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Preface

Time present and time past

Are both perhaps present in time future

And time future contained in time past

—T. S. Eliot, ‘‘Four Quartets’’

In the overlit arena of modern science, where progress must be relentless,

leading to pressure to dismiss last year’s ideas as flawed, it is all too easy to

lose track of the currents of history. Unless we nurture them, the stories

and memories underpinning our subjects slip through our fingers and are

lost forever. The roots of our theories and methods are buried, resulting in

unhelpful distortions, wrong turns, and dead ends.

The mechanization of mind—the quest to formalize and understand

mechanisms underlying the generation of intelligent behavior in natural

and artificial systems—has a longer and richer history than many assume.

This book is intended to bring some of it back to life. Its scope is deliber-

ately broad, ranging from cybernetic art to Descartes’s often underesti-

mated views on the mechanical mind. However, there is some emphasis

on what we regard as hitherto underrepresented areas, such as the often

overlooked British cybernetic and precybernetic thinkers, and cybernetic

influences in politics.

Contributions come from a mix of artists, historians, philosophers, and

scientists, all experts in their particular fields. The final section of this

book is devoted to interviews with pioneers of machine intelligence, neuro-

science, and related disciplines. All those interviewed emerged as major fig-

ures during the middle years of the twentieth century, probably the most

explosively productive period yet in the search for the key to the mechani-

cal mind. Their memories give fascinating insights into the origins of some

of the most important work in the area, as well as adding color to many of

the people and places whose names echo through the chapters of this



book. The interviews are not presented as verbatim transcripts of the origi-

nal conversations—such things rarely make for easy reading; instead, they

are edited transcripts that have been produced in collaboration with the

interviewees. Facts and figures have been thoroughly checked and end-

notes have been added to make the pieces as useful as possible as historical

testaments.

A substantial introductory chapter sets out the aims of this collection,

putting the individual contributions into the wider context of the history

of mind as machine while showing how they relate to each other and to

the central themes of the book.

We’d like to acknowledge the help of a number of people who lent a

hand at various stages of the production of this book. Thanks to Jordan Pol-

lock, whose advocacy of this project when it was at the proposal stage

helped to get it off the ground; to Lewis Husbands, for clerical assistance;

and to Bob Prior at the MIT Press for his support and encouragement (not

to mention patience) throughout. Of course this volume would be nothing

without all the hard work and commitment of our contributors—many

thanks to all of them.
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1 Introduction: The Mechanical Mind

Philip Husbands, Michael Wheeler, and Owen Holland

Through myths, literature, and popular science, the idea of intelligent

machines has become part of our public consciousness. But what of the

actual science of machine intelligence? How did it start? What were the

aims, influences, ideas, and arguments that swirled around the intellectual

environment inhabited by the early pioneers? And how did the principles

and debates that shaped that founding period persist and evolve in sub-

sequent research? As soon as one delves into these questions, one finds

oneself enmeshed in the often obscured roots of ideas currently central

to artificial intelligence, artificial life, cognitive science, and neuroscience.

Here one confronts a rich network of forgotten historical contributions

and shifting cross-disciplinary interactions in which various new questions

emerge, questions such as: What intellectual importance should we give to

little-known corners of the history of the mechanical mind, such as cyber-

netic art, the frequently overlooked British cybernetic and pre-cybernetic

thinkers, and cybernetic influences in politics? And, more generally, how

is our understanding of the science of machine intelligence enriched once

we come to appreciate the important reciprocal relationships such work has

enjoyed, and continues to enjoy, with a broad range of disciplines? More-

over, issues that we sometimes address from within an essentially ahis-

torical frame of reference take on a new, historicized form. Thus one

wonders not ‘‘What is the relationship between the science of intelligent

machines and the sciences of neuroscience and biology?’’ but, rather, ‘‘In

different phases of its history, how has the science of intelligent machines

interacted with the sciences of neuroscience and biology?’’ Of course, once

one has taken proper account of the past, the present inevitably looks dif-

ferent. So, having forged a path through the history of the mechanical

mind, one is driven to ask: How far have we really come in the search for

the mechanization of mind? What have we actually learned? And where

should we go next?



The issues raised in the previous paragraph were what inspired, and sub-

sequently drove the development of, the present volume. Unsurprisingly,

given the nature and scope of these issues, the volume is essentially and

massively cross-disciplinary in character, bringing together papers by sci-

entists, artists, historians, and philosophers. Moreover, some of the best

sources of engaging and illuminating insights into any field of study are

the personal memories of those who shaped that field. It is here that the

drama of science becomes manifest, along with previously undetected con-

nections and influences. To capture these dimensions of our topic, we have

chosen to supplement the usual diet of papers with a number of interviews

with highly influential thinkers, most of whom were deeply involved in

the birth of the field and have been major contributors to it ever since.

So is the mechanization of mind possible? In a sense this is our question,

but that sense needs to be carefully specified. We are not focusing here on

something analogous to the now-standard distinction between strong and

weak artificial intelligence, so our question is not, ‘‘Is it possible to build a

machine that really instantiates mental states and processes as opposed to

‘merely’ simulating them?’’ We are interested in the attempt to explain

mind scientifically as a wholly mechanical process—mind as, or perhaps

as generated by, an intelligent machine. Given that simulations are estab-

lished weapons in the scientist’s explanatory tool kit—in physics, biology,

economics and elsewhere—we take this latter issue to be orthogonal to the

‘‘real mind versus simulated mind’’ debate. Second, we are not focusing, at

least not principally, on the attempt to mechanize mind in the sense of

building a complete functioning mechanical mind, presumably as an as-

pect of an integrated mobile robotic platform. The primary issue is not the

mechanization of a mind. Rather, given science’s strategy of abstracting to

the key elements of a phenomenon in order to explain it, mechanical

models of subsets of mind (for instance, mechanical models of individual

psychological capacities such as reasoning or perception) are at the heart

of the mechanization of mind, in the specific sense of the attempt to ex-

plain mind scientifically as a wholly mechanical process. These are the

mechanisms that explain mind as machine.

So far, so good. But what sort of machine do we need for this task? This is

where things get most interesting, and where, we believe, the present col-

lection makes a genuine intellectual contribution that goes beyond that of

historical scholarship. For what the various papers and memoirs here do is

illustrate anew the rich kaleidoscope of diverse and interacting notions of

mechanism that historically have figured in the shifting landscape of the

mechanical mind. In the pages ahead we shall see mind mechanized as an
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analogue electrical system of wires, valves, and resistors; as an organized

suite of chemical interactions; as a self-organizing electromechanical

device, as a team of special-purpose mechanisms; as an automated general-

purpose information processor; as an abstract deterministic process speci-

fied by state-transition rules (such as a Turing machine); as an integrated

collection of symbol-manipulating mechanisms; and as an autonomous

network of subsymbolic or nonsymbolic mechanisms. We shall see some

of these notions deployed in combination as different aspects of the mental

machine, and we shall see some of them pitted against each other in

debates over the fundamental character of that machine. In addition, we

shall see how some of these different notions have influenced and been

influenced by the matrix of cross-disciplinary connections identified earlier.

In the remainder of this chapter, the contributions to this book are put

into the wider context of the history of mind as machine. This is not in-

tended to be a comprehensive history, or anything like it, but is merely a

sketch that helps to show how the chapters relate to each other and to the

central themes of the book. This volume offers a wide range of original ma-

terial, with some emphasis on underexplored areas, such as British cyber-

netics, and the relationship between the mechanical mind and the arts. It

is intended to complement more specific histories (such as those of the

cybernetic period, including Heims 1991; Dupuy 2000) as well as more gen-

eral surveys of the field (McCorduck 1979; Dyson 1997; Cordeschi 2002;

and Boden’s recent heroic two-volume history of cognitive science [2006]).

Looking at some discussions of the history of artificial intelligence, one

would be forgiven for thinking that the mechanization of mind began, or

at least took off properly, with the advent of the digital computer and the

pioneering work of thinkers such as Allen Newell and Herbert Simon in

the second half of the 1950s. But that is a very narrow and ultimately mis-

leading view of history. There is a prehistory of what we now commonly

think of as artificial intelligence in the cybernetic movements of the 1940s

and 1950s—movements of which Newell and Simon themselves were

deeply aware, incidentally. Moreover, there is a pre-prehistory of artificial

intelligence that one might reasonably suggest began with (and this will

come as a surprise to some readers) René Descartes (1596–1650). Descartes

is often portrayed as the archenemy of mind as machine, but in fact he used

clocks (relative rarities in his time) and the complex, animal-like automata

that (among other things) moved, growled, spoke, and sang for the enter-

tainment of the wealthy elite of seventeenth-century Europe as models for

a range of what we would now think of as psychological capacities. Cru-

cially, however, Descartes thought that some psychological capacities, in
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particular, reason, remained beyond the reach of a ‘‘mere’’ mechanism

(Descartes 1637).

Soon afterward, however, the British philosopher Thomas Hobbes

(1588–1679) went further than Descartes to become perhaps the first real

champion of the mechanization of mind. He played a crucial role in estab-

lishing the intellectual climate that would result in attempts to understand

the physical processes underlying intelligent behavior, and would later

allow the emergence of the modern science of machine intelligence. Al-

though today he is usually remembered as an ethical and political philoso-

pher, Hobbes was one of the most important natural philosophers of his

day. His materialist stance emphasized the machinelike qualities of nature,

suggesting the possible creation of artificial animals: artificial intelligences

and artificial life. In attacking Descartes’s separation of mind and body,

Hobbes argued that all of human intelligence is the product of physical

mechanisms: that mind is a property of suitably organized matter.

The idea of mind as machine, then, stretches back over several centuries.

As hinted at above, Descartes was not as hostile to the idea of mechanistic

explanations of intelligent behavior as he is often portrayed today. Michael

Wheeler explores this theme in some depth in his chapter, ‘‘God’s

Machines: Descartes on the Mechanization of Mind.’’ He shows that Des-

cartes’s position was that machines (in the sense relevant to the mechani-

zation of mind) are essentially collections of special-purpose mechanisms,

and that no single machine could incorporate the enormous number of

special-purpose mechanisms that would be required for it to reproduce

human-like behaviour. By looking at contemporary work in biologically-

inspired AI, Wheeler asks to what extent we can yet answer Descartes.

Although Hobbes’s Leviathan included a combinatorial theory of think-

ing (Hobbes 1651), details of possible mechanisms for intelligence were

very sketchy. It was some time before much progress was made in this di-

rection: the eighteenth century saw the construction of many ingenious

mechanical automata, including chess-playing Turks and flatulent ducks,

but it wasn’t until the nineteenth century that major breakthroughs

occurred, including the design of Charles Babbage’s programmable Analyt-

ical Engine.

The son of a London banker, Babbage (1791–1871) was a brilliant math-

ematician and engineer who held the same chair at Cambridge University

that Newton had occupied. Inspired by Leibniz, whose work was in turn

influenced by Hobbes, in 1821 he designed his mechanical Difference En-

gine for calculating accurate mathematical tables—something of enormous
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practical importance at the time. However, Babbage’s interest in calculating

machines ran deeper than the production of mathematical tables. He envi-

sioned such engines as powerful tools for science, hoping that their whir-

ring cogs would shed new light on the workings of nature. In this spirit, in

1834 he began work on his revolutionary Analytical Engine, a general, pro-

grammable machine. The engine was to read instructions from sets of

punched cards, adapted from those used in Jacquard looms (invented in

1801 to automate textile weaving), and to manipulate partial results in its

own internal memory. Rather than being designed to perform just one set

of calculations, the machine was intended to be a completely general com-

puting engine; in theory, it could be programmed to perform any calcula-

tion. In chapter 2, ‘‘Charles Babbage and the Emergence of Automated

Reason,’’ Seth Bullock explores the context in which Babbage’s work

emerged, highlighting the debates on the possibility of automated reason,

which covered economic, social, and moral ground. He also shows how

Babbage was able to demonstrate the wider applicability of his machines

by developing the first computational model intended to help further

study of a scientific problem (in this case one in geology).

In 1843 Augusta Ada, Countess of Lovelace (1815–1852) translated into

English a paper on the Analytical Engine written by the mathematician

Luigi Menabrea (Lovelace 1843). Ada was the daughter of Lord Byron, the

great poet. Her parents separated almost immediately after her birth, and

Lady Byron raised Ada to appreciate mathematics and science, in part be-

cause of her own interest in these areas, but also because she hoped it

would drive out any Byronic madness her daughter might have inherited.

In collaboration with Babbage, Ada added extensive notes to the manu-

script, which make it clear that they both understood the importance of

the general nature of the Engine. Ada wrote of its potential to act as a

‘‘thinking, reasoning machine.’’ The notes include a detailed description

of a method for using the Engine to calculate Bernoulli numbers. This is

widely regarded as the first computer program, although there is some con-

troversy over whether the primary author was Lovelace or Babbage. Ada

was perhaps the first person to see the possibility of using computational

engines in the arts, writing of the Analytic Engine’s potential to compose

music and generate graphics.

The Analytical Engine was never completed; its construction became

mired in manufacturing and bureaucratic difficulties that resulted in the

British government’s withdrawing funding. In 1991 a team at the Science

Museum in London constructed the Difference Engine Number 2 according
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to Babbage’s detailed designs. It worked perfectly. In most respects Bab-

bage’s remarkable vision of a universal machine anticipated the modern

digital computer age by more than a century.

While Babbage was struggling to construct his engines, the English math-

ematician George Boole (1815–1864), the self-educated son of a Lincoln

cobbler, was building a formal system of logic which went on to serve as a

cornerstone of all modern digital technology, but which was also intended

to capture the structure of reasoning and thinking (Boole 1854). In Boolean

algebra, logical relationships between entities are formalized and manipu-

lated. Variables representing the entities are restricted to two possible

values, true or false—1 or 0. By uniting logic with mathematics, in par-

ticular binary arithmetic, Boole laid the foundations for the flow of bits and

bytes that power our digital age. He died after developing a fever following

a soaking in a rainstorm. His demise was unwittingly aided by his wife,

who, believing that a cure should mirror the cause, threw buckets of cold

water over him as he lay shivering in bed.

Where Babbage and his predecessors developed schemes for describing

and automating reasoning at a fairly high, abstract level, one of the first

people to try to ground intelligence in brain function was Alfred Smee

(1818–1877), a brilliant scientist and engineer who held the somewhat bi-

zarre position of surgeon to the Bank of England. (His father was secretary

of the bank and the position was specially created in the hope of tapping

into Alfred’s inventive flair. It did: he developed electrotype plate printing

of banknotes, which greatly reduced problems with forged notes.) Smee

pioneered theories of the operation of the nervous system, speculating on

how its electrical networks were organized. He also formulated ideas about

artificial sense organs and a type of very early artificial neural network.

During the early decades of the twentieth century, advances in electrical

engineering and early electronics fed into formal theories of the operation

of neurons, as well as greatly improving experimental techniques in the

developing field of neurophysiology. This allowed great pioneers such as

Lord Adrian (1889–1977) and Charles Sherrington (1857–1952) to lay the

foundations for the modern view of the nervous system by greatly advanc-

ing knowledge of the electrical properties of nerve cells (Adrian 1928; Sher-

rington 1940). Communications theory was also emerging in engineering

circles; as we shall see, future developments in this area would later have a

significant impact on approaches to the mechanization of mind.

At about the same time that Adrian and Sherrington were making great

strides in understanding neurons, D’Arcy Thompson was trying to fathom

how biological structures develop. In 1917 he published his celebrated book
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On Growth and Form (Thompson 1917). As Margaret A. Boden argues in

chapter 3, ‘‘D’Arcy Thompson: A Grandfather of A-Life,’’ this pioneering

work of mathematical biology, in which Thompson sought to develop a

quantitative approach to biological forms and processes of growth, not

only helped to pave the way for modern theoretical biology but also prefig-

ured the contemporary field of artificial life (or A-Life), the study of life in

general, abstract terms. As well as influencing Alan Turing’s work on mor-

phogenesis, of which more later, it emphasized the embodied nature of

natural intelligence, a theme that has become increasingly central to con-

temporary cognitive science (Pfeifer and Scheier 1999; Wheeler 2005).

The notion of embodied mechanical intelligence was, quite literally,

thrust center stage in the years between the world wars, when Karel

Čapek’s play R.U.R. introduced the world to robots, in the process forging

the associated myths and images that now permeate our culture. In ‘‘The

Robot Story: Why Robots Were Born and How They Grew Up,’’ Jana Horá-

ková and Jozef Kelemen give a detailed account of the origins of Čapek’s

work, tracing its roots to the dreams and folk tales of old Europe. They

show how it was a product of its troubled times and how the idea of

robots was interpreted in different ways in Europe and America as it

seeped into the collective unconscious. The new dreams and images thus

created undoubtedly inspired future generations of machine intelligence

researchers.

Smee’s early desire to unite the workings of the mind with the underly-

ing neural mechanisms, and to develop machines around the principles

uncovered, was a theme that reemerged very strongly in the mid-twentieth

century. It was in this period that machine intelligence really took off. At

the same time advances in understanding the nervous system continued

apace. Kenneth Craik (1914–1945) was an influential, if now often forgot-

ten, figure in the flurry of progress that occurred. Craik was a brilliant Scot-

tish psychologist, based at Cambridge University, who pioneered the study

of human-machine interfaces, and was a founder of cognitive psychology

and also of cybernetic thinking. He died tragically young, in a road acci-

dent on the last day of the war in Europe, his potential surely not fully

realized. His classic 1943 book, The Nature of Explanation (Craik 1943),

introduced the radical and influential thesis that the brain is a kind of ma-

chine that constructs small-scale models of reality that allow anticipation

of external events. Disgruntled with mainstream philosophy of mind and

much of psychology, and inspired by the strides Adrian and his colleagues

were making, he maintained that explanations of intelligence should in-

corporate an understanding of the underlying neural processes. Craik’s
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influence on the development of cybernetics, on both sides of the Atlantic,

is discussed in Philip Husbands and Owen Holland’s chapter on the Ratio

Club.

At the same time as Craik was starting to develop his ideas, in another

part of Cambridge the mathematician Alan Turing (1912–1954) was about

to publish a startling paper on one of David Hilbert’s open problems in

mathematics, the Entscheidungsproblem (‘‘decision problem’’), namely: Is it

possible to define a formal procedure that could be used to decide whether

any given mathematical assertion was provable. Turing’s highly original

approach to the problem was to define a kind of simple abstract machine

(Turing 1936). By using such a machine as a very general way of construct-

ing a formal procedure in mathematics, he was able to show that it fol-

lowed that the answer to the problem was no. The concept of the Turing

machine, as it became known, now serves as the foundation of modern

theories of computation and computability. In the paper Turing explicitly

drew a parallel between the operation of such a machine and human

thought processes. Turing also introduced a more general concept that was

to have an immense practical impact: the Universal Turing Machine. This

machine could interpret and then execute the set of instructions defining

any given standard Turing machine (each of which corresponded to a par-

ticular formal procedure or algorithm). Thus, the Universal Turing Machine

embodies the central principle of the computer as we know it today: a sin-

gle machine that can perform any well-defined task as long as it is given

the appropriate set of instructions, or program. A hundred years after Bab-

bage, and by a very different route, Turing envisaged a completely general

supermachine. This time the vision was to come to fruition.

Donald Michie’s chapter, ‘‘Alan Turing’s Mind Machines,’’ draws on his

experience as one of Turing’s close colleagues in wartime code-cracking

work at Bletchley Park, the headquarters of Britain’s cryptography efforts,

to give insights into the development of Turing’s ideas and the early com-

puters that flowed from them. He argues that Turing’s unfashionable and

often resisted obsession with tackling combinatorial problems with brute-

force computation, partly born of his wartime experience with cryptanalyt-

ical problems, helped to shape the way computers came to be used. He

shows that computer analyses of combinatorial domains such as chess,

inspired by Turing’s work, are still of great importance today in yielding

new approaches to the difficult problem of transparency in complex

computer-based decision systems.

In a complementary chapter, Andrew Hodges asks ‘‘What did Alan

Turing Mean by ‘Machine’?’’ He focuses on the title of Turing’s unpub-
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lished 1948 report ‘‘Intelligent Machinery’’ (Turing 1948) to explore what

Turing intended by an ‘‘intelligent machine.’’ Turing saw central roles for

the new digital computers in the development of machine intelligence

and in the exploration of brain mechanisms through simulations, both of

which came to pass. Hodges argues that although the central thrust of

Turing’s thought was that the action of brains, like that of any machine,

could be captured by classical computation, he was aware that there were

potential problems in connecting computability with physical reality.

The Second World War was to prove a major catalyst for further advances

in mechanistic conceptions of intelligence as well as in the development of

practical computers. In Britain there was little explicitly biological research

carried out as part of the war effort, so most biologists were drafted into

the main thrust of scientific research on communications and radar. As

explained in chapter 6, this was to have the extremely important effect of

exposing these biologists to some electronics and communication theory as

well as to engineers and mathematicians who were experts in these areas.

This mixing of people and disciplines led to an important two-way flow of

ideas that was to prove highly significant in advancing the formal under-

standing of the nervous system as well as developments in machine intelli-

gence. There was much discussion of electronic brains, and the intense

interest in the subject carried over into peacetime.

In the early 1940s a circle of scientists intent on understanding general

principles underlying behavior in animals and machines began to gather

around the MIT mathematician Norbert Wiener (1894–1964). Inspired by

Wiener’s classified work on automatic gun aiming, Arturo Rosenblueth,

Wiener, and Julian Bigelow (1943) published a paper on the role of feed-

back mechanisms in controlling behavior. This work triggered great interest

among other American scientists in new approaches to the mechanization

of mind. Influenced by Wiener’s ideas, but also aware of Craik’s and

Turing’s work, the group was initially composed of a small number of

mathematicians and engineers (Wiener, John von Neumann, Bigelow,

Claude Shannon, Walter Pitts) and brain scientists (Rafael Lorente de Nó,

Rosenblueth, Warren McCulloch). A series of meetings sponsored by the

Macy Foundation saw the group expand to incorporate the social sciences.

Wiener named the enterprise cybernetics; the publication of his book Cy-

bernetics, or Control and Communication in the Animal and the Machine (Wie-

ner 1948), along with the proceedings of the Macy meetings (von Foerster

1950–55), did much to spread its influence and popularity. As well as Wie-

ner’s book, notable developments that came under the cybernetic umbrella

included McCulloch and Pitts’s seminal work on mathematical descriptions
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of neuronal networks (McCulloch and Pitts 1943; Pitts and McCulloch

1947), providing the first examples of artificial neural networks, and Shan-

non’s information theory (Shannon and Weaver 1949). McCulloch and

Pitts modeled neuronal networks in terms of connected logic units and

showed that their nets were equivalent to Universal Turing Machines,

implicitly suggesting a close link between the nervous system and the

digital computer. Information theory, which provided a mathematical

framework for designing and understanding communication channels, is

another foundation stone of the digital age. It also provided new ideas

about the operating principles of biological senses and what kinds of pro-

cessing might be going on in the nervous system.

In Britain, where war work had also familiarized many scientists with

feedback mechanisms and early information theory, a parallel group

formed, the Ratio Club. The club was founded and organized by John

Bates, a neurologist at the National Hospital for Nervous Diseases in Lon-

don. The other twenty carefully selected members were a mixed group of

mainly young neurophysiologists, engineers, and mathematicians, with

the center of gravity firmly toward the brain sciences. This illustrious group

included W. Ross Ashby, Horace Barlow, Thomas Gold, Jack Good, Donald

MacKay, Alan Turing, W. Grey Walter, and Albert Uttley. Most members

had a strong interest in developing ‘‘brainlike’’ devices, either as a way of

formalizing and exploring theories about biological brains, or as a pioneer-

ing effort in creating machine intelligence, or both. Most meetings of the

club occurred between September 1949 and July 1953. During this ex-

tremely productive period various members made highly significant contri-

butions to cybernetics and related fields. Husbands and Holland’s chapter,

‘‘The Ratio Club: A Hub of British Cybernetics,’’ for the first time tells the

story of this remarkable group. Horace Barlow’s very significant contribu-

tions to neuroscience, including his introduction into it of important

information-theoretic concepts (Barlow 1959), were heavily influenced by

the club. Members pioneered a wide range of techniques and ideas that

are proving to be ever more influential. For instance, Grey Walter (1910–

1977), a leader in electroencephalographic (EEG) research, built the first

autonomous mobile robots, controlled by simple electronic nervous sys-

tems (Walter 1953). W. Ross Ashby (1903–1972), who had actually pub-

lished on the role of feedback in adaptive systems several years before

Rosenblueth, Wiener, and Bigelow (Ashby 1940), further developed such

notions, culminating in their demonstration in his adaptive Homeostat

machine (Ashby 1952); and Turing, whose seminal paper on machine intel-

ligence (Turing 1950) was published during the club’s lifetime, pioneered
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the use of computational models in biology in his groundbreaking work on

morphogenesis, which showed how regular patterns could be formed by

appropriately parameterized reaction-diffusion systems—work that called

up the spirit of D’Arcy Thompson (Turing 1952).

Ashby, who is now widely acknowledged as the most important theorist

of cybernetics after Wiener—partly through the influence of his books

(Ashby 1952, 1956)—had a singular vision that he had developed in isola-

tion for many years before becoming part of the scientific establishment in

the late 1940s. His unique philosophy, which stressed the dynamic nature

of brain mechanisms and the interactions between organism and environ-

ment, is explored by Peter Asaro in chapter 7, ‘‘From Mechanisms of Adap-

tation to Intelligence Amplifiers: The Philosophy of W. Ross Ashby.’’ Asaro

sheds light on what kind of machine Ashby thought the brain was and

how its principles might be captured in an artificial device.

Parallel developments in the United States also focused on biologically

inspired brainlike devices, including work by researchers such as Frank

Rosenblatt and Marvin Minsky on the construction of electronic artificial

neural networks that were able to perform simple learning tasks. Oliver

Selfridge, a grandson of the founder of London’s famous Selfridge’s depart-

ment store, had left Britain at the age of fourteen to study with Wiener at

MIT. In the mid-1950s he developed his breakthrough Pandemonium sys-

tem, which learned to recognize visual patterns, including alphanumeric

characters (Selfridge 1959). The system employed a layered network of

processing units that operated in parallel and made use of explicit feature

detectors that only responded to certain visual stimuli—a more general

mechanism than the specific detectors that had recently been shown to

exist in biological vision systems by Horace Barlow in the form of ‘‘fly

detectors’’ in the frog’s retina (Barlow 1953). Neural mechanisms that are

selectively responsive to certain general features (for instance, edge and

convexity detectors) were subsequently shown to exist in natural vision

systems by Jerry Lettvin, Humberto Maturana, Warren McCulloch, and

Walter Pitts (1959).

Most prominent among the second wave of British cyberneticists were

Stafford Beer (1926–2002) and Gordon Pask (1928–1996), who were both

particularly influenced by Ashby. Beer took cybernetic ideas into the world

of industrial management and became a highly successful consultant to

corporations and governments alike. In ‘‘Santiago Dreaming,’’ Andy Beck-

ett tells the story of how in the early 1970s the Allende administration in

Chile engaged Beer to design and develop a revolutionary electronic com-

munication system in which voters, workplaces, and the government were
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to be linked together by a kind of ‘‘socialist internet.’’ Pask was an eccentric

figure who strode around in an Edwardian cape while pursuing radical ideas

far from the mainstream. In ‘‘Gordon Pask and His Maverick Machines,’’

Jon Bird and Ezequiel Di Paolo highlight Pask’s willingness to explore novel

forms of machine, often in collaboration with Beer, in his quest to better

understand principles of self-organization that would illuminate the mech-

anisms of intelligence. These included a ‘‘growing’’ electrochemical device

intended to act as an artificial ear. They show how Pask’s work is relevant to

current research in AI and A-life, and how key questions he posed have not

yet been answered.

Pask, like other machine intelligence researchers before and since, was

interested in applying his ideas in the visual arts. As Paul Brown shows in

chapter 11, ‘‘The Mechanization of Art,’’ Wiener’s and Ashby’s ideas were

quickly appreciated by a number of artists, such as Nicolas Schöffer, who

in the mid-1950s pioneered a kind of autonomous kinetic art, cybernetic

sculptures. Brown traces the cultural, as well as scientific, antecedents of

this work in an account of how the mechanization of art developed over

the centuries. He focuses on its growth during part of the second half of

the twentieth century, a period that saw the influential 1968 Institute

of Contemporary Arts (London) exhibition Cybernetic Serendipity, which

featured Pask’s installation Colloquy of Mobiles. He reminds us that a num-

ber of artists working in this field, such as Edward Ihnatowicz (1926–1988),

pioneered approaches to autonomous systems, prefiguring today’s growing

dialogue between artists and scientists in this area.

In 1956 two young American academics, John McCarthy and Marvin

Minsky, organized a long workshop at Dartmouth College to develop new

directions in what they termed artificial intelligence. McCarthy in particular

proposed using newly available digital computers to explore Craik’s con-

ception of intelligent machines as using internal models of external reality,

emphasizing the power of symbolic manipulation of such models. At the

workshop, Allen Newell (1927–1992) and Herbert Simon (1916–2001),

influenced by aspects of Selfridge’s work, demonstrated a symbolic reason-

ing program that was able to solve problems in mathematics. This was the

beginning of the rise of logic-based, symbol-manipulating computer pro-

grams in the study of machine intelligence. This more abstract, software-

bound paradigm came to dominate the field and pulled it away from its

biologically inspired origins. For a while the term ‘‘artificial intelligence,’’

or AI, was exclusively associated with this style of work. This paradigm,

which to some extent harked back to the older ideas of Boole and Leibniz,
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also served as a new kind of abstract model of human reasoning, becoming

very influential in psychology and, later, in cognitive science.

Roberto Cordeschi illustrates some of the tension between cybernetic

and early AI theories in his chapter, ‘‘Steps Toward the Synthetic Method:

Symbolic Information Processing and Self-Organizing Systems in Early Arti-

ficial Intelligence Modeling.’’ He compares two theories of human cogni-

tive processes, one by the Ratio Club member and cyberneticist Donald

Mackay (1922–1987), the other by Newell and Simon. MacKay’s model is

constructed around his notion of self-organizing systems, whereas Newell

and Simon’s is based on high-level symbol manipulation. Cordeschi

explores epistemological issues raised by each.

The new AI movement in the United States gained significant financial

and industrial support in the 1960s, as it began to dominate the arena

while the influence and impetus of cybernetics fell away. However, work

in neural nets, adaptive and self-organizing systems, and other outgrowths

of cybernetics did not disappear altogether. As the weaknesses of the main-

stream AI approaches became apparent and the adaptive-systems methods

improved, with a number of crucial advances in artificial neural networks

and machine learning, the tide turned (see Anderson and Rosenfeld 1998

for an excellent oral history of the rise and fall and rise of artificial neural

networks). Since the late 1980s, biologically inspired and subsymbolic

approaches have swept back to take center stage. These include an em-

phasis on whole embodied artificial ‘‘creatures’’ that must adapt to real

unforgiving environments. Their brains run on onboard digital computers,

as Turing foresaw more than fifty years ago. Work in machine intelligence

has again become much more closely aligned with research in the bio-

logical sciences. Many of the ideas and methods developed by the great

pioneers of the mid-twentieth century have once more come to the fore—

the mechanization-of-mind project, although still very far from completion,

appears to be back on track. Which is not to say that there is agreement on

the best way forward.

One of the most prominent critics of classical AI, or good old-fashioned

AI—GOFAI—was Hubert Dreyfus. In ‘‘Why Heideggerian AI Failed and

How Fixing It Would Require Making It More Heideggerian,’’ he turns the

spotlight on one of GOFAI’s replacements. Informed by personal experi-

ences and encounters at MIT (the high temple of AI, new and old), Dreyfus

tells of how he watched the symbol-processing approach degenerate, and

of how it was replaced by what he terms ‘‘Heideggerian AI,’’ a movement

that began with the work of Rodney Brooks and colleagues (Brooks 1999).
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This work puts central emphasis on acting in the world and thus concen-

trates on the development of mobile autonomous robots. Dreyfus explains

why, in his view, this style of AI has also failed and suggests how it should

be fixed, calling on Walter Freeman’s neurodynamics and stressing the

importance of the specifics of how particular bodies interact with their

environments.

The final section of the book offers a series of interviews, conducted by

one of the editors, with major figures whose careers were firing into life in

the middle of the last century, an astonishingly fertile period in the search

for the secrets of mechanical intelligence. We are given vivid accounts of

how these great scientists’ ideas developed and of who influenced them.

Certain themes and characters echo through these interviews, giving fresh

perspective on material earlier in the book.

John Maynard Smith, one of the great evolutionary biologists of the

twentieth century, who originally trained as an engineer, gives us an in-

sight into the spirit of science immediately after the Second World War

as well as into the early influence of cybernetics on developmental and

evolutionary biology. John Holland, the originator of genetic algorithms,

recounts how his theories of adaptive systems were in turn influenced by

biology, then reflects on recent developments and considers why, in the

late 1980s, there was a great resurgence of interest in complex adaptive sys-

tems. Oliver Selfridge, one of the pioneers of machine learning, tells us

what it was like to be at the heart of the MIT cybernetics enterprise in the

1940s and 1950s, and how he helped Minsky and McCarthy to establish

the field of AI. Regretting GOFAI’s lack of interest in learning and adapta-

tion during its heyday, he gives his views on where the field should go

now. The great neuroscientist Horace Barlow paints a picture of life in

Lord Adrian’s department at Cambridge University during the late 1940s

and tells how the Ratio Club profoundly influenced his subsequent career.

Toward the end of his interview he makes the highly pertinent point that

as neuroscience has developed over the past fifty years, it has fragmented

into specialized subareas. So although knowledge has increased to an enor-

mous extent, there is now a greater need than ever for an overarching

theory. The theorists, experimentalists, and modelers must all combine in

a coherent way if we are ever to understand the nervous system in suffi-

cient detail to formulate its principles. Jack Cowan, a pioneer of neural net-

works and computational neuroscience, gives a unique perspective on

activity in machine intelligence in the UK and the United States in the

late 1950s and early 1960s. He recounts how his ideas developed under
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the influence of some of the great pioneers of cybernetics, and how those

ideas flourished throughout his subsequent career.

From positions of authority, with access to extraordinarily wide perspec-

tives, these pioneers look back at what has been achieved, and comment

on how far we still have to go, in the mechanization of mind. All are opti-

mistic for the long term, but stress the enormous complexity of the task. In

short, although much has been achieved and great progress has been made

in understanding the details of specific mechanisms and competences, in

terms of the overall picture, we have not yet come very far at all. This mes-

sage serves as a useful antidote to the wild ravings of those who claim that

we will soon be downloading our minds into silicon (although it is not

clear whether this will be before or after our doors are kicked in by

the superintelligent robots that these same people claim will take over the

world and enslave us).
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2 Charles Babbage and the Emergence of Automated Reason

Seth Bullock

Charles Babbage (1791–1871) (figure 2.1) is known for his invention of the

first automatic computing machinery, the Difference Engine and later

the Analytical Engine, thereby prompting some of the first discussions of

machine intelligence (Hyman 1982). Babbage’s efforts were driven by the

need to efficiently generate tables of logarithms—the very word ‘‘com-

puter’’ having originally referred to people employed to calculate the values

for such tables laboriously by hand. Recently, however, historians have

started to describe the wider historical context within which Babbage was

operating, revealing how he, his contemporaries, and their students were

influential in altering our conception of the workforce, the workplace, and

the economics of industrial production in a Britain increasingly concerned

with the automation of labor (Schaffer 1994).

While it was clear that all manner of unskilled manual labour could be

achieved by cleverly designed mechanical devices, the potential for the

same kind of machinery to replicate mental labor was far more controver-

sial. Were reasoning machines possible? Would they be useful? Even if they

were, was their use perhaps less than moral? Babbage’s contribution to this

debate was typically robust. In demonstrating how computing machinery

could take part in (and thereby partially automate) academic debate, he

challenged the limits of what could be achieved with mere automata, and

stimulated the next generation of ‘‘machine analysts’’ to conceive and de-

sign devices capable of moving beyond mere mechanical calculation in an

attempt to achieve full-fledged automated reason.

In this chapter, some of the historical research that has focused on

Babbage’s early machine intelligence and its ramifications will be brought

together and summarized. First, Babbage’s use of computing within

academic research will be presented. The implications of this activity on

the wider question of machine intelligence will then be discussed, and the

relationship between automation and intelligibility will be explored.



Intermittently throughout these considerations, connections between the

concerns of Babbage and his contemporaries and those of modern artificial

intelligence (AI) will be noted. However, examining historical activity

through modern lenses risks doing violence to the attitudes and significan-

ces of the agents involved and the complex causal relationships between

them and their works. In order to guard against the overinterpretation of

what is presented here as a ‘‘history’’ of machine intelligence, the paper

concludes with some caveats and cautions.

The Ninth Bridgewater Treatise

In 1837, twenty-two years before the publication of Darwin’s On the Origin

of Species and over a century before the advent of the first modern com-

puter, Babbage published a piece of speculative work as an uninvited Ninth

Figure 2.1

Charles Babbage in 1847. Source: http://www.kevryr.net/pioneers/gallery/ns_

babbage2.htm (in public domain).
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Bridgewater Treatise (Babbage 1837; see also Babbage 1864, chapter 29,

‘‘Miracles,’’ for a rather whimsical account of the model’s development).

The previous eight works in the series had been sponsored by the will of

Francis Henry Egerton, the Earl of Bridgewater and a member of the English

clergy. The will’s instructions were to make money available to commission

and publish an encyclopedia of natural theology describing ‘‘the Power,

Wisdom, and Goodness of God, as manifested in the Creation’’ (Brock

1966; Robson 1990; Topham 1992).

In attempting such a description, natural theologists tended to draw at-

tention to states of affairs that were highly unlikely to have come about by

chance and could therefore be argued to be the work of a divine hand. For

instance, the length of the terrestrial day and seasons seem miraculously

suited to the needs and habits of plants, man, and other animals. Natural

theologists also sought to reconcile scientific findings with a literal reading

of the Old Testament, disputing evidence that suggested an alarmingly

ancient earth, or accounting for the existence of dinosaur bones, or pro-

moting evidence for the occurrence of the great flood. However, as Simon

Schaffer (1994) points out, natural theology was also ‘‘the indispensable

medium through which early Victorian savants broadcast their messages’’

(p. 224).

Babbage’s contribution to the Bridgewater series was prompted by what

he took to be a personal slight that appeared in the first published and per-

haps most popular Bridgewater Treatise. In it, the author, Reverend William

Whewell, denied ‘‘the mechanical philosophers and mathematicians of re-

cent times any authority with regard to their views of the administration of

the universe’’ (Whewell 1834, p. 334, cited in Schaffer 1994, p. 225). In

reply, Babbage demonstrated a role for computing machinery in the at-

tempt to understand the universe and our relationship to it, presenting

the first published example of a simulation model.

In 1837, Babbage was one of perhaps a handful of scientists capable of

carrying out research involving computational modeling. In bringing his

computational resources to bear on a live scientific and theological ques-

tion, he not only rebutted Whewell and advanced claims for his machines

as academic as well as industrial tools, but also sparked interest in the ex-

tent to which more sophisticated machines might be further involved in

full-blown reasoning and argument.

The question that Babbage’s model addressed was situated within what

was then a controversial debate between what Whewell had dubbed cata-

strophists and uniformitarians. Prima facie, this dispute was internal to ge-

ology, since it concerned the geological record’s potential to show evidence
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of divine intervention. According to the best field geologists of the day,

geological change ‘‘seemed to have taken place in giant steps: one geo-

logical environment contained a fossil world adapted to it, yet the next

stratum showed a different fossil world, adapted to its own environment

but not obviously derivable from the previous fossil world’’ (Cannon

1960, p. 7). Catastrophists argued for an interventionist interpretation of

this evidence, taking discontinuities in the record to be indicators of the

occurrence of miracles—violations of laws of nature. In contrast, uniformi-

tarians argued that allowing a role for sporadic divine miracles interrupting

the action of natural processes was to cast various sorts of aspersions on the

Deity, suggesting that His original work was less than perfect, and that He

was constantly required to tinker with his Creation in a manner that

seemed less than glorious. Moreover, they insisted that a precondition of

scientific inquiry was the assumption that the entire geological record

must be assumed to be the result of unchanging processes. Miracles would

render competing explanations of nature equally valid. No theory could be

claimed to be more parsimonious or coherent than a competing theory

that invoked necessarily inexplicable exogenous influences. As such, the

debate was central to understanding whether and how science and religion

might legitimately coexist.

Walter Cannon (1960) argues that it is important to recognize that this

debate was not a simple confrontation between secular scientists and reli-

gious reactionaries that was ultimately ‘‘won’’ by the uniformitarians.

Rather, it was an arena within which genuine scientific argument and prog-

ress took place. For example, in identifying and articulating the degree to

which the natural and physical world fitted each other, both currently and

historically, and the startling improbability that brute processes of contin-

gent chance could have brought this about, authors such as Whewell laid a

foundation upon which Darwin’s evolutionary theory sat naturally.

Babbage’s response to the catastrophist position that apparent disconti-

nuities were evidence of divine intervention was to construct what can

now be recognized as a simple simulation model (see figure 2.2). He pro-

posed that his suitably programmed Difference Engine could be made to

output a series of numbers according to some law (for example, the inte-

gers, in order, from 0 onward), but then at some predefined point (say

100,000) begin to output a series of numbers according to some different

law such as the integers, in order, from 200,000 onward. Although the

output of such a Difference Engine (an analogue of the geological record)

would feature a discontinuity (in our example the jump from 100,000 to

200,000), the underlying process responsible for this output would have
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remained constant—the general law, or program, that the machine was

obeying would not have changed. The discontinuity would have been the

result of the naturally unfolding mechanical and computational process.

No external tinkering analogous to the intervention of a providential deity

would have taken place.

Babbage not only described such a program in print but demonstrated a

working portion of his Difference Engine carrying out the calculations

described (see figure 2.3). At his Marylebone residence, he surprised a

stream of guests drawn from society and academia with machine behavior

that suggested a new way of thinking about both automata and miracles.

Figure 2.2

Babbage’s (1836) evolutionary simulation model represented the empirically

observed history of geological change as evidenced by the geological record (upper

panel) as the output of a computing machine following a program (lower panel). A

suitably programmed computing machine could generate sequences of output that

exhibited surprising discontinuities without requiring external influence. Hence dis-

continuities in the actual geological record did not require ‘‘catastrophic’’ divine in-

tervention, but could be the result of ‘‘gradualist’’ processes.

Charles Babbage and the Emergence of Automated Reason 23



Figure 2.3

Difference Engine. Source: http://www.kevryr.net/pioneers/gallery/ns_babbage5.htm

(in public domain).
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Doran Swade (1996) describes how Darwin, recently returned from his voy-

ages on the Beagle, was urged by Charles Lyell, the leading geologist, to attend

one of Babbage’s ‘‘soirées where he would meet fashionable intelligentsia

and, moreover, ‘pretty women’ ’’ (p. 44). Schaffer (1994) casts Babbage’s

surprising machine as providing Darwin with ‘‘an analogue for the origin

of species by natural law without divine intervention’’ (pp. 225–26).

In trying to show that discontinuities were not necessarily the result of

meddling, but could be the natural result of unchanging processes, Babbage

cultivated the image of God as a programmer, engineer, or industrialist, ca-

pable of setting a process in motion that would accomplish His intentions

without His intervening repeatedly. In Victorian Britain, the notion of God

as draughtsman of an ‘‘automatic’’ universe, one that would run unassisted,

without individual acts of creation, destruction, and so forth, proved attrac-

tive. This conception was subsequently reiterated by several other natural

philosophers, including Darwin, Lyell, and Robert Chambers, who argued

that it implied ‘‘a grander view of the Creator—One who operated by gen-

eral laws’’ (Young 1985, p. 148). However, here we are less interested in the

theological implications of Babbage’s work, and more concerned with

the manner in which he exploited his computational machinery in order

to achieve an academic goal.

Babbage clearly does not attempt to capture the full complexity of nat-

ural geology in his machine’s behavior. Indeed, the analogy between the

Difference Engine’s program and the relevant geological processes is a crude

one. However, the formal resemblance between the two was sufficient to

enable Babbage’s point to be made. His computing machine is thus clearly

being employed as a model, and a model of a particular kind—an idealized

conceptual tool rather than a realistic facsimile intended to ‘‘stand in’’ for

the real thing.

Moreover, the model’s goal is not to shed light directly on geological dis-

continuity per se. Its primary function is to force an audience to reflect on

their own reasoning processes (and on those of the authors of the preced-

ing eight legitimate Bridgewater Treatises). More specifically, the experi-

ment encourages viewers to (re)consider the grounds upon which one

might legitimately identify a miracle, suggesting that a mere inability to

understand some phenomenon as resulting from the continuous action of

natural law is not sufficient, for the continuous action of some ‘‘higher

law,’’ one discernible only from a more systemic perspective, could always

be responsible. Thus, Babbage’s is an ‘‘experiment’’ that brings no new data

to light, it generates no geological facts for its audience, but seeks to re-

arrange their theoretical commitments.1
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Babbage approached the task of challenging his audiences’ assumptions

as a stage magician might have done (Babbage 1837, p. 35):

Now, reader, let me ask how long you will have counted before you are firmly con-

vinced that the engine, supposing its adjustments to remain unaltered, will continue

whilst its motion is maintained, to produce the same series of natural numbers?

Some minds perhaps are so constituted, that after passing the first hundred terms

they will be satisfied that they are acquainted with the law. After seeing five hundred

terms, few will doubt; and after the fifty-thousandth term the propensity to believe

that the succeeding term will be fifty thousand and one, will be almost irresistible.

Key to his argument was the surprise generated by mechanical disconti-

nuity. That a process unfolding ‘‘like clockwork’’ could nevertheless con-

found expectation simultaneously challenged the assumed nature of both

mechanical and natural processes and the power of rational scientific in-

duction. In this respect, Babbage’s argument resonates with some modern

treatments of ‘‘emergent behavior.’’ Here, nonlinearities in the interactions

between a system’s components give rise to unexpected (and possibly

irreducible, that is, quasi-miraculous) global phenomena, as when, for in-

stance, the presumably simple rules followed by insects generate complex

self-regulating nest architectures (Ladley and Bullock 2005), or novel forms

emerge from shape grammars (March 1996a, 1996b). For Babbage, how-

ever, any current inability on our part to reconcile some aggregate property

with the constitution and organization of the system that gives rise to it

is no reason to award the phenomenon special status. His presumption

is that for some more sophisticated observer, reconciling the levels of

description will be both possible and straightforward, nonlinearity or no

nonlinearity.

Additionally, there is a superficial resemblance between the catastrophist

debate of the nineteenth century and the more recent dispute over the

theory of punctuated equilibria introduced by Niles Eldredge and Stephen

Jay Gould (1973). Both arguments revolve around the significance of

what appear to be abrupt changes on geological time scales. However,

where Babbage’s dispute centered on whether change could be explained

by one continuously operating process or must involve two different

mechanisms—the first being geological processes, the second Divine

intervention—Gould and Eldredge did not dispute that a single evolution-

ary process was at work. They take pains to point out that their theory does

not supersede phylogenetic gradualism, but augments it. They wish to

account for the two apparent modes of action evidenced by the fossil

record—long periods of stasis, short bursts of change—not by invoking
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two processes but by explaining the unevenness of evolutionary change.

In this respect, the theory that Eldredge and Gould supply attempts to

meet a modern challenge: that of explaining nonlinearity, rather than

merely accommodating it. Whereas Babbage’s aim was merely to demon-

strate that a certain kind of nonlinearity was logically possible in the

absence of exogenous interference, Gould and Eldredge exemplify the at-

tempt to discover how and why nonlinearities arise from the homogeneous

action of low-level entities.

Babbage, too, spent some time developing theories with which he sought

to explain how specific examples of geological discontinuity could have

arisen as the result of unchanging and continuously acting physical geolog-

ical processes. One example of apparently rapid geological change that had

figured prominently in geological debate since being depicted on the fron-

tispiece of Lyell’s Principles of Geology (1830) was the appearance of the

Temple of Serapis on the edge of the Bay of Baiae in Pozzuoli, Italy (see fig-

ure 2.4). The surfaces of the forty-two-foot pillars of the temple are charac-

terized by three regimes. The lower portions of the pillars are smooth, their

central portions have been attacked by marine creatures, and above this

region the pillars are weathered but otherwise undamaged. These abrupt

changes in the character of the surfaces of the pillars were taken by geolo-

gists to be evidence that the temple had been partially submerged for a

considerable period of time.

For Lyell (1830), an explanation could be found in the considerable seis-

mic activity that had characterized the area historically. It was well known

that eruptions could cover land in considerable amounts of volcanic mate-

rial and that earthquakes could suddenly raise or lower tracts of land. Lyell

reasoned that a volcanic eruption could have buried the lower portion of

the pillars before an earthquake lowered the land upon which the temple

stood into the sea. Thus the lower portion would have been preserved

from erosion, while a middle portion would have been subjected to marine

perforations and an upper section to the weathering associated with wind

and rain.

Recent work by Brian Dolan (1998) has uncovered the impact that

Babbage’s own thoughts on the puzzle of the pillars had on this debate.

Babbage, while visiting the temple, noted an aspect of the pillars that had

hitherto gone undetected: a patch of calciated stone located between the

central perforated section and the lower smooth portion. He inferred that

this calciation had been caused, over considerable time, by calcium-bearing

spring waters that had gradually flooded the temple, as the land upon

which it stood sank lower and lower. Eventually this subsidence caused
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the temple pillars to sink below sea level and resulted in the marine erosion

evident on the middle portion of the columns.

Thus Babbage’s explanation invoked gradual processes of cumulative

change, rather than abrupt episodes of discontinuous change, despite the

fact that the evidence presented by the pillars is that of sharply separated

regimes. Babbage’s account of this gradual change relied on the notion

that a central, variable source of heat, below the earth’s crust, caused ex-

pansion and contraction of the land masses above it. This expansion or

contraction would lead to subsidence or elevation of the land masses

involved. Babbage exploited the power of his new calculating machine in

attempting to prove his theory, but not in the form of a simulation model.

Instead, he used the engine to calculate tables of values that represented

the expansion of granite under various temperature regimes, extrapolated

from empirical measurements carried out with the use of furnaces. With

Figure 2.4

The Temple of Serapis. The frontispiece for the first six volumes of Lyell’s Principles

of Geology. By permission of the Syndics of Cambridge University.
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these tables, Babbage could estimate the temperature changes that would

have been necessary to cause the effects manifested by the Temple of Sera-

pis (see Dolan 1998, for an extensive account of Babbage’s work on this

subject).

Here, Babbage is using a computer, and is moving beyond a gradualist ac-

count that merely tolerates discontinuities, such as that in his Bridgewater

Treatise, to one that attempts to explain them. In this case his engine is not

being employed as a simulation model but as a prosthetic calculating

device. The complex, repetitive computations involved in producing and

compiling his tables of thermal expansion figures might normally have

been carried out by ‘‘computers,’’ people hired to make calculations manu-

ally. Babbage was able to replace these error-prone, slow, and costly manual

calculations with the action of his mechanical reckoning device.

Like simulation modeling, this use of computers has become widespread

across modern academia. Numerical and iterative techniques for calculat-

ing, or at least approximating, the results of what would be extremely

taxing or tedious problems have become scientific mainstays. However,

this kind of automated extrapolation differs significantly from the simula-

tion described above. Just as the word ‘‘intelligence’’ itself can signify, first,

the possession or exercise of superior cognitive faculties and, second, the

obtainment or delivery of useful information, such as military intelligence,

for Babbage, machine intelligence could either refer to some degree of auto-

mated reasoning or (less impressively) the ‘‘manufacture’’ of information

(Schaffer 1994). While Babbage’s model of miracles and his automatic gen-

eration of thermal expansion tables were both examples of ‘‘mechanized

intelligence,’’ they differed significantly in that the first was intended to

take part in and thereby partially automate thought processes directed at

understanding, whereas the second exemplified his ability to ‘‘manufacture

numbers’’ (Babbage 1837, p. 208). This subtle but important difference was

not lost upon Babbage’s contemporaries, and was central to unfolding dis-

cussions and categorizations of mental labor.

Automating Reason

For his contemporaries and their students, the reality of Babbage’s machine

intelligence and the prospect of further advances brought to the foreground

questions concerning the extent to which mental activity could and should

be automated. The position that no such activity could be achieved ‘‘me-

chanically’’ had already been somewhat undermined by the success of un-

skilled human calculators and computers, who were able to efficiently
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generate correct mathematical results while lacking an understanding of

the routines that they were executing.

National programs to generate navigational and astronomical tables of

logarithmic and trigonometric values (calculated up to twenty-nine deci-

mal places!) would not have been possible in practice without this redistri-

bution of mental effort. Babbage himself was strongly influenced by Baron

Gaspard De Prony’s work on massive decimal tables in France from 1792,

where he had employed a division of mathematical labor apparently

inspired by his reading of Adam Smith’s Wealth of Nations (see Maas 1999,

pp. 591–92).

[De Prony] immediately realised the importance of the principle of the division of

labour and split up the work into three different levels of task. In the first, ‘‘five or

six’’ eminent mathematicians were asked to simplify the mathematical formulae. In

the second, a similar group of persons ‘‘of considerable acquaintance with mathe-

matics’’ adapted these formulae so that one could calculate outcomes by simply add-

ing and subtracting numbers. This last task was then executed by some eighty

predominantly unskilled individuals. These individuals were referred to as the com-

puters or calculators.

Babbage’s Difference Engine was named after this ‘‘method of differ-

ences,’’ reducing formulae to combinations of addition and subtraction.

However, there was a clear gulf separating true thinking from the mindless

rote activity of computers, whether human or mechanical. For commenta-

tors such as the Italian mathematician and engineer Luigi Federico Mene-

brea, whose account of a lecture Babbage gave in Turin was translated into

English by Ada Lovelace (Lovelace 1843), there appeared little chance that

machinery would ever achieve more than the automation of this lowest

level of mental activity. In making this judgment, Menebrea ‘‘pinpointed

the frontiers of the engine’s capacities. The machine was able to calculate,

but the mechanization of our ‘reasoning faculties’ was beyond its reach,

unless, Menebrea implicitly qualified, the rules of reasoning themselves

could be algebraised’’ (Maas 1999, p. 594–95).

For Menebrea it was apparently clear that such a mental calculus would

never be achieved. But within half a century, just such algebras were being

successfully constructed by George Boole and John Venn. For some, the po-

tential for mechanizing such schemes seemed to put reasoning machines

within reach, but for others, including Venn himself, the objections raised

by Menebrea still applied.

Simon Cook (2005) describes how Venn, in his ‘‘On the Diagrammatic

and Mechanical Representation of Propositions and Reasonings’’ of 1880,

clearly recognized considerable potential for the automation of his logical
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formalisms but went on to identify a strictly limited role for such ma-

chinery. The nature of the labor involved in logical work, Venn stated (p.

340),

involves four ‘‘tolerably distinct steps’’: the statement of the data in accurate logical

language, the putting of these statements into a form fit for an ‘‘engine to work

with,’’ thirdly the combination or further treatment of our premises after such a re-

duction, and finally interpretation of the results. In Venn’s view only the third of

these steps could be aided by an engine.

For Venn, then, computing machinery would only ever be useful for

automating the routine process of thoughtlessly combining and processing

logical terms that had to be carefully prepared beforehand and the resulting

products analyzed afterward.

This account not only echoes De Prony’s division of labor, but, to modern

computer scientists, also bears a striking similarity to the theory developed

by David Marr (1982) to describe the levels of description involved in cog-

nitive science and artificial intelligence. For Marr, any attempt to build a

cognitive system within an information-processing paradigm involves first

a statement of the cognitive task in information-processing terms, then the

development of an algorithmic representation of the task, before an imple-

mentation couched in an appropriate computational language is finally for-

mulated. Venn’s steps also capture this march from formal conception to

computational implementation. Rather than stressing the representational

form employed at each stage, Venn concentrates on the associated activity,

and, perhaps as a result, considers a fourth step not included by Marr: the

interpretation of the resulting behavior, or output, of the computational pro-

cess. We will return to the importance of this final step.

Although Venn’s line on automated thought was perhaps the dominant

position at that time, for some scholars Babbage’s partially automated argu-

ment against miracles had begun to undermine it. Here a computer took

part in scientific work not by automating calculation, but in a wholly differ-

ent way. The engine was not used to compute a result. Rather, the substan-

tive element of Babbage’s model was the manner in which it changed over

time. In the scenario that Babbage presented to his audience, his suitably

programmed Difference Engine will, in principle, run forever. Its calcula-

tion is not intended to produce some end product; rather, the ongoing cal-

culation is itself the object of interest. In employing a machine in this way,

as a model and an aid to reasoning, Babbage ‘‘dealt a severe blow to the tra-

ditional categories of mental philosophy, without positively proving that

our higher reasoning faculties could be mechanized’’ (Maas 1999, p. 593).
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Recent historical papers have revealed how the promise of Babbage’s sim-

ulation model, coupled with the new logics of Boole and Venn, inspired

two of the fathers of economic science to design and build automated rea-

soning machines (Maas 1999; Cook 2005). Unlike Babbage and Lovelace,

the names Stanley Jevons (1835–1882) and Alfred Marshall (1842–1924)

are not well known to students of computing or artificial intelligence. How-

ever, from the 1860s onward, first Jevons and then Marshall brought about

a revolution in the way that economies were studied, effectively establish-

ing modern economics. It was economic rather than biological or cognitive

drivers that pushed both men to consider the role that machinery might

play in automating logical thought processes.

Jevons pursued a mathematical approach to economics, exploring ques-

tions of production, currency, supply and demand, and so forth and devel-

oping his own system of logic (the ‘‘substitution of similars’’) after studying

and extending Boole’s logic. His conviction that his system could be auto-

mated such that the logical consequences of known states of affairs could

be generated efficiently led him to the design of a ‘‘logical piano . . . capable

of replacing for the most part the action of thought required in the perfor-

mance of logical deduction’’ ( Jevons 1870, p. 517). But problems persisted,

again limiting the extent to which thought could be automated. Jevons’s

logical extrapolations relied upon the substitution of like terms, such as

‘‘London’’ and ‘‘capital of England.’’ The capacity to decide which terms

could be validly substituted appeared to resist automation, becoming for

Jevons ‘‘a dark and inexplicable gift which was starkly to be contrasted

with calculative, mechanical rationality’’ (Maas 1999, p. 613). Jevons’s

piano, then, would not have inclined Venn to alter his opinion on the lim-

itations of machine logic.

Cook (2005) has recently revealed that Marshall (who, upon Jevons’s

early death by drowning in 1882, would eventually come to head the mar-

ginalist revolution within economics) also considered the question of

machine intelligence. In ‘‘Ye Machine,’’ the third of four manuscripts

thought to have been written in the late 1860s to be presented to the Cam-

bridge Grote Club, he described his own version of a machine capable of

automatically following the rules of logic. However, in his paper he moves

beyond previous proponents of machine intelligence in identifying a

mechanism capable of elevating his engine above mere calculation, to the

realm of creative reason. Menebrea himself had identified the relevant re-

spect in which these calculating machines were significantly lacking in his

original discussion of Babbage’s engines. ‘‘[They] could not come to any
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correct results by ‘trial and guess-work’, but only by fully written-out proce-

dures’’ (Maas 1999, p. 593). It was introducing this kind of exploratory

behavior that Marshall imagined. What was required were the kinds of sur-

prising mechanical jumps staged by Babbage in his drawing room. Marshall

(Cook 2005, p. 343) describes a machine with the ability to process logical

rules that,

‘‘like Paley’s watch,’’ might make others like itself, thus giving rise to ‘‘hereditary and

accumulated instincts.’’ Due to accidental circumstances the ‘‘descendents,’’ how-

ever, would vary slightly, and those most suited to their environment would survive

longer: ‘‘The principle of natural selection, which involves only purely mechanical

agencies, would thus be in full operation.’’

As such, Marshall had imagined the first example of an explicitly evolu-

tionary algorithm, a machine that would surprise its user by generating and

testing new ‘‘mutant’’ algorithmic tendencies. In terms of De Prony’s tri-

partite division of labor, such a machine would transcend the role of mere

calculator, taking part in the ‘‘adapting of formulae’’ function heretofore

carried out by only a handful of persons ‘‘of considerable acquaintance

with mathematics.’’ Likewise, Marshall’s machine broke free of Venn’s

restrictions on machine intelligence. In addition to the task of mechani-

cally combining premises according to explicitly stated logics, Marshall’s

machine takes on the more elevated task of generating new, superior logics

and their potentially unexpected results.

Andy Clark (1990) has described the explanatory complications intro-

duced by this move from artificial intelligences that employ explicit, man-

ually derived logic to those reliant on some automatic process of design

or adaptation. Although the descent through Marr’s ‘‘classical cascade’’

involved in the manual design of intelligent computational systems

delivers, as a welcome side effect, an understanding of how the system’s be-

havior derives from its algorithmic properties, no such understanding is

guaranteed where this design process is partially automated. For instance,

Marr’s computational algorithms for machine vision, once constructed,

were understood by their designer largely as a result of his gradual progres-

sion from computational to algorithmic and implementational representa-

tions. The manual design process left him with a grasp of the manner in

which his algorithms achieved their performance. By contrast, when one

employs artificial neural networks that learn how to behave or evolutionary

algorithms that evolve their behavior, a completed working system

demands further interpretation—Venn’s fourth step—before the way it

works can be understood.
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The involvement of automatic adaptive processes thus demands a partial

inversion of Marr’s cascade. In order to understand an adaptive machine

intelligence, effort must be expended recovering a higher, algorithmic-level

representation of how the system achieves its performance from a working

implementation-level representation. The scale and connectivity of the ele-

ments making up these kinds of adaptive computational system can make

achieving this algorithmic understanding extremely challenging.

For at least one commentator on machine intelligence, it was exactly the

suspect intelligibility of automatic machine intelligence that was objection-

able. The Rev. William Whewell was a significant Victorian figure, having

carved out a role for himself as historian, philosopher, and critic (see figure

2.5). His principal interest was in the scientific method and the role of

induction within it. For Whewell, the means with which scientific ques-

tions were addressed had a moral dimension. We have already heard how

Whewell’s dismissal of atheist mathematicians in his Bridgewater Treatise

seems to have stimulated Babbage’s work on simulating miracles (though

Whewell was likely to have been targeting the mathematician Pierre-Simon

Laplace rather than Babbage). He subsequently made much more explicit

Figure 2.5

The Rev. William Whewell in 1835.
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attacks on the use of machinery by scientists—a term he had coined in

1833.

Whewell brutally denied that mechanised analytical calculation was proper to

the formation of the academic and clerical elite. In classical geometry ‘‘we tread the

ground ourselves at every step feeling ourselves firm,’’ but in machine analysis ‘‘we

are carried along as in a rail-road carriage, entering it at one station, and coming our

of it at another. . . . It is plain that the latter is not a mode of exercising our own loco-

motive powers. . . . It may be the best way for men of business to travel, but it cannot

fitly be made a part of the gymnastics of education. (Schaffer 1994, pp. 224–25)

The first point to note is that Whewell’s objection sidesteps the issues of

performance that have occupied us so far. Here, it was irrelevant to Whe-

well that machine intelligence might generate commercial gain through

accurate and efficient calculation or reasoning. A legitimate role within

science would be predicated not only on the ability of computing

machines to replicate human mental labor but also on their capacity to

aid in the revelation of nature’s workings. Such revelation could only be

achieved via diligent work. Shortcuts would simply not do. For Whewell it

was the journey, not the destination, that was revelatory. Whewell’s objec-

tion is mirrored by the assertion sometimes made within artificial intelli-

gence that if complex but inscrutable adaptive algorithms are required in

order to obtain excellent performance, it may be necessary to sacrifice a

complete understanding of how exactly this performance is achieved—

‘‘We are engineers, we just need it to work.’’ Presumably, Whewell would

have considered such an attitude alien to academia.

More prosaically, the manner in which academics increasingly rely upon

automatic ‘‘smart’’ algorithms to aid them in their work would have wor-

ried Whewell. Machine intelligence as typically imagined within modern

AI (for example, the smart robot) may yet be a distant dream, but for

Whewell and Babbage, it is already upon us in the automatically executed

statistical test, the facts, figures, opinions, and arguments instantaneously

harvested from the Internet by search engines, and so forth. Where these

shortcuts are employed without understanding, Whewell would argue, aca-

demic integrity is compromised.

There are also clear echoes of Whewell’s opinions in the widespread ten-

dency of modern theoreticians to put more faith in manually constructed

mathematical models than automated simulation models of the same phe-

nomena. While the use of computers to solve mathematical equations nu-

merically (compare Babbage’s thermal expansion calculations) is typically

regarded as unproblematic, there is a sense that the complexity—the
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impenetrability—of simulation models can undermine their utility as sci-

entific tools (Grimm 1999; Di Paolo et al. 2000).

However, it is in Marshall’s imagined evolving machine intelligence that

the apotheosis of Whewell’s concerns can be found. In the terms of Whe-

well’s metaphor, not only would Marshall be artificially transported from

problem to solution by such a machine, but he would be ferried through

deep, dark, unmapped tunnels in the process. At least the rail tracks leading

from one station to another along which Whewell’s imagined locomotive

must move had been laid by hand in a process involving much planning

and toil. By contrast, Marshall’s machine was free to travel where it pleased,

arriving at a solution via any route possible. While the astonishing jumps

in the behavior of Babbage’s machine were not surprising to Babbage him-

self, even the programmer of Marshall’s machine would be faced with a

significant task in attempting to complete Venn’s ‘‘interpretation’’ of its

behavior.

Conclusion

This chapter has sought to highlight activities relevant to the prehistory of

artificial intelligence that have otherwise been somewhat neglected within

computer science. In gathering together and presenting the examples of

early machine intelligence created by Babbage, Jevons, and Marshall, along

with contemporaneous reflections on these machines and their potential,

the chapter relies heavily on secondary sources from within a history of

science literature that should be of growing importance to computer

science. Although this paper attempts to identify a small number of issues

that link contemporary AI with the work of Babbage and his contempo-

raries, it is by no means a piece of historical research and the author is no

historian. Despite this, in arranging this material here on the page, there is

a risk that it could be taken as such.

Babbage’s life and work have already been the repeated subject of Whig-

gish reinterpretation—the tendency to see history as a steady linear pro-

gression (see Hyman 1990 for a discussion). In simplifying or ignoring the

motivations of our protagonists and the relationships between them, there

is scope here, too, for conveying the impression of an artificially neat causal

chain of action and reaction linking Babbage, Whewell, Jevons, Marshall,

and others in a consensual march toward machine intelligence driven by

the same questions and attitudes that drive modern artificial intelligence.

Such an impression would, of course, be far from the truth. The degree to

which each of these thinkers engaged with questions of machine intelli-
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gence varied wildly: for one it was the life’s work; for another, a brief inter-

est. And even with respect to the output of each individual, the elements

highlighted here range from significant signature works to obscure foot-

notes or passing comments. It will be left to historians of science to provide

an accurate account of the significances of the activities presented here.

This chapter merely seeks to draw some attention to them.

Given the sophistication already evident in the philosophies associated

with machine intelligence in the nineteenth century, it is perhaps surpris-

ing that a full-fledged philosophy of technology, rather than science, has

only recently begun to emerge (Ihde 2004). In the absence of such a disci-

pline, artificial intelligence and cognitive philosophy, especially that influ-

enced by Heidegerrian themes, have played a key role in extending our

understanding of the role that technology has in influencing the way we

think (see, for example, Dreyfus 2001). If we are to cope with the rapidly

expanding societal role of computers in, for instance, complex systems

modeling, adaptive technologies, and the Internet, we must gain a firmer

grasp of the epistemic properties of the engines that occupied Babbage and

his contemporaries.

Unlike an instrument, that might simply be a pencil, engines embody highly differ-

entiated engineering knowledge and skill. They may be described as ‘‘epistemic’’

because they are crucially generative in the practice of making scientific knowl-

edge. . . . Their epistemic quality lies in the way they focus activities, channel re-

search, pose and help solve questions, and generate both objects of knowledge and

strategies for knowing them. (Carroll-Burke 2001, p. 602)
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Note

1. See Bullock (2000) and Di Paolo, Noble, and Bullock (2000) for more discussion of

Babbage’s simulation model and simulation models in general.
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3 D’Arcy Thompson: A Grandfather of A-Life1

Margaret A. Boden

It’s well known that three core ideas of A-life were originated many

years ago, but couldn’t be appreciated—still less, explored—until vastly

increased computer power and computer graphics became available. Alan

Turing’s diffusion equations and John von Neumann’s cellular automata

were introduced with a fair degree of theoretical detail in the early 1950s.

As for genetic algorithms, these were glimpsed at the same time by von

Neumann, and defined by John Holland in the early 1960s. But it wasn’t

until the late 1980s that any of these could be fruitfully implemented.

What’s not so well known is that various issues that are prominent in

current A-life were being thought about earlier still, even before the First

World War. In 1917, Sir D’Arcy Wentworth Thompson (1860–1948), pro-

fessor of zoology at the University of St. Andrews, published On Growth

and Form. He was asking biological questions, and offering biological

answers, very much in the spirit of A-life today.

The book was immediately recognized as a masterpiece, mostly because

of the hugely exciting ideas and the many fascinating examples, but also

because of the superb, and highly civilized, prose in which it was written.

Countless readers were bewitched by it, and begged for a second edition.

That appeared during the next World War, in 1942, six years before

Thompson’s death. It had grown from just under 800 to 1,116 pages—

there was plenty to chew on there.

So why isn’t it more famous now? The reason is much the same as the

reason why Turing’s (1952) paper on reaction-diffusion–based morphogen-

esis became widely known only fairly recently. Biologists, and especially

embryologists, in the 1950s could see that Turing’s work might be highly

relevant, indeed fundamental, to their concerns. But lacking both specific

biochemical knowledge and computational power to handle the sums,

they couldn’t do anything with it.



The same was true of John Holland’s work (1962, 1975). I remember be-

ing hugely impressed by the paper he gave at a twenty-person weekend

meeting held in Devon in 1981 (Selfridge, Rissland, and Arbib 1984). Not

only had he tackled evolutionary programming, but he’d solved the credit-

assignment problem, a recurring, and seemingly intractable, problem in

contemporary AI. I’d never heard of him, and when I got home from the

Devonshire countryside I asked my AI colleagues why they weren’t shout-

ing his name to the rooftops. Some replied that his work wasn’t usable

(he’d done the mathematics, but not the programming)—and some had

never heard of him, either.

Similarly, D’Arcy Thompson’s wartime readers were intrigued, even per-

suaded, by his book. But putting it into biological practice wasn’t intel-

lectually—or, rather, technologically—feasible. Today, we’re in a better

position to appreciate what he was trying to do, and even to carry on

where he left off.

In sum, if Turing and von Neumann (with Ross Ashby and W. Grey

Walter) were the fathers of A-life, D’Arcy Thompson was its grandfather. I

don’t just mean that he could have been, if anyone had still been listening.

For at least one person was listening: On Growth and Form was one of only

six references cited by Turing at the end of his morphogenesis paper. For

that reason alone D’Arcy Thompson is worthy of respect. But in the post–

World War II period, his name was still one to conjure with. I came across

On Growth and Form as a medical student in the mid-1950s, and was

entranced. Many others were, too, which is presumably why an abridged

(though still weighty) version was published some years later (Thompson

1992). In short, D’Arcy Thompson inspired not only Turing, but others as

well.

Who Was D’Arcy Thompson?

D’Arcy Thompson—he’s hardly ever referred to merely as Thompson—was

born in 1860, just a year after the publication of The Origin of Species, and

was already middle-aged when Queen Victoria died in 1901. He survived

both world wars, dying at the age of almost ninety in 1948. That was the

year in which the Manchester Mark I computer (sometimes known as

the Manchester Automatic Digital Machine, or MADM), for which Turing

was the first programmer, became operational.

If D’Arcy Thompson had an exceptional span in years, he also had an ex-

traordinary span in intellectual skills. He was a highly honored classical

scholar, who translated the authoritative edition of Aristotle’s Historia Ani-
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malium (Thompson 1910). In addition, he was a biologist and mathemati-

cian. Indeed, he was offered chairs in classics and mathematics as well as in

zoology.

While still a teenager (if ‘‘teenagers’’ existed in Victorian England), he

edited a small book of essays based on studies from the Museum of Zoology

in Dundee (Thompson 1880), but he soon graduated to larger tomes. In his

early twenties, he prepared a bibliography nearly three hundred pages long

of the work on invertebrates that had been published since his birth

(Thompson 1885). At that young age he also edited and translated a Ger-

man biologist’s scattered writings on how flowers of different types are

pollinated by insects. (In broom, for instance, the stamens ‘‘explode’’

when the bee lands on the keel of the flower, and the style curls upwards

so that the stigma strikes the bee’s back.) The result was a 670-page volume

for which Charles Darwin (1809–1882) wrote the preface (Thompson

1883).

Forty years later, he was commenting on ancient Egyptian mathematics

in Nature (Thompson 1925), and analyzing thirty years’ worth of data on

the size of the catches made by fishermen trawling off Aberdeen (Thomp-

son 1931). And just before the appearance of the second edition of On

Growth and Form, he put together a collection of some of his essays

(Thompson 1940) whose subjects ran from classical biology and astronomy

through poetry and medicine to ‘‘Games and Playthings’’ from Greece and

Rome. The collection included popular pieces originally written for Country

Life, Strand Magazine, and Blackwood’s Magazine (Thompson 1940). His last

book, which appeared a few months before he died, was Glossary of Greek

Fishes: a ‘‘sequel’’ to his volume on all the birds mentioned in ancient

Greek texts (Thompson 1895/1947). Clearly, then, D’Arcy Thompson was

a man of parts.

Some of the titles mentioned might suggest that he was a list maker. On

the contrary, he was a great intellect and a superb wordsmith. His major

book has been described by the biologist Peter Medawar as ‘‘beyond com-

parison the finest work of literature in all the annals of science that have

been recorded in the English tongue’’ (Medawar 1958, p. 232). And his

intoxicating literary prose was matched by his imaginative scientific vision.

Biomimetics: Artefacts, but Not A-Life

For all his diverse skills, D’Arcy Thompson was no Charles Babbage. So he

wasn’t playing around with computers, electronic or not. Nor was he play-

ing around with any other gizmos. In short, he wasn’t doing biomimetics.
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Biomimetics involves making material analogues of the physical stuff

of living things, in order to investigate its physico-chemical properties.

Vaulted roofs modeled on leaf-structure count, since they are testing and

exemplifying the tensile properties of such physical structures. But autom-

ata don’t. Even if the movements of specific bodily organs are being mod-

eled, as in Jacques de Vaucanson’s flute player, which moved its tongue,

lips, and fingers (1738/1742/1979)—the physical stuff is not.

Perhaps the first example of biomimetics, and certainly one of the most

startling, was due to the British scientist Henry Cavendish (1731–1810). In

1776, Cavendish nominated Captain James Cook for election to the Royal

Society. Having just completed his second great voyage of discovery, Cook

had exciting tales to tell of exotic fish and alien seas. But so did Cavendish.

For, in the very same year, he’d built an artificial electric fish and laid it in

an artificial sea (Wu 1984; Hackman 1989).

Its body was made of wood and sheepskin, and its electric organ was two

pewter discs, connected by a brass chain to a large Leyden battery; its habi-

tat was a trough of salt water. Cavendish’s aim was to prove that ‘‘animal

electricity’’ is the same as the physicist’s electricity, not an essentially differ-

ent, vital, phenomenon. His immobile ‘‘fish’’ wouldn’t have fooled anyone

into thinking it was a real fish, despite its fish-shaped leather body, but—

and this was the point—it did deliver a real electric shock, indistinguish-

able from that sent out by a real torpedo fish.

Cavendish intended his artificial fish to deliver an intellectual shock, as

well as a real one. His aim was to demystify a vital phenomenon, to show

the continuity between the physical and the organic, and, of course, to dis-

play the physical principle underlying the living behavior.

He thought this shocking hypothesis to be so important that he invited

some colleagues into his laboratory to observe the experiment—so far as we

know, the only occasion on which he did so (Wu 1984: 602). Certainly,

such an invitation from the shy, taciturn Cavendish was a remarkable

event: an acquaintance said that he ‘‘probably uttered fewer words in the

course of his life than any man who ever lived to fourscore years, not at

all excepting the monks of la Trappe.’’2

(Oliver Sacks [2001] has suggested that Cavendish’s unsociability was due

to Asperger’s syndrome. If so, he was perhaps in good company: the same

posthumous ‘‘diagnosis’’ has been made of Einstein and Newton [Baron-

Cohen and James 2003].)

But if Cavendish’s doubly shocking demonstration was an exercise in bi-

ology, and simultaneously in physics, it wasn’t an exercise in mathematics.

That is to say, it wasn’t an early example of A-Life.
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A-life is abstract in nature. On the one hand, it’s concerned with ‘‘life as

it could be,’’ not only ‘‘life as it is’’ (Langton 1989). On the other hand, it

studies life-as-it-is not by putting it under the microscope, or twirling it

around in a test-tube, but by seeking its logical-computational principles.

Even A-life work on biochemistry is looking for abstract principles, not—

or not only—for specific molecules (see, for example, Drexler 1989; Szos-

tak, Bartel, and Luisi 2001; Kauffman 2003).

Cavendish’s experiment couldn’t have been done without the artificial

fish in its bath of conducting fluid, because his aim was to reproduce the

same physical phenomenon, electrical conductivity, that occurs in some

living things. Biomimetics requires physical mimesis. But A-life doesn’t.

Someone might even say that A-life doesn’t need any artefacts: not

fish-in-fluid, nor computers, either. If artefacts are needed at all, then in

principle, just three will suffice: pencil, paper, and armchair. Some hugely

important early A-life work was done either without the aid of computers,

or, in Turing’s case, with the aid only of very primitive machines. In prac-

tice, however, computers are almost always needed.

It’s possible, in other words, for someone to do mathematical biology

without being able to do computational biology. They may be able to de-

fine the mathematical principles, and even to intuit their general implica-

tions, without being able to calculate their consequences in any detail.

That’s precisely the position that D’Arcy Thompson was in. After all, com-

puters weren’t a feature of the Edwardian age.

First Steps in Mathematical Biology

Isolated examples of mathematically expressed biological research were

scattered in the pre-twentieth-century literature. But mathematical biology

as an all-encompassing and systematic approach was attempted only after

the turn of the century—by D’Arcy Thompson.

Although Darwin had written the preface for Thompson’s first ‘‘real’’

book, Thompson had become increasingly critical of Darwinian theory.

An early intimation of this was in his paper ‘‘Some Difficulties of Darwin-

ism,’’ given in 1894 to an Oxford meeting of the British Association for

the Advancement of Science (one of Babbage’s many brainchildren, in

1831). His book, over twenty years later, explained at length why he felt

Darwinism to be inadequate as an explanation of the living creatures we

see around us.

Like some maverick modern biologists (Webster and Goodwin 1996;

Goodwin 1994; Kauffman 1993), he regarded natural selection as strictly
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secondary to the origin of biological form. The origin of form, he said, must

be explained in a different way.

He integrated a host of individual biological facts within a systematic vi-

sion of the order implicit in living organisms. That is, he used various ideas

from mathematics not only to describe, but also to explain, fundamental

features of biological form. He wasn’t content, for example, to note that

patterns of leaf-sprouting on plants may often be described by a Fibonacci

number series, such as 0,1,1,2,3,5,8,13,21 . . . He converted this finding

from a mathematical curiosity into a biologically intelligible fact, by point-

ing out that this is the most efficient way of using the space available.

Significantly, he often combined ‘‘pure’’ mathematical analysis with the

equations of theoretical physics. In this way he tried to explain not only

specific anatomical facts, such as the width and branching patterns of

arteries relative to the amount of blood to be transported, but also why cer-

tain forms appear repeatedly in the living world.

D’Arcy Thompson referred to countless examples of actual organisms,

but he had in mind also all possible life forms. As he put it (Thompson

1942, p. 1026):

[I] have tried in comparatively simple cases to use mathematical methods and math-

ematical terminology to describe and define the forms of organisms. . . . [My] study of

organic form, which [I] call by Goethe’s name of Morphology, is but a portion of

that wider Science of Form which deals with the forms assumed by matter under all

aspects and conditions, and, in a still wider sense, with forms which are theoretically

imaginable [emphasis added].

For D’Arcy Thompson, then, the shapes of animals and plants aren’t purely

random: we can’t say, ‘‘Anything goes.’’ To the contrary, developmental

and evolutionary changes in morphology are constrained by underlying

general principles of physical and mathematical order.

Goethe’s Morphology

As he clearly acknowledged, D’Arcy Thompson’s work was closely related

to Johann von Goethe’s (1749–1832) rational morphology. Goethe had

coined the word ‘‘morphology,’’ meaning the study of organized things. It

refers not just to their external shape but also to their internal structure and

development and, crucially, their structural relations to each other. Goethe in-

tended morphology to cover both living and inorganic nature, even includ-

ing crystals, landscape, language, and art, but D’Arcy Thompson’s interest

was in its application to biology.
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In his ‘‘An Attempt to Interpret the Metamorphosis of Plants,’’ Goethe

(1790/1946) had argued that superficially different parts of a flowering

plant—such as sepals, petals, and stamens—are derived by transformations

from the basic, or archetypal, form: the leaf. Later, he posited an equiva-

lence (homology) between the arms, front legs, wings, and fins of different

animals. All these, he said, are different transformations of the forelimb of

the basic vertebrate type. And all bones, he claimed, are transformations of

vertebrae. In other words, he combined meticulous naturalistic observation

with a commitment to the fundamental unity of nature.

For instance, Goethe is widely credited with a significant discovery in

comparative anatomy, namely, that the intermaxillary bone, which bears

the incisors in a rabbit’s jaw, exists in a reduced form in the human skele-

ton, as it does in other vertebrates. (Strictly speaking, he rediscovered this

fact [Sherrington 1942, 21f], and restated the claim that sepals are a type

of leaf [Goethe 1790, 73].) The issue was ‘‘significant’’ because some people

had used the bone’s seeming absence to argue that God created a special

design for human beings, marking them off from the animals. Goethe, by

contrast, related human skulls to the archetypal vertebrate skull, much as

he related sepals to the archetypal leaf.

Goethe didn’t think of morphological transformations as temporal

changes, still less as changes due to Darwinian evolution, which was yet to

be discovered. Rather, he saw them as abstract, quasi-mathematical deriva-

tions from some Neoplatonic ideal in the mind of God. But these abstrac-

tions could be temporally instantiated.

So in discussing the development of plants, for instance, he referred

to actual changes happening in time as the plant grows. He suggested that

sepals or petals would develop under the influence of different kinds of sap,

and that external circumstances could lead to distinct shapes, as of leaves

developing in water or in air—a suggestion that D’Arcy Thompson took

very seriously, as we’ll see.

The point of interest here is that Goethe focused attention on the

restricted range of basic forms (‘‘primal phenomena’’) in the organic world.

He encouraged systematic comparison of them, and of the transformations

they could support. He also suggested that only certain forms are possible:

we can imagine other living things, but not just any life forms. In a letter of

1787 (see Nisbet 1972, p. 45), he wrote:

With such a model (of the archetypal plant [Urpflanz] and its transformations) . . . one

will be able to contrive an infinite variety of plants. They will be strictly logical

plants—in other words, even though they may not actually exist, they could exist.
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They will not be mere picturesque and imaginative projects. They will be imbued

with inner truth and necessity. And the same will be applicable to all that lives

[emphasis added].

Similarly, in his essay on plant metamorphosis (1790), he wrote, ‘‘Hypoth-

esis: All is leaf. This simplicity makes possible the greatest diversity.’’

Critics soon pointed out that he overdid the simplicity. He ignored the

roots of plants, for instance. His excuse was telling (Nisbet 1972, p. 65):

[The root] did not really concern me, for what have I to do with a formation which,

while it can certainly take on such shapes as fibres, strands, bulbs and tubers, remains

confined within these limits to a dull variation, in which endless varieties come to

light, but without any intensification (of archetypal form); and it is this alone which,

in the course marked out for me by my vocation, could attract me, hold my atten-

tion, and carry me forward.

To ignore apparent falsifications of one’s hypothesis so shamelessly seems

utterly unscientific in our Popperian age. And some of Goethe’s contempo-

raries complained about it, too. But his attitude stemmed from his idealist

belief in the essential unity of science and aesthetics. He even compared

the plant to a superb piece of architecture, whose foundations, the roots,

are of no interest to the viewer. More generally, ‘‘Beauty is the manifesta-

tion of secret laws of nature which, were it not for their being revealed

through beauty, would have remained unknown for ever’’ (Nisbet 1972,

p. 35). For Goethe, and perhaps for D’Arcy Thompson, too, this language

had an import much richer than the familiar appeals to theoretical ‘‘sim-

plicity,’’ ‘‘symmetry,’’ or ‘‘elegance.’’

Questions about such abstract matters as the archetypal plant were very

unlike those being asked by most physiologists at the time. If a body is not

just a flesh-and-blood mechanism but a transformation of an ideal type,

how it happens to work—its mechanism of cords and pulleys—is of less in-

terest than its homology.

Indeed, for the holist Goethe the mechanism may even depend on the

homology. Perhaps it’s true that a certain kind of sap, a certain chemical

mechanism, will induce a primordial plant part to develop into a sepal

rather than a petal. But what’s more interesting in this view is that

sepals and petals are the structural possibilities on offer. How one describes

the plant or body part in the first place will be affected by the type, and the

transformations, supposedly expressed by it.

It’s not surprising, then, that Goethe was out of sympathy with the ana-

lytic, decompositional methods of empiricist experimentalism. By the same

token, anyone following in his footsteps, as D’Arcy Thompson did, would

be swimming against that scientific tide.
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Initially, Goethe’s morphology attracted scepticism even from descrip-

tive (nonexperimental) biologists. But shortly before his death, his ideas

were publicly applauded by Etienne Geoffroy Saint-Hilaire (Merz 1904,

vol. 2, p. 244). Geoffroy Saint-Hilaire agreed with Goethe that comparative

anatomy should be an exercise in ‘‘rational morphology,’’ a study of the

successive transformations—rational, not temporal—of basic body plans.

After his death, Goethe’s work was cited approvingly even by Thomas

Huxley and the self-proclaimed mechanist Hermann von Helmholtz

(1821–1894). Indeed, Helmholtz credited Goethe with ‘‘the guiding ideas

[of] the sciences of botany and anatomy . . . by which their present form is

determined,’’ and praised his work on homology and transformation as

‘‘ideas of infinite fruitfulness’’ (Helmholtz 1853/1884, pp. 34, 30).

‘‘Infinite fruitfulness’’ isn’t on offer every day. So why were Goethe’s

ideas largely forgotten by the scientific community? Surely, such an enco-

mium from such a high-profile scientist, and committed mechanist, as

Helmholtz would be enough to guarantee close, and prolonged, attention?

Normally, yes. However, only six years after Helmholtz spoke of Goethe’s

‘‘immortal renown’’ in biology, Darwin published On the Origin of Species

by Means of Natural Selection (1859/1964). This radically changed the sorts

of inquiry that biologists found relevant. One might even say that it

changed the sorts of enquiry that biologists found intelligible (see Jardine

1991). Biological questions were now posed in ways that sought answers

in terms of either mechanistic physiology or Darwinian evolution.

Soon, genetics became an additional source of inquiry. The neo-

Darwinian mix of physiology, evolution, and genetics was a heady brew. It

quickly became the biological orthodoxy, eclipsing Naturphilosophie in all

its forms. Darwin, like Goethe, encouraged systematic comparisons be-

tween different organs and organisms, but he posited no ideal types. He

explained morphological similarity in terms of contingency-ridden varia-

tion and selective descent, or coincidental likeness between environmental

constraints. In short, morphological self-organization largely disappeared

as a scientific problem, surviving only in embryology.

Charles Sherrington even said that ‘‘were it not for Goethe’s poetry,

surely it is true to say we should not trouble about his science,’’ and that

metamorphosis is ‘‘no part of botany today’’ (Sherrington 1942, pp. 23, 21).

From Morphology to Mathematics

Ironically, Sherrington’s remark was published in the very same year as the

long-awaited new edition of On Growth and Form. Although Goethe himself
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is now largely ignored by biologists (but see Webster and Goodwin 1991,

especially chapters 1 and 5), his questions have survived—thanks, largely,

to D’Arcy Thompson.

Like Goethe, whom he quoted with approval several times in his book,

D’Arcy Thompson sought an abstract description of the anatomical struc-

tures and transformations found in living things—indeed, in all possible

things. So, for instance, he discussed the reasons for the spherical shape of

soap bubbles. His reference to ‘‘forms which are theoretically imaginable’’

recalls Goethe’s reference to ‘‘strictly logical plants’’—in other words, ‘‘life

as it could be.’’ And like Goethe, he believed that certain forms were more

natural, more likely, than others. In some sense, he thought, there are ‘‘pri-

mal phenomena.’’

Also like Goethe—though here, the comparison becomes more strained—

he asked questions about the physical mechanisms involved in bodily

growth. But his philosophical motivation for those questions was different

in an important respect. Although D’Arcy Thompson was sympathetic to

some of the claims of the Naturphilosophen, he wasn’t a fully paid-up mem-

ber of their club. Indeed, he opened his book by criticizing Kant and

Goethe, complaining that they had ruled mathematics out of natural his-

tory (Thompson 1942, p. 2).

In part, he was here expressing his conviction that ‘‘the harmony of the

world is made manifest in Form and Number, and the heart and soul and

all the poetry of Natural Philosophy are embodied in the concept of math-

ematical beauty’’ (p. 1096ff.). This conviction wasn’t shared by his profes-

sional colleagues: ‘‘Even now, the zoologist has scarce begun to dream

of defining in mathematical language even the simplest organic forms’’

(p. 2). But in part, he was saying that physics—real physics—is crucially

relevant for understanding ‘‘form.’’

The idealist Goethe had seen different kinds of sap as effecting the

growth of sepal or petal, but for him those abstract possibilities had been

generated by the divine intelligence self-creatively immanent in nature.

D’Arcy Thompson, by contrast, argued that it is real physical processes,

instantiating strictly physical laws, which generate the range of morpho-

logical possibilities. Certainly, those laws conform to abstract mathematical

relationships—to projective geometry, for example. But biological forms

are made possible by underlying material-energetic relations.

Accordingly, D’Arcy Thompson tried to relate morphology to physics,

and to the dynamical processes involved in bodily growth. He suggested

that very general physical (as opposed to specific chemical or genetic) con-
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straints could interact to make some biological forms possible, or even nec-

essary, while others are impossible.

Had he lived today, D’Arcy Thompson would doubtless have relished

the work of Ralph Linsker (1986, 1988, 1990) and Christoph von der

Malsburg (1973, 1979) on the self-organization of feature detectors in the

sensory cortex, for it explains why we should expect to find systematic

neuroanatomical structure in the brain, as opposed to a random ragbag of

individually effective detector cells. Moreover, the ‘‘why’’ isn’t a matter

of selection pressures, but of spontaneous self-organization. But this recent

research required computational concepts and computing power (not to

mention anatomical data) that Thompson simply didn’t have. He could

use only the mathematics and physics available in the early years of the

century.

Although D’Arcy Thompson wasn’t the first biologist to study bodies, he

might be described as the first biologist who took embodiment seriously. The

physical phenomena he discussed included diffusion, surface forces, elastic-

ity, hydrodynamics, gravity, and many others. And he related these to spe-

cific aspects of bodily form.

His chapter ‘‘On Magnitude,’’ for example, argued both that size can be

limited by physical forces and that the size of the organism determines

which forces will be the most important. Gravity is crucial for mice, men,

and mammoths, but the form and behavior of a water beetle may be condi-

tioned more by surface tension than by gravity. A bacillus can in effect ig-

nore both, being subject rather to Brownian motion and fluid viscosity.

Similarly, the fixed ratio between volume and surface area is reflected, in a

single cell or a multicellular animal, in respiratory surfaces such as the cell

membrane, feathery gills, or alveolar lungs. Again, his fascinating discus-

sion of ‘‘The Forms of Cells’’ suggested, among many other things, that

the shape and function of cilia follow naturally from the physics of their

molecular constitution.

Perhaps the best-known chapter of On Growth and Form, the one that

had the clearest direct influence, was ‘‘On the Theory of Transformations,

or the Comparison of Related Forms.’’ This employed a set of two-

dimensional Cartesian grids to show how differently shaped skulls, limb

bones, leaves, and body forms are mathematically related. One form could

generate many others, by enlargement, skewing, and rotation.

So, instead of a host of detailed comparisons of individual body parts

bearing no theoretical relation with each other, anatomists were now being

offered descriptions having some analytical unity.
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To be sure, these purely topological transformations couldn’t answer

questions about more radical alterations in form. The gastrulation of an

embryo, for example, couldn’t be explained in this way (see Turing 1952).

And only very few zoologists, of whom Medawar was one, tried to use

D’Arcy Thompson’s specific method of analysis. But his discussion inspired

modern-day allometrics: the study of the ratios of growth rates of different

structures, in embryology and taxonomy.

More Admiration than Influence

One didn’t need to be doing allometrics to admire D’Arcy Thompson. By

midcentury, he was widely revered as a scientist of exceptional vision

(Hutchinson 1948; Le Gros Clark and Medawar 1945). The second edition

of On Growth and Form was received with excitement in 1942, the first (only

five hundred copies) having sold out twenty years before. Reprints had

been forbidden by D’Arcy Thompson himself, while he worked on the revi-

sions, and second-hand copies had been fetching ten times their original

price.

However, only a decade after the second edition, which people had

awaited so eagerly for years, the advent of molecular biology turned him

virtually overnight into a minority taste. As we’ve seen, much the same

had happened to his muse, Goethe, whose still-unanswered biological

questions simply stopped being asked when Darwin’s theory of evolution

came off the press in 1859. By the end of the 1960s, only a few biologists

regarded D’Arcy Thompson as more than a historical curiosity.

