that campus was infused with joyful idealism and experimentation.
Those were the days, my friend! (Unfortunately, our campus is losing
that spirit—except for a few bright lights such as my friends the
visionary Ralph Abraham, producer of a gorgeous series of books on
visual mathematics and the multidisciplinary survey Chaos, Eros and
Gata; and the innovative chemist Frank Andrews, teacher of creative
problem solving and author of The Art and Practice of Loving.) l am very
pleased by the warm reception accorded earlier editions of this book
for its unusual combination of rigor and history. It indicates that there
is a real need to “humanize” mathematics texts and courses. For
example, when I taught calculus to a large class recently, I was aston-
ished at how much livelier the students (mainly nonmathematicians)
became after they researched and then wrote essays about the history
of calculus (many were fascinated by the strange personality of Isaac
Newton), about the relevance of calculus to their own fields, and
about their fear of this awesome subject. Also, such essays provide
good practice in improving writing skills, which many students need.
Instructors can assign essays from the Projects at the end of Chapters
1-6 and the topics in Chapter 8.

The history of the discovery of non-Euclidean geometry provides a
valuable and accessible case study in the enormous difficulty we
humans have in letting go of entrenched assumptions and opening
ourselves to a new paradigm. It is delightfully instructive to observe
the errors made by very capable people as they struggled with strange
new possibilities they or their culture could not accept— Saccheri,
working out the new geometry but rejecting it because it was “repug-
nant”’; Legendre, giving one clever but false proof after another of
Euclid’s parallel postulate; Lambert, speculating about a possible

[3

geometry on a ‘“‘sphere of imaginary radius’; Farkas Bolyai, pub-
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lishing a false proof of Euclid’s parallel postulate after his son had
already published a non-Euclidean geometry; Gauss, afraid to publish
his discoveries and not recognizing that his surfaces of constant nega-
tive curvature provided the tool for a proof that non-Euclidean geom-
etry is consistent; or Charles Dodgson (alias Lewis Carroll), defend-
ing Euclid against his “modern rivals.” It is inspiring to witness the
courage it took Janos Bolyai and Lobachevsky to put forth the new
idea before the surrounding culture could grasp it, and sad to see how
little they were appreciated during their lifetimes.

Werner Erhard, who founded the es# training taken by about a
million people, understood the nontechnical message of this book. He
read the Bolyai correspondence in Chapters 5-6 to thousands of
people at an es? gathering in San Francisco. I am happy to express my
appreciation to him and to my students at Santa Cruz, whose enthusi-
asm for “having their minds blown” by this course has boosted my
morale (especially Robert Curtis, who subsequently published an
article in the Journal of Geometry on constructions in hyperbolic geom-
etry). Suggestions from readers over the years have been helpful in
improving the book, and I do welcome them. My thanks also to all the
friendly people at W. H. Freeman and Company who helped produce
this book, such as the late John Staples, without whose openness to
innovation this book might not have appeared.

Marvin Jay Greenberg
San Franeisco, California
June 1993
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INTRODUCTION

Let no one ignorant of geometry enter this door.
ENTRANCE TO PLATO’S ACADEMY

Most people are unaware that around a century and a half ago a
revolution took place in the field of geometry that was as scientifically
profound as the Copernican revolution in astronomy and, in its im-
pact, as philosophically important as the Darwinian theory of evolu-
tion. “The effect of the discovery of hyperbolic geometry on our ideas
of truth and reality has been so profound,” writes the great Canadian
geometer H. S. M. Coxeter, “that we can hardly imagine how shock-
ing the possibility of a geometry different from Euclid’s must have
seemed in 1820.” Today, however, we have all heard of the space-
time geometry in Einstein’s theory of relativity. “‘In fact, the geometry
of the space-time continuum is so closely related to the non-Euclidean
geometries that some knowledge of [these geometries] is an essential
prerequisite for a proper understanding of relativistic cosmology.”

Euclidean geometry is the kind of geometry you learned in high
school, the geometry most of us use to visualize the physical universe.
It comes from the text by the Greek mathematician Euclid, the E/e-
ments, written around 300 B.c. Our picture of the physical universe
based on this geometry was painted largely by Isaac Newton in the late
seventeenth century.

Geometries that differ from Euclid’s own arose out of a deeper
study of paralle/ism. Consider this diagram of two rays perpendicular to
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segment PQ:

Q4 -

In Euclidean geometry the perpendicular distance between the rays
remains equal to the distance from P to Q as we move to the right.
However, in the early nineteenth century two alternative geometries
were proposed. In hyperbolic geometry (from the Greek Ayperballein,
“to exceed”) the distance between the rays increases. In elliptic
geometry (from the Greek é/leipein, “‘to fall short”) the distance de-
creases and the rays eventually meet. These non-Euclidean geome-
tries were later incorporated in a much more general geometry devel-
oped by C. F. Gauss and G. F. B. Riemann (it is this more general
geometry that is used in Einstein’s general theory of relativity).!

We will concentrate on Euclidean and hyperbolic geometries in this
book. Hyperbolic geometry requires a change in only one of Euclid’s
axioms, and can be as easily grasped as high school geometry. Elliptic
geometry, on the other hand, involves the new topological notion of
“nonorientability,” since all the points of the elliptic plane not on a
given line lie on the same side of that line. This geometry cannot easily
be approached in the spirit of Euclid. I have therefore made only brief
comments about elliptic geometry in the body of the text, with further
indications in Appendix A. (Do not be misled by this, however;elliptic
geometry is no less important than hyperbolic.) Riemannian geometry
requires a thorough understanding of the differential and integral
calculus, and is therefore beyond the scope of this book (it is discussed
briefly in Appendix A).

Chapter 1 begins with a brief history of geometry in ancient times,
and emphasizes the development of the axiomatic method by the
Greeks. It presents Euclid’s five postulates and includes one of Leg-
endre’s attempted proofs of the fifth postulate. In order to detect the

! Einstein’s special theory of relativity, which is needed to study subatomic particles, is based
on a simpler geometry of space-time due to H. Minkowski. The names “‘hyperbolic geometry”
and “elliptic geometry” were coined by F. Klein; some authors misleadingly call these geome-
tries “‘Lobachevskian” and *‘Riemannian,” respectively.
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flaw in Legendre’s argument (and in other arguments), it will be
necessary to carefully reexamine the foundations of geometry. How-
ever, before we can do any geometry at all, we must be clear about
some fundamental principles of logic. These are reviewed informally
in Chapter 2. In this chapter we consider what constitutes a rigorous
proof, giving special attention to the method of indirect proof, or
reductio ad absurdum. Chapter 2 introduces the very important notion
of a model for an axiom system, illustrated by finite models for the
axioms of incidence as well as real projective and affine models.

Chapter 3 begins with a discussion of some flaws in Euclid’s pre-
sentation of geometry. These are then repaired in a thorough presen-
tation of David Hilbert’s axioms (slightly modified) and their elemen-
tary consequences. You may become restless over the task of proving
results that appear self-evident. Nevertheless, this work is essential if
you are to steer safely through non-Euclidean space.

Our study of the consequences of Hilbert’s axioms, with the excep-
tion of the parallel postulate, is continued in Chapter 4; this study is
called neutral geometry. We will prove some familiar Euclidean theor-
ems (such as the exterior angle theorem) by methods different from
those used by Euclid, a change necessitated by gaps in Euclid’s proofs.
We will also prove some theorems that Euclid would not recognize
(such as the Saccheri-Legendre theorem).

Supported by the solid foundation of the preceding chapters, we
will be prepared to analyze in Chapter 5 several important attempts to
prove the parallel postulate (in the exercises you will have the oppor-
tunity to find flaws in still other attempts). Following that, your Eu-
clidean conditioning should be shaken enough so that in Chapter 6 we
may explore ‘‘a strange new universe,” one in which triangles have the
“wrong”’ angle sums, rectangles do not exist, and parallel lines may
diverge or converge asymptotically. In doing so, we will see unfolding
the historical drama of the almost simultaneous discovery of hyperbo-
lic geometry by Gauss, J. Bolyai, and Lobachevsky in the early nine-
teenth century.

This geometry, however unfamiliar, is just as consistent as Euclid’s.
This is demonstrated in Chapter 7 by studying three Euclidean
models that also aid in visualizing hyperbolic geometry. The Poincaré
models have the advantage that angles are measured in the Euclidean
way; the Beltrami-Klein model has the advantage that lines are repre-
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sented by segments of Euclidean lines. In Chapter 7 we will also
discuss topics in Euclidean geometry not usually covered in high
school.

Chapter 8 takes up in a general way some of the philosophical
implications of non-Euclidean geometries. The presentation is delib-
erately controversial, and the essay topics are intended to stimulate
further thought and reading.

Chapter 9 introduces the new insights gained for geometry by the
transformation approach (Felix Klein’s Erlanger Programme). We
classify all the motions of Euclidean and hyperbolic planes, use them
to solve geometric problems, describe them analytically in the Carte-
sian and Poincaré models, characterize groups of transformations that
are compatible with our congruence axioms, and introduce the fasci-
nating topic of symmetry, determining all finite symmetry groups
(essentially known by Leonardo da Vinci).

Chapter 10 is mainly devoted to the trigonometry of the hyperbolic
plane, touching also upon area theory and surfaces of constant nega-
tive curvature. Among other results, we prove the hyperbolic analogue
of the Pythagorean theorem, and we derive formulas for the circum-
ference and area of a circle, for the relationships between right trian-
gles and Lambert quadrilaterals, and for the circumscribed cycle of a
triangle. We define various coordinate systems used to do analytic
geometry in the hyperbolic plane. Appendix A tells more about ellip-
tic geometry, which is mentioned throughout the book. We then
introduce differential geometry, sketching the magnificent insights of
Gauss and Riemann.

It is very important that you do as many exercises as possible, since
new results are developed in the exercises and then built on in subse-
quent chapters. By working all the exercises, you may come to enjoy
geometry as much as I do.

Hyperbolic geometry used to be considered a historical curiosity.
Some practical-minded students always ask me what it is good for.
Following Euclid’s example, I may give them a coin (not having a slave
to hand it to them) and tell them that I earn aliving from it. Sometimes
I ask them what great music and art are good for, or I refer them to
essay topics 5 and 8 in Chapter 8. If they persist, I refer them to
Luneburg’s research on binocular vision (see Chapter 8), to classical
mechanics, and to current research in topology, ergodic theory, and
automorphic function theory (see Suggested Further Reading). This
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book and the course using it provide practical-minded people an
opportunity to stretch their minds. As the great French mathematician
Jacques Hadamard said, ““Practical application is found by not looking
for it, and one can say that the whole progress of civilization rests on
that principle.” Only impractical dreamers spent two thousand years
wondering about proving Euclid’s parallel postulate, and if they
hadn’t done so, there would be no spaceships exploring the galaxy
today.



CHAPTEHR

EUCLID’S
GEOMETRY

The postulate on parallels . . . was in antiquity the
final solution of a problem that must have preoccupied
Greek mathematics for a long period before Euclid.

HANS FREUDENTHAL

THE ORIGINS OF GEOMETRY

The word “geometry” comes from the Greek geometrein (geo-,
“earth,” and metrein, “to measure’); geometry was originally the
science of measuring land. The Greek historian Herodotus (5th cen-
tury B.C.) credits Egyptian surveyors with having originated the sub-
ject of geometry, but other ancient civilizations (Babylonian, Hindu,
Chinese) also possessed much geometric information.

Ancient geometry was actually a collection of rule-of-thumb proce-
dures arrived at through experimentation, observation of analogies,
guessing, and occasional flashes of intuition. In short, it was an empir-
ical subject in which approximate answers were usually sufficient for
practical purposes. The Babylonians of 2000 to 1600 B.c. considered
the circumference of a circle to be three times the diameter; i.e., they
took 7 to be equal to 3. This was the value given by the Roman
architect Vitruvius and it is found in the Chinese literature as well. It
was even considered sacred by the ancient Jews and sanctioned in
scripture (I Kings 7:23) — an attempt by Rabbi Nehemiah to change
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the value of 7 to 4 was rejected. The Egyptians of 1800 B.C., according
to the Rhind papyrus, had the approximation 7 ~ (18)2 ~ 3.1604.!

Sometimes the Egyptians guessed correctly, other times not. They
found the correct formula for the volume of a frustum of a square
pyramid —a remarkable accomplishment. On the other hand, they
thought that a formula for area that was correct for rectangles applied
to any quadrilateral. Egyptian geometry was notascience in the Greek
sense, only a grab bag of rules for calculation without any motivation or
justification.

The Babylonians were much more advanced than the Egyptians in
arithmetic and algebra. Moreover, they knew the Pythagorean
theorem — in a right triangle the square of the length of the hypote-
nuse is equal to the sum of the squares of the lengths of the legs — long
before Pythagoras was born. Recent research by Otto Neugebauer has
revealed the heretofore unknown Babylonian algebraic influence on
Greek mathematics.

However, the Greeks, beginning with Thales of Miletus, insisted
that geometric statements be established by deductive reasoning
rather than by trial and error. Thales was familiar with the computa-
tions, partly right and partly wrong, handed down from Egyptian and
Babylonian mathematics. In determining which results were correct,
he developed the first logical geometry (Thales is also famous for
having predicted the eclipse of the sun in 585 B.C.). The orderly
development of theorems by proof was characteristic of Greek mathe-
matics and entirely new.

The systematization begun by Thales was continued over the next
two centuries by Pythagoras and his disciples. Pythagoras was re-
garded by his contemporaries as a religious prophet. He preached the
immortality of the soul and reincarnation. He organized a brotherhood
of believers that had its own purification and initiation rites, followed a
vegetarian diet, and shared all property communally. The Pythago-
reans differed from other religious sects in their belief that elevation of

! In recent years 7 has been approximated to a very large number of decimal places by
computers; to five places, 7 is approximately 3.14159. In 1789 Johann Lambert proved that &
was not equal to any fraction (rational number), and in 1882 F. Lindemann proved that 7 is a
transcendental number, in the sense that it does not satisfy any algebraic equation with rational
coefficients, which implies that in the Euclidean plane, it is impossible to square a circle using
only straightedge and compass.
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the soul and union with God are achieved by the study of music and
mathematics. In music, Pythagoras calculated the correct ratios of the
harmonic intervals. In mathematics, he taught the mysterious and
wonderful properties of numbers. Book VII of Euclid’s Elements is the
text of the theory of numbers taught in the Pythagorean school.

The Pythagoreans were greatly shocked when they discovered irra-
tional lengths, such as V2 (see Chapter 2, pp. 43-44). At first they
tried to keep this discovery secret. The historian Proclus wrote: “It is
well known that the man who first made public the theory of irration-
als perished in a shipwreck, in order that the inexpressible and unima-
ginable should ever remain veiled.” Since the Pythagoreans did not
consider v2 a number, they transmuted their algebra into geometric
form in order to represent V2 and other irrational lengths by segments
(V2 by a diagonal of the unit square).

The systematic foundation of plane geometry by the Pythagorean
school was brought to a conclusion around 400 B.C. in the E/ements by
the mathematician Hippocrates (not to be confused with the physician
of the same name). Although this treatise has been lost, we can safely
say that it covered most of Books 1-1V of Euclid’s Elements, which
appeared about a century later. The Pythagoreans were never able to
develop a theory of proportions that was also valid for irrational
lengths. This was later achieved by Eudoxus, whose theory was incor-
porated into Book V of Euclid’s Elements.

The fourth century B.c. saw the flourishing of Plato’s Academy of
science and philosophy (founded about 387 B.C.). In the Republic Plato
wrote, ‘“The study of mathematics develops and sets into operation a
mental organism more valuable than a thousand eyes, because
through it alone can truth be apprehended.” Plato taught that the
universe of ideas is more important than the material world of the
senses, the latter being only a shadow of the former. The material
world is an unlit cave on whose walls we see only shadows of the real,
sunlit world outside. The errors of the senses must be corrected by
concentrated thought, which is best learned by studying mathematics.
The Socratic method of dialog is essentially that of indirect proof, by
which an assertion is shown to be invalid if it leads to a contradiction.
Plato repeatedly cited the proof for the irrationality of the length of a
diagonal of the unit square as an illustration of the method of indirect
proof (the reductio ad absurdum— see Chapter 2, pp. 42-44). The
point is that this irrationality of length could never have been discov-
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ered by physical measurements, which always include a small experi-
mental margin of error.

Euclid was a disciple of the Platonic school. Around 300 B.c. he
produced the definitive treatment of Greek geometry and number
theory in his 13-volume Elements. In compiling this masterpiece Eu-
clid built on the experience and achievements of his predecessors in
preceding centuries: on the Pythagoreans for Books I-1V, VII, and
IX, Archytas for Book VIII, Eudoxus for Books V, VI, and XII, and
Theaetetus for Books X and XIII. So completely did Euclid’s work
supersede earlier attempts at presenting geometry that few traces
remain of these efforts. It’s a pity that Euclid’s heirs have not been
able to collect royalties on his work, for he is the most widely read
author in the history of mankind. His approach to geometry has domi-
nated the teaching of the subject for over two thousand years. More-
over, the axiomatic method used by Euclid is the prototype for all of
what we now call “pure mathematics.” Itis pure in the sense of “‘pure
thought”: no physical experiments need be performed to verify that
the statements are correct — only the reasoning in the demonstrations
need be checked.

Euclid’s E/ements is pure also in that the work includes no practical
applications. Of course, Euclid’s geometry has had an enormous num-
ber of applications to practical problems in engineering, but they are
not mentioned in the Elements. According to legend, a beginning
student of geometry asked Euclid, “What shall I get by learning these
things?” Euclid called his slave, saying, “Give him a coin, since he
must make gain out of what he learns.” To this day, this attitude
toward application persists among many pure mathematicians — they
study mathematics for its own sake, for its intrinsic beauty and ele-
gance (see essay topics 5 and 8 in Chapter 8).

Surprisingly enough, as we will see later, pure mathematics often
turns out to have applications never dreamt of by its creators —the
“impractical’ outlook of pure mathematicians is ultimately useful to
society. Moreover, those parts of mathematics that have not been
“applied” are also valuable to society, either as aesthetic works com-
parable to music and art or as contributions to the expansion of human
consciousness and understanding.?

Z For more detailed information on ancient mathematics, see Bartel van der Waerden
(1961).



10 ‘ | ‘ Euclid’s Geometry

THE AXIOMATIC METHOD

Mathematicians can make use of trial and error, computation of spe-
cial cases, inspired guessing, or any other way to discover theorems.
The axiomatic method is a method of proving that results are correct.
Some of the most important results in mathematics were originally
given only incomplete proofs (we shall see that even Euclid was guilty
of this). No matter — correct proofs would be supplied later (some-
times much later) and the mathematical world would be satisfied.

So proofs give us assurance that results are correct. In many cases
they also give us more general results. For example, the Egyptians and
Hindus knew by experiment that if a triangle has sides of lengths 3, 4,
and 5, it is a right triangle. But the Greeks proved that if a triangle has
sides of lengths 4, 4, and ¢ and if @ + 62 = (2, then the triangle is a
right triangle. It would take an infinite number of experiments to
check this result (and, besides, experiments only measure things
approximately). Finally, proofs give us tremendous insight into rela-
tionships among different things we are studying, forcing us to orga-
nize our ideas in a coherent way. You will appreciate this by the end of
Chapter 6 (if not sooner).

What is the axiomatic method? If I wish to persuade you by pure
reasoning to believe some statement ), I could show you how this
statement follows logically from some other statement §, that you may
already accept. However, if you don’t believe §,, I would have to show
you how §, follows logically from some other statement §;. I might
have to repeat this procedure several times until I reach some state-
ment that you already accept, one I do not need to justify. That
statement plays the role of an axzom (or postulate). If 1 cannot reach a
statement that you will accept as the basis of my argument, I will be
caught in an “infinite regress,” giving one demonstration after an-
other without end.

So there are two requirements that must be met for us to agree that
a proof is correct:

REQUIREMENT 1. Acceptance of certain statements called “‘axioms,”
or “postulates,” without further justification.

REQUIREMENT 2. Agreement on how and when one statement ““fol-
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lows logically” from another, i.c., agreement on certain rules of rea-
soning.

Euclid’s monumental achievement was to single out a few simple
postulates, statements that were acceptable without further justifica-
tion, and then to deduce from them 465 propositions, many compli-
cated and not at all intuitively obvious, which contained all the geo-
metric knowledge of his time. One reason the Elements is such a
beautiful work is that so much has been deduced from so little.

UNDEFINED TERMS

We have been discussing what is required for us to agree that a proof is
correct. Here is one requirement that we took for granted:

REQUIREMENT 0. Mutual understanding of the meaning of the words
and symbols used in the discourse.

There should be no problem in reaching mutual understanding so
long as we use terms familiar to both of us and use them consistently. If
I use an unfamiliar term, you have the right to demand a defnition of
this term. Definitions cannot be given arbitrarily; they are subject to
the rules of reasoning referred to (but not specified) in Requirement
2. If, for example, I define a right angle to be a 90° angle, and then
define a 90° angle to be a right angle, I would violate the rule against
circular reasoning.

Also, we cannot define every term that we use. In order to define
one term we must use othef terms, and to define these terms we must
use still other terms, and so on. If we were not allowed to leave some
terms undefined, we would get involved in infinite regress.

Euclid did attempt to define all geometric terms. He defined a
“straight line” to be “that which lies evenly with the points on itself.”
This definition is not very useful; to understand it you must already
have the image of a line. So it is better to take “line’’ as an undefined
term. Similarly, Euclid defined a “point” as *‘that which has no part”
— again, not very informative. So we will also accept “‘point” as an
undefined term. Here are the five undefined geometric terms that are
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the basis for defining all other geometric terms in plane Euclidean
geometry:

point

line

Jie on (as in “‘two points /e on a unique line”)
between (as in ‘“‘point C is berween points A and B”’)
congruent

For solid geometry, we would have to introduce a further undefined
geometric term, “‘plane,” and extend the relation “lie on” to allow
points and lines to lie on planes. In this book (unless otherwise stated) we
will restrict our attention to plane geometry, i.¢., to one single plane. So
we define s4e plane to be the set of all points and lines, all of which are
said to ‘“‘lie on” it.

There are expressions that are often used synonymously with “lie
on.” Instead of saying “point P Zies on line /,” we sometimes say *“/
passes through P or “*Pis incident with /,” denoted P1/. If point P lies on
both line /and line m, we say that ‘“/and m Aave point P in common’ or
that ““/ and m intersect (or meet) in the point P.”

The second undefined term, “line,” is synonymous with “straight
line.” The adjective “‘straight” is confusing when it modifies the noun
“line,” so we won't use it. Nor will we talk about “‘curved lines.”
Although the word “‘line” will not be defined, its use will be restricted
by the axioms for our geometry. For instance, one axiom states that
two given points lie on only one line. Thus, in Figure 1.1, /and m
could not both represent lines in our geometry, since they both pass
through the points P and Q.

FIGURE 1.1 m

There are other mathematical terms that we will use that should be
added to our list of undefined terms, since we won’t define them; they
have been omitted because they are not specifically geometric in
nature, but are rather what Euclid called ‘‘common notions.”” Never-
theless, since there may be some confusion about these terms, a few
remarks are in order.
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The word “‘set” is fundamental in all of mathematics todayj; it is
now used in elementary schools, so undoubtedly you are familiar with
its use. Think of itas a “collection of objects.” Two related notions are
“belonging to” asetor “being an element (or member) of ”’ a set, asin
our convention that all points and lines delong to the plane. If every
element of a set § is also an element of a set 7, we say that § is
“contained in” or “part of ”’ or “a subset of” 7. We will define
“segment,” “‘ray,” “circle,” and other geometric terms to be certain
sets of points. A “‘line,” however, is not a set of points in our treatment
(for reasons of duality in Chapter 2). When we need to refer to the set
of all points lying on a line /, we will denote that set by {/}.

In the language of sets we say that sets § and 7 are ¢qual if every
member of S'is a member of 7, and vice versa. For example, the set S of
all authors of Euclid’s Elementsis (presumably) equal to the set whose
only member is Euclid. Thus, “‘equal’’ means “identical.”

Euclid used the word “‘equal” in a different sense, as in his assertion
that ‘‘base angles of an isosceles triangle are egua/.” He meant that
base angles of an isosceles triangle have an equal number of degrees,
not that they are identical angles. So to avoid confusion we will not use
the word “equal” in Euclid’s sense. Instead, we will use the undefined
term “‘congruent’’ and say that “‘base angles of an isosceles triangle are
congruent.”’ Similarly, we don’t say that “if AB eguals AC, then AABC
isisosceles.” (If AB equals AC, following our use of the word “equals,”
AABC is not a triangle at all, only a segment.) Instead, we would say
that “if AB is congruent to AC, then A ABC is zsosceles.”” This use of the
undefined term “congruent’ is more general than the one to which
you are accustomed; it applies not only to triangles but to angles and
segments as well. To understand the use of this word, picture con-

_gruent objects as “having the same size and shape.”

Of course, we must specify (as Euclid did in his “‘common notions)
that “a thing is congruent to itself,”” and that *‘things congruent to the
same thing are congruent to each other.” Statements like these will
later be included among our axioms of congruence (Chapter 3).

The list of undefined geometric terms shown earlier in this section
is due to David Hilbert (1862 -1943). His treatise T4¢ Foundations of
Geometry (1899) not only clarified Euclid’s definitions but also filled
in the gaps in some of Euclid’s proofs. Hilbert recognized that Euclid’s
proof for the side-angle-side criterion of congruence in triangles was
based on an unstated assumption (the principle of superposition), and
that this criterion had to be treated as an axiom. He also built on the
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earlier work of Moritz Pasch, who in 1882 published the first rigorous
treatise on geometry; Pasch made explicit Euclid’s unstated assump-
tions about betweenness (the axioms on betweenness will be studied
in Chapter 3). Some other mathematicians who worked to establish
rigorous foundations for Euclidean geometry are: G. Peano, M. Pieri,
G. Veronese, O. Veblen, G. de B. Robinson, E. V. Huntington, and
H. G. Forder. These mathematicians used lists of undefined terms
different from the one used by Hilbert. Pieri used only two undefined
terms (as a result, however, his axioms were more complicated). The
selection of undefined terms and axioms is aréstrary; Hilbert’s selec-
tion is popular because it leads to an elegant development of geometry
similar to Euclid’s presentation.

EUCLID’S FIRST FOUR POSTULATES

Euclid based his geometry on five fundamental assumptions, called
axtoms or postulates.

EUCLID’S POSTULATE I. For every point P and for every point Q not
equal to P there exists a unique line / that passes through P and Q.

This postulate is sometimes expressed informally by saying “two
points determine a unique line.” We will denote the unique line that
passes through P and Q by PQ.

To state the second postulate, we must make our first definition.

DEFINITION. Given two points A and B. The segment AB is the set
whose members are the points A and B and all points that lie on the
line AB and are between A and B (Figure 1.2). The two given points A
and B are called the endpoints of the segment AB.3

p

Segment A B
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FIGURE 1.2 A
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w e

3 Warning on notation: In many high school geometry texts the notation AB is used for
“segment AB.”
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EUCLID’S POSTULATE II. For every segment AB and for every seg-
ment CD there exists a unique point E such that B is between Aand E
and segment CD is congruent to segment BE (Figure 1.3).

C D

L

A
FIGURE 1.3 CD =BE.

we
e

This postulate is sometimes expressed informally by saying that
“any segment AB can be extended by a segment BE congruent to a
given segment CD.” Notice that in this postulate we have used the
undefined term “‘congruent’” in the new way, and we use the usual
notation CD = BE to express the fact that CD is congruent to BE.

In order to state the third postulate, we must introduce another
definition.

DEFINITION. Given two points O and A. The set of all points P such
that segment OP is congruent to segment OA is called a czre/e with O as
center, and each of the segments OP is called a radius of the circle.

It follows from Euclid’s previously mentioned common notion (““a
thing is congruent to itself ”’) that OA = OA, so A is also a point on the
circle just defined.

EUCLID’S POSTULATE III. For every point O and every point A not
equal to O there exists a circle with center O and radius OA (Figure
1.4).

FIGURE 1.4 Circle with center O and radius OA.
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Actually, because we are using the language of sets rather than that
of Euclid, it is not really necessary to assume this postulate; it is a
consequence of set theory that the set of all points P with OP = OA
exists. Euclid had in mind drawing the circle with center O and radius
OA, and this postulate tells you that such a drawing is allowed, for
example, with a compass. Similarly, in Postulate II you are allowed to
extend segment AB by drawing segment BE with a straightedge. Our
treatment “purifies” Euclid by eliminating references to drawing in
our proofs.* But you should review the straightedge and compass
constructions in Major Exercise 1.

DEFINITION. The ray AB is the following set of points lying on the
line AB: those points that belong to the segment AB and all points Con

such that B is between A and C. The ray AB is said to emanate from
the vertex A and to be part of line AB. (See Figure 1.5.)

A
FIGURE 1.5 Ray AB.

DEFINITION. Rays AB and//?é are opposite if they are distinct, if they
gmanate, from the same point A, and if they are part of the same line
AB = AC (Figure 1.6.).

* However, it is a fascinating mathematical problem to determine just what geometric
constructions are possible using only a compass and straightedge. Not until the nineteenth
century was it proved that such constructions as trisecting an arbitrary angle, squaring a circle, or
doubling a cube were impossible using only a compass and straightedge. Pierre Wantzel proved
this by translating the geometric problem into an algebraic problem; he showed that straight-
edge and compass constructions correspond to a solution of certain algebraic equations using
only the operations of addition, subtraction, multiplication, division, and extraction of square
roots. For the particular algebraic equations obtained from, say, the problem of trisecting an
arbitrary angle, such a solution is impossible because cube roots are needed. Of course, it is
possible to trisect angles using other instruments, such as a marked straightedge and compass
(see Major Exercise 3 and Projects 1, 2, and 4), and J. Bolyai proved that in the hyperbolic plane,
it is possible to ‘‘square” the circle-
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B
FIGURE 1.6 Opposite rays.

> ¢
A

DEFINITION. An “angle with versex A” is a point A together with two
distinct nonopposite rays AB and AC (called the sides of the angle)
emanating from A.% (See Figure 1.7.)

FIGURE 1.7 Angle with vertex A.

We use the notations <A, <BAC, or <LCAB for this angle.

DEFINITION. If two angles <BAD and <CAD have a common side
AD and the other two sides AB and AC form opposite rays, the angles
are supplements of each other, or supplementary angles (Figure 1.8).

B A C
FIGURE 1.8 Supplementary angles.

DEFINITION. An angle <BAD is a r4ght angle if it has a supplementary
angle to which it is congruent (Figure 1.9).

3 According to this definition, there is no such thing as a “‘straight angle.” We eliminated this
expression because most of the assertions we will make about angles do not apply to “straight
angles.” The definition excludes zero angles as well.
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FIGURE 1.9 Right angles <BAD = <CAD.
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We have thus succeeded in defining a right angle without referring to
“degrees,” by using the undefined notion of congruence of angles.
“Degrees” will not be introduced formally until Chapter 4, although
we will occasionally refer to them in informal discussions.

We can now state Euclid’s fourth postulate.

EUCLID’S POSTULATE IV. All right angles are congruent to each
other.

This postulate expresses a sort of homogeneity; even though two
right angles may be “very far away” from each other, they neverthe-
less ‘“‘have the same size.” The postulate therefore provides a natural
standard of measurement for angles.®

THE PARALLEL POSTULATE

Euclid’s first four postulates have always been readily accepted by
mathematicians. The fifth (parallel) postulate, however, was highly
controversial. In fact, as we shall see later, consideration of alterna-
tives to Euclid’s parallel postulate resulted in the development of
non-Euclidean geometries.

At this point we are not going to state the fifth postulate in its
original form, as it appeared in the E/ements. Instead, we will present a
simpler postulate (which we will later show is logically equivalent to
Euclid’s original). This version is sometimes called Playfair’s postulate

¢ On the contrary, there is no natural standard of measurement for /engshs in Euclidean
geometry. Units of length (one foot, one meter, etc.) must be chosen arbitrarily. The remarkable
fact about hyperbolic geometry, on the other hand, is that it does admit a natural standard of
length (see Chapter 6).
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because it appeared in John Playfair’s presentation of Euclidean ge-
ometry, published in 1795 — although it was referred to much earlier
by Proclus (A.D. 410-485). We will call it zhe Euclidean paralle! postu-
Jate because it distinguishes Euclidean geometry from other geome-
tries based on parallel postulates. The most important definition in
this book is the following:

DEFINITION. Two lines / and m are paralle/ if they do not intersect,
i.e., if no point lies on both of them. We denote this by /|| m.

Notice first that we assume the lines lie in the same plane (because
of our convention that all points and lines lie in one plane, unless
stated otherwise; in space there are noncoplanar lines which fail to
intersect and they are called séew /ines, not “parallel’”’). Notice sec-
ondly what the definition does nof say: it does not say that the lines are
equidistant, i.e., it does not say that the distance between the two lines
is everywhere the same. Don’t be misled by drawings of parallel lines
in which the lines appear to be equidistant. We want to be rigorous
here and so should not introduce into our proofs assumptions that have
not been stated explicitly. At the same time, don’t jump to the conclu-
sion that parallel lines are 7oz equidistant. We are not committing
ourselves either way and shall reserve judgment until we study the
matter further. At this point, the only thing we know for sure about
parallel lines is that they do not meet.

THE EUCLIDEAN PARALLEL POSTULATE. For every line /and for
every point P that does not lie on /there exists a unique line » through
P that is parallel to /. (See Figure 1.10.)

FIGURE 1.10 Lines /and m are parallel.

Why should this postulate be so controversial? It may seem “‘obvi-
ous’’ to you, perhaps because you have been conditioned to think in
Euclidean terms. However, if we consider the axioms of geometry as
abstractions from experience, we can see a difference between this
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postulate and the other four. The first two postulates are abstractions
from our experiences drawing with a straightedge; the third postulate
derives from our experiences drawing with a compass. The fourth
postulate is perhaps less obvious as an abstraction; nevertheless it
derives from our experiences measuring angles with a protractor
(where the sum of supplementary angles is 180°, so that if supple-
mentary angles are congruent to each other, they must each measure
90°).

The fifth postulate is different in that we cannot verify empirically
whether two lines meet, since we can draw only segments, not lines.
We can extend the segments further and further to see if they meet,
but we cannot go on extending them forever. Our only recourse is to
verify parallelism indirectly, by using criteria other than the defini-
tion.

What is another criterion for /to be parallel to 2 Euclid suggested
drawing a transversal (i.e., a line ¢ that intersects both / and m in
distinct points), and measuring the number of degrees in the interior
angles a and f§ on one side of £ Euclid predicted that if the sum of
angles a and S turns out to be less than 180°, the lines (if produced
sufficiently far) would meet on the same side of zas angles aand f§ (see
Figure 1.11). This, in fact, is the content of Euclid’s fifth postulate.

FIGURE 1.11

The trouble with this criterion for parallelism is that it turns out to
be logically equivalent to the Euclidean parallel postulate that was
just stated (see the section Equivalence of Parallel Postulates in
Chapter 4.). So we cannot use this criterion to convince ourselves of
the correctness of the parallel postulate — that would be circular rea-
soning. Euclid himself recognized the questionable nature of the
parallel postulate, for he postponed using it for as long as he could
(until the proof of his 29th proposition).
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ATTEMPTS TO PROVE THE
PARALLEL POSTULATE

Remember that an axiom was originally supposed to be so simple and
intuitively obvious that no one could doubt its validity. From the very
beginning, however, the parallel postulate was attacked as insufh-
ciently plausible to qualify as an unproved assumption. For two thou-
sand years mathematicians tried to derive it from the other four postu-
lates or to replace it with another postulate, one more self-evident. All
attempts to derive it from the first four postulates turned out to be
unsuccessful because the so-called proofs always entailed a hidden
assumption that was unjustifiable. The substitute postulates, pur-
portedly more self-evident, turned out to be logically equivalent to the
parallel postulate, so that nothing was gained by the substitution. We
will examine these attempts in detail in Chapter 5, for they are very
instructive. For the moment, let us consider one such effort.

The Frenchman Adrien Marie Legendre (1752 —1833) was one of
the best mathematicians of his time, contributing important discover-
ies to many different branches of mathematics. Yet he was so obsessed
with proving the parallel postulate that over a period of 29 years he
published one attempt after another in different editions of his K/é-
ments de Géométrie.” Here is one attempt (see Figure 1.12):

FIGURE 1.12

Given P not on line /. Drop perpendicular PQ from Pto/at Q. Let m
be the line through P perpendicular to PQ. Then m is parallel to /,

7 Davies’ translation of the E/éments was the most popular geometry textbook in the United
States during the nineteenth century. Legendre is best known for the method of least squares in
statistics, the law of quadratic reciprocity in number theory, and the Legendre polynomials in
differential equations. His attempts to prove the parallel postulate led to two important theor-
ems in neutral geometry (see Chapter 4).
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Adrien Marie Legendre

since /and m have the common perpendicular 156 Let 7 be any line
through P distinct from 7 and PQ. We must show than » meets /. Let
PR be aray of #nbetween P_Q and a ray of m emanating from P. There is
a point R’ on the opposite side of P_Q from R such that <QPR’ =
<QPR. Then Q lies in the interior of XRPR’. Since line / passes
through the point Q interior to <RPR’, / must intersect one of the
sides of this angle. If / meets side ITﬁ, then certainly / meets #. Sup-
pose / meets side PR’ ata point A. Let B be the unique point on
side PR such that PA = PB. Then APQA = PQB (SAS); hence
<POB is a right angle, so that B lies on / (and 7).

You may feel that this argument is plausible enough. Yet how could
you tell if it is correct? You would have to justify each step, first
defining each term carefully. For instance, you would have to define
what was meant by two lines being “perpendicular” — otherwise,
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how could you justify the assertion that lines /and »z are parallel simply
because they have a common perpendicular? (You would first have to
prove that as a separate theorem, if you could.) You would have to
justify the side-angle-side (SAS) criterion of congruence in the last
statement. You would have to define the “interior” of an angle, and
prove that a line through the interior of an angle must intersect one of
the sides. In proving all of these things, you would have to be sure to
use only the first four postulates and not any statement equivalent to
the fifth; otherwise the argument would be circular.

Thus there is a lot of work that must be done before we can detect
the flaw. In the next few chapters we will do this preparatory work so
that we can confidently decide whether or not Legendre’s proposed
proof is valid. (Legendre’s argument contains several statements that
cannot be proved from the first four postulates.) As a result of this
work we will be better able to understand the foundations of Euclid-
ean geometry. We will discover that a large part of this geometry is
independent of the theory of parallels and is equally valid in hyperbo-
lic geometry.

THE DANGER IN DIAGRAMS

Diagrams have always been helpful in understanding geometry —
they are included in Euclid’s Elements and they are included in this
book. But there is a danger that a diagram may suggest a fallacious
argument. A diagram may be slightly inaccurate or it may represent
only a special case. If we are to recognize the flaws in arguments such
as Legendre’s, we must not be misled by diagrams that /oo# plausible.

What follows is a well-known and rather involved argument that
pretends to prove that all triangles are isosceles. Place yourself in the
context of what you know from high school geometry. (After this
chapter you will have to put that knowledge on hold.) Find the flaw in
the argument.

Given AABC. Construct the bisector of <A and the perpendicular
bisector of side BC opposite to XA. Consider the various cases (Figure
1.13).
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Case 3
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Case 2

FIGURE 1.13

Case 1. The bisector of <A and the perpendicular bisector of
segment BC are either parallel or identical. In either case, the bisector
of XA is perpendicular to BC and hence, by definition, is an altitude.
Therefore, the triangle is isosceles. (The conclusion follows from the
Euclidean theorem: if an angle bisector and altitude from the same
vertex of a triangle coincide, the triangle is isosceles.)

Suppose now that the bisector of <A and the perpendicular bisector

of the side opposite are not parallel and do not coincide. Then they
intersect in exactly one point, D, and there are three cases to consider:

Case 2. The point D is inside the triangle.
Case 3. The point D is on the triangle.
Case 4. The point D is outside the triangle.
For each case construct DE perpendicular to AB and DF perpen-

dicular to AC, and for cases 2 and 4 join D to B and D to C. In each
case, the following proof now holds (see Figure 1.13):
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DE = DF because all points on an angle bisector are equidistant
from the sides of the angle; DA = DA, and <DEA and <DFA are right
angles; hence, AADE is congruent to AADF by the hypotenuse-leg
theorem of Euclidean geometry. (We could also have used the SAA
theorem with DA = DA, and the bisected angle and right angles.)
Therefore, we have AE = AF. Now, DB = DC because all points on
the perpendicular bisector of a segment are equidistant from the ends
of the segment. Also, DE = DF, and <DEB and <DFC are right
angles. Hence, ADEB is congruent to ADFC by the hypotenuse-leg
theorem, and hence FC = BE. It follows that AB = AC —in cases 2
and 3 by addition and in case 4 by subtraction. The triangle is there-
fore isosceles.

THE POWER OF DIAGRAMS

Geometry, for human beings (perhaps not for computers), is a visual
subject. Correct diagrams are extremely helpful in understanding
proofs and in discovering new results. One of the best illustrations of
this is Figure 1.14, which reveals immediately the validity of the
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FIGURE 1.15
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Pythagorean theorem in Euclidean geometry. (Euclid’s proof was
much more complicated.) Figure 1.15 is asimpler diagram suggesting
a proof by dissection.

REVIEW EXERCISE

Which of the following statements are correct?

(1)

The Euclidean parallel postulate states that for every line / and for
every point P not lying on /there exists a unique line 7 through P that is
parallel to /

An “‘angle” is defined as the space between two rays that emanate from
a common point.

Most of the results in Euclid’s Elements were discovered by Euclid
himself.

By definition, a line m is “‘paralle]” to a line /if for any two points P, Q
on m, the perpendicular distance from P to /is the same as the perpen-
dicular distance from Q to /.

It was unnecessary for Euclid to assume the parallel postulate because
the French mathematician Legendre proved it.

A “transversal” to two lines is another line that intersects both of them
in distinct points.

By definition, a “right angle” is a 90° angle.

“Axioms” or ‘“‘postulates” are statements that are assumed, without
further justification, whereas ‘‘theorems” or “‘propositions” are proved
using the axioms.
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(9) We call Y2 an “irrational number” because it cannot be expressed as a
quotient of two whole numbers.
(10) The ancient Greeks were the first to insist on proofs for mathematical
statements to make sure they were correct.

EXERCISES

In Exercises 1-4 you are asked to define some familiar geometric
terms. The exercises provide a review of these terms as well as prac-
tice in formulating definitions with precision. In making a definition,
you may use the five undefined geometric terms and all other geomet-
ric terms that have been defined in the text so far or in any preceding
exercises.

Making a definition sometimes requires a bit of thought. For exam-
ple, how would you define perpendicularity for two lines /and m? A first
attempt might be to say that *“/and m intersect and at their point of
intersection these lines form right angles.” It would be legitimate to
use the terms “intersect” and ‘“‘right angle” because they have been
previously defined. But what is meant by the statement that /izes form
right angles? Surely, we can all draw a picture to show what we mean,
but the problem is to express the idea verbally, using only terms
introduced previously. According to the definition on p. 17,an angle is
formed by two nonopposite rzys emanating from the same vertex. We
may therefore define /and m as perpendicularif they intersect at a point
A and if there is a ray AB that is part of /and a ray AC that is part of m
such that <BAC is a right angle (Figure 1.16). We denote this by
/L m.

m

FIGURE 1.16 Perpendicular lines.
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1. Define the following terms:

(a)
(b)

Midpoint M of a segment AB.

Perpendicular bisector of a segment AB (you may use the term “mid-
point”’ since you have just defined it).

Ray BD éisects angle XABC (given that point D is between A and
Q).

Points A, B, and C are collinear.

Lines /, m, and n are concurrent (see Figure 1.17).

FIGURE 1.17 Concurrent lines.

2. Define the following terms:

The triangle A ABC formed by three noncollinear points A, B, and
C.

The vertices, sides, and angles of A ABC. (The ‘*sides’” are segments,
not lines.)

The sides opposite to and adjacent to a given vertex A of AABC.
Medians of a triangle (see Figure 1.18).

Altitudes of a triangle (see Figure 1.19).

Isosceles triangle, its base, and its base angles.

Equtlateral triangle.
Right triangle.
C
A } : B

FIGURE 1.18 Median.
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A D B
FIGURE 1.19 Altitude.

3. Given four points, A, B, C, and D, no three of which are collinear and
such that any pair of the segments AB, BC, CD, and DA either have no
point in common or have only an endpoint in common. We can then
define the guadrilatera/ JABCD to consist of the four segments men-
tioned, which are called its szdes, the four points being called its vertices;
see Figure 1.20. (Note that the order in which the letters are written is
essential. For example, JABCD may not denote a quadrilateral, be-
cause, for example, AB might cross CD. If DABCD did denote a
quadrilateral, it would not denote the same one as CTJACDB. Which
permutations of the four letters A, B, C, and D do denote the same
quadrilateral as CJABCD?) Using this definition, define the following
notions:

a) The angles of JABCD.

b) Adyacent sides of CJABCD.

c) Opposite sides of JABCD.

d) The diagonals of JABCD.

)

(
(
(
(
(e} A parallelogram. (Use the word *‘parallel.”)

FIGURE 1.20 Quadrilaterals.

4. Define vertical angles (Figure 1.21). How would you attempt to prove
that vertical angles are congruent to each other? (Just sketch a plan fora
proof —don’t carry it out in detail.)
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FIGURE 1.21 Vertical angles.

5. Use a common notion (p. 13) to prove the following result: If P and Q are
any points on a circle with center O and radius OA, then OP = OQ.
6. (a) Giventwo points A and B and a third point C between them. (Recall
that “between” is an undefined term.) Can you think of any way to
prove from the postulates that C lies on line AB?
(b) Assuming that you succeeded in proving C lies on Kﬁ, can you
prove from the definition of ‘“‘ray” and the postulates that AB =
AC?
7. If S and T are any sets, their #nion (S U T) and intersection (SN T) are
defined as follows:
(i) Something belongs to S U T if and only if it belongs either to §
or to T (or to both of them).
(ii) Something belongs to $ N T if and only if it belongs both to §
and to 7.
Given two points A and B, consider the two rays AB and BA. Draw
diagrams to show that AB U BA = AB and AB N BA = AB. What addi-
tional axioms about the undefined term “*between’ must we assume in
order to be able to prove these equalities?
8. To further illustrate the need for careful definition, consider the follow-
ing possible definitions of recrangle:
(i) A quadrilateral with four right angles.
(ii) A quadrilateral with all angles congruent to one another.
(iii) A parallelogram with at least one right angle.
In this book we will take (1) as our definition. Your experience with Euclid-
ean geometry may lead you to believe that these three definitions are
equivalent; sketch informally how you might prove that, and notice
carefully which theorems you are tacitly assuming. In hyperbolic geom-
etry these definitions give rise to three different sets of quadrilaterals
{(see Chapter 6). Given the definition of “‘rectangle,” use it to define
*“square.”
9. Can you think of any way to prove from the postulates that for every line /
(a) There exists a point lying on /?
(b) There exists a point not lying on /?
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10.

11.

12.

13.

14.

15.

Can you think of any way to prove from the postulates that the plane is
nonempty, i.e., that points and lines exist? (Discuss with your instructor
what it means to say that mathematical objects, such as points and lines,
“exist.”’)

Do you think that the Euclidean parallel postulate is “obvious™? Write a
brief essay explaining your answer.

What is the flaw in the “‘proof’’ that all triangles are isosceles? (All the
theorems from Euclidean geometry used in the argument are correct.)

If the number 7 is defined as the ratio of the circumference of any circle
to its diameter, what theorem must first be proved to legitimize this
definition? (For example, if | “define”” a new number ¢ to be the ratio of
the area of any circle to its diameter, that would not be legitimate. The
required theorem is proved in Section 21.2 of Moise, 1990.)

Do you think the axiomatic method can be applied to subjects other than

mathematics? Is the U.S. Constitution (including all its amendments)

the list of axioms from which the federal courts logically deduce all rules
of law? Do you think the “‘truths’ asserted in the Declaration of Inde-
pendence are “self-evident”?

Write a commentary on the application of the axiomatic method finished

in 1675 by Benedict de Spinoza, entitled: Ethics Demonstrated in Geo-
metrical Order and Divided into Five Parts Which Treat (1) of God: (2} of
the Nature and Origin of the Mind: (3) of the Nature and Origin of the
Emotions; (4) of Human Bondage, or of the Strength of the Emotions; (5) of
the Power of the Intellect, or of Human Liberty. (Devote the main body of
your review to Parts 4 and 5.)

MAJOR EXERCISES

1.

In this exercise we will review several basic Euclidean constructions with

a straightedge and compass. Such constructions fascinated mathemati-

cians from ancient Greece until the nineteenth century, when all classical

construction problems were finally solved.

(a) Given a segment AB. Construct the perpendicular bisector of AB.
(Hint: Make AB a diagonal of a rhombus, as in Figure 1.22.)

{b) Given a line /and a point P lying on / Construct the line through P
perpendicular to / (Hint: Make P the midpoint of a segment of /)

{c¢) Givenaline/and a point P no¢lying on /. Construct the line through P
perpendicular to Z (Hint: Construct isosceles triangle A ABP with
base AB on /and use (a).)
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FIGURE 1.22

(d) Given aline /and a point P not lying on / Construct a line through P
parallel to /. (Hint: use (b) and (c).)

(e) Construct the bisecting ray of an angle. (Hint: Use the Euclidean
theorem that the perpendicular bisector of the base on an isosceles
triangle is also the angle bisector of the angle opposite the base.)

(f) Given AABC and segment DE = AB. Construct a pointF on a given
side of line DE such that ADEF = AABC.

(g) Given angle <ABC and ray DE. Construct F on a given side of line
DE such that ¥ABC = FDE.

2. Euclid assumed the compass to be co/lapsible. That is, given two points P
and Q, the compass can draw a circle with center P passing through Q
(Postulate III); however, the spike cannot be moved to another center O
to draw a circle of the same radius. Once the spike is moved, the compass
collapses. Check through your constructions in Exercise 1 to see if they
are possible with a collapsible compass. (For purposes of this exercise,
being “given” a line means being given two or more points on it.)

(a) Given three points P, Q, and R. Construct with a straightedge and
collapsible compass a rectangle OJPQST with PQ as a side and such
that PT = PR (see Figure 1.23).

oo,

FIGURE 1.23

(b) Given asegment PQ and a ray AB. Construct the point C on ABsuch
that PQ = AC. (Hint: Using (a), construct rectangle CJPAST with
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PT =PQ, and then draw the circle centered at A and passing
through S.)
Exercise (b) shows that you can transfer segments with a collapsible
compass and a straightedge, so you can carry out all constructions as if
your compass did not collapse.

3. The straightedge you used in the previous exercises was supposed to be
unruled (if it did have marks on it, you weren’t supposed to use them).
Now, however, let us mark two points on the straightedge so as to mark
off a certain distance Z. Archimedes showed how we can then trisect an
arbitrary angle:

For any angle, draw a circle  of radius Zcentered at the vertex O of the
angle. This circle cuts the sides of the angle at points A and B, Place the
marked straightedge so that one mark gives a point C on line OA such that
O is between C and A, the other mark gives a point D on circle 7, and the
straightedge must simultaneously rest on the point B, so that B, C, and D
are collinear (Figure 1.24). Prove that .COD so constructed is one-third
of <AOB. (Hint: Use Euclidean theorems on exterior angles and iso-
sceles triangles.)

D
d
B
A;—jdf—/o C

FIGURE 1.24

4. The number p= (1 + V/5)/2 was called the go/den ratio by the Greeks,
and a rectangle whose sides are in this ratio is called a go/den rectangle.?
Prove that a golden rectangle can be constructed with straightedge and

compass as follows:
(a) Construct a square JABCD.

8 For applications of the golden ratio to Fibonacci numbers and phyllotaxis, see Coxeter
(1969), Chapter 11.
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(b) Construct midpoint M of AB.
{(¢) Construct point E such that B is between A and E and MC = ME
(Figure 1.25).

FIGURE 1.25 D C F

(d) Construct the foot F of the perpendicular from E to DC.

(e) Then OAEFD is a golden rectangle (use the Pythagorean theorem
for AMBC).

(f) Moreover, OBEFC is another golden rectangle (first show that

llp=p—1).

The next two exercises require a knowledge of trigonometry.

5.

The Egyptians thought that if a quadrilateral had sides of lengths 4, 4, ¢,
and 4, then its area § was given by the formula (¢ + ¢) (¢ + Z)/4. Prove
that actually

4SS (a+o) (b + d)

with equality holding only for rectangles. (Hint: Twice the area of a
triangle is 46 sin 6, where @ is the angle between the sides of lengths 4, &
and sin @ = 1, with equality holding only if 8 is a right angle.)

Prove analogously that if a triangle has sides of lengths «, 4, ¢, then its area
S satisfies the inequality

ASYI= 2+ 82+ 2

with equality holding only for equilateral triangles. (Hint: If 8 is the angle
between sides & and ¢, chosen so that it is at most 60°, then use the
formulas

28=bcsin 0
2bc cos 6 = 8% + ¢* — a* (law of cosines)
cos (60° — 6) = (cos @ + /3 sin 6)/2

Let AABC be such that AB is not congruent to AC. Let D be the point of
intersection of the bisector of <A and the perpendicular bisector of side
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BC. LetE, F, and G be the feet of the perpendiculars dropped from D to
s A_é, B_é, respectively. Prove that:

(a) D lies outside the triangle on the circle through ABC.

(b) One of E or F lies inside the triangle and the other outside.

(¢} E,F, and G are collinear.

(Use anything you know, including coordinates if necessary.)

PROJECTS

1. Write a paper explaining in detail why it is impossible to trisect an
arbitrary angle or square a circle using only a compass and unmarked
straightedge; see Jones, Morris, and Pearson (1991); Eves (1963-
1965); Kutuzov (1960); or Moise (1990). Explain how arbitrary angles
can be trisected if in addition we are allowed to draw a parabola or a
hyperbola or a conchoid or a limagon (see Peressini and Sherbert, 1971).

2. Here are two other famous results in the theory of constructions:

(a) The Danish mathematician G. Mohr and the Italian L. Mascheroni
discovered independently that all Euclidean constructions of points
can be made with a compass alone. A line, of course, cannot be drawn
with a compass, but it can be determined with a compass by con-
structing two points lying on it. In this sense, Mohr and Mascheroni
showed that the straightedge is unnecessary.

{b) On the other hand, the German J. Steiner and the Frenchman J. V.
Poncelet showed that all Euclidean constructions can be carried out
with a straightedge alone if we are first given a single circle and its
center.

Report on these remarkable discoveries (see Eves, 1963-1965, and

Kutuzov, 1960).

3. Givenany AABC. Draw the two rays that trisect each of its angles, and let
P, Q, and R be the three points of intersection of adjacent trisectors. Prove
Morley’s theorem? that APQR is an equilateral triangle (see Figure 1.26
and Coxeter, 1969).

4. An n-sided polygon is called regular if all its sides (respectively, angles)
are congruent to one another. Construct a regular pentagon and a regular
hexagon with straightedge and compass. The regular septagon cannot be
so constructed; in fact, Gauss proved the remarkable theorem that the
regular #-gon is constructible if and only if all odd prime factors of # occur

? For a converse and generalization of Morley’s theorem, see Kleven (1978).
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B C
FIGURE 1.26 Morley’s theorem.

to the first power and have the form 22° 4+ 1 (e.g., 3, 5, 17, 257, 65,537).
Report on this result, using Klein (1956). Primes of that form are called
Fermat primes. The five listed are the only ones known at this time. Gauss
did not actually construct the regular 257-gon or 65,537-gon; he only
showed that the minimal polynomial equation satisfied by cos (27/#) for
such 7 could be solved in the surd ficld (see Moise, 1990). Other devoted
(obsessive?) mathematicians carried out the constructions. The con-
structor for » = 65,537 labored for 10 years and was rewarded with a
Ph.D. degree; what is the reward for checking his work?

5. Write a short biography of Archimedes (Bell, 1961, is one good refer-
ence). Archimedes discovered some of the ideas of integral calculus 14
centuries before Newton and Leibniz.
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Reductio ad absurdum . . . is a far finer gambit than any
chess gambit: a chess player may offer the sacrifice of a
pawn or even a piece, but a mathematician offers the game.

G. H. HARDY

INFORMAL LOGIC

In the previous chapter we were introduced to the postulates and basic
definitions of Euclid’s geometry, slightly rephrased for greater preci-
sion. We would like to begin proving some theorems or propositions
that are logical consequences of the postulates. However, the exer-
cises of the previous chapter may have alerted you to expect some
difficulties that we must first clear up. For example, there is nothing in
the postulates that guarantees that a line has any points lying on it (or
off it)! You may feel this is ridiculous — it wouldn’t be a line if it didn’t
have any points lying on it. (What kind of a line is he feeding us
anyway?) In a sense, your protest would be legitimate, for if my
concept of a line were so different from yours, we would not under-
stand each other, and Requirement 0 — that there be mutual under-
standing of words and symbols used — would be violated.

So let me be perfectly clear. We must play this game according to
the rules, the rules mentioned in Requirement 2 but not spelled out.
Unfortunately, to discuss them completely would require changing
the content of this book from geometry to symbolic logic. Instead, I
will only remind you of some basic rules of reasoning that you, as a
rational being, already know.
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LOGIC RULE 0. No unstated assumptions may be used in a proof.

The reason for taking the trouble in Chapter 1 to list all our axioms
was to be explicit about our basic assumptions, including even the
most obvious. Although it is “‘obvious’ that two points determine a
unique line, Euclid stated this as his first postulate. So if in some proof
we want to say that every line has points lying on it, we should list this
statement as another postulate (or prove it, but we can’t). In other
words, all our cards must be out on the table. If you reread Exercises 6,
7,9, and 10 in Chapter 1, you will find some *‘obvious” assumptions
that we will have to make explicit. This will be done later.

Perhaps you have realized by now that there is a vital relation
between axioms and undefined terms. As we have seen, we must have
undefined terms in order to avoid infinite regress. But this does not
mean we can use these terms in any way we choose. The axioms tell us
exactly what properties of undefined terms we are allowed to use in
our arguments. You may have some other properties in your mind
when you think about these terms, but you’re not allowed to use them
in a proof (Rule 0). For example, when you think of the unique line
determined by two points, you probably think of it as being “‘straight,”
or as “‘the shortest path between the two points.”” Euclid’s postulates
do not allow us to assume these properties. Besides, from one view-
point, these properties could be considered contradictory. If you were
traveling the surface of the eartb, say, from San Francisco to Moscow,
the shortest path would be an arc of a great circle (a straight path would

FIGURE 2.1 The shortest path berween two points on a sphere is an arc of a grear
cfrcle (a circle whose center is the center of the sphere and whose radius is the radius of
the sphere, e.g., the equator).
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bore through the earth). Indeed, pilots in a hurry fly their aircraft over
great circles.

THEOREMS AND PROOFS

All mathematical theorems are conditional statements, statements of
the form
If [hypothesis] zhen [conclusion].

In some cases a theorem may state only a conclusion; the axioms of the
particular mathematical system are then implicit (assumed) as a hy-
pothesis. If a theorem is not written in the conditional form, it can
nevertheless be translated into that form. For example,

Base angles of an isosceles triangle are congruent.
can be interpreted as

If a triangle has two congruent sides, then the angles opposite those sides
are congruent.

Put another way, a conditional statement says that one condition
(the hypothesis) implies another (the conclusion). If we denote the
hypothesis by H, the conclusion by C, and the word “implies” by an
arrow =, then every theorem has the form /= C. (In the example
above, His “twosides of a triangle are congruent” and C'is “‘the angles
opposite those sides are congruent.”)

Not every conditional statement is a theorem. For example, the
statment

If DABC is any triangle, then it is isosceles.

is not a theorem. Why not? You might say that this statement is ““false”
whereas theorems are “true.” Let’s avoid the loaded words “true”
and “false,” for they beg the question and lead us into more compli-
cated issues.

In a given mathematical system the only statements we call #4eor-
ems! are those statements for which a proofhas been supplied. We can

! Or sometimes propositions, corollaries, or femmas. ‘‘Theorem” and *‘proposition” are inter-
changeable; a “corollary” is an immediate consequence of a theorem, and a “lemma” is a
“helping theorem.” Logically, they all mean the same; the title is just an indicator of the author’s
empbhasis.
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disprove the assertion that every triangle is isosceles by exhibiting a
triangle that is not isosceles, such as a 3-4-5 right triangle.

The crux of the matter then is the notion of proof. By definition, a
proof is a list of statements, together with a justification for each
statement, ending up with the conclusion desired. Usually, each
statement in a proof will be numbered in this book, and the justifica-
tion for it will follow in parentheses.

