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Introduction 

When my editor atjohn Wtley & Sons suggested that I do a 
book on great feuds in mathematics, I was not excited by 

the idea. I had taken some mathematics in school for my master's 
degree in physics, but that was long ago and I had not used any of 
it for a very long time. Furthermore, I knew nothing of mathemat
ics' history. Most of all, though, my idea of mathematics was just 
plain old-fashioned. Mathematics, I felt, is a cold, logical discipline 
where questions can be decided, if not quickly, at least objectively 
and decisively. As opposed to, say, politics or religion, or even sci
ence, there is little room for human emotions and sensitivities. How 
could there be feuds in mathematics? 

Still, I consulted with an acquaintance, a professor of mathemat
ics, and asked him about the idea. He shook his head and, without 
giving it a second thought, said, "You '11 be lucky if you come up with 
two feuds." 

This fitted in with ideas I could recall from earlier readings. 
Bertrand Russell, for example, had written, "Mathematics, rightly 
viewed, possesses not only truth but supreme beauty-a beauty cold 
and austere, like that of sculpture, without appeal to any part of our 
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weaker nature, without the gorgeous trappings of painting or music, 
yet sublimely pure, and capable of a stem perfection such as only the 
greatest art can show."1 

Isn't it strange how we continue to find what we want to find? 
As I searched further, I came up with a similar idea from another of 
my favorite authors, Morris Kline: "Keen minds seeking to establish 
new systems of thought on the basis of certain cogent knowledge 
were attracted by the certitude of mathematics, for the truths of 
mathematics ... had really never been challenged or been subject to 
the slightest doubt by the true scholars. Moreover, mathematical 
demonstrations carried with them a compulsion and an assurance 
that had not been equaled in science, philosophy, or religion."2 

I came very close to giving a definite no to my editor, but he, hap
pily, persevered, and so did I. I came across a later book of Kline's, 
called MathematUs: The Loss ef Certainty (1980), which told a very dif
ferent story. I dug some more. The subject, I began to see, allowed 
for questioning and conflict. 

Slowly, as I continued to read, to study, and to talk with others, 
I began to get the idea that mathematicians, no less than politicians 
or clerics, are human and, as such, are susceptible to the same emo
tions, ranging from envy and prejudice to ambition, pride, sibling 
rivalry, and the irresistible urge to be right. Something of interest was 
definitely going on here. 

As I continued my research, the problem seemed to be not a lack 
of material but too much. I had to choose among more feuds than I 
needed for the book. I chose as a beginning point the middle of the 
16th century, when a feud between two extraordinary men just 
jumped out at me. 

Their story involves a book-Ars Magna or The Ruks ef Algebra
which has been called one of the great scientific masterpieces of that 
era. Indeed, it has been credited with giving a jump start to the new 
sciences of the Renaissance. Contained within the book was a 
method for solving cubic and quadratic equations. All would have 
been well except that its author, Girolamo Cardano, was challenged 
by another Italian, Tartaglia, who claimed not only that credit for one 
of the basic equations belonged to him, but that Cardano had prom
ised him-as a Christian and a gentleman-that he would not publish 
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until Tartaglia published it first. The row was a splendid one and 
served as a logical beginning for my new journey. 

I knew from my earlier work with feuds that a major source of 
controversy has to do with questions of priority. Clearly, mathemati
cians are not in this field for the money, but if they come up with a 
real advance, they want credit for it. This is true today, and it was 
no less true in the 17th century. The Newton-Leibniz affair (chapter 
2) was such a priority battle. Newton came up with the calculus first 
but kept it close to his chest. Leibniz published it first, and his 
method was somewhat easier to use and was put to use first. Who 
deserved the credit? They battled fiercely, and one of them-using 
methods that were even then rather underhanded-definitely came 
out ahead in a personal sense. How their respective countries fared 
afterward tells a different story. 

I was on my way. I was finding all sorts of feuds. Some had to do 
with pure personal antipathy, a remarkable example being that of the 
Swiss Bernoulli brothers, two of the world's leading mathematicians 
(chapter 3). Things started out peacefully enough; in fact, the elder 
was the younger's teacher. Yet a fierce competition for mathematical 
supremacy arose between them, and it erupted into public mathemat
ical challenges from one to the other. When a son of one of them 
developed to the point where he became a threat, he, too, was given 
similar treatment. But it is also likely that the competition drove these 
mathematicians to improve their methods, to do better work than 
they might have done otherwise. 

A feud of sorts can also arise because of the very different view
points of two individuals. This was the case with J. J. Sylvester, a 
respected 19th-century British mathematician, and Thomas Henry 
Huxley, an equally eminent British scientist. Huxley made important 
contributions in zoology, geology, and anthropology but seemed to 
have a hole where his mathematics should be. Hence he could argue 
that "mathematics knows nothing of observation, nothing of exper
iment, nothing of induction, nothing of causation." It is, in short, 
"useless for scientific purposes" (chapter 5). 

Mathematicians were outraged and felt that Huxley had to be 
challenged. They chose Sylvester as their champion. The battle 
between Sylvester and Huxley took place in a rarified space and 
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centered around their two very different points of view. Their discus
sions and statements would have an effect on the teaching of both sci
ence and mathematics in Great Britain and the United States. 

All of the feuds so far have been between highly respected, well
placed players. In the case of Georg Cantor, we have a very differ
ent kind of battle, one in which there is a clear underdog (chapter 6), 
but the underdog happens to have been one of the most inventive 
mathematicians in the field's history. This was both his glory and his 
difficulty. Cantor had been lucky enough to study with three of 
Germany's most illustrious mathematicians. He was unlucky, how
ever, in that one of the three was Leopold Kronecker, a well-known 
but highly conservative professor of mathematics. Cantor's troubles 
started when he began to move out in several bold directions. 

Cantor had in fact opened a wild new world of mathematics. He cre
ated set theory, a new concept that turned standard arithmetic on its 
head. Infinity had long been considered an intangible, incomprehensi
ble puzzle; he not only argued for a real, concrete infinity but even 
found a way to deal with it mathematically. Yet the bolder his moves, 
the more they seemed like "mathematical insanity"* to Kronecker, his 
once-friendly and supportive teacher. The difficulties faced by Cantor 
in trying to establish his audacious new mathematics, as well as his own 
reputation, tell a heartrending story worthy of a soap opera. 

In the early days of set theory, Cantor had used fairly haphazard 
methods in determining what elements could go into the creation of 
sets, leaving it open to attack, and Kronecker was by no means the 
only one to criticize Cantor's work. 

In an attempt to help strengthen set theory, a young German math
ematician, Ernst Friedrich Ferdinand armelo, came up with a critical 
item that, according to some mathematicians, saved the day. Officially 
called the axiom of choice, it also set off a storm of controversy, lead
ing one historian of mathematics to label it the "notorious axiom."t 

*The term mathemaJUa/ insanity was used by Eric Temple Bell, an important early 
historian of science. Is it perhaps too strong? We'll find out in chapter 6. 
tAn axiom in mathematics is a concept or idea that is so obvious we can accept it with
out having to prove it, and indeed we can even build a logical system upon it. 
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Among the most vociferous objectors was the Frenchman Emile 
Borel. The arguments back and forth, by .lermelo and Borel, as well 
as by their followers, spell out some of the more interesting aspects 
of the continuing history of set theory (chapter 7). 

Still, for a while it had seemed that everything was going to become 
explainable in terms of set theory, that set theory would become the 
foundation of all mathematics. In 1901, however, Bertrand Russell-a 
well-known British philosopher-turned-mathematician-asked a simple 
question, yet it shook the foundations of set theory and all it stood for 
in the wider world of mathematics. For it had no answer and was 
therefore a paradox, or contradiction. 

This paradox and others like it had a variety of effects, especially 
on people interested in the foundations of mathematics, for it began 
to appear that the whole structure of their beloved discipline was 
shaky or perhaps was built on a weak foundation. Clearly, the 
traditional view of mathematics as an exact, logical, and certain 
discipline had been badly eroded. Starting around the tum of the 
20th century, a fairly large group of mathematicians became engaged 
in studies along this line, but they divided into several mutually 
antagonistic groups. These gradually formed into three main groups, 
or schools. 

The first school we talk about is logicism, whose main exponent 
was Bertrand Russell (chapter 8). Russell believed that pure mathe
matics could be built on a small group of fundamental logical con
cepts, and that all its propositions could be deduced from a small 
number of basic logical principles. He also hoped to deal with the 
paradoxes, which he attempted to do by introducing some new 
approaches to the problem. Yet Russell had built much of his work 
on the foundation supplied by Cantor's set theory, and Henri 
Poincare-a world-class French mathematician-had been, after 
Kronecker's death in 1891, the prime opponent of Cantor's mathe
matics. Result: Poincare turned his guns on Russell's logicism. 
Though the two men had high respect for each other, they had no 
hesitation in attacking the other's position. 

The other two schools that arose at about the same time were 
intuitionism and formalism, whose leaders were L. E.J. Brouwer and 
David Hilbert. In this battle, all sorts of differences, including the 
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players' nationalities, came into play. When the battle enlarged to 
bring in supporters, Albert Einstein, who chose to remain neutral, 
described it as the War of the Frogs and the Mice (chapter 9). 

In the final chapter we take a look at a question that has bedev
iled and intrigued mathematicians for ages: are mathematical 
advances inventions or discoveries? Though interesting in its own 
right, it also leads to an ongoing battle that rages even now about 
how mathematics should be taught. 

Here, then, is a book on great feuds in mathematics. We will see 
that mathematics is not as objective and certain as it was long 
thought to be, and that mathematicians are subject to the same frus
trations and petty emotions as the rest of us. 

Perhaps the difference between what the public sees and what 
shows so clearly in this book can be explained by an image put forth 
by Reuben Hersh. Hersh, a professor of mathematics at the Univer
sity of New Mexico, pictures mathematics as rather like an excellent 
restaurant. In the front, the dining area, the customers are served 
clean, well-manicured mathematical dishes; in the back, however, the 
mathematicians are actually cooking up their new knowledge in a 
messy, chaotic atmosphere that includes the hot tempers, the disor
der, the turmoil, and the failures as well as the successes.3 We'll be 
concentrating on the kitchen area, in the back. 



l 

Tartaglia versus Cardano 
Solving Cubic Equations 

I n 1545, Girolamo Cardano, an Italian physician and mathemati
cian, set the world of mathematics abuzz with a book on algebra. 

Referred to today as Ars Magna or The Rules <f Algebra, it is still con
sidered by many scholars to be one of the scientific masterpieces of 
the Renaissance. 

What was so important about an algebra book? 
Ars Magna began with some introductory material, including stan

dard solutions to linear and quadratic equations. But then it jumped 
into uncharted territory and laid out for the first time a complete pro
cedure for solving cubic and biquadratic (third-degree and fourth
degree) algebraic equations. 

The book was in truth a stunning achievement and was to play an 
important role in stimulating the growth of algebra in Europe during 

7 
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most of the remainder of the 16th century. It was not until the arrival 
of mathematicians at the level of Fran~ois Viete (1540-1603) and Rene 
Descartes (1596-1650) that the book's contributions were superseded. 

But its impact didn't stop at mathematics, for the Renaissance was 
also a formative period in the world of science, and Cardano's book 
played a role there as well. As the eminent mathematician and scholar 
Morris Kline explains, "Many people credit the rise of modem science 
to the introduction of experimentation on a large scale and believe 
that mathematics served only occasionally as a handy tool. The true 
situation ... was actually quite the reverse. The Renaissance scien
tist approached the study of nature as a mathematician .... There was 
to be little or no assistance from experimentation. He then expected 
to deduce new laws from these principles."1 

By energizing a long-dormant mathematical field, then, Cardano 
also provided fuel for the advance of science. The mathematics his
torian Ronald Calinger, for example, sees Cardano as one of the 
architects of the new science of the Renaissance. As a result, the Ars 
Magna has been compared to Vesalius's On the Strncture <f the Human 
Body and to Copernicus's On the Revolutions <fthe Heavenly Spheres, both 
of which appeared at about the same time. 

Vesalius was a Belgian, however, and Copernicus was Polish. 
Surely, Italian mathematicians swelled with pride that one of their 
own had made such an extraordinary contribution to the advance
ment of their discipline. 

Certainly, they did-with one major exception. Almost immedi
ately after the publication of Ars, an Italian mathematician generally 
known by a single name, Tartaglia, began attacking Cardano. 
Though Cardano had stated very clearly in the text, and in several 
places, that credit for the solution to one of the basic cubic equations 
belonged to Tartaglia, this, said Tartaglia, was not the point. Filled 
with rage at what he saw as Cardano's treachery, Tartaglia main
tained that when he had shown Cardano that solution, Cardano had 
promised faithfully-as a Christian and a gentleman-that he would 
not reveal it until Tartaglia published it first. 

To understand Tartaglia's objections and the strange outcome of 
the resulting dispute, we must travel back to the beginning of the 
16th century. 
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Rebirth 

The European Renaissance, which actually began during the 14th 
century, was a rebirth, a reawakening of European mind and culture 
after a thousand years of sleep. Artists and scholars, especially in 
Italy, were rediscovering the riches of the past and were adding to 
them. More slowly, but just as surely, science, technology, and finally 
mathematics began to awaken as well. 

The first stirrings in mathematics began in algebra toward the end 
of the 15th century. As with other aspects of the Renaissance, these 
were largely a rediscovery of earlier work, in this case the remarkable 
achievements of the earlier Greek, Arab, and Hindu mathematicians, 
who had solved linear and quadratic equations (equations of the 
form ax + b = c and aX2- + bx + c = d) many centuries earlier. 

Arab mathematicians had solved some cubics as long ago as the 
9th century and perhaps earlier, but these were geometrical solutions, 
or even guessed solutions, for specific numerical problems. Still 
badly needed, and actively sought, was a solution for the general 
cubic (ax3 + bx2 + ex+ d = 0). Luca Pacioli, the author of the most 
influential book in Italian mathematics prior to Ars, maintained 
(1494) that such a solution could not be found. 

Then, sometime between 1510 and 1515, Scipione del Ferro 
(1465-1526), a professor of mathematics at Bologna, came up with 
the first algebraic solution to a cubic equation. He had developed an 
algebraic formula for solving the "depressed cubic," a specific third
degree equation that lacks its second-degree term. In other words, he 
had come up with a general solution for x3 + ax= b, with a and b pos
itive. It was a real breakthrough, but he kept it a virtual secret for a 
dozen years and maybe more! What could explain such surprising 
behavior? 

First, the tum of the 16th century was not a time of "publish or 
perish." There were no peer-reviewed journals; there was no Inter
net. In fact, the more likely scenario was for the discoverer of a new 
solution to keep it close to his chest and to use it publicly, if he did 
at all, only when it could somehow prove advantageous. 

For example, the idea of tenure lay long in the future, so academic 
appointments in mathematics could be tenuous. Chairs were held by 
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virtue of eminence and reputation, and public challenges might 
come at any time. Contests sometimes resulted in public disputations 
that could be large, contentious affairs, often attended by the dis
putants' students and supporters. In some cases, the contests 
attracted large crowds and even passionate betting. Del Ferro appar
ently believed that if challenged with a list of problems to be solved, 
he could always use his method as a powerful counterpunch. 

History does not tell us whether del Ferro ever used the solution 
in this way, but we do know that upon his death in 1526, his papers, 
with the solution, passed on to his son-in-law and successor, Annibale 
della Nave, and, more important, to one of his pupils, Antonio 
Maria Fior. 2 

Fior felt he was now in possession of a valuable treasure, and he 
returned to his native city of Venice with the objective of establish
ing himself as a teacher of mathematics. He let it be known that he 
had a special ability regarding cubic equations. Yet he kept hearing 
that maybe it wasn't so special, that someone else had this ability, 
too. The name he heard was that of Tartaglia, a teacher of mathe
matics in Venice and Verona who was making a name for himself 
in public debates and who had also made some claims regarding 
cubic equations. 

Fior thought about issuing a public challenge to Tartaglia. If 
Tartaglia's claims were exaggerated, which was quite possible, it 
would be a good way to build up his own reputation while tearing 
down that of this pretender. 

Tartaglia 

The likelihood that Tartaglia would later have anything to off er 
mathematics had seemed small when he was born in Brescia, in 
northern Italy, in 1499. His father was a mailman, and the family was 
poor. Whatever Tartaglia learned of mathematics and science, he 
picked up on his own. 

He was not always called Tartaglia; he was christened Niccolo 
Fontana. But this was a dangerous time, and about dozen years after 
his birth the town was sacked by the French. Young Niccolo took a 
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slashing wound to the mouth and the palate and came very close to 
death. Although his mother brought him through with careful, ten
der care, the wound caused permanent damage to his speaking appa
ratus, with the result that he was nicknamed Tartaglia, meaning the 
Stutterer. The name stuck. 

Tartaglia eventually settled in Venice and made his living as a 
teacher of mathematics. As with other such teachers, he did the best 
he could to keep his name before the public by participating in pub
lic contests and disputes, and he seems to have had some success in 
these contests. The 19th-century biographer Henry Morley wrote of 
Tartaglia that he may "fairly enough be said to have become wholly 
by his own exertions a distinguished mathematician, as it is also cer
tain that he grew up to be like many other self-taught men, rugged 
and vain."3 

Tartaglia had implied to a colleague that he could solve a numer
ical equation of the form x3 + cx2 = d. This was enough to act as a 
direct challenge to Fior. Early in 1535, Fior challenged Tartaglia to 
a public contest. They came to an agreement: each would propose 
30 problems to the other. Whoever should solve the most problems 
after 30 days would be the winner. There was little fear of collusion, 
for there was nowhere else to tum for help. 

No one knows how much Tartaglia really knew at the start of the 
contest, but by the evening of February 13, 1535, he was able to solve 
both types of numerical cubic (with and without the x2 term), a 
tremendous accomplishment. This meant he could solve all 30 of 
Fior's problems. On the other hand, Tartaglia had apparently been 
aware that Fior was capable of solving only the depressed cubic, and 
he had designed his questions around this form. Fior therefore had 
little success with Tartaglia's questions. 

Tartaglia was the clear winner, and little was heard of Fior after 
that. 

Tartaglia's fame grew, and the numbers of his students grew 
apace. Again, with our modem mindset, we would expect Tartaglia 
to have published his newfound, or newly developed, technique for 
solving the cubic, but no, he, too, kept it close to his chest. Morley 
would later complain, "His new rules concerning cubic equations he 
maintained as his private property, cherishing them as magic arms 
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which secured to him a constant victory in algebraic tilts, and caused 
him to be famed and feared .... That," he continued, "was a selfish 
use to make of scientific acquisitions, with which no scholar of the 
present day [1854] would sympathize, and which, also, in the six
teenth century, would have been thought illiberal . . . even by our 
erratic and excitable Cardan."4 

As we shall see, he might better have said, "especially by our 
erratic and excitable Cardan." 

Yet mathematics, remember, can be a useful tool, as well as a fas
cinating puzzle, and with many of the Western powers fighting for 
control ofltaly, the application of mathematics to ballistics was a hot 
topic. Tartaglia applied himself to it. So it was that in 1537, Tartaglia's 
eye was not on cubic equations but on ballistics, and he published a 
successful book on the subject; his Nova Sci.entia described both new 
methods and new instruments. 

His star, clearly, was rising, but it was to take a most unexpected 
tum. For just as Fior was falling out of the ring, Girolamo Cardano, 
a far more dangerous opponent, was stepping in. 

Cordano, Renaissance Man 

Though Girolamo Cardano was close in age to Tartaglia, his early 
life had been very different. Born in Pavia in 1501, he later recalled, 
"My father, in my earliest childhood, taught me the rudiments of 
arithmetic .... After I was twelve years old he taught me the first six 
books of Euclid, but in such a manner that he expended no effort on 
such parts as I was able to understand by myself."5 Cardano's father 
was a well-educated lawyer, a lecturer in geometry, and a friend of 
Leonardo da Vmci, who was himself interested in mathematics. 

Although Cardano's father wanted him to study law, Cardano, 
despite showing clear ability in mathematics, leaned toward medicine 
as a career. He began his university training at age 19 at the Univer
sity of Pavia. By age 21, he was debating in public and lecturing on 
Euclid. After transferring to the University of Padua, he received his 
medical degree there at age 25. 

0ystein Ore, one of his biographers, writes that "he was quick 
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tempered and vindictive and often unable to control his anger. At 
times this involved him in brawls of the most serious kind."6 So we 
should not be surprised when Cardano tells us in his autobiography 
that from the years 1524 through 1547, he was engaged almost con
stantly in lawsuits-and, he claims, won them all. Perhaps he should 
have gone into law? 

Apparently not. Smart and personable, he was at the same time 
building a strong reputation in medicine and, by the late 1530s, had 
become possibly the most sought-after physician in northern Italy. It 
seems, however, that medicine at the time presented different career 
choices than it does today. In 1537, he was invited to teach medicine 
at Pavia, but he refused, "for there seemed little hope of receiving pay 
for the work."7 His medical income came basically from private 
patients and from patrons. 

Cardano was a most unusual character, though, and the term 
"Renaissance man" could have been invented to describe him. For 
in addition to medicine, he made his mark in several other, quite dif
ferent, fields. He was, for example, an inveterate gambler, and he 
published a very popular and useful handbook of gambling, which 
included some advanced work on probability, as well as detailed 
information on cheating. 

He also cast horoscopes for the rich and powerful. This was a 
common and widespread practice among people skilled in mathemat
ics and astronomy, and although Cardano was proud of his capabil
ity, it got him into various kinds of trouble. In one case he cast a 
horoscope for Edward VI, the boy king of England, that was just 
plain wrong, and later he did one for Jesus, which turned out to be 
a very bad idea. 

Cardano was born into a superstitious family and carried on the 
tradition. At the same time, he made some good observations in med
icine and in natural history (what we know today as science). As Car
dano himself put it in his autobiography: "If then you place the 
number of important branches of learning at thirty-six, from ... any 
acquaintance with [twenty-six of] them I have refrained." He then 
modestly admitted, "To ten I have devoted myself."8 

We are concerned with his mathematical work, and specifically 
with his Ars Magna. Certainly, he brought the algebraic solutions for 
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cubic and biquadratic equations into the open, which was a tremen
dous accomplishment. How much of this did he owe to Tartaglia and 
others? Let's take a closer look at how the book came into being. 

Preliminaries 

After hearing of Tartaglia's success over Fior, Cardano had asked 
Tartaglia for permission to publish his solution to the cubic equation 
in his (Cardano's) own forthcoming book on mathematics, promis
ing to give full credit to Tartaglia. 

Tartaglia's initial answer was that he was planning to write a book 
himself in which he would spell out the rule. When? He couldn't say, 
for he was occupied with other things at the moment, including, first, 
his ballistics work, and then a translation of Euclid. Not being easily 
dissuaded, and convinced of the importance of the solution, Cardano 
kept after Tartaglia, using a variety of entreaties. 

A series of letters has come down to us that alternates between 
sharp and friendly. Initially, for example, Cardano labeled Tartaglia 
as greedy and unwilling to help mankind. 9 Then Cardano sharply 
criticized some work in Tartaglia's book on ballistics. Tartaglia fired 
back an answer that included "But, in believing that you can demon
strate miraculously by your ridiculous opposition that I am wrong, 
you have only demonstrated, I will not say, that you are a great igno
ramus, but that you are a person of poor judgment." 10 

Cardano shifted gears: "You should not imagine that my sharp 
words were caused by enmity .... I really wrote that abuse to excite 
you to a reply." 11 

As part of his campaign he invited Tartaglia over for a friendly 
visit to his home, figuring, correctly, that he would have greater lever
age that way. Cardano proclaimed that he was interested in the solu
tion for purely academic reasons. What finally did the trick was his 
use of an important name, that of his patron Alphonso d'Avalos, 
Marchese del Vasto. D'Avalos-the Spanish governor of Lombardy, 
whose capital is Milan, and commander of the imperial army sta
tioned in the area-was one of the most powerful men in Italy. In a 
letter to Tartaglia, Cardano wrote, "I must in the first place state that 
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I have held you in good esteem, and as soon as your book on 
Artillery appeared, I bought two copies, of which I gave one to 
Signor the Marchese."12 

In another letter, dated March 13, 1539, Cardano wrote that his 
excellency "commanded me at once to write the present letter to you 
with great urgency in his name, to advise you that on receipt of the 
same you should come to Milan without fail, for he desires to speak 
with you." Tartaglia, well aware that friendship with d'Avalos could 
be very useful, finally assented: "I go thither unwillingly: however, I 
will go."13 

As it turned out, d'Avalos was not in Milan when Tartaglia 
arrived. Deliberate deceit? Or just the result of the busy schedule of 
an important man? It's hard to say. 0ystein Ore, in his biography of 
Cardano, evaluates the former possibility and points out that this 
"would have been a very complicated and dangerous scheme. The 
ruse could readily have backfired on Cardano if Tartaglia on the 
strength of the invitation had written directly to d'Avalos."14 

Nevertheless, Cardano did manage to pry Tartaglia's secret out 
of him, but Tartaglia was not so foolish as to just hand over the solu
tion. What he gave Cardano was his "rule" for solving the depressed 
cubic but not his "demonstration," which would be the general 
method, or in modern terms the proof that the rule produced the 
solution. In addition, he gave it in the form of a cryptic verse, 
though he may later have clarified it for Cardano. 

In May 1539, Cardano's Practica Arithmeticae Generali.s appeared
without Tartaglia's solution. It contained some errors, which 
Tartaglia was happy to point out. In fact, he made fun of both 
Cardano and the book, which Cardano revised in future editions. 
Then Tartaglia began hearing rumors about a new book on algebra. 
Cardano denied the rumors, and things were quiet for a while, but 
he was indeed working on such a book. 

Cardano was in fact a prolific writer. By the end of his life, he had 
published thousands of pages in various disciplines. Ars was to have 
been volume 10 in an encyclopedia of mathematics-which he never 
completed and of which not much remains. Ars Magna is a shortened 
version of his original title (Artis Magnae Sive de Reguli.s Algebraici.s). In 
English, it means The Great Art, to distinguish it from other, more 
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elementary works, such as his own earlier one on arithmetic. He was 
also well aware that the solution to the cubic equation would be of 
great importance to its success. So, along with his very able assistant, 
Ludovico (also spelled Lodovico) Ferrari, he put in several years puz
zling out the meaning of the verse and expanding the implications 
when he began to understand it. For, as we'll see, the Ars presenta
tion was no simple restatement of Tartaglia's rule. 

Ars Magna 

The material on cubic equations first appears in chapter 11, which 
is titled "On the Cube and First Power Equal to the Number." This 
is interesting on several counts. The rule Tartaglia gave Cardano cov
ered the three basic forms of the depressed cubic. In modem terms, 
these would be: x3 +bx= c, x3 =bx+ c, and x3 + c =bx. The three 
forms were necessary because mathematicians at the time did not use 
negative coefficients, and this precluded use of the single, general 
form x3 + ax+ b = 0. In addition, our modem algebraic notation still 
lay in the future, and most of the mathematical statements were ver
bal. The chapter title, for example, refers to the specific form that we 
would today write as x3 + bx = c. 

Cardano's book also employs considerable geometric material. In 
fact, as William Dunham puts it in his fine book Journey through 
Genius, "His argument was purely geometrical, involving literal cubes 
and their volumes. Actually, the surprise here is minimized when we 
recall the primitive state of algebraic symbolism and exalted position 
of Greek geometry among Renaissance mathematicians."15 

In each chapter, then, Cardano first gives a geometrical demon
stration of a specific numerical cubic equation, then a verbal rule for 
solving that general type of equation, then one or more sample prob
lems and solutions using the rule. Because the use of zero and nega
tive coefficients still lay in the future, Cardano is forced into spelling 
out 13 different cubic equations, all with positive coefficients, and 
with a separate chapter for each type. 

Furthermore, these geometric solutions are by their nature both 
roundabout and somewhat cumbersome, and because the notation 
at the time was primitive, the book makes for difficult reading today, 
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and we needn't go through any of his demonstrations. Yet it's worth 
showing how his rule works for a specific example of the depressed 
cubic, which he gives in chapter 11. 

In the book, Cardano first presents a general statement of the rule 
for each chapter, which would work for any numerical example of 
this type; then he gives a specific example and shows it at work in 
that example. I'll combine them. I'll state his rule and, to save space, 
will simply insert the results of this particular example in square 
brackets as we go. 

In modem notation, the example is x3 + 6x = 20 and his rule, in 
translation, begins: 

"Cube one-third the coefficient of x [{1/3(6)]3 = 23 = 8}]; add to it 
the square of one-half the constant of the equation [102 = 100]; and 
take the square root of the whole ['1108]. You will duplicate this, and 
to one of the two you add one half the number you have already 
squared and from the other you subtract one-half the same. You will 
then have a mnomium ['1108 + 10] and its apotome ['1108 - 10]. Subtract 
[the cube root of the] apotome from that of the binomium and you 
will have the value of x: 

3v'{v'(108) + 10} - 3v'{v'(108) - 10}." 

Cardano doesn't bother to spell out the answer, but the mathe
maticians among you will realize that the solution to this complicated 
expression is nothing more than the number 2. 

Not all of his examples ended with whole number answers. In 
some examples, he found himself with imaginary roots. Though he 
was baffled by them, he did acknowledge their existence. 

A Sacred Promise? 

There is no question that Cardano's contribution to the field was 
considerable. The question is, just how perfidious was his treatment 
of Tartaglia? The answer remains as elusive as ever. First, Ore points 
out that none of Cardano' s contemporaries expressed their displeas
ure at the time, even though the details of the affair were widely dis
cussed. The negative points of view seem to have arisen later, in the 
18th and the beginning of the 19th centuries. 16 



18 GREAT FEUDS IN MATHEMATICS 

Was there a sacred promise of secrecy? Many, perhaps most, writ
ers say yes, but this is mainly based on Tartaglia's claim. In the year 
following publication of Ars, Tartaglia published his own work Qye
siti et lnventioni Di.verse (New Problems and Inventions), which included 
what he maintained were word-by-word accounts of their meet
ings.17 Many writers depend on this publication and quote the follow
ing promise that Tartaglia says Cardano made to him: "I swear to 
you by the sacred Gospel, and on the faith of a gentleman, not only 
never to publish your discoveries, if you will tell them to me, but also 
I promise and pledge my faith as a true Christian to put them down 
in cipher, so that after my death nobody shall be able to understand 
them." 18 

Others point to the fact that Ludovico Ferrari, Cardano's secre
tary and assistant, was also present when Cardano and Tartaglia 
met, and that Ferrari later swore, just as vociferously, that Cardano 
never made such a promise. In fact, Ferrari claimed that in general, 
Tartaglia's accounts of the earlier proceedings, made in the heat of 
his rage, were doctored. 

Alan Wykes, a modern biographer, goes even further. He argues 
that Cardano had figured out the algebraic equations by himself, or 
at least without help from Tartaglia. In Ars, says Wykes, "by a slip of 
pen or memory, he [Cardano] wrote that Tartaglia had communi
cated the discovery to him and given him permission to use it." But, 
Wykes argues, "It may perhaps not have been a slip but a muddled 
attempt at a generous gesture on Cardano's part."19 

Yet between the time of Tartaglia's visit to Cardano and the 
appearance of Ars, six years had elapsed. During that period, Car
dano and Ferrari, having heard rumors of the existence elsewhere of 
such a solution, had traveled to Bologna in 1543 and visited their col
league Annibale della Nave. There they were given permission to 
examine the papers of Scipione del Ferro, and they learned that del 
Ferro and not Tartaglia had been the first to solve such an equation 
algebraically. In such case, they reasoned, even if Cardano had been 
sworn to secrecy, that promise was no longer valid. 

Even before publication of Ars, there are suggestions that some
thing of this sort was afoot. For example, after one of Tartaglia's 
refusals, Cardano wrote again with another request but added, "I 
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should like to save you from the illusion that you are the first man 
in the world ... , I want to write to you amiably to dissolve the fan
tasy that you are so great. I will lovingly let you know even through 
your own words that in knowledge you are rather in the valley than 
near the summit of the mountain."20 

Was he here suggesting that Tartaglia had not been the original 
possessor of the solution? Why not come right out and say so? This 
was 400 years ago, and things may have been done differently. 

In any case, Cardano was careful not to claim credit for discov
ering the rule. In three places, he included citations for earlier work 
on the cubic equation. Near the beginning of chapter 1, for example, 
he writes," In our own days Scipione del Ferro of Bologna has solved 
the case of the cube and first power equal to a constant, a very ele
gant and admirable accomplishment. Since this art surpasses all 
human subtlety and the perspicuity of men's minds, whoever applies 
himself to it will believe that there is nothing that he cannot under
stand. In emulation of him, my friend Niccolo Tartaglia of Brescia, 
wanting not to be outdone, solved the same case when he got into a 
contest with his [Scipione's] pupil, Antonio Maria Fior, and, moved 
by my many entreaties, gave it to me."21 

Cardano repeats almost the same words at the beginning of chap
ter 11: "He [Tartaglia] gave it to me in response to my entreaties," but 
adds that Tartaglia withheld the demonstration: ''Armed with this 
assistance [the rule], I sought out its demonstration in [various] 
forms. This was very difficult. My version of it follows." 

And his version is indeed different, and much expanded, from 
what Tartaglia had given him-or from whatever he had gotten from 
any other source. More specifically, with the help of his secretary/ 
assistant, Ludovico Ferrari, he uses the solution he started with (for 
the depressed cubic, obtained from Tartaglia or whoever) as a 
stepping-stone. By employing appropriate substitutions, which 
reduced them to the known case, he had found solutions to the three 
additional cubic equations. Then, again with the help of Ferrari, to 
whom he gives appropriate credit, Cardano also shows how these 
cubic solutions could be used as a foundation on which to build solu
tions for biquadratics, or equations of the fourth degree. In addition, 
Cardano points out that cubic equations should have three roots. 
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A Battle Not-So-Royal 

Despite Cardano's acknowledgments, Tartaglia was in a rage. The 
following year he published his book New Problems and Inventions, men
tioned earlier. The first half does indeed contain solutions to prob
lems that had been put to him over the years, but the latter part is 
devoted entirely to a full-out attack on Cardano and Ars. It includes 
reproductions of their correspondence, along with his comments. It 
is a bitter, and powerful, attack. He publicly heaps scorn on Car
dano 's mathematical abilities. Wykes describes it as a "swingeing 
attack ... denying ever having given Cardano permission and accus
ing him of theft."22 

As Tartaglia thought would happen, he got a response, but not 
quite what he was expecting. For it seems we are dealing here with 
not just two, but with three quite disputatious types. Ore writes, 
"The Renaissance abounds in impulsive and hotheaded geniuses and 
Ferrari ran true to form. He had such a temper that even Cardano 
at times was afraid to speak to him, and one day when he was sev
enteen years old he came home from a brawl missing the fingers on 
his right hand."23 

On February 10, 1547, Ferrari, rather than Cardano, responded 
with a printed cartello, a challenge to Tartaglia to meet him in a dis
pute on almost any scientific topic, maintaining that Tartaglia had 
"written things which falsely and unworthily slander the above
mentioned Signor Gerolamo [su] (Cardano), compared to whom 
you are hardly worth mentioning."24 Ferrari sent the cartello to a 
variety of scholars and dignitaries all across Italy, so that Tartaglia 
could hardly refuse. Ferrari's attack was strong; he argued that 
Tartaglia had built up his reputation by attacking others; that, iron
ically, he had published a proof in his book that was stolen and for 
which he had not given credit; and that the book was full of errors. 

There was an interchange. Tartaglia complained that he wanted 
to meet Cardano, not Ferrari, the pupil. Ferrari, however, acting on 
Cardano's behalf, insulted Tartaglia strongly enough that Tartaglia 
had little choice but to acquiesce. Ferrari also made the point that 
Cardano attributed the solution to del Ferro and Fior, both of whom 
knew it before Tartaglia, and that there was no oath of secrecy. 
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In any case, a public contest did take place the following August. 
The details are vague, but Tartaglia seems to have withdrawn after 
a brief but possibly vituperative battle, and Ferrari was declared the 
victor. Cardano didn't even attend. 

Though few details of the actual contest have come down to us, 
the apparent outcome is supported by the later results. Tartaglia lost 
a promised position in his hometown of Brescia, whereas Ferrari 
received a variety of good offers: he was invited to lecture in Venice, 
Tartaglia's home territory, and went on to become a professor of 
mathematics in Bologna. Tartaglia now had additional fuel for his bit
terness. 

It seems odd that Cardano, so proud of his learning and having 
done some solid work in the mathematics field, was apparently con
tent to have Ferrari act as his champion. Ore points out, "Cardano 
began his university disputes in his student days, apparently with 
much success .... Cardano must have been well equipped for the 
debates; he had a quick wit, a good memory, and a sharp tongue. 
According to his own account he became so proficient in these men
tal duels that his opponents had little chance of victory, or even defeat 
with honor."25 Ore is referring mainly to medical contests; did Car
dano think less of his mathematical abilities? 

As had happened much earlier with Fior, Tartaglia lost some pub
lic esteem and some reputation. This, however, only ramped up his 
bitterness, which was aimed directly at Cardano, and he retreated 
into a comer of the ring-fuming, waiting, watching, and plotting. 

A First Attempt 

What Tartaglia saw, though, was an opponent whose star continued 
to rise, and who was therefore not an easy target. Wykes writes, 
"The name of Doctor Cardano rang through the halls of philosophy, 
astrology, mathematics, science and medicine. Books, tracts, and trea
tises by the score came from the press of Petrieus [his publisher]."26 

How this must have galled Tartaglia. 
He first tried to entrap Cardano via a complicated scheme that 

involved his [Cardano's] friendship with Gonazaga, the governor of 
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Milan and an opponent of the pope, and the old pope's addiction to 
astrology. Tartaglia had an idea that he could make trouble by engi
neering an off er to Cardano to enter the service of the pope as an 
astrologer and a physician. Perhaps he thought he could generate 
some sort of charge of political intrigue. 

Cardano was riding high, however, and in no need of patronage. 
He turned down the offer for personal reasons. Tartaglia then tried 
to implant the idea that Cardano had intended to offend His Holi
ness by his refusal. Tartaglia also produced a copy of Cardano's ear
lier horoscope of Jesus in an attempt to convince the pope that it was 
blasphemous. The situation was briefly troubling to Cardano, but 
this first attempt at revenge by Tartaglia petered out early in the 
1550s. He retreated and began plotting another campaign. 

Cardano's star, however, was still shining bright. He held the chair 
of medicine at Pavia, which provided material success, time to write, 
and considerable prestige. Offers of all kinds arrived constantly. 
Tartaglia held himself in check until, eventually, his patience was 
rewarded. Fate stepped in and dealt him a full hand. 

Cardano was blessed in many ways, but not with his children. 
Three of them, two sons and a daughter, were to pave the way to his 
undoing. Thanks to Cardano's eminence, his daughter Chiara had 
made a good marriage to Bartolomeo Sacco, who came from a noble 
lineage. Unfortunately, Chiara was a promiscuous young woman, 
and Sacco not only sought an annulment but wanted recompense 
from Cardano for this "worthless baggage."27 During the years 1557 
and 1558, Cardano found himself enmeshed in both legal and 
church battles that began to tear at his once-illustrious name. 

Though he managed to continue his work as a doctor and a 
philosopher/scholar/writer, he was deeply enmeshed in his daughter's 
problems when trouble came from another direction. In December 
1557, his elder and favorite son, Giambattista, married. Cardano 
would have expected the boy to marry well, but he chose the daugh
ter of a down-and-out family, which Cardano was expected to sup
port and for which he ended up supplying most of the funds. 

The details are not clear, but it must have been a marriage made 
in hell, for two years later, Giambattista's wife was dead of arsenic 
poisoning, and Cardano's son was arrested for her murder. Cardano 
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did all he could to prove his son's innocence, but Giambattista con
fessed and was executed. Cardano never got over this, and it may 
well have affected his mind, for he started to become suspicious of 
attempts on his life. 

It is, of course, possible that some of these were actual attempts 
to destroy him in one way or another. Envy of the famous is not 
uncommon. Add to the pot his cantankerous character, however, and 
it's easy to believe that there were some people who did what they 
could to pull him down. 

Now add to his real and imagined difficulties new problems with 
his other son, Aldo. Aldo turned out to be a drinker and a gambler. 
He lived with Cardano for a while, but the two did not get along. 
Early in the 1560s, Aldo moved out, but, having gotten deeply into 
debt, he broke into Cardano's house and was caught. Cardano 
wanted nothing further to do with him. Here was yet another disas
ter with his offspring. 

Again he lost himself in his writing, but by now attempts were 
being made to eject him from his chair of medicine at Pavia, and then 
at the even more prestigious college in Milan. In 1563, his name was 
removed from the list of scholars qualified to lecture, and he was 
accused of various crimes. He was actually exiled from Milan, which 
included Pavia, and he left there at the end of 1563 in the depths of 
despair, his fortune gone, his books impounded. 

A Shadowy Hand 

The rest of the decade saw no improvement for Cardano. His coun
try, dominated by Spain and decimated by wars, labored under 
heavy taxation. The Spanish Inquisition, well underway, was a 
potent force. Scholars of all sorts were under suspicion, but somehow 
Tartaglia had managed to place himself satisfactorily. Cardano could 
find no employment, and, according to Wykes, "it was Tartaglia who 
was the instigator of most of the refusals that met him in College and 
University. It was simple enough, with the network of the Inquisition 
flourishing in city, vineyard, village and public square, to keep a 
shadowy hand on the shoulder of any citizen, great or small."28 
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This was just the warmup, though. On October 13, 1570, almost 
a quarter of a century after publication of Ars Magna, Tartaglia 
served up a double blow. Using Cardano's own son Aldo as an 
informant as to Cardano's whereabouts, Tartaglia handed him to the 
Inquisition. Tartaglia had been collecting evidence against Cardano 
for years. Among this "evidence" was Cardano's rejection of the 
pope's invitation that he become the pope's astrologer and physician. 
Tartaglia pointed to the "sarcasm" evident in Cardano's comment 
that "His Holiness by his study of astrology has surely raised him
self among the greatest of such scientists and has no need of help 
from such as myself."29 

Cardano's horoscope of the life of Jesus was also damning, as 
were a variety of other statements that, taken out of context, could 
be construed as blasphemous. In one of his publications, for exam
ple, he had suggested that God is a universal spirit whose benevo
lence is not restricted to holders of the Christian faith. Today he 
might be admired for such an ecumenical statement; at the time, it 
was apparently a dangerous idea. 

And so it went. Cardano, fortunately, was not subjected to torture 
or put to death, but he was thrown into jail. He sought desperately 
for help and was able to reach out to an official in the church, Arch
bishop Hamilton, who had in the past asked to be called upon if need 
be. The archbishop came through for Cardano, who was released a 
few months later. It was just in time, for not long after, the arch
bishop's own fortunes changed; he was captured by the forces of 
Mary, Qyeen of Scots, and beheaded. 

Tartaglia finally had had his revenge. Cardano lived on in obscu
rity in Rome, where he worked on his autobiography, which is one 
of the works that has come down to us in full. He probably never 
knew, and just as well, that his daughter Chiara had died of syphilis, 
and that it was Aldo who had betrayed him to the Inquisition and 
who was rewarded with an appointment as official torturer and 
executioner in Bologna. 

Cardano died on September 20, 1576. Less than a year later, 
Tartaglia followed him to the grave. 



TARTAGLIA VERSUS CARDANO 25 

Who Won? 

Ore, who has studied Cardano carefully, argues, "His originality in 
other fields has sometimes been questioned, but De Ludo Aleae, his 
obscure and somewhat disreputable book on how to win at cards and 
in dice games, contains indisputable proofs of his genius."30 In addi
tion, Wilhelm Gottfried Leibniz (see chapter 3 in this book) main
tains, "Cardano was a great man with all his faults; without them he 
would have been incomparable."31 

As for Tartaglia, Ore believes that "had Tartaglia never existed, 
the science of mathematics would not have been deprived of a sin
gle great or fertile idea."32 When Tartaglia died, an attempt was made 
to assemble and publish his unpublished papers. Oddly, none could 
be found that even mentioned the solution to the cubic equation. 

Nevertheless, says Ore, Tartaglia was no slouch. Under other 
circumstances, his star might well have shown brighter. As Ore puts 
it: "His great tragedy was the head-on collision with the only two 
opponents in the world [Cardano and Ferrari] who could be ranked 
above him."33 

While both Tartaglia and Cardano paid dearly in this battle, there 
is no question that mathematics came out a winner. 



2 

Descartes versus Fermat 
Analytic Geometry and Optics 

Pulling together work he had quietly labored over for decades, 
the French philosopher and mathematician Rene Descartes 

finally published in June 1637 the book that was to make him 
famous. His Discourse on Method is considered by modem historians a 
major landmark in several areas, including philosophy, the history of 
science, and, especially, mathematical thought. David E. Smith and 
Marcia L. Latham, who did the definitive translation of the mathe
matical portion of the book, compare it to Newton's Pn'ncipia and 
argue that it contributed to the great renaissance of mathematics in 
the 17th century. 1 

Thanks largely to this work, Descartes is conunonly given credit 
for unifying algebra and geometry and even for the creation of ana
lytic geometry; indeed, the Cartesian coordinate system is named 

26 
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after him. That's what we remember today. This being mathematics, 
one might expect that with Descartes' introduction of this new mate
rial, the resulting discussion was precise, well-defined, and devoid of 
emotional fireworks. 

That, however, was not to be. What should have been a straight
forward mathematical discussion turned into a mind-boggling com
bination of Greek tragedy and modem spy novel, with a plotline that 
included the Catholic Church, several of the top mathematicians of 
the time, and the vastly differing personalities of Descartes and his 
main opponent, Pierre de Fermat. The result: a drawn-out battle with 
a clear winner and loser, but with the ironic outcome that the winner 
learned little or nothing from the battle, while the loser was inspired 
by the battle to come up with a major principle in science and to pro
vide important grounding for the development of the calculus. 

The mathematics historian Michael Sean Mahoney writes, "Few 
scientific debates in history reveal so much of the personalities of the 
participants, or the extent to which personal factors can influence 
rational discourse."2 

Descartes 

Born in 1596, Descartes received his education in the early years of 
the 17th century. It was an exciting time, the age of Galileo, Kepler, 
Harvey, Gilbert, and Francis Bacon; of Shakespeare and Montaigne. 
It saw the beginnings of what later came to be called the Age of 
Reason and spawned people like Newton and Leibniz, Milton and 
Moliere. Yet the standard education was still largely based on the clas
sical curriculum. 

So it was for Descartes. His first five years of schooling were 
devoted almost entirely to Latin, Greek, and classical literature. At 
the age of 10, he entered La F1eche, a prestigious, highly disciplined 
Jesuit school, where he spent the next eight years. Among the main 
subjects were the works of Aristotle, but mainly as viewed through 
the glasses of the Jesuit fathers. It was basically via these secondhand 
readings that Descartes had his initial grounding in philosophy. 

He was an apt pupil, but when he left-at age 18, in the year 



28 GREAT FEUDS IN MATHEMATICS 

1614-he appears to have come away with "the discovery at every 
tum of my own ignorance"3 and utter disdain for the philosophies 
then being taught. "Philosophy," he wrote later in the Discourse, 
"affords the means of discoursing with an appearance of truth on all 
matters, and commands the admiration of the more simple."4 In 
1616, he earned a law degree at the University of Poitiers, to which 
he subsequently paid little attention. 

Certainty and Method 

Though contemptuous of the existing philosophies, his interest in 
the subject had been piqued. He began to wonder: how do we 
know what we know? How can we be sure that what we know, or 
think we know, is correct? How can it be that so many have studied 
so much, and yet so much of what we hear and learn is so wrong or 
so uncertain? 

He was convinced, for example, that Copernicus was correct-that 
although the sun appears to be circling the earth, the earth actually 
circles the sun. In that case, however, can we depend on our senses 
for learning anything in the world around us? 