One of these was Conrad Waddington (1905–1975), a developmental

biologist at the University of Edinburgh (his theory of ‘‘epigenesis’’ influ-

enced Jean Piaget, the prominent developmental psychologist; see Boden

1994, 98–101). Waddington continually questioned the reductionist as-

sumption that molecular biology can—or, rather, will—explain the many-

leveled self-organization of living creatures. It’s hardly surprising, then,

that D’Arcy Thompson was often mentioned in his ‘‘by invitation only’’

seminars on theoretical biology, held in the late 1960s at the Rockefeller

Foundation’s Villa Serbelloni on Lake Como (Waddington 1966–1972).

But Waddington, too, was a maverick, more admired than believed.

His theory of epigenesis couldn’t be backed up by convincing empirical

evidence, whether in the developing brain or in the embryo as a whole.

Only after his death did his ideas gain ground. Significantly, the proceed-

ings of the first A-life conference were dedicated to him (Langton 1989,

p. xiii).
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D’Arcy Thompson’s most devoted admirers, however, had to concede

that it was difficult to turn his vision into robust theoretical reality. Despite

his seeding of allometrics, his direct influence on biology was less strong

than one might expect, given the excitement one still experiences on read-

ing his book.

Even the subsequent attempts to outline a mathematical biology es-

chewed his methods. Joseph Woodger’s (1929, 1937) axiomatic biology,

for instance, owed more to mathematical logic and the positivists’ goal of

unifying science (Neurath 1939) than to D’Arcy Thompson. And Turing’s

mathematical morphology employed numerically precise differential equa-

tions, not geometrical transformations. In short, D’Arcy Thompson figured

more as inspirational muse than as purveyor of specific biological theory or

fact.

The reason why his influence on other biologists, although ‘‘very great,’’

was only ‘‘intangible and indirect’’ (Medawar 1958, p. 232) is implied by

his own summary comment. At the close of his final chapter, he recalled

the intriguing work of a naval engineer who, in 1888, described the con-

tours and proportions of fish ‘‘from the shipbuilder’s point of view.’’ He

suggested that hydrodynamics must limit the form and structure of swim-

ming creatures. But he admitted that he could give no more than a hint of

what this means, in practice. In general, he said (Thompson 1942, p. 1090):

Our simple, or simplified, illustrations carry us but a little way, and only half prepare

us for much harder things. . . . If the difficulties of description and representation could be

overcome, it is by means of such co-ordinates in space that we should at last obtain an

adequate and satisfying picture of the processes of deformation and the directions of

growth. (emphasis added)

Echoes in A-Life

This early exercise in mathematical biology resembled current work in A-

life in various ways. So much so that one would expect D’Arcy Thompson,

were he to return today, to recognize the theoretical point of most work in

A-life, even though he’d be bemused by its high-tech methodology.

For instance, he’d be fascinated by Dimitri Terzopoulos’s lifelike com-

puter animation of fish, with its detailed interplay of hydrodynamics and

bodily form (Terzopoulos, Tu, and Gzeszczuk 1994). These ‘‘fish’’ weren’t

robots, but software creatures existing in a computer-generated virtual

world. Whereas Cavendish’s ‘‘fish’’ was a solitary object lying inert in a

dish of water, these were constantly in motion, sometimes forming

hunter-hunted pairs or co-moving schools. Each one was an autonomous
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system, with simple perceptual abilities that enabled it to respond to the

world and to its fellows. The major bodily movements, with their associ-

ated changes in body shape, resulted from twelve internal muscles (concep-

tualized as springs). The computerized fish learned to control these in order

to ride the (simulated) hydrodynamics of the surrounding seawater. A host

of minor movements arose from the definitions of seventy-nine other

springs and twenty-three nodal point masses, whose (virtual) physics

resulted in subtly lifelike locomotion.

He’d be intrigued, also, by Karl Sims’s (1994) A-life evolution of decidedly

unlifelike behavior, as a result of a specific mistake in the simulated physics.

He’d be the first to realize that in a physical world such as that defined

(mistakenly) by Sims, these strange ‘‘animals’’ would be better adapted to

their environment than those that actually exist. For sure, he’d be inter-

ested in programs of research that systematically varied physical parameters

to see what sorts of creatures would result. And he’d be fascinated by Ran-

dall Beer’s studies of locomotion in robot cockroaches (Beer 1990, 1995;

Beer and Gallagher 1992). For, unlike Terzopoulos and Sims, Beer subjected

his computer creatures to the unforgiving discipline of the real physical

world.

He’d applaud Greg Turk’s (1991) models of diffusion gradients and would

delight in Turk’s demonstration of how to generate leopard spots, cheetah

spots, lionfish stripes, and giraffe reticulations. And he’d doubtless be

pleased to learn that Turk’s equations were based on Turing’s, which in

turn were inspired by D’Arcy Thompson himself.

He’d sympathize with biologists such as Brian Goodwin and Stuart Kauff-

man, who see evolution as grounded in general principles of physical order

(Webster and Goodwin 1996; Goodwin 1994; Kauffman 1993). He’d agree

with A-lifers who stress the dynamic dialectic between environmental

forces and bodily form and behavior. He might well have embarked on a

virtual biomimetics: a systematic exploration of the effects of simulated

physical principles on simulated anatomies. And he’d certainly share A-

life’s concern with life as it could be—his ‘‘theoretically imaginable

forms’’—rather than life as we know it.

Difficulties of Description

The ‘‘difficulties of description and representation’’ bemoaned by D’Arcy

Thompson remained insuperable for more than half a century after publi-

cation of those first five hundred copies of his book. Glimpses of how they

might be overcome arose in the early 1950s, a few years after his death.
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Actually overcoming them took even longer. Or perhaps one should rather

say it is taking even longer, for we haven’t answered all of his questions yet.

Despite the deep affinity of spirit between D’Arcy Thompson’s work and

A-life research, there are three important, and closely related, differences.

Each of these reflects his historical situation—specifically, the fact that his

work was done before the invention of computers.

One difference concerns the practical usefulness of computer technology

and shows why (contrary to the suggestion noted above) A-life’s artefacts

are not, in fact, dispensable. The other two concern limitations on the

mathematical concepts available when D’Arcy Thompson was writing: in

his words, the difficulties of description and representation that needed to

be overcome.

First, D’Arcy Thompson was able to consider only broad outlines, largely

because he had to calculate the implications of his theories using hand and

brain alone. Today, theories with richly detailed implications can be stated

and tested with the help of superhuman computational power. The rele-

vant theories concern, for instance, the hydrodynamics of fish; the interac-

tions between various combinations of diffusion gradients; and processes of

evolution and coevolution occurring over many thousands of generations.

In addition, we can now study chaotic phenomena, which include many

aspects of living organisms, where tiny alterations to the initial conditions

of a fully deterministic system may have results utterly different from those

in the nonaltered case. These results can’t be predicted by approximation,

or by mathematical analysis. The only way to find out what they are is to

watch the system—or some computer specification of it—run, and see what

happens. In all these cases, the ‘‘help’’ A-life gets from computers isn’t an

optional extra, but a practical necessity.

Second, D’Arcy Thompson’s theory, though relatively wide in scope,

didn’t encompass the most general feature of life: self-organization as such.

Instead, it considered many specific examples of self-organization. This

isn’t surprising. Prior to computer science and information theory, no pre-

cise language was available in which this could be discussed.

And third, although he did consider deformations produced by physical

forces, D’Arcy Thompson focused more on structure than on process. This

is characteristic of precomputational theories in general. In anthropology,

for example, Claude Levi-Strauss in the early-1950s posited cognitive struc-

tures, based on binary opposition, to explain cultural phenomena, leaving

his successors—notably Daniel Sperber—to consider the processes in-

volved in communication and cultural evolution (see Boden 2006, chapter

8.vi). Prior to computer science, with its emphasis on the exact results of
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precisely specified procedures, scientists lacked ways of expressing—still

less, of accurately modeling and tracking—the details of change.

Uniform physical changes could be described by linear differential equa-

tions, to be sure. And Babbage (1838/1991) could even lay down rules, or

programs, for his Difference Engine determining indefinitely many ‘‘mirac-

ulous’’ discontinuities. But much as Babbage, as he admitted, couldn’t pro-

gram the transformation of caterpillar into butterfly, so D’Arcy Thompson’s

mathematics couldn’t describe the morphological changes and dynamical

bifurcations that occur in biological development.

And What Came Next?

One might have expected that cybernetics would provide some of the nec-

essary advances in descriptive ability. The scope of cyberneticians’ interests,

especially on D’Arcy Thompson’s home ground, the UK, was very wide

(Boden 2006, chapter 4). Among other things, it included various exercises

in mathematical biology, and it used robots and analogue computer model-

ing as a research technique. The study of ‘‘circular causal systems’’ drew on

mainstream ideas about metabolism and reflexology, not on the morpho-

logical questions that interested D’Arcy Thompson. But the cybernetic

movement considered some central biological concerns now at the core of

A-life: adaptive self-organization, the close coupling of action and percep-

tion, and the autonomy of embodied agents.

It even made some progress. For instance, Ashby’s (1952) ‘‘design for a

brain,’’ and his Homeostat machine, depicted brain and body as dynamical

physical systems. And Grey Walter’s (1950) tortoises, explicitly intended as

‘‘an imitation of life,’’ showed that lifelike behavioral control can be gener-

ated by a very simple system.

However, the cybernetics of the 1950s was hampered both by lack of

computational power and by the diversionary rise of symbolic AI. Only

much later, and partly because of lessons learned by symbolic AI, could

cybernetic ideas be implemented more convincingly. (Even so, recent

dynamical approaches suffer a limitation shared by cybernetics: unlike clas-

sical AI, they can’t easily represent hierarchical structure, or detailed struc-

tural change.)

As it turned out, it was physics and computer science, not cybernetics,

which very soon after D’Arcy Thompson’s death, in 1948, produced math-

ematical concepts describing the generation of biological form. Indeed,

two of the founding fathers of computer science and AI, Turing and von
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Neumann, were also the two founding fathers of A-life. (Von Neumann’s

intellectual range was even greater than Turing’s, including chemical engi-

neering for example [Ulam 1958].)

Around midcentury, they each developed accounts of self-organization,

showing how simple processes could generate complex systems involving

emergent order. They might have done this during D’Arcy Thompson’s life-

time, had they not been preoccupied with defense research. While Turing

was code-breaking at Bletchley Park, von Neumann was in Los Alamos,

cooperating in the Manhattan Project to design the atom bomb.

The end of the war freed some of their time for more speculative activ-

ities. Both turned to abstract studies of self-organization. Their new theoret-

ical ideas eventually led to a wide-ranging mathematical biology, which

could benefit from the increasingly powerful technology that their earlier

work had made possible.

In sum, D’Arcy Thompson didn’t get there first. He didn’t really get there

at all. But he did pave the way.

Notes

1. This chapter draws on chapters 2.vi.d–f and 15.ii–iii of my book Mind as Machine:

A History of Cognitive Science (Oxford: Oxford University Press, 2006).

2. Encyclopedia Britannica, 15th ed., s.v. ‘‘Henry Cavendish.’’
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4 Alan Turing’s Mind Machines

Donald Michie

Everyone who knew him agreed that Alan Turing had a very strange turn of

mind. To cycle to work at Bletchley Park in a gas mask as protection against

pollen, or to chain a tin mug to the coffee-room radiator to ensure against

theft, struck those around him as odd. Yet the longer one knew him the

less odd he seemed after all. This was because all the quirks and eccentric-

ities were united by a single cause, the last that one would have expected,

namely, a simplicity of character so marked as to be by turns embarrassing

and delightful, a schoolboy’s simplicity, but extreme and more intensely

expressed.

When a solution is obvious, most of us flinch away. On reflection we per-

ceive some secondary complication, often a social drawback of some kind,

and we work out something more elaborate, less effective, but acceptable.

Turing’s explanation of his gas mask, of the mug chaining, or of other star-

tling short cuts was ‘‘Why not?’’, said in genuine surprise. He had a deep-

running streak of self-sufficiency, which led him to tackle every problem,

intellectual or practical, as if he were Robinson Crusoe. He was elected to a

fellowship of King’s College, Cambridge, on the basis of a dissertation titled

‘‘The Central Limit Theorem of Probability,’’ which he had rediscovered

and worked out from scratch. It seemed wrong to belittle so heroic an

achievement just on the grounds that it had already been done!

Alan Turing’s great contribution was published in 1936, when he was

twenty-four. While wrestling Crusoe-like with a monumental problem of

logic, he constructed an abstract mechanism which had in one particular

embodiment been designed and partly built a century earlier by Charles

Babbage, the Analytical Engine. As a purely mathematical engine with

which to settle an open question, the decidability problem (Entscheidung-

sproblem), Turing created a formalism that expressed all the essential prop-

erties of what we now call the digital computer. This abstract mechanism is

the Turing machine. Whether or not any given mathematical function can



in principle be evaluated was shown by Turing to be reducible to the ques-

tion of whether a Turing machine, set going with data and an appropriate

program of computation on its tape, will ever halt. For a long time I

thought that he did not know about Babbage’s earlier engineering endeav-

our. In all the talk at Bletchley about computing and its mathematical

models, I never heard the topic of Babbage raised. At that time I was quite

ignorant of the subject myself. But according to Professor Brian Randell’s

paper ‘‘The Colossus,’’ delivered to the 1976 Los Alamos Conference on

the History of Computing (see Randell 1976), Thomas H. Flowers ‘‘recalls

lunch-time conversations with Newman and Turing about Babbage and

his work.’’ However that may be, the isolation and formal expression of

the precise respect in which a machine could be described as ‘‘universal’’

was Turing’s.

The universal Turing machine is the startling, even bizarre, centerpiece

of the 1936 paper ‘‘On Computable Numbers with an Application to the

Entscheidungsproblem’’ (Turing 1936). Despite its title, the paper is not

about numbers in the restricted sense, but about whether and how it is

possible to compute functions. A function is just a (possibly infinite) list

of questions paired with their answers. Questions and answers can, of

course, both be encoded numerically if we please, but this is part of the for-

malities rather than of the essential meaning.

For any function we wish to compute, imagine a special machine to be

invented, as shown in figure 4.1. It consists of a read-write head, and a fa-

cility for moving from one field (‘‘square,’’ in Turing’s original terminol-

ogy) of an unbounded tape to the next. Each time it does this it reads the

symbol contained in the corresponding field of the tape, a 1 or a 0 or a

blank. This simple automaton carries with it, in its back pocket as it were,

a table of numbered instructions (‘‘states,’’ in Turing’s terminology). A typ-

ical instruction, say number 23 in the table, might be: ‘‘If you see a 1 then

write 0 and move left; next instruction will be number 30; otherwise write a

blank and move right; next instruction will be number 18.’’

To compute f(x)—say, the square root of—enter the value of x in binary

notations as a string of 1’s and 0’s on the tape, in this case ‘‘110001,’’

which is 49 in binary. We need to put a table of instructions into the

machine’s back pocket such that once it is set going the machine will halt

only when the string of digits on the tape has been replaced by a new one

corresponding precisely to the value of f(x). So if the tape starts with

110001, and the table of instructions has been correctly prepared by some-

one who wishes to compute square roots to the nearest whole number,

then when the machine has finished picking its way backward and forward

it will leave on the tape the marks ‘‘111,’’ the binary code for 7.
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General Computations

When f ¼ square root, we can well imagine that a table of instructions can

be prepared to do the job. But here is an interesting question: How do we

know this? Could this be knowable in general? Could a systematic proce-

dure be specified to discover for every given function whether it is or is

not Turing-computable, in the sense that a table of instructions could or

could not be prepared?

In the process of showing that the answer is no, Turing generalized the

foregoing scheme. He imagined an automaton of the same kind as that al-

ready described, except that it is a general-purpose machine. If we want it

to compute the squareroot we do not have to change its instruction table.

Instead we merely add to the tape, alongside the encoding of the number

whose square root we want, a description of the square-root machine—

essentially just its table of instructions. Now what is to stop the general-

purpose machine from obeying the symbols of this encoding of the

square-root machine’s instruction table? ‘‘Plenty!’’ the astute reader at

once replies. This new automaton, as so far described, consists again just

of a read-write head. It has no ‘‘brain,’’ or even elementary understanding

Figure 4.1

Constituents of a Turing machine. If a new ‘‘table of instructions’’ is supplied for

each computation, then each use creates a new, special-purpose machine. If a once-

and-for-all table (‘‘language’’) is supplied, so that the specification of any given

special machine which it is to simulate is placed on the input tape, then we have a

universal Turing machine.
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of what it reads from the tape. To enable it to interpret the symbols which

it encounters, another table of instructions must again be put into its back

pocket—this time a master-table the effect of which is to specify a language

in the form of rules of interpretation. When it encounters a description,

in that language, of any special-purpose Turing machine whatsoever, it is

able, by interpreting that description, faithfully to simulate the operations

of the given special-purpose machine. Such a general-purpose automaton is

a universal Turing machine. With a language in its back pocket, the ma-

chine is able to read the instructions ‘‘how to compute square roots,’’ then

the number, and after that to compute the square root.

Using this construction, Alan Turing was able to prove a number of far-

reaching results. There is no space here to pursue these. Suffice it to say

that when mathematicians today wish to decide fundamental questions

concerned with the effectiveness or equivalence of procedures for function

evaluation, or with the existence of effective procedures for given func-

tions, they still have recourse to the simple-minded but powerful formal

construction sketched above.

In practical terms the insights derivable from the universal Turing ma-

chine (UTM) are as follows: The value of x inscribed on the tape at the start

corresponds to the data tape of the modern computing setup. Almost as ob-

vious, the machine description added alongside corresponds to a program

for applying f to this particular x to obtain the answer. What, then, is the

table of instructions that confers on the UTM the ability to interpret the

program? If the computer is a ‘‘naked machine’’ supplied by a manufac-

turer who provides only what is minimally necessary to make it run, then

the table of instructions corresponds to the ‘‘order code’’ of that machine.1

Accordingly the ‘‘machine description’’ appropriate to square root is a

program written in the given order code specifying a valid procedure for

extracting the square root. If, however, we ask the same question after we

have already loaded a compiler program for, say, the early high-level pro-

gramming language ALGOL-60, then we have in effect a new universal

Turing machine, the ‘‘ALGOL-60 machine.’’ In order to be interpretable

when the machine runs under this new table of instructions, the square-

root program must now be written, not in machine code, but in the

ALGOL-60 language. We can see, incidentally, that indefinitely many lan-

guages, and hence different UTMs, are constructible.

There are various loose ends and quibbles. To head off misunderstanding

I should add that the trivial example ‘‘square root’’ has been selected only

for ease of exposition: the arguments hold for arbitrarily complicated prob-

lems. Second, what has been stated only applies, strictly, to computers with
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unbounded memory. Third, the first thing that a modern machine ordi-

narily does is to ‘‘read in’’ both data and program, putting the contents of

the Turing ‘‘tape’’ into memory. The Turing machine formalism does not

bother with this step since it is logically immaterial whether the linear store

(‘‘tape’’) is to be conceived as being inside or outside: because it is notion-

ally unbounded, it was doubtless easier originally to picture it as ‘‘outside’’!

From the standpoint of a mathematician this sketch completes the story

of Turing’s main contribution. From the point of view of an information

engineer such as me, it was only the beginning. In February 1947 Alan

Turing delivered a public lecture at the London Mathematical Society. In it

he uttered the following (Turing 1947, pp. 122–123):

It has been said that computing machines can only carry out the purposes that they

are instructed to do. . . . But is it necessary that they should always be used in such a

manner? Let us suppose that we have set up a machine with certain initial instruc-

tion tables, so constructed that these tables might on occasion, if good reason arose,

modify these tables. One can imagine that after the machine had been operating for

some time, the instructions would have been altered out of recognition, but never-

theless still be such that one would have to admit that the machine was still doing

very worthwhile calculations. Possibly it might still be getting results of the type

desired when the machine was first set up, but in a much more efficient manner. In

such a case one could have to admit that the progress of the machine had not been

foreseen when its original instructions were put in. It would be like a pupil who had

learnt much from his master, but had added much more by his own work. When this

happens I feel that one is obliged to regard the machine as showing intelligence. As

soon as one can provide a reasonably large memory capacity it should be possible to

begin to experiment on these lines.

Ten years were to pass before the first experiments in machine learning

were undertaken, by Arthur Samuels at IBM (Samuels 1959), and thirty-

five years before conceptual and programming tools made possible the ex-

perimental assault that is gathering force today along the Turing line. For

consider modification not only of the data symbols on the UTM tape but

also of the machine-description symbols—modification of the program by

the program! My own laboratory constituted one of the resources dedicated

to this ‘‘inductive learning’’ approach.

In a particular sense, Alan Turing was anti-intellectual. The intellectual

life binds its practitioners collectively to an intensely developed skill, just

as does the life of fighter aces, of opera stars, of brain surgeons, of yachts-

men, or of master chefs. Strands of convention, strands of good taste,

strands of sheer snobbery intertwine in a tapestry of myth and fable to

which practitioners meeting for the first time can at once refer for common
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ground. Somewhere, somehow, in early life, at the stage when children first

acquire ritual responsiveness, Turing must have been busy with something

else.

Brute-Force Computation

The Robinson Crusoe quality was only one part of it. Not only indepen-

dence of received knowledge but avoidance of received styles (whether

implanted by fashion or by long tradition) gave him a form of pleasure

not unmixed with glee. There was much of this in his recurrent obsession

with attacking deep combinatorial problems by brute-force computation.

This was at the heart of some of his cryptanalytical successes—notably his

crucial inroad into the German Enigma cipher while working at Bletchley

Park. It is difficult now to remember how startling, and to persons of math-

ematical taste how grating and offensive, was the notion of near-exhaustive

enumeration of cases as an approach to a serious problem. Yet negative

reactions to Ken Appel and Wolfgang Haken’s computer-aided proof of the

four-color theorem (Appel, Haken, and Koch 1977) gives a base from which

to extrapolate back to the year 1943, the year my personal acquaintance

with Alan Turing was formed at Bletchley Park. At that instant I was on

the verge of becoming a founding member of a team led by Turing’s prewar

mentor, Max Newman, in a mechanized attack on a class of German

ciphers collectively known as ‘‘Fish.’’ Our machines were special-purpose.

But they showed what could be done by vacuum-tube technology in place

of electromechanical switching, inspiring both Newman and Turing in

their seminal postwar roles in developing the first-ever high-speed general-

purpose computing. A digression on this earlier phase is in order.

During the war the Department of Communications of the British For-

eign Office was housed at Bletchley Park, Buckinghamshire, where secret

work on cryptanalysis was carried out. As part of this work various special

machines were designed and commissioned, the early ones being mainly

electromechanical, the later ones electronic and much closer to being clas-

sifiable as program-controlled computers.

The Bletchley Machines

The first of the electromechanical machines, the ‘‘Heath Robinson,’’ was

designed by Charles Wynn-Williams at the Telecommunications Research

Establishment at Malvern. At Bletchley one of the people with influence

on design was Alan Turing. The machine incorporated two synchronized
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photoelectric paper tape readers, capable of reading three thousand charac-

ters per second. Two loops of five-hole tape, typically more than one thou-

sand characters in length, would be mounted on these readers. One tape

would be classed as data, and would be stepped systematically relative

to the other tape, which carried some fixed pattern. Counts were made of

any desired Boolean function of the two inputs. Fast counting was per-

formed electronically, and slow operations, such as control of peripheral

equipment, by relays. The machine, and all its successors, were entirely au-

tomatic in operation, once started, and incorporated an on-line output tele-

printer or typewriter.

Afterward, various improved ‘‘Robinsons’’ were installed, including the

‘‘Peter Robinson,’’ the ‘‘Robinson and Cleaver,’’ and the ‘‘Super Robinson.’’

This last one was designed by T. H. Flowers in 1944, and involved four

tapes being driven in parallel. Flowers, like many of the other engineers

involved in the work, was a telephone engineer from the Post Office Re-

search Station.

The electronic machines, known as the Colossi because of their size, were

developed by a team led by Professor Max H. A. Newman, who started the

computer project at Manchester University after the war. Other people di-

rectly involved included Tommy Flowers, Allen W. M. Coombs, Sidney W.

Broadhurst, William Chandler, I. J. ‘‘Jack’’ Good, and me. During the later

stages of the project several members of the U.S. armed services were

seconded at various times to work with the project for periods of a year or

more.

Flowers was in charge of the hardware, and in later years designed an

electronic telephone exchange. On his promotion, his place was taken by

Coombs, who in postwar years designed the time-shared transatlantic mul-

tichannel voice-communication cable system. After the war, Good was for a

time associated with the Manchester University computer project, and

Coombs and Chandler were involved in the initial stages of the design of

the ACE (automatic computing engine) computer at the National Physical

Laboratory, before building the MOSAIC computer at the Post Office Re-

search Station. Alan Turing was not directly involved in the design of the

Colossus machine, but with others he specified some of the requirements

that the machines were to satisfy. It has also been claimed by Good that

Newman, in supervising the design of the Colossi, was inspired by his

knowledge of Turing’s 1936 paper.

In the Colossus series almost all switching functions were performed by

hard valves, which totaled about two thousand. There was only one tape,

the data tape. Any preset patterns which were to be stepped through these
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data were generated internally from stored component patterns. These

components were stored in ring registers made of thyratrons and could be

set manually by plug-in pins. The data tape was driven at 5,000 characters

per second. In the Mark 2 version of the machine an effective speed of

25,000 characters per second was obtained by a combination of parallel

operations and short-term memory. Boolean functions of all five channels

of pairs of successive characters could be set up by plug-board, and counts

accumulated in five bi-quinary counters.

The first Colossus was installed by December 1943, and was so successful

that three Mark 2 Colossi were ordered. By great exertions the first of these

was installed before D-day ( June 6, 1944). By the end of the war about ten

Colossi had been installed, and several more were on order.

My point of departure for this digression was Alan Turing’s readiness

to tackle large combinatorial problems by means that entailed brute-force

enumeration of cases. His design of the ‘‘Bombe’’ machine for cracking

Enigma codes was a success of this character. The Colossus story was also

one of exhaustive searches, increasingly with the aid of man-machine co-

operation in the search for give-away statistical clues. Some kinds of snob-

bery conceive ‘‘pure thought’’ as flashes of insight—a kind of mystical

ideal. The humdrum truth of the matter is then allowed to escape, namely,

that for sufficiently tough problems the winning formula prescribes one

part insight to many parts systematic slog. Nowhere can this truth have

been more deeply embedded in daily reality than in the gradual delegation

at Bletchley of ever more of the intellectual slog to the proliferating new

varieties of machines.

Of course the abstract notion of combinational exhaustion was already

deeply entrenched in mathematics. But what about the use of a physical

device to do it? To make such proposals in earnest seemed to some people

equivalent to bedaubing the mathematical subculture’s precious tapestry

with squirtings from an engineer’s oilcan. Writing of an earlier juncture of

intellectual history, Plutarch in ‘‘The Life of Marcellus,’’ has left an unfor-

gettable account (Plutarch 1917, 473):

Eudoxus and Archylas had been the first originators of this far-famed and highly

prized art of mechanics, which they employed as an elegant illustration of geometri-

cal truths, and as a means of sustaining experimentally, to the satisfaction of the

senses, conclusions too intricate for proof by words and diagrams. . . . But what with

Plato’s indignation at it, and his invectives against it as the mere corruption and an-

nihilation of the one good of geometry—which was thus shamefully turning its back

on the unembodied objects of pure intelligence to recur to sensation, and to ask for

help . . . from matter; so it was that mechanics came to be separated from geometry,

and, repudiated and neglected by philosophers, took its place as a military art.
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It was indeed in a military art, cryptography, that Turing’s first practical

mechanizations made their debut. It is also of interest that in a paper sub-

mitted as early as 1939 (not published until 1943, owing to wartime delays)

a mechanizable method is given for the calculation of Georg Riemann’s

zeta-function suitable for values in a range not well covered by previous

work. Why was Turing so interested in this? The answer would undoubt-

edly serve as another red rag to Plato’s ghost, for the point at issue was a

famous conjecture in classical pure mathematics: Do all the zeros of the

Riemann function lie on the real line? In a postwar paper the oilcan reap-

pears in an attempt to calculate a sufficiency of cases on a computing ma-

chine to have a good chance either of finding a counterexample and thus

refuting the Riemann hypothesis or, alternatively, of providing nontrivial

inductive support. The attempt, which was reported in the 1953 Proceedings

of the London Mathematical Society (Turing 1953), failed owing to machine

trouble.

Machine trouble! Alan’s robust mechanical ineptness coupled with in-

sistence that anything needed could be done from first principles was

to pip many a practical project at the post. He loved the struggle to do

the engineering and extemporization himself. Whether it all worked in

the end sometimes seemed secondary. I was recruited at one point to help

in recovering after the war some silver he had buried as a precaution

against liquidation of bank accounts in the event of a successful German

invasion. After the first dig, which ended in a fiasco, we decided that a

metal detector was needed. Naturally Alan insisted on designing one, and

then building it himself. I remember the sinking of my spirits when I saw

the contraption, and then our hilarity when it actually seemed to be work-

ing. Alas its range was too restricted for the depth at which the silver lay,

so that positive discovery was limited to the extraordinary abundance

of metal refuse which lies, so we found, superficially buried in English

woodlands.

The game of chess offered a case of some piquancy for challenging with

irreverent shows of force the mastery that rests on traditional knowledge.

At Bletchley Park, Turing was surrounded by chess masters who did not

scruple to inflict their skill upon him. The former British champion Harry

Golombek recalls an occasion when instead of accepting Turing’s resigna-

tion he suggested that they turn the board round and let him see what he

could do with Turing’s shattered position. He had no difficulty in winning.

Programming a machine for chess played a central part in the structure of

Turing’s thinking about broader problems of artificial intelligence. In this

he showed uncanny insight. As a laboratory system for experimental work

chess remains unsurpassed. But there was present also, I can personally
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vouch, a Turing streak of iconoclasm: What would people say if a machine

beat a master? How excited he would be today when computer programs

based on his essential design are regularly beating masters at lightning

chess, and producing occasional upsets at tournament tempo!

Naturally Turing also had to build a chess program (a ‘‘paper machine’’ as

he called it). At one stage he and I were responsible for hand-simulating

and recording the respective operations of a Turing-Champernowne and a

Michie-Wylie paper machine pitted against each other. Fiasco again! We

both proved too inefficient and forgetful. Once more Alan decided to go it

alone, this time by programming the Ferranti Mark 1 computer to simulate

both. His problems, though, were now compounded by ‘‘people prob-

lems,’’ in that he was not at all sure whether Tom Kilburn and others in

the Manchester laboratory, where he was working by that time, really

approved of this use for their newly hatched prototype. It was characteristic

of Turing, who was in principle anarchistically opposed to the concept of

authority or even of seniority, that its flesh-and-blood realizations tended

to perplex him greatly. Rather than confront the matter directly, he pre-

ferred tacitly to confine himself to nocturnal use of the machine. One way

and another, the program was not completed.

It is fashionable (perhaps traditional, so deep are subcultural roots) to

pooh-pooh the search-oriented nature of Turing’s thoughts about chess. In

his Royal Society obituary memoir, Max Newman observes in words of

some restraint that ‘‘it is possible that Turing under-estimated the gap that

separates combinatory from position play.’’ Few yet appreciate that, by set-

ting the ability of the computer program to search deeply along one line of

attack on a problem in concert with the human ability to conceptualize the

problem as a whole, programmers have already begun to generate results of

deep interest. I have not space to follow the point here, but will simply ex-

hibit, in figure 4.2, a paradigm case. Here a program cast in the Turing-

Shannon mould, playing another computer in 1977, apparently blundered.

The chess masters present, including the former world champion Mikhail

Botvinnik, unanimously thought so. But retrospective analysis showed

that in an impeccably pure sense the move was not a blunder but a bril-

liancy, because an otherwise inescapable mate in five (opaque to the watch-

ing masters) could by this sacrifice be fended off for another fifteen or more

moves.

The equivocal move by Black, who has just been placed in check by the

White Queen in the position shown, was 34 . . . R–K1, making a free gift of

the Rook. The program, Kaissa, had spotted that the ‘‘obvious’’ 34 . . . K–N2

could be punished by the following sequence:
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35. Q–B8 ch. K � Q (forced)

36. B–R6 ch. B–N2 (or K–N1)

37. R–B8 ch. Q–Q1

38. R � Q ch. R–K1

39. R � R mate

Suppose now that we interpret the situations-and-actions world of chess

as an analogy of computer-aided air-traffic control, or regulation of oil plat-

forms or of nuclear power stations. If assigned to monitoring duty, Grand

Master Botvinnik would undoubtedly have presumed a system malfunction

and would have intervened with manual override! Kaissa’s deep delaying

move (in the parable, affording respite in which to summon ambulances,

fire engines, and so forth) would have been nullified.

These examples, taken from the computer chess world of twenty-five

years ago, no more than touch the surface of the human mind’s predi-

cament, faced by ever more impenetrable complexity. With the likes of

Kaissa there was, after all, the thought that it was still within the realm

of technical feasibility to equip such a brute-force device with some sort of

Figure 4.2

The paradigm, derived by Turing and Claude Shannon for game playing, imple-

mented on an IBM three-million-instructions-per-second computer, probes beyond

the tactical horizons of even a grand master. In this match from Toronto in 1977,

the chess-playing software Kaissa, playing black, continued R–Kl. It looks like a

blunder—but was it?
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‘‘self-explanation harness.’’ In the twenty-first century the matter now

stands rather differently, at least in the case of chess, if not in the regula-

tion of oil platforms and power stations.

Enter a Mega Monster

A brute-force calculating chess monster, Hydra, has now emerged. Devel-

oped in the United Arab Emirates by a four-man team led by Dr. Chrilly

Donninger, it runs on thirty-two processors, each enhanced by special

FPGA chess hardware (C. Donninger and U. Lorenz 2004). FPGA stands for

‘‘field-programmable gate array,’’ a type of logic chip that can be directly

programmed, almost as though it were software but running at modern

hardware speeds. Hydra can assess potential positions in look-ahead at a

rate of 200 million per second. For each of the possible five-piece end-

games, Hydra’s databases allow the machine to look up the best or equal-

best move and theoretical worst-case outcome in every possible situation.

Hydra searches in the middle-game typically to depth 18 to 19, and in the

endgame to depth 25. At the nominal depth 18 to 19, the longest varia-

tions are searched to about depth 40 (the theoretical limit is 127), the

shortest one to depth 8. The search tree is strongly nonuniform.

A six-game match between the Hydra chess machine and Britain’s num-

ber one grand Master, Michael Adams, took place at the Wembley Centre

in London from on June 21 to 27, 2005. One of the most lop-sided chess

matches in recent memory ended with the nearest thing to a whitewash.

In six games at regular time controls Adams succeeded in achieving a single

draw, in game 2 with a clever save in an essentially lost position. In the

other five games he was crushed by the machine.

Meanwhile comparable trends characterize the technologies that are

increasing our dependence while also adding to planetary perils. Human

incomprehension of increasingly intricate systems is part of the problem.

What chance of ‘‘self-explanation harnesses’’?

Suppose that a Hydra look-alike, call it the Autocontroller, were con-

verted to act as a nuclear power station control computer. There could

come a moment at which, having searched out possible ‘‘engineer-

intervention/system response’’ sequences to a depth of, say, 20, the

Autocontroller displays a message: ‘‘Only 67,348 stability-restoring paths

available. Partial explanations of key subpaths can be displayed on request.

WARNING: At normal reading speeds total human time to scan explana-

tions is estimated at 57 mins 22 secs; time available before next cluster of

control decisions is 3 mins 17 secs. RECOMMENDATION: Press ‘Trust

Autocontroller’ button.’’ What are the harassed control engineers to do?
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Broader Horizons

Increasing numbers of industrial and military installations are controlled

by problem-solving computing systems. The cloak cast by combinatorial

complexity over the transparency of machine functions has thus acquired

topical urgency. Computer analyses of chess and other combinatorial

domains, originally inspired by Alan Turing, are today yielding new

approaches to problems of seemingly irreducible opacity.

Note

1. ‘‘Order code,’’ a term used in the early days of computing, is synonymous with

‘‘operation code’’—the portion of a machine-language instruction that specifies the

operation to be performed.
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Editors’ Note

Donald Michie (1923–2007) Sadly, Donald died in a car accident just

as this book was going to press, so his chapter will be one of his last publi-

cations. He and his former wife, Dame Anne McClaren, a highly distin-

guished biologist, died together in the accident. He was educated at Rugby

school and Balliol College, Oxford, where he was awarded an open scholar-

ship to study classics in 1942. However, he decided to defer entry and in

1943 enrolled for training in cryptography and was soon recruited to

Bletchley Park in Buckinghamshire, Britain’s wartime code-cracking head-

quarters. There he worked with Alan Turing, Jack Good, Max Newman,

and others in a highly successful team that made many invaluable contri-

butions to the war effort. During this period Donald made a number of im-

portant advances in the use of early computing techniques in cryptology.

After the war he took up his place at Oxford but his experiences at Bletch-

ley Park had given him a passion for science, so he switched from classics

and received his MA in human anatomy and physiology in 1949. This was

followed by a DPhil in genetics, a field in which he made several important

contributions, some with Anne McClaren, whom he married in 1952. From

about 1960 he decided to concentrate his efforts on machine intelligence—

a field he had first become interested in through his work with Turing—

and dedicated the rest of his career to it. He did much to galvanize the

area in Britain, founding the department of machine intelligence and per-

ception at Edinburgh University in 1966. He made a number of important

contributions to machine learning and edited a classic series of books on

machine intelligence. In 1984 he founded the Turing Institute in Glasgow,

which conducted industrially oriented machine intelligence research for

several years. He received numerous honorary degrees and achievement

awards of learned societies in computing and artificial intelligence. He had

a lifelong commitment to socialism, integrating scientific inquiry with the

struggle for social justice.



5 What Did Alan Turing Mean by ‘‘Machine’’?

Andrew Hodges

Machines and Intelligence

Alan Turing died in June 1954, before the term ‘‘artificial intelligence’’ was

established. He might have preferred the term ‘‘machine intelligence’’ or

‘‘mechanical intelligence,’’ following the phrase ‘‘Intelligent Machinery’’

in the (then still unpublished) report he wrote in 1948 (Turing 1948/

2004). This provocative oxymoron captured what he described as a ‘‘heret-

ical theory.’’ This article is centered on that 1948 report, and the much

more famous philosophical paper that followed it in 1950 (Turing 1950),

but it is not intended to add to the detailed attention that has been lav-

ished on Turing’s ideas about ‘‘intelligence.’’ Turing’s 1950 paper is one of

the most cited and discussed in modern philosophical literature—and the

1948 work, originally unpublished, has also come to prominence, for

instance in the elaborate trial of Turing’s networks by Teuscher (2002). In-

stead, it will examine the other half of Turing’s deliberately paradoxical ex-

pression: the question of what he meant by ‘‘machine’’ or ‘‘mechanical.’’

This is equally important to the theory and practice of artificial intelli-

gence. Whereas previous thinkers had conceived of homunculi, automata,

and robots with human powers, the new setting of the digital computer

gave a far more definite shape to the conception of the ‘‘mechanical.’’

To examine the meaning of Turing’s references to machinery in 1948 we

first need to go back to the Turing machine of 1936 (Turing 1936). At first

sight it might seem that Turing had mastered the whole area with his defi-

nitions and discoveries at that time, leaving little room for comment, but

the situation is in fact not so clear.

The Turing Machine and Church’s Thesis

We should first look back further, to about 1932. This is when, in a pri-

vate essay (Turing 1932), Turing showed his youthful fascination with the



physics of the brain. It rested on an idea, made popular by Arthur Edding-

ton, that the indeterminacy of quantum mechanics might explain the

nature of consciousness and free will. It is important to remember that the

conflict between the appearance of free will and the deterministic explana-

tion of physical phenomena has always been a central puzzle in science,

vital to the whole materialist standpoint. Turing was aware of it from

an early age. It is this question of the physical content of mechanistic expla-

nation—focusing on the physical properties of the brain—that underlies

the discussion that follows.

When in 1936 Turing (1936) gave an analysis of mental operations ap-

propriate to his discussion of the Entscheidungsproblem, he did not ad-

dress himself to this general question of free will. He confined himself to

considering a human being following some definite computational rule, so

as to give a precise account of what was meant by ‘‘effective calculability.’’

His assumption of a finite memory and finite number of states of mind is,

therefore, only stated in this context. It does not consider what a human

mind might achieve when not confined to rule following, and so exerciz-

ing wilful choice. (In retrospect, these bold assumptions seem to set the

stage for Turing’s later thesis about how a computer could simulate all

kinds of mental operations, but we have no way of knowing what Turing’s

views were in this early period.) Another question that is not addressed in

his 1936 work is what could be achieved by a physical machine, as opposed

to the model human rule follower.

The reason for emphasizing this negative is that when Church (1937/

1997) reviewed Turing’s paper in 1937, endorsing its definition of effective

calculability, he attributed to Turing a definition of computability expressed

in terms of machines of finite spatial dimension:

[Turing] proposes as a criterion that if an infinite sequence of digits 0 and 1 be ‘‘com-

putable’’ that it shall be possible to devise a computing machine, occupying a finite

space and with working parts of finite size, which will write down the sequence to

any desired number of terms if allowed to run for a sufficiently long time. As a matter

of convenience, certain further restrictions are imposed in the character of the ma-

chine, but these are of such a nature as obviously to cause no loss of generality—in

particular, a human calculator, provided with pencil and paper and explicit instruc-

tions, can be regarded as a kind of Turing machine.

What Church wrote was incorrect, for Turing had not proposed this crite-

rion. Turing gave a careful model of the human calculator, with an analysis

of mental states and memory, which Church’s summary ignored, and he

said nothing about ‘‘working parts’’ or ‘‘finite size.’’ Yet Turing recorded

no objection to this description of his work. In his 1938 Ph.D. thesis
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(Turing 1938b) he gave a brief statement of the Church-Turing thesis,

using the words ‘‘purely mechanical process,’’ equated to ‘‘what could be

carried out by a machine.’’ Turing’s expression is less sweeping than

Church’s, since the words ‘‘a machine’’ could be read as meaning ‘‘a Turing

machine.’’ But he made no effort whatever to put Church right and insist

on his human calculator model. Church (1940) repeated his definition in

1940, and Turing himself, as we shall see, moved seamlessly between hu-

manly applied methods and ‘‘machines,’’ even though he had given no

analysis or even explanation of what was meant by ‘‘machine’’ comparable

with the careful discussion of what he meant by and assumed to be true of

a human calculator.

It is puzzling why Church so freely adopted this language of machines

in the absence of such an analysis and why Turing apparently went along

with it. One possible factor is that the action of the human mathematician

carrying out the rules of formal proof ‘‘like a machine’’ was in those pre-

computer days so much more complex than any other imaginable ma-

chine. Human work was naturally the logicians’ focus of attention, and as

Turing (1948/1986) put it in his 1948 report, engineered machines were

‘‘necessarily limited to extremely straightforward’’ tasks until ‘‘recent times

(e.g. up to 1940).’’ This was a coded reference to his own Enigma-breaking

Bombe machines (by no means straightforward) of that year, and confirms

that in the 1936 period he saw nothing to learn from extant machinery.1

But it is still surprising that Turing did not insert a caveat raising the

question of whether there might in principle be machines exploiting phys-

ical phenomena (in quantum mechanics and general relativity, say) that

would challenge the validity of Church’s assumptions based on naive clas-

sical ideas of parts, space, and time. Turing had a very good background in

twentieth-century physics and as we have noted had already suggested that

quantum mechanics might play a crucial role in the functioning of the

brain. This question is particularly fascinating because his (1938b) work

discussed uncomputable functions in relation to the human ‘‘intuition’’

involved in seeing the truth of a formally unprovable Gödel sentence, an

apparently nonmechanical action of mind. What role did he think the

physical brain was playing in such ‘‘seeing’’? Unfortunately, it is impossible

to know what he thought in this prewar period; his statements avoided the

word ‘‘brain.’’

A quite different interpretation has been given however, by the philoso-

pher B. J. Copeland, who has now edited a selection of Turing’s papers

(Copeland 2004). In this and numerous other publications, Copeland

makes much of the idea that by discussing effective calculation of the
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human calculator, Turing expressly excluded the question of what ma-

chines might be able to do. Copeland (2002) has further asserted that

Church also endorsed only Turing’s formulation of the human rule fol-

lower. This is simply not true, as can be seen from Church’s review as pre-

viously quoted. Copeland has also made the more dramatic claim that

Turing expressly allowed for the possibility of machines more powerful

than Turing machines. Thus Copeland (2002) suggests that the reason for

Turing’s restriction to a human calculator was that ‘‘among a machine’s

repertoire of atomic operations there may be those that no human being

unaided by machinery can perform.’’ This argument is not, however, to be

found in Turing’s writing.

Specifically, the extraordinary claim is made by Copeland and Proudfoot

(1999) that Turing’s ‘‘oracle-machine’’ is to be regarded as a machine that

might be physically constructed. Now, Turing’s ‘‘oracle’’ is a postulated ele-

ment in the advanced logical theory of his PhD thesis that ‘‘by unspecified

means’’ can return values of an uncomputable function (e.g., say, of any

Turing machine, whether it halts or not). Mathematical logicians have

taken it as a purely mathematical definition, giving rise to the concept of

relative computability (for a review see Feferman 1988). This is not quite

the whole story, because Turing was certainly concerned with the extra-

mathematical question of how mental ‘‘intuition’’ seems to go beyond the

computable. However, it is essentially something postulated for the sake of

argument, not something supposed to be an effective means of calculation.

An ‘‘oracle-machine’’ is a Turing machine whose definition is augmented

so that it can ‘‘call the oracle.’’

Although Turing emphasized that the oracle ‘‘cannot be a machine,’’

Copeland asserts that the oracle-machine which calls it is a machine.

He rests this argument on the observation that Turing introduced the

oracle-machine concept as ‘‘a new kind of machine.’’ Yet to consider

an oracle-machine a machine would obviously contradict Turing’s basic

statement in his thesis that effectively calculable functions are those that

‘‘could be carried out by a machine,’’ and that these are the Turing-

computable functions. How could Turing have equated effective calcula-

tion with the action of Turing machines, if he was introducing a more

powerful ‘‘kind of machine’’ in that same 1938 work? This makes no sense,

and to interpret what Turing meant by ‘‘new kind of machine,’’ we need

only note what ‘‘kinds of machines’’ he had defined in 1936. These were

the ‘‘automatic’’ machines and ‘‘choice’’ machines, the former being what

we call Turing machines and the latter being a generalized ‘‘kind of ma-

chine’’ calling for the intervention of an operator. The oracle-machines fol-
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low this model: they are like the choice machines in being only partially

mechanical. The steps that call the oracle are, indeed, described by Turing

as ‘‘non-mechanical.’’

Copeland and Proudfoot (1999), however, insist that the words ‘‘new

kind of machine’’ mean that Turing imagined the oracle-machine as some-

thing that might be technologically built to compute uncomputable func-

tions in practice; they announce that the search is now under way for a

physical oracle that would usher in a new computer revolution. They draw

a picture of the oracle as a finite black box. They further argue (Copeland

and Proudfoot 2004) that the oracle can be a nonmechanical part of a ma-

chine in the same sense that ‘‘ink’’ can be. A machine prints with ink

(which is not a machine); likewise a machine can call on an oracle (which

is not a machine). The analogy is untenable: there is nothing inherent in

ink (or, more properly, the physical implementation of a logical state) that

introduces a function infinitely more complex than that of the machine it-

self. In contrast, the whole point of an oracle is that it does just this. Later

we shall see further evidence that Turing never saw an oracle-machine as a

purely mechanical process.

To summarize, Turing’s loose use of the expression ‘‘kind of machine’’ to

introduce a class of partially mechanical concepts should not be allowed

to confuse the issue. Rather, what we learn from the classic texts is that

Church and Turing seem to have supposed, without detailed analysis,

that the ‘‘purely mechanical’’ would be captured by the operations of

Turing machines. They did not draw a clear distinction between the con-

cepts of ‘‘a machine’’ and ‘‘a mechanical process applied by a human

being.’’

Turing’s Practical Machines: The Wartime Impetus

Despite its ‘‘very limited’’ character, the physical machinery available in

1937 held remarkable appeal for Turing. Unusually for a mathematician,

Turing had a fascination with building machines for his own purposes. He

used electromagnetic relays to build a binary multiplier intended for use

in a secure encipherment scheme, and another machine for calculating

approximate values for the Riemann zeta-function (see Hodges 1983). As

is now famous, this combination of logic and practical machinery took

Turing to the center of operations in the Second World War, where his

machines and mechanical processes eclipsed traditional code-breaking

methods. In the course of this work Turing gained an experience of elec-

tronic switches, again, by building a speech-encipherment machine with
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his own hands. Electronic components provided the microsecond speed

necessary for effective implementation of what Turing called a ‘‘practical

version’’ of the universal machine: the digital computer.

From 1943 onward, Turing spoke of building a brain, using the word ab-

sent from his 1936–38 work on computability. In his technical prospectus

for a digital computer, Turing (1946) gave an argument justifying this hy-

perbolic vocabulary. This was a discussion of computer chess playing, with

a comment that ‘‘very good chess’’ might be possible if the machine were

allowed to make ‘‘occasional serious mistakes.’’ This somewhat mysterious

comment was clarified by Turing in 1947, when he argued (Turing 1947)

that Gödel’s theorem is irrelevant if infallibility is not demanded. Then

and later he developed his view that what appears to be nonmechanical

‘‘initiative’’ is actually computable, so that the apparent oxymoron of

‘‘machine intelligence’’ makes sense. It seems very likely that Turing had

formed this view by the end of the war, and so could feel confident with a

purely mechanistic view of the mind, uncontradicted by Gödel’s theorem.

In fact, Turing’s discussion of chess playing and other ‘‘intelligence’’ ideas

around 1941 suggests that he formed such a conviction during that period.

This was, of course, when his mechanical methods, using Bayesian infer-

ence algorithms as well as physical machinery, were first so dramatically

supplanting the traditional role of human judgment in code breaking.

In 1946–47, Turing began a discussion of fundamental aspects of physi-

cal machines of a kind absent from his prewar work. He did not simply

assume it straightforward to embody logically discrete states in physical

machinery; his 1946 discussion of the implementation of computation

with electronic parts was notable for its emphasis (learned from wartime

experience) on avoidance of errors (Turing 1946/1986). Speaking to an au-

dience of mathematicians in 1947, he gave a more abstract account of what

it means to implement discrete states, in terms of disjoint sets in the con-

figuration space of a continuous physical system (Turing 1947). This was

the first suggestion of serious analysis relating Turing’s logical and physical

worlds.

Turing’s 1948 Report: Physical Machines

We have now seen the background to the 1948 report, written for the Na-

tional Physical Laboratory, London, where Turing was employed on his

computer project. In this report, Turing went on to give a more directly

physical content to the concept of machine. First, Turing discussed how

the finite speed of light places a limit on the speed at which computations
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can take place. We may be amused that Turing assumed components of a

computer must be separated by a centimeter, which makes his estimate of

potential speed ridiculously slow by modern standards. However, he was

of course correct in identifying the speed of light as a vital constraint, and

it is this limitation that continues to drive miniaturization. Second, Turing

calculated from statistical mechanics the probability of an electronic valve

falling into the wrong state through the chance motion of its electrons: his

result was that there would be virtual certainty of error in 101017
steps. Such

a calculation was quite typical of Turing’s approach using fundamental

physics: J. L. Britton (1992) has recalled another example from Turing’s

Manchester period, when he gave a lecture based on the number N, defined

as the odds against a piece of chalk leaping across the room and writing a

line of Shakespeare on the board. However, it is again rather surprising that

he made no explicit mention of quantum physics as underlying electron-

ics, and of course he thereby missed the opportunity to anticipate the lim-

its of miniaturization, and the possibility of quantum computing, which

now are such salient features in the frontiers of computer technology.

In summarizing the properties of computability in this 1948 report,

Turing was too modest to use the expression ‘‘Turing machine’’ but used

the expression ‘‘logical computing machine’’ (LCM) instead. When inter-

preting it he made nothing of the distinction, held to be of paramount

importance by Copeland, between machines and humanly applied me-

chanical processes. Turing summarized Church’s thesis as the claim that

any ‘‘rule of thumb’’ could be carried out by an LCM, which can indeed

be taken to be an informal reference to the 1936 human calculator model.

But Turing illustrated the idea of ‘‘purely mechanical’’ quite freely through

examples of physical machines. Turing’s (1946/1986) computer plan had

described the function of the computer as replacing human clerks, but the

1948 report said that ‘‘the engineering problem of producing various

machines for various jobs is replaced by . . . programming the universal

machine.’’ When in this report he described a procedure that, with no

computers yet available, certainly was a human-based rule, he called it a

‘‘paper machine.’’ He said that a computing machine can be imitated by

a man following a set of rules of procedure—the reverse of Copeland’s dic-

tum. In practice, Turing wove these two models together into a discussion

of ‘‘Man as a Machine,’’ with the brain as his focus of interest. Turing still

had not given any indication of why all possible engineered machines,

going beyond the immediately practical, could be emulated by programs—

in other words, Turing machines. However, his introduction of physical

concepts made a start on answering this question.
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Turing noted an obvious sense in which it is clearly not true that all

machines can be emulated by Turing machines: the latter cannot milk

cows or spin cotton. Turing dealt with this by making a distinction be-

tween ‘‘active’’ and ‘‘controlling’’ machinery; it is the latter, which we

might call information-theoretic, which are compared with LCMs. The for-

mer (Turing’s down-to-earth example: a bulldozer) are not. This distinction

could be regarded as simply making explicit something that had always

been implicit in references to mechanical processes: we are concerned with

what makes a process mechanical in its nature, not with what the process

physically effects. Intuitively, the distinction is clear, but at a deeper level,

it opens up questions linking physics and information theory, which

Turing did not deal with, for example, how can we characterize the kind

of physical system that will be required to embody an LCM, and given a

physical system, how can we characterize its capacity for storing and pro-

cessing information?

Continuity and Randomness

Turing’s 1948 report made a further distinction between ‘‘discrete’’ and

‘‘continuous’’ machines. Only the discrete-state machines can be consid-

ered LCMs. As regards ‘‘continuous’’ machines (where Turing’s example

was a telephone) it is worth noting that Turing was no newcomer to conti-

nuity in mathematics or physics. He was an old hand, both in theory and

in practice. Even in 1936, he had hoped to extend computability to contin-

uous analysis. One of his many contributions to pure mathematics was his

work on discrete approximation to continuous groups (Turing 1938a).

When he wrote in 1950 that every discrete-state machine was ‘‘really’’

based on continuous motion (Turing 1950), with a picture of a three-way

rotating switch, this was on the basis of his experience ten years earlier

with the Bombe, whose rapidly rotating commutators made millisecond

connections thanks to expert engineering. The applications in his (1946/

1986) 1946 computer plan included traditional applied mathematics and

physics problems, and his software included floating-point registers for

handling (discrete approximations to) real numbers. His important innova-

tion in the analysis of matrix inversion (Turing 1948) was likewise driven

by problems in continuous analysis. A notable point of Turing’s 1947

London Mathematical Society talk is that from the outset he portrayed

the discrete digital computer as an improvement on the continuous ‘‘differ-

ential analysers’’ of the 1930s, because of its unbounded capacity for

accuracy. He did this in practice: he turned his prewar analogue zeta-
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function-calculating machine into a program for the Manchester computer

(Turing 1953).

In the 1948 report his examples were designed to focus on the brain,

which he declared to be continuous but ‘‘very similar to much discrete ma-

chinery,’’ adding that there was ‘‘every reason to believe’’ that an entirely

discrete machine could capture the essential properties of the brain. One

reason for such belief was given more explicitly in the 1950 paper (Turing

1950), his answer to the ‘‘Argument from Continuity in the Nervous Sys-

tem.’’ It is first worth noting that this ‘‘continuity in the nervous system’’

argument is an objection to a thesis that Turing had not quite explicitly

made in that 1950 paper, viz., that computable operations with a discrete-

state machine can capture all the functions of the physical brain relevant to

‘‘intelligence.’’ It is there implicitly, in his response to this objection, and

indeed it is implicit in his estimate of the number of bits of storage in a

human brain.

His argument against the significance of physical continuity was that

introducing randomness into the discrete machine would successfully sim-

ulate the effect of a continuous machine. Turing introduced machines with

random elements in his 1948 report. In the 1950 paper he developed this

into an interesting argument that now would be seen as the opening up of

a large area to do with dynamical systems, chaotic phenomena, and com-

putable analysis. He referred to the traditional picture of Laplacian deter-

minism, holding that the determinism of the discrete-state machine

model is much more tractable (Turing 1950, 440):

The displacement of a single electron by a billionth of a centimetre at one moment

might make the difference between a man being killed by an avalanche a year later,

or escaping. It is an essential property of the mechanical systems which we have

called ‘‘discrete state machines’’ that this phenomenon does not occur.

This ‘‘avalanche’’ property of dynamical systems is often referred to now as

the ‘‘butterfly effect.’’ His answer to the ‘‘continuity of the nervous system’’

objection admitted that the nervous system would have the avalanche

property, but indicated that he did not see the absence of this property in

discrete systems as any disadvantage, and claimed that it could be imitated

by the introduction of randomness.

We may note in passing that Copeland (1999) presents Turing’s random

elements as examples of ‘‘oracles,’’ although Turing never used this word or

made a connection with his 1938 work. Copeland’s justification is that

Church (Copeland and Proudfoot 1999) had given a definition of infinite

random sequences, in which one necessary condition is that the sequence
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be uncomputable. Copeland and Proudfoot (2004) also argue that ‘‘the

concept of a random oracle is well known.’’ But Turing (1950) made no ref-

erence to Church’s definition and expressly said that the pseudo-random

(computable) sequence given by ‘‘the digits of the decimal for pi’’ would

do just as well for his purposes. Turing used randomness as being equiva-

lent to variations and errors lacking any functional significance. But for a

random number to serve as an uncomputable oracle it would have to be

known and exploited to infinite precision.

If Turing ever entertained the notion of realizing his 1938 oracle-

machine as a mechanical process, it is in this 1948 report, with its classifi-

cation of machines, that we should see the evidence of it. There is no such

evidence. In particular, when considering the brain as a machine, Turing

had the opportunity to discuss whether it might have some uncomputable

element corresponding to ‘‘intuition.’’ He omitted to take it.

Turing seemed content with a vague and intuitive picture of random-

ness, which is surprising since he had a strong interest in probability and

statistics, and much of his war work depended on detecting pseudo-

randomness. Again, he was opening a new area of questions rather than

defining an answer. We shall see later how in 1951 he did take such ques-

tioning a little further in an interesting direction.

Imitation Game: Logical and Physical

A general feature of all Turing’s writing is its plethora of physical allusions

and illustrations. The 1948 distinction between physical (‘‘active’’) proper-

ties and the logical (‘‘controlling’’) properties of a machine appears also in

1950. In the comparison of human and machine by the celebrated imita-

tion game, both human and computer are depicted as physical entities,

which as physical objects are entirely different. The test conditions are

designed, however, to render irrelevant these physical attributes, and to

compare only the ‘‘controlling’’-machine functions. In these functions,

Turing argued, the computer had the potential to equal the human brain.

In contexts where the interface of the brain with the senses and with

physical action is crucial, Turing was less sure about what might be said.

In a curious illustration, he referred to ‘‘the difficulty of the same kind of

friendliness occurring between man and machine as between white man

and white man, or between black man and black man.’’

Yet even so, Turing was optimistic about the machine’s scope and made

rather light of what would later be seen as the ‘‘frame problem’’ of associat-
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ing internal symbolic structure with external physical reality. It might fur-

ther be argued that Turing only conceded these problems with senses and

action because he explicitly limited himself to a program of modeling a sin-

gle brain. He did not consider the possibility of modeling a wider system,

including all human society and its environment, as some computational-

ists would now suggest as a natural extension. So for him to concede diffi-

culties with questions of physical interaction was not actually to concede

something beyond the scope of computability. In any case, his attitude,

vigorously expressed in his conclusion to the 1950 paper, was that one

should experiment and find out.

The central point of Turing’s program was not really the playing of

games of imitation, with various slightly different protocols and verbal

subtleties. The primary question was that of the brain, confronting the fun-

damental question of how the human mind, with its apparent free will and

consciousness, can be reconciled with mechanistic physical action of the

brain. In one later remark, he did discuss this question with a new and

sharper point.

Quantum Mechanics at Last

In 1951, Turing (1951/2004) gave a talk on BBC radio’s Third Program.

Entitled ‘‘Can digital computers think?’’ it was largely a condensation of

his 1950 paper. But this time he made the prospectus of imitating the phys-

ical brain quite explicit. Notably, he explained the special importance of

the computer by saying that a universal machine ‘‘can replace any rival de-

sign of calculating machine, that is to say any machine into which one can

feed data and which will later print out results.’’ This was consistent with

the 1948 report in regarding the brain as a physical object whose relevant

function is that of a discrete-state machine. But what was new in 1951 was

Turing’s statement that this assumption about the computability of all

physical machines, and in particular the brain, might be wrong. The argu-

ment would only apply to machines ‘‘of the sort whose behaviour is in

principle predictable by calculation. We certainly do not know how any

such calculation should be done, and it has even been argued by Sir Arthur

Eddington that on account of the Indeterminacy Principle in Quantum

Mechanics no such prediction is even theoretically possible.’’

This is the only sentence in Turing’s work explicitly suggesting that a

physical system might not be computable in its behavior. It went against

the spirit of the arguments given in 1950, because he did not now suggest
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that random elements could effectively mimic the quantum-mechanical

effects. This apparent change of mind about the significance of quantum

mechanics might well have reflected discussions at Manchester, in particu-

lar with the physical chemist and philosopher Michael Polanyi, but it also

reflected Turing’s (1932) youthful speculations based on Eddington. It

also pointed forward to the work he did in the last year of his life on the

‘‘reduction’’ process in quantum mechanics, which is essential to the inde-

terminacy to which he drew attention in 1951 (Turing 1951/2004).

Turing’s comment is of particular interest because of its connection with

the later argument of Roger Penrose (1989, 1994) against artificial intelli-

gence, which opposes Turing’s central 1950 view, but shares with Turing a

completely physicalist standpoint. Penrose also concentrates on the reduc-

tion process in quantum mechanics. Penrose leaves aside the problem of

sensory interface with the physical world, and concentrates on the heart-

land of what Turing called the purely intellectual. From arguments that

need not be recapitulated here he reasserts what Turing called the mathe-

matical argument against his AI thesis, that Gödel’s Theorem shows that

the human mind cannot be captured by a computable procedure, and

that Turing’s arguments against that objection are invalid. He deduces

(with input from other motivations also) that there must be some uncom-

putable physical law governing the reduction process. Turing did not make

any connection between quantum mechanics and Gödel’s Theorem; one

can only say that he took both topics very seriously in the foundations of

AI. Furthermore it seems more likely, from Turing’s reported comments,

that he was trying to reformulate quantum mechanics so as to remove the

problem discussed in 1951. However, it might be that if his work had con-

tinued he would have gone in Penrose’s direction. In any case, it is striking

that it is in dealing with the physics of the brain that Turing’s focus is the

same as Penrose’s.

The Church-Turing Thesis, Then and Now

Even between 1948 and 1951, opening these doors into physics, Turing

never made a clear and explicit distinction between his 1936 model of the

human calculator and the concept of a physical machine. It was Turing’s

former student Robin Gandy who did so in 1980; he separated the Church-

Turing thesis from ‘‘Thesis M,’’ the thesis that anything that a machine

can do is computable (Gandy 1980). Under certain conditions on ‘‘ma-

chine,’’ Gandy then showed that a machine would, indeed, be capable

of no more than computable functions. His argument has since been
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improved and extended, for instance, by Wilfried Sieg (2002). The main

generalization that this work introduces is the possibility of parallel compu-

tations. But the definition is still not general enough: the conditions do not

even allow for the procedures already in technological use in quantum

cryptography.

In contrast, the computer scientist A. C.-C. Yao (2003) gives a version of

the Church-Turing thesis as the belief that physical laws are such that ‘‘any

conceivable hardware system’’ can only produce computable results. Yao

comments that ‘‘this may not have been the belief of Church and Turing’’

but that this represents the common interpretation. Yao thus ignores

Gandy’s distinction and identifies the Church-Turing thesis with an ex-

treme form of Thesis M, not as dogma but as a guiding line of thought,

to be settled experimentally. It reflects the central concern of computer

science to embody logical software in physical hardware. It should be

noted, however, that Yao leaves unspoken the finiteness condition that

Church emphasized, and this is of great importance. One could conceive

of an oracle consisting of an infinitely long register embodied in an infinite

universe, which would then allow the halting problem to be trivially solved

by acting as an infinite crib sheet. Church’s condition was obviously

designed to rule out such an infinite data store. That a calculation should

require finite time and finite working space is also a requirement in the

classical model of computability.

The origin of these finiteness restrictions lies in the concept of ‘‘effective

calculability,’’ which implies a limitation to the use of finite resources.

There is now a large literature on ‘‘hypercomputing’’ describing putative

procedures that in some senses adhere to the criterion of a finite time and

finite size, but demand other infinite resources. Copeland and Proudfoot

(1999), for instance, in portraying their vision of Turing’s oracle, suggest

the measurement of ‘‘an exact amount of electricity’’ to infinite precision

so as to perform an uncomputable task such as solving the halting prob-

lem. Other schemes postulate unboundedly fast or unboundedly small

components; sometimes the infinite resources required are not so obvious

(see Hodges 2005). One might reasonably exclude all such infinite schemes,

or at least regard them as the equivalents of requiring infinite time, but,

from the point of view of modern physical research, in which the funda-

mentals of space, time, matter, and causality are still uncertain, one should

not be dogmatic. New foundations to physical reality may bring about new

perceptions. Formulation of the Church-Turing thesis, including the con-

cept of finiteness, should evolve in conjunction with a deeper understand-

ing of physical reality.
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Conclusion

The Church-Turing thesis, as understood in Yao’s physical sense, is the

basis of artificial intelligence as a computer-based project. This is one rea-

son for its importance. The central thrust of Turing’s thought was that the

action of any machine would indeed be captured by classical computation,

and in particular that this included all relevant aspects of the brain’s action.

But his later writings show more awareness of the problem of connecting

computability with physical law. Physical reality always lay behind

Turing’s perception of the mind and brain; as Max Newman (1955) wrote,

Turing was at heart an applied mathematician.

Note

1. This broad-brush characterization of machinery before 1940 prompts the question

of what Turing made of Babbage’s Analytical Engine. The following points may be

made.

a. It seems likely that in 1936 Turing did not know of Babbage’s work.

b. Turing must have heard of the Analytical Engine plans at least by the end of

the war, when they arose in Bletchley Park conversations. The name of the Auto-

matic Computing Engine, which Turing designed, echoed the name of Babbage’s

machine.

c. In his 1950 paper, Turing attributed the concept of a universal machine to Bab-

bage. In so doing, Turing overstated Babbage’s achievement and understated his

own. Babbage’s design could not allow for unboundedly deep-nested loops of opera-

tions, and enforced a rigid separation between instructions and numerical data.

d. I see no clear reason why in his 1948 report Turing gave such short shrift to pre-

war machinery, yet in 1950 exaggerated its scope.

e. However, this question does not affect the principal issue discussed in this article,

since everything Babbage designed lay within the realm of computable functions.
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6 The Ratio Club: A Hub of British Cybernetics

Philip Husbands and Owen Holland

Writing in his journal on the twentieth of September, 1949, W. Ross Ashby

noted that six days earlier he’d attended a meeting at the National Hospital

for Nervous Diseases, in the Bloomsbury district of London. He comments

(Ashby 1949a), ‘‘We have formed a cybernetics group for discussion—no

professors and only young people allowed in. How I got in I don’t know,

unless my chronically juvenile appearance is at last proving advantageous.

We intend just to talk until we can reach some understanding.’’ He was re-

ferring to the inaugural meeting of what would shortly become the Ratio

Club, a group of outstanding scientists who at that time formed much of

the core of what can be loosely called the British cybernetics movement.

The club usually gathered in a basement room below nurses’ accommoda-

tion in the National Hospital, where, after a meal and sufficient beer to

lubricate the vocal cords, participants would listen to a speaker or two be-

fore becoming embroiled in open discussion (see figure 6.1). The club was

founded and organized by John Bates, a neurologist at the National Hospi-

tal. The other twenty carefully selected members were a mixed group of

mainly young neurobiologists, engineers, mathematicians, and physicists.

A few months before the club started meeting, Norbert Wiener’s (1948)

landmark Cybernetics: Control and Communication in the Animal and Machine

had been published. This certainly helped to spark widespread interest in

the new field, as did Claude Shannon’s seminal papers on information

theory (Shannon and Weaver 1949), and these probably acted as a spur to

the formation of the club. However, as we shall see, the first of the official

membership criteria of the club was that only ‘‘those who had Wiener’s

ideas before Wiener’s book appeared’’ (Bates 1949a) could join. This was

no amateur cybernetics appreciation society; many members had already

been active for years in developing the new ways of thinking about

behavior-generating mechanisms and information processing in brains

and machines that were now being pulled together under the rubric



Figure 6.1

The main entrance to the National Hospital for Nervous Diseases, Queen’s Square,

Bloomsbury, in 2002. Ratio Club meetings were held in a room in the basement.
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‘‘cybernetics,’’ coined by Wiener. Indeed, the links and mutual influences

that existed between the American and British pioneers in this area ran

much deeper than is often portrayed. There was also a very strong indepen-

dent British tradition in the area that had developed considerable momen-

tum during World War II. It was from this tradition that most club

members were drawn.

The other official membership criterion reflected the often strongly hier-

archical nature of professional relationships at that time. In order to avoid

restricting discussion and debate, Bates introduced the ‘‘no professors’’ rule

alluded to by Ashby. If any members should be promoted to that level,

they were supposed to resign. Bates was determined to keep things as infor-

mal as possible; conventional scientific manners were to be eschewed in

favor of relaxed and unfettered argument. There also appear to have been

two further, unofficial, criteria for being invited to join. First, members

had to be as smart as hell. Second, they had to be able to contribute in an

interesting way to the cut and thrust of debate, or, to use the parlance of

the day, be good value. This was a true band of Young Turks. In the atmo-

sphere of enormous energy and optimism that pervaded postwar Britain as

it began to rebuild, they were hungry to push science in new and impor-

tant directions. The club met regularly from 1949 to 1955, with one final

reunion meeting in 1958. It is of course no coincidence that this period

parallels the rise of the influence of cybernetics, a rise in which several

members played a major role.

There are two things that make the club extraordinary from a historical

perspective. The first is the fact that many of its members went on to

become extremely prominent scientists. The second is the important influ-

ence the club meetings, particularly the earlier ones, had on the develop-

ment of the scientific contributions many of that remarkable group would

later make. The club membership undoubtedly made up the most intellec-

tually powerful and influential cybernetics grouping in the UK, but to date

very little has been written about it: there are brief mentions in some his-

tories of AI and cognitive science (see Fleck 1982; Boden 2006; D. Clark

[2003] has a chapter on it in his Ph.D. dissertation, based on papers from

the John Bates archive). This article is intended to help fill that gap. It is

based on extensive research in a number of archives, interviews with sur-

viving members of the club, and access to some members’ papers and

records.

After introducing the membership in the next section, the birth of the

club is described in some detail. The club’s known meetings are then listed

and discussed along with its scope and modus operandi. Following this
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some of the major themes and preoccupations of the club are described in

more detail. The interdisciplinary nature of the intellectual focus of the

group is highlighted before the legacy of the club is discussed. Because so

many rich threads run through the club and the lives and work of its mem-

bers, this chapter can only act as an introduction (a fuller treatment of all

these topics can be found in Husbands and Holland [forthcoming]).

The Members

Before embarking on a description of the founding of the club, it is useful

at this point to sketch out some very brief details of its twenty-one mem-

bers, with outlines of their expertise and achievements, which will help to

give a sense of the historical importance of the group. Of course these sum-

maries are far too short to do justice to the careers of these scientists. They

are merely intended to illustrate the range of expertise in the club and to

give a flavor of the caliber of members.

W. Ross Ashby (1903–1972), trained in medicine and psychiatry, is regarded

as one of the most influential pioneers of cybernetics and systems science.

He wrote the classic books Design for a Brain (Ashby 1952a) and An Introduc-

tion to Cybernetics (Ashby 1958). Some of his key ideas have recently experi-

enced something of a renaissance in various areas of science, including

artificial life and modern AI. At the inception of the club he was director

of research at Barnwood House Psychiatric Hospital, Gloucester. He subse-

quently became a professor in the Department of Biophysics and Electrical

Engineering, University of Illinois.

Horace Barlow (1921– ), FRS, a great-grandson of Charles Darwin, is an

enormously influential neuroscientist, particularly in the field of vision,

and was one of the pioneers of using information-theoretic ideas to under-

stand neural mechanisms (Barlow 1953, 1959, 1961), a direct consequence

of his involvement in the Ratio Club. When the club started he was a Ph.D.

student in Lord Adrian’s lab in the Department of Physiology, Cambridge

University. He later became Royal Society Research Professor of Physiology

at Cambridge University.

John Bates (1918–1993) had a distinguished career in the neurological

research unit at the National Hospital for Nervous Diseases, London. He

studied the human electroencephalogram (EEG) in relation to voluntary

movement, and became the chief electroencephalographer at the hospital.

The Ratio Club was his idea and he ran it with quiet efficiency and unstint-

ing enthusiasm.
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George Dawson (1911–1983) was a clinical neurologist at the National

Hospital, Queen’s Square. At the time of the Ratio Club he was a world

leader in using EEG recordings in a clinical setting. He was a specialist in

ways of averaging over many readings, which allowed him to gather much

cleaner signals than was possible by more conventional methods (Dawson

1954). He became professor of physiology at University College London.

Thomas Gold (1920–2004), FRS, was one of the great astrophysicists of the

twentieth century, being a coauthor, with Hermann Bondi and Fred Hoyle,

of the steady-state theory of the universe and having given the first expla-

nation of pulsars, among countless other contributions. However, he had

no time for disciplinary boundaries and at the time of the Ratio Club he

was working in the Cambridge University Zoology Department on a radical

positive feedback theory of the working of the inner ear (Gold 1948)—a

theory that was, typically for him, decades ahead of its time. He went on

to become professor of astronomy at Harvard University and then at Cor-

nell University.

I. J. ( Jack) Good (1916– ) was recruited into the top-secret UK code-cracking

operation at Bletchley Park during the Second World War, where he

worked as the main statistician under Alan Turing and Max Newman. Later

he became a very prominent mathematician, making important contribu-

tions in Bayesian methods and early AI. During the Ratio Club years he

worked for British Intelligence. Subsequently he became professor of statis-

tics at Virginia Polytechnic Institute.

William E. Hick (1912–1974) was a pioneer of information-theoretic think-

ing in psychology. He is the source of the still widely quoted Hick’s law,

which states that the time taken to make a decision is in proportion to the

logarithm of the number of alternatives (Hick 1952). During the Ratio Club

years he worked in the Psychology Laboratory at Cambridge University. He

went on to become a distinguished psychologist.

Victor Little (1920–1976) was a physicist at Bedford College, London, who

worked in acoustics and optics before moving on to laser development.

Donald Mackay (1922–1987), trained as a physicist, was a very highly

regarded pioneer of early machine intelligence and of neuropsychology.

He was also the leading scientific apologist for Christianity of his day.

At the birth of the club he was working on a Ph.D. in the Physics depart-

ment of King’s College, London. He later became a professor at Keele

University, where he founded the Department of Communication and

Neuroscience.
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Turner McLardy (1913–1988) became an international figure in the field

of clinical psychiatry. He emigrated to the United States in the late 1950s

to develop therapeutic techniques centered around planned environments

and communities. Later he became a pioneer of understanding the role of

zinc in alcoholism and schizophrenia. At the inception of the club he

worked at the Maudsley Hospital, London.

Pat Merton (1921–2000), FRS, was a neurophysiologist who did pioneering

work on control-theoretic understandings of the action of muscles (Merton

1953). Later he carried out a great deal of important early research in mag-

netic stimulation of the cortex, for which he is justly celebrated (Merton

and Morton 1980). During the Ratio Club years he worked in the neurolog-

ical research unit at the National Hospital. He later became professor of

human physiology at Cambridge University.

John Pringle (1912–1982), FRS, was one of the leading invertebrate neuro-

biologists of his day. He was the first scientist to get recordings from single

neurons in insects, something that had previously been thought to be im-

possible (Pringle 1938). He did much important work in proprioception in

insects, insect flight, and invertebrate muscle systems. At the birth of the

club he worked in the Zoological Laboratory, Cambridge University. He

subsequently became professor of zoology at Oxford University.

William Rushton (1901–1980), FRS, is regarded as one of the great figures

in twentieth-century vision science. He made enormous contributions to

understanding the mechanisms of color vision, including being the first to

demonstrate the deficiencies that lead to color blindness (Rushton 1955).

Earlier he did pioneering work on the quantitative analysis of factors

involved in the electrical excitation of nerve cells, helping to lay the foun-

dations for the framework that dominates theoretical neuroscience today

(see Rushton 1935). He worked at Cambridge University throughout his ca-

reer, where he became professor of visual physiology.

Harold Shipton (1920–2007) worked with W. Grey Walter on the develop-

ment of EEG technology at the Burden Neurological Institute, Bristol. He was

the electronics wizard who was able to turn many of Walter’s inspired but

intuitive designs into usable and reliable working realities. Later he became

a professor at the Washington University in St. Louis, where he worked on

biomedical applications. At the time of the early Ratio Club meetings, his

father-in-law, Clement Attlee, was prime minister of Great Britain.

D. A. Sholl (1903–1960) did classic research on describing and classifying

neuron morphologies and growth patterns, introducing the use of rigorous

96 Philip Husbands and Owen Holland



statistical approaches (Sholl 1956). Most of the classification techniques

in use today are based on his work. He also published highly influential

papers on the structure and function of the visual cortex. He worked in

the Anatomy Department of University College, London, where he became

reader in anatomy before his early death.

Eliot Slater (1904–1983) was one of the most eminent British psychiatrists

of the twentieth century. He helped to pioneer the use of properly

grounded statistical methods in clinical psychiatry. Slater’s work with Ernst

Rudin on the genetic origins of schizophrenia, carried out in Munich in the

1930s, still underpins all respectable Anglo-American work in psychiatric

genetics, a field to which Slater made many important contributions

(Slater, Gottesman, and Shields 1971). He worked at the National Hospital

for Nervous Diseases, London.

Alan Turing (1912–1954), FRS, is universally regarded as one of the fathers

of both computer science and artificial intelligence. Many regard him as

one of the key figures in twentieth-century science and technology. He

also anticipated some of the central ideas and methodologies of Artificial

Life and Nouvelle AI by half a century. For instance, he proposed artificial

evolutionary approaches to AI in the late 1940s (Turing 1950) and pub-

lished work on reaction-diffusion models of the chemical origins of biolog-

ical form in 1952 (Turing 1952). At the inception of the club he was

working at Manchester University, where he was part of a team that had

recently developed the world’s first stored-program digital computer.

Albert Uttley (1906–1985) did important research in radar, automatic track-

ing, and early computing during World War II. Later he became head of the

pioneering Autonomics Division at the National Physical Laboratory in

London, where he did research on machine intelligence and brain model-

ing. However, he also became well known as a neuropsychologist, having

made several important contributions to the field (Uttley 1979). At the

birth of the club he worked at the Telecommunications Research Establish-

ment (TRE), Malvern, Worcestershire, the main British military telecom-

munications research institute. Later he became professor of psychology at

Sussex University.

W. Grey Walter (1910–1977) was a pioneer and world leader in EEG re-

search; he founded the EEG Society and the EEG Journal, and organized

the first EEG congress. He made many major discoveries, including theta

and delta brain waves and, with Shipton, developed the first topographic

EEG machine (Walter and Shipton 1951). At the time of the Ratio Club he
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was at the Burden Neurological Institute, Bristol, where, alongside his EEG

research, he developed the first ever autonomous mobile robots, the fa-

mous tortoises, which were controlled by analogue electronic nervous sys-

tems (Walter 1950a). This was the first explicit use of mobile robots as a

tool to study ideas about brain function, a style of research that has become

very popular in recent times.

John Westcott (1920– ), FRS, made many very distinguished contributions

to control engineering, including some of the earliest work on control

under noisy conditions. He also worked on applications of control theory to

economics, which resulted in his team’s developing various models used by

the UK Treasury. At the inception of the club he was doing a Ph.D. in the

Department of Electrical Engineering, Imperial College, London, having

just returned from a year in Norbert Wiener’s lab at MIT. He later became

professor of control systems at Imperial College, London.

Philip M. Woodward (1919– ) is a mathematician who made important con-

tributions to information theory, particularly with reference to radar, and

to early computing. His gift for clear concise explanations can be seen in

his elegant and influential 1953 book on information theory (Woodward

1953). He worked at TRE, Malvern, throughout his entire distinguished

career (one of the buildings of the present-day successor to TRE is named

after him). In retirement Woodward has come to be regarded as one of the

world’s greatest designers and builders of mechanical clocks (Woodward

1995).

Bates’s own copy of his typed club membership list of January 1, 1952

has many hand-written corrections and annotations (Bates 1952a). Among

these, immediately under the main list of members, are the following

letters, arranged in a neat column: Mc, P, S, and then a symbol that may

be a U or possibly a W. If we assume it is a W, then a possible, admittedly

highly speculative, interpretation of these letters is: McCulloch, Pitts, Shan-

non, Wiener. The first three of these great American cyberneticists attended

club meetings—McCulloch appears to have taken part whenever travel to

Britain allowed. Wiener was invited and intended to come on at least one

occasion but travel difficulties and health problems appear to have gotten

in the way. The W, if that’s what it is, could also refer to Weaver, coauthor

with Shannon of seminal information-theory papers and someone who

was also well known to the club. Of course the letters may not refer to

American cyberneticists at all—they may be something more prosaic such

as the initials of members who owed subscriptions—but it is just possible

that Bates regarded them as honorary members.
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It is clear from the membership listed above that the center of gravity of

the club was in the brain sciences. Indeed the initial impetus for starting

the club came from a neurologist, Bates, who believed that emerging cyber-

netic ideas and ways of thinking could be very important tools in develop-

ing new insights into the operation of the nervous system. Many members

had a strong interest in developing ‘‘brainlike’’ devices, either as a way of

formalizing and exploring theories about biological brains, or as a pioneer-

ing effort in creating machine intelligence, or both. Hence meetings tended

to center around issues relating to natural and artificial intelligence and

the processes underlying the generation of adaptive behavior—in short,

the mechanization of mind. Topics from engineering and mathematics

were usually framed in terms of their potential to shed light on these issues.

This scope is somewhat different to that which had emerged in America,

where a group of mathematicians and engineers (Wiener, John von Neu-

mann, Julian Bigelow, Claude Shannon, Walter Pitts) and brain scientists

(Rafael Lorente de Nó, Arturo Rosenblueth, Warren McCulloch) had

formed an earlier group similar in spirit to the Ratio Club, although smaller

and with a center of gravity further toward the mathematical end of the

spectrum. Their influence soon spread, via Lawrence Frank, Margaret

Mead, Gregory Bateson, and others, into the social sciences, thereby creat-

ing a much wider enterprise that involved the famous Macy Foundation

meetings (Heims 1991). This difference in scope helps to account for the

distinct flavor of the British scene in the late 1940s and for its subsequent

influences.

Genesis of the Club

Founding

The idea of forming a cybernetics dining club took root in John Bates’s

mind in July 1949. He discussed the idea with a small number of col-

leagues at a Cambridge symposium, ‘‘Animal Behaviour Mechanisms,’’ a

very cybernetics-friendly topic, organized by the Society for Experimental

Biology and held from the eighteenth to the twenty-second of the month.

Shortly after returning to London from the meeting, he wrote the following

letter to Grey Walter in which he formally proposed the club (Bates 1949a):

National Hospital

27th July 1949

Dear Grey,

I have been having a lot of ‘‘Cybernetic’’ discussions during the past few weeks

here and in Cambridge during a Symposium on Animal Behaviour Mechanisms,
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and it is quite clear that there is a need for the creation of an environment in which

these subjects can be discussed freely. It seems that the essentials are a closed and

limited membership and a post-prandial situation, in fact a dining-club in which

conventional scientific criteria are eschewed. I know personally about 15 people

who had Wiener’s ideas before Wiener’s book appeared and who are more or less

concerned with them in their present work and who I think would come. The idea

would be to hire a room where we could start with a simple meal and thence turn

in our easy chairs towards a blackboard where someone would open a discussion.

We might need a domestic rule to limit the opener to an essentially unprepared dis-

sertation and another to limit the discussion at some point to this stratosphere, but

in essence the gathering should evolve in its own way.

Beside yourself, Ashby and Shipton, and Dawson and Merton from here, I suggest

the following:

Mackay—computing machines, Kings. Coll. Strand

Barlow—sensory physiologist—Adrian’s lab.

Hick—Psychological lab. Cambridge

Scholl—statistical neurohistologist—University College, Anatomy Lab.

Uttley—ex. Psychologist, radar etc TRE

Gold—ex radar zoologists at Cambridge

Pringle—ex radar zoologists at Cambridge

I could suggest others but this makes 13, I would suggest a few more non neuro-

physiologists communications or servo folk of the right sort to complete the party

but those I know well are a little too senior and serious for the sort of gathering I

have in mind.

We might meet say once a quarter and limit the inclusive cost to 5=� less drinks.

Have you any reaction? I have approached all the above list save Uttley so far, and

they support the general idea.

Yours sincerely,

JAV Bates

The suggested names were mainly friends and associates of Bates’s,

known through various social networks relating to his research, whom he

regarded as being ‘‘of the right sort.’’ One or two were suggested by imme-

diate colleagues; for instance, Merton put forward his friend Barlow.

Walter replied by return post enthusiastically welcoming the idea and

suggesting that the first meeting should coincide with his friend Warren

McCulloch’s visit to England in September. Mackay furnished Bates with

an important additional ‘‘communications or servo’’ contact by introduc-

ing him to John Westcott, who was finishing off his Ph.D. at Imperial Col-

lege, having spent the previous year in Wiener’s lab at MIT as a guest of the

institution. Westcott’s close association with Wiener seems to have led
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Bates to soften his ‘had Wiener’s ideas before Wiener’s book appeared’ line

in his invitation to him (Bates 1949b):

National Hospital

3rd August

Dear Mr. Westcott,

I have heard from Mackay that you might be interested in a dining-club that I am

forming to talk ‘‘Cybernetics’’ occasionally with beer and full bellies. My idea was to

have a strictly limited membership between 15 and 20, half primarily physiologists

and psychologists though with ‘‘electrical leanings’’ and half primarily communica-

tion theory and electrical folk though with biological interests and all who I know to

have been thinking ‘‘Cybernetics’’ before Wiener’s book appeared. I know you have

all the right qualifications and we would much like you to join. The idea is to meet

somewhere from 7.00 p.m.–10.00 p.m. at a cost of about 5=� less drinks.

The second point is whether we could make McCulloch’s visit in September the oc-

casion for a first meeting. This was raised by Mackay who mentioned that you had

got in touch with him already with a view to some informal talk. It has also been

raised by Grey Walter from Bristol who knows him too. What do you feel? Could

we get McCulloch along to an inaugural dinner after his talk for you? Could you any-

way manage to get along here for lunch one day soon, we have an excellent canteen

and we could talk it over?

Your sincerely

JAV Bates

Westcott was as enthusiastic as Walter. Bates wrote a succession of indi-

vidual invitations to those on his list as well as to Little, who was suggested

by Mackay, and Turner McLardy, a psychiatrist with a keen interest in cy-

bernetics who was a friend of McCulloch’s and appears to have been about

to host his imminent stay in London. The letter to Hick was typical, includ-

ing the following exuberant passage (Bates 1949c): ‘‘The idea of a ‘Cyber-

netic’ dining club, which I mentioned to you in Cambridge, has caught

fire in an atomic manner and we already have half a dozen biologists and

engineers, all to my knowledge possessed of Wiener’s notions before his

book appeared and including two particularly rare birds: Mackay and West-

cott who were in Wiener’s lab for a year during the war.’’ Bates didn’t quite

have his facts straight; Westcott’s time with Wiener was after the war and

at this stage Mackay hadn’t begun his collaborations with MIT, but the im-

plication was right—that Westcott and Mackay were both familiar with the

mathematical and technical details of Wiener’s work. All invitees accepted

membership in the club. In their replies a number made general sugges-

tions about membership: Barlow (1949) suggested considering the addi-

tion of a few more ‘‘cautiously selected psychologists,’’ and Pringle (1949)
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thought it would be a good idea to ‘‘add a mathematician to keep everyone

in check and stop the discussion becoming too vague.’’

During August Bates secured a room at the National Hospital that could

be used for regular meetings. With Eliot Slater, a senior member of staff at

the hospital, on board, he was able to arrange provision of beer and food

for club evenings. With a venue, a rough format, and an initial member-

ship list, the enterprise was starting to come into focus. The following letter

from Mackay (1949) to Bates, hand-written in a wild scrawl, shows that

these two were starting to think about names and even emblems:

1st September 49

Dear Bates,

I’m afraid I’ve had few fresh ideas on the subject of our proposed club; but here are

an odd suggestion or two that arose in my mind.

I wondered (a) if we might adopt a Great Name associated with the subject and call

it e.g. the Babbage Club or the Leibniz Club or the Boole Club, or the Maxwell

Club—names to be suggested by all, and one selected by vote or c’ttee (Nyquist

might be another). Alternatively (b) could we choose a familiar symbol of feedback

theory, such as beta, and call it the Beta Club or such like? Other miscellaneous

possibilities are the MR Club (machina ratiocinatrix!) and plenty of other initials, or

simply the ‘‘49’’ Club.

On emblems I’ve had no inspirations. I use but little beer myself and it’s conceiv-

able we might even have t-t members. But beer mugs can after all be used for other

liquids and I can’t think of anything better than your suggestion. . . .

Yours,

Donald Mackay

Here we see Mackay sowing the seed for the name Ratio, which was

adopted after the first meeting. Machina ratiocinatrix is Latin for ‘‘reasoning

machine,’’ a term used by Wiener in the introduction to Cybernetics, in ref-

erence to calculus ratiocinator, a calculating machine constructed by Leibniz

(Wiener 1948, p. 12). Ratiocination is an old-fashioned word for reasoning

or thinking, introduced by Thomas Aquinas to distinguish human reason-

ing from the supposed directly godgiven knowledge of the angels. After

the first meeting Albert Uttley suggested using the root ratio, giving its

definition as ‘‘computation or the faculty of mind which calculates, plans

and reasons’’ (Bates 1949d). He pointed out that it is also the root of

rationarium, meaning a statistical account—implicitly referring to the

emerging work on statistical mechanisms underlying biological and ma-

chine intelligence—and of ratiocinatius, meaning argumentative. Given

that the name clearly came from the Latin, it seems reasonable to assume

that the intended pronunciation must have been ‘‘RAT-ee-oh.’’ In inter-
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views with the authors, half the surviving club members said that this

indeed is how it was always pronounced, while the other half said it was

pronounced as in the ratio of two numbers! As Thomas Gold commented

in 2002, ‘‘At that time many of us [in the Ratio Club] were caught up in

the excitement of our thoughts and ideas and didn’t always notice the

details of things like that!’’

Bates’s notes for his introduction to the inaugural meeting reveal that

his suggestion was to call it the Potter Club after Humphrey Potter (Bates

1949e). Legend has it that, as an eleven-year-old boy in 1713, Potter

invented a way of automatically opening and closing the valves on an early

Newcomen steam engine. Until that point the valves had to be operated by

an attendant such as Potter. He decided to make his life easier by attaching

a series of cords and catches such that the action of the main beam of the

engine opened and closed the valves.

At the end of August 1949 Bates attended an EEG conference in Paris at

which he first met McCulloch. There he secured him as guest speaker for

the first meeting of the club. Before describing the meetings, it will be in-

structive to delve a little deeper into the origins of the club.

Origins

Of course the roots of the club go back further than the Cambridge sympo-

sium of July 1949. The Second World War played an important catalytic

role in developing some of the attitudes and ideas that were crucial to the

success of the Club and to the achievements of its members. This section

explores some of these roots, shedding light on the significant British effort

in what was to become known as cybernetics, as well as pointing out pre-

existing relationships in the group.

The War Effort Many of the unconventional and multidisciplinary ideas

developed by club members originated in secret wartime research on radar,

gunnery control, and the first digital computers. In Britain there was little

explicit biological research carried out as part of the war effort, so most biol-

ogists were, following some training in electronics, drafted into the main

thrust of scientific research on communications and radar. They became

part of an army of thousands of technical ‘‘wizards’’ whom Winston

Churchill was later to acknowledge as being vital to the allies’ victory

(Churchill 1949). Although most of the future Ratio Club biologists were

naturally unconstrained and interdisciplinary thinkers, such war work

exposed many of them to more explicitly mechanistic and mathematical

ways of conceiving systems than they were used to. To these biologists a
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radar set could be thought of as a kind of artificial sense organ, and they

began to see how the theoretical framework associated with it—which

focused on how best to extract information from the signal—might be

applied to understanding natural senses such as vision. On the other side

of the coin, several club members were deeply involved in the wartime de-

velopment of early computers and their use in code cracking. This in turn

brought them to ponder the possibility of building artificial brains inspired

by real ones. Other engineers and theoreticians, working alongside their bi-

ologist colleagues on such problems as automatic gun aiming, began to see

the importance of coordinated sensing and acting in intelligent adaptive

behavior, be it in a machine or in an animal. Many years later, in the post-

humously published text of his 1986 Gifford Lectures—a prestigious lecture

series on ‘Natural Theology’ held at the Universities of Edinburgh, Glas-

gow, St. Andrews, and Aberdeen—Donald Mackay (1991, 40) reflected on

the wartime origins of his research interests:

During the war I had worked on the theory of automated and electronic computing

and on the theory of information, all of which are highly relevant to such things as

automatic pilots and automatic gun direction. I found myself grappling with prob-

lems in the design of artificial sense organs for naval gun-directors and with the

principles on which electronic circuits could be used to simulate situations in the ex-

ternal world so as to provide goal-directed guidance for ships, aircraft, missiles and

the like. Later in the 1940’s, when I was doing my Ph.D. work, there was much talk

of the brain as a computer and of the early digital computers that were just making

the headlines as ‘‘electronic brains.’’ As an analogue computer man I felt strongly

convinced that the brain, whatever it was, was not a digital computer. I didn’t think

it was an analogue computer either in the conventional sense. But this naturally

rubbed under my skin the question: well, if it is not either of these, what kind of sys-

tem is it? Is there any way of following through the kind of analysis that is appropri-

ate to these artificial automata so as to understand better the kind of system the

human brain is? That was the beginning of my slippery slope into brain research.