LOGIC RULE 1. The following are the six types of justifications al-
lowed for statements in proofs:

(1) “By hypothesis. . . .”

(2) “Byaxiom. .. .”

(3) “Bytheorem . . .” (previously proved).

(4) “By definition. . . .”

(5) “Bystep . . .” (a previous step in the argument).
(6) “Byrule . . . of logic.”

Later in the book our proofs will be less formal, and justifications
may be omitted when they are obvious (Be forewarned, however, that
these omissions can lead to incorrect results.) A justification may in-
volve several of the above types.

Having described proofs, it would be nice to be able to tell you how
to find or construct them. Yet that is the mystery of doing mathemat-
ics. Certain techniques for proving theorems are learned by experi-
ence, by imitating what others have done. But there is no rote method
for proving or disproving every statement in mathematics. (The non-
existence of such a rote method is, when stated precisely, a deep
theorem in mathematical logic and is the reason why computers will
never put mathematicians out of business—see DeLong, 1970,
Chapter 5).

However, some suggestions may help you construct proofs. First,
make sure you clearly understand the meaning of each term in the
statement of the proposed theorem. If necessary, review their defini-
tions. Second, keep reminding yourself of what it is you are trying to
prove. If it involves parallel lines, for example, look up previous
propositions that give you information about parallel lines. If you find
another proposition that seems to apply to the problem at hand, check
carefully to see whether it really does apply. Draw pictures to help you
visualize the problem.
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RAA PROOFS

The most common type of proof in this book is proof by reductio ad
absurdum, abbreviated RAA. In this type of proof you want to prove a
conditional statement, H = C, and you begin by assuming the con-
trary of the conclusion you seek. We call this contrary assumption the
RAA hypothesis, to distinguish it from the hypothesis A. The RAA
hypothesis is a temporary assumption from which we derive, by rea-
soning, an absurd statement (‘“absurd” in the sense that it denies some-
thing known to be valid). Such a statement might deny the hypothesis
of the theorem or the RAA hypothesis; it might deny a previously
proved theorem or an axiom. Once it is shown that the negation of ¢
leads to an absurdity, it follows that €' must be valid. This is called the
RAA conclusion. To summarize:

LOGIC RULE 2. To prove astatement H = C, assume the negation of
statement ¢ (RAA hypothesis) and deduce an absurd statement,
using the hypothesis H if needed in your deduction.

Let us illustrate this rule by proving the following proposition
(Proposition 2.1): If /and m are distinct lines that are not parallel, then
/and m have a unique point in common.

Proof:

(1) Because /and m are not parallel, they have a point in common
(by definition of “‘parallel”).

(2) Since we want to prove uniqueness for the point in common,
we will assume the contrary, that /and » have two distinct
points A and B in common (RAA hypothesis).

(3) Then there i1s more than one line on which A and B both lie
(step 2 and the hypothesis of the theorem, /# m).

(4) A and B lie on a unique line (Euclid’s Postulate I).

(5) Intersection of /and 7 is unique (3 contradicts 4, RAA conclu-

sion). Il

Notice that in steps 2 and 5, instead of writing “‘Logic Rule 2” as
justification, we wrote the more suggestive “RAA hypothesis” and
“RAA conclusion,” respectively.
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As another illustration, consider one of the earliest RAA proofs,
discovered by the Pythagoreans (to their great dismay). In giving this
proof, we will use some facts about Euclidean geometry and numbers
that you know, and we will be informal.

Suppose AABC is a right isosceles triangle withright angle at C. We
can choose our unit of length so that the legs have length 1. The
theorem then says that the length of the hypotenuse is irrational
(Figure 2.2).

By the Pythagorean theorem, the length of the hypotenuse is V2, so
we must prove that V2 is an irrational number, i.e., that it is not a
rational number.

What is a rational number? Itis a number that can be expressed as a
quotient p/g of two integers p and ¢. For example, 4, 4,and 5 = 3 are
rational numbers. We want to prove that V2 is not one of these
numbers.

We begin by assuming the contrary, that 2 is a rational number
(RAA hypothesis). In other words, V2 = p/q for certain unspecified
whole numbers p and ¢. You know that every rational number can be
written in lowest terms, i.e., such that the numerator and denominator
have no common factor. For example, £ can be written as £, where the
common factor 2 in the numerator and denominator has been can-
celed. Thus we can assume all common factors have been canceled, so
that p and ¢ have no common factor.

Next, we clear denominators:

V2g=p
and square both sides:
242 =p2
A
V2
!
-

FIGURE 2.2 C 1 B
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This equation says that p? is an even number (since p? is twice another
whole number, namely, ¢?). If p? is even, p must be even, for the
square of an odd number is odd, as you know. Thus,

p=2r

for some whole number 7 (that is what it means to be even). Substitut-
ing 2r for p in the previous equations gives

2¢° = (2r)* = 4r2
We then cancel 2 from both sides to get
q° = 2r2

This equation says that g% is an even number; hence ¢ must be
even.

We have shown that numerator p and denominator ¢ are both even,
meaning that they have 2 as a common factor. Now this is absurd,
because all common factors were canceled. Thus, V2 is irrational
(RAA conclusion).

NEGATION

In an RAA proof we begin by “assuming the contrary.” Sometimes the
contrary or negation of a statement is not obvious, so you should know
the rules for negation.

First, some remarks on notation. If § is any statement, we will
denote the negation or contrary of § by ~§. For example, if § is the
statement “pis even,” then ~§'is the statement “pis noteven” or “‘pis
odd.”

The rule below applies to those cases where §is already a negative
statement. The rule states that two negatives make a positive.

LOGIC RULE 3. The statement “~(~S)” means the same as “S§.”

We followed this rule when we negated the statement “v/2 is irra-
tional”’ by writing the contrary as ‘y/2 is rational”’ instead of ““v'2 is not
irrattonal.”
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Another rule we have already followed in our RAA method is the
rule for negating an implication. We wish to prove H=> C, and we
assume, on the contrary, H does not imply C, i.e., that A holds and at
the same time ~C holds. We write this symbolically as H & ~C, where
& is the abbreviation for “and.” A statement involving the connective
“and” is called a conjunction. Thus:

LOGICRULE 4. Thestatement “‘~[H = (] means the same as “H &
~C.’?

Let us consider, for example, the conditional statement *“if 3 is an
odd number, then 32 is even.” According to Rule 4, the negation of
this is the declarative statement “3 is an odd number and 32 is odd.”

How do we negate a conjunction? A conjunction §; & §, means that
statements §; and §, both hold. Negating this would mean asserting
that one of them does not hold, i.e., asserting the negation of one or the
other. Thus:

LOGIC RULE 5. The statement “~[S§; & §,]” means the same as
“[~8 or ~§,].7

A statement involving the connective “or” is called a disjunction.
The mathematical “or” is not exclusive like “‘or” in everyday usage.
Consider the conjunction “1 =2 and 1 = 3.” If we wish to deny this,
we must write (according to Rule 5) “1 #2 or 1 # 3.” Of course, both
inequalities are valid. So when a mathematician writes “S; or §,” he
means ‘‘either §; holds or S, holds or they both hold.”

Finally let us be more precise about what is an absurd statement. It
is the conjunction of a statement § with the negation of §, i.e., “S &
~8.” A statement of this type is called a contradiction. A system of
axioms from which no contradiction can be deduced is called consistent.

QUANTIFIERS

Most mathematical statements involve variables. For instance, the
Pythagorean theorem states that for any right triangle, if 2 and 4
are the lengths of the legs and ¢ the length of the hypotenuse, then
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¢? = g® + 2. Here a4, b, and ¢ are variable numbers, and the triangle
whose sides they measure is a variable triangle.

Variables can be quantified in two different ways. First, in a #nfver-
sal way, as in the expressions:

"

“Foranywx, .. ..
“Foreveryx, . . . .
“Forallx, . .. .”
“Givenanywx, . . . .
“Ifxisany. . ..”

"

"

Second, in an existential way, as in the expressions:

"

“Forsomex, . . ..
“There existsan x . . . .
“Thereisanx . . . .”

“There are x . . . .

Consider Euclid’s first postulate, which states informally that two
points P and Q determine a unique line / Here P and Q may be any
two points, so they are quantified universally, whereas /is quantified
existentially, since it is asserted to exist, once P and Q are given.

It must be emphasized that a statement beginning with “For
every . . .” does not imply the existence of anything. The statement
“every unicorn has a horn on its head” does not imply that unicorns
exist.

If a variable xis quantified universally, this is usually denoted as Vx,
(read as “for all x). If x is quantified existentially, this is usually
denoted as 3x (read as “‘there exists an x . . .”’). After a variable x is
quantified, some statement is made about x, which we can write as
S(x) (read as “‘statement § about x”°). Thus, a universally quantified
statement about a variable x has the form VxS§(x).

We wish to have rules for negating quantified statements. How do
we deny that statement §(x) holds for all x» We can do so clearly by
asserting that for some x, S(x) does not hold.

LOGIC RULE 6. The statement “~[VxS(x)]” means the same as
“Ix ~ S(x).”

For example, to deny “All triangles are isosceles” is to assert
“There is a triangle that is not isosceles.”
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Similarly, to deny that there exists an x having property S(x) is to
assert that all x fail to have property §(x).

"

LOGIC RULE 7. The statement “~[3xS(x)]” means the same as

“Vx ~ S(x).”

For example, to deny ‘““There is an equilateral right triangle” is to
assert “‘Every right triangle is nonequilateral” or, equivalently, to
assert “‘No right triangle is equilateral.”

Since in practice quantified statements involve several variables,
the above rules will have to be applied several times. Usually, common
sense will quickly give you the negation. If not, follow the above rules.

Let’s work out the denial of Euclid’s first postulate. This postulate
is a statement about all pairs of points P and Q; negating it would
mean, according to Rule 6, asserting the existence of points P and Q
that do not satisfy the postulate. Postulate I involves a conjunction,
asserting that P and Q lie on some line /and'that /is unique. In order to
deny this conjunction, we follow Rule 5. The assertion becomes either
“P and Q do not lie on any line” or “they lie on more than one line.”
Thus, the negation of Postulate I asserts: ““There are two points P and
Q that either do not lie on any line or lie on more than one line.”

If we return to the example of the surface of the earth, thinking of a
“line” as a great circle, we see that there do exist such points P and
Q—namely, take P to be the north pole and Q the south pole.
Infinitely many great circles pass through both poles. (See Figure
2.3.)

Mathematical statements are sometimes made informally, and you
may sometimes have to rephrase them before you will be able to

North pole

Great circles

FIGURE 2.3
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negate them. For example, consider the following statement:
If a line intersects one of two parallel lines, it also intersects the other.

This appears to be a conditional statement, of the form
“if . .. then . . .”;its negation, according to Rule 4, would appear
to be:

A line intersects one of two parallel lines and does not intersect the other.

If this seems awkward, it is because the original statement con-
tained Aidden quantifiers that have been ignored. The original state-
ment refers to any line that intersects one of two parallel lines, and
these are any parallel lines. There are universal quantifiers implicit in
the original statement. So we have to follow Rule 6 as well as Rule 4 in
forming the correct negation, which is:

There exist two parallel lines and a line that intersects one of them and
does not intersect the other.

IMPLICATION

Another rule, called the rule of detachment, or modus ponens, is the
following:

LOGIC RULE 8. If P = ( and P are steps in a proof, then Q is a
justifiable step.

This rule is almost a definition of what we mean by implication. For
example, we have an axiom stating that if <A and <B are right angles,
then XA = 4B (Postulate IV). Now in the course of a proof we may
come across two right angles. Rule 8 allows us to assert their con-
gruence as a step in the proof.

You should beware of confusing a conditional statement P= Q
with its converse () = P. For example, the converse of Postulate IV
states that if XA = 4B then XA and ¥B are right angles, which is
absurd.

However, it may sometimes happen that both a conditional state-
ment and its converse are valid. In case P= @ and 0 = P both hold,
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we write simply P <= Q (read as “P if and only if Q" or ““P is logically
equivalent to ('), All definitions are of this form. For example, three
points are collinear if and only if they lie on a line. Some theorems are
also of this form, such as the theorem “a triangle is isosceles if and only
if two of its angles are congruent to each other.” The next rule gives a
few more ways that “implication” is often used in proofs.

LOGICRULEY. (a) [[P= Q] & [0=R]] = [P=R].
(b) [P& Q] =P, [P& Q] = 0.
(¢) [F9=~P] = [P=(].

Part (c) states that every implication P=> () is logically equivalent
to its contrapositive ~(Q = ~P. All parts of Rule 9 are called tauto/-
ogies, because they are valid just by their form, not because of what P,
0, and R mean; by contrast, the validity of a formula such as P= Q
does depend on the meaning, as we have just seen. There are infi-
nitely many tautologies, and the next rule gives the most infamous.

LAW OF EXCLUDED MIDDLE AND PROOF
BY CASES

LOGIC RULE 10. For every statement P, “Por ~P” isavalid stepin a
proof (law of excluded middle).?

For example, given point P and line /, we may assert that either P
lies on /or it does not. If this is a step in a proof, we will usually then
break the rest of the proof into cases — giving an argument under the
case assumption that P lies on /and giving another argument under the
case assumption that P does not. Both arguments must be given, or

2 The law of excluded middle characterizes classical two-valued logic: either a statement
holds or it does not; there is no middle ground such as “we don't know.” Constructivist
mathematicians (such as Brouwer, Bishop, Beeson, and Stolzenberg) reject the unqualified use
of this rule when applied to existence statements. They insist that in order to meaningfully prove
that a mathematical object exisss, one must supply an effective method for constructing it. It is
uninformative merely to assume that the object does not exist (RAA hypothesis) and then derive
a contradiction (so they also reject Logic Rule 6 when applied to infinite sets). The “construc-
tive” aspect of Euclid’s geometry traditionally refers to “straightedge and compass construc-
tions” (see the Major Exercises of Chapter 1). We will pay close attention to this aspect
throughout this book.
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else the proof is incomplete. A proof of this type is given for Proposi-
tion 3.16 in Chapter 3, which asserts that there exists a line through P
perpendicular to /.

Sometimes there are more than two cases. For example, it is a
theorem that either an angle is acute or it is right or it is obtuse — three
cases. We will have to give three arguments—one for each case
assumption. You will give such arguments when you prove the SSS
criterion for congruence of triangles in Exercise 32 of Chapter 3. This
method of proof by cases was used (correctly) in the incorrect attemptin
Chapter 1 to prove that all triangles are isosceles.

LOGIC RULE 11. Suppose the disjunction of statements §; or §,
or . . . orS,isalreadyavalid step in a proof. Suppose that proofs of C
are carried out from each of the case assumptions Sy, S5, . . . ,S,. Then
C can be concluded as a valid step in the proof (proof by cases).

And this concludes our discussion of logic. No claim is made that all
the rules of logic have been listed, just that those listed should suffice
for our purposes. For further discussion, see DelLong (1970) and his
bibliography.

INCIDENCE GEOMETRY

Let us apply the logic we have developed to a very elementary part of
geometry, incidence geometry. We assume only the undefined terms
“point” and “‘line”’ and the undefined relation “incidence’ between a
pointand a line, written “P lies on /”” or P1/or *“/passes through P’ as
before. We don’t discuss “‘betweenness’ or “‘congruence’ in this
restricted geometry (but we are now beginning the new axiomatic
development of geometry that fills the gaps in Euclid and applies to
other geometries as well; that development will continue in future
chapters, and the formal definitions given in Chapter 1 will be used).

These undefined terms will be subjected to three axioms, the first
of which is the same as Euclid’s first postulate.

INCIDENCE AXIOM 1. For every point P and for every point Q not
equal to P there exists a unique line /incident with P and Q.
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INCIDENCE AXIOM 2. For every line /there exist at least two distinct
points incident with /

INCIDENCE AXIOM 3. There exist three distinct points with the prop-
erty that no line is incident with all three of them.

These axioms fill the gap mentioned in Exercises 9 and 10, Chapter
1. We can now assert that every line has points lying on it—at least
two, possibly more —and that the points do not all lie on one line.
Moreover, we know that the geometry must have at least three points
in it, by the third axiom and Rule 9(b) of logic. Namely, Incidence
Axiom 3 is a conjunction of two statements:

1. There exist distinct points A, B, and C.
2. For every line, at least one of these points does not lie on the line.

Rule 9(b) tells us that a conjunction of two statements implies each
statement separately, so we can conclude that three distinct points
exist (Rule 8).

Incidence geometry has some defined terms, such as “collinear,”
“concurrent,” and ““parallel,” defined exactly as they were in Chapter
1. Incidence Axiom 3 can be rewritten as “‘there exist three noncollin-
ear points.” Parallel lines are still lines that do not have a point in

common.

What sort of results can we prove using this meager collection of
axioms? None that are very exciting, but here are a few you can prove
as exercises.

PROPOSITION 2.1. If /and m are distinct lines that are not parallel,
then /and 7 have a unique point in common.

PROPOSITION 2.2. There exist three distinct lines that are not concur-
rent.

PROPOSITION 2.3. For every line there is at least one point not lying
on it.

PROPOSITION 2.4. Forevery point there is at least one line not passing
through it.

PROPOSITION 2.5. For every point P there exist at least two lines
through P.
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MODELS

In reading over the axioms of incidence in the previous section, you
may have imagined dots and long dashes drawn on a sheet of paper.
With this representation in mind, the axioms appear to be correct
statements. We will take the point of view that these dots and dashes
are a mode/ for incidence geometry.

More generally, if we have any axiom system, we can interpret the
undefined terms in some wayj, i.e., give the undefined terms a particu-
lar meaning. We call this an interpretation of the system. We can then
ask whether the axioms, so interpreted, are correct statements. If they
are, we call the interpretation a model. When we take this point of
view, interpretations of the undefined terms “point,” “line,” and
“incident” other than the usual dot-and-dash drawings become pos-
sible.

Example 1. Consideraset{A, B, C} of three letters, which we will
call “points.” *“Lines’ will be those subsets that contain exactly two
letters— (A, B}, (A, C}, and {B, C}. A “point” will be interpreted as
“incident” with a “line” if it is a member of that subset. Thus, under
this interpretation, A lies on {A, B} and {A, C} but does not lie on
{B, C}. In order to determine whether this interpretation is a mode/,
we must check whether the interpretations of the axioms are correct
statements. For Incidence Axiom 1, if P and Q are any two of the
letters, A, B, and C, (P, Q} is the unique “line’’ on which they both lie.
For Axiom 2, if (P, Q} is any “line,” P and Q are two distinct “‘points”
lying on it. For Axiom 3, we see that A, B, and C are three distinct
“points” that are not collinear.

What is the use of models? The main property of any model of an
axiom system is that all theorems of the system are correct statements
in the model. This is because logical consequences of correct state-
ments are themselves correct. (By definition of ““model,” axioms are
correct statements when interpreted in models; theorems are logical
consequences of axioms.) Thus, we immediately know that the five
propositions in the previous section hold in the three-point geometry
above (Example 1).
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Suppose we have a statement in the formal system but don’t yet
know whether it is a theorem, 1.e., we don’t yet know whether it can be
proved. We can look at our models and see whether the statement is
correct in the models. If we can find o7¢ model where the interpreted
statement fails to hold, we can be sure that no proof is possible. You
are undoubtedly familiar with testing for the correctness of geometric
statements by drawing pictures. Of course, the converse does not
work; just because a drawing makes a statement /o4 right does not
mean you can prove it. This was illustrated on pp. 23-25.

The advantage of having several models is that a statement may
hold in one model but not in another. Models are “‘laboratories” for
experimenting with the formal system.

Let us experiment with the Euclidean parallel postulate. This is a
statement in the formal system incidence geometry: “For every line /
and every point P not lying on / there exists a unique line through P
that is parallel to /" This statement appears to be correct according to
our drawings (although we cannot verify the uniqueness of the paral-
lelism, since we cannot extend our dashes indefinitely). But what
about our three-point model? It is immediately apparent that 7o par-
allel lines exist in this model: (A, B} meets {B, C} in the point B and
meets {A, C} in the point A; {B, C} meets {A, C} in the point C. (We
say that this model has the e/iptic parallel property.)

Thus, we can conclude that 7o proof of the Euclidean parallel postulate
[from the axioms of incidence alone is possible; in fact, in incidence geometry it
is impossible to prove that parallel lines exist. Similarly, the statement
“any two lines have a point in common’’ (the elliptic parallel property)
cannot be proved from the axioms of incidence geometry, for if you

A C

FIGURE 2.4 Elliptic parallel property (no parallel lines). A 3-point incidence
geometry.
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could prove it, it would hold in the usual drawn model (and in the
models that will be described in Examples 3 and 4).

The technical description for this situation is that the statement
“parallel lines exist” is “independent” of the axioms of incidence. We
call a statement independent of given axioms if it is impossible to either
prove or disprove the statement from the axioms. Independence is
demonstrated by constructing two models for the axioms: one in which
the statement holds and one in which it does not hold. This method
will be used very decisively in Chapter 7 to settle once and for all the
question of whether the parallel postulate can be proved.

An axiom system is called complete if there are no independent
statements in the language of the system, i.e., every statement in the
language of the system can either be proved or disproved from the
axioms. Thus, the axioms for incidence geometry are incomplete. The
axioms for Euclidean and hyperbolic geometries given later in the
book can be proved to be complete (see Tarski’s article in Henkin,
Suppes, and Tarski, 1959).

Example 2. Suppose we interpret “‘points’ as points on a sphere,
“lines” as great circles on the sphere, and “incidence” in the usual
sense, as a point lying on a great circle. In this interpretation there are
again no parallel lines. However, this interpretation is 7#of a model for
incidence geometry, for, as was already mentioned, the interpretation
of Incidence Axiom 1 fails to hold —there are an infinite number of
great circles passing through the north and south poles on the sphere
(see Figure 2.3).

Example 3. Let the “points’ be the four letters A, B, C, and D.
Let the “lines” be all six sets containing exactly two of these letters:

FIGURE 2.5 Euclidean parallel property. A 4-point incidence geometry.
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E
FIGURE 2.6 Hyperbolic parallel property. A 5-point incidence geometry.

{A, B}, {A,C}, {A, D}, {B, C}, {B, D}, and {C, D}. Let “incidence” be
set membership, as in Example 1. As an exercise, you can verify that
this is a model for incidence geometry and that in this model the
Euclidean parallel postulate does hold (see Figure 2.5).

Example 4. Let the “points” be the five letters A, B, C, D, and
E.® Let the “lines” be all 10 sets containing exactly two of these
letters. Let “incidence” be set membership, as in Examples 1 and 3.
You can verify that in this model the following statement about paral-
lel lines, characteristic of hyperbolic geometry, holds: “For every line /
and every point P not on / there exist at least two lines through P
parallel to /.” (See Figure 2.6).
Let us summarize the significance of models. Models can be used
to prove the independence of a statement from given axioms; i.e.,
models can be used to demonstrate the impossibility of proving or
~ disproving a statement from the axioms. Moreover, if an axiom system
has many models that are essentially different from each other, as the
models in Examples 1, 3, and 4 are essentially different from each
other, then that system has a wide range of applicability. Propositions
proved from the axioms of such a system are automatically correct
statements within azy of the models. Mathematicians often discover

3 An incidence geometry with only finitely many points is called a finire geometry. There is an
entertaining discussion of finite geometries (with applications to growing tomato plants) in
Chapter 4 of Beck, Bleicher, and Crowe (1969). For an advanced treatment, see Dembowski
(1968) or Stevenson (1972). See the exercises at the end of this chapter for more examples.
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that an axiom system constructed with one particular model in mind
has applications to completely different models never dreamed of.

At the other extreme, when all models of an axiom system are
isomorphic to one another, the axioms are called categorical. (The
axioms for Euclidean and hyperbolic geometries given later in the
book are categorical.) The advantage of categorical axioms is that they
completely describe all properties of the model that are expressible in
the language of the system.* (For a simple example of a categorical
system, suppose we add to the three incidence axioms a fourth axiom
asserting that there do not exist four distinct points. Obviously, the
three-point model in Example 1 is the only model, up to isomorphism,
for this expanded axiom system.)

Finally, models provide evidence for the consistency of the axiom
system. For example, if incidence geometry were inconsistent, the
supposed proof of a contradiction could be translated into proof of a
contradiction in the utterly trivial set theory for the set of three letters
A, B, and C (Example 1).

ISOMORPHISM OF MODELS

We want to make precise the notion of two models being “essentially
the same”’ or isomorphic: for incidence geometries, this will mean that
there exists a one-to-one correspondence P <= P’ between the points
of the models and a one-to-one correspondence /<> / between the
lines of the models such that P lies on /if and only if P’ lies on /’; such
a correspondence is called an zsomorphism from one model onto the
other.

Example 5. Consider aset {q, 4, ¢} of three letters, which we will
call “lines’” now. ‘‘Points” will be those subsets that contain exactly
two letters—{a, 4}, {4, ¢}, and {4, ¢}. Let incidence be set membership;
for example, “point” {g, 4} is incident with “line” 2 and “line” 4, not

4'This is a nontrivial (and nonconstructive) theorem of mathematical logic called Godel's
completeness theorem, which says (modulo cardinality considerations) that if the system is
categorical, then for every sentence S, there exists either a proof of § or a proof of ~S§.
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with “line” ¢. This model certainly seems to be structurally the same
as the three-point model in Example 1—all we’ve changed is the
notation. An explicit isomorphism is given by the following correspon-
dences:

A © {a, b} {A,B}e b
B {4 0 {B,C}e>¢
C e {a, {(A,C}ea

Note that A lies on {A, B} and {A, C} only; its corresponding ‘““point”’
{a, b} lies on the corresponding “lines’ 4and @ only. Similar checking
with B and C shows that incidence is preserved by our correspon-
dence. On the other hand, if we used a correspondence such as

(A,B) > a
(B,C} <> b
(A, C)o ¢

for the ““lines,” keeping the same correspondence for the “points,” we
would not have an isomorphism because, for example, A lieson (A, C}
but the corresponding ‘“‘point” {4, 4} does not lie on the corresponding
“line” ¢.

To further illustrate the idea that isomorphic models are “essen-
tially the same,” consider two models with different parallelism prop-
erties, such as one with the elliptic property and one with the Euclid-
ean. We claim that these models are not isomorphic: suppose, on the
contrary, that an isomorphism could be set up. Given line /and point P
not on it; then every line through P meets /, by the elliptic property.
Hence every line through the corresponding point P’ meets the corre-
sponding line /, but that contradicts the Euclidean property of the
second model.

Later on, we will need to use the concept of “isomorphism” for
models of a geometry more complicated than incidence geometry —
neutral geometry. In neutral geometry we will have betweenness and
congruence relations, in addition to the incidence relation, and we will
require an “isomorphism” to preserve those relations as well.

The general idea is that an isomorphism of two models of an axiom
system is a one-to-one correspondence between the basic objects of the system
that preserves all the basic relations of the system.

Another example to be discussed in Chapter 9 is the axiom system
for a “‘group.” Roughly speaking, a group is a set with a multiplication
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for its elements satisfying a few familiar axioms of algebra. An “iso-
morphism” of groups will then be a one-to-one mapping x— x’ of one
set onto the other which preserves the multiplication, i.e., for which

(xy)" ="y’

PROJECTIVE AND AFFINE PLANES

We now very briefly discuss two types of models of incidence geome-
try that are particularly significant. During the Renaissance, around
the fifteenth century, artists developed a theory of perspective in
order to realistically paint two-dimensional representations of three-
dimensional scenes. The theory described the projection of points in
the scene onto the artist’s canvas by lines from those points to a fixed
viewing point in the artist’s eye; the intersection of those lines with the
plane of the canvas was used to construct the painting. The mathe-
matical formulation of this theory was called projective geometry.

In this technique of projection, parallel lines that lie in a plane
cutting the plane of the canvas are painted as meeting (visually, they
appear to meet at a point on the horizon). This suggested an extension
of Euclidean geometry in which parallel lines “meet at infinity,” so
that the Euclidean parallel property is replaced by the elliptic parallel
property in the extended plane. We will carry out this extension
rigorously. First, some definitions.

DEFINITION. A projective plane is a model of the incidence axioms
having the elliptic parallel property (any two lines meet) and such that
every line has at least three distinct points lying on it (strengthened
Incidence Axiom 2).

Our proposed extension of the Euclidean plane uses only its inci-
dence properties (not its betweenness and congruence properties);
the purely incidence part of Euclidean geometry is called gffne geom-
etry, which leads to the next definition.

DEFINITION. An agffine plane is a model of incidence geometry having
the Euclidean parallel property.
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Example 3 in this chapter illustrated the smallest affine plane (four
points, six lines).

Let o be any affine plane. We introduce a relation /~ m on the
lines of & to mean /= mor/||m.” This relation is obviously reflexive
(/ ~ /) and symmetric (/ ~ m =>m ~ /). Let us prove that it is transitive
(/~ m and m ~ n=>/~ n). if any pair of these lines are equal, the
conclusion is immediate, so assume that we have three distinct lines
such that /|| m and m || #n. Suppose, on the contrary, that / meets # at
point P. P does not lie on 7, because /|| m. Hence we have two distinct
parallels 7 and / to m through P, which contradicts the Euclidean
parallel property of .

A relation which is reflexive, symmetric, and transitive is called an
equivalence relation. Such relations occur frequently in mathematics
and are very important. Whenever they occur, we consider the equiva-
lence classes determined by the relation: for example, the equivalence
class [/] of /is defined to be the set consisting of all lines equivalent to
/—1.e., of /and all the lines in & parallel to /. In the familiar Cartesian
model of the Euclidean plane, the set of all horizontal lines is one
equivalence class, the set of verticals is another, the set of lines with
slope 1 is a third, and so on. Equivalence classes take us from equiva-
lence to equality: / ~m <= [/] = [m].

For historical and visual reasons, we call these equivalence classes
points at infinity; we have made this vague idea precise within modern
set theory. We now enlarge the model o to a new model o * by adding
these points, calling the points of & “ordinary” points for emphasis.
We further enlarge the incidence relation by specifying that each of
these equivalence classes lies on every one of the lines in that class: [/]
lies on /and on every line 7 such that /|| m. Thus, in the enlarged plane
s*, /and m are no longer parallel, but they meet at [/].

We want #* to be a model of incidence geometry also, which
requires one more step. To satisfy Euclid’s Postulate I, we need to add
one new line on which all (and only) the points at infinity lie: define #4¢
line at infinity /. to be the set of all points at infinity. Let us now check
that o/ * is a projective plane, called the projective completion of A:

Verification of I-1. IfPand Qare ordinary points, theylicona
unique line of o/ (since I-1 holds in o/ ) and they do not licon /. If P is
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ordinary and Q is a point at infinity [], then either P lies on m and

= m, or, by the Euclidean parallel property, P lies on a unique
parallel #to m and Q also lies on 7 (by definition of incidence for points
at_infinity), so = n. If both P and Q are points at infinity, then

= /o

Verification of Strengthened I-2. Each line mof & has at
least two points on it (by I-2 in &), and now we’ve added a third point
[#] at infinity. That /, has at least three points on it follows from the
existence in & of three lines that intersect in pairs (such as the lines
joining the three noncollinear points furnished by Axiom I-3); the
equivalence classes of those three lines do the job.

Verification of I-3. It holds already in A.

Verification of the Elliptic Parallel Property. If
two ordinary lines do not meet in &, then they belong to the same
equivalence class and meet at that point at infinity. An ordinary line m
meets /, at [m]. W

Example 6. Figure 2.7 illustrates the smallest projective plane,
projective completion of the smallest affine plane; it has seven points
and seven lines. The dashed line could represent the line at infinity,
for removing it and the three points C, B, and E that lie on it leaves us
with a four-point, 6-line affine plane isomorphic to the one in Example
3, Figure 2.5.

FIGURE 2.7 The smallest projective plane (7 points).
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The usuval Euclidean plane, regarded just as a model of incidence
geometry (ignoring its betweenness and congruence structures), is
called the real affine plane, and its projective completion is called t4e
real projective plane. Coordinate descriptions of these planes are given
in Major Exercises 9 and 10; other models isomorphic to the real
projective plane are described in Exercise 10(c), and a “curved”
model isomorphic to the real affine plane is described in Major Exer-
cise 5.

Example 7. Tovisualize the projective completion & * of the real
affine plane &, picture & as the plane 7 tangent to a sphere § in
Euclidean three-space at its north pole N (Figure 2.8). If O is the
center of sphere §, we can join each point P of 7 to O by a Euclidean
line that will intersect the northern hemisphere of §'in a unique point
P’; this gives a one-to-one correspondence between the points P of 7
and the points P’ of the northern hemisphere of § (N corresponds to
itself ). Similarly, given ary line m of 7, we join m to O by a plane I1
through O that cuts out-a great circle on the sphere and a great

FIGURE 2.8
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semicircle 7’ on the northern hemisphere; this gives a one-to-one
correspondence between the lines 7 of T and the great semicircles 7’
of the northern hemisphere, a correspondence that clearly preserves
incidence.

Now if /||m in T, the planes through O determined by these parallel
lines will meet in a line lying in the plane of the equator, a line which
(since it goes through O) cuts out a pair of antipodal points on the
equator. Thus the line at infinity of &/ * can be visualized under our
isomorphism as the equator of § with antipodal points identified (they
must be identified, or else Axiom I-1 will fail). In other words, & * can
be described as the northern hemisphere with antipodal points on the
equator pasted to each other; however, we can’t visualize this pasting
very well, because it can be proved that the pasting cannot be done in
Euclidean three-space without tearing the hemisphere.

Projective planes are the most important models of pure incidence
geometry. We will see later on that Euclidean, hyperbolic, and, of
course, elliptic geometry can all be considered ‘‘subgeometries’ of
projective geometry. This discovery by Cayley led him to exclaim that
“projective geometry is all of geometry,” which turned out to be an
oversimplification.

REVIEW EXERCISE

Which of the following statements are correct?

(1) The “hypothesis’ of a theorem is an assumption that implies the
conclusion.

(2) A theorem may be proved by drawing an accurate diagram.

(3) Tosaythatastep is “obvious” is an allowable justification in a rigorous
proof.

(4) There is no way to program a computer to prove or disprove every
statement in mathematics.

(5) To *‘disprove” a statement means to prove the negation of that state-
ment.

(6) A *‘model” of an axiom system is the same as an “‘interpretation” of the
system.

(7) The Pythagoreans discovered the existence of irrational lengths by an
RAA proof.
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(8) The negation of the statement *‘If 3 is an odd number, then 9 is even”
is the statement “If 3 is an odd number, then 9 is odd.”
(9) The negation of a conjunction is a disjunction.

(10) The statement ‘1 = 2 and 1 # 2" is an example of a contradiction.

(11) The statement *“‘Base angles of an isosceles triangle are congruent’ has
no hidden quantifiers.

(12) Thestatements ‘““Some triangles are equilateral” and ““There exists an
equilateral triangle” have the same meaning,.

(13) The converse of the statement *‘If you push me, then I will fall” is the
statement “‘If you push me, then I won’t fall.”

(14) The following two statements are logically equivalent: If /|| m, then /
and = have no point in common. If /and m have a point in common,
then /and m are not parallel.”

(15) Whenever a conditional statement is valid, its converse is also valid.

16) If one statement implies a second statement and the second statement
implies a third statement, then the first statement implies the third
statement.

(17) The negation of ““All triangles are isosceles” is “No triangles are
isosceles.”

(18) The hyperbolic parallel property is defined as “For every line / and
every point P not on /there exist at least two lines through P parallel to
I

(19) The statement “‘Every point has at least two lines passing through it” is
independent of the axioms for incidence geometry.

(20) “If /|| m and m |} n, then /|| »” is independent of the axioms of inci-
dence geometry.

EXERCISES

1. Let Sbe the following self-referential statement: **Statement S'is false.”
Show that if § is either true or false then there is a contradiction in our
language. (This is the far paradox. Kurt Gédel used a variant of it as the
starting point for his famous incompleteness theorem in logic; see De-
Long, 1970)

2. (a) What is the negation of [P or 0]?

(b) What is the negation of [P & ~Q]?

(¢) Using the rules of logic given in the text, show that P = () means
the same as [~Por Q]. (Hint: Show they are both negations of the
same thing.)
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(d) A symbolic way of writing Rule 2 for RAA proofs is [[H & ~C] =
[§ & ~8]] = [H = (]. Explain this.

Negate Euclid’s fourth postulate.

Negate the Euclidean parallel postulate.

Write out the converse to the following statements:

(a) “Iflines/and m are parallel, then a transversal #to lines /and 7 cuts
out congruent alternate interior angles.”

(b) “If the sum of the degree measures of the interior angles on one
side of transversal #is less than 180°, then lines /and m meet on that
side of transversal ».”

Prove all five propositions in incidence geometry as stated in this chap-

ter. Don’t use Incidence Axiom 2 in your proofs.

For each pair of axioms of incidence geometry, construct an interpreta-

tion in which those two axioms are satisfied but the third axiom is not.

(This will show that the three axioms are independent, in the sense that it

is impossible to prove any one of them from the other two.)

Show that the interpretations in Examples 3 and 4 in this chapter are

models of incidence geometry and that the Euclidean and hyperbolic

parallel properties, respectively, hold.

In each of the following interpretations of the undefined terms, which of

the axioms of incidence geometry are satisfied and which are not? Tell

whether each interpretation has the elliptic, Euclidean, or hyperbolic
parallel property.

(a) “‘Points’ are dots on a sheet of paper, “‘lines” are circles drawn on
the paper, ‘“incidence’ means that the dot lies on the circle.

(b) “Points™ are lines in Euclidean three-dimensional space, “lines”
are planes in Euclidean three-space, “incidence” is the usual rela-
tion of a line lying in a plane.

(¢) Sameasin (b), except that we restrict ourselves to lines and planes
that pass through a fixed ordinary point O.

(d) Fix a circle in the Euclidean plane. Interpret “point” to mean an
ordinary Euclidean point snside the circle, interpret “line” to mean
a chord of the circle, and let “incidence” mean that the point lies on
the chord in the usual sense. (A chord of a circle is a segment whose
endpoints lie on the circle.)

(e) Fix a sphere in Euclidean three-space. Two points on the sphere
are called antipodal if they lie on a diameter of the sphere; e.g., the
north and south poles are antipodal. Interpret a “point’ to be a set
{P, P’} consisting of two antipodal points on the sphere. Interpret
a “line” to be a great circle € on the sphere. Interpret a “point”
{P, P’} to “lie on a ““line” C if one of the points P, P’ lies on the
great circle C (then the other point also lies on C).
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10. (a) Prove that when each of two models of incidence geometry has
exactly three “points” in it, the models are isomorphic.
(b) Must two models having exactly four “points” be isomorphic? If
you think so, prove this; if you think not, give a counterexample.
(c) Show that the models in Exercises 9(c) and 9(e) are isomorphic.
(Hint: Take the point O of Exercise 9(c) to be the center of the
sphere in Exercise 9(e), and cut the sphere with lines and planes
through point O to get the isomorphism.)

11. Construct a model of incidence geometry that has neither the elliptic,
hyperbolic, nor Euclidean parallel properties. (These properties refer to
any line /and any point P not on /. Construct a model that has different
parallelism properties for different choices of /and P. Five points suf-
fice.)

12. Suppose that in a given model for incidence geometry every “line’” has
at least three distinct ““points’ lying on it. What are the least number of
“points” and the least number of “lines’” such a model can have? Sup-
pose further that the model has the Euclidean parallel property. Show
that 9 is now the least number of “‘points” and 12 the least number of
“lines” such a model can have.

13. The following syllogisms are by Lewis Carroll. Which of them are
correct arguments?

(a) No frogs are poetical; some ducks are unpoetical. Hence, some
ducks are not frogs.

(b) Gold is heavy; nothing but gold will silence him. Hence, nothing
light will silence him.

(c) All lions are fierce; some lions do not drink coffee. Hence, some
creatures that drink coffee are not fierce.

(d) Some pillows are soft; no pokers are soft. Hence, some pokers are
not pillows.

14. Comment on the following example of isomorphic structures given by a
music student: Romeo and Juliet and West Stde Story.

15. Comment on the following statement by the artist David Hunter: “The
only use for Logic is writing books on Logic and teaching courses in
Logic; it has no application to human behavior.”

MAJOR EXERCISES

1. Let# be a projective plane. Define a new interpretation 4’ by taking as
“points” of #’ the lines of # and as “lines” of #’ the points of A, with
the same incidence relation. Prove that M’ is also a projective plane
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(called the dua/ plane of M). Suppose further that A has only finitely
many points. Prove that all the lines in # have the same number of
points lying on them. (Hint: See Figure 7.43 in Chapter 7.)

2. Let us add to the axioms of incidence geometry the following axioms:
(i) 'The Euclidean parallel property.

(ii) The existence of only a finite number of points.

(iii) The existence of lines /and m such that the number of points lying
on /is different from the number of points lying on m.

Show that this expanded axiom system is inconsistent. (Hint: Prove that

(i) and (ii) imply the negation of (iii).)

3. Prove that every projective plane & is isomorphic to the projective
completion of some affine plane #. (Hint: As was done in Example 6,
pick any line m in 9B, pretend that 7 is “‘the line at infinity,” remove m
and the points lying on it, and prove that what’s left is an affine plane o
and that & is isomorphic to the completion &£ *.) A surprising discovery
is that&f need not be unique up to isomorphism (see Hartshorne, 1967).

4. Provide another solution to Major Exercise 2 by embedding the affine
plane of that exercise in its completion and invoking Major Exercise 1.

5. Consider the following interpretation of incidence geometry. Begin with
a punctured sphere in Euclidean three-space, i.e., a sphere with one
point N removed. Interpret “points” as points on the punctured sphere.
For each circle on the original sphere passing through N, interpret the
punctured circle obtained by removing N as a ““line.” Interpret “inci-
dence” in the Euclidean sense of a point lying on a punctured circle. s
this interpretation a model? If so, what parallel property does it have? Is
itisomorphic to any other model you know? (Hint: If N is the north pole,
project the punctured sphere from N onto the plane IT tangent to the
sphere at the south pole, as in Figure 2.9. Use the fact that planes
through N cut out circles on the sphere and lines in I1. For a hilarious
discussion of this interpretation, refer to Chapter 3 of Sved, 1991.)

FIGURE 2.9



Major Exercises ] ’ I 67

6.

10.

11.

Consider the following statement in incidence geometry: “For any two

lines /and m there exists a one-to-one correspondence between the set

of points lying on / and the set of points lying on 7.” Prove that this

statement is independent of the axioms of incidence geometry.

Let be a finite projective plane so that, according to Major Exercise 1,

all lines in # have the same number of points lying on them; call this

number » + 1. Prove the following:

(a) Each point in 4 has » + 1 lines passing through it.

(b) The total number of points in # is ## + n+ 1.

(¢) The total number of lines in M is 2 +n + 1.

Let o be a finite affine plane so that, according to Major Exercise 2, all

lines in & have the same number of points lying on them; call this

number ». Prove the following:

(a) Each point in & has » + 1 lines passing through it.

(b) The total number of points in & is #2.

(c) The total number of lines in & is n(n + 1).

(Hint: Use Major Exercise 7.)

The real affine plane has as its “‘points” all ordered pairs (x, y) of real

numbers. A “line” is determined by an ordered triple (%, v, @) of real

numbers such that either # # 0 or v # 0, and itis defined as the set of all

“points” (x, y) satisfying the linear equation #x + vy + @ = 0. “Inci-

dence” is defined as set membership. Verify that all axioms for an affine

plane are satisfied by this interpretation.

A “point” [x, y, 2] in the real projective plane is determined by an ordered

triple (x, y, 2) of real numbers that are not all zero, and it consists of all

the ordered triples of the form (éx, &y, #2) for all real numbers £ # 0;

thus, [£x, &y, #2] = [x, 3, 2]. A “line” in the real projective plane is

determined by an ordered triple (#, v, @) of real numbers that are not all

zero, and it is defined as the set of all “points” [x, y, 2] whose coordi-

nates satisfy the linear equation ux + vy + wz = 0. “Incidence” is

defined as set membership. Verify that all the axioms for a projective

plane are satisfied by this interpretation. Prove that by taking 2 = 0 as

the equation of the “line at infinity,” by assigning the affine “point”

(%, ¥) the “homogeneous coordinates’ [x, y, 1], and by assigning affine

“lines” to projective “lines” in the obvious way, the real projective

plane becomes isomorphic to the projective completion of the real affine

plane. Prove that the models in Exercise 10(c) are also isomorphic to the

real projective plane.

(a) Given an interpretation of some axioms, in order to show that the
interpretation is a model, you must verify that the interpretations of
the axioms hold. If you execute that verification precisely rather
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than casually, you are actually giving proofs. In what axiomatic
theory are those proofs given? Consider this question more specifi-
cally for the models presented in the text and exercises of this
chapter.

(b) Some of the interpretations refer to a “sphere” in “Euclidean
space,”’ presuming that you already know the theory of such things,
yet we are carefully laying the axiomatic foundations of the simpler
theory of the Euclidean plane. Does this bother you? Comment.

(c¢) Can an inconsistent system (such as the one in Major Exercise 2)
have a model? Explain.

12. Just because every step in a proof has been justified, that doesn’t guar-
antee the correctness of the proof: the justifications may be in error. For
example, the justification may not be one of the six types allowed by
Logic Rule 1, or it may refer to a previous theorem that is not applicable,
or it may draw erroneous inferences from a definition (such as *‘parallel
lines are equidistant’’). Thus a second “proof” should be given to verify
the correctness of the justifications in the first proof. But then how can
we be certain the second “proof™ is correct? Do we have to give a third
““proof” and so on ad infinitum? Discuss.

PROJECTS

1. The following statement is by the French mathematician G. Desargues:
“If the vertices of two triangles correspond in such a way that the lines
joining corresponding vertices are concurrent, then the intersections of
corresponding sides are collinear.”” (See Figure 2.10.) This statement is
independent of the axioms for projective planes: it holds in the real
projective plane, but there exist other projective planes in which it fails.
Report on this independence result (see Artzy, 1965, or Stevenson,
1972).

2. An isomorphism of a projective plane # onto its dual plane M’ (see
Major Exercise 1) is called a polarity of M. By definition of *‘isomor-
phism,” it assigns to each point A of # a line p(A) of A called the polarof
A, and to each line m of # a point P(m) of M called its pole, in such a way
that A lies on # if and only if P(m) lies on p(A). The conic y determined by
this polarity is defined to be the set of all points A such that A lies on its
polar p(A); p(A) is defined to be the tangent /ine to the conic at A. Point B
is defined to be snterior to y if every line through B intersects y in two
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FIGURE 2.10 Desargucs’s theorem.

points. This very abstract definition® of “conic” can be reconciled with
more familiar descriptions, such as (using coordinates) the solution set to
a homogencous quadratic equation 1n three variables. The theory of
conics is one of the most important topics in plane projective geometry.
Report on this, using some good projective geometry text such as Coxeter
(1960). A polarity will play a crucial role in Chapter 7 (see also Major
Exercise 13, Chapter 6).

3. Aristotle is considered the founder of classical logic. Up through the
1930s, some important logicians were Leibniz, Boole, Frege, Russell,
Whitehead, Hilbert, Ackermann, Skolem, Gédel, Church, Tarski, and
Kleene. Report on some of the history of logic, using DeLong (1970) and
his bibliography as references.

% The poet Goethe said: “Mathematicians are like Frenchmen: whatever you say w them,
they translate it into their own language and forthwith it is something entircly different.”



CHAPTEHR

HILBERT’S
AXIOMS

The value of Euclid’s work as a masterpiece of logic has
been very grossly exaggerated.

BERTRAND RUSSELL

FLAWS IN EUCLID

Having clarified our rules of reasoning (Chapter 2), letus return to the
postulates of Euclid. In Exercises 9 and 10 of Chapter 1 we saw that
Euclid neglected to state his assumptions that points and lines exist,
that not all points are collinear, and that every line has at least two
points lying on it. We made these assumptions explicit in Chapter 2 by
adding two more axioms of incidence to Euclid’s first postulate.

In Exercises 6 and 7, Chapter 1, we saw that some assumptions
about “betweenness” are needed. In fact, Euclid never mentioned
this notion explicitly, but tacitly assumed certain facts about it that are
obvious in diagrams. In Chapter 1 we saw the danger of reasoning from
diagrams, so these tacit assumptions will have to be made explicit.

Quite a few of Euclid’s proofs are based on reasoning from dia-
grams. To make these proofs rigorous, a much larger system of explicit
axioms is needed. Many such axiom systems have been proposed. We
will present a modified version of David Hilbert’s system of axioms.
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David Hilbert

Hilbert’s system was not the first, but his axioms are perhaps the most
intuitive and are certainly the closest in spirit to Euclid’s.!

During the first quarter of the twentieth century Hilbert was con-
sidered the leading mathematician of the world.2 He made outstand-
ing, original contributions to a wide range of mathematical fields as
well as to physics. He is perhaps best known for his research in the
foundations of geometry as well as the foundations of algebraic num-
ber theory, infinite-dimensional spaces, and mathematical logic. A

! Let us not forget that no serious work toward constructing new axioms for Euclidean
geometry had been done until the discovery of non-Euclidean geometry shocked mathemati-
cians into reexamining the foundations of the former. We have the paradox of non-Euclidean
geometry helping us to better understand Euclidean geometry!

21 heartily recommend the warm and colorful biography of Hilbert by Constance Reid
(1970). It is nontechnical and conveys the excitement of the time when Géttingen was the
capital of the mathematical world.
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great champion of the axiomatic method, he “axiomatized’ all of the
above subjects except for physics (although he did succeed in provid-
ing physicists with very valuable mathematical techniques). He was
also a mathematical prophet; in 1900 he predicted 23 of the most
important mathematical problems of this century.

He has been quoted as saying: “One must be able to say at all
times — instead of points, lines and planes-—tables, chairs and beer
mugs.”’ In other words, since no properties of points, lines, and planes
may be used in a proof other than the properties given by the axioms,
you may as well call these undefined entities by other names.

Hilbert’s axioms are divided into five groups: incidence, between-
ness, congruence, continuity, and parallelism. We have already seen
the three axioms of incidence in Chapter 2. In the nextsections we will
deal successively with the other groups of axioms.

AXIOMS OF BETWEENNESS

"To further illustrate the need for axioms of betweenness, consider the
following attempted proof of the theorem that base angles of an iso-
sceles triangle are congruent. This is not Euclid’s proof, which is
flawed in other ways (see Golos, 1968, p. 57), but is an argument
found in some high school geometry texts.

Proof:
Given AABC with AC = BC. To prove XA = 4B (see Figure 3.1):

(1) Let the bisector of <C meet AB at D (every angle has a
bisector).

FIGURE 3.1 A D B
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(2) In triangles AACD and ABCD, AC = BC (hypothesis).

(3) XACD = <BCD (definition of bisector of an angle).

(4) CD = CD (things that are equal are congruent).

(5) AACD = ABCD (SAS). 3.4.3)

(6) Therefore, XA = <B (corresponding angles of congruent tri-
angles). l

Consider the first step, whose justification is that every angle has a
bisector. This is a correct statement and can be proved separately. But
how do we know that the bisector of XC meets £ﬁ, or if it does, how do
we know that the point of intersection D lies berween A and B? This
may seem obvious, but if we are to be rigorous, it requires proof. For
all we know, the picture might look like Figure 3.2. If this were the
case, steps 2 — 5 would still be correct, but we could conclude only that
4B is congruent to LCAD, not to <LCAB, since <CAD is the angle in
AACD that corresponds to <B.

Once we state our four axioms of betweenness, it will be possible to
prove (after a considerable amount of work) that the bisector of <C
does meet in a point D between A and B, so the above argument
will be repaired (see the crossbar theorem, later in this section). There
is, however, an easier proof of the theorem (given in the next section).
We will use the shorthand notation

A*xBxC

to abbreviate the statement “point B is between point A and point C.”

BETWEENNESS AXIOM 1. If A * B * C, then A, B, and C are three
distinct points all lying on the same line, and C * B * A.

FIGURE 3.2 D A B
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FIGURE 3.3

The first part of this axiom fills the gap mentioned in Exercise 6,
Chapter 1. The second part (C * B * A) makes the obvious remark
that “‘between A and C”’ means the same as “‘between C and A” —it
doesn’t matter whether A or C is mentioned first.

BETWEENNESS AXIOM 2. Given %r%two distinct points B and D, there
exist points A, C, and E lying on suchthat A*B*D,B*C * D,
and B * D * E (Figure 3.3).

This axiom ensures that there are points between B and D and that
the line BD does not end at either B or D.

BETWEENNESS AXIOM 3. If A, B, and C are three distinct points lying
on the same line, then one and only one of the points is between the
other two.

This axiom ensures that a line is not circular; if the points were ona
circle, you would then have to say that each is between the other two
(or none is between the other two — it would depend on which of the
two arcs you look at—see Figure 3.4).

Before stating the last betweenness axiom, let us examine some
consequences of the first three. Recall that the segmenz AB is defined as
the set of all points between A and B together with the endpoints A
and B. The ray AB s defined as the set of all points on the segment AB
together with all points C such that A * B * C. The second axiom
ensures that such points as C exist, so the ray Kﬁ is larger than the
segment AB. We can now prove the formulas you encountered in
Exercise 7, Chapter 1.

FIGURE 3.4 C
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PROPOSITION 3.1. For any two points A and B: (i) ABNBA= AB,
and (i) AB U BA = (AB).

Proof of (7):

(1) By definition of segment and ray, AB C AB and AB C I;)X, O
by definition of intersection, AB C AB N BA.

(2) Conversely, let the point C belong to the intersection of AB
and BA; we wish to show that C belongs to AB.

(3) If C= A or C =B, C is an endpoint of AB. Otherwise, A, B,
and C are three collinear points (by definition of ray and Axiom
1), so exactly one of the relations A*C *B, A*B *C, or
C * A * B holds (Axiom 3). _

(4) If A =B * C holds, then C is not on BA; if C * A * B holds,
then C is not on Kﬁ In either case, C does not belong to both
rays.

(5) Hence, the relation A * C * B must hold, so C belongs to
AB. B

The proof of (ii) is similar and is left as an exercise. (Recall that
{Xﬁ} is the set of points lying on the line Kﬁ.)

Recall next that if C * A * B, then AC is said to be opposite to AB
(see Figure 3.5). By Axiom 1, points A, B, and C are collinear, and by
Axiom 3, C does not belong to AB, so rays Kﬁ and A_é are distinct. This
definition is therefore in agreement with the definition given in Chap-
ter 1 (see Proposition 3.6). Axiom 2 guarantees that every ray AB has
an opposite ray AC.

It seems clear from Figure 3.5 that every point P lying on the lilc) /
through A, B, C must belong either to ray AB or to an opposite ray AC.
This statement seems similar to the second assertion of Proposition
3.1, but it is actually more complicated; we are now discussing four
points A, B, C, and P, whereas previously we had to deal with only
three points at a time. In fact, we encounter here another *‘pictorially
obvious’’ assertion that cannot be proved without introducing another
axiom (see Exercise 17).

Oe¢
>e
w

FIGURE 3.5
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Ae———eB

Ce- \‘ D
FIGURE 3.8 A and B are on the same side of 4 C and D are on opposite sides of /.

Suppose we call the assertion “‘C * A * B and P collinear with A, B,
C=Pe AC UAB” the line separation property. Some mathemati-
cians take this property as another axiom. However, it is considered
inelegant in mathematics to assume more axioms than are necessary
(although we pay for elegance by having to work harder to prove
results that appear obvious). So we will not assume the line separation
property as an axiom; instead, we will prove it as a consequence of our
previous axioms and our last betweenness axiom, called ke plane
separation axiom.

DEFINITION. Let /be any line, A and B any points that do not lie
on /. If A = B or if segment AB contains no point lying on /, we say A
and B are on the same side of /, whereas if A # B and segment AB
does intersect /, we say that A and B are on opposite sides of / (see Figure
3.6). The law of the excluded middle (Rule 10) tells us that A and
B are either on the same side or on opposite sides of /.

BETWEENNESS AXIOM 4 (Plane Separation). For every line /and for any
three points A, B, and C not lying on /:

(i) If Aand B are on the same side of /and B and C are on the same
side of /, then A and C are on the same side of / (see Figure 3.7).

B

Axiom 4(i)
A./\
C

FIGURE 3.7 - — [




Axioms of Betweenness } H 77

Axiom 4(ii)

N
\/

FIGURE 3.8 B

(ii) If Aand B are on opposite sides of /and B and C are on opposite
sides of /, then A and C are on the same side of / (see Figure
3.8).

COROLLARY. (iii) If Aand B are on opposite sides of /and B and C are
on the same side of /, then A and C are on opposite sides of /.

Axiom 4(i) indirectly guarantees that our geometry is two-dimen-
sional, since it does not hold in three-space. (Line / could be outside
the plane of this page and cut through segment AC; this interpretation
shows that if we assumed the line separation property as an axiom, we
could not prove the plane separation property.) Betweenness Axiom 4
is also needed to make sense out of Euclid’s fifth postulate, which
talks about two lines meeting on one “side” of a transversal. We can
now define a szde of a line /as the set of all points that are on the same
side of /as some particular point A not lying on /. If we denote this side
by H,, notice that if Cis on the same side of /as A, then by Axiom 4 (i),
H. = H,. (The definition of a szde may seem circular because we use
the word “side” twice, but it is not; we have already defined the
compound expression “on the same side.”’) Another expression com-
monly used for a ““side of /” is a Aalf-plane bounded by /.

PROPOSITION 3.2. Every line bounds exactly two half-planes and
these half-planes have no point in common.

Proof:

(1) There is a point A not lying on / (Proposition 2.3).

(2) There is a point O lying on / (Incidence Axiom 2).

(3) There is a point B such that B * O * A (Betweenness Axiom
2).

(4) Then A and B are on opposite sides of / (by definition), so /has
at least two sides.



78 ||| Hilbert’s Axioms

(5) LetCbe any point distinct from A and B and not lyingon /. If C
and B are not on the same side of /, then C and A are on the
same side of / (by the law of excluded middle and Betweenness
Axiom 4(ii)). So the set of points not on /is the union of the
side H, of A and the side Hj of B.

(6) If C were on both sides (RAA hypothesis), then A and B would
be on the same side (Axiom 4(i)), contradicting step 4; hence
the two sides are disjoint (RAA conclusion). Il

We next apply the plane separation property to study betweenness
relations among four points.

PROPOSITION 3.3. GivenA*B * CandA*C*D. ThenB*C*D
and A * B * D. (See Figure 3.9.)

Proof:

(1) A, B, C, and D are four distinct collinear points (see Exercise
1).

(2) There exists a point E not on the line through A, B, C, D
(Proposition 2.3).

(3) Consider line EC. Since (by hypothesis) AD meets this line
in point C, A and D are on opposite sides of EC.

(4) We claim A and B are on the same side of EC. Assume on the
contrary that A and B are on opposite sides of EC (RAA
hypothesis).

(5) Then £C meets ABina point between A and B (definition of
“opposite sides”).

(6) That point must be C (Proposition 2.1).

(7) Thus, A * B * Cand A * C * B, which contradicts Between-
ness Axiom 3.

FIGURE 3.9
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(8)
(9)

(10)

Hence, A and B are on the same side of £C (RAA conclusion).
B and D are on opposite sides of £C (steps 3 and 8 and the
corollary to Betweenness Axiom 4).

Hence, the point C of intersection of lines £ and BD lies
between B and D (definition of “opposite sides’; Proposition
2.1, i.e., that the point of intersection is unique).

A similar argument involving EB proves that A * B * D (Exercise

2(b)). W

COROLLARY. GivenA*B*Cand B *C *D. Then A *B * D and
Ax*CxD.

Finally we prove the /ine separation property.

PROPOSITION 3.4. If C * A * B and /is the line through A, B, and C
(Betweenness Axiom 1), then for every point P lying on /, P lies either
on ray AB or on the opposite ray AC.

Proof:

(1) Either P lies on AB or it does not (law of excluded middle).

(2)

(10)

If P does lie on Kﬁ, we are done, so assume it doesn’t; then
P * A * B (Betweenness Axiom 3).

IfP = C then P lies on AC (by definition), so assume P # C;
then exactly one of the relations C* A* P, C* P * A, and
P * C * A holds (Betweenness Axiom 3 again).

Suppose the relation C * A * P holds (RAA hypothesis).
We know (by Betweenness Axiom 3) that exactly one of the
relations P* C* B, C * P * B, and C * B * P holds.

If P * B * C, then combining this with P *#* A * B (step 2)
gives A * B * C (Proposition 3.3), contradicting the hypoth-
esis.

If C* P * B, then combining this with C * A * P (step 4)
gives A * P * B (Proposition 3.3), contradicting step 2.