Then he learned that Copernicus's book De Revolutionibus, in 
which Copernicus had put forth his heliocentric theory more than 
half a century earlier, had been censored and suspended by the 
Catholic Church until it would be corrected, or at least formulated 
so that the idea was put forth as a hypothetical one. For although 
Copernicus's idea was a good one, it went against church teachings, 
and there was no real, physical proof of its correctness. If there had 
been concrete proof of the concept, the church could not object. 
Descartes began to develop a passion for certainty, which was later 
to become central to his entire corpus of work. 

Several ideas began to gel. Of all the subjects he had studied, 
mathematics seemed to provide the one real road to certainty. For, he 
believed, mathematics depends totally on rational thinking; it pro
tects against errors introduced by the senses or even by measurement 
and experiment. 

In 1618, he met and began working with Isaac Beeckman, a 
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teacher and educational administrator who, like Descartes, had a deep 
interest in the association between mathematics and the physical 
world. Under Beeckman's guidance and encouragement, he began to 
focus intensely on mathematical and mechanical problems. He spent 
some time in the army and appears to have done some mathematical 
work on military architecture while there. As a kind of gentleman-sol
dier, he had free time to spend on his studies; still, he was not happy 
in the army. He complained of being idle and of being in the company 
of uneducated people. He left the service early in 1619. 

He was highly respectful of the mathematics of the ancient Greek 
mathematicians, such as Pappus and Diophantus. He also, however, 
suspected that they deliberately held back in their presentations; that 
is, that they showed solutions to certain problems but kept their 
methods secret, in much the same way as the algebraists of Cardano's 
day had done. 

In 1619, he wrote, "When I attended to the matter more closely, 
I came to see that the exclusive concern of mathematics is with ques
tions of order or measure, and that it does not matter whether the 
measure in question involves numbers, shapes, stars, sounds, or any 
other object whatsoever. This made me realize that there must be a 
general science that explains everything that can be raised concern
ing order and measure irrespective of subject matter, and that this 
science should be called mathesis universal.is-a venerable term with a 
well-established meaning-for it covers everything that entitles these 
other sciences to be called branches of mathematics. How superior 
it is to these subordinate sciences both in usefulness and simplicity 
is clear from the fact that it covers all they deal with .... Up to now, 
I have devoted all my energies to this maihesis universal.is so that I might 
be able to tackle the more advanced sciences in due course."5 

By 1619, then, he already knew that he was destined to create a 
philosophical system that would utilize deductive procedures as rig
orous as Aristotle's, but based on his own thinking and development. 
He had, as he put it, discovered the foundations of a marvelous 
science (mirabilis scientia.e fandamenta}, on which could be based a 
complete philosophical system that would provide a road to learning 
and study, paved with certainty and clarity. 

Descartes spent the next two decades developing these ideas and 
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expanded his coverage to include nothing less than the whole world. 
By 1628, in fact, he had begun working on Le M<Jflde (The World), his 
broad mechanical explanation for the way much of the world works. 
In 1633, however, when he had the manuscript ready, he heard that 
Galileo had been hauled up before the Inquisition for espousing 
Copernicus's heliocentric theory. Some of Descartes' ideas in his own 
book, he feared, would displease the church as well. Good Catholic 
that he was-apparently his training at La F1eche had had some 
effect-he chose not to publish rather than rock the ecclesiastical boat. 
He felt, too, that he would rather not weaken his statements. If he 
was to successfully refute ancient authors such as Aristotle, his work 
had to be presented with at least as much certainty as their systems. 

Right along, though, he was developing both his philosophy and 
his explanations for how things work in the world. His vortex the
ory postulated a matter-filled universe in which the motion of any 
body can be caused only by contact with another. It had enormous 
influence-for a while. Its advantage was that it provided a mechan
ical explanation for many heretofore puzzling phenomena, as well as 
for explanations that previously had depended on spirits and ghosts. 

In the interim, he had produced the makings of several books, 
but, for various reasons, not one was published. Until the Discourse, 
in fact, he had no publications. His fear of offending the church was 
one reason. Another was that the scientific journal still lay in the 
future. In France, at least, its place was taken by Father Marin 
Mersenne, a scholarly priest whose cell in Paris had become a meet
ing room for some of the foremost French mathematicians of the day, 
including Blaise Pascal, Pierre Gassendi, Gilles Personne de Rober
val, and Jean Beaugrand. Beaugrand would play a major role in the 
initiation of the coming conflict with Fermat. 

Mersenne corresponded with other eminent mathematicians and 
was instrumental in facilitating the interchange of mathematical 
developments throughout Europe. He was often referred to as 
France's "walking scientific journal," and it was by his efforts that 
Galileo's work became known outside his own country. 

Mersenne and Descartes became friendly in 1622, and Mersenne 
began to spread the word that a new and promising philosopher/ 
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mathematician was developing. By 1626, thanks largely to the com
munications efforts of Mersenne, Descartes' reputation had grown 
substantially, even though he had not yet published a single word. 

Discourse on Method 

Descartes' Discourse on Method (1637) was actually a pastiche of works 
he had composed at various stages of his studies, though it also 
included some new material. Its full title was Discourse on the Method 
efRightly Conducting Ones Reason and &eking the Truth in the Sciences. The 
introductory part, often referred to as the Discourse, contained the 
basic idea and the philosophical rationale for the entire book. 

In this opening section, he laid out four laws that served as the 
guiding principles of his approach. "The first of these," he wrote, "was 
to accept nothing as true which I did not clearly recognise to be so: 
that is to say, carefully to avoid precipitation and prejudice in judg
ments, and to accept in them nothing more than what was presented 
to my mind so clearly and distinctly that I could have no occasion to 
doubt it."6 His philosophy, then, was one of systematic doubt. Of one 
thing he could be certain, however, and so it was that his famous state
ment was born: "I think, therefore I am." One of his biographers, 
Stephen Gaukroger, explains, "Descartes begins by showing that, pro
vided one's doubt is sufficiently radical, there is nothing that cannot 
be doubted, except that one is doubting, and this requires that there 
be something which exists that is doing the doubting."7 

Of course, doubt was not enough. I noted earlier that he felt he 
could use mathematics as a foundation on which to build. As he put 
it: "I was especially delighted with the Mathematics, on account of 
the certitude and evidence of their reasonings: but I had not as yet a 
precise knowledge of their true use; and thinking that they but con
tributed to the advancement of the mechanical arts, I was astonished 
that foundations, so strong and solid, should have had no loftier 
superstructure reared on them."8 

His book was not a full description of the world, but it did suggest 
that all physical phenomena can be explained mechanically, which 
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turned out to be a very potent concept. Following the relatively brief 
introduction were three essays showing some examples of how his 
method could be used toward this end. Two would lie at the center 
of his dispute with Fermat. 

The first, "Dioptrics," deals with the nature and the properties of 
light. Descartes saw light not as motion but as a pressure or a "ten
dency to motion" that was transmitted instantaneously (or very 
close to it} through a kind of elastic medium. This came logically out 
of his vortex theory: he believed that we experience the light ray in 
very much the same manner as an impression of movement or 
resistance that would travel instantly from the point of action to a 
blind man's hand through his stick. 

Therefore, he felt, light will travel instantaneously, or nearly so, 
through optical media, and also that its speed will actually be greater 
in a denser medium such as water than in air. 

He also thought of both reflection and refraction in terms of mate
rial collisions; he assumed that in reflection the light is thrown back 
like an elastic ball from an elastic surface, and that similar reasoning 
holds for refraction, except that in this case the ball breaks through 
the surface. 

By this reasoning he came up with his law of refraction, which 
stated that the ratio between the sine of the angle of incidence of a 
light ray and the sine of its angle of refraction is a constant: 

sin ilsin r= n9• 

Descartes had worked the law out mathematically, an impressive 
accomplishment. 10 

The second essay, "Meteors," was perhaps the first real attempt at 
a scientific work on the weather. It included a description of how rain
bows are produced, which he based on his law of refraction. 

Descartes' "Geometry0 

In the third essay, "Geometry," Descartes had put together what 
turned out to be his main legacy in mathematics. He presented, and 
solved, one of the most difficult problems bequeathed to the 
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mathematical world by the ancients. It had been thought up by the 
Greek geometer Apollonius in the 3rd century B.C. His contempo
rary Euclid and then Pappus some six centuries later did more work 
on it. Yet in spite of much effort by them and many later mathemati
cians, no one before Descartes had been able to solve it completely
that is, to provide a general solution. 

Using his method, Descartes had attacked the problem some 
years earlier and had solved it in a matter of weeks. The problem, 
as stated by Descartes, was: "Having three, four or more lines given 
in position, it is first required to find a point from which as many 
other lines may be drawn, each making a given angle with one of the 
given lines .... Then, since there is always an infinite number of 
different points satisfying these requirements, it is also required to 
discover and trace the curve containing all such points."11 

]. L. Coolidge restates the problem: "If from a point in a plane, 
line segments be drawn to meet four given lines of that plane at pre
assigned angles, and if the product of the first and third segments 
bear a constant ratio to the product of the second and fourth, then 
the locus of the point in question is a conic."12 

Descartes' main contribution was to treat the problem alge
braically and generally. The example he gave involves four lines, but 
his method could be generalized to n lines, and it could be reduced 
to one in which all we need to know are the lengths of certain lines. 
These lines are the coordinate axes, the lengths of which provide the 
abcissas and ordinates of needed points. 

His association of equations and curves is one essential feature. 
Also, he located his points and curves on a single coordinate system, 
a step that had not been taken before. It was not, however, a rectan
gular coordinate system as we know it today. He used only a single 
unmoving axis with a moving ordinate, which was not necessarily 
vertical, but this was a major step nonetheless. 

In essence, he had found a way to apply the algebra of Cardano 
and those who came after him to the geometry of the ancient math
ematicians. As Descartes put it in "Geometry," "Here I beg you to 
observe in passing that the considerations that forced ancient writers 
to use arithmetical terms in geometry, thus making it impossible for 
them to proceed beyond a certain point where they could see clearly 
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the relations between the two subjects, caused much obscurity and 
embarrassment, in their attempts at explanation." 13 

Using one of his own rules, he recognized the necessity of getting 
rid of the many numbers and "incomprehensible [geometric] figures" 
that overwhelm the procedure, as it was done before his work. 
Recall that equations in Cardano's time were still laid out in verbal 
terms. Toward the end of the 16th century, Fran~ois Viete, a French 
lawyer attached to the court of Henry IV, had made some important 
advances in algebraic notation and in the general improvement of the 
theory of equations. Viete (1540-1603) was among the first to rep
resent numbers by letters and to introduce at least the beginnings of 
a general symbolism, but his algebra still differed from ours in an 
important way. He still saw problems in a geometric sense; he saw 
the product of two line segments, for example, xx, as an area. As a 
result, there was even a question as to whether equations of degrees 
higher than three made any sense at all. 

Descartes began his "Geometry" thus: "Any problem in geome
try can easily be reduced to such terms that a knowledge of the 
lengths of certain lines is sufficient for its construction."14 He saw the 
product of two lines, say a and b, not only as a rectangle but also as 
a line. Similarly, terms like x2- and x3 could be seen as line segments 
and not as a square and a cube. Result: he was able to restate a geo
metric problem in algebraic terms and solve it algebraically. 

He also made a significant contribution to the theory of equations. 
He wrote, "If, then, we wish to solve any problem, we first suppose 
the solution already effected, and give names to all the lines that seem 
needful for its construction-to those that are unknown as well as to 
those that are known. Then, making no distinction between known 
and unknown lines, we must unravel the difficulty in any way that 
shows most naturally the relations between these lines, until we find 
it possible to express a single quantity in two ways." 15 (That is, to 
solve the resulting simultaneous equations.) 

Thus, if two curves were considered in the same system of coor
dinates, their points of intersection could be gotten by solving the 
equations of the two curves and finding the roots conunon to their 
two equations. 
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So now we can express relations in terms of only two variables. 
For example, as Emily R. Grosholz states it (as in the Pappus prob
lem), "Distances between the fixed lines and a point Con the locus 
can be expressed in the form ax + by + c, and the condition which 
determines the locus can be expressed as an equation in two 
unknown quantities. For three or four fixed lines, this equation 
would be a quadratic equation, for five or six lines, a cubic, and so 
forth, the introduction of every two lines making the equation one 
degree higher."16 

Descartes also brought the symbolism very close to what we use 
today, whereby lowercase letters at the end of the alphabet represent 
unknown factors, and letters at the beginning are used for constants 
and known terms. 

Finally-and largely as a result of his "Geometry" -he is com
monly credited with the creation of analytic geometry-that is, a 
geometry in which a point is a set of numbers located in what is now 
known as a (Cartesian) coordinate system, and a geometric construc
tion can be thought of as a collection of points and described by equa
tions or formulas. It took time for this to happen, however. In fact, 
the subject was not even given the name analytic geometry until the 19th 
century. 

In a letter to Mersenne in 1637, he said, modestly, "I do not enjoy 
speaking in praise of myself, but since few people can understand my 
geometry, and since you wish me to give you an opinion of it, I think 
it would be well to say that it is all I could hope for, and that in La 
DWptrique and Les Meteore.s, I have only tried to persuade people that 
my method is better than the ordinary one. I have proved this in my 
geometry, for in the beginning I have solved a question which, 
according to Pappus, could not be solved by any of the ancient 
geometers." 17 

As I stated earlier, he was wrong here. The ancients had solved 
the problem, but only for one or two specific cases. What he did was 
produce a general solution, which they had not done. All in all, 
Descartes felt that he had produced a solid, useful-and unique!
document. As far as he was concerned, all this material was new 
to the world. He fully believed, for example, that he had developed, 
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for the first time, a specific method for finding the truth-that is, 
knowledge that is both solid and certain. Though the method would 
work for various kinds of knowledge, he was particularly interested 
in finding the "truth" in the sciences. 

Dismay-and Conflict 

We can only imagine, then, the shock, dismay, chagrin-and even 
anger-he must have felt upon seeing criticisms of his book by some 
of the major mathematicians of the day. Among these comments were 
some by a barely known lawyer and amateur mathematician named 
Pierre de Fermat. In order to better understand what happened when 
he received Fermat's comments, though, we must back up a bit. 

An independent spirit like Descartes was not one to mince his 
words. In 1636, a contemporary of his, Jean Beaugrand, had pub
lished a book called Geo.statics, and Descartes had issued a brutal crit
icism of it. Was Descartes' action at least in part payback for some 
earlier criticisms of Descartes by Beaugrand? Perhaps. In any case, 
the publication of Descartes' Discourse gave Beaugrand an opportu
nity to avenge himself. In the spring of 1637, he managed to obtain 
an advanced copy of Descartes' "Dioptrics" and began a vicious cam
paign against it. He circulated the manuscript among his own col
leagues, including Fermat, apparently in hopes that it would receive 
some serious criticism even before it was published. 

Fermat, in all innocence, and having no idea that the manuscript 
had been obtained unethically, issued what he thought was a purely 
scientific critique. He had several objections. As a firm believer in the 
importance of experiment, he objected to Descartes' reliance on 
mathematics to study physical phenomena. Specifically, he objected 
to Descartes' investigating the "inclination to motion" by his mathe
matical examination of the motion of a tangible physical object (the 
ball against the elastic sheet). 

Another problem, he said, was in Descartes' demonstration and 
proof of his law of refraction; Fermat argued that it was in fact no 
proof at all. He stated that Descartes' result was implicit in the 
assumptions, that "of all the ways of resolving the determination [that 
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is, the tendency] to motion, the author has selected only the one that 
leads to his conclusion; he has thereby accommodated his means to 
his end, and we know as little about the subject as we did before." 18 

Fermat had written his comments in the form of a letter to 
Mersenne. He had started it with a suggestion that we mathemati
cians can often "find what we are seeking by groping about in the 
shadows." He then amplified this with his own objections, as noted 
previously, and he closed with an offer. "We must seek the truth in 
common," he wrote, and he, Fermat, would be happy to help 
Descartes in his search.19 It's not hard to imagine Descartes' reaction 
when he read this. 

What Fermat apparently did not know was that Descartes, upon 
hearing of Galileo's run-in with the Inquisition, had pulled back his 
publication of Le Monde, in which he had spelled out his physical the
ories far more explicitly than he could in the Discourse. Therefore, as 
Mahoney explains, "Descartes' DWptrU.s appeared without the cosmo
logical treatise on which it was based. The short account of the 
nature of light that opens the DioptrU.s could not replace the more 
extended and more carefully argued theory of The World, or On Light, 
which Descartes had withdrawn from publication .... Moreover, the 
crucial steps in his derivations of the laws of reflection and refraction 
depended on the laws of motion presented in the suppressed treatise. 
Without the precise context of The World, the appearance of those 
laws in the DWptrU.s seemed arbitrary at best; they were not set out 
properly until the publication of the [Descartes'] Prinaple.s <f Philoso
phy in 1644 .... Only against that background can one understand 
Fermat's critique, for it focused precisely on the points that required 
the fuller context."20 

At first, then, Descartes was not overly concerned. Fermat, he fig
ured, had simply not understood what he was getting at. Nor did 
Descartes have any idea of what kind of competition he was facing. 
By the end of 1637, however, two exchanges took place that changed 
things considerably. Fermat had seen Descartes' "Geometry" and had 
expressed surprise at the lack of any work by Descartes on maxima 
and minima, which he felt was so important that it should have been 
included in a work on mathematics. Fermat had thereby sent to 
Mersenne his own work on this area, which included methods of 
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finding maxima, minima, tangents to curves, and, very important in 
the conflict, his own work on analytic geometry. Descartes saw this 
work just prior to publication of his Discourse. Though Fermat had 
come at the Pappus problem from another approach, and even 
though this was not his latest work, his methods and procedures were 
uncomfortably close to Descartes' own. 

By this time, other comments and criticisms were coming in. To 
all of these, Descartes responded mainly with anger and contempt. 
William R. Shea has described his response nicely.21 I summarize it 
here: The French mathematicians who criticized his "Geometry" 
were dismissed as "two or three flies" ;22 Roberval was described as 
"less than a rational animal";23 Pierre Petit as "a little dog";24 and 
Hobbes as "extremely contemptible."25 Jean de Beaugrand's letters 
were only good to be used as "toilet paper."26 

Descartes' reaction to the comments by Fermat was similar. In a 
letter to Mersenne, he compared Fermat to Ennius, an earlier Roman 
poet, and himself to Virgil. Virgil had been quoted in Donatus's Lye 
<f Virgil as feeling that he was gathering gold out of Ennius 's shit. 27 

In general, as the mathematics historian J. F. Scott puts it, 
"Descartes firmly believed that he had nothing to learn from his 
contemporaries in any branch of mathematical knowledge, and in 
particular he leaves his readers in no doubt that he did not rate the 
achievements of Fermat very highly. In a letter to Mersenne he 
declared that none of his critics ... had been able to achieve anything 
of which the ancient geometers were ignorant." Referring to these 
critics, he specifically mentioned "M. vostre Conseiller De Maximis 
et Minimis," meaning, of course, Fermat.28 

Fermat, the Hesitant Amateur 

Born in 1601, five years after Descartes, Fermat was the son of a 
prosperous leather merchant who also served as second consul of his 
town. His mother, too, had a high social standing. After a solid sec
ondary education, he received his law degree from the University of 
Toulouse in 1631. Trained as a classical scholar, he was fluent in 
Latin and Greek and became interested in "restoring" the lost works 
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of ancient scholars. Among them were the mathematical works of 
two great Greek mathematicians, Apollonius and Pappus. Still, to this 
point there was no indication that he would tum out to be one of the 
great mathematicians of his time. 

Named a judge in Toulouse in 1638, he went on to become the 
king's councilor in 1648. Though he spent most of his life in 
Toulouse, he had lived some years in Bordeaux. It was during his 
time in Bordeaux, at the age of about 20, that he became fascinated 
by the work of Viete. 

By the mid-1630s, he got to know Mersenne and was invited to 
correspond with the Paris group. By the spring of 1636, he had 
already been working on the ideas that would eventually cause so 
much heartache for Descartes. 

Diffident in his writing, he tried to have it both ways. He wanted 
recognition, yet did not want to open himself up to criticism. Rober
val offered to edit and publish some of Fermat's work, but Fermat 
refused categorically. Still, as he was by now in steady correspon
dence with his fellow mathematicians, he was becoming better 
known. Among these mathematicians was Beaugrand, who in fact 
prided himself in having "discovered" Fermat. 

It was not surprising, then, that Beaugrand had sent a copy of 
"Dioptrics" to Fermat and asked for his comments. These would, nat
urally, be funneled through Mersenne. When Mersenne received 
them, he saw trouble brewing and dithered for several months before 
transmitting them to Descartes, in spite of Descartes' words in the 
Discourse that asked for comments. Finally, however, Mersenne bit the 
bullet and sent them, with the results we have already seen. 

Attack and Response 

By the end of the year, then, Descartes was dealing with a lot. He 
even began to suspect that he was the subject of a concerted plot to 
destroy his brainchild. Referring to some of his opponents, such as 
Pascal and Roberval, he wrote to Mersenne, "I beg you to see if they 
have not erased the words: Eju.sques a [E until a] and replaced them 
with B pro en [ B includes en]. Because this is the way they cite me in 
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their writing, in order to corrupt the sense of what I said."29 Fermat's 
response had been even more troubling. 

Descartes, who did not take well to criticism in any case, was faced 
with a devastating set of events. His life's work had been criticized, to 
his mind severely. Mahoney writes that Descartes' mathematics, as put 
forth in both "Dioptrics" and "Geometry,'' "enjoyed his most jealous 
protection, for the new method of mathematics had been the source 
of the larger philosophical method of the Discourse. To attack it, to cor
rect it, or to find something not already in it, was to impugn Descartes' 
whole program. To claim to have achieved similar results independ
ently of, or earlier than, Descartes was to question the uniqueness of 
[Descartes'] mission."30 Yet by the end of the year, Fermat had done 
exactly that. Furthermore, in Descartes' eyes, these objections were 
coming from a disciple of his hated rival Jean Beaugrand. 

Descartes was not one to calmly accept this state of affairs. A con
tentious man under any circumstances, he felt that this was a situa
tion that needed correction. 

Descartes took a closer look at Fermat's work and injanuary of 
1638 began to retaliate. Whether he had in mind a specific mission
namely, to destroy Fermat's growing reputation-or was merely react
ing to the criticisms is hard to say. He advanced some specific 
objections to Fermat's mathematics-for example, to his work on deter
mining the tangent to a cycloid-but then, in a letter to Mersenne, he 
charged Fermat with deficiencies both as a mathematician and as a 
thinker. Fermat's methods were defective, he said, and thereby had 
little value. He went further, suggesting that Fermat was indebted to 
him for much of what he had developed. 

This was particularly unfair. Although Fermat's analytical geom
etry came to its final form around 1635, it is well known that he had 
developed various aspects of it much earlier. In addition, by 1635 he 
had already applied his method to the locus problem that served as 
the starting point for both Fermat's and Descartes' work in this area. 
The general consensus is that Fermat was totally unaware of 
Descartes' work at that time. 

Others by this time were entering the lists: Roberval and Pascal 
had sided with Fermat; Claude Mydorge and Girard Desargues 
took Descartes' side. 
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Though Fermat is now recognized as one of the great mathemati
cians of his era, his tendency to skimp on detail in his writings prob
ably made it easier for Descartes' charges to stick. Even early on, 
before his trouble with Descartes, some of Fermat's peers were irri
tated by what looked to them like a supercilious attitude. He would, 
for example, throw out challenges that he said he had solved, but he 
gave no details. Had he really solved them? The activity in our own 
day, centering around Fermat's last theorem, is a case in point. 
Fermat had written in the margin of a book that he had solved this 
enormously difficult problem, but he added that he had no room to 
spell out any details. Only now, almost three centuries later, can any
one claim to have finally come up with a final proof.31 

Anger Builds 

Fermat was to take what appeared at first to be a much less con
tentious stance than Descartes. In December 1637, he wrote to 
Mersenne, "First of all I assure you that it is not due to envy or 
rivalry that I contirme this little dispute but only to find the truth; for 
which I think M. Descartes will not believe me of ill will, the most 
so since I am well aware of his outstanding ability .... Before I enter 
into the discussion, I will add that I do not wish my letters to be more 
widely shared than with those with whom an intimate conversation 
is possible; this I entrust to you."32 

In February, he wrote again, "I understand from your letter that 
my reply to M. Descartes was not appreciated, in fact that he decided 
to comment on my method of maxima and minima and on tangents, 
in which nevertheless he will find Mssr. Pascal and Roberval of the 
opposite opinion. Of these two things [Descartes' objections], the first 
[re refraction] does not surprise me, for matters of physics can always 
raise doubts and lead to disagreement. But I am astonished by the lat
ter [Descartes' denigration of his methods] since it is a truth of 
geometry and I maintain that my methods are as certain as the first 
proposition in the [Euclid] Elements. Perhaps being presented plain 
and without proof they were not understood or else they seemed too 
easy for M. Descartes, who has made so many paths and followed 
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such a difficult road to tangents in his Geometrie." [Ibis is actually a 
snide remark, as will become clear later.] 

"I will send you nothing more for M. Descartes since he puts such 
strict rules on an innocent exchange. I will be content to tell you I 
have found no-one here who does not agree with me that his 'Diop
trique' is not proven."33 

And again: "I await, if you please, the reply M. Descartes made 
to the difficulties I showed you with his DWptrique and his remarks on 
my 'Treatise on maxima and minima and on tangents.' If there is 
some rancor, as he seems to fear there is ... , that should in no way 
keep you from showing them to me, for I assure you they will have 
no effect on my spirit, which is far away from vanity, so that M. 
Descartes cannot rate me so low that I would not rate myself lower. 
It is not that my accommodating nature obliges me to retract a truth 
that I already know, but I want to let you know my mood. Oblige 
me, please, by not hesitating to send me his writings, about which I 
promise you in advance to make no reply." 

In the same letter, later on: "Whenever you wish my little war with 
M. Descartes to end, I will not be grieved, and if you arrange for me 
the honor of his acquaintance, I would be greatly obliged to you.''34 

In Descartes' "Geometry," he had also presented a general method 
for finding the normal to a curve at any point, and he was very proud 
of it. Unfortunately for him, Fermat's method was far more direct 
and closer to modem treatments. Except for simple algebraic curves, 
what could take pages of complex computation by Descartes could 
be accomplished far more expeditiously by Fermat. 

Descartes began to see some of this as he gave it some thought. 
By then, he was also less sure of a "conspiracy" than he had been ear
lier. In mid:June 1638, he wrote to Mersenne, using the flamboyant 
terms common in those days: "I beg him [Fermat] most humbly to 
excuse me and to consider that I did not know him. Rather, his De 
maximis came to me in the form of a written challenge on the part of 
him who had already tried to refute my DWptrics even before it was 
published, as if to smother it before its birth, having had a copy of it 
that had not been sent to France for that purpose. Hence it seems to 
me that I could not have replied to him in words any softer than I 
used without evincing some sort of laxity or weakness.''35 
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That was what he wrote to Mersenne. Yet he had too much at 
stake, and his bitterness was now fed by his searing hatred of Fer
mat's friend and defender Gilles Personne de Roberval, so he did not 
really ease up. Among his more famous comments was one that he 
made to a colleague, Frans van Schooten, who related it later in a let
ter to Huygens in 1658. M. Fermat, he said, is a "Gascon." The word 
can be translated in several ways: it could refer to the region Fermat 
was from, but it is more likely to mean troublemaker or, most likely, 
braggart. "I am not [a Gascon]," Descartes continued. "It is true that 
he [Fermat] has found many pretty, special things, and that he is a 
man of great mind. But, as for me, I have always endeavored to 
examine things quite generally, in order to be able to deduce rules 
that also have application elsewhere."36 

Among his other charges was that Fermat's method of finding 
maxima and minima and his rule of tangents were not the result of 
strict a priori deduction. More important, he argued that Fermat's 
reputation was built largely on a couple of lucky guesses. This, 
applied to one of the great mathematicians of the day, was particu
larly galling to Fermat and his followers. Unhappily, Descartes' rep
utation gave strength to the rumor, and by the early 1640s, Fermat 
was seen by some of his peers as having operated by trial and error, 
rather than by careful and logical analysis. 

Things May Not Be What They Seem 

To this point, we have to agree with E. T. Bell, who wrote of their 
mathematical disagreements: "It seems but natural that the some
what touchy Descartes should have rowed with the imperturbable 
'Gascon' Fermat. The soldier was frequently irritable and acid in his 
controversy over Fermat's method of tangents; the equable jurist was 
always unaffectedly courteous."37 

This in fact seems to be a common reading of Fermat's character. 
In W.W. Rouse Ball's classic A Short Account<fthe Hi.story <fMathemat
ics (1908), for example, we find: "The dispute was chiefly due to the 
obscurity of Descartes, but the tact and courtesy of Fermat brought 
it to a friendly conclusion."38 In addition, Mahoney describes Fermat 
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as "gentle, retiring, even shy .... There is much to suggest that he 
simply did not like controversy and that he shied away from it 
whenever possible."39 

In a recent article, however, Klaus Barner, a German professor of 
mathematics, takes Mahoney to task, as follows: "A stereotype that 
goes back to Mahoney . . . and has been adopted by more recent 
authors, is that Fermat was a mediocre conseiller and judge who tried 
to avoid all social, political and religious conflicts. Nothing is further 
from the truth. Fermat ... was an outstanding practitioner who ... 
stood up for justice and humanity without shrinking from confronta
tions with the mighty."40 Mahoney, and perhaps others, had been 
misled by an incomplete reading of a 1663 report, and that report in 
tum had relied in part on a wicked untruth perpetrated in Fermat's 
day by one of his enemies.41 

It seems likely, then, that Fermat did not shrink from conflict with 
Descartes, but, as we'll see, his weapons and methods may have been 
rather more subtle than Descartes' had been. 

Continuing Provocation 

After the interchanges of the 1630s, the public discord between Fer
mat and Descartes more or less died down. In fact, it lay quietly for 
almost two decades. During that time, however, Descartes' attacks on 
Fermat's reputation were having their desired effect, and Fermat's 
contributions were increasingly ignored. 

Interestingly, while Descartes' reputation continued to grow, it was 
more in the area of philosophy than in mathematics, for his Geometry, 
by now in book form, was not an easy work to deal with. Ironically, 
there was some of Fermat's (mathematical) reticence in it. For exam
ple, it did not provide full proofs of his work-in order, he wrote, to 
give others the pleasure of discovering the proofs for themselves. Yet 
Descartes' colleague, the Leiden mathematician Franz van Schooten, 
saw the gold in the book. He translated the work into Latin and 
added considerable explanatory commentary. The revised book came 
out in four subsequent editions over the years 1649-1695 and had a 
significant influence on a new generation of mathematicians. 
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At the same time, however, Descartes' acid pen alienated some of 
the major mathematicians of his day, including Roberval and Pascal, 
and he found himself defending himself against charges, for exam
ple, from Beaugrand and the British mathematician John Wallis, that 
he had plagiarized Viete and/or the British mathematician Thomas 
Harriot (1560-1621). Subsequent studies suggest this was not the 
case, 42 but the charges had some effect at the time. Descartes was 
even accused of having used Fermat's work. The most likely sce
nario, however, is that both men worked independently. 

Too, as Mahoney puts it: "A bit more homework on his part prior 
to publication might have toned down his claim to unprecedented 
novelty and originality."43 This might have muted the criticisms. 

During the two-decade hiatus in their battle, Descartes continued 
his work in philosophy and metaphysics and published several well
received works. At the same time, the revised editions of his Geome
try helped cement his reputation in the mathematical world. He died 
in 1650, honored and celebrated. 

Retaliation 

Fermat had not forgotten his hurt, however, and toward the end of 
the 1650s, he finally had an opportunity to retaliate. Claude Clerse
lier, an ardent supporter of Descartes, was in the process of prepar
ing an edition of Descartes' letters and asked Fermat for copies of 
letters he wished to include in his collection. He had copies of the two 
key letters that Fermat had written to Mersenne for transmittal to 
Descartes (May and December 1637), but Clerselier had reason to 
believe there were others. He asked Fermat for copies of such letters. 
Fermat either misunderstood the request or felt he now had an 
opportunity to put in a good word for himself. In March of 1658, a 
little more than 20 years after the original controversy, he composed 
a long letter to Clerselier, in which he repeated his earlier criticisms 
and added others. 

Mahoney writes, "The restatement was not entirely accurate, as 
Clerselier, in possession of the original letters, knew full well. Hence, 
it appeared to him that, by adducing new arguments against 
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Descartes' derivations, Fermat was seeking to reopen the dispute. He 
[Clerselier] felt his suspicions confirmed when, in response to his and 

Jacques Rohault's defense of Descartes, Fermat continued his attack 
all the more stoutly. The result was a series of letters between Clerse
lier and Fermat that continued over the next four years."44 In all, eight 
letters were exchanged. 

And what letters they were. We are especially interested in Fer
mat's, and I will give only a sample from one of his, for they are dif
ficult to parse. All the letters were written with, as Mahoney calls it, 
"Baroque politesse,'' which "barely masks the anger and indignation 
in which they were written."45 

]. D. Nicholson, who has translated and studied these letters, 
adds, "To understand Fermat's letters, you must understand the term 
politesse, a term which in French means right-thinking attention to 
manners, but in English is likely to mean the use of such manners for 
less than noble purposes." While Descartes' letters were likely to be 
direct and unadorned in their criticism of Fermat, the politesse of 
Fermat was so subtle that the portion of Fermat's letter that follows 
could easily be taken as praise if not looked at carefully. 

For, says Nicholson, while Fermat is saying one thing, he often 
means something quite different. I will first give the polite transla
tion, 46 and then, with Nicholson's help, I will give just a few of the 
possible alternate meanings. Too, the Baroque mode of expression 
was as prolix and excessive in writing as it was in architecture and 
furniture design. So take a deep breath before you venture into these 
two paragraphs. Fermat wrote: 

The conclusions that can be taken from the fundamental propo
sition of M. Descartes' Di.optrique are so beautiful and ought 
naturally to produce such lovely results throughout every part 
of the study of refraction that one would wish-not only for the 
glory of our deceased friend, but more for the augmentation and 
embellishment of the sciences-that this proposition were genuine 
and legitimately demonstrated, and all the more as it is from 
these [conclusions] that one is able to say that mu/ta sunt falsa 
probabiliora veris (often, falsehoods are more acceptable than 
truth) .... 
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I begin from there, Monsieur, in order to let you know that I 
would be delighted if the differences that I have formerly had on 
this subject with M. Descartes were ended to his advantage. I 
would have been satisfied in all ways: the glory of a friend whom 
I have infinitely esteemed and who has passed with good reason 
for one of the great men of his time; the establishment of a phys
ical truth of the greatest importance; and the easy execution of 
these marvelous effects. All this seems incomparably more valu
able than winning my case; likewise, I would count for nothing 
the [Latin] phrase "He will win the fight with me," of which the 
friends of M. Descartes are always able to reasonably comfort his 
adversaries. I put myself therefore, Monsieur, in the posture of a 
man who wants to be vanquished. I say it loudly: I bow at last 
to your superior powers.47 

47 

In the first paragraph, did Fermat really mean the "glory of our 
deceased friend" or did he actually have in mind Descartes' vanity 
or pride? Descartes himself defined glory as a type of "love that one 
has for one's self." 

In the second paragraph, Fermat wrote, "I would be delighted if 
the differences that I have formerly had with M. Descartes were 
ended to his advantage." Rather than "I would be delighted," how
ever, he could also have meant "I would feel raped" or "ravaged." 
Did Fermat really mean "one of the great men of his time," or was 
he implying "one of the fat pretentious ones"? 

There are also several interesting literary references. Consider, in 
the first paragraph, "Often, falsehoods are more certain than truth." 
Fermat could simply be saying that Descartes' false scientific idea was 
more acceptable than Fermat's own correct one, but it could also be 
a reference to a famous court case argued by Cicero in 81 B.C. A 
group of men has stolen the inheritance due a rightful heir. To keep 
the inheritance, they drag the heir into court on a trumped-up charge 
of murdering his father. Fermat, in other words, was "tried" by 
many of Descartes' friends in the court of public opinion and perhaps 
is the heir denied his due. 

In the second paragraph, Fermat uses the Latin phrase "He will 
win the fight with me." Here he's referring to the famous classical 
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conflict between the heroic Ajax and the smooth-talking Ulysses. In 
the end, Ulysses' silver tongue wins him the spoils, and Ajax plunges 
his sword into his own chest. It's not hard to guess who is Ulysses 
and who Ajax. 

Another reference is seen in Fermat's line about bowing. The 
words "I bow at last to your superior powers" is Charles E. Bennett's 
translation of the first line of the Latin poet Horace's Epode 17, "A 
Mock Recantation."48 In this poem, the protagonist is sentenced to 
spread the fame of another for all eternity. Fermat apparently is not 
hopeful that his letters will have the desired effect, but this doesn't 
mean that he isn't going to try to get the credit he believes he 
deserves. 

There is more like this before Fermat actually gets to the correc
tions he wishes to score with, but it is enough to give the flavor of 
the letters. Also, note the construction. It's not easy to tease out the 
real meaning, but the key words are "one would wish ... that this 
proposition were genuine and legitimately demonstrated." His con
tention, in spite of all the fine words, is that Descartes' proposition 
was not legitimately, or satisfactorily, proved. 

Finally, concentrating his attack on Descartes' derivations, Fermat 
used stronger and more direct language than he had in 1637. For 
example, he once again attacked Descartes' proof of the sine law, but, 
says Harvard professor emeritus A. I. Sabra, "not any longer because 
it is not conclusive, as he believed twenty years earlier, but simply 
because it now appears to him to be founded on an assumption that 
is 'neither an axiom, nor is . . . legitimately deduced from any 
primary truth.' "49 

In the course of his reasoning, however, Fermat came up with an 
important idea, which has come to be called Fermat's principle of 
least time. In essence, it states that nature follows the shortest path, 
or the least time possible, for a process in nature. Based on it, and on 
his own, somewhat different assumptions from Descartes', he in 
1661 mathematically derived his own sine law. In essence, he stated 
that in refraction, it was the optical distance-the products of the dis
tances the light traveled and the corresponding refractive indices
that is a minimum. 
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Ironically, although some of his objections to Descartes' work 
were valid, his sine law turned out, most writers feel, to agree exactly 
with Descartes': sin i = n sin r. 

Sabra, however, argues that the sine law did not match exactly. He 
writes that although both laws assert the constancy of the ratio of the 
sines, Fermat thought that Descartes, in the course of his reasoning, 
had used the construction n = v/v, (=sin i/sin r), whereas it was actu
ally n = v /v .. 50 

r z 

It didn't matter, though. The first reasonable detennination of the 
speed of light was not to take place until 1657, so experimental ver
ification of Fermat's theory was not yet possible anyway. Clerselier 
argued that it was ridiculous to believe that nature could change its 
mind as light travels from one medium to the next. 

Fermat's approach had led him to deduce that light speed is finite, 
and that light travels faster in air than in water. Both of these conclu
sions were brilliant insights and just the opposite of Descartes' results. 
Science eventually came down on Fermat's side. His principle-later 
expanded to include maxima as well as minima-is now thought of as 
a basic law of optics, but none of this could be known at the time. 

Sabra concludes, "In the face of this unexpected result [identical 
laws of refraction], he [Fermat] was willing to abandon the battlefield, 
as he said, leaving to Descartes the glory of having first made the 
discovery of an important truth, and himself being content to have 
provided the first real demonstration of it. With this conditional 
declaration of peace in his last letter to Clerselier of 21 May 1662, 
the discussion came to an end."51 

Comparison 

In the two decades between the two episodes, Descartes had pretty 
much steered clear of mathematics. Fermat, on the other hand, had 
been busy indeed, which makes Descartes' denigration of Fermat's 
mathematical abilities both sad and strange. By the 1630s, Fermat 
had already shown his colors, though not widely and not publicly. 
That Descartes didn't like his colors was Descartes' problem, not 
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Fermat's. For in the intervening years, Fermat continued his mathe
matical efforts and came up with several major advances. First, his 
principle of least time provided a good foundation for several areas 
in physics. In fact, the whole of geometrical optics could be based on 
a properly modified form of his principle. 

Fermat also made major advances in number theory and proba
bility and provided groundwork for the calculus, which was to 
follow soon (see chapter 3 in this book). His work, in fact, strongly 
influenced a number of later mathematicians, including Jean 
Bernoulli (see chapter 4). Thanks to his reluctance to publish, how
ever, his own thesis on analytic geometry was not published until 
1679, which was 14 years after his death.52 

So he had some small recognition, but basically it all came after 
he died in 1665. By 1662, perhaps discouraged that there seemed to 
be little interest in his new work, he had essentially retired from the 
field altogether. His activity in number theory during the last 15 
years of his life found no resonance among his colleagues, and when 
he died, there was little of the honor he deserved. Part of the reason 
was that his feelings about publication had apparently not changed. 
He wrote to a friend, "I much prefer to know the truth with certainty, 
rather than to take more time in debates and superfluous and useless 
contentions."53 

On the other hand, during these last years the new editions of 
Descartes' Geometry were being published, and, with the clarification 
and the simplification, his treatise gained new adherents and influ
ence. His science, too, was in ascendance. Ironically, however, it was 
both men's work in analytical geometry that eventually led to the 
development of the calculus later in the century, and this in tum led 
to the decline of Cartesian science. 

There is general agreement that Fermat's basic approach to ana
lytic geometry is significantly closer to our own than Descartes' was. 
Yet to the end, Fermat championed Viete's cumbersome notation, 
while Descartes' symbolic notation is quite modem. 

Both men made major contributions to the advance of mathemat
ics in the 17th century. It is sad that the process generated so much 
heartache and bitterness. 



3 

Newton versus Leibniz 
Credit for the Calculus 

At the tum of the 18th century, Isaac Newton, an Englishman, 
and Wilhelm Gottfried Leibniz, a German, engaged in a fero

cious battle. Having never met personally, they obviously used nei
ther fists nor knives, yet the science historian Daniel Boorstin has 
christened their dispute "The spectacle of the century."1 Ernst Cas
sirer, writing in the prestigious Philosophical R.eview, called it "one of 
the most important phenomena in the history of modem thought."2 

It's usually described as a priority battle over the invention of the 
calculus. With neither money nor a woman at its heart, this hardly 
sounds like the stuff of a knock-down-drag-out fight, yet it went on 
for years, becoming more bitter as it proceeded. 

What made it such a big deal? First, it engaged two of the great
est geniuses who ever lived. The more familiar genius is Isaac 

51 
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Newton, who hardly needs any introduction here. Less familiar is 
Wilhelm Gottfried Leibniz, a German philosopher/mathematician 
who did important early work on symbolic logic and on the calcu
lus, and in a variety of other fields as well, including especially cos
mology and geology. 

Second, though few of their contemporaries could understand or 
follow the workings of the calculus at first, it shortly became clear 
that this was a new, useful, and general method for dealing with a 
wide variety of scientific and mathematical problems that had been 
unsolvable until then. 

The feud also had several curious results. For example, it played 
an important part in the development of the modem scientific paper
specifically, one that is refereed and that includes explicit, clear ref
erences to what has been accomplished previously. 

Furthermore, it raged on for centuries, fed mainly by the jingois
tic behavior of the two men's followers. It even played a part in an 
ongoing tug-of-war between British and Hanoverian leaders for the 
throne of England. Among the Hanoverian claims to distinction was, 
said Leibniz's followers, his invention of the calculus. Newton's sup
porters derided such claims. One Briton,John Keill, considered these 
assertions to be attempts at stealing the fruits of Newton's genius. 

It was a battle in which Newton used some heavy-duty fighting 
tactics-some people would use stronger language-and emerged the 
clear winner. The result was a gray cloud over Leibniz's later years, 
but, had he lived long enough, he would have seen another, totally 
unexpected, outcome. Although Leibniz lost the battle, it's probably 
fair to say that he actually won the war-though you'd hardly know 
it from the reputations of the two men as they are known today. 

Newton 

Nothing as complex and far-reaching as the calculus emerges full
blown from the minds of even men like Newton and Leibniz. Fer
mat's method of finding maxima and minima was already a direct 
step along the road to differentiation, one of the important routines 
in the calculus. For a mind like Newton's, however, no one can say 
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for sure how he built the foundation for his work on this area of 
mathematics. We do know that he read widely in the mathematical 
literature of the time, and that one of the books he read, digested, and 
worked through carefully was Descartes' Geometry. He also studied 
Euclid, whose geometry he is said to have found trifling. 

Among other authors there was James Gregory, an accomplished 
Scottish mathematician; Galileo; and Newton's immediate master at 
school, Isaac Barrow. We have a specific clue: Newton did tell us that 
he was led to his first discoveries in the field by his reading of Arith
metUa lefi,nitorum (1655), a text by the distinguished British mathemati
cian, cryptographer, and cleric John Wallis that dealt with the 
quadrature of curves (finding the area beneath curves). 

Newton began his mathematical work while a student at Trinity 
College, Cambridge, and he earned a bachelor's degree in June 
1665. Then an attack of plague shut down the university for 18 
months. He simply continued his studies, on his own, at his family 
home in Woolsthorpe, a small town some 30 miles southeast of Not
tingham in central England. He may, however, have made a brief visit 
to the university at some point during this time, perhaps to do some 
reading and/or experiments. 

His enforced home study time was apparently the best thing that 
could have happened, at least for Newton. During this period, span
ning the years 1665 to 1666, he built the foundations for his work 
in optics, celestial mechanics, and mathematics, including the foun
dations of the calculus. As part of this work, he extended Wallis's 
work on the use of infinite series. Newton realized, and capitalized 
on, the fact that many mathematical functions can be expressed as 
infinite series. Using them, he was able to generate general expres
sions for the lengths and the tangents of curves, along with a method 
for handling quadrature problems (calculating the areas bounded by 
curved lines). Practitioners of the calculus will recognize here the 
beginnings of their craft.3 

At this point, Newton, an unknown youth in his mid-20s, had 
already sailed past his own teacher at Cambridge, and even past Wal
lis, one of the top mathematicians of the day. Mathematicians until 
then had thought of the path of a moving body as a series of points. 
Newton was arguing that it should be seen as a graph made by a 
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continuously moving point. Since the velocity of a point moving in 
the direction x is the distance moved divided by the time, t, that is, 
xlt, interesting things can happen, he suggested, if we shrink both x 
and t. Thus a continuous and finite motion is equal to the quotient 
of an infinitesimal distance and an infinitesimal time. He gave the 
name fluent to the moving point, and he used the term fluxion for its 
velocity, that is, its derivative or rate of change with respect to time. 

Publish or ... 

Had Newton been working today, he might have published some
thing quickly in, say, the Bull.etin of the LoruJon Mathematical Society and 
then perhaps more fully in a journal like Princeton's Annals of Math
emaii.cs. There he would likely start out by giving credit to the math
ematicians on whose work he had built. Then he would explain his 
new work clearly, pointing out where and how he had moved ahead. 
In this way, he would clearly establish his priority, for the earlier pub
lications would have been in peer-reviewed journals. 

Unfortunately, there were at the time no such journals. This type 
of journal developed slowly and did not come into being until 
around the mid-1800s. Its objective appears to have been less to share 
new discoveries with the scientific community-there were already 
such journals in existence-than to provide a solid route to establish
ing one's priority in his or her discovery. 

What did happen is that in 1669, Newton wrote up his early work 
as a tract, which he called Analysis with lrifi,nite Series (often shortened 
to De Analysi), but it circulated only in manuscript form among a few 
colleagues, including Isaac Barrow, his teacher at Cambridge. It 
could, of course, have been published early on in book form-still a 
common form of establishing priority in Newton's day-but was not, 
for several reasons. 