This coalescing of biological, engineering, and mathematical frameworks

would continue to great effect a few years later in the Ratio Club. Not only

Mackay but also the future members Pringle, Gold, Westcott, Woodward,

Shipton, Little, Uttley, and Walter—and perhaps others—were also in-

volved in radar research. Hick and Bates both worked on the related prob-

lem of visual tracking in gunnery. Uttley also worked on a range of other

problems, including the development of automatic control systems, ana-

logue computer–controlled servo mechanisms, and navigation computers

(for this war work he was awarded the Simms Gold medal of the Royal

Aeronautical Society). There is not enough space in this paper to describe
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any of this work in detail; instead a number of sketches are given that offer

a flavor of the kinds of developments that were undertaken and the sorts of

circumstances many future members found themselves thrust into.

Philip Woodward left Oxford University in 1941 with a degree in mathe-

matics. As an able-bodied young man he was whisked straight into the

Army, where he began basic training. However, he felt he would be much

better employed at the military Telecommunications Research Establish-

ment (TRE) nestled in the rolling hills near Malvern. It was here that

thousands of scientists of all persuasions were struggling with numerous

seemingly impossible radar and communications problems. Within a few

days his wish was granted, following a letter from his obviously persuasive

father to their local MP, Lord Beaverbrook, Minister of Supply. Leaving rifle

drill far behind, Woodward joined Henry Booker’s theoretical group, to be

plunged into crucial work on antenna design and radio-wave propagation.

Within a few days of arriving at TRE he was summoned to see Alec Reeves,

a brilliant, highly unconventional engineer and one of the senior staff in

Woodward’s division. A few years earlier Reeves had invented pulse-code

modulation, the system on which all modern digital communication is

based. He firmly believed he was in direct contact with the spirits of various

British scientific geniuses from bygone ages who through him were helping

in the war effort. Reeves handed Woodward a file marked ‘‘Top Secret.’’ In-

side were numerous squiggles recorded from a cathode-ray tube: his task

was to analyze them and decide whether or not they came from Michael

Faraday. Over the years Woodward was to face many technical challenges

almost as great as this in his work at TRE (Woodward 2002).

In the early years of the war John Westcott was an engineering appren-

tice. His job was little more than that of a storeman, fetching and filling

orders for materials to be used in the manufacture of various military hard-

ware. Although he didn’t have a degree or much formal training, he was

enormously frustrated by not being able to contribute more; he was con-

vinced that he had design talents that could really make a difference if

only he could use them (Westcott 2002). After much badgering, he finally

managed to get himself transferred to TRE, where his abilities were indeed

soon recognized. He was teamed up with two other brilliant young engi-

neers with whom he was given complete freedom to try and design a new

type of radar set to be used by the artillery. If they were successful the de-

vice would be extremely important—by using a significantly shorter wave-

length than before it would provide a much higher degree of accuracy,

enabling the detection of smaller objects. The other members of the team

were the highly eccentric Francis Farley and, on secondment from the
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American Signals Corps, Charles Howard Vollum. All three were in their

early twenties. At first Farley and Vollum were always at each other’s

throats with Westcott trying to keep the peace. Vollum became incensed

at the unreliability of the oscilloscopes at their disposal and swore that after

the war he’d build one that was fit for engineers to use. Despite setbacks

and failures they persevered, making use of Vollum’s supply of cigars to

rope in extra help and procure rare supplies. Somehow they managed to

combine their significant individual talents to solve the problem and build

a new type of shorter wavelength radar set. This great success placed West-

cott and Farley on the road to highly distinguished scientific careers, while

Vollum was as good as his word and after returning to Oregon cofounded a

giant electronic instruments company, Tektronix, and became a billionaire.

Like Woodward and Westcott, Thomas Gold’s route into radar research

was indirect, although his entry was rather more painful. Born into a weal-

thy Austrian Jewish family, he was a student at an exclusive Swiss boarding

school in the late 1930s when his father decided the political situation was

becoming too dangerous for the family to stay in Vienna and moved to

London. Thomas began an engineering degree at Cambridge University,

but when war broke out he was rounded up and put into an internment

camp as an enemy alien. Sleeping on the same cold concrete floor as Gold

was another Austrian, a young mathematician named Hermann Bondi. The

two struck up an immediate friendship and began discussing the ideas that

would later make them both giants of twentieth-century astrophysics.

Their partnership was initially short-lived because after only a few weeks

Gold was transferred to a camp in Canada. His ship survived the savage At-

lantic crossing, although others in the convey did not, being destroyed by

U-boats with the loss of many hundreds of lives. Once on Canadian soil the

situation did not improve. He found himself in a camp run by a brutally

sadistic officer who made life hell for the interns. In order to make things

bearable, Gold claimed he was an experienced carpenter and was put in

charge of a construction gang. Ever ingenious, he built a contraption to

divert steam from an outlet pipe into a water trough to allow his fellow

interns to have a hot bath. He was severely beaten for his trouble. Fortu-

nately, Bondi, who had by now been rescued from another camp by senior

scientific staff who had known him at Cambridge, had been spreading

word of his friend’s brilliance. Gold was pulled out of internment and, like

Bondi, was assigned to work on top-secret radar research. But not before he

had the great pleasure one morning of joining with all other inmates in

wild celebrations on hearing the unexpected news that the camp com-

mander had died of a sudden heart attack in the night (Gold 2002).
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Alan Turing, following a year in Princeton working with John von Neu-

mann, was a research fellow at Cambridge University when the British

government, fearing war was inevitable, recruited him into a secret codes

and ciphers unit in 1938. As is well documented (Hodges 1983), he became

an enormously important figure in the successful wartime code-cracking

work at Bletchley Park, and through this work was deeply involved in the

development of the very first digital computers, the theoretical foundations

for which he had set out in the late 1930s (Turing 1936). Once war broke

out, Jack Good, who had just finished a Ph.D. in mathematics at Cam-

bridge under the great G. H. Hardy, was recruited into the top-secret opera-

tion at Bletchley Park, where he worked as the main statistician under

Turing and Max Newman in a team that also included Donald Michie.

Most other Ratio Club members not mentioned above were medically

trained and so worked as doctors or in medical research during the war.

Most of those were based in the UK, although McLardy, who held the

rank of major, saw active service as a medical officer and was captured and

put in a succession of P.O.W. camps, at least one of which he escaped from.

He worked as a psychiatrist in Stalag 344 at Lamsdorf, Silesia, now Lambi-

nowice, in Poland (BBC 2005). In early 1945 the Germans started evacuat-

ing Lamsdorf ahead of the Russian advance. The P.O.W.s were marched

west in columns of a thousand, each column under the charge of a medical

officer. The conditions endured on these ‘‘death marches’’ were appalling—

bitterly cold weather, little or no food, and rampant disease (Tattersall

2006). McLardy survived and eventually made it back to Britain.

Apart from plunging them into work that would help to shape their fu-

ture careers, the war had a strong formative affect on the general attitudes

and aspirations of many Ratio Club members. In a way that would just not

happen in peacetime, many were given huge responsibilities and the free-

dom to follow their own initiative in solving their assigned problems. (For

a while, at barely thirty years of age, Pringle was in charge of all airborne

radar development in Britain. For his war service he was awarded an MBE

and the American Medal of Freedom with Bronze Palm.)

Kenneth Craik From the midst of this wartime interdisciplinary problem

solving emerged a number of publications that were to have a galvanizing

affect on the development of British cybernetics. These included Kenneth

J. W. Craik’s slim volume, The Nature of Explanation, which first appeared

in 1943 (Craik 1943). Bates’s hastily scrawled notes for his introduction to

the first meeting of the Ratio Club, a few lines on one side of a scrap of

paper, include a handful of phrases under the heading ‘‘Membership.’’ Of
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these only one is underlined. In fact it is underlined three times: ‘‘No

Craik.’’

Kenneth Craik was a Scottish psychologist of singular genius who after

many years of relative neglect is remembered now as a radical philosopher,

a pioneer of the study of human-machine interfaces, a founder of cognitive

psychology, and a father of cybernetics thinking. His story is made particu-

larly poignant by his tragic and sudden death at the age of thirty-one on

the last day of the war in Europe, 7 May 1945, when he was killed in a

traffic accident while cycling through Cambridge. He had recently been

appointed the first director of the Medical Research Council’s prestigious

Applied Psychology Unit. He was held in extremely high regard by Bates

and the other Ratio Club members, so the ‘‘No Craik’’ was a lament.

After studying philosophy at Edinburgh University, in 1936 he began a

Ph.D. in psychology and physiology at Cambridge. Here he came under

the influence of the pioneering head of psychology, Frederick Bartlett.

Craik’s love of mechanical devices and his skills as a designer of scientific

apparatus no doubt informed the radical thesis of his classic 1943 book,

published in the midst of his war work on factors affecting the efficient op-

eration and servicing of artillery machinery. Noting that ‘‘one of the most

fundamental properties of thought is its power of predicting events’’ (Craik

1943, p. 50), Craik suggests that such predictive power is ‘‘not unique

to minds.’’ Indeed, although the ‘‘flexibility and versatility’’ of human

thought is unparalleled, he saw no reason why, at least in principle, such

essential properties as recognition and memory could not be emulated by

a man-made device. He went even further by claiming that the human

mind is a kind of machine that constructs small-scale models of reality

that it uses to anticipate events. In a move that anticipated Wiener’s Cy-

bernetics by five years, as well as foreshadowing the much later fields of

cognitive science and AI, he viewed the proper study of mind as an investi-

gation of classes of mechanisms capable of generating intelligent behavior

both in biological and nonbiological machines. Along with Turing, who is

acknowledged in the introduction to Wiener’s Cybernetics, and Ashby, who

had begun publishing on formal theories of adaptive behavior in 1940

(Ashby 1940), Craik was a significant, and largely forgotten, influence

on American cybernetics. Both Wiener and McCulloch acknowledged his

ideas, quoting him in an approving way, and the later artificial intelligence

movement, founded by John McCarthy and Marvin Minsky, was to a de-

gree based on the idea of using digital computers to explore Craik’s idea of

intelligence involving the construction of small-scale models of reality (see

McCarthy 1955, the original proposal for the 1956 Dartmouth Summer
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Project on AI, for an explicit statement of this). Many members of the Ratio

Club, a high proportion of whom had connections with Cambridge Uni-

versity, were influenced by Craik and held him in great esteem, in particu-

lar Bates and Hick, who had both worked closely with him; Grey Walter,

who cited wartime conversations with Craik as the original inspiration for

the development of his tortoises (Walter 1953, p. 125); and Uttley, whom

Bates credited with giving Craik many of his ideas (Bates 1945). Indeed, in a

1947 letter to Lord Adrian, the charismatic Nobel Prize–winning head of

physiology at Cambridge, Grey Walter refers to the American cybernetics

movement as ‘‘thinking on very much the same lines as Kenneth Craik

did, but with much less sparkle and humour’’ (Walter 1947). Had he sur-

vived, there is no doubt Craik would have been a leading member of the

club. In fact, John Westcott’s notes from the inaugural meeting of the club

show that there was a proposal to call it the Craik Club in his honor (West-

cott 1949–53).

Existing Relationships Although the Ratio Club was the first regular gath-

ering of this group of like-minded individuals, certain members had inter-

acted with each other for several years prior to its founding, often in work

or discussion with a distinct cybernetic flavor. For instance, Bates and Hick

had worked with Craik on wartime research related to visual tracking in

gunnery and the design of control systems in tanks. In the months after

Craik’s untimely death, they had been involved in an attempt to edit his

notes for a paper eventually published as ‘‘Theory of the Human Operator

in Control Systems’’ (Craik 1948).

Ashby also was familiar with Craik’s ideas. In 1944 he wrote to Craik after

reading The Nature of Explanation. As intimated earlier, the central thesis

of Craik’s book is that ‘thought models, or parallels, reality’ (Craik 1943,

p. 57). Neural mechanisms, somehow acting as ‘‘small-scale models’’ of

external reality, could be used to ‘‘try out various alternatives, conclude

which is the best of them, react to future situations before they arise, utilise

the knowledge of past events in dealing with the present and future, and in

every way to react in a much fuller, safer, and more competent manner to

the emergencies that face it’’ (p. 61). Today this is a familiar idea, but Craik

is widely acknowledged as the first thinker to articulate it in detail. Ashby

wrote to Craik to suggest that he needed to use terms more precise than

‘‘model’’ and ‘‘paralleling,’’ putting forward group theory, in particular

the concept of isomorphism of groups, as a suitably exact language for

discussing his theories (Ashby 1944). Ashby went on to state, rather opti-

mistically, ‘‘I believe ‘isomorphism’ is destined to play the same part in
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psychology that, say, velocity does in physics, in the sense that one can’t

get anywhere without it.’’ Craik took this suggestion seriously enough to

respond with a three-page letter on the nature of knowledge and mathe-

matical description, which resulted in a further exchange of letters reveal-

ing a fair amount of common ground in the two men’s views on what

kind of knowledge science could communicate. Craik was ‘‘much inter-

ested to hear further’’ (Craik 1944) of Ashby’s theories alluded to in the fol-

lowing paragraph in which Ashby introduces himself (Ashby 1944, p. 1):

Professionally I am a psychiatrist, but am much interested in mathematics, physics

and the nervous system. For some years I have been working on the idea expressed

so clearly on p. 115: ‘‘It is possible that a brain consisting of randomly connected

impressionable synapses would assume the required degree of orderliness as a result

of experience . . .’’ After some years’ investigation of this idea I eventually established

that this is certainly so, provided that by ‘‘orderly’’ we understand ‘‘organised as a

dynamic system so that the behaviour produced is self-preservative rather than

self-destructive.’’ The basic principle is quite simple but the statement in full mathe-

matical rigour, which I have recently achieved, tends unfortunately to obscure this

somewhat.

In Ashby’s talk of self-preservative dynamic systems we can clearly recog-

nize the core idea he would continue to develop over the next few years

and publish in Design for a Brain (Ashby 1952a). In that book he con-

structed a general theory of adaptive systems as dynamical systems in

which ‘‘essential’’ variables (such as heart rate and body temperature in

animals) must be kept within certain bounds in the face of external and

internal changes or disturbances. This work, which preoccupied Ashby dur-

ing the early years of the Ratio Club, is discussed in more detail on pages

133–136.

Ashby corresponded with several future members of the club in the mid-

1940s. For instance, in 1946 Hick wrote to Ashby after reading his note on

equilibrium systems in the American Journal of Psychology (Ashby 1946).

Hick explained that he, too, was ‘‘trying to develop the principles of ‘Ana-

lytical Machines’ as applied to the nervous system’’ (Hick 1947a) and

requested copies of all Ashby’s papers. The pair corresponded over the

mathematical details of Ashby’s theories of adaptation, and Hick declared

(1947b) himself ‘‘not entirely happy with your conclusion that a sequence

of breaks, if it continues long enough, will eventually, by chance, lead to a

stable equilibrium configuration’’ (p. 1). Hick was referring to an early de-

scription of what would later appear in Design for a Brain as postulated step

mechanisms that would, following a disturbance that pushed any of the

system’s essential variables out of range, change the internal dynamics of
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an adaptive machine until a new equilibrium was established—that is, all

essential variables were back in range (see pp. 133–137 for further details).

Ashby agreed (1947), explaining that he had no rigorous proof but had ‘‘lit-

tle doubt of its truth in a rough and ready, practical way.’’ A year later

Ashby’s Homeostat machine would provide an existence proof that these

mechanisms could work. But Hick had homed in on an interesting and

contentious aspect of Ashby’s theory. By the time Design for a Brain was

published, Ashby talked about step mechanisms in very general terms, stat-

ing that they could be random but not ascribing absolute rigid properties to

them, and so leaving the door open for further refinements. This corre-

spondence foreshadows the kind of probing discussions that were to form

the central activity of the Ratio Club, debates that sometimes spilled out

onto the pages of learned journals (see, for example, pp. 130–131).

During the war there had been considerable interaction between re-

searchers at the various military sites and several members had originally

met through that route. For instance, at TRE Uttley had worked on

computer-aided target tracking, as well as building the first British airborne

electronic navigation computer (Uttley 1982). This work on early comput-

ing devices brought him into contact with both Gold and Turing.

Several members had been friends or acquaintances at Cambridge: Prin-

gle and Turing were contemporaries, as were Barlow and Merton, who had

both been tutored by Rushton. Others met at workshops and conferences

in the years leading up to the founding of the club. Those involved in EEG

work—Walter, Bates, Dawson, and Shipton—were all well known to one

another professionally. Walter and Dawson had together laid the founda-

tions for clinical uses of EEG; a paper they wrote together in 1944 (Dawson

and Walter 1944) was still used in the training of EEG practitioners in the

1980s. Ashby had interacted with Walter for some time, not least because

their research institutes were nearby. So by the time the Ratio Club started,

most members had at least passing familiarity with some, but by no means

all, of the others’ ideas.

The Way Forward

For two or three years prior to the founding of the club there had been

a gradual increase in activity, on both sides of the Atlantic, in new ap-

proaches to machine intelligence, as well as renewed interest in associated

mechanistic views of natural intelligence. In Britain much of that activity

involved future Ratio Club members. The phrase Bates used in his ini-

tial letters of invitation to the founders of the club, that he wished to bring
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together people who ‘‘had Wiener’s ideas before Wiener’s book appeared,’’

may have been slightly gung-ho, but in a draft for an article for the British

Medical Journal in 1952, Bates (1952b) explained himself a little more:

Those who have been influenced by these ideas so far, would not acknowledge any

particular indebtedness to Wiener, for although he was the first to collect them

together under one cover, they had been common knowledge to many workers in

biology who had contacts with various types of engineering during the war.

It is likely that Bates was mainly thinking of chapters 3, 4, and 5 of Cyber-

netics: ‘‘Time Series, Information and Communication’’; ‘‘Feedback and Os-

cillation’’; and ‘‘Computing Machines and the Nervous System.’’ Certainly

many biologists had become familiar with feedback and its mathematical

treatment during the war, and some had worked on time-series analysis

and communication in relation to radar (some of their more mathematical

colleagues would have been using some of Wiener’s techniques and meth-

ods that were circulating in technical reports and draft papers—quite liter-

ally having Wiener’s ideas before his book appeared). Most felt that the

independent British line of research on computing machines and their rela-

tionship to the nervous system was at least as strong as the work going on

in the United States—important strands of which in turn were based on

prior British work such as that of Turing (Barlow 2001). Indeed, many

were of the opinion that the central hypothesis of cybernetics was that the

nervous system should be viewed as a self-correcting device chiefly relying

on negative-feedback mechanisms (Wisdom 1951). This concept had first

been introduced by Ashby in 1940 (Ashby 1940) and then independently

by Rosenblueth, Wiener, and Bigelow (1943) three years later. The devel-

opment of this idea was the central, all-consuming focus of Ashby’s work

until the completion of Design for a Brain, which set out his theories up to

that point. It is interesting that Ashby’s review of Cybernetics (Ashby 1949b)

is quite critical of the way the core ideas of the book are presented.

Perhaps the following passage from the introduction to Cybernetics

pricked Bates’s sense of national pride and acted as a further spur (Wiener

1948, p. 23):

In the spring of 1947 . . . [I] spent a total of three weeks in England, chiefly as a guest

of my old friend J. B. S. Haldane. I had an excellent chance to meet most of those

doing work on ultra-rapid computing machines . . . and above all to talk over the fun-

damental ideas of cybernetics with Mr. Turing. . . . I found the interest in cybernetics

about as great and well informed in England as in the United States, and the engi-

neering work excellent, though of course limited by the smaller funds available. I

found much interest and understanding of its possibility in many quarters. . . . I did
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not find, however, that as much progress had been made in unifying the subject and

in pulling the various threads of research together as we had made at home in the

States.

Whatever the views on Wiener’s influence—and the more mathe-

matical members will surely have recognized his significant technical

contributions—it is clear that all those associated with the Ratio Club

agreed that Claude Shannon’s newly published formulation of information

theory, partly built on foundations laid by Wiener, was very exciting and

important. The time was ripe for a regular gathering to develop these ideas

further.

Club Meetings

The London district of Bloomsbury often conjures up images of free-

thinking intellectuals, dissolute artists, and neurotic writers—early-

twentieth-century bohemians who, as Dorothy Parker once said, ‘‘lived in

squares and loved in triangles.’’ But it is also the birthplace of neurology,

for it was here, in 1860, that the first hospital in the world dedicated to

the study and treatment of diseases of the nervous system was established.

By the late 1940s the National Hospital for Nervous Diseases was globally

influential and had expanded to take up most of one side of Queen’s

Square. It was about to become regular host to the newly formed group of

brilliant and unconventional thinkers.

In 1949 London witnessed the hottest September on record up to that

point, with temperatures well above ninety degrees Fahrenheit. In fact the

entire summer had been a mixture of scorching sunshine and wild thun-

derstorms. So it was an unseasonably balmy evening on the fourteenth of

that month when a gang of scientists, from Cambridge in the east and Bris-

tol in the west, descended on the grimy bombed-out capital, a city slowly

recovering from a war that had financially crippled Britain. They converged

on the leafy Queen’s Square and assembled in a basement room of the

hospital at six-thirty in the evening. After sherries, the meeting started at

seven. Bates’s notes for his introduction to this inaugural gathering of the

club show that he spoke about how the club membership was drawn from

a network centered on his friends, and so was somewhat arbitrary, but that

there had been an attempt to strike a balance between biologists and non-

biologists (Bates 1949e). He then went on to make it clear that the club was

for people who were actively using cybernetic ideas in their work. At that

point there were seventeen members, but he felt there was room for a few

more. (The initial membership comprised Ashby, Barlow, Bates, Dawson,
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Gold, Hick, Little, Mackay, McLardy, Merton, Pringle, Shipton, Sholl, Sla-

ter, Uttley, Walter, and Westcott). He pointed out that there were no soci-

ologists, no northerners (for example from Manchester University or one of

the Scottish universities), and no professors. Possible names for the club

were discussed (see pp. 102–103) before Bates sketched out how he thought

meetings should be conducted. In this matter he stressed the informality of

the club—that members should not try and impose ‘‘direction’’ or employ

‘‘personal weight.’’ All agreed with this sentiment and endorsed his ‘‘no

professors’’ rule—scientists who were regarded to be senior enough to in-

hibit free discussion were not eligible for membership.

Warren McCulloch then gave his presentation, ‘‘Finality and Form in

Nervous Activity,’’ a popular talk that he had first given in 1946—perhaps

not the best choice for such a demanding audience. Correspondence be-

tween members reveals almost unanimous disappointment in the talk.

Bates (1949f) set out his own reaction to its content (and style) in a letter

to Grey Walter:

Dear Grey,

Many thanks for your letter. I had led myself to expect too much of McCulloch

and I was a little disappointed; partly for the reason that I find all Americans less

clever than they appear to think themselves; partly because I discovered by hearing

him talk on 6 occasions and by drinking with him in private on several more, that he

had chunks of his purple stuff stored parrot-wise. By and large however, I found him

good value.

Walter replied (1949) to Bates apologizing for not being present at the

meeting (he was the only founding member unable to attend). This was

due to the birth of a son, or as he put it ‘‘owing to the delivery of a male

homeostat which I was anxious to get into commission as soon as possi-

ble.’’ He went on to tell Bates that he has had ‘‘an amusing time’’ with

McCulloch, who had traveled on to Bristol to visit him at the Burden Insti-

tute. In reference to Bates’s view on McCulloch’s talk, he comments that

‘‘his reasoning has reached a plateau. . . . Flowers that bloom on this alp are

worth gathering but one should keep one’s eyes on the heights.’’

A buffet dinner with beer followed the talk and then there was an

extended discussion session. The whole meeting lasted about three hours.

Before the gathering broke up, with some rushing off to catch last trains

out of London and others joining McCulloch in search of a nightcap,

John Pringle proposed an additional member. Echoing the suggestion

made in his written reply to Bates’s original invitation to join the club,

Pringle put forward the idea that a mathematician or two should be invited
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to join to give a different perspective and to ‘‘keep the biologists in order.’’

He and Gold proposed Alan Turing, a suggestion that was unanimously

supported. Turing gladly accepted and shortly afterward was joined by a

fellow mathematician, Philip Woodward, who worked with Uttley. At the

same time a leading Cambridge neurobiologist, William Rushton, who was

well known to many members, was added to the list. The following passage

from a circular Bates (1949g) sent to all members shortly after the first

meeting shows that the format for the next few sessions had also been dis-

cussed and agreed:

It seems to be accepted that the next few meetings shall be given over to a few per-

sonal introductory comments from each member in turn. Assuming we can allow

two and a half hours per meeting, eighteen members can occupy an average of not

more than 25 minutes each. The contributions should thus clearly be in the na-

ture of an aperitif or an hors d’oeuvres—the fish, meat and sweet to follow at later

meetings.

Regardless of reactions to the opening talk, there was great enthusiasm for

the venture. The club was well and truly born.

Following this inaugural meeting the club convened regularly until the

end of 1954. There was a further two-day meeting and a single evening

session in 1955 and a final gathering in 1958, after the now classic ‘‘Mech-

anization of Thought Processes’’ symposium organized by Uttley at the

National Physical Laboratory in Teddington (Blake and Uttley 1959).

Table 6.1 shows the full list of known Ratio Club meetings. This has been

compiled from a combination of individual meeting notices found in the

Bates Archive at the Wellcome Library for the History and Understanding

of Medicine, in London, surviving members’ personal records, and a list

of meetings made by Bates in the mid-1980s. There are inconsistencies

between these sources, but through cross-referencing with notes made at

meetings and correspondence between members this list is believed to be

accurate. It is possible that it is incomplete, but if so, only a very small

number of additional meetings could have occurred.

The order of members’ introductory talks was assigned by Bates, using a

table of random numbers. Due to overruns and some people being unable

to attend certain meetings, the actual order in which they were given may

have been slightly different from that shown in the table. However, they

did take place on the dates indicated.

The format of the opening meeting—drinks, session, buffet and beer, dis-

cussion session, coffee—seems to have been adopted for subsequent meet-

ings. Members’ introductory talks, which highlighted their expertise and

The Ratio Club 115



Table 6.1

Known Ratio Club Meetings

Meeting Date Speakers, Discussion Topics, and Paper Titles

1 14 September 1949 Warren McCulloch, ‘‘Finality and Form in
Nervous Activity’’

2 18 October 1949 Introductory talks from Sholl, Dawson,
Mackay, Uttley

3 17 November 1949 Introductory talks from Gold, Bates, McLardy

4 15 December 1949 Introductory talks from Pringle, Merton, Little,
Hick, Grey Walter

5 19 January 1950 Slater, ‘‘Paradoxes Are Hogwash’’; Mackay,
‘‘Why Is the Visual World Stable?’’

6 16 February 1950 Introductory talks from Shipton, Slater,
Woodward

7 16 March 1950 Introductory talks from Ashby, Barlow

8 21 April 1950 Introductory talks from Wescott, Turing

9 18 May 1950 ‘‘Pattern Recognition,’’ Walter, Uttley,
Mackay, Barlow, Gold

10 22 June 1950 ‘‘Elementary Basis of Information Theory,’’
Woodward

11 18 July 1950 ‘‘Concept of Probability,’’ Gold, Mackay, Sholl

12 21 September 1950 ‘‘Noise in the Nervous System,’’ Pringle

13 2 October 1950 Meeting at London Symposium on
Information Theory

14 7 December 1950 ‘‘Educating a Digital Computer,’’ Turing

15 22 February 1951 ‘‘Adaptive Behaviour,’’ Walter

16 5 April 1951 ‘‘Shape and Size of Nerve Fibres,’’ Rushton

17 31 May 1951 ‘‘Statistical Machinery,’’ Ashby

18 26 July 1951 ‘‘Telepathy,’’ Bates

19 1 November 1951 ‘‘On Popper: What Is Happening to the
Universe?,’’ Gold

20 21 December 1951 Future Policy; discussion on ‘‘the possibility of
a scientific basis of ethics’’ opened by Slater;
discussion on ‘‘a quantitative approach to
brain cell counts’’ opened by Sholl

21 8 February 1952 ‘‘The Chemical Origin of Biological Form,’’
Turing; ‘‘The Theory of Observation,’’
Woodward

22 20 March 1952 ‘‘Pattern Recognition,’’ Uttley; ‘‘Meaning in
Information Theory,’’ Mackay

23 2–3 May 1952 Special meeting at Cambridge, organized by
Pringle

24 19 June 1952 ‘‘Memory,’’ Bates; ‘‘The Logic of
Discrimination,’’ Westcott
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Table 6.1

(continued)

Meeting Date Speakers, Discussion Topics, and Paper Titles

25 31 July 1952 ‘‘The Size of Eyes,’’ Barlow; ‘‘American
Interests in Brain Structure,’’ Sholl

26 24–25 October 1952 Special meeting at Burden Neurological
Institute, Bristol (canceled)

27 6 November 1952 ‘‘Design of Randomizing Devices,’’ Hick; ‘‘On
Ashby’s Design for a Brain,’’ Walter

28 11 December 1952 ‘‘Perils of Self-Awareness in Machines,’’
Mackay; ‘‘Sorting Afferent from Efferent
Messages in Nerves,’’ Merton

29 19 February 1953 ‘‘Pattern Discrimination in the Visual Cortex,’’
Uttley and Sholl

30 7 May 1953 ‘‘Absorption of Radio Frequencies by Ionic
Materials,’’ Little; ‘‘The Signal-to-Noise
Problem,’’ Dawson

31 2 July 1953 Warren McCulloch: Discussion of topics raised
in longer lectures given by McCulloch at
University College London in previous week

32 22 October 1953 ‘‘Demonstration and Discussion of the
Toposcope,’’ Shipton; ‘‘Principles of Rational
Judgement,’’ Good

33 11 February 1954 Discussion: ‘‘How does the nervous system
carry information?’’; guest talk: ‘‘Observations
on Hearing Mechanisms,’’ Whitfield and
Allanson

34 17 June 1954 ‘‘Servo Control of Muscular Movements,’’
Merton; ‘‘Introduction to Group Theory,’’
Woodward

35 25 November 1954 ‘‘Negative Information,’’ Slater and
Woodward; guest talk: ‘‘Development as a
Cybernetic Process,’’ Waddington

36 6–7 May 1955 Special meeting in West Country (TRE,
Barnwood House, Burden Institute)

37 15 September 1955 Discussion meeting after third London
Symposium on Information Theory; many
guests from the United States

38 27 November 1958 Final reunion meeting after the National
Physical Laboratory’s ‘‘Mechanisation of
Thought Processes’’ symposium
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interests, typically focused on some aspect of their current research. John

Westcott’s notebook reveals that a wide range of topics was discussed

(Westcott 1949–53): Scholl talked about the need to construct an appropri-

ate mathematics to shed light on the physiology of the nervous systems.

Dawson described ongoing work on eliminating noise from EEG readings.

Mackay argued for a more complex description of information, both philo-

sophically and mathematically, claiming that it cannot be adequately

defined as a single number. Uttley sketched out the design for a digital

computer he was working on at TRE. Gold illustrated his more general in-

terest in the role of servomechanisms in physiology by describing his work

on a radical new theory of the functioning of the ear, which postulated a

central role for feedback; Gold (2002) later recalled that at the time the

Ratio Club was the only group that understood his theory. Bates talked

about various levels of description of the nervous system. McLardy

described recent research in invasive surgical procedures in psychiatry.

Merton outlined his work on using cybernetic ideas to gain a better under-

standing of how muscles work. Walter described his newly constructed

robotic tortoises, sketching out the aims of the research and early results

obtained (see pp. 136–137 for further discussion of this work). Woodward

talked about information in noisy environments. Little discussed the scien-

tific method and the difficulty of recognizing a perfect theory. Hick out-

lined his research on reaction times in the face of multiple choices—the

foundations of what would later become known as Hick’s law (Hick 1952),

which makes use of information theory to describe the time taken to make

a decision as a function of the number of alternatives available (see p. 95

for a brief statement of the law). Ashby talked about his theories of adaptive

behavior and how they were illustrated by his just-finished Homeostat de-

vice (see pp. 133–136 for further discussion of this work). Barlow outlined

the research on the role of eye movement in generating visual responses

that he was conducting at this early stage of his career (see the interview

with Barlow, chapter 18 of this volume, for further details of this work).

Westcott talked a little about his background in radar and his work with

Wiener at MIT before outlining his mathematical work on analyzing servo-

mechanisms, emphasizing the importance of Wiener’s theory of feedback

systems, on which he was building. After each of the presentations discus-

sion from the floor took over.

After the series of introductory talks, the format of meetings changed to

focus on a single topic, sometimes introduced by one person, sometimes

by several. Prior to this, Ashby circulated two lists of suggested topics for

discussion; an initial one on February 18, 1950 (Ashby 1950a), and a
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refined version dated May 15, 1950 (Ashby 1950b). They make fascinating

reading, giving an insight into Ashby’s preoccupations at the time. The re-

fined list (Ashby 1950b) is reproduced here. Many of the questions are still

highly pertinent today.

1. What is known of ‘‘machines’’ that are defined only statistically? To

what extent is this knowledge applicable to the brain?

2. What evidence is there that ‘‘noise’’ (a) does, (b) does not, play a part in

brain function?

3. To what extent can the abnormalities of brains and machines be

reduced to common terms?

4. The brain shows some indifference to the exact localisation of some of

its processes: to what extent can this indifference be paralleled in physical

systems? Can any general principle be deduced from them, suitable for ap-

plication to the brain?

5. From what is known about present-day mechanical memories can any

principle be deduced to which the brain must be subject?

6. To what extent do the sense-organs’ known properties illustrate the

principles of information-theory?

7. Consider the various well known optical illusions: what can information-

theory deduce from them?

8. What are the general effects, in machines and brains[,] of delay in the

transmission of information?

9. Can the members agree on definitions, applicable equally to all

systems—biological, physiological, physical, sociological—cf: feedback, sta-

bility, servo-mechanism.

10. The physiologist observing the brain and the physicist observing an

atomic system are each observing a system only partly accessible to obser-

vation: to what extent can they use common principles?

11. The two observers of 10, above, are also alike in that each can observe

his system only by interfering with it: to what extent can they use common

principles?

12. Is ‘‘mind’’ a physical ‘‘unobservable’’? If so, what corollaries may be

drawn?

13. What are the applications, to cerebral processes, of the thermodynam-

ics of open systems?

14. To what extent can the phenomena of life be imitated by present-day

machines?

15. To what extent have mechanisms been successful in imitating the con-

ditioned reflex? What features of the C.R. have conspicuously not yet been

imitated?
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16. What principles must govern the design of a machine which, like the

brain, has to work out its own formulae for prediction?

17. What cerebral processes are recognisably (a) analogical, (b) digital, in

nature?

18. What conditions are necessary and sufficient that a machine built of

many integrated parts should be able, like the brain, to perform an action

either quickly or slowly without becoming uncoordinated?

19. Steady states in economic systems.

20. What general methods are available for making systems stable, and

what are their applications to physiology?

21. To what extent can information-theory be applied to communication

in insect and similar communities?

22. To what extent are the principles of discontinuous servo-mechanisms

applicable to the brain?

23. What re-organisation of the Civil Service would improve it cyber-

netically?

24. What economic ‘‘vicious circles’’ can be explained cybernetically?

25. What re-organisation of the present economic system would improve it

cybernetically?

26. To what extent can information-theory be applied to the control

exerted genetically by one generation over the next?

27. Can the members agree on a conclusion about extra-sensory

perception?

28. What would be the properties of a machine whose ‘‘time’’ was not a

real but a complex variable? Has such a system any application to certain

obscure, i.e. spiritualistic, properties of the brain?

The last topic on the initial list is missing from the more detailed second

list: ‘‘If all else fails: The effect of alcohol on control and communication,

with practical work.’’ This suggestion was certainly taken up, as it appears

were several others: shortly after the lists appeared Pringle gave a talk on

the topic of suggestion 2 (meeting 12), as did Walter on 14 and 15 (meeting

15). Topic 27 came up in talks by Bates and Good (meetings 18 and 32).

Issues relating to many of the other suggestions often arose in group dis-

cussions, being in areas of great interest to many members (topics 6–13,

16–18, and 26). In particular, Barlow recalls much discussion of topic 17

(Barlow 2007). Although Ashby’s publications and notebooks make it clear

that some of the suggestions are based on the central research questions he

was grappling with at the time (suggestions 1, 18, 20, 22), it is very likely

that some of the others arose from issues brought up by members in their

introductory talks. In the mid-1980s Bates made some notes for a planned
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article on the Ratio Club (Bates 1985), a plan that unfortunately did not

come to fruition. However, among these scant jottings is mention of

Ashby’s lists, which further suggests that they did play a role in shaping

the scope of topics discussed.

Members often volunteered to give talks, but Bates, when he felt it was

necessary, actively controlled the balance of topics by persuading particular

members to give presentations. Sometimes there were requests from mem-

bers for particular subjects to be discussed or particular people to give talks

on certain topics. Looking through the list of subjects discussed, many are

still extremely interesting today; at the time they must have been positively

mouth-watering.

At the end of 1950, after meeting him at the first London Symposium on

Information Theory, Bates invited I. J. ‘‘Jack’’ Good along to the next meet-

ing as his guest. The speaker was Turing, Good’s friend and wartime col-

league. This was a particularly lively meeting and after it Good wrote to

Bates expressing how much he had enjoyed the evening and apologizing

for being too vociferous. He wondered, ‘‘Would there be any serious objec-

tion to my becoming a member?’’ (Good 1950a). Bates replied (1950a) that

‘‘the club has been going for a year, and is entirely without any formal pro-

cedures. New members join by invitation, but I think personally you would

be a great asset, and hope you will be able to come as my guest to some

future meetings, so that perhaps my view will become consensus!’’ Bates’s

view obviously did hold sway, as Good became the twenty-first member of

the club. Perhaps it was thought a third mathematician was needed to help

the other two keep the biologists in order. Partly because of the size of the

room used for meetings, and partly because Bates had firm ideas on the

kind of atmosphere he wanted to create and who were the ‘‘right sorts’’ to

maintain it, the membership remained closed from that point.

For the first year meetings were monthly and were all held at the Na-

tional Hospital in Queen’s Square. From mid-1950 until the end of 1951

the frequency of meetings dropped slightly and in the second half of 1951

attendance started to fall. This was mainly due to the not inconsiderable

time and expense incurred by members based outside London every time

they came to a meeting. In October 1951 Woodward had written to Bates

explaining that he had to take part of his annual leave to attend meetings

(Woodward 1951); the following month Walter wrote to explain that he

had difficulty in covering the expenses of the trips to London necessary

for Ratio Club gatherings. He suggested holding some meetings outside

London in members’ labs, pointing out that this would also allow practical

demonstrations as background for discussion (Walter 1951).
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Indeed the round-trip journey from Bristol could be quite a hike. Janet

Shipton (Shipton 2002) remembers waiting up to greet her husband,

Harold, on his return from Ratio meetings: ‘‘He would get back in the

dead of night, the smell of train smoke on his clothes.’’

At the December 1951 meeting of the club, Bates (1951) called a special

session to discuss future policy. Beforehand he circulated a document in

which he put down his thoughts on the state of the club. Headed ‘‘The

Ratio Club,’’ the document opened by stating that ‘‘looked at in one way,

the Club is thriving—in another way it is not. It is thriving as judged by

the suggestions for future activities.’’ These suggestions are listed as requests

for specific talks by Woodward (on the theory of observation) and Hick (on

the rate of gain of information), an offer of a talk on morphogenesis by

Turing, as well as various suggestions for discussion topics (all of these

suggestions, offers and requests were taken up in subsequent meetings).

Bates goes on: ‘‘In addition to this, we have in pigeon-holes a long list

sent in by Ashby of suitable topics; various suggestions for outside speakers;

and a further suggestion that members should collaborate in writing differ-

ent chapters to a book on the lines of ‘Cybernetics,’ but somewhat tidier.’’

Sadly, this intriguing book idea never came to fruition. He then explains

the cause for concern:

Looked at in another way, the Club is ailing. For the past three meetings, half or

more of the members have been absent. This half have been mostly those who live

out of London—the most reasonable inference clearly is that a single evening’s meet-

ing does not promise to be a sufficient reward for the inconvenience and expense of

getting to it. In addition one member has pointed out that if expenses cannot be

claimed the night’s absence is counted against the period of his annual leave! The

whole point of the Club is to facilitate contacts between people who may have some-

thing to contribute to each other, and who might not otherwise come together, and

it would seem that some change in its habits may be indicated.

Bates then listed some suggested courses of action for discussion at the next

meeting. These ranged from having far fewer, but longer, meetings to dou-

bling the membership.

It was decided that there would be six or seven meetings a year, four or

five in London and two elsewhere. The meetings would start earlier to

allow two papers. A novel suggestion by Philip Woodward was also taken

up: to start a postal portfolio—a circulating package of ideas—‘‘to be totally

informal and colloquial.’’ Bates prepared a randomized order of members

for the portfolio to travel around.

This new regime was followed from the first meeting of 1952 until the

club disbanded, and seemed to go a good way toward solving the problems
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that prompted its instigation. The typical meeting pattern was now to

gather at four-thirty for tea, followed by the first talk and discussion, then

a meal and drinks, followed by the second talk and discussion.

Most Ratio Club talks were based on current research and were often

early outings for highly significant work, sometimes opening up new areas

of inquiry that are still active today. For instance, Turing’s talk, ‘‘Educating

a Digital Computer,’’ in December 1950, was on the topics covered by his

seminal Mind paper of that year (Turing 1950), which introduced the

Turing Test and is regarded as one of the key foundational works of ma-

chine intelligence. As the title suggests, that talk focused on how an

intelligent machine might be developed; Turing advocated using adaptive

machines that might learn over their lifetimes and also over generations

by employing a form of artificial evolution. This meeting is remembered as

being particularly good, with Turing in top form, stimulating a scintillating

extended discussion (Bates 1950b). Turing’s 1952 talk on biological form

was another gem, describing his as yet unpublished work on reaction-

diffusion models of morphogenesis (Turing 1952), which showed how

pattern and form could emerge from reaction-diffusion systems if they are

appropriately parameterized (a role he hypothesized might be taken on by

genes). In addition to launching new directions in theoretical biology, this

work was pioneering in its use of computer modeling and was to prove ex-

tremely influential. There is not enough space to describe all the important

work discussed at club meetings, but further summaries are scattered at ap-

propriate places throughout the rest of this chapter.

As well as research talks, there were also various ‘‘educational’’ presenta-

tions, usually requested by the biologists. For instance, Woodward gave

several on information theory, which gave the biologists very early access

to important new ways of thinking. By all accounts Woodward was an ex-

tremely good lecturer, blessed with a gift for insightful exposition (this is

evident in his 1953 book Probability and Information Theory, with Applica-

tions to Radar, still regarded by some theorists as one of the most profound

works in the area since Shannon’s original papers.) Barlow was particularly

influenced by these exciting new ideas and became a pioneer in the use of

information theory as a theoretical framework to understand the operation

of neural systems, particularly those associated with vision. This theoretical

framework either directly or indirectly underpinned many of Barlow’s very

important contributions to neuroscience. He regards the Ratio Club as one

of the most important formative influences on his work and sees ‘‘much of

what I have done since as flowing from those evening meetings’’ (Barlow

2001; see also chapter 18 of this volume for further discussion of this
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point). In a similar spirit there were lectures on probability theory from

Gold and Mackay and on the emerging field of control theory from

Westcott.

In 1952 two extended out-of-London meetings were planned, one in

Cambridge in May and one in Bristol in October. The Cambridge meeting

was organized by Pringle and was held from Friday afternoon to Saturday

morning in his college, Peterhouse. After drinks and dinner Pringle led a

session on ‘‘Processes Involved in the Origin of Life.’’ Correspondence after

the meeting mentions that this session was captured on a tape recorder, al-

though the recording has not yet come to light. The next day visits were

arranged to various labs, including Cavendish (physics), led by Gold; Zool-

ogy; Physiology, led by Rushton; Psychology, led by Hick; and Mathemat-

ics. The photograph shown in figure 6.2 was taken at this meeting, quite

Figure 6.2

Some members of the Ratio Club with guests, outside Peterhouse College, University

of Cambridge, May 1952. The photograph was organized by Donald Mackay. Back

row (partly obscured): Harold Shipton, John Bates, William Hick, John Pringle, Donald

Scholl, John Westcott, Donald Mackay. Middle row: Giles Brindley, Turner McLardy.

W. Ross Ashby, Thomas Gold, Arthur Uttley. Front row: Alan Turing, Gurney Sutton,

William Rushton, George Dawson, Horace Barlow. Image courtesy The Wellcome

Library for the History and Understanding of Medicine, London.
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possibly after the predinner sherries mentioned on the invitation sent out

to club members. Not everyone was able to attend and several of those in

the photograph are guests. A limited number of guests were allowed at

most meetings and over the years various distinguished visitors took

part in club gatherings. As well as McCulloch, Pitts, and Shannon, these

included John Zachary Young, the leading anatomist and neurologist, who

attended several meetings; Conrad Waddington, the pioneering theoretical

biologist and geneticist; and Giles Brindley who became a distinguished

neuroscientist and was David Marr’s Ph.D. supervisor. Jack Good once

brought along the director of the National Security Agency, home to the

United States’ code breakers and makers, whom he knew through his work

for British Intelligence. That particular meeting was on probability and

included prolonged discussions of experiments claiming to give evidence

for ESP. Following the 1955 London Symposium on Information Theory, a

special club meeting involved a host of leading lights from the world of

information theory and cybernetics, many from overseas. These included

Peter Elias, J. C. R. Licklider, Warren McCulloch, Oliver Selfridge, Benoı̂t

Mandelbrot, and Colin Cherry. Records are sketchy on this matter, but it

is likely that many other luminaries of the day took part in other meetings.

The Bristol meeting was to be held at the Burden Neurological Institute,

starting at noon on Friday October 24, 1952, and running into the next

day, but it seems to have been canceled at the last minute due to heavy

teaching commitments preventing a substantial number of members from

attending. The talks and demonstrations planned for this meeting were

moved into later club meetings. These included Grey Walter opening a dis-

cussion ‘‘Mechanisms for Adaptive Behaviour,’’ which focused on simula-

tion of learning by man-made devices, and in particular on the issues

raised in Ashby’s recently published book Design for a Brain, and a presenta-

tion by Shipton on the Toposcope, the world’s first multichannel EEG

recording device. The machine, developed by Shipton and Walter, was ca-

pable of building and displaying bidimensional maps of the EEG activity

over the brain surface and included frequency and phase information.

From mid-1953, meetings became less frequent, with only three in 1954

and two in 1955. In 1955 the extended West Country event finally hap-

pened, starting at TRE Malvern on May 6 and then going the next day to

the Burden Institute in Bristol via Ashby’s Barnwood House lab. The meet-

ing was primarily devoted to demonstrations and discussions of work in

progress at these locations. At TRE, various devices from Uttley’s group

were on show. These included a ‘‘tracking simulator,’’ a novel apparatus

designed to provide a versatile means of setting up and studying problems

relating to a human operator working in a closed-loop system. The device

The Ratio Club 125



used a two-gun cathode-ray tube and required the operator to track a

moving dot by controlling a second dot with a joystick. Also on show

were Uttley’s systems for automatically classifying spatial and temporal pat-

terns and pioneering electronic and hydraulic systems capable of inference

using principles from conditional probability.

To reach the next leg of the multisite meeting, Philip Woodward recalls

traveling across country in a Rolls Royce that Barlow had borrowed from

his brother. As they hurtling toward ‘‘Ashby’s lunatic asylum’’ (Barnwood

House Psychiatric Hospital, in Gloucester), Rushton diagnosed the exact

form of Woodward’s color blindness by getting him to describe the spring

flowers he could see on the verges (Woodward 2002).

At Barnwood House, Ashby demonstrated his Dispersive and Multi-stable

System (DAMS), and the Homeostat was available to those who were not

already familiar with it. As mentioned earlier, the Homeostat demonstrated

the theories of adaptation developed in Design for a Brain, where it is

described in some detail. Although Ashby had talked at earlier club meet-

ings about the DAMS machine, this would have been the first time that

most members saw it firsthand. The DAMS device, which is much less well

known than the Homeostat—mainly because Ashby was not able to de-

velop it sufficiently to fully demonstrate his theories—was intended to

explore possible learning behaviors of randomly connected nonlinear com-

ponents. The motivation for this was the intriguing possibility that parts of

the brain, particularly the cortex, might be at least partially randomly

wired. Ashby had been developing the machine for some years and demon-

strated the current version, which by then illustrated some interesting

properties of ‘‘statistical machinery.’’ The theoretical line started in this

work resurfaced many years later in Gardner and Ashby’s computational

study of the stability of large interconnected systems (Gardner and Ashby

1970). There is a nice anecdote about the machine which originates from

this 1955 meeting. Philip Woodward remembers being told, possibly apoc-

ryphally, that when Ashby asked a local engineering firm to construct part

of the device, specifying random connections, they were so bemused, par-

ticularly since the order was coming from Barnwood House Psychiatric

Hospital, that they rang up to check that Dr. Ashby was not in fact a pa-

tient (Woodward 2002).

The club was full of lively and strong personalities. Mackay, Turing, and

Walter were, in their very different ways, brilliant speakers who all broad-

cast talks on scientific subjects for BBC radio. Grey Walter, in particular,

was something of a media personality, making appearances on popular

radio quiz shows and early television programs. He was a larger-than-life

character who liked to cultivate a certain image, that of a swashbuckling
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man of the world. He was, as Harold Shipton noted (2002) ‘‘a bugger for

the women.’’ This reputation did him no favors with many in the scientific

establishment. Walter stood in marked contrast to Mackay, a fiery lay

preacher who had been brought up attending the Evangelical Free Church

of Scotland, one of the radical breakaway ‘‘wee free’’ churches. Many who

knew him have remarked on a certain tension between his often radical sci-

entific ideas about the nature of intelligence and his strait-laced religios-

ity. Horace Barlow, a great friend of Mackay’s and an admirer of his ideas,

has noted (2002) that ‘‘his conviction that he had a special direct line to a

Higher Place, somehow slightly marred his work and prevented him from

becoming as well regarded as he should have been.’’ According to Barlow’s

biographical memoir (1986) of Rushton, the Cambridge don ‘‘cut a striking

and influential figure . . . was argumentative, and often an enormously suc-

cessful showman . . . he valued the human intellect and its skilful use above

everything else.’’ Giles Brindley, a guest at several meetings, remembers

(2002) that Barlow and Gold were very active in discussions and that

when occasionally a debate got out of hand, Pringle would gently refocus

the conversation.

Members came from a rich mix of social and educational backgrounds,

ranging from privileged upbringings to the humblest of origins. Harold

Shipton’s story is particularly remarkable. In the years before World War II

he was plucked from the life of an impoverished farm laborer by RAF talent

scouts who were looking for bright young men to train as radar operators.

During training it quickly became apparent that he had a natural gift for

electronics, which was duly exploited. After the war, before he had been

demobbed, he was sent to the Burden Neurological Institute to find out

what Grey Walter was doing with the suspiciously large amounts of surplus

military electronic equipment he was buying. He and Walter immediately

hit it off and he stayed. At the institute he met his future wife, Clement

Attlee’s daughter Janet. (Attlee was leader of the Labour Party, Churchill’s

deputy during the war, and prime minister of Britain from 1945 to 1951.)

Hence, at the West Country meeting, members of the all-male Ratio Club

were served tea by the Labour Prime Minister’s daughter.

Bates had created a powerful mix of individuals and ideas with just the

right degree of volatility. The result was that meetings were extremely stim-

ulating and greatly enjoyed by all. All the surviving members interviewed

recalled the club with great enthusiasm; Gold (2002) described meetings as

‘‘always interesting, often exciting.’’ Even those, such as Woodward and

Westcott, who felt that they were net givers, in terms of the direct intellec-

tual influence of the club on members’ work, found meetings a pleasure

and were annoyed when they had to miss one.
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The social atmosphere of the club sometimes continued in after-meeting

parties. Philip Woodward (2002) remembers that on one occasion some of

the group reconvened on the enormous Dutch sailing barge Pat Merton

kept in St. Catherine’s docks on the Thames. Merton had arranged for a pi-

anist and oboe player on deck. St. Catherine’s was a working dock in those

days with a large sugar refinery that belched out pungent fumes. As the

night wore on and the drink flowed, the sugar-strewn route up the dockside

steps to the toilet became more and more treacherous.

Table 6.1 shows that a number of external speakers were invited to give

presentations. Despite reactions to his talk in 1949, Warren McCulloch was

asked back in 1953 to open a discussion on his work, and attended other

meetings as a guest; eventually members grew to appreciate his style.

As the club developed, Ashby was keen to see it transformed into a for-

mal scientific society—‘‘the Biophysical Society’’ or ‘‘the Cybernetics

Society’’—with a more open membership. His proposals for this were

resisted. It seems that, for many members, the informal atmosphere of the

club, exactly as Bates had conceived it, was the most important factor.

When Ashby proposed that Professor J. Z. Young be admitted as a member,

Sholl (1952) wrote to Bates in protest:

I consider membership of the Club not only as one of my more pleasant activities

but as one of the most important factors in the development of my work. I have

stressed before how valuable I find the informality and spontaneity of our discussion

and the fact that one does not have to be on one’s guard when any issue is being

argued. At the present time we have a group of workers, each with some specialised

knowledge and I believe that the free interchange of ideas which has been so happily

achieved and which, indeed, was the basis for the founding of the Club, largely

results from the fact that questions of academic status do not arise.

Young was the head of the Department of Anatomy at University College,

where Sholl worked, and although Sholl collaborated with him and contin-

ued to do so after the club disbanded, in those days academic relations and

the processes of career advancement were such that he would have felt very

uncomfortable with his boss as a member. In any event the ‘‘no professors’’

rule prevailed.

By the end of the summer of 1955 the club had run its course; many im-

portant intellectual cross-fertilizations had occurred, and all had learned

much from each other. In 1954 Turing had died in tragic and disturbing

circumstances that have been well documented (Hodges 1983). By now

several members’ research had become very well known internationally

(Ashby and Walter in cybernetics, with Uttley not far behind, and Rushton
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and Pringle in neurophysiology) and others were on the cusp of major rec-

ognition. As careers advanced and families grew, many found it increas-

ingly difficult to justify the time needed for meetings. Another factor that

may have played a part in the club’s demise was that cybernetics had

become respectable. Lord Adrian had endorsed it in one of his Royal Soci-

ety presidential addresses and talk of its application in every conceivable

branch of biology was rife. The frisson of antiestablishmentarianism that

imbued the early meetings was all but gone. The September 1955 meeting,

tacked on to the end of the London Symposium on Information Theory,

turned out to be the last. A reunion was held in November 1958 after

Uttley’s ‘‘Mechanization of Thought Processes’’ symposium at the National

Physical Laboratory. Nine members turned up—Bates, Barlow, Dawson,

Sholl, Slater, Uttley, Mackay, Woodward, and Hick). Of the rest, Bates’s

(1958) note of the meeting reads:

Absent: with expressed regret: Grey Walter, Merton, Westcott; with expressed lack of

interest: Ashby, McLardy; without expression: Rushton, Pringle, Little, Good; emi-

grated: Gold, Shipton.

At the meeting, suggestions were put forward for possible new and youn-

ger members. The first name recorded is that of Richard Gregory, then a

young psychologist who had just made his first professional presentation

at the symposium. Clearly, Bates had not lost his ability to spot talent, as

Gregory later became an extremely distinguished vision scientist and Fel-

low of the Royal Society. However, the initiative came to nothing, and the

club did not meet again.

Themes

Although a very wide range of topics was discussed at club meetings, a

number of important themes dominated. These included information

theory, probabilistic and statistical processes and techniques, pattern

recognition, and digital versus analogue models of the brain (Barlow 2002,

2007; Bates 1985). The themes usually surfaced in the context of their

application to understanding the nervous system or developing machine

intelligence.

Information Theory

By far the greatest proportion of British wartime scientific effort had gone

into radar and communications, so it is perhaps unsurprising that there

was huge interest in information theory in the club. Many of the brain
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scientists realized very early on that here was something that might be an

important new tool in understanding the nervous system. Shannon’s tech-

nical reports and papers were not easy to get hold of in Britain in the late

1940s and so the first time Barlow came across them was when Bates sent

him copies—with a note to the effect that this was important stuff—along

with his invitation to join the club. Barlow agreed with Bates, immediately

grasping the fact that information theory provided a new, potentially

measurable quantity that might help to give a stronger theoretical under-

pinning to neurophysiology. Over the next few years, as he learned more

about the subject at club meetings—particularly from Woodward—he

developed a theoretical framework that shaped his research and helped to

propel him to the forefront of his field. Barlow used information-theoretic

ideas in an implicit way in his now classic 1953 paper on the frog’s retina

(Barlow 1953). This paper gives the first suggestion that the retina acts as a

filter passing on useful information, developing the idea that certain types

of cells act as specialized ‘‘fly detectors’’—thus that the visual system has

evolved to efficiently extract pertinent information from the environment,

an idea that was to become very influential. Later, in a series of very impor-

tant theoretical papers, he argued that the nervous system may be trans-

forming ‘‘sensory messages’’ through a succession of recoding operations

which reduce redundancy in order to make the barrage of sensory informa-

tion reaching it manageable (Barlow 1959, 1961). (Reducing the amount of

redundancy in a message’s coding is one way to compress it and thereby

make its transmission more efficient.) This line of reasoning fed into the

later development of his equally influential ‘‘neuron doctrine for percep-

tual psychology’’ which postulated that the brain makes use of highly

sparse neural ‘‘representations’’ (Barlow 1972). As more neurophysiological

data became available, the notion of redundancy reduction became difficult

to sustain and Barlow began to argue for the principle of redundancy

exploitation in the nervous system. In work that has become influential

in machine learning and computational neuroscience, Barlow and his

coworkers have demonstrated how learning can be more efficient with

increased redundancy, as this reduces ‘‘overlap’’ between distributed pat-

terns of activity (Gardner-Medwin and Barlow 2001). (For further discus-

sion of these matters see chapter 18, in this volume).

Information and its role in biology was at the heart of many club

debates. Mackay believed the Shannon formulation was too restrictive and

during the Ratio Club years he developed his own set of ideas, allied with

Dennis Gabor’s (1946) version of information theory, which took account
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of context and meaning (Mackay 1952a, 1952b). In the early period of the

club’s existence Ashby was working hard on the final version of Design for a

Brain and his habit of quizzing members on specific topics that would help

him refine the ideas in the book left several members with the impression

that that he was exclusively preoccupied with his own ideas and not open

to new influences. However, his journals indicate that he was becoming

convinced of the importance of information theory. He records a conver-

sation with Gold and Pringle at one meeting in 1950 on how much in-

formation was needed to specify a particular machine, and by extension

how much information must be encoded in the genes of an animal. His

arguments were demolished by Gold, who pointed out that ‘‘complexity

doesn’t necessarily need any number of genes for its production: the most

complicated organisation can be produced as a result of a single bit of infor-

mation once the producing machinery has been set up’’ (Ashby 1950c). As

usual, Gold was decades ahead in stressing the importance of genotype to

phenotype mappings and the role of development. This theme resurfaced

in Ashby’s (1952b) paper ‘‘Can a Mechanical Chess-Player Outplay Its

Designer,’’ in which he used information theory to try and show how it

might be possible to construct a machine whose behavior goes beyond the

bounds of the specifications described by its designer. This paper caused de-

bate within the club, with Hick in particular disagreeing with Ashby’s claim

that random processes (such as mutations in evolution) can be a source of

information. This resulted in Hick joining in the discussion of Ashby’s pa-

per on the pages of The British Journal for the Philosophy of Science, where the

original work had appeared (Ashby 1952b), a debate that also included a

contribution from J. B. S. Haldane (1952).

A striking example of the degree of enthusiasm for information-theoretic

ideas within the club is given by the contents page of the first ever issue of

the IEEE Transactions on Information Theory, the field’s premier journal, in

February 1953. This issue was based on the proceedings of the First London

Symposium on Information Theory, held in September 1950, and was

dominated by Ratio Club members (see a complete table of contents at

http://www.informatik.uni.trier.de/~ley/db/journals/tit/tit1.html). Of the

twenty-two full papers that were published in it, fourteen were by club mem-

bers. Of the remaining eight, three were by Shannon and two by Gabor.

Probability and Statistics

Probabilistic and statistical methods and processes were also of central

concern to many members in areas other than information. Good was a
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leading statistician who pioneered various Bayesian ‘‘weight of evidence’’

approaches (Good 1950b), something that partly stemmed from his war-

time code-cracking work with Turing, and naturally had a keen interest in

the subject. Good led a number of club discussions and debates on related

topics that may have influenced Uttley’s ground-breaking work on condi-

tional probability machines for learning and reasoning (Uttley 1956). In re-

cent years similar approaches to those pioneered by these two have become

very prominent in machine learning. Woodward was very knowledgeable

on probability theory and gave, by request, at least one lecture to the club

on the subject. Slater was one of the first psychiatrists to use well-grounded

statistical techniques and did much to try and make psychiatry, and medi-

cine in general, more rigorously scientific. Likewise, Sholl, whose first de-

gree was in statistics, introduced statistical methods to the study of the

anatomy of the nervous system. Many of the brain scientists in the club

were concerned with signal-to-noise problems in their practical work, and

Barlow (2006) remembers that this was a regular topic of discussion. He

recalls that Gold had deep and useful engineering intuitions on the subject.

As has been mentioned, Dawson was the leading expert on extracting clean

EEG signals in a clinical setting.

A related area that prompted much discussion was that of the possible

roles of random processes and structures in the nervous system. It has

already been noted that Pringle and Ashby gave presentations in this area,

but Barlow remembers that many other members, including Turing, were

intrigued by the topic (Barlow 2002).

Philosophy

A quick glance at the meeting titles shown in table 6.1, and the topics of

introductory talks (pp. 115–118) make it obvious that many club discus-

sions had a distinctly philosophical flavour. Mackay was particularly keen

to turn the conversation in that direction, prompting Andrew Hodges

(1983) to refer to him as ‘‘a philosophical physicist’’ in a mention of a Ratio

Club meeting in his biography of Turing (p. 411), and Woodward (2002)

recalls that it was a good idea to keep him off the subject of Wittgenstein!

Pattern Recognition

Pattern recognition was another hot topic in relation to both natural and

machine intelligence. The ninth meeting of the club, on May 18, 1950,

was dedicated to this subject, then very much in its infancy; the perspec-

tives of a number of members were followed by a general free-for-all discus-

sion. Ashby provided a handout in which he tried to define ‘‘recognition’’
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and ‘‘pattern,’’ concluding that a large part of pattern recognition is classi-

fication or categorization. He wondered (1950d) whether ‘‘class-recognition

[can] profitably be treated as a dissection of the total information into two

parts—a part that identifies the inputs’ class, and a part that identifies

the details within the class?’’ Grey Walter also provided a handout, a set

of condensed and hasty notes in which he concentrated on a brief sur-

vey of types of pattern-recognition problems and techniques. He noted

(1950b) that ‘‘recognition of pattern correlates well with ‘intelligence’;

only highest wits can detect patterns in top Raven Matrices where the sym-

metry is abstract not graphic. Likewise in ‘good’ music, odours (not so

much in man).’’ We can be sure that a vigorous debate ensued!

Space is too limited to discuss many other equally interesting themes

that arose in club discussions, such as motor-control mechanisms in hu-

mans and animals (Merton and Pringle were particularly expert in this

area, with Westcott providing the engineering perspective); analogue ver-

sus digital models of the functioning of the nervous system (see chapter

18, this volume, for a discussion of this in relation to the Ratio Club); and

the relationship between evolution and learning, about which Pringle

(1951) wrote an important paper at the time of the club, which, as Cowan

(2003) has pointed out, laid the foundations for what later became known

as reinforcement learning.

Artefacts and the Synthetic Method

There is, however, one last implicit theme that is important enough to de-

serve some discussion: the use of artefacts within the synthetic method. In

addition to the engineers, several other members were adept at designing

and constructing experimental equipment (often built from surplus military

components left over from the war). This tendency was naturally trans-

ferred to an approach referred to by Craik as the ‘‘synthetic method’’—the

use of physical models to test and probe neurological or psychological

hypotheses. In this spirit Ashby and Walter developed devices that were to

become the most famous of all cybernetic machines: Ashby’s Homeostat

and Walter’s tortoises. Both machines made headlines around the world,

in particular the tortoises, which were featured in newsreels and television

broadcasts, and were exhibited at the Festival of Britain (Holland 2003).

The Homeostat was an electromechanical device intended to demon-

strate Ashby’s theory of ultrastable systems—adaptive systems making

use of a double feedback mechanism in order to keep certain significant

quantities within permissible ranges. As mentioned earlier, these essential

variables represented such things as blood pressure or body temperature in
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an animal. According to Ashby, ultrastable systems were at the heart of the

generation of adaptive behavior in biological systems. Part of the device is

shown in figure 6.3.

The machine consisted of four units. On top of each was a pivoted

magnet. The angular deviation of the four magnets represented the main

variables of the system. The units were joined together so that each sent

its output to the other three. The torque on each magnet was proportional

to the total input current to the unit. The units were constructed such

that their output was proportional to the deviation of their magnet from

the central position. The values of various commutators and potentiome-

ters acted as parameters to the system: they determined its subsequent be-

havior. The electrical interactions between the units modeled the primary

feedback mechanisms of an ultrastable system. A secondary feedback mech-

anism was implemented via switching circuitry to make pseudo-random

(step) changes to the parameters of the system by changing potentiometer

Figure 6.3

The Homeostat. Two of the four units can be seen.
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and commutator values. This mechanism was triggered when one of the

essential variables (proportional to the magnet’s deviation) went out of

bounds. The system continued to reset parameters until a stable configura-

tion was reached whereby no essential variables were out of range and the

secondary feedback mechanisms became inoperative. The units could be

viewed as abstract representations of an organism interacting with its envi-

ronment. Ultrastability was demonstrated by first taking control of one of

the units by reversing the commutator by hand, thereby causing an insta-

bility, and then observing how the system adapted its configuration until it

found a stable state once more (for full details see Ashby 1952a).

On November 20, 1946, Turing had written to Ashby after being passed a

letter from Ashby to Sir Charles Darwin, director of the National Physical

Laboratory, a distinguished mathematician and a grandson of the Charles

Darwin (and therefore Horace Barlow’s uncle). Ashby had inquired about

the future suitability of the planned ACE (automatic computing engine)

digital computer, which was being designed at the National Physical Labo-

ratory by Turing and others, for modeling brainlike mechanisms. We can

assume he was thinking of the possibility of using the computer to develop

a programmed equivalent of what was to become his famous Homeostat.

In his reply, Turing (1946) enthusiastically endorsed such an idea, telling

Ashby that ‘‘in working on the ACE I am more interested in the possibility

of producing models of the action of the brain than in the practical appli-

cations of computing.’’ Turing explained that in theory it would be possi-

ble to use the ACE to model adaptive processes by making use of the fact

that it would be, in all reasonable cases, a universal machine. He went on

to suggest, ‘‘You would be well advised to take advantage of this principle,

and do your experiments on the ACE, instead of building a special ma-

chine. I should be very glad to help you over this.’’ Unfortunately this

collaboration never materialized. Turing withdrew from the ACE project

following the NPL management’s inability or unwillingness to properly

manage the construction of the machine (Hodges 1983). Although the

ACE project stalled, Ashby’s notebooks from 1948 show that he was still

musing over the possibility of using a computer to demonstrate his theories

and was able to convince himself that the ACE could do the job. A pilot

ACE digital computer was finally finished in mid-1950, but in the mean-

time a physical Homeostat had been finished in 1948 (Ashby 1948). The

Manchester Mark 1, often regarded as the world’s first full-scale stored-

program digital computer and the project with which Turing was by then

associated, was built a few months after this. It is very interesting to note

that Ashby was considering using a general-purpose programmable digital
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computer to demonstrate and explore his theories before any such ma-

chine even existed. It would be many years before computational modeling

became commonplace in science.

Grey Walter’s tortoises were probably the first ever wheeled mobile au-

tonomous robots. The devices were three-wheeled and turtle-like, sporting

a protective ‘‘shell’’ (see figure 6.4). These vehicles had a light sensor, touch

sensor, propulsion motor, steering motor, and an electronic valve–based

analogue ‘‘nervous system.’’ Walter’s intention was to show that even in a

very simple nervous system (the tortoises had two artificial neurons), com-

plexity could arise out of the interactions between its units. By studying

whole embodied sensorimotor systems, he was pioneering a style of re-

search that was to become very prominent in AI many years later, and

remains so today (Brooks 1999; Holland 2003). Between Easter 1948 and

Christmas 1949, he built the first tortoises, Elmer and Elsie. They had simi-

lar circuits and electronics, but their shells and motors were a little differ-

Figure 6.4

W. Grey Walter watches one of his tortoises push aside some wooden blocks on its

way back to its hutch. Circa 1952.
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ent. They were rather unreliable and required frequent attention. The

robots were capable of phototaxis, by which they could find their way to a

recharging station when they ran low on battery power. In 1951, his tech-

nician, W. J. ‘‘Bunny’’ Warren, designed and built six new tortoises for him

to a high professional standard. Three of these tortoises were exhibited at

the Festival of Britain in 1951; others were demonstrated in public regularly

throughout the fifties. He referred to the devices as Machina speculatrix after

their apparent tendency to speculatively explore their environment.

Walter was able to demonstrate a variety of interesting behaviors as the

robots interacted with their environment and each other (Walter 1950a,

1953). In one experiment he watched as the robot moved in front of a mir-

ror and responded to its own reflection. ‘‘It began flickering,’’ he wrote

(Walter 1953). ‘‘Twittering, and jigging like a clumsy Narcissus.’’ Walter

argued that if this behavior was observed in an animal it ‘‘might be

accepted as evidence of some degree of self-awareness.’’

One or other of the machines was demonstrated at at least one Ratio

Club meeting. Tommy Gold recalled being fascinated by it and wondering

whether the kind of principle underlying its behavior could be adapted to

develop autonomous lawnmowers (Gold 2002), something that came to

pass many decades later.

There was much discussion in meetings of what kind of intelligent

behavior might be possible in artefacts and, more specifically, how the

new general-purpose computers might exhibit mindlike behavior. Mackay

(1951) was quick to point out that ‘‘the comparison of contemporary calcu-

lating machines with human brains appears to have little merit, and has

done much to befog the real issue, as to how far an artefact could in princi-

ple be made to show behaviour of the type which we normally regard as

characteristic of a human mind’’ (p. 105).

Interdisciplinarity

From what we have seen of its founding and membership, to comment

that the Ratio Club was an interdisciplinary organization is stating the

obvious. What is interesting, though, is that it was a successful interdisci-

plinary venture. This was partly a function of the time, when recent war-

time work and experiences encouraged the breaking down of barriers, and

was partly a function of Bates’s keen eye for the right people. Even when

war work was factored out, many of the members had very broad back-

grounds. To give a few examples: Sholl had moved from mathematical

sciences to anatomy following earlier studies in theology, zoology, and
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physiology; Uttley had degrees in mathematics and psychology; Merton

was a brilliant natural engineer (he and Dawson were later instrumental in

the adoption of digital computing techniques in experimental neurophysi-

ology). All the brain scientists had strong interests, usually going back

many years, in the use of mathematical and quantitative techniques. There

was a similar, if less marked, story among the engineers and mathemati-

cians: we have already commented on Gold’s disregard for disciplinary

boundaries; Turing was working on biological modeling; and Mackay

had started his conversion into a neuropsychologist. Most members were

open-minded, with wide-ranging interests outside science. This mix al-

lowed important issues to be discussed from genuinely different perspec-

tives, sparking off new insights.

Most members carried this spirit with them throughout their careers and

many were involved in an extraordinarily wide range of research, even if

this was within a single field. This lack of narrowness meant that most

had other strings to their bows (several were very good musicians and a

number were involved with other areas of the arts), sometimes starting

whole new careers in retirement (see figures 6.5 and 6.6). For example,

Woodward’s enormous success in clockmaking has been mentioned, and

in later life Slater became an expert on the use of statistical evidence in ana-

lyzing the authorship of Shakespearean texts.

A key ingredient in the club’s success was its informal, relaxed character,

which encouraged unconstrained contributions and made meetings fun.

Another was the fact that it had a fairly strong focus right from the start:

new ways of looking at mechanisms underlying intelligent behavior, par-

ticularly from a biological perspective.

The Legacy of the Club

In the United States, the cybernetics movement organized the Josiah Macy

Foundation conferences, held between 1946 and 1953, whose published

proceedings made the papers presented available a year or so after each

meeting. Verbatim transcripts, they were lightly edited by Heinz von Foer-

ster, and so the substance of all the presentations and discussions was

readily available to the academic community and the public, where they

had considerable influence. In the UK, by contrast, no detailed records of

the Ratio Club’s meetings were made, let alone circulated or published,

and so in assessing the influence of the Ratio Club, it is clear that it can

only have been of two kinds: the influence of its members on one another,

and the consequences of that influence for their own work.
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Figure 6.5

Jack Good at home in 2002. The sculpture above his head, Jack Good’s Dream, was

made in glass by an artist friend and exhibited at the famous 1968 Cybernetic Seren-

dipity show at the Institute of Contemporary Art, London. It is based on a geometric

construction of intersecting cylinders and spheres—the formation came to Jack in a

dream.
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Unraveling such influences is nontrivial, but we have already seen testa-

ments from several members on how important the club was to the devel-

opment of their research. In 1981, after coming across some long-forgotten

Ratio Club material, Pringle (1981) was prompted to write to Bates:

Dear John,

Going through some drawers of papers today in the lab, I came across a photo-

graph of 17 members of the Ratio Club. . . . It occurs to me that someone ought to

write up the history of the club, since it was in the old 17th century tradition and,

to me at any rate, was a most valuable stimulus at a time when I was only just getting

back into biology after the war.

He also wrote to Mackay, who agreed on the importance of the club and

sent his Ratio Club papers to help with the history Pringle and Bates

planned to put together. Unfortunately this venture stalled.

Pringle’s response to the club was typical of its effect on many members,

particularly the biologists: it acted as an inspiration and a spur. Much sub-

sequent work of members had at least partial origins in club discussions.

The important influence on Barlow has already been explained; given his

Figure 6.6

Philip Woodward at home in 2002. In the background is one of the mechanical

clocks he has designed and built. His W5 clock is one of the most accurate pendulum

controlled clocks ever made. It has won a number of international awards and helped

to make Woodward one of the most celebrated horologists of our times.
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major impact on neuroscience, if all the club had done was to put Barlow

on the road he traveled, it would be of significance. Clearly it did much

more than that. As a mark of his debt to the Ratio Club, Uttley included

the photograph of its members (figure 6.2) in his 1979 book, Information

Transmission in the Nervous System (Uttley 1979). The influence of the biol-

ogist in the club appears to have played an important role in Mackay’s

transformation from physicist to prominent neuropsychologist. The pages

of Ashby’s private journals, in which he meticulously recorded his scientific

ideas as they developed, show that the club had some influence on him,

although how much is hard to judge—before becoming very well known,

he had worked on his theories in isolation for years, and there was always

something of the outsider about him. His grandson John has pointed out

that Ashby’s most prolific years, as far as scientific journal writing was con-

cerned, exactly coincided with the Ratio years (Ashby 2004). In all events

he was an active member who rarely missed a meeting.

Most members went on to pursue highly distinguished careers. Many

gained professorships at prestigious universities, and between them they

were awarded a host of prizes and honors, including seven fellowships of

the Royal Society and a CBE (Commander of the British Empire) to Slater

for services to psychiatry. Four members (Barlow, Rushton, Gold, Walter)

came within striking distance of a Nobel Prize (many feel that at least Rush-

ton and Barlow should have received one) and Turing’s work is likely to be

remembered for centuries. Many papers and books written by members of

the group, including those produced during the Ratio Club years, are still

widely cited, with many ideas and techniques that emanated from the

club’s members very much in currency today.

Uttley and Mackay went on to set up and run successful interdisciplinary

groups, at the National Physical Laboratory and Keele University, respec-

tively; it is likely that their experience of the extraordinary club influenced

them in these ventures.

So how should we assess the club’s contribution? It seems to have served

a number of purposes during a narrow and very specific window in time. It

influenced a relatively small group of British scientists in their postwar

careers; given the degree of eminence many of them reached, and their in-

fluence on subsequent generations, this turned out to be highly significant.

It certainly concentrated and channeled the cybernetic currents that had

developed independently in the UK during the war. It also provided a con-

duit for the new ideas from the United States to be integrated into work

in the UK. It stimulated the introduction into biology of cybernetic ideas,

and in particular of information theory. And, perhaps appropriately for

The Ratio Club 141



a cybernetic organization, it stopped meeting when these purposes had

been achieved.

This chapter can only serve as an introduction to the life and times of the

club and its members; there is still much to tell.
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7 FromMechanisms of Adaptation to Intelligence Amplifiers:

The Philosophy of W. Ross Ashby

Peter M. Asaro

During the last few years it has become apparent that the concept of ‘‘machine’’

must be very greatly extended if it is to include the most modern developments. Es-

pecially is this true if we are studying the brain and attempting to identify the type of

mechanism that is responsible for the brain’s outstanding powers of thought and

action. It has become apparent that when we used to doubt whether the brain could

be a machine, our doubts were due chiefly to the fact that by ‘‘machine’’ we under-

stood some mechanism of very simple type. Familiar with the bicycle and the type-

writer, we were in great danger of taking them as the type of all machines. The last

decade, however, has corrected this error. It has taught us how restricted our outlook

used to be; for it developed mechanisms that far transcended the utmost that had

been thought possible, and taught us that ‘‘mechanism’’ was still far from exhausted

in its possibilities. Today we know only that the possibilities extend beyond our far-

thest vision.

—W. Ross Ashby (1951, p. 1).

The idea that intelligence could be imitated by machines has appeared in

numerous forms and places in history. Yet it was in the twentieth century,

in Europe and North America, that these metaphorical ideas were trans-

formed into scientific theories and technological artifacts. Among the

numerous scientists who pursued mechanistic theories of intelligence in

the last century, W. Ross Ashby (1903–1972) stands out as a particularly

unique and interesting figure. A medical doctor and psychiatrist by train-

ing, Ashby approached the brain as being first and foremost an organ of

the body. Like other organs the brain had specific biological functions to

perform. Ashby further believed that through a thoughtful analysis of

those functions, a quantitatively rigorous analysis of the brain’s mecha-

nisms could be devised. It was his single-minded dedication to this basic

idea that motivated his research into the mechanisms of intelligence for

more than forty years. By always insisting upon sticking to the naturalistic



functions of the brain, and to quantitative methods, Ashby was led to a

number of startling and unique insights into the nature of intelligence

that remain influential.

In this chapter I seek to sketch an intellectual portrait of Ashby’s thought

from his earliest work on the mechanisms of intelligence in 1940 through

the birth of what is now called Artificial Intelligence (AI), around 1956, and

to the end of Ashby’s career in 1972. This period of Ashby’s intellectual

development is particularly interesting in his attempts to grasp the basic

behaviors of the brain through the use of mechanical concepts. It is unique

in the way that Ashby used rather sophisticated mechanical concepts, such

as equilibrium and amplification, which were not particularly favored by

other researchers. And moreover, he used these concepts not merely meta-

phorically, but also imported their associated mathematical formulations as

a basis for quantifying intelligent behavior. As a result of this, we can see in

Ashby’s work both great insight and a truly original approach to the mech-

anisms of intelligence.

Ashby’s professional career, beginning in 1928 and lasting until his

death, is itself a remarkable tale that merits further research. He was the au-

thor of two enormously influential books in the early history of cybernet-

ics, Design for a Brain (1952c) and An Introduction to Cybernetics (1956b).1

Between his written contributions and his participation in the scientific

community of cybernetics and its conferences and meetings, Ashby is con-

sidered to be one of the pioneers, or even cofounders, of cybernetics, which

in turn gave rise to AI.

Our primary concern, however, will be with the central tenets of Ashby’s

thought. In particular we seek to discover the problems that motivated his

thought, the conceptual form that he gave to those specific problems, and

how their resolution resulted in a new mechanistic understanding of the

brain and intelligence. This recounting of Ashby’s mental philosophy will

proceed in a roughly chronological fashion. We shall begin by examining

his earliest published works on adaptation and equilibrium, and the con-

ceptual structure of his notions of the mechanisms of control in biological

systems. In particular we will examine his conceptions of mechanism, equi-

librium, stability, and the role of breakdown in achieving equilibrium. We

shall then proceed to his work on refining the concept of ‘‘intelligence,’’

on the possibility of the mechanical augmentation and amplification of

human intelligence, and on how machines might be built that surpass

human understanding in their capabilities. I conclude with a consideration

of the significance of his philosophy, and its role in cybernetic thought.
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Figure 7.1

Ashby in front of his house, Westons, in 1960. Used with permission of the Trustees

of the Estate of W. Ross Ashby.
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The Mechanism of Adaptation

Given that Ashby was trained in medical psychiatry, and that his early

work focused on neurological disorders from a strongly medical and physi-

ological perspective, it might seem curious that he should come to be one

of the leading proponents of a mechanical perspective on the mind. Me-

chanics has had a long and successful scientific history, and certainly

scientists and philosophers before him had submitted that the brain, and

perhaps also the mind, were in some sense machine-like. Roberto Corde-

schi (2002) has carefully illustrated how a group of psychologists were argu-

ing about possible mechanisms that could achieve mental capabilities, and

were seeking to give a purely mechanistic explanation of mental capacities

in the early decades of the twentieth century. Yet these scientific debates

dwelled on the proper ways to separate out the mechanistic from the meta-

physical aspects of psychology—consciousness, voluntary actions, and the

spiritual aspects of mind. These scientists did propose specific types of

mechanisms, such as Jacques Loeb’s (1900) orientation mechanisms, and

also built electronic automata to demonstrate these principles, such as

John Hammond Jr. and Benjamin Miessner’s (1915) phototropic robot

(Miessner 1916). While these sorts of behaviors were interesting, for Ashby

they were not sufficient to demonstrate that intelligence itself was mecha-

nistic. Ashby knew that a mechanistic approach to the mind would have to

deal with the most complex behaviors as well as the simplest, and do so

with a single explanatory framework. It was with this goal in mind that he

elaborated on the mechanistic nature of adaptation, as a route from simple

physiology to complex forms of learning.

Another aspect of Ashby’s work, shared with the pre-cybernetic and

cybernetic mechanists, was that the development of theories of the brain

and behavior went hand in hand with the development of technologies

that exploited these theories in novel artefacts. Ashby summarized his

own intellectual career in 1967 by saying (1967, p. 20):

Since opening my first note-book on the subject in 1928, I have worked to increase

our understanding of the mechanistic aspect of ‘‘intelligence,’’ partly to obtain a bet-

ter insight into the processes of the living brain, partly to bring the same processes

into action synthetically.

In many ways the construction of synthetic brains was integral to the the-

orization of the living brain. Cordeschi (2002) has called this approach the

‘‘synthetic method,’’ and it continues in many areas of AI and robotics.2

Although this essay focuses on the theoretical development of Ashby’s
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thought, there is a deep technological aspect to that development and the

machines Ashby built are worthy of consideration in their own right (Asaro

2006).

To understand how the key aspects of the transformation of psychologi-

cal concepts to mechanical explanations took place in Ashby’s thought, we

must look at the unique way in which he reconceptualized the observed

behavior of thinking creatures as being equivalent to the mechanical pro-

cesses of physical devices. Ashby’s views on these matters warrant careful

consideration insofar as they do not fall easily into the categories employed

by contemporary philosophers of mind, such as reductive materialism or

straightforward functionalism. Ashby (1952e) did see his objective as being

to provide a physical explanation of the mind (p. 408; emphasis in all

excerpts is as in the original except where noted):

The invasion of psychology by cybernetics is making us realize that the ordinary

concepts of psychology must be reformulated in the language of physics if a physical

explanation of the ordinary psychological phenomena is to become possible. Some

psychological concepts can be re-formulated more or less easily, but others are

much more difficult, and the investigator must have a deep insight if the physical

reality behind the psychological phenomena is to be perceived.

But his views on this matter are rather more complex than merely attempt-

ing to reduce mental processes to physical or physiological processes in the

brain. As he expressed in a review of J. C. Eccles’s The Neurophysiological

Basis of Mind (Ashby 1954, p. 511):

The last two chapters, however—those on the cortex and its highest functions—fall

off sadly, as so often happens when those who have spent much time studying the

minutiae of the nervous system begin to consider its action as a whole; yet it is diffi-

cult to see, while present-day neurophysiology is limited to the study of the finest

details in an organism carefully isolated from its environment, how the neurophysio-

logist’s account could have been improved. The last two chapters, in fact, show only

too clearly how ill adapted classical neurophysiology is to undertake the study of the

brain’s highest functions. At the moment it is far too concerned with details, and its

technical resources are leading it only into the ever smaller. As a result, the neuro-

physiologist who starts to examine the highest functions is like a microscopist who,

hearing there are galaxies to be looked at, has no better resource than to point his

microscope at the sky. He must not be surprised if he sees only a blur.

Ashby recognizes that the instruments of investigation shape what one

finds, and the question is what instruments to use to study the brain. Like

other scientists who were trying to draw similar conclusions about the

physical basis of mentality at the time, Ashby did believe that mental and
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psychological processes were essentially physical and chemical processes,

but he argued that this did not mean that they could be explained and un-

derstood by simply appealing to some deeper or more fundamental level of

analysis, such as physiology, in the quote. He believed that the methodol-

ogy of physical analysis could be applied to mental states directly, the way

statistical mechanics could be applied to a volume of gas to describe its

behavior without being concerned with the motions of the individual mol-

ecules within the gas in order to characterize the relationships between

pressure, volume, temperature, and so forth. Thus, Ashby sought to apply

mechanistic analysis to the gross holistic organization of behavior directly,

not merely to low-level processes, and to thereby demonstrate the general

mechanisms by which the brain could achieve mental performances.

The first step in this conceptual move was not a purely metaphysical

argument, though its conclusion had profound metaphysical implications.

It was primarily an epistemological argument by analogy. Instead of con-

sidering the metaphysical arguments directly, he took an epistemological

approach which sought to explain the mental phenomena of ‘‘adaptation’’

by an analogy to a physical mechanical process of ‘‘equilibrium.’’ This

approach is epistemological insofar as it attempts to show that we can

know or understand the mind the same way we understand mechanical

processes—by virtue of the analogy made between them. This is in contrast

to others, who pursued a metaphysical argument that the mind must sub-

mit to mechanistic explanation because it was necessarily made up of the

obviously physical brain—though Ashby also believed this, indeed took it

for granted. His particular argument by analogy in fact appeals to the meta-

physical necessity of equilibrium, but rather than argue that adaptation is

reducible to this concept, shows that it is equivalent, and hence can be ana-

lyzed and studied in the same manner as mechanical processes but independent

of its specific material composition. And so, it is how one comes to know a

thing that is primary to the argument, and not its ‘‘essence.’’

The central argument of Ashby’s mechanistic approach first appears in

‘‘Adaptation and Equilibrium’’ (1940). The title discloses the two concepts

that he argues are analogous. In its final formulation, the analogy he

argued for was that adaptive behavior, such as when a kitten learns to avoid

the hot embers from a fire, was equivalent to the behavior of a system in

equilibrium. In establishing this analogy, he shows that the biological phe-

nomena of adaptive behavior can be described with the language and

mathematical rigor of physical systems in states of equilibrium. In his own

summary (p. 483):
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Animal and human behavior shows many features. Among them is the peculiar

phenomenon of ‘‘adaptiveness.’’ Although this fact is easily recognized in any given

case, yet it is difficult to define with precision. It is suggested here that adaptive be-

havior may be identical with the behavior of a system in stable equilibrium, and that

this latter concept may, with advantage, be substituted for the former. The advan-

tages of this latter concept are that (1) it is purely objective, (2) it avoids all meta-

physical complications of ‘‘purpose,’’ (3) it is precise in its definition, and (4) it

lends itself immediately to quantitative studies.3

Thus Ashby suggests that a well-understood mechanical concept, carrying

with it an extensive set of mathematical tools, ought be substituted for the

vague conception of adaptive behavior in common usage. This passage also

makes clear that Ashby’s motivation in seeking a mechanistic explanation

of mental phenomena is to provide a new basis for scientific study, and to

sidestep rather than resolve any outstanding philosophical problems. It is

also apparent that he was aware of the metaphysical issues surrounding

the mind and believed that by conceiving of adaptation as equilibrium in

this way one could avoid them.

The first half of the analogy depends upon establishing the importance

of adaptive behavior in living and thinking things. Ashby begins by argu-

ing that a peculiar feature of living organisms is their adaptive behavior.

While definitions of life might variously include such requirements as mo-

tive, vegetive, or reproductive capacities, essential to this argument was the

notion that the capacity for adaptation is necessary, and possibly sufficient,

for something to be a living organism. In his second paper on the subject,

‘‘The Physical Origin of Adaptation by Trial and Error’’ (1945), Ashby elab-

orated on the role of adaptation in biological organisms, and to this end

quoted various biologists, including Jennings (p. 14, quoting Jennings

1915):

Organisms do those things that advance their welfare. If the environment changes,

the organism changes to meet the new conditions. . . . If the mammal is cooled from

without, it heats from within, maintaining the temperature that is to its advan-

tage. . . . In innumerable details it does those things that are good for it.

It is important to note that Ashby did not restrict his conception of adap-

tation to the Darwinian notion of adaptation by natural selection, though

he certainly considered this to be a profoundly important form of adapta-

tion, as his later writings make clear. Adaptation is then quickly extended

from the physiological reactions of whole species to include also the notion

of a behavioral response to a novel stimulus by an individual animal—the

groundwork for a bridge between biology and behavioral psychology—and
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further generalized to include any observable behavior at all. In Ashby’s

favorite example, the kitten will not at first avoid the glowing embers

from a fire, will burn its paw, and will thereafter avoid the fire; the resulting

observed behavior is ‘‘adapted’’ insofar as it was the result of the kitten’s in-

dividual experience of the world.4

The other half of the analogy, equilibrium, was seen to provide a rigorous

set of analytical tools for thinking about the mind by importing the math-

ematical theory of mechanisms. Equilibrium is initially defined as a meta-

physical necessity (Ashby 1940, p. 482):

Finally, there is one point of fundamental importance which must be grasped. It is

that stable equilibrium is necessary for existence, and that systems in unstable equilib-

rium inevitably destroy themselves. Consequently, if we find that a system persists, in

spite of the usual small disturbances which affect every physical body, then we may

draw the conclusion with absolute certainty that the system must be in stable equi-

librium. This may sound dogmatic, but I can see no escape from this deduction.

Ashby later (1945) employed the simpler definition of the physicist Hen-

drik Lorentz (1927): ‘‘By a state of equilibrium of a system we mean a state

in which it can persist permanently’’ (p. 15). Since many equilibrium states

are precarious and unlikely, Ashby further qualifies this by accepting the

definition of a ‘‘stable’’ equilibrium as one in which a system will return to

the equilibrium state even when some of its variables are disturbed slightly.

For example, a cube resting on a table is in a stable equilibrium since it will

return to the same state if tilted slightly and released. By contrast, though it

might be possible to balance a cone on its point, under the slightest distur-

bance it will not return to the balanced state but will fall into a remote state

and thus is in an odd sort of equilibrium if so balanced—an ‘‘unstable’’

equilibrium. A sphere resting on a table represents a ‘‘neutral’’ equilibrium,

which is stable at many adjacent states and can be moved freely and

smoothly between those states.5 He clarifies the concept’s meaning (Ashby

1940, pp. 479, 483):

We must notice some minor points at this stage. Firstly, we notice that ‘‘stable equi-

librium’’ does not mean immobility. A body, e.g. a pendulum swinging, may vary

considerably and yet be in stable equilibrium the whole time. Secondly, we note

that the concept of ‘‘equilibrium’’ is essentially a dynamic one. If we just look at the

three bodies [cube, cone, and sphere] on our table and do nothing with them the

concept of equilibrium can hardly be said to have any particular meaning. It is only

when we disturb the bodies and observe their subsequent reactions that the concept

develops its full meaning. . . .

The question of whether adaptiveness is always equivalent to ‘‘stable equilibrium’’

is difficult. First we must study the nature of ‘‘adaptiveness’’ a little closer.
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We note that in all cases adaptiveness is shown only in relation to some specific

situation: an animal in a void can show neither good nor bad adaptation. Further, it

is clear that this situation or environment must affect the animal in some manner,

i.e. must change it, since otherwise the animal is just receiving the stimulus without

responding to it. This means that we are dealing with a circuit, for we have, first: en-

vironment has an effect on the animal, and then: the animal has some effect on the

environment. The concept of adaptive behavior deals with the relationship between

the two effects. It becomes meaningless if we try to remove one of the effects.

These points are by no means minor, but reflect Ashby’s insistence on

explaining the dynamic processes of observable phenomena, and how this

can be done in terms of mechanisms seeking equilibrium.

The emphasis on ‘‘behavior’’ here, and throughout Ashby’s work, is

probably best read not as a commitment to, or sympathy for, behaviorism,

but as an insistence on the epistemological limitations of science to observ-

able phenomena. ‘‘Adaptation,’’ like other scientific concepts, is nothing

more than a set of observed reactions of various systems under different

conditions. Those conditions are crucial insofar as the environment pro-

vides the context for the actions and reactions—the behavior—of a system,

a necessary link in the chain of cause and effect. ‘‘Observation’’ is also cru-

cial here, as it is throughout cybernetics, as the basis for determining the

system and phenomena in question—both are meaningless in the absence

of an observer. This is most likely an inheritance from positivism, which

Ashby’s approach shared to some extent with behaviorism in its insis-

tence on ‘‘observable behaviors’’ in the form of responses in conditioned

response. Although Ashby drew on behaviorist methodology, he went

beyond its theory to posit the mechanism that controlled and extended

behaviors. Pavlovian conditioning reinforced existing behaviors, and ex-

plained responses to stimuli based on this type of conditioning, but made

no attempt to explain the mechanisms that supported this kind of

conditioning.