If B * C * P, then combining this with B * A * C (hypothesis
and Betweenness Axiom 1) gives A * C * P (Proposition
3.3), contradicting step 4.

Since we obtain a contradiction in all three cases, C * A * P
does not hold (RAA conclusion).

Therefore, C* P * A or P * C * A (step 3), which means
that P lies on the opposite ray AC. l
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The next theorem states a visually obvious property that Pasch
discovered Euclid to be using without proof.

PASCH’S THEOREM. If A, B, C are distinct noncollinear points and /is
any line intersecting AB in a point between A and B, then / also
intersects either AC or BC (see Figure 3.10). If C does not lie on /
then / does not intersect both AC and BC.

Intuitively, this theorem says that if a line “‘goes into” a triangle
through one side, it must ‘“‘come out” through another side.

Proof:

(1)

(6)

Either C lies on / or it does not; if it does, the theorem holds
(law of excluded middle).

A and B do not lie on /, and the segment AB does intersect /
(hypothesis and Axiom 1).

Hence, A and B lie on opposite sides of / (by definition).
From step 1 we may assume that C does not lie on /, in which
case C is either on the same side of /as A or on the same side of /
as B (separation axiom).

If C is on the same side of /as A, then C is on the opposite side
from B, which means that /intersects BC and does notintersect
AC; similarly if C is on the same side of /as B, then /intersects
AC and does not intersect BC (separation axiom).

The conclusions of Pasch’s theorem hold (Logic Rule 11 —
proof by cases). l

Here are some more results on betweenness and separation that
you will be asked to prove in the exercises.

PROPOSITION 3.5. Given A * B * C. Then AC=ABUBC and B is
the only point common to segments AB and BC.
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interior

FIGURE 3.11 B

PROPOSITION 3.6. Given A * B * C. Then B is the only point com-
mon to rays BA and B_(J, and AB = AC.

DEFINITION. Given an angle <CAB, define a point D to be in the
interior of LCAB if D is on the same side of ACasBandifDis also on
the same side of AB as C. (Thus, the interior of an angle is the
intersection of two half-planes.) See Figure 3.11.

PROPOSITION 3.7. Given an angle <<CAB and point D lying on line
BC. Then D is in the interior of ¥CAB if and onlyif B* D * C (see
Figure 3.12).

FIGURE 3.12

Warning. Do not assume that every point in the interior of an
angle lies on a segment joining a point on one side of the angle to a
point on the other side. In fact, this assumption is false in hyperbolic
geometry (see Exercise 36).

PROPOSITION 3.8. If Disin the interior of LXCAB; then: (a) sois every
other point on ray AD except A; (b) no point on the opposite ray to
ADis in the interior of LCAB;and (c) if C * A * E, then Bisin the in-
terior of <DAE (see Figure 3.13).
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FIGURE 3.13

FIGURE 3.14

DEFINITION. Ray AD s between rays AC and AB if AB and AC are not
opposite rays and D is interior to <CAB. (By Proposition 3.8(a), this
definition does not depend on the choice of point D on AD.)

CROSSBAR THEOREM. If A_ls is between Xé and Kﬁ, then AD inter-
sects segment BC (see Figure 3.14).

DEFINITION. The interior of a triangle is the intersection of the
interiors of its three angles. Define a point to be exzeriorto the triangle
if it is not in the interior and does not lie on any side of the triangle.

PROPOSITION 3.9. (a) If a ray 7 emanating from an exterior point of
AABC intersects side AB in a point between A and B, then r also
intersects side AC or side BC. (b) If a ray emanates from an interior
point of AABC, then it intersects one of the sides, and if it does not
pass through a vertex, it intersects only one side.

AXIOMS OF CONGRUENCE

If we were more pedantic, “congruent,” the last of our undefined
terms, would be replaced by two terms, since it refers to either a
relation between segments or a relation between angles. We are ac-
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customed to congruence as a relation between triangles, but we can
now define this as follows: two triangles are congruent if a one-to-one
correspondence can be set up between their vertices so that corre-
sponding sides are congrugnt and corresponding angles are con-
gruent. When we write AABC = ADEF we understand that A corre-
sponds to D, B to E, and C to F. Similar definitions can be given for
congruence of quadrilaterals, pentagons, and so forth.

CONGRUENCE AXIOM 1. If A and B are distinct points and if A’ is any
point, then for each ray 7 emanating from A’ there is a #nigue point B’
on rsuch that B’ # A’ and AB = A’B’. (See Figure 3.15.)

B’

FIGURE 3.15 A’

Intuitively speaking, this axiom says you can “‘move” the segment
AB so that it lies on the ray » with A superimposed on A’, and B
superimposed on B’. (In Major Exercise 2, Chapter 1, you showed
how to do this with a straightedge and collapsible compass.)

CONGRUENCE AXIOM 2. If AB = CD and AB = EF, then CD = EF.
Moreover, every segment is congruent to itself.

This axiom replaces Euclid’s first common notion, since it says that
segments congruent to the same segment are congruent to each other.
It also replaces the fourth common notion, since it says that segments
that coincide are congruent.

CONGRUENCE AXIOM 3. IfA* B * C, A’ * B’ * C’, AB = A’B’, and
BC = B’C’, then AC = A’C’. (See Figure 3.16.)

This axiom replaces the second common notion, since it says that if
congruent segments are ‘“‘added” to congruent segments, the sums
are congruent. Here, “adding” means juxtaposing segments along the
same line. For example, using Congruence Axioms 1 and 3, you can
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FIGURE 3.16 A’ B’ (o4
lay off a copy of a given segment AB two, three, . . . ,7times,togeta

new segment 7 - AB. (See Figure 3.17.)

CONGRUENCE AXIOM 4. Given any <BAC (where, by definition of
“angle,” ABis not opposite to Ké) , and given any ray A’B’ emanating

from a point A’, then there is a #nigue ray A’C’ on a given side of line
ATB’ such that <B’A’C’ = <BAC. (See Figure 3.18.)

This axiom can be paraphrased to state that a given angle can be
“laid off ” on a given side of a given ray in a unique way (see Major
Exercise 1(g), Chapter 1).

r
L4

A é Y B/ . B//
FIGURE 3.17 AB”" =3 - AB.

CONGRUENCE AXIOM 5. If (A = (B and XA = JC, then 4B = JC.
Moreover, every angle is congruent to itself.

“This is the analogue for angles of Congruence Axiom 2 for seg-
ments; the first part asserts the transitivity and the second part the
reflexivity of the congruence relation. Combining them, we can prove
the symmetry of this relation: <A = B = 4B = <A.

Proof:
<A = 4B (hypothesis) and <A = JA (reflexivity) imply (substi-
tuting A for C in Congruence Axiom 5) <B = <(A (transitivity).

(By the same argument, congruence of segments is a symmetric rela-
tion.)
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FIGURE 3.18 - A’

It would seem natural to assume next an “addition axiom’ for
congruence of angles analogous to Congruence Axiom 3 (the addition
axiom for congruence of segments). We won’t do this, however, be-
cause such a result can be proved using the next congruence axiom
(see Proposition 3.19).

CONGRUENCE AXIOM 6 (SAS). If two sides and the included angle of
one triangle are congruent respectively to two sides and the included
angle of another triangle, then the two triangles are congruent (see
Figure 3.19).

This side-angle-side criterion for congruence of triangles is a pro-
found axiom. It provides the “glue” which binds the relation of con-
gruence of segments to the relation of congruence of angles. It enables
us todeduce all the basic results about triangle congruence with which
you are presumably familiar. For example, here is one immediate
consequence which states that we can “lay off ” a given triangle on a
given base and a given half-plane.

COROLLARY TO SAS. Given'AABC and segment DE = AB, thereisa
unique point F on a given side of line DE such that AABC = ADEF.

B’

A
FIGURE 3.19 A’ (04
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Proof:

There is a unique ray DF on the given side such that {CAB =
<FDE, and F on that ray can be chosen to be the unique point such
that AC = DF (by Congruence Axioms 4 and 1). Then AABC =
ADEF (SAS). &

As we said, Euclid did not take SAS as an axiom but tried to prove it
as a theorem. His argument was essentially as follows. Move AA’B’C’
so as to place point A’ on point A and A'B’ on AB. Since AB = A’B’, by
hypothesis, point B must fall on point B. Since XA = {A’, AT must
fall on /’TC, and since AC = A’C’, point C’ must coincide with point C.
Hence, B’C’ will coincide with BC and the remaining angles will
coincide with the remaining angles, so the triangles will be congruent.

This argument is called superposition. It derives from the experience
of drawing two triangles on paper, cutting out one, and placing it on
top of the other. Although this is a good way to convince a novice in
geometry to accept SAS, itis not a proof, and Euclid reluctantly used it
in only one other theorem. Itis not a proof because Euclid never stated
an axiom that allows figures to be moved around without changing
their size and shape.

Some modern writers introduce ‘“motion” as an undefined term
and lay down axioms for this term. (In fact, in Pieri’s foundations of
geometry, “point” and ‘“‘motion’ are the only undefined terms.) Or
else, the geometry is first built up on a different basis, ‘‘distances”
introduced, and a ‘“motion” defined as a one-to-one transformation of
the plane onto itself that preserves distance. Euclid can be vindicated
by either approach. In fact, Felix Klein, in his 1872 Erlanger Pro-
gramme, defined a geometry as the study of those properties of figures
that remain invariant under a particular group of transformations. This
idea will be developed in Chapter 9.

You will show in Exercise 35 that it is impossible to prove SAS or
any of the other criteria for congruence of triangles (SSS, ASA, SAA)
from the preceding axioms. As usual, the method for proving the
impossibility of proving some statement §'is to invent a model for the
preceding axioms in which S is false.

As an application of SAS, the simple proof of Pappus (A.D.300) for
the theorem on base angles of an isosceles triangle follows.

PROPOSITION 3.10. If in AABC we have AB = AC, then <B = 4C
(see Figure 3.20).
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FIGURE 3.20 B C

Proof:

(1) Consider the correspondence of vertices A<> A, B <> (|
C <> B. Under this correspondence, two sides and the in-
cluded angle of A ABC are congruent respectively to the corre-
sponding sides and included angle of AACB (by hypothesis
and Congruence Axiom 5 that an angle is congruent to itself ).

(2) Hence, AABC = AACB (SAS), so the corresponding angles,
4B and <C, are congruent (by definition of congruence of
triangles). M

Here are some more familiar results on congruence. We will prove
some of them; if the proof is omitted, see the exercises.

PROPOSITION 3.11 (Segment Subtraction). If A* B*C, D*E *F,
AB = DE, and AC = DF, then BC = EF (see Figure 3.21).

PROPOSITION 3.12. Given AC = DF, then for any point B between A
and C, there is a unique point E between D and F such that AB = DE.

Proof:

(1) There is a unique point E on DF such that AB = DE (Con-
gruence Axiom 1).

(2) Suppose E were not between D and F (RAA hypothesis; see
Figure 3.22).

FIGURE 3.21 A F
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FIGURE 3.22

(3) Then either E=F or D * F # E (definition of DF).

(4) If E=F, then B and C are two distinct points on AC such
that AC = DF = AB (hypothesis, step 1), contradicting the
uniqueness part of Congruence Axiom 1. -

(5) If D * F * E, then there is a point G on the ray opposite to CA
such that FE = CG (Congruence Axiom 1).

(6) Then AG = DE (Congruence Axiom 3).

(7) Thus, there are two distinct points B and G on AC such that
AG = DE = AB (steps 1, 5, and 6), contradicting the unique-
ness part of Congruence Axiom 1.

(8) D *E * F (RAA conclusion). B

DEFINITION. AB < CD (or CD > AB) means that there exists a
point E between C and D such that AB = CE.

PROPOSITION 3.13 (Segment Ordering). (a) Exactly one of the following
conditions holds (srichotomy): AB < CD, AB = CD, or AB > CD.
(b) If AB < CD and CD = EF, then AB <EF. (c) If AB > CD and
CD =EF, then AB>EF. (d) if AB<CD and CD <EF, then
AB < EF (transitivity).

PROPOSITION 3.14. Supplements of congruent angles are congruent.

PROPOSITION 3.15. (a) Vertical angles are congruent to each other.
(b) An angle congruent to a right angle is a right angle.

PROPOSITION 3.16. For every line /and every point P there exists a
line through P perpendicular to /

Proof:
(1) Assume first that P does not lie on /and let A and B be any two
points on / (Incidence Axiom 2). (See Figure 3.23.)
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FIGURE 3.23 X

(2) On the opposite side of /from P there exists a ray;& such that
<XAB = {PAB (Congruence Axiom 4).

(3) There is a point P’ on AX such that AP’ = AP (Congruence
Axiom 1).

(4) PP’ intersects /in a point Q (definition of opposite sides of /).

(5) IfQ = A, then PP’ L / (definition of L).

(6) If Q # A, then APAQ = AP’AQ (SAS).

(7) Hence, <PQA = {P’'QA (corresponding angles), so T
(definition of ).

(8) Assume now that P lies on /. Since there are points not lying on
/ (Proposition 2.3), we can drop a perpendicular from one of
them to / (steps 5 and 7), thereby obtaining a right angle.

(9) We can lay off an angle congruent to this right angle with
vertex at P and one side on / (Congruence Axiom 4); the other
side of this angle is part of a line through P perpendicular to /
(Proposition 3.15(b)). W

It is natural to ask whether the perpendicular to / through P con-
structed in Proposition 3.16 is unique. If P lies on / Proposition 3.23
(later in this chapter) and the uniqueness part of Congruence Axiom 4
guarantee that the perpendicular is unique. If P does not lie on /, we
will not be able to prove uniqueness for the perpendicular until the
next chapter.

Note on Elliptic Geometry. Informally, elliptic geometry
may be thought of as the geometry on a Euclidean sphere with antipo-
dal points identified (the model of incidence geometry first described
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FIGURE 3.24

in Exercise 9(e), Chapter 2). Its “lines” are the great circles on the
sphere. Given such a “line” /, there is a point P called the “pole” of /
such that every line through P is perpendicular to /! To visualize this,
think of /as the equator on a sphere and P as the north pole; every great
circle through the north pole is perpendicular to the equator (Figure
3.24).

PROPOSITION 3.17 (ASA Criterion for Congruence). Given AABC and
ADEF with €A = 4D, <C = 4F, and AC = DF. Then AABC =
ADEF.

PROPOSITION 3.18 (Converse of Proposition 3.10). If in AABC we have
4B = 4C, then AB = AC and AABC is isosceles.

PROPOSITION 3.19 (Angle Addition). Given BG between BA and BC,
EH between ED and EF, <CBG = <FEH, and <GBA = <HED.
Then XABC = I{DEF. (See Figure 3.25.)

Proof:
(1) By the crossbar theorem,® we may assume G is chosen so that
AxG=*C.
(2) By Congruence Axiom 1, we assume D, F, and H chosen so
that AB = ED, GB = EH, and CB = EF.
(3) Then AABG = ADEH and AGBC = AHEF (SAS).

3 This renaming technique will be used frequently. G is just a label for any point # B on the
ray which intersects AC, so we may as well choose G to be the point of intersection racher than
clutrer the argument with a new label.
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B C E F
FIGURE 3.25

(4) LDHE = <AGB, <XFHE = <CGB (step 3), and XAGB is
supplementary to LCGB (step 1).
(5) D, H, F are collinear and <DHE is supplementary to <FHE
(step 4, Proposition 3.14, and Congruence Axiom 4).
(6) D * H * F (Proposition 3.7, using the hypothesis on ﬁ).
(7) AC = DF (steps 3 and 6, Congruence Axiom 3).
(8) ¥BAC = JEDF (steps 3 and 6).
(9) AABC = ADEF (SAS; steps 2, 7, and 8).
(10) XABC = {DEF (corresponding angles). Hll
PROPOSITION 3.20 (Angle Subtraction). Given BG between BA and B%,
EH between ED and EF, <CBG = «FEH, and ¥ABC = <DEF.
Then <GBA = XHED.

DEFINITION. <ABC < <DEF means there is a ray EG between ED
and EF such that ¥ABC = <GEF (see Figure 3.26).

PROPOSITION 3.21 (Ordering of Angles). (a) Exactly one of the following
conditions holds (srichotomy): <P < LQ, ¥P = <Q, or XQ < XP.
(b) If LP < <Q and XQ = <R, then <P < «KR. (c¢) If P < XQ and
4O =4R, then <P > LR. (d) If AP <<XQ and XQ <R, then
<P <4R.

Be

FIGURE 3.26
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PROPOSITION 3.22 (SSS Criterion for Congruence). Given AABC and
ADEF. If AB=DE, BC=EF, and AC=DF, then AABC=
ADEF.

The AAS criterion for congruence will be given in the next chapter
because its proof is more difficult. The next proposition was assumed
as an axiom by Euclid, but can be proved from Hilbert’s axioms.

PROPOSITION 3.23 (Euclid’s Fourth Postulate). All right angles are con-
gruent to each other. (See Figure 3.27.)

Proof:

(1) Given ¥BAD = <CAD and <XFEH = <GEH (two pairs of
right angles, by definition). Assume the contrary, that X{BAD
is not congruent to K<FEH (RAA hypothesis).

(2) Then one of these angles is smaller than the other, e.g.,
XFEH < <BAD (Proposition 3.21(a)), so that by definition
there is a ray H between AB and AD such that <BA] =
<XFEH.

(3) XCAJ = <GEH (Proposition 3.14).

(4) XCAJ =<FEH jiteps 1 and 3, Congruence Axiom 5).

(5) There is a ray AK between AD and AC such that <BA] =
JCAK (step 1 and Proposition 3.21(b)).

(6) XBAJ = X CA] (steps 2 and 4, and Congruence Axiom 5).

(7) XCAJ = <CAK (steps 5 and 6, and Congruence Axiom 5).

(8) Thus, we have XCAD greater than <CAK (by definition) and
less than its congruent angle XCA] (step 7 and Proposition
3.8(c)), which contradicts Proposition 3.21.

(9) ¥BAD = {FEH (RAA conclusion). W

jw)
oo

FIGURE 3.27
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AXIOMS OF CONTINUITY

The axioms of continuity are needed to fill a number of gaps in
Euclid’s E/ements. Consider the argument Euclid gives to justify his
very first proposition.

EUCLID’S PROPOSITION 1. Given any segment, there is an equilateral
triangle having the given segment as one of its sides.

Euclid’s Proof:

(1)

Let AB be the given segment. With center A and radius AB, let
the circle BCD be described (Postulate III). (See Figure
3.28.)

Again with center B and radius BA, let the circle ACE be
described (Postulate III).

From a point C in which the circles cut one another, draw the
segments CA and CB (Postulate I).

Since A is the center of the circle CDB, AC is congruent to AB
(definition of circle).

Again, since B is the center of circle CAE, BC is congruent to
BA (definition of circle).

Since CA and CB are each congruent to AB (steps 4 and 5),
they are congruent to each other (first common notion).
Hence, A ABC is an equilateral triangle (by definition) having
AB as one of its sides.

Since very step has apparently been justified, you may not see the
gap in the proof. It occurs in the first three steps, especially in the third
step, which explicitly states that C is a point in which the circles cut

C

N

Y Y

’

FIGURE 3.28
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each other. (The second step states this implicitly by using the same
letter “C” to denote part of the circle, as in the first step.) The point is:
How do we know that such a point C exists?

If you believe it is obvious from the diagram that such a point C
exists you are right—but you are not allowed to use the diagram to
justify this! We aren’t saying that the circles constructed do not cut
each other; we’re saying only that another axiom is needed to prove
that they do.

The gap can be filled by assuming the following circular continuity
principle:

CIRCULAR CONTINUITY PRINCIPLE. If a circle y has one point inside
and one point outside another circle y’, then the two circles intersect
in two points.

Here a point P is defined as nside a circle with center O and radius OR
if OP < OR (outside if OP > OR). In Figure 3.28, point B is inside
circle y’, and the point B’ (not shown) such that A is the midpoint of
BB’ is outside y’. This principle is also needed to prove Euclid’s 22nd
proposition, the converse to the triangle inequality (see Major Exer-
cise 4, Chapter 4). Another gap occurs in Euclid’s method of dropping
a perpendicular to a line (his 12th proposition, our Proposition 3.16).
His construction tacitly assumes that if a line passes through a point
inside a circle, then the line intersects the circle in two points —an
assumption you can justify using the circular continuity principle
(Major Exercise 1, Chapter 4; but our justification uses Proposition
3.16, so Euclid’s argument must be discarded to avoid circular reason-
ing). Here is another useful consequence (see Major Exercise 2,
Chapter 4).

ELEMENTARY CONTINUITY PRINCIPLE. Ifone endpointofasegment
isinside a circle and the other outside, then the segment intersects the
circle.

Can you see why these are “‘continuity principles”? For example, in
Figure 3.29, if you were drawing the segment with a pencil moving
continuously from A to B, it would have to cross the circle (if it didn’t,
there would be “a hole” in the segment or the circle).

The next statement is not about continuity but rather about mea-
surement. Archimedes was astute enough to recognize that a new
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axiom was needed. It is listed here because we will show that it is a
consequence of Dedekind’s continuity axiom, given later in this sec-
tion. It is needed so that we can assign a positive real number as the
length AB of an arbitrary segment AB, as will be explained in Chap-
ter 4.

ARCHIMEDES’ AXIOM. If CD is any segment, A any point, and r any
ray with vertex A, then for every point B # A on r there is a number #
such that when CD is laid off # times on 7 starting at A, a point E is
reached such that #» - CD = AE and either B =E or B is between A
and E.

Here we use Congruence Axiom 1 to begin laying off CD on r
starting at A, obtaining a unique point A; on rsuch that AA, = CD,
and we define 1 + CD to be AA,. Let 7, be the ray emanating from A,
that is contained in 7. By the same method, we obtain a unique point
A, on r; such that A|A, = CD, and we define 2 - CD to be AA,.
Iterating this process, you can define, by induction on 7, the segment
n + CD to be AA,.

Forexample, if AB were 7 units long and CD of one unit length, you
would have to lay off CD at least four times to get to a point E beyond
the point B (see Figure 3.30).

4 N
A 0—— - -+ > —H———e H#——e'E
B
*~—ffp——e
C D

FIGURE 3.30
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The intuitive content of Archimedes’ axiom is that if you arbitrarily
choose one segment CD as a unit of length, then every other segment
has finite length with respect to this unit (in the notation of the axiom
the length of AB with respect to CD as unit is at most 7 units). Another
way to look at it is to choose AB as unit of length. The axiom says that
no other segment can be infinitesimally small with respect to this unit
(the length of CD with respect to AB as unit is at least 1/# units).

The next statementis a consequence of Archimedes’ axiom and the
previous axioms (as you will show in Exercise 6, Chapter 5), butif one
wants to do geometry with segments of infinitesimal length allowed,
this statement can replace Archimedes’ axiom (see my note “Aristot-
le’s Axiom in the Foundations of Hyperbolic Geometry,” Journal of
Geometry, vol. 33, 1988). Besides, Archimedes’ axiom is not a purely
geometric axiom, since it asserts the existence of a number.

ARISTOTLE’S AXIOM. Given any side of an acute angle and any seg-
ment AB, there exists a point Y on the given side of the angle such that
if X is the foot of the perpendicular from Y to the other side of the
angle, XY > AB.

Informally, if we start with any point Y on the given side, then as Y
“recedes endlessly” from the vertex V of the angle, perpendicular
segment XY “increases indefinitely” (because it is eventually bigger
than any previously given segment AB). This principle will be valu-
able in Chapter 5 when we examine Proclus’ attempt to prove Euclid’s
parallel postulate (see Figure 5.2). The idea of the proof from Archi-
medes’ axiom is that if the starting XY is not already greater than the
given segment AB, one simply lays off enough copies of VY on ray
until point Y’ is reached such that the perpendicular segment dropped
from Y’ is greater than AB (see Exercise 6, Chapter 5).

IMPORTANT COROLLARY. Let AB be any ray, P any point not collin-
ear with A and B, and <XVY any acute angle. Then there exists a point
R on ray AB such that ¥PRA < <XVY.

Informally, if we start with any point R on Kﬁ, then as R “recedes
endlessly” from the vertex A of the ray, XPRA decreases to zero
(because it is eventually smaller than any previously given angle
IXVY). This result will be used in Chapter 6. Its proof uses Theorem
4.2 of Chapter 4 (the exterior angle theorem) and so it should be given
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after that theorem is proved, but we sketch the proof now for conve-
nience of reference. You may skip it now and return when needed.

Proof: .

Let Q be the foot of the perpendicular from P to AB. Since point B is
justalabel, we choose it so that Q # B and Q lies on ray BA.XandY
are arbitrary points on the rays 7 and s that are the sides of <XVY.
Let X’ be the foot of the perpendicular from Y to the line containing
r. By the hypothesis that the angle is acute and the exterior angle
theorem, we can show (by an RAA argument) that X’ actually lies
on r, and so we can choose X to be X’. Aristotle’s axiom guarantees
that Y can be chosen such that XY > PQ. By Congruence Axiom 1,
there is one point R on GB such that QR = XV. We claim that
JPRQ < LXVY. Assume the contrary. By trichotomy, there is a ray
RS such that QRS = {XVY and RS either equals RP or is
between RP and R_Q By the crossbar theorem, point S (which thus
far is also merely a label) can be chosen to lie on segment PQ; then
SQ is not greater than PQ. By the ASA congruence criterion,
SQ = XY. Hence XY is not greater than PQ, contradicting our
choice of Y. Thus ¥PRQ < <XVY, as claimed. If R lies on ray KB,
then {PRQ = ¥{PRA and we are done. If not, R and Q lie on the
opposite ray. By the exterior angle theorem, if R’ is any point such
that Q * R * R, then {PR’'Q < <PRQ < XVY. We get {PBA =
<PBQ < <XVY by taking R"=B. &

All four principles thus far stated are in the spirit of ancient Greek
geometry. They are all consequences of the next axiom, which is
utterly modern.
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DEDEKIND’S AXIOM.* Suppose that the set {/} of all points on a line /
is the disjoint union 3, U 3,, of two nonempty subsets such that no
point of either subset is between two points of the other. Then there
exists a unique point O on /such that one of the subsets is equal toa ray
of /with vertex O and the other subset is equal to the complement.

Dedekind’s axiom is a sort of converse to the line separation prop-
erty stated in Proposition 3.4. That property says that any point O on /
separates all the other points on /into those to the left of O and those to
the right (see Figure 3.32; more precisely, {/} is the union of the two
rays of /emanating from O). Dedekind’s axiom says that, conversely,
any separation of points on /into left and right is produced by a unique
point O. A pair of subsets 3, and X, with the properties in Dedekind’s
axiom is called a Dedekind cut of the line.

Loosely speaking, the purpose of Dedekind’s axiom is to ensure
that a line /has no “holes” in it, in the sense that for any point O on /
and any positive real number x there exist unique points P_,and P, on/
such that P_, * O * P_and segments P_ O and OP, both have length x
(with respect to some unit segment of measurement); see Figure
3.33.

Without Dedekind’s axiom there would be no guarantee, for exam-
ple, of the existence of a segment of length #. With it, we can intro-
duce a rectangular coordinate system into the plane and do geometry
analytically, as Descartes and Fermat discovered in the seventeenth
century. This coordinate system enables us to prove that our axioms
for Euclidean geometry are categorica/in the sense that the system has
a unique model (up to isomorphism — see the section Isomorphism of
Models in Chapter 2), namely, the usual Cartesian coordinate plane
of all ordered pairs of real numbers.

If we omitted Dedekind’s axiom, then another model would be the
so-called surd plane, a plane that is used to prove the impossibility of

4 This axiom was proposed by J. W. R. Dedekind in 187 1; an analogue of it is used in analysis
texts to express the completeness of the real number system. It implies that every Cauchy
sequence converges, that continuous functions satisfy the intermediate value theorem, that the
definite integral of a continuous function exists, and other important conclusions. Dedekind
actually defined a “‘real number” as a Dedekind cut on the set of rational numbers, an idea
Eudoxus had 2000 years earlier (see Moise, 1990, Chapter 20).
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trisecting every angle with a straightedge and compass (see Moise,
1990, p. 282 ff.). The categorical natural of all the axioms is proved in
Borsuk and Szmielew (1960, p. 276 ff.).

Warning. If you have never seen Dedekind’s axiom before, argu-
ments using it may be difficult to follow. Don’t be discouraged. With
the exception of Theorem 6.6 in hyperbolic geometry, it is not needed
for studying the main theme of this book. I advise the beginning
student to skip to the next section, Axiom of Parallelism.

Although Dedekind’s axiom implies the other four principles and is
the only continuity axiom we need assume, we still refer to the others
as ‘“‘axioms.” Let us sketch a proof that Archimedes’ axiom is a conse-
quence of Dedekind’s (and the axioms preceding this section).

Proof:
Given a segment CD and a point A on line /, with a ray r of /
emanating from A. In the terminology of Archimedes’ axiom, let X,
consist of A and all points B on 7 reached by laying off copies of
segment CD on 7 starting from A. Let 3., be the complement of X,
in . We wish to prove that 2, is empty, so assume the contrary.
In that case, let us show that we have defined a Dedekind cut of
(see Exercise 7(a)). Start with two points P, Q in 3, and say
A #* P # Q. We must show that PQ C 3,,. Let B be between P and
Q. Suppose B could be reached, so that » and E are as in the
statement of Archimedes’ axiom; then, by Proposition 3.3, P is
reached by the same 7 and E, contradicting P € 2,. Thus PQ C 3,
Similarly, you can show that when P and Q are two points in 3,
PQ C 3, (Exercise 7 (b)). So we have a Dedekind cut. Let O be the
point of  furnished by Dedekind’s axiom.

Case 1. O € 3. Then for some number 7, O can be reached by
laying off 7 copies of segment CD on 7 starting from A. By laying off

&
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one more copy of CD, we can reach a point in 3,, but by definition of
3., , that is impossible.

Case 2. OE3,. Lay off a copy of CD on the ray opposite to 2,
starting at O, obtaining a point P; P lies on 7 (Exercise 7 (b)), so
P € 3,. Then for some number », P can be reached by laying off
copies of segment CD on 7 starting from A. By laying off one more
copy of CD, we can reach O. That contradicts O € 3,.

Soin either case, we obtain a contradiction, and we can reject the
RAA hypothesis that 3, is nonempty. H

To further get an idea of how Dedekind’s axiom gives us continuity
results, we sketch a proof now of the elementary continuity principle
from Dedekind’s axiom (logically, this proof should be given later,
because it uses results from Chapter 4). Refer to Figure 3.29, p. 95.

Proof:

By the definitions of “inside’ and “‘outside” of a circle y with center
O and radius OR, we have OA < OR < OB. Let X, be the set of all
points P on the ray AB that either lie on yorare outside y,and let 3,
be its complement in AB. By trichotomy (Proposition 3.13(a)), 3,
consists of all points of the segment AB that lie inside y. Applying
Exercise 27 of Chapter 4, you can convince yourself that (%, 2,) is
a Dedekind cut. Let M be the point on AB furnished by Dedekind’s
axiom. Assume M does not lie on y (RAA hypothesis).

Case 1. OM <OR. Then M € 3. Let m and r be the lengths
(defined in Chapter 4) of OM and OR, respectively. Since 2, with M
is a ray, there is a point N € 2, such that the length of MN is 4 (7 — m)
(e.g., by laying off a segment whose length is 4(r— m), using
Theorem 4.3(11)). But by the zriangle inequality (Corollary 2 to
Theorem 4.3), the length of ON is less than m + L(r—m) <m +
(r — m) = r, which contradicts N € 3,,.
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Case 2. OM > OR. The same argument applies, interchanging
the roles of 3, and 3,,.

So in either case, we obtain a contradiction, and M must lie

ony. R

You will find a lovely proof of the circular continuity principle from
Dedekind’s axiom on pp. 238-240 of Heath’s translation and com-
mentary on Euclid’s Elements (1956). It assumes that Dedekind’s
axiom holds for semicircles, which you can easily prove in Major
Exercise 4, and also uses the triangle inequality and the fact that the
hypotenuse is greater than the leg (proved in Chapter 4).

Euclid’s tacit use of continuity principles can often be avoided. We
did not use them in our proof of the existence of perpendiculars
(Proposition 3.16). We did use the circular continuity principle to
prove the existence of equilateral triangles on a given base, and Euclid
used that to prove the existence of midpoints, as in your straightedge-
and-compass solution to Major Exercise 1(a) of Chapter 1. Butthere is
an ingenious way to prove the existence of midpoints using only the
very mild continuity given by Pasch’s theorem (see Exercise 12,
Chapter 4).

Figure 3.34 shows the implications discussed (assuming all the
incidence, betweenness, and congruence axioms — especially SAS).

Dedekind

{ ,
Circular continuity
principle

| | |

Archimedes

Aristotle Theorem 4.3 Euclid .11)1' op. 11 Elementary
on measurement on equilatera continuity
triangles principle

FIGURE 3.34
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AXIOM OF PARALLELISM

If we were to stop with the axioms we now have, we could do quite a bit
of geometry, but we still couldn’t do all of Euclidean geometry. We
would be able to do what J. Bolyai called “absolute geometry.” This
name is misleading because it does not include elliptic geometry and
other geometries (see Appendix B). Preferable is the name suggested
by W. Prenowitz and M. Jordan (1965), neutral geometry, so called
because in doing this geometry we remain neutral about the one
axiom from Hilbert’s list left to be considered — historically the most
controversial axiom of all.

HILBERT’S AXIOM OF PARALLELISM. For every line /and every point
P not lying on /there is at most one line 7 through P such that 7 is
parallel to / (Figure 3.35).

Note that this axiom is weaker than the Euclidean parallel postu-
late introduced in Chapter 1. This axiom asserts only that af most one
line through P is parallel to /, whereas the Euclidean parallel postulate
asserts in addition that a# /east one line through P is parallel to /. The
reason ‘‘at least” is omitted from Hilbert’s axiom is that it can be
proved from the other axioms (see Corollary 2 to Theorem 4.1 in
Chapter 4); it is therefore unnecessary to assume this as part of an
axiom. This observation is important because it implies that the ellip-
tic parallel property (no parallel lines exist) is inconsistent with the
axioms of neutral geometry. Thus, a different set of axioms is needed
for the foundation of elliptic geometry (see Appendix A).

The axiom of parallelism completes our list of 16 axioms for Eu-
clidean geometry. A Euclidean plane is a model of these axioms. In
referring to these axioms we will use the following shorthand: the
incidence axioms will be denoted by I-1,I-2, and I-3; the betweenness
axioms by B-1, B-1, B-3, and B-4; the congruence axioms by C-1, C-2,
C-3, C-4, C-5, and C-6 (or SAS). The continuity axioms and the
parallelism axiom will be referred to by name.

FIGURE 3.35 - >/
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REVIEW EXERCISE

Which of the following statements are correct?

(1)

Hilbert’s axiom of parallelism is the same as the Euclidean paraliel
postulate given in Chapter 1.

A * B * C is logically equivalent to C * B * A,

In Axiom B-2 it is unnecessary to assume the existence of a point E
such that B * D * E because this can be proved from the rest of the
axiom and Axiom B-1, by interchanging the roles of B and D and taking
E to be A.

If A, B, and C are distinct collinear points, it is possible that bozk
A*B*CandA*C*B.

The “line separation property” asserts that a line has two sides.

If points A and B are on opposite sides of a line /, then a point C noton /
must be either on the same side of /as A or on the same side of /as B.
If line m is parallel to line /, then all the points on 7 lie on the same side
of /.

If we were to take Pasch’s theorem as an axiom instead of the separa-
tion axiom B-4, then B-4 could be proved as a theorem.

The notion of “congruence” for two triangles is not defined in this
chapter.

It is an immediate consequence of Axiom C-2 that if AB = CD, then
CD = AB.

One of the congruence axioms asserts that if congruent segments are
“subtracted” from congruent segments, the differences are congruent.
In the statement of Axiom C-4 the variables A, B, C, A’, and B’ are
quantified universally, and the variable C’ is quantified existentially.
One of the congruence axioms is the side-side-side (SSS) criterion for
congruence of triangles.

Euclid attempted unsuccessfully to prove the side-angle-side criterion
(SAS) for congruence by a method called ““superposition.”

We can use Pappus’ method to prove the converse of the theorem on
base angles of an isosceles triangle if we first prove the angle-side-angle
(ASA) criterion for congruence.

Archimedes’ axiom is independent of the other 15 axioms for Euclid-
ean geometry given in this book.

AB < CD means that there is a point E between C and D such that
AB = CE.

Neutral geometry used to be called absolute geometry; itis the geometry
you have when the axiom of parallelism is excluded from the system of
axioms given here.
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EXERCISES ON BETWEENNESS

1. Given A*B*Cand A*C*D.
(a) Provethat A, B, C, and D are four distinct points {the proof requires
an axiom).
b) Prove that A, B, C, and D are collinear.
)} Prove the corollary to Axiom B-4. -
} Finish the proof of Proposition 3.1 by showing that AB U BA = AB.
} Finish the proof of Proposition 3.3 by showing that A * B * D.
} Prove the converse of Proposition 3.3 by applying Axiom B-1.
) Prove the corollary to Proposition 3.3.
3. Given A*B *C.
(a} Use Proposition 3.3 to prove that AB C AC. Interchanging Aand C,
deduce CB C CA; which axiom justifies this interchange?
(b) Use Axiom B-4 to prove that AC C AB U BC. {Hint: If P is a fourth
point on AC, use another line through P to show P € AB or
P € BC))
(c) Finish the proof of Proposition 3.5. (Hint: If P#B and PE
AB N BC, use another line through P to get a contradiction.)
4. Given A*B* C.
(a} If Pis afourth point collinear with A, B, and C, use Proposition 3.3
and an axiom_tg prove that ~A*B*P=~A*C*P.
{b) Deduce that BA C CA and, symmetrically, BC c AC.
(¢} Use this result, Proposition 3.1 (a), Proposition _3) 3, and Proposition
3.5 to prove that B is the only point that BA and BC have in
common.
5. Given A * B * C. Prove that AB = Ké, completing the proof of Propo-
sition 3.6. Deduce that every ray has a unigue opposite ray.
6. In Axiom B-2 we were given distinct points B and D and we asserted the
existence of points A, C, and E such that A* B * D, B * C * D, and
B * D * E. We can now show that it was not necessary to assume the
existence of a point C between B and D because we can prove from our
other axioms (including the rest of Axiom B-2) and from Pasch’s
theorem (which was proved without using Axiom B-2) that C exists.?
Your job is to justify each step in the proof (some of the steps require a
separate RAA argument).

5 Regarding superfluous hypotheses, there is a story that Napoleon, after examining a copy
of Laplace’s Celestial Mechanics, asked Laplace why there was no mention of God in the work.
The author replied, *“I have no need of this hypothesis.”
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FIGURE 3.36 H

Proof (see Figure 3.36):
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7. (a)

(b)

There exists a line BD through B and D.

There exists a point F not lying on BD.

There exists a line BF through B and F.

There exists a point G such that B * F * G.

Points B, F, and G are collinear.

G and D are distinct points and D, B, and G are not collinear.
There exists a point H such that G * D * H.

There exists a line GH.

H and F are distinct points.

There exists a line FH.

D does not lie on FH.

B does not lic on FH.

G does not lie on FH.

Points D, B, and G determine ADBG and ﬁ intersects side BG
in a point between B and G.

H is the only point lying on both FA and 611

No point between G and D lies on FA.

Hence, FH intersects side BD in a point C between D and B.
Thus, there exists a point C between D and B. Il

Define a Dedekind cut on a ray » the same way a Dedekind cut is
defined for a line. Prove that the conclusion of Dedekind’s axiom
also holds for 7. (Hint: One of the subsets, say, Z,, contains the
vertex A of 7; enlarge this set so as to include the ray opposite to
and show that a Dedekind cut of the line /containing ris obtained.)
Similarly, state and prove a version of Dedekind’s axiom for a cuton
a segment.

Supply the indicated arguments left out of the proof of Archimedes’
axiom from Dedekind’s axiom.

8. From the three-point model (Example 1 in Chapter 2) we saw that if we
used only the axioms of incidence we could not prove that a line has
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more than two points lying on it. Using the betweenness axioms as well,
prove that every line has at least five points lying on it. Give an informal
argument to show that every segment (a fortiori, every line) has an
infinite number of points lying on it (a formal proof requires the tech-
nique of mathematical induction).

9. Given aline /, a point A on /, and a point B not on /. Then every point of
the ray AB (except A) is on the same side of /as B. (Hint: Use an RAA
argument).

10. Prove Proposition 3.7.

11. Prove Proposition 3.8. (Hint: For Proposition 3.8(c) prove in two steps
that E and B lie on the same side of AD, first showing that EB does not
meet A_IS, then showing that EB does not meet the opposite ray Ak, Use
Exercise 9.)

12. Prove the crossbar theorem. (Hint; Assume the contrary, and show that
B and C lie on the same side of AD. Use Proposition 3.8(c) to derive a
contradiction.)

13. Prove Proposition 3.9. (Hint: For Proposition 3.9(a) use Pasch’s
theorem and Proposition 3.7; see Figure 3.37. For Proposition 3.9(b)
let the ray emanate from point D in the interior of AABC. Use the
crossbar theorem and Proposition 3.7 to show that AD meets BC in a
point E such that A * D * E. Apply Pasch’s theorem to AABE and
AAEC; see Figure 3.38.)

14. Prove that a line cannot be contained in the interior of a triangle.

15. If a, 4, and c are rays, let us say that they are coterminal if they emanate
from the same point, and let us use the notation  * & * cto mean that 4
is between « and ¢ (as defined on p. 82). The analogue of Axiom B-1
states that if 2 * 4 * ¢, then 4, b, ¢ are distinct and coterminal and
¢ * b * g; this analogue is obviously correct. State the analogues of
Axioms B-2 and B-3 and Proposition 3.3 and tell which parts of these
analogues are correct. (Beware of opposite rays!)

16. Find an interpretation in which the incidence axioms and the first two
betweenness axioms hold but Axiom B-3 fails in the following way: there

FIGURE 3.37
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FIGURE 3.38

17.

18.

19.

exist three collinear points, no one of which is between the other two.
(Hint: In the usual Euclidean model, introduce a new betweenness
relation A * B * C to mean that B is the midpoint of AC.)

Find an interpretation in which the incidence axioms and the first three
betweenness axioms hold but the line separation property (Proposition
3.4) fails. (Hint: In the usual Euclidean model, pick a point P that is
between A and B in the usual Euclidean sense and specify that A will
now be considered to be between P and B. Leave all other betweenness
relations among points alone. Show that P lies neither on ray AB nor on
its opposite ray 15&.)

A rational number of the form @/2” (with a, # integers) is called dyadic. In
the interpretations of Project 2 for this chapter, restrict to those points
which have dyadic coordinates and to those lines which pass through
several dyadic points. The incidence axioms, the first three between-
ness axioms, and the line separation property all hold in this dyadic
rational plane; show that Pasch’s theorem fails. (Hint: The lines
3x+ y=1 and y = 0 do not meet in this plane.)

A set of points S'is called convex if whenever two points A and B are in §,
the entire segment AB is contained in §. Prove that a half-plane, the
interior of an angle, and the interior of a triangle are all convex sets,
whereas the exterior of a triangle is not convex. Is a triangle a convex set?

EXERCISES ON CONGRUENCE

20.

Justify each step in the following proof of Proposition 3.11:

Proof:
(1) Assume on the contrary that BC is not congruent to EF.
(2) Then there is a point G on EF such that BC = EG.
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(3) G#F.

(4) Since AB = DE, adding gives AC = DG.

(5) However, AC = DF.

(6) Hence, DF = DG.

(7} Therefore, F = G.

(8} Our assumption has led to a contradiction; hence, BC = EF.

21. Prove Proposition 3.13(a). (Hint: In case AB and CD are not congruent,
there is a unique point F # D on CD such that AB = CF (reason ?). In
case C * F * D, show that AB < CD. In case C * D * F, use Proposi-
tion 3.12 and some axioms to show that CD < AB.)

22. Use Proposition 3.12 to prove Proposition 3.13(b). and (c).

23. Use the previous exercise and Proposition 3.3 to prove Proposition
3.13(d).

24. Justify each step in the following proof of Proposition 3.14 (see Figure
3.39).

Proof:

Given SABC = {DEF. To prove <CBG = <FEH:

(1) The points A, C, and G being given arbitrarily on the sides of XABC
and the supplement <CBG of XABC, we can choose the points D,
F, and H on the sides of the other angle and its supplement so that
AB = DE, CB =FE, and BG = EH.

(2) Then, AABC = ADEF.
(3) Hence, AC = DF and <A = <D.
(4) Also, AG =DH.
(5) Hence, AACG = ADFH.
(6) Therefore, CG = FH and <G = {H.
(7) Hence, ACBG = AFEH.
(8) It follows that XCBG = <FEH, as desired. l
F
D E 7 H

FIGURE 3.39
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FIGURE3.40 A C

25.
26.

27.
28.

29.
30.

31.

32.

33.
34,

Deduce Proposition 3.15 from Proposition 3.14.
Justify each step in the following proof of Proposition 3.17 (see Figure
3.40):

Proof:

Given A ABC and ADEF with A = 4D, C = {F,and AC = DF.To
prove AABC = ADEF: -

(1) There is a unique point B’ on ray DE such that DB’ = AB.

2) AABC = ADB’F.

) Hence, <DFB’ = 4.

} This implies FE=FB".

) In that case, B’ =E.

)

(
(
(
(
(6) Hence, AABC = ADEF. B

3
4
5
6

Prove Proposition 3.18.

Prove that an equiangular triangle (all angles congruent to one another)
is equilateral.

Prove Proposition 3.20. (Hint: Use Axiom C-4 and Proposition 3.19.)
Given ¥ABC = DEF and BG between BA and BC. Prove that there is
aunique ray EFI berween ED and EF such that <ABG = <DEH. (Hint:
Show that D and F can be chosen so that AB = DE and BC = EF, and
that G can be chosen so that A * G * C. Use Propositions 3.7 and 3.12
and SAS to get H; see Figure 3.25.)

Prove Proposition 3.21 (imitate Exercises 21-23).

Prove Proposition 3.22. (Hint: Use the corollary to SAS to reduce to the
case where A =D, C =F, and the points B and E are on opposite sides
of AC. Then consider the three cases in Figure 3.41 separately.)

If AB < CD, prove that 2AB < 2CD.

Let Q2 be the rational plane of all ordered pairs (x, y) of rational numbers
with the usual interpretations of the undefined geometric terms used in
analytic geometry. Show that Axiom C-1 and the elementary continuity
principle fail in Q2. (Hint: The setgment from (0, 0) to (1, 1) cannot be
laid off on the x axis from the origin.)
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35. Inthe usual Euclidean plane we are all familiar with, there is a notion of

36.

length of asegment. Let us agree to measure all lengths in inches except
for segments on one particular line called the x axis, where we will
measure lengths in feet, and let us now interpret congruence of segmentsto
mean that two segments have the same “length’ in this perverse way of
measuring. Incidence, betweenness, and congruence of angles will have
their usual meaning. Show informally that the first five congruence
axioms and angle addition (Proposition 3.19) still hold in this interpre-
tation but that SAS fails (see Figure 3.42). Draw a picture of a “circle”
with center on the x axis in this interpretation and use that picture to
show that the circular continuity principle and the elementary continu-
ity principle fail. Show that Dedekind’s axiom still holds. Draw other
pictures to show that SSS, ASA, and SAA all fail.

In Chapter 2 we displayed many models of the incidence axioms. As
soon as we add the betweenness axioms, most of those interpretations
are no longer models (for example, we lose all the finite models and the
models in which “‘lines’’ are circles). Show, however, that the model in
Exercise 9(d), which has the hyperbolic parallel property, is still a model
under the natural interpretation of betweenness. It is called tke Klein
mode! and will be further studied in Chapter 7. Draw a picture to show
that in this model, a point in the interior of an angle need not lie on a
segment joining a point on one ray of the angle to a point on the other
ray.

X axis

FIGURE 3.42
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MAJOR EXERCISES

1. Let y be a circle with center A and radius of length 7. Let y” be another
circle with center A’ and radius of length 7/, and let #be the distance from
Ato A’ (see Figure 3.43). There is a hypothesis about the numbers 7, 7/,
and Zthat ensures that the circles y and y’ intersect in two distinct points.
Figure out what this hypothesis is. (Hint: It’s statement that certain
numbers obtained from r, 7/, and & are less than certain others.)-

What hypothesis on 7, 7/, and & ensures that y and y’ intersect in only
one point, i.e., that the circles are tangent to each other? (See Figure
3.44)

2. Define the reflection in a line m to be the transformation R, of the plane
which leaves each point of m fixed and transforms a point A not on » as
follows. et M be the foot of the perpendicular from A to m. Then, by
definition, R,(A) is the unique point A’ such that A’ * M * A and
A’M = MA. (See Figure 3.45.) This definition uses the result from
Chapter 4 that the perpendicular from A to m is unique, so that the foor M
is uniquely determined as the intersection with 7. Prove that R, is a
motion, i.e., that AB = A’B’ for any segment AB. Prove also that AB =
CD = A’B’ = C’D’, and that <A = {B = A’ = JB’.(Chapter 9 will
be devoted to a thorough study of motions; the reflections generate the
group of all such transformations.) (Hint: The proof breaks into the cases
(i) Aor B lies on m, (ii) Aand B lie on opposite sides of 7, and (iii) Aand B

<7N "\
N

FIGURE 3.43

FIGURE 3.44
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lie on the same side of m. In (ii), let M, N be the midpoints of AA’, BB’
and let C be the point at which AB meets m; prove that A’ * C * B’ by
showing that <A’CM = B’CN and apply Axiom C-3. In (iii), let C be the
point at which AB’ meets m, and use B = (B’)’ and the first two cases to
show that AABC = AA’B’C. Take care not to use results that are valid
only in Euclidean geometry.)

Note. In elliptic geometry the perpendicular from A to m is unique
except for one point P called the pole of m (see Figure 3.24, where mis the
equator and P is the north pole); the definition of reflection is modified in
elliptic geometry so that R, (P) = P. Can you see that R, is then the same
as the 180° rotation about P? Recall that antipodal points are identified.

3. Consider the following statements on congruence:

1. Given triangle A ABC and segment DE such that AB = DE. Then on
a given side of DE there is a unique point F such that AC = DF and
BC = EF.

2. Given triangles AADC and AA’D’C’ and given A *B * C and
A’ * B’ * C’.If AB = A’B’,BC = B’C’,AD = A’'D’, and BD = B’'D’,
then CD = C’'D’ (“rigidity of a triangle with a tail” —see Figure
3.46).

Prove these statements. Also, prove a statement 2a obtained from state-
ment 2 by substituting CD = C’D’ for BD = B’D’ in the hypothesis and
making BD = B’D’ the conclusion.

D D’

A ' B = C A’ B @ C
FIGURE 3.46
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In Borsuk and Szmielew (1960), statements 1 and 2 are taken as
axioms, in place of our Axioms C-4, C-5, and C-6. The advantage of this
change is that these new congruence axioms refer only to congruence of
segments. Congruence of angles, XABC = XA’B’C’, can then be defined
by specifying that A and C (respectively, A’ and C’) can be chosen on the
sides of <B (respectively, <B’) so that AB = A’B’, BC = B’C’, and
AC = A’C’. With this definition, keeping the same incidence and be-
tweenness axioms as before, show that C-4, C-5, and C-6 can be proved
from C-1, C-2, C-3, and statements 1 and 2. (Hint: First prove statement
2aby an RAA argument. Then show that if XABC = <A’B’C’, and that if
we had chosen other points D, E, D’, and E’ on the sides of <B and <B’
such that DB = D’B’ and EB = E’B’, then DE = D’E’. See Figure
3.47.))

4. Let AB be a diameter of circle y with center O. The intersection o of y
with one of the half-planes determined by ABis called an open semictrele of
ywith endpoints A, B; adding the points A, B gives the semzcircle 0. Define
abetweenness relation # on o as follows: P # Q # R means that P, Q, and
R are distinct points on ¢ and Ob + O_O « OR (see Exercise 15). Specify
also that A # P # B for any P on 0. -

(a) Let M be the point on o such that MO L AB (see Figure 3.48). Let
AMB = AM U MB. For any point P on o, prove that ray OP inter-
sects AMB in a point P’ and that the mapping P — P’ is one-to-one
from & onto AMB.

(b) Define P’ # Q' # R’ tomean P # Q # R. If P/, ), and R’ all lie on
segment AM or all liec on MB, prove that P” # Q' # R’ =
P’*Q *R’.

M

NG

FIGURE 3.48 A o B
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(c) Prove that Dedekind’s axiom holds for AMB and hence for @ (use
Exercise 7).

PROJECTS

1.

2.

Report on T. L. Heath’s (1956) proof for the circular continuity princi-
ple.

Incidence, points, and lines in the real plane R? were given in Major
Exercise 9, Chapter 2. Distance is given by the usual Pythagorean for-
mula

d(AB) = V(a; — by)* + (a; — b,)*

where A = (4, a;), B= (4, 4,). Define A * B * C w0 mean 4(AC) =
4(AB) +.4(BC), and define AB = CD to mean 4(AB) = 4(CD). Define
XABC = <DEF if A, C, D, and F can be chosen on the sides of these
angles so that AB = ED, CB = FE, and AC = DF. With these interpre-
tations, verify all the axioms for Euclidean geometry (see Moise, 1990,
Chapter 26, or Borsuk and Szmielew, 1960, Chapter 4).

Suppose in Project 2 the field R of real numbers is replaced by an
arbitrary Euclidean field F (an ordered field in which every positive num-
ber has a square root). Show that all the axioms for Euclidean geometry
except Dedekind’s and Archimedes’ axioms are satisfied; show also that
the circular continuity principle is satisfied.

In Euclidean geometry, Hilbert showed how to construct perpendiculars
using ruler (marked straightedge) alone. His construction uses the
theorem that the altitudes of a triangle are concurrent. Report on Hil-
bert’s results. (Refer to D. Hilbert, 1987, p. 100.)



CHAPTER

NEUTRAL
GEOMETRY

If only it could be proved . . . that “there is a
Triangle whose angles are together not Jess than two
right angles™! But alas, that is an ignss fatuus that has
never yet been caught!

C. L. DODGSON (LEWIS CARROLL)

GEOMETRY WITHOUT THE PARALLELL AXIOM

In the exercises of the previous chapter you gained experience in
proving some elementary results from Hilbert’s axioms. Many of
these results were taken for granted by Euclid. You can see that filling
in the gaps and rigorously proving every detail is a long task. In any
case, we must show that Euclid’s postulates are consequences of
Hilbert’s. We have seen that Euclid’s first postulate is the same as
Hilbert’s Axiom I-1. In our new language, Euclid’s second postulate
says the following: given segments AB and CD, there exists a point E
such that A * B * E and CD = BE. This follows immediately from
Hllbert s Axiom C-1 applied to the ray emanating from B opposite to
BA (see Figure 4.1).

The third postulate of Euclid becomes a definition in Hilbert’s
system. The circle with center O and radius OA is defined as the set of
all points P such that OP is congruent to OA. Axiom C-1 then guaran-
tees that on every ray emanating from O there exists such a point P.

The fourth postulate of Euclid —all right angles are congruent —
becomes a theorem in Hilbert’s system, as was shown in Proposition
3.23.
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Euclid’s parallel postulate is discussed later in this chapter. In this
chapter we shall be interested in neutral geometry — by definition, all
those geometric theorems that can be proved using only the axioms of
incidence, betweenness, congruence, and continuity and without
using the axiom of parallelism. Every result proved previously is a
theorem in neutral geometry. You should review all the statements in
the theorems, propositions, and exercises of Chapter 3 because they
will be used throughout the book. Our proofs will be less formal
henceforth.

What is the purpose of studying neutral geometry? We are not
interested in studying it for its own sake. Rather, we are trying to
clarify the role of the parallel postulate by seeing which theorems in
the geometry do not depend on it, i.e., which theorems follow from the
other axioms alone without ever using the parallel postulate in proofs.
This will enable us to avoid many pitfalls and to see much more clearly
the logical structure of our system. Certain questions that can be
answered in Euclidean geometry (e.g., whether there is a unique
parallel through a given point) may not be answerable in neutral
geometry because its axioms do not give us enough information.

ALTERNATE INTERIOR ANGLE THEOREM

The next theorem requires a definition: let # be a transversal to lines /
and //, with # meeting /at B and /' at B’. Choose points A and C on /
such that A * B * C; choose points A’ and C” on /’ such that A and A’
are on the same side of #and such that A” * B’ * C’. Then the following
four angles are called interior- XA’B’B, XABB’, <C’B’B, XCBB’. The
two pairs (XABB’, <C’B’B) and (XA’B’B, XCBB’) are called pairs of
alternate intersor angles (see Figure 4.2).
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FIGURE 4.2

THEOREM 4.1 (Alternate Interior Angle Theorem). If two lines cut by a
transversal have a pair of congruent alternate interior angles, then the
two lines are parallel.

Proof:

Given <A’B’B = <CBB’. Assume on the contrary /and / meetata
pomt D. Say Dison the same side of 7as Cand C’. Thereisa pomt E
on B’A’ such that B’/E = BD (Axiom C-1). Segment BB’ is con-
gruent to itself, so that AB’'BD = ABB’E (SAS). In particular,
<DB’B = XEBB’. Since <DB’B is the supplement of <EB’B,
XEBB’ must be the supplement of XDBB’ (Proposition 3.14 and
Axiom C-4). This means that E lies on /, and hence /and / have the
two points E and D in common, which contradicts Proposition 2.1 of
incidence geometry. Therefore, /|| /. B

This theorem has two very important corollaries.

COROLLARY 1. Two lines perpendicular to the same line are parallel.
Hence, the perpendicular dropped from a point P not on line /to /is
unique (and the point at which the perpendicular intersects /is called
its foos).

Proof:
If /and / are both perpendicular to #, the alternate interior angles
are right angles and hence are congruent (Proposition 3.23). H

COROLLARY 2. If /is any line and P is any point not on /, there exists at
least one line » through P parallel to / (see Figure 4.3). '
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Proof:

There is a line # through P perpendicular to /, and again there is a
unique line m through P perpendicular to 7 (Proposition 3.16).
Since /and m are both perpendicular to £, Corollary 1 tells us that
/|| m. (This construction will be used repeatedly.) Bl

To repeat, there always exists a line z through P parallel to /—this
has been proved in neutral geometry. But we don’t know that 7 is
unique. Although Hilbert’s parallel postulate says that » is indeed
unique, we are not assuming that postulate. We must keep our minds
open to the strange possibility that there may be other lines through P
parallel to /

Warning. You are accustomed in Euclidean geometry to use the
converse of Theorem 4.1, which states, ““If two lines are parallel, then
alternate interior angles cut by a transversal are congruent.” We
haven’t proved this converse, so don’t use it! (It turns out to be
logically equivalent to the parallel postulate —see Exercise 5.)

EXTERIOR ANGLE THEOREM

Before we continue our list of theorems, we must first make another
definition: an angle supplementary to an angle of a triangle is called an
exterior angle of the triangle; the two angles of the triangle not adjacent
to this exterior angle are called the remote interior angles. The following
theorem is a consequence of Theorem 4.1:
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THEOREM 4.2 (Exterior Angle Theorem). An exterior angle of a triangle is
greater than either remote interior angle (see Figure 4.4).

To prove <ACD is greater than <B and <XA:

Proof:
Consider the remote interior angle <XBAC. If <BAC = <ACD,
then AB is parallel to éD (Theorem 4.1), which contradicts the
hypothesis that these lines meet at B. Suppose XBAC were greater
than ¥ACD (RAA hypothesis). Then there is a ray AE between AB
and AC such that XACD = XCAE (by definition). This ray AL
intersects BC in a point G (crossbar theorem, Chapter 3). But
according to Theorem 4.1, lines AE and are parallel. Thus,
<BAC cannot be greater than <{XACD (RAA conclusion). Since
<¥BAC is also not congruent to <XACD, {BAC must be less than
<ACD (Proposition 3.21(a)).

For remote angle < ABC, use the same argument applied to
exterior angle <BCF, which is congruent to LACD by the vertical
angle theorem (Proposition 3.15(a)). A

The exterior angle theorem will play a very important role in what
follows. It was the 16th proposition in Euclid’s Elements. Euclid’s prg_o)f
had a gap due to reasoning from a diagram. He considered the line BM
joining B to the midpoint of AC and he constructed point B’ such that
B *M * B’ and BM = MB’ (Axiom C-1). He then assumed from the
diagram that B’ lay in the interior of XACD (see Figure 4.5). Since
<B’CA = <A (SAS), Euclid concluded correctly that XACD > <A.