First, there was a severe recession in the book trade following the 
Great Fire of London in 1666, and technical works were at a partic
ular disadvantage. Barrow, ironically, was in some measure to blame, 
for the publisher of his work had gone bankrupt, and so book pub
lishers were particularly leery of publishing mathematical works. 
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Even so, things might have turned out differently but for yet 
another turn of fate's wheel. Newton was basically a loner. We have 
already seen that by age 23, and while still a student, he had already 
gone past the leading mathematicians of his day, and none but a few 
of his correspondents knew it. In 1669, thanks in part to his unpub
lished manuscripts, he was made Lucasian Professor of Mathemat
ics at Cambridge University, which gave him the time and the 
freedom to continue his work. 

He turned to his other interests, which included his first great dis
coveries in light and color, which had also been made in those 
remarkable years of the mid-1660s. Always hesitant to open his work 
to outside criticism, he nevertheless decided to try it, and he did so 
with a paper on this work in the Philosophical Transactions ef the Royal 
Society ef London in 1672. Although the paper received a generally good 
reception, Newton also found himself devoting precious time to 
answering sometimes inane challenges to his claims, always a danger 
when new ideas are presented. Among those objecting, unfortu
nately, were some eminent scientists, including the Dutch physicist 
Christiaan Huygens and the British scientist Robert Hooke. He 
found Hooke's criticisms especially troubling and distasteful. 

As a result, although Newton continued to work on optics, he 
published no more papers on it and held off on publishing his major 
work on it, his Opticks, until after Hooke died-more than 30 years 
later! It may well be that this experience was a factor in his decision 
not to open his mathematics to the world. He seemed to believe that 
his discoveries belonged to him and not to the world, to science, or 
even to posterity. He may also have chosen to keep his discoveries 
close his chest to give him further time to refine them. 

Whatever the reason or reasons, it was a decision that would 
cause him major problems, and mathematical historians considerable 
uncertainty, in the years to come. 

By the 1680s, however, Newton had developed his work on 
mechanics, gravitation, and the movement of bodies to the point 
where he decided, after strong urging by his friend and colleague 
Edmund Halley, that he would put it into print. He began serious 
work on what would become his most famous work, the Mathemati
cal Pnnciples ef Natural Philosophy, commonly known as the Prindpia, in 
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1684-1685. Published in 1687, it would go on to become possibly the 
most important and best-known publication in scientific history. 

In it, he gave just a hint of the new calculus. He may have used 
the method to solve some of the problems he tackled in the book, 
then recast them and presented them in classic geometric fashion
perhaps to keep his calculus methods a secret for a while longer, but 
also because those were the standard methods of demonstration and 
proof. 

Among these solutions was a conclusive demonstration that 
Cartesian vortices could not account for the planetary motions. 
Nevertheless, it took many decades before the authority of Descartes 
gave way to Newton's gravitational view of the universe. 

Up to his Pnncipia period, Newton's few contacts with Leibniz had 
been, on the whole, quite respectful and even friendly, but now he 
saw something in print that, if it didn't cause an immediate break, 
was surely a factor in what was to come. Before we get to it, however, 
we need to know something about its author. 

Leibniz 

Leibniz, born in 1646, was four years younger than Newton. Like 
Newton, he read and was influenced by Descartes' Geometry, as well 
as by other mathematical works. Yet even more, his interest in math
ematics was stimulated by his earlier readings in philosophy. By the 
age of 6, he was already reading widely in the library of his father, a 
professor of moral philosophy at the University of Leipzig. By the 
age of 14, he was well-read in all areas of the classics. 

Strangely, although he came from a middle-class family, among all 
the mathematicians/scientists/philosophers of his time he was the 
only one who had to scrabble for a living. That and his wide-rang
ing mind led him into a surprising variety of fields. By the age of 26, 
he had already designed a calculating machine that could add, sub
tract, multiply, divide, and even take roots; he had devised a program 
of legal reform for the Holy Roman Empire; and he had presented 
a plan to Louis XIV that involved a French attack on Egypt as a way 
of weakening the Ottoman Empire and deflecting French aggression 
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away from Germany. Nothing came of it. At various times he was 
also interested in, and made contributions to, religion, philosophy, 
philology, logic, economics, and, of course, science and mathematics. 

Herein lay a major difference between him and Newton. Newton 
was mainly interested in using his mathematics to solve scientific 
problems. Leibniz, like Descartes, hoped to make a major contribu
tion to philosophy and thought that mathematics would pave the 
way. He wanted to create a kind of alphabet of human thought, in 
which symbols could be used to represent fundamental concepts, 
which could then be combined into more complex thoughts-a kind 
of calculus of reasoning. 

Yet whatever Leibniz did in the field of mathematics, it was as a 
sideline to his multihued career, which makes his accomplishments 
all the more amazing. In 1673, he visited London on a diplomatic 
mission as part of his position as adviser to the archbishop of Mainz. 
There he met Henry Oldenberg, the secretary of the Royal Society, 
and made enough of an impression that he was elected to the Soci
ety. In other travels he had been in contact with the likes of men such 
as Huygens, Spinoza, Malpighi, and Vmcenzo Viviani, a prominent 
pupil of Galileo's. 

During his 1673 visit with Oldenberg, he may, says one historian 
of mathematics, 4 have seen a copy of Newton's De Analysi, though that 
seems unlikely. Even if he did, he might not have understood it. In 
1676, he traveled to London, again as part of his diplomatic duties, 
and this time he visited with another colleague of Newton's, John 
Collins, who we know for sure showed him some of Newton's papers. 

It was at this point that direct relations began between the two 
men. Leibniz was probably just beginning to think about the calcu
lus, and the general feeling is that he was not only well behind New
ton, but apparently did not even know of Newton's work in the area. 
And so, when Leibniz wrote to Newton, which he did twice in 1676, 
it was to ask questions about infinite series and their use in quadra
ture. Newton responded with two very respectful letters, which 
would play a strong role in the dispute that developed in later years. 

While Newton's answers did skirt some issues of his calculus, he 
was careful to hide them in a carefully constructed anagram, or he 
simply alluded to such a method but never spelled it out. It was this 
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disparity between their two stages that was to lead Newton to trouble, 
for when Leibniz did publish, some eight years later, Newton could not 
believe that Leibniz could have progressed so far so fast on his own. 

Notation 

Although Leibniz was deeply impressed with his own idea about a 
calculus of reasoning, it found little resonance among his contempo
raries. More important by far, however, was that the mathematics 
that emerged from this work was to become the key to a far wider
and more directly useful-world of application. As with Newton's cal
culus, it became easier to deal with complex curves, areas, and 
volumes. Furthermore, it could deal handily with change-with veloc
ities and accelerations, with rates of growth and decay-in ways that 
were just not possible before. 

Finally, what both Newton and Leibniz had come up with was a 
method that did not merely provide solutions to a few specific prob
lems, as earlier methods had, but an algorithm that had wide and 
spectacular generality. It could be applied to functions that were alge
braic or transcendental (Leibniz's coinage), rational or irrational. 

Over the development years, Newton used a variety of symbols, 
which caused some confusion later on. Early on, he tended to use the 
"little zero" to denote an arbitrary increment of time, and, say, op to 
denote the increment of a variable p. Later, he moved to the some
what more familiar dot notation-for example, x for the first deriva
tive of x (such as velocity) and x for the second derivative 
(acceleration). 

Leibniz was more careful and more thoughtful about his symbol
ism, and this would stand him in good stead when the scales of jus
tice were balanced later on. For his differential calculus, he came 
up-after some trial and error-with the much more useful symbols 
dx and dy for the differentials (smallest possible differences) in x and 
y; and with the sign f for the integral function. For both men, find
ing tangents called for the use of the differential function, and calcu
lating quadratures (areas bounded by curves) required the use of 
their integral calculus. 
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By the 1680s, then, Leibniz had established himself as an up-and
coming mathematician, and in 1684 his first description of his differ
ential calculus was published in the journal Acta Eruditorum, under the 
title "A New Method for Maxima and Minima as Well as Tangents, 
Which Is Impeded Neither by Fractional nor by Irrational Qyantities, 
and a Remarkable Type of Calculus for This." Here we see, for the 
first time, a clear statement of the basic formula for differentiation: 

In the same way that Newton did, he thought of integration not 
only as a summation of areas under a curve, but as the inverse of dif
ferentiation, and two years later he published his early work on the 
integral calculus. 

It was with Leibniz's first publication, in 1684, that we see the first 
stirrings of trouble. Newton was not well known to the public but 
was well known and respected among his peers. He was beginning 
serious work on his Princip-ia, and suddenly he was confronted with 
the first publication of the calculus. But it was by Leibniz-and there 
was no mention of Newton! 

Was this unreasonable? Newton's reputation in mathematics was 
growing among his peers in England, but he still had absolutely noth
ing in print, and his name would have meant little to most Continen
tal mathematicians. 

In any case, he seemed utterly unmoved. In fact, he even acknowl
edged in the Pn'ncip-ia that Leibniz had "fallen on a method of the 
same kind, and communicated to me his method, which scarcely dif
fered from mine, except in notation and the idea of the generation of 
quantities."5 

Other Players 

Some of Newton's followers were less sanguine about this develop
ment. John Wallis, for example, felt that Newton's notions about 
fluxions were passing on the Continent by the name of Leibniz's dif
ferential calculus. By 1692, Wallis was putting together a collection 
of his work, and he strongly urged Newton to permit him to include 



60 GREAT FEUDS IN MATHEMATICS 

something about Newton's calculus. The result was a mention of it 
in the preface to volume 1 of Wallis's Works (1695) and some excerpts 
in volume 2 (1693). (There is some uncertainty about the dating.) 

Left alone, Newton and Leibniz might even have been able to 
remain on good terms. In March of 1693-nine years after Leibniz's 
first publication-for example, he wrote to Newton, trying to renew 
their correspondence, and though it took a while, Newton answered 
in October. His manner was still friendly. Certainly, there were no 
hints of anger or charges of plagiary in either man's letters. 

Unfortunately, there were other players in the wings, even aside 
from Wallis, who would influence both men's behavior. 

Neither Newton nor Leibniz had students to whom they passed 
on their work. After Leibniz had published his 1684 paper, however, 
the Swiss Bernoulli brothers,Johann and Jakob, had not only figured 
out the method but had already put it to use and passed it on to oth
ers. They also contacted Leibniz and began to act as his champions. 
Johann was especially active in this area, both directly and inadver
tently. In the latter case, he set in motion a series of events that may 
well have been the precipitating cause of the heartbreaking feud that 
was to erupt. 

In June of 1696, he issued a mathematical challenge to the 
"shrewdest mathematicians in the world": determine the curve link
ing any two points, not in the same vertical line, along which a body 
would most quickly descend from a higher to a lower point under its 
own gravity. He gave a private copy to Leibniz and also sent copies 
to Wallis and Newton. This was a clear challenge to Newton's 
method, and Newton did indeed solve it in a day. Newton sent his 
answer anonymously to the Royal Society. When Bernoulli finally 
saw it, however, he guessed at once that the author was Newton. He 
recognized, he said, the "the lion from his claw." 

The answer is that it is a brachistochrone, which others had been 
able to figure out. The curve, however, is also in the form of a cycloid,* 
which could be understood only through use of the calculus. Leibniz 

*The path taken by a point on the edge of a rolling disc. There is more on the brachis
tochrone problem in chapter 4. 
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then did a foolish thing. In 1699, he chose to write up a review of the 
solutions given earlier (May 1697) in the Acta Eruditorum, and he put 
forth the solutions as a successful demonstration of his own calculus. 
He also noted that there were a few others who had solved it, includ
ing Newton, but the implication was that all the others had used Leib
niz's calculus. Thus Newton came out looking like a copier, or as a sort 
of pupil, of Leibniz. 

Bernoulli, too, suggested that Newton, along with the others, was 
in some way indebted to the Leibniz/Bernoulli group. Here are the 
real beginnings of trouble. Aside from Newton's dot notation, said 
Bernoulli, there is little difference between the two calculus methods, 
and since Leibniz published first ... 

Neither Newton nor his English followers could have been happy 
about this, but there was one follower who was particularly annoyed. 
Nicolas Fatio Duillier was a Swiss mathematician who had moved to 
England and had become friendly with Newton. He had earlier 
worked with Huygens and had been a member of the Royal Society 
since 1687. Variously described as eminent mathematician, adven
turer, prophet, mystic, and rogue, he took the omission of his name 
from the list of "eminent mathematicians" as a personal insult. 

What should be done? The general reasoning of the Newton fol
lowers might have gone something like: at this late date, having lost 
out to Leibniz as far as first publication is concerned, it might be best 
to show that Leibniz's fame on the Continent is undeserved, that his 
formulation is inferior to Newton's and perhaps was even copied 
from him. 

Duillier issued a lengthy analysis of the brachistochrone problem 
in a paper sent to the Royal Society; but, apparently quite annoyed 
with Johann Bernoulli and, by association, with Leibniz, he included 
therein some highly incendiary words about the origins of the calcu
lus: "I am now fully convinced by the evidence itself on the subject 
that Newton is the first inventor of this calculus, and the earliest by 
many years; whether Leibniz, its second inventor, may have bor
rowed anything from him, I should rather leave to the judgment of 
those who had seen the letters of Newton, and his original manu
scripts. Neither the more modest silence of Newton, nor the unremit
ting vanity of Leibniz to claim on every occasion the invention of the 
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calculus for himself, will deceive anyone who will investigate, as I 
have investigated, those records."6 

There it is. Without actually charging Leibniz with plagiary, 
Duillier has set down in print at least the possibility, if not the impli
cation, of "borrowing" by Leibniz. 

Things are heating up. 
Was Duillier's attack made with Newton's connivance? There is 

no sure evidence either way. Was Newton sufficiently angry at this 
point that he would condone such an attack? Some say no, that he 
had not yet reached a boiling point. Others maintain that it is not 
likely that Duillier would have published such an attack without 
Newton's consent. We must leave it there. 

More interesting is what came next. Leibniz was, of course, furi
ous, yet he still felt that Newton might be innocent since Newton had 
given Leibniz credit for his work on the calculus in the first edition 
of his Princip-ia. (Alert readers will wonder why I mention "first edi
tion." Stay tuned.) 

Leibniz had published a defense of his own activities and behav
ior in the Acta. To this, Duillier attempted to publish an answer, but 
the editors refused to accept it, on the grounds that the journal was 
no place for personal disputes. The dimensions of the feud are 
becoming clearer. Leibniz, it is worth noting, had helped to establish 
the journal and exerted some influence over its editorial activities, 
which might explain why his defense was published while Duillier's 
answer was not. 

And there the feud lay for a few years. 

Flashpoint 

By the mid-1690s, Newton's interests were turning from science 
and mathematics (not to mention philosophy, religion, alchemy, 
and mysticism) to the political/administrative arena. In 1695, he 
contributed to discussions regarding reform of the country's cur
rency, and a year later he was appointed warden of the Mint. This 
would require a move to London and a major change in his life in 
many ways. He continued his work on scientific subjects, but on a 
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much-reduced scale, for he took his duties at the Mint very seriously. 
He was promoted to master of the Mint in 1699. 

By now, he was hobnobbing with the wealthy and the powerful, 
aided by his attractive and vivacious niece Catherine Barton, who 
(most probably) lived with him in comfortable quarters in London. 

He became more interested in the Royal Society and began to 
attend meetings regularly. He showed an improved design for a sex
tant, an instrument used for determining longitude at sea, but had 
another run-in with Hooke. In 1701, he read a paper on chemistry 
at one of the meetings, which was subsequently published. At the end 
of the same year he resigned his professorship at Cambridge, and, in 
recognition of his honored position, the university elected him one 
of its representatives in Parliament. He didn't do much there but con
tinued his activities at the Royal Society. 

In 1703, Hooke, whom Newton had tried so assiduously to side
step, and who provided the reason why he had not published his 
work on optics for three decades, died. In the same year, Newton was 
elected president of the Society and was reelected each year until his 
death. Both events were to have profound consequences for both him 
and Leibniz. 

True to his promise, Newton finally permitted his work on optics 
to be published. It was his second major publication, but this time, he 
apparently began to think of Leibniz as competition, because now he 
included in the book two papers on his calculus. One was "On Qyad
rature," which he had begun in 1691 and never finished. It finally 
appeared in 1704, but only as a supplement to his great book Opticks. 

The "Qyadrature" is interesting historically, in that it is to some 
extent a restatement and an expansion of the second 1676 letter to 
Leibniz and includes a translation of the fluxional anagram he had 
sent to Leibniz. 

Further Conflict 

To this point, we have looked at the situation mostly from Newton's 
point of view, but Leibniz, too, was enjoying a fast-growing reputa
tion. In 1699, for example, the French Academy of Sciences created 
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a list of eight Foreign Associates. Newton was seventh on the list; 
Leibniz was first. Newton's reputation, in other words, was still 
growing but far more slowly on the Continent than in Great Britain. 
Leibniz, on the other hand, may have been disturbed by the chal
lenge posed by Newton; perhaps this lay at the heart of his next step. 

A year later, Leibniz reviewed Newton's Opticks, anonymously, in 
the Acta. He called the book profound but found fault with the two 
mathematical supplements. Bad enough. Worse was a literary com
parison that reminds us of the letters of Fermat in the previous chap
ter of this book. Leibniz stated that Newton had used his fluxions 
elegantly in his Prina"pia and in other publications. No problem there. 
But then he added, just as Honore Fabri in his Synopsis ef Geometry had 
substituted progressive motions for the method of Cavalieri. 

Cavalieri, a disciple of Galileo, was an excellent mathematician. 
Leibniz had in fact learned from Cavalieri's writings a technique for 
determining the area under a curve. Fabri, on the other hand, was a 
lesser light who had copied the thoughts of Cavalieri. The implica
tion seems to be that Newton substituted his fluxions for the differ
ences of Leibniz. Certainly, this is how Newton interpreted the 
comparison. He also immediately suspected Leibniz as being the 
author of these remarks and took this as an indirect but highly sug
gestive implication that Leibniz was the original inventor and that he, 
Newton, had somehow built on Leibniz's work or copied from it. 

Could Leibniz really have meant to make such a direct attack? A. 
Rupert Hall, who has studied the matter carefully, argues, "I do not 
really think that Leibniz was expressing in this most sly and secretive 
fashion a hot and nourished resentment against Newton, as the 
latter came to suppose. Leibniz worked in great haste ... [I]n this 
review he did not mean to bare his inward doubts and grievances; 
they slipped out, with fatal results." Hall concludes, "As wit wounds 
when laughter is intended, so did Leibniz's too-clever historical anal
ogy."7 Leibniz himself would later maintain that he had not meant to 
imply plagiarism. 

In any case, there was an uneasy truce for a few years. Then, once 
again, a follower of one of the two men set the blaze roaring. This 
was John Keill, a Scottish student of James Gregory, who became 
Newton's next major champion. In what might otherwise have gone 
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down as an unimportant paper in the Philosophical Transactions (Octo
ber 1708), Keill included a statement about "flux.ions which without 
any doubt Dr. Newton invented first, as can readily be proved by 
anyone who reads the letters about it published by Wallis; yet the 
same arithmetic afterwards, under a changed name and method of 
notation, was published by Dr. Leibniz in the Acta Eruditorum."8 

Newton, apparently still not looking for direct confrontation, 
was initially annoyed by this publication. By some shrewd manipu
lation, however, in which Keill presented Leibniz's review along 
with his own paper to the Royal Society, Newton's anger was trans
ferred from Keill back to Leibniz, and Keill's position as Newton's 
champion solidified. 

For a variety of reasons, Leibniz didn't see Keill's article until 
1710, and there was also some more back-and-forth activity. Perhaps 
with some prodding from Bernoulli, Leibniz then made a major tac
tical mistake. He appealed directly to the Royal Society for some sort 
of public exoneration. In a letter to the Royal Society (February 21, 
1711), he protested that he had never heard the word fluxions before 
it appeared in Wallis's Works, nor was it to be found in Newton's let
ters to him of 1676; that in general the accusations were both "absurd 
and contemptible." 

There are several reasons why this was a tactical mistake. To 
begin with, the feelings between the two men had been deteriorating 
for years. Now there was real anger on both sides. The problem for 
Leibniz was that he was walking directly into the lion's den. He was 
appealing to the very society of which Newton was the president. 
True, he had addressed his letter to Hans Sloane, the secretary of the 
Royal Society. What was the likelihood that Newton would stay out 
of the process? Furthermore, the British government was bitterly hos
tile to the threatened Hanoverian succession, with which Leibniz was 
connected. The very name Royal Society should have given Leibniz 
pause. Anything connected with the Hanoverians had a bitter taste 
for the Society's members, who tended to be Newton's supporters. 

All of this was surely instrumental in Newton's decision to give 
Keill his full support in building a case against Leibniz. Excuse me. 
I meant to say, in setting up an official and unbiased commission of 
the Society, with the objective of investigating and answering the 
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charges brought by Leibniz. It became, however, the occasion for 
Newton and his colleagues to amass a huge quantity of evidence, 
which was summarized and published as a report in February 1713, 
under the title Commerdum Epistolicum. It was published anonymously, 
but those in the know could see Newton's hand in the process. 

It hardly seems necessary to say that the report came down on 
Newton's side. 

Later that year, Leibniz responded with the Charla "liOlans, 9 another 
supposedly anonymous publication. In it, he belittled the Commerdum 
and directly accused Newton and his followers of stealing the differ
ential calculus of Leibniz and, furthermore, of committing serious 
errors in their use of it. 

Things, in other words, were getting worse instead of better. Now 
Keill published an article in the May-June 1713 issue of the Journal 
Literaire de la Haye, a French literary magazine, so the battle was 
leaking out onto public ground. In the same year,Johann Bernoulli 
published some mathematical criticisms of Newton's Prindpia. 
Bernoulli also referred to some of Newton's comments as "twice 
cooked cabbage." 

Not to be outdone, Leibniz published his own History and Origi,n 
ef the Differential Calculus (1714), spelling out his own answers to 
claims by the British mathematicians that he had taken his methods 
from Newton. 

Then an ''Account" of the Commerdum was published, again anony
mously, and again by Newton, in the Society's Transactions, in 1714.10 

Among other claims, we find Newton's attempt to show that his 
calculus is superior to Leibniz's: "It has been represented that the use 
of the letter o is vulgar, and destroys the advantages of the differen
tial method; on the contrary, the method of flux.ions, as used by Mr. 
Newton, has all the advantages of the differential and some others. It 
is more elegant, because in his calculus there is but one infinitely small 
quantity represented by a symbol, the symbol o . ... It [his calculus] 
is more natural and geometrical .... Mr. Newton's method is also of 
greater use and certainty. . . . When the work succeeds not in finite 
equations, Mr. Newton has recourse to converging series, and thereby 
his method becomes incomparably more universal than that of Mr. 
Leibniz, which is confined to finite equations." 11 And so on. 
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The feud was spreading in another way. Leibniz had, earlier 
(1710), criticized Newton's theory of gravitational attraction and its 
associated concept of action-at-a-distance, complaining that they 
smacked of the occult. Now (1716), lashing out again, he began to 
attack and even ridicule Newton's philosophical ideas. Newton felt, 
for example, that the universe could be thought of as a clock, one 
that God had wound up at the beginning of creation. Leibniz argued 
that if the clock ran on forever without God's help, what need is there 
for God? 

Newton feared that some unexplained irregularities in the plan
ets' motions might add up and finally throw the whole solar system 
out of kilter. God, he felt, would step in and set things right. Leibniz 
ridiculed Newton's idea of God as some sort of astronomical main
tenance man. Leibniz argued that God would create the best possi
ble world, for that is the nature of God. In addition, Leibniz and 
others had pointed to what they called the anti-Christian influence 
of Newton's Priruipia, which was worrisome. 

The two men also had very different ideas on their concepts of 
space and time. Curiously, Leibniz's ideas were in some ways more 
modem than Newton's. It was essentially a clash between Newton's 
absolute concept of space and Leibniz's relational one, and we know 
who eventually lost out on that one. As for the solar system, Pierre 
Simon Laplace later proved that the solar system is stable. At the 
time, of course, Newton could only feel annoyed. 

Again there were some back-and-forth exchanges, to little effect. 
On November 14, 1716, Leibniz died. Was that the end of the dis

pute? No. Newton still felt the need to keep it going, as did a few of 
Leibniz's followers. In 1722, Newton arranged for a second edition of 
the Commerdum. It was supposedly an exact reprint, but in Latin and 
with a few additions at the front. It was also, supposedly, edited by 
Keill, but Newton was really behind it. Because the original edition 
was hard to come by, this edition has become the basic reference for 
later scholars. It is a carefully reasoned document and presents New
ton's case clearly and precisely-to the clear detriment of Leibniz. 

There's just one small problem. A century later, when a scholar, 
Augustus De Morgan, compared the two editions, he saw clearly that 
Newton had changed, added, and omitted passages in the text-to his 
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advantage, of course. The depth of Newton's anger begins to come 
clear. And then, some 12 years after Leibniz's death, when the third 
edition of the Principia was published, Newton removed all mention 
of Leibniz! As he argued, second inventors have no right. Thanks to 
his position at the Royal Society and his growing reputation as one 
of the foremost mathematical scientists of all time, he almost made 
that a true statement. 

A Question Mark 

Recall the modus ofDuillier and the other followers of Newton. The 
best, and perhaps the only, way to counter Leibniz's growing repu
tation as the real inventor of the calculus was to demonstrate conclu
sively that Newton was first, that his calculus was superior, and to 
suggest that Leibniz may even have copied from him. We've seen the 
claim to the superiority of Newton's calculus in the Commercium. 
That was Newton's opinion, and he's entitled to his opinion-but 
there is more. 

Note the date of Leibniz's first publication: 1684. Like Newton, he 
seemed in no rush to publish. Though he didn't wait almost 40 years, 
as Newton did, he did hold back for 9 years. Today's feverish rush to 
get into print seems not to have held sway at the time. Each man was, 
perhaps, hoping to further perfect the method before going into print. 

Summarizing, then, Newton was surely first in its development: 
1665-1666; Leibniz: 1673-1676. Leibniz, however, clearly published 
first: 1684-1686; Newton: 1704-1736. 

Does this help us decide anything in terms of the priority dispute? 
Newton and his followers, of course, believed that he, being unques
tionably the first to come up with the method, deserved all the credit, 
but the question is not really this simple. 

First, Leibniz did publish first, and, as a result, his work was taken 
up and began to be applied before Newton's. Leibniz's notation was 
also superior and is the form we tend to use today. So posterity dis
agreed with Newton's claims of superiority. 

As I noted earlier, Newton's first major publication in mathemat
ics appears as a supplement to the Opticks book. Its overall title is 
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"Two Treatises of the Species and Magnitude of Curvilinear Fig
ures"-work that he may have developed as early as the mid-1660s, 
but that did not see the light of day until 1704. 

Similarly, Newton's next writeup of his technique, titled Method ef 
Fluxions and lefi,nite Seri.es, written in 1671, was not published until 1736 
in English, and in Latin even later. 

In other words, when Newton's publications began to appear, 
Leibniz had already become a threat. Newton and his followers could 
make a variety of claims, which may or may not have been true. 
They could say that Newton already had his calculus in hand by the 
middle and late 1660s; that he was already using the dot notation 
early on, whereas it may be that he actually did not begin using it 
until after he had seen some of Leibniz's work. Several historians 
maintain that Newton actually did not begi,n using his dot notation 
until the early 1690s.12 

In the Commer<ium, Newton claims that he had written his Qyad
rature treatise as early as 1676, which it was later found was not so. 
He had actually written it in 1691. 

Another claim in the Commer<ium is that Leibniz had seen a letter 
of Newton's dated December 10, 1672, concerning a problem on the 
tangent in which the method of fluxions was sufficiently described 
that "any intelligent person" would be able to come up with it. Later 
scholars agree that, first, any intelligent person would not be able to 
build a calculus on such flimsy hints; second, that Leibniz never did 
see the letter; 13 and third, that Newton knew, or should have known, 
this. 

Wallis also contributed, perhaps inadvertently, to the barrage 
being launched against Leibniz. When he included material on New
ton's calculus in his Works of the 1690s, he stated in his text that what 
he published was what Newton had sent to Leibniz in his letters, 
which was not the case at all. In fact, the collection he put together 
was not based on the original documents but on copies in which var
ious passages were adapted to suit Newton's purposes. 

In other words, much of what we "know" today about Newton's 
early work has come down to us via writings created efler Leibniz had 
already become a threat. This doesn't automatically make them 
untrue, but they must be taken with a grain of salt. 
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Was There Plagiarism? 

Rumors are given wings when there is both motive and plausibility. 
As the feud heated up, both sides were accusing the other side of 
plagiarism. 

Certainly, there was motive on both sides. Both men felt that their 
reputations were on the line, and both had been prodded and poked 
by others until they were angry enough to do things that they might 
not have done-or permitted to be done-otherwise. 

As for plausibility: Leibniz had seen some of Newton's papers. 
Furthermore, Newton had kept a few of his colleagues informed of 
his progress, some of whom were in contact with Leibniz. So Leib
niz could have stolen from Newton. That in no way says he did. 

The Newton side continued to complain about the fact that 
Collins showed Leibniz some of Newton's papers. Even here, 
though, it is not certain how much of Newton's calculus was con
tained in these papers. Current thinking is that there was very little, 
or at least that he used very little, and that what Leibniz saw and used 
had more to do with infinite series than with Newton's further work 
on the calculus itself. 

Did Newton use the work of Leibniz? Here the plausibility sce
nario is even less certain. As we have seen, Newton and colleagues 
apparently had no compunctions about later changing facts to fit 
their own agenda. Yet after much thought and research by people 
who studied the matter in later years, the general consensus is that 
while both men can be accused of some impolite and even nasty con
duct, neither was guilty of any form of plagiarism. That is, that each 
man came up with his calculus independently and without any direct 
input from the other. 

Unexpected Outcome 

It took a while for Newton's fame to spread, particularly on the Con
tinent-but it did. At the same time, Leibniz's light seemed to go out, 
thanks to Newton's help, and toward the end of their respective lives, 
their situations were different indeed. Newton was idolized and had 
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been knighted. When he died in 1727, he was given a state funeral, 
and he still lies buried in a prominent position in the nave of West
minster Abbey. 

Leibniz's situation was very different. For him, nothing seemed to 
go right. In 1714, when the elector of Hannover, his employer, became 
George I of England, Leibniz even lost favor in his own court. This 
was almost surely because, amid all the diplomatic maneuvering, he 
was on the losing side of this important feud. In addition, he had tried 
to get the Roman Curia to release Galileo's Dialogue from the Index, 
also without success. He had hoped to help unify the Catholic and 
Protestant Churches, with obvious lack of success. 

When Leibniz died in Hannover in 1716, unfulfilled in his many 
schemes, it seemed that he had hardly a friend in the court where he 
had labored for almost four decades. His funeral was attended by no 
one other than his former secretary. A friend noted in his memoirs 
that Leibniz "was buried more like a robber that what he really was, 
the ornament of his country." 14 

As a sort of final blow to the poor man's name, the French satirist 
Voltaire would do some serious lampooning of Leibniz with his Can
dide in 1759. It was to be Voltaire's most famous single work. 
Although a savage satire on 18th-century life and thought, it took 
particular aim at Leibniz. While the hero of the story is Candide, his 
mentor is Dr. Pangloss, a disciple of Leibniz. In spite of an extraor
dinary set of seriocomic misadventures, Pangloss maintains, as did 
Leibniz, that all is for the best in this best of all possible worlds. (Leib
niz certainly spouted the best-possible-world part.) Voltaire was a 
devoted advocate of Newtonian ideas and did much to help spread 
them on the Continent. Recall, too, Leibniz's hope that his calculus 
might be able to unlock the secrets of human behavior. Voltaire 
ridiculed this idea as well. 

Who Deserves the Credit? 

Does Leibniz deserve any credit? Newton thought not, particularly 
in his later years. 

There Newton was wrong, on at least two counts. First, he may 
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not even have realized that the calculus he had come up with was a 
true advance. In other words, it wasn't until Leibniz and his follow
ers showed the way that Newton understood that they had a general 
method that could be widely applied. 

More important, however, is what happened in the years that fol
lowed the dispute. Although it was no longer going on between the 
two men, it had important repercussions. To put it simply, the British 
mathematicians stayed loyal to their man and would use only his 
calculus and his notation. On the Continent, however, from the 
very time of Leibniz's first publication, Leibniz's followers-and 
particularly the two elder Bernoulli brothers-took his new mathe
matics in hand and put it to work. 

There were thus two important results of the feud. One was a 
breach between the two sets of mathematicians that lasted until the 
19th century, which prevented the benefits that might have come 
from intercommunication between the two. 

The second is even more significant: the rapid strides taken 
by mathematicians on the Continent-based largely on Leibniz's 
calculus-far outstripped those of the British during all of the 18th 
century! Here is where it may finally be said that Leibniz lost the bat
tle but won the war. 



4 

Bernoulli versus Bernoulli 
Sibling Rivalry of the Highest Order 

The Bemoullis were an astonishing Swiss family, from which came 
eight noted mathematicians over a span of three generations. 

The two main characters in our story are the brothers Jakob and 
Johann. Jakob, born in 1654, was the fifth of ten children. Their 
father, a successful spice merchant, wanted Jakob to go into the min
istry. He even studied for it for a while. ButJakob's real interest was 
in mathematics, which he studied on his own. By 1676, at age 22, he 
was tutoring other students in the subject, and by 1687 he had 
become a professor at the University of Basel. At about the same time, 
and very shortly after Leibniz had published his first papers on his cal
culus (1684 and 1686),Jakob was already delving into it. In 1690, 
Leibniz would say of him, "The devices of this [Leibniz's] calculus are 
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yet known to few people, and I do not know anybody who has under
stood my meaning better than this famous man."1 

Johann, the tenth child in the Bernoulli family, was born in 1667. 
He was twelve and a half years younger than Jakob and, to his 
father's distress, proved unsuited to a business career. In 1685, he 
began the study of medicine and even got a degree in it, but, like 
Jakob, his heart was in mathematics. He began to study it privately 
with Jakob, probably in 1687. After perhaps two years, he was 
already a match for his older brother. These two were the first math
ematicians to recognize the calculus's importance, to put it to use, and 
to spread the word about its significance. 

By 1691,Johann was teaching the new mathematics to Guillaume 
Franc;ois L'Hospital-an experienced and gifted mathematician. Using 
Johann's lesson plans, L'Hospital went on to write the first system
atic text in the calculus (Analyse des iefi,niment petits, 1696).Johann also 
taught mathematics to Leonhard Euler, who himself went on to 
become a giant in 18th-century mathematics. In fact, nearly all of the 
half dozen or so major mathematicians of the time had been pupils 
of one or the other of these two Bernoulli brothers. By an interest
ing coincidence,Johann also had as a student]. C. Fatio de Duillier, 
whose brother Nicolas, as we already saw in the last chapter, was to 
play a major part in the Newton-Leibniz feud. 

More important to our story,Johann taught mathematics to his 
own two sons, Daniel and Nicholas, both of whom went on to 
become quite respectable mathematicians in their own right. In fact, 
the tradition continued, and a third son of Johann's also became a 
professor of mathematics, and then his two sons became active in the 
fields of science and mathematics. Today there are half a dozen math
ematical equations, theorems, or functions named after a Bernoulli. 

It's easy to imagine the Bernoullis as just one big, happy family 
and the two brothers as especially pleased with their accomplish
ments and teaching careers. 

Well, that's not quite the way it went. For althoughJakob and 
Johann were both successful and busy, and kept up an almost con
tinuous exchange of ideas with Leibniz, with other mathematicians, 
and with each other, they also challenged, argued with, and sniped 
at each other at every opportunity. This was sibling rivalry on a 
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grand scale, for Jakob could never accept the fact that his much 
younger brother actually became his equal and, in some ways, even 
surpassed him. And Johann-well, we'll see shortly how Johann 
responded to his "kid brother" position. 

Some Background 

By the early 1690s,Jakob had done more to formalize the integral 
calculus than Leibniz himself had, for Leibniz had treated individual 
problems and had not set down general rules on the subject. Along 
the way,Johann became more proficient, and then, with their strange 
way of goading each other, both brothers used the new mathematics 
as a tool to solve problems that had bedeviled mathematicians for 
years, or even centuries. 

For example, in 1659 Christiaan Huygens (1629-1695), a Dutch 
mathematician and physicist, had sought the curve along which an 
object descending under the influence of gravity would take the same 
amount of time to reach the bottom, from whatever point on the 
curve the descent began. He showed geometrically that the curve was 
a cycloid. Huygens then used this concept for his design of a pendu
lum clock that would keep accurate time. This design is sometimes 
referred to as an isochrone or a tautochrone. Galileo had earlier come 
up with the idea of using a pendulum for a clock, and Leibniz had 
done some preliminary work on the mathematics. 

In May 1690, Jakob published his analysis of the equal-time 
problem, based on the calculus, in the Acta Eroditorum. He did it by 
setting up the differential equation for this curve of constant descent. 
The curve, he showed, is that of a cycloid. In essence, he proved 
Huygens's result analytically. The paper is important for another rea
son: the term integral appears for the first time as a calculus term. 

Proud of his success with the isochrone problem, Jakob then pro
posed in the same paper an allied problem: determine the shape of 
a flexible but inelastic cord hung between two fixed points at the 
same height. The problem had been worked on at least as far back 
as the 15th century by Leonardo da Vinci; Galileo had considered 
the problem and had speculated that the curve was a parabolic arc. 
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The Kid Brother 

Thirteen months after Jakob's paper, several solutions to the prob
lem appeared in the June 1691 ActaEroditorum. They were for a curve 
called a catenary, and they were by Leibniz, Huygens-and Johann! 
There was an entry from Jakob, which he called an "Additamentum 
ad Problema Funicularium." In it, he stated that after the solution was 
given by his brother, he continued the research further into some 
variations of the problem, such as cases where the rope is of differ
ent thickness or weight, for which he gave solutions.2 As we'll see, 
Jakob's entry was not strictly an answer to the original problem and 
could be construed in different ways. 

Johann made much of the fact that he was able to solve the cate
nary problem while, he maintained, his own brother, his teacher, 
could not. That was in 1691. The state of their later relations is 
shown by a letter Johann sent in 1718, some 27 years later, to his col
league and friend Pierre Remond de Montmort. In it, he still writes 
in deprecating fashion of his brother, who had died 13 years earlier, 
and we still hear the strains of their never-ending competition. Msr. 
Montmort had apparently been under the impression that Jakob had 
been able to solve the catenary problem;Johann would have none 
of that. He wrote: 

The efforts of my brother were without success; for my part, I 
was more fortunate, for I found the skill (I say it without boast
ing, why should I conceal the truth?) to solve it in full and to 
reduce it to the rectification of the parabola. It is true that it cost 
me study that robbed me of rest for an entire night. ... [B]ut the 
next morning, filled with joy, I ran to my brother, who was still 
struggling miserably with this Gordian knot without getting 
anywhere, always thinking like Galileo that the catenary was a 
parabola. Stop! Stop! I say to him, don't torture yourself any 
more to try to prove the identity of the catenary with the 
parabola, since it is entirely false .... [T]he two curves are so clif
f erent that one is algebraic, the other is transcendental. . . . But 
then you [Montmort] astonish me by concluding that my brother 
found a method of solving this problem .... I ask you, do you 
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really think, if my brother had solved the problem in question, he 
would have been so obliging to me as not to appear among the 
solvers, just so as to cede me the glory of appearing alone on the 
stage in the quality of the first solver, along with Messrs. Huygens 
and Leibniz?3 
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Johann had in fact seen the important difference in the solutions. 
For the parabola, the simplest form of the standard equation in 

Cartesian coordinates is 

y2 = 4a.x 

which is clearly an algebraic equation. 
For the catenary,Johann showed that the equation is transcenden

tal: 

y = (a/2)(exla + e-xla). 

Shortly thereafter,Johann solved the differential equation for the 
velaria.* Not one to exult in private,Johann went around boasting of 
his achievements. 

Already, though, we are beginning to face the difficulties involved 
in teasing out the realities of the two brothers' respective claims and 
counterclaims. Although Johann's claims to have solved the catenary 
and the velaria are backed up by several writers,4 others dispute both 
claims. For example, W. W. Rouse Ball, a respected historian of 
mathematics, argues that credit for both of these developments 
belongs to Jakob. In fact, he claims thatjakob's solution to the prob
lem of the velaria, as well as his proof that the construction given by 
Leibniz of the catenary had been correct, are among his greatest dis
coveries. 5 In addition, several sources say that it was Jakob's solution 
that later proved useful in the design of such structures as suspension 
bridges and high-tension towers.6 As I noted earlier,Jakob's contri
bution in the 1691 article does contain a treatment of variants on the 
catenary problem, as well as further generalizations, which suggests 
that he did have some understanding of the original problem. 

*Curve for a rectangular sail filled with wmd. 
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A possible explanation for the confusion is given by Florian 
Cajori, who maintained that Jakob tended to publish answers with
out explanations, while Johann gave in addition their theory. 7 

Well, no matter. It's quite likely that by this time Johann was try
ing to break out of the kid brother role and was boasting of, and per
haps exaggerating, his accomplishments. Who could stop him from 
maintaining that he had the solution before Jakob, and a better one 
at that? 

Their Young Years 

Rudiger Thiele, a professor of mathematics at the University of 
Leipzig, argues that the negative attitude of the two mathematicians' 
father had an unfortunate effect on both of their personalities. He 
feels thatJohann, however, as the kid brother, suffered the most. As 
time went on, Johann compensated by developing an enormous 
sense of self-importance, and he tried in every way he could to 
achieve fame. Yet he always found himself under the shadow of 
Jakob. As a result, he attempted to exaggerate his own importance. 

Thiele even argues that Johann's emotional problems actually 
made it difficult for him to properly evaluate his own mathematical 
achievements. 8 As for who deserves credit for the brothers' various 
discoveries, Thiele points out that in the early days of their relation
ship they worked closely together, so it is sometimes hard to distin
guish their respective contributions.9 This could explain the 
confusion about the solutions to the catenary and the velaria I spoke 
of earlier. Similarly, while the Encyclopcedia Brilanni£a states that Johann 
exceeded his brother in the number of contributions he made to 
mathematics, 10 Thiele feels that Johann perpetrated so many 
untruths ( Unwahrheiten) that the fame he did accrue is unwarranted. 11 

But he reveled in it. In 1701,Johann wrote to his father, "That I 
never got a letter from my father indicates that he preferred my 
brothers and had no affection for me. Am I not worthy of as much 
consideration as my siblings? ... I would be grateful if you could tell 
me how they have earned this trust and affection from you, which 
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you are depriving me of. I have placed myself under God's guidance 
because my father will not allow me to lead the kind of life I would 
wish to lead. So don't come to Basel and take my fame and say that 
you had anything to do with it." 12 

Jakob felt just as strongly about their father and worked under his 
own motto, which might be translated as, "I went agairist my father's 
will, and yet I am up there among the stars."13 

In any case, by the beginning of the 1690sJohann was already a 
bona fide mathematician and had developed to the point where his 
claims and his actual accomplishments made him a real threat to 
Jakob's own need for celebrity. The seeds were being sown for a seri
ous battle. Thiele and others feel that as the feud escalated,Johann 
was usually the instigator, but the feeling is by no means universal. 
The mathematics historian]. E. Hofmann states that Jakob was "self
willed, obstinate, aggressive, vindictive, beset by feel in gs of inferior
ity, and yet firmly convinced of his own abilities. With these 
characteristics, he necessarily had to collide with his similarly dis
posed brother."14 

It was during this period (early 1690s) thatJohann had his deal
ings with L'Hospital. Johann was in Paris in 1691, where he was 
already earning respect as a practitioner of the new mathematics. 
L'Hospital, quickly seeing its true importance and value, hired 
Johann as his private tutor. L'Hospital was well off, and he paid 
Johann well. Even after Johann returned to Basel, he continued the 
lessons by correspondence. The written lessons provided the sub
stance for the first textbook in differential calculus-L'Hospital's 
Analyse des irifi.niment petits (1696)-and is the basis for his respected 
name in the field. 

Although Jakob was smarting from Johann's boasting, both broth
ers went on carving out their own mathematical careers, while at the 
same time interacting between themselves and with other major 
mathematicians of their time. They also continued working with the 
new mathematics, applying it to a variety of problems. In 1694, for 
example, Jakob came up with the analysis for a fascinating eight
shaped curve that is often seen in mathematics classes today. It is 
commonly referred to as the lemniscate of Bernoulli. 
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The Relationship Changes 

In 1695,Johann was offered a professorship at Halle and at the same 
time the chair in mathematics at Groningen, in the Netherlands. He 
accepted the latter, though not without some resentment toward 
Jakob-he would have preferredJakob's position at Basel but knew 
that was not possible as long as Jakob held it. Furthermore, Jakob 
had begun doing some damage control; in retaliation for Johann's 
boasting, he went about termingJohann his pupil, who could only 
repeat what he has learned from his teacher. 

Yet Johann now ranked as high as Jakob, and in June of 1696 
Johann posed, first in Acta Eroditorum and then via a leaflet, the prob
lem of the brachistochrone: determine the curve linking any two 
points, not in the same vertical line, along which a body would most 
quickly descend from a higher to a lower point under its own grav
ity. Intuitively, one might expect the answer to be a straight line, that 
is, the shortest distance between the two points. Galileo had already 
realized, however, that that was not so, but his speculation that the 
path would be the arc of a circle was also not correct. As I noted in 
the previous chapter, the solutions offered by several mathematicians 
were published together in the May 1697 Acta. The honored group 
consisted of the two Bernoullis, Leibniz, Newton, and L'Hospital. It's 
worth noting that L'Hospital neededJohann's help. 

The methods used by the two brothers to solve the problem are 
particularly interesting, for they illustrate well the difference in their 
characters and abilities. In essence,Johann performed a kind of trick. 
His ingenious mind saw a connection between the path of quickest 
descent, that is, the mechanical problem at hand, and Fermat's prin
ciple of least time and its application in an optical problem. From 
Snell and Descartes, he knew what happened when a ray of light 
passes from one optical medium to another. He figured he could com
bine the refractive sine law (chapter 2) with the equation for the 
velocity of a body under gravity: 

v = '1(2gy). 

Johann then divided the vertical plane of the problem into a series 
of very thin horizontal strips whose material densities varied slightly 
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from one to the next. Although the particle would travel in a straight 
line through each strip, its path would bend slightly as it traveled 
from one to the next, as in a series of optical media with slightly vary
ing refractive indexes. The particle's path ofleast time was therefore 
equivalent to the curved path of a light ray whose direction changed 
infinitesimally as it passed from one layer to the next. 

Then, as Johann wrote, "But now we see immediately that the 
brachistochrone is the curve that a light ray would follow on its way 
through a medium whose density is inversely proportional to the 
velocity that a heavy body acquires during its fall. Indeed, whether 
the increase of the velocity depends on the constitution of a more or 
less resisting medium, or whether we forget about the medium and 
suppose that the acceleration is generated by another cause accord
ing to the same law as that of gravity, in both cases the curve is tra
versed in the shortest time. Who prohibits us from replacing one by 
the other?"15 By letting the number of layers go to infinity, he was 
able to derive the curve for the brachistochrone. 

Jakob, on the other hand, worked out a method that was more 
geometric and that seemed at first more cumbersome-he constructed 
a curve and used it as a basis for the analysis. As he put it, "The prob
lem can therefore be reduced to the purely geometric one of deter
mining the curve of which the line elements are directly proportional 
to the elements of the abscissa and indirectly proportional to the 
square roots of the ordinates." 16 The resulting curve was the one 
being sought. Both men had shown, each in his own way, that the 
correct form of the curve was a cycloid! The advantage of Jakob's 
method was that it was both more direct and more general. That is, 
it provided some general rules for solving several other problems of 
the same kind. 