Mechanical theory was of particular interest to Ashby by virtue of its

potential for supplying a mathematical basis for psychology. A mathemati-

cal model of a state-determined mechanical system, such as those used by

engineers at the time, involves several parameters divided into variables

and constants in a set of equations or functions. When such a model is of

a linear dynamical system, the values of the variables at one time deter-

mine the values at future times in a deterministic fashion—the functions

generate the values for the next time-step from the values at the current

time-step. The values of the variables in such a system may eventually

stop changing. For example, if we were to observe the value of the angular
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displacement of a pendulum—how far it is from pointing straight down—

that value would appear to grow and shrink and grow a little less with each

swing until it eventually settled down to zero. An equilibrium in these sys-

tems is an assignment of values to the variables such that the variables will

not change in future time-steps under the rules governing the system, such

as when the pendulum rests pointing straight down. If a particular model

does not have an equilibrium state, the variables will continue changing

endlessly, typically with their values going to extreme limits. Such systems,

Ashby argues, are not often found in nature—he can think only of a comet

being hurled into deep space, never to return. Most of the systems found

in nature, as well as human-made machines, have equilibria in which the

variables settle to constant or cyclically repetitive values.

In fact, when an actual machine does not arrive at an equilibrium, it

exhibits an intriguing phenomenon—it breaks (Ashby 1945, p. 17):

What happens to machines, as defined above, in time? The first point is that, in prac-

tice, they all arrive sooner or later at some equilibrium (in the general sense defined

above). Thus, suppose we start with a great number of haphazardly assembled

machines which are given random configurations and then started. Those which are

tending towards equilibrium states will arrive at them and will then stop there. But

what of the others, some of whose variables are increasing indefinitely? In practice

the result is almost invariable—something breaks. Thus, quicker movements in a ma-

chine lead in the end to mechanical breaks; increasing electric currents or potentials

lead inevitably to the fusing of wires or the break-down of insulation; increasing

pressures lead to bursts; increasing temperatures lead to structures melting; even in

chemical dynamics, increasing concentrations sooner or later meet saturation.

A break is unlike the normal changes in a dynamic machine in an impor-

tant way. A break is a change in the organization of a system. In changing

its organization, the machine ceases to be the machine it was and becomes

a new machine. In the mathematical theory of mechanisms, the equations

or functions that previously defined the system no longer hold true. To de-

scribe the change mathematically we must either define a new system of

equations or must have previously defined a set of equations containing

constants (parameters) whose values can represent the current and alter-

nate organizations of the machine. When the machine ‘‘breaks,’’ those

values change and consequently the relationships between the variables of

the system suddenly become different. And while the variables in a system

can change either in discrete steps or continuously, a break, or change

in the parameters, is necessarily a discontinuous change from one distinct

organization to another distinct organization—what Ashby called a step-

function.
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Given this understanding of equilibrium and the dynamics of machines,

the analogy to adaptation becomes clear (Ashby 1945, p. 17):

We may state this principle in the form: dynamic systems stop breaking when, and

only when, they reach a state of equilibrium. And since a ‘‘break’’ is a change of or-

ganization, the principle may be restated in the more important form: all dynamic

systems change their internal organizations spontaneously until they arrive at some state of

equilibrium.

The process of breaking continues indefinitely as long as the variables

describing the system continue to exceed tolerable limits on their values—

that is, until the variables can be kept within certain limits. The instances

of unbounded variables in nature, like the comet, are quite rare. By then

applying this understanding to biological organisms, he argues that the

organism adapts to its environment by successive trials of internal reorgani-

zation until it finds an equilibrium in which its physiological needs are

met. In later writings, Ashby (1952a, c) stressed the importance of certain

‘‘essential variables,’’ which the organism must maintain within certain

limits in order to stay alive, such as body temperature, blood sugar level,

and so forth. In its psychological formulation, the thinking system behaves

so as to seek and approach a ‘‘goal,’’ defined as a set of desired values over

certain variables. The organism thus seeks to find an equilibrium of a spe-

cial kind, one in which essential variables are kept within their safe and

vital limits, or in which a goal is satisfied.

What seems perhaps most curious in this conceptual transformation is

the productive power placed in breakdowns. Generally, a breakdown is

seen as undesirable, something to be avoided, and the mark of a bad ma-

chine. Here it has become the supreme virtue of living machines: the cre-

ative drive, the power to generate alternative organizations in order to

adapt to the environment. This result is in part due to the rigid structures

of mathematics: it is easy to represent change in variables, but a change in

the relationships between variables cannot be as easily expressed. In order

to describe a machine that changes its dynamics, it is necessary to switch

from one set of functions to another. Ultimately, Ashby would cease using

the language of ‘‘breakdowns’’ and replace it with the language of ‘‘step-

functions,’’ a mathematical formulation that broadened the representation

of a system to include its possible organizations and the discontinuous

transitions between those organizations.

A similar tension is reflected also in the seeming banality of equilib-

rium—a system in equilibrium just stops, every dead thing and piece

of inert matter is in a state of equilibrium. How can equilibrium be the

From Mechanisms of Adaptation to Intelligence Amplifiers 159



ultimate goal of life when it implies a kind of stasis? What makes one

kind of equilibrium indicative of life, is that it is dynamic and is not uniform

over the total system. The living system can maintain some desired portion

of its organization in equilibrium, the essential variables, even as the rest of

the system changes dynamically in response to disturbances that threaten

to destroy that desired equilibrium. For Ashby, this involved developing

his conception of ‘‘ultrastability’’—the power of a system to always find a

suitable equilibrium despite changes in its environmental conditions. That

is, the organism achieves a certain kind of stability for a few vital variables

such as blood-sugar level, by varying other variables that it controls, some-

times wildly, as when an animal searches for food to maintain its blood-

sugar levels.

The idea of equating adaptation and equilibrium appears to be unique to

Ashby, though it bears strong similarities to ideas such as ‘‘negative feed-

back,’’ which were being developed by other cyberneticians at the time.

Ashby continued to cite and restate this analogy and argument throughout

his career and used it as the basis of his first book, Design for a Brain (1952c);

he never changed it significantly. Once it was published, he appears to

have focused his energies on promoting the idea in various ways, including

explicating its relationship to the ideas of other cyberneticians, including

‘‘negative feedback,’’ and finding new expressions of the idea in his writ-

ings and in working machines. We now turn to the most notorious of these

machines.

The Homeostat, completed in 1948, is a fascinating machine for several

reasons. Most obvious is that it is a machine with an odd sort of purpose.

It does not ‘‘do’’ anything in the sense that a machine generally serves

some useful human purpose; unlike a bicycle or typewriter, it has no real

practical application. On the other hand, it has its own ‘‘purpose’’ in the

purest sense given by cybernetics: its equilibrium-seeking behavior is goal-

oriented and controlled by negative feedback and so it is a teleological

mechanism. This means that the machine itself has a goal, as revealed by

its behavior, which may or may not have anything to do with the goals

of its designer, a distinction that was to be further elaborated in Ashby’s

philosophy.

Most interesting, perhaps, is its role as a scientific model (Asaro 2006). It

stands as a working physical simulation of Ashby’s theory of mental adap-

tation. As a simulation it offers a powerful illustration of his conception of

adaptive behavior in all kinds of systems, and in this regard its isomorphic

correspondence to elements of his abstract theory are crucial. To see these

correspondences, a brief description of the device is helpful.
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The classic setup of the Homeostat consisted of four independent units,

each one connected directly to each of the other three through circuits

whose resistance could be controlled by either a preset switch or a random-

izing circuit, called a ‘‘uniselector.’’ They could ‘‘adapt’’ to one another by

adjusting the resistances in the circuits that connected them, provided that

the uniselector was engaged instead of the preset switches. Each unit fea-

tured a trough of water on top that contained an electrical field gradient

and that had a metal needle dipping into it. By virtue of its connection to

the current from the other units via the resistors and uniselectors, this

needle acted as an indicator of the state of the unit: being in the middle of

the trough represented a ‘‘stable’’ position, and being at either end of the

trough represented an unstable position. Due to a relay that involved the

position of the needle, whenever the needle was outside a central position

in the trough it would send a charge to a capacitor. When the capacitor

reached a predetermined charge level it would discharge into the uniselec-

tor, causing it to switch to a new random resistance in the circuit. These

were only pseudo-random, however, as the resistances were derived from a

table of random numbers and hard-wired into the uniselector, which

stepped through them sequentially (see figure 6.3, p. 134, for a photograph

of the device).

The correspondence between the Homeostat and Ashby’s theory of

mechanistic adaptation rests on an isomorphism between ‘‘random varia-

tions’’ and the operation of the uniselector circuit elements; between

‘‘acceptable values for essential variables’’ and the relay controlling the

energizing capacitor for the uniselectors; between ‘‘equilibrium’’ and the

visible needle resting in the middle of the trough; and between the wildly

behaving needles of a machine out of control and a system that continues

to ‘‘break’’ up its internal organization through step-functions until it finds

equilibrium.

In a later paper, ‘‘Simulation of a Brain,’’ Ashby (1962) discusses the

objectives of modeling and simulation directly. In that paper he defines

a model formally as a system that stands in relation to another system by

virtue of an explicit mapping between sets of elements. He asserts that

physical as well as mathematical and symbolic forms can stand in such

relationships. He also insists that the value of the formal definition is that

it provides a quantitative measure of the closeness of a model to the origi-

nal system by virtue of the number of relationships shared among the

members of the two sets. Given this definition of a model, he argues that

there are three virtues to simulations, as physical models, which contribute

to scientific progress. The first is their vividness: to clearly express a concept

From Mechanisms of Adaptation to Intelligence Amplifiers 161



in an easily graspable form. The second is their function as an archive: to

stand as a repository of built-up knowledge that might be too vast and

complex to be written out or grasped all at once by an individual. The final

virtue of simulations is their capacity to facilitate deduction and exploration:

to resolve disputes, disprove hypotheses, and provide a basis for scientific

inquiry into areas that, without simulations, would otherwise remain spec-

ulative (Ashby 1962, pp. 461–64). He offers the Homeostat as an example

of a simulation useful in scientific education for demonstrating that goal-

seeking behavior, as a trial-and-error search for equilibrium, presents a fun-

damentally different kind of mechanical process—negative feedback with

step-functions—and opens up new vistas of possibility for what machines

might be capable of doing. I have argued elsewhere (Asaro 2006) that work-

ing brain models such as the Homeostat also served an important role in

mediating between theories of behavior and physiological theories of neu-

rons in the development of the mechanistic theory of the mind.

Designs for Intelligence

With the analogy between adaptation and equilibrium firmly in place,

Ashby turned his attention to demonstrating the significance and potential

applications of this new insight. His effort consisted of two distinct parts:

the development of other simulations, such as the Dispersive And Multi-

stable System (DAMS) made of thermionic valves and neon light tubes

(Ashby 1951), in order to demonstrate his ideas in more tangible forms;

and the continuing articulation of a clear and compelling rhetorical frame-

work for discussing the problems of designing intelligent machines. The

machines Ashby developed are deserving of further study as technological

artifacts built on unique principles of design, but a discussion of these

would take us to remote regions of his mental philosophy, whereas we are

concerned only with its central features. In the following sections, we will

consider the further development of his theoretical views. We shall begin

by looking at Ashby’s formal articulation of a ‘‘problem’’ that his mecha-

nism of adaptation could ‘‘solve,’’ and then to how this problem-solving

mechanism could be generalized to solving more significant and compel-

ling problems. In so doing we shall examine his definition of intelligence

and how it could be fully mechanized. Throughout these efforts, Ashby

sought to motivate and inspire the belief that a revolution had occurred in

our understanding of machines, and that the mechanism of adaptation

might ultimately result in machines capable of impressive and even super-

human performances.
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The Problem of the Mechanical Chess Player

While satisfied with the soundness of his argument for the possibility of an

adaptive mechanism, Ashby felt compelled to demonstrate the full signifi-

cance and implications of this possibility to an audience beyond the hand-

ful of psychiatrists and cyberneticians with whom he had contact. To do

this, he developed a clear and compelling problem through which audi-

ences could grasp this significance. The example he elaborated on was the

‘‘Problem of the Mechanical Chess Player,’’ which he credited to his experi-

ences in casual conversations, most likely with the members of the Ratio

Club, such as Alan Turing, who were very interested in the mathematical

problems of chess play. Ashby took the problem in a different direction

than Turing and subsequent AI researchers did, and used this as an imagi-

native, and thus compelling, example of the basic problem of the very

possibility of mechanized thought, which could be formalized using the

analytical apparatus borrowed from mechanical theory. The rhetorical de-

velopment of the problem of the mechanical chess player is interesting be-

cause it starts by raising some fundamental issues of metaphysics, but once

properly formulated as a technical problem, it could be decisively resolved

by the demonstrated performance of a working machine. Just how this was

achieved we shall now see.

The metaphysical problem of the mechanical chess player was how (or in

its weaker form, whether) it could be possible to design a machine that has a

greater range or skill in performance than what its designer had provided

for it by its design—in other words, whether a mechanical chess player

can outplay its designer. As Ashby (1952d) posed the question in the Ninth

Josiah Macy Jr. Foundation Conference on Cybernetics (p. 151):

The question I want to discuss is whether a mechanical chess player can outplay its

designer. I don’t say ‘‘beat’’ its designer; I say ‘‘outplay.’’ I want to set aside all

mechanical brains that beat their designer by sheer brute power of analysis. If the

designer is a mediocre player, who can see only three moves ahead, let the machine

be restricted until it, too, can see only three moves ahead. I want to consider the ma-

chine that wins by developing a deeper strategy than its designer can provide. Let us

assume that the machine cannot analyze the position right out and that it must

make judgements. The problem, then, becomes that the machine must form its

own criteria for judgement, and, if it is to beat its designer, it must form better judge-

ments than the designer can put into it. Is this possible? Can we build such a ma-

chine?

While Ashby chose to formulate the problem as whether a machine can

outplay its designer, it seems less confusing to me to formulate it as

whether a machine can outplay its design, that is, whether it can do ‘‘better’’
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than it was designed to, rather than to say that it can actually defeat the

person who designed the machine. In short, Ashby was concerned with

the ability of a machine, in this case a chess-playing machine, to acquire

knowledge and skill beyond the knowledge and skill built into it.

Ashby hoped to show this by arguing that a mechanism utilizing a

source of disorganized information, though one containing a greater vari-

ety of possibilities than the designer could enumerate, could in principle

achieve better strategies than its designer. Because a generator of random

moves could produce novel moves that no known specific or general rule

of chess would suggest, there was a possibility of finding a ‘‘supermove’’

that would not otherwise be found and so could not have been built into

the machine. Therefore, as long as a system was designed so as to allow

the input of such random possibilities, and designed with the ability to se-

lect among those possibilities, it might be possible for it to find moves and

strategies far better than any its designer could have provided.

This particular formulation in fact caused some confusion at the Macy

Conference. In the ensuing discussion of it, Julian Bigelow challenged the

distinction Ashby attempted to make between analysis and strategic judg-

ment (Ashby 1952d, pp. 152–54).6 For Bigelow, the ability to construct

strategies was itself already a kind of analysis. He argued that limiting the

analysis of the system to looking only three moves ahead necessarily put a

limitation on the number of strategies that could be considered. He also

rejected the notion that adding random noise could add any information

to the chess-playing system at all—for him information necessarily had to

have analytical import and random noise had none. To provide a resolu-

tion of this confusion and a better understanding of the role of this prob-

lem in thinking machines more generally, we must first clarify Ashby’s

conception of ‘‘design’’ and ‘‘designer,’’ as well as the formal articulation

he gave to the problem.

Ashby saw the issue as a fundamentally philosophical problem of agency

having its roots deep within the tradition of European thought. He offered,

as different formulations of the same problem, the following examples

from that tradition: ‘‘Descartes declared that there must be at least as

much reality and perfection in the cause as in the effect. Kant (General

History of Nature, 1755) asked, ‘How can work full of design build itself up

without a design and without a builder?’ ’’ (Ashby 1952b, p. 44). Descartes’s

dictum, of course, maintains that an effect cannot have more perfection

than its cause, and thus a designed system cannot be superior to its de-

signer.7 If true, the implication of this dictum is that a machine, being ca-

pable only of what its design has provided for it, can never be ‘‘better’’ than
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that design, and thus cannot improve on it. But Ashby believed that he had

already shown how a mechanism could be capable of adaptation—a kind

of improvement relative to environmental conditions. He thus saw it as

essential to prove that Descartes was wrong, and saw that the proof would

require a more rigorous formal presentation.

The crux of the problem lay in the proper definition of ‘‘design.’’ For

a proof, it was necessary to provide a formal definition that could show

clearly and quantitatively exactly what was contained in the ‘‘design’’

provided by a designer, such that this could be compared to the quantity

of the ‘‘design’’ demonstrated in the performance of the machine. He

derived these measures using the information theory of Claude E. Shannon

(1948). The quantities measured in the ‘‘design’’ and in the machine would

be information, and if a machine could be shown to ‘‘output’’ more in-

formation than was provided as ‘‘input’’ in the instructions for its construc-

tion, then the machine’s designer would have disproved Descartes’s

dictum.

Without going too far into the technical details of information theory,

the basic idea is that the quantity of information in a message is the

measure of the reduction in uncertainty that results when the message is

received. The technical definition differs significantly from the common-

sense understanding of ‘‘information’’ insofar as the information con-

tained in a message has nothing to do with the contents of the message

itself, but only with the variety in the other messages from which it was

selected, and so ‘‘information’’ is really a property of a system of communi-

cation rather than of any particular message within it. The reduction in

uncertainty upon receiving a message thus depends on the probability of

receiving the message, and also on the size of the set of possible messages

to which it belongs.8 As the number of possible messages increases, either

the number of different signals or the length of a message (composed of a

sequence of signals) must also increase in order to make each message dis-

tinct from the others. In the binary encoding of computers, there are only

two signals (or symbols), 0 and 1, and thus the length of the sequence

needed to encode a message must increase as the number of possible

messages increases in order for each message to be represented by a unique

sequence.

Ashby used the theory of information to measure ‘‘design’’ by arguing

that the choices made in a design are like the messages sent over a commu-

nication channel. That is, the significance of a choice is measured against

the number of alternatives from which it must be selected. As he states it

(Ashby 1952b, pp. 45–47):
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How are we to obtain an objective and consistent measure of the ‘‘amount of design’’

put into, or shown by, a machine? Abstractly, ‘‘designing’’ a machine means giving

selected numerical values to the available parameters. How long shall the lever be?

where shall its fulcrum be placed? how many teeth shall the cog have? what value

shall be given to the electrical resistance? what composition shall the alloy have?

and so on. Clearly, the amount of design must be related in some way to the number

of decisions made and also to the fineness of the discrimination made in the selection [em-

phasis added]. . . .

To apply the measure to a designed machine, we regard the machine as something

specified by a designer and produced, as output, from a workshop. We must therefore

consider not only the particular machine but the ensemble of machines from which

the final model has been selected [original emphasis].

If one quantifies the information contained in a design as the choices made

from among the possible alternatives, then one can make a similar move to

quantify the information exhibited by the machine’s performance. The in-

formation displayed by the machine is the number of functionally distinct

states it can exhibit—Ashby’s example is of a network consisting of a num-

ber of switches, the configuration of which determines different connectiv-

ities or states of the network. The design of the network is an assignment

of values to the switches from among all the possible assignments. In this

case, the network can only display as many states as the switches allow dif-

ferent configurations; some of the distinct assignments may be function-

ally equivalent and thus the machine may display less information than is

contained in its design. But how, then, is it possible for a machine to dis-

play more information than is contained in its design?

The demonstration of this possibility draws close to the arguments about

‘‘design’’ during the rise of evolutionary theory in the nineteenth century.

So close, in fact, that Ashby (1952b, p. 50) followed Norbert Wiener (1948)

in calling instances of such systems ‘‘Darwinian Machinery’’:

The question might seem settled, were it not for the fact, known to every biologist,

that Descartes’ dictum was proved false over ninety years ago by Darwin. He showed

that quite a simple rule, acting over a great length of time, could produce design and

adaptation far more complex than the rule that had generated it. The status of his

proof was uncertain for some time, but the work of the last thirty years, especially

that of the geneticists, has shown beyond all reasonable doubt the sufficiency of nat-

ural selection. We face therefore something of a paradox. There can be no escape by

denying the great complexity of living organisms. Neither Descartes nor Kant would

have attempted this, for they appealed to just this richness of design as evidence for

their arguments. Information theory, too, confirms this richness. Thus, suppose we

try to measure the amount of design involved in the construction of a bird that can

fly a hundred miles without resting. As a machine, it must have a very large number
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of parameters adjusted. How many cannot be stated accurately, but it is of the same

order as the number of all facts of avian anatomy, histology, and biochemistry.

Unquestionably, therefore, evolution by natural selection produces great richness of

design.

In evolution, there is an increasing amount of information displayed by

the machine, despite the fact that the design is both simple and, in a sense,

unchanging. Ashby (1952b) goes so far as to suggest that the design for a

bird might be as simple as ‘‘Take a planet with some carbon and oxygen;

irradiate it with sunshine and cosmic rays; and leave it alone for a few

hundred million years’’ (p. 52). But the mechanism responsible for evolu-

tion is difficult to directly observe in action, and it does not appear to apply

straightforwardly to a chess-playing machine.

If evolution is able to produce systems that exhibit more information

than is contained in their design, and information cannot be spontane-

ously generated, where did this extra information come from? Obviously,

this information must come in the form of an input of messages unfore-

seen by the designer (Ashby 1952b, p. 51):

The law that information cannot be created is not violated by evolution, for the

evolving system receives an endless stream of information in the form of mutations.

Whatever their origin, whether in cosmic rays or thermal noise, the fact that each

gene may, during each second change unpredictably to some other form makes

each gene a typical information source. The information received each second by

the whole gene-pattern, or by the species, is then simply the sum of the separate con-

tributions. The evolving system thus has two sources of information, that implied in

the specifications of the rules of natural selection and that implied by the inpouring

stream of mutations.

This philosophical problem was, of course, the same one which fueled

much of the controversy over Darwin’s theory in the nineteenth century—

whether the exquisite subtleties of living creatures could possibly be pro-

duced by brute natural processes or whether they necessarily required a su-

pernatural ‘‘Designer.’’ What Darwin had so carefully detailed in On the

Origin of Species by Means of Natural Selection (1859) was how natural evolu-

tionary processes could lead to speciation—the divergence in forms of two

distinct species who share a common ancestry; the branching of the tree of

common descent. Assuming that the design of a species did not change in

virtue of continuous divine intervention, the demonstration that species

did change over time, and to such an extent as to result in new species,

implied that natural evolutionary processes, in the absence of a designer,

might have given rise to all biological forms. The basic process of natural

selection choosing among the variations of form is argued to move species
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toward those forms best able to survive and reproduce. Ashby simply

placed a special emphasis on a portion of Darwin’s theory by indicating

how spontaneous variations in form provide an additional source of infor-

mation apart from any determinate design.

In biological systems, the random variations of mutation supply alterna-

tive possibilities unforeseen by any designer, and thus the organism can

evolve capacities beyond its own design. Similarly, Ashby (1952b) would

argue, by adding a random number generator, Geiger counter, or other

source of random noise to a system, we introduce the possibility of behav-

iors unforeseen in its ‘‘design’’ (p. 51):

It is now clear that the paradox arose simply because the words ‘‘cause’’ or ‘‘de-

signer,’’ in relation to a system, can be used in two senses. If they are used com-

prehensively, to mean ‘‘everything that contributes to the determination of the

system,’’ then Shannon and Descartes can agree that ‘‘a noiseless transducer or deter-

minate machine can emit only such information as is supplied to it.’’ This formula-

tion will include the process of evolution if the ‘‘cause’’ is understood to include not

only the rules of natural selection but also the mutations, specified in every detail. If,

on the other hand, by ‘‘cause’’ or ‘‘designer’’ we mean something more restricted—a

human designer, say—so that the designer is only a part of the total determination,

then the dictum is no longer true.

With the paradox thus resolved, Ashby had demonstrated the possibility

that a mechanical chess player could outplay its design(er). Further, he had

identified the key to achieving this possibility, the flow of random informa-

tion coming into the system. What remained to be shown was how this in-

formation could be made useful. A random move generator might contain

the ‘‘supermoves’’ of chess, but how would a mechanical chess player be

able to distinguish these moves from the rest? The answer to this question

required developing a new conception of intelligence suitable to the mech-

anistic theory of mind.

Amplifying Intelligence

Once the analogy between adaptation and equilibrium was firmly set in

Ashby’s philosophy as the basis for a mechanistic theory of mind, he ex-

tended the analogy freely by describing mental processes using the termi-

nology once reserved for describing machines such as steam engines and

electronic devices: the engineer’s language of ‘‘power,’’ and ‘‘energy.’’ One

of his central themes in this respect was the application of the process of

‘‘amplification’’ to mental concepts such as intelligence. This extended

analogy was not merely a rhetorical turn of phrase, but carried implications

within his theoretical framework. Ashby thus turned his attention to devel-
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oping a more rigorous definition of intelligence, and to demonstrating the

significance of the mechanical-chess-player argument by showing how its

results could be applied to practical problems. This line of thought culmi-

nated in his contribution to the first collected volume of work in the newly

emerging subfields of computer science, artificial intelligence, and au-

tomata theory: Claude Shannon and John McCarthy’s Automata Studies,

published in 1956. The paper bore the intriguing title ‘‘Design for an

Intelligence-Amplifier’’ and appeared in the final section of that volume,

entitled ‘‘Synthesis of Automata.’’ We will now examine that paper (Ashby

1956a) in detail and place its ideas in perspective with Ashby’s overall

philosophy.

Demonstrating that it was possible for a mechanical chess player to out-

play its designer might be philosophically interesting, but showing that

this discovery had practical significance would take more than arguments

of metaphysical possibility. For this purpose, Ashby further extended his

conception of the mechanisms of thought to problems of general interest,

which took the form of a device that could ‘‘amplify’’ human intelligence.

The continued reliance upon the analogy between thought and mechani-

cal physics in his conception was made clear in the introduction to the

paper (p. 215):

For over a century Man has been able to use, for his own advantage, physical powers

that far transcend those produced by his own muscles. Is it impossible that he should

develop machines with ‘‘synthetic’’ intellectual powers that will equally surpass

those of his own brain? I hope to show that recent developments have made such

machines possible—possible in the sense that their building can start today. Let us

then consider the question of building a mechanistic system for the solution of prob-

lems that are beyond the human intellect. I hope to show that such a construction is

by no means impossible, even though the constructors are themselves quite aver-

agely human. There is certainly no lack of difficult problems awaiting solution.

Mathematics provides plenty, and so does almost every branch of science. It is per-

haps in the social and economic world that such problems occur most noticeably,

both in regard to their complexity and to the great issues which depend on them.

Success in solving these problems is a matter of some urgency. We have built a civi-

lization beyond our understanding and we are finding that it is getting out of hand.

Faced with such problems, what are we to do?

Rather than hope that individuals of extraordinary intelligence will step

forward and solve such problems—a statistically unlikely eventuality—

Ashby suggested that we ought to design machines that would amplify the

intellectual powers of average humans. In the absence of careful definitions

and criteria, such devices might sound quite fanciful. But with his usual
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flare for mathematical rigor, Ashby provided those definitions and criteria

and thereby also provided further illumination of his mechanistic philoso-

phy of mind.

In resolving the problem of the mechanical chess player, Ashby had

shown that a machine could output more information than was input

through its design, by making use of other, random, information. This was

a kind of amplification—information amplification—like the amplification

of power that utilizes an input of power plus a source of free energy to out-

put much more power than was originally supplied (p. 218):

[L]et us remember that the engineers of the middle ages, familiar with the principles

of the lever and cog and pulley, must often have said that as no machine, worked by

a man, could put out more work than he put in, therefore no machine could ever

amplify a man’s power. Yet today we see one man keeping all the wheels in a factory

turning by shoveling coal into a furnace. It is instructive to notice just how it is that

today’s stoker defeats the mediaeval engineer’s dictum, while being still subject to

the law of the conservation of energy. A little thought shows that the process occurs

in two stages. In Stage One the stoker lifts the coal into the furnace; and over this

stage energy is conserved strictly. The arrival of the coal in the furnace is then the

beginning of Stage Two, in which again energy is conserved, as the burning of the

coal leads to the generation of steam and ultimately to the turning of the factory’s

wheels. By making the whole process, from stoker’s muscles to factory wheel, take

place in two stages, involving two lots of energy whose sizes can vary with some

independence, the modern engineer can obtain an overall amplification.

In the mechanical chess player, as well as in evolution, information from

the design, or problem specification, can be amplified in the same way that

the strength of a stoker is amplified by a pile of coal and a steam engine, by

the addition of free energy or random information. But the availability of

bare information is not in itself intelligence, any more than free energy is

work—these resources must be directed toward a task or goal.

What then is a suitable criterion for intelligent behavior? By starting

from a definition of information that considered only its technical implica-

tions, a definition that leaves information independent of any analysis of

it, Ashby was able to take account of analysis and judgment in his defini-

tion of intelligence. According to Ashby, intelligence implies a selection:

intelligence is the power of appropriate selection. To see what this means, con-

sider his example (p. 217):

It has often been remarked that any random sequence, if long enough, will contain

all the answers. Nothing prevents a child from doodling ‘‘cos2 x þ sin2 x ¼ 1,’’ or a

dancing mote in the sunlight from emitting the same message in Morse or a similar

code. Let us be more definite. If each of the above thirteen symbols might have been
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any one of fifty letters and elementary signs, then as 5013 is approximately 273, the

equation can be given in coded form by 73 binary symbols. Now consider a cubic

centimeter of air as a turmoil of colliding molecules. A particular molecule’s turnings

after collision, sometimes to the left and sometimes to the right, will provide a series

of binary symbols, each 73 of which, on some given code, either will or will not

represent the equation. A simple calculation from the known facts shows that the

molecules in every cubic centimeter of air are emitting this sequence correctly over

a hundred thousand times a second. The objection that ‘‘such things don’t happen’’

cannot stand. Doodling, then, or any other random activity, is capable of producing

all that is required. What spoils the child’s claim to be a mathematician is that he will

doodle, with equal readiness, such forms as ‘‘cos2 x þ sin2 x ¼ 2’’ or ‘‘ci)xsi-nx1’’ or

any other variation. After the child has had some mathematical experience he will

stop producing these other variations. He becomes not more, but less productive: he

becomes selective. [emphasis added]

In order to be intelligent, a mechanism must exhibit discipline in its behav-

ior. Thus, given an ample source of random information, the efforts toward

designing an intelligence amplifier ought to focus on the mechanisms of

appropriate selection by which the device can choose which among the

many possibilities is the desired answer. This definition constitutes a kind

of inversion of the common formulation of machine intelligence under-

stood as the ability to produce correct responses by design; intelligence is

now understood as a combination of the abilities to produce a great many

meaningless alternatives, and to eliminate by appropriate selection the incorrect

choices among those—a two-stage process.

Exactly how to construct a mechanism to make appropriate selections

thus becomes the design problem for building an intelligence amplifier.

The design of an intelligent selector involves two major parts. The first is

to establish criteria of selection that can be utilized by the machine, suffi-

cient for it to know when it has arrived at an acceptable solution to the

given problem. The second part involves coupling the selector to a source

of chaotic information which it can search through in order to find an ac-

ceptable solution (p. 223):

Consider the engineer who has, say, some ore at the foot of a mine-shaft and who

wants it brought to the surface. The power required is more than he can supply

personally. What he does is to take some system that is going to change, by the

laws of nature, from low entropy to high, and he couples this system to his ore,

perhaps through pistons and ropes, so that ‘‘low entropy’’ is coupled to ‘‘ore down’’

and ‘‘high entropy’’ to ‘‘ore up.’’ He then lets the whole system go, confident that as

the entropy goes from low to high so will it change the ore’s position from down to

up. Abstractly . . . he has a process that is going, by the laws of nature, to pass from

state H1 to state H2. He wants C1 to change to C2. So he couples H1 to C1 and H2 to
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C2. Then the system, in changing from H1 to H2, will change C1 to C2, which is what

he wants. The arrangement is clearly both necessary and sufficient. The method of

getting the problem-solver to solve the set problem can now be seen to be of essen-

tially the same form. The job to be done is the bringing of X . . . to a certain condition

or ‘‘solution’’ h. What the intelligence engineer does first is build a system, X and S,

that has the tendency, by the laws of nature, to go to a state of equilibrium. He

arranges the coupling between them so that ‘‘not at equilibrium’’ is coupled to not-

h, and ‘‘at equilibrium’’ to h. He then lets the system go, confident that as the pas-

sage of time takes the whole to an equilibrium, so will the conditions in X have to

change from not-h to h. He does not make the conditions in X change by his own

efforts, but allows the basic drive of nature to do the work. This is the fundamental

principle of our intelligence-amplifier. Its driving power is the tendency for entropy

to increase, where ‘‘entropy’’ is used, not as understood in heat-engines, but as un-

derstood in stochastic processes.

In yet another inversion of traditional thought, Ashby has demonstrated

how the natural processes of entropy in nature, the relentless destruction

of organization, can be used as the fuel for the amplification of intelligence

beyond the capabilities of the naked human mind.

The key to intelligence thus lies in selectivity, for it is the power of appro-

priate selection that is able to recognize the desired messages from among

the chaos of random information. But how does one achieve this in a ma-

chine? Consider, as Ashby does, a machine to solve difficult social and eco-

nomic problems. As designers, we make our selection as to what we want,

say (p. 219):

An organisation that will be stable at the conditions:

Unemployed <100,000 persons

Crimes of violence <10 per week

Minimal income per family >£500 per annum

Taking these desiderata as the machine’s goal, it is the task of the machine

to sift through an enormous number of possible economic configurations,

and select one that meets these conditions. Part of the design of that ma-

chine involves specifying the representation of the economic system, and

thus the set of things from which the selection must take place. Apart

from this, Ashby has little to say about this design process—a topic with

which much of the work in artificial intelligence has since been concerned.

But herein lies another essential point, for it raises again the question of in-

formation. This is to say that in determining the class of things from which

a selection is to be made one also specifies the amount of information that

the answer will require. Since the measure of the information contained

in a message is the reduction in uncertainty resulting from the message
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being received, by determining the size of the set of possible messages—

answers—the designer has put a number on the amount of information

needed to solve the problem.

In later writings, Ashby returned to this problem and gave it a proper for-

malization using information theory. That formulation involved seeing the

process of selection not as an instance of the perfect transmission of infor-

mation but as a form of communication over a noisy channel. In so doing,

he saw a deep and interesting connection between Shannon’s 10th Theo-

rem (1948) and his own Law of Requisite Variety (Ashby 1956b, p. 202).9

The formulation involves equating the entropic source of random informa-

tion with a noisy channel, and selection with the problem of determining

which messages are correct and which are not. In order for someone on the

receiving end of a noisy channel to determine the correctness of a message,

they must receive an additional source of information, a kind of feedback

regarding the correctness of the messages received. This information comes

through an error-correcting channel. Shannon’s 10th Theorem provides a

measure of the capacity of the channel necessary to achieve error-free

transmission over a noisy channel (within a certain degree of accuracy).

Ashby argued that in order to make a correct selection in a decision process,

a system must receive information from the environment and that the

measure of this information is equivalent to the required capacity for an

error-correcting channel (Ashby 1960, p. 746).

To see what this means, consider the case in which the number of

possible economic configurations our problem solver must select from is

1,000,001, and there is only one correct solution. Suppose that it is possible

to eliminate whole classes or subsets of this set as inappropriate. A message

on the error-correcting channel transmits this information by indicating a

single subset that the correct answer cannot be a part of. Let us say that

each subset in our problem contains exactly 1,000 unique economic con-

figurations (in most real problems the size of each subset is different and

many subsets overlap and share members, but we shall ignore these diffi-

culties). In this case every message eliminates a thousand possibilities, leav-

ing the selector with 999,001 possibilities after the first message, and then

with 998,001 after the second message, and so on. At this rate, it will take

at least 1,000 messages to achieve complete certainty that the selector will

have the right answer, but fewer if we do not require 100 percent certainty.

At each step it has made some progress as the probability of correctness for

each of the answers still in the set of possibilities goes up after each piece of

information is received. But when it comes to choosing from among the

elements remaining, the selector has no more information available for
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deciding whether any one of the remaining elements is ‘‘better’’ or ‘‘worse’’

than any of the others—it can only pick one at random. If the selector had

more information and were thus able to make a selection among the

remaining elements, it would do so until it was again left with a set of ele-

ments where each was no more likely to be correct than any other.

This led Ashby to the conclusion that all forms of intelligence depend

necessarily on receiving information in order to achieve any appropriate se-

lection that they make. And the greater the set of possibilities and complex-

ity of the partitioning of alternatives, the more information will be required

for the selection to be appropriate. No intelligence is able to create a bril-

liant idea from nothing; genius of this sort is merely a myth (Ashby 1961,

p. 279):

Is there, then, no such thing as ‘‘real’’ intelligence? What I am saying is that if by

‘‘real’’ one means the intelligence that can perform great feats of appropriate selec-

tion without prior reception and processing of the equivalent quantity of informa-

tion; then such ‘‘real’’ intelligence does not exist. It is a myth. It has come into

existence in the same way that the idea of ‘‘real’’ magic comes to a child who sees

conjuring tricks.

When humans appear to achieve remarkable performances of ‘‘genius,’’ it

is only because they had previously processed the required amount of in-

formation. Ashby argues that were it possible for such selections to occur

in the absence of the required information processing, it would be like the

case of a student who provided answers to exam questions before they were

given—it would upset the causal order (Ashby 1960, p. 746).

When considering whether a machine such as a computer is capable of

selective—that is, intelligent—performances at the level of skill of the

human mind, he warns that we must carefully note how much informa-

tion has been processed by each system (Ashby 1961, pp. 277–278):

It may perhaps be of interest to turn aside for the moment to glance at the reasons

that may have led us to misunderstand the nature of human intelligence and clever-

ness. The point seems to be, as we can now see with the clearer quantitative grasp

that we have today, that we tended grossly to mis-estimate the quantities of informa-

tion that were used by computers and by people. When we program a computer, we

have to write down every detail of the supplied information, and we are acutely

aware of the quantity of information that must be made available to it. As a result,

we tend to think that the quantity of information is extremely large; in fact, on any

comparable scale of measurement it is quite small. The human mathematician, how-

ever, who solves a problem in three-dimensional geometry for instance, may do it

very quickly and easily, and he may think that the amount of information that he
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has used is quite small. In fact, it is very large; and the measure of its largeness is pre-

cisely the amount of programming that would have to go into the computer in order

to enable the computer to carry through the same process and to arrive at the same

answer. The point is, of course, that when it comes to things like three-dimensional

geometry, the human being has within himself an enormous quantity of informa-

tion obtained by a form of preprogramming. Before he picked up his pencil, he al-

ready had behind him many years of childhood, in which he moved his arms and

legs in three-dimensional space until he had learned a great deal about the intricacies

of its metric. Then he spent years at school, learning formal Euclidian methods.

He has done carpentry, and has learned how to make simple boxes and three-

dimensional furniture. And behind him is five billion years of evolutionary molding

all occurring in three-dimensional space; because it induced the survival of those

organisms with an organisation suited to three-dimensional space rather than to

any other of the metrics that the cerebral cortex could hold. . . . What I am saying is

that if the measure is applied to both on a similar basis it will be found that each,

computer and living brain, can achieve appropriate selection precisely so far as it is

allowed to by the quantity of information that it has received and processed.

Once formulated in this way, we can recognize certain connections to

aspects of Ashby’s philosophy discussed earlier in this chapter. Most obvi-

ous is the significance of evolutionary adaptation as a source of informa-

tion. On the one hand, there are the countless random trials and errors of

that history—the raw information of random variation. But there is also

the resultant information of selective adaptation: what was won from those

trials and errors was a better organization for dealing with the environ-

ment. For the mathematician, that organization is already a part of him.

As a model of the evolutionary history of his species, and of his own life

experiences, he stands as an archive of that information—it is embodied

in his cerebral organization. For the computer, the programmer stands as a

designer who must make each of those decisions necessary for the mathe-

matician’s performance and express them in a computer program. It would

be more desirable for the machine to learn those things itself, but this

merely means that the information comes from a different source, not that

it is spontaneously created by the machine.

With an account of the process of appropriate selection that was suffi-

cient for quantitative measurement, Ashby had completed his general out-

line of a mechanistic philosophy of mind. It formed the basis, he believed,

for an objective scientific study of intelligence. It provided in its formal

rigor a means for experimentation and observations capable of resolving

theoretical disputes about the mind. It also provided a basis for the syn-

thesis of mechanical devices capable of achieving adaptive and intelligent
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Figure 7.2

Ashby at the Biological Computer Laboratory (BCL), University of Illinois, with his

‘‘Grandfather Clock’’ and ‘‘Non-Trivial Machine.’’ Used with permission of Murray

Babcock’s widow, Velva Babcock.
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performances; the Homeostat was only one of the devices capable of such

performances that Ashby constructed. His theoretical framework brought

together physical, biological, and psychological theory in a novel and pow-

erful form, one that he would credit Arturo Rosenblueth, Norbert Wiener,

and Julian Bigelow (1943) and G. Sommerhoff (1950) for having indepen-

dently discovered in their own work (Ashby 1952c). He would also agree

that his conception of ‘‘adaptation and equilibrium’’ was equivalent to

Sommerhoff’s ‘‘directive correlation’’ and Rosenblueth, Wiener, and Bige-

low’s conception of ‘‘negative feedback’’—the central concept of cyber-

netics. But Ashby also extended this idea to the more subtle aspects of

intelligence: How could human intelligence be extended by machines?

And what were the mechanics of decision-making processes?

Conclusion

Ashby’s mechanistic philosophy of mind bears many superficial similarities

to the more popular formulations of the idea that ‘‘machines can think,’’ in

particular the formulation provided by the ‘‘Turing test.’’ Now that we have

examined Ashby’s philosophy in its details, however, it is instructive to

note the subtle differences. The demonstration of the fundamental equiva-

lence of adaptation and equilibrium was the core of Ashby’s conception of

the mind as a mechanism. Although Alan Turing demonstrated (1936) that

any formally describable process could be performed by a computer, he rec-

ognized that this was not itself sufficient to show that a computer could

think, since thinking might not be a formally describable process. More-

over, it did not come close to explaining how a computer could think.

Ashby had set himself a different task than Turing: to understand how the

behaviors and performances of living organisms in general, and thinking

brains in particular, could be composed of mechanisms at all, and what

those mechanisms were.

Consider Turing’s (1950) ‘‘imitation game’’ for deciding whether or not a

machine could be intelligent. In the first sections of that paper, he com-

pletely avoids attempting to define ‘‘machine’’ or ‘‘intelligence.’’ Instead,

he insists with little argument that the machine must be a digital com-

puter, and proceeds to substitute his imitation game for a formal definition

of intelligence. While we might agree with Turing that appealing to a com-

monsense understanding of ‘‘intelligence’’ would amount to letting the

truth of the statement ‘‘intelligent machines can be made’’ depend upon

the popular acceptance of the statement, his own imitation game doesn’t

go much further than this. In Turing’s test for intelligence, he pits a digital
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computer against a real human being in a game where the winning objec-

tive for all contestants is to convince human judges that they are the

humans and not the computer. The computer is considered ‘‘intelligent’’

if it is able to convince more than 50 percent of the judges that it is the

human. Turing sets out some rules, to ensure that digital computers can

play on an even field, which require that all interactions between the

judges and the contestants take place over a telegraph wire, which limits

the intelligent performances to the output of strings of symbols. Much has

been written about this ‘‘test’’ for machine intelligence, and it is certainly

the most popular formulation of the problem, but it seems profoundly

lacking when compared to Ashby’s definition of machine intelligence (and

even the other ideas offered by Turing).

First, the fact that the ‘‘common usage’’ of the term ‘‘intelligence’’ is

insufficient for judging computers does not mean that a precise formal def-

inition cannot be provided—indeed, this is just what Ashby believed he

had done. Second, the restriction of the meaning of ‘‘machines’’ to ‘‘digital

computers’’ seems unnecessary. The Homeostat, for one, is an analogue

computer that seems quite capable of demonstrating an intelligent capac-

ity. Moreover, it does so not by virtue of carrying out particular calculations

but of being a certain kind of information-processing system, one that is

goal-seeking and adaptive. More significant, by leaving the meaning of in-

telligence up to a population of judges with indeterminate criteria, Turing’s

test fails to offer any instruction as to how such a computer should be con-

structed, or what its specific intellectual capacities might be—it is a way to

dodge the issue of what intelligence is altogether.

In the process of developing his mechanistic philosophy, Ashby man-

aged to perform some inversions of intuitions that are still commonly

held. The first of these inversions was the ‘‘generative power of break-

down.’’ The idea that creation requires impermanence, that destruction

precedes construction, or that from chaos comes order is a recurring meta-

physical paradox, at least as ancient as pre-Socratic Greek thought. In an-

other form, it reappears in Ashby’s work as a system’s need for a source of

random information in order to achieve a better performance than it was

previously capable of. And it appears again when entropy is used as the

fuel for driving the intelligence-amplifier to superhuman performances of

appropriate selection. The intelligence-amplifier also inverts the notion

that originality and productivity are essential aspects of intelligence. These

are aspects of the random information fed to a selector, but it is the power of

appropriate selection that reduces productivity and originality in a highly dis-

ciplined process which gives only the desired result.
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To the end of his career Ashby remained concerned with the specific

requirements for building machines that exhibited brainlike behavior. In

part, this was motivated by his desire to understand the brain and its pro-

cesses, and in part it was to build machines capable of aiding the human

intellect. Although his designs for an intelligence-amplifier may still sound

fanciful, his belief that such machines could be usefully brought to bear on

real economic and social problems was not (Ashby 1948, pp. 382–83):

The construction of a machine which would react successfully to situations more

complex than can be handled at present by the human brain would transform

many of our present difficulties and perplexities. Such a machine might be used, in

the distant future, not merely to get a quick answer to a difficult question, but to ex-

plore regions of intellectual subtlety and complexity at present beyond the human

powers. The world’s political and economic problems, for instance, seem sometimes

to involve complexities beyond even the experts. Such a machine might perhaps be

fed with vast tables of statistics, with volumes of scientific facts and other data, so

that after a time it might emit as output a vast and intricate set of instructions, rather

meaningless to those who had to obey them, yet leading, in fact, to a gradual resolv-

ing of the political and economic difficulties by its understanding and use of princi-

ples and natural laws which are to us yet obscure. The advantages of such a machine

are obvious. But what of its disadvantages?

His aim was thus not merely to understand the brain, and simulate its

properties, but also to understand those properties in such a way that they

could be usefully employed to resolve difficult intellectual problems.

Even while he held out a hopeful vision of a future in which intelligent

machines could resolve problems of great human concern and conse-

quence, he was not without his fears of what the actual results might be

(Ashby 1948). An intelligent machine by his definition was, after all, a ma-

chine that succeeded in achieving its own purposes, regardless of the resis-

tance it encountered (p. 383):

But perhaps the most serious danger in such a machine will be its selfishness. What-

ever the problem, it will judge the appropriateness of an action by how the feedback

affects itself: not by the way the action benefits us. It is easy to deal with this when

the machine’s behavior is simple enough for us to be able to understand it. The slave-

brain will give no trouble. But what of the homeostat-type, which is to develop be-

yond us? In the early stages of its training we shall doubtless condition it heavily to

act so as to benefit ourselves as much as possible. But if the machine really develops

its own powers, it is bound sooner or later to recover from this. If now such a ma-

chine is used for large-scale social planning and coordination, we must not be sur-

prised if we find after a time that the streams of orders, plans and directives issuing

from it begin to pay increased attention to securing its own welfare. Matters like the
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supplies of power and the prices of valves affect it directly and it cannot, if it is a sen-

sible machine, ignore them. Later, when our world-community is entirely dependent

on the machine for advanced social and economic planning, we would accept only

as reasonable its suggestion that it should be buried deeply for safety. We would be

persuaded of the desirability of locking the switches for its power supplies perma-

nently in the ‘‘on’’ position. We could hardly object if we find that more and more

of the national budget (planned by the machine) is being devoted to ever-increasing

developments of the planning-machine. In the spate of plans and directives issuing

from it we might hardly notice that the automatic valve-making factories are to be

moved so as to deliver directly into its own automatic valve-replacing gear; we might

hardly notice that its new power supplies are to come directly from its own auto-

matic atomic piles; we might not realise that it had already decided that its human

attendants were no longer necessary. How will it end? I suggest that the simplest

way to find out is to make the thing and see.

This vision of the evolution of machines is sobering and sounds like the

stuff of science fiction. In fact, however, it is more reserved than many of

the claims made in the fields of artificial life and Artificial Intelligence in

six decades since it was written. More to the point, when viewed in per-

spective with Ashby’s overall philosophy it provides a means for thinking

about the processes of social and economic organization and planning

with a particular emphasis on the flow of information in those processes;

though Ashby did not pursue this idea, it would seem to warrant further

study.

There are many subtleties, implications, and extensions of Ashby’s mech-

anistic philosophy that we have not covered. There are also many aspects

of his intellectual career and contributions that we have skipped over

or touched on only briefly. Our aim, however, was to come to a much

clearer view of Ashby’s overall philosophy, and of the interconnections

and dependencies between its elements, so as to gain a greater appreciation

for what is contained in Ashby’s idea of ‘‘mechanical intelligence.’’

Notes

1. Both books were translated into several languages: Design For a Brain was pub-

lished in Russian (1958), Spanish (1959), and Japanese (1963); An Introduction to

Cybernetics was published in Russian (1957), French (1957), Spanish (1958), Czech

(1959), Polish (1959), Hungarian (1959), German (1965), Bulgarian (1966), and Ital-

ian (1966).

2. Though it is implicit in much of AI, this approach is most explicit in the current

field of biorobotics (see Webb and Consi 2001), and was also central in the develop-
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ment of the fields of bionics and self-organizing systems in the 1960s (see Asaro

2007; for more on the synthetic method in the work of Ashby and a fellow cyber-

netician, W. Grey Walter, see Asaro 2006).

3. It is interesting to note that advantage 2 in this summary presages A. Rosenblueth,

Norbert Wiener, and Julian Bigelow’s (1943) ‘‘Behavior, Purpose, and Teleology’’ by

three years. Ashby also bases his arguments on an elaboration of the concept of a

‘‘functional circuit,’’ emphasizing the stable type, which parallels Rosenblueth,

Wiener, and Bigelow’s concept of feedback mechanisms, and negative feedback in

particular, as explaining purposive or goal-seeking behavior. Another researcher, G.

Sommerhoff (1950), a physicist attempting to account for biological organisms as

physical systems, would come to essentially the same concepts a few years later. In

his review of Sommerhoff’s Analytical Biology Ashby (1952e) himself concludes, ‘‘It

shows convincingly that the rather subtle concept of ‘adaptation’ can be given a def-

inition that does full justice to the element of ‘purpose,’ while achieving a degree of

precision and objectivity hitherto obtainable only in physics. As three sets of workers

have now arrived independently at a definition from which the individuals differ

only in details, we may reasonably deduce that the concept of ‘adaptation’ can be so

re-formulated, and that its formulation in the language of physics is now available’’

(p. 409).

4. See Ashby (1947), ‘‘The Nervous System as Physical Machine: With Special Refer-

ence to the Origin of Adaptive Behavior,’’ for more on learning and adaptation in the

kitten.

5. It is interesting to note as an aside that, despite his relentless use of ‘‘stability’’ and

later coining of the terms ‘‘ultrastability,’’ ‘‘poly-stable’’ and ‘‘multi-stable,’’ he does

not use the word at all in his second paper on the mechanisms of adaptation, ‘‘The

Physical Origin of Adaptation by Trial and Error’’ (1945; submitted 1943). There he

uses the term ‘‘normal’’ in the place of ‘‘stability.’’ This was perhaps due to a differ-

ence in audiences since this paper was addressed to psychologists.

6. Bigelow was a colleague of Norbert Wiener’s at MIT, and was a coauthor of ‘‘Be-

havior, Purpose, and Teleology’’ (1943), which marks the beginning of cybernetics.

He was the electrical engineer who built Wiener’s ‘‘anti-aircraft predictor.’’ In 1946

he had become the chief engineer of John von Neumann’s machine at Princeton’s

Institute for Advanced Study, one of the first stored-program electronic computers.

7. Descartes’s dictum can be found in the Meditations, and is a premise in his argu-

ment for the existence of God. The other premise is that ‘‘I find upon reflection that

I have an idea of God, as an infinitely perfect being,’’ from which Descartes con-

cludes that he could not have been the cause of this idea, since it contains more

perfection than he does, and thus there must exist an infinitely perfect God which

is the real cause of his idea of an infinitely perfect God. He goes on to argue that the

same God endowed him with reliable perception of the world.
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8. Shannon’s (1948) equation for the quantity of information is: �
P

j pj log pj,

where pj is the probability of receiving message j. By summing over all the messages,

we obtain a measure of the current uncertainty, and thus of how much uncertainty

will be removed when we actually receive a message and become certain. Thus the

uncertainty is a measure of the system of communication and is not really a property

of the message; alternatively we could say that the information content is the same

for equiprobable messages in the set.

9. Shannon’s 10th Theorem (1948, p. 68) states: ‘‘If the correction channel has a

capacity equal to HyðxÞ it is possible to so encode the correction data as to send it

over this channel and correct all but an arbitrarily small fraction e of the errors. This

is not possible if the channel capacity is less than HyðxÞ.’’ Here HyðxÞ is the condi-

tional entropy of the input (x) when the output (y) is known.

Ashby’s Law of Requisite Variety states that any system that is to control the ulti-

mate outcome of any interaction in which another system also exerts some control

must have at least as much variety in its set of alternative moves as the other system

if it is to possibly succeed (Ashby 1956b, p. 206).
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8 Gordon Pask and His Maverick Machines

Jon Bird and Ezequiel Di Paolo

A computer that issues a rate demand for nil dollars and nil cents (and a notice to

appear in court if you do not pay immediately) is not a maverick machine. It is a re-

spectable and badly programmed computer. . . . Mavericks are machines that embody

theoretical principles or technical inventions which deviate from the mainstream of

computer development, but are nevertheless of value.

—Gordon Pask (1982a, p. 133)

Gordon Pask (1928–1996) is perhaps most widely remembered for his tech-

nical innovations in the field of automated teaching. Less widely appreciated

are the theoretical principles embodied in Pask’s maverick machines. He

described himself as a ‘‘mechanic philosopher’’ (Scott 1980), and building

machines played a central role in the development of a conceptual frame-

work that resulted in two theories later in his career: Conversation Theory

(CT) (Pask 1975) and Interaction of Actors Theory (de Zeeuw 2001). Even

adherents of these theories concede that they are difficult to understand.

Pask wrote over two hundred fifty papers and six books and his prose can

be hard to follow and his diagrams difficult to untangle. B. Scott (1980, p.

328), who collaborated with Pask on CT, characterizes some of Pask’s writ-

ing as ‘‘esoteric, pedantic, obscurantist.’’ R. Glanville (1996), who wrote his

doctorate under Pask’s supervision, admits that CT is ‘‘in many parts very

hard to understand, because of a tendency to present it all, all the time, in

its full complexity.’’ Pask’s presentations were dramatic and furiously paced

and often left the audience baffled. Consequently, ‘‘some dismissed him,

almost with resentment because of their inability to come to terms with

him, but others recognised something both intriguing and important in

what he said and the way that he said it. I myself often found I had lost

the thread of what Gordon was saying, yet strangely he was triggering

thoughts and insights’’ (Elstob 2001, p. 592). The psychologist Richard

Gregory, who was a contemporary of Pask’s at Cambridge, remembers



(2001), ‘‘A conversation with Gordon is (perhaps too frankly) memorable

now as being extraordinarily hard to understand at the time. Or is this just

my inadequacy? He would come out with an oracular statement, such as

‘Life is fire,’ and would defend it against all objection. No doubt it had a

certain truth, but I for one was never quite clear whether he was dealing

in poetry, science, or humour. This ambiguous mixture was a large part of

his charm’’ (p. 686). However, Gregory acknowledges that ‘‘without doubt,

Gordon was driven by genuine insight’’ (p. 685). Heinz von Foerster and

Stafford Beer, who both collaborated closely with Pask, also rated his intel-

lect very highly, describing him as a genius (von Foerster 2001, p. 630; Beer

2001, p. 551).

In this chapter we focus on the early period of Pask’s life, tracing the de-

velopment of his research from his days as a Cambridge undergraduate to

the period in the late 1950s when his work started to have an impact inter-

nationally. We describe three of his maverick machines: Musicolour, a

Figure 8.1

Gordon Pask (c. 1963). Printed with permission of Amanda Heitler.

186 Jon Bird and Ezequiel Di Paolo



sound-actuated interactive light show; SAKI, a keyboard-skill training ma-

chine; and an electrochemical device that grew an ‘‘ear.’’ We assess the

value of these machines, fifty years after they were built, in particular, the

maverick ideas that they embody. We hope this will not only provide a way

in to the challenging Paskian literature for the interested reader, but also

demonstrate that many of Pask’s ideas remain highly relevant for many

current research areas.

School and University

What do we mean by conflict? Basically, that two or more time sequences of compu-

tation, which may have been proceeding in parallel, interact. Instead of remaining

parallel and (by the definition of parallel) separate, they converge in a head-on colli-

sion from which there is no logical-deductive retreat.

—Gordon Pask (1982a, p. 62)

School Years

Pask stood out at Rydal, a Methodist public school in North Wales, where

he was a boarder during the Second World War.1 It was fairly liberal, but

the headmaster, a prominent churchman, had a reputation for severity

and would beat pupils (a common practice in public schools at the time).

Pask’s dress sense distinguished him from his fellow pupils and made him

seem older than he was; he wore double-breasted business suits and bow

ties, compared to the blazers and gray flannel trousers of his contempo-

raries. It was a style that he kept for the rest of his life (adding an Edwar-

dian cape once he had left school). He was a small and sickly child and

did not excel on the sports field—a very important part of Rydal culture

(the school’s two most famous alumni distinguished themselves as interna-

tional rugby players). He spent his spare time building machines, for exam-

ple, a device to detect rare metals that he tested out in nearby mines. A story

about another one of his inventions, possibly fantasy, circulated through

the school and contributed to Pask’s reputation as a ‘‘mad professor.’’

It was said that at the beginning of the Second World War he sent the

War Office a design for a weapon. After a few months he received a reply

stating that his proposal had been considered and it was thought it

would work, but its effect was too dreadful to be employed against a human

enemy.

Although his were not the usual preoccupations of teenage boys, he was

not disliked, as he had a sense of fun and mischief. As a prank he would
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deflate large numbers of rugby balls that the sports master had inflated and

left outside his room ready for the next day’s sports activities. Pask also

demonstrated his independence by slipping away from school some eve-

nings, catching the train to Liverpool, and returning in the early hours.

He said he was involved in producing stage shows in the city.2 One day

the whole school was summoned to a general assembly, as was always the

case when the headmaster wanted to make an example of somebody for

disciplinary offenses. Nobody knew who the offender was until his name

was announced. Pask’s absence had been discovered the previous evening

and the headmaster publicly berated him. Pask was not cowed and in fact

took offense at his treatment: he stood up and stormed out of the hall, tell-

ing the headmaster, ‘‘I shall speak to my solicitor about this.’’ Apparently

he escaped a beating.

Pask did not do national service after Rydal, perhaps because of ill health.

Instead he went to Liverpool Technical College, where he studied geology

and mining. In 1949 he went to Downing College, Cambridge University,

to study medicine. He continued to have a vivid impact on his contempo-

raries, just as he had done at school.

Cambridge

At Cambridge Pask read Norbert Wiener’s Cybernetics, which had an ‘‘emo-

tional impact’’ on him (Pask 1966). He had found a field of study that was

broad enough to accommodate his wide range of interests and also com-

bined theory and practice: ‘‘As pure scientists we are concerned with

brain-like artifacts, with evolution, growth and development; with the pro-

cess of thinking and getting to know about the world. Wearing the hat

of applied science, we aim to create . . . the instruments of a new industrial

revolution—control mechanisms that lay their own plans’’ (Pask 1961,

p. 11). Pask met Robin McKinnon-Wood, a physicist, at Cambridge, and

they began to build machines together. It was a relationship that continued

for the rest of their lives. When they graduated they set up System Research

Ltd., a company that sold versions of the machines that they had first

started developing as undergraduates.

Pask also began to investigate statistical phenomena. Cedric Price, the ar-

chitect, knew him as an undergraduate and was roped into some statistical

experiments: ‘‘ ‘It’s simple, just throw these wooden curtain rings as quickly

as possible into the numbered box—which I shall call out. Then do it back-

wards with a mirror, then blindfolded.’ He took my arm and led me into

Jordan’s Yard. I could see that he was not to be trifled with’’ (Price 2001,
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p. 819). This strange-sounding experiment was Pask’s way of generating

different probability distributions in order to predict the enlistment num-

bers for the RAF in the year 2000.

Stationary and Nonstationary Systems

A broad distinction that can be drawn about the statistics of a series of

events is whether they are stationary or nonstationary. A scientist observing

the behavior of a system over time might identify some regularities, for ex-

ample, if the system is in state A, it goes to state B 80 percent of the time

and to state C 20 percent of the time. If this behavior sequence is invariant

over a large number of observations of the same system, or an ensemble of

similar systems, then an observer can infer that statistically the system is

stationary. The observed properties are time-independent, that is, various

statistical measures, such as the mean and standard deviation, remain

invariant over time. Therefore, given the occurrence of A we can be confi-

dent about the probability of B or C following, irrespective of what time we

observe A.

Nonstationary systems do not display this statistical invariance; there are

time-dependent changes in their statistical properties, and the relationship

between A, B, and C can change. Human behavior, for example, is often

nonstationary, as was dramatically demonstrated by Pask when he was

studying medicine. He would get through anatomy tests by memorizing

footnotes from Gray’s Anatomy; by dazzling on some arcane anatomical

details he usually managed to cast shadows over the holes in his knowl-

edge. But on occasion he got found out. Gregory (2001) recalls an anatomy

exam where Pask was asked to dissect an arm. One might predict, having

observed the behavior of other anatomy students, that he would have

used a scalpel. Instead, he used a fire axe, smashing a glass dissecting table

in the process. Unsurprisingly, Pask graduated from Cambridge in physiol-

ogy, rather than medicine.

Learning provides less dramatic examples of nonstationary behavior. We

can measure the skill of a novice at performing some skill, for example,

typing, by recording the person’s average response time and error rate. As

the novice practices, their skills will improve, and although their perfor-

mance might be stationary for periods of time, it will also show discontinu-

ities as it improves. Dealing with nonstationary systems is a challenge, as

their behavior is difficult to characterize. Pask started developing two learn-

ing machines while he was an undergraduate and developed a mechanical
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and theoretical approach to dealing with nonstationary systems. In the

next two sections we describe these machines in detail.

Musicolour

Man is prone to seek novelty in his environment and, having found a novel situa-

tion, to learn how to control it.

—Gordon Pask (1971, p. 76)

Pask built the first Musicolour system, a sound-actuated interactive light

show, in 1953. Over the next four years, Pask, McKinnon-Wood, their

wives, and a number of other individuals were involved in its development

(Pask 1971). Pask’s initial motivation for building the system was an inter-

est in synesthesia and the question of whether a machine could learn

relations between sounds and visual patterns and in doing so enhance a

musical performance. From the outset, Musicolour was designed to cooper-

ate with human performers, rather than autonomously generate ‘‘aestheti-

cally valuable output’’ (Pask 1962, p. 135). The way musicians interacted

with the system quickly became the main focus of research and develop-

ment: the performer ‘‘trained the machine and it played a game with him.

In this sense, the system acted as an extension of the performer with which

he could co-operate to achieve effects that he could not achieve on his

own. Consequently, the learning mechanism was extended and the ma-

chine itself became reformulated as a game player capable of habituating

at several levels to the performer’s gambits’’ (Pask 1971, p. 78).

How Does Musicolour Work? The sounds made by the musicians are

relayed to the system via a microphone and amplifier. A bank of filters

then analyze various aspects of the sound (see figure 8.2; the system had

up to eight filters, but five are shown). An early system just used band-pass

filters, but in later systems there were also filters that analyzed attack and

rhythm. Each of the filters has a parameter that can take one of eight pre-

specified values. These values determine the frequency range of the band-

pass filters and delays in the attack and rhythm filters.

The output from each filter is averaged over a short period, rectified, and

passed through an associated adaptive threshold device (figure 8.2). If the

input exceeds a threshold value, the output is 1, otherwise it is 0. These

devices adapt their threshold to the mean value of the input, habituating

to repetitive input, for example a continuous sound in a particular pitch

band, and outputting 0. The outputs from the adaptive threshold devices
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Figure 8.2

Diagram of a typical Musicolour system. P ¼ performer; I ¼ instrument and microphone; AT ¼ adaptive thresh-

old device; A ¼ inputs to the visual display that determine what patterns are projected; B ¼ inputs to the visual

display that determine when the patterns are projected. From Pask (1971). Reprinted with permission of Jasia

Reichardt.
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determine when a selection is made from the available visual patterns by

controlling dimmers connected to the lights.

The values of the filter parameters determine what visual pattern is

selected by controlling a servo-positioned pattern or color wheel (see figure

8.3). The particular parameter values are selected on the basis of how differ-

ent the output of the filter’s associated adaptive threshold device is, com-

pared to the other filter’s thresholded outputs, and how long it is since a

particular value has been selected. The selection strategy aims to increase

the novelty of the filter outputs and to ensure that all of the parameter

values are sampled.3

If the input to Musicolour is repetitive, it habituates and adjusts its filter

parameter values in an attempt to generate more variety in the light pat-

terns. If there is no input, the system becomes increasingly sensitive to

Figure 8.3

A servo-positioned pattern wheel used in Musicolour. From Pask (1971). Reprinted

with permission of Jasia Reichardt.
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any sound in the environment and a gain control prevents this from dis-

rupting the system too much.

Was It a Success? Musicolour was found to be ‘‘eminently trainable’’ (Pask

1971, p. 80). Performers were able to accentuate properties of the music

and reinforce audio-visual correlations that they liked (for example, high

notes with a particular visual pattern). Once performers became familiar

with the filter-value selection strategy of the machine, they were able to es-

tablish time-dependent patterns in the system and reinforce correlations

between groups of musical properties. It is important to note that there

was no fixed mappings between sounds and lights: these were developed

through the interaction of the musicians with Musicolour. There is recip-

rocal feedback between Musicolour and the performers: ‘‘The machine is

designed to entrain the performer and to couple him into the system’’

(Pask 1971, p. 80). From the performer’s perspective, ‘‘training becomes a

matter of persuading the machine to adopt a visual style that fits the

mood of his performance,’’ and when the interaction has developed to

this level ‘‘the performer conceives the machine as an extension of him-

self’’ (p. 86). Pask did some ‘‘rough and ready’’ studies of how visual pat-

terns affect performance, finding that short sequences of visual events

acted as releaser stimuli (p. 86).4 It was also found that once a stable coor-

dinated interaction had been established, it was robust to a certain level of

arbitrary disturbances.

Musicolour developed from a small prototype machine that was tested at

parties and in small venues to a large system that toured larger venues in

the north of England and required two vans to transport the equipment

and five people to set it up. After this tour, Musicolour was used in a theat-

rical performance at the Boltons Theatre in 1955, where it was combined

with marionettes in a show called Moon Music. Musicolour and puppets

were ‘‘unhappy bedfellows,’’ and after a week of technical problems, the

stage manager left and the show closed (Pask 1971, p. 81). With Jone Parry,

the music director for Musicolour, Pask and McKinnon-Wood then used

the month’s paid-up rental on the theater to develop the musical potential

of the system, and the show became a concert performance. Subsequently,

Pask developed a work, Nocturne, in which he attempted to get dancers

interacting with Musicolour. This was technically challenging, but Pask

thought it showed some artistic potential.

The Musicolour project began to fall into debt and Pask explored differ-

ent ways of generating income, ranging from adapting it for juke boxes

Gordon Pask and His Maverick Machines 193



(then at the height of their popularity) to marketing it as an art form. Bank-

ruptcy was avoided by a regular gig at Churchill’s Club in London (and by

Cecil Landau becoming a partner in the business). People participated in

the system by dancing, responding to the music and light show. After a

year Musicolour moved to another club, the Locarno in Streatham, Lon-

don, a large ballroom with a capacity of several thousand as well as a huge

lighting rig (120 kW), which Musicolour modulated. This cavernous envi-

ronment was not conducive to audience participation as there were too

many other visual elements, such as exit signs, that distracted dancers

from the visual display. Churchill’s Club had been more intimate, and

Musicolour had integrated with the space. Pask (1971) says that Landau

‘‘was prone to regard an archway across the middle of the night-club as a

surrogate proscenium and everything beyond it a stage’’ (pp. 87–88). In

larger, commercially viable spaces, Musicolour became just ‘‘another fancy

lighting effect’’ and it ‘‘was difficult or impossible to make genuine use of

the system’’ (p. 88). In 1957, after a final performance at a ball in London,

Musicolour was shelved and Pask and McKinnon-Wood concentrated on

the commercial development of their teaching machines.

SAKI

Teaching is control over the acquisition of a skill.

—Gordon Pask (1961, p. 88)

In 1956, Pask, his wife, Elizabeth, and Robin McKinnon-Wood applied for a

patent for an ‘‘Apparatus for Assisting an Operator in Performing a Skill.’’5

This patent covers a wide range of teaching machines built along cyber-

netic principles, including SAKI (self-adaptive keyboard instructor), which

Stafford Beer (1959, p. 123) described as ‘‘possibly the first truly cybernetic

device (in the full sense) to rise above the status of a ‘toy’ and reach the

market as a useful machine.’’ SAKI trains people to operate a Hollerith

key punch (see figure 8.4), a device that punches holes in cards used for

data processing.6 By pressing keys the operator makes holes in selected col-

umns on the cards to encode data in a form that can be read by a card

reader and stored in computer memory. The Hollerith keyboard was

designed to be operated with one hand and had twelve keys: 0 to 9, an X,

and a top key. One digit can be entered per column by pressing the corre-

sponding key. Alphabetic characters are entered by punching two holes in

the same column: the top key and 1 to 9 for A to I, the X key and 1 to 9 for

J to R, and 0 and 1 to 9 for S to Z. Up until the 1970s the key punch was
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a common form of data entry and there was a large demand for skilled

operators.

One challenge in automating teaching is to ensure that a student’s

interest is sustained: ‘‘Ideally the task he is set at each stage should be suffi-

ciently difficult to maintain his interest and to create a competitive situa-

tion yet never so complex that it becomes incomprehensible. A private

tutor in conversation with his pupil seeks, in fact, to maintain this state

which is not unlike a game situation’’ (Pask, McKinnon-Wood, and Pask

1961, p. 32). It requires that the tutor responds to the particular character-

istics of a pupil. A multitude of factors determine a person’s skill level (pre-

vious experience, motor coordination, level of tiredness) and some of these

factors will change as a result of the learning process. Pask’s novel approach

was to build teaching machines that construct a continuously changing

probabilistic model of how a particular operator performs a skill. Further-

more, the machines do not force an operator to perform in a particular

way; operators are ‘‘minimally constrained by corrective information’’ in

order to provide the ‘‘growth maximising conditions which allow the

human operator as much freedom to adopt his own preferred conceptual

structure’’ (p. 33). By adapting the task on the basis of a dynamic, probabil-

istic model of the operator, SAKI teaches in a way that responds to stu-

dents’ (non-stationary) individual characteristics and holds their interest.

Figure 8.4

SAKI (self-adaptive keyboard instructor). Image taken from Plate II, Gordon Pask

(1960) An Approach to Cybernetics, Harper and Brothers, with kind permission of

Springer Science and Business Media.
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How Does SAKI Work? The operator sits in front of a display unit (see fig-

ure 8.4) that presents the exercise material (four lines of twenty-four alpha-

numeric characters to be punched) and cueing lights, arranged in the same

spatial layout as the keyboard, that indicate which key, or key sequence, to

press on the key punch. Initially the operator works through all four exer-

cise lines. Starting with the first line, items are randomly presented at a

slow, uniform rate and the cueing lights are bright and stay on for a rela-

tively long period of time. The operator’s response time for each item is

stored in the ‘‘computing unit.’’ This consists of a series of capacitors that

are charged from the moment an operator makes a correct response until

the next item is presented: the faster a correct response is, the higher the

charge stored. When all four exercise lines have been completed correctly,

SAKI has a preliminary analogue ‘‘model’’ of the operator’s key-punch skills

for every item in the four exercise lines, stored as charges on the series of

capacitors.

The exercise line for which the operator has the slowest average response

time is then repeated. The capacitors drive valves, which determine how

the individual items in this exercise are presented to the operator—

specifically, the available response time and the clarity of the cueing lights

(their brightness and duration). In a prototype design, Pask uniformly

varied the difficulty of the items according to average performance on an

exercise line. However, it was found that uniformly increasing the diffi-

culty of all the items in the exercise results in oscillations in an operator’s

performance—the task alternating between being too difficult and being

too easy (Pask, McKinnon-Wood, and Pask 1961). The computing unit

therefore individually varies the difficulty of each item in an exercise line

so as to better match the performance of the operator. For example, it

increases the difficulty of items where the operator has performed relatively

successfully by reducing the cue information as well as the available re-

sponse time. The reduction in available response time also reduces the

maximum charge that can be stored on the associated capacitor. As the

operator’s skill on an item increases, the cueing information reduces, until

finally there is only an indication of the alphanumeric character that has to

be punched. This reduction in cueing information initially increases the

likelihood that the operator will make a mistake. SAKI responds by reintro-

ducing the visual cues and extending the available response time. Opera-

tors using SAKI show plateaus in their learning curves, but can ultimately

reach a final stable state where there is no visual cueing information and

an equal distribution of available response times for all items in an exercise
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line (Pask 1961). That is, they punch each key with equal proficiency. To

maintain this level, the operator has to consistently perform a sequence of

key punches at or below predetermined error and response rates.

Beer (1959) describes his experience of using a version of SAKI in Cyber-

netics and Management (pp. 124–25):

You are confronted with a punch: it has blank keys, for this is a ‘‘touch typing’’ skill.

Before you, connected to the punch, is Pask’s machine. Visible on it is a little win-

dow, and an array of red lights arranged like the punch’s keyboard. The figure ‘‘7’’

appears in the window. This is an instruction to you to press the ‘‘7’’ key. But you

do not know which it is. Look at the array of lights. One is shining brightly: it gives

you the position of the ‘‘7’’ key, which you now find and press. Another number

appears in the window, another red light shines and so on. Gradually you become

aware of the position of the figures on the keyboard, and therefore you become faster

in your reactions. Meanwhile, the machine is measuring your responses, and build-

ing its own probabilistic model of your learning process. That ‘‘7,’’ for instance, you

now go to straight away. But the ‘‘3,’’ for some obscure reason, always seems to elude

you. The machine has detected this, and has built the facts into its model. And now,

the outcome is being fed back to you. Numbers with which you have difficulty come

up with increasing frequency in the otherwise random presentation of digits. They

come up more slowly, too, as if to say: ‘‘Now take your time.’’ The numbers you

find easy, on the contrary, come up much faster: the speed with which each number

is thrown at you is a function of the state of your learning. So also is the red-light

system. For as you learn where the ‘‘7’’ is, so does the red-light clue gradually fade.

The teacher gives you less and less prompting. Before long, if you continue to im-

prove on ‘‘7,’’ the clue light for ‘‘7’’ will not come on at all. It was getting fainter

on ‘‘5,’’ for you were getting to know that position. But now you have had a relapse:

‘‘5’’ is eluding you altogether. Your teacher notes your fresh mistakes. ‘‘5’’ is put be-

fore you with renewed deliberation, slowly; and the red light comes back again,

brightly. . . . So the teaching continues. You pay little intellectual attention: you relax.

The information circuit of this system of you-plus-machine flows through the diodes

and condensers of the machine, through the punch, through your sensory nerves and

back through your motor nerves, the punch, the machine. Feedback is constantly

adjusting all the variables to reach a desired goal. In short, you are being conditioned.

Soon the machine will abandon single digits as the target, and substitute short runs of

digits, then longer runs. You know where all the keys are now; what you have to

learn next are the patterns of successive keys, the rhythms of your own fingers.

Was It a Success? Beer began as a complete novice and within forty-five

minutes he was punching at the rate of eight keys per second. It seems like-

ly that he was just doing single-key exercises,7 rather than key combina-

tions. Generally, SAKI could train a novice key-punch operator to expert
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level (between seven thousand and ten thousand key depressions per hour)

in four to six weeks if they completed two thirty-five-minute training ses-

sions every working day. A conservative estimate of the reduction in train-

ing time, compared to other methods, was between 30 and 50 percent

(Pask 1982b).

SAKI deals with incomplete knowledge about the characteristics of indi-

vidual operators and how they learn by taking the cybernetic approach of

treating them as a ‘‘black box’’—a nonstationary system about which we

have limited knowledge. In order to match the characteristics of the opera-

tor, the computing unit is also treated as a black box that builds a probabil-

istic, nonstationary analogue of the relation between itself and the operator

through a process of interaction. The overall goal is to find a stable relation

between the user and SAKI, with the additional constraint that the operator

meets a prespecified performance level defined in terms of speed and accu-

racy of key punching. Pask summarizes this design methodology: ‘‘a pair of

inherently unmeasurable, non-stationary systems, are coupled to produce

an inherently measurable stationary system’’ (Pask 1961, p. 98). SAKI

found the appropriate balance between challenging exercises and boredom:

‘‘Interest is maintained, and an almost hypnotic relationship has been

observed, even with quite simple jobs’’ (Pask, McKinnon-Wood, and Pask

1961, p. 36). In 1961 the rights to sell SAKI were bought by Cybernetic

Developments and fifty machines were leased or sold, although one unfore-

seen difficulty was getting purchasers to use SAKI as a training machine,

rather than as a status symbol (Pask 1982b). SAKI was a very effective key-

punch trainer but a limited financial success.

Summary of Musicolour and SAKI

Pask described Musicolour as ‘‘the first coherence-based hybrid control

computer’’ where a nonstationary environment was tightly coupled with a

nonstationary controller and the goal was to reach stability, or coherence,

through reciprocal feedback (Pask 1982a, p. 144). He describes it as ‘‘hy-

brid’’ because rather than executing a program, it adapted on a trial-and-

error basis. SAKI differs from Musicolour in that for commercial reasons

there was also a performance constraint driving the activity. There were

no such constraints on how Musicolour and musicians reached stable

cycles of activity, the search for stability being an end in itself. Interest-

ingly, having observed people interacting with both systems, Pask con-

cluded (1961) that they are motivated by the desire to reach a stable

interaction with the machines, rather than to reach any particular perfor-

mance goal: ‘‘After looking at the way people behave, I believe they aim
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for the non-numerical payoff of achieving some desired stable relationship

with the machine’’ (p. 94).

Both Musicolour and SAKI are constructed from conventional hardware

components (capacitors, valves, and so forth), but it is difficult to function-

ally separate the machines from their environments, as they are so tightly

coupled. However, Pask wanted to develop organic machines that were built

from materials that develop their functions over time, rather than being

specified by a design. An organic controller differs from Musicolour and

SAKI by not being limited to interacting with the environment through

designer-specified channels (such as keyboards and microphones): it

‘‘determines its relation to the surroundings. It determines an appropriate

mode of interaction, for example, it learns the best and not necessarily

invariant sensory inputs to accept as being events’’ (Pask 1959, p. 162).

The next sections describe the collaboration between Pask and Stafford Beer

as they explored how to build such radically unconventional machines.

Pask as an Independent Cybernetic Researcher

Stafford Beer (1926–2002) and Pask met in the early 1950s and they collab-

orated for the rest of the decade. They were ‘‘both extremely conscious of

the pioneering work being done in the USA in the emerging topic that Nor-

bert Wiener had named cybernetics, and knew of everyone in the UK who

was interested as well’’ (Beer 2001, p. 551). Both men were ambitious and

wanted to make an impact in the field of cybernetics. They were particu-

larly interested in W. Ross Ashby’s work on ultrastability (Ashby 1952)

and the question of how machines could adapt to disturbances that had

not been envisaged by their designer. Beer was working for United Steel,

doing operations research, and had persuaded the company to set up a

cybernetics research group in Sheffield. Pask was developing learning

machines and trying to market them commercially. They grew close as

they both faced similar challenges in trying to persuade the business world

of the value of their cybernetic approach. They also shared a deep interest

in investigating the suitability of different ‘‘fabrics,’’ or media, as substrates

for building self-organizing machines:

If systems of this kind are to be used for amplifying intelligence, or for ‘breeding’

other systems more highly developed than they are themselves, a fixed circuitry is a

liability. Instead, we seek a fabric that is inherently self-organizing, on which to super-

impose (as a signal on a carrier wave) the particular cybernetic functions that we seek

to model. Or, to take another image, we seek to constrain a high-variety fabric rather

than to fabricate one by blueprint (Beer 1994, p. 25).
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The ‘‘high-variety’’ criterion came from Ashby’s argument that a controller

can only control an environment if it has variety in its states greater or

equal to the variety in the disturbances on its inputs.8 Another requirement

for a suitable fabric was that its behavior could be effectively coupled to

another system.

The Search for a Fabric

Both Beer and Pask investigated a wide range of media for their suitability

as high-variety fabrics. From the outset, Beer rejected electrical and elec-

tronic systems as they had to be designed in detail and their functions

well specified, and this inevitably constrained their variety. Instead, he

turned to animals.

In 1956 Beer had set up games that enabled children to solve simultane-

ous equations, even though they were not aware they were doing so. Their

moves in the game generated feedback in the form of colored lights that

guided their future moves. He then tried using groups of mice, with cheese

as the reward, and even tried to develop a simple mouse language. Beer

considered the theoretical potential of other vertebrates (rats and pigeons)

and, with Pask, social insects, but no experiments were carried out using

these animals.

Beer then investigated groups of Daphnia, a freshwater crustacean. He

added iron filings to the tank, which were eaten by the animals. Electro-

magnets were used to couple the tank with the environment (the experi-

menter). Beer could change the properties of magnetic fields, which in

turn effected changes in the electrical characteristics of the colony. Initially

this approach seemed to have potential, as the colony ‘‘retains stochastic

freedom within the pattern generally imposed—a necessary condition in

this kind of evolving machine; it is also self-perpetuating, and self-

repairing, as a good fabric should be’’ (Beer 1994, p. 29). However, not all

of the iron filings were ingested by the crustaceans and eventually the

behavior of the colony was disrupted by an excess of magnets in the water.

Beer then tried using a protozoan, Euglena, keeping millions of them in a

tank of water, which he likened to a ‘‘biological gas’’ (Beer 1994, p. 30).

These amoebae photosynthesize in water and are sensitive to light, their

phototropism reversing when light levels reach a critical value. If there is

sufficient light they reproduce by binary fission; if there is a prolonged ab-

sence of light they lose chlorophyll and live off organic matter. The amoe-

bae interact with each other by competing for nutrients, blocking light and

generating waste products. Although the green water was a ‘‘staggering

source of high variety’’ and it was possible to couple to the system (using a
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point source of light as an input and a photoreceptor to measure the be-

havioral output), unfortunately, the amoebae had ‘‘a distressing tendency

to lie doggo, and attempts to isolate a more motile strain failed’’ (Beer

1994, p. 31). Beer started to experiment with pond ecosystems kept in large

tanks, thinking that his single-species experiments were not ecologically

stable. He coupled the tank and the wider world in the same way as he

had done in the Euglena experiments, using a light and photorecep-

tors. However, it proved difficult to get this system to work as a control

system—the feedback to the environment was too ambiguous. ‘‘The state

of the research at the moment is that I tinker with this tank from time to

time in the middle of the night. My main obsession at the moment is at

the level of the philosophy of science. All this thinking is, perhaps, some

kind of breakthrough; but what about an equivalent breakthrough in ex-

perimental method? Do we really know how to experiment with black

boxes of abnormally high varieties?’’ (Beer 1994, p. 31). The first experi-

mental breakthrough came during one of his visits to Pask.

Growing an Ear

Although based in Sheffield, Beer would regularly go down to London and

work most of the night with Pask.9 In 1956 or ’57, he had ‘‘the most impor-

tant and indeed exciting of my personal recollections of working with Gor-

don’’ (Beer 2001, p. 553): the night they grew an electrochemical ear. Pask

had been experimenting with electrochemical systems consisting of a num-

ber of small platinum electrodes inserted in a dish of ferrous sulphate solu-

tion and connected to a current-limited electrical source. Metallic iron

threads tend to form between electrodes where maximum lines of current

are flowing. These metallic threads have a low resistance relative to the

solution and so current will tend to flow down them if the electrical activa-

tion is repeated. Consequently, the potentials at the electrodes are modified

by the formation of threads. If no current passes through a thread, then it

tends to dissolve back into the acidic solution. Metallic threads develop as

the result of two opposing processes: one that builds threads out of ions on

relatively negative electrodes; and one that dissolves threads back into ions.

The trial-and-error process of thread development is also constrained by the

concurrent development of neighboring threads and also by previously

developed structures. Slender branches extend from a thread in many direc-

tions and most of these dissolve, except for the one following the path of

maximum current. If there is an ambiguous path then a thread can bifur-

cate. As the total current entering the system is restricted, threads compete

for resources. However, when there are a number of neighboring unstable
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structures, the threads can amalgamate and form one cooperative struc-

ture. Over time a network of threads literally grows dynamically stable

structures.

These electrochemical systems display an elementary form of learning. If

a stable network of threads is grown and then the current to the electrodes

is redistributed, a new network will slowly start to form. If the current is

then set to the original distribution, the network tends to regrow its initial

structure. The longer a network has been stably growing, the slower it

breaks down when the current distribution changes, and the quicker it

returns to its original structure when the current distribution is reset.

Beer vividly remembers the night that he and Pask carried out the elec-

trochemical experiments that resulted in an ear (Beer 2001, pp. 554–55).

They were discussing Ashby’s concept of ultrastability and the ability of

machines to adapt to unexpected changes—changes that had not been

specified by their designer. Pask had recently been placing barriers in the

electrochemical dishes and the threads had grown over them—they had

adapted to unexpected changes in their environment. That night they did

some experiments to see how the threads would respond to damage by

chopping out sections of some of the threads. When current was applied

to the system the threads regrew, the gap moving from the anode to the

cathode until it was gone.

Although excited by this result, they thought that these were relatively

trivial disturbances. They wanted to perform an experiment to investigate

whether a thread network could adapt to more radical, unexpected dis-

ruption. ‘‘We fell to discussing the limiting framework of ultrastability.

Suddenly Gordon said something like, ‘Suppose that it were a survival re-

quirement that this thing should learn to respond to sound? If there were

no way in which this ‘meant’ anything, it would be equivalent to your

being shot. But this cell is liquid, and in principle sound waves could affect

it. It’s like your being able to accommodate to a slap, rather than a bullet.

We need to see whether the cell can learn to reinforce successful behaviour

by responding to the volume of sound.’ . . . It sounded like an ideal critical

experiment’’ (Beer 2001, p. 555).

Beer cannot remember the exact details of how they rewarded the sys-

tem.10 However, it did not require any major changes to the experimental

setup. They basically connected one, or more, of the electrodes with output

devices that enabled them to measure the electrical response of the electro-

chemical system to sound. The reward consisted of an increase in the cur-

rent supply, a form of positive reinforcement. Regardless of how the
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electrodes are configured, the electrochemical system will tend to develop a

thread structure that leads to current flowing in such a way that it is

rewarded further. Importantly, the reward is simply an increased capacity

for growth—there is no specification of what form the growth should take.

The electrochemical system is not just electrically connected to the exter-

nal world: threads are also sensitive to environmental perturbations such as

vibrations, temperature, chemical environment, and magnetic fields. Any

of these arbitrary disturbances can be characterized as a stimulus for the

system, especially if they cause a change in current supply. ‘‘And so it was

that two very tired young men trailed a microphone down into Baker Street

from the upstairs window, and picked up the random noise of dawn traffic

in the street. I was leaning out of the window, while Gordon studied the

cell. ‘It’s growing an ear,’ he said solemnly (ipsissima verba [the very

words])’’ (Beer 2001, p. 555).

Pask (1959) describes further experiments that were carried out where a

thread network was grown that initially responded to 50 Hz and then,

with further training, could discriminate between this tone and 100 Hz.

He was also able to grow a system that could detect magnetism and one

that was sensitive to pH differences. In each case the electrochemical sys-

tem responded to positive reinforcement by growing a sensor that he had

not specified in advance. Beer is clear why he and Pask thought this exper-

iment was significant: ‘‘This was the first demonstration either of us had

seen of an artificial system’s potential to recognize a filter which would be

conducive to its own survival and to incorporate that filter into its own

organization. It could well have been the first device ever to do this, and

no-one has ever mentioned another in my hearing’’ (Beer 2001, p. 555).

Pask (1959, p. 262) argues that the electrochemical ear is a maverick

device, as it shows the distinction between

the sort of machine that is made out of known bits and pieces, such as a

computer . . . and a machine which consists of a possibly unlimited number of com-

ponents such that the function of these components is not defined beforehand.

In other words, these ‘components’ are simply ‘building material’ which can be

assembled in a variety of ways to make different entities. In particular the designer

need not specify the set of possible entities.

Importantly, electrochemical systems, although finite, ‘‘are rendered non-

bounded by the interesting condition that they can alter their own rele-

vance criteria, and in particular, by the expedient of building sense organs,

can alter their relationship to the environment according to whether or not

a trial relationship is rewarded’’ (p. 262).
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The Value of Gordon Pask

Ideas that were dear to Gordon all that time ago, on interactive circuits with dynamic

growth, are coming back in the form of neural nets, with parallel processing in digi-

tal computers and also analogue systems. My bet is that analogue self-adapting nets

will take over as models of brain function—because this is very likely how the brain

works—though AI may continue on its course of number crunching and digital com-

puting. Surely this is alien to the brain. So we would fail the Turing Test, being too

good at pattern recognition, and much too poor at arithmetic compared with digital

computers. In short, the kind of philosophy that Gordon nurtured does seem to be

returning. Perhaps his learning machines have lessons for us now.

—Richard Gregory (2001, pp. 686–87)

The naive picture of scientific knowledge acquisition is one of posing in-

creasingly sophisticated questions to nature. But, of course, such questions,

and therefore the knowledge obtained from them, are never pure, unaf-

fected by the questioners’ ulterior motives, or unconstrained by technolog-

ical and conceptual barriers. Science manifests itself as a social and cultural

activity through subtle factors such as concept management, theory cre-

ation, and choice of what problems to focus on. It is far from being passive

observation followed by rational reflection. It is active. But even in this pic-

ture, experimental data, the source of scientific information to a commu-

nity of researchers, is still seen as the detached, passive observation of

nature at work. Observer intervention (today most apparent in quantum

measurement or the behavioral and cognitive sciences) is often treated as a

problem we would wish to minimize if we cannot eliminate.

Pask’s approach goes against this view. For him, not only can we gain

new understanding by actively constructing artefacts instead of just

observing nature, we can also increase our knowledge by engaging in an

interaction with them. Pask’s design methodology can be characterized as

‘‘meeting nature half way’’: accepting that we have limited, incomplete

knowledge about many systems we want to understand and treating them

as black boxes. By interacting with these systems we can constrain them,

and ourselves, and develop a stable interaction that is amenable to analysis.

For him, both the construction and the interaction become a necessity if

we wish to understand complex phenomena such as life, autonomy, and

intelligence.

Let us consider construction. The first thing that must be clarified is that

Pask, and nowadays some of current research in AI and robotics, is not sim-

ply proposing that technology and science interact, often in a positive, mu-
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tually enhancing manner. The construction he refers to is not that of more

sophisticated artefacts for measuring natural phenomena or the construc-

tion of a device that models natural phenomena by proxy, but the con-

struction of a proper object of study, in other words, the synthesis of a

scientific problem in itself. This idea is radical—fraught with pitfalls and

subject to immediate objections. Why create problems deliberately? Are

we not just using our existing knowledge to guide the creation of an arte-

fact? Then, how do we expect to gain any new knowledge out of it?

Indeed, the idea seems not just a minefield of methodological issues;

it seems absurd and a nonstarter, at most a recipe for useful pedagogical

devices, toy problems for scientific training, but not the stuff of proper

science. To answer these criticisms it is necessary to demonstrate not only

that interesting artefacts can be constructed that will grasp the attention of

scientists but also that we can do science with them, that they can advance

our understanding of a problem.

It is clear, in relation to one of the objections above, that if by construc-

tion we mean the full specification of every aspect of our artefact and every

aspect of its relation to its environment, then little new knowledge can be

expected from it, except perhaps the knowledge that confirms that our

ideas about how to build such an artefact were or weren’t correct. This is

traditional engineering, which of course is a source for that kind of knowl-

edge. But what if the construction proceeds not by a full specification of

the artefact but by the design of some broad constraints on processes that

lead to increased organization, the result of which—with some good

probability—is the artefact we are after? Now, if we succeed in this task,

the workings of such a system are not fully known to us. It may surprise

us. It may challenge our preconceptions by instantiating a new way of solv-

ing a problem. Or, more subtly, it may make us revise the meaning of our

scientific terms and the coherence of our theories.

Is such an underspecified synthesis possible? Yes, it is. It was for Pask, as

he demonstrated with his maverick machines (most dramatically with the

electrochemical ‘‘ear’’) and it is common currency in biologically inspired

AI (self-organizing optimization algorithms, evolutionary robotics, stochas-

tic search, and so forth). Hardware evolution, which uses genetic algo-

rithms to constrain reconfigurable devices such as field-programmable gate

arrays (FPGAs), also provides striking examples of how relaxing conven-

tional engineering constraints (such as a central clock) can lead to the

invention of novel circuits—or should that be ‘‘discovered’’?11 Pask’s re-

search also provides a valuable reminder of the constraints that con-

ventional computer architectures impose on machines. Although digital
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computers have an invaluable ‘‘number-crunching’’ role, they are not nec-

essarily the best medium for building controllers that have to interact with

dynamic environments. Similarly, conventional computer architectures

might not be the best models of adaptive systems.