The gap in Euclid’s argument can easily be filled with the tools we
have developed. Since segment BB’ intersects AC at M, B and B’ are



120 ! l | Neutral Geometry

w ¢
O
v}

FIGURE 4.5

on opposite sides of AC (by definition). Since BD meets Al a C,B
and D are also on opposite sides of AC. Hence, B’ and D are on the
same side of AC (Axiom B-4). Next, B’ and M are on the same side of

, since segment MB’ does not contain the point B at which MB/
meets CD (by construction of B’ and Axioms B-1 and B-3). Also, Aand
M are on the same side of CD because segment AM does not contain
the point C at which AM meets éH (by definition of midpoint and
Axiom B-3). So again, Separation Axiom B-4 ensures that A and B’ are
on the same side of CD. By definition of “interior” (in Chapter 3,
preceding Proposition 3.7), we have shown that B’ lies in the interior
of XACD.

Neote on Elliptic Geometry. Figure 3.24 shows a triangle on
the sphere with both an exterior angle and a remote interior angle that
are right angles, so the exterior angle theorem doesn’t hold. Our proof
of it was based on the alternate interior angle theorem, which can’t
hold in elliptic geometry because there are no parallels. The proof we
gave of Theorem 4.1 breaks down in elliptic geometry because Axiom
B-4, which asserts that a line separates the plane into two sides,
doesn’t hold; we knew points E and D in that proof were distinct
because they lay on opposite sides of line £ Or, thinking in terms of
spherical geometry, where a great circle does separate the sphere into
two hemispheres, if points E and D are distinct, there is no contradic-
tion because great circles do meet in two antipodal points.

Euclid’s proof of Theorem 4.2 breaks down on the sphere because
“lines” are circles and if segment BM is long enough, the reflected
point B’ might lie on it (e.g., if BM is a semicircle, B’ = B).
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As a consequence of the exterior angle theorem (and our previous
results), you can now prove as exercises the following familiar propo-
sitions.

PROPOSITION 4.1 (SAA Congruence Criterion). Given AC = DF, <A =
<D, and <B = XE. Then AABC = ADEF (Figure 4.6).

PROPOSITION 4.2. Two right triangles are congruent if the hypote-
nuse and alegof one are congruent respectively to the hypotenuse and
a leg of the other (Figure 4.7).

PROPOSITION 4.3 (Midpoints). Every segment has a unique midpoint.

PROPOSITION 4.4 (Bisectors). (a) Every angle has a unique bisector. (b)
Every segment has a unique perpendicular bisector.

PROPOSITION 4.5. Inatriangle AABC, the greater angle lies opposite
the greater side and the greater side lies opposite the greater angle,

i.e., AB > BC if and only if <C > <A.

PROPOSITION 4.6. Given AABC and AA’B’CY, if AB = A’B’ and
BC = B’C’, then <B < <B’ if and only if AC < A’C’.

FIGURE4.7 A C A C
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MEASURE OF ANGLES AND SEGMENTS

Thus far in our treatment of geometry we have refrained from using
numbers that measure the sizes of angles and segments — this was in
keeping with the spirit of Euclid. From now on, however, we will not
be so austere. The next theorem (Theorem 4.3) asserts the possibility
of measurement and lists its properties. The proof requires the axioms
of continuity for the first time (in keeping with the elementary level of
this book, the interested reader is referred to Borsuk and Szmielew,
1960, Chapter 3, Sections 9 and 10). In some popular treatments of
geometry this theorem is taken as an axiom (ruler-and-protractor
postulates —see Moise, 1990). The familiar notation (XA)° will be
used for the number of degrees in XA, and the length of segment AB
(with respect to some unit of measurement) will be denoted by AB.

THEOREM 4.3. A. There is a unique way of assigning a degree mea-
sure to each angle such that the following properties hold (refer to
Figure 4.8):

(0) (XA)° is a real number such that 0 < (<A)° < 180°

(1) (XA)° =90° if and only if <A is a right angle.

(2) (XA)° = (XB)° if and only if <A = 4B.

(3) If AC is interior to <DAB, then ({DAB)° = ({DAC)° +
(XCAB)°.

(4) For every real number x between 0 and 180, there exists an
angle <A such that (XA)° = x°.

(5) If4Bis supplementary to XA, then (XA)° + (XB)° = 180°.

(6) (XA)° > (XB)° if and only if <A > <B.

B. Given a segment Ol, called a unis segment. Then there is a unique
way of assigning a length AB to each segment AB such that the

b OO

A .
FIGURE 4.8 \5\
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following properties hold:

(7) @ is a positive real number and Ol=1.
(8) AB=CD ifand onlyif AB=CD.
(9) A*B *Cif and only if AC= AB + BC.
(10) AB <CD if and only if AB < CD.
(11) For every positive real number x, there exists a segment AB
such that AB = x.

Neote. So as not to mystify you, here is the method for assigning
lengths. We start with a segment OI whose length will be 1. Then any
segment obtained by laying off 7 copies of OI will have length ». By
Archimedes’ axiom, every other segment AB will have its endpoint B
between two points B,_, and B, such that AB,_, =#»—1and AB,=#;
then AB will have to equal AB,_; + B,_,B by condition (9) of
Theorem 4.3, so we may assume #» = 1 and B,_, = A. If B is the
midpoint B,,, of AB,, we set AB,,, =4; otherwise B lies either in AB,,
orinB,,,B,, say, in AB,,. If then B is the midpoint B, 4 of AB, ,, we set
AB,,, = 1; otherwise B lies in AB, 4, say, and we continue the process.
Eventually B will either be obtained as the midpoint of some segment
whose length has been determined, in which case AB will be deter-
mined to some dyadic rational number 2/2”; or the process will con-
tinue indefinitely, in which case AB will be the limit of an infinite
sequence of dyadic rational numbers; i.e., AB will be determined as an
infinite decimal with respect to the base 2.

The axioms of continuity are not needed if one merely wants to
define addition for congruence classes of segments and then prove the
triangle inequality (Corollary 2 to Theorem 4.3; see Borsuk and
Szmielew, 1960, pp. 103 - 108, for a definition of this operation). It is
in order to prove Theorem 4.4, Major Exercise 8, and the parallel
projection theorem that we need the measurement of angles and
segments by real numbers, and for such measurement Archimedes’
axiom is required. However, parts 4 and 11 of Theorem 4.3, the proofs
for which require Dedekind’s axiom, are never used in proofs in this
book. See Appendix B for coordinatization without continuity axioms.

Using degree notation, <A is defined as acute if (XA)° <90°,
and obtuse if (€A)° > 90°. Combining Theorems 4.2 and 4.3 gives
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the following corollary, which is essential for proving the Saccheri-
Legendre theorem.

COROLLARY 1. The sum of the degree measures of any #wo angles of a
triangle is less than 180°.

The only immediate application of segment measurement that we
will make is in the proof of the next corollary, the famous “triangle
inequality.”

COROLLARY 2 (Triangle Inequality). IfA,B,and Care three noncollinear
points, then AC < AB + BC.

Proof:

(1) There is a unique point D such that A * B * D and BD = BC
(Axiom C-1 applied to the ray opposite to BA) (See Figure
4.9.)

(2) Then <BCD = 4{BDC (Proposition 3.10: base angles of an
isosceles triangle). L

(3) AD=AB + BD (Theorem 4. 3(9)) and BD = BC (step 1 and
Theorem 4.3(8)); substituting gives AD = AB + BC.

(4) CB is between CA and CD (Proposition 3.7); hence,
<ACD > <BCD (by definition).

(5) XACD > <XADC (steps 2 and 4; Proposition 3.21(c)).

(6) AD > AC (Proposition 4.5).

(7) Hence, AB+ BC > AC (Theorem 4.3(10); steps 3and 6). I

SACCHERI-LEGENDRE THEOREM

The following very important theorem also requires an axiom of conti-
nuity (Archimedes’ axiom) for its proof.
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A
FIGURE 4.10 (<A)° + ({B)° + (4C)° = 180°.

THEOREM 4.4 (Saccheri-Legendre). The sum of the degree measures of
the three angles in any triangle is /less than or equal to 180°.

"This result may strike you as peculiar, since you are accustomed to
the notion of an exact sum of 180°. Nevertheless, this exactness
cannot be proved in neutral geometry! Saccheri tried, but the best he
could conclude was “less than or equal.” Max Dehn showed in 1900
that there is no way to prove this theorem without Archimedes’
axiom.! The idea of the proof is as follows:

Assume, on the contrary, that the angle sum of AABC is greater
than 180°, say 180° + p°, where p is a positive number. It is possible
(by a trick you will find in Exercise 15) to replace AABC with another
triangle that has the same angle sum as AABC but in which one angle
has at most half the number of degrees as (XA) ° We can repeat this
trick to get another triangle that has the same angle sum 180° + p°
but in which one angle has at most one-fourth the number of degrees
as (€A) °. The Archimedean property of real numbers guarantees that
if we repeat this construction enough times, we will eventually obtain
a triangle that has angle sum 180° + »° but in which one angle has
degree measure at most p°. The sum of the degree measures of the
other rwo angles will be greater than or equal to 180°, contradicting
Corollary 1 to Theorem 4.3. This proves the theorem.

You should prove the following consequence of the Saccheri-
Legendre theorem as an exercise.

! See the heuristic argument in Project 1. The full significance of Archimedes’ axiom was
first grasped in the 1880s by M. Pasch and O. Stolz. G. Veronese and T Levi-Civita developed
the first non-Archimedean geometry. Also see Appendix B.

&
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A C
FIGURE 4.11 (JA)° + (<B)° = (XBCD)".

COROLLARY 1. The sum of the degree measures of two angles in a
triangle is less than or equal to the degree measure of their remote
exterior angle (see Figure 4.11).

It is natural to generalize the Saccheri-Legendre theorem to poly-
gons other than triangles. For example, let us prove that the angle sum
of a quadrilateral ABCD is at most 360°. Break CJABCD into two
triangles, AABC and AADC, by the diagonal AC (see Figure 4.12).
By the Saccheri-Legendre theorem,

(¥B)° + (XBAC)° + (XACB)° = 180°
and (D)’ + (XDAC)° + (XACD)"° = 180°.

Theorem 4.3(3) gives us the equations

(¥BAC)° + (XDAC)° = (¥BAD)°
and (¥ACB)° + (XACD)° = (¥BCD)°

Using these equations, we add the two inequalities to obtain the
desired inequality
(€£B)° + (XD)° + (XBAD)° + (XBCD)° = 360°

Unfortunately, there is a gap in this simple argument! To get the
equations used above, we assumed by looking at the diagram (Figure

FIGURE 4.12
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FIGURE 4.13

4.12) that C was interior to <BAD and that A was interior toc <BCD.
But what if the quadrilateral looked like Figure 4.13? In this case the
equations would not hold. To prevent such a case, we must add a
hypothesis; we must assume that the quadrilateral is “‘convex.”

DEFINITION. Quadrilateral JABCD is called convex if it has a pair of
opposite sides, e.g., AB and CD, such that CD is contained in one of
the half-planes bounded by and AB is contained in one of the
half-planes bounded by ¢h:2

The assumption made above is now justified by starting with a
convex quadrilateral. Thus, we have proved the following corollary:

COROLLARY 2. The sum of the degree measures of the angles in any
convex quadrilateral is at most 360°.

Note. The Saccheri-Legendre theorem is false in elliptic geometry
(see Figure 3.24.). In fact, it can be proved in elliptic geometry that
the angle sum of a triangle is always greater than 180° (see Kay,
1969). Since a triangle can have two or three right angles, a Aypotenuse,

2 It can be proved that this condition also holds for the other pair of opposite sides, AD and
BC —see Exercise 23 in this chapter. The use of the word *“‘convex” in this definition does not
agree with its use in Exercise 19, Chapter 3; a convex quadrilateral is obviously not a *‘convex
set” as defined in that exercise. However, we can define the fnservor of a convex quadrilateral
CABCD as follows: each side of JABCD determines a half-plane containing the opposite side;
the interior of CJABCD is then the intersection of the four half-planes so determined. You can
then prove that the interior of a convex quadrilateral is a convex set (which is one of the problems
in Exercise 25).
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defined as a side opposite a right angle, need not be unique, and a /eg,
defined as a side of a right triangle not opposite a right angle, need not
exist (and if opposite an obtuse angle, a leg could be longer than a
hypotenuse).

EQUIVALENCE OF PARALLEL POSTULATES

We shall now prove the equivalence of Euclid’s fifth postulate and
Hilbert’s parallel postulate. Note, however, that we are not proving
either or both of the postulates; we are only proving that we can prove
one /f we first assume the other. We shall first state Euclid V (all the
terms in the statement have now been defined carefully).

EUCLID’S POSTULATE V. If two lines are intersected by a transversal
in such a way that the sum of the degree measures of the two interior
angles on one side of the transversal is less than 180°, then the two
lines meet on that side of the transversal.

THEOREM 4.5. Euclid’s fifth postulate < Hilbert’s parallel postulate.

Proof:

First, assume Hilbert’s postulate. The situation of Euclid V is
shown in Figure 4.14. (£1)° + («2)° < 180° (hypothesis) and
(X1)° + (X3)° = 180° (supplementary angles, Theorem 4.3(5)).
Hence, (€2)° < 180° — (X1)° = (X3)°. There is a unique ray
B'C’ such that %3 and <C’B’B are congruent alternate interior an-
gles (Axiom C-4). By Theorem 4.1, B is parallel to / Since

B
FIGURE 4.14 /
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Q
FIGURE 4.15 t

m¥ B(’_C’, m meets / (Hilbert’s postulate). To conclude, we must
prove that m meets /on the same side of # as C’. Assume, on the
contrary, that they meet at a point A on the opposite side. Then <2
is an exterior angle of AABB’. Yet it is smaller than the remote
interior <3. This contradiction of Theorem 4.2 proves Euclid V
(RAA).

Conversely, assume Euclid V and refer to Figure 4.15, the situa-
tion of Hilbert’s postulate. Let # be the perpendicular to / through
P, and m the perpendicular to 7 through P. We know that » || /
(Corollary 1 to Theorem 4.1). Let 7 be any other line through P.
We must show that » meets /. Let X1 be the acute angle » makes
with # (which angle exists because ## m). Then (L1)° +
(XPQR)° <90° +90°=180°. Thus, the hypothesis of Euclid V is
satisfied. Hence, » meets /, proving Hilbert’s postulate. Hl

Since Hilbert’s parallel postulate and Euclid V are logically equiva-
lent in the context of neutral geometry, Theorem 4.5 allows us to use
them interchangeably. You will prove as exercises that the following
statements are also logically equivalent to the parallel postulate.?

PROPOSITION 4.7. Hilbert’s parallel postulate < if a line intersects
one of two parallel lines, then it also intersects the other.

PROPOSITION 4.8. Hilbert’s parallel postulate < converse to
Theorem 4.1 (alternate interior angles).

PROPOSITION 4.9. Hilbert’s parallel postulate < if #is a transversal to
land m, /||m,and # 1 / then ¢ 1 m.

3 Transitivity of parallelism is also logically equivalent to the parallel postulate.



130 ] H Neutral Geometry

PROPOSITION 4.10. Hilbert’s parallel postulate <= if £||/, m L 4, and
n L / then either m = n or m|| n.

The next proposition is another statement logically equivalent to
Hilbert’s parallel postulate, but at this point we can only prove the
implication in one direction (the other implication is proved in Chap-
ter 5; see Exercise 14).

PROPOSITION 4.11. Hilbert’s parallel postulate = the angle sum of
every triangle is 180°.

ANGLE SUM OF A TRIANGLE

We define the angle sum of triangle AABC as (<A)° + (<B)° +
(XC)°, which is a certain number of degrees =180° (by the Saccheri-
Legendre theorem). We define the defect SABC to be 180° minus the
angle sum. In Euclidean geometry we are accustomed to having no
“defective” triangles, i.e., we are accustomed to having the defect
equal zero (Proposition 4.11).

The main purpose of this section is to show that if oze defective
triangle exists, then 4/ triangles are defective. Or, put in the contra-
positive form, if one triangle has angle sum 180°, then sodo all others.
We are not asserting that one such triangle does exist, nor are we
asserting the contrary; we are only examining the hypothesis that one
might exist.

THEOREM 4.6. Let AABC be any triangle and D a point between A
and B (Figure 4.16). Then JABC = 6ACD + 6BCD (additivity of the
defect).

FIGURE4.16 A D B
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Proof:

Since CD is interior to ¥ACB (Proposition 3.7), (XACB)° =
(XACD)°® + (XBCD)° (by Theorem 4.3(3)). Since XADC and
<BDC are supplementary angles, 180° = (XADC)° + (XBDC)°
(by Theorem 4.3(5)). To obtain the additivity of the defect, all we
have to do is write down the definition of the defect (180° minus
the angle sum) for each of the three triangles under consideration
and substitute the two equations above (Exercise 1). ll

COROLLARY. Under the same hypothesis, the angle sum of AABC is
equal to 180° if and only if the angle sums of both AACD and ABCD

are equal to 180°.

Proof:

If AACD and ABCD both have defect zero, then defect of AABC =
0+ 0 =0 (Theorem 4.6). Conversely, if AABC has defect zero,
then, by Theorem 4.6, SACD + BCD = 0. But the defect of a
triangle can never be negative (Saccheri-Legendre theorem).
Hence, AACD and ABCD each have defect zero (the sum of two
nonnegative numbers equals zero only when each equals zero). ll

Next, recall that by definition a rectangle is a quadrilateral whose
four angles are right angles. Hence, the angle sum of a rectangle is
360°. Of course, we don’t yet know whether rectangles exist in neu-
tral geometry. (Try to construct one without using the parallel postu-
late or any statement logically equivalent to it—see Exercise 19.)

The next theorem is the result we seek. Its proof will be given in
five steps.

THEOREM 4.7. If a triangle exists whose angle sum is 180°, then a
rectangle exists. If a rectangle exists, then every triangle has angle
sum equal to 180°.

Proof:
(1) Construct a right triangle having angle sum 180°.
Let AABC be the given triangle with defect zero (hypothe-
sis). Assume it is not a right triangle; otherwise we are done. At
least two of the angles in this triangle are acute, since the angle
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FIGURE 4.17

sum of two angles in a triangle must be less than 180° (corol-
lary to Theorem 4.3); e.g., assume <A and B are acute. Let
CD be the altitude from vertex C (which exists, by Proposition
3.16). We claim that D lies between A and B. Assume the
contrary, that D * A * B (see Figure 4.17). Then remote inte-
rior angle <CDA is greater than exterior angle <CCAB, contra-
dicting Theorem 4.2. Similarly, if A * B * D, we get a contra-
diction. Thus, A * D * B (Axiom B-3); see Figure 4.18. It now
follows from the corollary to Theorem 4.6 that each of the right

triangles AADC and ABDC has defect zero.

(2) From a right triangle of defect zero construct a rectangle.

Let ACDB be a right triangle of defect zero with <D a right
angle. By Axiom C-4, there is a unique ray CX on the opposite
side of CB from D such that {DBC = {BCX. By Axiom C-1,
there is a unique point E on CX such that CE = BD (Figure
4.19). Then ACDB = ABEC (SAS). Hence, ABEC is also a
right triangle of defect zero with right angle at E. Also, since
(XDBC)° + (BCD)° =90° by our hypothesis, we obtain by
substitution (XECB)° + (XBCD)°® = 90° and (XDBC)° +
(XEBC)° = 90° Moreover, B is an interior point of <ECD,
since the alternate interior angle theorem implies CE || DB and
Il BE and C is interior to ¥XEBD (for the same reason).

FIGURE 4.18 A D B
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FIGURE 4.19 D ! B

Thus, we can apply Theorem 4.3(3) to conclude that
(XECD)° = 90° = (XEBD)°. This proves that JCDBE is a
rectangle.
From one rectangle, construct “arbitrarily large” rectangles.
More precisely, given any right triangle AD’E’C’, construct
a rectangle CJAFBC such that AC > D’C’ and BC > E’'C.
This can be done using Archimedes’ axiom. We simply “lay
off” enough copies of the rectangle we have to achieve the
result (see Figures 4.20 and 4.21; you can make this “laying
off” precise as an exercise).

o
A D’ C’
FIGURE 4.20
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E’

A D’ C’

FIGURE 4.22

(4) Prove that all r4ghz triangles have defect zero.

This is achieved by “embedding’ an arbitrary right triangle
AD’C’E’ in a rectangle, as in step 3, and then showing succes-
sively (by twice applying the corollary to Theorem 4.6) that
AACB, ADCB, and ADCE each have defect zero (see Figure
4.22).

(5) If every right triangle has defect zero, then every triangle has
defect zero.

Asinstep 1,drop an altitude to decompose an arbitrary triangle into
two right triangles (Figure 4.18) and apply the corollary to Theorem
4.6. 1

Historians credit Theorem 4.7 to Saccheri and Legendre, but we
will not name it after them, so as to avoid confusion with Theorem 4.4.

COROLLARY. If there exists a triangle with positive defect, then all
triangles have positive defect.

REVIEW EXERCISE

Which of the following statements are correct?

(1) If two triangles have the same defect, they are congruent.
(2) Euclid’s fourth postulate is a theorem in neutral geometry.



Review Exercise ‘ | \ 135

Theorem 4.5 shows that Euclid’s fifth postulate is a theorem in neutral
geometry.

The Saccheri-Legendre theorem tells us that some triangles exist that
have angle sum less than 180° and some triangles exist that have angle
sum equal to 180°.

The alternative interior angle theorem states that if parallel lines are
cut by a transversal, then alternate interior angles are congruent to
each other.

It is impossible to prove in neutral geometry that quadrilaterals exist.
The Saccheri-Legendre theorem is false in Euclidean geometry be-
cause in Euclidean geometry the angle sum of any triangle is never less
than 180°.

According to our definition of “‘angle,” the degree measure of an angle
cannot equal 180°.

The notion of one ray being “between” two others is undefined.

It is impossible to prove in neutral geometry that parallel lines exist.
The definition of “‘remote interior angle” given on p. 118 isincomplete
because it used the word ““adjacent,” which has never been defined.
An exterior angle of a triangle is any angle that is not in the interior of
the triangle.

The SSS criterion for congruence of triangles is a theorem in neutral
geometry.

The alternate interior angle theorem implies, as a special case, thatifa
transversal is perpendicular to one of two parallel lines, then it is also
perpendicular to the other.

Another way of stating the Saccheri-Legendre theorem is to say that
the defect of a triangle cannot be negative.

The ASA criterion for congruence of triangles is one of the axioms for
neutral geometry.

The proof of Theorem 4.7 depends on Archimedes’ axiom.

If AABC is any triangle and C is any of its vertices, and if a perpendicu-
lar is dropped from C to A_ﬁ, then that perpendicular will intersect

in a point between A and B.

Itisa theorem in neutral geometry that given any point P and any line /,
there is at most one line through P perpendicular to /.

Itis a theorem in neutral geometry that vertical angles are congruent to
each other.

The proof of Theorem 4.2 (on exterior angles) uses Theorem 4.1 (on
alternate interior angles).

The gap in Euclid’s attempt to prove Theorem 4.2 can be filled using
our axioms of betweenness.
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EXERCISES

The following are exercises in neutral geometry, unless otherwise
stated. This means that in your proofs you are allowed to use only
those results that have been given previously (including results from
previous exercises). You are not allowed to use the parallel postulate
or other results from Euclidean geometry that depend on it.

1.

owooNo

(a) Finish the last step in the proof of Theorem 4.6. (b) Prove that
congruent triangles have the same defect. (¢) Prove the corollary to
Theorem 4.7. (d) Prove Corollary 1 to Theorem 4.3.

. The Pythagorean theorem cannot be proved in neutral geometry (as you

will show in Exercise 11(d), Chapter 6). Explain why the Euclidean
proof suggested by Figure 1.15 of Chapter 1 is not valid in neutral
geometry.

State the converse to Euclid’s fifth postulate. Prove this converse as a
theorem in neutral geometry.

Prove Proposition 4.7. Deduce as a corollary that transitivity of parallel-
ism is equivalent to Hilbert’s parallel postulate.

. Prove Proposition 4.8. (Hint: Assume the converse to Theorem 4.1. Let

m be the parallel to /through P constructed in the proof of Corollary 2 to
Theorem 4.1 and let # be any parallel to /through P. Use the congruence
of alternate interior angles and the uniqueness of perpendiculars to
prove m = n. Assuming next the parallel postulate, use Axiom C-4 and
an RAA argument to establish the converse to Theorem 4.1.)
Prove Proposition 4.9.
Prove Proposition 4.10.
Prove Proposition 4.11. (Hint: See Figure 4.23.)
The following purports to be a proof in neutral geometry of the SAA
criterion for congruence. Find the flaw (see Figure 4.6).

Given AC=DF, {A=4D, 4B =4E. Then 4C = F, since
(LC)°=180° — (XA)° — (XB)° = 180° — ({D)° — (LE)° = (LF)"

FIGURE4.23 A C
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FIGURE 4.24

10.

11.

12.

(Theorem 4.3(2)). Hence, AABC = ADEF by ASA (Proposition
3.17).

Here is a correct proof of the SAA criterion. Justify each step. (1)
Assume side AB is not congruent to side DE. (2) Then AB < DE or
DE < AB. (3) If DE < AB, then there is a point G between A and B
such that AG = DE (see Figure 4.24). (4) Then ACAG = AFDE. (5)
Hence, LAGC = 4E. (6) It follows that LAGC = 4B. (7) This contra-
dicts a certain theorem (which ?). (8) Therefore, DE is not les than AB.
(9) By a similar argument involving a point H between D and E, AB is
not less than DE. (10) Hence, AB = DE. (11) Therefore, AABC =
ADEF. .
Prove Proposition 4.2. (Hint: See Figure 4.7. On the ray opposite to AC,
lay off segment AD congruent to A’C’. First prove ADAB = AC’A’B’,
and then use isosceles triangles and the SAA criterion to conclude.)
Here is a proof that segment AB has a midpoint. Justify each step (see
Figure 4.25).

(1) Let C be any point not on AB. (2) There is a unique ray BX on
the opposite side of AB from C such that XCAB = <ABX. (3) Thereisa

FIGURE 4.25 X
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FIGURE 4.26 D

13.

14.
15.

unique point D on BX such that AC = BD. (4) D is on the opposite side

of AB from C. (5) Let E be the point at which segment CD intersects

AB. (6) Assume E is not bctweené)and B. (7) Theneither E=A,or E=

B,orE *A *B or A *B *E. (8) ACis parallel to BD. (9) Hence,E # A

and E # B. (10) Assume E * A * B (Figure 4.26). (11) Since CA

intersects side EB of AEBD at a point between E and B, it must also
intersect either ED or BD. (12) Yet this is impossible. (13) Hence, A is

not between E and B. (14) Similarly, B is not between A and E. (15)

Thus, A * E * B (see Figure 4.25). (16) Then XAEC = 4BED. (17)

AEAC = AEBD. (18) Therefore, E is a midpoint of AB.

(a) Prove that segment AB has only one midpoint. (Hint: Assume the
contrary and use Propositions 3.3 and 3.13 to derive a contradic-
tion, or else put another possible midpoint E’ into Figure 4.25 and
derive a contradiction from congruent triangles.)

{b) Prove Proposition 4.4 on bisectors. (Hint: Use midpoints.)

Prove Corollary 1 to the Saccheri-Legendre theorem.

Prove the following result, needed to demonstrate the Saccheri-

Legendre theorem (see Figure 4.27). Let D be the midpoint of BC

and E the unique point on AD such that A * D * E and AD = DE.

Then AAEC has the same angle sum as AABC, and either (XEAC)°

or (XAEC)° is =} (XBAC)°. (Hint: First show that ABDA = ACDE,

then that (XEAC)°® + (XAEC)° = (¥BAC)".)

FIGURE 4.27 A C
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B, B, B, B, B,
4 lg Y
FIGURE 4.28 A, A, A, A, A

16.

17.

18.

Here is another proof of Theorem 4.4 due to Legendre. Justify the
unjustified steps: (1) Let A;A,B, be the given triangle, lay off # cop-
ies of segment A,A,, and construct a row of triangles AA., B, /=
1, . . ., n, congruent to A;A,B, as shown in Figure 4.28. (2) The
BA4Bisi, /=1, ..., n are also congruent triangles, the last by
construction of B, ;. (3) With angles labeled as in Figure 4.28, a + y +
0 =180° and f + y + d equals the angle sum of A,A,B,. (4) Assume on
the contrary that f > «. (5) Then A;A, > B,B,, by Proposition 4.6. (6)
Also A;B, + 7 - BB, + B, (A,+1 > 7 - A|A,, by repeated application
of the triangle inequality. (7) A;B; =B, (A,+. (8) 2A:B; > n(A A, —
B,B,). (9) Since # was arbitrary, this contradicts Archimedes’ axiom.
(10) Hence the triangle has angle sum = 180°.
Prove the following theorems:
(a) Letybe a circle with center O, and let A and B be two points on .
The segment AB is called a chord of y; let M be its midpoint. If
O # M, then OM is perpendicular to AB. (Hint: Corresponding
angles of congruent triangles are congruent.)
{(b) Let AB be a chord of the circle y having center O. Prove that the
perpendicular bisector of AB passes through the center O of y.
Prove the theorem of Thales /n Euclidean geometry that an angle in-
scribed in a semicircle is a right angle. Prove in neutral geometry that this
statement implies the existence of a right triangle with zero defect (see
Figure 4.29).

FIGURE 4.29
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FIGURE 4.30 A D ' B

19.

20.

21.

22.

Find the flaw in the following argument purporting to construct a rec-
tangle. Let A and B be any two points. There is a line / through A
perpendicular to AB (Proposition 3.16) and, similarly, there is a line m
through B perpendicular to AB. Take any point C on m other than B.
There is a line through C perpendicular to /—]let it intersect /at D.
Then OABCD is a rectangle.

The sphere, with “lines” interpreted as great circles, is not a model of
neutral geometry. Here is a proposed construction of a rectangle on a
sphere. Let @, § be two circles of longitude and let them intersect the
equator at A and D. Let y be a circle of latitude in the northern hemi-
sphere, intersecting & and f at two other points, B and C. Since circles of
latitude are perpendicular to circles of longitude, the quadrilateral with
vertices ABCD and sides the arcs of ¢, 7, and fand the equator traversed
in going from A north to B east to C south to D west to A should be a
rectangle. Explain why this construction doesn’t work.

Prove Proposition 4.5. (Hint: If AB > BC, then let D be the point
between A and B such that BD = BC (Figure 4.30). Use isosceles
triangle ACBD and exterior angle <BDC to show that <ACB > <A.
Use this result and trichotomy of ordering to prove the converse.)
Prove Proposition 4.6. (Hint: Given <B < <B’. Use the hypothesis of
Proposition 4.6 to reduce to the case A= A’, B = B’, and C interior to
JABC’, so that you must show AC < AC’ (see Figure 4.31). This is
easy in case C =D, where point D is obtained from the crossbar
theorem. In case C # D, Proposition 4.5 reduces the problem to show-
ing that <AC’'C < <LACC'. In case B * D * C (as in Figure 4.31), you

FIGURE 4.31 BC = BC'.
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FIGURE 4.32 B

23.

24.

25.

26.

FIGURE 4.33

can prove this inequality using the congruence <BCC’ = {BC’C. In
case B * C * D (Figure 4.32), apply the congruence <BCC’ = {BC’C
and Theorem 4.2 to exterior angle <BCC’ of ADCC’ and exterior angle
<DCC’ of ABCC’. (The converse implication in Proposition 4.6 follows
from the direct implication, just shown, if you apply trichotomy.)

For the purpose of this exercise, call segments AB and CD semzparal-
/el if segment AB does not intersect line and segment CD does
not intersect line AB. Obviously, if AB 1l (‘J_IS, then AB and CD are
semiparallel, but the converse need not hold (see Figure 4.33). We have
defined a quadrilateral to be convex if one pair of opposite sides is
semiparallel. Prove that the other pair of opposite sides is also semipar-
allel. (Hint: Suppose AB is semiparallel to CD and assume, on the
contrary, that AD meets BC in a point E. Use the definition of quadrilat-
eral (Exercise 3, Chapter 1) to show either that E *B * Cor B * C * E;
in either case, use Pasch’s theorem to derive a contradiction.)

Prove that the diagonals of a convex quadrilateral intersect. (Hint:
Apply the crossbar theorem.)

Prove that the intersection of convex sets (defined in Exercise 19,
Chapter 3) is again a convex set. Use this result to prove that the interior
of a convex quadrilateral is a convex set and that the point at which the
diagonals intersect lies in the interior.

The convex hull of a set of points § is the intersection of all the convex
sets containing S; i.e., it is the smallest convex set containing S. Prove
that the convex hull of three noncollinear points A, B, and C consists of
the sides and interior of AABC.

Oy
oe
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FIGURE4.34 A B C

27

28.

29.

30.

31.

32.

33

Given A * B * C and DC 1 AC. Prove that AD > BD > CD (Figure

4.34; use Proposition 4.5).

Given any triangle ADAC and any point B between A and C. Prove that

(3_i_t)hcr DB < DA or DB < DC. {Hint: Drop a perpendicular from D to

AC and use the previous exercise.)

Prove that the interior of a circle is a convex set. (Hint: Use the previous

exercise.)

Prove that if D is an exterior point of AABC, then there is a line ISE

through D that is contained in the exterior of AABC (see Figure 4.35).

Suppose that line / meets circle y in two points C and D. Prove that:

(a) Point P on /lies inside p if and only if C * P * D.

(b) If points A and B are inside y and on opposite sides of /, then the
point E at which AB meets /is between C and D.

In Figure 4.36, the pairs of angles (XA’B’B”, <ABB”) and (XC'B’B”,

<CBB") are called pairs of corresponding angles cut off on / and / by

transversal £. Prove that corresponding angles are congruent if and only

if alternate interior angles are congruent.

Prove that there exists a triangle which is not isosceles.

FIGURE 4.35
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FIGURE 4.36

MAJOR EXERCISES

1. THEOREM. If line / passes through a point A inside circle y then /
intersects ¥ in two points.

Here is the idea of the proof; fill in the details using the circular continuity
principle (instead of the stronger axiom of Dedekind) and Exercise 27
(see Figure 4.37). Let O be the center of . Point B is taken to be the foot
of the perpendicular from O to /, point C is taken such that B is the
midpoint of OC, and ¥’ is the circle centered at C having the same radius
as . Prove that y’ intersects OCina point E’ inside y and a point E outside
7, so that P’ intersects ¥ in two points P, P, and that these points lie on the

FIGURE 4.37
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original line /. (We located the intersections of y with /by intersecting y
with its reflection y’ across /—see p. 111.)
4. Apply the previous exercise to prove that the circular continuity principle
implies the elementary continuity principle. (Hint: Use Exercise 27.)
3. Letline/intersectcircle yatpoint A If/ L 67\, where Ois the center of §,
we call / tangent o y at A; otherwise /is called secant to y.

(a)

(b)
(c)

Suppose /is secant to y. Prove that the foot F of the perpendicular ¢
from O to / lies inside ¥ and that the reflection A’ of A across ¢ is a
second point at which / meets . (See Figure 4.38.)

Suppose now /is tangent to y. Prove that every point B #+ Alying on/
is outside p, and hence A is the unique point at which / meets 7.
Let point P lie outside . Proposition 7.3, Chapter 7, applies the
circular continuity principle to construct a line through P tangent to
7. Explain why that construction is valid only in Euclidean geometry.
Prove that the tangent line exists in neutral geometry. (Hint: Let
Q # P be any point on the perpendicular to through P. Prove
that P_é does not intersect ¥ whereas PO does. Apply Dedekind’s
axiom to ray OQ. See Figure 4.39.) Once one tangent /through P is
obtained, prove that the reflection of /across is a second one.

4. Converse to the triangle inequality. If a, b, and care lengths of segments such
that the sum of any two is greater than the third, then there exists a
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FIGURE 4.39
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FIGURE 4.40

triangle whose sides have those lengths (Euclid’s Proposition 22). Use
the circular continuity principle to fill the gap in Euclid’s proof and justify
the steps: Assume 4 = 4 = ¢. Take any point D and any ray emanating
from D. Starting from D, lay off successively on that ray points F, G, H so
thata = DF, 4 = FG, ¢ = GH. Then the circle with center F and radius 2
meets the circle with center G and radius ¢ at a point K, and AFGK is the
triangle called for in the proposition. (See Figure 4.40.)

5. Prove that the converse to the triangle inequality implies the circular
continuity principle (assuming the incidence, betweenness, and con-
gruence axioms).

6. Prove: If #and c are lengths of segments, then there exists a right triangle
with hypotenuse ¢ and leg 4 if and only if 4 < ¢. (Hint for the *“if” part:
Take any point C and any perpendicular lines through C. There exists a
point A on one line such that AC = 4. If a is the circle centered at A of
radius ¢, point C lies inside ¢, and hence @ intersects the other line in
some point B. Then AABC is the requisite right triangle.)

7. Show how the previous exercise furnishes a solution to Major Exercise
3(c) that avoids the use of Dedekind’s axiom. (Hint: Let ¢ = OP and
&= radius of y and lay off <A at O with OP as one side.)

8. Here is an Archimedean proof in neutral geometry of the “important
corollary” to Aristotle’s axiom, Chapter 3. We must show that given any
positive real number 4 there is a point Ron line /such that (XQRP)* < #°
(intuitively, by taking R sufficiently far out we can get as small an angle as
we please). The idea is to construct a sequence of angles XQR,P,
dLOR,P, . . . eachone of which is at most half the size of its predecessor.
Justify the following steps (Figure 4.41):
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There exists a point R; on / such that PQ = QR; (why?), so that
APQR,; is isosceles. It follows that (XQR;P)° = 45° (why?). Next, there
exists a point R, such that Q * R, * R, and PR, = R R;,sothat APR,R, is
isosceles. It follows that (XQR,P)° = 224° (to justify this step, use Cor-
ollary 1 to the Saccheri-Legendre theorem). Continuing in this way, we
get angles successively less than or equal to 114°, 5°, etc. so that by the
Archimedean property of real numbers, we eventually get an angle
4QR,P with <(QR,P)° < z°.

PROJECTS

1. Here is a heuristic argument showing that Archimedes’ axiom is neces-
sary to prove the Saccheri-Legendre theorem. It is known that on a
sphere, the angle sum of every triangle is greater than 180° (see Kay,
1969); that doesn’t contradict the Saccheri-Legendre theorem, because a
sphere is not a model of neutral geometry. Fix a point O on a sphere.
Consider the set ¥ of all points on the sphere whose distance from O is
infinttestmal. Interpret “line” to be the arc in NV of any great circle. Give
“between” its natural interpretation on an arc, and interpret “con-
gruence’ as in spherical geometry. Then N becomes a model of our I, B,
and C axioms in which Archimedes’ axiom and the Saccheri-Legendre
theorem do not hold. Similarly, if we fix a point O in a Euclidean plane
and take V to be its infinitesimal neighborhood, the angle sum of every
triangle is 180°, yet Euclid V does not hold in ¥ (because the point at
which the lines are supposed to meet is too far away); thus the converse to
Proposition 4.11 cannot be proved from our I, B, and C axioms alone
(Aristotle’s axiom is needed; see Chapter 5).

For arigorous elaboration of this argument, see Hessenberg and Diller
(1967) (if you can read German; if you can’t, then report on Chapter 32 of
Moise, 1990, which constructs a Euclidean ordered field that is not
Archimedean).

2. Report on the proof of Theorem 4.3 given in Borsuk and Szmiclew,
Chapter 3, Sections 9 and 10. The key to the proof is that every Dedekind
cut on the ordered set of dyadic rational numbers (see Exercise 18,
Chapter 3) determines a unique real number.

3. Our proof of Theorem 4.7 used Archimedes’ axiom again. Report on the
proof in Martin (1982), Chapter 22, that avoids using this axiom.
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4. Given asphere of radius 7, let € be any positive real number < $ zrand let
N, be the set of all points on the sphere whose spherical distance from a
fixed point O on the sphere is less than €. Interpret “‘line,” *“‘between,”
and “‘congruent’’ as they were interpreted for NV in Project 1. Then N, is
not a model of our I, B, and C axioms. Tell which axioms hold and which
ones fail. For those that fail, explain heuristically why they hold in N.



CHAPTER

HISTORY OF THE
PARALLEL
POSTULATE

Like the goblin “Puck,” [the feat of proving Euclid V]
has led me “up and down, up and down,” through
many a wakeful night: but always, just as I thought I
had it, some unforeseen fallacy was sure to trip me
up, and the tricksy sprite would “leap out, laughing
ho, ho, ho!”

C. L. DODGSON (LEWIS CARROLL)

Let us summarize what we have done so far. We have discovered
certain gaps in Euclid’s definitions and postulates for plane geometry.
We filled in these gaps and firmed up the foundations for this geome-
try by presenting (a modified version of) Hilbert’s definitions and
axioms. We then built a structure of theorems on these foundations.
However, the structure thus far erected does not rest on the parallel
postulate, and we called that structure ‘“‘neutral geometry.” One rea-
son we postponed building on the parallel postulate is that we have
less confidence in it than in the other axioms.

You may feel that to deny the Euclidean parallel postulate would go
against common sense. Albert Einstein once said that “‘common sense
is, as a matter of fact, nothing more than layers of preconceived notions
stored in our memories and emotions for the most part before age
eighteen.”

That Euclid himself did not quite trust this postulate is shown by
the fact that he postponed using it in a proof for as long as possible —
until his 29th proposition. In this chapter, we will examine a few
illuminating attempts to prove Euclid’s parallel postulate (many other
attempts are presented in Bonola, 1955; Gray, 1989; and Rosenfeld,
1988). It should be emphasized that most of these attempts were
made by outstanding mathematicians, not incompetents. And even
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though each attempt was flawed, the effort was usually not wasted; for,
assuming that all but one step can be justified, when we detect the
flawed step, we find another statement which to our surprise is equiv-
alent! to the parallel postulate. You have the opportunity to do this
enjoyable detective work in Exercises 8 through 13.

PROCLUS

Proclus (a.D. 410-485), whose commentary is one of the main
sources of information on Greek geometry, criticized the parallel
postulate as follows: ‘““This ought even to be struck out of the Postu-
lates altogether; for it is a theorem involving many difficulties, which
Ptolemy, in a certain book, set himself to solve. . . . The statement
that since [the two lines] converge more and more as they are pro-
duced, they will sometime meet is plausible but not necessary.” Pro-
clus offers the example of a hyperbola that approaches its asymptotes
as closely as you like without ever meeting them (see Figure 5.1).
This example shows that the opposite of Euclid’s conclusions can at
least be imagined.? Proclus says: “It is then clear from this that we
must seek a proof of the present theorem, and that it is alien to the
special character of postulates.”

For over two thousand years some of the best mathematicians tried
to prove Euclid’s fifth postulate. What does it mean, according to our
terminology, to have a proof? It should not be necessary to assume the
parallel postulate as an axiom; we should be able to prove it from the
other axioms. If we were able to prove Euclid V in this way, it would
become a theorem in neutral geometry and neutral geometry would
encompass all of Euclidean geometry.

The first known attempted proof was by Ptolemy. Without going
through the details of his argument (see Heath, 1956, pp. 204 -206),
we might say that he assumed Hilbert’s parallel postulate without

! Actually, the flawed argument only proves that the unjustified statement implies the
parallel postulate; the converse requires further argument. I do not present any attempts that are
uninformative.

2 Students always object to Figure 5.1 on the grounds that the hyperbola is not “straight.”
We agreed not to use this word because we don’t have a precise definition. A precise definition
can be given in differential geometry. See Appendix A.
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FIGURE 5.1

realizing it. We have seen in Chapter 4 that Hilbert’s parallel postu-
late is logically equivalent to Euclid V (Theorem 4.5), so that Prolemy
was assuming what he was trying to prove; i.e., his reasoning was
essentially circular.

Proclus attempted to prove the parallel postulate as follows (see
Figure 5.2): Given two parallel lines /and m. Suppose line # cuts m at
P. We wish to show # intersects /also (see Proposition 4.7). Let Q be
the foot of the perpendicular from P to / (Corollary 1 to Theorem 4.1).
If # coincides with PQ, then it intersects /at Q. Otherwise, one ray P
of 7 lies between PQ and a ray PX of m. Take X to be the foot of the
perpendicular from Y to m.

Now, as the point Y recedes endlessly from P on #, the segment XY
increases indefinitely in size, and so eventually becomes greater than
segment PQ. Therefore, Y must cross over to the other side of /, so that
7 must meet /.

The preceding paragraph is the heart of Proclus’ argument; it is a
rather sophisticated argument, involving motion and continuity.
Moreover, every step in the argument can be shown to be correct—
except that the conclusion doesn’t follow! (In Exercise 6 you are asked
to prove Aristotle’s principle that XY increases indefinitely, where
“indefinitely” means “without bound.” For example, the sequence of
numbers £, 3, Z, 1, 3, . . . increases but not “indefinitely” in the
sense of “without bound,” because 1 is a bound for these numbers.)

How could one justify the last step? Let us drop a perpendicular YZ
from Y to /. You might then say that (1) X, Y, and Z are collinear, and
(2) XZ = PQ. Thus, when XY becomes greater than PQ, XY must
also be greater than XZ, so that Y must be on the other side of /. Here
the conclusion does indeed follow from statements 1 and 2. The
trouble is that there is no justification for these statements!
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If this boggles your mind, it may be because Figure 5.2 makes
statements 1 and 2 seem correct. You recall, however, that we are not
allowed to use a diagram to justify a step in a proof. Each step must be
proved from stated axioms or previously proven theorems. (We will
show later that it is not possible in neutral geometry to prove state-
ments 1 and 2. They can be proved only in Euclidean geometry and
only by using the parallel postulate; this makes Proclus’ argument
circular.)

This analysis of Proclus’ faulty argument illustrates how careful you
must be in the way you think about parallel lines from now on. You
probably visualize parallel lines as railroad tracks, everywhere equi-
distant from each other, and the ties of the tracks perpendicular to
both parallels. This imagery is valid only in Euclidean geometry.
Without the parallel postulate, the only thing we can say about two
lines that are “parallel’ is that, by definition of “‘parallel,” they have
no point in common. You can’t assume they are equidistant; you can’t
even assume they have one common perpendicular segment. As
Humpty Dumpty remarked: “When I use a word it means what [ wish
it to mean, neither more nor less.”

WALLIS

The next important attempt to prove the parallel postulate was made
by the Persian astronomer and mathematician Nasir Eddin al-Tusi
(1201-1274). But since his attempted proof had several unjustified
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John Wallis

assumptions, let us move ahead to John Wallis (1616 -1703).3 Wallis
gave up trying to prove the parallel postulate in neutral geometry.
Instead, he proposed a new axiom, which he feit was more plausible
than the parallel postulate, and then proved the parallel postulate
from his new axiom and the other axioms of neutral geometry.

WALLIS’ POSTULATE. Given any triangle A ABC and given any seg-
ment DE. There exists a triangle ADEF (having DE as one of its
sides) that is similar to AABC (denoted ADEF ~ AABC). (See Fig-
ure 5.3.)

3 Wallis was the leading English mathematician before Isaac Newton. In his treatise Arvz-
metica infinttorum (which Newton studied), Wallis introduced the symbol ® for “infinity,”
developed formulas for certain integrals, and presented his famous infinite product formula

2.2.4.4.6.6.8...
1.3.3.5.5.7.7...

LI
2
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Similar triangles are triangles whose vertices can be put in one-to-
one correspondence so that corresponding angles are congruent. In
Euclidean geometry it is proved that corresponding sides of similar
triangles are proportional (see Exercise 18); for example, each side of
ADEF might be twice as long as the corresponding side of AABC.
Thus, the intuitive meaning of Wallis’ postulate is that you can either
magnify or shrink a triangle as much as you like, without distortion.

Using Wallis’ postulate, the parallel postulate can be proved as
follows (see Figure 5.4):

Proof-

Given a point P not on line /, construct one parallel 7 to / through
P as before — by dropping a perpendicular 136 to / and erecting
m perpendicular to 156 Let 7 be any other line through P. We must
show that » meets /. As before, we consider a ray of » emanating
from P that is between a ray of 7~ and P_é; for any point R on this ray,
we drop RS perpendicular to 136 (see Proposition 3.16 and Corol-
lary 1 to Theorem 4.1 for the existence and uniqueness of all our

perpendiculars).
We now apply Wallis’ postulate to APSR and segment PQ. It
tells us that there is a point T such that APSR is similar to APQT.

FIGURE 5.4 Q
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FIGURE5.5 Q

Assume T lies on the same side of Ist) as R (Figure 5.5) —if not,
reflect across 136

By definition of similar triangles, XTPQ = <RPS. But since
these angles have the ra P_Q = PS as a common side and since T
lies on the same side of PQ) as R, the only way they can be congruent
is to be equal (Axiom C-4). Thus, PR = %f, so that T lies on 7.
Similarly, {PQT = PSR, a right angle; hence, T lies on / Thus,
n and /meet at T; m is therefore the only line through P parallel
to/ B

There is no longer reason to consider Wallis’” postulate any more
plausible than Euclid V, because it turns out to be logically equivalent
to Euclid V (see Exercise 7(a)).

SACCHERI

We next consider the remarkable work of the logician and Jesuit priest
Girolamo Saccheri (1667 -1733). Just before he died he published a
little book entitled Euclides ab omni naevo vindicatus (Euclid Freed of
Every Flaw), which was not really noticed until a century and a half
later, when Eugenio Beltrami rediscovered it.

Saccheri’s idea was to use a reductio ad absurdum argument. He
assumed the negation of the parallel postulate and tried to deduce a
contradiction. Specifically, he studied certain quadrilaterals (Figure
5.6) whose base angles are right angles and whose base-adjacent sides
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FIGURE 5.8 Saccheri quadrilateral.

are congruent to each other. These quadrilaterals have subsequently
become known as Sacchers quadrilaterals (though they were studied
many centuries earlier by the poet Omar Khayydm and by Nasir Eddin
al-Tusi). Itis easy to prove in neutral geometry that the summit angles
are congruent (Exercise 1), i.e., <C = 4D.

There are three possible cases:

Case 1: The summit angles are right angles.
Case 2: The summit angles are obtuse.
Case 3: The summit angles are acute.

Wanting to prove the first case, which is the case in Euclidean geome-
try, Saccheri tried to show that the other two cases led to contradic-
tions. He succeeded in showing that case 2 leads to a contradiction: if
the summit angles were obtuse, the angle sum of the quadrilateral
would be more than 360°, contradicting Corollary 2 to the Saccheri-
Legendre theorem (to verify the hypothesis of Corollary 2, see Exer-
cise 17).

However hard he tried, he could not squeeze a contradiction out of
case 3, “‘the inimical acute angle hypothesis,” as he called it. He was
able to deduce many strange results,* butnot a contradiction. Finally,
he exclaimed in frustration: ““The hypothesis of the acute angle is
absolutely false, because [itis] repugnant to the nature of the straight
line!” It is as if a man had discovered a rare diamond, but, unable to
believe what he saw, announced it was glass. Although he did not
recognize it, Saccheri had discovered non-Euclidean geometry.

4 See the translation of Saccheri’s treatise by G. B. Halsted (Saccheri, 1970).
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CLAIRAUT

Alexis Claude Clairaut (1713-1765) was a leading French geometer.
Like Wallis, he did not try to prove the parallel postulate in neutral
geometry but replaced it in his 1741 text E/éments de géometrie with
another axiom.

CLAIRAUT’S AXIOM. Rectangles exist.

One can argue that Euclid V is not obvious because one might have
to travel very far indeed to verify that the “‘physical lines” predicted to
meet by that postulate actually do meet. According to Sacchert, it
suffices to show the existence of one rectangle, which could be quite
“small.” Clairaut made that his axiom, arguing that “we observe
rectangles all around us in houses, gardens, rooms, walls.” So why
didn’t that settle the matter? Perhaps because the game of trying to
prove Euclid V had been going on for so many centuries that it became
a challenging obsession for mathematicians. Or did mathematicians
finally recognize that geometry was not about ‘‘physical space”? After
all, if you believe that a rectangle can be drawn on the ground, then
you cannot also believe that the earth is spherical, because rectangles
do not exist on a sphere. If you think you have drawn a ‘““physical
rectangle,” you could be mistaken because exact measurements are
physically impossible. Or did it finally dawn on mathematicians that
any postulate proposed to replace Euclid V—no matter how intui-
tively appealing — was logically equivalent to Euclid V and therefore
nothing was gained /ogically by the replacement?

Let us prove that Clairaut’s axiom is logically equivalent in neutral
geometry to the parallel postulate.

Proof:

If we assume the latter, then the existence of rectangles follows
easily from Proposition 4.11 and Theorem 4.7. Conversely, assume
Clairaut’s axiom. Then by Theorem 4.7, all triangles have angle
sum 180°, and by introducing a diagonal, all convex quadrilaterals
have angle sum 360°. Return to Proclus’ argument as illustrated in
Figure 5.2. Let S be the foot of the perpendicular from Y to pb Sis
on the same side of 7~ as Y and Q because is parallel to m
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(Corollary 1 to Theorem 4.1). Moreover, OPXYS, which has three
right angles, is now known to be a rectangle. You can easily prove
(Exercise 4) that opposite sides of a rectangle are congruent, so
PS = XY. By Aristotle’s axiom (Chapter 3), Y can be chosen on the
given ray of 7 so that XY > PQ. Then PS > PQ and P * Q * S. As
above, Y is on the same side of /as S, hence on the opposite side of /
from P. Therefore / meets # at some point between Pand Y. l

LEGENDRE

Legendre did not know of Saccheri’s work and- rediscovered Sac-
cheri’s theorems in neutral geometry that are our Theorems 4.4 and
4.7. Legendre certainly knew of Clairaut’s text and rejected Clair-
aut’s axiom. We already discussed, in Chapter 1, one of Legendre’s
attempts to prove the parallel postulate, whose flaw we ask you to
detect in Exercise 8. L.egendre published a collection of his many
attempts as late as 1833, the year he died. Here is his attempt to prove
that the angle sum of every triangle is 180°. (Using our modification of
Proclus’ argument above, we could then prove Hilbert’s parallel pos-
tulate.)

Proof (see Figure 5.7):

Suppose, on the contrary, there exists a triangle AABC having
defect 4 # 0. By the Saccheri-Legendre Theorem 4.4, 4> 0. One
of the angles of the triangle —say <CA —must then be acute (in
fact, less than 60°). On the opposite side of ﬁ% from A, let D be the
unique point such that XDBC = XACB and BD = AC (Axioms

3
g
B2
B1 D,
D
B D )
A C C c, (o8

FIGURE 5.7
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C-1 and C-4). Then AACB = ADBC (SAS). Also BD || AC and

Il DC (by the alternate interior angle theorem, Theorem 4.1),
so that D lies in the interior of the acute <A. Hence there is a line /
through D such that /intersects side ABina point B, # A and side
ACina point C; # A. Because of the parallel lines, we know that
B, #Band C, #C.

Suppose B, was on segment AB. Then A and B, would be on
the same side of BD. Since BD I A_(], A and C, are on the same side
of BD. Thus B, and C, are on the same side of BD (Axiom B-4). But
since D lies in the interior of <A, B, * D * C; (Proposition 3.7).
This contradiction shows that A * B * B,. Similarly, we have
A * C * C,. Since AACB = ADBC, the defect of ADBC is also 4.
Therefore, by the additivity of the defect applied to the four trian-
gles into which AAB,C, has been decomposed, the defect of
AAB,C; is greater than or equal to 24.

Repeating this construction for AAB,C,, we obtain AAB,C,
with defect greater than or equal to 44. Iterating the construction 7
times, we obtain a triangle with defect greater than or equal to 274,
which can be made as large as we like by taking 7 sufficiently large.
But the defect of a triangle cannot be more than 180°! This contra-
diction shows that every triangle AABC has defect 0. H

Can you see the flaw? It is easy, because we have justified every
step but one, the sentence beginning with “Hence.” That is the
assumption you were warned in Chapter 3 not to make. Legendre
made the same error as was made many centuries earlier by Simplicius
(Byzantine, sixth century), al-Jawhari (Persian, ninth century), Nasir
Eddin al-Tusi, and others. He has failed to prove in neutral geometry
that the defect of every triangle is zero. Nevertheless, Legendre has
succeeded in proving the following theorem in neutral geometry.

THEOREM 5.1. Hypothesis: For any acute <A and any point D in the
interior of XA, there exists a line through D and not through A which
intersects both sides of ¥A. Conclusion: The angle sum of every
triangle is 180°.

You will easily see from the Klein model in Chapter 7 that the
hypothesis of Theorem 5.1 fails in non-Euclidean geometry (Figure
7.5). Let us show that zhe Aypothesis can be proved in Euclidean geometry
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(hence this hypothesis is another statement equivalent to Euclid V).
Drop a perpendicular from interior point D to one of the sides of XA,
and let B be the foot of that perpendicular. Since <A is acute,
(XA)° + (XDBA)° = (A)° + 90° < 180°. So BD meets the other

side of XA, by Euclid V. I

LAMBERT AND TAURINUS

Regarding Euclid V, Johann Heinrich Lambert (1728-1777) wrote:

Undoubtedly, this basic assertion is far less clear and obvious than
the others. Not only does it naturally give the impression that it should
be proved, but to some extent it makes the reader feel that he is capable

Johann Heinrich Lambert
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of giving a proof, or that he should give it. However, to the extent to
which I understand this matter, that is just a frsz impression. He who
reads Euclid further is bound to be amazed not only at the rigor of his
proofs but also at the delightful simplicity of his exposition. This being
s0, he will marvel all the more at the position of the fifth postulate when
he finds out that Euclid proved propositions that could far more easily
be left unproved.

Lambert studied quadrilaterals having at least three right angles,
which are now named after him (though they were studied seven
centuries earlier by the Egyptian scientist ibn-al-Haytham). You
showed in Exercise 19, Chapter 4, that Lambert quadrilaterals exist.
A Lambert quadrilateral can be “doubled” (by reflecting it across an
included side of two right angles) to obtain a Saccheri quadrilateral.
Like Saccheri, Lambert disproved the obtuse angle hypothesis and
studied the implications of the *“‘inimical” acute angle hypothesis. He
observed that itimplied that similar triangles must then be congruent,
which in turn implied the existence of an absolute unit of length (see
Theorem 6.2, Chapter 6). He called this consequence “‘exquisite”
but did not want it to be true, worrying that the absence of similar,
proportional figures ‘“would result in countless inconveniences,” es-
pecially for astronomers (he did not realize that an elegant non-Eucli-
dean trigonometry could be developed).

He also noticed that the defect of a triangle was proportional to its
area (see Chapter 10). He recalled that on a sphere in Euclidean
space, the angle sum of a triangle formed by arcs of great circles was
greater than 180°, and the excess over 180° of the angle sum of the
triangle was proportional to the area of the triangle, the constant of
proportionality being the square 7? of the radius of the sphere (see
Rosenfeld, 1988, Chapter 1). If ris replaced by #r ( = V—1), squar-
ing introduces a minus sign that converts the excess into the defect in
that proportionality. Lambert therefore speculated that the acute
angle hypothesis described geometry on a “‘sphere of imaginary
radius.”’

5 In fact, this idea can be explained in terms of a natural embedding of the non-Euclidean
plane in relativistic three-space (see Chapter 7). Lambert is known for proving the irrationality
of 7 and of ¢ and tan x when x is rational, as well as for important laws he discovered in optics and
astronomy. The quote is from B. A. Rosenfeld (1988), p. 100.
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Fifty years passed before this brilliant idea was further elaborated
in a booklet dated 1826 by F. A. Taurinus, who transformed the
formulas of spherical trigonometry into formulas for what he called
“log-spherical geometry” by substituting #7 for 7 (his formulas are
proved by a different method in Theorem 10.4, Chapter 10). Taur-
inus vacillated over whether such a geometry actually “existed.” He
sent a copy of his booklet to C. F. Gauss (see Chapter 6) and later
burned the remaining copies in despair when Gauss did not respond.