Calculus of Variations 

The mathematics historian E.T. Bell argues, 'james17 [that is,Jakob] 
Bernoulli's signal merit was his recognition that the problem of 
selecting from an infinity of curves one having a given maximum 
or minimum property was of a novel genus, not amenable to the 
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differential calculus and demanding the invention of new methods. 
This was the mathematical origin of the calculus of variations." 18 

The calculus of variations is a sort of generalization of the calcu
lus. It seeks to find the path, the curve, or the surface for which a 
given function has a stationary value. In physical problems, this is 
usually a maximum or a minimum. 

Though Bell credits Jakob for his pioneering input on this form 
of the calculus, there is a range of thought on this question-yet 
another example of how controversy seems to swirl around every
thing connected with the Bernoullis. Morris Kline, a well-known 
scholar, agrees with Bell, saying that while both solutions turned out 
to be early steps forward,Jakob's solution was even stronger in this 
regard. 19 

YetJohann's solution, with its dependence on Fermat's principle 
of least action, surely points in this direction. Others feel even more 
strongly that the credit should go to Johann. David Eugene Smith, 
the editor of an important sourcebook in mathematics, writes, "The 
calculus of variations is generally regarded as originating with the 
papers of Jean (that is, Johann] Bernoulli on the problem of the 
brachistochrone." Smith's argument centers about the fact that 
Johann "attained a fairly complete if not precise idea of the simpler 
problems of the calculus of variations in general."20 

The mathematics historian Stuart Hollingdale feels even more 
strongly: "It was Jean Bernoulli who started Euler on his researches 
into the calculus of variations."21 

One of the problems here is that the question apparently hinges 
on which of Johann's solutions is being considered-and once again, 
the situation is cloaked in fog. J. J. O'Connor and E. F. Robertson, 
who did a series of articles on the Bernoullis for an online mathemat
ics history forum, argue that Johann later built an elegant solution, 
published in 1718, that used a work of Brook Taylor's.22 Smith 
maintains that this is not so, that "such a direct solution is mentioned 
in several of the letters which passed between Leibniz and Johann in 
1696 as well as in the remarks which the former made on the 
subject of the brachistochrone problem in the Acta Eruditorum for May, 
1697." 

Smith admits that "this solution was not published until 1718 
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when bothJacques and Leibniz were dead." But he argues: "This fact 
is apparently regarded by those who believe Jean plagiarized from his 
brother Jacques as invalidating the farmer's claim of having secured 
a second solution. Jean for his part asserted that he delayed the 
publication of his second method in deference to counsel given by 
Leibniz in 1696."23 

In rebuttal, Hollingdale argues, "However, until Euler took up the 
subject, no general methods were available." 24 In other words, the 
Bemoullis had used the method to solve specific problems, such as 
the brachistochrone. Euler, who began his work in this area around 
1732, was more interested in a general theory. But the form in which 
the work is seen today was the work of yet another great mathemati
cian, Joseph-Louis Lagrange. 

What was Lagrange's take on the origins of the calculus of 
variations? Smith argues that he [Lagrange] "emphasizes the part 
ofjean no less than that of Jacques in pioneering work on a general 
method in the calculus of variations."25 

And so we are pretty much back where we started. Well, let's 
goon. 

Hollingdale adds an interesting point: "The development of the 
calculus of variations received a strong boost from physics, from the 
adoption by the eighteenth-century scientists of the 'principle of 
least action' as a guiding principle in nature."26 

Ironically, the principle also had strong theological support. Euler 
stated, "For since the fabric of the Universe is most perfect and the 
work of a most wise Creator, nothing at all takes place in the Uni
verse in which some rule of maximum or minimum does not 
appear."27 Once again, Johann's use of Fermat's principle of least 
action comes to mind. 

In any case, when the Bemoullis found that the cycloid was also 
the solution of the brachistochrone problem, they were amazed and 
delighted. Johann wrote in his article, "With justice we admire Huy
gens because he first discovered that a heavy particle falls down along 
a common cycloid in the same time no matter from what point on the 
cycloid it begins its motion. But you will be petrified with astonishment 
when I say that precisely this cycloid, the tautochrone of Huygens, is our 
required brachistochrone." Later, he picked up the notion again: 
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Before I conclude, I cannot refrain from again expressing the 
amazement which I experienced over the unexpected identity of 
Huygens's tautochrone and our brachistochrone . ... For, as nature is 
accustomed to proceed always in the simplest fashion, so here she 
accomplishes two different services through one and the same 
curve, while under every other hypothesis two curves would be 
necessary, the one for oscillations of equal duration, the other for 
quickest descent. If, for example, the velocity of a falling body 
varied not as the square root but as the cube root of the height 
[fallen through], then the brachistochrone would be algebraic, the 
tautochrone on the other hand [would be] transcendental.28 

At the end of Jakob's paper on the brachistochrone, he laid out 
three other kinds of problems that can be solved by his method, the 
third of which was, "To find isoperimetric figures of different kinds." 
The origin of this problem may date back to pre-Greek times. In 
essence, it seeks to find which closed plane curve with a given 
perimeter will have the largest area. Within this group,Jakob crafted 
a complicated example and challenged Johann by name. He even 
offeredjohann a prize of 50 ducats if he could solve it by the end of 
the year, or six months from then. 

Now the fur really began to fly. 

Battle Lines 

Johann came up with a solution in 1697 and claimed the award. He 
failed, however, to perceive the isoperimetric problem's variational 
character and thereby offered an incomplete solution, one in which 
the resulting differential equation was one order too low. Jakob, 
delighted, criticized his brother unmercifully. 

E. A. Fellman and J. 0. Fleckenstein, writing in the Dicti.onary ef 
Scientjfic Biography, argue, "This was the beginning of alienation 
and open discord between the brothers-and also the birth of the cal
culus of variations."29 (Yet another variation on the origin of the 
cal cul us of variations.) 
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Johann's analysis of Jakob's isoperimetric problem was presented 
via the French mathematician Pierre Varignon to the Paris Academy 
of Sciences in February 1701.Jakob presented his solution in the Acta 
Ernditorum in May 1701. A later comparison of it withJohann's solu
tion clearly shows Jakob's to be superior. Unfortunately,Jakob could 
not revel in this particular triumph. For reasons unknown,Johann's 
solution was put into a sealed envelope and not opened until April 
1706, almost a year after Jakob's death. 

Was this because Johann realized the truth even then? He never 
admitted it. Much later, though-after his brother's death, and after 
having been able to digest work by Brook Taylor (Methodus Incremen
torum, 1715)-he produced an elegant solution of the isoperimetric 
problem. The concepts in this 1718 paper contain elements of the 
modern concept of the calculus of variations, which Euler and 
Lagrange would carry forward. The solution was, however, strangely 
reminiscent of Jakob's solution and style.30 

Does Johann deserve the credit here? It would seem more 
appropriate to say that both men contributed-in their wondrously 
contentious fashion-possibly starting with the original solution of 
Jakob's. 

Even in Death 

Jakob's death in 1705 produced yet another instance of the strange 
relationship between the brothers. Among Jakob's many interests 
was the topic of probability, which he had pursued fairly intensely 
during the years 1684 to 1690. And while most of the mathematical 
contributions of the brothers were to be found in journals, especially 
in the Acta Ernditorum,Jakob spent the last two years of his life work
ing on a manuscript for a text on probability. This was the Ars Con
jectand~ or The Art ef Conjecture. 

It would contain a general theory of combination and permuta
tion: the so-called weak law of large numbers-also known as 
Bernoulli's theorem and today used as a main tool in the theory of 
probability-and much else. It was his most important single piece 
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of work. It was also the first substantial work on probability, and it 
still has application wherever statistical methods are used today, as 
in insurance, weather prediction, and population sampling. 

The book is set up in four sections, the second of which, on per
mutations and combinations, he used for a proof of the binomial the
orem for positive integral exponents. Contained in this section is a 
formula and a table for the sum of the rth powers of the first n inte
gers. Using a table of his so-called numbers of Bernoulli, he calcu
lated the sum of the 10th powers of the first 1,000 integers. Then, 
showing his sweet nature,Jakob wrote: 

With the help of this table it took me less than half of a quarter 
of an hour to find that the tenth powers of the first 1000 numbers 
being added together will yield the sum 

91,409,924,241,424,243,424,241,924,242,500 

From this it will become clear how useless was the work of 
Ismael Bullialdus [which he] spent on the compilation of his volu
minous Arithmetica irifi,nitorum in which he did nothing more than 
compute with immense labor the sums of the first six powers, 
which is only a part of what we have accomplished in a single 
page.31 

When Jakob died, the manuscript was nearly completed, but even 
in death, the animosity between the brothers played a role. It would 
seem logical for the work to have been published under Johann's 
supervision; but Jakob's widow was categorically against the idea, 
fearing that the vengeful brother might use the opportunity to dam
age or even sink the project. Nicholas,Johann's eldest son, had read 
the manuscript when he was studying withJakob and, in true fam
ily spirit, had used it for his own thesis after Jakob died, and for other 
purposes as well. When it was finally published in 1713, it included 
a short preface by Nicholas. After admitting that he had been too 
young and inexperienced to do much with it, he says he advised the 
printers to give it to the public as the author had left it. It went on to 
become the centerpiece of Jakob's considerable reputation. 

Jakob seems to have foreseen, or at least feared, an early death. 
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In the course of his studies, he worked with the curious equiangular 
spiral. This is a curve that can be seen in sea shells and the spider's 
web. It has some similarity with the circle, but there is one major dif
ference. A circle crosses its radii at right angles; the equiangular spi
ral also crosses its radii at a constant angle, but not at 90 degrees. 
Jakob, who had some mystical leanings, was fascinated by the fact 
that the curve reproduces itself under various mathematical transfor
mations. He asked that the curve be engraved on his tombstone, 
along with the inscription "&aem mutata resurgo" (Though changed, 
I arise again the same). He died at the still young age of 51 in 1705, 
having held the chair in mathematics at Basel until his death. His 
chair at Basel was now available; it was offered to Johann, who was 
happy to accept it. 

Johann Carries On 

With Jakob out of the way, it was almost as if the argumentative 
Johann needed to find others to battle with. A healthy, vigorous man, 
he had another forty-three years in which to do so. L'Hospital's cal
culus text, for example, had been published in 1696. lnitially,Johann 
seemed quite pleased with the way things had worked out. Upon 
receiving a copy from L'Hospital, he wrote back and expressed his 
thanks for being mentioned. He even promised to return the compli
ment when and if he, Johann, published such a work. L'Hospital 
actually suggested a follow-up, namely and reasonably, a text on inte
gral calculus, since Leibniz didn't seem to be doing anything along 
these lines. Bernoulli, however, replied that he was, unhappily, pre
occupied with domestic problems-which we'll get to in a moment. 

That was Bernoulli's initial reaction, but the book had provided 
entry to a new and exciting world for Continental mathematicians 
and was received eagerly by them. As it became increasingly success
ful, Johann began to show an equivalent increase in jealousy and 
annoyance. In the years followingJakob's death, he complained bit
terly about the situation. He attacked both the work and its author, 
virtually accusing L'Hospital of plagiarism. L'Hospital had acknowl
edged Johann's part in the work in the preface. He wrote, "And then 
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I am obliged to the gentlemen Bernoulli for their many bright ideas; 
particularly to the younger Mr. Bernoulli, who is now a professor in 
Groningen."32 Johann now felt this was not sufficient credit, however, 
and he tried with all his might to tell the world who the real author 
was. But his cries seemed to fall on deaf ears. 

For example, section 9 presents "Solution of some problems ... ," 
involving what we would now refer to as indeterminate forms. 
Although the presentation is mainly geometrical, the result is what 
came to be called L'Hospital's rule-a mathematical method for eval
uating indeterminate forms. This was particularly annoying to 
Johann, who felt that L'Hospital should have made it clear in the text 
that this was Bernoulli's work, not his. To be fair, though, L'Hospital 
never actually claimed this to be his invention. It was only by a quirk 
of fate, namely, the book's widespread use, that the result was so 
named-not by him but by others. 

L'Hospital, it might be worth noting, was no longer around to 
defend himself. He had died in 1704. Nevertheless, and this would 
aggravateJohann even further, the Analyse remained the standard text 
for higher mathematics throughout Johann's long life-he died in 
1748, at age 81-and even well beyond. A later comparison between 

Johann's lecture notes and L'Hospital's work showed them to be vir
tually identical, though a number of the mistakes in the notes do not 
appear in the book. So L'Hospital-or someone-did do some useful 
and knowledgeable editing. 

According to one scholar, Gerard Sierksma, Johann's financial 
agreement with L'Hospital meant that Johann had sold his discover
ies to L'Hospital and therefore could not publish his own work, at 
least for a while.33 This could also explainJohann's unhappiness. 

What were the domestic problems Johann referred to in his reply 
to L'Hospital? There were several that he might have had in mind. 
In 1697, he had lost a beloved daughter. Not long after, he suffered 
a serious illness. 

More likely, it had to do with the years he was spending at 
Groningen, which ran from 1695 to 1705. Thanks to animosity 
between the city councilors and the provincial legislators because of 
religious differences, it was a trying time for everyone at the univer
sity. Johann had been brought up as a strict Calvinist and had 
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remained a fervent member of the church, yet at least partly because 
of his work, he was accused of grievous heresies. Recall thatJohann 
had also had medical training, and he had been expected to perform 
some medical duties as well. It seems that in the course of these 
duties, he made some comment about the continuous metabolism of 
the human body. He was attacked bitterly by both a student and a 
well-known theologian, Paulus Hulsius, and accused of denying the 
resurrection of the body.34 

As he often did, he defended himself by going on the attack: "I 
would not have minded so much if he [the student] had not been one 
of the worst students, an utter ignoramus, not known, respected, or 
believed by any man of learning, and he is certainly not in a position 
to blacken an honest man's name and honour, let alone a professor 
known throughout the learned world, and distract the young from 
their fine studies."35 

He was also attacked for espousing the use of experiments to 
learn about nature. He came through all of this, but there were some 
worrisome times. 

Still More Controversy 

Another man who can be counted amongJohann's numerous adver
saries was Brook Taylor (1685-1731). Taylor, in his Metlwdus Incremen
torum of 1715, worked through many of the problems that Johann and 
others had dealt with, but the only credit Taylor gave was to New
ton-not surprisingly, an Englishman. Bernoulli did not like being 
ignored and published an anonymous essay that accused Taylor of 
plagiarism. Taylor figured out who the author was and published an 
answer in defense-also anonymously. He also made fun of a math
ematical error that Bernoulli had made years earlier. Johann's col
league, Pierre Remond de Montmort, tried to mediate the dispute but 
got nowhere. The battle raged on until 1719, when Taylor published 
another insulting diatribe and then decided that enough was enough; 
Johann, characteristically, would have continued the battle. 

Even years later, when Taylor died in 1731,Johann commented, 
"Taylor is dead. It is a kind of fate that my antagonists died before 
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me, all younger than I. He is the sixth one of them to die in the last 
fifteen years .... All these men attacked and harrassed me ... though 
I did them no wrong. It seems that heaven would avenge the wrong 
they have done me."36 Note his reading of the turns of fate's wheel. 
The prior deaths of his adversaries proved, at least to him, that he 
was in the right! 

As it turned out, neither Johann nor Taylor was aware that their 
battle was rather pointless. The general feeling today is that Taylor 
was not guilty of plagiarism, but rather of not keeping up with new 
developments on the Continent. Furthermore, the young Scotsman 
James Gregory had come up with the "Taylor series," which is basic 
in the method, some 40 years earlier. 

And Yet Again 

With the next controversy, we circle back to the family.Johann's sec
ond son was Daniel, who was born in Groningen in 1700.Johann, 
repeating his father's strange behavior, tried his best to prevent 
Daniel from pursuing mathematics. According to the mathematics 
historian James R. Newman, Johann went so far as to attempt to 
destroy the child's self-confidence through cruel treatment.37 He 
tried, as his father had tried with him, to push Daniel into the busi
ness world, but something in the Bernoulli genes objected. Of course, 
in those days a young man was not likely to say, "Sorry, Pop, that's 
not for me. I want to study mathematics." 

So, Daniel was first sent off as a commercial apprentice. When 
that didn't work,Johann sent him to study medicine, and he even
tually earned his doctorate in 1721. His heart, though, as with so 
many other Bernoullis, was in mathematics. Historians differ over 
whether Johann taught Daniel any mathematics. If he did, it wasn't 
a great deal, and Daniel learned most of what he was taught from his 
older brother, Nicholas. As was the case with Johann, however, it was 
as a sideline. Nevertheless, he went on to become by far the ablest 
mathematician of the younger group of Bernoullis. By 1724, he had 
earned a solid reputation in the field with his Exerci.tationes Mathemat
icae, which covered several different mathematical subjects. 



BERNOULLI VERSUS BERNOULLI 91 

This led to a position in mathematics at the St. Petersburg Acad
emy. He was, however, a scientific polymath, and he worked not only 
in mathematics but also in such fields as medicine, biology, physiol
ogy, physics, mechanics, astronomy, and oceanology. The following 
year he won a prize awarded by the Paris Academy, the first of 10 he 
would earn in these various fields. 

Nicholas had also gotten an appointment at St. Petersburg. But 
within eight months of their appointments, Nicholas died, leaving 
Daniel feeling both lonely and not very happy with the harsh climate. 
Johann once again entered the scene, and we see an excellent exam
ple of his complicated personality. Argumentative, irascible, and 
jealous, he nevertheless arranged for one of his best pupils, no less a 
one than Leonhard Euler, to move to St. Petersburg to work with 
Daniel in 1727. The following few years were among Daniel's most 
productive. One of his main topics of interest was vibrating systems; 
by 1728, Daniel and Euler were doing important work on the 
mechanics of flexible and elastic bodies. 

Ironically, all of Johann's three sons gained some reputation as 
mathematicians and scientists, but Daniel was to become the most 
famous of all. When Johann began feeling the hot breath of compe
tition from this youngster, he reacted badly to it. 

The battle between the optics and the dynamics of Newton and 
the once-dominant Cartesian description of the world was still being 
fought, including at the Paris Academy of Sciences.Johann, arguing 
against Newton's ideas, had won the Paris Academy's prestigious 
prize competition twice, in 1727 and 1730. He won again in 1734, but 
this time he had to share the prize with Daniel, who was arguing in 
support of Newton! 

Daniel had been wanting to come back to Basel for years. He had 
finally obtained the chair of anatomy and botany at Basel in 1734. He 
had come home. Unfortunately, Johann was increasingly unhappy 
with having to share credit with his own son. The occasion of the 
shared prize led to a break between them; Johann even barred 
Daniel from the family home. 

Then things went from bad to worse. Both men continued to 
work in mathematics and its application to physical problems. Daniel 
had been working on a text titled Hydrodynamica, which covered the 
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properties important in fluid flow, including pressure, density, and 
velocity. It included the key relationship, now called Bernoulli's 
principle, which states that pressure in a fluid decreases as its veloc
ity increases. He had the manuscript ready by about 1734, but for 
various reasons it was not published until 1738. This was to be 
Daniel's most important work, and the work that would make him 
famous. 

His father, not to be outdone, published a competing book, which 
he titled Hydraulica, at about the same time. Again, history is some
what ambiguous. At the very least,Johann tried to predate his book 
to 1732, to make it seem like Daniel took his material fromJohann.38 

At worst, he actually stole material from Daniel's book and tried to 
pass it off as his own, and then attempted to make it look as if Daniel 
had stolen from him!39 Later, in a 1743 letter to Euler, Daniel referred 
to "my complete Hydrodynamic, for which I do not have to thank my 
father," and complained, "I was robbed of and lost the fruit of my ten 
years of labor."40 

This hardly sounds like the behavior of a proud and loving 
father, yet this was the same man who had thoughtfully sent Euler 
up to St. Petersburg to help Daniel through a difficult time. In any 
case, fate would serve up another unpleasant dish to Johann, for he 
lived another 10 years, long enough to see Daniel's work become a 
classic text in the field. 

Why end on a sour note, though? Daniel was a first-class scien
tist, as well as a competent mathematician, and he has been described 
as one of the founding fathers of mathematical physics. If Johann 
couldn't find pleasure in his son's success, that was his problem. He 
had two other sons, who also became competent mathematicians, 
and several grandsons, with the same outcome. The only real blight 
I can see is that the eldest of his three sons, Nicholas, died at Petro
grad, where he was a professor, at the young age of 31. Yet Galton 
describes Nicholas as "a great mathematical genius" and "one of the 
principal ornaments of the then young academy."41 Who can say 
whatJohann's feelings really were? 

In any case, Johann, like his brother Jakob, and like Daniel, had 
plenty to feel good about. We've seen thatJohann and Jakob were the 
very first to see the importance of the new calculus, and that both of 



BERNOULLI VERSUS BERNOULLI 93 

them performed some very useful mathematics during their time on 
earth. After the death of Jakob in 1705, Leibniz in 1716, and Newton 
in 1727,Johann reigned as perhaps the foremost mathematician of his 
time. It was largely due to his efforts-both through his teaching and 
through his many demonstrations of the calculus's wonderful 
powers-that the differential notation of Leibniz, rather than New
ton's fluxional notation, was generally adopted on the Continent. He 
was surely one of the great teachers of all time. He was also, it turns 
out, one of the great communicators. His scientific correspondence 
adds up to some 2,500 letters, and he exchanged letters with no fewer 
than 110 scholars. 



5 

Sylvester versus Huxley 
Mathematics: Ivory Tower or Real World? 

Thomas Henry Huxley, a highly respected 19th-century British 
scientist, made important contributions in zoology, geology, and 

anthropology. One of his biographers, Adrian Desmond, writes of 
the era, "By 1870 science was Professor Huxley."1 

Yet this was an era when schools and universities stressed theol
ogy and the classics; science was a rich man's pastime. In 1870, 
Oxford gave out 145 classics fellowships and just 4 in science.2 

Huxley's lectures and writings were instrumental in convincing aca
demics and policy makers that this was a mistake. He stressed the 
importance of scientific training as a way of bringing the mind 
"directly into contact with fact, and practicing the intellect in the com
pletest form of induction; that is to say, in drawing conclusions from 
particular facts made known by immediate observation of Nature."3 

94 
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An accomplished speaker and writer, Huxley also delved deeply 
into religion-though hardly in any conventional manner. The emi
nent botanist Sir Joseph Dalton Hooker wrote in a letter to Charles 
Darwin, "When I read Huxley, I feel quite infantile in intellect."4 

Yet somehow Huxley's brilliance and wide-ranging intellect 
seemed to stop short at the world of mathematics. As he saw it, math
ematics is virtually all deductive and therefore does not provide the 
same kind of valuable training of the mind that science does. He felt 
it was more of a game, that it was, along with classics and theology, 
not really on the same level as scientific training and ability. Hence, 
he could write, "The mathematician starts with a few propositions, 
the proof of which is so obvious that they are called self-evident, and 
the rest of his work consists of subtle deductions from them."5 

As for its connection to science, mathematics "knows nothing of 
observation, nothing of experiment, nothing of induction, nothing of 
causation."6 It is, in short, useless for scientific purposes. He stated 
these ideas at a scientific meeting, where they might have gone unre
marked, but then wrote them in articles in two popular journals, 
Macmillan s Magazine and The Fortnightly Review. 7 

People other than Huxley had had such, or similar, thoughts 
before and had even stated them. Students have long complained, for 
example, does it really matter that the three angles of a triangle are 
equal to two right angles? Or that every even number greater than 2 
is, or may be, the sum of two primes? Henry John Stephen Smith, a 
fine mathematician and a contemporary of Huxley, proposed a toast 
at a banquet: "Pure mathematics; may it never be of use to any one."8 

Was Smith serious? Only if you de.fine pure mathematics as those 
aspects of the field that are not useful-at the moment. Smith surely 
knew of examples of pure mathematics that were later put to work, 
as, for example, when Apollonius's work on conic sections was used 
19 centuries later by Kepler in his investigations of the orbits of the 
planets. 

Nor does it matter. Such comments never had much effect. But 
when a scientist of Huxley's stature and reputation voiced ideas like 
this, and to a broad public, more than one mathematician was more 
than a little put out, and the mathematical world knew someone had 
to give a solid response. The man they chose to give this response 
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was James Joseph Sylvester, an eminent British mathematician. The 
occasion was the Presidential Address to the Mathematical and 
Physical Section of the 1869 meeting of the British Association, also 
known as the British Association for the Advancement of Science. 

Even though Sylvester was by then one of the major algebraists 
of his day, it required some courage-some might even say 
foolhardiness-to take on a person of Huxley's eminence and fight
ing spirit. By then, Huxley's defense of the newly created, and 
widely hated, evolution doctrine had earned him the nickname 
Darwin's Bulldog. Desmond states, "A pugilistic fame put Huxley in 
the papers almost weekly."9 

Before we consider Sylvester, his challenge, and the results, let's 
see if a closer look at Huxley's upbringing and training will provide 
any insight into his feelings about mathematics. 

Huxley before Sylvester's Challenge 

Huxley, born in 1825, lived above a butcher's shop in a sleepy vil
lage called Ealing. His father was an assistant schoolmaster at a 
school there-and taught mathematics! The school was said to be one 
of the finest private schools in England. 

Huxley attended this school, but his father left the school in 1835 
for unknown reasons. This ended Huxley's primary schooling, with 
the result that he had only two years of formal instruction in his early 
years. Yet he had this to say of his time there: "The society I fell into 
at school was the worst I have ever known .... the people who were 
set over us cared about as much for our intellectual and moral wel
fare as if they were baby-farmers. We were left to the operation of the 
struggle for existence among ourselves, and bullying was the least of 
the ill practices current among us." 10 Perhaps this had something to 
do with Huxley's later habit of lashing out, often mercilessly, at oppo
nents and ideas that displeased him. 

It's not clear where his feelings about mathematics came from. 
He showed early signs of brightness in other subjects, however, and 
by his teens was thinking hard about philosophy and was already 
developing a classification system for knowledge. By age 17, he had 
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divided all knowledge into two major groups, objective and subjec
tive. He wasn't sure where to put morality, though he was rather 
inclined to place it under the objective heading. Into that category 
went physics, physiology, and history. Under subjective, he grouped 
metaphysics, theology, logic-and mathematics! 

If he was not a math wizard, though, early studies in medicine 
stood him in good stead in various other fields that he turned to later 
on. By age 29, he had written 23 papers on invertebrate zoology and 
had 15 more in progress. He also made important contributions in 
taxonomy, which earned him election to the Royal Society in 1851 
and the Royal Medal in 1852. 

More generally, he felt that without some knowledge of science, 
often called natural history in his day, one could not be called edu
cated. In fact, he felt, "To a person uninstructed in natural history, 
his country or sea-side stroll is a walk through a gallery filled with 
wonderful works of art, nine-tenths of which have their faces turned 
to the wall." 11 

He wrote that in 1854. At the same time, his feelings about math
ematics were already hardening. In the same essay, he stated: 

I do not question for a moment, that while the Mathematician 
is busy with deductions .from general propositions, the Biologist 
is more especially occupied with observation, comparison, 
and those processes which lead to general propositions. All I wish 
to insist upon is, that this difference depends not on any funda
mental distinction in the sciences themselves [that is, between 
biology and mathematics], but on the accidents of their subject
matter, of their relative complexity, and consequent relative 
perfection. 

The Mathematician deals with two properties of objects only, 
number and extension, and all the inductions he wants have been 
formed and finished ages ago. He is occupied now with nothing 
but deduction and verification. 

The Biologist deals with a vast number of properties of 
objects, and his inductions will not be completed, I fear, for ages 
to come; but when they are, his science will be as deductive and 
as exact as the Mathematics themselves. 12 



98 GREAT FEUDS IN MATHEMATICS 

In 1856, Huxley would still state, "The mathematician discovers 
in the universe a 'Divine Geometry.'" 13 

In the various worlds of science, however, Huxley was still learn
ing and growing. 

The biographer James G. Paradis writes: 

The drift of Victorian science . . . was toward an emphasis on 
quantification and empirical determinism. In ... 1854, Huxley 
had furnished a short summary on scientific method .... By 1870, 
when the essay was published as part of his Lay Sermons, his point 
of view had so changed that he took special care to note that he 
no longer adhered to theories of vitalism. Lay Sermons contained 
his "On the Physical Basis of Life," which rejected all theories of 
spontaneity and identified life forces with chemical forces. While 
Huxley had drawn from the Romantics for his early concepts of 
nature, (by 1866] he publicly abandoned his earlier Romantic ten
dencies, rejected spontaneity, and declared scepticism to be "the 
highest of duties."14 

We begin to see more clearly how Huxley viewed science and 
mathematics. He loved science and had matured in understanding 
and dealing with it. In his mind, science was part of life. One could 
not be truly educated without a good grounding in its various parts 
but especially in natural history or natural science. As to mathemat
ics, he did not hate it; he admired it, but preferably from afar. He saw 
it as some sort of game, perhaps a wonderful game, but disconnected 
from science. This even though, as Paradis points out, science was 
moving toward quantification. 

In 1868, he clarified his position a bit further: "But the man of sci
ence, who, forgetting the limits of philosophical inquiry, slides from 
these formulae and symbols into what is commonly understood by 
materialism, seems to me to place himself on a level with the math
ematician, who should mistake the x's and y's with which he works 
his problems, for real entities-and with this further disadvantage, as 
compared with the mathematician, that the blunders of the latter are 
of no practical consequence, while the errors of systematic material
ism may paralyse the energies and destroy the beauty of a life."15 
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Note Huxley's expression "the blunders of [mathematics] are of 
no practical consequence." Then consider that in our own day, an 
$18.5 million space probe-the Mariner 1 mission of July 22, 1962-
was lost because a hyphen was missing from a computer equation. 

Here's more from the same 1868 paper. We see here his thinking 
about mathematics being purely deductive. Note, too, how he com
pares the learning of a language with that of mathematics. In the third 
paragraph, he describes the state of education in his day. 

If the great benefits of scientific training are sought, it is essential 
that such training should be real: that is to say, that the mind of 
the scholar should be brought into direct relation with fact, that 
he should not merely be told a thing, but made to see by the use 
of his own intellect and ability that the thing is so and not other
wise. The great peculiarity of scientific training, that in virtue of 
which it cannot be replaced by any other discipline whatsoever, 
is this bringing of the mind directly into contact with fact, and 
practising the intellect in the completest form of induction; that 
is to say, in drawing conclusions from particular facts made 
known by immediate observation of Nature. 

The other studies which enter into ordinary education do not 
discipline the mind in this way. Mathematical training is almost 
purely deductive. The mathematician starts with a few simple 
propositions, the proof of which is so obvious that they are called 
self-evident, and the rest of his work consists of subtle deductions 
from them. The teaching of languages, at any rate as ordinarily 
practised, is of the same general nature-authority and tradition 
furnish the data, and the mental operations of the scholar are 
deductive .... " 

At present, education is almost entirely devoted to the cultiva
tion of the power of expression, and of the sense of literary beauty. 
The matter of having anything to say, beyond a hash of other peo
ple's opinions, or of possessing any criterion of beauty, so that we 
may distinguish between the Godlike and the devilish, is left aside 
as of no moment. I think I do not err in saying that if science were 
made a foundation of education, instead of being, at most, stuck 
on as cornice to the edifice, this state of things could not exist. 16 
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Darwin's Bulldog 

Over the course of Huxley's long career, there were many people 
who felt the sharp tip of his active pen. He feared not reputation or 
position. Many of his battles had to do with Darwin's theory of evo
lution. Darwin, ironically, had neither the heart for nor the interest 
in defending against the inevitable attacks, and he feared the worst. 
Early on, Huxley tried to calm him: "And as to the curs which will 
bark and yelp, you must recollect that some of your friends ... may 
stand you in good stead. I am sharpening up my claws and beak in 
readiness." 17 

One of Huxley's most famous bouts took place in 1860, the year 
after Darwin had sprung his theory on the world. Huxley took on 
the bishop of Oxford, Samuel Wilberforce, known to a select few as 
Soapy Sam. Coached by Richard Owen, one of the major scientists 
of his day, Wilberforce was expected to chop Darwin's evolutionary 
theory-and by extension, Huxley-to pieces. It was Huxley's job to 
stop him. This he did in a fine theatrical performance, and it helped 
earn him the title of Darwin's Bulldog. 18 I mention it only to empha
size Huxley's willingness to take on all kinds of challenges, and chal
lengers of all stripes and sizes. 

Another important battle fought by Huxley, of quite a different 
kind, took place almost a decade later. By the mid-1800s, uniformi
tarianism had become the dominant geological theory. It suggested 
that the past could be explained in terms of the geological actions and 
forces we see acting today. The main importance of unif ormitarian 
theory was that there was no need for such catastrophes as the Flood 
or for any supernatural influences; it thereby seemed to offer an effec
tive refutation of the Christian idea of a very young earth, shaped by 
catastrophes. 

Because unif ormitarian theory called for these earth-shaping forces 
to be acting over unlimited time, it fitted in nicely with Darwin's ideas; 
in fact, Darwin was influenced by the idea. Unhappily, both unifor
mitarianism and Darwinian evolution were theories, and difficult to 
prove. In addition, they were faced with a challenge that was virtu
ally impossible to answer. It came from a group of mathematical 
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physicists, the most important being William Thomson. A major 
force in 19th-century physics and mathematics, and later to become 
Lord Kelvin, Thomson had done some excellent work on thermody
namics, the scientific application of heat and work. Based on this 
work, and on some very careful mathematical calculations, Thomson 
came to the conclusion by the mid- l 800s that the earth could be no 
more than 400 million years old. 

If Thomson was right-and no one could find anything wrong 
with his calculations-then several major theories, including unifor
mitarianism and Darwin's evolution, were unworkable. So solid was 
Thomson's reputation that the evolutionists even tried to shorten the 
time needed by evolution to do its work, to no avail. 

A few of Thomson's opponents, including both uniformitarian 
geologists and biologists, accepted the accuracy of his calculations but 
began to question his assumptions, and so, some nine years after 
Huxley had debated Bishop Wilberforce, Huxley once again found 
himself chosen to do battle in a major arena. This time, however, 
the debate was to be held in a more scientific arena, the Geological 
Society of London. More important, his opponent was to be a far 
more capable adversary. This time it was William Thomson-who, 
by the way, had attended the earlier Huxley-Wilberforce debate. 

Although the two men found themselves debating in some very 
deep waters, including the origins of life on earth, the verbal debate 
settled nothing. Yet the back-and-forth challenges carried over into 
the following years and drew in other entries as well. 

In a review of Huxley's lecture in the Pall Mall Review of May 3, 
1869, John Tyndall called it "one of the most able addresses ever 
delivered by a President of the Geological Society."19 

On the other hand, Albert Ashforth, another of Huxley's biogra
phers, writing with the benefit of hindsight, later called Huxley's per
formance at the debate "his most unconvincing performance as a 
defender of Darwin."20 Perhaps, but Huxley made an interesting 
point. "I desire to point out," he declared, "that this seems to be one 
of the many cases in which the admitted accuracy of mathematical 
processes is allowed to throw a wholly inadmissible appearance of 
authority over the results obtained by them [scientists]. Mathematics 
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may be compared to a mill of exquisite workmanship, which grinds 
you stuff of any degree of fineness; but, nevertheless, what you get 
out depends upon what you put in; and as the grandest mill in the 
world will not extract wheat-Hour from peascods, so pages of formu
lae will not get a definite result out of loose data."21 

Perhaps he was suspicious for the wrong reasons. No matter. He 
was surely correct in his suspicion of Kelvin's figure. The figure was 
far too low, but the reason was not to be uncovered for another quar
ter of a century. A correct understanding had to await the discovery 
of radioactivity-the heat from which Thomson had not taken into 
account in his calculations, and this had thrown him off consider
ably. 22 Huxley's intuitive statement had been right on the mark. 

We see that Huxley would attack any idea, popular or not, if he 
felt it was wrong. An issue that he found particularly troubling was 
a growing interest in the Positivist philosophy of Auguste Comte. 
Though Comte had died in 1857, his followers were pushing the idea 
that they were sympathetic to the sciences, yet Huxley felt that 
implicit in their beliefs was an authoritarian spirit that was completely 
antithetical to his own ideas on the intellectual freedom needed in the 
sciences. He was also unhappy with attempts by Comte's followers 
to see, or create, connections between religion and science. 

Huxley would have none of that, and he decided the only way to 
deal with this would be to show that Comte didn't have a clue what 
science was all about. So, when others were giving high praise to 
Comte's Positivist philosophy, Huxley directed some sharp criticism 
at it. In February 1869, he published a critical article in the Fortnightly 
Review. Among a variety of stinging comments, we read, "What 
struck me was his [Comte's] want of apprehension of the great fea
tures of science; his strange mistakes as to the merits of his scientific 
contemporaries; and his ludicrously erroneous notions about the part 
which some of the scientific doctrines current in his time were des
tined to play in the future .... [l]t has been a periodical source of irri
tation to me to find M. Comte put forward as a representative of 
scientific thought."23 

What could have caused Huxley to be so acerbic? Surely, one 
reason was Comte's ideas on mathematics. In the same Fortnightly 
Review article, he quotes Comte as follows: 
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It is therefore by the study of mathematics, and only by it, that 
we can get a fair and profound idea of what is a science. It is 
uniquely there, where one must seek to know with precision the 
general method which the human mind uses constantly in all of 
its positive inquiries, because nowhere else are questions resolved 
in such a complete manner and deductions taken as far with rig
orous severity. It is also there that our understanding has given 
the greatest proofs of its force, since the ideas that are considered 
there are of the greatest degree of abstraction possible in the pos
itive order. All scientific education which does not begin by such 
a study [of mathematics] is necessarily lacking a solid base.24 

"That is to say," Huxley concludes triumphantly, "the only study 
which can confer 'a just and comprehensive idea of what is meant by 
science,' and, at the same time, furnish an exact conception of the 
general method of scientific investigation, is that which knows noth
ing of observation, nothing of experiment, nothing of induction, 
nothing of causation! And education, the whole secret of which con
sists in proceeding from the easy to the difficult, the concrete to the 
abstract, ought to be turned the other way, and pass from the abstract 
to the concrete."25 

Huxley was aware of the adversarial role he was playing in these 
and many other controversies. He was often attacked, for example, 
for his rather freethinking ideas on orthodox religion, as well as for 
his defense of Darwinism. These never bothered him, and, as we've 
seen, when he thought it necessary, he could answer with powerful 
argument and stinging rebuke. 

So it must have been something of a surprise, and a major shock, 
when a famous scientist stood up at an important scientific meeting 
and said that Thomas Henry Huxley may know a great deal about 
science, but when it comes to mathematics, which is so intimately tied 
to science, he does not know what he is talking about. 

And in the Other Corner 

I remember a joke that made the rounds in the early days of the civil 
rights era. A Southern redneck breaks his arm and goes to the only 
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black doctor in town to get it set. The redneck's friends are aghast 
that he would go to a black doctor. "What'd ya do that for?" they 
ask. The redneck responds, "If he can become a doctor in this town, 
he must be good." 

Something similar can be said for Sylvester, for he was a practic
ingJew at a time and a place where this was not an easy thing to be, 
particularly if there was something special about him. 

Born James Joseph in London on September 3, 1814, he was the 
sixth of nine children. An older brother had gone to the United 
States, where he had taken the name Sylvester, a renaming followed 
by the rest of the family. What could have possessed observant Jews 
to take on a name associated with early Christian popes who cer
tainly had no love for Jews? Perhaps they thought it would somehow 
ease the path of the younger Sylvesters in pursuing their lives and 
vocations. If that was the objective, it certainly did not work for 
James Joseph Sylvester. 

Sylvester didn't talk much about his early years, though we know 
he attended private schools between the ages of 6 and 14. His math
ematical talent must have shown itself early, for the last half of his 
14th year was spent at the University of London (later University 
College), where he studied under the brilliant mathematician/teacher/ 
writer Augustus De Morgan. He was expelled after an altercation 
with a fellow student whom he threatened with a table knife. We do 
not know how much provocation there was on the other side. 

At age 15 he entered the Royal Institution at Liverpool. At the end 
of his first year there, he won a prize in mathematics and was so far 
ahead of his classmates that he was placed in a class by himself. Yet 
his two years at Liverpool were not happy ones. Open about his reli
gion, he was persecuted constantly by his so-called Christian class
mates. He finally called it quits and fled to Dublin with only a few 
shillings in his pocket. 

From 1831 to 1837-with a two-year break due to illness-he 
attended St. John's College, Cambridge, and graduated as second 
wrangler, a high honor. Yet he was refused a degree because, as a Jew, 
he would not subscribe to the so-called Thirty-Nine Articles pre
scribed by the Church of England as a requirement for obtaining the 
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degree. He had to go to Trinity College in Dublin, where he was 
granted a B.A. in 1841. 

Sylvester had other such experiences, but in all cases he fought 
back. The mathematics historian Eric Temple Bell maintains-with a 
touch, perhaps, of poetic exaggeration-that Sylvester "was no meek, 
long-suffering martyr. He was full of strength and courage, both 
physical and moral, and he knew how to put up a devil of a fight to 
get justice for himself-and frequently did. He was in fact a born 
fighter with the untamed courage of a lion."26 

In 1838, he found his first job. It was at University College, Lon
don, where he was to teach natural philosophy, not mathematics. A 
major difference between Huxley and himself began to show up 
early, for Sylvester proved unsuited to the teaching of science in gen
eral and physics in particular, even though his old professor, Augus
tus De Morgan, was one of his colleagues and tried to help him. 

Karen H. Parshall, who edited a collection of his letters, states, 
"He disliked mounting experiments for his classes, and he proved vir
tually incapable of drawing diagrams on the board, despite lessons 
from the college's drawing master aimed at overcoming the prob
lem."27 Huxley, on the other hand, had always been a fine illustrator, 
which had served him in good stead at his work. Such differences do 
not, of course, guarantee antipathy, but we can perhaps begin to see 
why and how they viewed the world so differently. 

In the meantime, other aspects of Sylvester's remarkable career 
were falling into place. He began to make regular contributions to 
the Philosophical Magazine and, in April of 1839, was elected a 
fell ow of the Royal Society at the unusually young age of 25 for his 
work in "Physical and Mathematical subjects,'' that is, in applied 
mathematics. 

Sylvester stayed only two years at University College and in 1841 
tried his luck in the United States, at the University of Virginia. This 
position lasted just three months, ending amid conflicting reports of 
a run-in with a student and/or the administration. In one version of 
the entanglement, the administration refused to back him up in his 
punishment of a student who had insulted him.28 In another, he had 
to leave because of his outspoken antipathy to Negro slavery.29 
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There are other versions as well. They all, however, seem to involve 
some sort of conflict. 

After unsuccessful attempts to find other employment in the 
United States, he returned to Europe in the middle of 1843 and 
decided to leave academic life, at least for a while. He continued, 
however, to give some private lessons in mathematics and even had 
as a student Florence Nightingale, who was later to become famous 
as both a founder of modem nursing and a pioneer in sanitation and 
hygiene. 

He did some work as an actuary and then turned to law for a 
while. He was called to the Bar in November 1850. 

Although his fellowship at the Royal Society had been awarded 
for his work in applied mathematics, his concentration in later years 
was almost exclusively in pure mathematics. This interest was kin
dled mainly by his association with Arthur Cayley, whom he later 
met (around 1851) while both he and Cayley were working in the 
field of law. Yet both men went on to become two of the world's great 
mathematicians. 

Indeed, even when working at law, both men found time for 
mathematics, and each inspired the other. From then on, Sylvester 
was reenergized and produced some of his best work. 

In 1854, he was an unsuccessful candidate for the chair of math
ematics at the Royal Military Academy, at Woolwich. Yet he achieved 
a kind of moral victory in the summer of 1855 when he obtained
with the aid of an influential supporter-an examinership at the acad
emy and thereby forced, as he put it, "the practical admission (the 
first I think in this country) that ajew as such shall not be debarred 
from public situations for which he is competent."30 

The moral victory turned into more than that when the new 
incumbent conveniently died soon afterward, and Sylvester was 
named in his place. Sylvester wrote to his patron and supporter, Lord 
Brougham, thanking him profusely and promising to dedicate him
self to both study and service. 

Unhappily, Sylvester once again found himself at odds with one 
group or another. Parshall writes that he "viewed himself as a 
researcher and teacher (in that order); the authorities saw him as 
a teacher alone and had little sympathy for his desire for time to 
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pursue his own researches. These conflicting expectations, coupled 
with Sylvester's strong and long-standing sense of faculty autonomy 
in classroom matters, provoked tension repeatedly throughout his 
fifteen-year tenure at Woolwich." 31 The result was that he was 
productive while at Woolwich but had to fight constantly for the time 
in which to prepare his papers and to take care of other matters. In 
1855, he had become the editor of the Qyarterly Journal ef Pure and 
Applied Mathematics. In 1863, he became the mathematics correspon
dent to the French Academy of Sciences. 

From 1866 to 1868, he was president of the newly formed Lon
don Mathematical Society. It was, all in all, a busy and productive, 
if difficult, time for Sylvester. 

Over the long years of his career, he produced many papers on 
mathematics, including such areas as the theory of numbers, differ
ential equations, and higher algebra. 

He was both inventive and productive. His papers, published 
after his death, fill four large volumes. Though he worked in many 
areas, much of his work was in resolving basic problems in algebra; 
this included work on the roots of quintic equations. He worked on 
the calculus. Although his inventiveness was somewhat marred by 
his failure to include rigorous proofs for his ideas, he was adept at cre
ating the language and the notation in these areas as they were 
needed. He coined much of the terminology in the theory of invari
ants, as well as the often used concept of the matrix, the rectangular 
array of numbers from which determinants can be formed. It was 
this sort of inventive genius that prompted the Royal Society to 
award him the Royal Medal in 1861 and, later, the Copley Medal in 
1880. 

Bell describes him: "Sylvester, short and stocky, with a magnifi
cent head set firmly on broad shoulders, gave the impression of 
tremendous strength and vitality, and indeed he had both."32 Exag
geration or not, Sylvester felt, as he himself wrote in later years, that 
he had been fighting the world all his days.33 James R. Newman, the 
creator of the masterful four-volume The World ef Mathematics, 
describes him as brilliant, quick-tempered, and restless.34 

So Sylvester was a brilliant mathematician, as well as a fighter, and 
was known to be an excellent speaker. All of this gave the Council 
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of the British Association good reason for choosing him as its cham
pion. Yet Sylvester's willingness to enter the ring may also have 
played a part, for he may in fact have harbored some personal ani
mosity toward Huxley. 

A new club had been formed in November 1864. This was the X 
Club, a highly selective group of Royal Society members that virtu
ally ran British science. Huxley was included; Sylvester was not. The 
small group met for dinner before the monthly meetings of the 
Royal Society and kept going until 1892 when it literally died of old 
age. Sylvester was a close friend of one of the members-namely, the 
mathematician and physicist Thomas Archer Hirst-and was on 
speaking terms with most of the other members. For whatever rea
son, though, he was never invited into the club, in spite of the fact 
that there were 9 members and it was initially intended to consist of 
10. Furthermore, it did include a couple of mathematicians. Of all 
Huxley's various connections, this club was the one he valued the 
most, and considering Huxley's important position in British science, 
Sylvester may well have blamed Huxley for his not being invited in. 
He later referred to the group as a "cabal." 

In any case, this was the man deemed best able to respond to 
Huxley's charges against mathematics. 