Pask provides a methodology for developing controllers that can deal

with nonstationary environments about which we have limited knowl-

edge. His cybernetic approach of coupling two nonstationary, unmeasur-

able systems in order to generate a stable, measurable relation will probably

not appeal to conventional engineers. For example, Beer (2001, p. 552), dis-

cussing SAKI, lamented, ‘‘The engineers somehow took the cybernetic in-

vention away. I suspect that they saw themselves as designing a machine

to achieve the content-objective (learn to type), instead of building a Pas-

kian machine to achieve the cybernetic objective itself—to integrate the

observer and the machine into a homeostatic whole. Machines such as

these are not available to this day, because they are contra-paradigmatic to

engineers and psychologists alike.’’

Even if we can successfully synthesize an artefact that would indeed be a

source for furthering our understanding about a given problem, what

makes us think that such a device would be easier to understand than

nature? Valentino Braitenberg (1984), a proponent of a related synthetic

approach, convincingly pointed out a curious fact that he dubbed the

‘‘law of downhill synthesis and uphill analysis’’: it is rather easy to build

things that look very complex and are hard to understand. This is true

particularly if we specify lower-level mechanistic building blocks and leave

as unspecified higher-level and interactive aspects of the system. If we now

present the latter as the easily observable variables, the system can seem

devilishly complex. W. Grey Walter had already demonstrated this with

his robotic tortoises (1950, 1951, 1953). Simple combinations of a very few

basic mechanisms could interact in surprising ways with a complex envi-

ronment, giving the illusion of sophisticated cognitive performances (such

as decision making, adaptive goal constancy, self-sustenance, and others).

This ‘‘law’’ of downhill synthesis, uphill analysis, is on the one hand

quite interesting in itself, and often the source of entertaining explorations.

It is also a stark reminder that we need not theorize complex mechanisms

when we are faced with complex systemic behavior—a much unheeded

warning. It is, in this sense, a powerful positive idea. On the other hand,

though, it points to a major problem with the proposal of furthering scien-

tific understanding by construction. Yes, we may be successful in construct-

ing our artefact, but how shall we understand it? We seem to be at an

advantage over understanding similarly complex phenomena in nature.
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We may have more access to data, we know many things, if not everything,

about how the system is built, we can restart it and do experiments that

would be impossible in nature. But will these advantages always suffice?

Have we given our process of synthesis too much freedom and the result is

now an intractably complex system?

Two answers can be given to this problem. One suggests that our greater

gain is by proceeding in a more or less controlled manner in exploring

increasingly complex systems. This answer advocates minimalism as a

methodological heuristic (Harvey et al. 2005). By building systems that are

underdetermined but in a controlled fashion (which sounds like a paradox,

but simply means that we should carefully control the constraints to the

process of automatic synthesis), we stand our highest chance of creating

new knowledge because we advance minimally over our previous under-

standing, which can largely be deployed on the analysis of our current

system. There is a sense in which such a minimalism will provide us with

the simplest cases that instantiate a phenomenon of interest, for instance

learning or decision making, and allow us to develop the right kind of

‘‘mental gymnastics’’ to deal with more complex cases (Beer 2003).

But Pask proposes a different, more radical solution that has, paradoxi-

cally, been in use in dealing successfully with nature since the advent of

culture, much before anything like science ever existed. Pask proposes that

we should base our understanding of a complex system on our interactions

with it and the regularities that emerge from such interaction. We should

approach complex systems, even those we synthesize ourselves, as a natu-

ral historian would (perhaps even as an animal trainer, a psychotherapist,

or an artist would). This interactive method for understanding complex

systems is still a hard pill to swallow in many areas of science.

Pask’s machines and philosophy often seem so maverick that they are

hard to evaluate. Interacting with his work, one can struggle to achieve a

stable understanding because of the demands he places on the reader.

However, we have found it a worthwhile struggle and we hope that others

will be encouraged to interact with his ideas: although fifty years old, they

are highly relevant for every discipline that is attempting to understand

adaptive (nonstationary) behavior.
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Notes

1. Michael Renshall, CBE, who was at Rydal from 1941 to 1948 and also was a con-

temporary of Pask’s at Cambridge, provided all of the information about Gordon’s

school days.

2. The radical theater director Joan Littlewood was certainly aware of Pask by 1946

(Littlewood 2001). Pask wrote shows for his Musicolour system in the early 1950s.

3. A clear description of the strategy for selecting filter parameter values is given in

Pask (1971, p. 80).

4. Ethologists coined the term ‘‘releaser stimulus’’ to refer to a simple perceptual fea-

ture of a complex stimulus that elicits a pattern of behavior. Niko Tinbergen (1951)

had shown that crude models of a stickleback could elicit behavior patterns in the

real fish—they attack red-bellied models and court swollen-bellied models.

5. The complete patent specification was published in 1961 (GB866279).

6. A later version of SAKI was developed to train operators in the use of key punches

with larger numbers of keys (see Pask 1982, p. 71, figure 2). Herman Hollerith devel-

oped the first automatic data-processing system to count the 1890 U.S. census. A key

punch was used to record the data by making holes in dollar-bill-sized cards. A tabu-

lating machine contained a pin for each potential hole in a card. A card was passed

into the reader and if a pin passed through a hole a current was passed, incrementing

a counter. On the basis of these counters the card was automatically dropped into

the appropriate section of a sorting box. It took just three years to tabulate the 62

million citizens the census counted. Building on this success Hollerith set up the

Tabulating Machine Company, which eventually, after a series of mergers, became

IBM in 1924. Some key-punch devices continued to be marketed as Hollerith

machines, for example, the IBM 032 Printing punch produced in 1933 and the key-

board used in the first versions of SAKI.

7. This does seem a remarkably fast rate—the average response time for pressing a

key after training on SAKI was about 0.2 seconds (Pask 1961a, p. 96).

8. For details of Ashby’s ‘‘Law of Requisite Variety,’’ see Ashby (1956, pp. 202–18).

9. Both Pask and Beer worked eccentric hours. Pask would regularly stay awake for

thirty-six hours and then sleep for twelve hours, regulating the cycle with pills
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(Elstob 2001). His wife thought that he was often at his best at the end of these mar-

athon work sessions (Paul Pangaro, personal communication; Pangaro, who earned

his doctorate with Pask, maintains an on-line archive of Pask’s work at http://

www.pangaro.com/Pask-Archive/Pask-Archive.html).

10. We lack clear information about the experimental details, even though Pask

continued in-depth investigations into electrochemical systems at the University of

Illinois under Heinz von Foerster. There has not, to our knowledge, ever been an in-

dependent replication of these experiments.

11. Adrian Thompson (1997) evolved a circuit on a small corner of a Xilinx XC6216

field-programmable gate array (FPGA) that was able to discriminate between two

square wave inputs of 1 kHz and 10 kHz without using any of the counters–timers

or RC networks that conventional design would require for this task. Layzell (2001)

developed his own reconfigurable device, the Evolvable Motherboard, for carrying

out hardware evolution experiments. One experiment resulted in the ‘‘evolved

radio,’’ probably the first device since Pask’s electrochemical ‘‘ear’’ that configured a

novel sensor (Bird and Layzell 2001).
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9 Santiago Dreaming

Andy Beckett

When Pinochet’s military overthrew the Chilean government more than thirty

years ago, they discovered a revolutionary communication system, a ‘‘Socialist

Internet’’ connecting the whole country. Its creator? An eccentric scientist

from Surrey. This article recounts some of the forgotten story of Stafford Beer.

During the early seventies, in the wealthy commuter backwater of West

Byfleet in Surrey, a small but rather remarkable experiment took place. In

the potting shed of a house called Firkins, a teenager named Simon Beer,

using bits of radios and pieces of pink and green cardboard, built a series

of electrical meters for measuring public opinion. His concept—users of

his meters would turn a dial to indicate how happy or unhappy they were

with any political proposal—was strange and ambitious enough. And it

worked. Yet what was even more jolting was his intended market: not Brit-

ain, but Chile.

Unlike West Byfleet, Chile was in revolutionary ferment. In the capital,

Santiago, the beleaguered but radical Marxist government of Salvador

Allende, hungry for innovations of all kinds, was employing Simon Beer’s

father, Stafford, to conduct a much larger technological experiment of

which the meters were only a part. This was known as Project Cybersyn,

and nothing like it had been tried before, or has been tried since.

Stafford Beer attempted, in his words, to ‘‘implant’’ an electronic ‘‘ner-

vous system’’ in Chilean society. Voters, workplaces, and the government

were to be linked together by a new, interactive national communications

network, which would transform their relationship into something pro-

foundly more equal and responsive than before—a sort of Socialist Inter-

net, decades ahead of its time.

When the Allende administration was deposed in a military coup, the

thirtieth anniversary of which falls this Thursday (11 September, 2003),1

exactly how far Beer and his British and Chilean collaborators had got in



constructing their high-tech utopia was soon forgotten. In the many his-

tories of the endlessly debated, frequently mythologized Allende period,

Project Cybersyn hardly gets a footnote. Yet the personalities involved, the

amount they achieved, the scheme’s optimism and ambition, and perhaps,

in the end, its impracticality contain important truths about the most tan-

talizing left-wing government of the late twentieth century.

Stafford Beer, who died in 2002, was a restless and idealistic British ad-

venturer who had long been drawn to Chile. Part scientist, part manage-

ment guru, part social and political theorist, he had grown rich but

increasingly frustrated in Britain during the fifties and sixties. His ideas

about the similarities between biological and man-made systems, most fa-

mously expressed in his later book, The Brain of the Firm (1981), made him

an in-demand consultant with British businesses and politicians. Yet these

clients did not adopt the solutions he recommended as often as he would

have liked, so Beer began taking more contracts abroad.

In the early sixties, his company did some work for the Chilean railways.

Beer did not go there himself, but one of the Chileans involved, an engi-

neering student named Fernando Flores, began reading Beer’s books and

was captivated by their originality and energy. By the time the Allende gov-

ernment was elected in 1970, a group of Beer disciples had formed in Chile.

Flores became a minister in the new administration, with responsibility for

nationalizing great swathes of industry. As in many areas, the Allende gov-

ernment wanted to do things differently from traditional Marxist regimes.

‘‘I was very much against the Soviet model of centralization,’’ says Raul

Espejo, one of Flores’s senior advisers and another Beer disciple. ‘‘My gut

feeling was that it was unviable.’’

But how should the Chilean economy be run instead? By 1971, the

initial euphoria of Allende’s democratic, nonauthoritarian revolution was

beginning to fade; Flores and Espejo realized that their ministry had

acquired a disorganized empire of mines and factories, some occupied by

their employees, others still controlled by their original managers, few of

them operating with complete efficiency. In July, they wrote to Beer for

help.

They knew that he had left-wing sympathies, but also that he was very

busy. ‘‘Our expectation was to hire someone from his team,’’ says Espejo.

But after getting the letter, Beer quickly grew fascinated by the Chilean

situation. He decided to drop his other contracts and fly there. In West

Byfleet, the reaction was mixed: ‘‘We thought, ‘Stafford’s going mad

again,’ ’’ says Simon Beer.
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When Beer arrived in Santiago, the Chileans were more impressed. ‘‘He

was huge,’’ Espejo remembers, ‘‘and extraordinarily exuberant. From every

pore of his skin you knew he was thinking big.’’ Beer asked for a daily fee of

$500—less than he usually charged, but an enormous sum for a govern-

ment being starved of U.S. dollars by its enemies in Washington—and a

constant supply of chocolate, wine, and cigars.

For the next two years, as subordinates searched for these amid the food

shortages, and the local press compared him to Orson Welles and Socrates,

Beer worked in Chile in frenetic bursts, returning every few months to En-

gland, where a British team was also laboring over Cybersyn. What this col-

laboration produced was startling: a new communications system reaching

the whole spindly length of Chile, from the deserts of the north to the icy

grasslands of the south, carrying daily information about the output of in-

dividual factories, about the flow of important raw materials, about rates of

absenteeism and other economic problems.

Until now, obtaining and processing such valuable information—even in

richer, more stable countries—had taken governments at least six months.

But Project Cybersyn found ways round the technical obstacles. In a forgot-

ten warehouse, five hundred telex machines were discovered which had

been bought by the previous Chilean government but left unused because

nobody knew what to do with them. These were distributed to factories,

and linked to two control rooms in Santiago. There a small staff gathered

the economic statistics as they arrived, officially at five o’clock every after-

noon, and boiled them down using a single precious computer into a brief-

ing that was dropped off daily at La Moneda, the presidential palace.

Allende himself was enthusiastic about the scheme. Beer explained it to

him on scraps of paper. Allende had once been a doctor and, Beer felt,

instinctively understood his notions about the biological characteristics of

networks and institutions. Just as significantly, the two men shared a belief

that Cybersyn was not about the government spying on and controlling

people. On the contrary, it was hoped that the system would allow workers

to manage, or at least take part in the management of, their workplaces and

that the daily exchange of information between the shop floor and San-

tiago would create trust and genuine cooperation—and the combination

of individual freedom and collective achievement that had always been

the political holy grail for many left-wing thinkers.

It did not always work out like that. ‘‘Some people I’ve talked to,’’ says

Eden Miller, an American who is writing her Ph.D. thesis partly about

Cybersyn, ‘‘said it was like pulling teeth getting the factories to send these
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statistics.’’2 In the feverish Chile of 1972 and 1973, with its shortages and

strikes and jostling government initiatives, there were often other prior-

ities. And often the workers were not willing or able to run their plants:

‘‘The people Beer’s scientists dealt with,’’ says Miller, ‘‘were primarily

management.’’

But there were successes. In many factories, Espejo says, ‘‘Workers started

to allocate a space on their own shop floor to have the same kind of graph-

ics that we had in Santiago.’’ Factories used their telexes to send requests

and complaints back to the government, as well as vice versa. And in

October 1972, when Allende faced his biggest crisis so far, Beer’s invention

became vital.

Across Chile, with secret support from the CIA, conservative small busi-

nessmen went on strike. Food and fuel supplies threatened to run out.

Then the government realized that Cybersyn offered a way of outflanking

the strikers. The telexes could be used to obtain intelligence about where

scarcities were worst, and where people were still working who could allevi-

ate them. The control rooms in Santiago were staffed day and night. People

slept in them—even government ministers. ‘‘The rooms came alive in the

most extraordinary way,’’ says Espejo. ‘‘We felt that we were in the center

of the universe.’’ The strike failed to bring down Allende.

In some ways, this was the high point for Cybersyn. The following year,

like the government in general, it began to encounter insoluble problems.

By 1973, the sheer size of the project, involving somewhere between a

quarter and half of the entire nationalized economy, meant that Beer’s

original band of disciples had been diluted by other, less idealistic scien-

tists. There was constant friction between the two groups. Meanwhile,

Beer himself started to focus on other schemes: using painters and folk

singers to publicize the principles of high-tech socialism; testing his son’s

electrical public-opinion meters, which never actually saw service; and

even organizing anchovy-fishing expeditions to earn the government

some desperately needed foreign currency.

All the while, the right-wing plotting against Allende grew more blatant

and the economy began to suffocate as other countries, encouraged by the

Americans, cut off aid and investment. Beer was accused in parts of the in-

ternational press of creating a Big Brother–style system of administration in

South America. ‘‘There was plenty of stress in Chile,’’ he wrote afterward. ‘‘I

could have pulled out at any time, and often considered doing so.’’

In June 1973, after being advised to leave Santiago, he rented an anony-

mous house on the coast from a relative of Espejo. For a few weeks, he

wrote and stared at the sea and traveled to government meetings under
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cover of darkness. On September 10, a room was measured in La Moneda

for the installation of an updated Cybersyn control center, complete with

futuristic control panels in the arms of chairs and walls of winking screens.

The next day, the palace was bombed by the coup’s plotters. Beer was in

London, lobbying for the Chilean government, when he left his final meet-

ing before intending to fly back to Santiago and saw a newspaper billboard

that read, ‘‘Allende assassinated.’’

The Chilean military found the Cybersyn network intact, and called in

Espejo and others to explain it to them. But they found the open, egalitar-

ian aspects of the system unattractive and destroyed it. Espejo fled. Some of

his colleagues were not so lucky. Soon after the coup, Beer left West Byfleet,

his wife, and most of his possessions to live in a cottage in Wales. ‘‘He had

survivor guilt, unquestionably,’’ says Simon.

Cybersyn and Stafford’s subsequent, more esoteric inventions live on in

obscure Socialist websites and, more surprisingly, modern business school

teachings about the importance of economic information and informal

working practices. David Bowie, Brian Eno, and Tony Blair’s new head of

policy, Geoff Mulgan, have all cited Beer as an influence.

But perhaps more importantly, his work in Chile affected those who par-

ticipated. Espejo has made a good career since as an international manage-

ment consultant. He has been settled in Britain for decades. He chuckles

urbanely at the mention of Pinochet’s arrest in London five years ago. Yet

when, after a long lunch in a pub near his home in Lincoln, I ask whether

Cybersyn changed him, his playful, slightly professorial gaze turns quite se-

rious. ‘‘Oh yes,’’ he says. ‘‘Completely.’’

Notes

1. This article first appeared in The Guardian newspaper, London, on September 8,

2003. It is reproduced with permission. Copyright Guardian News and Media Ltd.

2. ‘‘The State Machine: Politics, Ideology, and Computation in Chile, 1964–1973,’’ Ph.D.

diss., MIT, 2005. Since this article was written, Miller has finished her Ph.D. and

changed her surname: she is now Eden Medina.
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10 Steps Toward the Synthetic Method: Symbolic

Information Processing and Self-Organizing Systems in Early

Artificial Intelligence Modeling

Roberto Cordeschi

Marvin Minsky (1966) defined as a ‘‘turning point’’ the year that witnessed

the simultaneous publication of three works, by Kenneth Craik (1943),

Warren McCulloch and Walter Pitts (1943) and Arturo Rosenblueth, Nor-

bert Wiener, and Julian Bigelow (1943). The year 1943 is customarily con-

sidered as the birth of cybernetics. Artificial Intelligence (AI) was officially

born thirteen years later, in 1956. This chapter is about two theories of

human cognitive processes developed in the context of cybernetics and

early AI. The first theory is that of the cyberneticist Donald MacKay, in the

framework of an original version of self-organizing systems; the second is

that of Allen Newell and Herbert Simon (initially with the decisive support

of Clifford Shaw) and is known as information-processing psychology

(IPP). The latter represents the human-oriented tendency of early AI, in

which the three authors were pioneers.

Elsewhere I have shown how IPP is situated in the context of the birth of

computer science, of cybernetics and AI (see Cordeschi 2002, chapter 5).

There are also popular reconstructions of the history of AI for purposes

different from mine (see McCorduck 1979; Crevier 1993). Here the aim is

to analyze epistemological topics of IPP in greater detail, above all during

what I call its ‘‘classical’’ phase. This phase runs from about the mid-1950s

(the years of the building of the first simulation programs) to the mid-

1970s (Newell and Simon’s Turing Lecture [Newell and Simon 1976] dates

from 1975, and contains the formulation of the Physical Symbol System

Hypothesis). Subsequently, the interests of Newell and Simon diverged,

even as IPP’s influence spread into cognitive science.

My interest in MacKay’s theory is due to the fact that, among the cyber-

neticists, he was the one most sensitive to the epistemological problems

raised by cybernetics, and one of the most interested in higher cognitive

processes. These are also the subject matter of Newell, Shaw, and Simon’s

researches. In essence, MacKay’s self-organizing system theory and Newell,



Shaw and Simon’s symbolic information-processing theory are process

theories. In both cases they are processes postulated to explain higher

human cognitive activities, such as decision making and choice, attention,

planning, complex problem solving, and, in the case of MacKay, conscious-

ness (a topic I shall not deal with in this chapter).

MacKay introduced the study of these processes by extending the origi-

nal behaviorist definition of adaptiveness and purposefulness given by

cyberneticists (starting with the 1943 article by Roseblueth, Wiener, and

Bigelow). In IPP, the study of these processes found a basis in the revision

undertaken by Simon in the 1940s of the theory of choice, a topic shared

by disciplines such as the theory of games and operations research (OR).

Both MacKay and Simon introduced the analysis of processes and mecha-

nisms underlying human choice, in particular when information is un-

certain and incomplete. Both theories make use of artifacts as models of

these processes and mechanisms, and thus represent steps toward the ‘‘syn-

thetic method’’—actually, different steps, as the two theories use very differ-

ent artifacts for cognitive modeling: self-organizing systems in the case of

MacKay, and computer programs in the case of IPP.

Simon’s shift in interest to the context of decision making occurred in the

period following World War II, and in particular in the 1950s and 1960s. It

was a consequence of his awareness that only in this way could models of

the processes of choice, planning, and problem solving be successful in

practical applications in industry and government and military agencies. It

has been shown elsewhere (Cordeschi 2002; Cordeschi and Tamburrini

2005) how, starting in the years preceding World War II, and indeed during

World War I, the synthetic method developed as a mixture of epistemolog-

ical issues (a modeling methodology with the aim of explaining human be-

havior and that of living organisms in general) and of practical applications

with possible military implications (a supporting tool for human decision

making and in some cases a tool for ‘‘usurping’’ it, to use Norbert Wiener’s

term). It is no coincidence that during the cybernetics era the predictor of

an automatic anti-aircraft system is the most frequently mentioned exam-

ple of a self-controlling and purposive device. These were the war years,

and ‘‘goal-seeking missiles were literally much in the air,’’ as W. Grey Wal-

ter recalled in his account of a meeting in the early 1940s with Kenneth

Craik, who was then engaged in investigating the aiming errors of air gun-

ners on behalf of the British government.

AI and IPP shared this context. By the 1950s and 1960s the world war

was over, but the cold war had begun. Digital computers and programming

science now allowed the new sciences to tackle choice as it is actually made
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by human beings, who are not usually fully informed decision makers

when they deal with real-life problems, or operate in complex contexts.

Simon’s shift of interest may be viewed as lying at the intersection between

OR and AI. Some exhaustive analyses insist on this point (see, for example,

Mirowski 2002), and on several occasions Simon himself returned to dis-

cuss the relationship between OR and AI in these same terms. He was par-

ticularly explicit both in recognizing the potential users and funders of

applications of the new decision-making theories (industry, government,

and military agencies) and in emphasizing how these theories enabled

applications that could not be dealt with by their predecessors (Simon and

Associates 1986, p. 33):

The study of decision making and problem solving has attracted much attention

through most of this century. By the end of World War II, a powerful prescriptive

theory of rationality, the theory of subjective expected utility (SEU), had taken form;

it was followed by the theory of games. The past forty years have seen widespread

applications of these theories in economics, operations research, and statistics, and,

through these disciplines, to decision making in business and government. The main

limitations of SEU theory and the developments based on it are its relative neglect of

the limits of human (and computer) problem-solving capabilities in the face of real-

world complexity. Recognition of these limitations has produced an increasing vol-

ume of empirical research aimed at discovering how humans cope with complexity

and reconcile it with their bounded computational powers.

Following this recognition, the issues raised by IPP remain to be exam-

ined in the historical context of the birth of the new theories of decision

making and of computer science, as well as of the further development of

more traditional disciplines, such as psychology and neurology (or neuro-

science, as we call it today). This analysis of IPP occupies more of the

present chapter than does MacKay’s theory; this is because IPP, partly for

the reasons mentioned, has enjoyed a greater degree of development

and dissemination. First, IPP had less difficulty in addressing the problems

raised by the synthetic method as far as human problem-solving processes

were concerned. IPP also played a leading role in the field in which it was

possible to obtain the most promising results at the time, namely heuristic

programming. Second, IPP promptly entered into the discussions among

psychologists in those years regarding the epistemological issues of their

research.

MacKay’s theory suffered the same fate as various cybernetic research

programs, which were superseded by the success of early AI heuristic

programming. However, the case of MacKay is particularly interesting be-

cause his theory, compared with other cybernetics research programs, was

Steps Toward the Synthetic Method 221



concerned with higher cognitive processes and not only with perceptual

and low-level aspects of cognition, as I show in the following section.

In the section after that (p. 230) I examine the synthetic method as it

was seen by MacKay and the founders of IPP. I shall dwell in particular

on the latter, in order to show how, once the use of the computer as meta-

phor is rejected, the computer becomes a tool for the building and testing

of theories of the mind. However, the thesis that computers merely simu-

late minds is rather weak. There is a stronger thesis, according to which

the computer grasps the essence of mind. Here cognition is not simply

simulated by computation—it is computation (see Simon 1995a for a partic-

ularly explicit statement). In the classical phase of IPP, which represents

the main subject of this chapter, this strong thesis remained in the back-

ground, and I shall not discuss its implications further here.

The section following that (pp. 237–44) is entirely about IPP. In recent

times, Newell and Simon’s research has often been identified with ‘‘good

old-fashioned AI,’’ or GOFAI (Haugeland 1985). In general, I agree with

Aaron Sloman (2002, p. 126): ‘‘This term . . . is used by many people who

have read only incomplete and biased accounts of the history of AI.’’ In

particular, I suggest that IPP, in the specific historical context I am attempt-

ing to reconstruct, was the first intellectual enterprise to tackle the entire

range of methodological and epistemological issues, which were then in-

herited by cognitive modeling and have continued to be used right up to

the present day.

The topics introduced in these three sections lead into the topic of the

final section. Here, in addition to mentioning certain developments subse-

quent to the classical phase of IPP, I attempt to situate both MacKay’s theory

and IPP within the frameworks of classical cognitive science and also of the

new cognitive science that followed the readoption of neural nets in the

1980s. Both the limits of MacKay’s original position in the context of early

AI and its renewed vitality in the context of the new cognitive science will

then become clear. At the same time I shall examine the original position

of IPP and some of its limitations in relation to the new cognitive science.

I shall not discuss this topic with the intention, common in this type of

reconstruction, of seeking contrasts between opposing paradigms (sym-

bolic vs. subsymbolic, symbolic vs. situated, and so forth). The moral of

this story is somewhat different. As things stand, different aspects of cogni-

tion are captured with varying degrees of success and at different levels by

modeling approaches that differ greatly among themselves. A comparison

of these approaches cannot be viewed as a battle on opposing fronts. This

would make it impossible to objectively evaluate the strength and the lim-
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its of the synthetic method in these different approaches. Randall Beer

(1998), referring to one of these battles, the ‘‘battle between computational

and dynamical ideologies,’’ decried the fact that the subjects usually exam-

ined are not ‘‘experimentally testable predictions, but rather competing

intuitions about the sort of theoretical framework that will ultimately be

successful in explaining cognition.’’ He concluded, ‘‘The careful study of

concrete examples is more likely to clarify the key issues than abstract de-

bate over formal definitions’’ (p. 630). I believe this is a conclusion that

should be endorsed.

Process Theories

If we have a rat in a very small maze, with cheese at one branch point, and if we give

the rat plenty time to explore, we can predict where he will finally go without any

very deep knowledge of rat psychology. We simply assume that he likes cheese (a

given utility function) and that he chooses the path that leads to cheese (objective

rationality). If we now transfer the rat to a maze having a number of pieces of cheese

in it, but a maze that is several orders of magnitude larger than the largest maze he

could possibly explore in a rat’s lifetime, then the prediction is more difficult. We

must now know how a rat solves problems in order to determine where he will go.

We must understand what determines the paths he will try and what clues will

make him continue along a path or go back.

—Herbert A. Simon, 1963

It all began in 1943, when Wiener, Bigelow, and Rosenblueth published

their seminal article stating the equivalence between the teleological be-

havior of organisms and the behavior of negative feedback machines. As

we have seen, the predictor of an automatic anti-aircraft system became

the most frequently cited example of this kind of machine. It sums up the

fundamental features underlying the comparison between organisms and

machines: both the organism and the machine change their behavior as

the conditions of the external environment change, and in doing this

they exhibit goal-directedness or purposefulness.

This definition of purposefulness immediately gave rise to numerous dis-

cussions (some of which, including their premises, are mentioned in Cor-

deschi 2002, chapter 4). According to this definition, and that proposed

some years previously by William Ross Ashby, purposefulness is defined

solely in terms of the pairing of the observable behavior with the external en-

vironment. Each ‘‘subjective’’ and therefore ‘‘vague’’ element (Ashby 1940)

is eliminated by this ‘‘narrow’’ definition of purposefulness. The three

authors defined as ‘‘behavioristic’’ their notion of teleological behavior, as
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it involves only an observer who studies the relationships that a system

maintains with the environment in which it is located, and its responses

or ‘‘outputs’’ as a function of certain stimuli or ‘‘inputs’’ (Rosenblueth,

Wiener, and Bigelow 1943, p. 24). As Ashby was later to conclude, cyber-

netics merely sheds some light on the objective aspects of behavior, namely

those considered ‘‘from the point of view of an observer outside the sys-

tem,’’ without telling us anything about the subjective aspects of the system

itself. By way of exception, Ashby mentioned Donald MacKay’s specula-

tions concerning a ‘‘system that ‘observes’ itself internally,’’ in which the

notion of negative feedback plays a central role (Ashby 1962, p. 310). Let

us consider this point in some detail.

MacKay rejected the behaviorist conception of the organism as a collec-

tion of black boxes, the behavior of which may be mimicked in purely

functional (or input-output) terms by an ‘‘artefact,’’ as he called it (the lat-

ter also being likened to a collection of black boxes). Instead, organism and

artifact are viewed as IFSs (information flow systems): their actual specific

physical composition is irrelevant, but the internal organization and struc-

ture they share are crucial to explain adaptive and purposive forms of be-

havior. In this case the language of information and control is a ‘‘useful

tool’’ in the process of ‘‘erecting, testing and . . . demolishing the psycholog-

ical theory.’’ It is also a ‘‘common language’’ for psychology and neuro-

physiology as it may be used in either field (MacKay 1956, pp. 30–31). I

shall return to this point in the next section.

MacKay’s assumption was that this common language allows a neutral

level of description of purposefulness to be identified, one that is a com-

mon level for both natural and artificial IFS’s. In its interaction with the en-

vironment, the IFS exhibits an adaptive and purposive behavior through

negative feedback. The latter is able to eliminate the discrepancy between

the ‘‘symbolic representation’’ of the perceived state and the ‘‘symbolic

representation’’ of the goal state. The definition is deliberately couched in

terms of representing states so that it can be applied to different systems,

those that pursue a physical object, and also to systems that pursue an ab-

stract object, in other words, ‘‘to a self-guided missile chasing an aircraft,

and a man chasing the solution to a crossword puzzle’’ (MacKay 1956, p.

34). To acknowledge this possibility does not, however, mean neglecting

the different functional organizations and structures of the two systems.

A self-guided missile is one of the simpler instances of a servomechanism

as identified by Wiener. In this case, the IFS is a system—let us call it sys-

tem A—that is ‘‘fully informed’’ in the sense that the discrepancy, as indi-

cated by the error signal, automatically prescribes ‘‘the optimal corrective
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response,’’ as MacKay put it. In this case the only degrees of freedom the IFS

possesses are those determined by the error signal.

The crossword puzzle solver in MacKay’s example is a much more com-

plex instance. In this case, the IFS is a system—let us call it system B—that

is normally not fully informed about the environment, and the discrep-

ancy is not able to prescribe the optimal corrective response. In the course

of the activity involving the (gradual) reduction of the discrepancy, the IFS

is assisted by the memory of its past activity. The system selects the input

patterns that are closest to the desired one (the goal), and eliminates the

others. The selected patterns represent the ‘‘internal symbolic vocabulary’’

of the IFS, which thus behaves ‘‘as if it believes what it has perceived.’’ In

the case of system B, statistical predictions may be made concerning its fu-

ture activity, that is, concerning the probability of evoking certain subse-

quent patterns. The system’s beliefs are defined on the whole by a ‘‘matrix

of transition-probability,’’ which characterizes the IFS as a ‘‘statistical ‘prob-

abilistic’ self-organizing system.’’ The ‘‘imitative’’ mechanism underlying

pattern selection also underlies the system’s self-observational ability,

which is probably what Ashby had in mind. (As for MacKay, he went on

to point out that this ability of the system could serve as the basis for sev-

eral forms of consciousness of increasing complexity: see Cordeschi, Tam-

burrini and Trautteur 1999).

In the case of the problem solver or system B, therefore, perception is an

active process that, insofar as it is selective as stated, involves attention.

Perception is not a kind of passive ‘‘filter’’ based on a template-matching

method, as in the simple case of system A. Furthermore, the complexity of

the problem-solving task is such that, in the case of system B, it is necessary

to take into account that the IFS uses not only logical reasoning processes

to attain its goal but also procedures that help it in ‘‘crossing logical gaps.’’

In other words, system B can choose from among alternative courses

of action to try and reduce the discrepancy, and does so through

‘‘statistically-controlled trial and error’’ (see MacKay 1951, 1952, 1959).

A man or artefact seeking to prove a geometrical theorem . . . is kept in activity

by recurrent evidence from his test-procedure that his latest method does not work:

his response to the feedback of this information (as to the discrepancy between

‘‘the outcome of my present method’’ and ‘‘the required conclusion’’) is to try new

methods—to adopt new subsidiary purposes. (MacKay 1965, p. 169)

This kind of problem solver, capable of making alternative choices, was

at the focus of the analysis of purposive behavior carried out by R. L. Ackoff

and C. W. Churchman, two pioneers of management science and OR in
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the United States. Like MacKay’s, their starting point is the 1943 analysis

by Rosenblueth, Wiener, and Bigelow, although the conclusions they reach

are quite different from MacKay’s (Churchman and Ackoff 1950). Ackoff

and Churchman independently distinguished the two systems described

by MacKay, although they held that genuinely purposive behavior cannot

be identified with that of a system with a zero degree of freedom, such as

MacKay’s system A. The latter was nevertheless the only one in which they

recognized the presence of negative feedback. Such a system displays a single

type of behavior in a specified environment, and, owing to the presence of

feedback, modifies its goal-directed behavior, but only if the external envi-

ronment changes; if it does not change, its behavior remains the same (as,

for instance, in the self-guided missile).

Conversely, a system such as B is able to choose between alternative

courses of action, and so can display many different behavior sequences in

the same environment in order to attain the goal. In this case, as Ackoff

and Churchman point out, from the point of view of the observer, the environ-

ment in which the system is located does not change. On the one hand, gen-

uinely purposive behavior is characterized by the relative unpredictability

of the system due to the system’s ability to make alternative choices with

the same goal, regardless of the change in the environment. On the other

hand, the presence of feedback is not required in the analysis of such a be-

havior: the environment that does not change is precisely the one the ob-

server (the experimenter) is interested in, whether he is a psychologist or a

social scientist—think of a rat that is trying to find its way through a maze,

or MacKay’s IFS solving a crossword puzzle, or the mechanical chess player

to which Ackoff and Churchman refer. (However, in later work they seem

to offer a different judgment as to the presence of feedback in such systems:

see Churchman, Ackoff, and Arnoff 1957).

To clarify matters, it is worth mentioning the possibility of distinguish-

ing between two kinds of feedback, a distinction implicit in MacKay’s

claims for the IFS. The first of these is the one linked to the ongoing activ-

ity in the system. This feedback normally occurs when the system triggers a

response, and it remains throughout the response: it is the feedback in sys-

tem A. The second is a delayed feedback based on the effect of the response,

the one that allows the generation of imitative patterns: it is the feedback

in system B. Now, while the environment does not change from the (objec-

tive) point of view of the observer (‘‘in the social scientist sense of ‘same-

ness,’ ’’ in the words of Ackoff and Churchman), from the (subjective) point

of view of the problem solver the external environment changes constantly. It

is precisely the feedback from the effect of the response that affects the pro-
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gressive reorganization of the internal representation of the problem by the

problem solver. This process is made possible by the capacity of the prob-

lem solver to apply test procedures, to create subgoals and so on, as MacKay

put it when he described the IFS as system B. Therefore, to limit oneself to

considering the point of view of the observer, but without taking into con-

sideration the problem solver’s point of view, amounts to a failure to ex-

plain the choice mechanisms or processes used by the problem solver

during its interaction with the environment, in particular with a complex

environment.

It was precisely the processes of choice that, during these years, attracted

the interest of Herbert Simon, who worked in the field of management

science and OR. His position is the opposite of Ackoff and Churchman’s:

he shares with MacKay the interest in the structure and the functional or-

ganization of the problem solver, and thus in its processes and resources

interacting with complex environments. The problem solver is usually not

fully informed about such environments, nor can it be: take the example of

chess and the combinatorial explosion of legal moves, or any real-life prob-

lem, which is always tackled by the problem solver on the basis of incom-

plete information. What counts for Simon is precisely the subjective point

of view of the problem solver, that is, the environment as represented by

the problem solver, and the perceptual and cognitive processes involved in

this.

[This] requires a distinction between the objective environment in which the eco-

nomic actor ‘‘really’’ lives and the subjective environment that he perceives and to

which he responds. When this distinction is made, we can no longer predict his

behavior . . . from the characteristic of the objective environment; we also need to

know something about his perceptual and cognitive processes. (Simon 1963, p. 710)

It is the emphasis on these processes that justifies the introduction of

psychology into management science and economics, as Simon put it

(hence his reference to the ‘‘economic actor’’). This emphasis entails a shift

of interest within the same family of disciplines in relation to their concern

with decision-making behavior. This shift is based on Simon’s renunciation

of the normative approach of game theory in studying choice, the

approach that had been adopted by authors such as Ackoff and Church-

man in the context of OR. Briefly, the normative approach consists in

studying the choice (or the strategy) that the agent ought to use objectively

in order to maximize the likelihood of finding an optimal solution (Ackoff

1962). Simon shifted the attention to the study of the choice (or the strat-

egy) that the agent normally uses insofar as this choice is conditioned by
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his own view of the environment in which he is operating, and about

which he customarily has only incomplete information.

The agent as decision maker or problem solver was not studied by Simon

from the standpoint of objective rationality, which is the essential feature

of the Homo oeconomicus of classical economics, who is interested in the

calculus of a utility function. Instead of this ‘‘ideal type’’ accepted by game

theory and OR, Simon took a ‘‘real’’ agent endowed with bounded rationality

(Simon 1947). The chess-player metaphor, frequently used in the decision-

making theories of the time, remained in the foreground, but was not

based on the ‘‘entirely mythical being’’ (as Simon was to say later) of game

theory. The internal limits of the real agent and the complexity of the en-

vironment, which are clearly exemplified in the game of chess, release him

from the constraint of having to find and use the best strategy in his choice

of moves, and allow him to use suboptimal and incompletely informed

strategies which are more or less ‘‘satisficing,’’ to use Simon’s term.

The agent’s limits also involve some perceptual aspects. As in the case of

MacKay’s IFS, perception is not viewed as a passive activity, or as a filter:

Perception is sometimes referred to as a ‘‘filter.’’ This term is . . .misleading . . . : it

implies that what comes through into the central nervous system is really quite a

bit like what is ‘‘out there.’’ In fact, the filtering is not merely a passive selection of

some part of a presented whole, but an active process involving attention to a very

small part of the whole and exclusion, from the outset, of almost all that is not with-

in the scope of attention. (Simon 1963, p. 711)

Unlike MacKay’s process theory, the system that employs these percep-

tual and cognitive processes is not a statistical (analogue) self-organizing

system, an IFS of which men and artifacts are instantiations (at least as far

as the aspects considered are concerned). The system is viewed here as an

information-processing system (IPS), a genus of which men and digital

computer programs are species (Newell and Simon 1972, p. 870).

The structure of an IPS is now familiar, as it shares with early AI the no-

tion of a computer program. The IPS, in its ‘‘psychological’’ version, which

made it the principal player in IPP, includes several constraints. Briefly, an

IPS possesses a sensory-motor apparatus through which it communicates

with the external environment, or ‘‘task environment.’’ It displays an adap-

tive and goal-directed behavior conditioned by the complexity of the envi-

ronment and by its internal limits as an IPS. These limits are due to several

of its structural features, which are variable but which recur in each indi-

vidual case. These features are as follows: the IPS essentially operates in a

serial mode; the small number of elementary information processes are

very quickly executed; it has a rapidly accessible but limited capacity
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short-term memory and a slowly accessible but potentially infinite-capacity

long-term memory.

In this formulation, the task environment is the objective environment

of the observer or experimenter (presumably the one Ackoff and Church-

man were referring to), whereas the subjective environment of the IPS,

that is, the task environment as represented by it, is the ‘‘problem space.’’

The latter includes, as Newell and Simon (1972, p. 59) put it, ‘‘the initial

situation presented to him, the desired goal situation, various intermediate

states, imagined or experienced, as well as any concepts he uses to describe

these situations to himself.’’ In a sense, the problem space is the machine’s

idiosyncratic model of the environment so insightfully described by Mar-

garet Boden (1978, pp. 128–31) in her comment on the seminal paper by

Minsky (1968, pp. 425–32) on models. The problem space suggests to the

IPS the satisfactory problem-solving strategies previously mentioned—in a

word, the problem-solving heuristics. An example will clarify matters and

allow me to make a few final remarks.

The principal heuristic embodied in the first IPP program, the now-

legendary Logic Theorist (LT), designed to prove sentence-logic theorems,

was the difference-elimination heuristic. It makes it possible to eliminate

the discrepancy between the initial state (the starting expression) and the

final or goal state (the expression to be proved). The intermediate expres-

sions are generated by the program, selecting the rules of logic that produce

expressions progressively more similar to the final, or goal state, expression;

similarity is used as the cue for the solution. ‘‘At each step a feedback of the

result [of the application of a rule is obtained] that can be used to guide

the next step’’ (Newell and Simon 1972, p. 122). It is precisely this feed-

back from the effect of the response that was introduced by MacKay and

rejected by Churchman and Ackoff. As suggested, this kind of feedback is

crucial for a cognitive-process theory, because it underlies the continuous

reorganization of both the problem representation of the IFS and the prob-

lem space of the IPS. We could not predict the problem solver’s behavior in

the large maze or task environment of logic without postulating this kind

of feedback.

The activity of a program like LT was described by Simon as a true process

of selecting winning patterns, those more similar to the final state, which

are like ‘‘intermediate stable forms’’ similar to the species in biological evo-

lution (Simon 1996, chapter 8). In general, just as it was for MacKay, this is

a selective trial-and-error goal-guided procedure, which generates a set of

subgoals, that is, a number of subproblems, the solution of which might

lead to the solution of the original problem.
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The above comparison between two process theories that are convergent

in their subject matter (the human processes), but very different in their

premises, should not sound odd. The hierarchical organization, the limits

of the resources of the purposive agent vis-à-vis complex environments,

and the emphasis on the active and subjective aspects of perception and

cognition are all constraints stated by theories placing the emphasis

on processes really used by human beings. Gordon Pask (1964) gave an

enlightening exposition of the close analogy between the organization of

an IPP program such as the General Problem Solver (GPS) and that of a

self-organizing system as conceived by MacKay. It would seem that the

complex hierarchical organization of feedback and problem-solving subrou-

tines as described by MacKay found an actual realization in the field of

computer modeling in the 1950s and 1960s.

As stressed, MacKay was mainly concerned with higher cognitive pro-

cesses, including forms of self-consciousness, but he did not have sugges-

tions as to how, on the basis of his theory of self-organizing systems, it

might be possible to implement effective models of these processes. As a re-

sult, on the one hand he could not, and indeed did not, go much further in

examining simple or general artifacts; on the other hand, he ended up by

underestimating computer-programming techniques at a time when they

were beginning to show their actual power, although in a rather primitive

form. Comparing his system with the computer programs of the time, he

always concluded that ‘‘digital computers are deliberately designed to show

as few as possible of the more human characteristics,’’ or that they ‘‘are not

designed to resemble the brain’’ (MacKay 1951, p. 105; 1954, p. 402). He

always saw the computer above all as a logical and deterministic machine,

lacking the degrees of freedom that were guaranteed by the probabilistic

and self-organizing features of his IFS. It was Minsky (1959) who, taking

part in the discussion that followed MacKay’s (1959) talk at the Teddington

Symposium in 1958, pointed out how the incompletely informed, nonlog-

ical, and nondeterministic aspects (as MacKay seemed to define them) of

the human problem solver could be handled by the newborn technique

of heuristic programming.

Computer Metaphor and Symbolic Model

Any kind of working model of a process is, in a sense, an analogy. Being different it is

bound somewhere to break down by showing properties not found in the process it

imitates or by not possessing properties possessed by the process it imitates.

—Kenneth Craik, 1943
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The concepts of analogy and metaphor are often confused with the con-

cept of model in the study of cognition. It is, however, possible to make a

distinction. For Newell and Simon (1972, p. 5) this is a crucial step:

Something ceases to be metaphor when detailed calculations can be made from it; it

remains metaphor when it is rich in features in its own right, whose relevance to the

object of comparison is problematic.

For MacKay, too, such a distinction is crucial, but he states it with the

rather different aim of showing that the computer is the wrong metaphor

for the brain. On the contrary, according to Newell and Simon, the com-

puter ceases to be used as a mere metaphor the brain is a computer when

one is not interested in its possible capacity ‘‘to exhibit humanoid behav-

ior,’’ but is interested in ‘‘specifying with complete rigor the system of pro-

cesses that make the computer exhibit behavior,’’ that is, in building a

model of such behavior in the form of a computer program—a necessarily

symbolic model (Newell and Simon 1959, p. 4). However, a different and

less frequent use in IPP of these terms and of the term ‘‘theory’’ is con-

tained in Simon and Newell (1956).

Through this choice, IPP enters the history of modeling methodology

in the behavioral sciences, which stretches through the entire twentieth

century under the label ‘‘synthetic method’’ (Cordeschi 2002). Briefly, this

methodology starts from a theory of phenomena regarding certain features

of living organisms, such as adaptation, learning, problem-solving ability,

or the possession of a nervous system. The theory is based essentially on

observations of overt behavior and, whenever available, on verbal reports

or on biological and neurophysiological data, and is used as a basis for

building a functioning artifact—a ‘‘working model,’’ as in Craik’s com-

ment. The artifact therefore embodies the explanatory principles (the

hypotheses) of the theory and is considered a test of the theory’s

plausibility.

Of the many issues at stake, two are of principal importance. The first is

the nature of the constraints, suggested by the theory, that the artifact must

satisfy because it is a psychologically or a neurologically realistic model—in

other words, because it can help explain the phenomenon under investiga-

tion. The second issue is the following: in the course of testing the theory

through the model, it may be necessary to initiate a revision process that

affects the model directly, but may also involve the theory. In this case the

model takes on an important heuristic function: it may actually suggest

new hypotheses to explore, and may have significant implications for the

theory itself.
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I have deliberately given a general statement of the synthetic method in

order to avoid linking it to the type of artifact, the subject matter of the

theory, or the choice of the constraints. In the preceding section I stressed

that MacKay’s IFS and Newell, Shaw and Simon’s IPS share certain struc-

tural features: both are hierarchically organized, adaptive, purposive, not

fully informed, and so on. In both cases, the subject matter is human pro-

cesses, in particular, choice and problem-solving processes. Both systems

are to be seen as abstract systems: their structural features must occur, to

different extents, in all their physical realizations. Now the IFS is a self-

organizing analogical machine and the IPS is a digital machine. What is

the relationship between these different abstract systems and their physical

realizations?

MacKay left us no concrete examples of artifacts as realizations of the

IFS, except for schemata of very simple analogue machines embodying

the general features of the IFS as constraints (the examples are always the

same over the years: see MacKay 1969). MacKay is not always clear on this

point, although it seems that the constraints must be viewed above all as

referring to the nervous system of organisms at a very general level. Indeed,

he distinguishes different levels of detail: there are neural network models,

which start ‘‘from an idealized model of the nerve cell’’ (originating with

McCulloch and Pitts 1943), but his preference is for ‘‘a statistical model of

the whole [nervous] system’’ (MacKay 1954, p. 403). Therefore his interest

is focused in the first instance on the abstract system, the IFS, which may

be used to guide and test the statement of hypotheses regarding the func-

tioning of both the nervous and the humoral system. The IFS has another

advantage: through it, it is possible to apply the language of information

and control not only to neurological but also to psychological and even

psychiatric phenomena, and so a language exists that allows ‘‘conceptual

bridge-building,’’ which can suggest ‘‘testable physical hypotheses’’ (p. 405).

In the case of the IPP, the ‘‘synthetic’’ approach (Newell, Shaw, and

Simon 1960) is stated more fully. Artifacts considered as realizations of

the IPS are computer programs, or, rather, certain computer programs: the

invariant features of the IPS are constraints that must be satisfied wholly

or partly by the programs, in order to be at least candidates for symbolic

models. As previously seen, these features regard the IPS’s structure, the

problem space and the task environment, as having been identified as

invariant, or common to all human IPSs, by experimental research on prob-

lem solving in the psychology of thinking. The features concern a level dif-

ferent from the nervous system level (as I show later). They set the IPP

generalizations, defined as laws of qualitative structure, that is, qualitative
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statements about the fundamental structure of the IPS—more similar to the

laws of Darwinian evolution than to Newtonian laws of motion, and as

such supporting predictions weaker than those that can be made from

more quantitative theories (see Simon 1978; these laws had already been

formulated by Newell and Simon 1976, with reference to Physical Symbol

Systems instead of to IPSs, and were later extended by Simon 1995b).

MacKay too believed that the data of his theory were ‘‘qualitative abstrac-

tions from function’’ (MacKay 1954, p. 405). However, in IPP the emphasis

is on the individuals, on the way in which the individual IPSs display their

specific abilities (in terms of errors, reaction times and so forth) with regard

to specific tasks. Here is a new issue for the synthetic method: How can

models of individuals be realized?

In order to gather specific data on individual problem solvers, Newell,

Shaw, and Simon from the outset used recorded protocols of subjects

‘‘thinking aloud’’—reporting the procedures they followed while solving a

given problem (a logic problem, for instance). This is a method used by the

psychologists of the Würzburg school in Europe, and rejected as introspec-

tive by behaviorist psychologists. For the founders of IPP, who based their

work on that of Jerome Bruner (see Bruner et al. 1956), De Groot (1946),

and Selz (1922) among others, this judgment is unjustified: the protocol

method is ‘‘as truly behavior as is circling the correct answer on a paper-

and-pencil test’’ (Newell, Shaw, and Simon 1958, p. 156; see also Simon

1981). In this case, programs must embody the heuristic procedures as

these are inferred from the individual thinking-aloud protocols, and may

thus be considered as candidate models of individuals.

The foregoing suggests that the constraints on symbolic models may vary

as to their generality. They may refer to (a) the structural invariants shared

by programs describing the behavior of the same subject over a range of

problem-solving tasks, or the behavior of different subjects in a specific

task environment, or (b) the specific features describing a single subject

in a single task situation. According to the degree of generality of the

constraints, it is possible to imagine a hierarchy of increasingly detailed

symbolic models aimed at capturing increasingly microscopic aspects of

cognition. How can these idiosyncratic models ultimately be validated?

Let us begin by recalling that not every program is a simulation model.

For instance, certain complex-problem solving programs using OR algo-

rithms rely on ‘‘brute-force’’ capacities and inhuman computing power: as

such they do not satisfy the general constraints envisaged by IPP as laws of

qualitative structures, and cannot be taken into consideration as models.

Conversely, a program that does not use these problem solving procedures
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is, albeit at a low level of detail, at least interesting as a demonstration of

the sufficiency of such processes to perform a given task. Such a program

embodies at least the invariant features of the IPS, and may thus be taken

‘‘as a first model’’ (Newell 1970, p. 367).

Therefore, already at this level the Turing test is not a useful validation

criterion for a program to be a candidate as a symbolic model, as it is a test

of mere functional (input-output) equivalence. It is thus a ‘‘weak test’’—

one that is limited to comparing the final performance of a human being

with that of a program. In IPP, the emphasis is instead placed on the inter-

nal structure of the IPS and on the processes underlying this performance

(Newell and Simon 1959, p. 14).

Comparison of the move chosen by a chess program with the moves chosen by hu-

man players in the same position would be a weak test. The program might have

chosen its move by quite a different process from that used by humans. . . . Similarity

of function does not guarantee similarity of structure, or of process. (emphasis added)

Then, on going to the level of specific processes simulated by idiosyn-

cratic models, a much stronger test than that of Turing is required, which

Newell and Simon described as follows. Imagine you mix together in an

urn some traces of programs (referring to the solution of a logic problem,

for instance) with the same number of human-generated protocols, both

written in some standard form. Would a qualified observer be able to dis-

tinguish one from the others? The answer is dependent on the details of

the problem-solving processes effectively simulated by the traces (Newell

and Simon 1959, p. 13).

For example, LT is merely a sufficiency proof: ‘‘it could certainly not pass

Turing’s test [in its much stronger version] if compared with thinking-

aloud protocols, although many of its quantitative features match those of

human problem solvers’’ (Newell and Simon 1959, p. 17). These features

consist essentially in the selectivity of the theorem proving strategies of LT

(its heuristics), which exclude the use of brute force. LT therefore embodies

parts of the IPS theory, but only at a fairly coarse level. To improve the level

of approximation of LT to the explanandum (how a human being solves

logic problems), it is necessary to initiate a procedure of matching between

traces and protocols, with the aim of achieving greater adherence to the

protocol in an increasing number of details, modifying the original pro-

gram where necessary. The General Problem Solver, as a ‘‘revised version’’

of LT, is a case in point: unlike LT, ‘‘it was derived largely from the analy-

sis of human protocols, and probably can pass Turing’s test [in its much

stronger version] for a limited range of tasks’’ (p. 19).
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Apart from this optimistic evaluation of the old GPS, it is necessary to

examine two things: (a) to what level of detail the model succeeds in repro-

ducing processes that may be inferred from a protocol, and (b) to what ex-

tent the model may be revised in order to match the protocol ever more

closely. The building and validation of the model follow a ‘‘forward mo-

tion’’: ‘‘its path will be helical rather than circular, producing successively

more adequate explanations of behavior’’ (Paige and Simon 1966/1979,

p. 203). Successes and gaps in the model suggest how it might be improved

in the light of the data.

This helical path had already been described by John Holland, Nathaniel

Rochester, and their coworkers in their computer simulation of Hebb’s

theory (Cordeschi 2002, pp. 176–77). MacKay (1954, p. 404) also described

it very clearly:

We can think of [the model] as a kind of template which we construct on some hy-

pothetical principle, and then hold up against the real thing in order that the dis-

crepancies between the two may yield us fresh information. This in turn should

enable us to modify the template in some respect, after which a fresh comparison

may yield further information, and so on.

The ‘‘hypothetical principle’’ leading to the choice of the constraints is

also essential here to characterize a model above and beyond mere func-

tional (or input-output) equivalence. The model must not be limited to

mimicking the brain’s behavior but must ‘‘work internally on the same princi-

ples as the brain.’’ For MacKay, as already seen, it is the self-organizing

probabilistic system that ‘‘could handle and respond to information in the

same way’’ as the brain (MacKay 1954, pp. 402–3).

If the statement of general processes and mechanisms seems to be the

distinctive flavor of MacKay’s model making, the ‘‘idiographic’’ method of

thinking-aloud protocols of individual subjects surely represents the ‘‘hall-

mark’’ of IPP (Newell and Simon 1972, p. 12). Thus, on the one hand IPP

refuses to use the methods of nomothetic experimental psychology, as

IPP models do not aim to imitate relatively uniform behaviors (the individ-

ual as an intersection of a statistically defined population); on the other,

IPP is not concerned with ideal abstractions that may be isolated from

the multiplicity of empirical data, but with individuals with their own

specificity.

Different questions have been raised regarding the reliability of thinking-

aloud protocols, and the actual testability of the correspondence between

protocols and traces. As for the latter issue, there is no definitive technique

for comparing a protocol with a trace in order to decide (a) which pro-

cesses have actually been simulated in the individual model, and (b) how
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faithfully they have been simulated, given possible errors of omission

(when the model does not possess ‘‘properties possessed by the process it

imitates,’’ as Craik’s put it) or errors of commission (when the model pos-

sesses ‘‘properties not found in the process it imitates’’). On the one hand,

the ‘‘partial,’’ ‘‘highly incomplete’’ nature of the protocols is on several

occasions acknowledged by Newell and Simon; on the other hand, the

reproducibility in the program of as many details of the protocol as possible

remains to guarantee, as Newell emphasized, that one is not up against the

usual metaphor, in which it is no longer clear what ‘‘breaks down,’’ as

Craik put it, or where. Indeed, some reflections on the analysis of suffi-

ciency suggested to Newell (1970) a conclusion that appears critical of his

own approach, and also of the previous neural network models (p. 388):

This same point [presently reached with respect to cognitive modeling and psychol-

ogy] was reached some years ago with respect to neural modeling and physiology. No

neural modeling is of much interest anymore, unless it faces the detail of real physi-

ological data. The novelty and difficulty of the task undertaken by heuristic program-

ming has tended to push the corresponding day of reckoning off by a few years. The

development of symbolic systems that would behave in any way intelligently pro-

duced sufficiency analyses that were in fact relevant to the psychology of thinking.

But the automatic relevance of such efforts seems to me about past.

Without doubt, the emphasis on sufficiency sometimes proved mislead-

ing. For example, the theorem-proving methods of J. Alan Robinson (1965)

and the rather different methods of Hao Wang (1960) were also considered

by Newell and Simon as proofs of sufficiency, simply because they were se-

lective methods (for further details, see Cordeschi 1996). An additional fac-

tor is that the term ‘‘heuristic,’’ when used by Newell and Simon to refer to

problem-solving processes, qualified the human processes, but in the early

AI community the term was more generally used to designate the efficiency

of the programs’ performance, regardless of the conditions of human-

process simulation. AI researchers also referred to the sufficiency of the

processes. Nevertheless, sufficiency, as the basis for increasingly strong suc-

cessive approximations, has remained a crucial feature of cognitive models

ever since the classical phase of IPP.

The vast amount of evidence available on protocol-based cognitive mod-

eling throws into relief all of the above-mentioned difficulties. (This applies

not only to Newell and Simon [1972] but also to subsequent research un-

dertaken by Simon with different coworkers until his death). I shall deal

with some other difficulties later, but in the meantime it should be empha-

sized that, as Zenon Pylyshyn (1979) pointed out, there is a ‘‘grain prob-

lem’’: it is not always clear at what level the trace and the protocol are to
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be compared. How can it be recognized that a strong proof of sufficiency

has been reached in order to speak, or to begin to speak, of cognitive mod-

eling and not, for instance, of the mere implementation of an AI program?

As I pointed out earlier, consideration of the constraints related to cogni-

tive limits do not render the symbolic model a simplification of the ‘‘ideal

case’’ type. Nevertheless, the model is clearly simplified vis-à-vis the biolog-

ical or neurological constraints. We shall see in the next section how

refraining from considering these constraints is a choice prompted by a

particular concept of scientific research, which tries to guarantee a relative

autonomy for mind science when viewed in terms of IPP. However, it must

be stressed here that constraints considered ‘‘biological’’ by Newell and

Simon also include those concerning emotional states. They are included

among the limitations of the human problem solver that affect his perfor-

mance; in fact, they appear to be deeply integrated into the problem

solver’s activity. Simon (1967) gave some hints for the simulation of those

states of mind defined as emotional, but he simply seemed to define certain

computer routines in mental terms. The conclusion was that these and

other mental states acknowledged to be dependent on biological con-

straints (after-images, illusions, and so forth) may be neglected if it is

allowed that IPP refers to a ‘‘normal situation . . . in which these biological

limits are not exceeded’’ (Newell and Simon 1972, p. 866). But how is a

human IPS to be placed in a normal problem-solving situation? After all, in

IPP any problem posed by the external environment is not ‘‘normal’’; any

given problem always tends to be ill-structured for an individual IPS.

Neglecting these kinds of biological constraints means that human

problem-solving theory remains a ‘‘first approximation,’’ because the

theory would consider an IPS as a ‘‘whole person,’’ not just as a ‘‘thinking

person’’ (Simon 1996, p. 53). Of course, a model is always an approxima-

tion to the full phenomenon, and it provides scientific insight because it is

an approximation. When stated in these terms (the ‘‘whole person’’), the

issue of constraints in cognitive models is prone to take on a paradoxical

aspect, one that may be summarized in Pylyshyn’s (1979) words: ‘‘If we

apply minimal constraints we will have a Turing machine. If we apply

all the constraints there may be no place to stop short of producing a

human’’ (p. 49).

Psychology from Natural Science to a ‘‘Science of the Artificial’’

The history of psychology . . . is very much a history of changing views, doctrines,

images about what to emulate in the natural sciences—especially physics.

—Sigmund Koch, 1959
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As far as the great debates about the empty organism, behaviorism, intervening vari-

ables, and hypothetical constructs are concerned, we take these simply as a phase in

the historical development of psychology.

—Allen Newell and Herbert Simon, 1972

Newell, Shaw, and Simon (1958), in an article published in the Psychological

Review that may be considered their manifesto, proposed a comparison

between their theory of human behavior simulation and other problem-

solving theories that was actually a particular interpretation of the state of

psychological research at the time. The three authors held that psychology

was deadlocked by the ‘‘polarization,’’ as they called it, of opposing aims

proposed by Gestalt and behaviorist psychologists. The former supported a

‘‘question-oriented’’ psychology, that is, one committed to finding answers

to the difficult questions raised by the theory (the problem of meaning,

insight, imagination, creative problem solving); the others supported a

rigorously operational, or ‘‘method-oriented,’’ psychology, based on the

observation of quantitatively assessable experimental data (overt behavior,

trial-and-error learning, or psychophysiological data). On the one hand,

important problems were addressed using methods lacking rigor; on the

other, more easily testable problems were addressed using operational

methods, but deeper and more difficult issues were often neglected.

Although believing it possible to accept the mechanistic legacy of behav-

iorism, Newell, Shaw, and Simon felt that, since an IPS consists of a com-

plex and goal-guided hierarchy of mechanisms, IPP ‘‘resembles much more

closely’’ several problem-solving theories proposed by the Gestalt and

Würzburg psychologists (Newell, Shaw, and Simon 1958, p. 164).

I would like to show that two issues are involved in superseding polariza-

tion. On the one hand, it was necessary to deal with the cluster of method-

ological issues marking the development of scientific psychology—the

entities to be postulated between stimulus and response, the level of psy-

chological explanation, the relationship between psychology and neurol-

ogy, and the (possible) reduction of the former to the latter. On the other

hand, the outcome of this task was the reexamination of certain popular

methodological claims in psychology, with the aim of giving psychology a

new epistemological status with respect to that of natural science. In 1959

they wrote (Newell and Simon 1959, pp. 2–3):

Until a decade ago the only instruments we had for building theories about human

behavior were the tools we borrowed and adapted from the natural sciences: opera-

tionalism and classical mathematics. And so inadequate are these tools to the task

that a highly respected psychologist offered in earnest the doctrine that we must

build a science without a theory—surely a doctrine of desperation.
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Reading between the lines of this criticism, we see that it is directed

against several of the main proponents of the various behaviorist tenden-

cies in psychology, with all the methodological discussions of the period

in the background.

The ‘‘doctrine of desperation’’ can apparently be identified with radical

behaviorism a la Skinner. Elsewhere Newell and Simon are more explicit,

and clearly characterize Skinner’s position as one of radical skepticism con-

cerning the unobserved entities that may be used in explaining mind,

whether they consist of intervening variables or hypothetical constructs.

(We shall not dwell on the distinction here, although it was much dis-

cussed by psychologists at the time: see Zuriff 1985). The description given

by Skinner in terms of the ‘‘empty organism’’ (‘‘empty of neurons and al-

most of intervening variables,’’ as Boring had said, in a remark referred to

in Newell and Simon 1972, p. 875) was deemed by them to be an oversim-

plification. The complexity and the dynamic features of human cognitive

processes call for the introduction into the explanation of ‘‘hypothetical

entities,’’ such as intermediate constructs and processes between stimulus

and response. This amounts to asking how to fill Skinner’s empty organism

with the right constructs and processes.

It was precisely operationism and the methods of logic and classical

mathematics that, to varying degrees, served as inspiration to the American

behaviorist psychologists, as a result of the growing prestige of European

neopositivism that had been transplanted into the United States in the

1930s by the European ‘‘emigrants’’ (see Smith 1986). One philosopher

who followed the teachings of Rudolf Carnap was Herbert Feigl, the Vienna

‘‘emissary,’’ as Edwin Boring (1964) called him. He patiently explained, as

Boring put it, the new operational positivism to the American psycholo-

gists who in the 1930s had enthusiastically embraced this epistemological

proposal. Sigmund Koch, a former pupil of Feigl’s, introduced an image of

science and of scientific explanation like that set out in table 10.1, which

soon became popular among American psychologists (Feigl 1948).

Without going into too much detail it can be said that this image may be

broken down into a hierarchy of levels that, starting from the bottom,

eventually attains the most fundamental and unifying level for each field

of research, namely the level of the higher theoretical constructs regarding

the microstructure of the phenomena located at a lower level. It is at the

higher level that the causes of the lower-level phenomena may be identi-

fied. In this view, research proceeds by intertheoretic reduction—the reduc-

tion of one theory to another at a higher level—the consequence of which

is explanatory unification. This has always been considered an advan-

tage for science: if a theory is reduced to a ‘‘higher’’ theory, two apparently
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different orders of phenomena may be described by the latter, and the two

phenomena are identical. One classical example is the reduction of optics

to electromagnetism (a case, as we shall see, of complete reduction), which

gives rise to the unification of concepts and laws from the two respective

levels.

Nevertheless, according to the ‘‘liberalized’’ version of this hierarchy pro-

posed by Carnap, scientific research is not exhausted by the reduction: in

order to progress, macrolevel explanations do not have to wait for the

microlevel ones to be developed. For example, chemistry developed at

the level of the theory of valence before the latter was explained by atomic

theory. By analogy with the case of atomic theory in chemistry, the (future)

neurophysiological microexplanation in the sciences of behavior will play a

similar role as regards its unifying power—at least this is to be hoped for.

Indeed, the unitary science neopositivist project took this evolutionary

tendency of the individual ‘‘special’’ sciences to an extreme, pointing to

the possibility, at least in principle, of the final step, as Carnap (1956) put

it: the reduction of the concepts and laws of the individual sciences, and in

particular neurophysiology, to the level of microphysics.

It was Edwin Tolman (‘‘the farthest from the dominant S-R position’’

among American psychologists, as he was described by Newell and Simon

1972, p. 874) who distinguished ‘‘molar’’ behaviorism from ‘‘molecular’’

behaviorism. Both make use of intervening variables between stimulus and

response, and thus fill the empty organism, although they do so at different

levels: the first does it at the macrolevel of overt behavior, and the second

at the microlevel of neurophysiology. In Tolman’s view, the different

approach to intervening variables followed by psychology on the one

hand and physiology on the other does not raise any problems of competi-

tion between the two disciplines. Following the neopositivist approach

Table 10.1

Feigl’s Hierarchy of Scientific Explanation

Theories, second order Still more penetrating interpretation (still higher
constructs)

Theories, first order Sets of assumptions using higher-order constructs that
are results of abstraction and inferences; deeper
interpretation of the facts than that rendered on the level
of empirical law

Empirical laws Functional relationships between relatively directly
observable or measurable magnitudes

Descriptions Simple account of individual facts or events (data) as
more or less immediately observable
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described, Tolman describes a hierarchy of levels that are equally legitimate

as far as explanatory power is concerned. Carnap’s reductionist claim

involving the most fundamental molecular level also seems to be valid for

Tolman, too; this level provides the final explanation of the facts and laws

of the molar level (Tolman, 1935/1958).

As Clark Hull put it in the language of his nomological-deductive

approach, the postulates laid down by those working at the molar level will

ultimately appear as theorems to those working at the molecular level (Hull

1943). For Hull, the existing gap between current neurological research

and that required for an adequately grounded molar theory of behavior is

presently insurmountable. However, to make the progress of psychology

contingent upon the progress made in neurophysiology would be a para-

dox comparable to that of imagining the pioneers of the mechanics of

macrophenomena having to delay the development of their discipline

until the development of microphysics. Therefore, the molar psychologist,

on the strength of a ‘‘division of labor’’ with the neurologist, ‘‘can still

properly demand his own place in the sun’’ (Tolman 1935/1958, p. 102).

However, Tolman ended up accepting the idea of a certain utility of neu-

rological hypotheses in psychology, in the form of a kind of ‘‘pseudo-brain

model,’’ while at the same time confirming his skepticism concerning

the ‘‘premature’’ neurology of the time, ‘‘even if it be called ‘Cybernetics’ ’’

(Tolman 1949, p. 48). Hull, long before cybernetics, had instead identified

in the building of mechanical models of behavior a ‘‘kind of experimental

shortcut’’ to the study of behavior in view of the future reduction of psy-

chology to neurology (Cordeschi 2002, chapter 3). That left Skinner, suspi-

cious as he was toward practically every kind of theoretical construct (the

‘‘doctrine of desperation’’), to continue to reject modeling and neuro-

cybernetic approaches as speculation on what happens ‘‘inside the head’’

(Skinner 1974, p. 217).

At the time of IPP’s entry onto the scene in the mid-1950s, the image of

science as shown in table 10.1 was still influential in its liberalized version,

and the echo of the discussions among behaviorists in their interactions

with the Gestalt psychologists was still strong. It was above all Simon, who

was a pupil of Carnap’s at the University of Chicago in the late 1930s, who

attempted to situate IPP in relation to the traditional mind sciences, psy-

chology and neurology, in a framework typical of the neopositivists’ liber-

alized view of the science.

In Simon’s (1961) modified diagram in table 10.2, as in Feigl’s in table

10.1, the scientific explanation concerns theoretical constructs or entities

located in a hierarchy of levels of variable generality. The main difference
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is that, in addition to the exemplification rendered canonical by the neo-

positivist tradition and taken over by the behaviorist psychologists (ge-

netics, chemistry), space is given to an information-processing level, the

level of the newborn IPP.

Compared with radical behaviorism, the mind and mental processes

again become the objects of psychological research, but at the particular

level of symbolic information processing. As seen earlier (pp. 230–37), psy-

chology is given a novel task: the building of detailed models of cognition

based on information processes. The founders of IPP, therefore, propose an

intermediate level of explanation, between overt behavior (a kind of level

0) and neurophysiology, with the aim of finding a new role for psychologi-

cal research. It is at this level that the psychologist satisfies what Hebb

(1951–52) called the ‘‘need of theory,’’ that is, the need for explanatory

entities and processes at a level other than that of neurophysiology. With-

out this, one ends up by merely inducing psychologists to ‘‘couch their

theories in physiological language’’ (Simon and Newell 1964, p. 283). Karl

Lashley is given as an example of this, whereas Hebb’s ‘‘general method-

ological position is not inconsistent’’ with IPP, as Hebb does not insist on

an exclusively physiological basis for psychological theory (p. 299).

It should be noted that the entities and symbolic processes of IPP (that is,

elementary information entities and processes, heuristic processes, and so

on) are viewed as genuinely hypothetical: they are molar vis-à-vis the neu-

rophysiological processes, although as such they fill the empty organism,

explaining to a first approximation the complexity of mental processes.

Shifting the role of the hypotheses from the neurophysiological level to

the IPP level makes it possible to recover the important Gestalt psychology

issues related to phenomena that are not immediately observable in terms

of overt behavior. This is achieved by building simulation programs as

working models, thus superseding the above-mentioned ‘‘polarization’’

Table 10.2

Simon’s Diagram of Scientific Explanation

Genetics Chemistry

Psychology

of Thinking

Level 3 Biochemistry of genes Nuclear physics Biochemistry of
brain processes

Level 2 Genes and chromosomes Atomic theory Neurophysiology

Level 1 Mendel: statistics of plant
variety

Molecular reactions Information
processing
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between Gestalt psychology and behaviorism (Newell and Simon 1965,

p. 146).

Program . . . is a hypothetical explanatory entity in exactly the same way that genes,

when first proposed in biology, were hypothetical entities with no specific or specifi-

able physiological substrate. Subsequent evidence has allowed biologists . . . to treat

them . . . as ‘‘real.’’

The constraints on models thus refer to the hypothetical entities at the

explanatory level at which psychology is located as IPP. This explains, as

seen earlier (pp. 223–30), why cognitive models do not include biological

constraints. The future will tell us whether and to what extent the informa-

tion processes postulated by IPP can be reduced to the physical basis of the

mind, to the brain, according to the strategy described of gradual unifica-

tion of scientific theories. This strategy does not entail any reference to an

absolutely privileged level of hierarchy, essentially that of microphysics, as

postulated by an absurd ideal of extreme reductionism, labeled ‘‘Laplacian’’

by Simon (1973). Conversely, Simon’s idea of near decomposability, which

refers to a hierarchical organization of semi-independent units (Simon

1996), can be applied to this hierarchy. In this case, near decomposability

means that it is possible to have an approximate knowledge of a system at

a given level without knowing what happens at a higher level. In other

words, an abstraction may be made from the details of the latter, and every

level of the hierarchy has its own reality, which derives from its near inde-

pendence of the others. In actual scientific practice, as the evolution of

various theories has shown, all levels may legitimately have their own

autonomous functions within the hierarchy. At present, not enough is

known about the relationship between information processes, as they may

be inferred from the raw data of the protocols, and brain processes—for in-

stance, little is known about how elementary information processes could

be stored and executed by specific neural structures. Thus, psychology, in

the form of IPP, can develop autonomously out of neurophysiology, in a

similar fashion to the emergence of other disciplines out of genetics or

chemistry (and, it is hoped, with the same chances of success).

We thus have confirmation of the thesis proposed by molar behaviorism

of the ‘‘division of labor,’’ as endorsed by Newell and Simon. The scientist

of the mind can claim to have his own ‘‘place in the sun,’’ but this time in

the domain of IPP. In view of the ‘‘gulf of ignorance’’ that exists between

IPP and neurophysiology (Simon 1966, p. 6), the open problem, as Newell

and Simon repeatedly claimed, is that of the ‘‘bridge’’ between the two

levels of explanation.
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The original ambition of experimental psychology of becoming a ‘‘full-

blown natural science,’’ to use Hull’s expression, was contradicted by IPP

even before it was acknowledged by authoritative neopositivists that ‘‘the

contention of behaviorism that psychology is a natural science . . .must

now be more carefully scrutinized’’ (Feigl 1963, p. 251). Newell and

Simon’s skepticism concerning the ‘‘tools . . . borrowed and adapted from

the natural sciences’’ has ended up by involving the neopositivists’ physi-

calist claim (Newell 1968, p. 272):

The emergence of a science of symbol processing has particularly encouraged psy-

chology to return to the study of higher mental behavior, after its long sojourn with

a behaviorism that viewed as legitimate only descriptions in the language of physics.

In conclusion, the notion of IPS as a complex goal-directed hierarchy, the

rejection of the empty organism, the use of models including psychological

constraints (not ‘‘black boxes,’’ but ‘‘artifacts . . .we can open them up and

look inside’’ [Newell and Simon 1976, p. 114]), the criteria for the valida-

tion of models—all of these justify the original aim of the founders of IPP:

‘‘Methodology requires a re-examination today, both because of the novel

substantive problems that the behavioral sciences face and because of the

novel devices that are now available to help us solve these problems’’

(Simon and Newell 1956, p. 83).

Psychology, in other words, no longer has the status of a natural science:

it appears as an empirical discipline and, given the ‘‘novel devices’’ from

symbolic information processing, as a ‘‘science of the artificial’’ (Simon

1996).

To Conclude, and to Continue

To what degree is the Rock of Gibraltar a model of the brain?—It persists; so does the

brain; they are isomorphic at the lowest level.

—W. Ross Ashby, 1956

I have reconstructed several concepts of IPP in what I called its classical

phase (circa 1955–1975), and defined IPP as a human-process theory, like

that of MacKay. On the one hand, the history of IPP reaches into our times,

as it effectively became part of the research program of cognitive science.

On the other, MacKay’s theory of self-organizing systems, after being

eclipsed for a period, may be said to have returned to the limelight within

the framework of the so-called ‘‘new AI.’’ It is of interest to dwell on both

phenomena in order to attempt to make a final assessment.
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IPP, like cognitive science after it, aimed at the psychological plausibility

of models, claiming that they should satisfy constraints imposed by a

theory of cognitive process, in particular of higher cognitive processes.

Starting in the 1980s new models began to be proposed that were some-

times associated with research projects from the cybernetics era: neural net-

works a la Rosenblatt, robotics a la Grey Walter, and self-organizing systems

a la Ashby or MacKay. The principal aim of these new models is neurologi-

cal and also biological plausibility, albeit at a highly variable degree of gen-

erality. They included connectionist models based on neural networks

(and on networks from artificial life), dynamical systems, and ‘‘situated’’

robotics, both behavior-based and evolutionary, the latter enabled by the

development of genetic algorithms (Clark 1997; Pfeifer and Scheier 1999).

Some developments along the lines of Gerald Edelman’s ‘‘synthetic neural

modeling’’ converged on a number of situated-robotics topics (Verschure et

al. 1995). This set of research programs, referring mainly but not exclu-

sively to low-level processes such as perception-action and forms of adapta-

tion and simple learning, represents the new AI; in what follows I prefer to

refer to it as ‘‘new cognitive science.’’

I would like to emphasize that both old (‘‘symbolic’’) and new cognitive

science share the modeling, or synthetic, method (as it is now called, for

example, by Steels 1995). I have exemplified different approaches to this

method through the comparison between MacKay’s IFS and Newell, Shaw,

and Simon’s IPS. I have emphasized how this method was not directly

dependent on the kind of artifact (digital or analogue), the subject matter

(high or low level processes), or the choice of constraints (psychological or

neurological-biological) imposed on the models, and that IPP is a particular

view of the relationships between the different levels of explanation

involved in mind science. My claim is that what distinguishes old and

new cognitive science is the choice of the level of explanation at which

the right constraints for the models are to be introduced. This is not with-

out repercussions on the assessment of the successes and failures of re-

search programs. As in every scientific undertaking, the choice of level of

explanation is related to the researcher’s interests, but it is conditioned

above all by the state of knowledge and of the relevant technology. I will

touch upon this issue in some detail here as regards the view of IPP as

a trend in the history of modeling methodology, before concluding with a

brief reference to the nature of modeling in new cognitive science.

At the outset of AI and IPP, and at least throughout the following two

decades dominated by symbolic cognitive science, there are two different

factors that encouraged and made plausible a definite choice regarding the
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constraints to be taken as right. These factors were the state of computer

technology and the state of knowledge regarding neuroscience. They had

a considerable influence on the choice made by the IPP approach of build-

ing models at a well-defined level—models embodying psychologically

plausible hypotheses rather than neurologically or biologically plausible

ones.

The first factor, that of computer technology, may be said to have

counted much more than any external factors, some of which carried some

weight; these included the well-known DARPA research funding exercises,

which were directed more toward AI than other sectors. As James McClel-

land concluded, ‘‘The world wasn’t ready for neural networks. . . . The com-

puting power available in the early sixties was totally insufficient for

[simulating neural networks on the computers of the time]’’ (see Crevier

1993, p. 309). The same may be said of MacKay’s and other cyberneticists’

self-organizing systems approaches in the 1950s and 1960s. For MacKay,

the problem of the computer simulation of these systems was not taken

for granted, and like many other cyberneticists he underestimated the

digital computer. It is a fact, however, that the entire new cognitive

science—including neural networks, dynamical systems, and genetic

algorithms—would not have been the same without the development of

digital machines with increasing computing power, although the same

could be said also for much of AI, starting with expert systems (see Corde-

schi 2006 on this point). As for cybernetic robotics, its specific limiting fac-

tors were appropriately identified by Rodney Brooks (1995, p. 38) in two

points:

(a) The technology of building small self-contained robots when the computational

elements were miniature (a relative term) vacuum tubes, and (b) the lack of mecha-

nisms for abstractly describing behavior at a level below the complete behavior, so

that an implementation could reflect those simpler components. Thus, in the first in-

stance the models of thought were limited by technological barriers to implementing

those models, and in the second instance, the lack of certain critical components of a

model (organization into submodules) restricted the ability to build better technolog-

ical implementations.

The internal limits of these research programs have always been assessed

in the light of the comparison with the successes of heuristic programming

in early AI, whose subject matter consisted of problems requiring little

knowledge, rightly considered at that time to be the Drosophila of AI. As

far as early IPP is concerned, it is no coincidence that its Drosophila was

not chess but logic, the field in which the first successful simulation pro-
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gram, LT, was deployed. As Simon (1991) tells us, he and Newell gave up

chess in favor of logic because they realized the importance in chess of eye

movements, which are difficult to simulate.

As for the second factor, the state of neuroscience, this was known to be

particularly backward in the 1950s and 1960s. Whether or not to consider

neurological hypotheses originating out of particularly weak or speculative

theories was a topic discussed by psychologists before IPP, as we saw earlier.

The ‘‘division of labor’’ between psychology and neurology under the aus-

pices of IPP may be viewed as an attempt to resolve the conflict between

the two disciplines at a time of the extreme weakness of the second.

In this undertaking, IPP brought about a reexamination of the methodol-

ogy followed in the study of behavior at the time: the epistemological

standard of psychology was not considered to be that of physics. The

‘‘Newtonian’’ style (Pylyshyn 1978, p. 95) of building and validating

theories had no significant impact on cognitive modeling in general. John

Haugeland (1978, p. 215) stigmatized the ‘‘misguided effort [of psychology]

to emulate physics and chemistry,’’ and reserved the ‘‘systematic explana-

tion’’ for cognitivism and IPP, based on the notion of a system as a hierar-

chy of interacting components.

We saw that this notion lies at the basis of very different information-

processing systems, such as IPS and MacKay’s IFS, and that the hierarchical

organization of the former was described by Simon in terms of near decom-

posability. Near decomposability enjoyed considerable success in cognitive

science, for in addition to proposing a mechanistic explanation paradigm,

it could be viewed as a further step forward with regard to the neoposi-

tivists’ original image of science. In the context of the evolution of theories,

near decomposability is that ‘‘dynamic criterion’’ emphasized by William

Wimsatt (1976, p. 242) which accounts for the evolution of theories and

which was missing, at least according to critics such as Wimsatt himself

and Churchland (1986), from the neopositivists’ image of science (how-

ever, see Wimsatt’s critique, 1972). Moreover, the reduction of one theory

to another is not always (indeed is almost never) complete to the point of

giving rise to explanatory unification nor, in the final analysis, to the iden-

tification of two theories (as in the case of optics and electromagnetism

mentioned earlier), although with time it may be resolved into one or

more approximations to this ideal goal.

Simon’s (1976) example is that of the reduction of chemistry to quantum

mechanics. This is a reduction that can be successful only in simple cases

even now, let alone in the year in which Simon was writing. The reduction
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of psychology to neuroscience could be seen as a similar case. From this

point of view, reductionism in the form of the elimination of a lower level

(psychology, however defined) in favor of a higher one (neuroscience)—

that is, the ideal level of the alleged genuine explanation—is not plausible.

Even if it achieved a high degree of success, as in the case of chemistry, a

‘‘division of labor’’ among different experts would remain (Simon 1976,

p. 64).

The idea of near decomposability suggested a way of overcoming the

claim that it was possible to make a complete reduction of the laws and

concepts of a given approach to those of a privileged or ‘‘more fundamen-

tal’’ science, in which the ultimate explanatory causes of the phenomena

could be sought. In place of this program, which is the one suggested by

the explanatory unification ideal attributed to neopositivists, it is possible

to propose another that is closer to the practice and the evolution of

science: that of unification as the identification of explanatory principles

shared by different biological or physical systems, without the concepts

and laws of one of them being taken to be ‘‘more fundamental’’ (see, for

example, Glennan 2002).

However, this ‘‘division of labor’’ had ended up by introducing over time

a kind of rigidity in the relations between psychology, viewed in IPP terms,

and neuroscience. To some extent, this rigidity has been the consequence

of the relative lack of ‘‘co-evolution’’ (to use Wimsatt’s term) of theories at

the two respective levels, or of the scarce feedback, always supported by

Newell and Simon, that occurred in the long run between the two levels.

(McCauley and Bechtel also spoke of co-evolution but pointed out its bi-

directionality; see McCauley and Bechtel 2001). But above all, in view of

the progress made by neuroscience over the past two decades (and of the

dissemination of increasingly more advanced information technologies,

which has allowed experimentation with innovative architectures with so-

phisticated abilities in the perceptual-motor sphere), the independence of

the study of cognitive processes from neuroscience proposed by early IPP

proved more difficult to sustain as the only possible choice for the study of

cognition. Here is Newell’s (1990, p. 483) opinion:

Throughout the history of IPP, an important element of its rhetoric has been that it

is not anchored to the structure of the brain. . . . It was, I think, an important stance

and the right one for its time. [Nevertheless] information processing can no longer

be divorced from brain structure. . . . The great gain . . . is that many additional con-

straints can be brought to bear as we examine information processing more deeply.

But that puts it too abstractly. The great gain is that we finally bridge the chasm be-

tween biology and psychology with a ten-lane freeway.

248 Roberto Cordeschi



And yet, Newell’s claim proved in one sense to be overemphatic and

in another rather reductive. In the computational cognitive architecture

SOAR, to which Newell refers in this passage, ‘‘additional constraints’’

come into play from what, referring to the neurobiological-evolutionary

sciences as a whole, Newell called the ‘‘biological band’’; an example of

this is the real-time constraint brought to the fore by the new robotics.

However, the real comparison attempted by Newell is not between SOAR

and effective neuroscience research but between SOAR and the connection-

ist models of the 1980s. The latter, as he was fully aware, conformed only

loosely to the requirement of biological plausibility, forcing him to the

slightly disconsolate conclusion that, even allowing that progress is being

made in our understanding of the computational mechanisms involved in

the brain, ‘‘connectionism is what to do until functioning neurophysiolog-

ical system architectures arrive’’ (Newell 1992, p. 486). How to ‘‘bridge the

chasm’’ has remained an open question for the cognitive theories con-

cerned with higher cognitive processes since the days of early IPP (see

pp. 237–44). Indeed, the biological constraints related to the emotional

aspects of problem solving, or even of the consciousness that interested

MacKay above everything, found no room in SOAR and analogous sym-

bolic systems.

The foregoing leads us again to the issue of the constraints to be imposed

on models. In the first place, without constraints of some kind, models are

completely underdetermined, bringing us once again to the practically un-

limited generation of functionally isomorphic machines (Ashby 1956), or

of artifacts that merely mimic and do not explain anything (for details, see

Cordeschi 2002, pp. 250ff.). In the second place, Newell and Simon always

had clearly in mind the so-called ‘‘degree-of-freedom problem,’’ which

arises when, in the helical path of model revision, action is taken to modify

the program so that it better fits the data. The risk was that of allowing too

much freedom to the theoretician in this process, since ‘‘if we allow a pa-

rameter change or a new mechanism to be introduced [in a program] for

each bit of behavior to be explained, we will have explained nothing’’ (pp.

33–34). Lastly, this problem is linked to the ‘‘irrelevant specification prob-

lem,’’ which is closely connected to the use of models expressed in terms of

simulation programs: how can we distinguish in such models the parts

embodying the hypotheses, that is, the theoretically significant ones, from

the merely implementational parts, which might be the result of choices of

convenience?

These problems have been raised successively with reference both to clas-

sical models (Pylyshyn 1984) and to connectionist models (Green 1998).
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Pylyshyn, for example, claims that the underdetermination problem and

the degree-of-freedom problem can be redimensioned by identifying con-

straints at the level of cognitive architecture. Newell claimed that there is a

possible solution for the irrelevant-specification problem: instead of treat-

ing cognition by using an unordered collection of programs and data struc-

tures, reliance can be placed on a unified theory of cognition. (This is an

implicit critique of the idiosyncratic models of the early IPP; see also Newell

1973). A system like SOAR establishes a single theoretical core (as regards

the mechanisms of memory, learning, and so forth), and this increases the

reliability of the details regarding the simulation of different subjects and in

different tasks. Moreover, unification also serves the purpose of reducing

the degrees of freedom of the parameters requiring modification to fit

the data (Newell 1990, pp. 22–23). As a unified theory, SOAR is thus an

attempt to reduce the freedom of the theoretician—and thus reduce the

risk of ad hoc simulations—by imposing as many ‘‘additional constraints’’

as possible, far beyond those envisaged in early IPP.

Simon was skeptical about a single unified theory a la Newell. His prefer-

ence was for ‘‘middle-level’’ theories. The various versions of the Elemen-

tary Perceiver and Recognizer (EPAM), first programmed for a computer in

1959 (see Feigenbaum and Simon 1962), represent his favorite example (in

GPS he already saw an early attempt in this direction). Simon remained

faithful to the verbal-protocol method and retained the thesis of the inde-

pendence of levels, expressing the hope that there would be collaborations

using IPP, first with connectionism and then later with the new robotics,

rather than a confrontation between ‘‘paradigms.’’ In the ‘‘forward mo-

tion’’ procedure, the next step for him would be the testing of the model

with reference to the gradual expandability of the postulated mechanisms.

From his point of view, one way of reducing the risk of the degree-of-

freedom problem would be to shift the ratio of data to modifiable parame-

ters in favor of data, for example by cross-linking the data on verbal

protocols with those on eye movements, whenever this could be done

(Simon 1992). Nevertheless, the basic idea remains the same as that of

Newell: to increase the number of constraints, since less-constrained pro-

grams (those with a larger number of parameters) can be modified more

easily and perhaps arbitrarily using ad hoc procedures than more-

constrained programs (those with a smaller number of modifiable parame-

ters). This increases the validity of taking such programs seriously as

suitable models (Simon and Wallach 1999).

I will conclude my argument with a brief reference to what I have char-

acterized as new cognitive science. As noted, this, too, uses the synthetic
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method, but the constraints considered right are above all those referring

to the neurological or biological level. New cognitive science has been able

to profit from recent progress both in information technology and in neu-

roscience, and has attempted to ‘‘bridge the chasm,’’ as Newell put it, with

different degrees of generality, and in different fields. In this context one

could mention the modeling of neural brain functions through neural

nets (of a kind very different from the early connectionist varieties), and

the modeling of the behavior of simple organisms using an ethological

approach (Holland and McFarland 2001).

The underdetermination problem and the related problems mentioned

are believed to afflict the models of classical AI and cognitive science, as

also is the ‘‘symbol-grounding problem’’ (Harnad 1990). In fact, in this

context, symbol grounding is not a recent issue, having been raised by

MacKay when he proposed his human-process models. He believed that

the latter leave less scope for the theoretician or system designer because

they develop their symbols by means of self-organization processes. This is

an ability that he did not see embodied in the computer programs of the

time. Dealing with this issue later, he identified as a weakness the ‘‘practice

in artificial intelligence of taking a non-biological approach to the internal

representation of the external world, using intrinsically meaningless sym-

bols’’ (MacKay 1986, p. 149). This is a judgment that new cognitive science

would endorse.

Elsewhere I have argued that the symbol-grounding problem, as well

as the underdetermination problem, cannot be automatically solved by

appealing to constraints at the neurological or biological level (Cordeschi

2002, chapter 7). This argument can be extended much further; for an

insightful discussion, see Webb (2001). It seems however that the issue of

establishing the right constraints by reference to some privileged level (or

levels) of explanation is still an open question. While there might one day

be a univocal response to this question, perhaps through achieving an ef-

fective unification of the relevant knowledge, I believe it certainly does not

exist at the moment. Of course, it might be possible to state the question

with less radical aims, as is suggested by some current proposals for ‘‘hy-

brid’’ models (from symbolic-connectionist to reactive-reasoning systems).

However, when this is not the case, the situation in which we find our-

selves could be simplified as follows:

On the one hand, if the aim is to build a model of an ability such as syl-

logistic reasoning, the best way to proceed is still that suggested by IPP. The

constraints should be chosen with reference to a psychological theory, that

is, to hypothetical constructs at the psychological level. For example, Philip
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Johnson-Laird’s mental models, or the analogous constructs implemented

in SOAR as a syllogistic demonstrator, are constructs of this kind, and could

be considered psychologically plausible. In this case we have a ‘‘classical’’

example of a computer simulation as a model. On the other hand, if the

aim is to build a model of an ability such as discrimination, it might be pos-

sible to choose the constraints with reference to a neurological theory, or to

hypothetical constructs at the neurological level, and possibly to avoid the

risk of a ‘‘non-biological approach’’ as identified by MacKay. For example,

the hypotheses of Edelman’s neural Darwinism are constructs of this kind,

and could be considered as neurologically plausible. In this case the model

is expressed as a computer simulation with particular neural networks, such

as DARWIN III, and also as a situated robot, such as NOMAD (see Verschure

et al. 1995).

We do not yet know whether mental models or other similar theoretical

constructs (for example, those of SOAR) are reducible—wholly or in part, or

through co-evolution of the theories concerned—to effective neurological

structures; still less do we know how this might be done. In the two cases

discussed above (mental models and neural Darwinism) we have hypothet-

ical constructs at different levels. Nevertheless, in both cases the shared

epistemological assumption is the same, that of the validity of the syn-

thetic method. It might be not a coincidence that a behaviorist following

the ‘‘doctrine of desperation’’ would refute both such theoretical con-

structs: the mental models (and similar symbolic structures) are for him a

mere mentalist speculation, while those deriving from neural Darwinism

are a kind of ‘‘conceptual nervous system,’’ to use Skinner’s expressions.
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11 The Mechanization of Art

Paul Brown

Sorry miss, I was giving myself an oil-job.

—Robby the Robot, in Forbidden Planet

I’m sorry Dave, I can’t do that.

—HAL 9000, in 2001: A Space Odyssey

This chapter is an idiosyncratic account of the development of ‘‘the mech-

anization of art.’’ I am an artisan, a maker of art, and neither an historian

nor a scholar, and so it describes only those parts of the narrative with

which I am familiar. As the German Dadaist Kurt Schwitters, the architect

of Merz (a movement embracing dance, theater, visual art, and poetry),

once claimed, ‘‘I am the meaning of the coincidence.’’ I have also chosen

to end my account in the late 1970s. By then the personal computer

had arrived and the world was changed forever. The ensuing prolifera-

tion of artworks and ideas are still difficult, for me at least, to record and

contextualize.