Lambert cautiously did not submit his Tkeory of Parallels for publi-
cation (it was published posthumously in 1786). It contained an erro-
neous attempt to disprove the acute angle hypothesis. Given line /and
distance 4, let us call the locus 7 of all points on a given side of /at
perpendicular distance & from /an eguidistant curve. The flaw in many
early attempts to prove the parallel postulate was the tacit assumption
that m was a line. Lambert tried to prove this assumption, but he only
succeeded in proving that an arc of m could not be a circular arc.
Saccheri also erred using differential calculus in his attempt to prove
that m was a line.®

FARKAS BOLYAI

There were so many attempts to prove Euclid V that by 1763 G. S.
Kliigel was able to submit a doctoral thesis finding the flaws in 28
different supposed proofs of the parallel postulate, expressing doubt
that it could be proved. The French encyclopedist and mathematician
J. L. R. d’Alembert called this “the scandal of geometry.” Mathema-
ticians were becoming discouraged. The Hungarian Farkas Bolyai
wrote to his son Jdnos:

You must not attempt this approach to parallels. I know this way to its
very end. I have traversed this bottomless night, which extinguished all
light and joy of my life. I entreat you, leave the science of parallels
alone. . . .Ithought I would sacrifice myself for the sake of the truth.
I was ready to become a martyr who would remove the flaw from

6 As an example in elliptic geometry: If /is the equator of the sphere, the equidistant curves
are the other circles of latitude.
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Farkas Bolyai

geometry and return it purified to mankind. I accomplished monstrous,
enormous labors; my creations are far better than those of others and
yet I have not achieved complete satisfaction. . . .Iturned back when
I saw that no man can reach the bottom of the night. I turned back
unconsoled, pitying myself and all mankind.

I admit that I expect little from the deviation of your lines. It seems
to me that [ have been in these regions; that 1 have traveled past all
reefs of this infernal Dead Sea and have always come back with broken
mast and torn sail. The ruin of my disposition and my fall date back to
this time. I thoughtlessly risked my life and happiness — aut Caesar aut
nihil.?

But the young Bolyai was not deterred by his father’s warnings, for
he had a completely new idea. He assumed that the negation of

? The correspondence between Farkas and Janos Bolyai is from Meschkowski (1964).
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Euclid’s parallel postulate was not absurd, and in 1823 was able to
write to his father:

It is now my definite plan to publish a work on parallels as soon as 1
can complete and arrange the material and an opportunity presents
itself; at the moment I still do not clearly see my way through, but the
path which I have followed gives positive evidence that the goal will be
reached, if it is at all possible; I have not quite reached it, but I have
discovered such wonderful things that I was amazed, and it would be an
everlasting piece of bad fortune if they were lost. When you, my dear
Father, see them, you will understand; at present 1 can say nothing
except this: that out of nothing I have created a strange new universe. All
that I have sent you previously is like a house of cards in comparison
with a tower. ] am no less convinced that these discoveries will bring me
honor than I would be if they were completed.

We will explore this “‘strange new universe’ in the following chapters.
A century after Janos Bolyai wrote this letter, the English physijcist J. ].
Thomson remarked, somewhat facetiously:

We have Einstein’s space, de Sitter’s space, expanding universes, con-
tracting universes, vibrating universes, mysterious universes. In fact,
the pure mathematician may create universes just by writing down an
equation, and indeed if he is an individualist he can have a universe of
his own.

In fact, in 1949 the renowned logician Kurt Godel found a model of

the universe that satisfies Einstein’s gravitational equations, one in
which it is theoretically possible to travel backward in time!®

REVIEW EXERCISE

Which of the following statements are correct?

(1) Wallis’ postulate implies that there exist two triangles that are similar
but not congruent.

8 To date, attempts to refute Godel’s model on either mathematical or philosophical grounds
have failed. See *On the paradoxical time-structures of Godel,” by Howard Stein, Journa/ of the
Philosophy of Science, v. 37, December 1970, p. 589.
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(2) A “Saccheri quadrilateral” is a quadrilateral JABDC such that XCAB
and <DBA are right angles and AC = BD.

(3) A ‘“Lambert quadrilateral” is a quadrilateral having at least three right
angles.

(4) A quadrilateral that is both a Saccheri and a Lambert quadrilateral
must be a rectangle.

(5) A hyperbola comes arbitrarily close to its asymptotes without ever
intersecting them.

(6) Jdnos Bolyai warned his son Farkas not to work on the parallel
problem.

(7} Saccheri succeeded in disproving the “inimical” acute angle hypothe-
sis.

(8) In trying to prove Euclid’s fifth postulate, Ptolemy tacitly assumed
what we have been calling Hilbert’s parallel postulate.

(9) It is a theorem in neutral geometry that if /|{m and m || », then
/|| n.

(10) It is a theorem in neutral geometry that every segment has a unique
midpoint.

(11) Itis a theorem in neutral geometry that if a rectangle exists, then the
angle sum of any triangle is 180°.

(12) Itisatheorem in neutral geometry thatif /and m are parallel lines, then
alternate interior angles cut out by any transversal to / and m are
congruent to each other.

(13) Legendre proved in neutral geometry that for any acute <A and any
point D in the interior of XA, there exists a line through D and not
through A which intersects both sides of <A.

(14) Clairaut showed that Euclid’s fifth postulate could be replaced in the
logical presentation of Euclidean geometry by the *“‘more obvious”
postulate that rectangles exist, yet mathematicians were not appeased
by Clairaut’s replacement and they continued to try to prove Euclid V.

EXERCISES

Again, in proofs in Exercises 1-17 you are allowed to use only our
previous results from neutral geometry.

1. Let JABDC be a Saccheri quadrilateral, so that <B and <A are right
angles and CA = DB (Figure 5.8). Prove that <C = <D. (Hint: Prove
ACAB = ADBA, then ACDB = ADCA.) Also prove that Saccheri

quadrilaterals exist.
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2. LetDABDC be a quadrilateral whose base angles <A and <B are right
angles. Prove that if AC <BD, then (XD)° < (XC)° (Figure 5.9).
(Hint: If AC = BE, with B * E * D, use Exercise 23, Chapter 4, to show
that E is interior to XACD, then apply Exercise 1 and the exterior angle
theorem.)

3. With the same hypothesis as in Exercise 2, prove the converse, that if
(¥D)° < (XC)°, then AC < BD. (Hint: Assume the contrary, which
involves the two cases AC = BD and AC > BD. In each case, derive a
contradiction.)

4. The Swiss-German mathematician Lambert considered quadrilaterals
with at least three right angles, which are now named after him (Figure
5.10). Prove the following:

(a) The fourth angle <D of a Lambert quadrilateral is never obtuse.
(b) If €D is a right angle, then the opposite sides of CJABCD are
congruent (use Exercise 2 and an RAA argument).

FIGURE 5.9 A B

1 ]
A B

FIGURE 5.18 Lambert quadrilateral.
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(c) If €D is acute, then each side adjacent to <D is greater than its
opposite side, i.e., DB > CA and CD > AB (use Exercise 3).

(d) Aquadrilateral is both a Lambert and a Saccheri quadrilateral if and
only if it is a rectangle.

We can combine statements (a), (b), and (c) of this exercise into the
following statement: a side adjacent to the fourth angle of a Lambert
quadrilateral is greater than or congruent to its opposite side. As you
know, case (b) always holds if the geometry is Euclidean; in the next
chapter we will show that case (c) always holds if the geometry is
hyperbolic. In elliptic geometry the fourth angle of a Lambert quadri-
lateral is always obtuse, and a side adjacent to the fourth angle is always
smaller than its opposite side.

Given a right triangle APXY with right angle at X, form a new right
triangle APX’Y’ that has acute angle <P in common with the given
triangle but double the hypotenuse (prove that this can be done); see
Figure 5.11. Prove that the side opposite the acute angle is a7 least
doubled, whereas the side adjacent to the acute angle is @# most doubled.
(Hint: Extend side XY far enough to drop a perpendicular Y'Z to X3.
Prove that APXY = AY’ZY, and apply Exercise 4 to the Lambert
quadrilateral (OXZY "X’.)
Use Exercise 5 to prove Aristotle’s axiom (used in Proclus’ argument)
that as Y recedes endlessly from P, segment XY increases indefinitely
(see p. 96). (Hint: Use Archimedes’ axiom and the fact that 2* — o as
n — ©.9) Does segment PX also increase indefinitely?
(a) Prove that Euclid’s fifth postulate implies Wallis’ postulate (see
Figure 5.12). (Hint: Use Axiom C-4 and the fact that in Euclidean

? Euclid had a version of Archimedes’ axiom in Book V, but he presented it as a *‘definition’”:

If a < b, then there is a number # such that 2%2 > 4.
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geometry the angle sum of a triangle is 180° — Proposition 4.11.)

(b) Suppose that in the statement of Wallis’ postulate we add the
assumption AB = DE and replace the word *‘similar” by ‘“‘con-
gruent.”” Prove this new statement in neutral geometry.

8. Reread Legendre’s attempted proof of the parallel postulate in Chapter
1. Find the flaw, and justify all the steps that are correct. Prove the
flawed statement in Euclidean geometry.

9. Find the unjustified assumption in the following *‘proof” of the parallel
postulate by Farkas Bolyai (see Figure 5.13). Given P not on line /,
perpendicular to/at Q, and line m perpendicular to PQ at P. Let nbe any
line through P distinct from m and ﬁé We must show that » meets /. Let
A be any point between P and Q. Let B be the unique point such that

FIGURE 5.13 \
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A * Q * Band AQ = QB.Let R be the foot of the perpendicular from A
to 7. Let Cbe the unique pointsuch that A * R # Cand AR = RC. Then
A, B, and C are not collinear (else R = P); hence there is a unique circle
y passing through them. Since /is the perpendicular bisector of chord AB
of y and » is the perpendicular bisector of chord AC of , /and # meet at
the center of y (Exercise 17(b), Chapter 4).

The following attempted proof of the parallel postulate is similar to
Proclus’ but the flaw is different; detect the flaw with the help of
Exercise 5. (See Figure 5.14.) Given P not on line /, ﬁb perpendicular
to/atQ, and line m perpendicular to 136 atP. Let# be any line through P
distinct from 7 and PQ). We must show that # meets /. Let PX be a ray of
n between 136 and a ray of 7, and let Y be the foot of the perpendicular
from X to 156 As X recedes endlessly from P, PY increases indefinitely.
Hence, Y eventually reaches a position Y’ on P_é such that PY’ > PQ.
Let X’ be the corresponding position reached by X on line #n. Now X’
and Y’ are on the same side of / because XY is parallel to /. But Y’
and P are on opposite sides of /. Hence, X’ and P are on opposite sides
of /, so that segment PX’ (which is part of #) meets /.

Find the flaw in the following attempted proof of the parallel postulate
given by J. D. Gergonne (see Figure 5.15). Given P not on line /,
perpendicular to /at Q, line m perpendicular to 156 atP, and pointA # P
on 7. Let PB be the last ray between PA and P_é that intersects /, B being
the point of intersection. There exists a point C on /such thatQ * B * C
(Axioms B-1 and B-2). It follows that PB is not the last ray between P
and PQ that intersects /, and hence all rays between PA and P_Q meet /.
Thus m is the only parallel to / through P.

Legendre made another attempt to prove that the defect of every trian-
gle is zero, as follows. In any triangle A ABC, if we are given the numbers
o, B that measure the angles at A and B, respectively, and the number x
that measures the length of the included side AB, then by ASA the
number y that measures the third angle is uniquely determined, so we
can write y = f (@, B, x). Now if right angles are measured by the unit 1,
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y is some number between 0 and 2. But x is not a dimensionless num-
ber, since it depends on the arbitrary unit of length (e.g., inch, foot,
or meter). Thus the formula for y cannot actually contain x, and so y =
fla, B). (If we knew that the geometry was Euclidean, we would have
fla, By = 2 — a— B.) Now let D be the midpoint of AB. By Axiom C-4,
there is a unique ray DE with E on the same side of AB as C such that
4ADE = 4B. Then DE I B_C, by corresponding angles (Exercise 32,
Chapter 4), so, by Pasch’s theorem, we can choose label E for a point on
AC. Since y=f(a, B) for any triangle, YAED = <4C (i.e., AADE
is similar to AABC). Hence CJCEDB has angle sum 360°, so ACEB
and ABED have angle sum 180°. By Theorem 4.7, all triangles have de-
fect zero. What is the flaw? (Hint: See the remarks following Theorem
6.2.)

It was stated at the beginning of this chapter that if all steps but one of an
attempt to prove the parallel postulate are correct, then the flawed step
yields another statement equivalent to Hilbert’s parallel postulate.
Show that for Proclus’ attempt, that statement is: Given parallel lines /,
m having a common perpendicular and a point Y not lying on /or m, if X
(resp. Z) is the foot of the perpendicular from Y to / (resp. tom), then X,
Y, and Z are collinear. (Hint: Use Exercise 4b.)

Prove that if the defect of every triangle is 0 then Hilbert’s parallel
postulate holds (this is the converse to Proposition 4.11). (Hint: See the
discussion of Clairaut’s axiom.)

You will show in Exercise 24 that the following statement can be proved
in Euclidean geometry: If points P, Q, R lie on a circle with center O, and
if 4PQR is acute, then (¥XPQR)° = {(LPOR)°. In neutral geometry,
show that this statement implies the existence of a triangle of defect
zero (hence, by Prop. 4.7 and Clairaut’s axiom, the geometry is Euclid-
ean).

(Difficult) Here is Legendre’s desperate attempt in the 12th and final
edition of his geometry text to prove that the defect & of any triangle
AABCis zero. Label so that AC = AB. Then the method of Exercise 15,
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Chapter 4 (invented by Legendre to prove Theorem 4.4}, gives us
AAEC having the same defect 4 (where AE = 2AD, D being the mid-
point of BC). From AC = AB it is not difficult to show that {EAC =
<EAB, so that {EAC = {JBAC. If AC = AE, set B, =E and C, = C;
otherwise, reflect AAEC across the angle bisector of LEAC to obtain
AAB,C, with defect 4, <B,AC; <3#¥BAC, C; on ray AC, and
AC, = AB,. Iterate this construction » times to obtain AAB,C, with
defect &, ¥B,AC, = 24BAC, and C, on ray AC. Let # — . Since
<B,AC, -> 0,the triangles AAB,C, (which all have defect /) converge
in the limit to a degenerate triangle on ray AC having angles 0°, 0°, and
180°. Hence &= 0. Ciriticize this argument (Hint: Show that B,,
C, =)

17. Prove that a Saccheri quadrilateral is convex. Prove that a Lambert
quadrilateral is a parallelogram and that every parallelogram is convex.

The remaining exercises in this chapter are exercises in Euclidean geome-
try, whichk means you are allowed to use the parallel postulate and its
consequences already established. We will refer to these results in Chap-
ter 7. You are also allowed to use the following result, a proof of which
is indicated in the Major Exercises:

PARALLEL PROJECTION THEOREM. Given three parallel lines /, m,

and n. Let 7 and 7’ be transversals to these parallels, cutting them in

points A, B, and C and in points A’, B/, and C’, respectively. Then

AB/BC = A’B’/B’C’. (Figure 5.16.)

18. Fundamental theorem on similar triangles. Given AABC ~ AA'B’'C/, i.e.,
given XA = {A’, {B = {B’, and LC = LC’. Then corresponding sides
are proportional, i.e., AB/A’B’ = AC/A’C’ = BC/B’C’. (See Figure
5.17.) Prove the theorem. (Hint: Let B” be the point on AB such that
AB” = A’B’, and let C” be the point on AC such that AC” = A’C”. Use

— \A & -1
%

4

A

FIGURE 5.16 r v
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FIGURE 5.18 A

the hypothesis to show that AAB”C” = AA’B’C’ and deduce from
corresponding angles that B"C” is parallel to BC. Now apply the parallel
projection theorem.)

Prove the converse to the fundamental theorem on similar triangles.
(Hint: Choose B” as before. Use Pasch’s theorem to show that the
parallel to 8¢ through B” cuts AC at a point C”. Then use the hypothe-
sis, Exercise 18, and the SSS criterion to show that AABC ~
AAB”C” = AA'B'C’) o

SAS similarity criterion. If A = <A’ and AB/A’B’ = AC/A’C’, prove
that AABC ~ AA’B’C’. (Hint: Same method as in Exercise 19, but
using SAS instead of SS8S.)

Prove the Pythagorean theorem. (Hint: Let CD be the altitude to the
hypotenuse; see Figure 5.18. Use the fact that the angle sum of a
triangle equals 180° (Exercise 8, Chapter 4) to show that AACD ~
AABC ~ ACBD. Apply Exercise 18 and a little algebra based on
AB = AD + DB to get the result.)

The fundamental theorem on similar triangles (Exercise 18) allows the
trigonometric functions such as sine and cosine to be defined. Namely,
givenan acute angle <A, make it part of aright triangle ABAC with right
angle at C, and set

oH
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sin ¥A = (BC)/(AB)

cos LA = (AC)/(AB).
These definitions are then independent of the choice of the right trian-
gle used. If <A is obtuse and <A’ is its supplement, set

sin <A = +sin <A’

cos <A = —cos <A’.

If XA is a right angle, set
sin YA=1
cos SA=0.

Now, given any triangle AABC, if 2 and 4 are the lengths of the sides
opposite A and B, respectively, prove the law of sines,

a _sin ¥A

b sin 4B’

(Hint: Drop altitude CD and use the two right triangles AADC and
ABDC to show that 4 sin XA = CD = g sin <B; see Figure 5.19.)
Similarly, prove the law of cosines,

2 =a?+ p? — 2ab cos LC,

and deduce the converse to the Pythagorean theorem.
23. Given A * B * C and point D not collinear with A, B, and C (Figure
5.20). Prove that

AB _ AD sin ¥ADB
BC CDsin ¥CDB
&'3_ _ AD sin LADC
BC BDsin <BDC

(Hint: Use the law of sines to compute AB/AD, CD/BC, and BD/BC,
and remember that sin XABD = sin <CBD.)

FIGURE 5.19 A
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FIGURE 5.20

24.

25.

26.

Let y be a circle with center O, and let P, Q, and R be three points on .
Prove that if P and R are diametrically opposite, then <PQR is a right
angle, and if O and Q are on the same side of ﬁ, then (XPQR)° =
$(POR)°. (Hint: Again use the fact that the triangular angle sum is
180°. There are four cases to consider, as in Figure 5.21.) State and
prove the analogous result when O and Q are on opposite sides of PR.
Prove that if two angles inscribed in a circle subtend the same arc, then
they are congruent; see Figure 5.22. (Hint: Apply the previous exercise
after carefully defining *‘subtend the same arc.”)

Prove that if XPQR is a right angle, then Q lies on the circle y having PR
as diameter. (Hint: Use uniqueness of perpendiculars and Exercise 24.)

P
Q

FIGURE 5.21
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FIGURE 5.22 <PQR = <PQ'R.

MAJOR EXERCISES

These exercises furnish the proof of the parallel projection theorem in
Euclidean geometry (text preceding Exercise 18; also see Figure
5.16).

1.

Prove the following results about Euclidean parallelograms:

(a) Oppositesides (and likewise, opposite angles) of a parallelogram are
congruent to each other.

(b) A parallelogram is a rectangle iff its diagonals are congruent, and in
that case the diagonals bisect each other.

{c) A parallelogram has a circumscribed circle iff it is a rectangle. (Hint
for the “only if” part: Opposite angles must subtend semicircles.)

(d) A rectangle is a square iff its diagonals are perpendicular.

Let 4, /, m, and n be parallel lines, distinct, except that possibly /= m. Let

transversals 7and # cut these lines in points A, B, C,and D and in A’, B’,

C’, and D, respectively (Figure 5.23). If AB = CD, prove that A’B’ =

C’D’. (Hint: Construct parallels to # through A’ and C’. Apply Major

Exercise 1(a) and the congruence of corresponding angles.)

Prove that parallel projection preserves betweenness, i.e., in Figure 5.16,

if A*B *C, then A’ * B’ * C’. (Hint: Use Axiom B-4.)

Prove the parallel projection theorem for the special case in which the

ratio of lengths AB/BC is a rational number p/g. (Hint: Divide AB into p

congruent segments and BC into ¢ congruent segments so thatall p + ¢

segments will be congruent. Use Major Exercise 2, applying it p + ¢

times.) _

The case where AB/BC is an irrational number x is the difficult case. Let

A’B’/B’C’ = x’. The idea is to show that every rational number p/g less

than x is also less than %" (and, by symmetry, vice versa). This will imply
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x=«’, since a real number is the least upper bound of all the rational
numbcrs less than it (see any good text on real analysis). To show this, lay
off on BA a segment BD of length pCBlg, and let D’ be the parallel
projection of D onto #/. From p/¢ < x, deduce B * D * A. Now apply
Major Exercises 3 and 4 to show that p/g < «’.1°

6. Given a segment AB of length # with respect to some unit segment OI
(see Theorem 4.3). Using straightedge and compass only, show how to
construct a segment of length Va. (Hint: Extend AB to a segment AC of
length @ + 1; erect a perpendicular through B and let D be one of its
intersections with the circle having AC as diameter; apply the theory of
similar triangles to show that BD = . Review the construction in Major
Exercise 1, Chapter 1.)

7. Prove thatgiven any line /, two points A and B not on /are on the same side
Sof /if and only if they lie on a circle contained in S. (Hint: If A and B are
on opposite sides of /, apply Major Exercise 1, Chapter 4. If they are on
the same side §, let M be the midpoint and m the perpendicular bisector
of AB. Any circle through A and B has its center on m. If AB 1]/, take any
point P between M and the point where m meets /, and use the circle
through A, B and P (see Exercise 12, Chapter 6). Otherwise, if A is closer
to /than B, let the perpendicular from A to / meet m at O. Show that the
circle centered at O with radius OA = OB lies in . Be sure to indicate
where the hypothesis that #he geometry is Euclidean is used; see Exercise
P-20, Chapter 7.)

10 This clever method of proof was essentially discovered by the ancient Greek mathemati-
cian Eudoxus —see E. C. Zeeman, “Research, Ancient and Modern,” Bulletin of the Institute of
Mathematics and Its Applications, 10 (1974): 272-281, Warwick University, England.
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PROJECTS

1. Since there is no algebra in Euclid’s Elements, it was quite a feat for
Eudoxus to have discovered a purely geometric treatment of proportions
and similar triangles. Report on this, using Heath (1956) and Moise
(1990, Chapter 20) as references.

2. Eudoxus was also the founder of theoretical astronomy in antiquity (his
work later refined by Ptolemy). In his model, the universe was bounded
by “the celestial sphere,” so that the physical interpretation of Euclid’s
second and third postulates was false! Even Kepler and Galileo believed
in an outer limit to the world. It was René Descartes (1596 - 1650) who
promoted the idea that we live in infinite, unbounded Euclidean space.
Report on these issues, using Torretti (1978) as one reference.

3. Report on several other attempts to prove the Euclidean parallel postu-
late in neutral geometry, using Rosenfeld (1988) as a reference.

4. We remarked after Theorem 4.3 that the definition of 7 as the ratio of the
circumference of any circle to its diameter could only be justified in
Euclidean geometry, not neutral geometry. Report on the justification in
Moise (1990), section 21.2, which uses the theory of similar triangles.



THE DISCOVERY
OF NON-EUCLIDEAN
GEOMETRY

CHAPTER

Out of nothing 1 have created a strange new universe.
JANOS BOLYAI

JANOS BOLYAI

Itis remarkable that sometimes when the time is right for anew idea to
come forth, the idea occurs to several people more or less simulta-
neously. Thus it was in the eighteenth century with the discovery of
the calculus by Newton in England and Leibniz in Germany, and in
the nineteenth century with the discovery of non-Euclidean geome-
try. When Jdnos Bolyai (1802 - 1860) announced privately his discov-
eries in non-Euclidean geometry, his father Farkas admonished him:

It seems to me advisable, if you have actually succeeded in obtaining a
solution of the problem, that, for a two-fold reason, its publication be
hastened: first, because ideas easily pass from one man to another who,
in that case, can publish them; secondly, because it seems to be true
that many things have, as it were, an epoch in which they are discovered
in several places simultaneously, just as the violets appear on all sides
in springtime.!

! Quoted in Meschkowski (1964). The title of J. Bolyai’s appendix is “The Science of
Absolute Space with a Demonstration of the Independence of the Truth or Falsity of Euclid’s
Parallel Postulate (Which Cannot Be Decided a Priori) and, in Addition, the Quadrature of the
Circle in Case of Its Falsity.”
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Jénos Bolyai did publish his discoveries, as a 26-page appendix to a
book by his father surveying attempts to prove Euclid V (the Tentamen,
1831). Farkas sent a copy to his friend, the German mathematician
Carl Friedrich Gauss (1777-1855), undisputedly the foremost
mathematician of his time. Farkas Bolyai had become close friends
with Gauss 35 years earlier, when they were both students in Géttin-
gen. After Farkas returned to Hungary, they maintained an intimate
correspondence,? and when Farkas sent Gauss his own attempt to
prove the parallel postulate, Gauss tactfully pointed out the fatal flaw.

Janos was 13 years old when he mastered the differential and
integral calculus. His father wrote to Gauss begging him to take the
young prodigy into his household as an apprentice mathematician.
Gauss never replied to this request (perhaps because he was having
enough trouble with his own son Eugene, who had run away from
home). Fifteen years later, when Farkas mailed the Tentamen to
Gauss, he certainly must have felt that his son had vindicated his belief
in him, and Jdnos must have expected Gauss to publicize his achieve-
ment. One can therefore imagine the disappointment Janos must have
felt when he read the following letter to his father from Gauss:

If I begin with the statement that I dare not praise such a work, you will
of course be startled for a moment: but I cannot do otherwise; to praise
it would amount to praising myself; for the entire content of the work,
the path which your son has taken, the results to which he is led,
coincide almost exactly with my own meditations which have occupied
my mind for from thirty to thirty-five years. On this account I find
myself surprised to the extreme.

My intention was, in regard to my own work, of which very little up
to the present has been published, not to allow it to become known
during my lifetime. Most people have not the insight to understand our
conclusions and I have encountered only a few who received with any
particular interest what I communicated to them. In order to under-
stand these things, one must first have a keen perception of what is
needed, and upon this point the majority are quite confused. On the
other hand, it was my plan to put all down on paper eventually, so that
at least it would not finally perish with me.

So I am greatly surprised to be spared this effort, and am overjoyed

2 For the complete correspondence (in German), see Schmidt and Stickel (1972).
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that it happens to be the son of my old friend who outstrips me in such a
remarkable way.?

Despite the compliment in Gauss’ last sentence, Jdnos was bitterly
disappointed with the great mathematician’s reply; he even imagined
that his father had secretly informed Gauss of his results and that
Gauss was now trying to appropriate them as his own. A man of fiery
temperament, who had fought and won 13 successive duels (unlike
Galois, who was killed in a duel at age 20), Janos fell into deep mental
depression and never again published his research. A translation of his
immortal “appendix’’ can be found in R. Bonola’s Non-Euclidean Ge-
ometry (1955). His father did not understand Janos’ discovery and
subsequently published another clever attempt to prove Euclid V
(Exercise 9, Chapter 5).

In 1851, Jdnos wrote:

In my opinion, and as I am persuaded, in the opinion of anyone judging
without prejudice, all the reasons brought up by Gauss to explain why
he would not publish anything in his life on this subject are powerless
and void; for in science, as in common life, it is necessary to clarify
things of public interest which are still vague, and to awaken, to
strengthen and to promote the lacking or dormant sense for-the true
and right. Alas, to the great detriment and disadvantage of mankind,
only very few people have a sense for mathematics; and for such a
reason and pretence Gauss, in order to remain consistent, should have
kepta great part of his excellent work to himself. It is a fact that, among
mathematicians, and even among celebrated ones, there are, unfortu-
nately, many superficial people, but this should not give a sensible man
a reason for writing only superficial and mediocre things and for leaving
science lethargically in its inherited state. Such a supposition may be
said to be unnatural and sheer folly; therefore I take it rightly amiss that
Gauss, instead of acknowledging honestly, definitely and frankly the
great worth of the Appendix and the Tentamen, and instead of ex-
pressing his great joy and interest and trying to prepare an appropriate
reception for the good cause, avoiding all these, he rested content with

3 Wolfe (1945). Gauss did write to Gerling about the appendix a month earlier, saying: “I
find all my own ideas and results developed with greater elegance. . . . I regard this young
geometer Bolyai as a genius of the first order.” That makes it all the more puzzling why Gauss
did not help further Jidnos” mathematical career.
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pious wishes and complaints about the lack of adequate civilization.
Verily, it is not this attitude we call life, work and merit.*

GAUSS

There is evidence that Gauss had anticipated some of ]J. Bolyai’s
discoveries, in fact, that Gauss had been working on non-Euclidean
geometry since the age of 15, i.e., since 1792 (see Bonola, 1955,
Chapter 3). In 1817, Gauss wrote to W. Olbers: “I am becoming more
and more convinced that the necessity of our [Euclidean] geometry
cannot be proved, at least not by human reason nor for human reason.
Perhaps in another life we will be able to obtain insight into the nature
of space, which is now inattainable.” In 1824, Gauss answered F. A.
Taurinus, who had attempted to investigate the theory of parallels:

In regard to your attempt, I have nothing (or not much) to say except
thatitis incomplete. It is true that your demonstration of the proof that
the sum of the three angles of a plane triangle cannot be greater than
180° is somewhat lacking in geometrical rigor. But this in itself can
casily be remedied, and there is no doubt that the impossibility can be
proved most rigorously. But the situation is quite different in the
second part, that the sum of the angles cannot be less than 180°; this is
the critical point, the reef on which all the wrecks occur. I imagine that
this problem has not engaged you very long. I have pondered it for over
thirty years, and I do not believe that anyone can have given more
thought to this second part than I, though I have never published
anything on it.

The assumption that the sum of the three angles is less than 180°
leads to a curious geometry, quite different from ours [the Euclidean],
but thoroughly consistent, which I have developed to my entire satis-
faction, so that I can solve every problem in it with the exception of the
determination of a constant, which cannot be designated a pryory. The
greater one takes this constant, the nearer one comes to Euclidean
geometry, and when it is chosen infinitely large the two coincide. The
theorems of this geometry appear to be paradoxical and, to the unini-
tiated, absurd; but calm, steady reflection reveals that they contain

* Quoted in L. Fejes Téth, Regular Figures (Macmillan, N.Y. 1964), pp. 98-99.
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Carl Friedrich Gauss

nothing at all impossible. For example, the three angles of a triangle
become as small as one wishes, if only the sides are taken large enough;
yet the area of the triangle can never exceed a definite limit, regardless
of how great the sides are taken, nor indeed can it never reach it.
All my efforts to discover a contradiction, an inconsistency, in this
non-Euclidean geometry have been without success, and the one thing
in it which is opposed to our conceptions is that, if it were true, there
must exist in space a linear magnitude, determined for itself (but
unknown to us). But it seems to me that we know, despite the say-
nothing word-wisdom of the metaphysicians, too little, or too nearly
nothing at all, about the true nature of space, to consider as absolutely
tmpossible that which appears to us unnatural. If this non-Euclidean
geometry were true, and it were possible to compare that constant with
such magnitudes as we encounter in our measurements on the earth
and in the heavens, it could then be determined a posteriori. Conse-
quently, in jest | have sometimes expressed the wish that the Euclidean
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geometry were not true, since then we would have a prior7 an absolute
standard of measure.

I do not fear that any man who has shown that he possesses a
thoughtful mathematical mind will misunderstand what has been said
above, but in any case consider it a private communication of which no
public use or use leading in any way to publicity is to be made. Perhaps
I shall myself, if I have at some future time more leisure than in my
present circumstances, make public my investigations.®

It is amazing that, despite his great reputation, Gauss was actually
afraid to make public his discoveries in non-Euclidean geometry. He
wrote to F. W. Bessel in 1829 that he feared ‘“‘the howl from the
Boeotians” if he were to publish his revolutionary discoveries.® He
told H. C. Schumacher that he had “‘a great antipathy against being
drawn into any sort of polemic.”

The “metaphysicians’ referred to by Gauss in his letter to Taur-
inus were followers of Immanuel Kant, the supreme European philos-
opher in the late eighteenth century and much of the nineteenth
century. Gauss’ discovery of non-Euclidean geometry refuted Kant’s
position that Euclidean space is inkerent in the structure of our mind. In
his Critique of Pure Reason (1781) Kant declared that “the concept of
[Euclidean] space is by no means of empirical origin, but is an inevi-
table necessity of thought.”

Another reason that Gauss withheld his discoveries was that he was
a perfectionist, one who published only completed works of art. His
devotion to perfected work was expressed by the motto on his seal,
pauca sed matura (‘‘few but ripe”). There is a story that the distin-
guished mathematician K. G. ]. Jacobi often came to Gauss to relate
new discoveries, only to have Gauss pull out some papers from his
desk drawer that contained the very same discoveries. Perhaps it is
because Gauss was so preoccupied with original work in many
branches of mathematics, as well as in astronomy, geodesy, and phys-

S Wolfe (1945), pp. 46-47.

6 An allusion to dull, obtuse individuals. “Actually, the ‘Boeotian’ critics of non-Euclidean
geometry — conceited people who claimed to have proved that Gauss, Riemann, and Helmholz
were blockheads—did not show up before the middle of the 1870s. If you witnessed the
struggle against Einstein in the Twenties, you may have some idea of [the] amusing kind of
literature [produced by these critics]. . . . Frege, rebuking Hilbert like a schoolboy, also
joined the Boeotians. . . . ‘Your system of axioms,” he said t Hilbert, ‘is like a system of
equations you cannot solve.’” (Freudenthal, 1962)
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ics (he coinvented an improved telegraph with W. Weber), that he did
not have the opportunity to put his results on non-Euclidean geometry
into polished form. The few results he wrote down were found among
his private papers after his death.

Gauss has been called ‘“‘the prince of mathematicians” because of
the range and depth of his work. (See the biographies by Bell, 1934;
Dunnington, 1955; and Hall, 1970.)

LOBACHEVSKY

Another actor in this historical drama came along to steal the limelight
from both J. Bolyai and Gauss: the Russian mathematician Nikolai
Ivanovich Lobachevsky (1792-1856). He was the first to actually

Nikolai Ivanovich Lobachevsky
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publish an account of non-Euclidean geometry, in 1829. Lobachevsky
initially called his geometry “imaginary,” then later “pangeometry.”
His work attracted little attention on the continent when it appeared
because it was written in Russian. The reviewer at the St. Petersburg
Academy rejected it, and a Russian literary journal attacked Loba-
chevsky for “the insolence and shamelessness of false new inven-
tions” (Boeotians howling, as Gauss predicted). Nevertheless, Loba-
chevsky courageously continued to publish further articles in Russian
and then a treatise in 1840 in German,?® which he sent to Gauss. In an
1846 letter to Schumacher, Gauss reiterated his own priority in devel-
oping non-Euclidean geometry but conceded that “‘Lobachevsky
carried out the task in a masterly fashion and in a truly geometric
spirit.”’ At Gauss’ recommendation, Lobachevsky was elected to the
Gottingen Scientific Society. (Why didn’t Gauss recommend Jénos
Bolyai?)

Lobachevsky openly challenged the Kantian doctrine of space as a
subjective intuition. In 1835 he wrote: ““The fruitlessness of the at-
tempts made since Euclid’s time . . . aroused in me the suspicion
that the truth . . . was not contained in the data themselves; that to
establish it the aid of experiment would be needed, for example, of
astronomical observations, as in the case of other laws of nature.”
(Gauss privately agreed with this view, having written to Olbers that
‘‘we must not put geometry on a par with arithmetic that exists purely
a priori but rather with mechanics.” The great French mathematicians
J. L. Lagrange (1736-1813) and J. B. Fourier (1768 - 1830) tried to
derive the parallel postulate from the law of the lever in statics.)

Lobachevsky has been called “‘the great emancipator” by Eric
Temple Bell; his name, said Bell, should be as familiar to every
schoolboy as that of Michelangelo or Napoleon.® Unfortunately, Lo-
bachevsky was not so appreciated in his lifetime; in fact, in 1846 he
was fired from the University of Kazan, despite 20 years of outstanding
service as a teacher and administrator. He had to dictate his last book
in the year before his death, for by then he was blind.

It is amazing how similar are the approaches of J. Bolyai and Loba-
chevsky and how different they are from earlier work. Both developed
the subject much further than Gauss. Both attacked plane geometry

8 For a translation of this paper sce Bonola (1955).
? Beil (1954, Chapter 14).
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via the “horosphere” in three-space (it is the limit of an expanding
sphere when its radius tends to infinity). Both showed that geometry
on a horosphere, where ‘“lines” are interpreted as ‘‘horocycles”
(limits of circles), is Euclidean. Both showed that Euclidean spherical
trigonometry is valid in neutral geometry and both constructed a
mapping from the sphere to the non-Euclidean plane to derive the
formulas of non-Euclidean trigonometry (including the formula
Taurinus discovered — see Theorem 10.4, Chapter 10, for a simpler
derivation using a plane model). Both had a constant in their formulas
that they could not explain; the later work of Riemann showed it to be
the curvature of the non-Euclidean plane.

SUBSEQUENT DEVELOPMENTS

It was not until after Gauss’ death in 1855, when his correspondence
was published, that the mathematical world began to take non-Eucli-
dean ideas seriously. (Yet, as late as 1888 Lewis Carroll was poking
fun at non-Euclidean geometry.) Some of the best mathematicians
(Beltrami, Klein, Poincaré, and Riemann) took up the subject, ex-
tending it, clarifying it, and applying it to other branches of mathe-
matics, notably complex function theory. In 1868 the Italian mathe-
matician Beltrami settled once and for all the question of a proof for
the parallel postulate. He proved that no proof was possible. He did
this by exhibiting a Euclidean model of non-Euclidean geometry. (We
will discuss his model in the next chapter.)

Bernhard Riemann, who was a student of Gauss, had the most
profound insight into the geometry, not just the logic. In 1854, he
built upon Gauss’ discovery of the ntrinsic geometry on a surface in
Euclidean three-space. Riemann invented the concept of an abstract
geometrical surface that need not be embeddable in Euclidean three-
space yet on which the “lines” can be interpreted as geodesics and the
intrinsic curvature of the surface can be precisely defined. Elliptic
(and, of course, spherical) geometry “‘exist” on such surfaces that
have constant positive curvature, while the hyperbolic geometry of
Bolyai and Lobachevsky *“‘exists” on such a surface of constant negative
curvature. That is the view of geometers today about the “reality’ of
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Georg Friedrich Bernhard Riemann

those non-Euclidean planes. We will describe Gauss and Riemann’s
idea only in Appendix A, since it is too advanced for the level of this
text. A further generalization of that idea provided the geometry for
Einstein’s general theory of relativity.

Interestingly, a direct relationship between the special theory of
relativity and hyperbolic geometry was discovered by the physicist
Arnold Sommerfeld in 1909 and elucidated by the geometer Vladimir
Varicak in 1912. A model of hyperbolic plane geometry is a sphere of
imaginary radius with antipodal points identified in the three-
dimensional space-time of special relativity, vindicating Lambert’s
idea (see Rosenfeld, 1988, pp. 230 and 270; or Yaglom, 1979, p. 222
ff.). Moreover, Taurinus’ technique of substituting 7 for 7 to go from
spherical trigonometry to hyperbolic trigonometry received a struc-
tural explanation in 1926-1927 when Elie Cartan developed his
theory of Riemannian symmetric spaces: The Euclidean sphere of
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curvature 1/72 is “dual” to the hyperbolic plane of curvature —1/72
(see Helgason, 1962, p. 206).

HYPERBOLIC GEOMETRY

Let us return to our elementary investigation of the particular non-
Euclidean geometry discovered by Gauss, J. Bolyai, and Lobachevsky,
nowadays called Ayperbolic geometry (see Appendix A for a discussion
of elliptic geometry and other geometries discovered by Riemann).
Hyperbolic geometry is, by definition, the geometry you get by assuming all
the axtoms for neutral geometry and replacing Hilbert's parallel postulate by
its negation, which we shall call the “hyperbolic axiom.”

HYPERBOLIC AXIOM. In hyperbolic geometry there existaline /and a
point P not on /such that at least two distinct lines parallel to / pass
through P (see Figure 6.1).

We can immediately see the flaw in Legendre’s attempted proof of
the parallel postulate (Chapter 1), namely that the entire line / lies
in the interior of XAPB without meeting either side, a phenomenon
Legendre assumed to be impossible.

The following lemma (preliminary result) is the first important
consequence of the hyperbolic axiom.

LEMMA 6.1. Rectangles do not exist.

In fact, we saw in Chapter 5 that the existence of rectangles (Clair-
aut’s axiom) implies Hilbert’s parallel postulate, the negation of the
hyperbolic axiom (the idea of the proof is due to Proclus).

FIGURE 6.1



188 ’ \ I The Discovery of Non-Euclidean Geometry

Using this lemma, we can establish a universal version of the hyper-
bolic axiom. The parallel postulate in Euclidean geometry states that
for every line and for every point off the line, uniqueness of parallels
holds. Its negation, the hyperbolic axiom, states that for some line /and
some point P not on /, uniqueness of parallels fa:/s to hold. Could it be
possible that in hyperbolic geometry uniqueness of parallels fails for
some / and P but 4olds for other / and P? We will show that this is

impossible.

UNIVERSAL HYPERBOLIC THEOREM. In hyperbolic geometry, for
every line /and every point P not on /there pass through P at least two
distinct parallels to /.

Proof:
Drop perpendicular 156 to /and erect line 7 through P perpendicu-
lar to PQ. Let R be another point on /, erect perpendicular # to /

through R, and drop perpendicular PStor (See Figure 6.2.) Now

is parallel to /, since they are both perpendicular to # (Corol-
lary 1 to Theorem 4.1). We claim that 7 and PS are distinct lines.
Assume on the contrary that S lies on 7. Then CJPQRS is a rectan-
gle. This contradicts Lemma 6.1. B

COROLLARY. In hyperbolic geometry, for every line /and every point
P not on /, there are infinitely many parallels to / through P.

Proof:
Just vary the point R in the above proof.

r 3
P
~— -
s\\ts
- [ [ — /
Q R
A 4

FIGURE 6.2 t
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ANGLE SUMS (AGAIN)

Combining Lemma 6.1 with Theorem 4.7 yields the next theorem.

THEOREM 6.1. In hyperbolic geometry, all triangles have angle sum
<180°.

If AABC is any triangle, then 180° minus the angle sum of AABC is
a positivenumber. This number we called the defect of the triangle, and
it plays a very important role in hyperbolic geometry (see Exercise 5
and Chapter 10).

COROLLARY. In hyperbolic geometry all convex quadrilaterals have
angle sum less than 360°.

Proof-

Given any quadrilateral JABCD (Figure 6.3). Take diagonal AC
and consider triangles AABC and AACD; by the theorem, these
triangles have angle sumn <180°. The assumption that JABCD is
convex implies that AC is between AB and AD and that CA is
between CB and C_b, so that ({BAC)° + (XCAD)° = ({BAD)°
and (XACB)° + (XACD)° = (XBCD)° (by Theorem 4.3(3)). By
adding all six angles, we see that the angle sum of CJABCD is
<360°. A

SIMILAR TRIANGLES

Next we shall consider Wallis’ postulate, which cannot hold in hyper-
bolic geometry because, as we saw in Chapter 5, it implies the Euclid-

FIGURE 6.3 C
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ean parallel postulate. Thus, under certain circumstances similar tri-
angles do not exist (negation of Wallis’ postulate). But we can prove
even more: under 7o circumstances do similar noncongruent triangles
exist!

THEOREM 6.2. In hyperbolic geometry if two triangles are similar,
they are congruent. (In other words, AAA is a valid criterion for
congruence of triangles.)

Proof:

Assume on the contrary that there exist triangles AABC and
AA’B’C’ which are similar but not congruent. Then no correspond-
ing sides are congruent; otherwise the triangles would be congruent
(ASA). Consider the triples (AB, AC, BC) and (A’B’, A’C’,B’C’) of
sides of these triangles. One of these triples must contain at least
two segments that are larger than the two corresponding segments
of the other triple, e.g., AB> A’B’ and AC > A’C’. Then (by
definition of >) there exist points B” on AB and C” on AC such that
AB” = A’B’ and AC” =A’C’ (see Figure 6.4). By SAS,
AA’B’C’ = AAB”C”. Hence, corresponding angles are congruent:
SAB”C” = 4B’, XAC”B” = 4C’. By the hypothesis that AABC
and AA’B’C’ are similar, we also have <JAB”C” = 4B,
XAC”B” = <C (Axiom C-5). This implies that BC Ii B"C”
(Theorem 4.1 and Exercise 32, Chapter 4), so that quadrilateral
OBB”C”C is convex. Also, (<B)°+ (¥BB”C”)° =180°=
(XC)° + (XCC”B”)° (Theorem 4.3(2) and 4.3(5)). It follows
that quadrilateral CJBB”C”C has angle sum 360°. This contradicts
the corollary to Theorem 6.1. W

To sum up, in hyperbolic geometry it is impossible to magnify or
shrink a triangle without distortion. In a hyperbolic world photogra-
phy would be inherently surrealistic!

A’

FIGURE 6.4
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A startling consequence of Theorem 6.2 is that in hyperbolic ge-
ometry a segment can be determined with the aid of an angle; for
example, an angle of an equilateral triangle determines the length of a
side uniquely. This is sometimes stated more dramatically by saying
that hyperbolic geometry has an absolute unit of length (see Gauss’
letter to Taurinus, quoted earlier in this chapter). If the geometry of
the physical universe were hyperbolic, it would no longer be necessary
to keep a unit of length carefully guarded in the Bureau of Standards
(the same is true for elliptic geometry).

PARALLELS THAT ADMIT A COMMON
PERPENDICULAR

In Chapter 5, commenting on the flaw in Proclus’ attempted proof of
the parallel postulate, I remarked that it was presumptuous to assume
that parallel lines looked like railroad tracks, that is, that they were
everywhere equidistant from each other. Let us now make this remark
more precise. Given lines /and / and points A, B,C, . . . on/ Drop
perpendiculars AA’, BB’, CC’, . . . from these points to /. We will
say that points A, B, C, . . . are eguidistant from /' if all these per-
pendicular segments are congruent to one another (Figure 6.5).

THEOREM 6.3. In hyperbolic geometry if /and / are any distinct
parallel lines, then any set of points on /equidistant from /” has at most
two points in it.

Proof:
Assume on the contrary there is a set of three points A, B, and C on
/ equidistant from /. Then quadrilaterals [JA’B’BA, [JA’C’CA,

- A B C Y
- [ 1 (1 ml >/
AI BI CI

FIGUREG6.5 AA’=BB’'=CC’'=.. ..



192 ’ i I The Diseovery of Non-Euclidean Geometry

FIGUREG.6 c A B’ D’

and (OB’C’CB are Saccheri quadrilaterals (the base angles are
right angles and the sides are congruent). In Exercise 1, Chapter
5, you showed that the summit angles of a Saccheri quadrilateral
are congruent. Thus, <A’AB = {B’BA, XA’AC = {C’CA, and
<B’BC = {C’CB. By transitivity (Axiom C-5), it follows that the
supplementary angles <B’BA and <B’BC are congruent to each
other; hence, by definition, they are right angles. Therefore, these
Saccheri quadrilaterals are all rectangles. But rectangles do not
exist in hyperbolic geometry (Lemma 6.1). This contradiction
shows that A, B, and C cannot be equidistant from /. l

The theorem states that af most two points at a time on / can be
equidistant from /. It allows the possibility that there are pairs of
points (A, B), (C,D), . . . on/such that each pair is equidistant from
/' —thus, dropping perpendiculars, AA’ = BB’ and CC’ = DD, but
AA’ is not congruent to CC’. A diagram for this might be Figure 6.6,
which suggests that the point “in the middle’ of /is closest to //, with /
moving away from // symmetrically on either side of this middle point.
We will prove that this is indeed the case (Theorems 6.4 and 6.5 and
Exercises 4 and 10).

Note, however, that Theorem 6.3 allows another possibility, that
there is no pair of points on /equidistant from /! An diagram for this
might be Figure 6.7, where the points on / are at varying distances
from /; / moves away from /' in one direction and approaches / in the
other direction without ever meeting it. Thus, different pairs of paral-
lel lines need not resemble each other — some may look like the first
diagram, some like the second.

THEOREM 6.4. In hyperbolic geometry if /and /' are parallel lines for
which there exists a pair of points A and B on /equidistant from 7, then
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FIGURE 6.7 BB’ > AA’.

/and / have a common perpendicular segment that is also the shortest
segment between /and /.

Proof:

Suppose A and B on /are equidistant from /. Then CJA’B’BA is a
Saccheri quadrilateral, where A’ and B’ are the feet on / of the
perpendiculars from A and B. Let M be the midpoint of AB and M’
the midpoint of A’B’ (Proposition 4.3; see Figure 6.8). The
theorem will follow from the next lemma. l

LEMMA 6.2. The segment joining the midpoints of the base and
summit of a Saccheri quadrilateral is perpendicular to both the base
and the summit, and this segment is shorter than the sides (see Figure
6.8).

Proof:

We know that <A =<B (Exercise 1, Chapter 5). Hence,
AA’AM = AB’BM (SAS). Therefore, the corresponding sides
A’M and B’M are congruent. This implies AA’'M’M = AB’'M’M
(SSS). Therefore, the corresponding angles <A’M’M and
<B’M'M are congruent. Since these are supplementary angles,
they must be right angles, proving MM’ perpendicular to the base

FIGURE 6.8 A’ M’ B’
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A M
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A’ M’

FIGURE 6.9

A’B’. From the two pairs of congruent triangles, we also have
SA’MM’ = {B’MM’ and <A’MA = {B’MB. Adding the degrees
of these angles, we have (XAMM’)° = (XABMM’)° (Theorem
4.3(3)),i.e., the supplementary angles YAMM’ and {BMM’ have
the same number of degrees. Hence, they are right angles and MM’
is also perpendicular to the summit AB.

Consider next quadrilateral CJA’M’MA (Figure 6.9). It has
three right angles, so it is what we call a Lambert quadrilateral
(Exercise 4, Chapter 5). In hyperbolic geometry the fourth angle
must be acute, since rectangles do not exist (Lemma 6.1). You
showed in Exercise 4(c), Chapter 5, that AA’ > MM/, i.e., that
MM’ is shorter than AA’. The remainder of the proof that MM’
is shorter than any other segment between /and / is left for Exer-
cise 3. W

THEOREM 6.5. In hyperbolic geometry if lines /and / have a common
perpendicular segment MM’, then they are parallel and MM’ is
unique. Moreover, if A and B are any points on / such that M is the
midpoint of segment AB, then A and B are equidistant from /.

Proof:

The fact that /and / are parallel follows from the first corollary to
the alternate interior angle theorem (Theorem 4.1). If /and / had
another common perpendicular segment NN’, then OM’N’NM
would be a rectangle, which cannot exist (Lemma 6.1). Suppose
now that M is the midpoint of AB. Drop perpendiculars AA’ and
BB’ to /. We must prove that AA’ = BB’. (See Figure 6.10.) First,
AAM’M = ABM’'M  (SAS), AM’'=BM’, and <SAM'M=
<BM’'M. Therefore, (XYA'M’A)° =90° — (KAM'M)° =90° —
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(XBM'M)° = ({B’'M’B)° (by Theorem 4.3) so that <A'M’A =
4B’M’B. Hence, AAA’M’= ABB’M’ (AAS), so that the
corresponding sides AA’” and BB’ are congruent. ll

LIMITING PARALLEL RAYS

Theorems 6.4 and 6.5 and Exercises 4 and 10 give us a good under-
standing of the first type of parallel lines. We know that such lines
actually exist from the usual construction: start with any line /and any
point P not on it (Figure 6.11). Drop perpendicular PQ to /and let
m be the perpendicular through P to PQ. Then 7 and / have the
common perpendicular segment PQ. Pairs of points on m situated
symmetrically about PQ are equidistant from / By the universal hyper-
bolic theorem, there exist other lines 7 through P parallel to / We can-
not yet say that any such 7 is the second type of parallel, for 7 and /might
have a common perpendicular going through a point other than P.
How then do we know that parallels of the second type exist? Here
the axioms of continuity come in. The following is the intuitive idea
(see Figure 6.12). Consider one ray PS of m, and consider various rays
between PS and PQ. Some of these rays, such as l?ﬁ, will intersect 4
others, such as W, will not. A continuity argument shows that as R
recedes endlessly on /from Q, PR will approach a certain limiting ray

P

- m

———

FIGURE 6.11 Q
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FIGURE6.12 N

PX that does 7of meet /. The ray PX is “limiting”” in the following
precise sense: any ray between §§ and P_Q intersects /, whereas any
other ray PY such that PX is between PY and 136 does not intersect /.
The ray PX may be called the /eft /imiting paralle/ ray to / through P.
%nilarly, there is a right /imiting parallel ray on the opposite side of
PQ.

THEOREM 6.6. For every line /and every point P not on / let Q be the
foot of the pcrpcndicular_ﬁrom P to / Then there are two unique
nonopposite rays PX and PX’ on opposite sides of 136 thatdo not meet
/ and have the property that a ray emanating from P meets / if and
only if it is between PX and PX’. Moreover, these limiting rays are
situated symmetrically about 136 in the sense that IXPQ = <X'PQ.

Proof:
To prove rigorously that PX exists, consider the line §6 (Figure
6.12). Let 2, be the set of all points T on segment SQ such that
meets /, together with all points on the ray opposite to QS; let 2, be
the complement of 3, (so Q € X, and S € 3,). By the crossbar
theorem (Chapter 3), if point T on segment SQ belongs to 3, , then
the entire segment TQ (in fact, TQ) is contained in 3. Hence,
(2,, 3,) is a Dedekind cut. By Dedekind’s axiom (Chapter 3),
there is a unique point X on 56 such that for P, and P, on
SO, P, * X # P, ifandonlyif X # P, or P,,P, €3,,and P, € 3,.
By definition of 3, and X,, rays below I& all meet / and rays
above PX do not. We claim that PX does not meet /either. Assume
on the contrary that PX meets /in point U (Figure 6.13). Choose
any point V on /to the leftof U, i.e., V * U * Q (Axiom B-2). Since
Vand U are on the same side of é@ (Exercise 9, Chapter 3), Vand P
are on opposite sides, so VP meets SQ in a point Y. We have
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Y * X * Q (Proposition 3.7),s0 Y € 3,, contradicting the fact that
PY meets /. It follows that PX is the left limiting parallel ray (we
obtain the right limiting parallel ray in a similar manner).

To prove symmetry, assume on the contrary that angles <XPQ
and XX'PQ are not congruent, e.g., (SXPQ)° < (<X'PQ)°. By
Axiom C-4, there is a ray between PX’ and P_é that intersects / (by
definition of limiting ray) in a point R’ such that <R’PQ = {XPQ
(Figure 6.14). Let R be the point on the opposite side of 156 from
R’ such that R* Q * R’ and RQ =R’Q (Axiom C-1). Then
ARPQ = AR’PQ (SAS). Hence, <RPQ = <R’PQ, and by transi-
tivity (Axiom C-5), <RPQ = {XPQ. But this is impossible, be-
cause PR is between PX and P_Q (Axiom C-4). B

Either of the congruent angles <XPQ and 4<X’PQ is called (by an
abuse of language) the angle of parallelism at point P with respect to /.
Its degree measure is usually denoted IT(PQ)°. Note that
IT(PQ)° <90°, for IT(PQ)° = 90° would contradict the universal
hyperbolic theorem (see Exercise 7(a)). It can be shown that as P
varies, I1(PQ)° takes on all possible values between 0° and 90° (see
Major Exercise 9). One of the greatest discoveries by J. Bolyai and
Lobachevsky is their formula for this number of degrees (see

FIGURE 6.14
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FIGURE6.13

Theorem 10.2 in Chapter 10). A natural unit segment Ol in hyperbolic
geometry is any segment Ol such that IT(OI)° = 45°. Major Exercise
5 shows that all such segments are congruent to each other.

We have proved the existence of limiting parallel rays by a continu-
ity argument conforming to today’s standards of rigor. Gauss, J. Bolyai,
and Lobachevsky took this existence for granted, but J. Bolyai discov-
ered a simple straightedge-and-compass construction for the limiting
rays. Let Q be the foot of the perpendicular from P to /, m the line
through P perpendicular to PQ, R any point on /different from Q, and
S the foot of the perpendicular from R to m (Figure 6.15). Then
PR > QR (Exercise 3) and PS < QR (Exercise 4(c), Chapter 5, on
Lambert quadrilaterals). By the elementary continuity principle, a
compass with center P and radius congruent to QR will intersect
segment SR in a unique point X between S and R. It can be proved
that PX is the right limiting parallel ray to /through P! (‘The proof is
complicated. See p. 269 in Chapter 7, Project 4 in this chapter, or
Theorem 10.9, Chapter 10.)

CLASSIFICATION OF PARALLELS

We have discussed two types of parallels to a given /. The first type
consists of parallels m such that /and 7 have a common perpendicular;
m diverges from / on both sides of the common perpendicular. The
second type consists of parallels that approach /asymptotically in one
direction (i.e., they contain a limiting parallel ray in that direction)
and which diverge from /in the other direction. If 7 is the second type
of parallel, Exercises 7 and 8 show that /and 7 do not have a common
perpendicular. We have implied that these two are the only types of
parallels, and this is the content of the next theorem.
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THEOREM 6.7. Given m parallel to / such that 7 does not contain a
limiting parallel ray to /in either direction. Then there exists a com-
mon perpendicular to m and / (which is unique by Theorem 6.5).

This theorem is proved by Borsuk and Szmielew (1960, p. 291) by
a continuity argument, but their proof gives you no idea of how to
actually find the common perpendicular. There is an easy way to find
it in the Klein and Poincaré models, discussed in the next chapter.
Hilbert gave a direct construction, which we will sketch. (Project 1
gives another.)

Proof:

Hilbert’s idea is to find two points H and K on /that are equidistant
from m, for once these are found, the perpendicular bisector of
segment HK is also perpendicular to 7 (see Lemma 6.2). Choose
any two points A and B on / and suppose that the perpendicular
segment AA’ from A to m is longer than the perpendicular segment
BB’ from B to m. (See Figure 6.16.) Let E be the point between A’
and A such that A’E = B’B. On the same side of AA” as B, let EE be
the unique ray such that XA’EF = <B’BG, where A * B * G. The
key point that will be proved in Major Exercises 2-6 is that E
intersects AG in a point H. Let K be the unique point on BG such
that EH = BK. Drop perpendiculars HE' and KK’ to m. The up-
shot of these constructions is that COEHH’A’ is congruent to
OBKK’B’ (just divide them into triangles). Hence, the correspond-
ing sides HH’ and KK’ are congruent, so that the points Hand Kon /
are equidistant from m, as required. l

To sum up, given a point P not on /, there exist exactly two limiting
parallel rays to /through P, one in each direction. There are infinitely
many lines through P that do not enter the region between the limiting

I A
G
B F
E Z H K
m i —-

FIGURE 6.16 A’ B’ H’ K’
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rays and /. Each such line is divergently parallel to / and admits a
unique common perpendicular with / (for one of these lines the com-
mon perpendicular will go through P, but for all the rest the common
perpendicular will pass through other points).

A Note on Terminology. In most books on hyperbolic geom-
etry the word “parallel” is used only for lines that contain limiting
parallel rays in our sense. The other lines, which admit a common
perpendicular, have various names in the literature: “nonintersect-
ing,” “ultraparallel,” “hyperparallel,” and “‘superparallel.” We will
continue to use the word “parallel” to mean ‘“‘nonintersecting.” A
parallel to / that contains a limiting parallel ray to / will be called an
asymptotic parallel, and a parallel to /that admits a common perpendic-
ular to /will be called a drvergently parallel line. Rays that are limiting
parallel will be denoted by a brace in diagrams (see Figure 6.17).

STRANGE NEW UNIVERSE?

In this chapter we have only begun to investigate the “‘strange new
universe” of hyperbolic geometry. You can develop more of this ge-
ometry by doing the exercises, reading Chapter 10, and examining
works in the bibliography at the end of the book. You will encounter
new entities such as asymptotic triangles, ideal and ultra-ideal points,
equidistant curves, horocycles, and pseudospheres.

If you consider this geometry too ‘‘far out” to pursue, you are in for
a surprise. We will see in the next chapter that if the undefined terms
of hyperbolic geometry are suitably interpreted, hyperbolic geometry
can be considered a part of Euclidean geometry!
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Meanwhile, notice how we have deepened our understanding of
the role of the parallel postulate Pin Euclidean geometry. Any state-
ment §'in the language of our geometry that is a theorem in Euclidean
geometry (P=>§) and whose negation is a theorem in hyperbolic
geometry (~P=>~S§) is equivalent (in neutral geometry) to the
parallel postulate (by Logic Rule 9(c)). For example, by Exercise 14,
Chapter 5, “The angle sum of every triangle is 180°” is such a
statement. By Exercise 12 in this chapter, “Every triangle has a cir-
cumscribed circle” is another such statement. By Theorem 5.1,
“Every point interior to an acute angle lies on a line intersecting both
sides of the angle in two distinct points” is a third such statement. I
leave the enjoyment of providing a long list of such statements to you
(Exercise 15). I urge your instructor to give a prize to the student(s)
with the longest list.

REVIEW EXERCISE

Which of the following statements are correct?