Sylvester's Response 

The occasion was the 1869 Presidential Address to Section A-the 
Mathematical and Physical Section-of the British Association. 
Sylvester had been elected president of this section, with, as he put 
it, the "tranquilizing assurance that it would rest with myself to 
deliver or withold an address as I might see fit."35 

At first, Sylvester felt that he had no address to deliver. On reflec
tion, however, he decided that "failing an address, the members 
would feel very much like the guests at a wedding-breakfast where 
no one was willing or able to propose the health of the bride and 
bridegroom."36 This seems now like a curious explanation, sounding 
more like the introduction to a toast than a roast, and indeed 
Sylvester began his address with some very respectful remarks. For 
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example, he referred to Huxley as "one whom I no less respect for 
his honesty and public spirit than I admire for his genius and elo
quence." Then, however, he added, "But from whose opinions on a 
subject which he has not studied I feel constrained to differ."37 

Sylvester has begun his attack. It builds slowly: "I have no doubt 
that had my distinguished friend, the probable President-elect of the 
next Meeting of the Association, applied his uncommon powers of 
reasoning, induction, comparison, observation, and invention to the 
study of mathematical science, he would have become as great a 
mathematician as he is now a biologist. ... and the eminence of his 
position and the weight justly attaching to his name render it only the 
more imperative that any assertions proceeding from such a quarter, 
which may appear to me erroneous, or so expressed as to be con
ducive to error, should not remain unchallenged or to be passed over 
in silence."38 

After a few more introductory remarks, Sylvester quoted Hux
ley's inflammatory statement: '"Mathematics is that study which 
knows nothing of observation, nothing of experiment, nothing of 
induction, nothing of causation.' "39 

Sylvester's answer: 

I think no statement could have been made more opposite to the 
undoubted facts of the case, [I think] that mathematical analysis 
is constantly invoking the aid of new principles, new ideas, and 
new methods, [is] not capable of being defined by any form of 
words, but spring[s] direct from the inherent powers and activity 
of the human mind, and from continually renewed introspection 
of that inner world of thought of which the phenomena are as var
ied and require as close attention to discern as those of the outer 
physical world ... that it is unceasingly calling forth the faculties 
of observation and comparison, that one of its principal weapons 
is induction, that it has frequent recourse to experimental trial and 
verification, and that it affords a boundless scope for the exercise 
of the highest efforts of imagination and invention."40 

Sylvester went on to give some examples to back up his claims, 
such as, "Lagrange, than whom no greater authority could be 
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quoted, has expressed emphatically his belief in the importance to the 
mathematician of the faculty of observation; Gauss has called math
ematics a science of the eye, and in conformity with this view always 
paid the most punctilious attention to preserve his text free from 
typographical errors."41 

Then, moving to a theme that Huxley could hardly have imag
ined, Sylvester continued, "The ever to be lamented Riemann has 
written a thesis to show that the basis of our conception of space is 
purely empirical, and our knowledge of its laws the result of obser
vation, that other kinds of space might be conceived to exist subject 
to laws different from those which govern the actual space in 
which we are immersed, and that there is no evidence of these laws 
extending to the ultimate infinitesimal elements of which space is 
composed."42 

Later, he stated, "Most, if not all, of the great ideas of modern 
mathematics have had their origin in observation." Among the sev
eral examples he gave is "Sturm's theorem about the roots of equa
tions, which, as he informed me with his own lips, stared him in the 
face in the midst of some mechanical investigations connected with 
the motion of compound pendulums."43 

After several examples, he added: 

I might go on, were it necessary, piling instance upon instance to 
prove the paramount importance of the faculty of observation to 
the process of mathematical discovery. Were it not unbecoming 
to dilate on one's personal experience, I could tell a story of 
almost romantic interest about my own latest researches in a field 
where Geometry, Algebra, and the Theory of Numbers melt in 
a surprising manner into one another, like sunset tints or the 
colours of the dying dolphin, "the last still loveliest" (a sketch of 
which has just appeared in the Proceedings ef the London Mathemat
ical Society), which would very strikingly illustrate how much 
observation, divination, induction, experimental trial, and verifi
cation, causation, too (if that means, as I suppose it must, mount
ing from phenomena to their reasons or causes of being), have to 
do with the work of the mathematician.44 
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Then, however, Sylvester did a curious kind of backpedaling and 
said the same sort of things about mathematics education in England 
that Huxley had been claiming for British education in general right 
along: 

I, of course, am not so absurd as to maintain that the habit of 
observation of external nature will be best or in any degree cul
tivated by the study of mathematics, at all events as that study is 
at present conducted[,] and no one can desire more earnestly than 
myself to see natural and experimental science introduced into 
our schools as a primary and indispensable branch of education: 
I think that study and mathematical culture should go hand in 
hand together, and that they would greatly influence each other 
for their mutual good. I should rejoice to see mathematics taught 
with that life and animation which the presence and example of 
her young and buoyant sister could not fail to impart . . . [and] 
the mind of the student quickened and elevated and his faith 
awakened by early initiation into the ruling ideas of polarity, con
tinuity, infinity, and familiarization with the doctrine of the imag
inary and inconceivable.45 

Again, in a mode reminiscent of Huxley's complaints about 
British education in general, "It is this living interest in the subject 
which is so wanting in our traditional and mediaeval modes of 
teaching. In France, Germany, and Italy, everywhere I have been on 
the Continent, mind acts direct on mind in a manner unknown to the 
frozen formality of our academic institutions' schools of thought, and 
centres of real intellectual cooperation exist; the relation of master 
and pupil is acknowledged as a spiritual and a lifelong tie, connect
ing successive generations of great thinkers with each other in an 
unbroken chain."46 

Then, however, he returned to his basic point: "When followed 
out in this spirit, there is no study in the world which brings into 
more harmonious action all the faculties of the mind than the one of 
which I stand here as the humble representative, there is none other 
which prepares so many agreeable surprises for its followers ... , or 
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... seems to raise them, by successive steps of initiation, to higher 
and higher states of conscious intellectual being."47 

Sylvester had to know that he was locking horns with an experi
enced, determined, and unusually disputatious competitor. Though 
trying not to insult directly, he had to know that he had nevertheless 
directly challenged Darwin's Bulldog, one who was known to have, 
in the words of Adrian Desmond, "a stiletto of a pen."48 

Huxley after Sylvester 

Yet somehow, and for whatever reason, Huxley never offered a 
direct reply to Sylvester's British Association lecture. Considering his 
apparently strong feelings on the matter, and his usual willingness to 
take on all challengers, this seems strange indeed. 

There are several possibilities here. One is that he never saw or 
heard anything about Sylvester's charges. Considering both men's 
connection with the British Association, this is very unlikely. 

Another is that Huxley was simply overworked. One of his biog
raphers, Cyril Bibby, writes that for some time during the 1870s, Hux
ley "seems to have remained uncharacteristically non-combatant," 
explaining that "he was desperately overworked and chronically weary 
and dyspeptic."49 This may just as well have been the case in 1869. 

In any case, Bibby also points out that "on all the major issues of 
philosophy, Huxley's final positions did not differ greatly from those 
taken as a young man."50 

Did this include Huxley's feelings about mathematics? One 
scholar, Alexander MacFarlane, argues in his Lectures on Ten British 
Mathematicians ef the .Nineteenth Century that Huxley, "convinced or not 
... had sufficient sagacity to see that he had ventured far beyond his 
depth."51 

I wonder. With regard to Sylvester's charges, it may be that Hux
ley found little to argue with, and that he actually did change his 
thinking as a result. If there were such changes, however, they were 
subtle. I have seen little on this in his biographies or in his own later 
writings, but he does make occasional reference in these writings to 
mathematics. 
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For example, in an 1876 lecture giving his proposals for a good 
university education, he suggested that "Mathematics will soar into 
its highest regions."52 

It sounds like he has begun to see the error of his thinking. Yet 
when he wrote in greater detail, a different picture emerges. In 1872, 
he felt that "In our ideal University, a man should be able to obtain 
instruction in all forms of knowledge. Now, by 'forms of knowledge' 
I mean the great classes of things knowable." He talked of three 
classes: the first had to do with our mental facilities, for example, 
logic, psychology, and so forth; the second concerned man's welfare 
and conduct, and included moral and religious aspects; but it is the 
third class that we are most interested in. He wrote, "A third class 
embraces knowledge of the phrenomena of the Universe, as that 
which lies about the individual man; and of the rules which those 
phrenomena are observed to follow in the order of their occurrence, 
which we term the laws of Nature. 

"This is what ought to be called Natural Science, or Physiology, 
though those terms are hopelessly diverted from such a meaning; 
and it includes all exact knowledge of natural fact, whether Mathe
matical, Physical, Biological, or Social."53 In other words, Huxley is 
still classifying mathematics under the rubric of exact knowledge 
that must be learned along with physical, biological, or social 
knowledge. 

Similarly, in 1882 he could write, "But a great mathematician, and 
even many persons who are not great mathematicians, will tell you 
that they derive immense pleasure from geometrical reasonings. 
Everybody knows mathematicians speak of solutions and problems 
as 'elegant,' and they tell you that a certain mass of mystic symbols 
is 'beautiful, quite lovely.' Well, you do not see it. They do see it, 
because the intellectual process, the process of comprehending the 
reasons symbolised by these figures and these signs, confers upon 
them a sort of pleasure, such as an artist has in visual syrnmetry."54 

Note his term mystic symbols and his comparison with the pleasure 
an artist derives from viewing something felicitous or beautiful. Of 
course, there is beauty to be seen in mathematics, but my guess is 
that Huxley was still blind to what it is that mathematics involves and 
offers that is beyond beauty. 
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My reading of these words is that, to put it bluntly, the mathemati
cian is, in general, not really doing anything useful, as the scientist 
is. (As I mentioned earlier, this was not, and is not, a position unique 
to Huxley.) 

Sylvester after Huxley 

In 1870, the year after the British Association meeting, Sylvester was 
forced to retire from Woolwich at the ripe old age of 56. Much of his 
most important work was still in the future, but his superiors in the 
War Office assumed that a man of his age should retire. In the 
process, the school's administration tried to cheat him out of some 
of his retirement income, but he fought for it and won his case. 

Though honors still came his way, he turned more to his beloved 
poetry, read the classics, and played chess. In other words, he thought 
that his productive days in mathematics were pretty much over. In 
1876, however, he was called to Johns Hopkins University as its first 
professor of mathematics. Sylvester came to mathematical life once 
again and went on to spend seven glorious and productive years at 
the renowned American institution. 

Ironically, the institution had opened not long before, and its 
keynote speaker had been another Englishman-Thomas Henry 
Huxley! 

So both men were deeply involved in education, though, of 
course, from different points of view. Huxley, so far as I am con
cerned, was never fully convinced by Sylvester's arguments about 
mathematics. 

Though Sylvester remained a British subject, he played an 
extremely important role in stimulating the mathematical research 
community in the United States, as well as in Great Britain. In his 
teaching, he was just as likely to have his students working on a new 
problem as trying to solve an old one. His teaching methods, his 
love for the subject, his enthusiastic and broad-based activity all 
helped to create a fine department of mathematics and a strong start 
for research mathematics in the United States-not only via the 
university but also by his founding and editing the American Joumal 
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<fMathematics, to which he contributed 30 papers. In addition, he also 
fought for the right of women to study in the field when it was not 
the usual thing to do. 

Sylvester wanted to bring mathematics into peoples' lives, to 
make it a living thing. Huxley wanted to do the same for science. Sci
ence has become so much a part of our everyday world, and of our 
educational process, that we tend to forget that only a short century 
and half ago, there was strong opposition to the addition of science 
at both lower and higher education levels. The same holds for Dar
win's theory of evolution. Today's much more balanced curriculum 
owes its existence in large part to Huxley's early urgings. 

His view of mathematics remained cramped, however-rather 
like a set of rules that, once learned, said it all. Sylvester's view 
couldn't be more different. As he saw it, 

Mathematics is not a book confined within a cover and bound 
between brazen [brass] clips, whose contents it needs only 
patience to ransack; it is not a mine, whose treasures may take 
long to reduce into possession, but which fill only a limited num
ber of veins and lodes; it is not a soil, whose fertility can be 
exhausted by the yield of successive harvests; it is not a continent 
or an ocean, whose area can be mapped out and its contour 
defined; it is limitless as that space which it finds too narrow for 
its aspirations; its possibilities are as infinite as the worlds which 
are forever crowding in and multiplying upon the astronomer's 
gaze; it is as incapable of being restricted within assigned bound
aries or being reduced to definitions of permanent validity."55 

Clearly, Huxley and Sylvester had very different ideas on math
ematics. But with regard to British education, and the American edu
cational system as well, we were lucky to have had both men as 
champions. 



6 

Kronecker versus Cantor 
Mathematical Humbug 

Avariety of famous definitions, axioms, and notions lie at the 
heart of Euclid's geometry, a self-contained branch of mathe

matics that has inspired generations of mathematicians with its pre
cision and order. One of Euclid's well-known "common notions" 
states that the whole is greater than the part. It stood without ques
tion for more than 2,000 years. 

Then, in the early 1870s, an unknown mathematician began to 
claim that when it comes to numbers and number theory, the whole 
may rwt be greater than the part. It seemed an outrageous claim, and 
one that could have been safely ignored had it not been made by a 
brilliant, tenacious young German by the name of Georg Cantor. 
And that was only a small part of Cantor's math-shaking claims. 
Another had to do with that mysterious concept known as infinity. 

116 
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Mathematicians and philosophers had long nibbled around the 
edges of this arcane concept. Some, like Galileo, argued that infinity 
is "by its very nature incomprehensible to us." 1 Karl Friederich 
Gauss wrote to another mathematician, "I protest against the use of 
an infinite quantity as an actual entity; this is never allowed in math
ematics. The infinite is only a manner of speaking."2 Cantor not only 
argued for a real, concrete infinity but insisted that there are differ
ent sizes and found a way to deal with the concept mathematically. 

How important was his work? He created set theory, which 
became the basis for topology, fractals, and much else in our mod
ern times. Cantor's work with sets led to advances that helped pro
vide a rigorous grounding for the calculus. Combining the two 
concepts, set theory and infinity, he came up with infinite sets, an idea 
that was to create excitement for others, new research fields for many, 
and both pain and pleasure for himself. 

Cantor's new theory of numbers would influence and challenge 
a generation of mathematicians in his own day. It led to a critical 
investigation that shook the very foundations of mathematics. In 
addition, its implications and paradoxes have continued to challenge 
the following generations of mathematicians right up to the present. 
The eminent German mathematician David Hilbert would later 
describe Cantor's work as "the most astonishing product of mathe
matical thought, one of the most beautiful realizations of human 
activity in the domain of the purely intelligible."3 

It's not unusual for someone introducing new work to face oppo
sition, but Cantor's treatment seems to have been especially severe 
and unpleasant. Joseph W. Dauben, possibly the foremost Cantor 
scholar in the United States, compares Cantor's treatment by his con
temporaries with that of Giordano Bruno by the Inquisition. He 
writes, "While none of the major participants in the modern attempt 
to move from a closed mathematical universe into a surprisingly and 
complexly infinite one was ever burned at the stake, Georg Cantor, 
in a less dramatic way, faced inquisition and repudiation at the 
hands of many of his contemporaries."4 

Foremost among these opponents was Leopold Kronecker, a 
highly placed and influential German mathematician. Kronecker 
had been one of Cantor's teachers; he had in fact been an early 
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supporter of Cantor's work and had even provided constructive crit
icism for one of Cantor's early papers. As Cantor's work veered 
toward the unorthodox, however, Kronecker turned more and more 
against both Cantor and his work. At the height of their conflict, says 
Dauben, "Kronecker considered Cantor a scientific charlatan, a 
renegade, a 'corruptor of youth."'5 

Kronecker 

Born in 1823 into a wealthy German Jewish family, Leopold Kro
necker was given a good early education and had the luxury of being 
able to carry on his mathematical studies for as long as he wanted. 
At his hometown school in Liegnitz (now Legnica, Poland), he stud
ied mathematics with Ernst Eduard Kummer, who went on to do 
brilliant work in higher arithmetic and geometry, and who would 
remain a close friend to Kronecker. In 1841, Kronecker enrolled at 
the University of Berlin, by that time the mathematics capital of the 
world, and studied with some of the best people in the field-P. G. 
Lejeune Dirichlet, Carl Gustav Jacobi, and Ferdinand Gotthold 
Eisenstein. He received his doctorate in 1845 but was diverted from 
a mathematical career for a full decade by pressing family business. 
In this time he married, began a family, and continued to do some 
mathematics but strictly as a hobby. 

In 1855, he and his family moved to Berlin, and he began a 
professional career in mathematics, but then things moved quickly 
for him. 

It was a time of important change in the German mathematical 
scene. The University of Gottingen persuaded Dirichlet to come to 
it from Berlin, and Kummer was brought in to fill the vacancy. At 
Kummer's suggestion, Karl Theodor Weierstrass-a successful sec
ondary school teacher who had just published a well-received paper 
on power series representation of a function-was also brought on 
board. Although Kronecker was not yet a member of the Berlin fac
ulty, he was producing papers at a good rate, and his growing repu
tation brought him a membership in the Royal Academy of Sciences 
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in Berlin; this in tum carried with it the right to give lectures at the 
university. 

In 1866, Kronecker was offered a good position at the University 
of Gottingen, but life was too good in Berlin, and he declined. Still, 
it was not until 1883, when Kummer retired, that Kronecker became 
a professor at the University of Berlin. Nevertheless, from the 1860s 
on, these three-Kummer, Weierstrass, and Kronecker-would be 
the ruling triumvirate in German mathematics for more than a quar
ter of a century. Kronecker was particularly active in the Berlin Acad
emy, where he was instrumental in recruiting many of the most 
important mathematicians, both foreign and German. Among them 
were Sylvester and Richard Dedekind, of whom we'll have more to 
say later. 

Kronecker was also a member of several other societies, and his 
advice was often requested when it came time to fill mathematical 
posts both in Germany and abroad. In 1880, he became the editor 
of August Leopold Crelle's Journal for Pure and Applied Mathematics. 
Often referred to simply as Crelle's Journal, it was probably the most 
respected mathematical journal of its day. 

Kronecker's main achievements lay in his efforts to unify arith
metic, algebra, and analysis and in his work with elliptical functions. 
He introduced a number of refinements in algebra and in the theory 
of numbers, as well as many new concepts and theorems, such as his 
theorem on the convergence of infinite series. 

Ironically, Kronecker was a bit of a maverick himself. He believed, 
for example, that all of arithmetic could be based on whole numbers. 
Thus he regarded fractional numbers as possessing only a kind of 
derivative character and as being useful only for notational purposes. 
He classified all mathematical disciplines except geometry and 
mechanics, but including algebra and analysis, as arithmetical. 
Because he believed that all of arithmetic could be based on whole 
numbers, he felt that not only fractions but irrationals and complex 
numbers as well were false or illusory ideas, and they had arisen 
through the application of some sort of false mathematical logic. 

Thus, when Ferdinand Lindemann wrote a paper containing a 
proof of the existence of transcendental numbers, Kronecker would 
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comment, "Of what use is your beautiful research on the number 
n? Why cogitate over such problems, when really there are no 
irrational numbers whatever?"6 He believed that eventually a way 
would be found to recast these "unnatural" forms into a more 
elementary form involving only the natural numbers. A beautiful 
one-liner of his states, "God made the integers; all the rest is the work 
of man." 

Is it any wonder that Kronecker and Cantor struck sparks? 
But Kronecker's approach to mathematics also put him into dis

agreement with some of his contemporaries. Though Kronecker was 
careful not to get into a shouting match with people he saw as adver
saries, or to commit nasty remarks to print, he was not above behav
ing in a nasty or hurtful way or saying damaging things behind their 
backs. Among others he went after was his one-time good friend 
Weierstrass. The two spent their last years in complete disagreement 
over their mathematical views. Kronecker was also annoyed and frus
trated by Weierstrass's great success as a teacher. 

We get an idea of how Kronecker worked from an 1885 letter 
Weierstrass sent to his colleague Sonya Kowalevsky. He wrote, 

But the worst of it is that Kronecker uses his authority to proclaim 
that all those who up to now have laboured to establish the the
ory of functions are sinners before the Lord. When a whimsical 
eccentric like [Elwin B.] Christoffel says that in twenty or thirty 
years the present theory of functions will be buried ... we reply 
with a shrug. But [then] Kronecker delivers himself of the follow
ing verdict which I repeat word for word: "If time and strength are 
granted me, I myself will show ... a more rigorous way. If I can
not do it myself those who come after me will ... and they will 

recognize the incorrectness of all those conclusions with which 
so-called analysis works at present." Such a verdict from a man 
whose eminent talent and distinguished performance ... I admire 
as sincerely ... as [do] all his colleagues, is not only humiliating 
for those whom he adjures to acknowledge as in error ... but it 
is a direct appeal to the younger generation to desert their pres
ent leaders and rally around him .... Truly it is sad, and it fills 
me with a bitter grief, to see a man whose glory is without a flaw 
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let himself be driven by the well justified feeling of his own 
worth to utterances whose injurious effect upon others he seems 
not to perceive. 7 

Kronecker was a small man; Weierstrass was a big man. The 
mathematics historian Amir D. Aczel describes what he calls the 
"comic nature of these clashes, with the small man constantly attack
ing the large one like a small dog going after a St. Bemard."8 Weier
strass even considered decamping for Switzerland to escape the 
constant bickering with Kronecker, but he feared that Kronecker 
would have considerable input in the choice of his successor-and 
that all his, Weierstrass's, work would be undone by anyone accept
able to Kronecker. He stayed on. By 1888, he let it be known to sev
eral of his friends that his friendship with Kronecker was finished. 
Kronecker, however, apparently never understood how much his 
behavior had affected Weierstrass and on several later occasions still 
referred to him as a friend. 

Kronecker also had an interesting run-in with his longtime friend 
and colleague Hermann Amandus Schwarz. Schwarz was Kummer's 
son-in-law and had been Weierstrass's student. Weierstrass, remem
ber, was a big man; Kronecker was not only very short, but was very 
self-conscious about it. In 1885 Schwarz sent him a greeting that 
included the statement: "He who does not honor the Smaller, is not 
worthy of the Greater." Schwarz apparently thought he was cleverly, 
and humorously, honoring Kronecker. Kronecker did not see the 
joke, but again, there was no sharp written or even verbal response. 
He simply had no further dealings with Schwarz. 

So Cantor was not the only person with whom Kronecker had a 
falling out. Yet when we look at all the factors-his rigid ideas on 
numbers and infinity; his reputation and powerful positions in both 
the academic and the publishing world; and his ability and inclina
tion to throw his weight around-we begin to see why his main tar
get would be Cantor. Another difference lies in how his opponents 
dealt with this treatment. Schwarz, Weierstrass, and others were not 
happy about it but came through intact. Cantor, as we'll see later, had 
much more trouble in coming to terms with Kronecker, and with 
life's treatment in general. 
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Cantor and His Strange Ideas 

Half a century ago, we might have read of another interesting reason 
for antipathy between the two men. Among the early 20th-century 
biographers of Cantor and Kronecker was Eric Temple Bell, an influ
ential historian of mathematics with a silvery pen and a vivid imag
ination. In 1937, he wrote of their feud: "There is no more vicious 
academic hatred than that of one Jew for another when they disagree 
on purely scientific matters or when one is jealous or afraid of 
another."9 

Aside from the questionable sociological aspect of the statement, 
Cantor-in spite of the Jewish-sounding name, and in spite of the 
fact that he chose the Hebrew letter aleph for his notation-was not 
Jewish. In fact, Bell writes elsewhere in the same article that "The 
family were Christians, the father having been converted to Protes
tantism; the mother was born a Roman Catholic."10 

There may have been aJewish element somewhere in Cantor's 
genealogical background, but he was born into a solidly religious 
Christian family and was later strongly attracted to, and became 
involved with, the Roman Catholic clergy. He even felt that set 
theory had been revealed to him by a Christian God. As he put it in 
1896: "From me, Christian philosophy will be offered for the first 
time the true theory of the infinite." 11 

Another difference between Cantor and Kronecker lay in their 
cultural backgrounds. Kronecker's father was a businessman. Can
tor's father was also in business, but the family was deeply steeped 
in the arts. As a youngster, Cantor showed talent in both music and 
drawing. Nevertheless, his mathematical ability and interest showed 
up by his mid-teens, and although his father wanted him to study 
engineering, he was able to overcome his father's objections and 
follow his own lead. 

Cantor was born in 1845 in St. Petersburg and attended primary 
school there. But his father's health was not good and, when Georg 
was 11, they moved to Germany for its warmer climate. It appears 
that Georg never felt really comfortable in Germany and looked back 
fondly at his earlier years in Russia. In 1863, at the age of 18, he 
entered the University of Berlin and began his studies in earnest with 
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Weierstrass, Kummer, and Kronecker. He was also active in the 
Mathematical Society in Berlin and acted as president during 
1864-1865. 

Following a semester at the University of Gottingen in 1866, he 
wrote his doctoral thesis at the University of Berlin in 1867. Its title 
was "On Indeterminate Second-Degree Equations." In preparing to 
defend for his oral examination, however, he also dealt with the 
proposition "In Mathematics the Art of Asking Qyestions Is More 
Valuable than Solving Problems." He used as an example a question 
about number theory that Carl Friedrich Gauss had left open in his 
Disquisitiones Arithmetica.e of 1801. This was an early hint of Cantor's 
special way of asking questions, which would later open up whole 
new areas of inquiry. 

After receiving his doctorate in 1867, he taught briefly at a Berlin 
girl's school and then joined the faculty at the University of Halle. 
There he remained for his entire career: first as a lecturer (income 
from lecture fees only); then, in 1872, as an assistant professor; and, 
finally, as a full professor in 1879. This was a curious situation. He 
felt that he was being consigned to a basically second-rate school, 
shut off from inspiration and interaction with other high-caliber 
people, for his entire working life. Throughout his later career, he 
blamed Kronecker for being held down in this manner. 

Yet throughout his career he was in touch with high-caliber peo
ple like Karl Weierstrass, Hermann A. Schwarz, Richard Dedekind, 
Gosta Mittag-Leffier, and Felix Klein. Further, being in Halle might 
be comparable to someone being at UMass Amherst when he really 
wanted to be at Harvard or MIT. Amherst is not second-rate, and 
being there doesn't cut one off from the rest of academia; but it isn't 
Harvard. In other words, although Cantor resented not being at 
Berlin or Gottingen, in truth Halle was really not as bad as he made 
it out to be. Finally, as we will see, he had powerful mood swings that 
may at times have intensified his unhappiness. 

On the positive side, somehow he made it all work. He began to 
produce mathematical papers. The earliest had to do with the theory 
of numbers, reflecting the influences and the interests of Gauss and, 
ironically, Kronecker. Then Eduard Heine, one of the senior people 
at Halle, recognized something special in Cantor. Heine had wrestled 
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with, and had done a paper on, an interesting question: if a function 
could be represented by a trigonometric series, was there only one 
such series? At Heine's suggestion, Cantor looked into the question 
and came up with an important proof of the uniqueness of such a 
senes. 

This was not a simple matter and was accomplished in several 
steps, each with a published paper showing extensions of his unique
ness theorem. Most of his early papers were published in the Swedish 
journal Acta Mathematica. This respected journal had been founded 
and was edited by the Swede Costa Mittag-Leffier, who was among 
the first mathematicians to recognize Cantor's genius. Early on, 
Kronecker had made a suggestion to Cantor that proved very use
ful. Clearly, the two men were still on good terms at this point in their 
relationship. 

Cantor continued to dig. He began thinking about the collection 
of numbers (or points), including irrational numbers, that would not 
conflict with a trigonometric representation, and in an 1872 paper, he 
defined irrational numbers in terms of convergent sequences of 
rational numbers. He was moving into territory that made Kronecker 
uneasy. 

Cantor's uniqueness proof of a trigonometric series also involved 
the nature of point sets in a real line, so he began to explore and 
expand on the complexities of point sets and their connection with 
sets of other kinds of numbers.* 

Infinite Set Theory 

Philosophers, theologians, and mathematicians have wrestled with 
the concept of infinity, and its many implications, since the days of 
the Greeks. Galileo, for example, thought it important to point out 
in his classic Dialogues Corueming Two New Sciences (1638) that there are 
as many squares as there are natural numbers because, as he put it, 

*The term set can have many meanmgs. In 1895, Cantor saw it as any gathering into 
a whole set M of distinct perceptual or mental objects m, which he called the elements 
of M. 
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"every square has its own root and every root its own square, while 
no square has more than one root and no root more than one 
square."12 

In other words, if we consider the class, or set, of all positive inte
gers, we have a huge, unbounded collection of numbers-a collection 
that, in itself, is beyond anyone's comprehension. Conceptually, 
however, it must exist. Then, considering Galileo's statement, we also 
have a set of squares, one for each of the positive integers. Galileo 
said there are as many squares as there are natural numbers. Yet 
Galileo knew there are also integers that are not squares: 2, 3, 5, 6, 
7, and so on. How can there not be less squares than there are natu
ral numbers? Galileo saw in this only a conundrum, a paradox, and 
went on to other things. 

Cantor carried the idea further. He started with an idea put forth 
by Richard Dedekind, one of his early admirers. In 1872, Dedekind 
had defined a set as infinite if it could be put into one-to-one 
correspondence with one of its subsets. For example, if we list all the 
natural numbers, say 1, 2, 3 ... n . .. , we can easily place them in 
direct, one-to-one correspondence with their squares, 1, 4, 9 ... n2 • 

. . Cantor took off from there. Both the full set (1, 2, 3 ... n . .. ) and 
the subset (1, 4, 9 ... n2 .•• ), he said, are "countably infinite" or 
"denumerable." 

Such "countably infinite" sets, he said, have the same "cardinal
ity." To denote this level of cardinality, he used the first letter in the 
Hebrew alphabet, the aleph, along with the subscript zero, and 
termed it aleph-null ( N0 ). 

In other words, the set N of natural numbers can be put into a 
one-to-one correspondence with (has the same "power" as) a subset 
of itself. Therefore, the whole is equal to a part of itself. This, of 
course, is in direct opposition to Euclid's long-lasting axiom that the 
whole is greater than the part. 

Now Cantor was really swinging. He began to create a new kind 
of arithmetic. He showed, for example, that if we add all the integers 
(aleph-null) to all the squared integers (also aleph-null), the result is 
still aleph-null! 
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And, similarly, 

N0 x N0 = N0 . 

And so on. To some people, this might have seemed like nothing 
more than a game. Cantor saw that there was more to it, that it both 
required and was the beginning of a new kind of mathematics. 

His choice of the aleph symbol was both clever and apt. He felt, 
mainly, that Greek and Roman letters were already widely used in 
mathematics and science, and that his mathematics deserved a 
unique symbol. But it was not until the early 1890s that he saw the 
need for a standardized symbol and formally introduced it. Prior to 
then he experimented with different notations. We use the aleph here 
to simplify the exposition. 

Set Theory Is Born 

The 1870s and 1880s were years of development in set theory. 
Dedekind had done some work with the one-to-one correspondence 
of infinite sets and subsets in 1872. Cantor went on to the next log
ical question: Are there sets that are uncountably infinite? That is, are 
there different sizes of infinities? He began this search by once again 
looking at his sets of numbers. He knew that the set of rational num
bers could be put into one-to-one correspondence with the natural 
numbers, as could the algebraic numbers.* 

Could this be done with the set of real numbers?t It took some 
doing, but by the end of December 1873, he could write to Dedekind 
that he had succeeded in proving that the set of real numbers could 
rwt be put into one-to-one correspondence with the set of natural num
bers; 13 it was "uncountably infinite." Cantor used the name contin
uum for this set, and gave it the symbol c. At this point, set theory was 
born, and the concept of different sizes of infinity came into being. 

*Rauonal numbers include integers and ratios of integers (fractions); algebraic numbers 
are the roots of polynomial equations with rational coefficients. 

"tR.eal numbers are defined as those that can be represented by decimals; also the set of 
numbers that includes all rational and irrational numbers. 
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With this proof, he had shown that the order of real numbers was 
higher than that of the natural numbers. He knew he had to publish 
this result. He also knew that there were mathematicians who viewed 
his work with strong reservations. In this paper, he would be deal
ing with both irrational numbers and sizes of infinity. He hoped to 
publish in CreUe s Journal. Unhappily, Kronecker, as an editor there, 
had the right to refuse any paper, and Kronecker had already sig
naled his unhappiness with the direction of Cantor's work. Further
more, Kronecker's opinions, including his feelings about irrational 
numbers, were widely known in the mathematical world; if other 
mathematicians saw a paper spelling out Cantor's new results, they 
might very well also object, if only to please Kronecker. 

Cantor decided on a clever ruse. He figured that many of the peo
ple in the field, perhaps including Kronecker, might very well just 
scan the title of the work to see if there was anything objectionable 
in it. He titled his paper, "On a Property of the Collection of All Real 
Algebraic Numbers." It therefore appeared from the title to be sim
ply a new proof of an earlier theorem of Joseph Liouville's that non
algebraic real numbers do exist. Superficially, it appeared that he was 
writing only about algebraic numbers. The ploy worked. The paper 
slipped through and was published in CreUes Journal in 1874. Set the
ory was launched-but it had to be buried in a paper that seemed to 
be on another subject. 

Now, however, the fat was in the fire. From then on, Cantor knew, 
Kronecker would be more careful. 

Conflict Begins 

Things were quiet for a while, and Cantor moved on to his next chal
lenge. In 1877, he found a property of infinity that even he was 
thrown by. In a letter to Dedekind in 1874, he had posed the follow
ing question: "Can a surface (say, a square that includes the bound
aries) be uniquely referred to a line (say, a straight-line segment that 
includes the end points) so that for every point of the surface there 
is a corresponding point of the line and conversely, for every point 
of the line there is a corresponding point of the surface? Methinks 
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that answering this question would be no easy job, despite the fact 
that the answer seems so clearly to be 'no' that proof appears almost 
unnecessary." 14 

The first remarkable part of this story is that Cantor should pose 
such a question. The second is that, three years later, he could write 
again to Dedekind that he had shown that the answer is "yes." Gen
eralizing somewhat, he said that continuous spaces of n dimensions 
could be put into one-to-one correspondence with (had the same 
"power" as) the set of points on a line. "I see it," he wrote, "but I don't 
believe it." 15 His proof was somewhat unwieldy but quite correct. 

Dedekind congratulated Cantor on his new firiding but warned 
him that publication would be difficult. He was right. Cantor sent off 
his paper with this firiding to CreUe's Journal onjuly 12, 1877. In spite 
of the controversial firidings-that all continuous lines, planes, or sur
faces had the same order of infiriity-all seemed well when the editor 
promised to publish it and Weierstrass promised to promote it when 
it appeared. 

Yet as time passed, it was clear that no steps were being taken 
toward its publication. Cantor suspected that Kronecker was acting 
behind the scenes to prevent its appearance. He became increasingly 
agitated and wrote to Dedekind that he was thinking of withdraw
ing the paper and trying to publish it elsewhere-even though CreUe's 
Journal had published his earlier work. Dedekind persuaded him to 
hold on for a bit, and perhaps exerted some influence. In any case, 
this important paper, sometimes referred to as Cantor's Beitrag, did 
firially appear the following year. 

Though it was published, Cantor was upset about the long delay 
and the fact that Kronecker could exert his wiles even to that extent. 

It's important to understand that part of the driving force behind 
Kronecker's obstructive activities was a purely mathematical one, an 
honest disagreement with Cantor's mathematical ideas. Kronecker 
felt that Cantor was playing with inconsequential concepts and that 
he should not be allowed to publish ideas that would go nowhere. 
This would not be the first time Kronecker had done this, having 
acted as interference against other papers that dealt with irrational 
numbers and infiriity. Furthermore, Cantor's proof was based on 
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one-to-one mappings between irrational and real numbers, and as far 
as Kronecker was concerned, irrational numbers do not exist. 

Cantor's paper did finally appear, though, and being published in 
CreUe s Journal brought him into highly respected territory. While by 
no means everyone agreed with him, it was clear that he was estab
lishing himself as a revolutionary thinker. If his feelings and beliefs 
were right, he was creating a whole new mathematics, of which he 
was the obvious master. He began to feel increasingly lonely and 
unhappy about his apparent inability to move up in the world. He 
wished desperately to join the faculty at a major German university
perhaps Gottingen or, preferably, the University of Berlin. He also 
felt he was being grossly underpaid in comparison with stars like 
Schwarz, L. Fuchs, and, especially, Kronecker. In fact, he had applied 
to the University of Berlin and was told by Weierstrass that the rea
son his application was turned down was Kronecker's large salary. 

Cantor was unhappy about this but suspected there was more to 
the story. And he was right. Kronecker, seeing that he couldn't actu
ally prevent Cantor from publishing, put some of his efforts into 
attacks on Cantor and his work. Kronecker's technique included 
suggesting-though never in print!-that not only was Cantor's work 
humbug, but that he was a charlatan and a corrupter of youth, that 
he was luring these young people into a "dangerous world of math
ematical insanity."16 In any case, Kronecker's position of power made 
such epithets powerful weapons in his subtle war. 

According to Morris Kline, a noted historian of mathematics, 
Kronecker's attacks did indeed leave mathematicians suspicious of 
Cantor's work17 and may well have been a factor in Cantor's not 
being invited to join the faculty at a more prestigious school. Cantor 
spent his entire career at Halle. It's worth noting, however, that the 
Halle authorities were very generous in their treatment of Cantor, as 
when they arranged for leave from his teaching duties in his coming 
times of need. 

Like Kronecker, Cantor saw their conflict as at least partly a bat
tle over whose view of mathematics was the correct one, and even 
in this ostensibly unemotional arena, he believed that the outcome 
would not be decided in a pure search for truth. Rather, he saw it as 
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"a question of power, and that kind of question can never be decided 
by way of persuasion; the question is which ideas are the most pow
erful, comprehensive, and fruitful, Kronecker's or mine; only success 
will in time decide our struggle!" 18 

In the meantime, Cantor was not sitting idly by while Kronecker 
was carrying out his attacks. After his application to Berlin was 
turned down, for example, Cantor wrote a letter directly to the min
ister of education in Berlin, complaining about these attacks. Then, 
early in 1884, he wrote to Mittag-Leffier, "I never thought ... that I 
would actually come to Berlin. But since I plan to do so eventually 
and since I know that for years Schwarz and Kronecker have 
intrigued terribly against me, in fear that one day I would come to 
Berlin, I regarded it as my duty to take the initiative and tum to the 
Minister myself. I knew precisely the immediate effect this would 
have: that in fact Kronecker would flare up as if stung by a scorpion, 
and with his reserve troops would strike up such a howl that Berlin 
would think it had been transported to the sandy deserts of Africa, 
with its lions, tigers, and hyenas. It seems I have actually achieved 
this goal."19 

Cantor, of course, was right; Kronecker did respond. Yet if Can
tor thought there would be a howl, there he was wrong. Once again, 
with a subtle move rather than a howl of anger, Kronecker acted 
behind the scenes. He may have had an inkling that there was some 
mental instability lurking in Cantor and, it would seem, wondered 
what he could do to bring on something serious. lnjanuary 1884, 
Kronecker contacted Mittag-Leffier and suggested doing a short arti
cle in Acta MathematU:a, in which he would show "that the results of 
modern function theory and set theory are of no real significance."20 

When Cantor got wind of this, it seemed clear to him that Kro
necker was trying to deprive him of the one major publishing outlet 
with a sympathetic editor that was still open to him, just as Kronecker 
had tried to do with Cantor's earlier article in CreUe's Journal. Seeing 
this as a polemical article, Cantor threatened to stop sending his own 
work if Mittag-Leffier should accept such an article. With his own 
importance in the field still growing, this threat had some bite. Yet 
Kronecker never sent anything; the likelihood is that he was just 
trying to goad Cantor into some sort of uneven or unpleasant behav-
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ior. As it turned out, Cantor did later act on his threat-he cut off all 
contact with the journal-though for another reason. Still, Cantor's 
response, as Kronecker hoped, undoubtedly did some damage to 
Cantor's relationship with an important supporter. 

Cantor's Later Years 

None of this, however, stopped the Cantor production line from con
tinuing to roll out its new mathematics. In 1879, Cantor began some 
new work and developed it in a series of six papers published from 
1879 to 1884. Cantor was back at work on a problem that had been 
haunting him. He had earlier found sets that were infinitely counta
ble (aleph-null) and sets that were infinitely uncountable, for exam
ple, the real numbers, which he had tentatively named c. But, he 
wondered, are there sets that are intermediate in size between aleph
null and c? 

He believed, and hoped to prove, that the answer was no-that 
aleph-null and c behave in his arithmetic like 0 and 1 behave among 
the integers. The latter are the first two integers in our number sys
tem, and no other whole numbers fit between them. If a similar sit
uation held in set theory, then c would be equivalent to aleph-one, 
which he defined as the next order (or level) of infinity after aleph
null, and he could build up his aleph-based number system from 
there. 

There are several ways of stating what came to be called his con
tinuum hypothesis. Simply stated: 

N 1 =c. 

He felt this was true but had to prove it. 
In the fifth of the six papers, he showed his mixed feelings about 

his position in the mathematical world. He wrote, "Daring as this 
[work] might appear, I express not only the hope but also the firm 
conviction that in due course this generalization will be acknowl
edged as a quite simple, appropriate, and natural step. Still I am 
well aware that by adopting such a procedure I am putting myself in 
opposition to widespread views regarding infinity in mathematics 
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and to current opinions on the nature of number."21 

He wrestled almost continually with the continuum hypothesis 
over the balance of his life and career. In the course of this work, he 
repeatedly wrote to Mittag-Leffier saying he had the answer; then he 
wrote again, retracting that proof, and claimed that the continuum 
hypothesis was not true. And so it went. He kept trying, with the 
problem becoming an obsession with him. In the sixth paper, he 
wrote that the answer would be forthcoming. 

It would seem that there must have been something lacking in his 
mathematical skills, but that was not the case. What he didn't know 
was that he was trying to solve a problem that had no answer. That 
is, as we'll see in a later chapter, the continuum hypothesis had no 
answer in the mathematical system as it stood in Cantor's day. 

Yet the maddening process of seeing the answer one way one day 
and another the next cost him dearly. His obsession with the prob
lem, plus his reaction to what he saw as the unfair and even vindic
tive treatment by his colleagues, especially Kronecker, had a severe 
effect on his mind. 

The Point of Madness 

Earlier biographies of Cantor's life saw these actions-his obsession 
with the continuum hypothesis and Kronecker's assaults-as factors 
that drove Cantor to the point of madness. There were other setbacks. 
In 1881, an opening occurred at Halle, and Cantor managed to 
arrange for Dedekind, who was teaching in a secondary school, to be 
offered Heine's chair. Cantor was obviously looking for both friend
ship and some academic stimulation; but, in addition, had he been 
able to bring Dedekind in, Halle itself would have become a more 
important center of mathematics. Early in 1882, Dedekind declined, 
no doubt reflecting some fear of a clash of personalities. Cantor's next 
two recommended names also declined. A new list was drawn up, but 
the new man and Cantor never formed a close relationship. 

Cantor did indeed end up spending various periods in a mental 
institution. By May of 1884, at age 41, he suffered the first of a 
number of serious mental breakdowns that were to plague him over 
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the next 33 years of his life. He entered the Halle Nervenklinik, a 
university-based mental clinic, for treatment, which lasted for some
what longer than a month. 

Again, we turn to Bell for a fascinating scenario. Writing of the 
young Cantor, he stated, "Georg was determined to become a math
ematician, but his practical father ... obstinately tried to force him 
into engineering as a more promising bread-and-butter profession. 
. . . Loving his father devotedly and being of a deeply religious 
nature, young Cantor could not see that the old man was merely 
rationalizing his own greed for money. Thus began the first warping 
of Georg Cantor's acutely sensitive mind." Also, "In the process of 
trying to please his father against the promptings of his own instincts 
Georg Cantor sowed the seeds of the self-distrust which was to make 
him an easy victim for Kronecker's vicious attack in later life and 
cause him to doubt the value of his work .... The father gave in when 
the mischief was already done."22 A nicely argued scenario, but 
basically untrue. Georg's father appears to have been a solid, under
standing parent who was genuinely interested in both Georg and his 
career. 

Later writers feel that Cantor was actually a victim of a bipolar 
disorder (manic/depressive illness), and that his mathematical set
backs and difficult personal relationships, especially with Kronecker, 
may well have been magnified by his mental condition but were not 
its cause. As supporting evidence, we also have the fact that he at 
times exhibited "doubtless exaggerated feelings of persecution which 
he felt upon himself from his [university] colleagues."23 

Upon emerging from the Nervenklinik, after this first stay, some
thing led him to think that he could still work things out with Kro
necker, and upon his release, he actually contacted Kronecker and 
attempted a reconciliation. Kronecker responded without rancor, and 
Cantor tried in a second letter to explain some further details of new 
work he was doing. In his letter he wrote, as soothingly as he could, 
"I am of the opinion that the greatest part of what I have done 
scientifically in the last few years, which I include under the rubric 
of set theory, is not so very much opposed to the demands which you 
place upon 'concrete' mathematics as you seem to believe. It may be 
the fault of the presentation (which may not be entirely clear), that 
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you have given less attention to the concrete mathematics in my 
research than to its other, namely, philosophical content."24 

They even met and spent an evening together in October 1884, 
but the basic chasm between them was just too large, and little was 
accomplished. Cantor later described the meeting in a letter to 
Mittag-Leffier: "It seems to me of no small account that he [Kro
necker] and his preconceptions have been turned from the offensive 
to the defensive by the success of my work. As he told me, he wants 
to publish soon his opinions concerning arithmetic and the theory of 
functions. I wish it luck!"25 

What were Kronecker's real feelings about Cantor? In an 1885 
letter from Sophie Kowalevsky to Mittag-Leffier, she writes that 
Kronecker "was quite bitter about Cantor."26 

In 1885, Cantor took another hit, this time from his own friend 
and supporter Mittag-Leffier. Early in the year, Cantor sent off two 
letters for publication in the Acta Mathematica, spelling out some new 
work. In March, Mittag-Leffier wrote back, saying that since it didn't 
contain the proof of any significant result, publication of this work, 
before Cantor had been able to explain these results, would damage 
his reputation. He felt the publications were about a century too 
early!-that no one would understand them if published now, and 
that the theory behind it would be rediscovered by someone else a 
hundred years in the future and credited to him. 

Cantor was devastated by this tum of events. Mittag-Leffier was 
trying to do the right thing, but it shows that even he didn't fully 
understand the importance and the power of Cantor's work. Cantor 
felt that he had been abandoned by the only important mathemati
cian who had supported his crusade. Here, then, was the conclusion 
to the drama begun earlier by Kronecker. Cantor asked for all of his 
papers back from Acta Mathematica and never published there again. 
Mittag-Leffier had not abandoned Cantor, but to all intents and 
purposes, that was the result. 

Cantor, reacting perhaps too strongly, saw his future in mathemat
ics dimming perceptibly-indeed, looking hopeless. He began to 
devote more of his time to other pursuits, including philosophy 
and theology. He also found a greater level of support for his 
mathematical work among theologians of the Roman Catholic 
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Church than he had seen among mathematicians.27 

At the same time, the periods between his mental attacks were get
ting shorter, and he was spending more time at the Klinik. The death 
of his mother in 1896 and of his younger brother and youngest son 
in 1899 added more emotional turmoil to his life. 

Invitations to the Dance 

Unable to crack the challenge of the continuum hypothesis, and never 
really reconciled to his position in the mathematical world, Cantor 
might at times have used his periods of illness as a respite from the 
unpleasantnesses and even agonies of his personal and mathematical 
disappointments. At various periods during these years, he flung him
self into efforts to show that the British philosopher-statesman Fran
cis Bacon had authored the Shakespearean plays. One writer, Nathalie 
Charraud, goes so far as to suggest that Cantor's attempts to expose 
the true Shakespeare to the world were in some way allied with his 
wish to expose the true Kronecker to the world. 28 

His mind also turned toward religion. In these periods, he raised 
the status of the continuum hypothesis to dogma-and thus beyond 
the need for proof-and declared that "from me, Christian philoso
phy will be offered for the first time the true theory of the infinite."29 

Between incarcerations, however, his active mind kept going. In 
fact, the role of Cantor's mental illness was almost certainly not 
entirely a negative one. One of the common characteristics of bipo
lar illness is a kind of hypomania, or exuberance, in the "up" phases 
that-in some victims-generates bursts of creativity and focused 
work. This could very well have been the case with Cantor. 