A comprehensive overview of the historical developments that led to the

flowering of the mechanization of art in the twentieth century is beyond

the scope of this chapter. However, a few examples are worthy of note,

since they give a context and demonstrate that this pursuit of knowledge

has a long and intriguing pedigree that stretches back even into prehistory.

The Chinese I Ching, or Book of Changes, is believed to have first taken form

in about 1800 B.C.E. and is attributed to the legendary ‘‘founder’’ of China,

Fu Hsi. The book was restructured and derived its modern format in the

early Chou dynasty, following revisions attributed to King Wen and his

son Tan, the Duke of Chou, around 1100 B.C.E. Further commentaries were

added by Confucius (511–479 B.C.E.) and his school and are known as the

Ten Wings. Although the book has been perceived in the West as a divina-

tion system or oracle, Joseph Needham and later scholars emphasize its



importance in the history of Chinese scientific thought and philosophy

and describe its method as ‘‘coordinative’’ or ‘‘associative,’’ in contrast to

the European ‘‘subordinate’’ form of inquiry.1 The book may be interpreted

as a cosmology where the unitary ‘‘one’’ first divides into the binary

principles—the yin and the yang, represented by a broken or whole line,

respectively—which are then permutated to form the eight trigrams. These,

as the name suggests, are three-line structures that may also be interpreted

as the vertices of a unit cube—the three dimensions of the material world.

The trigrams are then permutated with each other to form the sixty-four

hexagrams (or archetypes) and then each (any and all) of the six lines that

make up the hexagram can flip into its opposite (yin to yang, broken to

whole, and vice versa), which enables any hexagram to change to any

other and so give the final 4,096 changes to which the title refers. The

book may be ‘‘consulted’’ by a process of chance operations, flipping coins

or dividing groups of yarrow stalks, a process that identifies the unique

‘‘time’’ of the consultation. Jesuit missionaries sent a copy of the book to

Gottfried Leibniz, who introduced the binary mathematical notation sys-

tem to Europe, and the I Ching has had an ongoing effect on Western scien-

tific and artistic thought ever since. This gained momentum after a

scholarly translation by Richard Wilhelm and Cary F. Baynes, with an in-

troduction by Carl Jung, was published in 1968, coinciding with the cogni-

tive experimentation of the psychedelic movement.2

During the first century C.E. the Greek engineer Hero of Alexandria

designed and constructed sophisticated automata that were powered by

water, gravity, air, and steam. As the Christian Dark Ages closed in over Eu-

rope, the ancient Greek and Egyptian knowledge was preserved and devel-

oped in the Arab world. Al Jaziri’s Al Jami’ Bain Al ’Ilm Wal ’Amal Al Nafi Fi

Sina’at Al Hiyal, or The Book of Knowledge of Ingenious Mechanical Devices

(about 1206) describes many of al Jaziri’s automata and has been recently

placed in the context of art and science history by Gunalan Nadarajan.3

Among the devices that al Jaziri describes is an automatic wine server that

was used at royal parties at the Urtuq court of Diyar-Bakir, who were his

patrons. It randomly selected guests to serve so some got very intoxicated

while others remained completely sober, to the great amusement of all.

Not long after this, Ramon Lull (1235–1315) was born in Palma, Majorca.

He was a Christian writer and philosopher living in Spain when it was part

of the Islamic Moorish empire, which included Portugal and parts of North

Africa. Unlike his Northern European contemporaries, who were still living

under the repressive Catholic rule appropriately named the Dark Ages, Lull

had access to Arab knowledge dating back to Greece and culled from
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around the rapidly expanding Islamic sphere of influence. Although his

contribution to knowledge was broad, of particular interest here are his Lul-

lian Circles. Described in his Ars Generalis Ultima, or Ars Magna, published

in 1305, these consist of a number of concentric disks that can be rotated

independently on a common spindle. Each disk is scribed with symbols

representing attributes, or archetypes, that can be permutated together to

form compound expressions. The system forms a combinatorial logic that

is remarkably similar in concept (though not in implementation) to the

generative method employed by the much earlier I Ching. Two centuries

later Leibniz (who, as mentioned, knew about the I Ching) developed Lull’s

idea for his investigations into the philosophy of science. Leibniz named

the method Ars Combinatoria. Machines like Lull’s appear in literature: in

Gulliver’s Travels (1721) Jonathan Swift describes a system that creates

knowledge by combining words at random, a passage that is believed to be

a parody of Lull’s work. More recent fictional combinatorial knowledge

machines appear in books such as Hermann Hesse’s The Glass Bead Game

and Umberto Eco’s The Island of the Day Before.4

The Christian reconquest of Spain during the fifteenth century enabled

the European rediscovery of the long-suppressed knowledge preserved by

Islam, and this was a major cause of the flowering of the Renaissance (liter-

ally ‘‘rebirth’’). The polymath Leonardo da Vinci (1452–1519) is known for

his lateral and experimental approach to both art and science. Among his

prolific output, around 1495 he recorded in a sketchbook a design for an

anatomically correct humanoid automaton; there is no record that Leonar-

do’s Robot, as it is now known, was ever built. The German artist Albrecht

Dürer (1471–1528) was another polymath who made significant contribu-

tions to both mathematics and the visual arts. In his Treatise on Measure-

ment (1525) he included several woodcut prints of perspective-drawing

systems that can be retrospectively acknowledged as early precursors of an-

alogue computing machines.

By the seventeenth century the French mathematician and philosopher

René Descartes (1596–1650) proposed that animals were nothing more

than complex machines. By suggesting a correspondence between the me-

chanical and the organic, Descartes laid the groundwork for a more formal

study of autonomy. The production of automata flourished with ever

more complex and sophisticated examples. The Jesuit alchemist Athanasius

Kircher (1602–1680) is reputed to have made a statue that could carry on a

conversation via a speaking tube (he’s also credited with building a perpet-

uum mobile!). However, it was in 1737 that the French engineer and inven-

tor Jacques de Vaucanson (1709–1782) made what is considered the first
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major automaton of the modern age. His Flute Player was not only in-

tended to entertain but was also a serious investigation into human respira-

tion. As such it stands as an early precursor of the art-science collaborations

that developed in the twentieth century. Vaucanson’s automated loom of

1744 did not use the punch cards proposed by Falcon in 1728, but instead

used the paper-tape control system invented by Basile Bouchon in 1725. By

1801 Joseph Marie Jacquard had created a robust card-driven loom, a de-

sign that was still in use in the late twentieth century. Jacquard’s card

system had another major and arguably more influential outcome when

Charles Babbage (1791–1871) selected it as the control and storage mecha-

nism for his Analytical Engine. Later, Herman Hollerith (1860–1929) took

up the idea and went on to found the company known today as IBM. It’s

an early and excellent example of how research in the arts can have a pro-

found effect on science and technology and demonstrates how the modern

science of computing has clearly defined roots in the art of weaving, which

is, after all, an ancient system for the codification, manipulation, storage,

and reproduction of pattern.

Religious warnings about human intervention in the work of God

accompanied many of these developments and emerged in literature. The

archetypical text is Mary Shelley’s wonderful Frankenstein (1818).5 Similar

concerns continue to this day in many of the detractors and critics of artifi-

cial intelligence and artificial life, as well as many other aspects of science

and technology such as evolution, nanotechnology, and stem-cell research.

Developments continued throughout the nineteenth century. The paper-

tape and punch-card control systems developed for weaving were adapted

for use in other applications. Orchestral machines such as steam organs

toured the fairs, and pianolas and music boxes were mass-produced. Paper

pianola scrolls enabled people to hear performances by contemporary vir-

tuosi, and also formed a valuable historical record. They created a demand

for pre-programmed music that would later be satisfied by shellac and vinyl

gramophone recordings and contemporary compact disks and MP3 players.

In the visual arts and sciences the invention of photographic recording by

Joseph Niépce in 1827 was improved by Louis Daguerre. In 1835, William

Henry Fox Talbot devised a method to duplicate images by printing multi-

ple positives from one negative. The Renaissance experiments into perspec-

tive, Dürer’s drawing systems, and other devices such as the camera obscura

were automated—image making was now a mechanical process. By 1888

Kodak’s founder, George Eastman, could coin the slogan ‘‘You press the

button, we do the rest.’’ During the same decades French Postimpressionist

artists such as Paul Cézanne (1839–1906) and Georges Seurat (1859–1891)
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challenged the role of painting as representation, a function that had in

any case been usurped by photography, and emphasised instead its analyt-

ical role. Both artists were concerned with a proto-semiological exploration

of the relationship between the flat plane of the canvas, the representation,

and the three-dimensional world, the represented. Neither would break

completely with the figurative. That would happen early in the twentieth

century, when the Russian artist Wassily Kandinsky (1866–1944), a theoso-

phist, recalled some illustrations he had seen in a book called Thought

Forms, by Annie Besant and C. W. Leadbeater (1888) and painted what he

(amazingly, in retrospect) titled First Abstract Watercolour in 1910.6 The vi-

sual arts had been freed from their anchor in ‘‘the real’’ and a colossal ex-

plosion in creativity ensued, causing ripples throughout the art world.

A decade later Karel Čapek (1890–1938) wrote the play Rossum’s Universal

Robots, or R.U.R. It was first performed in Prague in 1921, then in New York

City, in 1922. Karel’s brother, Josef, had coined the term robot: robota is

Czech for ‘‘drudgery’’ or ‘‘servitude,’’ and a robotnik is a peasant or serf.

The play is either a utopia or dystopia, depending on your point of view.

Robots are created as cheap labor who ultimately revolt and kill all the

humans except one. The robots learn to replicate themselves and the play

closes when two of them, Helena and Primus, fall in love and are dubbed

Adam and Eve by Alquist, the last human (see chapter 12 for a detailed dis-

cussion of the play). Responding to criticism by George B. Shaw and G. K.

Chesterton, among others, Čapek stated that he was much more interested

in men than in robots. He predicted the sentiments of William Gibson

who, over sixty years later, would express his concern when he discovered

that computer graphics enthusiasts at the annual SIGGRAPH Conference

were busy implementing the dystopian virtual reality he created for his

Orwellian-style Cyberspace Trilogy: Neuromancer, Count Zero, and Mona Lisa

Overdrive.7 In 1927, five years after R.U.R., Fritz Lang (1890–1976) wrote

and directed his legendary film Metropolis (restored in 2002). Based on the

novel by his wife, Thea von Harbou, it’s a parable of socialist class struggle

where the Lord of Metropolis, Johann Fredersen, wants to replace his

human workers with robots. Their leader, Maria, is cloned by the evil scien-

tist Rotwang into a robot ‘‘femme fatale’’ as part of a plot to incite a revolu-

tion that Johann hopes will give him the excuse to eliminate the workers

and replace them with Rotwang’s machines. A decade later, in 1936, the

German Marxist historian and cultural theorist Walter Benjamin (1892–

1940) published his essay ‘‘The Work of Art in the Age of Mechanical Re-

production,’’ in which he argued that the artwork is democratized by

mass-production technology but the result is that its unique intrinsic value
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is threatened.8 The essay was influential, particularly in the latter half of

the twentieth century, when the concept of the art object gave way to art

as process.

The French artist Marcel Duchamp (1887–1968) is recognized as one of

the major intellects of twentieth-century art. As a key member of the Dada

movement he questioned the entire nature of the artwork when he intro-

duced his ready-mades with Roue de Bicyclette (Bicycle Wheel) in 1913. Dur-

ing the 1920s Duchamp worked on a number of ‘‘Rotoreliefs,’’ and some

were recorded in his film Anémic Cinéma (1925–1926). The rotating disks

produced 3-D illusions and progressed Duchamp’s interest in both art-as-

machine and as cognitive process. László Moholy-Nagy (1895–1946)

created his light-space modulator in 1930 after some years of experimenta-

tion. It’s a kinetic sculpture that he described as an ‘‘apparatus for the dem-

onstration of the effects of light and movement.’’ These effects are recorded

in his film Lichtspiel, schwarz-weiss-grau, (Light-play, black-white-gray),

made the same year. The original light-space modulator is preserved in the

collection of the Busch-Reisinger Museum in Cambridge, Massachusetts,

and a number of working reconstructions have been made. Alexander

Calder (1898–1976) was a Paris-based American sculptor best known for

the kinetic sculptures, dubbed ‘‘mobiles’’ by Duchamp, that he started con-

structing in 1931. Though his early experiments were motor-driven, he

soon developed the graceful wind- and gravity-powered mobiles for which

he is now best known.

The Swiss artist Jean Tinguely (1925–1991) belonged to a later generation

of artists who were influenced by both Dada and these early kinetic experi-

ments. In 1944 he began making his Metamechanics, or Metamatics,

eccentric machines that often expended high energy doing nothing. Al-

though his early work is playful and entertaining, there is always a dark un-

dercurrent. By the 1960s the early whimsy had evaporated, to be replaced

by a more somber mood reflective of the times. Among Tinguely’s best-

known work of this period is Homage to New York (1960), an ambitious

autodestructive installation in the courtyard of New York’s Museum of

Modern Art, which was documented in Robert Breer’s film Homage to Jean

Tinguely’s ‘‘Homage to New York.’’ It is further notable because it was the first

collaboration with an artist of the Bell Telephone Lab engineer Billy Klüver

(1927–2004), who went on to cofound the influential EAT, Experiments in

Art and Technology.

Takis (1925–) was born in Athens but, like Calder and Tinguely, based

himself in Paris and began making his illuminated Signaux—Signals—in

1955. They become kinetic in 1956 and in 1958 Takis integrated electro-
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magnetic elements that gave his works chaotic dynamics. Frank Malina

(1912–1981) was an American aerospace engineer who did pioneering

work on rocketry and was a cofounder and the first director of Caltech-

NASA’s Jet Propulsion Lab in Pasadena. Disillusioned with the increasing

military application of his research, he left in 1947 to join UNESCO before

committing himself full-time to his art practice in 1953. He based himself

in Paris, where many of the European kinetic artists were congregated. His

son, Roger, has recently commented that he ‘‘was amazed that artists cre-

ated so little artwork depicting the new landscapes we now see, thanks to

telescopes, microscopes and robots that explore the ocean and space.’’9 In

1954 Malina introduced electric lights into his work and in 1955 began his

kinetic paintings. In 1968 he founded the influential publication Leonardo,

the journal of the International Society for Arts, Science and Technology

(ISAST).10

It was in Paris in the 1950s that the artist Nicolas Schöffer (1912–1992)

formulated his idea of a kinetic art that was not only active and reactive,

like the work of his contemporaries, but also autonomous and proactive.

He developed sculptural concepts he called Spatiodynamism (1948), Lumi-

nodynamism (1957), and Chronodynamism (1959) and was influenced by

the new ideas that had been popularized by Norbert Wiener and Ross

Ashby.11 His CYSP 1 (1956, figure 1) is accepted as the first autonomous

cybernetic sculpture. Its name is formed from CYbernetic SPatiodynamism.

It was controlled by an ‘‘electronic brain’’ (almost certainly an analogue cir-

cuit) that was provided by the Dutch electronics company Philips. In addi-

tion to its internal movement, CYSP 1 was mounted on a mobile base that

contained the actuators and control system. Photosensitive cells and a mi-

crophone sampled variations in color, light, and sound (see figure 11.1). It

was

. . . excited by the colour blue, which means that it moves forward, retreats or makes a

quick turn, and makes its plates turn fast; it becomes calm with red, but at the same

time it is excited by silence and calmed by noise. It is also excited in the dark and

becomes calm in intense light.

On its second outing CYSP 1 performed with Maurice Béjart’s ballet com-

pany on the roof of Le Corbusier’s Cité Radieuse, as part of the Avant-Garde

Art Festival held in Marseilles in 1956. Schöffer said of his work: ‘‘Spatio-

dynamic sculpture, for the first time, makes it possible to replace man with

a work of abstract art, acting on its own initiative, which introduces into

the show world a new being whose behaviour and career are capable of

ample developments.’’12
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Figure 11.1

Nicolas Schöffer, CYSP 1, 1956. ( ADAGP, Banque d’Images, Paris 2007. Printed

with permission.
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Schöffer worked closely with composers and choreographers, including

Pierre Henry and Alwin Nikolais. These three together created KYLDEX,

the first experimental cybernetic show, at the Hamburg Opera House in

1973. Schöffer is also credited with making the first video production

in the history of television, Variations Luminodynamiques 1, for Télévision

Française in 1960 and so in addition to his considerable contribution to

the world of kinetics and autonomous arts he is also remembered as the

‘‘father’’ of video art.

The same year that CYSP 1 danced in Marseilles, 1956, across the Chan-

nel in the United Kingdom the Independent Group—consisting of artists,

architects, designers, and critics who challenged prevailing approaches to

culture—put together a show at London’s Whitechapel Gallery, ‘‘This

Is Tomorrow,’’ which became an influential landmark in the history of

the contemporary arts in the UK. Charlie Gere has pointed out that the

catalogue contains what is possibly the first reference to punch cards and

paper tape as artistic media.13 Robby the Robot, star of Fred Wilcox’s then

recently released (1956) film Forbidden Planet, attended the opening and the

show received a high popular profile in the British press. Forbidden Planet

bucked the trend of most American sci-fi movies of the time—where Com-

munists disguised as aliens are taught that freedom and democracy come

out of the barrel of a gun—with a thoughtful script that was loosely based

on Shakespeare’s The Tempest. But in the film the spirit world is a product

of cybernetic amplification of the human subconscious. The film was influ-

enced by the popular science and psychology of the day and also contains

echoes of Shelley’s Frankenstein.

The mood of the time was strongly pro-science—the public action of the

Campaign for Nuclear Disarmament (founded 1958) and televized atroc-

ities of the Vietnam War, which would alienate people from science’s per-

ceived military agenda, were still a decade in the future. Eagle was a popular

comic book of the day geared toward middle-class boys, one issue of which

featured a car powered by a small nuclear power pack that would never

need refueling and was expected on Britain’s roads before the turn of the

century! In 1963 the Labour prime minster Harold Wilson promised that

the ‘‘white heat of technology’’ would solve the country’s problems, and

a golden age of plenty, delivered by science and its machines, seemed

imminent.

In Germany Herbert Franke produced his first Oszillogramms in 1956.

The mathematician, physicist, and philosopher Max Bense (1910–1990)

proposed his concept of Information Aesthetics the next year, when he
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brought together aspects of information theory, cybernetics, and aes-

thetics.14 At about the same time the French theorist Abraham Moles

(1920–1992) published his work in the area.15 A decade later, in 1965,

Bense curated what is believed to be the first public exhibition of computer

art in the world when he invited the computer-graphics artist Georg Nees

to show his work at the Studiengalerie der Technischen Hochschule (Tech-

nical University) in Stuttgart. The exhibition ran February 5 to 19. This

encouraged the artist Frieder Nake to show his work, along with Nees later

that year from November 5 to 26 at Stuttgart’s Galerie Wendelin Niedlich

(figure 11.2). Many of the European artists working in the new field congre-

gated in Zagreb in August 1968 for a colloquy, ‘‘Computers and Visual Re-

search,’’ that was part of the New Tendencies Movement; it led to a major

exhibition called ‘‘Tendencies 4,’’ which ran May 5 to August 30, 1969.

Rainer Usselmann has suggested that these meetings confronted sociopolit-

ical issues associated with the new technologies (and especially the military

Figure 11.2

Galerie Wendelin Niedlich, Stuttgart. Screenshot of virtual reconstruction of the gal-

lery room with exhibition of computer art by Frieder Nake and Georg Nees, Nov.

1965. Courtesy Yan Lin-Olthoff.
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agendas) that were absent from the more playful British debate—especially

the signal event that has come to epitomize the period.16

A suggestion from Max Bense in 1965 inspired writer and curator Jasia

Reichardt to organize the exhibition that now stands as a defining moment

in the history of the computational arts. The show ‘‘Cybernetic Serendip-

ity’’ opened at London’s Institute of Contemporary Art on August 2, 1968

and ran until 20 October 1968.17 Reichardt recently described it as

. . . the first exhibition to attempt to demonstrate all aspects of computer-aided cre-

ative activity: art, music, poetry, dance, sculpture, animation. The principal idea was

to examine the role of cybernetics in contemporary arts. The exhibition included

robots, poetry, music and painting machines, as well as all sorts of works where

chance was an important ingredient.

The show coincided with and complemented the release of one of

the major cultural artifacts of the period, Stanley Kubrick’s enigmatic film

2001: A Space Odyssey. It features a self-aware artificial intelligence—HAL

9000—that has a psychotic breakdown when it is unable to resolve con-

flicting data.

Among work by over three hundred scientists and artists at ‘‘Cybernetic

Serendipity’’ was a piece by the British cybernetician Gordon Pask (1928–

1996). The Colloquy of Mobiles (figure 11.3) consisted of five ceiling-

mounted kinetic systems—two ‘‘males’’ and three ‘‘females.’’ Using light

and sound they could communicate with each other in order to achieve

‘‘mutual satisfaction.’’ The system could learn, and the mobiles optimized

their behavior so that their goal could be achieved with the least expendi-

ture of energy. Members of the public, using flashlights and mirrors, could

also interact with the mobiles and influence the process.18

Pask also worked with the architect John Frazer, the artist Roy Ascott, and

others as an adviser to the Fun Palace Project, conceived by Archigram’s

Cedric Price and the socialist theatrical entrepreneur Joan Littlewood.19 Al-

though the Fun Palace, a dynamically reconfigurable interactive building,

was never built, it had a wide influence; for example, it inspired Richard

Rogers and Renzo Piano’s Centre Georges Pompidou in Paris. In the seven-

ties Frazer worked closely with Pask at the Architectural Association and is

notable for his concept of the Intelligent Building.20

‘‘Cybernetic Serendipity’’ also included Edward Ihnatowicz’s (1926–

1988) sound-activated mobile, or SAM. Ihnatowicz would later describe

himself as a Cybernetic Sculptor.21 SAM consisted of four parabolic reflec-

tors shaped like the petals of a flower, on an articulating neck. Each

reflector focused ambient sound on its own microphone; an analogue
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circuit could then compare inputs and operate hydraulics that positioned

the flower so it pointed toward the dominant sound. SAM could track mov-

ing sounds, and this gave visitors the eerie feeling that they were being

observed. Not long after, Ihnatowicz was commissioned by Philips to create

the Senster (figure 11.4) for the company’s Evoluon science center in Eind-

hoven. The Senster was a twelve-foot ambitious minicomputer-controlled

interactive sculpture that responded to sound and movement in a way

that was exceptionally ‘‘life like’’ (it was exhibited from 1970 to 1974,

when it was dismantled because of high maintenance costs).22 Ihnatowicz

was an early proponent of a ‘‘bottom-up’’ approach to artificial intelli-

gence—what we would now call artificial life. His reading of the work of

the developmental psychologist Jean Piaget inspired him to suggest that

machines would never attain intelligence until they learned to interact

with their environments.23

The socialist techno-utopian vision that played a major role in European

politics and culture of the period was less influential in the Communist-

phobic United States. In consequence, developments there were less

centralized, more sporadic, and often linked to artists’ initiatives or the

Figure 11.3

Gordon Pask, Colloquy of Mobiles, installation shot from Cybernetic Serendipity

(1968). Courtesy Jasia Reichardt.
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commercial art world rather than state-patronized social agendas. Ben

Laposky (1914–2000) began to make his analogue Oscillons in 1950, the

same year the composer John Cage (1912–1992) discovered the I Ching.

This profoundly influenced Cage’s career, which increasingly involved

technology and chance elements. He used coin tosses to determine pitch,

rhythm, dynamics, and duration of his ‘‘Music of Changes,’’ written in

1951, and he created the masterpiece ‘‘4 0 33 00’’ the next year. In this work

the performer stands still on the stage and the audience listens to the ambi-

ent sounds and silence. In 1952 Cage began working with electronic music,

and in 1967, with Lejaren Hiller, he produced the ambitious computer-

assisted ‘‘HPSCHD.’’ The name reflects the contemporary use of a ‘‘high

level’’ programming language, FORTRAN (FORmula TRANslation), that

allowed only six-character names, in uppercase, and that often omitted

vowels. The year before, in 1966, Cage was one of many artists who con-

tributed to the defining event of art-technology collaborations in the

United States. ‘‘9 Evenings: Theater and Engineering’’ was produced by

Figure 11.4

Edward Ihnatowicz, The Senster, 1970. Courtesy Olga Ihnatowicz.
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the Experiments in Art and Technology (EAT) group, and was set up by

Billy Klüver and Fred Waldhauer with the artists Robert Rauschenberg and

Robert Whitman.24

Starting in 1963, the journal Computers and Automation sponsored a

computer art competition; in 1963 and 1964 the winning entries were vis-

ualizations from the U.S. Ballistics Research Lab at the Aberdeen Proving

Ground in Maryland. Michael Noll won in 1965 and Frieder Nake in 1966

(see figure 11.5). Noll had produced the first computer graphics artwork in

1962. The United States’ first computer art exhibition, ‘‘Computer Gener-

ated Pictures,’’ was held April 6 to 24, 1965 at the Howard Wise Gallery in

Figure 11.5

Frieder Nake: 13/9/65 Nr. 5, ‘‘Random distributions of elementary signs,’’ China ink

on paper, 51 � 51 cm, 1965. Possession of Sammlung Etzold, Museum Abteiberg,

Mönchengladbach. First prize Computer Art Contest 1966, Computers and Automa-

tion. Printed with permission.
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New York (just three months after the pioneering Stuttgart show) and fea-

tured work by Noll and Bela Julesz (1928–2003). Charies ‘‘Chuck’’ Csuri, a

sculptor, established a pioneering computer arts lab at Ohio State Univer-

sity, where Tom Defanti completed his Ph.D. before collaborating with the

artist-engineer and video art pioneer Dan Sandin. In 1974 together Defanti

and Sandin established the Electronic Visualization Lab at the University of

Illinois, Chicago Circle, and later the world’s first M.F.A. program in com-

puter arts. It’s believed that Copper Gilloth was the first graduate. A year

earlier, Myron Kruger, who had collaborated with Sandin, coined the term

‘‘artificial reality’’ to describe his interactive immersive computer-based art

installations.

London in the 1960s was ‘‘swinging’’ and the art world was fertile anar-

chistic ground for any and all new ideas. Jim Haynes set up the London

Arts Lab on Drury Lane and the London Filmmakers Coop was established.

Later the Arts Lab moved to Camden as an artist-run space called the Insti-

tute for Research into Art and Technology; from 1969 it included the Elec-

tronics and Cybernetics Workshop (possibly a single mechanical teletype

and a 300-baud modem) that was organized by John Lifton and offered

free and exclusive computer access to artists for the first time. At Ealing

College in 1961 the recently graduated Roy Ascott was appointed head of

Foundation Studies, where he developed the influential Groundcourse.25

He recruited an impressive team of young artists as teachers, and visitors

included Pask and the linguist Basil Bernstein. Ascott and others believed

that it was the process, rather than the product, that provided the essential

content of the artwork. This became a dominant aesthetic of the arts in the

latter part of the twentieth century, influencing the formation of several

movements including Art & Language, Conceptual Art, and Systems Art.26

Stephen Willats was a student of Ascott’s who went on to produce some

major works linking art and technology with a social agenda; his contribu-

tion has recently been reassessed.27 Stroud Cornock, a colleague of Ascott’s,

moved to the City of Leicester Polytechnic, where he met the artist and

mathematician Ernest Edmonds. They coauthored the influential paper

‘‘The Creative Process Where the Artist is Amplified or Superseded by the

Computer,’’ and Edmonds went on to establish the Creativity and Cogni-

tion Lab (originally at Leicester, then at Loughborough, and now at the

University of Technology, Sydney), as well as found the ACM Creativity

and Cognition conference series.28 Ascott later pioneered the use of com-

munication networks in the arts and more recently has established the

Planetary Collegium as a global initiative intended to encourage scholarly

research in the field of art, technology, and consciousness.29
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In 1969 the Computer Arts Society was cofounded by Alan Sutcliffe, John

Lansdown, and George Mallen.30 Mallen had worked closely with Gordon

Pask at his company Systems Research, and for the CAS launch—Event

One, an exhibition at the Royal College of Art—he produced a remarkably

sophisticated (especially considering the rudimentary technology of the

time) interactive computer artwork called The Ecogame (figure 11.6).31

The CAS bulletin, PAGE, originally edited by Gustav Metzger, is still in

print and forms a valuable historical record.32 The same year that CAS was

formed, Penguin published a book called Systems Thinking, edited by an

Australian, Fred Emery, as an inexpensive paperback special.33 It contained

chapters by W. Ross Ashby and Geoff Summerhoff, among others, and be-

cause of its accessibility it was widely influential throughout the art world

in the UK, being on the recommended book list for many foundation and

undergraduate fine arts courses in the UK. Two books by the left-wing

cybernetician Stafford Beer, Designing Freedom and Platform for Change, were

also influential as the 1970s progressed.34 Although the systems art move-

ment was pan-European, the Systems Group was primarily based in the UK.

Malcolm Hughes, a member, was also head of postgraduate studies at

Figure 11.6

George Mallen, The Ecogame, 1969. Courtesy the Computer Arts Society.
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the Slade School of Fine Art, University College, London. He set up what

became the Experimental and Computing Department, or EXP, in 1973

under Chris Briscoe, where the systems ethos was transferred into the com-

puter domain. The emerging ideas of deterministic chaos, fractals, and cel-

lular automata were influences and the output of EXP forms a root of both

the computational and generative arts and the scientific pursuit of A-life

(see figures 11.7 and 11.8).35 Edward Ihnatowicz, who was then based in

the Mechanical Engineering School at University College London, was a

regular visitor, as was Harold Cohen who was working on an early version

of his expert drawing system, AARON, at the University of California, San

Diego.36 From 1974 to 1982, when it closed, EXP was a major focus for

artists from around Europe who were working in the computational

domain.

In 1970 two important exhibitions took place in New York. Kynaston

McShine’s ‘‘Information’’ show at the Museum of Modern Art was an eclec-

tic, idiosyncratic mix of conceptual formalism, linguistic and information

Figure 11.7

Paul Brown, CBI North West Export Award, 1976. An early alife work by the author

that was driven by a dedicated digital circuit.
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Figure 11.8

Paul Brown, Life/Builder Eater, 1978. An alife work by the author produced at EXP.

Believed to be the first artwork to have an embedded microprocessor.
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theories, and sociopolitical activism.37 Jack Burnham’s software show,

‘‘Software—Information Technology: Its New Meaning for Art,’’ at the Jew-

ish Museum, was intended to draw parallels between conceptual art and

theories of information such as cybernetics. The show included work by a

young architect named Nicholas Negroponte, who would later found MIT’s

Media Lab. Burnham, in his earlier influential book, Beyond Modern Sculp-

ture (1968) had suggested that art’s future lay in the production of ‘‘life-

simulation systems.’’38 Many artists of the time agreed and believed that

the world of art would be radically transformed by an imminent revolution

and undergo what the philosopher of science Thomas Kuhn had recently

described as a ‘‘paradigm shift.’’39 The art world did change, but not in the

radical way these artists and theorists expected; by the 1980s it was being

driven by humanities-educated graduates who identified more with the

eclecticism of McShine than with the focused analytical vision of Burnham

and the systems and conceptual artists. They adopted the emerging

theories of postmodernism and tended to be unfamiliar with, and deeply

suspicious of, computing and information technology, which they iden-

tified with the growth in power of what later became known as the

military-industrial-entertainment complex. In my opinion they made a sin-

gular mistake: by identifying the kind of developments I have described

with the absolute narratives of utopian modernism (which, to be fair, is

not an altogether unreasonable association) they ignored aspects such as

emergence, nonlinearity, hypermediation, interaction, networking, self-

similarity, self-regulation that should have been seen—and more recently

have been acknowledged—as central to the postmodern debate. It was a

classic case of throwing out the baby with the bathwater.

The ongoing lack of support for computer art from the arts mainstream

throughout the latter decades of the twentieth century led to the formation

of an international ‘‘salon des refusés.’’ The Computer Arts Society ran sev-

eral exhibitions in the unused shells of computer trade shows in the late

1970s and early ’80s in the UK and in 1981 in the United States the first

SIGGRAPH Art Show was curated by Darcy Gerbarg and Ray Lauzzana; the

latter also established the influential bulletin board ‘‘fineArt forum’’ in

1987.40 The Austrian Ars Electronica convention and Prix was launched

in 1979, and in 1988 the International Symposium on Electronic Arts series

began in Utrecht, The Netherlands.41 These international opportunities

were, and most of them remain, important venues for debate and exhibi-

tion of work that until recently rarely found its way into the established

gallery system. Thanks in major part to this ‘‘patronage,’’ a younger gener-

ation of computational and generative artists emerged in the 1980s and
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early ’90s, whose ranks include Stelarc, Karl Sims, Yoichiro Kawaguchi, Wil-

liam Latham, the Algorists, Michael Tolson, Simon Penny, Jon McCor-

mack, Troy Innocent, Ken Rinaldo, Richard Brown, and many others.
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16. Christoph Klütsch, ‘‘The Summer of 1968 in London and Zagreb: Starting or End

Point for Computer Art?,’’ in Proceedings of the Fifth Conference on Creativity and Cog-

nition (London, April 12–15, 2005), C&C ’05 (New York: ACM Press, 2005); and

Rainer Usselmann, ‘‘The Dilemma of Media Art: Cybernetic Serendipity at the ICA,’’

Leonardo 36, no. 5: 389–96 (MIT Press, 2003).

17. Jasia Reichardt, ‘‘In the Beginning,’’ and B. MacGregor, ‘‘Cybernetic Serendipity

Revisited,’’ both in Brown, Gere, Lambert, and Mason, White Heat Cold Logic; Reichardt,

‘‘Cybernetic Serendity,’’ press release, available at http://www.medienkunstnetz/de/

exhibitions/serendipity.

18. Margit Rosen, ‘‘Gordon Pask—The Colloquy of Mobiles,’’ available at http://

medienkunstnetz.de/works/colloquy-of-mobiles.

19. Design Museum, ‘‘Cedric Price, Architect (1934 to 2003),’’ available at http://

www.designmuseum.org/design/cedric-price.

The Mechanization of Art 279



20. James Frazer, ‘‘Interactive Architecture,’’ in Brown, Gere, Lambert, and Mason,

White Heat Cold Logic.

21. See Alex Zivanovic’s comprehensive website on Ihnatowicz’s work, ‘‘Senster—A

website devoted to Edward Ihnatowicz, cybernetic sculptor,’’ at http://www.senster

.com.

22. Alex Zivanovic, ‘‘The Technologies of Edward Ihnatowicz,’’ in Brown, Gere, Lam-

bert, and Mason, White Heat Cold Logic.

23. Edward Ihnatowicz, personal communication with Paul Brown, mid-1970s.

24. Fondation Daniel Langlois, ‘‘Billy Klüver—Experiments in Art and Technol-
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12 The Robot Story: Why Robots Were Born and How They

Grew Up

Jana Horáková and Jozef Kelemen

This is a story of why, how, and where the word robot was born, how it

changed its meaning, how it grew up, and how it spread, becoming a part

of languages all over the world. Today we talk of robots as of one of the

myths of the second half of the past century and at least the first decade

of the twenty-first century. These myths live in the form of jokes, fairy

tales, and legends, often without our knowing their authors.1 But we en-

counter robots also in science fiction novels and movies, and we bump

into them in art exhibitions and in the press as well as in research laborato-

ries. How did it all start?

In order to make our robot story not only as objective as possible but also

provocative and inspiring, we have felt free to include, from time to time,

our own impressions, views, and hypotheses on the robot’s history and

destiny. We are going to describe the concept of a robot in the context of

its inventors’ work as well as in the wider cultural context of the period

when the famous play R.U.R. (Rossum’s Universal Robots), in which the

word robot first appeared, was written, and of the contexts in which it

spread. We have decided to proceed in this way because we believe that a

broader knowledge of the cultural background to present-day research in

the fields of advanced robotics, artificial intelligence, artificial life, and

other related fields will help specialists and maybe many others to under-

stand these fields in a wider context. This will also aid the understanding

of positive public expectations, as well as misgivings, connected with the

possible results of these fields of enquiry.

The Robot’s Parents

It is a relatively commonly known fact that the word robot first appeared in

1920 in the play R.U.R. (Rossum’s Universal Robots) by the Czechoslovak

journalist and writer Karel Čapek (1890–1938). The play was at least



partially written during the summer of 1920, when he, his brother, Josef

(1887–1945), and their sister, Helena (1886–1961), were on vacation in

their parents’ house in the spa town of Trenčianske Teplice, Slovakia,

where their father worked as a physician (see figure 12.1).

There are a number of stories about how the idea and the word emerged.

For example, Karel Čapek published following version of the story in the

December 24, 1933, issue of the Prague newspaper Lidové noviny (People’s

News):2

A reference by Professor Chudoba to the Oxford Dictionary account of the word

Robot’s origin and its entry into the English language reminds me of an old debt.

The author of the play R.U.R. did not, in fact, invent that word; he merely ushered

it into existence. It was like this: The idea for the play came to said author in a single,

unguarded moment. And while it was still warm he rushed immediately to his

brother, Josef, the painter, who was standing before an easel and painting away at a

canvas till it rustled.

‘‘Listen, Josef,’’ the author began, ‘‘I think I have an idea for a play.’’

‘‘What kind,’’ the painter mumbled (he really did mumble, because at the moment

he was holding a brush in his mouth).

The author told him as briefly as he could.

Figure 12.1

The Spatown Trenčianske Teplice in Slovakia in 1986. The sanatorium Pax replaced

the Čapek brothers’ parents’ house, where Karel Čapek wrote at least some parts

of the R.U.R. and where Josef Čapek invented the neologism robot. Photo by Jozef

Kelemen.
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‘‘Then write it,’’ the painter remarked, without taking the brush from his mouth or

halting work on the canvas. The indifference was quite insulting.

‘‘But,’’ the author said, ‘‘I don’t know what to call these artificial workers. I could

call them Labori, but that strikes me as a bit bookish.’’

‘‘Then call them Robots,’’ the painter muttered, brush in mouth, and went on

painting. And that’s how it was. Thus was the word Robot born; let this acknowledge

its true creator.

The word robot is a neologism derived etymologically from the archaic

Czech word robota, a word rooted in the ancient Slavonic protolanguage

from which today’s Slavonic languages (Czech, Polish, Russian, Slovak,

Ukrainian, and so forth) have developed. In present-day Czech and Slovak,

robota means something like a serf’s obligatory work.

However, it is (at least internationally) not so commonly known that the

true coiner of the word robot, Josef Čapek, is recognized as a representative

of Czech cubism (influenced by the naive style), and that his work as a

painter is an important contribution to twentieth-century Czech art. But

in the history of Czech culture Josef Čapek is also highly regarded as a

writer and as the author of numerous short stories. Moreover, the Čapek

brothers collaborated on many works, especially at the beginning of their

careers, and they remained important sources of inspiration for each other

until the ends of their lives (see figure 12.2). Especially at the beginning of

their careers, both were influenced by the time they spent together in Paris,

where they were exposed to all the latest modern styles and the various

-isms that emerged during the first third of the twentieth century.

The Pedigree

We have cited Karel Čapek’s own description of the birth of the word robot.

He mentioned more about the birth of the idea in an article in the British

newspaper The Evening Standard, published on July 2, 1924:

Robots were a result of my traveling by tram. One day I had to go to Prague by a sub-

urban tram and it was uncomfortably full. I was astonished with how modern condi-

tions made people unobservant of the common comforts of life. They were stuffed

inside as well as on stairs, not as sheep but as machines. I started to think about

humans not as individuals but as machines and on my way home I was thinking

about an expression that would refer to humans capable of work but not of thinking.

This idea is expressed by a Czech word, robot.

More generally, the idea of Čapek’s robots might be viewed as a twentieth-

century reincarnation of an old idea present in European culture—the idea

of a man created by man. In Genesis 2:7 we read, ‘‘The Lord God formed
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man of the dust of the ground and breathed into his nostrils the breath of

life; and man become a living soul.’’ From this perspective, Adam, a prod-

uct of the technology of pottery, is the oldest predecessor of robots. More-

over, stating that ‘‘God said: Let us make man in our image’’ (Genesis 1:26),

the Bible also gave to Western civilization the ideological assurance that

not only God but also man is able to perform creative acts.

The role of machines that interact with each other and cooperate with

human beings is also present in Aristotle‘s contemplations on the possibil-

ity of changes to the social structure of human society. In Book 2 of his

fundamental work Politics he wrote (Aristotle 1941, pp. 33–39):

For if every instrument could accomplish its own work, obeying or anticipating the

will of others, like the statue of Daedalus, or the tripods of Hephaestus, which, says

the poet, ‘‘of their own accord entered the assembly of the Gods’’; if, in like manner,

the shuttle would weave and the plectrum touch the lyre without a hand to guide

them, chief workmen would not want servants, nor master slaves.

Figure 12.2

Josef and Karel Čapek, about 1922. Reproduced from Čapkova (1986) with

permission.
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In The Iliad, Homer (1998) expressed this dream of artificial humanlike

creatures, created by means of the technology of metalworking, as follows:

‘‘There were golden handmaids also who worked for him, and were like real

young women, with sense and reason, voice also and strength, and all the

learning of the immortals’’ (pp. 415–20).

In the September 23, 1935, issue of the German-language Prague news-

paper Prager Tagblatt, Karel Čapek himself mentioned the relationship of

his robots to one of the most famous artificial servants of man, the Golem,

a medieval legend that combined material technology with the mysterious

power of symbols: ‘‘R.U.R. is in fact a transformation of the Golem legend

into a modern form,’’ Čapek wrote. ‘‘However, I realized this only when the

piece was done. ‘To hell, it is in fact Golem,’ I said to myself. ‘Robots are

Golem made with factory mass production.’ ’’

The legend of the Golem lives on in Prague up to the present day (see

Petiška 1991). According to the legend, a famous Prague rabbi at the end

of the sixteenth century and the beginning of the seventeenth century,

Judah Loew ben Bezalel (a real person who is buried in the Jewish cemetery,

in Prague’s Old Town, constructed a creature of human form, the Prague

Golem (figure 12.3). He proceeded in two main stages: First, he and his col-

laborators constructed the earthen sculpture of a manlike figure. Second, he

found the appropriate text, wrote it down on a slip of paper, and pushed it

into the Golem’s mouth. So long as this seal remained in the Golem’s

mouth, he had to work and do the bidding of his master, performing all

kinds of chores for him, helping him and the Jews of Prague in many ways.

Another root of the concept behind robots can be traced to androids, a

term that first appeared in about 1727, referring to humanoid automata,

and an idea still current in the Čapeks’ time. The historical age in which

such androids were particularly popular, the eighteenth century, is usually

called the Age of Reason. ‘‘Reason’’ in the Czech language is rozum, pro-

nounced ‘‘rossum.’’ We can see why the name of the first constructor of

robots in Čapek’s play R.U.R. is Rossum, and why Rossum’s Universal Robots

is the title of the play.3 Further conceptual forefathers of robots that are

only occasionally mentioned appeared in the writings of the Čapek

brothers before 1920 in the specific political and cultural context of that

period in Europe.

In addition to the dreams expressed in such influential books as the Old

Testament, Homer’s Iliad, or in the legends of the Golem, we can also find

real artifacts from at least the beginning of the eighteenth century that are

evidence of engineers’ efforts to design and produce human-like machines.
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First, let us look to the Age of Reason both for ideas concerning robots and

for technical activities. The famous mechanical duck developed by Jacques

de Vaucanson from 1738 or the mechanical puppets constructed by the

Jaquet-Droz family in the period 1772 to 1774, and now exhibited in the

Historical Museum in Neuchâtel, Switzerland (see Capuis and Droz 1956,

for more details), are good examples of inspiration of this latter type. How-

ever, the well-known chess-playing mechanical Turk developed in this

period is more closely related to robots.

During the eighteenth century an Austro-Hungarian nobleman, Johannes

Wolfgang von Kempelen (1734–1804), who lived in the Central European

city of Pressburg (now Bratislava), the capital of the Slovak Republic, was

full of ideas.4 Ideas about how to organize the production and safe trans-

port of salt in the Austro-Hungarian Empire, about how to build a bridge

Figure 12.3

The Prague Old-New Synagogue (Altneuschul) connected with the legend of the

Golem, and the usual shape of Golems in present-day Prague gift shops. Photos by

Jozef Kelemen.
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over the Danube River in Pressburg, how to construct a speaking machine

for the dumb, and—last but not least—how to construct a mechanical

chess-playing machine. This machine, constructed in 1770—in a certain

sense something like today’s autonomous embodied agents—would be-

have not in the traditional way of acting according to the intentions of its

user, but in the opposite way. It would act against its user’s intentions: a

mechanical human-like machine, camouflaged to look like a human-size

moving puppet in the form of a pipe-smoking Turk, it would sit at a chess

board and move the pieces in the right way to win games.5

Artificial humanoid beings also played a significant part in the modernist

view of humanity, which affirms the power of people to improve quality of

life with the aid of science and technology. We can find them for instance

in the symbolist theater conventions of the beginning of the twentieth

century. In Expressionist plays we often meet schematized characters; in

fact, two Expressionist plays by Georg Kaiser, Gass I and Gass II, are gener-

ally regarded as having influenced Karel Čapek’s work). In art, the cubist

image of a human as a union of squares and triangles is reminiscent of

deconstructed human-like machines (or machine-like humans?). Two sig-

nificant dimensions of futurism are its yearning for the mechanization of

humans and the adulation of the ‘‘cold beauty’’ of machines made of steel

and tubes as depicted in many futurist works.6

The Conception

Not only can we trace a hypothetical line between androids and robots, but

we can also meet androids in the Čapek brothers’ early works. That being

the case, it becomes particularly interesting to try and find out why Karel

Čapek decided to seek out a new word for his artificial characters and thus,

in a certain way, to partly disconnect robots from their forefathers, giving

them more contemporary connotations.

The Čapek brothers had already started to deal with the subject of

human-like creatures in the form of androids as well as with ideal workers

in a few of their works written before 1920.

In 1908 Josef and Karel wrote a short story entitled ‘‘System’’ that was

included in the brothers’ collection of short stories The Krakonoš Garden

(in Czech Krakonošova zahrada), first published in 1911. In this story the

authors expressed their misgivings concerning the reduction of human

beings to easily manageable and controllable uniformed workers, as im-

plied by Taylorism and Fordism. The Čapeks understood that the creation
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of such workers would lead toward the mechanization of humans, who

would then become merely a pieces of equipment or tools. The story sati-

rizes the organization of human work within industrial mass production

while also critically reflecting the social and political situation at the begin-

ning of the twentieth century in Europe. In the story, in order to produce

‘‘ideal’’ workers, workers are brought together and then aesthetically and

emotionally deprived; the ideal worker is called ‘‘a kind of construction of

Operarius utilis Ripratoni’’ (Mr. Ripraton is the owner of the factory where

the so-called ‘‘cultural reform’’ is carried out). Later, one of the workers dis-

covers the existence of individual beauty (in the form of a naked woman),

and organizes a revolt in the region in which the Operarius utilis is located.

During the rebellion the factory owners as well as their families are killed.

The similarity of this story to the plot of R.U.R. is striking, as we shall see,

and the story is often referred to as a conceptual draft of the play.

In 1910 Karel and Josef wrote the short story ‘‘L’Eventaille,’’ which fea-

tured both a mechanical lady with a fan and also a historical person—

Droz with his androids.7 The story, set in the atmosphere of a rococo

carnival ball in a garden, is based on the motif of the interchangeability of

masked ladies and gentlemen, androids, and even sleeping and dead people.

In Josef Čapek’s ‘‘The Drunkard’’ (in Czech, ‘‘Opilec’’), published in Lelio,

a 1917 collection of his short stories, we again come across the idea of

a mechanical alter ego of man that predates R.U.R. It takes the form of a

humanoid automaton that carries out the commands of its creator, an en-

gineer, and again we can recognize a conceptual predecessor of the robot.

However, this mechanical alter ego seems to be useless to its creator be-

cause it cannot be used to replace him either in his work or in spying on

his sweetheart.

Finally, in 1924, after R.U.R had been produced, Josef published a long

essay entitled ‘‘Homo Artefactus’’ (see Čapek 1997). This work connected

the contemporary idea of man-machines with the cultural history of artifi-

cial creatures, including homunculi as well as Golems, and examined prob-

lematical human-machine relationships—for example, the soldier as being

a man in armor carrying a weapon—throughout the whole of history. As

noted above, Josef Čapek had been very influenced by cubism and futurism

at the beginning of his artistic career, and this essay is his own way of get-

ting over his futurist period by directly facing the consequences of the fact

that the futurist movement inclined toward fascism and the adoration of

war.8 From our point of view it is remarkable that he also put into this

essay a paragraph dedicated to his brother’s robots, writing about them in

a characteristically ironic style (Čapek 1997, p. 196):
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The action of a young scholar dr. Karel Čapek was very overrated. This rather adven-

turous writer made his robot in American factories and then he sent this article into

the word, leading all educated people abroad into the misapprehension that there is

no other literature in Czech other than that for export. . . . According to Čapek’s

theories and promises this robot should replace workers, but we are claiming openly

that it was not very useful in practice; it was used only in theatrical services. . . . For

that matter, just as living automata of older times were fully constructed from ma-

chinery, so they were not in fact humans, Čapek’s robots were made exclusively

from an organic jelly so they are neither machines nor human. The intuition of a

critical countryman was very good when he promptly recognized Čapek’s trick and

after a first production of robots stated that there had to be some swindle in it.

(Translated from Czech by Jana Horáková)

The Plot

The play R.U.R. was among the first Czech science fiction texts. The drama

is set (as was for example H. G. Wells’s The Island of Dr. Moreau) on an iso-

lated island. In this isolated and distant place (reminiscent of many others

in the history of fantastic literature, particularly of those housing various

kinds of utopias), we find only the factory of Rossum’s Universal Robots.

There is nothing else on the island, so the island is a factory and the factory

is an island.

In this utopian island factory, robots, a specific kind of artificial worker—

are mass produced and distributed all around the world. They are physi-

cally stronger than humans, and do not become exhausted by mechanical

work. Originally, they were developed by Rossum senior, a scientist of the

‘‘age of knowledge,’’ who wanted to make artificial people ‘‘in order to de-

pose God through science.’’ The robots produced by the R.U.R. factory are

the ‘‘younger generation of the old robots’’; they are not complete replicas

of humans but are very effective in use, being ergonomic devices developed

by Rossum junior, an engineer, as the ‘‘mind children’’ of the ‘‘age of

industry.’’

As is the case in many literary works of science fiction, the invention—in

this case the robots—provides the story’s central drive. While H. G. Wells,

with whom Čapek is often compared, usually mentions numerous scien-

tific details to make his fantastic inventions credible, there are very few

references to the origin of robots in R.U.R. (and those are ambiguous).

There is mention of some chemical processes needed for the living jelly

from which parts of robots are made; we know a little bit about the serial

production of different organs, which are then collected on the assembly

lines of the factory. (This reference to robots as mechanisms, in contrast
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to the chemical basis of the organs, relates to the more general picture of

the Cartesian view of the human body as a machine, a view emphasized

by La Mettrie). Čapek describes the robots’ incredible powers of memory

and their ability to communicate and count, along with their lack of

creative thought and initiative. This is very reminiscent of computers con-

trolling their robotic bodies: ‘‘If you were to read a twenty-volume encyclo-

pedia to them, they’d repeat it all to you with absolute accuracy,’’ he

mentions, and adds ironically: ‘‘They could very well teach at universities’’

(Čapek 1983, p. 130; this last sentence appeared in the original Czech text

of the play, but was not included in the first English translation; see Čapek

and Čapek 1961, p. 15).

The robots are being sold on the world market as a cheap labor force.

Helena, now the wife of Mr. Domin, makes the top production engineer,

Dr. Gall (who is in love with her, like all the other directors of the factory),

give the robots ‘‘an irritability’’ that causes outbursts of anger; later these

emotions allow the emergence of something like individuality—an ability

to make decisions and to behave humanly. When the robots realize their

physical and mental superiority over humankind they want to replace

them at the top of the hierarchy of living creatures. They declare war

against all humans, and destroy the entire human race.

By now, people have lost the ability of reproducing naturally, so Helena

destroys the recipe for producing robots because she believes that this is the

way to save humanity. But her act is counterproductive and she only accel-

erates the conflict between robots and humans. The robots kill all the

humans on the island, except the master builder, Alquist, and in the rest

of the world. However, the robots had all been made without any reproduc-

tive system, and could live for only twenty years. For this reason they try to

force Alquist to write down the recipe for robot (re)production again. He

reproaches them for their mad plan to massacre all humans. When the

robots tell him that he is in fact the last living human, he orders them

from his study in a fury and falls asleep. He is woken up by two robots,

Helena and Primus, who behave like a young human couple falling in

love. Unlike the other robots, they have feelings, they sense love, they are

willing to protect each other’s ‘‘life.’’ Alquist sends them excitedly into the

world as a new Adam and Eve, as the new generation. This first couple of

living robots is already indistinguishable from humans. So the end of the

play is very typical for Čapek: Nobody is completely guiltless and nobody

is altogether innocent.

Karel Čapek wrote some instructions about the behavior of the robots in

the play. In the prologue the robots are dressed like people. Their move-
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ments and speech are laconic, their faces are expressionless, and their gaze

is fixed. In the play they wear linen fatigues tightened at the waist with a

belt, and have brass numbers on their chests. In contrast to the robots in

the prologue, in the last act of the play the robotess Helena and the robot

Primus talk and act like humans, and behave even more humanly than

humans in the play. The female robot Helena even uses Helena Glory’s typ-

ical articulation of the letter R, as if the first couple of robots really carry on

a human heritage.

In the play Čapek shows his attitude toward technology and progress.

The horrors of World War I, in which technology was so extensively mis-

used, were very recent. He also points out that humans themselves have to

be aware of the possibility of falling into stereotyped behaviors, and that

the inclination of individuals to identify with a crowd can lead them to-

ward robot-like behaviour. He also thinks about an important part of our

life: work. According to him, work is an integral part of human life. It is

not only one of our duties, but also one of our essential needs. Without

work humankind will degenerate because people will not have any need

to improve themselves.

Antecedents

As we have shown already, it is possible to discuss R.U.R. in the wider

context of the Čapek brothers’ stories, particularly those emphasizing the

themes of androids and automata. This point of view allows us to see

the play R.U.R., as well as Čapek’s robots, from a historical perspective.

However, we can also understand the play in a context in which it often

appears, that of science fiction. We can find several other pieces inspired

by fictitious scientific inventions or imaginary devices in Karel Čapek’s

work: in the novels Krakatit, Továrna na Absolutno (Factory of the Absolute)

and Válka s Mloky (War with the Newts), as well as in his other plays, such

as Věc Makropulos (The Macropulos Case) and Bı́la Nemoc (White Disease).

There are two themes underlying R.U.R. First, the introduction of the idea

of robots was Čapek’s artistic reaction to the contemporary political situa-

tion in Europe, which was dominated by problems concerning the social

and political status of the proletariat in the industrial society of the time.

Second, the play is also an expression of the Čapeks’ ambivalent attitude

to science, especially nineteenth-century science: on the one hand, science

provided a hope for effective solutions to various social problems, but on

the other, it evoked fears concerning its misuse or the unexpected conse-

quences of its use.
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In the American periodical The Saturday Review of Literature, on July 23,

1923, Karel Čapek expressed his views on the origin of his robots by clearly

explaining that ‘‘the old Rossum . . . is no more and no less than the typical

scientific materialist of the past century [the nineteenth]. His dream to cre-

ate an artificial man—artificial in the chemical and biological sense, not in

the mechanical one—is inspired by his obstinate desire to prove that god is

unnecessary and meaningless.’’ Twelve years later, in the Prague newspaper

Lidové noviny ( June 9, 1935), he set down his thoughts as to the substance

from which the robots are constructed in the play:

Robots are not mechanisms. They have not been made from tin and cogwheels. They

have not been built for the glory of mechanical engineering. The author intended to

show admiration for the human mind; this was not the admiration of technology,

but of science. I am terrified by the responsibility for the idea that machines may re-

place humans in the future, and that in their cogwheels may emerge something like

life, love or revolt.

In the play R.U.R. he explained the ontology of robots very clearly through

the words of Mr. Domin, the president of the R.U.R. robot factory, recol-

lecting the beginnings of the idea of robots for Helena Glory, who is visit-

ing the factory (Čapek and Čapek 1961, p. 6):

And then, Miss Glory, old Rossum wrote the following in his day book: ‘‘Nature has

found only one method of organizing living matter. There is, however, another

method more simple, flexible, and rapid, which has not yet occurred to nature at

all. This second process by which life can be developed was discovered by me today.’’

Imagine him, Miss Glory, writing those wonderful words. Imagine him sitting over a

test-tube and thinking how the whole tree of life would grow from it, how all

animals would proceed from it, beginning with some sort of beetle and ending with

man himself. A man of different substance from ours. Miss Glory, that was a tremen-

dous moment.

The Newborn

R.U.R.’s debut had been planned for the end of 1920 in Prague’s National

Theater, but it was delayed, probably because of unrest connected with the

appointment of Karel Hugo Hilar, a famous Czech Expressionistic stage di-

rector, to the position of head of the Theater’s actors’ chorus. During the

delay, an amateur troupe called Klicpera from Hradec Králové (a town

about sixty miles east of Prague, where Karel Čapek briefly attended high

school) mounted the first production of R.U.R. on January 2, 1921, in spite

of an official prohibition from the National Theater. The director of this

production was Bedřich Stein, an inspector of the Czechoslovak State Rail-
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way. F. Paclt performed the role of the robot Primus.9 Unfortunately, there

is no photo documentation of this first production of the play. According

to a couple of reviews in local newspapers, the Hradec Králové premier was

quite successful, but the troupe was punished with a not-insignificant fine.

The official first night of the play took place three weeks later, on January

25, 1921, in the National Theater (figure 12.4). The director of the produc-

tion was Vojta Novák. The stage designer was Bedřich Feuerstein, a young

Czech architect. Costumes were designed by Josef Čapek.10

Vojta Novák had directed the most recent of Karel Čapek’s plays pro-

duced in the National Theater, The Robber, and apparently Čapek himself

chose him again. Encouraged by this, Novák on the whole respected the

new play’s text. In the first act he did make some fairly large cuts, but only

to move more quickly to the heart of the piece. However, he shortened the

third act so that it became only a brief epilogue. Novák was impressed by

the international nature of the cast of characters; writing in a theater book-

let for a 1958 production of R.U.R. at the Karlovy Vary (Carlsbad) theater

(Čapek 1966), he said it represented ‘‘the cream of the creative experimen-

tal science of leading European nations—the English engineer Fabry, the

French physiologist Gall, the German psychologist Hallemeier, the Jewish

businessman Busman, and the central director with his Latin surname

Domin and first name Harry, referring probably to a U.S. citizenship. They

are not just inventors but superior representatives of human progress—

modern versions of heroes from old Greek dramas with abilities to achieve

miracles’’ (p. 110).

The stage set, by Bedřich Feuerstein, whom Čapek had also recom-

mended, was in a very contemporary style, in which sober cubist and Ex-

pressionistic shapes were used, painted in symbolically lurid colors (figure

12.5).

Josef Čapek worked as a costume designer for the first time for the pro-

duction of R.U.R. At that time it was unusual for much attention to be

paid to the costumes, but the first night of R.U.R. was an exception. For

members of Domin’s team Čapek made chef-like jackets with padding to

intensify the impression of masculinity. Following Karel Čapek’s recom-

mendations in the script, for the robots he designed basically unisex gray-

blue or blue fatigues with numbers on the chests for male and female

robots. In summary, the Čapek brothers’ robots were much more like

humans behaving like machines than machines behaving like humans.

Appearing in the roles of robots were Eduard Kohout as Primus and Eva

Vrchlická as both Helena Glory and the female robot Helena. Further

robots were played by Eugen Wiesner, Anna Červená, Eduard Tesař, Karel
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Figure 12.4

A view of the National Theater in Prague,—the venue of the official premier of R.U.R.

(photo by Jozef Kelemen), and the first picture of a robot, in the robot costume de-

sign by Josef Čapek for the National Theater production. On the robot’s shirt front is

the date of Prague’s first night; the face is a caricature of Karel Čapek.
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Kolár, Václav Zintl, Karel Váňa, Emil Focht, Hynek Lažanský and Václav

Zatı́randa.

The director followed the author’s idea, in the opening scenes of the

play, of having robots behave ‘‘mechanically,’’ speak monotonously, and

cut words to syllables. Later they became more human-like, even though

they maintained a certain stiffness. Later still, Primus and Helena, the pro-

genitors of a new generation, were indistinguishable from humans in all

characteristics.

The critics wrote about the robotess Helena, as performed by Eva

Vrchlická, as a kind of poetic Eve of the new generation. It is interesting

that Eva Vrchlická persuaded Čapek that she would play Helena Glory as

well as the female robot Helena. Čapek hadn’t thought of this possibility

before, but was delighted with it, for it bolstered the production’s stress on

the continuity between the last human people and the new generation of

robots.

Regrettably, no photos were taken of the robots in action on the first

night; only later, after some small changes had been made in the cast,

were two actors in robot costumes photographed in a studio.

Figure 12.5

The first scene (Prologue) of the National Theater production of R.U.R., directed by

Bedřich Feuerstein. Photo reproduced from Černy (2000) with permission.
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According to the records, the production of the play was very success-

ful.11 There were long queues for tickets in front of the National Theater

and the performances sold out in a couple of hours. The show ran until

1927, with thirty-six re-runs. Many theater critics praised its cosmopolitan

character and the originality of the theme, and predicted worldwide suc-

cess. Regardless of whether or not they liked the play, they expressed their

admiration for Čapek’s way of thinking.

The critics were right. The play was performed in New York (1922), Lon-

don (1923), Vienna (1923), Paris (1924), and Tokyo (1924) as well as in

many other cities, and it was soon translated and published in book form

all around the world. After the Slovenian (1921) and Hungarian (1922)

translations, the German and English versions were published (1923).

After the Prague premier, Karel Čapek became internationally recognized

as an Expressionist playwright and an author of science fiction. The subject

matter of the play was very topical in many ways and at various levels of

interpretation, and its novelty distinguished Čapek from other dramatists

of the time. However, different critics saw the relevance of the play in dif-

ferent ways. It is interesting to note the contradiction between the author’s

intentions and the audiences’ interpretation of the play that emerged im-

mediately after the first production. The audience usually understood the

play as a warning against technology and machines, which threatened to

wrest control out of human hands. But Čapek never viewed machines as

enemies of humans, and according to him the fact that technology could

overwhelm humankind was not the main idea of the play. This was one of

the reasons why he repeatedly explained his own interpretation of the play.

Some reviewers found parallels between the robot revolt and the contem-

porary struggles of the working class, even thought they didn’t assert that

this was the author’s primary viewpoint. However, the play was written in

a period, after the First World War, when several countries in Central Eu-

rope were experiencing the culmination of various revolutionary workers’

movements fighting for changes in their social conditions and status.

Čapek expressed in R.U.R. something that until that time had no prece-

dent. For the actors, interpreting the human-like machines of the modern

age was an entirely new and challenging goal; visualizing these robots was

equally challenging for stage and costume designers. R.U.R. was—and still

is—a play that forces you to think about its content, whether you want to

or not. It is a play about the similarities of two totally different worlds that

mutually overlap, that live and die in each other.

R.U.R., with its futuristic and Expressionist features and cosmopolitan at-

mosphere, was quickly appropriated to become a part of North American
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culture. The play opened on October 9, 1922, in New York, at the Garrick

Theatre, where it was performed by the Theatre Guild, a company special-

izing in modern drama. The director was Nigel Moeller, and the play was

translated from the Czech by Paul Selver and Nigel Playfair.12 The first

night was a success. The critic of the New York Evening Sun wrote on Octo-

ber 10, 1922: ‘‘Like H. G. Wells of an earlier day, the dramatist frees his

imagination and lets it soar away without restraint and his audience is

only too delighted to go along on a trip that exceeds even Jules Verne’s

wildest dreams. The Guild has put theatregoers in its debt this season.

R.U.R. is super-melodrama—the melodrama of action plus idea, a combina-

tion that is rarely seen on our stage.’’ The New York Herald theater reviewer,

A. Woolcott, emphasizing the play’s social dimension, wrote on October

10, 1922 that it was a ‘‘remarkable, murderous social satire done in terms

of the most hair raising melodrama [with] as many social implications as

the most heady of Shavian comedies.’’

In an article by Alan Parker in The Independent on November 25, 1922, we

can even read an irritated reaction to Čapek. The only reason for the posi-

tive reception of Čapek’s play, according to Parker, was the success of

its premier at the National Theater in Prague and thus, he stated, it was

‘‘received with all the respect and reverence that is evoked nowadays by

anything that comes out of ‘Central Europe.’ Had this piece been of Amer-

ican authorship, no producer on Broadway could have been induced to

mount it.’’

In general, however, the play brought its author great fame in the United

States, but in the context of American culture the play lost its social satiri-

cal edge and the theme was categorized like so many sci-fi stories in which

an atavistic folk interest in human-like creatures predominated along with

a fear of conflict between human beings and machines (robots) or human-

like monsters. In this context it is worth remembering again the Golem,

Mary Shelley’s Frankenstein, and many other characters in stories from

European literature from the centuries before R.U.R. was first performed.

It was the topicality of the play that made the greatest impression in the

UK. The significant progress of industrial civilization and its social impact

and associated economic theories were much discussed in England. The in-

terest generated by R.U.R. can be seen in the public discussion organized

at St. Martin’s Theatre in London, on June 23, 1923, in response to the

excited reception the play had received. Such influential personalities of

London’s political and cultural life as G. K. Chesterton, Lieutenant-

Commander Joseph Kenworthy, and George Bernard Shaw participated in

the debate (see The Spectator, June 30, 1923):
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Mr. Chesterton . . .was at his most amusing when he talked about the ‘‘headlong yet

casual’’ rise of capitalism. Mr. Kenworthy saw in the play lessons on the madness of

war and the need for internationalism. Mr. Shaw, at one point, turned to the audi-

ence calling them Robots, because they read party press and its opinions are imposed

on them. Man cannot be completely free, because he is the slave of nature. He rec-

ommended a division of the slavery: ‘‘If it has to be, I would like to be Robot for

two hours a day in order to be Bernard Shaw for the rest of the day.’’

The Fates

Despite the fact that robots had been intended by their author as a meta-

phor for workers dehumanized by hard monotonous work, this under-

standing soon shifted or the robot was misinterpreted as a metaphor for

high technology, which would destroy humankind because of humans’ in-

ability to prohibit its misuse. The theme of powerful machines jeopardizing

humankind seems to have already been current in Čapek’s day; perhaps it

entered his text unknowingly, against the author’s intention.

Meanwhile, another factor—one quite understandable in a theatrical

context—influenced the metamorphoses of the meaning of the play: The

author is never the sole owner of his work and ideas—the director,

the stage designer, the costume designer, and also the actors become coau-

thors of the performance, which is the right form for a drama’s existence.

Theatrical performance is a collective work. It is more like a modern kind

of ritual that happens again and again ‘‘here and now’’ than an expression

of individual talent and ideas related to the subject matter of the author. As

a theatrical performance it is possible to see the play R.U.R. as a ritual that

represents our relationships, and our fears and desires, to the most signifi-

cant topics of our times.

So, two fates, two goddesses of destiny stood next to the newborn robot

in 1921 and determined its destiny: the first one was Culture, the second

one Industry. These fates opened up R.U.R. for interpretation in terms of

perhaps the two most appealing topics of twentieth-century intellectual

discourse: the problem of human-machine interaction, and the problem of

human-like machines. Reflecting the social and political situation of Eu-

rope immediately after the end of the World War I, the robots were

interpreted first of all as a metaphor for workers dehumanized by hard re-

petitive work, and consequently as an easily abusable social class.

From the artistic point of view, the artificial humanoid beings used by

Čapek in his play may also be understood as his humanistic reaction to

the trendy concepts dominating the modernist view of human beings in

the first third of the twentieth century, namely, the concept of the ‘‘new
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man’’ in symbolist theater conventions, in Expressionism, in cubism, and

so forth, and most significantly in futurist manifestos full of adulation of

the ‘‘cold beauty’’ of the machines made of steel and tubes that they often

depicted in their artworks.

As mentioned earlier, in the short story ‘‘System’’ Karel and Josef Čapek

expressed their misgivings concerning the simplification and homogeniza-

tion of human beings into an easily controllable mass of depersonalized

workers without human desires, emotions, aesthetics, or even dreams. The

style of production of such workers was supposed to be based on the educa-

tion of human children. The satirical caricature of the organization of mass

production, as well as of the goals of education, are extremely clear in this

short story, critically reflecting the social and political situation at the time

in Europe.

To summarize Karel Čapek’s position as expressed in R.U.R., he thought of

robots as simplified humans, educated in a suitable manner, or perhaps mass-

produced using a suitable ‘‘biotechnology’’ in the form of humanoid or-

ganic, biochemically based systems in order to form the components most

suitable for industry. This conviction was also clearly reflected in the first

production of the play, and especially in Josef Čapek’s designs for the

robots—male and female human beings in simple uniform-like costumes.

R.U.R had been accepted in Prague as a sociocritical drama (another inter-

pretation, as a comedy of confusion, has been proposed in Horáková 2005).

However, immediately after its New York premier it was accepted in a

rather different way, being compared with famous pieces of science fiction

literature, a genre that had only recently emerged, and was interpreted not

as a social commentary but in an industrial context. In fact, robots in the

American tradition, now widespread all over the industrialized world, have

become complicated machines instead of Čapek’s simplified human beings.

These complicated mechanisms resemble a twentieth-century continuation

of the dreams of older European engineers such as Vaucanson, Jaquet-Droz,

Kempelen, and many others, but now stuffed with electronics and micro-

processors, and often programmed to replace some human workers.13 This

new understanding of robots was also accepted in certain quarters in Eu-

rope, perhaps because of its apparent continuity with the efforts of some

of the modernist tendencies in European culture of that time, especially fu-

turism.

The Presence (of Cyborgs)

In 1988, in his lecture delivered at the Ars Electronica festival in Linz, Aus-

tria, the French philosopher Jean Baudrillard asked whether he was now a
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human or a machine: ‘‘Bin ich nun Mensch, oder bin ich Maschine?’’ (Bau-

drillard 1989). He claimed that today we who are searching for an answer

are obviously and subjectively people, but virtually, as he points out, we

are approaching machines. It is a statement of the ambivalence and uncer-

tainty created by the current form of workers’ relationships to machines in

industrial plants, and the postmodern approach to machine processing and

the mass dissemination of information. Technology gradually eliminates

the basic dichotomies of man/machine and object/subject, and also per-

haps some others such as freedom/restraint.

People often have the impression that the problem of the relationship

between the mind and the body is only a philosophical matter, fairly re-

mote from something that can actually affect us. It is as if thoughts about

a subject in other than an anthropomorphic context were by definition

pointless, and thoughts about cyborgs—a certain kind of biotechnological

fusion of humans and robots-belonged exclusively to science fiction or in

the postmodern theme arsenal. But it is not so. The mind and body—in re-

ality the mind and the body of a machine—today stand at the center of the

current tangle of problems in the theory and technology of artificial intelli-

gence and robotics, the disciplines that on the one hand evoke the greatest

concern and on the other the greatest hope in connection with cyborgs. At

the same time it is not possible to exclude certain philosophical implica-

tions of current research; in fact, it is actually much more realistic to expect

them.

If the Čapeks’ robot can be seen as a modern artificial humanoid machine

(the body of a worker or a soldier as an ideal prototype of members of a

modern society), then the cyborg is a symbol of the postmodern human

being (as a metaphor for our experience of the information society). As

long as we are able to free ourselves from the traditional binary mode of

articulating reality, there is nothing to stop us from seeing reality as basi-

cally a ‘‘hybrid.’’ Then reality seen in terms of binary opposition (human

versus robot, man versus machine) is the product more of our thoughts

than of anything else (figure 12.6). What we have in mind can be more

closely explained using the metaphor of twilight. Twilight is not a hybrid

of light and dark, but light and dark (human and machine) are opposite

extremes of twilight. Similarly, the cyborg is perhaps not a hybrid of the or-

ganic and mechanical, but, rather, the ‘‘organic’’ and the ‘‘mechanical’’ are

two extremes of the cyborg state. This is the basic thesis of the ontology of

twilight (explained in more detail in Kelemen 1999). The two different

approaches to robots demonstrated at the time of the first performances of
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Figure 12.6

Honda’s humanoid robot ASIMO laying a bunch of flowers at the foot of the pedestal

bearing the bust of Karel Čapek in the Czech National Museum, Prague, August 22,

2003. Courtesy of Lidové Noviny.
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R.U.R. in Prague and New York, respectively, might in fact reflect human

intuition concerning this kind of ontology.
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Notes

1. Karel Čapek thought of himself as a kind of simple storyteller, and not as a real

writer. He expressed his attitude to the play R.U.R. by saying, in a letter to H. G.

Wells, ‘‘It could have been written by anybody’’ (Harkins 1962, p. 94).

2. The event is similarly described by Helena Čapková (1986) in her memoir (pp.

314–15).

3. The title of the play has been translated into German as Werstands Universal

Robots, or W.U.R.

4. Bratislava, which straddles the Danube, has over the course of history been called

Istropolis or Posonium in Latin, Pressburg in German, and Pozsony in Hungarian.

5. For more on Kempelen’s Turk see T. Standage (2003) or M. Sussman (2001).

6. ‘‘A racing car whose hood is adorned with great pipes, like serpents of explo-

sive breath—a roaring car that seems to ride . . . is more beautiful than the Victory

of Samothrace,’’ wrote Filippo Marinetti in his first ‘‘Manifesto of Futurism’’ (see

note 8).

7. The historical Henri Jacquet-Droz had already appeared in Karel and Josef Čapek’s

‘‘Instructive Story’’ (Povı́dka poučná), written in 1908.

8. Futurism as an aesthetic program was initiated by Filippo T. Marinetti when he

published his manifesto ‘‘The Founding and Manifesto of Futurism,’’ in the Paris

newspaper Le Figaro on February 20, 1909. In it Marinetti emphasized the need to

discard the static and unimportant art of the past and to rejoice in turbulence, origi-

nality, and creativity in art, culture, and society. He stressed the importance of new

technology (automobiles, airplanes, locomotives, and so forth, all mechanical devices

par excellence) because of the power and complexity it used and conveyed. Several

years later, in 1915, Marinetti introduced fascist ideas in his volume of poems War,

the World’s Only Hygiene.
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9. Karel Čapek spent four of his school years, 1901 to 1905, at the gymnasium—the

central European high schools for university-bound pupils—in Hradec Králové, but

the two events are not believed to be connected. He had another ambivalent experi-

ence connected with the town: In the 1904–5 school year he was expelled from

school for belonging to an anarchist society. After this he finished his high school

education in Brno, the capital of Moravia, the eastern part of the present-day Czech

Republic, before attending Charles University, in Prague.

10. Please see F. Cerný (2000) for more information concerning the Czech premiers

of R.U.R.

11. Even though the premier of the play was a great success, it is not the work most

revered and performed by Czechs. Another of his plays, The Insect Play (Ze života

hmyzu), an allegory of little human imperfections, first performed in February 1922,

is more appealing to the Czech mentality.

12. There were some major differences between Paul Selver’s American translation

(published in 1923 by the Theatre Guild) and the Czech original, and Selver has

often been criticized for this. Selver and Playfair also collaborated on the English pro-

duction in 1923; this translation, published by Oxford University Press in 1923, dif-

fered from the American script, and was in some ways closer to the original Czech

version. An illuminating account of both translations, which substantially exoner-

ates Selver, can be found in Robert Philmus (2001).

13. A good argument illustrating the origin of robots as complicated machines in the

context of North American cultural traditions can be found in Stuart Chase’s book

on early impressions of problems concerning the man-machine interaction (Chase

1929) in which he noted his impression from a 1927 presentation of R. J. Wensley’s

Westinghouse robot, called Mr. Televox, describing it as metallic and looking as if it

had been shaped by a cubist sculptor.
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Čapek, Josef, and Karel Čapek. 1961. R.U.R. and The Insect Play. Translated by Paul

Selver. Oxford: Oxford University Press.

The Robot Story 305
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Horáková, Jana. 2005. ‘‘R.U.R.—Comedy About Robots.’’ Disk, a Selection from the

Czech Journal for the Study of Dramatic Arts 1: 86–103.

Kelemen, Josef. 1999. ‘‘On the Post-Modern machine.’’ In Scepticism and Hope, edited

by M. Kollár. Bratislava: Kalligram.

Marinetti, F. 1915. War, the World’s Only Hygiene. [In Italian.]
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13 God’s Machines: Descartes on theMechanization of Mind

Michael Wheeler

Never Underestimate Descartes

In 1637 the great philosopher, mathematician, and natural scientist René

Descartes (1596–1650) published one of his most important texts, Discourse

on the Method of Rightly Conducting One’s Reason and Seeking the Truth in the

Sciences, commonly known simply as the Discourse (Cottingham, Stoothoff,

and Murdoch 1985a).1 This event happened over three hundred years be-

fore Alan Turing, W. Ross Ashby, Allen Newell, Herbert Simon, Norbert

Wiener, and the other giants of cybernetics and early artificial intelligence

(AI) produced their seminal work. Approximately the same time span sepa-

rates the Discourse from the advent of the digital computer. Given these

facts it will probably come as something of a surprise to at least some

readers of this volume to discover that, in this text, Descartes reflects on

the possibility of mechanizing mind. Not only that but, as I shall argue in

this chapter, he elegantly identifies, and takes a far from anachronistic or

historically discredited stand on, a key question regarding the mechaniza-

tion of mind, a question that, if we’re honest with ourselves, we still don’t

really know how to answer. Never underestimate Descartes.

Cartesian Machines

Before we turn to the key passage from the Discourse itself, we need to fill in

some background. And to do that we need to understand what Descartes

means by a machine. In fact, given the different ways in which Des-

cartes writes of machines and mechanisms, there are three things that he

might mean by that term:

A. A material system that unfolds purely according to the laws of blind

physical causation



B. A material system that is a machine in the sense of A, but to which in

addition certain norms of correct and incorrect functioning apply

C. A material system that is a machine in the sense of B, but that is also ei-

ther (1) a special-purpose system or (2) an integrated collection of special-

purpose subsystems.2

As we shall see, Descartes thinks that there are plenty of systems in the

actual world that meet condition A alone, but that there is nothing in

the actual world that meets condition B but not condition C. Nevertheless,

it is conceivable that something might meet B but not C, so it is important

to keep these two conditions distinct.

Let’s say that conditions A, B, and C define three different types of ma-

chine: type A, type B, and type C. So what sorts of things are there that

count as type A machines? Here the key observation for our purposes is

that when it came to nonmental natural phenomena, Descartes was, for

his time, a radical scientific reductionist. What made him so radical was

his contention that (put crudely) biology was just a local branch of physics.

Prior to Descartes, this was simply not a generally recognized option. The

strategy had overwhelmingly been to account for biological phenomena

by appealing to the presence of special vital forces, Aristotelian forms, or

incorporeal powers of some kind. In stark contrast, Descartes argued that

not only all the nonvital material aspects of nature, but also all the pro-

cesses of organic bodily life—from reproduction, digestion, and growth to

what we would now identify as the biochemical and neurobiological pro-

cesses going on in human and nonhuman animal brains—would succumb

to explanations of the same fundamental character as those found in

physics. But what was that character? According to Descartes, the distinc-

tive feature of explanation in physical science was its wholly mechanistic

nature. What matters here is not the details of one’s science of mechanics.

In particular, nothing hangs on Descartes’s own understanding of the

science of mechanics as being ultimately the study of nothing other than

geometric changes in modes of extension.3 What matters here is simply a

general feature of mechanistic explanation, one shared by Descartes’s

science of mechanics and our own, namely, the view that in a mechanistic

process, one event occurs after another, in a law-like way, through the re-

lentless operation of blind physical causation. What all this tells us is that,

for Descartes, the entire physical universe is ‘‘just’’ one giant type A ma-

chine. And that giant type A machine consists of lots of smaller type A

machines, some of which are the organic bodies of nonhuman animals

and human beings.
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So far, so good. But when we say of a particular material system that it is

a machine, we often mean something richer than that its behavior can be

explained by the fundamental laws of mechanics. We are judging, addi-

tionally, that certain norms of correct and incorrect functioning are appli-

cable to that system. For example, a clock has the function of telling the

time. A broken clock fails to meet that norm. Where such norms apply,

the system in question is a type B machine. To see how the introduction of

type B machines gives us explanatory leverage, we need note only that a

broken type B machine—one that fails to function correctly judged against

the relevant set of norms—continues to follow the fundamental laws of

mechanics just the same as if it were working properly. A broken clock fails

to perform its function of telling the time, but not by constituting an ex-

ception to the fundamental laws of mechanics. Thus we need the notion

of a type B machine, a machine as a norm-governed material system, to ex-

plain what changed about the clock, as a machine, when it stopped work-

ing. (Descartes himself makes these sorts of observations; see the ‘‘Sixth

Meditation,’’ Cottingham, Stoothoff, and Murdoch 1985b.)

It is a key feature of our understanding of the organic bodies of nonhu-

man animals and human beings—what I shall henceforth refer to as bodily

machines or, to stress their generically shared principles of operation, as the

bodily machine—that such systems count as machines in the richer, norma-

tively loaded, type B sense. This is essential to our understanding of health

and disease. Thus, a heart that doesn’t work properly is judged to be failing

to perform its function of pumping blood around the body. Descartes rec-

ognizes explicitly the normatively loaded character of the bodily machine.

So where does he locate the source of the all-important norms of proper

functioning? As G. Hatfield (1992) notes, Descartes vacillated on this point.

Sometimes he seems to argue that all normative talk about bodily machines

is in truth no more than a useful fiction in the mind of the observer, what

he calls an ‘‘extraneous label.’’ Thus, in the ‘‘Sixth Meditation,’’ he says,

‘‘When we say, then, with respect to the body suffering from dropsy, that

it has a disordered nature because it has a dry throat but does not need a

drink, the term ‘nature’ [the idea that the body is subject to norms of cor-

rect and incorrect functioning] is here used merely as an extraneous label’’

(Cottingham, Stoothoff, and Murdoch 1985b, p. 69). At other times, how-

ever, an alternative wellspring of normativity presents itself. Descartes is

clear that the bodily machine was designed by God. As he puts it in the

Discourse, the body is a machine that was ‘‘made by the hands of God’’

(Cottingham, Stoothoff, and Murdoch 1985a, p. 139). For Descartes, then,

organic bodies, including those of human beings and nonhuman animals,
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are God’s machines. Now, it seems correct to say that the functional nor-

mativity of a human-made machine is grounded in what the human de-

signer of that artifact intended it to do. This suggests that the functional

normativity of the bodily machine might reasonably be grounded in what

its designer, namely God, intended it to do. Either way, the key point for

our purposes is that some Cartesian machines, including all bodily

machines, are explicable as norm-governed systems. Given the surely plau-

sible thought that useful fictions can be explanatorily powerful, that would

be true on either of Descartes’s candidate views of the source of such

normativity.4

Time to turn to the notion of a type C machine—a machine as (addition-

ally) a special-purpose system or as an integrated collection of special-

purpose subsystems. To make the transition from type B to type C

machines, we need to pay particular attention to the workings of the Carte-

sian bodily machine. A good place to start is with Descartes’s account of the

body’s neurophysiological mechanisms.5 According to Descartes, the ner-

vous system is a network of tiny tubes along which flow the ‘‘animal spi-

rits,’’ inner vapors whose origin is the heart. By acting in a way that (as

Descartes himself explains it in the Treatise on Man) is rather like the bel-

lows of a church organ pushing air into the wind-chests, the heart and

arteries push the animal spirits out through the pineal gland into pores

located in various cavities of the brain (Cottingham, Stoothoff, and Mur-

doch 1985a, p. 104). From these pores, the spirits flow down neural tubes

that lead to the muscles, and thus inflate or contract those muscles to

cause bodily movements. Of course, the animal spirits need to be suitably

directed so that the outcome is a bodily movement appropriate to the situ-

ation in which the agent finds herself. According to Descartes, this is

achieved in the following way: Thin nerve fibers stretch from specific loca-

tions on the sensory periphery to specific locations in the brain. When sen-

sory stimulation occurs in a particular organ, the connecting fiber tenses

up. This action opens a linked pore in the cavities of the brain, and thus

releases a flow of animal spirits through a corresponding point on the

pineal gland. Without further modification, this flow may be sufficient to

cause an appropriate bodily movement. However, the precise pattern of

the spirit flow, and thus which behavior actually gets performed, may de-

pend also on certain guiding psychological interventions resulting from

the effects of memory, the passions, and (crucially for what is to follow)

reason.

The fine-grained details of Descartes’s neurophysiological theory are, of

course, wrong. However, if we shift to a more abstract structural level of de-
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scription, what emerges from that theory is a high-level specification for a

control architecture, one that might be realized just as easily by a system of

electrical and biochemical transmissions—that is, by a system of the sort

recognized by contemporary neuroscience—as it is by Descartes’s inge-

nious system of hydraulics. To reveal this specification let’s assume that

the bodily machine is left to its own devices (that is, without the benefit

of psychological interventions) and ask, ‘‘What might be expected of it?’’

As we have seen, Descartes describes the presence of dedicated links be-

tween specific peripheral sites at which the sensory stimulation occurs,

and specific locations in the brain through which particular flows of

movement-producing animal spirits are released. This makes it tempting

to think that the structural organization of the unaided (by the mind)

bodily machine would in effect be that of a look-up table, a finite table of

stored if-this-then-do-that transitions between particular inputs and partic-

ular outputs. This interpretation, however, ignores an important feature of

Descartes’s neurophysiological theory, one that we have not yet men-

tioned. The pattern of released spirits (and thus exactly which behavior

occurs) is sensitive to the physical structure of the brain. Crucially, as ani-

mal spirits flow through the neural tubes, they will sometimes modify the

physical structure of the brain around those tubes, and thereby alter

the precise effects of any future sensory stimulations. Thus, Descartes

clearly envisages the existence of locally acting bodily processes through

which the unaided machine can, in principle, continually modify itself, so

that its future responses to incoming stimuli are partially determined by its

past interactions with its environment. The presence of such processes sug-

gests that the bodily machine, on its own, is potentially capable of intra-

lifetime adaptation and, it seems, certain simple forms of learning and

memory. Therefore (on some occasions at least) the bodily machine is the

home of mechanisms more complex than rigid look-up tables.

What we need right now, then, is a high-level specification of the generic

control architecture realized by the bodily machine, one that not only cap-

tures the intrinsic specificity of Descartes’s dedicated mechanisms but also

allows those mechanisms to feature internal states and intrinsic dynamics

that are more complex than those of, for example, look-up tables. Here

is the suggestion: The bodily machine should be conceptualized as an

integrated collection of special-purpose subsystems, where the qualifier

‘‘special-purpose’’ indicates that each subsystem is capable of producing ap-

propriate actions only within some restricted task domain. Look-up tables

constitute limiting cases of such an architecture. More complex arrange-

ments, involving the possibility of locally determined adaptive change
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within the task domain, are, however, possible. What all this tells us is that,

according to Descartes, the bodily machine is a type C machine.

That concludes our brief tour of the space of Cartesian machines. Now,

what about mechanizing the mind?

The Limits of the Machine

As we have seen, for Descartes, the phenomena of bodily life can be under-

stood mechanistically. But did he think that the same mechanistic fate

awaited the phenomena of mind? It might seem that the answer to this

question must be a resounding no. One of the first things that anyone

ever learns about Descartes is that he was a substance dualist. He concep-

tualized mind as a separate substance (metaphysically distinct from phys-

ical stuff) that causally interacts with the material world on an intermittent

basis during perception and action. But if mind is immaterial, then (it

seems) it can’t be a machine in any of the three ways that Descartes rec-

ognizes, since each of those makes materiality a necessary condition of

machinehood.

Game over? Not quite. Let’s approach the issue from a different angle, by

asking an alternative question, namely, ‘‘What sort of capacities might the

bodily machine realize?’’ Since the bodily machine is a type C machine,

this gives us a local (organism-centered) answer to the question ‘‘What

sort of capacities might a type C machine realize?’’ One might think that

the answer to this question must be autonomic responses and simple reflex

actions (some of which may be modified adaptively over time), but not

much else. If this is your inclination, then an answer that Descartes himself

gives in the Treatise on Man might include the odd surprise, since he identi-

fies not only ‘‘the digestion of food, the beating of the heart and arteries,

the nourishment and growth of the limbs, respiration, waking and sleeping

[and] the reception by the external sense organs of light, sounds, smells,

tastes, heat and other such qualities,’’ but also ‘‘the imprinting of the idea

of these qualities in the organ of the ‘common’ sense and the imagination,

the retention or stamping of these ideas in the memory, the internal move-

ments of the appetites and passions, and finally the external movements of

all the limbs (movements which are . . . appropriate not only to the actions

of objects presented to the sense, but also to the passions and impressions

found in memory)’’ (Cottingham, Stoothoff, and Murdoch 1985a, p. 108).

In the latter part of this passage, then, Descartes takes a range of capacities

that many theorists, even now, would be tempted to regard as psycho-

logical in character, and judges them to be explicable by appeal to nothing
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more fancy than the workings of the bodily machine. And here is another

example of Descartes’s enormous faith in the power of a ‘‘mere’’ organic

mechanism. According to Descartes, the first stage in the phenomenon of

hunger is excitatory activity in certain nerves in the stomach. And he

claims that this purely physical activity is sufficient to initiate bodily move-

ments that are appropriate to food finding and eating. Thus, once again we

learn from Descartes that the body, unaided by the mind, is already capable

of realizing relatively complex adaptive abilities. (This is, of course, not the

whole story about hunger. I’ll fill in the rest later.)

Should we be surprised by Descartes’s account of what the bodily ma-

chine can do? Not really. As we have seen, Descartes often appeals to arti-

facts as a way of illustrating the workings of the bodily machine. When he

does this, he doesn’t focus on artifacts that in his day would have been

thought of as dull or mundane, examples that might reasonably lead one

to suspect that some sort of deflationary judgment on the body is in play.

Rather, he appeals to examples that in his day would have been sources of

popular awe and intellectual respect. These include clocks (rare, expensive

and much admired as engineering achievements) and complex animal-like

automata such as bought by the wealthy elite of seventeenth-century Eu-

rope to entertain and impress their most sophisticated guests. (For more

on this subject, see Baker and Morris 1996, 92–93.) So when Descartes

describes the organic body as a machine, we are supposed to gasp with ad-

miration, not groan with disappointment. In fact we are supposed to be

doubly impressed, since Descartes thought that the bodily machine was

designed by God, and so is ‘‘incomparably better ordered than any ma-

chine that can be devised by man, and contains in itself movements

more wonderful than those in any such machine’’ (Discourse, Cottingham,

Stoothoff, and Murdoch 1985a, p. 139). Our bodies are God’s machines and

our expectations of them should be calibrated accordingly.

Now that we are properly tuned to Descartes’s enthusiasm for ‘‘mere’’

mechanism, we can more reliably plot the limits that he placed on the

bodily machine. Here, the standard interpretation of Descartes’s position

provides an immediate answer: the bodily machine is incapable of con-

scious experience (see, for example, Williams 1990, 282–83). But is this re-

ally Descartes’s view? Departing from the traditional picture, Gordon Baker

and Katherine Morris (1996) have argued that Descartes held some aspects

of consciousness to be mechanizable. This sounds radical, until one dis-

covers that, according to Baker and Morris, the sense in which, for Des-

cartes, certain machines were conscious is the sense in which we can use

expressions such as ‘‘see’’ or ‘‘feel pain’’ to designate ‘‘(the ‘input’ half of)
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fine-grained differential responses to stimuli (from both inside and outside

the ‘machine’) mediated by the internal structure and workings of the ma-

chine’’ (p. 99). Those who favor the traditional interpretation of Descartes

might retaliate—with some justification, I think, and in spite of protests by

Baker and Morris (see pp. 99–100)—that Descartes would not have consid-

ered this sort of differential responsiveness to stimuli to be a form of con-

sciousness at all, at least not in any interesting or useful sense. Indeed, if

he had thought of things in this way he would seemingly have been com-

mitted to the claim that all sorts of artifacts available in his day, such as the

aforementioned entertainment automata, were conscious. It is very un-

likely that he would have embraced such a consequence. Nevertheless, in

spite of such worries about the Baker and Morris line, I think that some

doubt has been cast on the thought that consciousness provides a suffi-

ciently sharp criterion for determining where, in Descartes’s view, the lim-

its of mere mechanism lie. It would be nice to find something better.

Time then to explore the passage from the Discourse in which Descartes

explicitly considers the possibility of machine intelligence. Here it is (Cot-

tingham, Stoothoff, and Murdoch 1985a, p. 140):

[We] can certainly conceive of a machine so constructed that it utters words, and

even utters words which correspond to bodily actions causing a change in its organs

(e.g., if you touch it in one spot it asks you what you want of it, if you touch it in

another it cries out that you are hurting it, and so on). But it is not conceivable that

such a machine should produce different arrangements of words so as to give an ap-

propriately meaningful answer to what is said in its presence, as the dullest of men

can do. . . . [And] . . . even though such machines might do some things as well as we

do them, or perhaps even better, they would inevitably fail in others, which would

reveal that they were acting not through understanding, but only from the disposi-

tion of their organs. For whereas reason is a universal instrument which can be used

in all kinds of situations, these organs need some particular disposition for each par-

ticular action; hence it is for all practical purposes impossible for a machine to have

enough different organs to make it act in all the contingencies of life in the way in

which our reason makes us act.

Once again Descartes’s choice of language may mislead us into thinking

that, in his view, any entity which qualifies (in the present context) as a

machine must be a look-up table. For example, he tells us that his imagi-

nary robot acts ‘‘only from the disposition of [its] organs,’’ organs that

‘‘need some particular disposition for each particular action.’’ However,

the way in which this robot is supposed to work is surely intended by Des-

cartes to be closely analogous to the way in which the organic bodily ma-

chine is supposed to work. (Recall Descartes’s enthusiasm for drawing
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illustrative parallels between the artificial and the biological when describ-

ing the workings of the bodily machine.) So we need to guarantee that there

is conceptual room for Descartes’s imaginary robot to feature the range of

processes that, in his account, were found to be possible within the organic

bodily machine. In other words, Descartes’s imaginary robot needs to be

conceived as an integrated collection of special-purpose subsystems, some

of which may realize certain simple forms of locally driven intra-lifetime

adaptation, learning, and memory. In short, Descartes’s robot is a type C

machine.