(1) The negation of Hilbert’s parallel postulate states that for every line /
and every point P not on / there exist at least two lines through P
parallel to /.

(2) Itisatheorem in neutral geometry that if lines /and # meet on a given
side of a transversal ¢, then the sum of the degrees of the interior angles
on that given side of 7 is less than 180°.

(3) Gauss began working on non-Euclidean geometry when he was 15
years old.

(4) The philosopher Kant taught that our minds could not conceive of any
geometry other than Euclidean geometry.

(5) The first mathematician to publish an account of hyperbolic geometry
was the Russian Lobachevsky.

(6) The crossbar theorem asserts that a ray emanating from a vertex A of
AABC and interior to XA must intersect the opposite side BC of the
triangle.

(7) Itis a theorem in hyperbolic geometry that for any segment AB there
exists a square having AB as one of its sides.

(8) Every Saccheri quadrilateral is a convex quadrilateral.

(9) In hyperbolic geometry if AABC and ADEF are equilateral triangles
and XA = 4D, then the triangles are congruent.
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(10) In hyperbolic geometry, given a line /and a fixed segment AB, the set
of all points on a given side of / whose perpendicular segment to / is
congruent to AB equals the set of points on a line parallel to /

(11) In hyperbolic geometry any two parallel lines have a common perpen-
dicular.

(12) In hyperbolic geometry the fourth angle of a Lambert quadrilateral is
obtuse.

(13) In hyperbolic geometry some triangles have angle sum less than 180°
and some triangles have angle sum equal to 180°.

(14) Inhyperbolic geometry if point P is not on line /and Q is the foot of the
perpendicular from P to /, then the angle of parallelism for P with
respect to /is the angle that a limiting parallel ray to /emanating from P
makes with PQ.

(15) J. Bolyai showed how to construct limiting parallel rays using the
elementary continuity principle instead of Dedekind’s axiom.

(16) In hyperbolic geometry if /|| m, then there exist three points on m that
are equidistant from /

(17) Inhyperbolic geometry if mis any line parallel to /, then there exist two
points on m which are equidistant from /.

(18) Inhyperbolic geometry if P is a point not lying on line /, then there are
exactly two lines through P parallel to /

(19) Inhyperbolic geometry if P is a point not lying on line /, then there are
exactly two lines through P perpendicular to /

(20) In hyperbolic geometry if /||m and m|| n, then /|| # (transitivity of
parallelism).

(21) In hyperbolic geometry if 7 contains a limiting parallel ray to /, then /
and m have a common perpendicular.

(22) In hyperbolic geometry if /and m have a common perpendicular, then
there is one point on m that is closer to / than any other point on m.

(23) Inhyperbolic geometry if m does not contain a limiting parallel ray to /
and if m and / have no common perpendicular, then m intersects /.

(24) In hyperbolic geometry the summit angles of a Saccheri quadrilateral
are right angles.

(25) Every valid theorem of neutral geometry is also valid in hyperbolic
geometry.

(26) In hyperbolic geometry opposite angles of any parallelogram are con-
gruent to each other.

(27) In hyperbolic geometry opposite sides of any parallelogram are con-
gruent to each other.

(28) In hyperbolic geometry, let <P be any acute angle, let X be any point
on one side of this angle, and let Y be the foot of the perpendicular from
X to the other side. If X recedes endlessly from P along its side, then Y
will recede endlessly from P along its side.
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(29) In hyperbolic geometry if three points are not collinear, there is always
a circle that passes through them.

(30) Inhyperbolic geometry there exists an angle and there exists a line that
lies entirely within the interior of this angle.

EXERCISES

The following are exercises in hyperbolic geometry. You are to as-
sume the hyberbolic axiom and you can use the theorems presented in
this chapter as well as any theorems of neutral geometry. However, do
not use the Euclidean theorems stated in either Exercises 18-26 or
the Major Exercises of Chapter 5. (We can now assert that the theor-
ems of neutral geometry are exactly those statements that are valid in
both hyperbolic geometry and Euclidean geometry.)

1. Prove that if OA’B’BA is a Saccheri quadrilateral (XA’ and <B’ are
right angles and AA’ = BB’), then the summit AB is greater than the
base A’B’. (Hint: Join the midpoints M and M’ and apply Exercise 4,
Chapter 5, to the Lambert quadrilaterals JA’M’MA and COM’B’BM.)

2. Suppose that lines /and /" have a common perpendicular MM’ Let A
and B be points on / such that M is nor the midpoint of segment AB.
Prove that A and B are not equidistant from /.

3. Assume that the parallel lines / and /* have a common perpendicular
segment MM’. Prove that MM’ is the shortest segment between any
point of /and any point of /. (Hint: In showing MM’ < AA’; first dispose of
the case in which AA’ is perpendicular to / by means of Exercise 4, Chapter
5, and take care of the other case by Exercise 27, Chapter 4.)

4. Again, assume that MM’ is the common perpendicular segment be-
tween /and /. Let A and B be any points of /such that M * A * B, and
drop perpendiculars AA’ and BB’ to /. Prove that AA’ < BB’. (Hint:
Use Exercise 3, Chapter 5; see Figure 6.18.)

FIGURE 6.18
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5. We have seen that in hyperbolic geometry the defect of any triangle is
positive (Theorem 6.1). In Euclidean geometry all triangles have the
same defect, namely, zero. In hyperbolic geometry could all triangles
have the same defect? Assume that they do and use the additivity of the
defect (Theorem 4.6) to derive a contradiction. Is there an upper bound
for the defect of a triangle?

6. Given parallel lines /and m. Given points A and B that lie on the opposite
side of 7 from 4 i.e., for any point P on /, A and P are on opposite sides of
m and B and P are on opposite sides of 7. Prove that A and B lie on the
same side of /.

7. (a) Prove that the angle of parallelism is acute by showing precisely
how “IT(PQ)° = 90°” implies that there is a unique parallel to /
thrmﬂl P, contradicting the universal hyperbolic theorem.

(b) Let PY be a limiting parallel ray to / through P, and let X be a
point on this ray between P and Y (Figure 6.19). It may seem
intuitively obvious that XY is a limiting parallel ray to / through X,
but this requires proof. Justify the steps that have not been justi-
fied.

Proof: — - N

(1) We must prove that any ray XS between XY and XR meets /, where
Ris the foot of the perpendicular from X to / (2) S and Y are on the same
side of XR. (3) P and Y are on opposite sides of XR. (4) By Exercise 6,
Sand Y are on the same side of f)_é (5) S and R are on the same side
of XY = PY. (6) Q‘a_r:d R are on thc_s)amc side of PY. (_7)) Q and_S) are on
the same side of PY. (8) Thus, PS lies between PY and PQ, so it
intersects /in a point T. (9) Point X is exterior to APQT. (10) XS does

nqtintersect PQ. (11) Hence XS intersects QT (Proposition 3.9(a)), so
XS meets /. W

FIGURE 6.19
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FIGURE 6.20

(c) Let us assume instead that XY is limiting parallel to /, with
P * X * Y. Prove that PY is limiting parallel to / (Hint: See Figure
6.20. You must show that PZ meets /in g point V. Choose any S
such that S * P * Z_ Show that SX meets PQ in 2 point U such that
U*xP*Q. qloosc axly)W such thatU * X * W, and show that XW
is between XY and XR so that XW meets / in a point T. Apply
Pasch’s theorem to get V.)

8. Let PX be the right limiting parallel ray to /through P, and let Q and X’
be the feet of the perpendiculars from P and X, respectively, to / (Figure
6.21). Prove that PQ > XX'. (Hint: Use Exercise 7 to show that <X’XY
is acute and that <X"XP is obtuse, so that Exercise 3, Chapter 5, can be
applied to OPQX’X.) This exercise shows that the distance from X to /
decreases as X recedes from P along a limiting parallel ray. In fact, one
can prove that the distance from X to / approaches zero (see Major
Exercise 11).

9. Let AABC be any triangle, and let L., M, and N be the midpoints of BC,
AB, and AC, respectively. Prove that AAMN is #of similar to AABC.
(See Figure 6.22.) (Hint: Otherwise defect JMBCN = 0.) Prove that
MN is nor congruent to BL. by assuming the contrary and deducing that
AABC has angle sum 180°. (Hint: Choose D such that M * N * D and
ND = MN. Show that AANM = ACND, then that AMDC = ACBM.
Substitute appropriately in the equation 180° = (XBMC)°® +
(XCMD)° + (XAMN)° to get the resule.)

FIGURE 6.21
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FIGURE 6.22 B

10. Assume that the parallel lines /and / have a common perpendicular 136
For any point X on /, let X’ be the foot of the perpendicular from X to /.
Prove thatas X recedes endlessly from P on /, the segment XX’ increases
indefinitely; see Figure 6.23. (Hint: We saw that it increases in Exercise
4. Drop a perpendicular XY to the limiting pagallel ray between PX and
PX’. Use the crossbar theorem to show that PY intersects XX’ in a point
Z. Use Proposition 4.5 to show that XZ = XY. Conclude by applying
Exercise 6, Chapter 5, to show that XY increases indefinitely as X
recedes from P.)

11. 'This problem has five parts. In the first part we will construct a Saccheri
quadrilateral associated to any triangle; we will then apply this con-
struction.

(a) Given AABC, let 1, ], and K be the midpoints of BC, CA, and AB,
respectively. Drop perpendiculars AD, BE, and CF from the ver-
tices to I]. Prove that AD = CF = BE, and, hence, that CJEDAB isa
Saccheri quadrilateral (with the same area as AABC). (See Figure
6.24.)

(b) Prove that the perpendicular bisector of AB (i.e., the perpendjcu-
lar through K) is also perpendicular to IJ, and, hence, that IJ is

divergently parallel to ;\_ﬁ
(¢} Recall that we denote the length of a segment by a bar; e.g., the

S
- nl n -
FIGURE 6.23 Q X’
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12.

13.

length of MN is MN (Theorem 4.3B). Prove that IJ =4ED (a
separate argument is needed in case <A or <B is obtuse and the
diagram is different). Deduce that in hyperbolic geometry
IJ <3AB.

(d) Suppose now that <C is a right angle. Prove that the Pythagorean
theorem does not hold in hyperbolic geometry. (Hint: If the
theorem were valid for right triangles ABCA and AIC], then
IJ = $AB could be proved, contradicting part (c) of this exercise.)

(e) Suppose instead that AC = BC. Prove that K, F, and C are collinear
but F is not the midpoint of CK (use Lemma 6.2 and part (a) of this
exercise). For application of this result to mechanics, see Adler
(1966), pp. 192 and 253-257.

In Exercise 9, Chapter 5, we saw the elder Bolyai’s false proof of the

parallel postulate. The flaw in his argument was the assumption that

every triangle has a circumscribed circle, i.e., that there is a circle passing
through the three vertices of the triangle. The idea of the Euclidean
proof of this assumption is to show that the perpendicular bisectors of
the sides of the triangle meet in a point, and that this point is the center
of the circumscribed circle. Figure out how Euclid’s fifth postulate is

used to prove that two of the perpendicular bisectors / and m have a

common point (use Proposition 4.10) and then argue by congruent

triangles to prove that the third perpendicular bisector passes through
that point and that the point is equidistant from the three vertices.

(Hint: Join the common point D to the midpoint N of the third side, and

prove that DN is perpendicular to the third side; see Figure 6.25.)

Part of the argument in Exercise 12 works for hyperbolic geometry; that

is, 7f two of the perpendicular bisectors have a common point, then the

third perpendicular bisector also passes through that point. In hyperbo-
lic geometry there will be triangles for which two of the perpendicular
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FIGURE 6.25

bisectors are parallel (otherwise the elder Bolyai’s proof would be
correct). Moreover, these perpendicular bisectors can be parallel in two
different ways. Suppose that they are divergently parallel; that is, sup-
pose that the perpendicular bisectors /and m have a common perpendic-
ular # (see Figure 6.26). Prove that the third perpendicular bisector 7 is
also perpendicular to 2. (Hint: Let A’, B/, and C’ be the feet on £ of the
perpendiculars dropped from A, B, and C, respectively. Let /bisect AB
at L. and be perpendicular to 7 at L’, and let m bisect BC at M and be
perpendicular to # at M’. Let N be the midpoint of AC. Show by
Theorem 6.5 that AA’ = BB’ and CC’ = BB’. Hence, OOC’A’AC is a
Saccheri quadrilateral with N the midpoint of its summit AC. If N is the
midpoint of the base A’C’, use Lemma 6.2 to show that » = NN’ is

FIGURE 6.26
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FIGURE 8.27

14.

15.

16.

17.

perpendicular to # and 1(\_(5; see Major Exercise 7 for the asymptotically
parallel case.)

In Theorem 4.1 it was proved in neutral geometry that if alternate
interior angles are congruent, then the lines are parallel. Strengthen this
result in hyperbolic geometry by proving that the lines are divergently
paralle], i.e., that they have a common perpendicular. (Hint: Let M be
the midpoint of transversal segment PQ and drop perpendiculars MN
and ML to lines m and / see Figure 6.27. Prove that L, M, and N are
collinear by the method of congruent triangles.)

Make a long list of statements equivalent in neutral geometry to Hilbert's
parallel postulate. 'This list is a reward for all the work you have done.

Alchough the circumscribed circle may not exist for some triangles in
hyperbolic geometry, prove that the inscribed circle always exists.
(Hint: Verify that the usual Euclidean proof —that the angle bisectors
meet in a point equidistant from the sides — still works. Use the crossbar
theorem.)

Comment on the following injunction by Saint Augustine: “The good
Christian should beware of mathematicians and all those who make
empty prophesies. The danger already exists that the mathematicians
have made a covenant with the devil to darken the spirit and to confine
man in the bonds of Hell.”

MAJOR EXERCISES

1.

Let A, D be points on the same side of line 1(3_(5 such that 1(37\ Il ((,‘._[’);)Thcn
the figure consisting of segment BC (called the éase) and rays BA and
CD (called the sides) is called the biangle [ABCD with vertices B and C
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FIGURE 6.28 c D =

(see Figure 6.28). The interior of [ABCD is the intersection of the
interiors of its angles XABC and <DCB; if P lies in the interior gnd X is
either vertex, ray XP is called an intersor ray. We write BA| CD when
these rays are sides _of a biangle and when every in_t,crior ray emanating
from | B intersects CD; in that case, we say that BA is smiting paralle/
to CD, generalizing the previous definition which required XDCB to
be a right a%lc, and we say that the biangle [ABCD is c/osed at B.
Given EMCD, prove the following _§cncralization of Exercise 7: If
P*B*Aorif B*P *A, then PA|CD.
— — — —>

2. Symmetry of limiting parallelism. If BA | CD, then CD | BA. (In that case
we say simply that biangle [ABCD is c/osed.) Justify the unjustified steps
in the proof (see Figure 6.29).

Proof:

(1) Agsume that [ABCD is not closed at C. (2) Then some interior
ray CE does not intersect BA. (3) Point E, which so far is just a label,
can be chosen so that {BEC < <ECD, by the important corollary to
Aristotle’s axiom, Chapter 3. (4) Segment BE does not intersect CD.
(5) Interior ray BE intersects CD in a point F,and B * E * F. (6) Since
<BEC is an exterior angle for AEFC, XBEC > <ECF. (7) Contradic-
tion. (I am indebted to George E. Martin for this simple proof.) Il

3. Trangitivity of limiting parallelism. 1f AB and CD are both limiting parallel
to EF, then they are limiting parallel to each other. Justify the steps in
the proof. (See Figure 6.30.)

p U
>

FIGURE 6.29 c ~ \\D
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Proof:

(1) AB and CD have no point in common. (%) Henge, therg are two
cases, depending on whether E EF is berween ABand CD or AB and CD
are both on the same side of EF.. (3) Ingase EF is between AB and CD
let G be the intersection of AC with EF. We may assume G lies on ray
EF; otherwise we, can consider GF. (_ﬂ Any ray AH interior to XGAB
must intersect EF in a point 1. (5) IH, lying interior to XCIF, must
intersect CD. (6) Hence, any ray AH interior to < CAB must intersect
CD so AB is limiting parallel to CD. B

Step (7) is the following sublemma. That this requires such a long
proof was overlooked even by Gauss. The proof (for which am indebted
to Edwin E. Moise) uses our hypotheses of limiting parallelism. If we
had made the weaker hypothesis of just parallel lines, the sublemma
would not follow, as you will show in Exercise K-2(c) of Chapter 7.

SUBLEMMA.  If AB and CD are both on 1 the samg side of Iﬁ:', we may
assume that CD, for example, is between AB and EF (see Figure 6.31).

FIGURE 6.31
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FIGURE 6.32

Proof of Sublemma:

1) It suffices to prove there is a line transversal to the three rays A AB
CD, EF (2) In case A and E are on the same side of EC then ray EA is
interior to <E. (3) Then EA intersects CD, by symmetry. (4) So EAis
our transversal. (5) In case A and F are on opposite sides of EC, let G be
the point at which AF meets EC. (6) Choosing H such thatE * F * H,
we have FH | AB. (7) <HFG > 4E. (8) Therefore there is a ray Fl
interior to XHEA = <HFG sych that {HFA = {E. (9) FImeets AB at
a point J. (10) FJ||EC. (11) EC inggrsects side AF and does not inter-
sect side F] of AAF]. (12) Hence EC intersects AJ and is our transver-

sal.

Conclusion of Proof (see Fzgure 6.32):

(8) Then AE intersects CDina point G, which we may assume lies on
ray CD. (9) Anyray AH interior to XGAB intersects EFina pointI. (10)
Since CD enters AAEI at G and does not intersect side El, it must
intersect Al. (11) Therefore, CDis limiting parallel to AB. Il
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Neote 1. The last four steps did not use the hypothesis that CD | ETF)‘;
they therefore prove that any /ine between two asymptotically paralle! lines
is asymptotically parallel to both and in the same direction.

Note 2. Given rays rand s, define 7 ~ s to mean that either 7 C s or
s C ror r}s. Major Exercises 1-3 show that this is an equivalence
relation among rays. An equivalence class of rays is called an sdea/ point,
or an end, and we adopt the convention that it lies on all (and only those)
lines containing the rays making up the class. Since a point on a line
breaks the line into two opposite rays and opposite rays are not equiva-
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lent, we see that every /line has two ends lying on it. The set of all ideal
points was named by Cayley t4e absolute. (This is the beginning of
constructing a hyperbolic analogue of the projective completion of an
affine plane described in Chapter 2; we continue the construction in
Major Exercise 13. The absolute is analogous to the line at infinity of the
affine plane, but the absolute could not be a new line, because it inter-
sects each old line in two points; it will turn out to be a conic in the
projective completion.)

If R, S are the vertices of r, 5, where r|s, and Q is the ideal point
determined by these rays, we write 7 = PQ and s = SQ and refer to the
closed biangle with sides r, s as the singly asymptotic triangle ARSQ. The
next two exercises show that these triangles have some properties in
common with ordinary triangles. (You can similarly define as an exercise
doubly (two ideal points) and ¢riply (three ideal points) asymptotic trian-
gles.)

4. Exterior angle theorem. If APQQ is a singly asymptotic triangle, the
exterior angles at P and Q are greater than their respective opposite
interior angles. Justify the steps in the proof.

Proof (see Figure 6.33):

(1) GivenR * Q * P. We must show that {RQQ is geater than LQPQ.
(2) Let QD be the umquc ray on the same side of PQ as ray QQ such
that <RQD "'(jQPQ 3) If U * Q * D, then <UQP = QPQ. (4) B
Exercise 14, QD is divergently parallel to PQ. (5) Hence, QD is bc-
tween QR and Q_b (6) <RQQ > XQPQ. W

5. Congruence theorem. If in asymptotic triangles AABQ and AA’B’QY’ we
have ¥BAQ = <B’A’QY’, then XABQ = XA’B’Q’ if and only if

FIGURE 6.33
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D’

B - B’ -
FIGURE 6.34

AB = A’B’. Justify the steps in the proof and deduce as a corollary that
PQ = P’Q’ if and only if II(PQ)° =TI(P'Q’)".

Proof (see Figure 6.34):

(1) Assume AB = A’B’ apd on the contrary YABQ > SA'B'QY". (2)
There is a unique ray BC between BQ and BA such that ¥ABC =
<XA'B’Q’. (3) BC intersects AQ in a point D. (4) Let D’ be the uni-
que point on A’€) such that AD = A’D’. (5) Then ABAD = AB’A’D’.
(6) Hence, XA’B’D’ = {A’B’CQY’, which is absurd. (7) Assume con-
versely that XABQ = <A’B’Q)’ and on the contrary A’'B’ < AB. (8) Let
C be the point on AB such that BC = B’A’, and let CQ) be the ray from C
limiting parallel to AQ (see Figure 6.35). (9) Then CQ is also limiting
parallel to BQ. (10) By the first part of the proof, <BCQ = {B’'A’QY’;
hence, {BCQ = «BAQ. (11) But {BCQ > {BAQ, which is a contra-
diction. H

6. Conclusion of the proof of theorem 6.7. We wish to show that EF intersects
AG (see Figure 6.36). Justify the steps in the proof.

Pmof: ~—> ~> —> —

(1) Let A’M be limiting parallel to EF, A’N limiting parallel to AG, and
—> —>

B’P limiting parallel to BG. (2) Since EA’ = BB’ and XA’EF = {B’BG,

A
7\ A’
C ——
Q Q
4 B -

B\ .

FIGURE 6.35
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FIGURE 6.36

—>

we have KEA'M = <BB'P. (3) B'L differs from B'P and AL, differs
from A’N. (4) ¥MA’L = 4PB’L. (5) B'P is limiting parallel to A’N. (6)
Hence, <)Z§)A’L is _s)mallcr than ¥<PB’L. (_7_2 It follows that A’M lies
between AN and A’A, so it must intersect AG in a point J. (8) Jis on the
same side of E(E,as A’; hence, it is on the side opposite from A. (9) Thus,

A] intersects EE in a point H, which must be on EF because H is on the
same side of AA’ as]. B

Where was the hypothesis of this theorem used?

7. In Exercises 12 and 13 we considered the perpendicular bisectors of the
sides of AABC and we showed that (1) if two of them have a common
point, the third passes through that point; (2) if two of them have a
common perpendicular, the third has that same perpendicular. It fol-
lows that if two of them are asymptotically parallel, then any two of them
are asymptotically parallel. This result can be strengthened as follows: if
perpendicular bisectors /and m are asymptotically parallel in the direc-
tion of ideal point €2, then the third perpendicular bisector 7 is asympto-
tically parallel to / and m in the same direction Q. Give the proof and
justify each step. The proof is based on the following two lemmas:

LEMMA 6.3. Given AABC. Let /, m, and » be the perpendicular
bisectors of sides AB, BC, and AC at their midpoints L, M, and N,
respectively. Let AC = AB and AC 2 BC (AC is the longest side).
Then /, m, and # all intersect AC.

Proof:

(1) (¥B)° = (XA)° and (¥B)° = (XC)°. (2) Hence, there isa point L’
on AC such that XA = <L’BA, and a point M’ on AC such that <C =
IM’BC. (See Figure 6.37.) (3) Then AL’ = BL’ and CM’ = BM". (4)
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A
FIGURE 6.37

Thus, /is the line joining L to L” and m = I\:ﬁ:d’. (5) It follows thar all
three perpendicular bisectors cut AC. ll

LEMMA 6.4. No line intersects all three sides of a trebly asymptotic
triangle.

Proof:

(1) Suppose that a line £ cuts /at Q and m at P. (2) Then ray l‘)_é of ¢ lies
between the rays PQ, and PQQ,, which are limiting parallel to / (See
Figure 6.38.) (3) PQ;, the other ray through P that is limiting parallel
to #, is oppogite to PL,. (4) Hence, PQ, lies between PQ and PQ,.
(5) Thus, PQ does not intersect #. (6) Similarly, QP does not inter-
sect . A

8. Given any angle €A’OA. It is a theorem in hyperbolic geometry that
there is a unique line /called the {ne of enclosure of this angle such that/is
limiting parallel to both sides OA’ and OA. Only the idea of the proof is
given here; see if you can fill in the details (Wolfe, 1945, p. 97):

Assume that A and A’ are chosen so that OA = OA’ (see Figure
6.39). Let A’Q be the limiting parallel ray to OA through A’, and AZ the

FIGURE 6.38
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Al A

FIGURE 6.39

limiting parallel ray to O_A’ through A. Let the rays 7 and 7’ be the
bisectors of L{ZAL and LQA’3, respectively. The idea of the proof is to
show that the lines m and m’ containing these rays are neither intersect-
ing nor asymptotically parallel, so that, by Theorem 6.7, they have a
unique common perpendicular /that turns out to be the line of enclosure
of LA’OA. (See also Exercise K-11, Chapter 7; the advantage of this
complicated proof is that it yields a straightedge-and-compass construc-
tion.)

9. Use the result of the previous exercise to prove that every acute angle is
an angle of parallelism, i.e., given an acute angle {BOA, there
is a unique line / perpepdicular to BO and limiting parallel to
OA. (Hint: Reflect across OB.)

Alternatively, fill in the details of the following continuitl) proof
of Lobachevsky._li‘ irst show that there exist perpendiculars to OB that
fail to intersect OA by the following argument. In Figure 6.40, B is the

FIGURE .40 O B B C R
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10.

11.

foot of the perptzx)dicular from A and OB = BB’. If the perpendicular
at B’ intersects OA at A’, then

JOA’B’ = JOAB’ + JAA’B’ = 200AB + JAA’B’ > 260AB.

If we iterate this doubling along OB and the perpendicular always hits
OA, the defects of the resulting triangles will increase indefinitely. So
we must eventually arrive at a point where the perpendicular fails to
intersect OA.

Second, apply Dedekind’s axiom to obtain *“‘the first” such perpen-
dicular ray r emanating from R.

Finally, show that ] OA. For any interior raLRS let C be the foot of
the perpendicular from S; show that CS hits OA at some point D and
apply Pasch’s theorem to AOCD.

Let / and m be divergently parallel lines and let # be their common
perpendicular cutting /at Q and m at P (Figure 6.41). Let rbe aray of /
emanating from Q and s the ray of m emanating from P on the same side
of zas r. Prove that there is a unique point R on 7 such that the perpen-
dicular to /through R is limiting parallel to s. Prove also that for every
point R’ on 7such that R” * R * Q, the perpendicular to /through R’ is
divergently parallel to 7. (Hint: Use Major Exercises 3 and 9.)

Let ray 7 emanating from point P be limiting parallel to line /and let Q
be the foot of the perpendicular from P to / (Figure 6.42). Justify the
terminology “‘asymptotically parallel” by proving that for any point R
between P and Q there exists a point R’ on ray such that R’Q’ = RQ,
where Q' is the foot of the perpendicular from R’ to /. (Hint: Use Major
Exercise 3 and Theorem 6.6 to prove that the line through R that is
asymptotically parallel to /in the opposite direction from rintersects rat
a point S. Show that if T is the foot of the pcrpgxdicular from S to /, the
point R’ obtained by reflecting R across line ST is the desired point.)

Similarly, show that the lines diverge in the other direction.
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FIGURE 6.42

12.

13.

Let /and 7 be divergently parallel lines and PQ their common perpen-
dicular segment. The midpoint S of PQ is called the symmetry point of /
and . Let m be the perpendicular to PQ through S. Let £ and )’ be the
ideal points of /, and let 2 and 3’ be the ideal points of # (labeled as in
Figure 6.43). By Major Exercise 8, there are unique lines “‘joining”
these ideal points. Prove that (a) Q3 and 3’ meet at S; (b) m is
perpendicular to both Q3. and Q’>’. (Hint: Use Major Exercise 5 and
the symmetry part of Theorem 6.6.)

Projective complerion of the hyperbolic plane. The ideal points were defined
in Note 2 after Major Exercise 3. By adding them as ends to our lines, we
ensure that asymptotically parallel lines meet at an ideal point; Major
Exercise 11 shows that the lines do converge in the direction of that
common end. We need to add more “‘points at infinity” to ensure that
divergently parallel lines will meet. Two divergently parallel lines have
a unique common perpendicular £ A third line perpendicular to £ can be
considered to have “‘the same direction” as the first two, so all three
should meet at the same point, just as in the projective completion of the
Euclidean plane. We therefore define the po/e P(#) to be the set of all
lines perpendicular to £and specify that P(¢) lies on all those lines and no
others; poles of lines are called wltra-ideal points. Note that ¢+
# = P(/) # P(#) (uniqueness of the common perpendicular), unlike

Y - h )
+ ‘\\\\\\ 1] /////V?
I — -
. Sl T m )
i P D 0
H P ~—— !
*<4f’/ = \\\*=*

o Q / Q

FIGURE 6.43
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the Euclidean case. A “point” of the projective completion & is defined
to be either a point of the hyperbolic plane (called “ordinary’) or an
ideal point or an ultra-ideal point.

We also add new “lines at infinity” as follows. The polar p(A) of an
ordinary point A is the set of all poles of lines through A, and the only
points incident with p(A) are those poles; polars of ordinary points are
called w/tra-ideal lines. The polar p(€Q) of an ideal point Q consists of Q
and all poles of lines having  as an end; again, the incidence relation is
€, and p(L) is called an ideal /ine. The polar of an ultra-ideal point P(#) is
just #. A “line” of P is defined to be a polar of a point of . We have
defined incidence already. The pole of p(A) is A and of p(Q2) is Q.

THEOREM. @2 isa projective plane and p is a polarity (an isomorphism
of ? onto its dual plane).

Since the ideal points are the only points of 2 that lie on their polars,
the absolute 7 is by definition the conic determined by polarity p and
() is the tangent line to y at Q (see Project 2, Chapter 2). If Q and X
are the two ends of ordinary line ¢, then, by definition, the point of
intersection of the two tangent lines p(Q) and p(2) is P(#), which gives
geometric meaning to the rather abstract P(¢). Moreover, the interior of
y is the set of ordinary points, since every line through an ordinary point
is ordinary and intersects y twice.

Your exercise is to prove this theorem. To get you started, we show
that Axiom I-1 holds for . -

(1) Two ordinary points A, B lie on ordinary line AB and do not lie on
any “extraordinary” lines by definition of the latter.

(it} Given ordinary A and ideal €2, they are joined by the ordinary line
containing ray AQ (which exists and is unique by Theorem 6.6).

(iii) Given ideal points ) and 2, let A be any ordinary point and con-
sider the rays A3 and AQ. If these are opposite, then the line
containing them joins Q and 2; otherwise, the line of enclosure
(Major Exercise 8) of the angle determined by these coterminal
rays joins Q and 3. Uniqueness of line Q2 follows from the fact that
the angle of parallelism is acute.

(iv) Given ordinary A and ultra-ideal P(#), the line joining them is the
perpendicular to £ through A.

(v) Givenideal Q and ultra-ideal P(#). If Q lies on #, these points lie on
2(Q); by definition of incidence, they do not lie on any other
extraordinary line, and they could not lie on an ordinary line «
because # would then be both asymptotically parallel to and per-
pendicular to £ If Q does not lie on #, let A be a point on £. If ray AQ)
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is at right angles to 7, the line containing AQ joins  to P(#);
otherwise, Major Exercise 9 ensures that there is a unique line
u L rsuch that AQ is limiting parallel to # and # joins Q to P(4).

(vi) Given ultra-ideal points P(#) and P (%), # meets « either at ordinary
point A, in which case p(A) is the join, or at ideal point Q, in which
case p(QQ) is the join, or, by Theorem 6.7, at ultra-ideal point P(m),
in which case m (the common perpendicular to 7 and #) joins P(#)
and P(#%).

PROJECTS

1. Here is another construction for the common perpendicular between
divergently parallel lines /and . It suffices to locate their symmetry point
S, for a perpendicular can then be dropped from S to both lines. Take any
segment AB on /. Construct point C on /such that B is the midpoint of AC
and lay offany segment A’B’ on n congruent to AB. Let M, M/, N, and N’
b‘c_)thc midegints of AA’, BB’, BA’, and CB/, respectively. Then the lines
MM’ and NN’ are distinct and intersect at S. ( The proof follows from the
theory of glide reflections, see Exercises 21 and 22 in Chapter 9; also see
Coxeter, 1968, p. 269, where it is deduced from Hjelmslev’s midline
theorem. Beware that Coxeter’s description of midlines is partially
wrong; e.g., no midline through S cuts /and 7.)

2. M. Pieri has shown that the foundations of geometry can be built on the
single undefined term *“point’ and the single undefined relation “point A
is equidistant from points B and C.”” It is obviously possible to define ““A,
B, C are collinear” in terms of “betweenness,” namely, “A * B * C or
B * A * Cor A * C * B.” What is not obvious is that in hyperbolic geom-
etry it is possible to define “betweenness” in terms of *“‘collinearity,” as
was done by F. P. Jenks, and that “collinearity” can in fact be taken as the
single undefined relation for a hyperbolic geometry based on the elemen-
tary continuity principle (see Exercise K-21, Chapter 7). Report on all of
these results, using as a reference H. Royden’s paper ‘“‘Remarks on Prim-
itive Notions for Elementary Euclidean and Non-Euclidean Plane Ge-
ometry” in Henkin, Suppes, and Tarski (1959), with corrections in W.
Schwabhiuser’s paper “Metamathematical Methods in Foundations of
Geometry,” in Logic, Methodology and Philosophy of Science, Y. Bar-Hillel,
ed., Amsterdam: North Holland, 1965; and Blumenthal and Menger
(1970), p. 220.
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3. Hilbert showed that all of plane hyperbolic geometry can be deduced
from the incidence, betweenness, and congruence axioms, and a continu-
ity axiom asserting the existence of two nonopposite limiting parallel rays
emanating from a given point not on a given line. Report on the proof of
Saccheri’s acute angle hypothesis from these axioms (see Wolfe, 1945, p.
78; Archimedes’ axiom is not needed in this proof ). Report also on the
introduction of coordinates on the basis of these axioms (sce W. Szmie-
lew, “A new analytic approach to hyperbolic geometry,” Fundamenta
Mathematicae, 50 (1961): 129-158), and the use of such coordinates to
prove the circular continuity principle (see J. Strommer, “Ein elementar
Beweis des Kreisaxiome der hyperbolischen geometrie,” Acta Scientiarum
Mathematicarum Szeged, 22, (1961): 190-195).

4. IfDedekind’s axiom is dropped from our axioms for hyperbolic geometry,
then it is impossible to prove the existence of limiting parallel rays, for W.
Pejas has constructed a ‘“‘semielliptic” Archimedean geometry in which
the hyperbolic axiom holds but any pair of parallel lines have a unique
common perpendicular (see Mathematische Annalen, 143 (1961): 233). If
Dedekind’s axiom is replaced with the elementary continuity principle,
then a proof of the existence of limiting parallel rays has been given by
embedding in a metric projective plane (see Hessenberg and Diller,
1967, p. 239). Report on these results. If you could apply Janos Bolyai’s
construction (p. 198) for a more direct proof, you would probably be
awarded a Ph.D. (See Appendix B and M. ]. Greenberg, “‘On J. Bolyai’s
Parallel Construction,” Journal of Geometry, 12/1 (1979): 45-64.)

5. In Euclidean geometry, it is impossible to trisect every angle using
straightedge and compass alone; in hyperbolic geometry, not only is it
impossible to trisect every angle but it is also impossible to trisect every
segment using straightedge and compass alone! In Euclidean geometry, it
is impossible to construct with straightedge and compass alone a regular
4-gon having the same area as a given circle; in hyperbolic geometry,
however, this construction is possible. Report on these results. (Use
Martin, 1982, Chapter 34.)
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INDEPENDENCE
OF THE PARALLEL
POSTULATE

All my efforts to discover a contradiction, an
inconsistency, in this non-Euclidean geometry have
been without success. . . .

C. F. GAUSS

CONSISTENCY OF HYPERBOLIC GEOMETRY

In the previous chapter you were introduced to hyperbolic geometry
and presented with some theorems that must seem very strange to
someone accustomed to Euclidean geometry. Even though you may
admit that the proofs of these theorems are correct, given our assump-
tions, you may feel that the basic assumption of hyperbolic geometry
— the hyperbolic axiom —is a false assumption. Let’s examine what
might be meant by saying it’s false.

Suppose I assume that when I drop some object, say, a stone, it will
“fall” upward. I can go out and drop rocks and, unless I have rocks in
my head, I will discover that my assumption was false.

Now what sort of experiment could I perform to show that the
hyperbolic assumption is false, or, equivalently, to show that its nega-
tion, the Euclidean parallel postulate, is true? First of all, I would have
to understand what this statement means. In the above example I
understood very well the meaning of “stone’” and what it means to
“drop” one, so I could act upon this understanding. But what does it
mean that /is a “line,” that P is a “point” not “‘on’’ /, or that there is a
“unique parallel” to / through P? I might represent “points” and
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FIGURE 7.1 Q

“lines’” with paper, pencil, and straightedge. Suppose I draw §6
perpendicular to / and m through P perpendicular to 156, and then
draw a line 7 through P, making a very small angle of € with 7. Using
Euclidean trigonometry, I can calculate exactly how far out on 7 |
would have to go to get to the point where 7 is supposed to intersect /,
but if € is small enough, that point might be millions of miles away.
Thus, I could not physically perform the experiment to prove that the
hyperbolic axiom is false.

But is geometry about lines that we can draw? Applied geometry
(engineering) is; but pure geometry is about ideal lines, which are
concepts, not objects. The only experiments we can perform on these
ideal lines are thought-experiments. So the question should be: Can
we conceive of a non-Euclidean geometry? Kant said no, that any
geometry other than Euclidean is inconceivable. At the time, of
course, no one had yet conceived of a different geometry. It is in this
sense that Gauss, J. Bolyai, and Lobachevsky created a “new uni-
verse.”

Other questions can be raised. Mathematicians reject many of their
own ideas because they either lead to contradictions or do not lead
anywhere, i.e., do not prove fruitful, useful, or interesting. Does the
hyperbolic axiom lead to a contradiction? Saccheri thought it would,
and tried to prove the parallel postulate that way. Is hyperbolic geom-
etry fruitful, useful, or interesting?

Let us postpone this question and take up the former: Is hyperbolic
geometry consistent? Nowadays we refer to this as a question in meza-
mathematics, i.e., a question outside of a mathematical system about
the system itself. The question is not about lines or points or other
geometric entities; it is a question about the whole system of hyperbolic

geometry.
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If hyperbolic geometry were inconsistent, an ordinary mathemati-
cal argument could derive a contradiction. Saccheri tried to do this and
failed. Could it be that he wasn’t clever enough, that someday some
genius will find a contradiction?

On the other hand, can it be proved that hyperbolic geometry is
consistent— can it be proved that there is no possible way to derive a
contradiction?

We might ask the same question about Euclidean geometry — how
do we 4now it is consistent? Of course, this was never a burning
question before the discovery of non-Euclidean geometry simply be-
cause everyone believed Euclidean geometry to be consistent. Re-
markably enough, if we make this belief an explicit assumption (albeit
a metamathematical assumption), it is possible to give a proof that
hyperbolic geometry is consistent. Let us state this possibility as a
theorem:

METAMATHEMATICAL THEOREM 1. If Euclidean geometry is con-
sistent, then so is hyperbolic geometry.

Granting this result for the moment, we get the following important
corollary.

COROLLARY. If Euclidean geometry is consistent, then no proof or
disproof of the parallel postulate from the rest of Hilbert’s postulates
will ever be found, i.e., the parallel postulate is independent of the
other postulates.

To prove the corollary, assume on the contrary that a proof of the
parallel postulate exists. Then hyperbolic geometry would be in-
consistent, since the hyperbolic axiom contradicts a proved result.
But Metamathematical Theorem 1 asserts that hyperbolic geome-
try is consistent relative to Euclidean geometry. This contradiction
proves that no proof of the parallel postulate exists (RAA). The
hypothesis that Euclidean geometry is consistent ensures that no
disproof exists either. l

Thus, 2000 years of efforts to prove Euclid V were in vain. There is
no more hope of proving it than there is of finding a method for
trisecting every angle using straightedge and compass alone.
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Of course, when we say this, we are assuming the consistency of the
venerable Euclidean geometry. Had Saccheri, Legendre, F. Bolyai, or
any of the dozens of other scholars succeeded in proving Euclid V from
the other axioms, with the noble intention of making Euclidean ge-
ometry more secure and elegant, they would have instead completely
destroyed Euclidean geometry as a consistent body of thought! (I urge
you, dear reader, to go over the preceding statements very carefully to
make sure you have understood them. If you have not understood, you
have missed the main point of this book.)

In the form given here, Metamathematical Theorem 1 is due to
Eugenio Beltrami (1835-1900); a different proof was later given by
Felix Klein (1849-1925).1 Beltrami proved the relative consistency
of hyperbolic geometry in 1868 using differential geometry (see The
Pseudosphere, Chapter 10). Klein recognized that projective geome-
try could be used to give another proof. In 1871 he applied the method
Arthur Cayley used (in 1859) to express distance and angle measure
by projective coordinates.

To prove Metamathematical Theorem 1, we have to again ask
ourselves, What is a “line” in hyperbolic geometry —in fact, what is
the hyperbolic plane? The honest answer is that we don’t know; it is
just an abstraction. A hyperbolic “line” is an undefined term describ-
ing an abstract concept that resembles the concept of a Euclidean line
except for its parallelism properties. Then how shall we visualize
hyperbolic geometry? In mathematics, as in any other field of re-
search, posing the right question is just as important as finding an-
SWers.

The question of “visualizing” means finding Euclidean objects that
represent hyperbolic objects. This means finding a Euclidean mode/
for hyperbolic geometry. In Chapter 2 we discussed the idea of models
for an axiom system; there we showed that the Euclidean parallel
postulate is independent of the axioms for incidence geometry by
exhibiting three-point and five-point models of incidence geometry
that are not Euclidean. Here we want to know whether the parallel
postulate is independent of a much /Jzrger system of axioms, namely,

! Beltrami made important contributions to differential geometry. Klein was a master of
many branches of mathematics and an influential teacher. His book on the history of nine-
teenth-century mathematics shows how familiar he was with all aspects of the subject. Klein’s
famous inaugural address in 1872, his Er/anger Programme, made the study of groups of transfor-
mations and their invariants the key to geometry (see Chapter 9).
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Eugenio Beltrami

neutral geometry. We can show that it is, and by the same method —
by exhibiting models for hyperbolic geometry.?

THE BELTRAMI-KLEIN MODEL

For brevity, we will refer to this first model (the Beltrami-Klein
model) as the ‘“Klein model.” We fix once and for all a circle y in the
Euclidean plane (which Cayley referred to as ““the absolute™). If O is

2 Unlike the situation for incidence geometry, we cannot construct a model for neutral
geometry in which the elliptic parallel property holds, because it is a theorem in neutral
geometry that parallel lines exist (see Corollary 2 to Theorem 4.1). If you worked through Major
Exercise 13, Chapter 6, you will easily understand the motivation for the Beltrami-Klein model.
It is the projective completion of the hyperbolic plane!
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Felix Klein

the center of y and OR is a radius, the interior of y by definition consists
of all points X such that OX < OR (see Figure 7.2). In Klein’s model
the points in the interior of y represent the points of the hyperbolic
plane.

Recall that a chord of y is a segment AB joining two points A and B
on Y. We wish to consider the segment without its endpoints, which we
will call an open chord and denote by A) (B. In Klein’s model the open
chords of y represent the lines of the hyperbolic plane. The relation
“lieson” is represented in the usual sense: P lies on A) (B means that P
lies on the Euclidean line AB and P is between A and B. The hyperbo-
lic relation “between’ is represented by the usual Euclidean relation
“between.” This much is easy. The representation of “congruence” is
much more complicated, and we will discuss it later in this chapter
(The Projective Nature of the Beltrami-Klein Model).
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FIGURE 7.2

It is immediately clear from Figure 7.3 that the hyperbolic axiom
holds in this representation.

Here the two open chords 7 and 7 through P are both parallel to the
open chord /— for what does ““parallel” mean in this representation?
The definition of “parallel” states that two lines are parallel if they
have no point in common. In Klein’s representation this becomes: two
open chords are parallel if they have no point in common (in the
definition of “‘parallel,” replace the word “line”” by ‘“‘open chord™).
The fact that the three chords, when extended, may meet outside the
circle y is irrelevant— points outside of ¥ do not represent points of
the hyperbolic plane. So let us summarize the Beltrami-Klein proof of
the relative consistency of hyperbolic geometry as follows:

First, a glossary is set up to “translate” the five undefined terms
(“point,” “line,” “lies on,” “between,” and “congruent’) into their
interpretations in the Euclidean model (we have done this for the first
four terms). All the defined terms are then interpreted by “translat-
ing” all occurrences of undefined terms. For instance, the defined
term “‘parallel” was interpreted by replacing every occurrence of the

f
FIGURE 7.3 \_/
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word “line” in the definition by “‘open chord.” Once all the defined
terms have been interpreted, we have to interpret the axioms of the
system. Incidence Axiom 1, for example, has the following interpreta-
tion in the Klein model:

INCIDENCE AXIOM 1 (Klein). Given any two distinct points A and B in
the interior of circle y. There exists a unique open chord /of y such that
A and B both lie on /

We must prove that this is a theorem in Euclidean geometry (and
similarly, prove the interpretations of all the other axioms). Once all
the interpreted axioms have been proved to be theorems in Euclidean
geometry, any proof of a contradiction within hyperbolic geometry
could be translated by our glossary into a proof of a contradiction in
Euclidean geometry. From our assumption that Euclidean geometry
1s consistent, it follows that no such proof exists. Thus, if Euclidean
geometry is consistent, so is hyperbolic geometry.

We must now backtrack and prove that the interpretations of the
axioms of hyperbolic geometry in the Klein model are theorems in
Euclidean geometry. Let us prove Axiom I-1 (Klein) stated above:

Proof

Given A and B interior to y. Let AB be the Euclidean line through
them (see Figure 7.4). This line intersects y in two distinct points C
and D. Then A and B lie on the open chord C) (D, and, by Axiom -1
for Euclidean geometry, this is the only open chord on which they
both lic. l

In the second step of the proof we used a theorem from Euclidean
geometry that states that a line passing through the interior of a circle

FIGURE 7.4
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FIGURE 7.5 Limiting parallel rays.

intersects the circle in two distinct points. This can be proved from the
circular continuity principle (see Major Exercise 1, Chapter 4). Veri-
fications of the interpretations of the other incidence axioms, the
betweenness axioms, and Dedekind’s axiom are left as exercises; the
congruence axioms are verified later in this chapter.

One nice aspect of the Klein model is that it is easy to visualize the
limiting parallel rays (see Figure 7.5). Let P be a point interior to y
and not on the open chord A) (B. A and B are points on the circle and
therefore do not represent points in the hyperbolic plane; they are said
to represent 7dea/ points and are called the ends of the hyperbolic line
represented by A) (B (see Note 2 following Major Exercise 3, Chapter
6). Then the limiting parallel rays to A) (B from P are represented by
the segments PA and PB with the endpoints A and B omitted. It is
clear that any ray between these limiting parallel rays intersects the
open chord A) (B, whereas all other rays emanating from P do not. The
symmetry and transitivity of limiting parallelism (which, as you saw in
Major Exercises 2 and 3, Chapter 6, were tricky to prove) are utterly
obvious in the Klein model, as is the fact that every angle has a /ine of
enclosure (given <QPR, if A is the end of P_Q and B is the end of ITIi,
then A) (B is the line of enclosure of <QPR—see Major Exercise 8,
Chapter 6).

Let us conclude this section by considering the interpretation in the
Klein model of ‘“‘congruence,” the subtlest part of the model. One
method of interpretation is to use a system of numerical measurement
of angle degrees and segment lengths. Two angles would then be
interpreted as congruent if they had the same number of degrees, and
two segments would be interpreted as congruent if they had the same
length (compare Theorem 4.3). The catch is that Euclidean methods
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of measuring degrees and lengths cannot be used. If we use Euclidean
length, for example, then every line (i.e., open chord) would have a
finite length less than or equal to the length of a diameter of . This
would invalidate the interpretations of Axioms B-2 and C-1, which
ensure that lines are infinitely long.

We will further discuss the matter in this chapter (in the sections
Perpendicularity in the Beltrami-Klein Model and The Projective
Nature of the Beltrami-Klein Model), but first let’s consider the
Poincaré models, in which congruence of angles is easier to describe.

THE POINCARE MODELS

A disk model due to Henri Poincaré (1854-1912)3 also represents
points of the hyperbolic plane by the points zzservor to a Euclidean
circle p, but lines are represented differently. First, all open chords
that pass through the center O of ¥ (i.e., all open diameters / of y)
represent lines. The other lines are represented by opern arcs of circles
orthogonal to . More precisely, let d be a circle orthogonal to y (ateach
point of intersection of y and d the radii of y and d through that point
are perpendicular). Then intersecting ¢ with the interior of y gives an
open arc m, which by definition represents a hyperbolic line in the
Poincaré model. So we will call Poncaré /ine, or “‘P-line,” either an
open diameter / of y or an open circular arc m orthogonal to y (see
Figure 7.6).

A point interior to  “lies on” a Poincaré line if it lies on it in the
Euclidean sense. Similarly, “between’ has its usual Euclidean inter-
pretation (for A, B, and C on an open arc coming from an orthogorE)l
circle 0 with center P, B is between A and C if P—ﬁ is between PA
and Isc‘).

The interpretation of congruence for segments in the Poincaré model
is complicated, being based on a way of measuring length that is
different from the usual Euclidean way, just as in the Klein model (see

3 Poincaré was the cousin of the president of France. Like Gauss, Poincaré made profound
discoveries in many branches of mathematics and physics; he even started a new branch of
mathematics, algebraic topology. He used his models of hyperbolic geometry to discover new
theorems about automorphic functions of a complex variable. Poincaré is also important as a
philosopher of science (see Chapter 8).
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p- 248). Congruence for angles has the usual Euclidean meaning, how-
ever, and this is the main advantage of the Poincaré model over the
Klein model.# Specifically, if two directed circular arcs intersect at a
point A, the number of degrees in the angle they make is by definition
the number of degrees in the angle between their tangent rays at A
(see Figure 7.7). Or, if one directed circular arc intersects an ordinary
ray at A, the number of degrees in the angle they make is by definition
the number of degrees in the angle between the tangent ray and the
ordinary ray at A (see Figure 7.8).

Having interpreted all the undefined terms of hyperbolic geometry
in the Poincaré model, we get (by substitution) interpretations of all

* Technically, we say that the Poincaré model is conformal/— it represents angles accurately
— while the Klein model is not. Another example of a conformal model is Mercator’s map of the
surface of the earth.
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Henri Poincaré

the defined terms. For example, two Poincaré lines are paralle/ if and
only if they have no point in common. Then all the axioms of hyperbo-
lic geometry get translated into statements in Euclidean geometry,
and it will be shown in the section Inversion in Circles later in this
chapter that these interpretations are theorems in Euclidean geome-
try. Hence, the Poincaré model furnishes another proof that if Euclid-
ean geometry is consistent, so is hyperbolic geometry.

The limiting parallel rays in the Poincaré model are illustrated in
Figure 7.9. Here we have chosen /to be an open diameter A) (B; the
rays are circular arcs that meet AB at A and B and are tangent to this
line at those points. You can see how these rays approach /asymptoti-
cally as you move out toward the ideal points represented by A and B.

Figure 7.10 illustrates two parallel Poincaré lines with a common
perpendicular. The diagram shows how 7 diverges from /on either
side of the common perpendicular PO.
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Figure 7.11 illustrates a Lambert quadrilateral. You can see that
the fourth angle is acute. By adding the mirror image of this Lambert
quadrilateral we get a diagram illustrating a Saccheri quadrilateral

(Figure 7.12).

s
N

FIGURE 7.11
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FIGURE 7.12

You may be surprised that we have two different models of hyper-
bolic geometry, one due to Klein and the other to Poincaré. (There isa
third model, also due to Poincaré, soon to be described.) Yet you may
have the feeling that these models are not “‘essentially different.”” In
fact, these models are zsomorphicin the technical sense that one-to-one
correspondences can be set up between the “points” and “lines’ in
one model and the “points’ and “lines” in the other so as to preserve
the relations of incidence, betweenness, and congruence. Such iso-
morphism is illustrated in Figure 7.13. We start with the Klein model
and consider, in Euclidean three-space, a sphere of the same radius
sitting on the plane of the Klein model and tangent to it at the origin.
We project upward orthogonally the entire Klein model onto the lower
hemisphere of this sphere; by this projection, the chords in the Klein
model become arcs of circles orthogonal to the equator. We then
project stereographically from the north pole of the sphere onto the

FIGURE 7.13
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original plane. The equator of the sphere will project onto a circle
larger than the one used in the Klein model, and the lower hemisphere
will project stereographically onto the inside of this circle. Under
these successive transformations, the chords of the Klein model will be
mapped one-to-one onto the diameters and orthogonal arcs of the
Poincaré model. In this way the isomorphism of the models may be
established.

One can actually prove that a// possible models of hyperbolic geometry
are isomorphic to one another, i.e., that the axioms for hyperbolic geom-
etry are categortcal. The same is true for Euclidean geometry. The
categorical nature of Euclidean geometry is established by introduc-
ing Cartesian coordinates into the Euclidean plane. Analogously, the
categorical nature of hyperbolic geometry is established by introduc-
ing Beltrami coordinates into the hyperbolic plane (for which hyper-
bolic trigonometry must first be developed).5

In the other Poincaré model mentioned here, the points of the
hyperbolic plane are represented by the points of one of the Euclidean
half-planes determined by a fixed Euclidean line. If we use the Carte-
sian model for the Euclidean plane, it is customary to make the x axis
the fixed line and then to use for our model the upper half-plane
consisting of all points (x, y) with y > 0. Hyperbolic lines are repre-
sented in two ways:

1. Asrays emanating from points on the xaxis and perpendicular to
the x axis;

2. Assemicircles in the upper half-plane whose center lies on the x
axis (see Figure 7.14).

Incidence and betweenness have the usual Euclidean interpretation.

5 See Chapter 10 as well as Borsuk and Szmielew (1960), Chapter 6.
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This model is conformal also (degrees of angles are measured in the
Euclidean way). Measurement of lengths will be discussed later.

To establish isomorphism with the previous models, choose a point
E on the equator of the sphere in Figure 7.13, and let Il be the plane
tangent to the sphere at the point diametrically opposite to E. Sterco-
graphic projection from E to IT maps the equator onto a line in IT and
the lower hemisphere onto the lower half-plane determined by this
line. Notice that the points on this line represent ideal points. How-
ever, one ideal point is missing: the point E got lost in the stereo-
graphic projection. It is customary to imagine an ideal ““point at infin-
ity”’ « that corresponds to E; it is the common end of all the vertical
rays.

PERPENDICULARITY IN THE
BELTRAMI-KLEIN MODEL

The Klein model is not conformal. Congruence of angles is inter-
preted differently from the usual Euclidean way, and will be ex-
plained later in this chapter (p. 260). Here we will describe only those
angles that are congruent to their supplements, namely, right angles.

Let /and m be open chords of y. To describe when /L min the Klein
model, there are two cases to consider:

Case 1. Oneof/and misadiameter. Then /L min the Klein sense
if and only if / L  in the Euclidean sense. (See Figure 7.15.)

FIGURE 7.15



Perpendicularity in the Beitrami-Klein Model ‘ I | 239

P())

T

FIGURE 7.16 L

Case 2. Neither /nor m is a diameter. In this case we associate to/a
certain point P(/) outside of y called the pole of /, defined as follows.
Let # and #, be the tangents to y at the endpoints of / Then by
definition P(/) is the unique point common to ¢, and 7, (#, and 4, are not
parallel, because /is not a diameter); see Figure 7.16.

It turns out that /s perpendicular to m in the sense of the Klein model if
and only if the Euclidean line extending m passes through the pole of /.

This description of perpendicularity will be justified later (pp.
260-261). We can use it to see more easily why divergently parallel
lines have a common perpendicular—Theorem 6.7. In the hypothe-
sis of Theorem 6.7 we are given two parallel lines that do not contain
_limiting parallel rays. In the Klein model this means that we are given
open chords /and m that do not have a common end. The conclusion of
Theorem 6.7 is that /and m have a common perpendicular £ How do
we find £7 Let’s discuss case 2, leaving case 1 as an exercise. By the
above description of perpendicularity if £were perpendicular to both /
and m, the extension of £ would have to pass through the pole of /and
the pole of m. Hence, to construct £, we need only join these poles by a
Euclidean line and take 4 to be the open chord of y cut out by this line
(Figure 7.17).6

There is a nice language that describes the behavior of pairs of lines
in the Klein model. Let us call the points inside circle y (which

¢ If /and m did have a common end Q, the Euclidean line joining P(/) to P(m) would be
tangent to ¥ at . That is why Saccheri claimed that asymptotically parallel lines have “a
common perpendicular at infinity,” and this he found repugnant.
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FIGURE 7.17

represent all the points in the hyperbolic plane) ordinary points. We
already called the points on the circle y ideal points. Let us call the
points outside y w/tra-ideal points. Finally, for every diameter of y, let
us imagine another point “‘atinfinity”’ such that all the Euclidean lines
parallel in the Euclidean sense to this diameter meet in this point at
infinity, just as railroad tracks appear to meet at the horizon. These
points at infinity will also be called #/tra-1deal. We can then say that
two Klein lines “meet” at an ordinary point, an ideal point, or an
ultra-ideal point, depending on whether they are intersecting, asymp-
totically parallel, or divergently parallel, respectively. The ultra-ideal
point at which divergently parallel Klein lines /and m “meet” is the
pole P(#) of their common perpendicular £ (see Figure 7.17).

This language is suggestive of further theorems in hyperbolic ge-
ometry. For example, we know that two ordinary points determine a
unique line, and we have seen that two ideal points also determine a
unique line, the fine of enclosure of Major Exercise 8, Chapter 6. We
can ask the same question about two points that are ultra-ideal or
about two points of different species. For example, an ordinary point
and an ideal or ultra-ideal point always determine a unique line, but
two ultra-ideal points may or may not (see Figure 7.18). Let us
translate back from this language, say, in the case of an ordinary point
O and an ultra-ideal point P(/) that is the pole of a Klein line /. What is
the Klein line “joining” O to P(/)? It is the unique Klein line m
through O that is perpendicular in the sense of the Klein model to the
line / (see Figure 7.16). We leave the other cases for exercises.

If you did most of the exercises in hyperbolic geometry in Chapter
6, deriving results without having reliable diagrams to guide you, the
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Klein and Poincaré models must come as a great relief. It is a useful
exercise to take an absurd diagram like Figure 6.26 and draw those
divergently parallel perpendicular bisectors of the triangle more accu-
rately in one of the models. It is amazing that J. Bolyai and Loba-
chevsky were able to visualize hyperbolic geometry without such
models, especially since they worked in three dimensions. They must
have had non-Euclidean eyesight.

A MODEL OF THE HYPERBOLIC PLANE
FROM PHYSICS

This model comes from the theory of special relativity. In Cartesian
three-space R3, with coordinates denoted x, y and # (for #1me), distance
will be measured by the Minkowski metric

ds? = dx* + dy* — dr’.
Then with respect to the Minkowski metric, the surface of equation
Bty —ri=—1

is a “‘sphere’ centered at the origin O = (0, 0, 0) of imaginary radius
i=+-1. (As was mentioned in Chapter 5, Lambert was the first to
wonder if such a model existed.) In Euclidean terms, it is a two-
sheeted Ayperbolosd (surface of revolution obtained by rotating the
hyperbola 2 — x2 =1 around the x axis). We choose the sheet 3:
#=1 as our model. It looks like an infinite bowl (see Figure 7.19).
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FIGURE 7.19

Analogously with our interpretation of ““lines” on a sphere in Chapter
2, Exercise 10(c), “lines” are interpreted to be the sections of 2 cut
out by planes through O; thus a “line” is one branch of a kyperbola
on X.

Here is an isomorphism of X with the Beltrami-Klein model A. The
plane =1 is tangent to 2 at the point C = (0, 0, 1). Let A be the unit
disk centered at C in this plane. Projection from O gives a one-to-one
correspondence between the points of A and the points of 3, (i.e., point
P of A corresponds to the point P’ at which ray I?(_)f’ pierces X). Simi-
larly, each chord m of A lies on a unique plane IT through O, and m
corresponds to the section »” of 2 cut out by I'l. This isomorphism of
incidence models can be used to interpret betweenness and con-
gruence on X. Alternatively, they can be defined in terms of the
measurement of arc length induced on 2 by the Minkowski metric;
then further argument is needed to verify that our correspondence is
indeed an isomorphism of models of hyperbolic geometry. Another
justification of X as a model of the hyperbolic plane will be given
analytically in Chapter 10 (see the discussion of Weierstrass coordi-
nates in the section Coordinates in the Hyperbolic Plane).