In general, though, in his later years he concentrated more on the 
philosophical aspects of his work and was able to engage in discus
sions of it with a variety of scholars. He had also long had an inter
est in encouraging promising young people and in the earlier years 
was able to bring to life his dream of founding the Deutsche 
Mathematiker-Vereinigung (DMV, or German Mathematicians' 
Union), an official mathematical society. He felt, first, that it would 
provide a forum for these young mathematicians, so that they might 
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not have to go through what he had been subjected to. In addition, 
he believed that young people might be better able to understand and 
deal with his kind of mathematics. 

Cantor chaired the first meeting, which was held at his university 
in Halle in September 1891, and he served as its president until 1893. 
He was also going to present a paper at that first meeting-indeed, his 
first paper on new mathematical research in more than five years. He 
was showing a new proof for the existence of nondenumerable sets. 
In the paper, he introduced a means of showing that given any set, 
the set of all its subsets was always of a power greater than that of 
the parent set itself. Central to this work was a method that came to 
be well known as his diagonalization method. Although the diagonal
ization method was a solid piece of work, his comparison of the 
powers of sets and subsets would come back to haunt him later on. 

In spite of the now open antagonism between himself and Kro
necker, he nevertheless invited Kronecker to address this inaugural 
meeting. There were, of course, obvious reasons for the invitation
mainly, Kronecker's position and high reputation. One could hardly 
ignore him. Yet there was also a deeper, more subtle purpose. Kro
necker's attacks had always been behind the scenes and had always 
been made in discussions and lectures, certainly never in print. 
Cantor hoped that in such a forum, Kronecker would almost be 
forced to speak out, in public, his real feelings about set theory, and 
that this would reveal his bias to the mathematical world. 

As Cantor had done 13 years earlier in the CreUe's Journal article, 
in order to slip past Kronecker's radar, he tailored the title of his own 
paper in a special way. This time he titled it, "On an Elementary 
Property of Set Theory." He felt that irrational numbers remained 
controversial, but that with his new method he need no longer rely 
on them or even on the general idea of infinite sets. 

Whether Kronecker would have been lured into this trap, we'll 
never know. Kronecker's wife was injured in a mountain climbing 
accident, and he sent word that he wished the meeting success, but 
that he could not appear. 

Cantor later confided to Mittag-Leffier that it was probably just 
as well that Kronecker did not appear, for it would have provided 
him with an excellent opportunity to malign Cantor behind the 
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scenes and at Cantor's own university. As it turned out, Kronecker 
himself died in December of the same year. 

The meeting was rated a success, and Cantor's paper was later 
published in the first volume of the Jahresbericht of the D MV. Cantor 
had shown that given any set, the set of all its subsets was always of 
a higher power (had a higher cardinal number than) the parent set 
itself. In the paper, he placed new emphasis on the finite and the infi
nite cardinal numbers, which were shown to be just the finite and the 
infinite powers of sets, respectively. 

In the meantime, Cantor's feelings about Germany and German 
mathematicians were, not surprisingly, increasingly negative, and so 
it makes sense that he shortly became deeply involved in the plan
ning for the First International Congress of Mathematicians, to be 
convened in Zurich in 1897. As with the DMV, he hoped to create a 
more encouraging forum for new ideas. 

Possibly feeling free for the first time of the baleful eye of Kro
necker, Cantor produced an updated, detailed presentation of his 
transfinite set theory. It would be presented in two articles in the 
Mathematische Annalen in 1895 and 1897. 

A New Century 

In 1888, Cantor had written, "My theory stands firm as a rock; every 
arrow directed against it will return quickly to its archer. How do I 
know this? Because I have studied it from all sides for many years; 
because I have examined all objections which have ever been made 
against the infinite numbers."30 

For a while, it began to seem that everything in mathematics was 
going to be defined or explainable in terms of sets-in fact, that set 
theory would eventually become the foundation of mathematics. 

By the turn of the century, however, Cantor was feeling much less 
confident. First, certain paradoxes had been discovered in his work, 
by him as well as others, that caused him and his followers consid
erable anguish. A paradox in this case is a statement that derives con
tradictory conclusions from acceptable premises. A simple example 
is the famous story of the barber of Seville. He claims to shave all the 
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men in the city of Seville who do not shave themselves. Does he 
shave himself? 

The best-known paradox in set theory was put forth in 1901 by 
Bertrand A. W Russell, the widely known British philosopher turned 
mathematician. Russell asked what would seem at first to be a sim
ple question, yet it shook the very foundations of set theory and all 
it stood for in the larger world of mathematics. Russell considered the 
fact that virtually anything can be grouped into sets, which is what 
makes the concept so powerful. He postulated the set of all sets that 
are not members of themselves, and he called this set R Then he 
asked, is R a member of itself? As with the barber, if R is a member 
of itself, it isn't; if it is not, it is. 

Russell's paradox was not the first paradox, or the only one, that 
had been found in set theory. In fact, Cantor's friend Ernst Zermelo 
had earlier come up with something similar but had not thought it 
worth pursuing or publishing. 

Yet the implications of the paradoxes were powerful. Early set 
theory had considered the possibility of a universal set, a set that con
tained everything. This was now seen to be impossible. Not everything 
could be a set. We begin to see what a serious problem these paradoxes 
were to mathematicians and logicians alike. Like the other paradoxes, 
Russell's paradox hung around like a big elephant in the garden. 

To some mathematicians, however, none of the various negative 
developments, including the paradoxes, seemed to overturn Cantor's 
basic results in transfinite arithmetic. In fact, Cantor's new ideas and 
theories were being recognized as important in the further develop
ment of analysis, function theory, topology, and non-Euclidean 
geometry, and indeed as the basis for a more fundamental under
standing of mathematics in general. (Today, elementary set theory is 
likely to be taught in various high school mathematics courses, and 
especially in probability and topology.) 

In the early years of the 20th century, Cantor was still communi
cating with some of his colleagues and actively def ending his work. 
Happily, his work gained wide acceptance while he was still alive, 
and the organizers of conferences and award presentations would 
have been happy to invite him. Unhappily, though, his illness had by 
then progressed to the point where he was really in no condition to 
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participate in public meetings. He took a leave from teaching in the 
summer of 1899 and the winter terms of 1902-1903 and 1904-1905, 
when he spent some time in sanitoria. After this, he spent increasing 
periods in the Halle clinic, for example, from October 22, 1907, until 
June 15, 1908, and from September 28, 1911, to June 18, 1912, when 
he was moved to a different sanitorium. 

Cantor was admitted to the Halle clinic for the last time on May 
11, 1917. He was not happy about going and wrote repeatedly to his 
wife asking to come home, without results. World War I was in full 
swing at the time, and food was scarce, which did not help matters. 
Onjanuary 6, 1918, this extraordinary man, still at the clinic, died 
of a heart attack at the age of 73. 

In a small area in the center of Halle, a plaque is mounted that 
shows Cantor's face, some numbers suggesting his diagonalization 
proof, and a sentence in German that states, "The essence of mathemat
ics lies precisely in its freedom." Cantor preferred to use the expression 

.free mathematics rather than the more common term jmre mathematics. 

Summation 

For many years, writers touching on the relationship between Can
tor and Kronecker saw Kronecker as "both wrong and unfair." Their 
information almost invariably came from Bell. As he put it in his 
somewhat flowery but always compelling manner: "Seeing mathe
matics headed for the madhouse under Cantor's leadership, and 
being passionately devoted to what he considered the truth of math
ematics, Kronecker attacked 'the positive theory of infinity' and its 
hypersensitive author vigorously and viciously with every weapon 
that came to his hand, and the tragic outcome was that not the the
ory of sets went to the asylum, but Cantor. Kronecker's attack broke 
the creator of the theory."31 

Later on, Bell softened this a bit: "Kronecker perhaps has been 
blamed too severely for Cantor's tragedy; his attack was one of many 
contributing causes."32 Yet the implication remains the same: Kro
necker is the offender, the bad guy; many of the writers who came 
after Bell took the same approach. 

We have already seen that Kronecker's activities may well have 



140 GREAT FEUDS IN MATHEMATICS 

exacerbated Cantor's illnesses but were most likely not the cause. As 
to just how "vigorously and viciously" he attacked Cantor, there is 
now some question about that, too. 

Harold M. Edwards, a professor of mathematics at New York 
University, has studied both Kronecker's life and work, and he says, 
in essence, "Kronecker is so often depicted as dogmatic, extreme and 
vitriolic. . . . I believe in the reasonable Kronecker and not the 
vitriolic Kronecker."33 He explains, "Whereas Kronecker played an 
enormous role in Cantor's distinctly paranoid world view, I doubt 
that Cantor played a very large role in Kronecker's. To Kronecker, 
I suspect, Cantor was simply another young man who had followed 
Weierstrass onto the wrong path and whose formulations of mathe
matical ideas were hopelessly misguided."34 

Edwards points out that "One finds reverential references to 
Kronecker's works for 10 or 15 years after his death, but, after that 
... with rare exceptions, the mathematicians who knew Kronecker's 
work knew it second hand." He argues that this came about in the 
following way: 

The strength of the Weierstrass school, and their bad feelings 
toward Kronecker (as evidenced by Mittag-Leffler's address in 
1900), surely played a role. Another figure who played a role was 
Dedekind, who exercised a major influence both through his own 
works and through the effect he had on such younger mathemati
cians as Weber, Cantor, and Hilbert. Dedekind created a style of 
mathematics and an attitude toward the foundations of mathe
matics that tended to make Kronecker's works look much more 
difficult than they were .... And, lastly, Hilbert and Cantor each 
in his own right did much to turn the younger generation away 
from Kronecker. 35 

As an example of such a result, John D. Barrow writes in his 
well-received book Pi, in the Sky that Cantor's "name is remembered 
where Kronecker's is now largely forgotten."36 A mathematician 
whose works are no longer read is more easily seen as the "bad guy." 

Morris Kline points out, "Kronecker had no supporters of his 
philosophy in his day and for almost twenty-five years no one 
pursued his ideas."37 After the paradoxes were discovered, however 
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(around the turn of the century), some of Kronecker's work was 
picked up and further developed by mathematicians like Poincare 
and Brouwer, whom we discuss in later chapters. 

Edwards writes, "I believe that Kronecker's best hope of survival 
comes from ... the tendency, fostered by the advent of computers, 
toward algorithmic thinking .... It is my hope," he adds, "that the 
revival of this long-dormant point of view will bring with it a 
renewed appreciation of his legacy"38 and perhaps, another look at 
Kronecker himself.Joseph Dauben appears to agree with Edwards, 
at least in principle, that Kronecker has been unfairly stigmatized.39 

Randall Collins and Sal Restivo, two sociologists who have 
studied this feud, make an interesting point: "The struggle between 
Kronecker and Cantor ... was not a conflict between traditional and 
innovative forms of mathematics, but between rival new paradigms. 
Kronecker was not a mathematical traditionalist; in opposing an 
actual infinity and irrational, transcendental, and transfinite numbers, 
he was forced to reconstruct mathematics on a radically new basis. 
He foreshadowed the 20th-century school of intuitionists, just as 
Cantor pioneered in what became the formalist program. Both sides 
pressed for greater rigor in mathematics, but were divided sharply on 
how to achieve it."40 

Regardless of whether Kronecker was actually and directly at 
fault for Cantor's unhappy state of affairs, there were some positive 
results from the Kronecker-Cantor conflict. Cantor's initial ideas 
were not solidly grounded-for example, they were based more on 
ideas than on axioms-which is not surprising considering their 
newness and originality. The knowledge that critics, especially 
Kronecker, were waiting to pounce forced him and several followers 
to continue to dig and eventually to produce a more solid foundation 
for his theory. 

Even so, when his set theory was finally launched on a broader 
scale, it came close to being wrecked by a series of paradoxes that 
arose as a result. The German mathematician Ernst .llrmelo, one of 
his followers, went on to axiomatize set theory in an attempt to save 
it. Yet he, too, would shortly find himself embroiled in a bitter debate 
about the value of his work. 
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Borel versus Zermelo 
The "Notorious Axiom" 

The Second International Congress of Mathematicians was held at 
the Paris World Exposition of 1900. There the well-known 

German mathematician David Hilbert delivered an address in which 
he listed the major unsolved problems in mathematics at that time. 
He had come up with a total of23 problems and mentioned 10 in his 
speech. Number one on his list was the still unfound proof for 
Georg Cantor's continuum hypothesis. 

Cantor, you will recall from the last chapter, had set up a system 
of transfinite cardinal numbers, which he had put into an ordered 
arrangement of alephs ( ~ 0, ~ 1, ~ 2 • . . ) . There were, he believed, 
no cardinal numbers outside this system of alephs. Yet before 
Cantor could prove that each cardinal number could be placed 
within this system, he had to compare every possible pair of set 

142 
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constituents via his one-to-one correspondence method. Further
more, the infinite cardinals had to show the same ordering principle 
as was the case with real numbers in a line. Thus, for any two real 
numbers, they had to be equal (a= b), or one had to be greater than 
the other: (b >a) or (b <a). 

For this to work, Cantor had to set up a specific property, which 
he called the well-ordering principle. A set is classified as well ordered 
if it automatically has a smallest element. Thus the set of all positive 
integers in their natural order is well ordered because it begins with 
a first or smallest element, namely, the number 1. On the other hand, 
the set of all integers-which includes negative numbers-is not well 
ordered because we would have to tinker with it first to establish a 
first or smallest element. Therefore, the set of positive integers and 
the set of integers would have the same cardinal number but would 
be of different order types. 

Cantor felt he was on to something important. In a lengthy arti
cle (the Grundlagen, 1883) he wrote, "The concept of well-ordered sets 
turns out to be essential to the entire theory of point-sets. It is always 
possible to bring any well-defined set into the Jann of a well-ordered set. 
Since this law of thought appears to me to be fundamental, rich in 
consequences, and particularly marvelous for its general validity, I 
shall return to it in a later article."1 

If he could prove the well-ordering principle, it would permit him 
to show that each transfinite cardinal number was equivalent to one 
of his alephs, an important step toward proving the continuum 
hypothesis. More specifically, he was tryirig, at least in his more lucid 
periods, to prove that aleph-one (which he defined as the next order 
of infinity following aleph-null) equaled c, the power of the contin
uum or set of all real numbers ( ~ 1 = c). That would show, he said, 
that there is no intermediate form of infinity, no set of elements 
whose power is greater than that of the set of all natural numbers 
( ~ 0 ) but less than that of the set of all real numbers ( c). 

He couldn't do it. The proof continued to elude him. 
Yet his set theory was stirring the mathematical world, both 

positively and negatively. In the meantime, Cantor spent some 
more time in the Halle Nervenklinik. Then, in 1903, he was back at 
work at his mathematics, and he spoke at a meeting of the Deutsche 
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Mathematiker-Vereinigung, answering some questions raised earlier 
by French mathematicians. A year later, he was awarded one of 
mathematics' highest honors-in fact, the highest that England's 
Royal Society can confer, the Sylvester Medal. 

In the same year, however, Cantor found himself face-to-face 
with what looked like a major challenge to his theory. Jules Konig, 
a recognized mathematician from Budapest, read a paper at the 
Third International Congress held at Heidelberg (in 1904) that 
claimed that the power of Cantor's continuum was not any aleph, let 
alone aleph-one. 

Today, a report on pure mathematics, even one made at a major 
congress of mathematicians, might not be reported in the public 
press. In that day, however, Konig's report made page one news. We 
can only guess at Cantor's reaction. We know he refused to accept 
the proof but could find no mistakes or gaps in Konig's reasoning. 
Furthermore, Konig had a good reputation among his peers. 

Less than a day later, however, a young mathematician from the 
University of Gottingen, Ernst .llrmelo, came to Cantor's rescue . 
.llrmelo showed that one of Konig's premises had been faulty, and 
so his proof was not a solid one, but Cantor knew that the respite was 
only temporary. Until he or someone could prove the continuum 
hypothesis, could prove that the continuum was indeed an aleph, 
his entire corpus of work remained little more than a theoretical 
construct. 

Happily, Cantor had his defenders as well as his detractors. 

Zermelo 

Ernst Friedrich Ferdinand .llrmelo, born in 1871, grew up in Berlin. 
He studied mathematics, physics, and philosophy at universities in 
Berlin, Halle, and Freiburg and received instruction from some emi
nent teachers, including Max Planck, Edmund Husserl, and Herman 
A. Schwarz. He wrote a dissertation on the calculus of variations, 
which extended a method of Karl Weierstrass's, and received his 
doctorate from the University of Berlin in 1894. The University of 
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Gottingen appointed him privatdozent in 1899. By the winter semes
ter of 1900-1901, he had become interested in and was lecturing on 
set theory, and at the Third International Congress in 1904, as we 
saw earlier, it was he who saved the day for Cantor by showing the 
weakness in Konig's attack. 

Yet z.ermelo, like Cantor, continued to fear that set theory was 
susceptible to more attacks in its existing form. In the early days of 
set theory, for example, Cantor had used rather haphazard methods 
in deciding what elements could go into making up sets. He also 
stated that every well-defined set can be brought into the form of a 
well-ordered set, but he never carried this further. The first step, 
z.ermelo felt, would be to prove Cantor's well-ordering principle. 

z.ermelo supplied the critical item needed for proving the well
ordering principle. He maintained that from any given collection of 
nonempty sets, one could choose exactly one element from each set 
and thereby form a new set. In other words, given any collection of 
sets, there exists a method of designating a particular element of each 
set as a special element of that set. Thus, every set can be well 
ordered if it is assumed that in each nonempty subset, one element 
can be chosen, or designated, as a special element. This assumption 
is called z.ermelo's axiom of choice. 

The axiom of choice rang a bell with many mathematicians; 
mathematics needed it, they felt, and it simplified many proofs. The 
idea involved making infinitely many choices (conceptually), an idea 
that was not entirely new, having been played with by Cantor and 
other mathematicians earlier. In fact, claimed z.ermelo, "it is applied 
without hesitation everywhere in mathematical deduction." 2 Yet 
z.ermelo's construction was the first solid statement of the idea, and 
it stuck. It brought fame to z.ermelo, and he was appointed a titular 
(titled) professor at Gottingen in 1905. 

His axiom of choice, however, also set off a storm of controversy. 
Eric Temple Bell came to regard it as the "notorious axiom."3 The 
controversy-pro and, mostly, con-erupted in many countries, 
including Germany, England, Hungary, Holland, Italy, and the 
United States,4 with much of it centered among French mathemati
cians. Foremost among the objectors was Emile Borel. 
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Borel 

Emile Felix-Edouard:Justin Borel was born in Saint-Affrique, Avey
ron, France, in 1871, the same year in which z.ermelo was born. His 
mathematical talent also showed early. Known as a prodigy by age 
11, he left his local school for study at the nearby Montauban lycee. 
At age 19, he entered the Ecole Polytechnique and published two 
papers there in his first year. First in his class of 1893, he was 
promptly invited to join the faculty at the University of Lille. By 
1894, at age 23, he had his D.Sc. from the Ecole Normale Superieure, 
where he quickly began building a solid reputation. By 1911, he was 
its scientific director. 

In 1901, he married, and his interests began to broaden to appli
cations of mathematics and to public affairs as well. Yet this seemed 
not to interfere with his theoretical mathematical output and interests. 
Among these was a special interest in set theory, and in 1898, Borel 
published a critical analysis of Cantorian set theory in his Ler;ons sur 
la thiorie desfonctions. So when z.ermelo's proof of the axiom of choice 
appeared in Mathematische Annalen in 1904, the editors of the follow
ing issue included an international sampling of comment and criti
cism, but especially that of Emile Borel, from whom the editors knew 
they could expect some lively comments. 

For example, as Borel put it at the end of his argument: "It seems 
to me that the objection against it [z.ermelo's proof] is also valid for 
every reasoning where one assumes an arbitrary choice made an 
uncountable number of times, for such reasoning does not belong in 
mathematics ."5 

Russell, trying to clarify the situation, gave this example in 1905: 

Given alpha-null pairs of boots, let it be required to prove that the 
number of boots is even. This will be the case if all the boots can 
be divided into two classes which are mutually similar. If now 
each pair has the right and left boots different, we need only put 
all the right boots in one class, and all the left boots in another: 
the class of right boots is similar to the class of left boots, and our 
problem is solved. But, if the right and left boots in each pair are 
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indistinguishable, we cannot discover any property belonging to 
exactly half the boots. Hence we cannot divide the boots into two 
equal parts, and we cannot prove that the number of them is 
even. If the number of pairs were finite, we could simply choose 
one out of each pair; but we cannot choose one out of each of an 
infinite number of pairs unless we have a rule of choice, and in 
the present case no rule can be found. 6 

147 

The controversy over the axiom of choice had some similarity 
with another well-known axiom, Euclid's parallel postulate and the 
questions that arose with the advent of non-Euclidean geometry. This 
time, the controversy circled around the question of what is an 
admissible method in mathematics. z.ermelo's method provided no 
constructive definition of either elements or methods involved in its 
use. Borel was resolutely opposed to nonconstructive methods. 

In essence, Borel was directly challenging z.ermelo's claim that 
from each nonempty subset, one element can be chosen, or desig
nated, as a special element, and that one could thereby create a well
ordered set. Borel and his group also argued against the axiom of 
choice because it calls for an infinity of operations, which is impos
sible to conceive. 

Borel agreed, however, that z.ermelo had been trying to solve an 
important problem, and his strong objections generated considerable 
controversy. He then gathered together the opinions of several lead
ing French mathematicians on the subject-]. Hadamard, Rene Baire, 
and H. Lebesgue, plus his own-and published the results in the 
Bulletin de la Sociite Mathimatique in 1905 under the title "Cinq lettres 
sur la theorie des ensembles." He was fairly even-handed, though: 
Hadamard supported z.ermelo; Baire and Lebesgue stood on his 
side. Hadamard complained that Borel and his group were demand
ing from z.ermelo something well beyond anything he had claimed 
or even wanted. 

The interchanges, however, went in all directions. Baire, for 
example, wrote in a 1905 letter to Hadamard, "Borel has communi
cated to me the letter in which you express your viewpoint in the 
great debate resulting from z.ermelo's note .... As you know, I share 



148 GREAT FEUDS IN MATHEMATICS 

Bord's opinion in general, and ifl depart from it, it is to go further 
than he does." 

Later, in the same letter, Baire wrote, ".7..ermelo says: 'Let us sup
pose that to each subset of M there corresponds one of its elements.' 
This supposition is, I grant, in no way contradictory. Hence all that 
it proves, as far as I am concerned, is that we do not perceive a con
tradiction in supposing that, in each set which is defined for us, the 
elements are positionally related to each other in exactly the same 
way as the elements of a well-ordered set. In order to say, then, that 
one has established that every set can be put in the form of a well
ordered set, the meaning of these words must be extended in an 
extraordinary way and, I would add, a fallacious one." 7 

A few years later, in 1912, Borel summarized his version of the 
argument. In the following writeup, Borel begins by challenging a 
method created by Cantor that involves use of successive decimal 
numbers to prove that the size of the set of all real numbers is greater 
than the size of the set of all integers and all rational numbers, and 
thus that there are different orders of infinity. 

Borel wrote: 

It is possible to define a bounded decimal number by demanding 
that a thousand persons each write an arbitrary digit. One will 
have a well-defined number if the persons are put in line each 
writing in turn a digit at the end of the digits already written by 
those in front in the line. The disagreement starts when one tries 
to extend this procedure to an unbounded decimal number. I do 
not suppose that people dream of actually having an infinite num
ber of persons each writing an arbitrary digit, but I believe that 
Mr. .zermelo and Mr. Hadamard think that it is possible to 
regard such a choice realized in a perfectly well-defined way even 
if the complete definition of the number contains an infinite 
number of words. For my part I think it is possible to pose prob
lems about probability for decimal numbers which are obtained 
by choosing the digits either randomly or by imposing certain 
restrictions on the choice-restrictions leaving some randomness 
to the choice. But I think it is impossible to talk about one of 
these numbers for the reason that if one denotes it by A, two 
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mathematicians talking about A would never be sure whether 
they were talking about the same number. 8 

Yet another objection was Cantor's use of the "set of all sets," 
which had led initially to the paradoxes we considered briefly in 
chapter 6. Bord's group argued that the concept had not been prop
erly defined. 

The continuum, too, seemed to stick in the throats of members 
of the Borel group. Baire, for example, refused to believe that the con
tinuum could ever be well-ordered; the two concepts, he felt, were 
just too different; he saw the continuum as the collection of all infi
nite sequences of integers. 

Axiomatics 

The controversy was never fully resolved, but the pro-Cantor side 
dealt with it in several different ways. One route went by way of the 
paradoxes. 

Hilbert had been fascinated by set theory right from the begin
ning. He had also, around the turn of the century, published his 
Grorullagen {Foundati.ons} der Geometrie, which used the example of 
geometry to argue for the use of formal axiomatics as a way of ensur
ing that a theory was a solid structure rather than a fragile house of 
straw. Hilbert had been the mathematician to whom Cantor first 
turned when he began to be faced with the several paradoxes that 
plagued him in that period. In fact, z.ermelo had himself discovered 
Russell's paradox several years prior to Russell, who published it in 
1903 and had informed Hilbert of it. Gregory H. Moore, the author 
of the excellent .(,ennelo s Axiom ef Clwice, points out, "But z.ermelo did 
not publish it. This ... suggests strongly that the paradox was much 
less compelling to him than it was to Russell, perhaps because z.er
melo was more mathematically and less philosophically inclined."9 

Hilbert therefore became interested in proving that the real num
bers constituted a rigorous set; this would be a useful foundation 
for set theory, for it would show whether the set of real numbers 
could be properly placed among the alephs and would help show the 
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consistency of the continuum hypothesis.* It remained, however, an 
unfinished work. 

In the meantime, z.ermelo, inspired by the objections and the 
comments from Borel and his group, had been moving in a similar 
direction. He too wanted to put set theory on a more solid founda
tion, while at the same time securing his demonstration of the well
ordering theorem and saving his axiom of choice. In addition, though 
of less importance, he wanted to deal with the current paradoxes, 
plus those that might arise later on. His approach would be similar 
to Hilbert's but further along-an axiomatization of set theory. 

During the summer of 1907, he completed two important papers: 
a second, revised proof of the still very controversial well-ordering 
theorem and his axiomatization of set theory. These were both pub
lished in the same issue of Mathematische Annalen in 1908. 

The revised proof of the well-ordering theorem used the axiom of 
choice and showed that the two are equivalent. z.ermelo def ended 
his use of the axiom and maintained that mathematicians should 
continue to use it unless and until it leads to contradictions. The 
axiom, he insisted, "has a purely objective character which is imme
diately clear." 10 

The first paper also contained a defense of his axiom of choice. 
He admitted that it had not been proved but argued that "in mathe
matics unprovability ... is in no way equivalent to nonvalidity, since, 
after all, not everything can be proved, but every proof in turn pre
supposes unproved principles." 11 What, then, is the justification for 
use of the axiom of choice? He argued that it was necessary because 
it was being used to prove important theorems, and because it was 
necessary for science. 

He argued that it had actually already found use in mathemat
ics: "That this axiom, even though it was never formulated in 
textbook style, has frequently been used, and successfully at that, in 
the most diverse fields of mathematics ... is an indisputable fact. 
... Such an extensive use of a principle can be explained only by its 
self-evidence." 12 

*A mathematical theory or system is consistent when none of its parts is inconsistent 
with, or contradicts, any other part within it. 
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In fact, as Penelope Maddy, the author of Realism in Mathematics, 
points out, "One of the great ironies of this entire historical episode 
is that the strongest negative reaction to the axiom came from the 
very group of French analysts-Haire, Borel, and Lebesgue-who 
unwittingly used it with great frequency and whose work provides 
part of the basic indispensability argument."13 

z.ermelo felt that his second paper, the axiomatization of set the
ory, was particularly important. There was, of course, his belief in the 
fundamental importance of set theory; he stated this right up front, 
calling it an indispensable component of all mathematics. As for the 
paradoxes that seemed to endanger set theory, his axiomatization, he 
believed, would go a long way toward providing an answer. 

One problem had been that Cantor, in setting up what would later 
be referred to as his "naive" set theory, had not carefully restricted 
the concept of a set. z.ermelo hoped that by using specific axioms, he 
could clarify the concept of a set. No properties of sets could be used 
unless specifically granted by the axioms. His plan was to include in 
the axioms only those sets and classes that seemed least likely to lead 
to paradoxes. Amazingly, he was able to set up his system to include 
just seven axioms, of which one was the axiom of choice! He had 
hoped to prove that his set was self-consistent before publication, but 
he was not able to do this. He decided to publish nonetheless. 

Again Borel and his group criticized z.ermelo's work, but the 
steam built up slowly. Initially, for example, Borel went along with 
some of z.ermelo's and Hadamard's reasoning. He stated, "Of course 
it is possible to reason about a class of mathematical objects, for 
example all the real numbers or all the continuous functions; this 
class is defined by means of a finite number of words, although not 
all the members can be defined in that way. Thus one obtains the 
general properties of the class."14 

Hadamard answered Borel, "I doubt that I have ever said other
wise. For indeed, all the members must exist in some way in order 
to form the class .... z.ermelo would thus have demonstrated, if not 
that there exists one way of well-ordering the continuum, at least that 
there exists a [non-empty] class of such orderings .... This means, in 
sum, that (if z.ermelo's argument is not ultimately perfected) we shall 
only be able to reason about the properties common to all these 
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orderings. I willingly believe it. There are so many other things that 
we shall never know."15 

Gregory Moore adds, "While granting z.ermelo the right to 
endow any abstract entities with any non-contradictory properties 
that he wished, Borel stressed that such formal logic led to nothing 
but purely verbal conclusions, unrelated to reality. Despite Borel's 
scepticism, Hadamard's distinction between an object which can be 
defined uniquely and a non-empty class of objects, no one of which 
can be defined uniquely, would later assume considerable importance 
in mathematical logic."16 

Hadamard continued to support z.ermelo and to argue with oth
ers in support of the axiom of choice. z.ermelo believed that his 
axioms were independent of each other; he also felt that the consis
tency of the system was a complex matter that remained to be estab
lished. Yet he felt that he had managed to provide an answer to the 
paradoxes. 

The general reaction was that he had provided an improvement 
over Cantor's set theory, but that his system still needed work. 
Moore feels, "During the transitional decade 1909-1919, the dis
puted axiom of choice proved to be more secure than the axiomatic 
system that he introduced to serve as its foundation." 17 One of the 
arguments against z.ermelo's system was that he had given no spe
cific rationale for the axioms in it. 

The arguments about the axiom and z.ermelo's first proof of the 
well-ordering theorem did not seem to change much in this time 
either. Those who opposed the proof, including Borel, Lebesgue, and 
Russell, did so because of the nonconstructive character of the axiom 
that served as its foundation. Lebesgue and others saw in the axiom 
a process of reasoning with an infinite number of premises, which 
was not acceptable to them. 

More Work 

Bertrand Russell, whose paradox was so instrumental in driving 
much of this ongoing fixing-up work, never doubted the basic impor
tance of set theory. He wrote in the preface to his monumental 
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Pnncipia Mathematica (1910-1913, written with Alfred North White
head) that, aside from the symbolism, it was based entirely on the 
work of Georg Cantor. 18 

On the other hand, Jules Henri Poincare, an important French 
mathematician, came to feel that the paradoxes, and especially Rus
sell's paradox, showed clearly that set theory was a grave disease that 
could infect all mathematics. The two men, Russell and Poincare, 
ended up in serious conflict over another matter, which we look at 
in the next chapter. 

In the meantime, although Borel was critical of set theory, he was 
apparently more accepting of the basic idea than was Poincare. Borel 
looked at set theory as somewhat analogous to mathematical physics. 
That is, it was not something real in itself, but it might be taken as a 
kind of guide that in turn could be used to discover new results, 
which would then have to be verified by accepted methods.19 

The situation hardened into a standoff. Morris Kline writes: 

The axiom [of choice] became a serious bone of contention. 
Despite this, however, many mathematicians continued to 

use it as mathematics expanded in the succeeding decades. A con
flict continued to rage among mathematicians about whether it 
was legitimate, acceptable mathematics. It became the most 
discussed axiom next to Euclid's parallel axiom. As Lebesgue 
remarked, the opponents could do no better than insult each 
other because there was no agreement. He himself, despite his 
negative and distrustful attitude toward the axiom, employed it, 
as he put it, audaciously and cautiously. He maintained that 
future developments would help us decide.20 

This was a solid prediction, though he would surely be surprised 
at how things turned out. First, in 1921-1922, Abraham Adolph 
Fraenkel (1891-1965), seeing that z.ermelo's axioms were insufficient 
tools for building all the sets needed for full use of set theory (for 
example, questions about the set of all sets), improved on z.ermelo's 
work. He placed some restrictions on the formation of sets, needed 
to avoid paradoxes, but at the same time admitted enough sets for 
most classical analysis needs. Subsequently, a few modifications were 
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made by others, but the resulting system of axioms became known 
as the z.ermelo-Fraenkel system and came to be used widely by set 
theorists. 

Incompleteness 

While some mathematicians went about their business, others were 
seriously troubled by the paradoxes-the elephant in the garden. Yet 
z.ermelo had hoped to do more than resolve the paradox problem. 
He, and others such as Hilbert, had felt that a solid axiomatization 
of set theory would provide a sound foundation for the theory of 
arithmetic and, in fact, for mathematics in general. Things have not 
turned out that way. 

In the early 1930s, a young Austrian-born mathematician, Kurt 
Godel, presented some work that showed, essentially, that such an 
axiomatization, no matter how carefully carried out, might never be 
able to provide the desired solid foundation. Godel's incompleteness the
ory says that given any system, there will always be propositions that 
cannot be proven within the system. In other words, it is impossible 
to establish the consistency of set theory while working entirely 
within the system, no matter how it is established. Consistency can 
be accomplished only by the use of higher or external principles. 

Joseph Dauben explains, "Godel showed that in any system rich 
enough to contain elementary arithmetic, there were always theorems 
that could neither be proven nor disproven. They were undecidable, 
and it seemed quite possible that Cantor's continuum hypothesis 
might be a prominent example of such an undecidable proposition."21 

Later, in 1963, Paul]. Cohen, a Stanford University mathemati
cian, proved something that Godel's work had suggested. Cohen 
showed that neither the continuum hypothesis nor the axiom of 
choice could be proved correct from within set theory, including the 
axiomatized arrangement of z.ermelo-Fraenkel. 

Cohen, in fact, believed further that the continuum hypothesis 
was actually false-that there can be a transfinite number between l'\ 0 

and c-and that mathematicians would one day be able to show this. 
This, of course, would have broken Cantor's heart. Cohen's think-
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ing went like this: he wondered why a rich concept like the contin
uum (c, and sometimes given as 21t 0) should be equivalent in power 
to something as simple as the class ~ 1• He felt further that the con
tinuum might tum out to be larger than any transfinite aleph. 

In any case, we had an answer (of sorts) to Hilbert's first problem 
(the proof of Cantor's continuum hypothesis). And clearly part of the 
answer depended on what axioms were chosen initially as the basis 
on which to work. 

Cantor's set theory and the various, often quite serious, objections 
to it had brought mathematics to a difficult pass. Certainly, the long
held and cherished view of mathematics as a logical, exact, and 
certain discipline had been badly mauled. Not only did various 
mathematicians see things differently, they also began to group 
together and to take stands antipathetic to one another. 

The paradoxes, for example, had a variety of effects, especially on 
people interested in the foundations of mathematics, for it began to 
appear that the whole structure of their beloved discipline was shaky 
or perhaps was built on a weak foundation. Starting around the tum 
of the 20th century, a fairly large number of mathematicians became 
engaged in studies along this line but divided into several mutually 
antagonistic groups. These formed gradually into three main groups, 
or schools: the logicists, headed by Bertrand Russell and Alfred 
North Whitehead; the intuitionists, founded by Leopold Kronecker, 
given some support by Jules Henri Poincare, and then championed 
by Luitzen Brouwer and Hermann Weyl; and the formalists, under 
David Hilbert. We'll look at the latter two systems in a later chapter. 
In the next chapter, we consider Russell's logicism and how he came 
to it, along with Poincare's quarrel with it, and how he came to that. 
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Poincare versus Russell 
The Logical Foundations 

of Mathematics 

When, in the spring of 1901, mathematicians were faced with 
Russell's paradox (which we discussed in chapter 6), many 

could feel the foundations of their discipline shaking under their feet. 
Subsequently Russell wrote: 

Philosophers and mathematicians reacted in various different 
ways to this situation. Poincare, who disliked mathematical logic 
and had accused it of being sterile, exclaimed with glee, "It is no 
longer [merely] sterile, it begets contradiction." This was all very 
well, but it did nothing toward the solution of the problem. Some 
other mathematicians, who disapproved of Georg Cantor, 
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adopted the March Hare's solution: "I'm tired of this. Let's 
change the subject." This, also, appeared to me inadequate. After 
a time, however, there came to be serious attempts at solution by 
men who understood mathematical logic and realized the imper
ative necessity of a solution in terms of logic. The first of these 
was F. P. Ramsey, whose early death unfortunately left his work 
incomplete. But during the years before the publication of Pn"n
dpia Mathematica [three volumes, 1910-1913, by Russell and A. N. 
Whitehead], I did not have the advantage of these later attempts 
at solution, and was left virtually alone with my bewilderment. 1 

Following is Russell's own explanation of how he came upon the 
paradox. Remember, this is Russell talking, so don't worry too much 
if the logic escapes you on first, or second, reading. He was led to the 
contradiction, he wrote: 

by considering Cantor's proof that there is no greatest cardinal 
number. I thought, in my innocence, that the number of all the 
things there are in the world must be the greatest possible num
ber, and I applied his proof to this number to see what would hap
pen. This process led me to the consideration of a very peculiar 
class.* Thinking along the lines which had hitherto seemed ade
quate, it seemed to me that a class sometimes is, and sometimes 
is not, a member of itself. The class of teaspoons, for example, is 
not another teaspoon, but the class of things that are not tea
spoons. [In other words, the set of all teaspoons is not a teaspoon; 
so it is not a member of itself.] There seemed to be instances 
which are not negative: for example, the class of all classes is a 
class. The application of Cantor's argument led me to consider 
the classes that are not members of themselves; and these, it 
seemed, must form a class. I asked myself whether this class is a 
member of itself or not.2 

*Russell's term class has the same mearung as the modem word set. 
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Thus was the famous Russell's paradox born. It hardly seems 
like enough to shake the foundations of anything. But there it was. 
Not only would it have significant consequences in the world of 
mathematics (see chapters 6 and 7), but it would lead to more than 
a decade of intellectual turmoil and extraordinary effort on Russell's 
part. Although there was some early support from a very limited 
number of colleagues, a fair amount of his effort went into dealing 
with the critiques of a variety of his peers. 

Russell, as you may have gathered from my first paragraph, was 
in favor of mathematical logic. In fact, he is often considered the 
founder of a movement, called logicism, that still has adherents 
today but which brought forth the objections. As Russell put it, the 
logicist wants "to show that all pure mathematics follows from purely 
logical premises and uses only concepts definable in logical terms."3 

Logicism is sometimes seen as a two-part effort. First, it claims that 
all of mathematics can be translated into logical terms. Thus the 
vocabulary and the symbols of mathematics constitute a valid subset 
of the vocabulary and the symbols of logic. Second, it claims that all 
mathematical proofs can be reset as logical proofs; thus the theorems 
of mathematics also make up a proper subset of the theorems oflogic. 

By way of emphasizing that pure mathematics is made up of 
logical steps, Russell stated, "Pure mathematics consists entirely 
of assertions to the effect that if such and such a proposition is true 
of anything [for example, if p, then q], then such and such another 
proposition is true of that thing. It is essential not to discuss whether 
the first proposition is really true, and not to mention what the any
thing is of which it is supposed to be true .... Thus mathematics may 
be defined as the subject in which we never know what we are talk
ing about, nor whether what we are saying is true."4 

It's not hard to believe that there were criticisms. As Russell put 
it in a later writing: "This thesis was, at first, unpopular, because logic 
is traditionally associated with philosophy and Aristotle, so that 
mathematicians felt it to be none of their business, and those who 
considered themselves logicians resented being asked to master a 
new and rather difficult mathematical technique."5 Among the 
most persistent and most insistent of his critics was the highly 
respected French mathematician Jules Henri Poincare. This is not too 
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surprising in that Poincare had been, after Kronecker's death in 1891, 
the prime opponent of Cantor's transfinite mathematics, and Russell 
was building much of his logicism edifice on the foundation supplied 
by Cantor's set theory. 

The series of arguments and counterarguments that passed 
between Russell and Poincare ran from early 1906 through Russell's 
final reply in 1910. Russell was in his thirties and Poincare was in his 
fifties during this period. By then, both men were highly esteemed by 
all in their fields, so each treated the other with respect. Charles 
Nordmann, a French astronomer, maintained in his eulogy of Poin
care that "among a dozen great scientists who lived during the last 
century, he accomplished the miracle of never having made a single 
enemy, a single one hostile to him in science."6 Yet Poincare and Rus
sell pulled no punches in their intellectual criticisms of each other. 

Before we get into the battle itself, let's talk a bit more about Rus
sell and his mathematical logic. 

Russell 

Bertrand Arthur William Russell was born on May 18, 1872, in Trel
leck, Wales. He lost his mother at age two and his father at age four. 
Brought up mainly by a grandmother (his grandfather died when he 
was six), he was educated at home by a succession of tutors until he 
was 18. 

Although he loved and respected his grandmother for her good 
qualities, including her love for him and some progressive social incli
nations, he began, by his adolescent years, to feel hemmed in. As he 
put it: "After I reached the age of fourteen, my grandmother's intel
lectual limitations became trying to me, and her Puritan morality 
began to seem excessive."7 In fact, throughout his life Russell often 
found himself in conflicted intellectual and emotional situations. 

By his teens, his intellectual powers were already in evidence. Rus
sell wrote in his Autobiography, 

At the age of eleven, I began Euclid, with my brother [seven years 
older than Bertrand] as my tutor. This was one of the great events 
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of my life, as dazzling as first love. I had not imagined that there 
was anything so delicious in the world. After I had learned the 
fifth proposition,* my brother told me that it was generally con
sidered difficult, but I had found no difficulty whatever. This was 
the first time it had dawned upon me that I might have some intel
ligence. From that moment until Whitehead and I finished Prin
dpia Mathemati.ca when I was thirty-eight, mathematics was my 
chief interest, and my chief source of happiness. Like all happi
ness, however, it was not unalloyed. I had been told that Euclid 
proved things, and was much disappointed that he started with 
axioms. At first I refused to accept them unless my brother could 
offer me some reason for doing so, but he said: "If you don't 
accept them we cannot go on,'' and as I wished to go on, I reluc
tantly admitted them pro tem. The doubt as to the premisses of 
mathematics which I felt at that moment remained with me, and 
determined the course of my subsequent work. 8 

In 1890, he entered Trinity College, Cambridge, and studied 
mathematics and philosophy. Two years later, he was invited to join 
the Apostles. A small, highly select group that met at the university, 
it included A. N. Whitehead, then a lecturer in mathematics, who 
was to play a large part in Russell's future. Well aware of their intel
lectual prowess, the Apostles nevertheless managed not to take them
selves too seriously. Russell saw this connection as the "greatest 
happiness of my life at Cambridge."9 He felt, in fact, that he had got
ten far more from the Apostles than from the establishment. The 
dons, he wrote, "contributed little to my enjoyment ofCambridge,''10 

and he added that he "derived no benefits from lectures."11 

Here's more on his early development: 

I had already been interested in philosophy before I went to Cam
bridge, but I had not read much except Mill. What I most desired 
was to find some reason for supposing mathematics true. The 

*In isosceles triangles, the angles at the base are equal to one another, and, if the equal 
straight lines are produced further, the angles under the base will be equal to one 
another. 
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arguments in Mill's Logic on this subject already struck me as very 
inadequate .... My mathematical tutors had never shown me any 
reason to suppose the Calculus anything but a tissue of fallacies . 
. . . During my fourth year I read most of the great philosophers 
as well as masses of books on the philosophy of mathematics. 
James Ward [Russell's tutor at Cambridge] was always giving me 
fresh books on this subject, and each time I returned them, say
ing they were very bad books. I remember his disappointment, 
and his painstaking endeavors to find some book that would sat
isfy me. In the end, but after I had become a Fellow, I got from 
him two small books, neither of which he had read or supposed 
of any value. They were Georg Cantor's Mannidfoltigkeitslehre, 12 

and Frege's Begriffischrjft.13 These two books at last gave me the 
gist of what I wanted."14 [We'll discuss Frege later in this chapter. 
For the moment, let's just say that the Begnffischrjft, a work on 
logic, included a formal language on which to found arithmetic.] 

Russell's fascination with Cantor had some curious byways. In 
the last years of the 19th century, Russell was lecturing at the Lon
don School of Economics. He later wrote, "I used to walk every day 
to [my wife's] parents' house in Grosvenor Road, where I spent the 
time reading Georg Cantor, and copying out the gist of him into a 
notebook. At that time I falsely supposed all his arguments to be fal
lacious, but I nevertheless went through them all in the minutest 
detail. This stood me in good stead when later on I discovered that 
all the fallacies were mine."15 

At the time of Russell's attendance, the university was undergoing 
a significant change, in that the administration was beginning to see 
intellectual/academic research as an important part of the teachers' 
work, rather than as something to be done after classroom hours. 
Original research work could lead to multiyear fellowships, and 
indeed Russell earned one in 1895 for a dissertation on the founda
tions of geometry. It was published in 1897. 

Following this success, Russell began putting together ideas for 
a comprehensive treatment of the principles of mathematics, but one 
with a particular slant. His studies and, mainly, his discussions with 
his friends and lecturers had led him to begin thinking that it would 
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be possible to create a mathematics based on a small number of 
fundamental logical concepts. Here were the beginnings of Russell's 
logicism. 

Logic ism 

It's important to understand, as Russell surely did, that mathemati
cal logic and even logicism did not spring de novo from the mind and 
the pen of Bertrand Russell. In chapter 3 of this book, for example, 
I mentioned Leibniz's interest in using symbolic logic to create a kind 
of calculus of reasoning. In subsequent years, many mathematicians 
looked into and worked with various aspects of logic including 
mathematical logic and the foundations of mathematics, but two had 
a particular influence on the direction of Russell's research. 

By the late 1870s, Gottlob Frege, a German logician/mathematician/ 
philosopher, had found that much of mathematics could be derived 
from a much smaller set oflogical statements. He had already, in 1884, 
published the Grundlagen {Foundations} der Arithmetik, which was an early 
attempt at an axiomatization of arithmetic. The book was mostly 
ignored; the only recorded review is one by our own Georg Cantor 
who, apparently, did not really understand it and gave it a blistering 
reVIew. 

Logicism-the intimate mating of logic and mathematics-was 
theoretically possible, Frege believed, and he began working out the 
derivations that would be needed. By 1902, he had pulled his work 
together and had already published the first of what was to be two 
volumes of his Grondgesetze {Basic Laws} der An"thmetik. He was just at 
the point of putting his second volume to press when Russell, who 
had been impressed by Frege's earlier Begnffischrjft (1879), realized 
that his own paradox created a contradiction in Frege's system of 
axioms. Russell pointed this out to Frege in a letter (June 16, 1902). 
Frege was devastated. 

It was too late for Frege to make any changes in his text, for the 
pages had already been printed, but he did add an appendix, which 
began with the startling statement: "A scientist can hardly meet with 
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anything more undesirable than to have the foundation give way just 
as the work is finished. I was put in this position by a letter from Mr. 
Bertrand Russell when the work was nearly through the press."16 

Frege modified the axiom in the appendix, though this created prob
lems elsewhere in the text and especially in the first volume. 

History records that Frege became seriously depressed after this, 
though the reasons were actually mainly personal and even politi
cal. In later years, he recovered and began to do some fine work 
again, though never again in this field. By 1923, he actually came to 
the conclusion that the attempt to found mathematics on logic was 
misguided. 