With that clarification in place, we can see the target passage as first plot-

ting the limits of machine intelligence, and then explaining both why

these limits exist and how human beings go beyond them. First let’s see

where the limits lie. Descartes argues that although a machine might be

built which is (1) able to produce particular sequences of words as

responses to specific stimuli and (2) able to perform individual actions

as well as, if not better than, human agents, no mere machine could either

(3) continually generate complex linguistic responses that are flexibly sen-

sitive to varying contexts, in the way that all linguistically competent

human beings do, or (4) succeed in behaving appropriately in any context,

in the way that all behaviorally normal human beings do. Here one might

interpret Descartes as proposing two separate human phenomena, genera-

tive language use and a massive degree of adaptive behavioral flexibility,

both of which are beyond the capacities of any mere machine (for this

sort of interpretation, see Williams 1990, 282–83). However, I think that

there is another, perhaps more profitable way of understanding the concep-

tual relations in operation, according to which (1) and (3) ought to be

construed as describing the special, linguistic instance of the general case

described by (2) and (4). In this interpretation, although it is true that the

human capacity for generative language use is one way of marking the dif-

ference between mere machines and human beings, the point that no ma-

chine (by virtue solely of its own intrinsic capacities) could reproduce the

generative and contextually sensitive linguistic capabilities displayed by

human beings is actually just a restricted version of the point that no ma-

chine (by virtue solely of its intrinsic capacities) could reproduce the unre-

stricted range of adaptively flexible and contextually sensitive behavior

displayed by human beings. This alternative interpretation is plausible, I

think, because when Descartes proceeds in the passage to explain why it is

that no mere machine is capable of consistently reproducing human-level

behavior, he does not mention linguistic behavior at all, but concentrates

instead on the nonlinguistic case.
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To explain why the limits of machine intelligence lie where they do, Des-

cartes argues as follows: Machines can act ‘‘only from the [special-purpose]

disposition of their organs.’’ Now, if we concentrate on some individual,

contextually embedded human behavior, then it is possible that a machine

might be built that incorporated a special-purpose mechanism (or set of

special-purpose mechanisms) that would enable the machine to perform

that behavior as well as, or perhaps even better than, the human agent.

However, it would be impossible to incorporate into any one machine the

vast number of special-purpose mechanisms that would be required for

that machine to consistently and reliably generate appropriate behavior in

all the different situations that make up an ordinary human life. So how do

humans do it? What machines lack, and what humans enjoy, is the faculty

of understanding or reason, that ‘‘universal instrument which can be used

in all kinds of situations.’’ In other words, the distinctive and massive adap-

tive flexibility of human behavior is explained by the fact that humans de-

ploy general-purpose reasoning processes.

It is important to highlight two features of Descartes’s position here.

First, Descartes’s global picture is one in which, in human beings, reason

and mechanism standardly work together to produce adaptive behavior.

To see this, let’s return to the case of hunger, introduced previously. As I

explained, the first stage in the phenomenon of hunger (as Descartes

understands it) involves excitatory mechanical activity in the stomach

that, in a way unaided by cognitive processes, initiates bodily movements

appropriate to food finding and eating. However, according to Descartes,

some of the bodily changes concerned will often lead to mechanical

changes in the brain, which in turn cause associated ideas, including the

conscious sensation of hunger, to arise in the mind. At this point in

the flow of behavioral control, such ideas may prompt a phase of judgment

and deliberation by the faculty of reason, following which the automatic

movements generated by the original nervous activity may be revised or

inhibited.

Second, the pivotal claim in Descartes’s argument is that no single ma-

chine could incorporate the enormous number of special-purpose mecha-

nisms that would be required for it to reproduce human-like behavior. So

what is the status of this claim? Descartes writes (in translation) that ‘‘it is

for all practical purposes impossible for a machine to have enough different

organs to make it act in all the contingencies of life in the way in which

our reason makes us act’’ (emphasis added). A lot turns on the expression

‘‘for all practical purposes.’’ The French phrase in Descartes’s original text

is moralement impossible—literally, ‘‘morally impossible.’’ The idea that
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something that is morally impossible is something that is impossible for all

practical purposes is defended explicitly by Cottingham (1992, p. 249),

who cites as textual evidence Descartes’s explanation of moral certainty in

the Principles of Philosophy. There the notion is unpacked as certainty that

‘‘measures up to the certainty we have on matters relating to the conduct

of life which we never normally doubt, though we know it is possible abso-

lutely speaking that they may be false’’ (Cottingham, Stoothoff, and Mur-

doch 1985a, p. 290). I am persuaded by Cottingham’s interpretation of the

key phrase (despite the existence of alternative readings; see, for example,

Baker and Morris 1992, pp. 183–88, especially note 331 on p. 185). And I

am equally persuaded by the use that Cottingham makes of that interpreta-

tion in his own discussion of the target passage from the Discourse (see

Cottingham 1992, pp. 249–52). There he leans on his interpretation of

moralement impossible to argue that Descartes’s pivotal claim does not

(according to Descartes anyway) have the status of a necessary truth.

Rather, it is a scientifically informed empirical bet. Descartes believes that

the massive adaptive flexibility of human behavior cannot be generated or

explained by the purely mechanistic systems of the body, since, as far as he

can judge, it is practically impossible to construct a machine that contains

enough different special-purpose mechanisms. However, he is, as far as this

argument is concerned, committed to the view that the upper limits of

what a mere machine might do must, in the end, be determined by rig-

orous scientific investigation and not by philosophical speculation. In

other words, Descartes accepts that his view is a hostage to ongoing devel-

opments in science.

Mechanics and Magic

Suppose one wanted to defend the view that mind may be mechanized,

without exception. How might one respond to Descartes’s argument? Here is

a potential line of argument. One might (a) agree that we have reason in

Descartes’s (general-purpose) sense, but (b) hold that reason (in that sense)

can in fact be mechanized, and so (c) hold that the machines that explain

human-level intelligence (general-purpose ones) are such as to escape Des-

cartes’s tripartite analysis of machine-hood. Let’s see how one might de-

velop this case.

Between Descartes and contemporary AI came the birth of the digital

computer. What this did, among other things, was effect a widespread

transformation in the very notion of a machine. According to Descartes’s

pre-computational outlook, machines simply were integrated collections
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of special-purpose mechanisms. To Descartes himself, then, reason, in all

its allegedly general-purpose glory, looked staunchly resistant to mechanis-

tic explanation. In the twentieth century, however, mainstream thinking

in artificial intelligence was destined to be built in part on a concept that

would no doubt have amazed and excited Descartes himself, namely, the

concept of a general-purpose reasoning machine. The introduction of mecha-

nistic systems that realize general-purpose reasoning algorithms is not

something that Descartes himself even considered (how could he have?)

but one might argue that the arrival of such systems has shown how

general-purpose reason, that absolutely core and, according to Descartes,

unmechanizable aspect of the Cartesian mind, might conceivably be real-

ized by a bodily machine. Let’s call such a machine a type D machine.

Evidence of the importance of type D machines to AI abounds in the liter-

ature. It includes massively influential individual models, such as Newell

and Simon’s (1963) General Problem Solver, a program that used means-

end reasoning to construct a plan for systematically reducing the difference

between some goal state, as represented in the machine, and the current

state of the world, as represented in the machine. And it includes generic

approaches to machine intelligence, such as mainstream connectionist

theories to be discussed further that think of the engine room of the mind

as containing just a small number of general-purpose learning algorithms,

such as Hebbian learning and back-propagation.6

So is this a good response to Descartes’s argument? I don’t think so.

Why? Because it runs headlong into a long-standing enemy of AI known

as the frame problem. In its original form, the frame problem is the prob-

lem of characterizing, using formal logic, those aspects of a state that are

not changed by an action (see, for example, Shanahan 1997). However,

the term has come to be used in a less narrow way, to name a multilayered

family of interconnected worries to do with the updating of epistemic

states in relevance-sensitive ways (see, for example, the range of discussions

in Pylyshyn 1987). A suitably broad definition is proposed by Jerry Fodor,

who describes the frame problem as ‘‘the problem of putting a ‘frame’

around the set of beliefs that may need to be revised in the light of speci-

fied newly available information’’ (Fodor 1983, p. 112–13). Here I shall be

concerned with the frame problem in its more general form.

To see why the framing requirement described by Fodor constitutes a

bona fide problem, as opposed to merely a description of what needs doing,

consider the following example (Dennett 1984). Imagine a mobile robot

that has the capacity to reason about its world by proving theorems on

the basis of internally stored, logic-based representations. (This architecture
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is just one possibility. Nothing about the general frame problem means

that it is restricted to control systems whose representational states and rea-

soning algorithms are logical in character.) This robot needs power to sur-

vive. When it is time to find a power source, the robot proves a theorem

such as PLUG-INTO (Plug, Power Source). The intermediate steps in the

proof represent subgoals that the robot needs to achieve in order to succeed

at its main goal of retrieving a power-source (compare the means-end rea-

soning algorithm deployed by GPS, as mentioned previously).

Now, consider what might happen when our hypothetical robot is given

the task of collecting its power source from a room that also contains a

bomb. The robot knows that the power source is resting on a wagon, so it

decides (quite reasonably, it seems) to drag that wagon out of the room.

Unfortunately, the bomb is on the wagon too. The result is a carnage of

nuts, bolts, wires, and circuit boards. It is easy to see that the robot was un-

successful here because it failed to take account of one crucial side effect of

its action—the movement of the bomb. So, enter a new improved robot.

This one operates by checking for every side effect of every plan that it con-

structs. This robot, too, is unsuccessful, simply because it never gets to per-

form an action. It just sits there and ruminates. What this shows is that it is

no good checking for every side effect of every possible action before taking

the plunge and doing something. There are just too many side effects to

consider, and most of them will be entirely irrelevant to the context of

action. For example, taking the power source out of the room changes the

number of objects in the room, but in this context, who cares? And notice

that the robot needs to consider not only things about its environment

that have changed but also things that have not. Some of these will be im-

portant some of the time, given a particular context. So the robot needs to

know which side effects of its actions and which unchanged facts about its

world are relevant, and which are not. Then it can just ignore all the irrele-

vant facts. Of course, if the context of action changes, then what counts as

relevant may change. For instance, in a different context it may be abso-

lutely crucial that the robot takes account of the fact that, as a result of its

own actions, the number of objects in the room has changed.

We have just arrived at the epicenter of the frame problem, and it’s a

place where the idea of mind as machine confronts a number of difficult

questions. For example, given a dynamically changing world, how is a

purely mechanistic system to take account of those state changes in that

world (self-induced or otherwise) that matter, and those unchanged states

in that world that matter, while ignoring those that do not? And how is

that system to retrieve and (if necessary) to revise, out of all the beliefs
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that it possesses, just those beliefs that are relevant in some particular con-

text of action? In short, how might a ‘‘mere’’ machine behave in ways that

are sensitive to context-dependent relevance?

One first-pass response to these sorts of questions will be to claim that

the machine should deploy stored heuristics (rules of thumb) that deter-

mine which of its rules and representations are relevant in the present situ-

ation. But are relevancy heuristics really a cure for the frame problem? It

seems not. The processing mechanisms concerned would still face the

problem of accessing just those relevancy heuristics that are relevant in

the current context. So how does the system decide which of its stored heu-

ristics are relevant? Another, higher-order set of heuristics would seem to be

required. But then exactly the same problem seems to reemerge at that

processing level, demanding further heuristics, and so on. It is not merely

that some sort of combinatorial explosion or infinite regress beckons here

(which it does). A further concern, in the judgment of some notable

authorities, is that we seem to have no good idea of how a computational

process of relevance-based update might work. As Terence Horgan and

John Tienson (1994) point out, the situation cannot be that the system first

retrieves an inner structure (an item of information or a heuristic), and

then decides whether or not it is relevant, as that would take us back to

square one. But then how can the system assign relevance until the struc-

ture has been retrieved?

But if the frame problem is such a nightmare, how come AI hasn’t simply

ground to a halt? According to many front-line critics of the field (includ-

ing Dreyfus; see chapter 14, this volume), most AI researchers, classical and

connectionist, have managed to sidestep the frame problem precisely be-

cause they have tended to assume that real-world cognitive problem solv-

ing can be treated as a kind of messy and complicated approximation to

reasoning or learning in artificially restricted worlds that are relatively static

and essentially closed and feature some small number of contexts of action.

In such worlds, all the contexts that could possibly arise may be identified

and defined, alongside all the factors that could possibly count as relevant

within each of them. So the programmer can either take comprehensive

and explicit account of the effects of every action or change, or can work

on the assumption that nothing changes in a scenario unless it is explicitly

said to change by some rule. And if those strategies carried too high an

adaptive cost in terms of processing resources, well-targeted relevancy heu-

ristics would appear to have a good chance of heading off the combina-

torial explosions and search difficulties that threaten. One might think,

however, that the actual world often consists of an indeterminate number
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of dynamic, open-ended, complex scenarios in which context-driven and

context-determining change is common and ongoing and in which vast

ranges of cognitive space might, at any time, contain the relevant psycho-

logical elements. It is in this world that the frame problem really bites, and

in which, it seems, the aforementioned strategies must soon run out of

steam.

From what we have seen so far, the frame problem looks to be a serious

barrier to the mechanization of mind. Indeed, one possible conclusion that

one might draw from the existence and nature of the frame problem is

that human intelligence is a matter of magic, not mechanics. However, it

is at least arguable that the frame problem is in fact a by-product the con-

ception of mind as a general-purpose (type D) machine, rather than as ma-

chine simpliciter. What mandates this less extreme conclusion? It’s the

following line of thought: In the present proposal, what guarantees that

‘‘[mechanical] reason is [in principle] a universal instrument which can be

used in all kinds of situations’’ is, at root, that the reasoning mechanism

concerned has free and total access to a gigantic body of rules and informa-

tion. Somewhere in that vast sea of structures lie the cognitive elements

that are relevant to the present context. The perhaps insurmountable prob-

lem is how to find them in a timely fashion using a process of purely me-

chanical search. What this suggests is that we might do well to reject the

very idea of the bodily machine as a general-purpose reasoning machine,

and to investigate what happens to the frame problem if we refuse to ac-

cept Descartes’s invitation to go beyond special-purpose mechanisms in

our understanding of intelligence.

Here is the view from the armchair: a system constructed from a large

number of special-purpose mechanisms will simply take the frame problem

in its stride. This is because, in any context of action, the special-purpose

mechanism that is appropriately activated will, as a direct consequence of

its design, have access to no more than a highly restricted subset of the sys-

tem’s stock of rules and representations. Moreover, that subset will include

just the rules and representations that are relevant to the adaptive scenario

in which the system finds itself. Therefore the kind of unmanageable

search space that the frame problem places in the path of a general-purpose

mechanism is simply never established. Those are the armchair intuitions.

But is there any evidence to back them up? Here is a much-discussed model

from the discipline of biorobotics.

Consider the ability of the female cricket to find a mate by tracking a

species-specific auditory advertisement produced by the male. According

to Barbara Webb’s robotic model of the female cricket’s behavior, here,
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roughly, is how the phonotaxis system works (for more details, see Webb

1993 and 1994, and the discussion in Wheeler 2005). The basic anatomical

structure of the female cricket’s peripheral auditory system is such that the

amplitude of her ear-drum vibration will be higher on the side closer to a

sound source. Thus, if some received auditory signal is indeed from a con-

specific male, all the female needs to do to reach him (all things being

equal) is to continue to move in the direction indicated by the ear drum

with the higher-amplitude response. How is that the female tracks only

the correct stimulus? The answer lies in the activation profiles of two inter-

neurons, one connected to each of the female cricket’s ears, that mediate

between ear-drum response and motor behavior. The decay rates of these

interneurons are tightly coupled with the specific temporal pattern of the

male’s song, such that signals with the wrong temporal pattern will simply

fail to produce the right motor effects.

Why is this robotic cricket relevant to the frame problem? The key idea is

suggested by Webb’s own explanation of why the proposed mechanism

is adaptively powerful (Webb 1993, p. 1092):

Like many other insects, the cricket has a simple and distinctive cue to find a mate,

and consequently can have a sensory-motor mechanism that works for this cue and

nothing else: there is no need to process sounds in general, provided this specific

sound has the right motor effects. Indeed, it may be advantageous to have such spe-

cificity built in, because it implicitly provides ‘‘recognition’’ of the correct signal

through the failure of the system with any other signal.

A reasonable gloss on this picture would be that the cricket’s special-

purpose mechanism does not have to start outside of context and find its

way in using relevancy heuristics. In the very process of being activated by

a specific environmental trigger that mechanism brings a context of activ-

ity along with it, implicitly realized in the very operating principles that de-

fine its successful functioning. Thus, to repeat the armchair intuition, there

is no frame problem here because the kind of unmanageable search space

that the frame problem places in the path of a general-purpose mechanism

is simply never established.

If one takes the sort of mechanism described by Webb, generalizes the

picture so that one has an integrated architecture of such mechanisms,

and then looks at the result through historically tinted glasses, then it

seems to reflect two of Descartes’s key thoughts: that organic bodies are col-

lections of special-purpose subsystems (type C machines), and that such

subsystems, individually and in combination, are capable of some pretty

fancy adaptive stuff. Moreover, this would seem to be a machine that solves
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the frame problem, in effect, by not letting it arise. This looks to be a step

forward—and it is. Unfortunately, however, it falls short of what we need,

because although it solves the frame problem, it doesn’t solve Descartes’s

problem. As we know, Descartes himself argued that there was a limit to

what any collection of special-purpose mechanisms could do: no single

machine, he thought, could incorporate the enormous number of special-

purpose mechanisms that would be required for it to reproduce the massive

adaptive flexibility of human behavior. That’s why, in the end, Descartes

concludes that intelligent human behavior is typically the product of

general-purpose reason. Nothing we have discovered so far suggests that

Descartes was wrong about that. Here’s the dilemma, in a nutshell: If we

mechanize general-purpose reason, we get the frame problem; so that’s no

good. But if we don’t mechanize general-purpose reason, we have no candi-

date mechanistic explanation for the massive adaptive flexibility of human

behavior; so that’s no good either. The upshot is that if we are to resist Des-

cartes’s antimechanistic conclusion, something has to give.

At this juncture let’s return to the target passage from the Discourse.

There is, I think, a tension hidden away in Descartes’s claim that (as it

appears in the standard English translation) ‘‘reason is a universal instru-

ment which can be used in all kinds of situations.’’ Strictly speaking, if

reason is a universal instrument then, at least potentially, it ought to be

possible for it to be applied unrestrictedly, across the cognitive board. If

this is right, then ‘‘all kinds of situations’’ needs to be read as ‘‘any kind of

situation.’’ However, I don’t think we ordinarily use the phrase ‘‘all kinds

of’’ in that way. When we say, for example, that the English cricket team,

repeatedly slaughtered by Australia during the 2006–7 Ashes tour, is cur-

rently having ‘‘all kinds of problems,’’ we mean not that the team faces all

the problems there are in the world, but rather that they face a wide range

of different problems. But now if this piece of ordinary language philoso-

phy is a reliable guide for how we are meant to read Descartes’s claim about

reason, then that claim is weakened significantly. The suggestion now is

only that reason is an instrument that can be used in a wide range of differ-

ent situations.

With this alternative interpretation on the table, one might think that

the prospects for an explanation of human reason in terms of the whirrings

of a type C machine are improved significantly. The argument would go

like this:

Human reason is, in truth, a suite of specialized psychological skills and

tricks with domain-specific gaps and shortcomings. That would still be an

instrument that can be used in a wide range of different situations. And by
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Descartes’s own lights, a material system of integrated special-purpose

mechanisms (a type C Cartesian machine) ought to be capable of this sort

of cognitive profile.

But this is to move too quickly. For even if the claim that reason is a

‘‘universal instrument’’ overstates just how massively flexible human be-

havior really is, it’s undeniably true that human beings are impressively

flexible. Indeed, the provisional argument just aired fails to be sufficiently

sensitive to the thought that an instrument that really can be used success-

fully across a wide range of different situations is an instrument that must

be capable of fast, fluid, and flexible context switching. Crucially, this sort

of capacity for real-time adaptation to new contexts appears to remain

staunchly resistant to exhaustive explanation in terms of any collection of

purely special-purpose mechanisms. The worry is this: So far, we have no

account of the mechanistic principles by which a particular special-purpose

mechanism is selected from the vast range of such mechanisms available to

the agent and then placed in control of the agent’s behavior at a specific

time. One can almost hear Descartes’s ghost as he claims that we will ulti-

mately need to posit a general-purpose reasoning system whose job it is to

survey the options and make the choice. But if that’s the ‘‘solution,’’ then

the door to the frame problem would be reopened, and we would be back

to square one, or thereabouts.

Plastic Machines

Our task, then, is to secure adaptive flexibility on a scale sufficient to ex-

plain open-ended adaptation to new contexts without going beyond mere

mechanism and without a return to Cartesian general-purpose reason. Here

is a suggestion—an incomplete one, I freely admit—for how this might be

achieved.

Roughly speaking, the term connectionism picks out research on a class of

intelligent machines in which typically a large number of interconnected

units process information in parallel. In as much as the brain, too, is made

up of a large number of interconnected units (neurons) that process

information in parallel, connectionist networks are ‘‘neurally inspired,’’ al-

though usually at a massive level of abstraction. Each unit in a connection-

ist network has an activation level regulated by the activation levels of the

other units to which it is connected, and, standardly, the effect of one unit

on another is either positive (if the connection is excitatory) or negative (if

the connection is inhibitory). The strengths of these connections are

known as the network’s weights, and it is common to think of the net-
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work’s ‘‘knowledge’’ as being stored in its set of weights. In most networks

the values of these weights are modifiable, so, given some initial configura-

tion, changes to the weights can be made that improve the performance of

the network over time. In other words, within all sorts of limits imposed by

the way the input is encoded, the specific structure of the network, and the

weight-adjustment algorithm, the network may learn to carry out some

desired input-output mapping.

Most work on connectionist networks has tended to concentrate on

architectures that in effect limit the range and complexity of possible net-

work dynamics. These features include neat symmetrical connectivity;

noise-free processing; update properties that are based either on a global

digital pseudo-clock or on methods of stochastic change; units that are uni-

form in structure and function; activation passes that proceed in an orderly

feed-forward fashion; and a model of neurotransmission in which the effect

of one neuron’s activity on that of a connected neuron will simply be ei-

ther excitatory or inhibitory, and will be mediated by a simple point-to-

point signaling process. Quite recently, however, some researchers have

come to favor a class of connectionist machines with richer system

dynamics, so-called dynamical neural networks (DNNs).

What we might, for convenience, call Mark I DNNs feature the following

sorts of properties (although not every bona fide example of a Mark I DNN

exhibits all the properties listed): asynchronous continuous-time process-

ing; real-valued time delays on connections; nonuniform activation func-

tions; deliberately introduced noise; and connectivity that is not only

both directionally unrestricted and highly recurrent, but also not subject

to symmetry constraints (see, for example, Beer and Gallagher 1992, Hus-

bands et al. 1995). Mark II DNNs add two further twists to the architectural

story. In these networks, christened GasNets (Husbands et al. 1998), the

standard DNN model is augmented with modulatory neurotransmission

(according to which fundamental properties of neurons, such as their acti-

vation profiles, are transformed by arriving neurotransmitters), and models

of neurotransmitters that diffuse virtually from their source in a cloudlike,

rather than a point-to-point, manner, and thus affect entire volumes of

processing structures. GasNets thus provide a platform for potentially

rich interactions between two interacting and intertwined dynamical

mechanisms—virtual cousins of the electrical and chemical processes in

real nervous systems. Diffusing ‘‘clouds of chemicals’’ may change the in-

trinsic properties of the artificial neurons, thereby changing the patterns

of ‘‘electrical’’ activity, while ‘‘electrical’’ activity may itself trigger ‘‘chem-

ical’’ activity. Dropping the scare quotes, these biology-inspired machines
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feature neurotransmitters that not only may transform the transfer func-

tions of the neurons on which they act but also may do so on a grand scale,

as a result of the fact that they act by gaseous diffusion through volumes of

brain space, rather than by electrical transmission along connecting neural

wires.

Systems of this kind have been artificially evolved to control mobile

robots for simple homing and discrimination tasks.7 What does the anal-

ysis of such machines tell us? Viewed as static wiring diagrams, many of

the successful GasNet controllers appear to be rather simple structures. Typ-

ical networks feature a very small number of primitive visual receptors con-

nected to a tiny number of inner and motor neurons by just a few synaptic

links. However, this apparent structural simplicity hides the fact that the

dynamics of the networks are often highly complex, involving, as pre-

dicted, subtle couplings between chemical and electrical processes. For

example, it is common to find adaptive use being made of oscillatory

dynamical subnetworks, some of whose properties, such as their periods,

depend on spatial features of the modulation and diffusion processes, pro-

cesses that are themselves determined by the changing levels of electrical

activity in the neurons within the network (for more details, see Husbands

et al. 1998). Preliminary analysis suggests that these complex interwoven

dynamics will sometimes produce solutions that are resistant to any

modular decomposition. However, there is also evidence of a kind of tran-

sient modularity in which, over time, the effects of the gaseous diffusible

modulators drive the network through different phases of modular and

nonmodular organization (Husbands, personal communication).

What seems clear, then, is that the sorts of machines just described real-

ize a potentially powerful kind of ongoing fluidity, one that involves the

functional and even the structural reconfiguration of large networks of

components. This is achieved on the basis of bottom-up systemic causation

that involves multiple simultaneous interactions and complex dynamic

feedback loops, such that the causal contribution of each systemic compo-

nent partially determines, and is partially determined by, the causal contri-

butions of large numbers of other systemic components and, moreover,

those contributions may change radically over time. (This is what Clark

[1997] dubs continuous reciprocal causation.) At root, GasNets are mecha-

nisms of significant adaptive plasticity, and it seems plausible that it is pre-

cisely this sort of plasticity that, when harnessed and tuned appropriately

by selection or learning to operate over different time scales, may be the

mechanistic basis of open-ended adaptation to new contexts. It is a moot

point whether or not this plasticity moves us entirely beyond the category

326 Michael Wheeler



of type C machines. To the extent that one concentrates on the way Gas-

Nets may shift from one kind of modular organization to another (in real-

izing the kind of transient modularity mentioned previously), the view is

compatible with a story in which context switching involves a transition

from one arrangement of special-purpose systems to another. Under these

circumstances, perhaps it would be appropriate to think of GasNets as type

C.5 machines.

Concluding Remarks

In the Discourse, Descartes lays down a challenge to the advocate of the

mechanization of mind. How can the massive adaptive flexibility of

human-level intelligence be explained without an appeal to a nonmechan-

istic faculty of general-purpose reason? Descartes’s scientifically informed

empirical bet is that it cannot. Of course, his conclusion is based on an un-

derstanding of machine-hood that is linked conceptually to the notion of

special-purpose mechanisms. This understanding, and thus his conclusion,

has been disputed by the subsequent attempt in AI to mechanize general-

purpose reason. However, since this ongoing attempt is ravaged by the

frame problem, it does not constitute a satisfactory response to Descartes’s

challenge. Are plastic machines, as exemplified by GasNets, the answer? So

far I know of no empirical work that demonstrates conclusively that the

modulatory processes instantiated in GasNets can perform the crucial

context-switching function that I have attributed to them. For although

there is abundant evidence that such processes can mediate the transition

between different phases of behavior within the same task (Smith, Hus-

bands, and O’Shea 2001), that is not the same thing as switching between

contexts, which typically involves a reevaluation of what the current task

might be. Nevertheless, it is surely a thought worth pursuing that fluid

functional and structural reconfiguration, driven in a bottom-up way by

low-level neuro-chemical mechanisms, may be at the heart of the more

complex capacity. That is my scientifically informed empirical bet, one

that needs to be balanced against Descartes’s own. At present Descartes’s

challenge remains essentially unanswered. Never underestimate Descartes.

(Have I said that?)

Notes

1. This chapter draws extensively on material from my book Reconstructing the Cogni-

tive World: The Next Step (Wheeler 2005), especially chapters 2, 7, and 10. Sometimes

God’s Machines 327



text is incorporated directly, but my reuse of that material here is not simply a rehash

of it. The present treatment has some new things to say about Descartes’s enduring

legacy in the science of mind and contains a somewhat different analysis of the

frame problem.

All quotations from, and page numbers for, Descartes’s writings are taken from the

now-standard English editions of the texts in question. For the texts referred to here,

this means the translations contained in Cottingham, Stoothoff, and Murdoch 1985a,

1985b).

2. The first two of these notions are identified in Descartes’s work by G. Hatfield

(1992, pp. 360–62). The third is not.

3. For Descartes, the essential property of matter is that it takes up space, that is, that

it has extension. In effect, mechanics studies changes in manifestations of that

property.

4. For the view that useful fictions can be explanatorily powerful, see one common

way of understanding Dennett’s position on psychological states such as beliefs and

desires (Dennett, 1987). Post-Darwin, the overwhelming temptation will be to see

natural selection as the source of functional normativity in the case of the bodily ma-

chine. In this view, the function of some bodily element will be the contribution

that that element has made to survival and reproduction in ancestral populations.

Descartes, writing two hundred years before Darwin, didn’t have this option in his

conceptual tool kit.

5. For a more detailed description of these mechanisms, see Hatfield (1992, p. 346).

6. In the present context, the fact that AI came to mechanize general-purpose reason

is plausibly interpreted as a move against Descartes, but this is not the only way of

looking at things. Aside from its mechanization, nothing about the nature and con-

tribution of reason as a psychological capacity underwent significant transformation

in the process of appropriation by AI. Thus, viewed from a broader perspective, one

might argue that, by mechanizing general-purpose reason in the way that it did, AI

remained within a generically Cartesian framework. For much more on this, see

Wheeler (2005, especially chapters 2 and 3).

7. Roughly speaking, design by artificial evolution works as follows: First one sets up

a way of encoding potential solutions to some problem as genotypes. Then, starting

with a randomly generated population of potential solutions and some evaluation

task, one implements a selection cycle such that more successful solutions have a

proportionally higher opportunity to contribute genetic material to subsequent gen-

erations, that is, to be ‘‘parents.’’ Genetic operators analogous to recombination and

mutation in natural reproduction are applied to the parental genotypes to produce

‘‘children,’’ and, typically, a number of existing members of the population are dis-

carded so that the population size remains constant. Each solution in the resulting

new population is then evaluated, and the process starts all over again. Over succes-
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sive generations, better solutions are discovered. In GasNet research, the goal is to de-

sign a network capable of achieving some task, and artificial evolution is typically

allowed to decide fundamental architectural features of that network, such as the

number, directionality, and recurrency of the connections, the number of internal

units, and the parameters controlling modulation and virtual gas diffusion.
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14 Why Heideggerian AI Failed and How Fixing It Would

Require Making It More Heideggerian

Hubert L. Dreyfus

The Convergence of Computers and Philosophy

When I was teaching at MIT in the early sixties, students from the Artificial

Intelligence Laboratory would come to my Heidegger course and say in ef-

fect: ‘‘You philosophers have been reflecting in your armchairs for over two

thousand years and you still don’t understand how the mind works. We in

the AI Lab have taken over and are succeeding where you philosophers

have failed. We are now programming computers to exhibit human intelli-

gence: to solve problems, to understand natural language, to perceive, and

to learn.’’1 In 1968 Marvin Minsky, head of the AI lab, proclaimed, ‘‘Within

a generation we will have intelligent computers like HAL in the film

2001.’’2

As luck would have it, in 1963, I was invited by the RAND Corporation to

evaluate the pioneering work of Alan Newell and Herbert Simon in a new

field called cognitive simulation (CS). Newell and Simon claimed that both

digital computers and the human mind could be understood as physical

symbol systems, using strings of bits or streams of neuron pulses as sym-

bols representing the external world. Intelligence, they claimed, merely

required making the appropriate inferences from these internal representa-

tions. As they put it, ‘‘A physical symbol system has the necessary and suf-

ficient means for general intelligent action.’’3

As I studied the RAND papers and memos, I found to my surprise that,

far from replacing philosophy, the pioneers in CS had learned a lot, directly

and indirectly, from the philosophers. They had taken over Hobbes’s claim

that reasoning was calculating, Descartes’s mental representations, Leib-

niz’s idea of a ‘‘universal characteristic’’—a set of primitives in which all

knowledge could be expressed—Kant’s claim that concepts were rules,

Frege’s formalization of such rules, and Russell’s postulation of logical

atoms as the building blocks of reality. In short, without realizing it, AI



researchers were hard at work turning rationalist philosophy into a research

program.

At the same time, I began to suspect that the critical insights formulated

in existentialist armchairs, especially Heidegger’s and Merleau-Ponty’s,

were bad news for those working in AI laboratories—that, by combining

rationalism, representationalism, conceptualism, formalism, and logical

atomism into a research program, AI researchers had condemned their en-

terprise to reenact a failure.

Symbolic AI as a Degenerating Research Program

Using Heidegger as a guide, I began to look for signs that the whole AI re-

search program was degenerating. I was particularly struck by the fact that,

among other troubles, researchers were running up against the problem of

representing significance and relevance—a problem that Heidegger saw was

implicit in Descartes’s understanding of the world as a set of meaningless

facts to which the mind assigned what Descartes called values, and John

Searle now calls functions.4

But, Heidegger warned, values are just more meaningless facts. To say a

hammer has the function of being for hammering leaves out the defining

relation of hammers to nails and other equipment, to the point of building

things, and to the skills required when actually using the hammer—all

of which reveal the way of being of the hammer that Heidegger called

‘‘readiness-to-hand.’’ Merely assigning formal function predicates to brute

facts such as hammers couldn’t capture the hammer’s way of being nor

the meaningful organization of the everyday world in which hammering

has its place. ‘‘[B]y taking refuge in ‘value’ characteristics,’’ Heidegger said,

‘‘we are . . . far from even catching a glimpse of being as readiness-to-

hand.’’5

Minsky, unaware of Heidegger’s critique, was convinced that represent-

ing a few million facts about objects, including their functions, would solve

what had come to be called the commonsense knowledge problem. It

seemed to me, however, that the deep problem wasn’t storing millions of

facts; it was knowing which facts were relevant in any given situation.

One version of this relevance problem was called the frame problem. If the

computer is running a representation of the current state of the world and

something in the world changes, how does the program determine which

of its represented facts can be assumed to have stayed the same, and

which would have to be updated?

As Michael Wheeler in his recent book, Reconstructing the Cognitive World,

puts it:
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Given a dynamically changing world, how is a nonmagical system . . . to take account

of those state changes in that world . . . that matter, and those unchanged states in

that world that matter, while ignoring those that do not? And how is that system to

retrieve and (if necessary) to revise, out of all the beliefs that it possesses, just those

beliefs that are relevant in some particular context of action?6

Minsky suggested that, to avoid the frame problem, AI programmers could

use what he called frames—descriptions of typical situations like going to a

birthday party—to list and organize those, and only those, facts that were

normally relevant. Perhaps influenced by a computer science student who

had taken my phenomenology course, Minsky suggested a structure of es-

sential features and default assignments—a structure Edmund Husserl had

already proposed and already called a frame.7

But a system of frames isn’t in a situation, so in order to select the possi-

bly relevant facts in the current situation one would need frames for recog-

nizing situations like birthday parties, and for telling them from other

situations such as ordering in a restaurant. But how, I wondered, could the

computer select from the supposed millions of frames in its memory

the relevant frame for selecting the birthday party frame as the relevant

frame, so as to see the current relevance of, say, an exchange of gifts rather

than money? It seemed to me obvious that any AI program using frames to

organize millions of meaningless facts so as to retrieve the currently rele-

vant ones was going to be caught in a regress of frames for recognizing rel-

evant frames for recognizing relevant facts, and that, therefore, the frame

problem wasn’t just a problem but was a sign that something was seriously

wrong with the whole approach.

Unfortunately, what has always distinguished AI research from a science

is its refusal to face up to and learn from its failures. In the case of the rele-

vance problem, the AI programmers at MIT in the sixties and early seven-

ties limited their programs to what they called micro-worlds—artificial

situations in which the small number of features that were possibly rele-

vant was determined beforehand. Since this approach obviously avoided

the real-world frame problem, MIT Ph.D. students were compelled to claim

in their theses that their micro-worlds could be made more realistic, and

that the techniques they introduced could be generalized to cover com-

monsense knowledge. There were, however, no successful follow-ups.8

The work of Terry Winograd is the best of the work done during the

micro-world period. His ‘‘blocks-world’’ program, SHRDLU, responded

to commands in ordinary English instructing a virtual robot arm to

move blocks displayed on a computer screen. It was the prime example

of a micro-world program that really worked—but of course only in its
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micro-world. So to produce the expected generalization of his techniques,

Winograd started working on a new Knowledge Representation Language

(KRL). His group, he said, was ‘‘concerned with developing a formalism, or

‘representation,’ with which to describe . . . knowledge.’’ And he added,

‘‘We seek the ‘atoms’ and ‘particles’ of which it is built, and the ‘forces’

that act on it.’’9

But this approach wasn’t working. Indeed, Minsky has recently acknowl-

edged in Wired magazine that AI has been brain dead since the early seven-

ties, when it encountered the problem of commonsense knowledge.10

Winograd, however, unlike his colleagues, was scientific enough to try to

figure out what had gone wrong. So in the mid-seventies we began having

weekly lunches to discuss his problems in a broader philosophical context.

Looking back, Winograd says, ‘‘My own work in computer science is greatly

influenced by conversations with Dreyfus.’’11

After a year of such conversations, and after reading the relevant texts of

the existential phenomenologists, Winograd abandoned work on KRL and

began including Heidegger in his computer science courses at Stanford. In

so doing, he became the first high-profile deserter from what was, indeed,

becoming a degenerating research program. John Haugeland now refers

to the symbolic AI of that period as good old-fashioned AI—GOFAI for

short—and that name has been widely accepted as capturing its current

status. Indeed, Michael Wheeler argues that a new paradigm is already

taking shape. He maintains that a ‘‘Heideggerian cognitive science

is . . . emerging right now, in the laboratories and offices around the world

where embodied-embedded thinking is under active investigation and

development.’’12

Wheeler’s well-informed book could not have been more timely, since

there are now at least three versions of supposedly Heideggerian AI that

might be thought of as articulating a new paradigm for the field: Rodney

Brooks’s behaviorist approach at MIT, Phil Agre’s pragmatist model, and

Walter Freeman’s neurodynamic model. All three approaches implicitly ac-

cept Heidegger’s critique of Cartesian internalist representations, and em-

brace John Haugeland’s slogan that cognition is embedded and embodied.13

Heideggerian AI, Stage 1: Eliminating Representations by Building

Behavior-Based Robots

Winograd sums up what happened at MIT after he left for Stanford:

For those who have followed the history of artificial intelligence, it is ironic that [the

MIT] laboratory should become a cradle of ‘‘Heideggerian AI.’’ It was at MIT that
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Dreyfus first formulated his critique, and, for twenty years, the intellectual atmo-

sphere in the AI Lab was overtly hostile to recognizing the implications of what he

said. Nevertheless, some of the work now being done at that laboratory seems to

have been affected by Heidegger and Dreyfus.14

Here’s how it happened. In March l986, the MIT AI Lab under its new di-

rector, Patrick Winston, reversed Minsky’s attitude toward me and allowed,

if not encouraged, several graduate students, led by Phil Agre and John

Batali, to invite me to give a talk.15 I called the talk, ‘‘Why AI Researchers

Should Study ‘Being and Time.’ ’’ In my talk I repeated what I had written

in l972 in What Computers Can’t Do: ‘‘The meaningful objects . . . among

which we live are not a model of the world stored in our mind or brain;

they are the world itself.’’16 And I quoted approvingly a Stanford Research In-

stitute report to the effect that ‘‘it turned out to be very difficult to repro-

duce in an internal representation for a computer the necessary richness

of environment that would give rise to interesting behavior by a highly

adaptive robot,’’17 and concluded that ‘‘this problem is avoided by human

beings because their model of the world is the world itself.’’18

The year of my talk, Rodney Brooks, who had moved from Stanford to

MIT, published a paper criticizing the GOFAI robots that used representa-

tions of the world and problem-solving techniques to plan their move-

ments. He reported that, on the basis of the idea that ‘‘the best model of

the world is the world itself,’’ he had ‘‘developed a different approach in

which a mobile robot uses the world itself as its own representation—

continually referring to its sensors rather than to an internal world

model.’’19 Looking back at the frame problem, he writes, ‘‘And why could

my simulated robot handle it? Because it was using the world as its own

model. It never referred to an internal description of the world that would

quickly get out of date if anything in the real world moved.’’20

Brooks’s approach is an important advance, but Brooks’s robots respond

only to fixed isolable features of the environment, not to context or chang-

ing significance. Moreover, they do not learn. They are like ants, and

Brooks aptly calls them ‘‘animats.’’ Brooks thinks he does not need to

worry about learning, putting it off as a concern for possible future re-

search.21 But by operating in a fixed world and responding only to the

small set of possibly relevant features that their receptors can pick up,

Brooks’s animats beg the question of changing relevance and so finesse

rather than solve the frame problem.

Still, Brooks comes close to an existential insight spelled out by Merleau-

Ponty, viz., that intelligence is founded on and presupposes the more basic

way of coping we share with animals, when he says:22
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The ‘‘simple’’ things concerning perception and mobility in a dynamic

environment . . . are a necessary basis for ‘‘higher-level’’ intellect. . . . Therefore, I pro-

posed looking at simpler animals as a bottom-up model for building intelligence. It

is soon apparent, when ‘‘reasoning’’ is stripped away as the prime component of a

robot’s intellect, that the dynamics of the interaction of the robot and its environ-

ment are primary determinants of the structure of its intelligence.23

Brooks is realistic in describing his ambitions and his successes:

The work can best be described as attempts to emulate insect-level locomotion and

navigation. . . . There have been some behavior-based attempts at exploring social

interactions, but these too have been modeled after the sorts of social interactions

we see in insects.24

Surprisingly, the modesty Brooks exhibited in choosing to first construct

simple insect-like devices did not deter Brooks and Daniel Dennett from

repeating the extravagant optimism characteristic of AI researchers in the

sixties. As in the days of GOFAI, on the basis of Brooks’s success with

insect-like devices, instead of trying to make, say, an artificial spider, Brooks

and Dennett decided to leap ahead and build a humanoid robot. As Den-

nett explained in a l994 report to the Royal Society of London:

A team at MIT of which I am a part is now embarking on a long-term project to de-

sign and build a humanoid robot, Cog, whose cognitive talents will include speech,

eye-coordinated manipulation of objects, and a host of self-protective, self-regulatory

and self-exploring activities.25

Dennett seems to reduce this project to a joke when he adds in all serious-

ness: ‘‘While we are at it, we might as well try to make Cog crave human

praise and company and even exhibit a sense of humor.’’26

Of course, the ‘‘long-term project’’ was short-lived. Cog failed to achieve

any of its goals and the original robot is already in a museum.27 But, as far

as I know, neither Dennett nor anyone connected with the project has

published an account of the failure and asked what mistaken assumptions

underlay their absurd optimism. In a personal communication Dennett

blamed the failure on a lack of graduate students and claimed that,

‘‘progress was being made on all the goals, but slower than had been

anticipated.’’28

If progress was actually being made, however, the graduate students

wouldn’t have left, or others would have continued to work on the project.

Clearly some specific assumptions must have been mistaken, but all we

find in Dennett’s assessment is the implicit assumption that human intelli-

gence is on a continuum with insect intelligence, and that therefore adding

a bit of complexity to what has already been done with animats counts as
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progress toward humanoid intelligence. At the beginning of AI research,

Yehoshua Bar-Hillel called this way of thinking the first-step fallacy, and

my brother, Stuart Dreyfus, at RAND quipped, ‘‘It’s like claiming that the

first monkey that climbed a tree was making progress towards flight to

the moon.’’

In contrast to Dennett’s assessment, Brooks is prepared to entertain the

possibility that he is barking up the wrong tree. He soberly comments:

Perhaps there is a way of looking at biological systems that will illuminate an inher-

ent necessity in some aspect of the interactions of their parts that is completely miss-

ing from our artificial systems. . . . I am not suggesting that we need go outside the

current realms of mathematics, physics, chemistry, or biochemistry. Rather I am sug-

gesting that perhaps at this point we simply do not get it, and that there is some fun-

damental change necessary in our thinking in order that we might build artificial

systems that have the levels of intelligence, emotional interactions, long term sta-

bility and autonomy, and general robustness that we might expect of biological

systems.29

We can already see that Heidegger and Merleau-Ponty would say that, in

spite of the breakthrough of giving up internal symbolic representations,

Brooks, indeed, doesn’t get it—that what AI researchers have to face and

understand is not only why our everyday coping couldn’t be understood

in terms of inferences from symbolic representations, as Minsky’s intellec-

tualist approach assumed, but also why it can’t be understood in terms of

responses caused by fixed features of the environment, as in Brooks’s em-

piricist model. AI researchers need to consider the possibility that em-

bodied beings like us take as input energy from the physical universe, and

respond in such a way as to open themselves to a world organized in terms

of their needs, interests, and bodily capacities without their minds’ needing

to impose meaning on a meaningless given, as Minsky’s frames require, nor

their brains’ converting stimulus input into reflex responses, as in Brooks’s

animats.

Later I’ll suggest that Walter Freeman’s neurodynamics offers a radi-

cally new basis for a Heideggerian approach to human intelligence—an

approach compatible with physics and grounded in the neuroscience of

perception and action. But first we need to examine another approach to

AI contemporaneous with Brooks’s that actually calls itself Heideggerian.

Heideggerian AI, Stage 2: Programming the Ready-to-Hand

In my talk at the MIT AI Lab, I introduced Heidegger’s nonrepresenta-

tional account of the absorption of Dasein (human being) in the world.
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I also explained that Heidegger distinguished two modes of being: the

‘‘readiness-to-hand’’ of equipment when we are involved in using it, and

the ‘‘presence-at-hand’’ of objects when we contemplate them. Out of that

explanation, and the lively discussion that followed, grew the second type

of Heideggerian AI—the first to acknowledge its lineage.

This new approach took the form of Phil Agre and David Chapman’s pro-

gram, Pengi, which guided a virtual agent playing a computer game called

Pengo, in which the player and penguins kick large and deadly blocks of ice

at each other.30 Their approach, which they called ‘‘interactionism,’’ was

more self-consciously Heideggerian than Brooks’s, in that they attempted

to capture what Agre called ‘‘Heidegger’s account of everyday routine activ-

ities.’’31 In his book, Computation and Human Experience, Agre takes up

where my talk left off:

I believe that people are intimately involved in the world around them and that the

epistemological isolation that Descartes took for granted is untenable. This position

has been argued at great length by philosophers such as Heidegger and Merleau-

Ponty; I wish to argue it technologically.32

Agre’s interesting new idea is that the world of Pengo in which the Pengi

agent acts is made up, not of present-at-hand objects with properties, but of

possibilities for action that trigger appropriate responses from the agent. To

program this situated approach, Agre used what he called ‘‘deictic represen-

tations.’’ He tells us, ‘‘This proposal is based on a rough analogy with Hei-

degger’s analysis of everyday intentionality in Division I of Being and Time,

with objective intentionality corresponding to the present-at-hand and

deictic intentionality corresponding to the ready-to-hand.’’33 And he ex-

plains, ‘‘[Deictic representations] designate, not a particular object in the

world, but rather a role that an object might play in a certain time-

extended pattern of interaction between an agent and its environment.’’34

Looking back on my talk at MIT and rereading Agre’s book I now see

that, in a way, Agre understood Heidegger’s account of readiness-to-hand

better than I did at the time. I thought of the ready-to-hand as a special

class of entities, namely, equipment, whereas the Pengi program treats

what the agent responds to purely as functions. For Heidegger and Agre the

ready-to-hand is not a what but a for-what.35 But not just that the hammer

is for hammering. As Agre saw, Heidegger wants to get at something more

basic than simply a class of objects defined by their use. At his best Heideg-

ger would, I think, deny that a hammer in a drawer has readiness-to-hand

as its way of being. Rather, he sees that, for the user, equipment is encoun-

tered as a solicitation to act, not an entity with a function feature. He notes,

‘‘When one is wholly devoted to something and ‘really’ busies oneself with
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it, one does not do so just alongside the work itself, or alongside the tool,

or alongside both of them ‘together.’ ’’36 And he adds, ‘‘The peculiarity of

what is proximally ready-to-hand is that, in its readiness-to-hand, it must,

as it were, withdraw in order to be ready-to-hand quite authentically.’’37

As usual with Heidegger, we must ask: What is the phenomenon he is

pointing out? In this case he wants us to see that to observe our hammer

or to observe ourselves hammering undermines our skillful coping. We

can and do observe our surroundings while we cope, and sometimes, if we

are learning, monitoring our performance as we learn improves our perfor-

mance in the long run, but in the short run such attention interferes with

our performance. For example, while biking we can observe passersby, or

think about philosophy, but if we start observing how we skillfully stay bal-

anced, we risk falling over.

Heidegger struggles to describe the basic way we are drawn in by the

ready-to-hand. The Gestaltists would later talk of ‘‘solicitations.’’ In Phe-

nomenology of Perception Merleau-Ponty speaks of ‘‘motivations’’ and later,

of ‘‘the flesh.’’ All these terms point at what is not objectifiable—a situa-

tion’s way of directly drawing from one a response that is neither caused

like a reflex, nor done for a reason.

In his 1925 Marburg lectures, ‘‘Logic: The Question of Truth,’’ Heidegger

describes our most basic experience of what he later calls ‘‘pressing into

possibilities’’ not as dealing with the desk, the door, the lamp, the chair,

and so forth, but as directly responding to a ‘‘what for’’:

What is first of all ‘‘given’’ . . . is the ‘‘for writing,’’ the ‘‘for going in and out,’’ the ‘‘for

illuminating,’’ the ‘‘for sitting.’’ That is, writing, going-in-and-out, sitting, and the

like are what we are a priori involved with. What we know when we ‘‘know our way

around’’ and what we learn are these ‘‘for-what’’s.38

It’s clear here that, in spite of what some interpreters take Heidegger to be

suggesting in Being and Time, this basic experience has no as-structure.39

That is, when absorbed in coping, I can be described objectively as using a

certain door as a door, but I’m not experiencing the door as a door. Normally

there is no ‘‘I’’ and no experiencing of the door at all but simply pressing

into the possibility of going out. The important thing to realize is that,

when we are pressing into possibilities, there is no experience of an entity

doing the soliciting; just the immediate response to a solicitation. (When

solicitations don’t pan out, what then is disclosed is the world of intercon-

nected equipment, and I can then step back and perceive things as things,

and act for reasons.)40

But Agre’s Heideggerian AI did not try to program this experiential aspect

of being drawn in by a solicitation. Rather, with his deictic representations,
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Agre objectified both the functions and their situational relevance for the

agent. In Pengi, when a virtual ice cube defined by its function is close to

the virtual player, a rule dictates a response, namely, kick it. No skill is

involved and no learning takes place.

So Agre had something right that I was missing—the transparency of the

ready-to-hand—but he nonetheless fell short of programming a Heidegger-

ian account of everyday routine activities. For Heidegger, the ready-to-hand

is not a fixed function, encountered in a predefined type of situation that

triggers a predetermined response that either succeeds or fails. Rather, as

we have begun to see and will soon see further, readiness-to-hand is experi-

enced as a solicitation that calls forth a flexible response to the significance

of the current situation—a response that is experienced as either improving

one’s situation or making it worse.

Moreover, although Agre proposed to program Heidegger’s account of ev-

eryday routine activities, he doesn’t even try to account for how our expe-

rience feeds back and changes our sense of the significance of the next

situation and what is relevant in it. In putting his virtual agent in a virtual

micro-world where all possible relevance is determined beforehand, Agre

didn’t try to account for how we learn to respond to new relevancies, and

so, like Brooks, he finesses rather than solves the frame problem.

Merleau-Ponty’s work, on the contrary, offers a nonrepresentational ac-

count of the way the body and the world are coupled that suggests a way

of avoiding the frame problem. According to Merleau-Ponty, as an agent

acquires skills, those skills are ‘‘stored,’’ not as representations in the

agent’s mind but as the solicitations of situations in the world. What

the learner acquires through experience is not represented at all but is pre-

sented to the learner as more and more finely discriminated situations. If

the situation does not clearly solicit a single response or if the response

does not produce a satisfactory result, the learner is led to further refine

his discriminations, which, in turn, solicit ever more refined responses. For

example, what we have learned from our experience of finding our way

around in a city is ‘‘sedimented’’ in how that city looks to us. Merleau-

Ponty calls this feedback loop between the embodied coper and the percep-

tual world the intentional arc. He says, ‘‘Cognitive life—the life of desire or

perceptual life—is subtended by an ‘intentional arc’ which projects round

about us our past, our future, [and] our human setting.’’41

Pseudo-Heideggerian AI: Embedded, Embodied, Extended Mind

As if taking up from where Agre left off with his objectified version of the

ready-to-hand, in Reconstructing the Cognitive World Wheeler tells us:
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Our global project requires a defense of action-oriented representation. . . . Action-

oriented representation may be interpreted as the subagential reflection of online

practical problem solving, as conceived by the Heideggerian phenomenologist.

Embodied-embedded cognitive science is implicitly a Heideggerian venture.42

He further notes, ‘‘As part of its promise, this nascent, Heideggerian para-

digm would need to indicate that it might plausibly be able either to solve

or to dissolve the frame problem.’’43 And he suggests, ‘‘The good news for

the reoriented Heideggerian is that the kind of evidence called for here may

already exist, in the work of recent embodied-embedded cognitive science.’’44

He concludes:

Dreyfus is right that the philosophical impasse between a Cartesian and a Heidegger-

ian metaphysics can be resolved empirically via cognitive science. However, he looks

for resolution in the wrong place. For it is not any alleged empirical failure on the

part of orthodox cognitive science, but rather the concrete empirical success of a cog-

nitive science with Heideggerian credentials, that, if sustained and deepened, would

ultimately vindicate a Heideggerian position in cognitive theory.45

I agree that it is time for a positive account of Heideggerian AI and of an

underlying Heideggerian neuroscience, but I think Wheeler is the one look-

ing in the wrong place. Merely by supposing that Heidegger is concerned

with problem solving and action-oriented representations, Wheeler’s proj-

ect reflects not a step beyond Agre but a regression to aspects of pre-Brooks

GOFAI. Heidegger, indeed, claims that that skillful coping is basic, but he is

also clear that all coping takes place on the background coping he calls

being-in-the-world that doesn’t involve any form of representation at all.46

Wheeler’s cognitivist misreading of Heidegger leads him to overestimate

the importance of Andy Clark and David Chalmers’ attempt to free us from

the Cartesian idea that the mind is essentially inner by pointing out that in

thinking we sometimes make use of external artifacts such as pencil, paper,

and computers.47 Unfortunately, this argument for the extended mind pre-

serves the Cartesian assumption that our basic way of relating to the world

is by using propositional representations such as beliefs and memories,

whether they are in the mind or in notebooks in the world. In effect, while

Brooks happily dispenses with representations where coping is concerned,

all Chalmers, Clark, and Wheeler give us as a supposedly radical new

Heideggerian approach to the human way of being-in-the-world is to

note that memories and beliefs are not necessarily inner entities and

that, therefore, thinking bridges the distinction between inner and outer

representations.

Heidegger’s important insight is not that, when we solve problems, we

sometimes make use of representational equipment outside our bodies,
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but that being-in-the-world is more basic than thinking and solving prob-

lems; that it is not representational at all. That is, when we are coping at

our best, we are drawn in by solicitations and respond directly to them, so

that the distinction between us and our equipment—between inner and

outer—vanishes.48 As Heidegger sums it up:

I live in the understanding of writing, illuminating, going-in-and-out, and the like.

More precisely: as Dasein I am—in speaking, going, and understanding—an act of

understanding dealing-with. My being in the world is nothing other than this

already-operating-with-understanding in this mode of being.49

Heidegger’s and Merleau-Ponty’s understanding of embedded embodied

coping, then, is not that the mind is sometimes extended into the world

but rather that all such problem solving is derivative, that in our most basic

way of being, that is, as absorbed skillful copers, we are not minds at all but

one with the world. Heidegger sticks to the phenomenon, when he makes

the strange-sounding claim that in its most basic way of being, ‘‘Dasein is

its world existingly.’’50

When you stop thinking that mind is what characterizes us most basi-

cally but, rather, that most basically we are absorbed copers, the inner/

outer distinction becomes problematic. There’s no easily askable question

as to whether the absorbed coping is in me or in the world. According to

Heidegger, intentional content isn’t in the mind, nor in some third realm

(as it is for Husserl), nor in the world; it isn’t anywhere. It’s an embodied

way of being-toward. Thus, for a Heideggerian all forms of cognitivist exter-

nalism presuppose a more basic existential externalism, where even to

speak of ‘‘externalism’’ is misleading since such talk presupposes a con-

trast with the internal. Compared to this genuinely Heideggerian view,

extended-mind externalism is contrived, trivial, and irrelevant.

What Motivates Embedded/Embodied Coping?

But why is Dasein called to cope at all? According to Heidegger, we are con-

stantly solicited to improve our familiarity with the world. Five years before

the publication of Being and Time he wrote, ‘‘Caring takes the form of a

looking around and seeing, and as this circumspective caring it is at the

same time . . . concerned about developing its circumspection, that is, about

securing and expanding its familiarity with the objects of its dealings.’’51

This pragmatic perspective is developed by Merleau-Ponty, and by

Samuel Todes.52 These heirs to Heidegger’s account of familiarity and cop-

ing describe how an organism, animal or human, interacts with what is,
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objectively speaking, the meaningless physical universe in such a way as to

cope with an environment organized in terms of that organism’s need to

find its way around. All such coping beings are motivated to get a more and

more refined and secure sense of the specific objects of their dealings.

According to Merleau-Ponty, ‘‘My body is geared into the world when my

perception presents me with a spectacle as varied and as clearly articulated

as possible.’’53

In short, in our skilled activity we are drawn to move so as to achieve a

better and better grip on our situation. For this movement toward maximal

grip to take place one doesn’t need a mental representation of one’s goal

nor any problem solving, as would a GOFAI robot. Rather, acting is experi-

enced as a steady flow of skillful activity in response to the situation. When

one’s situation deviates from some optimal body-environment gestalt,

one’s activity takes one closer to that optimum and thereby relieves the

‘‘tension’’ of the deviation. One does not need to know what the optimum

is in order to move toward it. One’s body is simply drawn to lower the

tension.

That is, if things are going well and I am gaining an optimal grip on the

world, I simply respond to the solicitation to move toward an even better

grip, and if things are going badly, I experience a pull back toward the

norm. If it seems that much of the time we don’t experience any such

pull, Merleau-Ponty would no doubt respond that the sensitivity to devia-

tion is nonetheless guiding one’s coping, just as an airport radio beacon

doesn’t give a warning signal unless the plane strays off course, and then,

let us suppose, the plane gets a signal whose intensity corresponds to

how far off course it is and the intensity of the signal diminishes as it

approaches getting back on course. The silence that accompanies being on

course doesn’t mean the beacon isn’t continually guiding the plane. Like-

wise, the absence of felt tension in perception doesn’t mean we aren’t

being directed by a solicitation.

As Merleau-Ponty puts it, ‘‘Our body is not an object for an ‘I think,’ it is

a grouping of lived-through meanings that moves towards its equilib-

rium.’’54 Equilibrium is Merleau-Ponty’s name for the zero gradient of

steady successful coping. Moreover, normally we do not arrive at equilib-

rium and stop there but are immediately taken over by a new solicitation.

Modeling Situated Coping as a Dynamical System

Describing the phenomenon of everyday coping as being ‘‘geared into’’

the world and ‘‘moving toward equilibrium’’ suggests a dynamic relation
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between the coper and the environment. Timothy van Gelder calls this dy-

namic relation between coper and environment coupling, and explains its

importance as follows:

The fundamental mode of interaction with the environment is not to represent it, or

even to exchange inputs and outputs with it; rather, the relation is better understood

via the technical notion of coupling. . . .

The post-Cartesian agent manages to cope with the world without necessarily rep-

resenting it. A dynamical approach suggests how this might be possible by showing

how the internal operation of a system interacting with an external world can be so

subtle and complex as to defy description in representational terms—how, in other

words, cognition can transcend representation.55

Van Gelder shares with Brooks the existentialist claim that thinking such

as problem solving is grounded in a more basic relation of body and world.

As van Gelder puts it:

Cognition can, in sophisticated cases, [such as breakdowns, problem solving, and

abstract thought] involve representation and sequential processing; but such phe-

nomena are best understood as emerging from a dynamical substrate, rather than as

constituting the basic level of cognitive performance.56

This dynamical substrate is precisely the causal basis of the skillful coping

first described by Heidegger and worked out in detail by Merleau-Ponty

and Todes.

Van Gelder importantly contrasts the rich interactive temporality of real-

time on-line coupling of coper and world with the austere step-by-step tem-

porality of thought. Wheeler helpfully explains:

Whilst the computational architectures proposed within computational cognitive

science require that inner events happen in the right order, and (in theory) fast

enough to get a job done, there are, in general, no constraints on how long each op-

eration within the overall cognitive process takes, or on how long the gaps between

the individual operations are. Moreover, the transition events that characterize those

inner operations are not related in any systematic way to the real-time dynamics of

either neural biochemical processes, non-neural bodily events, or environmental

phenomena (dynamics which surely involve rates and rhythms).57

Computation is thus paradigmatically austere:

Turing machine computing is digital, deterministic, discrete, effective (in the tech-

nical sense that behavior is always the result of an algorithmically specified finite

number of operations), and temporally austere (in that time is reduced to mere

sequence).58

Ironically, Wheeler’s highlighting the contrast between rich dynamic

temporal coupling and austere computational temporality enables us to
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see clearly that his appeal to extended minds as a Heideggerian response to

Cartesianism leaves out the essential temporal character of embodied

embedding. Clark and Chalmers’s examples of extended minds manipulat-

ing representations such as notes and pictures are clearly cases of temporal

austerity—no rates and rhythms are involved.

Wheeler is aware of this possible objection to his backing both the

dynamical systems model and the extended-mind approach. He asks,

‘‘What about the apparent clash between continuous reciprocal causation

and action orientated representations? On the face of it this clash is a worry

for our emerging cognitive science.’’59 But instead of engaging with the in-

compatibility of these two opposed models of ground-level intelligence,

Wheeler suggests that we must somehow combine them and that ‘‘this

question is perhaps one of the biggest of the many challenges that lie

ahead.’’60

Wheeler, however, hopes he can combine these approaches by appealing

to the account of involved problem solving that Heidegger calls dealing

with the unready-to-hand. Wheeler’s point is that, unlike detached prob-

lem solving with its general representations, the unready-to-hand requires

situation-specific representations. But, as we have seen, for Heidegger all

unready-to-hand coping takes place on the background of an even more

basic nonrepresentational holistic coping that allows copers to orient

themselves in the world.

Heidegger describes this background as ‘‘the background of . . . primary fa-

miliarity, which itself is not conscious and intended but is rather present in

[an] unprominent way.’’61 In Being and Time he speaks of ‘‘that familiarity

in accordance with which Dasein . . . ‘knows its way about’ [Kennt sich aus]

in its public environment’’ (p. 405). This coping is like the ready-to-hand

in that it does not involve representations. So Heidegger says explicitly

that our background being-in-the-world, which he also calls transcendence,

does not involve representational intentionality, but, rather, makes inten-

tionality possible:

Transcendence is a fundamental determination of the ontological structure of the

Dasein. . . . Intentionality is founded in the Dasein’s transcendence and is possible

solely for this reason—transcendence cannot conversely be explained in terms of

intentionality.62 To be more exact, background coping is not a traditional kind

of intentionality. Whereas the ready-to-hand has conditions of satisfaction, like

hammering in the nail, background coping does not have conditions of satisfaction.

What would it be to succeed or fail in finding one’s way around in the familiar

world? The important point for Heidegger, but not for Wheeler, is that all coping,

including unready-to-hand coping, takes place on the background of this basic
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nonrepresentational, holistic, absorbed, kind of intentionality, which Heidegger calls

being-in-the-world.63

This is not a disagreement between Wheeler and me about the relative fre-

quency of dealing with the ready-to-hand and the unready-to-hand in

everyday experience. True, Wheeler emphasizes intermittent reflective

activities such as learning and practical problem solving, whereas I, like

Heidegger, emphasize pervasive activities such as going out the door, walk-

ing on the floor, turning the lights on and off, and so forth. The question of

the relative frequency of the ready-to-hand and the unready-to-hand

modes of being is, Wheeler and I agree, an empirical question.64

But the issue concerning the background is not an empirical question. It

is an ontological question. And, as we have just seen, Heidegger is clear

that the mode of being of the world is not that of a collection of inde-

pendent modules that define what is relevant in specific situations. It

seems to me that Wheeler is on the right track, leaving modular solu-

tions and action oriented representations behind, when he writes (Personal

communication):

Where one has CRC [continuous reciprocal causation] one will have a non-modular

system. Modularity is necessary for homuncularity and thus, on my account, neces-

sary for representation of any kind. To the extent that the systems underlying intel-

ligence are characterized by CRC, they will be non-representational, and so the

notion of action-oriented representation won’t help explain them.

Wheeler directly confronts my objection when he adds:

If one could generate the claim that CRC must be the norm at the subagential level

from a Heideggerian analysis of the agential level, then the consequence for me

would be that, to be Heideggerian, I would have to concede that action-oriented rep-

resentation will in fact do less explanatory work than I have previously implied.

But Wheeler misses my point when he adds:

However, this takes us back to the points I make above about the prevalence of

unreadiness-to-hand. Action-oriented representations will underlie our engagements

with the unready-to-hand. In this domain, I suggest, the effects of CRC will be

restricted. And, I think, unreadiness-to-hand is the (factual) norm.

We just agreed that this is not an empirical question concerning the fre-

quency of coping with the unready-to-hand but an ontological point about

the background of all modes of coping. If Wheeler wants to count himself

a Heideggerian, he does, indeed, ‘‘have to concede that action-oriented

representation will in fact do less explanatory work than [he] previously

implied.’’
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Wheeler seems to be looking for a neurodynamic model of brain activity

such as we will consider in a moment when he writes:

Although there is abundant evidence that (what we are calling) continuous recip-

rocal causation can mediate the transition between different phases of behavior

within the same task, that is not the same thing as switching between contexts,

which typically involves a reevaluation of what the current task might be. Neverthe-

less, I am optimistic that essentially the same processes of fluid functional and struc-

tural reconfiguration, driven in a bottom-up way by low-level neurochemical

dynamics, may be at the heart of the more complex capacity.65

Meanwhile, Wheeler’s ambivalence concerning which model is more

basic, the representational or the dynamic, undermines his Heideggerian

approach. For, as Wheeler himself sees, the Heideggerian claim is that

action-oriented coping, as long as it is involved (on-line, Wheeler would

say) is not representational at all and does not involve any problem solv-

ing, and that all representational problem solving takes place off-line and

presupposes involved background coping.66 Showing in detail how the rep-

resentational unready-to-hand in all its forms depends upon a background

of holistic, nonrepresentational coping is exactly the Heideggerian project

and would, indeed, be the most important contribution that Heideggerian

AI could make to cognitive science. Indeed, a Heideggerian cognitive

science would require working out an ontology, phenomenology, and

brain model that deny a basic role to any sorts of representations—even

action-oriented ones—and defends a dynamical model like Merleau-

Ponty’s and van Gelder’s that gives a primordial place to equilibrium and

in general to rich coupling.

Ultimately, we will have to choose which sort of AI and which sort of

neuroscience to back, and so we are led to the questions: Could the brain

in its causal support of our active coping instantiate a richly coupled

dynamical system, and is there any evidence it actually does so? If so, could

this coupling be modeled on a digital computer to give us Heideggerian AI

or at least Merleau-Pontian AI? And would that solve the frame problem?

Walter Freeman’s Merleau-Pontian Neurodynamics

We have seen that our experience of the everyday world (not the universe)

is given as already organized in terms of significance and relevance, and

that significance can’t be constructed by giving meaning to brute facts,

both because we don’t normally experience brute facts and because even

if we did, no value predicate could do the job of giving them situational

significance. Yet all that the organism can receive is mere physical energy.
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How can such senseless physical stimulation be experienced directly as sig-

nificant? All generally accepted neuro-models fail to help, even when they

talk of dynamic coupling, since they still accept the basic Cartesian model,

namely:

1. The brain receives input from the universe by way of its sense organs

(the picture on the retina, the vibrations in the cochlea, the odorant par-

ticles in the nasal passages, and so forth).

2. Out of this stimulus information, the brain abstracts features, which it

uses to construct a representation of the world.

This is supposedly accomplished either by applying rules such as the

frames and scripts of GOFAI—an approach that is generally acknowledged

to have failed to solve the frame problem—or by strengthening or weaken-

ing weights on connections between simulated neurons in a simulated

neural network depending on the success or failure of the net’s output as

defined by the net designer. Significance is thus added from outside, since

the net is not seeking anything. This approach does not even try to capture

the animal’s way of actively determining the significance of the stimulus

on the basis of its past experience and its current arousal.

Both these approaches treat the computer or brain as a passive receiver of

bits of meaningless data, which then have to have significance added to

them. The big problem for the traditional neuroscience approach is, then,

to understand how the brain binds the relevant features to each other. That

is, the problem for normal neuroscience is how to pick out and relate fea-

tures relevant to each other from among all the independent isolated

features picked up by each of the independent isolated receptors. For exam-

ple, is the redness that has just been detected relevant to the square or to

the circle shape also detected in the current input? This problem is the

neural version of the frame problem in AI: How can the brain keep track

of which facts in its representation of the current world are relevant to

which other facts? Like the frame problem, as long as the mind/brain is

thought of as passively receiving meaningless inputs that need to have sig-

nificance and relevance added to them, the binding problem has remained

unsolved and is almost certainly unsolvable. Somehow the phenomenolo-

gist’s description of how the active organism has direct access to signifi-

cance must be built into the neuroscientific model.

Wheeler has argued persuasively for the importance of a positive alter-

native in overthrowing established research paradigms. Without such a

positive account the phenomenological observation that the world is its

own best representation, and that the significance we find in our world is
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constantly enriched by our experience in it, seems to require that the brain

be what Dennett derisively calls ‘‘wonder tissue.’’

Fortunately, there is at least one model of how the brain could provide

the causal basis for the intentional arc and so avoid the binding problem.

Walter Freeman, a founding figure in neurodynamics and one of the first

to take seriously the idea of the brain as a nonlinear dynamical system,

has worked out an account of how the brain of an active animal can di-

rectly pick up and augment significance in its world.67 On the basis of years

of work on olfaction, vision, touch, and hearing in alert and moving rab-

bits, Freeman has developed a model of rabbit learning based on the cou-

pling of the rabbit’s brain and the environment. He maintains that ‘‘the

brain moves beyond the mere extraction of features. . . . It combines sensory

messages with past experience . . . to identify both the stimulus and its par-

ticular meaning to the individual.’’68

To bring out the structural analogy of Freeman’s account to Merleau-

Ponty’s phenomenological descriptions, I propose to map Freeman’s neuro-

dynamic model onto the phenomena Merleau-Ponty has described. Free-

man’s neurodynamics implies the involvement of the whole brain in

perception and action, but for explaining the core of his ideas I’ll focus on

the dynamics of the olfactory bulb, since his key research was done on that

part of the rabbit brain.

Direct Perception of Significance and the Rejection of the Binding Problem

Where all other researchers assume the passive reception of input from the

universe, Freeman, like Merleau-Ponty on the phenomenological level, and

Gibson on the (ecological) psychology level, develops a third position, be-

tween the intellectualist and the empiricist. Merleau-Ponty, Gibson, and

Freeman take as basic that the brain is embodied in an animal moving in

the environment to satisfy its needs.

Freeman maintains that information about the world is not gained by

detecting meaningless features and processing these features step-by-step

upward toward a unified representation. The binding problem only arises

as an artifact of trying to interpret the output of isolated cells in the recep-

tors of immobilized organisms. Rather, Freeman turns the problem around

and asks: Given that the environment is already significant for the animal,

how can the animal select a unified significant figure from the noisy back-

ground? This turns the binding problem into a selection problem. As we

shall see, however, this selection is not among patterns existing in the

world but among patterns in the animal that have been formed by its prior

interaction with the world.
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In Freeman’s neurodynamic model, the animal’s perceptual system is

primed by past experience and arousal to seek and be rewarded by relevant

experiences. In the case of the rabbit, these could be carrot smells found

in the course of seeking and eating a carrot. When the animal succeeds,

the connections between those cells in the rabbit’s olfactory bulb that

were involved are strengthened, according to ‘‘the widely accepted Heb-

bian rule, which holds that synapses between neurons that fire together

become stronger, as long as the synchronous firing is accompanied by a

reward.’’69 The neurons that fire together wire together to form what Hebb

called cell assemblies. The cell assemblies that are formed by the rabbit’s re-

sponse to what is significant for it are in effect tuned to select the signifi-

cant sensory input from the background noise. For example, those cells

involved in a previous narrow escape from a fox would be wired together

in a cell assembly. Then, in an environment previously experienced as dan-

gerous, the cell assemblies sensitive to the smell of foxes would be primed

to respond.

Freeman notes, ‘‘For a burst [of neuronal activity] to occur in response to

some odorant, the neurons of the assembly and the bulb as a whole must

first be ‘primed’ to respond strongly to that specific input.’’70 And he adds,

‘‘Our experiments show that the gain [sensitivity to input] in neuronal col-

lections increases in the bulb and olfactory cortex when the animal is hun-

gry, thirsty, sexually aroused or threatened.’’71 So if a male animal has just

eaten and is ready to mate, the gain is turned down on the cell assemblies

responsive to food smells, and turned up on female smells. Thus, from the

start the cell assemblies are not just passive receivers of meaningless input

from the universe but, on the basis of past experience, are tuned to respond

to what is significant to the animal given its arousal state.

Once we see that the cell assemblies are involved in how coping animals

respond directly to significant aspects of the environment, we can also see

why the binding problem need not arise. The problem is an artifact of try-

ing to interpret the output of isolated cells in the cortex of animals from

the perspective of the researcher rather than the perspective of the animal.

That is, the researcher, like Merleau-Ponty’s intellectualist, interprets the

firing of the cells in the sense organ as responding to features of an object-

type—features such as orange, round, and tapered that can be specified in-

dependent of the object to which they belong. The researcher then has the

problem of figuring out how the brain binds these isolated features into a

representation of, say, a carrot (and adds the function predicate, good to

eat). But, according to Freeman, in an active, hungry animal the output

350 Hubert L. Dreyfus



from the isolated detector cells triggers a cell assembly already tuned to de-

tect the relevant input on the basis of past significant experience, which in

turn puts the brain into a state that signals to the limbic system ‘‘eat this

now,’’ without the brain ever having to solve the problem of how the iso-

lated features abstracted by the researchers are brought together into the

presentation of an object.

Freeman dramatically describes the brain activity involved:

If the odorant is familiar and the bulb has been primed by arousal, the information

spreads like a flash fire through the nerve cell assembly. First, excitatory input to one

part of the assembly during a sniff excites the other parts, via the Hebbian synapses.

Then those parts re-excite the first, increasing the gain, and so forth, so that the

input rapidly ignites an explosion of collective activity throughout the assembly.

The activity of the assembly, in turn, guides the entire bulb into a new state by ignit-

ing a full-blown burst.72

Specifically, after each sniff, the rabbit’s olfactory bulb goes into one of sev-

eral possible states that neural modelers traditionally call energy states. A

state tends toward minimum ‘‘energy’’ the way a ball tends to roll toward

the bottom of a container, no matter where it starts from within the con-

tainer. Each possible minimal energy state is called an attractor. The brain

states that tend toward a particular attractor, no matter where they start in

the basin, are called that attractor’s basin of attraction. As the brain activa-

tion is pulled into an attractor, the brain in effect selects the meaningful

stimulus from the background.

Thus the stimuli need not be processed into a representation of the cur-

rent situation on the basis of which the brain then has to infer what is pres-

ent in the environment. Rather, in Freeman’s account, the rabbit’s brain

forms a new basin of attraction for each new significant class of inputs.

The significance of past experience is preserved in basins of attraction. The

set of basins of attraction that an animal has learned form what is called an

attractor landscape. According to Freeman, ‘‘The state space of the cortex

can therefore be said to comprise an attractor landscape with several ad-

joining basins of attraction, one for each class of learned stimuli.’’73 Thus

Freeman contends that each new attractor does not represent, say, a carrot,

or the smell of carrot, or even what to do with a carrot. Rather, the brain’s

current state is the result of the sum of the animal’s past experiences with

carrots. What in the physical input is directly picked up and resonated to

when the rabbit sniffs, then, is the affords-eating, and the brain state is di-

rectly coupled with (or, in Gibson’s terms, resonates to) the affordance

offered by the current carrot.74
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Freeman offers a helpful analogy:

We conceive each cortical dynamical system as having a state space through which

the system travels as a point moving along a path (trajectory) through the state

space. A simple analogy is a spaceship flying over a landscape with valleys resem-

bling the craters on the moon. An expected stimulus contained in the omnipresent

background input selects a crater into which the ship descends. We call the lowest

area in each crater an ‘‘attractor’’ to which the system trajectory goes, and the set of

crater basins of attraction in an attractor landscape. There is a different attractor for

each class of stimuli that the system [is primed] to expect.75

Freeman concludes, ‘‘The macroscopic bulbar patterns [do] not relate to

the stimulus directly but instead to the significance of the stimulus.’’76 In-

deed, after triggering a specific attractor and modifying it, the stimulus—

the impression made on the receptor cells in the sense organ—has no

further job to perform. Freeman explains:

The new pattern is selected by the stimulus from the internal pre-existing repertoire

[of attractors], not imposed by the stimulus. It is determined by prior experience with

this class of stimulus. The pattern expresses the nature of the class and its sig-

nificance for the subject rather than the particular event. The identities of the par-

ticular neurons in the receptor class that are activated are irrelevant and are not

retained.77 . . . Having played its role in setting the initial conditions, the sense-

dependent activity is washed away.78

Thus, as Merleau-Ponty claims and psychological experiments confirm, we

normally have no experience of the data picked up by the sense organs.79

Learning and Merleau-Ponty’s Intentional Arc

Thus, according to Freeman’s model, when hungry, frightened, or in some

other state, the rabbit sniffs around seeking food, runs toward a hiding

place, or does whatever else prior experience has taught it is successful.

The weights on the animal’s neural connections are then changed on the

basis of the quality of its resulting experience. That is, they are changed in

a way that reflects the extent to which the result satisfied the animal’s cur-

rent need.

Freeman claims his readout from the rabbit’s brain shows that each

learning experience with a previously unknown stimulus, or previously

unimportant stimulus class that is significant in a new way, sets up a new

attractor for that class and rearranges all the other attractor basins in the

landscape:

I have observed that brain activity patterns are constantly dissolving, reforming and

changing, particularly in relation to one another. When an animal learns to respond
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to a new odor, there is a shift in all other patterns, even if they are not directly

involved with the learning. There are no fixed representations, as there are in

[GOFAI] computers; there are only significances.80

The constantly updated landscape of attractors is presumably correlated

with the agent’s experience of the changing significance of things in the

world, that is, with the intentional arc.

Freeman adds:

I conclude that context dependence is an essential property of the cerebral memory

system, in which each new experience must change all of the existing store by some

small amount, in order that a new entry be incorporated and fully deployed in

the existing body of experience. This property contrasts with memory stores in

computers . . . in which each item is positioned by an address or a branch of a

search tree. There, each item has a compartment, and new items don’t change the

old ones. Our data indicate that in brains the store has no boundaries or com-

partments. . . . Each new state transition . . . initiates the construction of a local pat-

tern that impinges on and modifies the whole intentional structure.81

Merleau-Ponty likewise concludes that, thanks to the intentional arc, no

two experiences of the world are ever exactly alike.82

It is important to realize how different this model is from any representa-

tionalist account. There is no fixed and independent intentional structure

in the brain—not even a latent one. There is nothing that can be found in

the olfactory bulb in isolation that represents or even corresponds to any-

thing in the world. There is only the fact that, given the way the nerve cell

assemblies have been wired on the basis of past experience, when the ani-

mal is in a state of arousal and is in the presence of a significant item such

as food or a potential predator or a mate, the bulb will go into a certain

attractor state. That activity state in the current interaction of animal and

environment corresponds to the whole world of the organism with some

aspect salient. The activity is not an isolated brain state but only comes

into existence and only is maintained as long as, and in so far as, it is dy-

namically coupled with the significant situation in the world that selected

it, and does not exist apart from it. Whereas, as we have seen, in the cogni-

tivist notion of representations, a representation exists apart from what it

represents.

Thus Freeman offers a model of learning that is not an associationist

model according to which, as one learns, one adds more and more fixed

connections, nor a cognitivist model based on off-line representations of

objective facts about the world that enable off-line inferences as to which

facts to expect next, and what they mean. Rather, Freeman’s model instan-

tiates the causal basis of a genuine intentional arc in which there are no
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linear casual connections between world and brain nor a fixed library of

representations, but where, each time a new significance is encountered,

the whole perceptual world of the animal changes so that the significance

that is directly displayed in the world of the animal is continually enriched.

The Perception-Action Loop

The brain’s movement toward the bottom of a particular basin of attraction

underlies the perceiver’s perception of the significance for action of a par-

ticular experience.83 For example, if a carrot affords eating the rabbit is di-

rectly readied to eat the carrot, or perhaps readied to carry off the carrot,

depending on which attractor is currently activated. Freeman tells us,

‘‘The same global states that embody the significance provide . . . the pat-

terns that make choices between available options and that guide the

motor systems into sequential movements of intentional behavior.’’84 The

animal must take account of how things are going and either continue on a

promising path or, if the overall action is not going as well as anticipated,

the brain must self-organize so the attractor system jumps to another

attractor. This either causes the animal to act in such a way as to increase

its sense of impending reward, or the brain will shift attractors again, until

it lands in one that makes such an improvement. The attractors can change

as if they were switching from frame to frame in a movie film, with each

further sniff or with each shift of attention. If the rabbit achieves what it

is seeking, a report of its success is fed back to reset the sensitivity of the

olfactory bulb. And the cycle is repeated.

Freeman’s overall picture of skilled perception and action, then, is as fol-

lows. The animal, let’s say, a rabbit sniffing a carrot, receives stimuli that,

thanks to prior Hebbian learning, puts its olfactory bulb into a specific

attractor basin—for example, the attractor that has been formed by, and

amounts to, the brain’s classification of the stimulus as affording eating.

Along with other brain systems, the bulb selects a response. The rabbit is

solicited to eat this now. It would be too cognitivist to say the bulb sends a

message to the appropriate part of the brain and too mechanistic to say the

bulb causes the activity of eating the carrot. The meaning of the input is

neither in the stimulus nor in a mechanical response directly triggered by

the stimulus. Significance is not stored as a memory representation nor an

association. Rather the memory of significance is in the repertoire of attrac-

tors as classifications of possible responses—the attractors themselves being

the product of past experience.

Once the stimulus has been classified by selecting an attractor that says

‘‘Eat this now,’’ the problem for the brain is just how this eating is to be
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done. On-line coping needs a stimuli-driven feedback policy dictating how

to move rapidly over the terrain and approach and eat the carrot. Here, an

actor-critic version of Temporal Difference Reinforcement Learning (TDRL)

can serve to augment the Freeman model.

According to TDRL, learning the appropriate movements in the current

situation requires learning the expected final award as well as the move-

ments. These two functions are learned slowly through repeated experi-

ences. Then the brain can monitor directly whether the expectation of

reward is being met as the rabbit approaches the carrot to eat it. If the

expected final reward suddenly decreases, owing, for example, to the cur-

rent inaccessibility of the carrot, the relevant part of the brain prompts the

olfactory bulb to switch to a new attractor or perspective on the situation

that dictates a different learned action, say, dragging the carrot, with its

expected reward.85 Only after a skill is thus acquired can the current

stimuli, plus the past history of responding to related stimuli now wired

into cell assemblies, produce the rapid responses required for on-going

skillful coping.

Optimal Grip

The animal’s movements are presumably experienced by the animal as

tending toward getting and maintaining an optimal perceptual take on

what is currently significant and, where appropriate, an ongoing optimal

bodily grip on it. As Merleau-Ponty says, ‘‘Through [my] body I am at grips

with the world.’’86 Freeman sees his account of the brain dynamics un-

derlying perception and action as structurally isomorphic with Merleau-

Ponty’s. He explains:

Merleau-Ponty concludes that we are moved to action by disequilibrium between the

self and the world. In dynamic terms, the disequilibrium . . . puts the brain onto . . . a

pathway through a chain of preferred states, which are learned basins of attraction.

The penultimate result is not an equilibrium in the chemical sense, which is a dead

state, but a descent for a time into the basin of an attractor.87

Thus, according to Freeman, in governing action the brain normally

moves from one basin of attraction to another, descending into each basin

for a time without coming permanently to rest in any one basin. The body

is thereby led to move toward a maximal grip but the coupled coper, in-

stead of remaining at rest when a maximal grip is achieved, is drawn to

move on in response to another affordance that solicits the body to take

up the same task from another angle, or to turn to the next task that grows

out of the current one.
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The selected attractor, together with input from the sense organs, then

signals the limbic system to implement a new action with its new expected

reward. Then again a signal comes back to the olfactory bulb and elsewhere

as to whether the activity is progressing as expected. If so, the current

attractor and action will be maintained, but if the result is not as expected,

with the formation of the next attractor landscape some other attractor will

be selected on the basis of past learning. In Merleau-Ponty’s terms, Free-

man’s model, as we have seen, explains the intentional arc—how our pre-

vious coping experiences feed back to determine what action the current

situation solicits—while the TDRL model keeps the animal moving toward

a sense of minimal tension, that is, a least rate of change in expected re-

ward, and hence toward achieving and maintaining what Merleau-Ponty

calls a maximal grip.

Circular Causality

Such systems are self-organizing. Freeman explains:

Macroscopic ensembles exist in many materials, at many scales in space and time,

ranging from . . .weather systems such as hurricanes and tornadoes, even to galaxies.

In each case, the behavior of the microscopic elements or particles is constrained by

the embedding ensemble, and microscopic behavior cannot be understood except

with reference to the macroscopic patterns of activity.88

Thus, the cortical field controls the neurons that create the field. In Free-

man’s terms, in this sort of circular causality the overall activity ‘‘enslaves’’

the elements. As he emphasizes:

Having attained through dendritic and axonal growth a certain density of anatom-

ical connections, the neurons cease to act individually and start participating as part

of a group, to which each contributes and from which each accepts direction. . . . The

activity level is now determined by the population, not by the individuals. This is

the first building block of neurodynamics.89

Given the way the whole brain can be tuned by past experience to influ-

ence individual neuron activity, Freeman can claim, ‘‘Measurements of the

electrical activity of brains show that dynamical states of neuroactivity

emerge like vortices in a weather system, triggered by physical energies

impinging onto sensory receptors.’’90 Merleau-Ponty seems to anticipate

Freeman’s neurodynamics when he says:

It is necessary only to accept the fact that the physico-chemical actions of which the

organism is in a certain manner composed, instead of unfolding in parallel and inde-

pendent sequences, are constituted . . . in relatively stable ‘‘vortices.’’91
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Freeman’s Model as a Basis for Heideggerian AI

According to Freeman, the discreteness of global state transitions from one

attractor basin to another makes it possible to model the brain’s activity on

a computer. The model uses numbers to stand for these discrete state tran-

sitions. He notes:

At macroscopic levels each perceptual pattern of neuroactivity is discrete, because it

is marked by state transitions when it is formed and ended. . . . I conclude that brains

don’t use numbers as symbols, but they do use discrete events in time and space, so

we can represent them . . . by numbers in order to model brain states with digital

computers.92

That is, the states of the model are representations of brain states, not of

the features of things in the everyday world. Just as simulated neural nets

simulate brain processing but do not contain symbols that represent fea-

tures of the world, the computer can model the series of discrete state tran-

sitions from basin to basin, thereby modeling how, on the basis of past

experiences of success or failure, physical inputs are directly perceivable as

significant for the organism. But the model is not an intentional being,

only a description of such.

Freeman has actually programmed his model of the brain as a dynamic

physical system, and so claims to have shown what the brain is doing to

provide the material substrate for Heidegger’s and Merleau-Ponty’s phe-

nomenological accounts of everyday perception and action. This may well

be the new paradigm for the cognitive sciences that Wheeler proposes to

present in his book but which he fails to find. It would show how the

emerging embodied-embedded approach could be step toward a genuinely

existential AI. Although, as we shall see, it would still be a very long way

from programming human intelligence. Meanwhile, the job of phenom-

enologists is to get clear concerning the phenomena that must to be

explained. That would include an account of how human beings, unlike

the so-called Heideggerian computer models we have discussed, neither

just ignore the frame problem nor solve it, but show why it doesn’t occur.

How Heideggerian AI Would Dissolve Rather Than Avoid or Solve the

Frame Problem

As we have seen, Wheeler rightly thinks that the simplest test of the viabil-

ity of any proposed AI program is whether it can solve the frame problem.

We’ve also seen that the two current supposedly Heideggerian approaches
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to AI avoid rather than solve the frame problem. Brooks’s empiricist-

behaviorist approach, in which the environment directly causes responses,

avoids it by leaving out significance and learning altogether, while Agre’s

action-oriented approach, which includes only a small fixed set of possibly

relevant responses, fails to deal with the problem of changing relevance.

Wheeler’s own proposal, however, by introducing flexible action-

oriented representations, like any representational approach has to face

the frame problem head on. To see why, we need only slightly revise his

statement of the frame problem (quoted earlier), substituting ‘‘representa-

tion’’ for ‘‘belief’’:

Given a dynamically changing world, how is a nonmagical system . . . to retrieve and

(if necessary) to revise, out of all the representations that it possesses, just those repre-

sentations that are relevant in some particular context of action?93

Wheeler’s frame problem, then, is to explain how his allegedly Heideg-

gerian system can determine in some systematic way which of the action-

oriented representations it contains or can generate are relevant in a

current situation, and keep track of how this relevance changes with

changes in the situation.

Given his emphasis on problem solving and representations, it is not sur-

prising that the concluding chapter of Wheeler’s book, where he returns to

the frame problem to test his proposed Heideggerian AI, offers no solution

or dissolution of the problem. Instead, he asks us to ‘‘give some credence to

[his] informed intuitions,’’94 which I take to be on the scent of Freeman’s

account of rabbit olfaction, that nonrepresentational causal coupling must

play a crucial role. But I take issue with his conclusion that

. . . in extreme cases the neural contribution will be nonrepresentational in character. In

other cases, representations will be active partners alongside certain additional factors,

but those representations will be action oriented in character, and so will realize the

same content-sparse, action-specific, egocentric, context-dependent profile that Hei-

deggerian phenomenology reveals to be distinctive of online representational states at

the agential level.95

But for Heidegger, all representational accounts are part of the problem.

Wheeler’s account, so far as I understand it, gives no explanation of how

on-line dynamic coupling is supposed to dissolve the on-line frame prob-

lem. Nor does it help to wheel in, as Wheeler does, action-oriented rep-

resentations and the extended mind. Any attempt to solve the frame

problem by giving any role to any sort of representational states, even on-

line ones, has so far proved to be a dead end. It looks like nonrepresenta-

tional neural activity can’t be understood to be the ‘‘extreme case.’’ Rather,
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such activity must be, as Heidegger, Merleau-Ponty, and Freeman contend,

our basic way of responding directly to relevance in the everyday world, so

that the frame problem does not arise.

Heidegger and Merleau-Ponty argue that, and Freeman demonstrates

how, thanks to our embodied coping and the intentional arc it makes pos-

sible, we directly respond to relevance and our skill in sensing and respond-

ing to relevant changes in the world is constantly improved. In coping in a

particular context, say, a classroom, we learn to ignore most of what is in

the room, but if it gets too warm, the windows solicit us to open them.

We ignore the chalk dust in the corners and the chalk marks on the desks

but we attend to the chalk marks on the blackboard. We take for granted

that what we write on the board doesn’t affect the windows, even if we

write, ‘‘open windows,’’ and what we do with the windows doesn’t affect

what’s on the board. And as we constantly refine this background know-

how, the things in the room and its layout become more and more fa-

miliar, take on more and more significance, and each thing draws us to act

when an action is relevant. Thus we become better able to cope with

change. Given our experience in the world, whenever there is a change in

the current context we respond to it only if in the past it has turned out to

be significant, and even when we sense a significant change we treat every-

thing else as unchanged except what our familiarity with the world sug-

gests might also have changed and so needs to be checked out. Thus, for

embedded-embodied beings a local version of the frame problem does not

arise.

But the frame problem reasserts itself when we consider changing

contexts. How do we sense when a situation on the horizon has become

relevant to our current task? When Merleau-Ponty describes the phe-

nomenon, he speaks of one’s attention being drawn by an affordance on

the margin of one’s current experience: ‘‘To see an object is either to have

it on the fringe of the visual field and be able to concentrate on it, or else

respond to this summons by actually concentrating on it.’’96 Thus, for ex-

ample, as one faces the front of a house, one’s body is already being sum-

moned (not just prepared) to go around the house to get a better look at its

back.97

Merleau-Ponty’s treatment of what Husserl calls the inner horizon of the

perceptual object—its insides and back—applies equally to our experience

of a situation’s outer horizon of other potential situations. As I cope with a

specific task in a specific situation, other situations that have in the past

been relevant are right now present on the horizon of my experience as po-

tentially (not merely possibly) relevant to my current situation.
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If Freeman is right, our sense of familiar-but-not-currently-fully-present

aspects of what is currently ready-to-hand, as well as our sense of other po-

tentially relevant familiar situations on the horizon of the current situa-

tion, might well be correlated with the fact that brain activity is not

simply in one attractor basin at a time but is influenced by other attractor

basins in the same landscape, as well as by other attractor landscapes that,

under what have previously been experienced as relevant conditions, are

ready to draw current brain activity into themselves. According to Freeman,

what makes us open to the horizonal influence of other attractors is that

the whole system of attractor landscapes collapses and is rebuilt with each

new rabbit sniff, or in our case, presumably with each shift in our attention.