Note. From the point of view of Einstein’s special relativiry theory,
2. can be identified with the set of plane uniform motions, and the
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hyperbolic distance can be identified with the relative velocity of one
motion with respect to the other. A glossary can be set up to translate
every theorem of hyperbolic geometry into a theorem of relativistic
kinematics, and conversely. See Yaglom (1979), p. 225 ff.

INVERSION IN CIRCLES

In order to define congruence in the Poincaré models and verify the
axioms of congruence, we must study the operation of inversion in a
Euclidean circle; this operation will turn out to be the interpretation of
reflection across a line in the hyperbolic plane. T4is theory is part of
Euclidean geometry, so we may use the theorems you proved in Exer-
cises 18-26, Chapter 5.

DEFINITION. Let y be a circle of radius 7, center O. For any point
P # O the /nverse P’ of P with respect to  is the unique point P’ on ray
OP such that (OP) (OP’) = r? (where OP denotes the length of
segment OP with respect to a fixed unit of measurement); see Figure

7.20.

The following properties of inversion are immediate from the defini-
tion:

PROPOSITION 7.1. (a) P =P’ if and only if P lies on the circle of
inversion 7. (b) If Pis inside y then P’ is outside 7, and if P is outside
then P’ is inside y. (c) (P")’ = P.

FIGURE 7.20



244 \ H Independence of the Parallel Postulate

p’

FIGURE 7.21

The next two propositions tell how to construct the inverse point
with a straightedge and compass.

PROPOSITION 7.2. Suppose P is inside y. Let TU be the chord of y
through P which is perpendicular to OP. Then the inverse P’ of Pis the
pole of chord TU, i.e., the point of intersection of the tangents to yat T
and U. (See Figure 7.21).

Proof:

Suppose the tangent to y at T cuts OP at point P’. Right triangle
AOPT is similar to right triangle AOTP’ (since they have <TOP in
common and the angle sum is 180°). Hence, corresponding sides
are_proportional (Exercise 18, Chapter 5). As OT = r, we get
(OP)/r = r/(OP’), which shows that P’ is inverse to P. Reflecting
across OP (Major Exercise 2, Chapter 3), we see that the tangent to
y at U also passes through P’, so P’ is indeed the pole of TU. I

PROPOSITION 7.3. If P is outside y, let Q be the midpoint of segment
OP. Let o be the circle with center Q and radius OQ = QP. Then ¢
cuts y in two points T and U, PT and BU are tangent to ¥, and the
inverse P’ of P is the intersection of TU and OP. (See Figure 7.22.)

Proof:

By the circular continuity principle (Chapter 3), ¢ and y do meet in
two points T and U. Since XOTP and <OUP are inscribed in
semicircles of g, they are right angles (Exercise 24, Chapter 5);
hence, PT and are tangent to ¥. If TU meets OP in a point
P’, then P is the inverse of P’ (Proposition 7.2); hence, P’ is the
inverse of Pin y. W
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FIGURE 7.22

The next proposition shows how to construct the Poincaré line
joining two ideal points— the line of enclosure.

PROPOSITION 7.4. Let T and U be points on y that are not diametri-
cally opposite and let P be the pole of TU. Then PT=PU,
LPTU=PUT, OP L TU, and the circle & with center P and radius
PT = PU cuts y orthogonally at T and U. (See Figure 7.23.)

Proof:

By definition of pole, XOTP and <OUP are right angles, so by the
hypotenuse-leg criterion, AOTP=AOUP. Thus, PT=PU,
JOPT=<OPU. The base angles <PTU and XPUT of the iso-
sceles triangle ATPU are then congruent, and the angle bisector
PO is perpendicular to the base TU. The circle J is then well
defined because PT = PU and & cuts y orthogonally by our hypoth-
esis that PT and PU are tangent to . M

FIGURE 7.23 6
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LEMMA 7.1. Given that point O does not lie on circle 4. (a) If two lines
through O intersect d in pairs of points (P,, P,) and (Q,, Q,), respec-
tively, then (OP,)(OP,) = (0Q,)(0Q,). This common product is
called the powerof O with respect to d when O is outside d, and minus
this number is called the power of O when O is inside 4. (b) If O is
outside d and a tangent to é from O touches & at point T, then (OT)2
equals the power of O with respect to d.

Proof:
(a) Since angles that are inscribed in a circle and subtend the same
arc are congruent (Exercise 25, Chapter 5), we have

<LP,P,Q,=4P,Q,Q,
+LP,Q.Q,=<P,P,Q,

(see Figure 7.24). It follows that AOP,Q, and AOQ, P, are similar,
so that (OP,)/(0Q,) = (0Q;)/(OP,), as asserted.

(b) Let C be the center of é and let line OC cut d at P, and P,,
with O * P, * C * P,. By the Pythagorean theorem (Exercise 21,
Chapter 5),

(see Figure 7.25). B

PROPOSITION 7.5. Let P be any point which does not lie on circle y
and which does not coincide with the center O of y, and let d be a circle
through P. Then & cuts y orthogonally if and only if & passes through
the inverse point P’ of P with respect to .

FIGURE 7.24
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P, C

FIGURE 7.25

Proof:

Suppose first that d passes through P’. Then the center C of d lies
on the perpendicular bisector of PP’ (Exercise 17, Chapter 4);
hence, CO > CP (Exercise 27, Chapter 4) and O lies outside J.
Therefore, there is a point T on J such that the tangent to d at T
passes through O (Proposition 7.3). Lemma 7.1(b) then gives
(OT)% = (OP)(OP’) = r% so that T also lies on y and & cuts y
orthogonally.

Conversely, let d cut y orthogonally at points T and U. Then the
tangents to d at T and U meet at O, so that O lies outside d. It
follows that 6_b_cuts_5_again at a point Q. By Lemma 7.1(b),
r2 = (OT)2 = (OP)(0OQ) so that Q = P, the inverse of Piny. M

Proposition 7.5 can be used to construct the P-line joining two
points P and Q inside y that do not lie on a diameter of y. First,
construct the inverse point P’, using Proposition 7.2. Then construct
the circle J determined by the three noncollinear points P, Q, and P’
(use Exercise 12, Chapter 6). By Proposition 7.5, d will be orthogonal
to y; intersecting J with the interior of y gives the desired P-line. This
verifies the interpretation of Axiom I-1 for the Poincaré disk model.
The verification is even simpler for the Poincaré upper half-plane
model: Given two points P and Q that do not lie on a vertical ray, let
the perpendicular bisector of Euclidean segment PQ cut the x axis at
C. Then the semicircle centered at C and passing through P and Q is
the desired P-line.

We could also have verified the interpretations of the incidence
axioms, the betweenness axioms, and Dedekind’s axiom by using
isomorphism with the Klein model (where the verifications are triv-
ial).
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We turn now to the congruence axioms. Since angles are measured
in the Euclidean sense in the Poincaré models, the interpretation of
Axiom C-5 is trivially verified. Consider Axiom C-4, the laying off
of a congruent copy of a given angle at some vertex A (for the disk
model). If Ais the center of y, the angle is formed by diameters and the
laying off is accomplished in the Euclidean way. If A is not the center
O of y, then the verification is a matter of finding a unique circle d
through A that is orthogonal to y and tangent toa given Euclidean line /
that passes through A and not through O (since the tangents deter-
mine the angle measure). By Proposition 7.5, d must pass through the
inverse A’ of A with respect to . The center C of d must lie on the
perpendicular bisector of chord AA’ (Exercise 17, Chapter 4); call this
bisector m. If d is to be tangent to /at A, then C must also lie on the
perpendicular 7 to /at A. So d must be the circle whose center is the
intersection C of 7 and 7 and whose radius is CA (see Figure 7.26).

To define congruence of segments in the disk model, we introduce
the following definition of length:

DEFINITION. Let A and B be points inside 7, and let P and Q be the
ends of the P-line through A and B. We define the cross-ratio (AB, PQ)
by
(AP) (BQ)
(BP)(AQ)

(where, for example, AP is the Euclidean length of the Euclidean
- segment AP). We then define the Porncaré length d(AB) by

(AB,PQ) =

4(AB) =|log(AB,PQ)|.

FIGURE 7.26
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FIGURE 7.27

Notice first of all that this length does not depend on the order in
which we write P and Q. For if (AB, PQ) = x, then (AB, QP) = 1/x,
and |log(1/x)| =|— log x| =|log x| Furthermore, since (AB, PQ) =
(BA, QP), we see that Z(AB) also does not depend on the order in
which we write A and B.

We may therefore interpret the Poincaré segments AB and CD to
be Poincaré-congruent if d(AB) = 4(CD). With this interpretation,
Axiom C-2 is immediately verified.

Suppose we fix the point A on the P-line from P to Q and let point B
move continuously from A to P, where Q * A * B * P, as in Figure
7.27. The cross-ratio (AB, PQ) will increase continuously from 1 to %,
since (AP)/(AQ) is constant, BP approaches zero, and BQ approaches
PQ. If we fix B and let A move continuously from B to Q, we get the
same result. It follows immediately that for any Poincaré ray CD,
there is a unique point E on CD such that d(CE) = 4(AB), where A
and B are given in advance. This verifies Axiom C-1.

We next verify Axiom C-3. This will follow immediately from the
additivity of the Poincaré length, which asserts thatif A * C * Binthe
sense of the disk model, then Z(AC) + 4(CB) = 4(AB). To prove this
additivity, label the ends so that Q * A * B * P. Then the cross-ratios
(AB, PQ), (AC, PQ), and (CB, PQ) are all greater than 1 (because
AP > BP,BQ > AQ, etc.); their logs are thus positive and we can drop
the absolute value signs. We have

4(AC) + 4(CB) = log (AC, PQ) + log (CB, PQ)
=log [(AC, PQ)(CB, PQ)],

but (AC, PQ)(CB, PQ) = (AB, PQ), as can be seen by canceling
terms.

Finally, to verify Axiom C-6 (SAS), we must study the effect of
inversions on the objects and relations in the disk model.
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DEFINITION. Let O be a point and 4 a positive number. The dilation
with center O and ratio £ is the transformation of the Euclidean plane
that fixes O and maps a point P # O onto the unique point P* on ob
such that OP* = £(OP) (so that points are moved radially from O a
distance # times their original distance).

LEMMA 7.2. Let d be a circle with center C # O and radius 5. Under
the dilation with center O and ratio 4, d is mapped onto the circle &*
with center C* and radius 4s. If Q is a point on §, the tangent to §* at Q*
is parallel to the tangent to J at Q.

Proof:

Choose rectangular coordinates so that O is the origin. Then the
dilation is given by (x, y) — (4x, £#y). The image of the line having
equation ax + by = ¢ is the line having equation ax + &y = kc;
hence, the image is parallel to the original line. In particular, é_é is
parallel to C*Q*, and their perpendiculars at Q and Q*, respec-
tively, are also parallel. If § has equation (x — ;)2 + (y — ;)2 = 52,
then 8* has equation (x — #¢,)2 + (y — kc,)2 = (k5)%, from which
the lemma follows. Il

PROPOSITION 7.6. Let y be a circle of radius and center O, d a circle
of radius s and center C. Assume that O lies outside &; let p be the
power of O with respect to d (see LLemma 7.1). Let £ = r2/p. Then the
image & of d under inversion in y is the circle of radius 4s whose center
is the image C* of C under the dilation from O of ratio 4. If P is any
point on § and P’ is its inverse in y, then the tangent #’ to ¢’ at P is the
reflection across the perpendicular bisector of PP’ of the tangent to ¢
at P (see Figure 7.28).

Proof:
Since O is outside J, OP either cuts & in another point Q or is
tangent to J at P (in which case let Q = P). Then

which shows that P’ is the image of Q under the dilation from O of
ratio # = 72/p. Hence, 6* = ¢’. By Lemma 7.2, the tangent / to &’ at
P’ is parallel to the tangent # to § at Q. Let #be tangent to d at P. By
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FIGURE 7.28

Proposition 7.4, #and # meetat a point R such that XRQP = {RPQ.
By Exercises 4, 5, and 32, Chapter 4, #and 7/ meet at a point S such
that <SP’P = LSPP’. Since APSP’ is an isosceles triangle (base
angles are congruent), S lies on the perpendicular bisector of PP’.
Hence, #’ is the reflection of zacross this perpendicular bisector. Ml

COROLLARY. Circle ¢ is orthogonal to circle y if and only if & is
mapped onto itself by inversion in .

Proof: o

If d is orthogonal to y and P lies on  then p = (OP)(OP’) = 2
(Proposition 7.5 and Lemma 7.1),s0 #= 1and § = &’. Conversely,
if 6 = &, then p = r?and d passes through the inverse P’ of Pin y, so
that by Proposition 7.5, d is orthogonal to y. l

LEMMA 7.3. Let O be the center of circle y, let P and Q be two points

that are not collinear with O, and let P’ and Q’ be their inverses in .
Then APOQ is similar to AQ’OP’ (Figure 7.29).

Ql

FIGURE 7.29 (6] P P’
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Proof: o
The triangles have <POQ in common and (OP)(OP’) =
r? = (0Q)(0Q’). Thus, the SAS similarity criterion is satisfied
(Exercise 20, Chapter 5). B

PROPOSITION 7.7. Let/be a line not passing through the center O of
circle y. The image of /under inversion in 7 is a punctured circle with
missing point O. The diameter through O of the completed circle J is
(when extended) perpendicular to /. (See Figure 7.30).

Proof:

Let A be the foot of the perpendicular from O to /, P be any other
pointon /,and A’ and P’ their inverses in . By Lemma 7.3, AOP’A’
is similar to AOAP. Hence, XOP’A’ is a right angle, so that P’ must
lie on the circle d having OA’ as diameter (Exercise 26, Chapter 5).
Conversely, if we start with any point P’ on & other than O and let
OP’ cut /in P, then reversing the above argument shows that P’ is
the inverse of Pin y. W

PROPOSITION 7.8. Let d be a circle passing through the center O of 7.
The image of § minus O under inversion in yis a line /not through O; /
is parallel to the tangent to d at O.

Proof:

Let A’ be the point on § diametrically opposite to O, let A be its
inverse in ¥, and / the line perpendicular to OA at A (see Figure
7.30). By the proof of Proposition 7.7, inversion in Y maps /onto
minus O; hence, it must map d minus O onto / (Proposition

7.1(c)). N
5
O/_\P, /:

A’

FIGURE 7.30 1
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It is obvious that reflection in a Euclidean line preserves the magni-
tude but reverses the sense of directed angles. The next proposition
generalizes this to inversions.

PROPOSITION 7.9. A directed angle of intersection of two circles is
preserved in magnitude but reversed in sense by an inversion. The
same applies to the angle of intersection of a circle and a line or of two
lines.

Proof:

Suppose that circles d and o intersect at point P with tangents /and
mthere. Let P’ be the inverse of Pin , let ' and 6’ be the images of
d and o under inversion in ¥, and let // and »’ be their respective
tangents at P’. The first assertion then follows from the fact that //
and 7' are the reflections of / and m across the perpendicular

bisector of PP’ (Proposition 7.6). The other cases follow from
Propositions 7.7 and 7.8. B

The next proposition shows that inversion preserves the cross-ratio
used to define Poincaré length.

PROPOSITION 7.10. If A, B, P, Q are four points distinct from

the center O of y and A’, B/, P, (O’ are their inverses in y, then
(AB, PQ) = (A’B’, P’QY).

Proof: o . .
By Lemma 7.3, (AP)/(OA) = (A’P’)/(OP’) and (AQ)/(OA) =
(A’Q’)/(0Q’), whence:
" R _AF _O0R_0Q AP

AQ OA AQ OP AQ

Similarly,
(2)

0oQ’' B'P’
Multiplying equations (1) and (2) gives the result. B

PROPOSITION 7.11. Letcircle d be orthogonal to circle y. Then inver-
sion in d maps y onto Y and maps the interior of y onto itself. Inversion
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in d preserves incidence, betweenness, and congruence in the sense of
the Poincaré disk model inside y.7

Proof:

The corollary to Proposition 7.6 tells us that y is mapped ontoitself.
Suppose that P is inside y and P’ is its inverse in . Let C be
the center and s the radius of d. Let CPb cut y at Q and Q’, so that
by Proposition 7.5 (CQ)(CQ’) = s% = (CP)(CP’). Since P lies
between Q and Q’, we have the inequalities CQ < CP < CQ’.
Taking the reciprocal reverses inequalities, and we get
s2/CQ > s2/CP > 5s%/CQ’, which is the same as CQ’ > CP’ > CQ.
Thus, P’ lies between Q and Q” and therefore is inside .

By Propositions 7.6, 7.8, and 7.9, inversion in d maps any circle o
orthogonal to y either onto another circle ¢” orthogonal to Y orontoa
line g’ orthogonal to y, i.e., a line through the center O of .
Obviously, the line g joining O to C is mapped onto itself and any
other line g through O is mapped onto a circle g’ punctured at C,
which is orthogonal to y (by Propositions 7.7 and 7.9). In all these
cases the above argument shows that the part of ¢ inside y maps
onto the partof g’ inside . Hence, P-lines are mapped onto P-lines.

If A and B are inside y and P and Q are the ends of the P-line
through A and B, then inversion in d maps P and Q onto the ends of
the P-line through A’ and B’. By Proposition 7.10, 4(AB) =
d(A’B’), so congruence of segments is preserved. Proposition 7.9
shows that congruence of angles is also preserved. Furthermore,
Poincaré betweenness is also preserved because B is between A and
D if and only if A, B, and D are Poincaré-collinear and 4(AD) =
d(AB) + 4(BD). B

We come finally to the verification of the SAS axiom. We are
given two Poincaré triangles AABC and AXYZ inside y such that <A
=X, 4(AC) = 4(XZ), and d(AB) = 4(XY) (Figure 7.31). We must
prove that the triangles are Poincaré-congruent. We first reduce to the
case where A = X = O (the center of y): let d be the circle orthogonal
to y through A and B, and g the circle orthogonal to y through A and C.

7 It is easy to see that if, in the statement of Proposition 7.11, § is taken to be a line through
the center O of y and ““inversion” is replaced by *‘reflection,” then the conclusion of Proposition
7.11 still holds.
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FIGURE 7.31

Then J again meets ¢ at point A’ outside ¥, which is inverse to A in y
{Proposition 7.5). Let & be the circle centered at A’ of radius s,
where sZ= (AA’)(A’0O). Since AA’=A’0 — AQ, 2= (A'0)?—

(AO} (A’O) = (A’0)% — r2, where r is the radius of 7. This equation
shows that £ is orthogonal to ¥ {converse of the Pythagorean theorem).
By definition of &, O is the inverse of A in &, and by Proposition 7.11,
inversion in £ maps the Poincaré triangle AABC onto a Poincaré-con-
gruent Poincaré triangle AOB'C’. In the same way, Poincaré triangle
AXYZ can be mapped by inversion onto a Poincaré-congruent Poinc-
aré triangle AOY’Z’ (see Figure 7.31).

LEMMA 7.4. If 4(OB) = &, then OB = r{e? — 1)/(e? + 1), where ¢is
the base of the natural logarithm and r is the radius of y.

Proof:

If P and Q are the ends of the diameter of ¥ through B, labeled so
that Q * O * B * P, then 4 =1log(OB, PQ). Exponentiating both
sides of this equation gives

and solving this equation for OB gives the result, M

Returning to the proof of SAS, we have shown that we may assume
that A=X =0. By Lemma 7.4 and the SAS hypothesis, we get
OB = 0Y,0C = OZ, and {BOC=4XYOZ. Hence, a suitable Euclid-
ean rotation about O — combined, if necessary, with reflection in a
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diameter — will map Euclidean triangle AOBC onto Euclidean trian-
gle AOYZ .3 This transformation maps y onto itself and the orthogonal
circle through B and C onto the orthogonal circle through Y and Z,
preserving Poincaré length and angle measure. Hence, the Poincaré
triangles AOBC and AOYZ are Poincaré congruent. li

‘This verification of SAS actually proves the following geometric
description of Poincaré congruence:

THEOREM 7.1. Two triangles in the Poincaré disk model are Poin-
caré-congruent if and only if they can be mapped onto each other by a
succession of inversions in circles orthogonal to y and/or reflections in
diameters of 7.

We will now apply the Poincaré model to determine the formula of
J. Bolyai and Lobachevsky for the angle of parallelism. Let I1(<)
denote the number of radians in the angle of parallelism correspond-
ing to the Poincaré distance & (the number of radians is 71/180 times
the number of degrees).

THEOREM 7.2. Inthe Poincaré disk model the formula for the angle of
parallelism is ¢~ = tan[I1()/2].

In this formula ¢ is the base for the natural logarithm. The trigono-
metric tangent function is defined analytically as sin/cos, where the
sine and cosine functions are defined by their Taylor series expansions
(the tangent s zoz to be interpreted as the ratio of opposite to adjacent
for a right triangle in the hyperbolic plane!).

Proof:

By definition of the angle of parallelism, is the Poincaré distance
d(PQ) from some point P to some Poincaré line /, and I1(<) is the
number of radians in the angle that a limiting parallel ray to /
through P makes with 136 We may choose / to be a diameter of y
and Q to be the center of y, so that P lies on the perpendicular
diameter. A limiting parallel ray through P is then an arcof a circle &
orthogonal to y such that d is tangent to /at one end 2. The tangent
line to & at P therefore meets /at some interior point R that is the

8 This is “intuitively obvious,” but will be justified by Proposition 9.5 of Chapter 9.
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FIGURE 7.32 |

pole of chord PZ of d, and, by Proposition 7.4, XRPZ, and <R3P
both have the same number of radians # (see Figure 7.32). Let
a = [1(d), which is the number of radians in XRPQ. Since 2fis the
number of radians in <PRQ (exterior to APRY), we get @ + 28 =
n/2, or B = n/4 — a/2. The Euclidean distance PQ is r tan §, so
that, by the proof of Lemma 7.4,

_1twnp
1—tanf

e?

Using the formula for f and the trigonometric identity

1 — tan(a/2)

tan(n/4 — /2) = 1+ an(@2)’

we get the desired formula after some algebra. Bl

We have developed only enough of the geometry of inversion in
circles to verify the axioms in the Poincaré disk model. You will find
further developments in the exercises and in Chapters 9 and 10.
Inversion has many other applications in geometry, notably in Feuer-
bach’s famous theorem on the nine-point circle of a triangle, the
problem of Apollonius, and construction of linkages that change linear
motion into curvilinear motion (see Eves, 1972; Kay, 1969; Kutuzov,
1960; and Pedoe, 1970).
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THE PROJECTIVE NATURE OF THE
BELTRAMI-KLEIN MODEL

Having verified that the Poincaré disk interpretation is indeed a model
of hyperbolic geometry, it follows from the isomorphism previously
discussed that the Klein interpretation is also a model.

To be more explicit, consider the unit sphere 2. in Cartesian three-
dimensional space given by the equation % + 42 + x5 = 1. Let y be
the unit circle in the equatorial plane of 3, determined by the equation
x3 = 0 and the equation for 3. We will represent both the Poincaré
disk and the Klein disk by the set A of points inside y, and we will take
as our isomorphism F the composite of two mappings: If N is the north
pole (0, 0, 1) of 3, first project A onto the southern hemisphere of 3,
stereographically from N. Then project orthogonally back upward to
the disk A (see Figure 7.33).

The isomorphism F will be considered to go from the Poincaré
model to the'Klein model. By an easy exercise in similar triangles, you
can show that F is given in coordinates by

2x, 2x,
= .0
Flx22.0) <1+x%+xg’1+x{+xg )

Or, if we ignore the third (zero) coordinate and use the single complex
coordinate 2 = x; + 7x,, then F is given by

FIGURE 7.33
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It is clear that F maps the diameter of y with ends P and Q onto the
same diameter (but moving the points on the diameter out toward the
circle). Let d be acircle orthogonal to y and cutting y at points P and Q.
We claim that F maps the Poincaré line with ends P and Q onto the
open chord P) (Q. In fact, if A 15 on the arc of 0 from P to Q inside y, then
F(A) is the point at which OA hits chord PQ (see Figure 7.34).

Proof:

We can prove this as follows. Suppose the center C of d has coordi-
nates (¢, ;). By Proposition 7.3, the points P and Q are the inter-
sections with y of the circle having CO as diameter. After simplify-
ing, the equation of this circle turns out to be

(1) B —cx; a5 —cx, = 0.

Combining this equation with the equation %} + x% = 1 for y gives
the equation

(2) X T ox, =1

for the line joining P to Q (called the polar of C with respect to ).

Since d is orthogonal to y, XOQC is a right angle, and the Pythago-
rean theorem gives

(3) CQ*=CO?—0Q*=(¢2+3—1
for the square of the radius of . Hence, ¢ is the circle
(¢, — )2+ (x,— )2 =c3+ci— 1,

which simplifies to
(4) x% + x% = Zflxl + Zfzxz - 1.

FIGURE 7.34
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If now A = (a,, a,) lies on d and F(A) = (4,, 4,) is its image under
F, we have forj=1, 2

(5) b;=2aj(1 + 4} + 4f),
(6) b= aj/(clal + ca,).

It follows that
(7) aby b, =1,

and hence, F(A) lies on the polar of C, as asserted.

We now use the isomorphism F to define congruence in the Klein
model. Two segments (respectively, two angles) are interpreted to be
Klein-congruent if their inverse images under F in the Poincaré model
are Poincaré-congruent (as was defined before). With this interpreta-
tion, the verification of the congruence axioms is immediate. (It fol-
lows from this interpretation that the Klein model is conformal only at
0.) .
Next, let us justify the previous description of perpendicularity in the
Klein model (p. 239). According to the above definition, two Klein lines
/ and m are Klein-perpendicular if and only if their inverse images
F~1(/) and F~1(m) are perpendicular Poincaré lines. There are three
cases to consider.

Case I. Both /and m are diameters. In this case it is clear that
perpendicularity has its usual Euclidean meaning.

Case IL. Only /is a diameter. Then F~1(/) =/ The only way
F~1(m), an arc of an orthogonal circle J, can be perpendicular to /is if
the Euclidean line extending / passes through the center C of d (see
Figure 7.35). In that case the extension of /is the perpendicular
bisector of chord 7 (Exercise 17, Chapter 4). Conversely, if /is per-
pendicular to 7 in the Euclidean sense, / bisects 7, and hence, the
extension of / goes through C and /is then perpendicular to arc

F~1(m).
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FIGURE 7.35

Case IIl. Neither /nor mis a diameter. Then £~ (/) and F~(m)
are arcs of circles d and o orthogonal to y. Suppose d is orthogonal to 6.
By Proposition 7.4, the centers of these circles are the poles P(/) and
P(m) of /and m, since these circles meet y at the ends of /and m. Let P
and Q be the ends of . Inversion in d interchanges P and Q, since this
inversion maps both y and ¢ onto themselves (corollary to Proposition
7.6). But if P and Q are inverse in J, the Euclidean line joining them
has to pass through the center P(/) of J (see Figure 7.36).
Conversely, if the extension of 7 passes through P(/), then Pand Q
are inverse to each other in d (since points on y are mapped onto y by
inversion in d). By Proposition 7.5, ¢ is orthogonal to 6. I

Next, let us describe the interpretation of reflections in the Klein

model. In both Euclidean and hyperbolic geometries the reflectionin a
line 7 1s the transformation R, of the plane, which leaves each point of

B()

FIGURE 7.36
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A
>0 >
Y

FIGURE 7.37

m fixed and transforms a point A not on 7 as follows. Let M be the foot
of the perpendicular from A to m. Then, by definition R, (A) is the
unique point A’ such that A’ * M * A and A’M = MA (Figure 7.37).
In Major Exercise 2, Chapter 3, you showed that reflection preserves
incidence, betweenness, and congruence.

Returning to the Klein model, assume first that 7 is not a diameter
of y and let P be its pole. To drop a Klein perpendicular from A to m,
we draw the line joining A and P. Let it cut m at M and let £ be the
chord of y cut out by this Euclidean line. Let Q be the pole of 7 and
draw the line joining Q and A. Let this line cut yat 2 and 3’ and let »
be the open chord 2) (2. Draw the line joining 3’ and M and let it cut
y again at point . If we now join Q and Q, we obtain a line that cuts #
at A’ and y again at Q' (see Figure 7.38).

CONTENTION: The point A’ just constructed is the reflection in the
Klein model of A across m. The Euclidean lines extending Q3. and
Q'3 meet at P and Q3 meets Q'Y at point M.

One justification for this construction is given in Major Exercise 12,
Chapter 6. Here is another. Start with divergently parallel Klein lines
/= Q€ and » = X3’ and their common perpendicular 2 Let /meet ¢
in A’ and 7z meet #in A, and let M be the midpoint of AA” in the sense of
the model. Let 7 be the Klein line through M Klein-perpendicular to
t; m is obtained by joining M to the pole Q of £ Ray MY/ is limiting
parallel to ». If we reflect across m, then # is mapped onto the line
through A’ Klein-perpendicular to £, namely, the line /. The end X is
mapped onto the end of /on the same side of #as 2/, namely, the point
Q’. Hence, ray MY’ is mapped onto ray MQ'. Now reflect across #; Q'
is sent to Q, so MQ)’ is mapped to MS. But successive reflections in
the Klein-perpendicular lines m and ¢ combine to give the 180° rota-
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FIGURE 7.38

tion about M. Hence, MQ is the ray opposite to M2, Similarly, M2 is
the ray opposite to M. Since reflection in msent 2/ to Q’ and 2 to Q,
2’ and 20 must both be Klein-perpendicular to 7 and their Euclid-
ean extensions meet at the pole P of m.

Second, let us describe the Klein reflection for the case in which m is
a diameter of . In this case P is a point at infinity, #is perpendicular to
m in the Euclidean sense, and M is the Euclidean midpoint of chord ¢#
(since a diameter perpendicular to a chord bisects it). Chord Q3, was
shown to be perpendicular to diameter 7 in the argument above,
so Q is the Euclidean reflection of % across 7. Hence, is the
Euclidean reflection of 6& and we deduce that A’ is the ordinary
Euclidean reflection of A across diameter m (see Figure 7.39).

In order to describe the Klein reflection more succinctly, let us
return to the notion of cross-ratio (AB, CD) defined by the formula
(AB, D) = 25 2D

AD BC

DEFINITION. If A, B, C, and D are four distinct co//snear points in the
Euclidean plane such that (AB, CD) = 1, we say that C and D are
harmonic conjugates with respect to AB and that ABCD is a sarmonic
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FIGURE 7.39

tetrad. By symmetry of the cross-ratio, A and B are then also harmonic
conjugates with respect to CD.

__Another way to write the condition for a harmonic tetrad is
AC/AD = BC/BD. Since C and D are distinct, one must be inside
segment AB and the other outside (so that “C and D divide AB
internally and externally in the same ratio’’}. Moreover, given AB,
then C and D determine each other uniquely. For example, suppose
A *C#*B, and let #= AC/CB. If # <1, then D is the unique point
such that D * A * B and DB = AB/(1 — #), whereas if #> 1, then D
is the unique point such that A * B * D and DB = AB/(# — 1); see
Figure 7.40. The case £ = 1 is indeterminate, for there is no point D
outside AB such that AD = BD. Thus, the midpoint M of AB has no
harmonic conjugate. This exception can be removed by completing
the Euclidean plane to the real projective plane by adding a “line at
infinity” (see Chapter 2). Then the harmonic conjugate of M is de-
fined to be the “point at infinity” on

There is a nice way of constructing the harmonic conjugate of C
with respect to AB with straightedge alone: Take any two points I and
J collinear with C but not lying on AB. Let mcct%f at point K and

<ro
rd
9}

A

{DO
' 3=
oy

FIGURE 7.40
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A C B D
FIGURE 741

let Al meet ﬁ_f atpoint L. Then AB meets KL at the harmonic confugate D
of C (Figure 7.41).

We will justify this Aarmonic construction on p. 266. Meanwhile, as a
device to help remember the construction, “project” line ID to infin-
ity. Then our figure becomes Figure 7.42. Since CJA’B’K’L’ is now a
parallelogram, we see that C” is the midpoint of A’B” and its harmonic
conjugate is the “‘point at infinity” D’ on AB. (This mnemonic
device can be turned into a proof based on projective geometry —see
Eves, 1972, Chapter 6.)

If you will now refer back to Figure 7.38, where the Klein reflection
A’ of A was constructed, you will see that A’ 7s the harmonic conjugate of
A with respect to MP. Just relabel the points in Figure 7.38 by the
correspondences [-3/, -2, K-Q, L-€)’, A-P, B-M, C-A, and D-A’ to
obtain a figure for constructing the harmonic conjugate.

DEFINITION. Letmbe aline and P a point not on m. A transformation
of the Euclidean plane called t4¢ harmonic homology with center P and
axis m is defined as follows. Leave P and every point on m fixed. For

\
J

FIGURE 7.42
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any other point A let the line #joining P to A meet m at M. Assign to A
the unique point A’ on #, which is the harmonic conjugate of A with
respect to MP.

With this definition we can restate our result.

THEOREM 7.3. Let mbe a Klein line that is not a diameter of y and let
P be its pole. Then reflection across 7 is interpreted in the Klein
model as restriction to the interior of y of the harmonic homology with
center P and with axis the Euclidean line extending m. If m is a
diameter of p, then reflection across 7 has its usual Euclidean mean-
ing.

To justify the harmonic construction, we need the notion of a
perspectivity. This is the mapping of a line /onto a line 7 obtained by
projecting from a point P not on either line (Figure 7.43). It assigns to

oint A on / the point A’ of intersection of PA with 7. (Should
SX be parallel to 7, the image of A is the point at infinity on ».) P is
called the center of this perspectivity.

LEMMA 7.5. A perspectivity preserves the cross-ratio of four collinear
points;i.e.,if A, B, C, and D are four points on line /and A’, B, C’, and
D’ are their images on line 7 under the perspectivity with center P,
then (AB, CD) = (A’B’, C'D’).

Proof:
By Exercise 23, Chapter 5, we have

AC _ AP sin SAPC
BC BP sin <BPC

FIGURE 7.43 A’ B’ c’
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and
BD _ BPsin <BPD
AD AP sin SAPD’
which gives
(sin APC) (sin <BPD)
(sin ¥BPC) (sin XAPD)"

But sin <APC = sin XA’PC’, sin <PBD = sin <B’PD’, and so on,
so we obtain the same formula for (A’B’, C'D’). B

(AB, CD) =

Now refer back to Figure 7.41. Let ﬁ)mcct Rl at point M. Using
the perspectivity with center I, Lemma 7.5 gives us (AB, CD) =
(LK, MD), whereas using the perspectivity with center ] we get
(AB, CD) = (KL, MD). But (KL, MD) = 1/(LK, MD), by defini-
tion of cross-ratio. Hence, (AB, CD) is its own reciprocal, which
means (AB, CD) = 1,i.e., ABCD is a harmonic tetrad, as asserted.
This justifies the harmonic construction on p. 265. W

Next, we will apply Theorem 7.3 to calculate the length of a
segment in the Klein model. According to our general procedure,
length in the Klein model is defined by pulling back to the Poincaré
model via the inverse of the isomorphism F and using the definition of
length already given there. Thus, the length 7’ (AB) of a segment in
the Klein model is given by &’(AB) = 4(ZW) =|log(ZW, PQ)j,
where A = F(Z),B = F(W), and P and Q are the ends of the Poincaré
line through Z and W. By our earlier result illustrated in Figure 7.34,
P and Q are also the ends of the Klein line through A and B.

The next theorem shows how to calculate &’ (AB) directly in terms
of A, B, P, and Q. In its proof we will need the remark “‘the cross-ratio
(AB, PQ) is preserved by any Klein reflection.” This is clear if we are
reflecting in a diameter of y. Otherwise, by Theorem 7.3, the Klein
reflection is a harmonic homology whose center R lies outside y. A
reflection in the hyperbolic plane preserves collinearity, so for any
Klein line / the mapping of / onto its Klein reflection # is just the
perspectivity with center R. Therefore, Lemma 7.5 ensures that the
cross-ratio is preserved.
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THEOREM 7.4. If A and B are two points inside y and P and Q are the
ends of the chord of y through A and B, then the K/ein length of segment
AB is given by the formula

4'(AB) = 4flog(AB, PQ)|

Proof:

We saw in the verification of the SAS axiom for the Poincaré disk
model that any Poincaré line can be mapped onto a diameter by an
inversion in a suitable orthogonal circle. Proposition 7.10 guaran-
tees that cross-ratios are preserved by inversions. The transforma-
tion of the Klein model that corresponds to this inversion under our
isomorphism F is a harmonic homology (Theorem 7.3), and this
preserves cross-ratios of collinear points by the above remark.
Hence, we may assume that A and B lie on a diameter.

Let A= F(Z) and B = F(W), so that, by definition, &’ (AB) =
d(ZW). After a suitable rotation (which preserves cross-ratios), we
may assume that the given diameter is the real axis. Itsends Pand Q
then have coordinates — 1, + 1. If Z and W have real coordinates 2
and @, then

(AB, PQ) = 1+F§; :g:;
But
SR S tH
SUSRES TN,

1+ F(z) _ 1+ 2z+]z?
1—Fz) 1-2z+|2

Since z is real, z = *|¢ and we get

1+ F(z) _(1+=z)
1—F(z) 1—z)°
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From this and the formula obtained from it by substituting w for z, it
follows that (AB, PQ) = (ZW, PQ)?, and taking logarithms of both
sides proves the theorem. M

Finally, let us apply our results to justify J. Bolyai’s construction of
the limiting parallel ray (p. 198). We are given a Klein line /and a
point P not on it. Point Q on /is the foot of the Klein perpendicular #
from P to /, and 7 is the Klein perpendicular to #through P. Let R be
any other point on /and S the foot on 7 of the Klein perpendicular
from R. Bolyai’s construction is based on the contention that if the
limiting parallel ray to / from P in the direction Gﬁ meets RS at X,
then PX is Klein-congruent to QR.

Let T and M be the poles of and m. Let Q and €’ be the ends of
/. If we join these ends to M, the intersections 2 and 3’ with y will be
the ends of the Klein reflection # of / across m.

As Figure 7.44 shows, the collinear points , X, P, and 3’ are in
perspective with the collinear points Q, R, Q, and ' (in that
order), the center of the perspectivity being M. By Lemma 7.5,
such a perspectivity preserves cross-ratios, so that (XP, Q3/) =
(RQ, QQ’). Theorem 7.4 tells us that &' (XP) = &’ (RQ), justify-
ing Bolyai’s contention. (In case m is a diameter of y, M is a point at
infinity; then instead of Lemma 7.5 we use the parallel projection
theorem (preceding Exercises 18-26, Chapter 5) to deduce the
above equality of cross-ratios.) W

M

FIGURE 7.44
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Note: The method used to prove Theorems 7.2 and 7.4 is very
useful for solving other problems in the Klein and Poincaré models.
The idea is that the figure being studied can be moved, by a succession
of hyperbolic reflections, to a special position where one or more of the
hyperbolic lines is represented by a diameter of the absolute circle y
and one point is the center O of . The movement to this special
position does not alter the geometric properties of the figure, and in
that special position, elementary arguments and calculations based on
Euclidean geometry can be used to solve the problem.

For example, if P, P’ # O, then the statement OP = OP’ has the
same truth value whether interpreted in the Euclidean, Poincaré, or
Klein senses (according to Lemma 7.4 and Theorem 7.4), and <<POP”’
has the same measure in all three senses. In particular, a hyperbolic
circle with hyperbolic center O is represented in both models by a
Euclidean circle with Euclidean center O.

You will see some nice applications of this method in Exercises
K-15, K-17 through K-20, and P-5, and in Chapters 9 and 10. The
general study of geometric motions is in Chapter 9.

REVIEW EXERCISE

Which of the following statements are correct?

(1) Although 2000 years of efforts to prove the parallel postulate as a
theorem in neutral geometry have been unsuccessful, it is still possible
that someday some genius will succeed in proving it.

(2) If we add to the axioms of neutral geometry the elliptic parallel postu-
late (that no parallel lines exist), we get another consistent geometry
called elliptic geometry.

(3) All the ultra-ideal points in the Klein model are points in the Euclidean
plane outside .

(4) Both the Klein and Poincaré models are ““conformal’ in the sense that
congruence of angles has the usual Euclidean meaning.

(5) Inthe Poincaré model “lines” are represented by all open diameters of
a fixed circle ¥ and by all open arcs inside y of circles intersecting y.

(6) For any chord A)(B whatever of circle 7, the tangents to ¥ at the
endpoints A and B of the chord meet in a unique point called the po/e of
that chord.



K-Exerclises l I l 271

(7) In the Poincaré model two Poincaré lines are interpreted as “‘perpen-
dicular” if and only if they are perpendicular in the usual Euclidean
sense.

(8) In the Klein model two open chords are interpreted to be “perpendic-
ular” if and only if they are perpendicular in the usual Euclidean sense.

(9) Inversion in a given circle maps all circles onto circles.

(10) Ultra-ideal points have no representation in the Poincaré models.

(11) Four points in the Euclidean plane form a harmonic tetrad if they are
collinear and their cross-ratio equals 1.

(12) If point Oisoutside circle d and a tangent from O to d touches d at point
T, then the power of O with respect to d is equal to the square of the
distance from O to T.

(13) Let point P lie on circle d and let P’ and J” be their inverses in another
circle y such that y does not pass through P or the center of 6. Then the
tangent to &’ at P’ is parallel to the tangent to J at P.

(14) The inverse of the center of a circle d is the center of the inverted circle
J.

(15) In order for the midpoint M of segment AB to have a harmonic conju-
gate with respect to AB, for all A and B, the Euclidean plane must be
extended to the real projective plane by adding a line of points at
infinity.

(16) If astatement in plane hyperbolic geometry holds when interpreted in
the Klein or Poincaré model, then that statement is a theorem in
hyperbolic geometry.

The following exercises (all of which are major exercises) will be
divided into three categories: (1) K-exercises, on the Klein model; (2)
P-exercises, on the Poincaré models and on circles; (3) H-exercises,
on harmonic tetrads and theorems of Menelaus, Ceva, Gergonne, and
Desargues.

K-EXERCISES

K-1. Verify the interpretations of the incidence axioms, the betweenness
axioms, and Dedekind’s axiom for the Klein model (Archimedes’
axiom follows from Dedekind’s-see Chapter 3; see Exercise 31,
Chapter 4, for the interpretation of B-4.)

K-2. (a) Let/be a diameter of y and let m be an open chord of 7 that

does not meet /and whose endpoints differ from the endpoints of
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/. Draw a diagram showing the common perpendicular 4to /and
m in the Klein model. (Hint: Use the pole of 7 and the descrip-
tion of perpendicularity in case 1, p. 238.)

(b)Y Let/and m be intersecting open chords of 7. Itis a valid theorem
in hyperbolic geometry that for any two intersecting nonperpen-
dicular lines there exists a third line perpendicular to one of them
and asymptotically parallel to the other (see Major Exercise 9,
Chapter 6). Draw the two lines in the Klein model that are
perpendicular to /and asymptotically parallel to 7 (on the left
and right, respectively). This shows that the angle of parallelism
can be any acute angle whatever. Explain.

(¢) In the Euclidean plane any three parallel lines have a common
transversal. Draw three parallel lines in the Klein model that do
not have a common transversal.

. (a) In the Klein model an ideal point and an ordinary point always

determine a unique Klein line. Translate this back into a
theorem in hyperbolic geometry about limiting parallel rays.

(b) Suppose the uvltra-ideal points P(/) and P () are poles of Klein
lines / and m, respectively. You saw in Figure 7.18 that the
Euclidean line joining P(/) and P(m) need not cut through the
circle 7, and hence need not determine a Klein line. Show that
the only case in which there is a Klein line joining P (/) and P ()
is when /and m are divergently parallel.

(c) Suppose the ultra-ideal point P(/) is the pole of a Klein line /and
Q is an ideal point; Q is uniquely determined by a ray 7 in the
direction of €. State the necessary and sufficient conditions on
and /in order that P(/) and Q determine a Klein line. Translate
this into a theorem in hyperbolic geometry.

. Given chords / and m of y that are not diameters. Suppose the line

extending m passes through the pole of /Z Prove that the line extending
/passes through the pole of m. (Hint: Use either Equation (2), p. 259,
or the theory of orthogonal circles.)

. Use the Klein model to show that in the hyperbolic plane there exists a

pentagon with five right angles and there exists a hexagon with six
right angles. (Hint: Begin with two lines having a common perpen-
dicular. Locate the poles of these two lines, then draw an appropriate
line through each of the poles, etc.) Does there exist, forall » = 5, an
n-sided polygon with # right angles?

. Justify the following construction of the Klein reflection A” of A across

m, which is simpler than the one in Figure 7.38. Let A be an end of 7
and let P be the pole of 7. Join A to A and let this line cut y again at D,
Join @ to P and let this line cut p at @. Then A’ is the intersection of
AP with A®’. (See Figure 7.45.)



K-Exercises I l ‘ 273

FIGURE 7.45

K-7.

K-8.

K-9.

K-10.

K-11.

Given a segment AA’ in the Klein model. Show how to construct its
hyperbolic midpoint with straightedge and compass (see Figures 7.38
and 7.39).

Construct triangles in the Klein model such that the perpendicular
bisectors of the sides are (a) divergently parallel and (b) asymptoti-
cally parallel. (See Exercise 13 and Major Exercise 7, Chapter 6.)
Prove the formula

2z
F& =1

for the isomorphism F of the Poincaré model onto the Klein model

(see Figure 7.33). What is the formula for the inverse isomorphism?

Angle measure in the Klein model is defined so that F preserves angle

measure; draw the diagram which illustrates this.

Let A= (0, 0), B= (0, §), and let /be the diameter of ¥ cut out by

the x axis.

(a) Find the Klein length &’ (AB).

(b) Find the coordinates of the point M on segment AB that repre-
sents its midpoint in the Klein model.

(c) Find the equation of the locus of points whose perpendicular
Klein distance from /equals 4’ (AB). (This locus is an “‘equidis-
tant curve”’ —see Chapter 10, p. 393.)

LetQand Q' be distinct ideal points and A an ogdinary point. Let P be

the pole of chord €, and let Euclidean ray AP cut y at 3. Prove that

A3, represents the bisector of XQAQ’ in the Klein model (see Figure

7.46). Apply this result to justify the construction of the line of

enclosure given in Major Exercise 8, Chapter 6. (Hint: Use Theorem

6.6.)
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FIGURE 7.46 14

K-12. In Exercise 16, Chapter 6, you proved the theorem that the angle
bisectors of a triangle in hyperbolic geometry (in fact, in neutral
geometry) are concurrent. Using the construction of angle bisectors
given in the previous exercise and the glossary of the Klein model,
translate this theorem into a famous theorem in Euclidean geometry
due to Brianchon (see Figure 7.47). This gives a hyperbolic proof of a
Euclidean theorem (for a Euclidean proof, see Coxeter and Greitzer,
1967, p. 77).

K-13. Itisatheorem in hyperbolic geometry that inside every trebly asymp-
totic triangle AZQA there is a unique point G equidistant from all
sides. Show that in the Klein model this theorem is a consequence of

FIGURE 7.47 Brianchon’s theorem.
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FIGURE 7.48

K-14.

K-15.

Gergonne’s theorem in Euclidean geometry, which asserts that if the
inscribed circle of APQR touches the sides at points A, 3, and £, then
segments P3, Q€, and RA are concurrent (see Figure 7.48 and
Exercise H-9). Show that (XAG3)° = 120° in the sense of degree
measure for the Klein model. (Hint: To take care of the special case
where one side of AZQA is a diameter, apply a harmonic homology to
transform to the case where Gergonne'’s theorem applies.)

In order to express the Klein length 2’(AB) = }{log(AB, PQ)| in
terms of the coordinates (z,, @;) of Aand (4,, 4,) of B, prove that with
asuitable ordering of the ends P and Q of the Klein line through A and
B you have the formula

(AB, PQ)
_abtah—1— Vies— 62 + (4, — b)) — (b — a,0)*
ayby + b, — 1+ V(e — b))%+ (@, — b))t — (a6, — ayby)*

(Hint: If A and B have complex coordinates z and w, then P and Q
have complex coordinates £z + (1 — Awand #z + (1 — #)w, where ¢
and # are roots of a quadratic equation Da? + 2Ex + F = 0 expressing
the fact that P and Q lie on the unit circle. Find the coefficients D, E,
and F and show that

{1~ _E+F~JEE—DF
#(1—f5) E+F+JEE—DF

(AB, PQ) =

Use the formula for Klein length given in Theorem 7.4 to derive a
proof of the Bolyai-Lobachevsky formula in Theorem 7.2 for the
Klein model. (Hint: Take the vertex of the angle of parallelism « to
be the center O of the absolute and show that the Klein distance &’
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corresponding to «¢ is given by

14+ cosa
d’ =} log—.
: Og1-—cos(:t

Then use a half-angle formula from trigonometry.)
(a) Show that a Cartesian line / of equation Ax + By +C=01is a
secant of the unit circle if and only if

A+ B —(C*>0.

We will denote the expression on the left of this inequality by|/|2.
(b) Prove that if P’ = («/, ¥') is the Klein reflection of P = (x, y)
across /, then
_/Px— 2A(Ax+ By + C)
12+ 2C(Ax+ By + C)
, /Py —2B(Ax+ By+ ()
/2 +2C(Ax+ By +C) ~

(Hint: Use Theorem 7.3. In case € = 0, the Euclidean reflection
is easy to calculate. If C# 0, the pole L of / has coordinates
(—AIC, —BIC), according to Equation (2), p. 259; you muyst
calculate the coordinates of the point M where line LP
meets /and then calculate the coordinates of the harmonic con-
jugate P’ of P with respect to L and M.)

. The line perpendicular to the bisector of <A at A is called the exzernal

bisecror of XA (because its rays emanating from A bisect the two

supplementary angles to <A). You proved (in Exercise 16, Chapter

6) that the (internal) bisectors of the angles of AABC concur in the

center I of the inscribed circle —this is a theorem in neutral geo-

metry.

(a) Prove that in Euclidean geometry the internal bisector of <A is
concurrent with the external bisectors of <B and <C.

(b) Deduce from the Klein model that in hyperbolic geometry, the
internal bisector of <A is “concurrent’ with the external bisec-
tors of ¥B and ¥C in a point which may be ordinary, ideal, or
ultra-ideal. (See Figure 7.49.) (Hint for (a): Use the facts that
the bisector of an angle is the locus of interior points equidistant
from the sides, and that external bisectors are not parallel. Hint
for (b): Take I to be the center O of the absolute ¥ and notice,
using K-11, that the hyperbolic internal bisectors, being diame-
ters of ¥, coincide with the Euclidean internal bisectors. Hence,
the hyperbolic external bisectors, being perpendicular to diame-
ters of , coincide with the Euclidean external bisectors.)
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FIGURE 7.49 Three possible positions of the absolute.

K-18.

K-19.

K-20.

It is a theorem in Euclidean geometry that the altitudes of an acute
triangle are concurrent and the lines containing the altitudes of an
obtuse triangle are concurrent (see Problem 8, Chapter 9). Applying
this theorem to the Klein model, deduce that in hyperbolic geometry
the altitudes of an acute triangle are concurrent and that the lines
containing the altitudes of an obtuse triangle are *“‘concurrent” in a
point which may be ordinary, ideal, or ultra-ideal. (Hint: Place the
triangle so that one vertex is O; show that the Klein lines containing
the altitudes then coincide with the Euclidean perpendiculars from
the vertices to the opposite sides. Use the crossbar and exterior angle
theorems to verify that for acute triangles the point of concurrence is
ordinary.)

It is a theorem in Euclidean geometry that the medians of a triangle
are concurrent (see Exercise 69, Chapter 9). Show that this theorem
also holds in hyperbolic geometry by a special position argument in
the Klein model.? (Hint: If O is the hyperbolic midpoint of AB, it is
also the Euclidean midpoint; if P, Q are the hyperbolic gidpoints of
AC, BC, use E)Eg)rcisc 11(b), (_)Chapter 6, £ S show that PQ is Euclid-
ean-parallel to AB—that is, PQ “‘meets” AB in the harmonic conju-
gate of O with respect to A and B. The result then follows from the
harmonic construction in Figure 7.50.)

We have defined a parallelogram to be a quadrilateral in which the
lines containing opposite sides are parallel.

(a} Prove that in Euclidean geometry, a quadrilateral is a parallelo-

® Melissa Schmitz, an undergraduate student at the State University of New York at Gene-
seo, sent me a three-dimensional neutral geometry proof of this theorem due to F. Busulini. She
also used a computer to discover that in hyperbolic geometry, the centroid does not lie two-thirds
of the distance from each vertex to the midpoint of the opposite side (as it does in Euclidean
geometry). Next question: Does the Euler line (Exercise 69, Chapter 9) exist in the projective
completion of the hyperbolic plane?
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FIGURE 7.50

K-21.
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gram if and only if opposite sides are congruent. Show that in
hyperbolic geometry, the opposite sides of a parallelogram need
not be congruent.

For the remainder of this exercise, the geometry will be Ayperbolic.

(b) Given DJABCD with opposite sides congruent. Prove that oppo-
site angles are congruent and that the lines containing opposite
sides are divergently parallel (use Exercise 14, Chapter 6). Such
a quadrilateral will be called a symmetric parallelogram.

{(c¢) Prove that the diagonals of a symmetric parallelogram CJABCD
have the same midpoint S, and that S is the symmetry point for
both pairs of opposite sides (see Major Exercise 12, Chapter 6
and Figure 6.27).

(d) Show that the diagonals are perpendicular if and only if all four
sides are congruent, and in that case, JABCD has an inscribed
circle with center S.

(e) Show that the diagonals are congruent if and only if all four
angles are congruent; however, in that case, show that all four
sides need not be congruent.

{You can verify these assertions either by direct argument or by
using the Klein model, placing S at the center O of the absolute and
remarking that JABCD is then a Euclidean parallelogram.)

It has been shown by Jenks that in hyperbolic geometry, “‘between-

ness,” “‘congruence,” and ‘‘asymptotic parallelism” can all be de-

fined in terms of incidence alone. (An important consequence of this

observation is that every collineation of the hyperbolic plane is a

motion; see Chapter 9). Here are his observations; draw diagrams in

the Klein model to see what is going on. First, three distinctlines 4, 4, ¢
form an asymptotic triangle @é¢ if and only if for any point P on anyone

of them —say, on 2—there exists a unique line p # 4 through P

which is parallel to both & and ¢ (p is called an asymprotic transversal
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through P). Second, | #if and only if there exists a line csuch that g, 4,
¢ form an asymptotic triangle. Third, given three points P, Q, Ron a
line m, P * Q * R if and only if given any a % m through P, 6 # m
through R, and ¢ such that 4, 4, ¢ form an asymptotic triangle, every
line through Q meets at least one of the sides of ab¢. Fourth, segment
PQ on a is congruent to segment P’Q’ on &’ if and only if either (1)
a|a’ and both are asymptotically parallel to the join of the meets of the
asymptotic transversals through P and P’ and through Q and Q’, or (2)
both are asymptotically parallel to some line 4” on which lies a seg-
ment P”Q” congruent with both PQ and P’Q’ in the sense of (1).
Justify (1) by drawing the diagram in the Klein model and applying
Lemma 7.5 and Theorem 7.4.

P-EXERCISES

P-1.

Using the glossary for the Poincaré disk model, translate the following

theorems in hyperbolic geometry into theorems in Euclidean geome-

try:

(a) If two triangles are similar, then they are congruent.

(b) If two lines are divergently parallel, then they have a common
perpendicular and the latter is unique.

(c¢) The fourth angle of a Lambert quadrilateral is acute.

. State and prove the analogue of Proposition 7.6 when O lies inside &

and the power p of O with respect to J is negative.

. Let d be a circle with center C and & a circle not through C having

center A. Let A’ be the inverse of A in d and let circle @’ be the image
of & under inversion in &. Prove that A’ is the inverse of C in o and
hence that A’ is not the center of a’. (Hint: Show that any circle
through A’ and C is orthogonal to &’ by observing that the image #” of
B under inversion in J is a line orthogonal to ¢.)

. Let/be a Poincaré line that is not a diameter of y; /is then an arcof a

circle & orthogonal to . Prove that hyperbolic reflection across / is
represented in the Poincaré model by inversion in . (Hint: Use
Proposition 7.10 and the corollary to Proposition 7.6.)

. Let C be a point in the Poincaré disk model. Prove that a circle

centered at C in the sense of hyperbolic geometry is represented in
the Poincaré model by a Euclidean circle whose center # C unless C
coincides with the center O of y. (Hint: First take C =0 and use
Lemma 7.4. Then map the set of circles centered at O onto the set of
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circles with C as hyperbolic center by reflection in the Poincaré line

that is the Poincaré perpendicular bisector of the Poincaré segment

OC. Apply Exercises P-3 and P-4.)

P-6. In the hyperbolic plane with some given unit of length, the distance 4
for which the angle of parallelism I1(4)° = 45° is called Schwetkart’s
constant. Schweikart was the first to notice that if AABC is an isosceles
right triangle with base BC, then the length of the altitude from A to
BC is bounded by this constant, which is the least upper bound of the
lengths of all such altitudes. Prove that for the length function we have
defined for the Poincaré disk model, Schweikart’s constant equals
log(1 + V2) (see Figure 7.51). (Hint: Schweikart’s constant is the
Poincaré length & of segment OP in Figure 7.51. Show that the
Euclidean length of OP is V2 — 1 and apply Lemma 7.4 to solve for
)

P-7. Letabeacircle with center A and radius of length rand fa circle with
center B apd radius of length s. Assume A # B and let C be the unique
point on AB such that AC? — BCZ =72 — 52 The line through C
perpendicular to AB is called the radical axis of the two circles.

(a) Prove (e.g., by introducing coordinates) that C exists and is
unique, and that for any point P different from A and B, P lies on
the radical axis if and only if PA2 — PB? = 2 — 2,

(b) For any point X outside both & and B, let T be a point of a
such that XTis istangent to o at T similarly let U on fbe a point of
tangency for XU Prove that XT = XU if and only if X lies on the
radical axis of & and .

(c) Prove that if & and § intersect in two points P and Q, PQ is their
radical axis.

~2
~

FIGURE 7.51
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FIGURE 7.52

P-8.

P-10.

(d) Prove thatif @ and B are tangent at point C, the radical axis is the
common tangent line through C.

(e) Let X be a point outside both & and f. Prove that X lies on the
radical axis of & and # if and only if X has the same power with
respect to & and f# (see Lemma 7.1).

Given two nonintersecting, nonconcentric circles a and fwith centers

A and B, respectively. Justify the following straightedge-and-compass

construction of the radical axis of & and §. Draw any circle ¢ thatcuts o

in two points A’ and A” and cuts Bin two points B’ and B”. If A’A” and

B’B” intersect in a point P, thcn(glics on the radical axis; the latter is

therefore the perpendicular to AB through P. (Hint: Draw tangents

PS, PT, and PU from P to 4, &, and f and apply Exercises P-7 (b) and

P-7(c) to show that PT = PS = PU. See Figure 7.52.)

. Use Exercise P-7 to verify by a straightedge-and-compass construc-

tion that in the Poincaré model two divergently parallel Poincaré lines
have a common perpendicular. (Hint: There are four cases to con-
sider, depending on whether the Poincaré line is a diameter of y or an
arc of a circle a orthogonal to 7, and depending on whether radical
axes intersect or not. One case is illustrated in Figure 7.53. In case the
radical axes are parallel, use the fact that the perpendicular bisector of
a chord of a circle passes through the center of the circle (Exercise 17,
Chapter 4).)

Given any Poincaré line /and any Poincaré point P not on /. Construct
the two rays from P in the Poincaré model that are limiting parallel to
L (If /is an arc of a circle a orthogonal to y and intersecting y at A; and
A,, then the problem amounts to constructing a circle f; through P
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FIGURE 7.54
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that is orthogonal to ¥ and tangent to « at A, for each of /=1, 2. See
Figure 7.54, and use Proposition 7.5.)

. Given an acute angle in the Poincaré model. Construct the unique

Poincaré line that is perpendicular to a given side of this angle and
limiting parallel to the other. This shows that the angle of parallelism
can be any acute angle whatever. (Hint: If both Poincaré lines are arcs
of orthogonal circles & and f3, let P’ be the intersection with y of the
part of a containing the given ray, and let P be the other intersection
with y of P’B, B being the center of f; see Figure 7.55. Show that P and
P’ are inverse points in circle B, then find the point of intersection of
the tangents to y at P and P’. Compare with Major Exercise 9, Chapter
6.)