The irony here is that Russell had begun work on the first major 
explication of his own efforts in logicism, The Pn:nciples ef Mathematics 
(1903), when he came up with his paradox in 1901. Although Frege 
simply gave up in his attempt to derive mathematics from logic, Rus
sell did not; he decided to go on and publish his work-including the 
paradox, without havirig an answer to it-and to continue to seek a 
solution. Frege's second volume was published, too, but not until 10 
years later; a third projected volume never was done. 

Yet in the preface to Pnnciples, Russell himself admits, "Professor 
Frege's work, which largely anticipates my own, was for the most 
part unknown to me when the printing of the present work began; 
I had seen his Groruigesetze der Arithmetik, but, owing to the great dif
ficulty of his symbolism, I had failed to grasp its importance or to 
understand its contents. The only method, at so late a stage, of doing 
justice to his work, was to devote an Appendix to it." 17 In other 
words, Frege was on the right track, but he felt that Russell's para
dox derailed him. This left Russell an open track, though a far from 
easy one. 

Another irony is that, as Russell himself later stated, "In spite of 
the epoch-making nature of [Frege's] discoveries, he remained wholly 
without recognition until I drew attention to him in 1903."18 

(Were Frege to come to life today, he would be proud, and prob
ably astounded, to learn that neo-Fregeanism is the order of the day. 
There have in recent decades been serious explorations of his work 
and attempts to incorporate it into current efforts and applications. 19) 
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Russell's objective was to create a more comprehensive treatment 
of the principles of mathematics. He had come to believe more 
strongly that pure mathematics could be built on a small group of 
fundamental logical concepts and that all its propositions could be 
deduced from a small number of basic logical principles, but he was 
not pleased with his early drafts. 

In 1900, however, he had attended the International Congress of 
Philosophy in Paris, a meeting that, as he later put it, "was a turning 
point in my intellectual life, because there I met [Giuseppi] Peano. 
. . . In discussions at the Congress I observed that he was always 
more precise than anyone else, and that he invariably got the better 
of any argument upon which he embarked. As the days went by, I 
decided that this must be owing to his mathematical logic. I therefore 
got him to give me all his works, and as soon as the Congress was 
over I retired to Fernhurst [Russell's home base] to study quietly 
every word written by him and his disciples. It became clear to me 
that his notation afforded an instrument of logical analysis such as 
I had been seeking for years."20 Examples are the use of ::> for 
"implies" or "contains," and e for "belongs to." Thus the phrase 
"The entity y is a member of the class A" is replaced by y e A. The 
result is both brief and precise. With this symbolism, Peano had man
aged to express definitions, theorems, and proofs. 

Russell quickly ingested Peano's ideas and symbolism, which was 
quite comprehensive, and began rewriting his book, which would 
build on Peano's work. For example, as Russell explained later, 
"Having reduced all traditional pure mathematics to the theory of 
natural numbers, the next step in logical analysis was to reduce this 
theory itself to the smallest set of premisses and undefined terms 
from which it could be derived. This work was accomplished by 
Peano. He showed that the entire theory of the natural numbers 
could be derived from three primitive ideas and five primitive propo
sitions in addition to those of pure logic. These three ideas and five 
propositions thus became, as it were, hostages for the whole of tra
ditional pure mathematics. If they could be defined and proved in 
terms of others, so could all of pure mathematics."21 
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Logicism Emerges, Warts and All 

Russell's Principles ef Mathematics was to appear in two volumes. 
Although Russell had not been happy with the first drafts of Pnncz'
ples, the writing went smoothly in the months after the Paris meeting. 
Volume 1, which appeared in 1903, was essentially a popular work, 
presenting the basic ideas supporting the connections between logic 
and mathematics. Volume 2 was to contain the necessary proofs, 
but it was never done. Or, rather, it morphed into the massive, 
three-volume Princz'pia Mathematica, which he did in stages, with the 
collaboration of his friend and colleague Alfred North Whitehead 
(1861-1947). 

1bis massive work, consisting of more than 2,000 pages, was and 
still is regarded as one of the major works of mathematical literature. 
Though not often read, it stood out as Russell's brief for the idea that 
mathematics derives from the rules of logic, and it gave the premises 
that showed how these rules were used in number theory, in set 
theory, and in other areas of mathematics. 

Russell later threw out a challenge: "If there are still those who do 
not admit the identity of logic and mathematics, we may challenge 
them to indicate at what point in the successive definitions and 
deductions of Prina'pia Mathematica they consider that logic ends and 
mathematics begins."22 

It was a Herculean job. The authors had estimated the job might 
take a year to complete, but the first volume did not appear until 
1910, the third and final volume in 1913. At one point, starting in 
1907, Russell was working 10 hours a day, 8 months a year, for the 
next 3 years. At the publication of volume 1, another problem arose. 
Cambridge University Press, which had contracted to publish the 
work, was not expecting the mass of pages that would be coming its 
way. Publication, it seemed, would lead to a loss of 600 pounds. The 
firm agreed to absorb half this amount, if the authors could raise the 
other half. The Royal Society of London, to its credit, donated 200 
pounds, and the authors each contributed 50 pounds. 

In the meantime, however, Russell was still trying to deal with the 
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paradoxes. These contradictions, he was coming to suspect, consti
tuted a kind of vicious circle, and he sought ways to get around this. 
He had tried an early attempt at a method called the theory of types. 
The basic idea was to distinguish between individuals, ranges of 
individuals, ranges of ranges of individuals, and so on. Each level 
was called a type, and he stipulated that if the expression x is a u is 
to have meaning, then u must be one level or type higher than x. He 
had included this in the appendix to his Principles ef Mathematics. 
Though the concept had been kicking around for several years, this 
was the first time it had appeared in print; but while it could deal 
with his paradox, it couldn't handle Cantor's, so he was not really 
happy with it. 

Ironically, Poincare had also tried to handle the paradoxes with a 
similar idea. He felt that the paradoxes involved a collection and a 
member of it whose definition depended on the collection as a unit. 
This kind of definition, which he called impredicative, was similar in 
concept to what Russell called a vicious circle. Eliminating such sets 
would prevent troublesome paradoxes. This worked but would place 
a severe restriction on the procedure. The main problem with it was 
that many established aspects of mathematical activity were founded 
on just this kind of collection. 

In 1905, Russell tried again with some new ideas. At this point, 
he developed three different approaches to the problem: the zig-zag 
approach set limits on how complex a propositional function can be 
when considered as a defining class; the limitation-of-size theory set 
up rules that prevent certain classes from becoming too large and 
thereby creating contradictions; and the no-classes theory proposed 
to do away with classes altogether. Each of these methods became the 
subject of future investigations. He presented them in a paper, "On 
Some Difficulties in the Theory of Transfinite Types and Order 
Types," which he read to the London Mathematical Society on 
December 14, 1905. It was published in the Society's Proceedings 
on March 7, 1906. He began with the comment: "Each of the three 
theories can be recommended as plausible by the help of certain a 
priori logical considerations."23 
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Poincare 
Watching these goings-on from the sidelines was the respected 
French mathematician Jules Henri Poincare. Born in Nancy, France, 
on April 29, 1854, he was 18 years older than Russell. One of the few 
broad-based mathematical scientists in an era of growing specializa
tion, he had by the turn of the century already built a reputation in 
several fields, including number theory, topology, probability, and 
various areas of mathematical physics, plus having written a still
famous three-volume work on celestial mechanics. He even did 
pioneering work in the special theory of relativity and later made 
important contributions in the philosophy of science. 

He passed his young years amid a circle of intellectuals and high 
achievers. After a short period of education at home, he attended the 
Nancy lycee, the Ecole Polytechnique, the School of Mines, and then 
the University of Paris, where he received his doctorate in mathemat
ical sciences in 1879. His thesis was on differential equations. In 1881, 
he became a lecturer and in 1886 was made a full professor at the 
University of Paris, where he remained until his death in 1912. 

All the way through his young years, his brilliance set him apart 
from his neighbors and peers, though his weak eyesight, physical 
frailty, and poor coordination opened him to the teasing and bully
ing that one might expect in these circumstances. 

His mathematical and scientific output, however, starting imme
diately after his schooling ended, was impressive: he published more 
than 30 books on mathematical physics and nearly 500 papers on 
mathematics. He also wrote popular essays and three volumes on the 
philosophy of science that are considered classics in their field.James 
R. Newman, a well-known historian of science, makes an interesting 
point about Poincare's writing style: "Except for the Gallic flavor of 
his sentences, his liquid, subtle style resembles Bertrand Russell's."24 

We'll be able to compare samples of their writing shortly. 
Certain specifics of Poincare's working methods give some indica

tion of the man. He kept very specific working hours-from 10 A.M. 

to noon and from 5 to 7 P.M. He read his journals in the evening. 
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Although he read widely, he tended not to build on the work of 
others. In his own work, he developed ideas straight through from the 
basic beginnings. 1bis mode of operation began in his early years and 
explains why he was able to take all his mathematical courses at the 
Ecole Polytechnique without writing a single note. It was not that he 
remembered everything; it was that he could reason things out as 
he needed them. E. Toulouse, one of his biographers, later maintained 
that of ten Po in care did not make an overall plan when writing a 
paper-indeed, he might start without knowing where he would end. 

By the time of the tiff with Russell, he had been honored with just 
about every medal and prize available and had been elected to mem
bership in the most distinguished scientific and mathematical organ
izations. One of these honors seemed to create a turning point in his 
career. He was elected to membership in the Academy of Sciences in 
1887 at the tender age of 32. 1bis apparently led him toward a 
greater interest in interacting with the public, and he began writing 
for a wider audience. Of his close to 100 nontechnical books and arti
cles, almost all were written after his election to the academy. 

1bis coincided with the fact that his reputation, both at home and 
abroad, was growing, and he was being called upon to speak or write 
on topics of mathematics and science appropriate for a more general 
audience. Yet this was easy for him. As a mathematician and a scien
tist, he was unusual, in that he had an extraordinarily wide range of 
interests and was capable in all of them. He read widely and was 
aware of what was going on all around him. He also began to pay 
more attention to basic questions about the nature and the philoso
phy of mathematics. 

Like Kronecker and others of his time, he had some very definite 
ideas on the new mathematical ideas taking root in his era. He felt, 
for example, that it was not necessary to define the whole numbers 
or axiomatize their properties; that one should not introduce objects 
that one cannot define clearly and completely in a finite number of 
words. 

He called set theory a pathological case and predicted, "Later gen
erations will regard [Cantor's] set theory as a disease from which one 
has recovered."25 
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He felt that some mathematical ideas were more basic than logic 
and could not be stated in logical terms. In 1904, he wrote, "It is by 
logic that we prove, it is by intuition that we invent." Later he stated, 
"Logic, therefore, remains barren unless fertilized by intuition."26 

Of the kind of mathematics he believed in, it's no surprise that 
he leaned toward and worked mainly in applied mathematics. 
"Experience," he said, "is the sole source of all truth."27 Though this 
eventually led him to think deeply about the foundations of 
scientific knowledge, his leanings toward the concrete held firm. 
Thus, in contrast with Cantor, who saw infinity as a real and work
able concept, Poincare argued against infinite sets. In fact, he main
tained, "Actual infinity does not exist. What we call infinite is only 
the endless possibility of creating new objects no matter how many 
objects exist already."28 He was also, writes Morris Kline, "totally 
antipathetic to the heavily symbolic logistic approach and in his 
Science and Metlwd was even sarcastic. Ref erring to one such approach 
to the whole number advanced by [Cesare] Burali-Forti in an article 
of 1897 wherein one finds a maze of symbols that define the num
ber 1, Poincare remarked that this is a definition admirably suited 
to give an idea of the number 1 to people who never heard of it 
before."29 

In another of Poincare's earlier articles, he made one of his more 
extreme statements. "Logic," he wrote, "sometimes makes monsters. 
[For] half a century we have seen arise a crowd of bizarre functions 
which seem to try to resemble as little as possible the honest functions 
which serve some purpose .... Heretofore when a new function was 
invented, it was for some practical end; to-day they are invented 
expressly to put at fault the reasonings of our fathers, and one will 
never get from them anything more than that."30 

So we are not surprised to find that Poincare turned out to be the 
main opponent of logicism, which depends heavily on set theory. For 
a while, the chief French proponent of Russell's logicism was the 
French mathematician Louis Couturat, who published some articles 
in 1904 and 1906. Poincare chose not to air his feelings. With the 
publication of Russell's 1906 article in the Proceedings ef the London 
Mathematical Society, he decided it was time to act. 
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Response 
It was at this point that Poincare decided to mount a general attack 
on Russell's logicism. The French journal Revue de Metaphysique et de 
Marale had begun publication in 1893. Its objective was to bring 
philosophy and the various sciences (moral as well as natural) into 
mutual understanding, and Poincare had become one of its main con
tributors. Thus he chose to launch his attack here. It appeared as 
"Les mathematiques et la logique" in May 1906, two short months 
after Russell's paper, which he used as the springboard. 

He began with an attack that led back to Cantor. After giving a 
short introduction to Cantor's set theory, Poincare wrote, "Many 
mathematicians followed his [Cantor's] lead .... In their eyes, to 
teach arithmetic in a way truly logical, one should begin by establish
ing the general properties of transfinite cardinal numbers, then dis
tinguish among them a very small class, that of the ordinary whole 
numbers. Thanks to this detour, one might succeed in proving all the 
propositions relative to this little class (that is to say all our arithmetic 
and all our algebra) without using any principle foreign to logic." 
Poincare maintained, however, that "This method is evidently con
trary to all sane psychology; it is certainly not in this way that the 
human mind proceeded in constructing mathematics; so its authors 
do not dream, I think, of introducing it into secondary teaching. But 
is it at least logic, or, better, is it correct? It may be doubted .... 

He went on, 

Unfortunately, they have reached contradictory results, what are 
called the cantorian antinomie.s [that is, the paradoxes] .... These 
contradictions have not discouraged them and they have tried to 
modify their rules so as to make those disappear which had 
already shown themselves, without being sure, for all that, that 
new ones would not manifest themselves. 

It is time to administer justice on these exaggerations. I do not 
hope to convince them; for they have lived too long in this 
atmosphere. Besides, when one of their demonstrations has been 
refuted, we are sure to see it resurrected with insignificant alter
ations, and some of them have already risen several times from 
their ashes. 
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Then: 

Thus, be it understood, to demonstrate a theorem, it is neither 
necessary nor even advantageous to know what it means. The 
geometer might be replaced by the logi.c piano . . . ; or, if you 
choose, a machine might be imagined where the assumptions were 
put in at one end, while the theorems came out at the other, like 
the legendary Chicago machine where the pigs go in alive and 
come out transformed into hams and sausages. No more than 
these machines need the mathematician know what he does. 

And then the logical correctness of the reasonings leading from 
the assumptions to the theorems is not the only thing which 
should occupy us. The rules of perfect logic, are they the whole 
of mathematics? AB well say the whole art of playing chess reduces 
to the rules of the moves of the pieces. Among all the constructs 
which can be built up of the materials furnished by logic, choice 
must be made; the true geometer makes this choice judiciously 
because he is guided by a sure instinct, or by some vague con
sciousness of I know not what more profound and more hidden 
geometry; which alone gives value to the edifice constructed.31 

Here are a few of Poincare's comments about Russell's attempts 
to deal with the "contradictions": "According to the zigzag theory, 
'definitions (propositional functions) determine a class when they are 
very simple and cease to do so when they are complicated and 
obscure.' Who, now, is to decide whether a definition may be 
regarded as simple enough to be acceptable? To this question there 
is no answer, if it be not the loyal avowal of a complete inability: 
[ironically quoting Russell:] 'The rules which enable us to recognize 
whether these definitions are predicative would be extremely compli
cated and can not commend themselves by any plausible reason.' 
... I have not been able to find any other directing principle than the 
absence of contradiction." 

Poincare ends this point with, "This theory therefore remains 
very obscure; in this night a single light-the word zigzag. What 
Russell calls the 'zigzaginess' is doubtless the particular characteris
tic which distinguishes the argument of Epimenides." (Poincare is 
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referring to the Epimenides statement "I am lying," which leads to 
a paradox. If he is lying, he is telling the truth; if he is telling the 
truth, he is lying.) 

Of the limitation-of-size theory, Poincare argues, "A class would 
cease to have the right to exist if it were too extended. Perhaps it 
might be infinite, but it should not be too much so. But we always 
meet again the same difficulty; at what precise moment does it begin 
to be too much so? Of course this difficulty is not solved and Rus
sell passes on the third theory."32 

Poincare then moves on to Russell's no-classes theory. Note 
first, however, that at the end of Russell's Proceedings paper, Russell 
had tacked on this addendum: "From further investigation I 
now feel hardly any doubt that the no-classes theory affords the 
complete solution of all the difficulties stated in the first section of 
this paper."33 

Poincare does not quite agree. He charges, "In the no-classes the
ory it is forbidden to speak the word 'class' and this word must be 
replaced by various periphrases. What a change for logistic which 
talks only of classes and classes of classes! It becomes necessary to 
remake the whole of logistic. Imagine how a page of logistic would 
look upon suppressing all the propositions where it is a question of 
class. There would only be some scattered survivors in the midst of 
a blank page. Apparent rari nante.s in gurgi.te va.sto." (Only here and there 
men are seen swimming in the immense whirlpool.)34 

Before moving on to Russell's responses and counterattack, I'd 
like to add a few more of Poincare's charges: 

"On the question of fertility, it seems M. Couturat has naive illu
sions. Logistic, according to him, lends invention 'stilts and wings."' 
And, on the next page: "Ten years ago, Peano published the first edi
tion of his Fonnulaire. How is it that, ten years of wings and not to 
have flown! 

"I have the highest regard for Peano, who has done very pretty 
things (for instance his 'space-filling curve,' a phrase now discarded); 
but after all he has not gone further nor higher nor quicker than the 
majority of wingless mathematicians, and would have done just as 
well with his legs. 
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"On the contrary I see in logistic only shackles for the inventor. 
It is no aid in conciseness-far from it, and if twenty-seven equations 
were necessary to establish that 1 is a number, how many would be 
needed to prove a real theorem?"35 

Counterattack 

To be sure that Poincare got his point, Russell responded in Poin
care' s home territory, the Revue de Mitaphy.si.que et de Marale. In the 
September 1906 issue, he began, "M. Poincare's article in this review, 
'Les mathematiques et la logique,' (May 1906) illustrates what I 
believe to be a misapprehension as to the nature and purposes of 
logistic .... At the same time, it suggests a solution of the paradoxes 
besetting the theory of the transfinite. M. Poincare holds that these 
paradoxes all spring from some kind of vicious circle, and in this I 
agree with him. But he fails to realize the difficulty of avoiding a 
vicious circle of this sort. I shall try to show that, if it is to be avoided, 
something like my 'no-classes theory' seems necessary; indeed it was 
for this purpose that I invented the theory."36 There follows some 
twenty pages of explanation, which also includes other answers to 
Poincare's charges. 

A particularly interesting example is his answer to Poincare's 
disparagement of Peano. Russell answers, "A point in which I must 
venture to differ respectfully from M. Poincare is his estimate of 
M. Peano. [Here Russell repeats Poincare's charge that Peano 'has 
gone no further ... than ... wingless mathematicians, and he could 
have done all that by walking on the ground.'] 

"Now I would suggest to M. Poincare that this is merely a way of 
stating that the bulk of what M. Peano has done does not interest 
him. M. Peano has forged an instrument of great potency for certain 
kinds of investigations. Some of us are interested in such investiga
tions, and therefore do honour to M. Peano, who, as regards them, 
has gone, we think, so much farther and faster than the 'wingless' 
mathematicians that they have lost sight of him."37 

Of Poincare's comments about Russell's no-classes theory, Russell 
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had this to say: "If M. Poincare could divest himself of the belief that 
logistic is quite unlike any other part of mathematics, he would also 
realize that, in proposing not to regard classes as independent enti
ties, I am not proposing a change which will make it necessary to 
'remake all of logistic'; nor do I wish to forbid people to 'pronounce 
the word class' any more than Copernicus wished to forbid people 
speaking of the sunrise." 

In other words, Poincare's problem is that he simply does not 
understand what Russell is doing. "Perhaps," Russell wrote, "an anal
ogy will make it clear that the change is not so great after all. The 
infinitesimal calculus, as is now universally recognized, neither 
employs nor assumes infinitesimals. But how much has this altered 
'the appearance of one page of' the infinitesimal calculus? Hardly at 
all. Certain proofs are re-written, certain paradoxes which troubled 
the eighteenth century have been solved; otherwise, the formulae of 
the calculus have scarcely changed."38 

Russell concludes, "M. Poincare informs us that 'clearer notions 
in logic' are not what is wanted; but he does not reveal the process 
by which he has made this important discovery. For my part, I can
not but think that his attempts to avoid the vicious circle illustrate the 
fate of those who despise logic."39 

And So It Goes 

In another counterattack, Poincare wrote, "There is no actual . 
i1!:finity. The Cantorians have forgotten this, and they have fallen into 
contradiction. It is true that Cantorism has been of service, but this 
was when applied to a real problem whose terms were precisely 
defined .... 

"Logistic also forgot it, like the Cantorians, and encountered the 
same difficulties." And later, "Russell has perceived the peril and 
takes counsel. He is about to change everything, and, what is easily 
understood, he is preparing not only to introduce new principles 
which shall allow of operations formerly forbidden, but he is prepar
ing to forbid operations he formerly thought legitimate. Not content 
to adore what he has burned, he is about to bum what he adored, 
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which is more serious. He does not add a new wing to the building, 
he saps its foundation."40 

Russell answered in a new paper, titled "Mathematical Logic As 
Based on the Theory of Types," published in 1908 in the American 
Journal ef Mathematics. 41 In it, he presented a new theory of types. 
Poincare responded in 1909 with "La logique de l'infini" in the R.evue. 
Here he gave what turned out to be his final suggestions for dealing 
with the paradoxes troubling logistics. 42 

1. Consider only objects that can be defined in a finite number 
of words; 

2. Never forget that every proposition concerning infinity must 
be the translation, the abridged statement, of a proposition 
concerning the finite; 

3. Avoid definitions and classifications that are not predicative.43 

Regarding the distinction between the finite and the infinite, Poin
care stated in his 1909 article: "M. Russell will doubtless tell me that 
these are not matters of psychology, but of logic and epistemology. 
I shall be driven to respond that there is not logic and epistemology 
independent of psychology. This profession of faith will probably 
close the discussion, since it will show an irredeemable divergence of 
views."44 

The issue was not closed, however, as far as Russell was con
cerned. He responded in May 1910 with his "La theorie des types 
logiques," again in Poincare's home base, the Revue. By this time, the 
first volume of the Principia Mathematica was coming onto the scene. 
In its introduction, as in this latest article, he presented his latest 
thinking in logistic theory. 

In the article he dealt, once again, with several subjects, including 
his agreement that "the paradoxes to be avoided all result from a cer
tain kind of vicious circle." He added some new definitional work on 
classes.45 

He then expanded on his earlier treatments. Later in the article, 
he once again explained his theory of classes.46 Still later, he wrote, 
"One point in M. Poincare's article on "La logique de l'infini" calls 
for a word of explanation. He [Poincare] asserts (p. 469): 'The 
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theory of types remains incomprehensible, unless one supposes the 
theory of ordinals already established.' This assertion appears to me 
[Russell] to rest upon a confusion"47-which Russell proceeded to try 
to clear up. 

Would the interchange have continued? Perhaps-but fate inter
vened. Poincare became ill with prostate problems not long after
ward. He underwent an operation at a nursing home and seemed to 
make a good recovery, but complications set in and he died onjuly 
12, 1912. 

Russell, after Poincare 

What effect did the objections of Poincare (and others) have on Rus
sell and his ideas on logicism? We can find a fairly clear picture in 
the 1938 reissue of his 1903 Prindpks of Mathema!Us. Happily, he 
decided that "Such interest as the book now possesses is historical, 
and consists in the fact that it represents a certain stage in the devel
opment of its subject. I have therefore altered nothing, but shall 
endeavor, in this Introduction, to say in what respects I adhere to the 
opinions which it expresses, and in what other respects subsequent 
research seems to me to have shown them to be erroneous." 

In sum, he tells us, "The fundamental thesis of the following 
pages, that mathematics and logic are identical, is one which I have 
never since seen any reason to modify.'' (That is, from 1903 to 
1938.)48 Some things, it seems however, continue to puzzle, includ
ing the very definition of logic: "To define logic, or mathematics, is 
therefore by no means easy except in relation to some given set of 
premisses."49 

He also mentions Poincare. Even in 1938, which was 26 years 
after Poincare's death, Russell still felt it necessary to put a poultice 
on the sting of Poincare's famous comment. Russell wrote, "I come 
finally to the question of the contradictions and the doctrine of 
types. Henri Poincare, who considered mathematical logic to be no 
help in discovery, and therefore sterile, rejoiced in the contradictions: 
'La logistique n'est plus sterile; elle engendre las contradiction!' All 
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that mathematical logic did, however, was to make it evident that 
contradictions follow from premisses previously accepted by all logi
cians, however innocent of mathematics. Nor were the contradictions 
all new; some dated from Greek times." 50 

Yet Russell was not so foolish as to think, or suggest, that noth
ing had changed in those years. He admits, later in the introduction, 
"There are still many controversial questions in mathematical logic, 
which ... I have made no attempt to solve. I have mentioned only 
those matters as to which, in my opinion, there has been some fairly 
definite advance since the time when the 'Principles' was written 
[1900-1903] .... The changes in philosophy which seem to me to 
be called for are partly due to the technical advances of mathemati
cal logic in the intervening thirty-four years."51 

Certainly, there were changes. As Kline points out, "Although 
Russell and Whitehead had no hesitation in introducing the axioms 
of infinity and choice in the first edition of their Principia Mathemati.ca, 
they certainly backtracked later, not only in acknowledging that the 
primary laws of logic were not absolute truths but also in recogniz
ing that these two axioms are not axioms of logic. In the second edi
tion of the Principia, these axioms were not listed at the outset and 
their use where needed to prove certain theorems was specifically 
mentioned."52 

In fact, in these later years, Russell was no longer as confident in 
the ultimate success of his ideas as he was in his more optimistic early 
years. He doesn't say so in the 1938 Introduction to his Principks, but 
part of the reason could surely be Godel's 1931 proof of the incom
patibility of consistency and completeness. (See chapter 7.) This 
could have led to a weakening of the promise of logicism as it was 
known in its early years. 

As Russell put it, however, the reasons for doubt were, "broadly 
speaking, of two opposite kinds: first, that there are certain unsolved 
difficulties in mathematical logic, which make it appear less certain 
than mathematics is believed to be; and secondly that, if the logical 
basis of mathematics is accepted, it justifies, or tends to justify, much 
work, such as that of Georg Cantor, which is viewed with suspicion 
by many mathematicians on account of the unsolved paradoxes 



l 78 GREAT FEUDS IN MATHEMATICS 

which it shares with logic. These two opposite lines of criticism are 
represented by the formalists, led by Hilbert, and the intuitionists, led 
by [Luitzen] Brouwer."53 

In the next chapter, we consider these two schools of mathemat
ical thought, their connections with logicism, and the part they 
played in the crisis of confidence that beset mathematics in the early 
years of the 20th century. 

Today there is possibly as much controversy surrounding Russell's 
logicism as there ever was. Michael Detlefsen, at the University of 
Notre Dame, argues, for example, that "Russell's alleged refutation 
of Poincare's Kantian viewpoint is mistaken." He maintains, "In the 
end, we find both the logicist's claim that mathematical reasoning can 
be 'logicized' and the claim that this is required for the perfection of 
rigor to be ill founded."54 Some researchers feel that logicism remains 
too confused or too feeble to be of much use.55 Others believe that 
with appropriate fixes, it remains a feasible technique.56 

There can be little argument, however, that in one form or 
another, Russell's logicism led to research and advances, from his day 
to ours, in such varied areas as philosophy, mathematics, linguistics, 
and economics and, more and more today, in computers.57 



9 

Hilbert versus Brouwer 
Formalism versus lntuitionism 

I n the last chapter, you read about contradictions, paradoxes, and 
a crisis that shook mathematics to its very foundations. The word 

crisis, however, should not be interpreted too broadly. The methodol
ogy of mathematics was never in question; its practitioners and users 
continued throughout these years-that is, the early years of the 20th 
century-to put their mathematical techniques to very good use. 
This was especially true in the sciences-which saw remarkable 
advances in relativity and quantum theories-and in the humanities 
and other areas as well. 

Even the difficulties caused by the paradoxes found in set theory 
were largely overcome, once it was determined that all that was 
needed was the application of some not too onerous restrictions. 

In other words, the difficulties and the more serious arguments 
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were not with mathematical technique. Rather, they had to do with 
the foundations of mathematics and with questions about the limita
tions of mathematical knowledge. These were given a certain urgency 
by some of the developments we have discussed in earlier chapters. 

For a while, it seemed that Bertrand Russell's logicism (see chap
ter 8) might provide the answers to some or all of the questions bedev
iling the questioners-indeed, that it might even provide the necessary 
basis for a solid foundation of mathematics. With the publication of 
the third great volume of Prz"ncipia Mathematica in 1913, however, the 
movement began to falter. The books were widely admired but not 
often read. Russell's logicism had been able to get around the various 
paradoxes with his various devices, but he had not been able to show 
that his system would remain free of contradictions. 

A planned fourth volume-to deal specifically with the logical 
foundations of geometry and to be written mainly by A. N. 
Whitehead-was interrupted by the advent of World War I. Russell 
turned his attention to pacifist activities and got himself into trouble 
with the British government. In 1918, he was sentenced to six 
months in prison for an article libeling the American army. There he 
wrote his Introduction to Mathematica/, Phz"losophy (1919), which was a 
kind of introduction to the Principia, that is, an attempt to make his 
logicistic ideas more accessible not only to specialists but also to "that 
wider circle who feel a desire to know the bearings of this important 
modem science."1 Whitehead, more inclined to philosophy anyway, 
went off to teach in the United States in 1924. 

In the meantime, the mathematical world had had time to digest 
David Hilbert's masterful Grnndlagen der Geometrz"e (Foundations ef 
Geometry). Published in 1898-1899, the work was later translated 
into the major European languages and was to prove extremely 
influential. 

By the early years of the new century, Hilbert had built a strong 
reputation, having already done pioneering work in invariant theory 
and the calculus of variations, as well as having produced an impor
tant and influential book on the foundations of geometry. He was 
elected to membership in foreign academies and was awarded the 
title of Gehez"mrat by the German government, the equivalent of a 
knighthood in England. 
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Beginnings of Formalism 

Invited to speak at the Second International Congress of Mathemati
cians (Paris 1900), Hilbert presented his list of the most challenging 
problems facing mathematicians of that day. Of the 10 problems he 
talked about at the lecture, the first 3 concerned the foundations of 
mathematics. The first, which I discussed in chapter 7, called for a 
proof of Cantor's continuum hypothesis. The second sought a proof 
of the consistency of the axioms of arithmetic-that is, proof that a 
finite number of logical steps based upon these axioms can never lead 
to contradictory results. By extension, he was questioning the very 
foundations of mathematics itself. As he put it in this same lecture, 
"The proof of the compatibility of the axioms [of arithmetic] is at the 
same time the proof of the mathematical existence of the complete 
system of real numbers or of the continuum."2 

The third problem was to axiomatize those physical sciences in 
which mathematics plays an important role. 3 

By the time of the Third Congress, four years later, the emergence 
of the various paradoxes (chapters 7 and 8) had thrown a feeling of 
uncertainty regarding these foundational questions into the minds of 
many mathematicians. 

As Hilbert saw it: "The present state of affairs is intolerable.Just 
think, the definitions and deductive methods which everyone learns, 
teaches and uses in mathematics, the paragon of certitude and truth, 
lead to absurdities! If mathematical thinking is defective, where are 
we to find truth and certitude ?"4 Hoping to build on the success he 
had achieved with his axiomatization of geometry, he thought, Why 
not apply the same approach to all of mathematics? He suggested at 
the conference, "I believe that all the difficulties that I have touched 
upon may be overcome, and an entirely satisfactory foundation of 
the number concept can be reached by a method which I call the 
axiomatic method, and whose leading idea I wish now to develop."5 

Among his ideas was a desire to make axiomatic systems more 
general. He wanted to establish the self-consistency of the axioms of 
arithmetic and the steps that derive from them. He also felt that the 
paradoxes that posed such a problem to Russell, et al., were due to 
the semantic content of the language used, that is, to the vagueness 
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of words. Thus, for example, Hilbert maintained, starting as early as 
1891, "It must be possible to replace in all geometric statements the 
words point, line, plane by tabk, chair, beer mug."6 His objective was to 
be able to deal with the mathematical symbols according to the spec
ified or formal rules without need for a "meaning" (physical, abstract, 
or intuitive) for the symbols. A suggestive, if not wholly accurate, 
analogy is that of chess pieces; their names are suggestive but do not 
determine the action of chess. The action depends completely on the 
conventions and the rules of the game. 

Thus was born the beginnings of Hilbert's school called formal
ism. The term fonnalism, interestingly, was first used by Brouwer. In 
fact, he used it specifically for Hilbert-type formalism. He lumped 
Cantor and Frege-Russell (see chapter 8) under the name classical (that 
is, non-intuitionistic) mathematics. 

Furthermore, others had also done some earlier work in what 
became known as the formalist position, including Poincare and 
Couturat. 7 It was Hilbert, however, who pulled the pieces together 
to the point where it could be called a school with a name and fol
lowers. By now, after all, he was one of the foremost mathematicians 
in Europe-his fame was exceeded only by that of Poincare-so that 
anything he maintained was of interest. 

In the early years of the 20th century, however, formalism was still 
little more than a series of rough ideas that were not carefully thought 
out or formulated, but it was enough that leadership in research into 
the foundations of mathematics began to pass from England to Ger
many, from Russell to Hilbert and followers. This created a small 
problem in that, as usual, there were those who would take an idea 
and run it beyond its intended boundaries. In its exaggerated form, 
formalism became a kind of caricature of what he had in mind. This 
was the idea that mathematics is merely a way of manipulating unla
beled or uninterpreted symbols, and that it was therefore little more 
than a game and had little significance. This in fact harks back, to 
some extent, to the position held by Thomas Henry Huxley (chap
ter 5), but Hilbert offered the additional factor of his "uninterpreted" 
geometric symbols that could be dealt with by formal rules. Hilbert 
would have nothing to do with this exaggerated version of his ideas. 

In any case, he saw little reason to carry the formalist idea forward 
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any further and turned his attention to mathematical analysis and 
especially integral equations, as well as to problems in mathematical 
physics. He didn't return to foundational questions until 1917-1918. 

In the meantime, however, Luitzen E.]. Brouwer, a Dutch math
ematician, was taking a position that stood in direct opposition to 
Hilbert's and, at the same time, was establishing himself as the 
standard-bearer of a mathematical school that came to be called intu
itionism. He believed that there are built-in human thought patterns 
that are the basis for mathematics, and that much of what was being 
put forth as mathematics was mere window dressing. 

Ali one of Brouwer's biographers, Walter van Stigt, has written, 
"Neither Brouwer nor Hilbert were temperamentally capable of 
keeping mathematical controversy at the level of a detached prof es
sional debate. Brouwer in particular needed the stimulus of a per
sonal challenge to stir him into action; he was a fighter, who needed 
a personal enemy on whom to concentrate his attack. Even if 
Hilbert's and Brouwer's views on mathematics could hardly be 
described as antipodal in every respect, the foundational debate 
now became polarized into a battle between intuitionism and formal
ism with international leadership as the prize."8 

Dirk van Dalen, a professor of mathematics and philosophy at the 
University of Utrecht in the Netherlands, has done a more recent, 
two-volume biography of Brouwer. He feels that Hilbert acted from 
early on as the insulted prima donna, that it was Hilbert who set the 
tone of the later battle. "There is no doubt that Brouwer did not tol
erate plagiarism or insults," says van Dalen, "but he would not start 
a conflict. It was always in defense that he acted." 

The result, says van Dalen, is that "The conflict that should have 
been a purely scholarly debate took a personal turn, when in 1928 
Hilbert overstepped the lines of scholarly debate and attacked 
Brouwer's position in the mathematical community. This, even 
though Brouwer had shrugged his shoulders at the hostilities in 
Hilbert's earlier papers and talks." Van Dalen feels that Hilbert got 
away with this because of his position in the field: no one dared to 
criticize his papers. "When the actual break came, Hilbert clearly was 
angered by Brouwer's effective stonewalling, and Brouwer was not 
the person to tolerate injury with the added insult."9 
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Result: van Dalen describes the two men as "the chief antagonists 
in [what would tum into] the most prominent conflict in the mathe
matical world of this century."10 Einstein, on the editorial board of a 
journal that played an important role in the fracas, could have been 
a key figure in this battle but insisted on remaining neutral. By 1928, 
when the drama had come to a serious and rather brutal climax, Ein
stein described the feud between the two men and their followers as 
the War of the Frogs and the Mice. Hilbert was the main mouse. 

The Mouse 

Although one would hardly guess it from Einstein's use of the term 
mouse, Hilbert was by the teens of the 20th century probably the 
greatest mathematician of his day (Poincare had died in 1912). Born 
in a suburb of Konigsberg in 1862, he received his early education 
there. His biographer Constance Reid says that his early schooling 
was quite traditional and would normally have depended on mem
orization, but "he seemed never really able to understand anything 
until he had worked it through in his own mind." 11 He was, however, 
good at mathematics, which would fit in well with that kind of 
mind. Reid says that a niece later recalled that the whole family saw 
him as a bit off his head. 12 

He entered the university of Konigsberg in 1880, where he 
obtained his Ph.D. five years later. By 1895, he was a full professor 
at the University of Gottingen, which grew into one of the few 
important centers of mathematics not located in a major city. By then, 
he had already shown the depth and the breadth of both his inter
ests and his abilities. Over the course of his career, there were few 
areas in which he didn't make original contributions. 

Thanks at least partly to Hilbert's growing reputation, GOttin
gen's reputation was growing apace and attracting other potentially 
important mathematicians, both faculty and students. Among them 
was Hermann Minkowski (1864-1909), whom he recruited to the 
faculty, and who was to become a dear friend and colleague. It also 
included .l.ermelo as a privatdozent in 1899 and Hermann Weyl 
(1885-1955), who arrived in 1903 as an 18-year-old "country boy." 
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Weyl wrote later, while at the Institute for Advanced Study in Prince
ton, New Jersey, "I made bold to take the course that Hilbert 
announced for that term, on the notion of number and the quadra
ture of the circle. Most of it went straight over my head. But the 
doors of a new world swung open for me."13 Weyl would be a major 
player in the coming battle between Hilbert and Brouwer. 

Hilbert's broad interests were a factor in the controversy that 
eventually erupted. His underlying interests in the foundations 
problem were one factor, while his earlier work The Fourulations ef 
Geometry led him back to this field of mathematics. As I showed in the 
last chapter, the book was his attempt to recast Euclid in a rigorous 
axiomatic fashion by use of the principles of Peano, though without 
Peano's complex symbolic system. One of Peano's objectives had 
been to put mathematics into a formal language without any need to 
call upon intuition, which he distrusted. He also felt that using 
Euclid as the model or the basis for geometry was a mistake. He, and 
others by this time, felt that although the structure of Euclid's geom
etry was deductive, it was full of hidden assumptions, poor defini
tions, and mistakes in logic. Hilbert hoped to establish a more solid 
foundation for geometry and at the same time eliminate any depend
ence on intuition. 

Other developments in geometry had also caught his interest. 
Earlier in the century, Nikolai Lobachevsky,Janos Bolyai, Bernhard 
Riemann, and Carl Gauss had shown that geometries other than 
Euclid's were possible, with the result that one of the main postulates 
of Euclid (re parallel lines) was no longer accurate. Furthermore, in 
Euclidean geometry the sum of all the angles of a triangle is 180 
degrees; in the non-Euclidean geometries other sums are possible. 
Hilbert felt that in order to tie geometry, and hence mathematics, 
down more explicitly, something had to be done by way of eliminat
ing certain assumptions. 

By siding with Cantor, he was already involved in controversy. He 
also felt that Kronecker's beliefs threatened the progress of mathe
matics. Kronecker, you'll recall, wanted to keep the subject bound by 
a highly subjective intuitive foundation, one that called for step-by
step construction and restriction to a real, material world. Hilbert, 
in contrast, asked only for logical progression and consistency. 
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Irrational numbers, to which Kronecker objected so strongly, should 
not be kept out of the world of numbers, he was convinced. With
out them, the world of analysis would be condemned to sterility. 

Furthermore, Hilbert felt that in order to strengthen the founda
tions of mathematics, it would be necessary to support Cantor's ideas 
on the infinite. He saw this in fact as more than a mathematical issue. 
He wrote, "The definitive clarification of the nature of the infinite has 
become necessary, not merely for the special interests of the individ
ual sciences but for the honor of human understanding itself."14 

Stephen G. Simpson, however, writing in the Journal ef Symbolic 
Logjc, argues that Hilbert's idea of reconstituting infinitistic 
mathematics into a big, elaborate formal system "led to an unnec
essary intellectual disaster." Simpson says, "It left Hilbert wide 
open to Brouwer's accusation of 'empty formalism."' 15 Here's how 
it happened. 

The Frog 

Born on February 27, 1881, in Overschie, now a suburb of Rotter
dam, Netherlands, Luitzen Egbertus Jan Brouwer is often known 
simply as L. E. J. Brouwer. He did well in school and while still an 
undergraduate at the University of Amsterdam did original work on 
continuous motions in four-dimensional space. This led to a publi
cation by the Royal Academy of Science in Amsterdam while he was 
still an undergraduate. From 1904 to 1907, he did studies in philos
ophy and mysticism, and in 1905, he wrote a book titled Lye, Art and 
Mysticism. His ideas reflected some of the romantic thinking of the 
time and came out in a rejection of the domination of nature (that is, 
the world) by mankind. This included industrial exploitation and 
subjugation of the environment. As a true mystic, he denied the pos
sibility of accurate communication and the role of language. These 
ideas would color his feelings about formalism. 

What kind of man was he? There is no question of his brilliance. 
As for his character, expressions like misanthropic, self-centered, high 
strung, emotional, and stubborn are used. In van Dalen's biography 
of Brouwer, he writes, "Brouwer was a high-strung nervous person, 
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who could easily exaggerate matters when under stress. On top of 
that he had an extreme passion for justice; as Ludwig Bieberbach 
[whom we'll meet later) put it: he was a justice fanatic (Gerechtigkeits-
fanatiker). As a result he would counter injustice-no matter with 
respect to whom-with a state of total war."16 

As a student, he was withdrawn and difficult in his social contacts. 
Under the guidance of his best friend (a prominent socialist poet), he 
learned to move in society. Gradually, he became an inveterate 
talker with a hunger for company. 

By 1907, he had his doctorate in mathematics and physics from 
the University of Amsterdam. His interests there spread out to topol
ogy and the foundations of mathematics, both of which he would 
make major contributions to over his lifetime. Though still just a 
graduate student, he had some strong ideas on the existing discus
sions in mathematics, which he offered in his doctoral thesis On the 
Foundations <f MathemaiU.s. 

Regarding the Poincare/Russell fracas, it was clear that he came 
down on Poincare's side; he argued that although logicism might be 
useful in certain circumstances, it could not provide a solid founda
tion for mathematics. Whereas Russell was claiming that mathemat
ics depends on logic, Brouwer maintained that logic depended on 
mathematics. In addition, although Hilbert had not yet fully devel
oped his ideas on formalism, there was enough there for Brouwer to 
know he did not like them. He criticized Hilbert's program, arguing 
for instance that there was no guarantee of an acceptable mathemat
ical structure that could satisfy the call for a consistent mathematical 
theory. He was also critical of Cantor's theory of transfinite numbers. 

It's interesting that in spite of Brouwer's strongly negative com
ments on Hilbert's formalist program, this did not seem to have any 
effect on Hilbert's feelings toward Brouwer, no doubt because the 
thesis was written in Dutch and was not widely circulated. They met, 
for example, in 1909 at Scheveningen, a fashionable seaside resort. 
The meeting apparently went well. Brouwer, 19 years younger than 
Hilbert, explained his language and mathematics levels to Hilbert 
and later described Hilbert in a letter to a friend as "the first mathe
matician in the world." Hilbert not only recommended Brouwer for 
a professorship in Amsterdam in 1912 (Brouwer had been an 
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unsalaried lecturer until then), but also offered him a professorship 
in Gottingen-a definite step up-as late as 1919. Brouwer refused 
(which may have been a factor in the coming breakup). Brouwer 
remained at Amsterdam until his retirement in 1951. 

Brouwer's work on topology and his ideas on foundational math
ematics earned him a solid reputation, in spite of the fact that his 
ideas on intuitionism were not widely accepted in the early years. In 
1912, he was elected to membership in the Royal Netherlands Acad
emy of Science. After that, the Prussian Academy of Science in 
Berlin, the American Philosophical Society, and the Royal Society in 
London all elected him a member. He also received several honorary 
doctorates. 

Though he did other work, his main concern was with the foun
dations question. In 1908, he produced a treatise titled "On the Unre
liability of the Logical Principles," which rejected as invalid 
mathematical proofs that had been produced using one of the cardi
nal laws of logic, a common technique called the principle of the 
excluded middle (PEM). The principle of the excluded middle 
asserts that every mathematical statement is either true or false and 
no other possibility is allowed. Then, in 1912, in his inaugural 
address as professor of mathematics at the university, he further con
sidered problems that he saw associated with this "law." 

Brouwer saw PEM as an example of a logical principle that is 
applied too freely. The principle asserts that every meaningful state
ment is either true or false and is basic to the so-called indirect 
method of proof, which permits use of the conventional logical 
reductio ad absurdum, or proof by contradiction. Here one can 
prove something is true by proving that a logical contradiction arises 
if it isn't true. Brouwer denied the PEM and insisted on the existence 
of a third level, "undecided," for statements whose truth or falseness 
had not been constructed via a finite number of deductive steps. He 
invariably challenged mathematical proofs that were based on the 
PEM: he described them as "so-called proofs." 17 

He stated in 1920, "The use of the Principle of the Excluded Mid
dle is not pennissible as part of a mathematical proof. ... [It) has only 
scholastic and heuristic value, so that theorems which in their proof 
cannot avoid the use of this principle lack all mathematical content."17 
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Hilbert answered, "Taking the Principle of the Excluded Middle 
from the mathematician is the same as ... prohibiting the boxer the 
use of his fists." 18 It was in truth an extremely limiting requirement 
and was found hard to accept by many mathematicians and scien
tists, especially those who made wide use of the procedure. 

In the years following, Brouwer began to campaign for his views, 
which began to take over his life. Though in the years 1909 and 
1913, he had done some excellent work in the field of topology, he 
never gave lectures on topology. Bartel L. van der Waerden, who 
took a course with him, reported that he never looked at the stu
dents, wanted no questions, and always lectured on the foundations 
of intuitionism. 

Interviewed later, van der Waerden said, "It seemed that he was 
no longer convinced of his results in topology because they were not 
correct from the point of view of intuitionism, and he judged every
thing he had done before, his greatest output, false according to 
his philosophy. He was a very strange person, crazy in love with his 
philosophy." 19 

Brouwer, of course, saw things a little differently. In his 1919 
paper "lntuitionistic Set Theory," Brouwer pointed out that his ear
lier topological work had not been intuitionistically correct; he added 
that most of it could be salvaged in an intuitionistic framework. He 
showed in a few examples (for example, the fixed point theorem) 
how an intuitionistic version could be proved.20 

In the years 1917-1920, Brouwer had begun to develop his intu
itionistic ideas further, including development of set theory along 
intuitionistic lines. After about 1920, he also decided it was time to 
reach out to the outer world. This was a clear challenge to Hilbert's 
work. Then, to make matters worse, Weyl, who had published an 
alternative foundation of analysis called The Continuum, switched 
sides at this time. In 1921, he even published an article explaining his 
new position, saying in part that Hilbert's approach reduces every
thing to a kind of game. Weyl had been Hilbert's star student, and 
Hilbert had counted on him as one of his devoted followers. In the 
spring of 1920, Brouwer wrote up some comments on a manuscript 
that Weyl had generated, spelling out his ideas, and sent it to Weyl. 
Brouwer began, "Your unreserved support has been a source of 
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infinite joy .... The fact that we disagree on some minor points can 
only have a stimulating effect on the reader."21 

Hilbert took this turnabout very hard. Ironically, Weyl, after 
about 1925, attempted to take a middle ground between the two con
tenders, but by then Hilbert had already set his sights. 