Given circle y with center O. For any point P # O, if P’ is the inverse
of P in y, then the line through P’ that is perpendicular to OP is called
the polar of P with respect to ¥ and will be denoted p(P). When P lies
outside %, its polar joins the points of contact of the two tangents to y
from P (see Figure 7.22). When P lies on 9, its polar is the tangent to y
at P, and this is the only case in which P lies on p(P). Prove the
following duality property. B lies on p(A) if and only if A lies on p(B).
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Given acute angle

FIGURE 7.55

(Hing: If B lies on p(A), let B be the foot of the perpendicular from A
to OB. See Figure 7.56. Show that AOAB’ is similar to AOBA’ and
deduce that B’ is the inverse of B in y. For the significance of this
operation of polar reciprocation for the theory of conics, see Coxeter
and Greitzer, 1967, Chapter 6.)

P-13. We define three types of coaxal pencils of circles as follows:
(1) Given a line £ and a point C on ¢ The corresponding fangent

coaxal pencil consists of all circles tangent to £ at C.
(2) Given two points A and B. The corresponding intersecting

A’

p(A)

FIGURE 7.36
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coaxal pencil consists of all the circles which pass through both
A and B, and A and B are the Amiting points of this pencil.
(3) Given acircle y and a line 7 not meeting . The corresponding
nonintersecting coaxal pencil consists of ¥ and all other circles &
such that 7 is the radical axis of y and 4.
Prove the following:
{a) Any two nonconcentric circles belong to a unique coaxal pencil.
{b) Given a coaxal pencil C. All pairs of circles belonging to € have
the same radical axis, and the centers of all circlesin Clieon a line
perpendicular to this radical axis called the /ine of centers of C.
(Hint; See Exercise P-7).

. Prove the following:

{(a) The set of all circles orthogonal to two given circles y and &
tangent at C is the tangent coaxal pencil through C whose line of
centers is the common tangent #to y and 4.

(b)Y The set of all circles orthogonal to two given nonintersecting
nonconcentric circles ¥ and & is the intersecting coaxal pencil
whose line of centers is the radical axis 7 of y and J and whose
limiting points are the two points at which every member of this
pencil cuts the line joining the centers of y and 4.

(c) The set of all circles orthogonal to two given circles y and &
intersecting at A and B is the nonintersecting nonconcentric
coaxal pencil whose line of centers is AB and whose radical axis is
the perpendicular bisector of AB. (See Figure 7.57.)

Given three circles «, B, and 7. Is there always a fourth circle

orthogonal to all three of them? If so, is d unique? (Hint: Consider the

radical axes of the three pairs of circles obtained from the three given
circles; the center of d must lie on all three radical axes and must lie
outside the three circles.)

. Given a circle y with center O.

{(a) Given P # O and P’ its inverse in . Prove that inversion in y
maps the pencil of lines through P’ onto the intersecting coaxal
pencil of circles through O and P and maps the orthogonal pencil
of concentric circles centered at P’ onto the nonintersecting
coaxal pencil of circles whose radical axis is the perpendicular
bisector of OP.

(b) Given a line / through O. Prove that inversion in ¥ maps the
pencil of lines parallel to / onto the pencil of circles tangent to /
at O.

. The inversive plane is obtained from the Euclidean plane by adjoining a

single point at infinity %, which by convention lies on every Euclidean
line but does not lie on any Euclidean circle. By a “circle” we mean
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FIGURE 7.57

P-18.

either an ordinary Euclidean circle or a line in the inversive plane.
Two parallel Euclidean lines meet at ® when extended to inversive
lines; as “circles” they will be considered to be tangent at . Given an
ordinary circle y with center O, define the inverse of O in y to be . By
inversion in a “circle” we mean either inversion in an ordinary circle or
reflection across a line. Prove the following:
(a) Inversion in a given “circle” maps “circles” onto “circles.”
(b) If A and B are inverse to each other in a “circle” &, and if under
inversion in another ‘‘circle’” fthey mapto A’, B’, &', then A’ and
B’ are inverse to each other in a’. (Hint for (b): Show that any
“circle’ y’ through A’ and B’ is orthogonal to &’ by observing that
inversion preserves orthogonality—use Propositions 7.5 and
7.9.)
In addition to the tangent, intersecting, and nonintersecting coaxal
pencils of circles defined in Exercise P-13, define three further pen-
cils of “circles” in the inversive plane as follows:
(4) All the circles having a given point as center
(5) All the lines passing through a given ordinary point
(6) A given line and all lines parallel to it
Furthermore, given a coaxal pencil of circles, we will consider its
radical axis as one more “circle” belonging to the pencil. Prove the
following:
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(a) Two distinct *“‘circles” belong to a unique pencil of “circles.”
(b) A pencil of “circles” is invariant as a set under inversion in any
*““circle” in the pencil. (Hint for (b): The statement is obvious for
the three new types of pencils just introduced. For the three
coaxal types, use the two preceding exercises.)
P-19. Constructa regular 4-gon in the Poincaré disk model. (Hint: Choose a
point A # O on the line y = x; let B (respectively, D) be its reflection
across the x axis (respectively, the y axis) and let C be obtained from A
by 180° rotation about O. Show that JABCD is a regular 4-gon. Note
that as A approaches O, <A approaches aright angle, while as A moves
away toward the ideal end of ray OA, <A approaches the zero angle.)
P-20. Use the Poincaré model to show that in the hyperbolic plane, there
exist two points A, B lying on the same side § of a line /such that no
circle through A and B lies entirely within §. This shows that the result
in Major Exercise 7, Chapter 5, is another statement equivalent to
Euclid’s parallel postulate. (Hint: Take / to be a diameter of the
Poincaré disk and use Exercise P-5.)

H-EXERCISES

H-1. Let M be the midpoint of AB, r= M—A, and let C,Don ;\_1)3 lie on the
same side of M, with A, B, C, D distinct. Then C and D are harmonic
conjugates with respect to AB if and only if 72 = (MD) MC).

H-2. 1f yand d are orthogonal circles, AB is a diameter of 7, and d cuts AB in
points Cand D, then C and D are harmonic conjugates with respect to
AB; conversely, if a diameter of one circle is cut harmonically by a
second circle, then the two circles are orthogonal (see Figure 7.58).
(Hint: If T is a point of intersection of yand 4, use Lemma 7.1 toshow

FIGURE 7.58
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that the circles are orthogonal if and only if (OT)2 = (OC)(OD).

Now apply Exercise H-1.)

H-3. Given three collinear points A, B, and C. Prove that the fourth har-
monic point D is the inverse of C in the circle having AB as diameter.
(Hint: Use Exercise H-2 and Proposition 7.5.)

H-4. Sensed magnitudes. Giygn two points A, B. Assign arbitrarily an order
(i.e., a direction) to AB. Then the length of AB will be considered
positive or negative according to whether the direction from A to B
is the positive or negative direction on the line. We will denote
this signed length by AB, sp that we have AB = —BA. If C is a third
point on the directed line AB, we define the signed ratio in which C
divides AB to be AC/CB.

(a) Prove that this signed ratio is independent of the direction as-
signed to the line and that point Cis uniquely determined by this
ratio. (Note that C would not be uniquely determined by the
unsigned ratio.)

(b) Given parallel lines /and m. Let transversals and #’ cut /and m

inB, Cand B’, C’, respectively, and let # meet ¢ at point A. Prove
that AB/BC = AB’/B’C’ (see Exercise 18, Chapter 5).

H-5. Theorem of Menelaus. Given AABC and points D on BC E on CA
and F on AB that do not coincide with any of the vertices of the
triangle. Define the /nearity number by [ABC/DEF] = (AF/FB)
(BD/DC) (CE/EA). Then a necessary and sufficient condition for
D, E, and F to be collinear (Figure 7.59) is that [ABC/DEF] = —1.
(Hin(g_:)lf D, E, and F lie on a line /, let the parallel m to / through A
cut BC at G. Use Exercise H-4 to get CE/EA = CD/DG and AF/
FB = GD/DB and deduce that the lin(__)carity number is — 1. Con-
versely, use Exercise H-4 to show that EF cannot be parallel to BC. If
these lines meet at D', use the first part of the proof and the hypothe-
sis to show that BD/DC = BD’/D’C and apply Exercise H-4(a).)

FIGURE 7.59
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FIGURE 7.60

H-6.

H-7.

H-8.

H-9.

Thegrem of Ceva. Given AABC and a third point D (respegtive]y E, F)
on BC (respectively on AC, AB). Then the three lines AD, BE, and
CF are either concurrent or parallel if and only if [ABC/DEF] = +1

(see Figure 7.60). (Hint: Suppose that the three lines meet at O;

apply Menelaus’ theorem to AADB and AADC to obtain two differ-

ent expressions for OD/AQ, then divide one expression by the other
to see that the linearity number is + 1. If the three lines are parallel,
apply Exercise H-4(b). Conversely, if the linearity numberis +1 and
the three lines are not pa‘r_gllc], let BE and CF, for example, meet
at O, and let AO meet BC at D’. Use the first part of the proof
and the hypothesis to show that BD/DC = BD’/D’C and apply Exer-

cise H-4(a).)

Given four collinear points A, B, C, and D. Define their signed cross-

ratio (AB, CD) by (AB, CD) = (AC/CB)/(AD/DB).

(a) Prove that ABCD is a harmonic tetrad if and only if (AB, CD) =
—1.

(b) Prove that signed cross-ratios are preserved by perspectivities
and parallel projections (see Lemma 7.5 and the parallel projec-
tion theorem preceding Exercise 18, Chapter §).

Prove that ABCD is a harmonic tetrad if and only if 1/AB =

1 (1/AC + 1/AD).

Suppose the inscribed circle of AABC touches sides BC, CA, and AB

at D, E, and F, respectively. Prove that AD, BE, and CF are concur-

rentin a point G called the Gergonne point of AABC; see Figure 7.61.

(Hint: By Exercise 16, Chapter 6, the center I of the inscribed circle

lies on all three angle bisectors; this gives three pairs of congruent

right triangles that can be used to verify the criterion of Ceva’s
theorem.)
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FIGURE 7.61 A E C

H-10. Use the theorem of Menelaus to prove Desargues’s theorem as stated
in Project 1, Chapter 2. (Hint: Referring to Figure 2.10, apply Men-
elaus’ theorem to ABCP, ACAP, and AABP, and then multiply the
three equations to get [ABC/RST] = —1. Now apply Menelaus’
theorem once more.)

H-11. The theorems of Menelaus and Ceva can be applied to prove famous
theorems of Pappus and Pascal and to prove the existence of special
points of a triangle. Report on these results, using Kay (1969) or
Coxeter and Greitzer (1967) as references.



CHAPTEHR

PHILOSOPHICAL
IMPLICATIONS

I have had my solutions for a long time, but I do not
yet know how 1 am to arrive at them.

C. F. GAUSS

WHAT IS THE GEOMETRY OF PHYSICAL SPACE?

We have shown that if Euclidean geometry is consistent, so is hyper-
bolic geometry, since we can construct models for it within Euclidean
geometry. Conversely, it can be proved that if hyperbolic geometry is
consistent, so is Euclidean geometry, for the ‘“horocycles’ on the
“horosphere’ in hyperbolic space form a model of the lines on the
Euclidean plane (see Kulczycki, 1961, §17). Thus, the two geometries
are equally consistent.

You may grant now that, logically speaking, hyperbolic geometry
deserves to be put on an equal footing with Euclidean geometry. But
you may also feel that hyperbolic geometry is just an amusing intellec-
tual pastime, whereas Euclidean geometry accurately represents the
physical world we live in and is therefore far more important. Let’s
examine this idea a little more closely.

Certainly, engineering and architecture are evidence that Euclid-
ean geometry is extremely useful for ordinary measurement of dis-
tances that are not too large. However, the representational accuracy
of Euclidean geometry is less certain when we deal with larger dis-
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tances. For example, let us interpret a “line” physically as the path
traveled by a light ray. We could then consider three widely separated
light sources forming a physical triangle. We would want to measure
the angles of this physical triangle in order to verify whether the sum is
180° or not (such an experiment would presumably settle the ques-
tion of whether space is Euclidean or hyperbolic).

F. W. Bessel, a friend of Gauss, performed such a measurement,
using the angle of parallax of a distant star. The results were inconclu-
sive. Why? Because any physical experiment involves experimental
error. Qur instruments are never completely accurate. Suppose the
sum did turn out to be 180°. If the error in our measurement were at
most 1/100 of a degree, we could conclude only that the sum was
between 179.99° and 180.01°. We could never be sure that it actually
was 180°.

Suppose, on the other hand, that measurement gave us a sum of
179°. Although we could conclude only that the sum was between
178.99° and 179.01°, we would be certain that the sum was less than
180°. In other words, the only conclusive result of such an experiment
would be that space is hyperbolic!! The inconclusiveness of Bessel’s
experiment shows only that if space is hyperbolic, the defects of
terrestrial triangles are extremely small.

To repeat the point: Because of experimental error, a physical
experiment can never prove conclusively that space is Euclidean — it
can prove only that space is non-Euclidean.

The discussion can be made more subtle. We must question the
nature of our instruments — aren’t they designed on the basis of Eu-
clidean assumptions? We must question our interpretation of “lines”’
—couldn’t light rays travel on curved paths? We must question
whether space, especially space of cosmic dimensions, cannot be de-
scribed by geometries other than these two.

The latter is in fact our present scientific attitude. According to
Einstein, space and time are inseparable and the geometry of space-
time is affected by matter, so that light rays are indeed curved by the
gravitational attraction of masses. Space is no longer conceived of as an
empty Newtonian box whose contours are unaffected by the rocks put
into it. The problem is much more complicated than Euclid or Loba-

! If the measurement gave us a sum of 181° with error at most .01°, we would conclude that
space is elliptic.
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Albert Einstein

chevsky ever imagined — neither of their geometries is adequate for
our present conception of space. This does not diminish the historical
importance of non-Euclidean geometry. Einstein said, ‘“To this inter-
pretation of geometry I attach great importance, for should I not have
been acquainted with it, I never would have been able to develop the
theory of relativity.” 2

Here is the famous response of Poincaré to the question of which
geometry is true:

If geometry were an experimental science, it would not be an exact
science. It would be subjected to continual revision. . . . The geometrs-
cal axioms are therefore neither synthetic a priory intustions nor experimental

2 See George Gamow (1956), which tells how Einstein developed a geometry appropriate to
general relativity from the ideas of Georg Friedrich Bernhard Riemann (1826 - 1866).
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Jacts. They are conventions. Our choice among all possible conventions is
guided by experimental facts; but it remains free, and is only limited by
the necessity of avoiding every contradiction, and thus it is that postu-
lates may remain rigorously true even when the experimental laws
which have determined their adoption are only approximate. In other
words, the axioms of geomerry (1 do not speak of those of arithmetic) are
only definitions in disguise. What then are we to think of the question: Is
Euclidean Geometry true? It has no meaning. We might as well ask if
the metric system is true and if the old weights and measures are false;
if Cartesian coordinates are true and polar coordinates false. One geom-
etry cannot be more true than another: it can only be more convenient. [italics
added] ®

You may think that Euclidean geometry is the most convenient —it is
for ordinary engineering, but not for the theory of relativity. More-
over, R. K. Luneburg contends that visual space, the space mapped on
our brains through our eyes, is most conveniently described by hyper-
bolic geometry.*

Philosophers are still arguing about Poincaré’s philosophy of con-
ventionalism. One school, which includes Newton, Helmholtz, Rus-
sell, and Whitehead, contends that space has an intrinsic metric or
standard of measurement. The other school, which includes Riemann,
Poincaré, Clifford, and Einstein, contends that a metric is stipulated
by convention. The discussion can become very subtle (see Torretti,
1978, Chapter 4).

WHAT IS MATHEMATICS ABOUT?

The preceding discussion sheds new light on what geometry, and in
general, mathematics, is about. Geometry is not about light rays, but
the path of a light ray is one possible physical interpretation of the
undefined geometric term “line.”” Bertrand Russell once said that
“mathematics is the subject in which we do not know what we are

* H. Poincaré (1952}, p. 50. See also Essay Topic 18 at the end of this chapter.

*R. K. Luneburg (1947), and his article in the Optical Society of America Journal, October,
1950, p. 629. See also the articles by O. Blank in that same journal, December, 1958, p. 911,
and March, 1961, p. 335, and the explanation in Trudeau (1987), pp. 251-254.
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talking about nor whether what we say is true.”” This is because certain
primitive terms, such as ““point,”” “line,” and “‘plane,” are undefined
and could just as well be replaced with other terms without affecting
the validity of results. Instead of saying “two points determine a
unique line,” we could just as well write ‘‘two alphas determine a
unique beta.” Despite this change in terms, the proofs of all our
theorems would still be valid, because correct proofs do not depend on
diagrams; they depend only on stated axioms and the rules of logic.
Thus, geometry is a purely forma/exercise in deducing certain conclu-
sions from certain formal premises. Mathematics makes statements of
the form “if . . . then”; it does not say anything about the meaning
or truthfulness of the hypotheses. The primitive notions (such as
“point” and “line”) appearing in the hypotheses are implicitly de-
fined by these axioms, by the rules as it were that tell us how to play
the game.?

To illustrate how radically different is this view of mathematics,
observe the following interaction (Torretti, 1987, p. 235). Gottlob
Frege (1848 -1925), who is considered the founder of modern math-
ematical logic, wrote to Hilbert:

I give the name of axioms to propositions which are true, but which are
not demonstrated because their knowledge proceeds from a source
which is not logical, which we may call space intuition. The truth of the
axioms implies of course that they do not contradict each other. That
needs no further proof.

Frege has stated the traditional view. Hilbert replied:

Since I began to think, to write and to lecture about these matters, |
have always said exactly the contrary. If the arbitrarily posited axioms
do not contradict one another or any of their consequences, they are
true and the things defined by them exist. That is for me the criterion of
truth and existence.

Hilbert knew that Euclidean and hyperbolic geometries were equally
consistent, so it follows that for him they “exist’” and are both “true.”
The discovery that Euclidean geometry was not *‘absolute truth’” had
a liberating effect on mathematicians, who now feel free to invent any

5 For a clear exposition of this viewpoint, which is due to Hilbert, see Hempel (1945).
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set of axioms they wish and deduce conclusions from them. In fact, this
freedom may account for the great increase in the scope and generality
of modern mathematics. In a 1961 address, Jean Dieudonné re-
marked on Gauss’ discovery of non-Euclidean geometry:

[It] was a turning point of capital significance in the history of mathe-
matics, marking the first step in a new conception of the relation
between the real world and the mathematical notions supposed to
account for it; with Gauss’ discovery, the rather naive point of view that
mathematical objects were only “ideas” (in the Platonic sense) of
sensory objects became untenable, and gradually gave way to a clearer
comprehension of the much greater complexity of the question,
wherein it seems to us today that mathematics and reality are almost
completely independent, and their contacts more mysterious than
ever.5

THE CONTROVERSY ABOUT THE
FOUNDATIONS OF MATHEMATICS

It would be misleading to say that mathematics is just a formal game
played with symbols and having no broader significance. Mathemati-
cians do not arbitrarily make up axioms—it is unlikely that anyone
would ever develop a geometry in which it was assumed that nonsup-
plementary right angles were never congruent to each other. Axioms
must lead to interesting and fruitful results. Of course, some axioms
that appear uninteresting may turn out to have surprising con-
sequences — this was the case with the hyperbolic axiom, which was
virtually ignored during the lifetimes of Gauss, Bolyai, and Loba-
chevsky. If, however, axiom systems do not bear interesting results,
they become neglected and eventually forgotten.

Arguing against the description of mathematics as a ‘“‘formal
game,” R. Courant and H. Robbins (in their fine book What is Mathe-
matics?) insist that “‘a serious threat to the very life of science is
implied in the assertion that mathematics is nothing but a system of
conclusions drawn from definitions and postulates that must be con-

¢ ]. Dieudonné, “L’Oecuvre Mathématique de C. F. Gauss,” Poulet-Malassis Alengon:
L’Imprimerie Alengonnaise, 1961.
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sistent but otherwise may be created by the free will of the mathema-
tician. If this description were accurate, mathematics could not attract
any intelligent person. It would be a game with definitions, rules and
syllogisms, without motivation or goal.”

And Hermann Weyl has remarked: ‘““The constructions of the
mathematical mind are at the same time free and necessary. The
individual mathematician feels free to define his notions and to set up
his axioms as he pleases. But the question is, will he get his fellow
mathematicians interested in the constructs of his imagination? We
can not help feeling that certain mathematical structures which have
evolved through the combined efforts of the mathematical community
bear the stamp of a necessity not affected by the accidents of their
historical birth.” 7

Axiom systems that are fruitful can also be controversial in the
mathematical world, as are the axioms for infinite sets developed by
Georg Cantor, E. Zermelo, and others. A controversy occurs because
some outstanding mathematicians (such as Weyl, L. E. ]J. Brouwer,
and Errett Bishop in the case of infinite sets) simply do not be/reve all
these axioms. If axioms were truly meaningless formal statements,
how could there be any controversy about them? Is there any contro-
versy about the rules of chess? It would seem that the formalist
viewpoint — the view that mathematics is just a formal game —is a
dodge to avoid having to face the difficult philosophical and psycho-
logical problem of the nature of mathematical creations or discoveries.
Just what is asserted when a mathematician claims that something
exists? When the Pythagoreans discovered that the hypotenuse of an
isosceles right triangle was not commensurable with the leg, they tried
to keep this discovery secret, calling such lengths “irrational.” Nowa-
days we aren’t upset over numbers like v2. Similarly, mathematicians
have accommodated themselves to “‘imaginary’” numbers, such as
i = \—1, exploited by J. Cardan.8

The most ‘‘fundamentalist” position on the philosophy of mathe-
matics is that of Leopold Kronecker, who dominated the German

? From H. Weyl, “A Half-Century of Mathematics,” American Mathematical Monthly, 58
(1951): 523-553.

8 Jacques Hadamard has said about Cardan: “It would naturally be expected that the
discovery of imaginaries, which seems nearer to madness than to logic and which, in fact, has
illuminated the whole mathematical science, would come from such a man whose adventurous
life was not always commendable from the moral point of view, and who from childhood suffered
from fantastic hallucinations . . .” (Hadamard, 1945).
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mathematical world in the late nineteenth century. According to
Kronecker, “God created the whole numbers—all else is man-
made.” In particular, Kronecker repudiated Georg Cantor’s theory of
transfinite cardinal and ordinal numbers. Hilbert later defended Can-
tor, proclaiming that “‘no one shall expel us from the paradise which
Cantor has created for us.” Subsequently Kronecker was portrayed as
the nasty reactionary whose rejection of Cantor’s revolutionary new
ideas drove Cantor to the insane asylum (see Bell, 1961); this is
undoubtedly a myth, and the philosophical issues underlying the
Kronecker-Cantor controversy are far from settled (see Fang, 1976).

In the twentieth century, Cantor’s set theory, made precise by the
Zermelo-Fraenkel (Z-F) axioms, became the new “absolute truth”
that was the foundation for all of mathematics. However, there was
some controversy about one axiom, the axiom of choice (AC), and
there was so much uncertainty about another idea of Cantor’s that it
was called a “hypothesis”’—the continuum hypothesis (CH). The
first in Hilbert’s famous 1900 list of 23 problems was to prove or
disprove CH. Forty years later, Kurt Gédel created a model of the
other Z-F axioms in which both AC and CH were true; that demon-
strated the impossibility of disproving them. History repeated itself
when, in 1963, models were created® in which either AC or CH or both
were false. Thus AC and CH are independent of the other Z-F axioms
and of each other. There exists an equally valid non-Cantorian set
theory, just as there is an equally valid non-Euclidean geometry.

One mystery about mathematics is perhaps the most compelling of
all. If mathematical creations are merely arbitrary fancies, how is it
that some turn out to have physical applications, for example, applica-
tions that enable us to calculate orbits well enough to put men on the
moon? When the Greeks developed the theory of ellipses they had no
inkling that it would have applications to a ‘“‘space race.” 1°

These questions and viewpoints are not intended to confuse you,
but to point up the fact that mathematics is alive, ever changing, and
incomplete. Moreover, according to a metamathematical theorem of
Kurt Gédel, mathematics is forever destined to remain incomplete.
He proved that there will always be valid mathematical statements

? By Paul J. Cohen; see P. J. Cohen and R. Hersh, “Non-Cantorian Set Theory,” Scientific
American, 217 (December, 1967).

10 See E. Wigner, “The Unreasonable Effectiveness of Mathematics,” Communications in
Pure and Applied Mathematics, 13 (1960): 1 ff.
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Kurt Godel

that cannot be demonstrated from systems of axioms that are broad
enough to include arithmetic (see DeLong, 1970). In other words,
Godel provided a formal demonstration of the inadequacy of formal
demonstrations!

Perhaps the following remarks by René Thom are an appropriate
reaction to Gddel’s incompleteness theorem:

The mathematician should have the courage of his private convictions;
he would then affirm that mathematical structures have an existence
independent of the human mind that thinks about them. The form of
this existence is undoubtedly different from the concrete and material
existence of the external world, but it is nevertheless subtly and pro-
foundly linked to objective existence. For how else explain — if math-
ematics is merely a gratuitous game, the random product of our cere-
bral activities— its indisputable success in describing the universe?
Mathematics is encountered —not only in the rigid and mysterious
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laws of physics — but also, in a more hidden but still indubitable man-
ner, in the infinitely playful succession of forms of the animate and
inanimate world, in the appearance and destruction of their symme-
tries. That’s why the Platonic hypothesis of Ideas informing the uni-
verse is— despite appearances — the most natural and philosophically
the most economical. But, at any instant, mathematicians have only an
incomplete and fragmentary vision of this world of Ideas . . . , we
have to recreate it in our consciousness by a ceaseless and permanent
reconstruction. . . . With this confidence in the existence of an ideal
universe, the mathematician will not overly worry about the limits of
formal procedures, he will be able to forget the problem of consistency.
For the world of Ideas infinitely exceeds our operational possibilities,
and the ultima ratio of our faith in the truth of a theorem resides in our
intuition —a theorem being above all, according to a long-forgotten
etymology, the object of a vision.!!

THE MESS

In the first edition of this book, I ended this chapter with that inspiring
quote from Thom (the founder of ‘“‘catastrophe theory”). Further
inquiry into these questions prompts me to a more somber conclusion.
Namely, there is at present no intelligible account of what the state-
ments of pure mathematics are about. The philosophy of mathematics

is in a mess!
My claim that the formalist viewpoint is a dodge is substantiated by

the following revealing admission by Jean Dieudonné:!?

On foundations we believe in the reality of mathematics, but of course
when philosophers attack us with their paradoxes we rush to hide
behind formalism and say ‘“Mathematics is just a combination of
meaningless symbols,” and then we bring out Chapters 1 and 2 on set
theory. Finally we are left in peace to go back to our mathematics and
do it as we have always done, with the feeling each mathematician has
that he is working with something real. This sensation is probably an

11 R. Thom, *“‘Modern’ Mathematics: An Educational and Philosophic Error?,” American
Scientist, November, 1971, p. 695 fI. The translation here is my own from the original (in L’Age
de Science, 111 (3): 225).

12 “The work of Nicholas Bourbaki,” Amer. Math. Monthly, 77 (1970): 134-145.
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illusion, but is very convenient. That is Bourbaki’s attitude toward
foundations.

An article by Reuben Hersh!? forcefully demonstrates the philosophi-
cal plight of the working mathematician, who is *‘a Platonist on week-
days and a formalist on Sundays.”” Hersh contends that the tension
caused by holding contradictory views on the nature of his work must
affect the self-confidence of a person who is supposed, above all
things, to hate contradiction.

Dieudonné admits that the Platonic view is probably an illusion. In
avery interesting essay, Gabriel Stolzenberg!4 argues that the illusion
consists in being taken in by a present tense language of objects and their
properties, a language that has the appearance —but only that— of
being meaningful. The psychological act of accepting this appearance
produces a notion of “reality’ so strong that it becomes very difficult
to step aside and question it.

We have already seen examples of such illusion. If one believes that
points and lines in the plane are “real objects,” then they either satisfy
Euclid’s postulate or they don’t (with the corollary belief that Euclid-
ean geometry is either ‘“‘true’’or “false’’). Similarly, if sets are “real
objects,” then they either satisfy Cantor’s continuum hypothesis or
they don’t (Gédel believed that they don’t).

The fundamental illusion, according to Stolzenberg (and Brouwer
before him), is the belief that a mathematical statement can be “true”
without anyone being able to know it. This belief is so strong that only
the few constructivist mathematicians have been willing to give it up.
They contend that “% is true’ is a signal to announce a state of
knowing which one has attained by means of an act of proof. Stolzen-
berg (1978) claims (p. 265):

What one “sees” or “discovers’’ at the conclusion of an act of proof is
thata certain structure (which is constructed in the course of the proof )
displays a certain form: a form of the type that, according to the con-
ventions of mathematical language use that have been established,

13 “Some Proposals for Reviving the Philosophy of Mathematics,” Advances in Mark., 31
(1979): 31-50.

14 “*Can an Inquiry into the Foundations of Mathematics Tell Us Anything Interesting about
Mind? " in Psychology and Biology of Language and Thought, Essays in Honor of Eric Lenneberg, G.
Miller and Elizabeth Lenneberg, eds., New York: Academic Press (1978): 221-269.
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entitles anyone who observes it to say “¥ is true.” But “¥ is true” is
merely what one says, not what one sees; the expression itself is merely
the ““brand name” for the type of thing that one sees at the conclusion
of the proof. And it is a type of thing that may be seen only by con-
structing a proof — not because we need to use the proof as “‘a ladder”
to get ourselves into a position to see it but rather because what one
sees is “in’’ the structure that is created by the act “‘of making the
proof.”

An interesting consequence of this position is that ‘“the knower’’ is
brought into the philosophy of mathematics (just as *“‘the observer”
has been brought into the philosophy of physics by Heisenberg’s
uncertainty principle).

Ifindeed the philosophical mess is the result of a linguistic illusion,
then deep insights are needed to develop a new language system. This
system would not be a mere rephrasing of current usage (if it were, it
wouldn’t be worth the bother). It would be a tool to gain higher levels
of understanding.

On the other hand, the Platonic “illusion’ has shown itself to be
very valuable heuristically (e.g., Godel credited the Platonic view-
point for his insights). An intelligible justification for Platonic heuris-
tics may someday be found (just as one was found in the twentieth
century by the logician Abraham Robinson for the “illusory” infini-
tesimals used in the seventeenth century by the founders of the calcu-
lus). Physics has continued to advance despite the even worse mess in
its philosophical foundations, so the proverbial ‘“working mathemati-
cians”’ will have no trouble continuing to ignore the irritating question
of the meaning of their theorems.

REVIEW EXERCISE

Which of the following statements are correct?

(1) It is impossible to verify by physical experiments whether hyperbolic
geometry is true because hyperbolic geometry is not about physical
entities.

(2) If we interpret the undefined terms of geometry physically, e.g., by
interpreting “line” as ‘““path of a light ray in empty space,” then it



302 ‘ | l Philosophical Implications

makes sense to ask whether this interpretation is a model of Euclidean
geometry; however, due to experimental error, physical experiments
could never prove conclusively that it is a model.

(3) Hyperbolic geometry is consistent if and only if Euclidean geometry is
consistent.

(4) Poincaré maintained that it was meaningless to ask which geometry is
“true,” and that it only made sense to ask which geometry is more
“convenient” for physics.

(5) The most convenient geometry for astrophysics is neither Euclidean nor
hyperbolic geometry but a more complicated geometry of space-time
developed by Einstein out of ideas from Riemann.

(6) The Klein and Poincaré models, although they appear to be different,
are actually isomorphic to each other.

(7) Hyperbolic geometry, although equally as consistent as Euclidean ge-
ometry, has no application to other branches of mathematics or to other
sciences.

SOME TOPICS FOR ESSAYS

1. Comment on this quotation from Albert Einstein: ‘‘As far as the
mathematical theorems refer to reality, they are not sure, and as far as
they are sure, they do not refer to reality.” (See Hempel, 1945, for a
development of this theme.)

2. Report on the debate about the philosophy of conventionalism,
using Grinbaum, (1968), Poincaré (1952), and Nagel (1939) as
sources.

3. Report on the use of hyperbolic geometry to describe binocular
vision, referring to Luneburg and Blank (see note 4 in this chapter).

4. It can be said that the discovery of non-Euclidean geometry led
to the extensive modern development of mathematical logic. Elabo-
rate on this statement, using Del.ong (1970), Chapters 1 and 2, as a
source.

5. Jacques Hadamard said: “Practical application is found by not
looking for it, and one can say that the whole progress of civilization
restson that principle. . . .Itseldom happens that important mathe-
matical researches are directly undertaken in view of a given practical
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use: they are inspired by the desire which is the common motive of
every scientific work, the desire to know and understand.” 15

Along the same lines, David Hilbert maintained that in spite of the
importance of the applications of mathematics, these must never be
made the measure of its value. And the mathematician Jacobi said that
“the glory of the human spirit is the sole aim of all science.”

Nevertheless, Lobachevsky believed that “there is no branch of
mathematics, however abstract, they may not someday be applied to
phenomena of the real world.”

Comment on these viewpoints.

6. Read the “Socratic Dialogue on Mathematics” in Renyi

(1967), and discuss the following questions therein:

(a) “Is it not mysterious that one can know more about things
which do not exist than about things which do exist?”

(b) “How do you explain that, as often happens, mathematicians
living far from each other and having no contact independently
discover the same truths?”

7. Comment on the following statement by Michael Polanyi

(1964; see especially Chapter 6, Sections 9-11):

We can now turn to the paradox of a mathematics based on a system of
axioms which are not regarded as self-evident and indeed cannot be
known to be mutually consistent. To apply the utmost ingenuity and
the most rigorous care to prove the theorems of logic or mathematics
while the premises of these inferences are cheerfully accepted, without
any grounds being given for doing so . . . might seem altogether
absurd. It reminds one of the clown who solemnly sets up in the middle
of the arena two gateposts with a securely locked gate between them,
pulls out a large bunch of keys, and laboriously selects one which opens
the lock, then passes through the gate and carefully locks it after
himself — while all the while the whole arena lies open on either side of
the gateposts where he could go round them unhindered.

8. Comment on the following statements:

There is a scientific taste just as there is a literary or artisticone. . . .
Concerning the fruitfulness of the future result— about which, strictly

!5 Hadamard (1945); see especially Chapter 9.
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speaking, we most often do not known anything in advance — [the]
sense of beauty can inform us and I cannot see anything else allowing
us to foresee. . . . Without knowing anything further we fz¢/that such
a direction of investigation is worth following. . . . Everybody is free
to call or not to call that a feeling of beauty. This is undoubtedly the way
the Greek geometers thought when they investigated the ellipse, be-
cause there is no other conceivable way. (Hadamard, 1945.)

We dwell on mathematics and affirm its statements for the sake of its
intellectual beauty. . . . For if this passion were extinct, we would
cease to understand mathematics; its conceptions would dissolve and
its proofs carry no conviction. Mathematics would become pointless
and lose itself in a welter of insignificant tautologies. . . . (Polanyi,
1964.)

We all believe that mathematics is an art. The author of a book or the
lecturer in a classroom tries to convey the structural beauty of mathe-
matics to his readers, to his listeners. In this attempt he must always
fail. Mathematics is logical, to be sure; each conclusion is drawn from
previously derived statements. Yet the whole of it, the real piece of art,
is not linear; worse than that, its perception should be instantaneous, ¢

9. Comment on the following statements. G. H. Hardy (1940)
said:

For me, and 1 suppose for most mathematicians, there is another real-
ity, which I will call “mathematical reality’’; and there is no sort of
argument about the nature of mathematical reality among either math-
ematicians or philosophers. . . . A man who could give a convincing
account of mathematical reality would have solved very many of the
most difficult problems of metaphysics. . . . I believe that mathemat-
ical reality lies outside us, that our function is to discover or observe it,
and that the theorems which we prove, and which we describe grandi-
loquently as our “creations,” are simply the notes of our observations.
‘This view has been held, in one form or another, by many philosophers
of high reputation from Plato onwards. . . .

Heinrich Hertz, the discoverer or radio waves, said:

One cannot escape the feeling that these mathematical formulas have
an independent existence and an intelligence of their own, that they

16 Emil Artin, “‘Review of Algebre by N. Bourbaki,” Bulletin American Mathematical Soctery, 59
(1953): 474.
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are wiser than we are, wiser even than their discoverers, that we get
more out of them than was originally put into them.

10. Comment on the following remarks by Kurt Gédel:

I don’t see any reason why we should have less confidence in this kind
of perception, i.e., in mathematical intuition, than in sense perception,
which induces us to build up physical theories and to expect that future
sense perceptions will agree with them and, moreover, to believe that a
question not decidable now has meaning and may be decided in the
future. The set theoretical paradoxes are hardly any more troublesome
for mathematics than deceptions of the senses are for physics. . . .
Evidently the “given” underlying mathematics is closely related to the
abstract elements contained in our empirical ideas. It by no means
follows, however, that the data of this second kind [mathematical
intuitions], because they cannot be associated with actions of certain
things upon our sense organs, are something purely subjective, as Kant
asserted. Rather, they, too, may represent an aspect of objective reality.
But as opposed to the sensations, their presence in us may be due to
another kind of relationship between ourselves and reality.!’

Godel in this passage speaks primarily of sef theoretical intuition. As
far as geometrical intuition is concerned, the following, according to
Gaodel, would have to be added:

Geometrical intuition, strictly speaking, is not mathematical, but
rather a priori physical intuition. In its purely mathematical aspect our
Euclidean space intuition is perfectly correct, namely, it represents
correctly a certain structure existing in the realm of mathematical
objects. Even physically it is correct ““in the small.” 13

11. Comment on the following quotation from Rolf R. Loehrich:

The communication of a new mathematical system or game meets with
peculiar obstacles. Each mathematician has a preferred game. A new
game may not capture his interest if it is significantly different from
those he has been accustomed to play. . . .

17 K. Gédel, *“What Is Cantor’s Continuum Problem?”” in Benacerraf and Putnam’s Phs/oso-
Dhy of Mathemarics, 2nd ed. (Englewood Cliffs, N.J.: Prentice-Hall, 1964), p. 271.
'8 Private communication to the author, October, 1973.
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A mathematical system is hardly ever presented axiomatized at its
inception. Successful axiomatization is a fruition of an exercitium cogi-
tandi. Once a system is axiomatized, mathematical activity can be
played as a game, as a manipulation of symbols by virtue of rule-sys-
tems thought of as invented, but this does not assert that the mathema-
tician who invented or presumably discovered the system meant to play
a game. . . . Roberts and I are convinced that there is what might be
adequately referred to as a mathematical universe. We believe that,
with the complex instrumentations and empirical data set forth in
Exercitium Cogitandi, the ontological value of confrontations belonging
to this universe can be determined with a high degree of accuracy (such
confrontations are to be thought [of as] sign-values of signs, and these
signs are the symbol systems as known and/or as to be invented by
virtue of new conceptual systems with ever increasing ranges). . . . If
this is true, then indeed a mathematician may think of himself as an
explorer of the mathematical universe, and any new mathematical
system functions as the inception of a possible creation of a universe
which comprehends any of the other universes.!®

12. Write an essay on the development of geometry in ancient
Greece, using the resources of your school library. You may be partic-
ularly interested in the female mathematician Hypatia.

13. Comment on the following remarks about the true role of logic
in mathematics:

If logic is the hygiene of the mathematician, it is not his source of food;
the great problems furnish the daily bread on which he thrives. We have
learned to trace our entire science back to a single source, constituted
by a few signs and by a few rules for their use; this is an unquestionable
stronghold, inside which we could hardly confine ourselves without risk
of famine, but to which we are always free to retire in case of uncer-
tainty or external danger. (A. Weil, “The Future of Mathematics,”
American Mathematical Monthly, ST (1950); 295-306.)

All physicists, and a good many quite respectable mathematicians,
are contemptuous about proof. (G. H. Hardy, Ramanujan, Cambridge
University Press, New York, 1940, p. 15.)

Discovery, after all, is more important in science than strict deduc-
tive proof. Without discovery there is nothing for deduction to attack

19 R, R. Loehrich (with L. G. Roberts), Exercitium Cogitandi, vol. 11 (Center for Medieval and
Renaissance Studies, Oxford, 1978).
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and reduce to order. (E. T. Bell, Development of Mathematics, 2nd ed.

McGraw-Hill, New York, 1945, p. 83.)

14. Reporton Imre Lakatos’ critique of the formalist philosophy of
mathematics and his ideas on how mathematics is discovered, as
presented in his book Proofs and Refutations: The Logic of Mathematical
Discovery (Cambridge University Press, 1976). Here are some perti-
nent Lakatos quotes:

Euclid has been the evil genius particularly for the history of mathe-
matics and for the teaching of mathematics, both on the introductory
and the creative levels. . . . The two activities of guessing and proving
are rigidly separated in the Euclidean tradition. . . . It was the infalli-
bilist philosophical background of Euclidean method that bred the
authoritarian traditional patterns in mathematics, that prevented pub-
lication and discussion of conjectures, that made impossible the rise of
mathematical criticism. . . . The discovery of non-Euclidean geome-
tries (by Lobatschewsky in 1829 and Bolyai in 183 1) shattered infalli-
bilist conceit. . . . There is no infallibilist logic of scientific discovery,
one which would infallibly lead to results; there is a fallibilist logic of
discovery which is the logic of scientific process.

15. Write a detailed report on the theory of area in hyperbolic
geometry using Moise (1990), Chapter 24, as a reference.

16. Report on Bertrand Russell’s doctoral dissertation Az Essay on
the Foundations of Geometry (Dover reprint, 1956). Show how Russell
very capably refutes theories of geometry due to Kant and other
philosophers, but then proclaims his own incorrect notion of space
(that was later refuted by Einstein). See also the critique in Torretti
(1978), Chapter 4.

17. Report on Chapter 3 of Roberto Torretti’s sublime treatise
Philosophy of Geometry from Riemann to Poincaré (1978). This chapter is
on the foundations of geometry. Here is one important quote:

The fact that these semi-circles [in the Poincaré upper half-plane
model] behave exactly like Euclidean lines with regard to every logical
consequence of Hilbert’s axioms [for neutral geometry] bespeaks a
deep analogy between them, which can come as a shock only to the
mathematically uneducated. To maintain that Zre means something
entirely different in Bolyai-Lobachevsky geometry and in Euclidean
geometry, is not more reasonable than to say that ezrrhas a completely
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different meaning in the anatomy and physiology of elephants and in
that of frogs.

18. Tofurther illustrate his contention that it is meaningless to ask
which geometry is “true,” Poincaré invented a “universe” U occupy-
ing the interior of a sphere § of radius R in Euclidean space, in which
the following physical laws hold:

(a) Atany point P inside §, the absolute temperature 7'is directly

proportional to R? — 72, where 7 is the distance from P to the
center of .

(b) The length, width, and height of an object vary directly with

the absolute temperature of the object.

(c) All objects in U instantaneously take on the temperatures of

their locations.

(d) Lighttravels along the shortest path from one point to another.

Show that an inhabitant of U could not detect his change in tempera-
ture and size as he moves about with a thermometer or a tape measure,
and that he could never reach the boundary § of his universe, so would
consider it infinitely far away. Poincaré showed that the shortest path
in /joining point A to point B is the smaller arc of the circle through A
and B that cuts § orthogonally. Hence, if an inhabitant interprets
“straight line segment” in his universe to be the path of a light ray, he
would conclude that the ““true’ geometry of his world was hyperbolic.
In other words, this is a region of Euclidean space which because of
different and undetectable physical laws appears to its inhabitants to
be non-Euclidean. Comment, using Poincaré (1952) as areference, as
well as Torretti (1978) and Griinbaum (1968).
19. Write an essay on a topic of your own.
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GEOMETRIC
TRANSFORMATIONS

I have spent a lifetime applying Klein’s program to
differential geometry.
W. BLASCHKE

KLEIN’S ERLANGER PROGRAMME

In 1872, a year after his decisive publication of the projective models
for non-Euclidean geometries, Felix Klein was appointed (at age 23)
to a chair at the University of Erlangen. He delivered an inaugural
address proposing a new unifying principle for classifying the various
geometries that were rapidly being developed, and for discovering
relationships between them. This Erlanger Programme has had an
enormous impact on all of mathematics to the present day.!

The key notion, according to Klein, involves the group of all auto-
morphisms of a mathematical structure. In Chapter 2 we defined the
concept of an isomorphism of one model onto another, and in Chapter
7 we used a specific isomorphism to relate the Klein and Poincaré
models of the hyperbolic plane. An isomorphism mapping a given
model onto itself is called an automorphism of that model; thus, an
automorphism is a one-to-one mapping (or transformation) of each
basic set of objects in the model onto itself which preserves the basic
relations among the objects.

! For an English translation of Klein's lecture, see the Bulletin of the New York Mathematical
Society, 2 (1893): 215-249.
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The importance of the group of automorphisms was first recognized
in connection with the problem of solving an algebraic equation by
radicals. Evariste Galois (1811-1832) showed that a solution by
radicals was possible if and only if the group of automorphisms of the
field extension generated by the roots of the equation is a solvable
group. This implies Abel’s particular discovery that the general equa-
tion of degree § cannot be solved by radicals. Klein later discovered a
relation between the group of rotations of a dodecahedron and the
roots of the quintic equation that explained why the latter can be
solved by elliptic functions.

Here is an example of the simplest type of geometric automor-
phism.

Example 1. Consider models of incidence geometry (Chapter 2).
The basic sets of objects are the sets of points and lines, and the only
basic relation is incidence of a point and line. An automorphism 7'will
therefore map each point P and each line /onto a point P’ and a line //
such that P lies on /if and only if P’ lies on /. By Axiom I-1, a line is
determined by any two points lying on it, so T is determined as a
mapping of lines once its effect on the points is known — namely

7(PQ) = P°QY.

Since T preserves incidence and is one-to-one on the set of lines, it has
the property that three points O, P, Q are collinear if and only if their
images O, P/, Q’ are collinear. Hence an automorphism of a model of
incidence geometry is called a collineation.

For example, in the 3-point model, every permutation of the
three noncollinear points is a collineation. However, for the 7-point
projective plane (Figure 9.1), you can show that, of the 7! = 5040
permutations of the points, only 168 are collineations (Exer-
cise 1).

It is important to note that an automorphism not only preserves the
basic relations, but also @//the relations that can be defined from them.
For example, a collineation of an incidence plane preserves parallel-
ism ({|m= /'||n).
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FIGURE 9.1 2

GROUPS

Transformations of a set onto itself can be multiplied by first applying
one transformation 7" and then another transformation §; thus the
composite transformation ST is defined by the equation

(0) ST (x) = S(T(x))

for all x in the set.

With this multiplication, the set ¢ of all automorphisms of a struc-
ture has itself the structure of a group, which means that the following
properties hold:

1. §, Te9$=8TEY%.

2. €9 (where [ is the identity transformation that leaves all the
objects fixed; the identity transformation satisfies /7= T= T/
forall T€ 9).

3. TE4= T"'€ 9 (where the inverse T~! of T is characterized
by the equations 77! =[=T"1T).

4. S(TU) = (ST)U for all §, T, U € 9 (this associative law is an
immediate consequence of the definition (0) of multiplication).

To illustrate these properties, let us consider rotations about a
point O, which will be rigorously defined later but can now be thought
of as transformations that turn the entire plane through a certain angle
about O. If T'is the rotation through #° clockwise and § the rotation
through s° clockwise, then S7 is the rotation through (s + £ ° clock-
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wise. 7~ 1is the rotation through #° counterclockwise. / can be thought
of as the rotation through 0°.

Warning. The product $T'is not, in general, equal to the product
7S in the opposite order, as the next example shows.

Example 2. Consider the equilateral triangle AABC situated
symmetrically about the point O in Figure 9.2. If we let T be the
rotation through 120° counterclockwise about O and let § be the
reflection across the vertical line 1&6, then 7§ leaves C fixed and
interchanges A and B (in fact, 78'is the reflection across CO); whereas
STleaves B fixed and interchanges A and C (ST'is the reflection across

80).

If two transformations §, T happen to have the property ST = T,
we say that they commute, and a collection of transformations in which
every pair commute is called commutative (or Abelian, after the great
Norwegian mathematician N. H. Abel). For instance, any two rota-
tions about the same point O commute.

The more structure a geometry has, the smaller is its group of
automorphisms. Neutral geometry is incidence geometry with the
additional relations of betweenness and congruence; hence the group
of automorphisms of a neutral geometry is the subgroup of those collin-
cations 7 for which betweenness and congruence are invariant; i.e.,
for which

A*B*C=A"*B' *(
AB=CD=AB’'=C'D’

e —
o}

w
T
0

FIGURE 9.2
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(we will systematically use X' to denote the image of any object X — point,
line, circle, etc.— under a transformation denoted T). We have not as-
sumed T preserves congruence of angles because this can be proved: If
<¥ABC = 4DEF, we can assume by Axiom C-1 that AB = DE and
BC = EF, so that AC = DF (SAS); since T preserves congruence of
segments, AA'B’C’ = AD’E’F’ (SSS), hence <A’B’C’ = <D’E’F".
Notice also that if a transformation preserves betweenness it mustbe a
collineation (by Axioms B-1 and B-3).

The principal obfective of this chapter will be to explicitly determine all
the automorphisms of Euclidean and hyperbolic planes and to classify them
according to their geomeltric properties, particularly their invarsants.

We say that a property or relation is “‘invariant” under a transfor-
mation or group of transformations if the property or relation still
holds after the transformations are applied; a geometric figure is “in-
variant” if it is mapped onto itself by the transformations.

“Invariance” and ‘‘group” are the unifying concepts in Klein’s
Erlanger Programme. Groups of transformations had been used in
geometry for many years, but Klein's originality consisted in reversing the
roles, in making the group the primary object of interest and letting it operate
on various geometries, looking for invariants. For example, the group
PSL(2, R) of 2-by-2 projective transformations with real coefficients
(see Proposition 9.26) operates on both the hyperbolic plane and the
real projective line; for the latter operation, the cross-ratio of four
points is the fundamental invariant, whereas for the former operation,
the length of a segment (which is calculated by means of cross-ratios in
the Klein and Poincaré models) is the fundamental invariant.

Klein classified the following geometries as subgeometries of real
plane projective geometry:

1. Affine geometry is the study of invariants of the subgroup of
those projective transformations (called afine transformations)
which leave the line at infinity invariant.

2. Hyperbolic geometry is the study of invariants of the subgroup
of those projective transformations which leave a given real
conic (‘‘the absolute’’) invariant.

3. Elliptic geometry is the study of invariants of the subgroup of
those projective transformations which leave a given imaginary
conic invariant.

4. Parabolic geometry is the study of invariants of the subgroup of
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those affine transformations (called similarities) which leave in-
variant the two imaginary circular points at infinity (see p. 362
Coxeter, 1960).

5. Euclidean geometry is the study of invariants of the subgroup of
those similarities (called mozions) which preserve length (which
is defined in terms of an arbitrarily chosen unit segment).

During the two decades preceding Klein’s address, Cayley and
Sylvester had developed a general theory of algebraic invariants to-
gether with a systematic procedure for determining generators and
relations for them (see J. Dieudonné and J. Carrell, Invariant Theory,
0/d and New, Academic Press, 1971). Klein proposed to translate
geometric problems in projective geometry into algebraic problems in
invariant theory, where such problems could be solved by the known
algebraic methods (for a readable explanation of this program, see
Part Three of Klein’s Geometry, which is Part 2 of his Elementary
Mathematics from an Advanced Standpoint, Dover, 1948).

Klein’s idea of looking for various actions or representations of a
group and their invariants has proved to be fruitful in many branches
of mathematics and physics, not just in geometry.

In physics, for example, the invariance of Maxwell’s equations for
electromagnetism under Lorentz transformations suggested to Min-
kowski a new geometry of space-time whose group of automorphisms
is the Lorentz group; this was the beginning of relativity theory, for
which Einstein at one point considered the name ‘“Invarianten-
theorie.” In atomic physics, the regularities revealed in the periodic
table are a direct consequence of invariance under rotations. In ele-
mentary particle physics, considerations of invariance and symmetry
have led to several nontrivial predictions. E. Wigner has said that in
the future we may well ‘““derive the laws of nature and try to test their
validity by means of the laws of invariance rather than to try to derive
the laws of invariance from what we believe to be the laws of nature.” 2

In this chapter we will explore the insights Klein’s point of view
gives to plane Euclidean and hyperbolic geometries. From our axioms
we will deduce a description of all possible motions, showing how they
are built up from reflections (see Table 9.1, p. 343). Then we will
show how to calculate using these transformations in terms of the

2 E. Wigner, “Invariance in Physical Theory,” Proceedings of the American Philosophical Socs-
ety, 93 (1949): 521-526.
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coordinates in our models. We will implement Klein’s program by
replacing congruence axioms with group axioms. Finally, we will
apply group-theoretic methods to questions of symmetry.

APPLICATIONS TO GEOMETRIC PROBLEMS

Here are some examples?® of geometric problems that can easily be
solved using transformations; the solutions will use certain properties
of reflections, rotations, translations, and dilations which will be dem-
onstrated in the following sections. The purpose in discussing these
problems at this time is to illustrate concretely the power of transfor-
mation techniques. You will better comprehend the solutions after you
study the theory that follows, and I suggest that you then reread these
solutions and then test your understanding with Exercises 69-77.

Problem 1. Given two points A, B on the same side of line /. Find
the point C on /such that CA and CB make congruent angles with / (if /
were a mirror, ACB is the path of a ray of light traveling from A to B by
reflecting in /).

Solution. (Sec Figure 9.3.) Let B’ be the reflection of B across /.
Then C is the intersection of AB” with /

FIGURE 9.3

~

\4 BI

3 Several hundred more examples will be found in the monumental three volume treatise by
1. M. Yaglom, Geometric Transformations, Mathematical Association of America, 1962.
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Problem 2. Point Q is called a center of symmetry for figure F if
whenever AA’ is a segment having Q as midpoint and Aisin F, then A’
also belongs to F. Show that a figure can only have zero, one, or
infinitely many centers of symmetry.

Solution. Q is a center of symmetry if and only if the figure is
invariant under the half-turn (180° rotation) Hy about Q. A triangle
has zero, a circle has one, and a line has infinitely many centers of
symmetry. Suppose figure F has at least two centers Q and Q’. Then
Hg(Q") = Q" is a third center, Hg.(Q”) is a fourth center, etc.

Note. The preceding problems were stated and solved in neutral
geometry. For the remaining problems we will assume the geometry
to be Euclidean.

Problem 3. LetL, M, N be the respective midpoints of sides AB,
BC, CA of AABC. Let O, O,, O, be the circumcenters (i.c., the
centers of the circumscribed circles) of triangles AALN, ABLM,
ACMN respectively, and let P,, P,, P; be the ncenters (i.c., the
centers of the inscribed circles) of these same triangles. Show that
AO,0,0, = AP,P,P,.

Solution. (See Figure 9.4.) Observe that each of the three trian-
gles is obtained from each of the others by a translation—e.g., trans-
lating AALN in direction AB through distance AL =LB gives
ALBM. This translation carries the circumscribed circle (and its
center) of one triangle onto the circumscribed circle (and its center) of

FIGURE 9.4 L
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the other; similarly for the inscribed circles. Hence we not only have
0,0, = AL =P,P,, etc,, giving AO,0,0; = AP,P,P,, but we also
see that corresponding sides of these two triangles are parallel.

Problem 4. Given an acute-angled triangle, find the inscribed
triangle of minimum perimeter (Fagnano’s problem).

Solutiom. Consider AXYZ inscribed as in Figure 9.5(a). Reflect
X across AB to point X, and across Ao point X,. Then the perime-
ter of AXYZ is equal to the length of the polygonal path X,ZYX, . If
we fix X, this length will be minimized when Z and Y are chosen to lie
on X,X,, and then X, X, equals the perimeter of AXYZ. We have
AX, = AX = AX, and 4X,AX, = 2 XA. If we now vary X, the sum-
mit angle of isosceles triangle AX, AX, remains constant in measure
and the base X, X, varies in direct proportion to AX (in fact, trigo-
nometry gives us X, X, = 2ZAX sin ¥A). Hence the minimum perime-
ter is achieved when AX is a minimum, and that occurs when X is the
foot of the altitude from A (Figure 9.5(b)). We leave for Exercise 74
the verification that Y and Z must then also be the feet of the altitudes
from B and C. Hence the unique inscribed triangle of minimum
perimeter is the orthic or pedal triangle formed by the feet of the
altitudes of AABC.

Problem 5. Given three parallel lines, find an equilateral triangle
whose vertices lie on them.

FIGURE 9.3
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Solution. Choose any point A on the first line / Rotate the second
line 7 about A through 60° to a new line ’. Let C be the intersection
of m’ with the third line #, and let B be the point on 7 obtained by
rotating C about A through 60° in the opposite direction. Then AABC
is a solution.

Problem 6. For any triangle A ABC, construct equilateral trian-
gles on the sides of AABC, exterior to it. Show that the centers of
these triangles also form the vertices of an equilateral triangle.

Solution. Call the centers O;, O,, and O;, and consider the
rotations R, R,, and R, through 120° counterclockwise about Oy,
0,,and O, respectively; then R, (A) = B, R,(B) = C,and R;(C) = A.
Now R, R, is the clockwise rotation through 120° about the point O3
of the intersection of two lines, one through O, and the other through
O,, each making an angle of 60° with O,0,, so that AO,0,0j is
equilateral. Since R3 ! is also a clockwise rotation through 120° taking
A into C, we must have R3!' = R, R, and O3 = O;.

Problem 7. Given acircle k and a point P on k. Find the locus Kk’
of midpoints M of all chords PA of x through P.

Solution. (Sece Figure 9.6.) Since k' is obtained from k by dilation
of center P and ratio £, x’ is the circle with diameter OP, O being the
center of K.

Problem 8. Given any triangle A ABC, consider its circumcenter
O (point of concurrence of the perpendicular bisectors of the sides),
its centro1d G (point of concurrence of the medians), and its orthocenter
H (point of concurrence of the altitudes). You showed O exists in
Exercise 12, Chapter 6. An easy argument using analytic geometry
(Exercise 69) shows that G exists and lies £ of the distance from each
vertex to the midpoint of the opposite side; thus the dilation T of
center G and ratio —4 maps A ABC onto the medal triangle AA'B’C’.
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FIGURE 9.6

The problem we pose now is to show that H exists, that O, G, and H lie
on a line (called the Euler /ine of AABC), and that G lies £ of the
distance from H to O.

Solution. Dilation 77! maps AABC onto AA,B,C, having sides
parallel to the respective sides of AABC and twice as long (Figure
9.7). AABC s then the medial triangle of AA B, C,, and the altitudes
of AABC are the perpendicular bisectors of AA,B,C,, hence are
concurrent in a point H.

The original dilation 7, being a similarity, preserves perpendicular-
ity, hence maps the orthocenter H of A ABC onto the orthocenter of
the medial triangle A A’B’C’, which is O; since G is the center of T"and
— 14 the ratio, the conclusion follows from the definition of dilation.

B,

FIGURE 0.7
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Problem 9. LetH be the orthocenter, O the circumcenter, L, M,
N the midpoints of the sides, D, E, F the feet of the altitudes of
AABC. Show that L, M, N, D, E, F and the midpoints of segments
HA, HB, HC all lie on a circle whose center U lies on the Euler line
and is the midpoint of HO (#4e 9-point circle of AABC).

Solution. Consider the dilation 7 of center H and ratio 2. If we
show that 7 maps all nine points onto the circumscribed circle ¥ of
A ABC, the conclusion will follow from Lemma 7.2, Chapter 7, ap-
plied to dilation 7! of ratio 1 (7! maps k onto a circle of half the
radius and center the midpoint of OH). Clearly 7' maps the midpoints
of HA, HB, HC onto A, B, C on k.

Let P be the point on x diametrically opposite to A (see Figure
9.8). Since XACP is inscribed in a semicircle, 1 AC, hence
is parallel to altitude BAL Similarly PB Il CH. Thus CODPCHB is a
parallelogram, hence the midpoint of diagonal HP coincides with the
midpoint L of BC. This shows 7(L) = P on k (and similarly for 7'(M)
and T(N).

FIGURE 9.8
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Let ray HD meet x at D', Since LAD'P is inscribed in a semicircle
of k, P L ADY = AD L Dl;i.c., [P || DL, which implies that D is
the midpoint of HD’ (since L is the midpoint of HP). Thus 7(D) =
D’ on k (and similarly for 7(E) and 7'(F)).

MOTIONS AND SIMILARITIES

Henceforth the word “automorphism” will be used only for an auto-
morphism of a neutral geometry, i.e., for a transformation that pre-
serves incidence, betweenness, and congruence.

DEFINITION. A transformation 7 of the entire plane onto itself is
called a motion* or an isometry if length is invariant 