Counterattack(s) 

In 1922, when Hilbert began his counterattack, it was by an article 
aimed at both Weyl and Brouwer. He first stated his belief that a 
deeper treatment of the foundations of mathematics is required than 
had been accomplished to that point. He then wrote, "Distinguished 
and highly accomplished mathematicians, Weyl and Brouwer, are 
seeking the solution to these problems by following what I believe to 
be a false path."22 He then explained why and went on to lay out his 
new ideas. 

He was careful to point out that his approach to the grounding of 
the continuum "is not at all opposed to intuition. The concept of 
extensive magnitude, as we derive it from intuition, is independent 
of the concept of number, and it is therefore thoroughly in keeping 
with intuition if we make a fundamental distinction between number 
and mass-number or quantity." This matter has been studied care
fully by others, he wrote, then added, "If Weyl here sees an 'inner 
instability of the foundations on which the empire is constructed,' and 
if he worries about 'the impending dissolution of the commonwealth 
of analysis,' then he is seeing ghosts." 

Hilbert continued: 

To be sure, the problem arises of proving the consistency of the 
axioms; this is a well-known problem, and for decades I have 
never lost sight of it. This report concerns the solution of this 
problem. 

What Weyl and Brouwer do amounts in principle to follow
ing the erstwhile path of Kronecker: they seek to ground mathe
matics by throwing overboard all phenomena that make them 
uneasy and by establishing a dictatorship of prohibitions a la 
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Kronecker. But this means to dismember and mutilate our sci
ence, and if we follow such reformers, we run the danger of los
ing a large number of our most valuable treasures .... I believe 
that, just as Kronecker in his day was unable to get rid of the irra
tional numbers ... so today Weyland Brouwer will be unable to 
push their programme through. No: Brouwer is not, as Weyl 
believes, the revolution, but only a repetition, with the old tools, 
of an attempted coup that, in its day, was undertaken with more 
dash, but nevertheless failed completely; and now that the power 
of the state has been armed and strengthened by Frege, 
Dedekind, and Cantor, this coup is doomed to fail. 

After some more introductory material, he argued that "there has 
scarcely been a serious attempt to represent the consistency of the 
axioms, whether in number theory or analysis or set theory."23 

Here, in answer to the attacks ofWeyl and Brouwer, was the basis 
for his revised and bold new program, which set a new and more 
solid foundation for the school called formalism. The article went on 
to give his idea for an outline of a proof of the consistency of the 
axioms of analysis, building number theory on the basis of the signs 
1 and+. "When we develop number theory in this way, there are no 
axioms, and no contradictions of any sort are possible."24 He then 
rounded out the rest of the report. Dirk van Dalen maintains, how
ever, that "Hilbert never succeeded in getting his proof right. It was 
something like a bulge in the tube of a bicycle tyre [su]; each time he 
pushed in the bulge, another one appeared somewhere else. To 
be fair, the matter was terribly complicated. Years later, in 1936, 
Gerhard Gentzen, a brilliant German mathematician (1909-1945), 
finally managed a complete and correct analysis of the transfinite 
process."25 With Gentzen's update, Hilbert's proof theory has been 
demonstrated to be an elegant and powerful mathematical tool, and 
of special interest in computer science.26 

There is an ironic postscript to the Weyl story. In this same 1922 
article, Hilbert attacked both Brouwer and Weyl as a team, ignoring 
some clear differences in their ideas, as, for example, their interpre
tation of intuitionism. Then, as I noted earlier, around 1925 Weyl 
began to move away somewhat from Brouwer's intuitionism, and 
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from then on Hilbert directed his attacks mainly at Brouwer, while 
ignoring Weyl's change of heart. Even as late as 1928, for example, 
Hilbert brought up and answered the criticism that his school reduces 
everything to a game. You'll recall, however, that this was Weyl's crit
icism, not Brouwer's. 

It's important to understand that both men by this time saw their 
feud as existing on two levels. There was, of course, the personal com
petition, but both also saw themselves as saviors in a broader sense. 
That is, both saw mathematics in a foundational crisis, and each saw 
himself as the one who could save mathematics from decline and 
destruction. In addition, Hilbert's fears, at least, went even deeper. He 
felt, "If mathematics fails, so does the human spirit."27 

In one of Brouwer's responses to Hilbert's new approach, he 
wrote in 1928, "All this shows that Formalism has received nothing 
but favors from lntuitionism and can expect further benefits. The 
Formalist school, therefore, should give some recognition to lntu
itionism instead of attacking it in sneering tones and not even mak
ing proper mention of authorship. Moreover, Formalism should 
consider the fact that within the framework of Formalism so far noth
ing of mathematics proper has yet been secured (since a proof of con
sistency of the axiom system is still missing). 

"On the other hand, lntuitionism . . . has already built a new 
structure of mathematics proper with unshakeable certainty." 28 As far 
as Brouwer was concerned, any language, including the formalistic 
one, might be useful but only for communication. As one of 
Brouwer's doctoral students, Arend Heyting, put it nicely in 1930: 
"It is in principle impossible to set up a system of formulas which 
would be equivalent to intuitionistic mathematics, for the possibili
ties of thought cannot be reduced to a finite number of rules set up 
in advance."29 

In retrospect, it can be seen that Hilbert and Brouwer were talk
ing at cross purposes, and at least at one point their difficulties 
involved a clash of national feelings-with, oddly, Brouwer taking up 
the cause of German mathematicians: for a Riemann memorial vol
ume, he objected strongly to the inclusion of some French mathe
maticians, much to Hilbert's annoyance. Finally, their arguments 
were taking on a more personal bias-on both sides. 
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A Ruthless Attack 

Brouwer, though not as well known as Hilbert, was nevertheless 
building a solid reputation in the mathematical world. He began to 
publish papers on his philosophy in such journals as the Mathematis
che Annalen of 1925 and 1926. He had been appointed to the edito
rial board of this respected journal in 1914 and had served 
carefully-and slowly-since then. Such an appointment was an honor 
and a sign of the respect in which he was held in the mathematical 
community. 

Yet his irascibility would have its effect even here. One of the main 
editors had been Felix Klein. Klein had chosen to resign, apparently 
over a dispute with Brouwer-in a matter in which Brouwer was actu
ally in the right but acted so rudely that Klein decided to resign. This 
was an astonishing outcome, for Klein had long been associated with 
the Annalen, had become a sort of editor in chief, and had had a major 
hand in its success. 

Yet Hilbert's name was also on the masthead of the Annalen. 
Unfortunately for Brouwer, who might today be called an associate 
editor, Hilbert was one of the chief editors. In fact, after Klein's res
ignation, Hilbert had taken over many of his duties, with the result 
that the journal began to take on the reputation of being "owned" by 
Gottingen mathematicians. The level to which the feud had escalated 
can be judged from Hilbert's next move. 

The Frog and Mouse War 

Shortly before the end of October 1928, Brouwer was given a letter 
written by Hilbert. It stated, 

Dear Colleague: 

Because it is not possible for me to cooperate with you, given the 
incompatibility of our views on fundamental matters, I have 
asked the members of the board of managing editors of the Math
ematische Annalen for the authorization, which was given to me by 
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Blumenthal and Caratheodory [Otto and Constantin, two of the 
other managing editors; Albert Einstein was the fourth], to 
inform you that henceforth we will forgo your cooperation in the 
editing of the Annalen and thus delete your name from the title 
page. And at the same time I thank you in the name of the edi
tors of the Annalen for your past activities in the interest of our 
journal. 

Respectfully yours 

D. Hilbert3° 

The reasons for his action are more complicated than they might 
seem at first. The main one seems to be that Hilbert had some fears 
of his own early demise-he had been diagnosed with pernicious 
anemia in November 1925-and wanted to make very sure that 
Brouwer's ideas did not continue to have an inside track on the 
Annalen. There was also a personal angle. Dirk van Dalen describes 
Blumenthal's view of the situation: "Hilbert saw in Brouwer a head
strong, unpredictable and domineering character. He ... feared that, 
when he at some time should have left the board, Brouwer would 
bend it to his will."31 

Another reason had to do with the relations between German and 
French mathematicians, which were still strained as a result of World 
War I. Hilbert felt that earlier opportunities to apply some balm to 
these relations had been sabotaged by Brouwer. For example, plans 
had been made for publication of a Festschrift honoring Bernhard 
Riemann in 1926-that is, a volume commemorating the anniversary 
of his birth a hundred years earlier. Hilbert had wanted to include a 
paper by an important French mathematician, Paul Painleve. In 
1918, Painleve had, however, fiercely denounced the German scien
tific community. Hilbert and others felt that Painleve had later been 
able to move beyond such feelings, but Brouwer felt strongly that 
including him would insult the German mathematical establishment. 
In spite of Hilbert's more senior position, the essentially democratic 
setup of the journal's operation led to the volume being issued with
out any French contributors. 

Similarly, in the present case Hilbert needed acquiescence from 
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the other managing board members (Herausgebern). He was able to 
get this to varying degrees from Blumenthal and Caratheodory, but 
with Einstein he had hit a wall. He had written to Einstein on Octo
ber 15, asking for his permission as one of the Herausgebern to send 
a letter of dismissal to Brouwer. Among the reasons he gave was that 
Brouwer in an earlier circular letter had insulted not only him 
(Hilbert) but the majority of German mathematicians; that Brouwer 
held a "strikingly hostile position vis-a-vis sympathetic foreign math
ematicians; and that he [Hilbert) thought it would be a good idea to 
keep Gottingen as the chief base of the Annalen." He also mentioned 
his poor health in a postscript. 

Einstein answered, in essence: do what you have to do, but I can
not sign such a letter. 

In response to a letter from Caratheodory asking his advice, 
Einstein answered (October 19), "It would be best to ignore this 
Brouwer-affair. I would not have thought that Hilbert was prone to 
such emotional outbursts."32 AB I noted earlier, Einstein refused to go 
along with the scheme. 

H Hilbert thought Brouwer would beat a meek retreat, though, he 
was mistaken. When Hilbert finally did manage to get the letter writ
ten, Brouwer took this abrupt dismissal as a direct and major insult, 
and he responded quickly, though not immediately. According to one 
report, he was subject to "nervous fits" and was ill and feverish for 
several days after the initial shock. 

Then, however, he wrote to Caratheodory: 

Dear Colleague: 

After close consideration and extensive consultation, I have to 
take the position that the request from you to me [Caratheodory 
had delivered the initial letter of dismissal], to behave with respect 
to Hilbert as to one of unsound mind, qualifies for compliance 
only if it should reach me in writing from Mrs. Hilbert and 
Hilbert's physician. 

Yours, 

L. E.J. Brouwer33 
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This was a serious error on Brouwer's part. In a parlor game 
of some sort, it might have been taken as a clever retort. In this 
situation, it was seen, as it was by Blumenthal, as "this frightful 
and repulsive letter." He and Caratheodory began to wonder if 
Hilbert had perhaps "known and judged him [Brouwer] better than 
we did."34 

Brouwer was unrelenting. He next wrote to Mrs. Hilbert, asking 
her to use her influence on her husband to change his mind. He sent 
a copy to Richard Courant, one of the other board members, who 
actually visited Hilbert's wife, but then wrote back to Brouwer 
telling him that Hilbert was not to be influenced by anyone. 

On the same day (November 5), Brouwer appealed in a broadside 
to all the editors. It included several explanations that spelled out his 
view of Hilbert's "increasing anger against me": that Hilbert's state
ment about lack of cooperation was a smokescreen, for they had not 
exchanged any letters for years; that no objection of any sort had 
until then been lodged against him; that it was unfair for the man
aging editors to put Hilbert's state of health above his (Brouwer's) 
rights and honor; and that the prestige and the scientific contents of 
the Annalen were being sacrificed. 

By now, Hilbert had more or less withdrawn from the fray, but 
the editors, except for Einstein, had pretty much taken sides, with 
most of them on Hilbert's side. Brouwer, as it turned out, was one 
of only three editors who were not German and was therefore some
thing of an outsider. This might have been a factor in the outcome. 
His letter to Caratheodory re Hilbert's "unsound mind," though, 
most likely sealed his fate. 

Brouwer, along with Professor Ludwig Bieberbach, one of the 
board unter editors, then traveled to see the publisher, Ferdinand 
Springer, in Berlin. They both made threats against the Annalen and 
the Springer interests if the dismissal was carried out. Brouwer 
threatened to found a competing journal, but Springer would not be 
intimidated. 35 

Blumenthal, originally tom but now solidly in Hilbert's camp, 
also circulated a letter to the entire board, answering Brouwer's 
charges. One of the points he made: "True, Brouwer was a very con
scientious and active editor, but he was quite difficult in his dealings 
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with the managing editor and he subjected the authors to hardships 
that were hard to bear. 

"For example, manuscripts that were submitted to him for refer
eeing lay around for months."36 Dirk van Dalen points out, however, 
"What Blumenthal did not mention was that in the past he had, in 
his capacity as managing editor, of ten used Brouwer as a trouble 
shooter, and that he had never complained to Brouwer about his han
dling of the manuscripts."37 

The deed was not yet done, though, and a key figure remained 
to be persuaded. If Einstein could be convinced to join the Hilbert 
side, it would be easier to eliminate the remaining opposition. Ein
stein's colleague Max Born tried to win over Einstein personally. 
Responding in a letter of November 27, Einstein clearly stated his 
strict neutrality, and it was here that he introduced his apt character
ization of the situation as a Frosch-Miiusekrieg (War of the Frogs and 
the Mice).38 He wrote to Brouwer and Blumenthal, "I am sorry that 
I got into this mathematical wolf-pack like an innocent lamb. . . . 
Please allow me(,] therefore, to persist in my 'booh-nor-bah' (Muh
noch-Miih) position and allow me to stick to my role of astounded 
contemporary."39 

There was more. Lawyers were called in. Brouwer sent a letter to 
the editors (January 23, 1929), in which he accused Hilbert and 
Blumenthal of "embezzlement" at the Annalen. Dirk van Dalen 
explains that Brouwer was here using the term in a metaphorical 
sense. Brouwer felt that the Annalen were given in trust to the editors 
in chief by the (German) mathematical community, and that by 
Hilbert's action, that trust was violated.40 After that, Brouwer offered 
a final shot: a long letter summarizing his grounds for why he should 
not have been dismissed, including an alternate explanation of the 
Klein affair. None of this helped him. 

Finally, it was done. The solution was to dissolve the old edito
rial board and form a new one-but with a crucial difference. As 
shown on the new cover for 1929, there would only be Herausgebern 
and no Mitarbeiteren, at least none shown on the cover. Hilbert's name 
remained on the cover. This way, it would appear to be just a major 
change in policy, rather than an act against one of the editors, that 
is, Brouwer. 
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The Winner and New Champion 

Qyite clearly, Hilbert had won. Dirk van Dalen, who has studied 
the Frosch-Miiusekrieg carefully, calls the whole affair a tragedy of 
errors. Although he feels that Hilbert's annoyance with Brouwer was 
understandable, "Hilbert's illness, with the real danger of a fatal 
outcome, must have influenced his power of judgment. . . . One 
has to agree with Einstein: if Brouwer was a menace of some sort, 
there were other ways to safeguard the Annalen . ... Most likely the 
letter to Einstein shows an unguarded Hilbert with personal motives 
after all."41 

As for his fears that Brouwer would, had he been given the 
chance, have turned the Annalen into a bastion of intuitionism, it is 
interesting to note that not even Brouwer's own journal, the Compo
siti.o Mathematica, was made to function in that fashion. 

Though Brouwer lived, traveled, and lectured for another 36 
years (he died in an automobile accident in 1966 at the age of 85), it 
was mainly in other areas of mathematics. He retreated into a shell 
as far as the foundations question was concerned. The lack of back
ing from people he had considered colleagues, the rather ruthless dis
missal from the Annalen, and his own sometimes shaky psychological 
makeup drove him into what van Dalen calls a self-chosen isolation. 

He certainly looked upon Hilbert as "my enemy." At one point, 
he walked out of a gathering when van der Waerden, who was also 
a guest, referred to Hilbert and Courant as his (van der Waerden's) 
friends. 42 

Brouwer worked a bit more with his intuitionism, along with a 
few followers, but the excitement was gone, and although intuition
ism as a school was not likely to have become a dominant force, it 
might have had a greater impact if he had been able to continue his 
crusade. 

There was, however, an ironic long-term outcome to the battle. 
The immediate result was that formalism, as a contender, looked 
pretty good-for a while. Hilbert's victory didn't last long, though, for 
in 1930-1931, the young Austrian logician Kurt GOdel came up with 
a proof that in essence showed that Hilbert's formalism program 
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could not really be carried out. (See chapter 7.) Godel's work shook 
the mathematical world and in truth also blasted Hilbert's optimistic 
belief in the solvability of all mathematical problems. 

Yet Hilbert's iron-willed optimism would not let him believe this. 
In 1931, his last recorded words over the radio stated, " Wir mussen 
wissen. Wir werden wissen." (We must know. We shall know.) The 
words are also inscribed on the stone over his grave. He died in 1943. 

The irony I mentioned earlier is that Godel's paper was most 
damaging to the formalists, so that only the intuitionists who were 
still active could still hold up their heads and say I told you so. In gen
eral, however, mathematicians tended to tum away from the founda
tions question, away from the philosophy of mathematics. 

"Nevertheless," writes Ernst Snapper in an essay in Mathematics 
Magazine, 

the influence of the three schools Oogicism, formalism, intuition
ism] has remained strong, since they have given us much new and 
beautiful mathematics. This mathematics concerns mainly set the
ory, intuitionism and its various constructivist43 modifications, 
and mathematical logic with its many offshoots [including foun
dational work for the computer]. However, although this kind of 
mathematics is often ref erred to as "foundations of mathematics," 
one cannot claim to be advancing the philosophy of mathemat
ics just because one is working in one of these areas. Modern 
mathematical logic, set theory, and intuitionism with its modifi
cations are nowadays technical branches of mathematics just as 
algebra or analysis, and unless we return directly to the philoso
phy of mathematics, we cannot expect to find a firm foundation 
for our science. It is evident that such a foundation is not neces
sary for technical mathematical research, but there are still those 
among us who yearn for it.44 

Indeed, the grand, unified theory of mathematics remains elusive. 
Snapper believes "that the key to the foundations of mathematics lies 
hidden somewhere among the philosophical roots of logicism, intu
itionism, and formalism." 45 



10 

Absolutists/Platonists versus 
Fallibilists/Constructivists 

Are Mathematical Advances 
Discoveries or Inventions? 

n a world filled with doubt and uncertainty, mathematics has 
long been seen as the last fortress of certitude. Holders of a 

view variously called absolutism or Platonism reflect this idea and 
see mathematics as objective and precise. They cite its remarkable 
ability to describe activities and patterns in both nature and technol
ogy, and argue that true mathematical knowledge is perfect and 
eternal. 

In opposition are mathematicians who also go under a variety of 
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names, one of the most common being fallibilists (suggesting math
ematical fallibility). They see mathematics as a work in progress. 
Some even argue that certain advances are accepted on the basis of 
the mathematician's authority and not on rational proof. 

Another group of mathematicians who would fall under this cat
egory are the constructivists. Their ideas can be traced back to Kant 
and Kronecker (chapter 6). The constructivist objective is to restruc
ture mathematical knowledge to keep it from obsolescence and con
tradictions. Thus constructivists reject Cantor's proof that the real 
numbers are uncountable, and they reject the law of the excluded 
middle. The intuitionist L. E.J. Brouwer (chapter 9) fell into this cat
egory. In other words, certain parts of classical mathematics are 
unsafe and must be "reconstructed" by "constructive" thinking and 
methods. 

Curiously, science has gone through a somewhat similar evolu
tion. With the advent of relativity and quantum mechanics, absolutist 
views in science have tended to give way to fallibilistic thinking. In 
mathematics, however, a strong core of absolutism/Platonism 
remains intact-in fact, may even be the dominant mode-although it 
is under increasing attack from a number of sides. 

Paul Ernest, editor of the online journal Philosophy ef Mathemati.cs 
&ucati.on, states that "in the past few decades a new wave of 'fallibilist' 
philosophies of mathematics has been gaining ground, and these pro
pose a different and opposing image of mathematics as human, cor
rigible, historical and changing. Fallibilism views mathematics as the 
outcome of social processes. Mathematical knowledge is understood 
to be eternally open to revision, both in terms of its proofs and its 
concepts. Consequently this view embraces the practices of mathe
maticians, its history and applications, the place of mathematics in 
human culture, including issues of values and education as legitimate 
philosophical concerns."1 

The philosophical angle is not a new one. Rene Thom, a well
known French mathematician with a strong interest in the philoso
phy of the subject, wrote in 1990, "The philosophy of mathematics 
is in the midst of what might be termed a 'Kuhnian revolution."' 2 

The term Kuhnian here has several implications. 
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• It denotes a significant turnabout in the way things are done. 
For example, in the 1960s, set-theoretic notation and axiomat
ics were incorporated into the high school mathematics cur
riculum. How's that for a starter? 

• It implies that the revolution is an advance and not merely a 
change. As we will see, there is some question about this, but 
Thom felt that the term Kuhnian is still appropriate. 

• In addition, the activity takes place in an important area of 
interest. That is certainly true. 

Thom saw two major reasons why absolutism is giving way in 
mathematics. "One reason for this," he wrote, "is that the foundations 
of mathematics are not as secure as was supposed. Godel's first 
Incompleteness theorem has shown that axiomatics must fail to 
capture the truths of most interesting mathematical systems [see 
chapter 7]. 

"Another reason is a growing dissatisfaction amongst mathemati
cians, philosophers and educators with the traditional narrow focus 
of the philosophy of mathematics, limited to the foundations of pure 
mathematical knowledge and the existence of mathematical objects."3 

There is, in other words, a growing feeling in the world of mathemat
ics that all of its branches-research, philosophy, history, teaching, 
and learning-are connected, and that in all of those areas absolutist 
thinking is sterile and restrictive. 

So there we have it: a strong force of reformers, drawn from the 
ranks of mathematicians, philosophers, and educators, who see 
mathematics as fallible, corrigible, and open to correction and revi
sion, battling, as we'll see, against an equally strong, equally diverse 
cadre who still hold to the original idea of mathematics as the last 
bastion of certainty. 

Yet these two modes of thinking go hand in hand with another 
strongly contested division of thought: is mathematics discovered or 
created? After all, if true mathematical knowledge is perfect and eter
nal, then whatever new ideas mathematicians come up with must be 
discoveries. But if mathematics is fallible, a work in progress, then 
new mathematical ideas must be created. 
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Or, as Morris Kline puts the basic question: "Is then mathemat
ics a collection of diamonds hidden in the depths of the universe and 
gradually unearthed, or is it a collection of synthetic stones manufac
tured by man, yet so brilliant nevertheless that they bedazzle those 
mathematicians who are already partially blinded by pride in their 
own creations ?"4 

This, then, is our basic question. Let's discuss this first, then see 
where it takes us. 

A Collection of Diamonds to Be Discovered 

The list of people who have thought that mathematics is a collection 
of diamonds to be discovered is long and impressive. Cantor, you'll 
remember, believed that he was merely a reporter, that set theory and 
the infinite had been revealed to him by God (chapter 6). 

The list starts much earlier, though. Plato was one of the first to 
stand in this comer. Basically, he argued that there are two worlds. 
There is the concrete world, that is, the world of real things, which 
we perceive through our senses; and then there is the abstract world
the world of the spirit, that is, the world of ideas and concepts, such 
as goodness, justice, beauty, and perfection. The circles, the squares, 
and the parallel lines that we draw are imperfect; they belong to the 
concrete world. Yet somewhere there exist perfect ones, of which we 
can only conceive. They are ideal, unchanging, eternal. They would 
be there even if we did not exist. The same concept applies to the 
numbers and to the mathematical functions. In short, we discover the 
mathematical truths, we do not invent them. 

Among the better known current exponents of the absolutist 
viewpoint is John D. Barrow, a British author and professor of 
astronomy at the University of Sussex. Barrow, for reasons of his 
own, prefers the term Platonist. He writes, "The existence of mathe
matical entities inhabiting some realm of abstract ideas is a lot for 
many modem mathematicians to swallow, but three hundred years 
ago a Newton or a Leibniz would have taken for granted the exis
tence of mathematical truths independent of the human mind. They 
had faith in the existence of the Divine Mind in which perfection 
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lived and so they saw no problem at all with the concept of perfect 
forms. Their problem was to reconcile them with the existence of the 
imperfect, material objects they saw around them."5 

We are reminded of Newton's famous comment in which he pic
tured himself as a boy playing on the seashore, picking out a pebble 
or a prettier shell than the ordinary, while the great ocean of truth lay 
undiscovered before him. 

Charles Hermite, a respected French mathematician who died in 
1901, expressed a similar idea: "I believe that the numbers and func
tions of analysis are not the arbitrary products of our spirits; I believe 
that they exist outside of us with the same character of necessity as 
the objects of objective reality; and we find or discover them and 
study them as do the physicists, chemists, and zoologists."6 

The great British analyst G. H. Hardy wrote in 1929, "It seems 
to me that no philosophy can possibly be sympathetic to a mathe
matician [who] does not admit, in one manner or other, the 
immutability and unconditional validity of mathematical truth. 
Mathematical theorems are true or false; their truth or falsity is 
absolutely independent of our knowledge of them. In some sense, 
mathematical truth is part of objective reality."7 

We grant that these quotes were written before the appearance of 
Godel's theorem (1930-1931), but even after its publication, the 
absolutist idea has remained a strong one. 

Hardy, for example, continued to express the same absolutist 
view. Thus, in his later book A Mathematician's Apology (1941), he 
wrote, "I believe that mathematical reality lies outside us, that our 
function is to discover or observe it, and that the theorems which we 
prove, and which we describe grandiloquently as our 'creations,' are 
simply our notes of our observations."8 

In 1945, Jacques Hadamard, a leading French mathematician 
(chapter 7), maintained (in his Psychology ef Invention in the Mathemati
cal Field), "Although the truth is not yet known to us, it pre-exists, and 
inescapably imposes on us the path we must follow." 9 

You may have noted in the words of Morris Kline, which ended 
the previous section, that he refers to discovered gems as diamonds, 
while the ones that are man-made are "so brilliant . . . that they 
bedazzle those mathematicians who are already partially blinded by 
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pride in their own creations." It seems clear that as far as he's con
cerned, the discovered gems are the real diamonds. Kline's description 
was written in 1980. 

As we saw earlier, writers who hold these views are sometimes 
called Platonists. Kline believed, however, that there's a problem 
with this term. He said that Plato did indeed believe that mathemat
ics exists in a kind of ideal world apart from human beings, but that 
his doctrines no longer apply in today's world. As a result, he argued, 
"the use of the appellation Platonist is more unsuitable than helpful." 10 

Barrow obviously disagrees. He points out that, in fact, "this phi
losophy of mathematics only became generally known as 'mathemat
ical Platonism' after 1934, when it was so described by Paul Bernays, 
Hilbert's close collaborator on the development of consistency proofs 
for formal mathematical systems." 11 In any case, both terms, absolutist 
and Platonist, are widely used. 

Barrow sums up this side of the basic controversy: "The Platonic 
view of reality has crept unseen upon many modem scientists and 
mathematicians. It seems simple, straightforward, and inspiring. 
There is an ocean of mathematical truth lying undiscovered around 
us; we explore it, discovering new parts of its limitless territory. This 
expanse of mathematical truth exists independently of mathemati
cians. It would exist even if there were no mathematicians at all-and 
indeed, once it did, and one day perhaps it will do so again. Mathe
matics consists of a body of discoveries about an independent real
ity made up of things like numbers, sets, shapes, and so forth." 12 

He adds an interesting idea: "If our minds have derived a special 
mathematical facility from the real world, it is likely that they have 
done so as a result of an evolutionary process which has selected for 
those mental images and representations of the world because they 
most faithfully represent how the world truly is."13 

Perhaps the best-known example of the absolutist/Platonist point 
of view is Kurt Godel. He refers to the entities with which the logi
cian and the set theorist work: "Despite their remoteness from sense 
experience, we do have something like a perception also of the 
objects of set theory, as is seen from the fact that the axioms force them
selves upon us as being true"14 (my italics). 

Finally, says Barrow, Platonism "fails to provide insight into the 
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fact that Nature is best described by our mental inventions in those 
areas furthest divorced from everyday life and those events that 
directly influence our evolutionary history. In the end, one cannot 
help but feel that humanity is not really clever enough to have 
'invented' mathematics."15 

Mathematical Knowledge Is Created 

Those on the opposing side, who believe that mathematical advances 
are created, obviously disagree. This side boasts an equally distin
guished cast of advocates. 

A good example is the brilliant 18th-century German philosopher 
Immanuel Kant, who saw the wellspring of new mathematics in the 
subtle workings of the mind. Our minds, he suggested, have built 
into them the forms of space and time. He called these forms intu
itions. Space and time are filters through which our minds view the 
world, and this helps us to comprehend and organize the sensations 
that constantly bombard us. The development of mathematics runs 
parallel to the progressive development of the mind itself. The 
axioms and the theorems of mathematics are a priori synthetic judg
menffi, to distinguish them from analytidsense-based experiences. As 
a result of these ideas, some writers use the term Kantianism when 
ref erring to fallibilism. 

In Poincare's famous essay "Mathematical Creation" (1908), he 
asked, "What is mathematical creation?" and answered, 

It does not consist in making new combinations with mathemat
ical entities already known. Anyone could do that, but the com
binations so made would be infinite in number and most of them 
absolutely without interest. To create consists precisely in not 
making useless combinations and in making those which are use
ful and which are only a small minority. Invention is discernment, 
choice .... 

The mathematical facts worthy of being studied are those 
which, by their analogy with other facts, are capable of leading 
us to the knowledge of a mathematical law just as experimental 
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facts lead us to the knowledge of a physical law. They are those 
which reveal to us unsuspected kinship between other facts, long 
known, but wrongly believed to be strangers to one another. 

In another section, he wrote, "Most striking at first is this appear
ance of sudden illumination, a manifest sign of long, unconscious 
prior work. The role of this unconscious work in mathematical 
invention appears to me incontestable." 16 

Joseph Dauben maintains, "Georg Cantor basically invented 
transfinite set theory when he discovered there were certain relations 
between point sets that he could generalize to resolve very difficult 
matters concerning trigonometric series and the nature of the set of 
all natural numbers." 17 

David Hilbert had a perfect explanation for why a certain math
ematician had become a novelist. "But that is completely simple," 
Hilbert explained. "He did not have enough imagination for math
ematics, but he had enough for novels."18 

The distinguished American physicist Percy W. Bridgman argued 
in 1927, "It is the merest truism, evident at once to unsophisticated 
observation, that mathematics is a human invention." 19 

Edward Kasner andjames Newman maintained in 1940, 

The first significant appraisal of mathematics was occasioned only 
recently by the advent of non-Euclidean and four-dimensional 
geometry. That is not to say that the advances made by the cal
culus, the theory of probability, the arithmetic of the infinite, 
topology ... are to be minimized. Each one has widened math
ematics and deepened its meaning as well as our comprehension 
of the physical universe. Yet none has contributed to mathemat
ical introspection, to the knowledge of the relation of the parts of 
mathematics to one another and to the whole as much as the non
Euclidean heresies. 

As a result of the valiantly critical spirit which engendered 
the heresies, we have overcome the notion that mathematical 
truths have an existence independent and apart from our own 
minds. It is even strange to us that such a notion could ever have 
existed.20 
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The Hungarian-born philosopher of mathematics lmre Lakatos 
expounded further on the non-Euclidean angle as a factor in his list of 
objections regarding infallibilist (his term for absolutist) thinking. In his 
widely acclaimed book Pro<fs and R.e.fatations (1976), he explained: 

It was the infallibilist philosophical background of Euclidean 
method that bred the authoritarian traditional patterns in math
ematics, that prevented publication and discussion of conjec
tures, that made impossible the rise of mathematical criticism. 
Literary criticism can exist because we can appreciate a poem 
without considering it to be perfect; [but] we only appreciate a 
mathematical or scientific result if it yields perfect truth. A proof 
is a proof only if it proves; and it either proves or it does not. The 
idea ... that a proof can be respectable without being flawless, 
was a revolutionary one in 1847, and, unfortunately, still sounds 
revolutionary today. 

It is no coincidence that the discovery of the methods of 
proofs and refutations occurred in the 1840s, when the break
down of Newtonian optics (through the work of Fresnel in the 
1810s and 1820s), and the discovery of non-Euclidean geometries 
(by Lobatschewsky in 1829 and Bolyai in 1832) shattered infal
libilist conceit. 21 

Among the charges against fallibilism is that "anything goes" and/ 
or that anyone's ideas are as good as anyone else's. Another is that 
fallibilists believe that social forces mold mathematics, so it is shaped 
by the fad of the day rather than by its own logical progression. 

Paul Ernest, a specialist in mathematics education at the Univer
sity of Sussex in England and the editor of a mathematics education 
journal, maintains that these claims and conclusions are caricatures, 
that no fallibilist of any worth would subscribe to them. "Fallibilism," 
he writes, "does not mean that some or all of mathematics may 
be false (although Godel's incompleteness results mean that we 
cannot eliminate the possibility that mathematics may generate a 
contradiction) .... A second criticism leveled at f allibilism is that if 
mathematics is not absolutely necessary then it must be arbitrary or 
whimsical." 
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He adds: 

Just as realists often caricature the relativist views of social con
structivists in science, 22 so too the strengths of the fallibilist views 
are not given enough credit. For although fallibilists believe that 
mathematics has a contingent, fallible and historically shifting 
character, they also argue that mathematical knowledge is to a 
large extent necessary, stable and autonomous. Once humans 
have invented something by laying down the rules for its exis
tence, like chess, the theory of numbers, or the Mandelbrot set, 
the implications and patterns that emerge from the underlying 
constellation of rules may continue to surprise us. But this does 
not change the fact that we invented the "game" in the first place. 
It just shows what a rich invention it was. As the great eighteenth 
century philosopher Giambattista Vico said, the only truths we 
can know for certain are those we invented ourselves. Mathemat
ics is surely the greatest of such inventions.23 

Mathematics Is Both Invention and Discovery 

As we might expect, there are also some people who tread a middle 
ground, who believe that mathematics is both discovered and 
invented. Among those in the "both" column are Henri Poincare and 
Charles Hermite, who had been Poincare's teacher. Poincare, for 
example-whose essay "Mathematical Creation" seemed to support 
the idea of fallibilism-also wrote an essay titled "Mathematical 
Discovery."24 Hermite's point of view was curious. Probably due to 
his religious convictions, he was annoyed with Cantor for creating 
certain objects rather than merely discovering them when God saw 
fit for this to occur. In other words, Cantor was trying to penetrate 
areas, as in his work with the infinite, that God alone should deal 
with and would reveal in his own good time. 

In 1902, Bertrand Russell wrote, "Not only is mathematics 
independent of us and our thoughts, but in another sense we and 
the whole universe of existing things are independent of mathemat
ics." Yet on the very next page of the same essay ("The Study of 
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Mathematics"), he also wrote, "Reason cannot dictate to the world 
of facts, but the facts cannot restrict reason's privilege of dealing with 
whatever objects its love of beauty may cause to seem worthy of con
sideration. Here, as elsewhere, we build up our own ideals out of the 
fragments to be found in the world; and in the end it is hard to say 
whether the result is a creation or a discovery."25 So we'll have to put 
Mr. Russell in the undecided column. 

Furthermore, even Barrow, an avowed Platonist, is aware that 
the answer to Kline's question is neither simple nor obvious. He asks, 
for example, "Where is this other world and how do we make con
tact with it? How is it possible for our mind to have an interaction 
with the Platonic realm so that our brain state is altered by that expe
rience? Many mathematicians of the Platonic persuasion are strongly 
influenced by the fact of their own and others' intuition. They have 
experience of just 'seeing' that certain mathematical theorems are true 
which makes it feel that they have suddenly come upon mathemati
cal truth by a faculty of 'intuition' that is tantamount to discovery."26 

This factor of intuition, oddly, is one of the foundation stones of 
absolutist thinking-that is, that mathematical truths are discovered 
via the intuition of the mathematician, and that these are then estab
lished as correct by various methods of proof. 

Barrow continues, "This non-sensory awareness of abstract 
mathematical structures is a faculty that varies widely, even amongst 
mathematicians, and so the Platonist must regard the best mathemati
cians as possessing a means of making contact with the Platonic 
world more often and more clearly than other individuals."27 

Roger Penrose, a professor of mathematics at the University of 
Oxford in England, says in his book The Emperor's New Mind (1989) 
that he is an adherent of the discovery idea in mathematics, but he 
adds a twist. Perhaps, he says, the matter is not so straightforward, 
and he suggests that 

There are things in mathematics for which the term "discovery" 
is indeed much more appropriate than "invention." ... These are 
the cases where much more comes out of the structure than is put 
into it in the first place [for example, Mandelbrot structures]. One 
may take the view that in such cases the mathematicians have 
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stumbled upon "works of God" [a la Cantor]. However, there are 
other cases where the mathematical structure does not have such 
a compelling uniqueness, such as when, in the midst of a proof 
of some result, the mathematician finds the need to introduce 
some contrived and far from unique construction in order to 
achieve some very specific end. In such cases no more is likely to 
come out of the construction than was put into it in the first 
place, and the word "invention" seems more appropriate than 
"discovery." These are indeed just "works of man." On this view, 
the true mathematical discoveries would, in a general way, be 
regarded as greater achievements or aspirations than would the 
"mere" inventions.28 

Is There a Crisis in Education? 

The battle between the absolutists and the fallibilists goes on in areas 
other than the high-toned philosophy of mathematics, perhaps most 
furiously in the world of mathematics education. 

Although a variety of studies seem to show that absolutism is 
still the majority point of view, the fallibilists have worked at least 
some of their positions into the mathematics curriculum, particularly 
in England and the United States. One of the important changes, 
as I stated earlier, was that set-theoretic notation and axiomatics 
were incorporated into the teaching of high school mathematics in 
the 1960s. 

H. Wu, a mathematics professor at the University of California/ 
Berkeley, writes: 

By the time the idea of the latest reform took hold in 1986-the 
year NCTM [National Council of Teachers of Mathematics] con
vened its first meeting to draft the NCTM Standards-the concept 
of a "proof' in the traditional curriculum had either become non
existent or degenerated into meaningless ritual. For those who 
went to school in the 40s and 50s, such a statement may come as 
a surprise, as not a few of us had been charmed by Euclidean 
geometry-the essence of proofs-into becoming mathematicians. 
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Yet Euclidean geometry is now perhaps the most vilified portion 
of school mathematics. What happened? The mathematics cur
riculum in the schools went through the New Mathematics of the 
60s and the Back-to-Basics Movement of the 70s and emerged 
oversimplified and dumbed down. 29 

Thus in the United States and England, particularly, a loud cry 
has been raised that our students' capability in mathematics has been 
diminishing over the last couple of decades. This has happened at the 
same time that major changes have taken place in the mathematics 
teaching world. This does not prove that the pedagogical changes are 
to blame, but the suspicion is strong among many of the remaining 
absolutists. 

Such a challenge to fallibilistic thinking could not remain without 
counter challenge. Paul Ernest, for example, says, "Their complaints 
[that is, the absolutists'] are old hat. School mathematics has been 
criticized since the Great Exhibition of 1851. Boer War defeats were 
blamed on poor mathematics results. This century, our relative 
industrial decline has also been blamed on school maths and science." 

The real problem, Ernest argues, is that "Too much A level and 
university maths teaching is outdated and boring." The problem, it 
would seem, is not that there has been too much change, but that 
there has not been enough. 

Students are expected to learn facts and skills and to regurgitate 
them for exams, rather than experiencing the excitement of doing 
and applying real maths. To claim that pupils are deprived of the 
opportunity to experience "real mathematics" and are being 
offered a watered down substitute instead is just nonsense. 

The problem, on the contrary, is that they are expected to do 
meaningless and repetitious exercises .... Its sorry state is not 
because it has become too "soft" but because it has failed to gen
erate pupils' enthusiasm and interest. Why are exciting new 
ideas like Fractals and Chaos Theory not included? 

He adds later on, 
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The unquestioned absolutist view has a lot to do with putting 
girls off. 

If there is a crisis in mathematics I would argue it lies with the 
attitude of those university mathematicians who locate the prob
lem anywhere except with themselves. Neither back-to-basics 
nor soft-centred progressivism will solve the problems that maths 
teaching faces. Teacher educators and researchers like myself 
acknowledge that we all need to do better and to find out more.30 

In fact, not everyone even agrees that there is a decline. In some 
quarters, there are basic disagreements about what pupils should 
learn in mathematics; what else they should and could be learning 
at the same time; and what skills they need to learn while in school 
and what they could gather as they need it later on. 

Alan H. Schoenfeld, a professor of education at the University of 
California/Berkeley, feels that it is still early in the game and that we 
have only preliminary data. Nevertheless, he writes, "Those data 
indicate that the first few steps of reform seem to be going in the right 
direction." In basic agreement with Ernest, he argues that we need to 
do considerably more, in several areas, including not only curricu
lum, but in the teaching community and in development of improved 
methods of assessment.31 

Pedagogy and Philosophy 

The furious debate continues, and it brings us back to our original 
question. For there is a very close link between the teaching/learning 
of mathematics and its philosophy/epistemology. Thus Reuben 
Hersh, writing in Advances in Mathematics, maintains, "One's concep
tion of what mathematics is affects one's conception of how it should 
be presented. . . . The issue, then, is not, What is the best way to 
teach? but, What is mathematics really all about?"32 

Birgit Pepin, of the Open University in the United Kingdom, 
looked at mathematics teaching in England, France, and Germany. 
She argues that "Many of the conditions that exert influence on 
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human thought and practice within classrooms are neither visible nor 
readily identifiable. Rather, these forces are the unseen, sometimes 
'unperceived,' and often unvoiced principles, philosophies and beliefs 
that unwittingly penetrate the educational enterprise."33 

Again, developments in science have provided a model. Rene 
Thom points out that science education has been drawing its inspi
ration from developments in the philosophy of science for a number 
of years. He adds, "Educational researchers [in mathematics] are 
becoming increasingly aware of the epistemological foundations of 
their methodologies and inquiries. . . . In fact," he concludes, 
"whether one wishes it or not, all mathematical pedagogy, even if 
scarcely coherent, rests on a philosophy of mathematics."34 

An interesting classroom experiment was reported in 1992 by 
Geoffrey Roulet at Qyeen's University in Kingston, Ontario. A 
group of student teachers wrote position papers in which they stated 
their positions on aspects of the subject of mathematics, the student, 
the teacher, and the relationship of mathematics learning to society. 
The majority took what amounted to an absolutist position, which 
argued that the subject should be made relevant to the students' 
needs, and that this should be done by solving practical problems 
using concepts that they have been taught and have practiced. A 
smaller group took a more f allibilist view, one that had more to do 
with "self-discovery." In general, however, Roulet states quite clearly 
that "the students' images (philosophies) of mathematics clearly gen
erated corresponding views of teaching." Only then does Roulet's fal
libilist leaning become clear: "Moreover the dominant, toolkit view 
leads to teaching practice that is unlikely to capture pupils' imagina
tion and set them on a path of problem posing and solving."35 

Finally, Paul Ernest argues, "The philosophy of mathematics 
education is not about developing a curriculum, but about a theoret
ical foundation on which curricula might be developed."36 

And so we are back to our original question-is mathematics dis
covered or invented? Or, alternatively, are the absolutists or the fal
libilists right? We may find that a solid answer, if there is one, will be 
slow in coming, for the result will both influence and will depend 
upon the world of mathematics teaching. After all, the students of 
today will be the curriculum planners of tomorrow. 



Epilogue 

Years ago, I had lunch with the noted science fiction author 
Arthur C. Clarke. It was not long after the appearance of his 

wonderful movie 2001: A Space Odyssey. I had been wondering about 
the basic idea of the movie, and I talked with him about it. For exam
ple, in an early scene showing prehistoric humans, a puzzling black 
monolith appears. Toward the end of the movie, in another scene 
with far more advanced humans, again we see this puzzling black 
monolith. 

I asked Clarke, "Were you suggesting a kind of circularity?" 
He thought for a moment, then said, "Yes and no. Yes, there is an 

idea of circularity, but I didn't want to suggest that we always come 
back exactly to where we were before. The result is more of a spiral 
than a circle, with each cycle showing some sort of advance over its 
predecessor." 

The idea has stayed with me ever since, and I think it can be 
applied nicely to the course that mathematics has taken over the 
years of its development. 

From the earliest days, important revisions of mathematical prin
ciples have almost always come after periods of uncertainty, often 
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when contradictions appeared and had to be dealt with. The discov
ery of irrationals in Pythagorean times led to a crisis in theorems 
involving proportions. Eudoxus of Cnidus (early 4th century B.C.) 
got his fellow mathematicians through that crisis with his theory of 
proportions (equal ratios). 

These steps haven't been taken in nice, evenly divided periods. 
The ups and downs have been uneven, but ups and downs there 
have been, even within the relatively short couple of hundred years 
covered in this book. For example, many mathematicians were 
unhappy with Leibniz's use of infinitesimals for his calculus. It would 
take almost two centuries before a new formulation, nonstandard 
analysis, would deal with the problem and permit the calculus to rest 
comfortably. 

More recently, we have had Cantor's introduction of set theory 
and his work with infinity, Russell's paradox, and Godel's incom
pleteness theorem. Each has led to much discomfort and much use
ful mathematics in response. 

Morris Kline, that wily commentator, argues, "The only mathe
maticians who could retain some composure and smugness from 
1931 on, during which time the results [of Godel's theorem] were 
breaking the hearts of the logicists, formalists, and set-theorists, were 
the intuitionists. All the play with logical symbols and principles 
which taxed the minds of intellectual giants was to them nonsense.''1 

Interestingly, in the same year that Russell came up with his par
adox, he also wrote, "One of the chiefest triumphs of modem math
ematics consists in having discovered what mathematics really is.'' 

Kline wrote in 1980: 

These words strike us as naive today. Beyond the differences in 
what is accepted as mathematics today by the several schools, one 
may expect more in the future. The existing schools have been 
concerned with justifying the existing mathematics. But if one 
looks at the mathematics of the Greeks, of the 17th century, and 
of the 19th century one sees dramatic and drastic changes. The 
several modem schools seek to justify the mathematics of 1900. 
Can they possibly serve for the mathematics of the year 2000? 
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The intuitionists do think of mathematics as growing and devel
oping. But would their "intuitions" ever generate or give forth 
what had not been historically developed? Certainly this was not 
true even in 1930. Hence it seems that revisions of the founda
tions will always be needed. 2 

Ernst Snapper, a professor emeritus at Dartmouth, says it is even 
worse than that. He claims that all three of the schools can be 
described as undergoing crises in mathematics. For, he argues, none 
of them has been successful in providing us with a firm foundation 
for mathematics.3 

Thus the search for a solid foundation for mathematics is still on; 
the search for the best approach to the teaching of mathematics is still 
in progress. With respect to the foundations question, Kline says, 
"History supports the view that there is no fixed, objective, unique 
body of mathematics. Moreover, if history is any guide, there will be 
new additions to mathematics that will call for new foundations." 4 

With each foundational crisis at least, we appear to come back to 
the same problem. Yet after each crisis, we can expect, or at least 
hope, that the world of mathematics will have learned something 
from what transpired before and will emerge both stronger and 
wiser-after another turn of the spiral. 
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