And after each collapse, a new landscape may be formed on the basis of

new significant stimuli—a landscape in which, thanks to past experiences,

a different attractor is active.98 This presumably underlies our experience of

being summoned.

And, once one correlates Freeman’s neurodynamic account with Merleau-

Ponty’s description of the way the intentional arc feeds back our past expe-

rience into the way the world appears to us, so that the world solicits from

us ever-more-appropriate responses to its significance, we can see that we

can be directly summoned to respond appropriately not only to what is rel-

evant in our current situation, but we may be summoned by other familiar

situations on the horizon of the present one. Then the fact that we can deal

with changing relevance by anticipating what will change and what will

stay the same no longer seems unsolvable.

But there is a generalization of the problem of relevance, and thus of the

frame problem, that still seems intractable. In What Computers Can’t Do I

gave an example of the possible relevance of everything to everything. In

placing a racing bet we can usually restrict ourselves to such relevant facts

as the horse’s age, jockey, and past performance, but there are always other

factors such as whether the horse is allergic to goldenrod or whether the

jockey has just had a fight with the owner, which in some cases can be

decisive. Human handicappers are capable of noticing such anomalies

when they come across them.99 But since anything in experience could be

relevant to anything else, for representational or computation AI such an

ability seems incomprehensible. Jerry Fodor follows up on my pessimistic

example:

‘‘The problem,’’ [Dreyfus] tells us, ‘‘is to get the structure of an entire belief system to

bear on individual occasions of belief fixation.’’ We have, to put it bluntly, no com-

putational formalisms that show us how to do this, and we have no idea how such

formalisms might be developed. . . . If someone—a Dreyfus, for example—were to ask
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us why we should even suppose that the digital computer is a plausible mechanism

for the simulation of global cognitive processes, the answering silence would be

deafening.100

But if we give up the cognitivist assumption that we have to relate iso-

lated meaningless facts and events to each other and see that all facts and

events are experienced on the background of a familiar world, we can see

the outline of a solution. The handicapper has a sense of which situations

are significant. He has learned to ignore many anomalies, such as an eclipse

or an invasion of grasshoppers that have so far not turned out to be impor-

tant, but, given his familiarity with human sports requiring freedom from

distraction, he may well be sensitive to these anomalies. Of course, given

his lack of experience with the new anomaly, it will not show its relevance

on its face and summon an immediate appropriate response. Rather, the

handicapper will have to step back and figure out whether the anomaly is

relevant and, if so, how. Unfamiliar breakdowns require us to go off-line

and think.

In his deliberations, the handicapper will draw on his background famil-

iarity with how things in the world behave. Allergies and arguments nor-

mally interfere with one’s doing one’s best. Of course, given his lack of

experience with this particular situation, any conclusion he reaches will be

risky, but he can sense that a possibly relevant situation has entered the ho-

rizon of his current task and his familiarity with similar situations will give

him some guidance in deciding what to do. While such a conclusion will

not be the formal computational solution required by cognitivism, it is cor-

related with Freeman’s claim that on the basis of past experience, attractors

and whole landscapes can directly influence each other.101 This suggests

that the handicapper need not be at a loss; that this extreme version of

the frame problem, like all the simpler versions, is an artifact of the atom-

istic cognitivist/computational approach to the mind/brain’s relation to the

world.

Conclusion

It would be satisfying if we could now conclude that, with the help of

Merleau-Ponty and Walter Freeman, we can fix what is wrong with current

allegedly Heideggerian AI by making it more Heideggerian. There is, how-

ever, a big remaining problem. Merleau-Ponty’s and Freeman’s accounts

of how we directly pick up significance and improve our sensitivity to

relevance depends on our responding to what is significant for us, given

our needs, body size, ways of moving, and so forth, not to mention our
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personal and cultural self-interpretation. If we can’t make our brain model

responsive to the significance in the environment as it shows up specifi-

cally for human beings, the project of developing an embedded and

embodied Heideggerian AI can’t get off the ground.

Thus, to program Heideggerian AI, we would not only need a model of

the brain functioning underlying coupled coping such as Freeman’s; we

would also need—and here’s the rub—a model of our particular way of

being embedded and embodied such that what we experience is significant

for us in the particular way that it is. That is, we would have to include in

our program a model of a body very much like ours with our needs, desires,

pleasures, pains, ways of moving, cultural background, etc.

So, according to the view I have been presenting, even if the

Heideggerian–Merleau-Pontian approach to AI suggested by Freeman is

ontologically sound in a way that GOFAI and subsequent supposedly

Heideggerian models proposed by Brooks, Agre, and Wheeler are not, a

neurodynamic computer model would still have to be given a detailed de-

scription of a body and motivations like ours if things were to count as sig-

nificant for it so that it could learn to act intelligently in our world.102 We

have seen that Heidegger, Merleau-Ponty, and Freeman offer us hints of the

elaborate and subtle body and brain structures we would have to model

and how to model some of them, but this only makes the task of a Heideg-

gerian AI seem all the more difficult and casts doubt on whether we will

ever be able to accomplish it.103

We can, however, make some progress toward animal AI. Freeman has

actually used his brain model to model intelligent devices.104 Specifically,

he and his coworkers have modeled the activity of the brain of the sala-

mander sufficiently to simulate the salamander’s foraging and self-

preservation capacities. The model seeks out the sensory stimuli that make

available the information it needs to reach its goals. Presumably such a

simulated salamander could learn to run a maze and so have a primitive in-

tentional arc and avoid a primitive frame problem. Thus, one can envisage

a kind of animal artificial intelligence inspired by Heidegger and Merleau-

Ponty, but that is no reason to believe, and there are many reasons to

doubt, that such a device would be a first step on a continuum toward mak-

ing a machine capable of simulating human coping with what is significant.
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Figure 15.1

John Maynard Smith. Image courtesy of University of Sussex.



15 An Interview with John Maynard Smith

John Maynard Smith (1920–2004), FRS, was born in London and educated at

Eton and Cambridge, where he studied aeronautical engineering. After the

Second World War, during which he worked on military aircraft design, he

changed career direction and studied fruit fly genetics under J. B. S. Haldane

at University College, London. In 1965 he became the founding dean of bio-

logical sciences at the University of Sussex, where he stayed for the rest of his

career. He was one of the great evolutionary biologists, making many impor-

tant contributions, including the application of game theory to understanding

evolutionary strategies, and a clear definition of the major transitions in the

history of life. He won numerous awards and honors, including the highly

prestigious Crafoord Prize in 1999 and the Kyoto Prize in 2001.

This is an edited transcript of an interview conducted on May 21, 2003, in

John Maynard Smith’s office in the John Maynard Smith Building at the Uni-

versity of Sussex, which houses the life sciences. The discussion centered on

John’s interactions with people involved in cybernetics and early AI.

John Maynard Smith: Shall I tell you about my meeting with Turing?

Philip Husbands: Please.

JMS: It was when I was a graduate student of Haldane at University Col-

lege, London; very soon after I started, so we’re talking about 1952, and I

was counting fruit flies. But one of the other things I had been doing, inev-

itable given my past in aeronautical engineering, was to think about animal

flight. And I wrote various papers on that; I was thinking particularly about

stability and control of animal flight. I was influenced by John Pringle’s

work, of course; he did this very, very beautiful empirical work showing

that the halteres of the fruitfly, or indeed of any fly—all flies have

halteres—are involved in control of the horizontal plane and the yaw.1

Anyway, Haldane came into the lab, where I was sitting counting flies,



with this rather nice-looking dark small chap, and said, ‘‘Maynard Smith!’’

—no, ‘‘Smith!,’’ he never got round to calling me Maynard Smith—‘‘This is

Dr.——,’’ and I didn’t catch the name. ‘‘He would be interested in what

you have been doing recently on flight.’’ And I remember thinking, ‘‘Oh

God, not another of these biologists who doesn’t know a force from an

amoeba; I’m going to have to go very very slowly.’’

So I started explaining to him some stuff I’d been doing on instability. I

was at the time interested in the fact that primitive flying animals had long

tails—you know, dinosaurs such as Archaeopteryx. This had always been

explained away as just an evolutionary hangover: they had long tails

when they were on the ground and hadn’t had time to get rid of them.

And that is part of the truth, obviously, but it occurred to me that the

more interesting truth was that they actually needed them for stability. I

proposed that it was only after their nervous system evolved a bit to control

flight more, that they were able to fly with short tails. In fact, my first pub-

lished paper was called ‘‘The Importance of the Nervous System in the Evolution

of Animal Flight,’’ and it discusses this problem with a lot of criticism of

previous claims, and basically I think I still believe it.2 Anyway, I started

explaining this to this poor buffoon with some diagrams. He listened

patiently without saying anything, then he held out his hand for my pen

and changed the direction of one of my arrows. And when I looked at it

he was obviously right; I’d made a mistake in a force diagram. I thought,

‘‘Oh shit,’’ because I’d really been talking to him like a two-year-old, and

so I said, ‘‘Look, I’m so sorry but I didn’t actually catch your name.’’ And

he said ‘‘Well my name is Turing.’’ ‘‘Oh shit!’’ I thought again!

Anyway, I have this other interest in Turing. As you know, he wrote this

very remarkable paper on the chemical basis of morphogenesis describing a

reaction-diffusion-based model.3

PH: Yes, that paper must have just come out [in 1952], or was about to be

published.

JMS: Yes, it’d come out just before. So we talked about that for quite a

while, several hours. We talked about what kinds of observations might be

made in the field in connection with the theory, and I’ve been interested in

reaction-diffusion systems ever since. When I came down here [Sussex Uni-

versity] it was one of the topics that I hoped we’d investigate—the relation-

ship between chemical gradients and development and so on. And so that

is why I invited Brian Goodwin to come here. It was really his interest in

morphogenesis and development that led to the invitation. Anyway, I

didn’t get to know Turing, as I only met him on this one occasion.

PH: So there wasn’t really a scientific interaction, but some influence?
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JMS: Yes, through his morphogenesis work he had a lasting influence on

me and what I thought was important in biology. But there was no real sci-

entific interaction. Various young people like myself were influenced by his

ideas and followed them up later, and the ideas are still very much in cur-

rency. But at the time we were just postgraduates. I don’t remember the

idea being discussed at the time at mainstream biology meetings. Embryol-

ogy was a very empirical science, a very nonmathematical branch of biol-

ogy, back then. I don’t think it had much impact at the time because of

that.

Now Pringle I interacted with a bit more because he’d done this work on

flight. But he was already a rather senior figure. He wasn’t a lot older than

me but he’d started younger and was already an established figure and I

was just a graduate student. We talked about the control of flight and stabil-

ity. It’s interesting to learn he was a member of the Ratio Club. I hadn’t

realized.

PH: Yes, he was one of the founding members and it was he who sug-

gested Turing, whom he knew quite well, should become a member, as

they needed some mathematicians to keep the biologists in order.

JMS: Yes, I can well understand that! Of course most people who were

doing theoretical biology at that time had worked on radar during the war

and had worked with engineers and mathematicians and so appreciated

what they could contribute.

PH: Indeed. Pringle and many of the other biologists involved in the Ratio

Club seemed to have had an inclination towards theoretical work before

the war, but it was greatly strengthened during the war due to deeper expo-

sure to and involvement with engineering. Pringle, for instance, worked on

airborne radar development; in fact he was in charge of it for a while. This

kind of wartime work seemed to profoundly influence the subsequent

careers of quite a few biologists. But you were very close to the whole thing,

of course. Does that seem right to you?

JMS: Oh I’m sure of it. Absolutely sure. Of course I came into biology from

engineering, but on the other hand not from electrical engineering or con-

trol theory.

PH: You had studied aeronautical and mechanical engineering?

JMS: I was basically a mechanical engineer. Though, curiously enough,

during the war it had occurred to me that, at least in principle, if an auto-

matic pilot was sensitive enough and quick enough it would be able to

control an unstable aircraft, whereas a pilot couldn’t. Things would happen

too quickly for a human; they would be dead before they’d learnt. You see,

there were certain real advantages, aerodynamically, in having an unstable
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aircraft. It wasn’t just that such an aircraft could maneuver quicker, but also

landing speeds could be increased and things of that kind. But it also be-

came clear to me very quickly that at that time electrical control was simply

not fast enough. But the idea of automatic pilots and control of instability

were in my mind and so when I started thinking about insect flight, after

the war, it came back to the fore.

PH: Obviously, you became aware of cybernetics, but how underground

or mainstream was it, as far you can remember, in the late 1940s, early

1950s.

JMS: Well, you know, I don’t think I was explicitly aware of cybernetics

until later. That early, I think only a small number of scientists were

involved. So, not mainstream.

In fact I remember being rather annoyed when I read about cybernetics a

few years later. One of the problem we had in aircraft design was to predict,

before the structure of the aircraft was built, what its natural modes of vi-

bration would be. How was it possible to find out? Now—I’m rather proud

of this, actually—it occurred to me that you could build an electrical ana-

logue of any mechanical systems if you knew what the masses and stiff-

nesses and so on were. So we could build an electrical analogue of the

structure of the aircraft that oscillated and get its fundamental modes from

that. And we did! Anyway, it was rather useful at the early design stage. Of

course I wasn’t the only person it occurred to, mind you, or the first, but at

the time we hadn’t come across the idea.

So this was actually used. It was rather exciting, because what you then

did was to build the aeroplane and discover what its actual modes of vibra-

tion were and if they agreed. By the way, we did the actual measurements

using a variable-speed electric motor that drove a wheel and you could

shake the thing at any frequency you liked. You bolted this to the frame

and you gradually speeded it up until you got the whole structure singing,

very dramatic. Anyway, this was the kind of way that people with a little

bit of mathematics in aircraft were thinking. Then some years later, after

the war, I read [W. Ross] Ashby’s Introduction to Cybernetics4—an interesting

book—and in it he describes electrical analogue computers. And I thought,

‘‘Christ, I’ve been going along all this time without knowing what I’d

done.’’ And it was rather annoying. [Chuckles.]

Anyway, that aircraft-modeling work is typical of the kind of thinking

and problem solving that was in the air. There weren’t, on the other hand,

too many of us with the necessary technical skills, and of course we

brought some of what we learned into our work after the war.
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PH: Yes, that’s very interesting, and presumably this need to be imagina-

tive, as well as the mixing of biologists and engineers and mathematicians,

played an important part in developing theoretical biology, or at least

pushing more theoretical thinking into biology?

JMS: Yes, I think that’s right. Some biologists became more theoretical

following their war work, but there was an effect on mathematicians, too.

That happened because people with mathematics, of which Turing is an

example, had been drafted into all kinds of technical work during the war,

applying their mathematics. In Turing’s case, of course, this was mainly

decoding work, and for others it was radar research and development. So

they became used to thinking about practical problems and at the end of

the war they had this interest in applying their mathematics to the real

world, and biology was one of the obvious places to do it.

But now when it comes to theoretical biology I’m quite intrigued. Earlier

I’d say it was mainly population dynamics. The first burst of theoretical bi-

ology was from those two guys [Vito] Volterra and [Alfred J.] Lotka, making

models of population growth. That would have been in the thirties or a lit-

tle before. And the second burst was [Ronald] Fisher, [Sewall] Wright, and

Haldane’s work on population genetics, and that was actually very impor-

tant in biology at that time. That was also in the 1930s, and prior to that

there was really a complete dichotomy between the Darwinists and the

Mendelians. The Mendelians thought that evolution happened when a

mutation occurred and the Darwinists were doubtful about Mendel and

thought it was all a matter of selection. And the extraordinary thing is, cer-

tainly looking at it now, that these views were regarded as incompatible.

And indeed Haldane, Wright, and Fisher showed that actually they were

completely compatible. That’s a very important example of how theory

and mathematical thinking can really advance biology. Now of course all

this happened when I was a schoolboy, before the war; but the amount

of theoretical work increased after the war. Of course there were parallel

developments in neurobiology, but I think they were probably very largely

independent.

PH: Yes, I think that’s right. Interestingly, many of those involved in the

rich interaction between cybernetics and neurobiology had worked on

radar in the war.

JMS: Yes, right. Now I never had any contact with the radar people during

the war, which is probably why I didn’t get very involved in these things

later. Eventually I saw myself as an evolutionary biologist working in popu-

lation genetics.
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The people whom I had contact with, and who had influence, and I think

were involved with some of the people in the Ratio Club, were C. H. Wad-

dington and Joseph Needham.

PH: Waddington was certainly involved a little in the British cybernetics

scene. For instance, he gave a talk at the Ratio Club on development as a

cybernetic process.

JMS: Waddington, who was an interesting man, didn’t actually use his

mathematics at all. I knew him fairly well, from those curious meetings he

used to run on theoretical biology.5 He encouraged young mathematically

inclined biologists and by bringing us together he helped by making us feel

less like loners. He was interested in relating development to evolution, and

he liked ideas. But the point of mathematics is to use it. What good is it

unless you are doing something that couldn’t be done without it? I don’t

think that ever filtered through to him. Needham I hardly knew. I met

him as an undergraduate and he was an awfully formidable figure. But

again it’s not quite clear to me what he actually did. I think there are these

great gray eminences who people don’t understand so they think their

work must be very important indeed. He was rather like that.

Now what about Donald Michie? We worked in the same lab for years

and years when he was a geneticist, and then he became very involved in

artificial intelligence, as you know. Of course he was a close colleague

of Turing during the war. He told me many entertaining tales of those

times. Turing’s gold, for instance. According to Donald, in nineteen thirty-

whatever, when it looked as if the Germans were going to invade, Turing

decided that what he was going to turn all his money into gold. And so he

did and he buried it in the corner of a field somewhere. Donald didn’t

know about this at the time, but he became involved much later, in the

war, when it was fairly clear the Germans were not going to invade, and

Turing decided he was going to dig it up. Donald has this dramatic story

about how they built a home-made metal detector and spent their week-

ends tearing around the Home Counties looking for this bloody gold. As

far as I know they never found it. He wouldn’t tell me what area it was in!

But it gives you an image of Turing. Great story.

When we were all at University College London, Michie and his then

wife, Anne McLaren, who is a very distinguished, but not theoretical, biol-

ogist, were working on perpendicular fertilization. One of the happiest

evenings of my life was spent with these two in a pub after they had first

managed to take an egg out of a mouse, fertilize it, pop it back into the

same mouse, and get a baby mouse! Now to do something for the first

378 An Interview with John Maynard Smith



time is bloody hard. So they were basically experimental embryologists.

That work couldn’t have been done without Anne, who is someone for

whom I have an immense admiration.

I don’t know how Donald got into Bletchley. He’s an extremely bright

guy, no question about it, but not formally mathematical, not back then. I

think he was a classics scholar at that stage. But right from the early days he

was interested in artificial intelligence. Donald and I played one of the very

first games between two chess computers. You see we both had an interest

in inventing rules to govern games and processes. During the war we had

each produced a set of rules, an algorithm, to play chess. If you carefully

carried out the calculations, which you could do by hand, the rules speci-

fied what your next move should be. And mine was called SOMA, for

Smith’s One-Move Analyzer; it didn’t look at all deep. His was called

Machiavelli, for reasons I’m not quite clear about. Machi, because it’s like

Michie, and his collaborator was someone whose name ended in ‘‘velli,’’

or something like that, and the obvious reference to Machiavelli, I suppose!

Anyway, we spent a long weekend playing these two sets of rules against

each other with my older son as referee, because neither of us trusted the

other one!6 You know, because if the obvious move was pawn to king,

it had to be the rules that made the moves, not the humans. It was even

published.7

PH: How much do you think science had changed from those heady post-

war days, when there seemed to be a tremendous energy and an enthusi-

asm for innovation?

JMS: Well, obviously the particular part of science I work in has been dra-

matically transformed by technical advances, many involving computers,

so that it is easier as well as cheaper and cheaper to obtain data. So we get

submerged in data these days.

PH: What about the way science operates? Maybe this is purely illusion-

ary, but it seems to me there might have been a bit more freethinking

around at that period. Do you think people were less hemmed in by disci-

pline boundaries or very specific kinds of methodologies?

JMS: I’m not sure. There are plenty of young people today who seem to

me to be very capable and imaginative and able to tackle these sorts of

problems and are not too constrained, and one way or another manage to

get the job done and the message out, with some fairly way-out topics and

speculative research. However, there is much more money, and that brings

red tape. But money, and the need to get it, takes over more and more

today, and that is a great pity. Our relationship to the funding has changed
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a great deal; we hardly had to think about money at all then. We weren’t

constantly brooding about how to keep research funding up. So in that

sense we were freer to get on with the science.
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Figure 16.1

John Holland. Image courtesy of John Holland.



16 An Interview with John Holland

John Holland was born in 1929 in Indiana. After studying physics at MIT, he

worked for IBM, where he was involved in some of the first research on

adaptive artificial neural networks. He went on to the University of Michigan

for graduate studies in mathematics and communication sciences and has

remained there ever since; he is professor of psychology and professor of elec-

trical engineering and computer science there. Among many important con-

tributions to a number of different fields, mostly related to complex adaptive

systems, he developed genetic algorithms and learning classifier systems,

foundation stones of the field of evolutionary computing. He is the recipient of

a MacArthur Fellowship, a fellow of the World Economic Forum, and a member

of the Board of Trustees and Science Board of the Santa Fe Institute.

This is an edited transcript of an interview conducted on May 17, 2006.

Philip Husbands: Could you start by saying something about your family

background?

John Holland: My father’s family came from Amsterdam, way back, so the

Holland has some relation to my origins. My mother’s family originally

came from Alsace in France. My father owned several businesses that all

had to do with soybean processing and my mother often worked as his ac-

countant. She was quite adventurous; in her forties she learned to fly.

PH: Were there any particular influences from early school days or from

your family that led you to a career in science?

JH: Not particularly, although my parents always encouraged me and

supported my interest, from the first chemistry set they bought me, and in

those days these were much more explosive than they are now, through to

high school and beyond. But I grew up in a very small town, with a popu-

lation of less than nine thousand, so there wasn’t much in the way of di-

rect encouragement in science.



PH: You went on to study at MIT; can you say a bit about your time there?

Were there particular people you came across who influenced the intellec-

tual direction you took?

JH: There was one person who was very important. I was in physics. At

MIT in those days, I think it’s still true, you had to do a dissertation for

your bachelor’s degree. I decided that I wanted to do something that

was really quite new: work with the first real-time computer, Whirlwind.

Work on Whirlwind was largely classified, but I knew someone who was

involved: Zdenek Kopal. He had taught me a course on what was then

called numerical analysis; now it would be called algorithms. He was an

astronomer, working in the Electrical Engineering Department, so I went

and knocked on his door and he agreed to be the director of my disser-

tation. He helped me get double the usual number of hours and I wrote a

dissertation—using Whirlwind, getting the necessary security clearances

and everything—on solving Laplace’s equation using Southwell’s Relax-

ation Method. He later took the first chair of astronomy at Manchester

University and had a very distinguished career.

PH: What year was this?

JH: This would be 1949.

PH: So very early, as far as modern digital computing is concerned.

JH: Indeed. Whirlwind was only recently operational and was, as far as I

know, the first computer to run in real time with a video display. It was

being used for such things as air-traffic control, or at least that’s what we

were told, but it was obvious that it was also being used relative to missile

detection and all that kind of stuff.

PH: During your undergraduate days did you come across [Norbert] Wie-

ner, [Warren] McCulloch or any of the other cybernetics people?

JH: Oh yes, and that had an influence, but a rather distant one. Wiener we

saw all the time. He was often called Peanuts because he’d walk down the

hall flipping peanuts into the air and catching then in his mouth. So there

was some influence there, and I also took a course on Bush’s Differential

Analyzer, which of course got me more interested in computers as well.

PH: What happened next? Did you go straight to graduate school?

JH: No. Because of the Whirlwind, I was offered a very interesting position

at IBM in what was then their main research lab at Poughkeepsie, New

York. The job was in the planning group for their first commercial com-

puter, the 701. They called it the Defense Calculator. I was one of a group

of about eight. For such a young guy it was quite an eye opener. We did the

logical planning for the organization of the 701. This was in the very early

days of commercial computing—the 701 laboratory models had cathode-
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ray tubes for storage and used punched cards for input. The engineers were

building the prototype during the day, and we were testing it using our

programs at night. There was a rush because Remington-Rand was also rac-

ing to produce a commercial programmed computer. Arthur Samuels and I

worked coincidentally at night—I was doing neural nets and he was work-

ing on his checkers player.1 A major part of our logical planning was to

make sure that the machine was readily programmable in machine lan-

guage (remember, this was before FORTRAN). Rochester convinced the lab

director that these unusual programs (the checkers player and the neural

net) gave the machine a good workout. The neural net research came about

after J. C. R. Licklider, from ARPA [Advanced Research Projects Agency],

who knew Hebb’s theory of adaptation in the nervous system very well,

came through and lectured on it at IBM.2 Nathaniel Rochester, my boss,

and I became quite interested in this and did two separate models, which

were later published in a single paper.3 We went back and forth to Mon-

treal at least six or seven times to see [Donald] Hebb at McGill University

while we were developing the model.

PH: Did you interact much with Samuels while you were at IBM?

JH: Yes, I did. We met with him regularly at lunch and once every

other week we met at his house to play, in rotation, poker, Kriegspiel, and

Go.

That time at IBM was obviously an influence on me. I worked for them

for eighteen months and then decided I really did want to go to graduate

school. IBM was good enough to offer me a consulting contract to help

pay my way for four years of graduate school. I would go to school in the

winter and go to IBM in the summer. So I came to the University of Michi-

gan, which had one of the best math departments in the country; they had

a couple of members of the Bourbaki group—the influential movement

who were trying to rigorously found all mathematics on set theory—and

things of that sort. Also, and not totally incidentally, they had a lot of

co-eds.

So anyhow I did math and I had actually started writing a dissertation in

mathematics—on cylindrical algebras, algebras that extended Boolean alge-

bras to predicate logic with quantifiers—when I met Art Burks. He is cer-

tainly one of the big influences in my life. He and others were starting

a new program called Communication Sciences, which went all the way

from language and information theory through to the architecture of com-

puters. Both MIT and Michigan had Communication Sciences programs,

and in both cases they later became Computer Science departments. Art

convinced me that this was of great interest to me, and indeed it was, and
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so I stopped writing my math dissertation and took another year of courses

in areas such as psychology and language, and then did my dissertation

within the Communication Sciences program.

PH: What was the topic of that thesis?

JH: It was called ‘‘Cycles in Logical Nets.’’ [Arthur] Burks and others had

set up a kind of abstract logical network, related to McCulloch and Pitts

networks, and I wanted to see if I could characterize the kinds of changes

you got if you allowed the network to contain cycles, feedback in other

words. The thesis was finished in 1959.

PH: Who were the people you interacted with during that time, apart

from Burks?

JH: There were quite a few. Someone who was in the same cohort as me

was Bill Wang, who later went to Berkeley and became a world-renowned

linguist. Actually quite recently, within the last four or five years, Bill and

I have got back together again to build agent-based models of language

acquisition; so that was a kind of long-range boomerang. George Lakoff,

the linguist who’s done work on metaphor at the logical level, among other

things, was here at Michigan. Gunnar Hok, a man who is not so well

known but wrote an important book on information theory, was also

someone I interacted with. Anatol Rapoport, well known in game theory

and several other areas, was also here at that time. So there was a good

spread of people with a real knowledge of many aspects of what we would

now probably call complexity.

PH: Yes, and it sounds as if there was also quite a strong flavor of what

would become cognitive science.

JH: Oh yes, definitely. Anatol Rapoport, especially, was developing ideas

in that direction.

PH: During this period did the group at Michigan interact much with

other groups in the U.S., for instance at MIT?

JH: Yes. We had summer courses in what was called automata theory;

after the first year I directed them. Herb Simon, Al Newell, Marvin Minsky,

John McCarthy, they all came and lectured on them, so there was quite a

bit of interaction. John McCarthy was also at IBM during the same summer

periods as me, so we got to know each other pretty well. In fact, he taught

me how to play Go. That would be about 1954 or 1955. John was editing

the Automata Studies book with Claude Shannon at that time.4

PH: Do you remember what the spirit was like at the time? What were the

expectations of people working in your area?

JH: There were already differences in expectations. But two things that I

remember are that there was a fair amount of camaraderie and excitement,
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and also a bit of challenge back and forth between us. Who knows how

much this is colored by memory, but I think of it as a heady time. I enjoyed

it.

PH: These were heady times, as you said, but do you remember if people’s

expectations were naive, at least in hindsight, or if the difficulties of the

problems were appreciated from the start?

JH: Let me make some observations. By this time, the mid-1950s, there

was already a strong belief that you could program intelligence into a com-

puter. There was already an interesting nascent division, which later be-

came much more prevalent, between what came to be known as the Neats

and the Scruffies. The Scruffies were on the East Coast, strangely enough,

since we tend to think of people from there as pretty neat, and they were

going to hack it all in. The Neats were on the West Coast and they wanted

to do it by logic—the logic of common sense and all that—and make it

provably correct. The Scruffies didn’t believe the problem was tractable

using logic alone and were happy to put together partly ad hoc systems.

To some extent this was a split in approaches between John McCarthy, in

the West, and Marvin Minsky in the East. Interestingly enough, as this

unfolded there was very little interest in learning. In my honest opinion,

this held up AI in quite a few ways. It would have been much better if

Frank Rosenblatt’s Perceptron work, or in particular Samuels’s checkers-

playing system, or some of the other early machine learning work, had

had more of an impact.5 In particular, I think there would have been less

of this notion that you can just put it all in as expertise.

PH: The alternative to that, adaptive systems, seem to have been the focus

of your attention right from the start of your career. Is that right?

JH: Yes, certainly. A major influence on me in that respect was Fisher’s

book On the Genetical Theory of Natural Selection.6 That was the first time I

really realized that you could do mathematics in the area of biological

adaptation.

PH: Was that the starting point for genetic algorithms?

JH: Yes. I came across the book when I was browsing in the open stacks of

the math library. That must have been somewhere around 1955 or 1956.

Computer programming was already second nature to me by that time, so

once I saw his mathematical work it was pretty clear immediately that it

was programmable.

PH: Were you initially thinking in terms of computational modeling of

the biology or in terms of more abstract adaptive systems?

JH: Well, probably because of exposure to Rapoport and others, I began

to think of selection in relation to solving problems as well as the straight
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biological side of it. In fact, by the time I was doing the final writing up

of my thesis I had already gone heavily in the direction of thinking about

genetics and adaptive systems. So the thesis became pretty boring to me

and I wanted to move on to the new stuff.

PH: Once you’d finished your thesis, how did you get to start work on

what became genetic algorithms? Were you given a postdoc position or

something?

JH: Well, this is where I had a great piece of luck and Art Burks was just

superb. The stuff I wanted to do was not terribly popular—the typical com-

ment you’d get was ‘‘Why would want to use evolution to try and solve

problems; it’s so slow’’—but Art always stood up for me and said, ‘‘This is

interesting work. Let him get on with it.’’ So I got a job where I was teach-

ing a couple of courses—logic for the philosophy department, and so on—

and doing my research. Within a year they made me an assistant professor

and in those days you got promoted pretty rapidly, so things went on very

quickly and I settled in at Michigan.

PH: Almost hidden away in some of the cybernetics writing of the 1940s

and 1950s there are several, usually fairly vague, mentions of the use of ar-

tificial evolution. For instance, Turing in his 1950 ‘‘Mind’’ paper.7 So the

idea was floating around to some extent. Were you aware of any of these?

Were they a kind of background influence?

JH: Oh yes. One thing that I came across in retrospect and under analysis

from others, at IBM actually, was [Richard] Friedberg’s work on evolving

programs.8 This was a really important piece of work, but it was flawed.

One of the people in his own group, Dunham I think, later wrote a paper

with him showing that this evolutionary process was slower than random

search.9 Still, the idea was there; Friedberg was a smart guy. That was of

great interest to me because you could see why it didn’t work.

PH: Did you come across this after you’d started work on developing your

evolutionary approach?

JH: Yes, I’d already read Fisher and gotten interested. A bit later Fogel,

Owens and Walsh wrote their book on using evolutionary techniques to

define finite state machines for simple predictive behaviors.10 Again, you

could easily see why it could go wrong, but it was influential in helping to

show the way. So there was something in the wind at the time.

PH: It took a long time for genetic algorithms, which developed into the

field of evolutionary computing, to become mainstream.11 When it did,

were you surprised? What were your feelings when, in about 1990, it sud-

denly became enormous?
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JH: Yes, it did seem almost explosive at that time. It was surprising. By

that time I’d had a lot of graduate students who had finished their degrees

with me, so there was a local sphere of influence and we knew there were

kinds of problems that could be solved with evolutionary methods that

couldn’t be solved easily in other ways. But I think that the tipping point,

as we’d call it nowadays, was when it became more and more obvious that

the kinds of expert systems that were being built in standard AI were very

brittle. Our work offered a way around that. So suddenly, partly because

people were looking elsewhere for alternatives, and because some of my

students had became reasonably well known by then, the whole thing just

took off.

PH: That must have been gratifying.

JH: Yes, but there were pluses and minuses to it. It was nice to see after all

that time, but on the other hand, you begin to get too many phone calls!

PH: Rewinding back to the 1950s, your name is mentioned on the pro-

posal for funding for the Dartmouth Conference as someone who would

be invited. But did you actually go?

JH: No, I did not. At that time I had heavy commitments at Michigan. I

can’t remember why I didn’t go, because I planned to. But I did not and

that was my great loss, because that was a very important meeting.

PH: Yes, and of course it was very influential in advocating what became

known as symbolic AI. That seems to go against the grain of the kind of

work you have always been involved in. Were you aware at the time that

the tide was turning in that direction?

JH: I would say within the year I was aware of it. Not immediately, but

fairly quickly, because, even though I wasn’t there, there was a lot of back

and forth. Notions like adaptation simply got shoved off to one side so any

conversation I had along those lines was sort of bypassed. My work and, for

instance, Oliver Selfridge’s work on Pandemonium, although often cited,

no longer had much to do with the ongoing structure of the area.12

PH: Why do you think that happened? Why was the work on adaptive

systems and learning sidelined?

JH: John McCarthy and Marvin Minsky are both very articulate and they

both strongly believed in their approach. That was part of it. Herb Simon

and Al Newell had worked on their Logic Machine, so they were oriented

in that direction and they were influential.13 McCulloch and Pitts’s net-

work model, even though it was connected to neural networks, was itself

highly logical—Pitts was a brilliant logician. This was the time when sym-

bolic logic had spread from philosophy to many other fields and there was

An Interview with John Holland 389



great interest in it. But even so, it’s still not absolutely clear to me why the

other approaches fell away. Perhaps there was no forceful advocate.

PH: Putting yourself back into the shoes of the graduate student of the

1950s, are you surprised how far things have come, or haven’t come?

JH: Well, let’s see. If I look back and think of expectation from that time, I

am surprised. I really believed that by now we would be much better at

things like pattern recognition or language translation, although I didn’t

think we’d get there the logic way. Partly because I had worked with Art

Samuels, and had great respect for him, I really believed that taking his

approach to playing games, developing it, and spreading it into things

that were game-like would make tremendous advances within a decade or

two. But what we have today is Deep Blue,14 which doesn’t use pattern rec-

ognition at all, and we still don’t have a decent Go playing program.

PH: Why do you think that is? Because the difficulty of the problems was

underestimated?

JH: I think that’s part of it. In my opinion, those problems can’t be solved

without something that looks roughly like the human ability to recognize

patterns and learn from them.

PH: We’ve already discussed the sudden popularity of genetic algorithms,

but a lot of other related topics came to the fore in the late 1980s and early

1990s. The rise of artificial life, complex-systems theory, nouvelle AI, and

the resurgence of neural networks all happened at about that time, and

there was the founding of the Santa Fe Institute in the mid-1980s. You

were involved in most of those things. At least in AI, the switch from the

mainstream to topics that had been regarded as fringe for a long time

seemed quite sudden. Was there a shift in scientific politics at this time, or

some successful lobbying? Or something else?

JH: I think the Santa Fe Institute is a good way to look at this tipping

point; I think its founding says a lot about what was happening. Let me

make a comparison. Just before World War II, there was this really excep-

tional school of logic in Poland, the Lwów-Warsaw School of Logic, and

many of the best logicians in the world came out of there. The Santa Fe In-

stitute seemed similar to me in that it depended a lot on a very few people.

George Cowan, a nuclear chemist from Los Alamos, had the idea to set up

the institute. He thought there were a group of very important problems,

that weren’t being solved, which required an interdisciplinary approach—

what we would now call complexity. He recruited Murray Gell-Mann and

together they brought in three other Nobel laureates and they decided

they should start an institute that wasn’t directly connected to Los Alamos

so there would be no classification and security problems. It was originally
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called the Rio Grande Institute. About a year and a half later they decided it

should be located in Santa Fe and renamed it the Santa Fe Institute. That

really did start something. As I often say to graduate students, research at

the Santa Fe Institute was how I imagined research would be when I was a

young assistant professor just starting out, but it wasn’t until the institute

was set up that I really got engaged in the way that I had dreamed of as a

young guy. It still is an extremely exciting place. The first major impact we

had was when we got a group of people together to discuss how we might

change economics. The group included people like John Reed, who was the

CEO of Citicorp; Ken Arrow, Nobel laureate in economics; Phil Anderson,

Nobel laureate in theoretical physics, who had a real interest in economics;

a bunch of computer scientists; and some others. We got together for a

week and produced some interesting ideas about viewing the economy as

a complex system.

PH: Did you have much of an interest in economics before that? You’ve

done quite a bit of work in that area since.

JH: I got interested in economics as an undergraduate at MIT where I took

the first course that Paul Samuelson offered in the subject. Samuelson was a

great teacher—his textbook became a huge classic—as well as a great econ-

omist (he went on to get a Nobel Prize). But I hadn’t really done any work

in the area until the Santa Fe meeting. Ken Arrow was a great influence on

me—the Arrow-Debreu model is the basis of so much of modern econom-

ics, but Ken was ready to change it. He said, ‘‘Look, there’s this wrong and

this wrong.’’ Interacting with him was really good. Anyway, I think the en-

ergy and intellectual excitement of the Santa Fe Institute, which involved

some highly regarded and influential people, played an important part in

shifting opinion and helped to catalyze changes in outlook in other areas.

That was a very exciting period.

PH: In my opinion, the spirit of your work has always seemed close to that

of some parts of cybernetics, perhaps not surprisingly, given when you

started. It often reminds me of the work of people like Ross Ashby. Is that

a fair link?

JH: Yes. I certainly read his books avidly and there was a group of people,

including Ashby, Bertalanffy, and the General Systems theorists, Rapoport,

Rashevsky, who was here for a while—not to mention von Neumann and

Art Burks—who created a whole line of thought that was influential for me.

Art Burks actually edited von Neumann’s papers on cellular automata, so

we were seeing that stuff before it was published.

PH: Those are some of the main names we would associate with the

beginnings of systems theory and complexity.

An Interview with John Holland 391



JH: That’s right. Someone else I should mention is Stan Ulam, the great

mathematician who invented the Monte Carlo method, among many

other things. At the time the Santa Fe Institute was founded he was still

alive, but he died soon thereafter and his wife donated his library to the in-

stitute. For a while all his books were collected together on a few shelves so

you could go in and pick them out. He had a habit of making notes in the

margins. This was about the first time I’d been able to almost see into

someone’s mind, following the way it works. Ulam was just exceptional.

PH: Let’s concentrate on the present for the final part of this interview.

What do you think are the most import problems in evolutionary comput-

ing today?

JH: Well I think a really deep and important problem is what has come

to be called evo-devo: evolutionary development. I think a lot of the

framework we have is relevant to that problem in biology. At the moment

most of the discussion on evo-devo is sort of like evolutionary biology pre-

Fisher—a broad framework, some useful fact, but nothing like Fisher’s

mathematical framework.

PH: That’s very interesting. So you think there is a bigger role for evolu-

tionary computing in theoretical biology?

JH: I think it’s quite possible, especially when combined with agent-based

modeling of complex adaptive systems. A major effort at the Santa Fe Insti-

tute, and one I am involved in, is developing those kinds of studies of com-

plex adaptive systems involving multiple agents that learn. Evo-devo has

got to be heavily related to that. You can really think of developmental

processes, where the cells in the body modify themselves and so on, as a

complex adaptive system where agents are interacting—some agents stop

others from reproducing and things like that. It seems to be a natural

framework for development.

PH: Extrapolating a bit, do you think that if we are going to use evolution-

ary methods to develop machine intelligence, development will have to be

taken seriously? That it will be an important part of the story?

JH: Yes I do, very much so. A nice basic project in that direction might

be to try and develop a seed machine—a self-replicating machine out of

which more complex systems could develop—or at least the theory for

one. NASA have already put a lot of money into this kind of thing, and it

won’t be easy or happen quickly, but I think it should be doable and would

be a good goal to set up in looking at evo-devo.

PH: Related to this, more generally what do you think the relationship

between computer science and biology should be? Should they get closer

or be wary of that?
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JH: I’m a very strong advocate of cross-disciplinary research. My own idio-

syncratic view is that the reason many scientists burn out early is that they

dig very deep in one area and then they’ve gone as far as it’s humanly pos-

sible at that time and then can’t easily cross over into other areas. I think

at the heart of most creative science are well-thought-out metaphors, and

cross-disciplinary work is a rich source of metaphor. Although you’ve got

to be careful; metaphors can be overhyped.

PH: A slightly different angle, particularly in relation to AI, is the notion

that the only way we are ever going to make significant progress is to learn

from biological systems.

JH: In a way I do agree with that. If we go back to when Ashby and Grey

Walter, Wiener, Selfridge, and all the others were looking at these prob-

lems, they used biological metaphor in a rich and careful way. I do not

think that simply making a long list of what people know and then putting

it into a computer is going to get us anywhere near to real intelligence. So

then you have to ask yourself, what are the alternatives? Artificial neural

nets are one possibility, and another is to try to work with a mix of cogni-

tive science and agent-based modeling, which could be very fruitful for

AI and computer science in general. This allows you to work at a more ab-

stract level than trying to reverse-engineer biology, as some people, I think

wrongly, advocate. I become very cautious when I hear people claiming

they are going to use evolution and they’re going to download human

brains into computers within twenty years. That seems to me to be at least

as far-fetched as some of the early claims in AI. There are many rungs to

that ladder and each of them looks pretty shaky!

PH: Without imposing any timescales, how do you see the prospects for

AI? Where is it going?

JH: As I mentioned before, it seems to me that very central to this is what

we loosely call pattern recognition, and also building analogies and meta-

phors. My views on this owe a big debt to Hebb. I think that we can, and

must, get a better grasp on these rather broad, vague things. My personal

view on how to go about this is through agent-based modeling. We

have some of the pieces but we need to understand how to take things fur-

ther. I think Melanie Mitchell’s work with Doug Hofstadter on Copycat

points the way to a much different approach to notions such as analogy.15

Central is the need to get much better at recognizing patterns and struc-

tures that repeat at various levels. One thing that we haven’t done much

with so far is tiered models, where the models have various layers. I think

all of these things fall roughly under the large rubric of complex adaptive

systems
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PH: Looking back at all the work you have been involved in, is there one

piece that stands out?

JH: I guess I really feel good about the mixture of rule-based systems and

genetic algorithms that I called classifier systems.16 That injection of flexi-

bility into rule-based systems was something that really appealed to me at

the time. Many of the people working with production systems, and rule-

based systems in general, knew that they were brittle. The notion that you

could take rules but make them less brittle, able to adapt to changes, was

very pleasing. In a way, classifier systems were the genesis of the agent-

based modeling work at Santa Fe. When we started on the economic mod-

eling work, economists like Brian Arthur and Tom Sargent started using

classifier systems. I tried to collect many of these ideas, in a form available

to the general, science-interested reader in the inaugural set of Ulam Lec-

tures, published as Hidden Order.17
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Figure 17.1

Oliver Selfridge. Image courtesy of Oliver Selfridge.



17 An Interview with Oliver Selfridge

Oliver Selfridge was born in 1926 in London. He studied mathematics at MIT

under Norbert Wiener and went on to write important early papers on pattern

recognition and machine learning. His 1958 paper on the Pandemonium sys-

tem is regarded as one of the classics of machine intelligence. He has worked at

MIT’s Lincoln Laboratory, the BBN laboratory at Cambridge, and the GTE lab-

oratory, where he was a chief scientist. He has served on various advisory

panels to the White House and numerous national committees. As well as his

scientific publications, he has written several books for children.

This is an edited transcript of an interview conducted on May 8, 2006.

Philip Husbands: Could you start by saying a little about your early years?

Were there any particular influences from home or school that put you on

the road to a career in science and engineering?

Oliver Selfridge: Well, an important part of my education was my father.

Without knowing any mathematics himself, he was wildly enthusiastic

about my interest in it, which started at quite an early age—seven or eight.

As was usual in England back then, I went away to school when I was ten.

At the age of thirteen, I entered Malvern College, one of the (so-called) pub-

lic schools. I remember we spent the year of 1940 in Blenheim Palace be-

cause the Royal Radar Establishment (RRE) had taken over the school.

While at Malvern I covered calculus to the standard you’d reach after the

first two years of a degree at MIT. One of the great things about education

back then, and I am not sure that it’s true anymore, is that if you were good

in one subject they’d move you ahead in that subject. You didn’t have to

worry about being good in both mathematics and French (which I was

very bad at). So I’m very grateful to the English school system, although I

didn’t know it then; and I hated going away to school, of course, as I think

everybody did. After Malvern I came to this country [the United States]



and started at MIT after a year and a half at Middlesex School in Concord,

Massachusetts.

PH: What year was this? You were quite young when you started at MIT,

weren’t you?

OS: This was 1942. I was just sixteen and the youngest in my class by

more than a year. Last year we had a sixtieth reunion—the class of ’45.

PH: What brought you to MIT? Did you go to the States because of the

war in England?

OS: The Selfridges originally came from this country. My grandfather was

born in Ripon, Wisconsin. He worked for a big store in Chicago called Mar-

shall Field’s and became executive vice president at an early age because he

was, I guess, smart as hell. He went on to own another store, which he sold,

and then he moved to London, where he opened Selfridge’s, a department

store on Oxford Street. He borrowed a million pounds in 1906 or 1907,

which was a lot of cash back then, and the store opened in 1909.

PH: And is still going strong.

OS: Still going strong, although there are no Selfridges in it! We lived in

Kensington and then out in Norwood Green; there were four of us siblings.

But then we came to this country because my father and grandfather were

kicked off the board of directors of Selfridge’s at the end of the 1930s or

thereabouts. My father came back to the States, because he had always

been an American citizen; my grandfather had switched and become a Brit-

ish citizen in 1934. My father ended up working for a firm here called Sears

Roebuck. Anyway, I went to MIT more or less by accident because I was

very interested in mathematics and science. So I entered MIT at just sixteen

and graduated at nineteen, having specialized in mathematics. I went

through the V12 program, which meant I joined the [U.S.] Navy as a junior

when I turned seventeen, or something like that, and they kept me at MIT,

paying all the bills, which was wonderful, and then I went and got a com-

mission in the Navy just after Japan surrendered. After the Navy I went

back to MIT, to graduate school. I was working with Norbert Wiener, and

my friends Walter Pitts, Warren McCulloch, and Jerry Lettvin were also

there. By the way, I recommend the recent book Dark Hero as a good source

of information on Norbert Wiener.1 Anyway, by this time Walter had writ-

ten the very important paper with Warren McCulloch, who was already a

very well known neurophysiologist, showing how a neural net could do

computations.2 That came out in 1943, when Walter was only nineteen or

twenty. I was very lucky to have met these people and then of course at

graduate school I was introduced to a lot of others.
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After that I joined Lincoln Lab, which was also a part of MIT, where we

built the first spread-spectrum system, under Bill Davenport. Let me ex-

plain what that is. Communications theory, channel capacity, and ideas

like that, had just started; Shannon had written about them in 1948. The

notion was that you needed a certain bandwidth to carry a certain amount

of information. A spread-spectrum system uses a much bigger bandwidth

for that amount of information, and that helps to protect the signal, mak-

ing it difficult to track or jam. We built the first system, which was classi-

fied, and the next ones weren’t built for another twenty years. They are

becoming more and more widely used now.

At that point, that would be 1953, I met Marvin Minsky, who had just

got through Princeton and was a junior fellow at Harvard. We were both

very interested in what became known as artificial intelligence. He worked

for me at Lincoln Lab for a couple of summers before he became a professor

at MIT. Marvin and I ran the first meeting on artificial intelligence a year

before the Dartmouth conference at the Western Joint Computer Confer-

ence.3 At about this time, 1954 I think it was, I met a psychologist from

Carnegie Mellon University at the Rand Corporation in Santa Monica:

Allen Newell. After talking for a couple of hours we had dinner that eve-

ning and he really appreciated what we were trying to do and he turned

on fully to AI and started working on symbolic AI, which was different

from what we’d been doing. Of course Allen, who died, alas, some time

ago, became very well known, a very powerful guy. He was incredibly

bright. Allen was terrific. He gave one of the papers at our 1955 meeting.

PH: I’d like to come back to Dartmouth and early AI later, but can we re-

wind slightly at this point to talk a bit about the origins of your celebrated

Pandemonium system?

OS: I first presented that at the Teddington conference.4 Do you know

where the word comes from?

PH: I believe you took it from Milton’s Paradise Lost.

OS: That’s right. From the Greek for all the demons. It’s mentioned in the

first couple of pages of Paradise Lost, which was written in 1667, I think. I

wasn’t alive then, it just sounds as if I were.

PH: The Teddington Mechanisation of Thought Processes Symposium was

in 1958, but when did you start working on the system? Was it much be-

fore that?

OS: Well, we had been thinking about the general techniques of cogni-

tion for a while. The first AI paper I’d written was on pattern recognition,

elementary pattern recognition and how to do it, and we spent a lot of
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time talking about it and getting people interested, and actually I work in-

credibly slowly. The cognition aspect was first sort of tackled by McCulloch

and Pitts in their papers in 1943 and 1947.5 So I talked with Walter a lot

about certain things in cognition and the first paper on my work on pat-

tern recognition systems was at the 1955 Western Joint Computer Con-

ference.6 So Pandemonium incorporated many of the ideas I’d been

developing. It’s an idea that is very powerful and people like it, but nobody

uses it.

PH: It’s a really impressive piece of work; the paper pulled together a lot of

very important ideas in a coherent way—parallel distributed processing,

adaptive multilayered networks, feature detectors, and so on. I’m curious

about the influences, the currents that came together in that paper. For in-

stance, you knew Jerry Lettvin very well and during that same period he

was working with Humberto Maturana, McCulloch, and Pitts on the re-

search that produced the landmark paper ‘‘What the Frog’s Eye Tells The

Frog’s Brain,’’ which gave a detailed functional account of part of the frog’s

visual system and demonstrated the existence of various kinds of visual fea-

ture detectors suggestive of ‘‘bug detectors.’’7 It seems to me there are quite

a lot of connections between that work and Pandemonium. Is that right?

OS: Oh absolutely. In fact if you look at their paper there is an acknowl-

edgement to me, and I acknowledge Jerry in the Pandemonium paper.

They were influenced by my pattern-recognition work and the ideas be-

hind it, which were to do with cognition. We regularly discussed the

work. The question is about cognition—what does the frog do when he

sees. Many people still think that the retina merely detects pixels and ships

them off to the brain, which of course is just not true. The frog’s-eye paper

was published in the Proceedings of the IRE, now the IEEE, because the Jour-

nal of Neurophysiology wouldn’t accept it; they said it didn’t have real data

in it, like numbers. Well of course it didn’t—it was much better than that.

I remember we laughed about it. Jerry built the first microelectrode needles

for reading from single axons in the frog’s optic nerve. It was an absolutely

brilliant piece of work in terms of both the ideas and the experimental

manipulations.

Of course Jerry and I were roommates while I was in graduate school,

along with Walter Pitts. It was always exciting.

PH: That was quite a combination.

OS: Well, I had a good time indeed. Walter and I often went places

together. One summer, I think it was ’48, we climbed the Tetons in Wyo-

ming just before spending the rest of the summer with Norbert in Mexico

city.
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PH: The frog’s-eye paper is often quoted as containing the first full state-

ment about low-level feature detectors in a vision system—moving-edge

detectors, convexity detectors, and so on—building on Barlow’s earlier

work giving evidence for ‘‘fly detectors.’’8 This notion became very impor-

tant in vision science. Did you play a part in that, since you were using the

idea of feature detectors in your pattern-recognition systems?

OS: Well in some sense I probably did, but a lot of other people came to it

independently. My first paper on pattern recognition included the ques-

tion of how you recognize a square. It described how the features of a

square include a corner and a line and asks how do you detect a line against

a noisy background, and so on. So, yes, I was the first one to put it in spe-

cific enough terms that it could be computerized, as far as I know, but I

think a lot of others came up with it independently . . . of course this was

fifty-three, fifty-four years ago, so not quite B.C., but getting that way.

PH: So maybe the idea was floating around to some extent, but it seems

you made a very important contribution and obviously influenced the

Lettvin-Maturana work.

OS: Thank you. Well, Jerry and I have always been on very good terms

and I knew Maturana quite well, but he went off and had an independent

life of some notoriety. Walter Pitts, of course, fell apart. That was tragic, re-

ally tragic. I’ll tell you the story very briefly. In 1952 Norbert Wiener

accused us—Warren McCulloch, Walter, and me—of corrupting his daugh-

ter, Barbara Wiener, who was a year younger than I, based on what Nor-

bert’s wife, Margaret, told him. She didn’t like us because she thought we

were too free and so on. The accusation was absolutely false. Norbert then

turned against us and wouldn’t speak to us or acknowledge our existence

for the rest of his life, which was a great tragedy. Now Walter fell to pieces

because of that, because he was dependent on Wiener. Walter had the

highest IQ of anyone I’ve ever met, but he was fragile. When Walter was

about eighteen or nineteen he bumped into Norbert Wiener and greatly

impressed him with his mathematical ability—he corrected something

Norbert showed him—and so he started working with Wiener and they be-

came very close. Anyway, you can read more about their relationship in

Dark Hero. Then after Norbert wouldn’t speak to us, I remember being at a

party somewhere in Cambridge with Walter and he said, ‘‘I wonder why

people smoke. I’d better try.’’ Two weeks later he was two packs a day. So

he sort of fell apart and he played with drugs of all kinds and fifteen or

so years later he died, essentially of overdoses. He was a total genius but

he didn’t know how to handle himself at all in a social way. It was just

terrible.
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PH: Pitts is reported to have destroyed most of his work from that time, so

many of his ideas never saw the light of day. Is that true or did some of his

work live on through his influence on people like you, who worked with

him?

OS: Well, it’s pretty much true. But he did a lot of other interesting

things. For instance, there was at MIT a professor called Giorgio De Santil-

lana, a historian and philosopher of science, whom Walter spent a lot of

time working with later when he had his personal problems. His inspira-

tion for Jerry was quite real. The full list of authors on the frog’s-eye paper

is Lettvin, Maturana, McCulloch, and Pitts. The work was done in ’56 and

’57 and he still had a real input at that time. Incidentally, something that

pissed everyone off, including me, was that [David] Hubel and [Torsten]

Wiesel took the genius of the ideas and the genius of the microelectrodes

and the experimental setup, and they got a Nobel Prize. In their Nobel Prize

speeches they did not give any credit to Jerry. That was rotten manners,

putting it very mildly.

PH: During that period, in the 1940s and 1950s, you interacted a lot with

at least two people who have had very important influences in neuro-

science: Jerry Lettvin and Warren McCulloch. Was this more by accident

than design or did you deliberately work in an interdisciplinary way?

OS: Sort of both. The number of people interested in these things in the

mid-1950s wasn’t very large, and so we tended to know each other and talk

to each other. Norbert and Warren and others had initiated interdisci-

plinary ways of thinking and that was still around. AI had only just started

at this point and new people, such as John McCarthy, were coming in.

Claude Shannon was still interested, although he soon stopped. Von Neu-

mann was interested, although he’d written all his papers by this time. He

became a devout Roman Catholic in 1955, when he was suffering from

cancer. Warren McCulloch kept going, although his papers got less specific

and I think less useful, too general. By the late fifties he was drinking a

quart of scotch a day, and you can’t do that and keep your mind working

as well; at least he couldn’t. Maybe it’s a good way to go.

PH: You seem to be making a clear distinction between AI and cybernetics.

Is that how you see it?

OS: Yes, very much. Cybernetics obviously preceded AI; in fact, Jerry Lett-

vin and I are probably the only two people left alive who are specifically

mentioned in Wiener’s Cybernetics.9 The notions of cybernetics are in AI

but the focus is different. Cybernetics turned out to be much more an engi-

neering business than AI. There is a great deal of engineering in AI and all

the major thrusts that we now have are based on mathematics, but that is
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not what AI is about. A lot of AI you will see expressed in mathematical

terms, but many of those aspects pretty much ignore what to me is the

key power of AI, which is learning. Learning is central to intelligence.

PH: In a nutshell, how would you define AI?

OS: I think it’s about trying to get computers, or pieces of software, to ex-

hibit the intellectual powers of a person. That’s a vast range of things, so to

me the deep key is learning. It comes out in three very different aspects: the

actual actions you take, the cognition, and the memories of experience.

There is a special action part of experience, which is planning. In an intel-

lectual sense planning is done only by people. A key thing that we are

working on now is the essence of control as part of action. How do we learn

how to control things? I think the essence of control is purpose—you want

to do something. It’s not just that you like beauty or you like good art or

something, it’s that you have a whole structure of purposes. If you’re

right-handed and you hurt your right hand so you have to use your left,

you can still pick up a cup of coffee without thinking about it. The purpose

is to get coffee to your mouth. This means you have subpurposes of find-

ing where the cup is, moving your arm and so on and so forth: it’s pur-

poses all the way down and also all the way up. But those purposes

change all the time and the essence of control is trying something and

improving it. As Marvin Minsky said, ‘‘The best is the enemy of the good.’’

Because ‘‘the best’’ implies a static universe, but it ain’t static. The problem

with a lot of the mathematical treatments is that generally they are looking

for formalistic presentations of processes that can then be optimized. But

we don’t optimize, we improve. To me that should be part of the essence

of AI.

But AI, like any other science, is a very complicated thing. In physics,

Newtonian mechanics is a perfectly adequate way of expressing many pro-

cesses, such as shooting a gun or something like that. But it turns out that

in a deep sense Newtonian mechanics is just wrong. But looked at another

way it isn’t wrong, exactly; for certain purposes it gets improved. The same

thing is true with AI. For certain purposes the simple memories we have

about what we did, and why we wanted to do it, are adequate. But often,

next time we do something we are trying to do it differently, or we modify

it. It’s very hard to think of something that we don’t do better the second

time. Likewise it’s very hard to think of a computer task that the computer

does do better the second time. So I think that in AI we should work on

developing software which will notice what it does, remember the experi-

ences and what it wants during the experiences, and be able to improve.

Not just the actions, but the cognition and the planning too.
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PH: You put learning and adaptation at the heart of AI, so looking back

over the past fifty years do you think the trajectory of the field has been

reasonably sensible or do you think there have been some disastrous

directions?

OS: No, not disastrous. We’ve done a lot of powerful things, but they’re

missing a great deal of what I’m interested in now: purpose. You raise your

children by encouraging and motivating them, but how do you encourage

a computer program? To use a high-tech Americanism, the program doesn’t

give a shit. Well, your children all did and still do. So that is what I’m

working on now and what I think is important. Marvin’s Society of Mind

discussed some of these issues, in very different terms, twenty odd years

ago.10 But I’m trying to be more specific and we’ll see if I live long enough

to get these ideas in any kind of shape.

Learning and adaptation have certainly been constant themes through-

out my work. Adaptation I regard as a special case of learning, an affirma-

tive case. For instance, the motor cortex makes a muscle move without

affecting it directly—there is a loop out from the spinal cord to, say, a fin-

ger muscle with the signal coming back to the spine, so that we have a

control circuit. The motor cortex modifies the gain of that circuit so it’s

adaptation all the way down, so to speak. We don’t necessarily need to go

as far as that; indeed I think copying all the details of neurophysiology is a

silly error, but understanding what happens and why is the thing. Most

people in AI don’t do that. When I give a talk many people agree with me

but then they go back and do the old things. Most computer programs are

full of errors with no way to correct them. Well I want a piece of software

that can limit its errors by learning, and thereby try to correct them.

PH: During the cybernetic period and in the early days of AI there was a

lot of interest in adaptive and learning systems, but that seems to have

greatly diminished by the late sixties and the pattern continued through-

out the seventies. Why was that?

OS: It was regarded as too hard. When Edward Feigenbaum and Joshua

Lederberg developed expert systems in the late sixties there was almost no

learning involved. The learning was confined to the people. I have a very

high regard for what they did and don’t object to it, but my feeling was

and is that learning is the key, and a lot of the deep questions were ignored.

But work like that did bring a lot of people into AI, and I want more of

those people to turn to basic research questions again. As I’ve said, I think

purpose and motivation are the deepest requirement that we need in AI

now: you want the software to care. People might say, ‘‘Well my system

has the goal of winning as many games as possible, isn’t that caring?’’
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Well, yes, sort of, but it’s only the beginning; why do we stop there? We

still can’t really usefully praise or reward a system.

PH: Looking ahead and speculating, do you think the sorts of architec-

tures and methods used in AI today will have to be abandoned or radically

changed to make significant progress?

OS: Well, I think we will get to the point where AI has some sort of re-

ward structure that enables it to learn in a more sophisticated way and

then we won’t so much program our systems as educate them. That will

work and it will work spectacularly well. Communication will be very im-

portant as pieces of software will also teach each other. Getting motivation

and caring and being able to adapt on multiple levels will be big break-

throughs, but it will require more than that—there won’t be just one thing.

But we need to get started. It will also have to make money for someone,

because funding for pure basic research is very hard to come by today, cer-

tainly in this country.

PH: Do you think AI will need to get closer to biology to make these

advances, or maybe move further away?

OS: Well, I don’t think we need to move further away. There is a big effort

now in neurobiology, and computational methods are playing a part in

that. A lot of the effort is looking at single neurons in detail. I’m not sure

that will help us get AI. There are too many steps from understanding a sin-

gle neuron to having intelligence. That isn’t to say that we can’t learn some

very important lessons and take very useful ideas from understanding more

about how the brain works—just as happened, for instance, with Jerry Lett-

vin’s work—but I think it has to be at a higher level than single neurons.

Of course, the picture keeps changing in neuroscience anyway. The recent

discovery of the important functional role of glial cells is an example; in

essence they really have to start thinking all over again and come up with

a new explanation.

PH: So you think detailed modeling is too ambitious, but taking inspira-

tion at a more abstract level is useful?

OS: Yes. Detailed modeling is too ambitious and won’t work. But more

abstract inspiration is very important. Absolutely. Two important biologi-

cally inspired areas are of course neural nets and John Holland’s genetic

algorithms. There is a lot of stuff going on in both areas and a lot of it is

very successful at solving problems, but there are great limitations and sim-

plifications in these areas as they stand today. One fault is the emphasis on

a single evaluation function. You need multiple purposes at different levels

and multiple ways of evaluating these at different levels. It’s time to try and

tackle issues like that.
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PH: Related to this, how would you say your interests are divided between

developing artificial intelligence and understanding natural intelligence?

OS: Oh equally. I’m interested in both, that’s always been the case.

PH: This year is the fiftieth anniversary of the Dartmouth conference and

there is a lot of talk again about its being the birthplace of AI and all that.

From what you’ve already said here and elsewhere, that’s obviously an

oversimplification, as the basic ideas were already around or being devel-

oped. You had your West Coast meeting in 1955, the name AI had already

being used by some of you and so on. So do you think anything much

actually came out of Dartmouth itself or was it more a part of an ongoing

process?

OS: Both. Dartmouth generated a spectacular amount of interest because

it got a lot of publicity. People were persuaded to look at new problems,

and Allen Newell convinced a lot of people that symbolic processing and

reasoning was important. So it was a very effective step; it got national in-

terest, much more than Marvin and I had got for our earlier meeting, and it

spread the message around. There were a lot of interesting and powerful

people there: John McCarthy was a founding trigger of the meeting; there

was Nat Rochester from IBM, and many others.

PH: Presumably the publicity and interest were helpful in generating

funding.

OS: Well, funding didn’t follow particularly speedily, but yes, Dart-

mouth did help in that respect, it opened various people’s minds to the

possibilities.

PH: Finally, is there any particular piece of work of the many that you

have been involved in that stands out for you.

OS: Well not exactly, but I suppose the Pandemonium work is special to

me because it helped me to finally nail a lot of issues.
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18 An Interview with Horace Barlow

Horace Barlow, FRS, was born in 1921 in Chesham Bois, Buckinghamshire,

England. After school at Winchester College he studied natural sciences at

Cambridge University and then completed medical training at Harvard Medical

School and University College Hospital, London. He returned to Cambridge

to study for a Ph.D. in neurophysiology and has been a highly influential

researcher in the brain sciences ever since. After holding various positions at

Cambridge University he became professor of physiological optics and physiol-

ogy at the University of California, Berkeley. He later returned to Cambridge,

where he was Royal Society Research Professor of Physiology, and where he is a

fellow of Trinity College. He has made numerous important contributions to

neuroscience and psychophysics, both experimental and theoretical, mainly in

relation to understanding the visual system of humans and animals. His many

awards include the Australia Prize and the Royal Medal of the Royal Society.

This is an edited transcript of an interview conducted on July 20, 2006.

Philip Husbands: Would you start by saying a little about your family back-

ground, in particular any influences that may have led you towards a career

in science.

Horace Barlow: I come from a scientific family; my mother was Nora

Darwin, Charles Darwin’s granddaughter, and she was very scientifically

inclined herself. In fact, she worked with William Bateson on genetical

problems in the early days of genetics at Cambridge and has one or two

papers to her name in that field, although she never got a degree or any-

thing. She was not only a good botanist, so to speak, but had a very scien-

tific way of looking at things and kept asking herself and us children

questions about why things were the way they were. So she undoubtedly

had an influence in directing me towards science. She was instrumental

in reviving Charles Darwin’s reputation in the middle of the twentieth



century, publishing an unexpurgated version of his autobiography and

editing several collections of letters and notes.1

Two of my elder brothers became doctors and they also had strong scien-

tific interests. My father, Alan Barlow, was a senior civil servant and had

read classics at Oxford. He was very keen on words and origins and that

kind of thing but wasn’t scientifically inclined. But his father, Thomas Bar-

low, was a very successful doctor in Victorian times, in fact he was physi-

cian to Queen Victoria’s household and had a disease named after him. He

was one of the people who was very keen on medicine becoming more sci-

entific and had numerous medical publications, so there’s some science on

that side too.

PH: You went to school at Winchester College. Were there any particular

influences there?

HB: Yes. The teaching of science there was very good as you can tell from

the fact that amongst my contemporaries were Freeman Dyson, the famous

theoretical physicist; Christopher Longuet-Higgins, who made outstanding

contributions to theoretical chemistry and cognitive science; James Light-

hill, who was an important applied mathematician; and many others who

became distinguished scientists. One person who certainly had an influ-

ence on me was the biology teacher, whose name was Lucas. Because at

that stage I wanted to go on and study medicine, biology was important,

but it did mean, because of the way the timetable was structured, that I

was restricted to doing what was called four-hour mathematics rather than

seven-hour mathematics, which I very much regret, actually. There were

some very good mathematics teachers; I particularly remember Hugh

Alexander, who was British chess champion and who went on to work

with Turing at Bletchley Park during the war.

PH: After Winchester you went to Cambridge to study natural sciences.

Can you say a bit about your undergraduate days there?

HB: Well, one of the big influences on me there was someone who later

became a fellow member of the Ratio Club: the neurophysiologist William

Rushton. He was quantitatively inclined and an inspiring teacher. He was

my and Pat Merton’s (another Ratio Club member) director of studies at

Trinity College. A fascinating character. He was a very good musician,

playing the bassoon and viola. But he was also extremely knowledgeable

about music and took a highly intellectual approach to it. He was also a

marvelous person to talk to because he would always encourage any pupil

who came up with a bright idea; I can see him now turning towards you

and getting you to say more and help you to relate your ideas to him. At

that time his work was on the electrical properties of nerves. He did some
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important work in that area and in a sense he was a precursor of Hodgkin

and Huxley and I think they did both acknowledge him. So in a way he

was a bridge between the old Adrian and the new Hodgkin and Huxley.2

His work in this area was highly regarded but not very widely known. But

later he went into vision and become one of the world’s top ranking visual

physiologists.

Another person I had supervisions from, and who made a big impression,

was Wilhelm Feldberg, who had worked on cholinergic transmission with

Henry Dale in the early days. The other thing that had a big influence on

me when I was an undergraduate was the clubs. I was a member of the Nat-

ural Science Club, which consisted of about twenty people, roughly half

undergraduate and half graduate students, with maybe one or two people

of postdoc status. We met about four times a term and gave talks to each

other on various subjects. That had a big effect on me and was a great

means of teaching and learning without any staff being involved!

PH: During this time at Cambridge did you still have a clear career path in

mind? Did you still intend to go into medicine?

HB: Yes. When I was at school I was rather inclined towards physics, but

being in the same school, and on occasions in the same class, as Freeman

Dyson and James Lighthill, I realized there was a disparity in our mathe-

matical abilities, so I thought perhaps biology would be more appropriate

for me! I did the natural sciences tripos in anatomy, physiology, pharma-

cology, biochemistry, etc., which was the normal thing for medical stu-

dents at Cambridge, and then went on to do my clinical work.3 I was

lucky enough to get a Rockefeller studentship to go and do that at Harvard.

This was in the middle of the war and the Rockefeller Foundation realized

that medical education in Britain was disrupted, and furthermore they

couldn’t get the postdoctoral researchers they usually supported to do

work in the States because they were all engaged in the war effort, so they

spent the money on medical studentships instead. There were about twenty

or thirty of us. Before I started at Harvard I worked for the summer of 1943

at the Medical Research Council’s lab in London at Mount Vernon. I was

working on problems of diving in relation to the war. In fact I stayed there

for a year; I delayed the start of my clinical studies in America to continue

this work. That was my first proper laboratory science job. The lab was run

by G. L. Brown and at first we were concerned with oxygen poisoning re-

lated to breathing oxygen under pressure, and then later on we worked on

some problems with the essentially scuba-diving gear used for some opera-

tions. They used a self-contained system rather than the flow-through type,

so that far fewer bubbles were produced and the divers were less easily
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detected. But that kind of system has its own dangers, and the equipment

they were using was inadequate in some ways and we helped to sort that

out.

PH: Did you come across Kenneth Craik at all during that period?

HB: Yes, I did actually meet Craik when I was working at Mount Vernon. I

was working for the Royal Navy but he was doing the equivalent work for

the Air Force and they had mutual inspection visits, so our paths crossed. I

remember putting him on a bicycle ergometer to measure the oxygen con-

sumption while using one of the self-contained diving sets we were work-

ing on. So it was only a rather brief meeting but of course I was very much

aware of his work. His book, The Nature of Explanation, had appeared by

then and his work in vision was very interesting because he had a very dif-

ferent approach from what was prevalent in psychology at the time.4

PH: Once you got to Harvard did you meet anyone who was a particular

influence?

HB: Well there were a lot of very interesting people at Harvard Medical

School at that time; this would have been 1944. One of them was Carroll

Williams, who was doing some very interesting molecular biology, as we’d

now call it, on silkworms. He seemed a good deal older than the rest of us,

but at the beginning of the war he had decided to take up medicine. Any-

way, he was a fascinating chap who became a distinguished scientist and

was later professor of biology at Harvard. I did a research project with two

fellow medical students, Henry Kohn and Geoff Walsh, on vision. We

investigated the effect of magnetic fields on the eye. This resulted in my

second scientific paper; I’d already published one with William Rushton

from my undergraduate days, but it was my first work in vision.5 The three

of us also published some work on dark adaptation and light effects on the

electric threshold of the eye.6

PH: By that time was it clear you wanted to continue as a research neuro-

physiologist?

HB: Yes. What I planned to do, and actually did do, was to complete a full

medical qualification on my return to the UK and then try my hand at a

research position. In those days you could get a full medical qualification

without having to do any ‘‘house jobs’’—internships, as they are called in

North America—so when I got back I did a few more months’ additional

clinical work at University College Hospital, London, and was fully quali-

fied. I then wanted to try research before I had to embark on many years

of internships, which was the way ahead in the medical profession. In

1947 I managed to get a Medical Research Council research studentship at

Cambridge under E. D. Adrian, who later became Lord Adrian but was uni-
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versally known simply as Adrian both before and after his elevation to the

peerage.

Pinning Adrian down was never easy, so finding him to explore the pos-

sibility of a studentship took some doing. I knew he was in Cambridge, and

often in the Physiological Laboratory, but whenever I called he was not in

his office. After several visits his secretary rather reluctantly admitted that

he was probably downstairs in his lab, but when I asked if I could find

him there her jaw dropped and she said ‘‘Well, er . . .’’ I got the message,

but went down to look for him all the same. The entrance was guarded by

his assistant, Leslie, who said, ‘‘He’s in there with an animal and does not

want any visitors.’’ This time I took the hint, but as I was leaving I met one

of my former lecturers [Tunnicliffe] and explained my problem. He told me

I was not alone in finding it difficult to catch Adrian, but, he said, ‘‘He usu-

ally goes to Trinity on his bicycle around lunchtime, and if you stand in

front of him he won’t run you down.’’ So I lurked around the lab entrance

for a few lunchtimes, and the tactic worked: as I stood triumphantly over

the front wheel of his bike he said, ‘‘Come to my office at two o’clock.’’

There he asked if I had any ideas I wanted to work on. My proposals,

which were really hangovers from my undergraduate physiology days,

included one on looking at the oscillations you sometimes get in nerve

fibers. I thought that would be interesting to work on, but Adrian brushed

that aside rather quickly, along with my other ideas, but then said I might

like to look at the paper by Marshall and Talbot on small eye movements to

see if there was anything in their idea,7 and, by the way, he thought he

could get me a research studentship from the Medical Research Council.

The total duration of the interview was certainly no more than five

minutes; Adrian believed in getting a lot done in his time outside the lab

as well as inside it.

When I reported for work a few days later, Adrian seemed surprised to see

me, and even more surprised when I asked him what I should do, but said

something like ‘‘We’ve discussed that—Marshall and Talbot, don’t you

know?’’

PH: You were already interested in vision before you started your Ph.D.;

can you pinpoint when that interest started?

HB: Well, while I was an undergraduate one of the talks I gave to the Nat-

ural Sciences Club was on color vision. I read up on the subject for the talk

and found it interesting and could understand what it was about. So that

was an important point where I got interested, and then talking about it

with William Rushton developed that further. Another piece of work

that particularly interested me as an undergraduate was Selig Hecht and
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Maurice Pirenne’s research on the absolute threshold of vision.8 Maurice

Pirenne was at Cambridge working with William Rushton at the time, so

the three of us discussed this topic at length. I think I gave a talk about

the statistical evidence for the visual system’s sensitivity to single quanta

of light that Hecht had obtained. I was interested in finding out more

about the statistical aspect of this and William pointed me at R. A. Fisher’s

books, which I read very keenly and learnt a great deal from. Of course the

absolute threshold of vision was a topic I was to return to a little later in my

career.9

But I didn’t have to make a decision on my research area until I’d done

my clinical stuff and come back to Cambridge three years later. During

that time I’d worked on visual problems with Geoff Walsh and Henry

Kohn, which furthered my interest. The reason I was interested in vision

was because what we knew about the quantitative aspects of the integrative

action of neurons and so on was derived from Sherrington’s work on the

spinal cord, and most of that was done with electrical stimuli delivered to

nerves, which of course doesn’t produce patterns of excitation that are at

all like anything which occurs naturally. With vision you are in the posi-

tion to control quantitatively the properties of the stimulus. You can

change its color, size, shape, duration, and so on. And you can try and

match it to natural stimuli. So I was interested in how the neurons in the

retina would deal with these quantitative aspects of the stimuli. This was

something you could do with vision and to some extent with hearing,

too, although just exactly what happens in the cochlea was not clear then

and is still not quite clear now! When I started on my Ph.D., Rushton was

moving into vision and we talked together a lot, which was very helpful.

PH: So after Adrian took you on, did you initially work on the eye-

movement problem, as he suggested?

HB: Yes. The Marshall and Talbot paper suggested that the small oscilla-

tory movements of the eyes were actually important in generating visual

responses, playing a role in hyperacuity. So I spent six months or so work-

ing on eye movement and came to the conclusion that their suggestion

was not a very good one and there was no good evidence that small eye

movements played a role in hyperacuity, rather they might impair it

through motion blur. But I developed a method for measuring small eye

movements and was able to show that there is great variation in the fine

oscillations from subject to subject but that they didn’t have any effect on

the ability to resolve fine gratings, didn’t seem to have any effect on acuity.

But what struck me was that in the patterns of eye movements recorded

there were fixational pauses where the movement of the eyes was remark-
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able small, the fixation was extremely stable—almost the opposite of what

Marshall and Talbot suggested. So I dropped the eye movement research

and switched to working on the frog’s retina.

PH: Of course the frog retina work, where you gave the first account of

lateral inhibition in the vertebrate retina, and suggested the idea of cells

acting as specialized ‘‘fly detectors,’’ was the first piece of your research to

become very well known and it is recognized as being very important in

the history of neuroscience.10 It seems that even that early your work was

strongly theoretically driven, there were theoretical notions behind the

kinds of empirical work you were doing. Would you agree with that?

HB: Yes that’s right. There were two theoretical inspirations behind that

work. One was from the ethologists Konrad Lorenz and Niko Tinbergen,

who suggested that at least the simpler reactions of birds, amphibians, rep-

tiles, and so on could be understood in terms of quite primitive discrimina-

tory mechanisms occurring at early stages in the sensory pathways.11 So it

occurred to me that the kind of sensitivity that the ganglion cells in the

frog retina had might well be suitable for making frogs react to small mov-

ing objects. This was probably the basis for them snapping at flies and

things like that—hence the idea of specialized fly detectors that I intro-

duced in my 1953 paper.11

PH: So you were looking for evidence for that from the start?

HB: Yes. But the problem was that beyond pointing out that the best stim-

ulus for some of these retinal ganglion cells is a small moving object, I

couldn’t see any way of following that up further. The kind of things one

might think of would be to ask whether this was any different in toads, for

example, which look for slower-moving objects such as worms and larvae

rather than fast-moving objects like flies. But it was going to be very hard

work to build up a comparative case like that, so I rather shied off it.

But the other theoretical area where my interests were developing, and

which influenced the frog retina work, was the signal-to-noise problem.

Tommy Gold was always an interesting person to talk to about that at Ratio

Club meetings and other times when we met. I was interested in making

quantitative measurements of, for example, the area threshold curves—

measuring the sensitivity of the retinal ganglion cells as a function of the

size of the stimulating spot [of light]. That was what led to the discovery

of lateral inhibition in the frog retina, because I found that the sensitivity

decreases as the spot gets bigger and spreads onto the inhibitory surround.

That interest in the quantitative aspects was very much inspired by William

Rushton, who was always keenly interested in that aspect of things.

PH: What are your memories of Adrian as a supervisor?
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HB: Well he would poke his head around the corner now and again to see

how I was getting on and would occasionally point me to a useful reference

or give me some advice. He could be quite a distant character. I wouldn’t

say he was exactly encouraging in his supervision! I remember his advice

when I wanted to switch to working on the frog’s retina. I was convinced

there was something funny about Hartline’s results on the size of the recep-

tive fields for the retinal ganglion cells, because they were very large, which

would have given really rather poor visual performance, and if that was all

the frog had it was very difficult to account for their actual performance.12

Well, Adrian wasn’t having any of that and he said, ‘‘Oh, I wouldn’t do

that—Hartline is a very clever chap, you know. It would be a mistake to

try and prove him wrong.’’ Well, of course he was quite right on one level,

but I was right, too—there was more to be discovered. Anyway, I persisted

and got his permission to go to London to buy the equipment I needed. At

that time one could buy war surplus electronic equipment at absurd

prices—it was sold by weight, and one could buy a photon-multiplier

complete with all circuitry for a few shillings.

PH: Did you ever discuss with him later the fact that it turned out to be a

very good change in direction?

HB: We never went back over the question of whether it was a wise move

or not, but he certainly agreed that the results were very interesting, partic-

ularly the evidence for inhibition. But he was not at all theoretically based;

his attitude was that we had the means of recording from nerve fibers and

we should just see what happens. Of course he was absolutely brilliant at

teasing out the first simple facts but then he never enquired further along

any of the theoretical lines that were opening up.

I remember when I had first got the apparatus for the frog retina experi-

ments assembled and in sometimes-working condition, Adrian made one

of his unannounced visits to my lab, on this occasion with a visitor smok-

ing a large cigar and speaking completely incomprehensible English.

A few minutes before I had dropped an electrode on to the floor; I had

just remounted it and was lowering it onto a frog retina, without much

hope of success, when they came in, so I turned on the light and started

explaining what I was trying to do, and how. At this point the visitor was

standing under the room light, and took a deep puff from his cigar. As he

exhaled the smoke, its shadow fell across the preparation and it gave a

long and vigorous ‘‘off’’ discharge. Ragnar Granit,13 for that was who it

turned out to be, was astonished; so was I, and his English became at least

partly intelligible as we discussed the technicalities of what makes a good

electrode and so forth.
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Adrian spent a lot of time in his laboratory, where he definitely did not

like visitors. I only recall making one very brief visit, when Adrian was actu-

ally doing an experiment. Now, whenever he was in the Physiology Lab

[the university department] Adrian was always moving, never at rest, al-

ways reacting. His body movements were like saccadic eye movements,

jerking incessantly from one object of attention to another. Ordinarily

these movements, while much more frequent than most people’s, were

quite well spaced out, and synchronized with other events occurring

around him, so that he surprised one with an unexpected shift of attention

only, say, once every thirty seconds or so. But in his own laboratory they

seemed to occur every second, and each of one’s own movements elicited

a response. When I went there he was doing an experiment on a monkey

that was infected with amoebic dysentery—the reason, he explained, why

he was able to get hold of it. If I turned towards the table to ask a question

he seemed to jump to intervene between me and the infected monkey, and

my attention was so riveted by his heightened state of reactivity that I

could take in nothing about his laboratory or the experiment he was

conducting.

William Rushton also had a rather alarming experience on one of his rare

visits to Adrian’s lab. It was near the beginning of his postgraduate research

under Adrian—about the mid-1920s. Most students in his position were, to

put it mildly, awe-struck by the great man. So it was with some trepidation

that Rushton ventured in one afternoon to borrow a galvanometer. There

was no one in the lab, so he set about searching. He eventually located

one amidst all the clutter and went to pick it up. As his hand grasped the

instrument, Adrian’s voice suddenly boomed out of nowhere, ‘‘Put that

down, Rushton!’’ He was perched in a small dark cupboard at the back of

the lab where he liked to shut himself in to think. He could see the whole

lab through a crack in the door.

PH: During the early part of your Ph.D., before the Ratio Club started, did

you have any interactions with people at Cambridge who were interested

in cybernetics and machine intelligence?

HB: That mainly started with the Ratio Club, but before that I did interact

with some psychologists who were developing interests in that direction.

W. E. Hick, famous for Hick’s law and later a member of the Ratio Club,

was one of them. Another character in psychology, C. G. Grindley, a

physics-based psychologist, was a very interesting person. Unfortunately

he was an alcoholic. I saw quite a lot of him because I’d often go for an

after-work drink with Geoffrey Harris, who worked in the room next door

to me. At six o’clock we’d go to the Bun Shop, a bar which was very
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close to the lab. Grindley was usually already there and I talked quite a lot

to him about problems in psychology.

PH: Did you have an interest in the more psychological side of the brain

sciences before that?

HB: I did. In fact in my final year as an undergraduate I had considered

specializing in psychology rather than physiology—the way the natural

sciences tripos is arranged at Cambridge involves studying many topics for

part 1 and then specializing for part 2. The professor of psychology at the

time, Frederick Bartlett, ran a course of seminars—fire side chats, they

were—in the long vacation term. We met once a week and discussed var-

ious problems in psychology. I was never very happy with the material we

covered. The concepts and thinking seemed to me to be very strongly ver-

bally based whereas I think in a much more model-based and quantitative

way. At any rate, at the end of that course I stayed behind and told Bartlett

that I had to choose between psychology and physiology and asked for his

advice. I explained to him some of the problems I had with psychology—

that it seemed to me that in order to make progress in understanding the

brain you had to get behind the words, you couldn’t possibly explain it all

in words. He agreed with that and said that the scientific advance that had

done more for psychology than anything from within psychology over the

past few decades had been Adrian’s work in physiology, and no doubt there

was going to be a lot more physiology-based work that would have a big

influence in psychology. And that was what tipped the balance for me in

favor of physiology.

PH: Did you interact with Hodgkin and Huxley during the period when

you were doing your Ph.D.?

HB: Oh yes. I remember many teatime conversations with them. I remem-

ber Alan Hodgkin explaining to me about the noise limit when recording

through an electrode and how the resistance isn’t actually in the electrode

itself but in the sphere of saline surrounding the tip. I remember after I’d

written up my work on eye movement, Andrew Huxley read it through

and pointed out various things about the statistical treatment that could

be improved. I had a lot of useful conversations with them.

PH: It was during your Ph.D. studies that you became involved in the Ratio

Club.14 How did that happen?

HB: It was through Pat Merton. Pat worked with John Bates, who orga-

nized the club, at the National Hospital in Queen’s Square. As I mentioned

earlier, Pat and I had known each other since undergraduate days and he

suggested me to Bates.
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PH: How important was the club in the development of your ideas?

HB: Oh, very. It gave me an opportunity to hear and talk to people who

were leading experts in this area. Probably most important to my work

were Tommy Gold and Philip Woodward. Tommy was a wonderful person.

He started life as an engineer and then switched to physics. He had a very

distinguished career and was extraordinarily versatile. He is well known as

one of the founders of the steady-state theory of the universe, for oversee-

ing the construction and operation of the Arecibo dish, the world’s largest

radio telescope, and for many contributions to astrophysics, but he did

much more than that and at the time of the Ratio Club he was working

on hearing in the Zoology Department at Cambridge. He argued that there

was a positive feedback mechanism involved in hearing. It was many years

before he was proved right. He was very useful to talk to about signal-to-

noise problems and statistical matters. He wasn’t a particularly statistical

sort of person himself but he knew it all, as an engineer, essentially, and

he was very keenly interested in applying engineering ideas in biology.

Anyway, he was always tremendously good value and always has an origi-

nal point of view. Never listened to anyone else!

Philip Woodward was a marvelous person to interact with. He had a very

deep understanding of information theory and could communicate it

very clearly; he gave extremely good talks and his book on information

theory applied to radar was very helpful.15 I learned a lot from him.

There were two other members who were particularly influential, as far as

I was concerned. One was Donald Mackay, who was a wonderful speaker;

his talks were always brilliant expositions of ideas which often subse-

quently proved to be important. The other was Albert Uttley, who was at

TRE [Telecommunications Research Establishment], Malvern, and then

NPL [National Physical Laboratory]. He had some very interesting ideas.

Pat Merton was very keen on him because he had developed one of those

servo feedback devices for controlling gun turrets and so on during the war.

But there was always something difficult to understand about his ideas and

he wasn’t a very clear expositor of them! This meant he could be given

short shrift by some of the more precise members of the club. But I think

that some of the ideas he had were very good. He had an idea about unitary

representation which I think is the same basic concept as sparse representa-

tion, sparse coding, but was ahead of it.16 I think it was an important idea,

but he didn’t really get it across to us successfully.

The meetings were always very enjoyable and stimulating and I learned a

great deal.
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PH: Are there any particular meetings that stick in your mind?

HB: I remember the very first meeting, where Warren McCulloch spoke. I

think it’s fair to say that he deeply failed to impress us. For many of us this

was our first exposure to him. As we saw more of him that view tended to

change, as we got to appreciate his style. Donald Mackay and others went

on to form close friendships with him; Donald went to visit him often and

they collaborated on various pieces of research.

My memories are probably more of people and ideas rather than specific

meetings. I remember Alan Turing talking about how patterns could be

generated from reaction-diffusion systems and how this might play a part

in morphogenesis. One particular phrase of his really stuck in my mind as

somehow summing him up. He was talking at one meeting about the brain

and about looking at pictures of groups of hundreds of neurons and how

they seem to be partially randomly determined; he said, ‘‘I don’t know

how to put this but they are not very accurately determined; they are

more like a tree than a horse.’’ That was very much the way he thought.

Very expressive but not very precisely formulated ideas. Of course he was

more than capable of formulating them precisely when it came to the

crunch, but in getting the initial idea across he didn’t try to.

PH: Do you remember if there was any debate in the Ratio Club about

whether brains should be viewed as digital or analogue or mixed digital-

analogue devices?

HB: Yes, there was a lot of discussion of that. I think the general consensus

was that if it was digital it wasn’t digital in the way that computers are. I

think there was a general agreement that the fact that conduction down

nerve fibers was by impulses rather than by graded potentials was because

digital coding is more error-resistant. Having an all or nothing impulse is

in fact the same as one aspect of using digital, as opposed to analogue,

systems—the all-or-nothing response means that you can eliminate one

kind of noise. But that is more or less where the similarity ends, basically

because of the very great asymmetry between the presence and absence of

an impulse in a nervous system compared with digital coding as used in

engineering, where there is symmetry between the 1 and 0—they both

have the same information capacity and in many cases they are used that

way. So I think we understood that the way impulses were used in nervous

systems was very different from in digital electronic systems. William Rush-

ton wrote a paper on some of these issues at about that time.17 This was

before the idea of sparse coding and its implications, although, as I men-

tioned earlier, I think Albert Uttley was actually onto that idea even though

he couldn’t get it across to us.
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PH: In the late forties, when the Ratio Club started, what was the typical

view of cybernetics within neurophysiology, or neuroscience, as it was

becoming?

HB: Well, I think for some of us information theory seemed to be a great

new thing—here was something else to follow in the brain other than just

impulses and electric currents and chemical metabolism. Here was a defin-

able quantity that was obviously important in the kinds of things the brain

did. So there was a great deal of enthusiasm for that cybernetic approach

among a group of us who made up a fairly small section of the neurophys-

iological community. But a lot of people regarded it as airy-fairy theoret-

ical nonsense. Neurophysiology was very untheoretical at that time; most

of the important advances were made by people who took a very empirical

approach, like Adrian, for example. William Rushton wrote a kind of scien-

tific autobiography in his later years in which he says essentially that

throughout his early years he was much too strongly theoretical and was

trying to browbeat nature into behaving as he wanted it to, rather than

eliciting how it actually was.18

PH: What is your view on that question, and has it changed since those

early days?

HB: Well, I have two views which are to some extent in conflict. One is

that the purely empirical approach still has a very important role in neuro-

science. A lot of advances will still occur because of the development of

new techniques that enable you to have access to something else in the

brain that had hitherto been hidden from view. The technique will be

used to find out what goes on and people will be guided in what they do

by the discoveries they make—just as has happened since Adrian and be-

fore. William Rushton described it as thinking with your fingers. I think

this is just a fact of life in neuroscience because we understand so little the-

oretically about how the brain works. It is not like a well-developed science,

where theory explains ninety-five percent of what you are confronted with,

so you have to use that theory; in contrast, theory in neuroscience explains

five percent or less so you have to make use of other approaches and tools.

The other view is that neuroscience is so badly fragmented that it is really

not one community but half a dozen different ones who hardly understand

what each other are saying. So there must be some kind of unification

through a shared approach to trying to find a common coherent under-

standing of what the brain is doing. At this stage this might not be very

theoretically elaborate, but it is crucial.

PH: I believe that sometime in the mid-fifties Oliver Selfridge and Mar-

vin Minsky, and maybe others, were trying to organize an international
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conference on AI—it would have been the first such event—and they were

interested in holding it at Cambridge University. I understand that you

were involved in trying to make that happen. Is that right?

HB: Yes indeed. Oliver Selfridge and I went to see Maurice Wilkes, head of

the Computer Laboratory, to try and get his support, as we would need a

senior person in the university involved. He took an extremely negative

view of it. He dismissed us with a comment like ‘‘Oh, an international

conference—that’s just a way of getting unpublishable papers published

without being refereed.’’ Of course such considerations couldn’t have been

further from our minds, but that was that, because he was the obvious per-

son in the university whose support we needed. Of course the other anti-AI

person at Cambridge was James Lighthill, who some years later wrote a

rather damning report on the area for the UK science research council.

PH: One concept whose development in neuroscience you have been

involved in is that of feature detectors. The idea of object detectors origi-

nated in your 1953 paper, where you postulate fly detector neurons in

the frog retina.19 The idea of feature detectors, where features refer to

more primitive constituent properties of objects—edge detectors, convexity

detectors, and so on—built on this, coming later. The idea is certainly pres-

ent in Lettvin et al.’s 1959 paper.20 Were you thinking in terms of feature

detectors before that? What’s your take on where the idea came from?

HB: I think it originated more in computer science, in early work in ma-

chine intelligence. Early work on pattern recognition, particularly on sys-

tems for automatically recognizing handwritten or printed letters and text,

used the idea of features. Oliver Selfridge was working on it in the States

and Dick Grimsdale and Tom Kilburn in Britain. Oliver Selfridge influenced

Jerry Lettvin on this, I think. The computer work is certainly where I first

became aware of the idea and then thought it was very likely that feature

detectors were used in biological vision. I was certainly influenced by the

fact that this early work in pattern recognition showed that the problem

was much harder than had been thought; the nature of the difficulties was

very illuminating.

PH: Let’s talk a bit about information theory in neuroscience. You wrote

some influential papers on the idea of redundancy reduction in the ner-

vous system.21 I think your first paper on that was at the Mechanization

of Thought Processes symposium in 1958.22 Could you say a bit about how

the ideas developed? I suppose you had been thinking about it for some

time before that.

HB: Yes I had. Actually the first time I talked about that was at one of a

series of meetings on ‘‘Problems in Animal Behavior’’ organized by Thorpe
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and Zangwill. My talk was in 1955, although it wasn’t published until 1961,

when a book based on the meetings appeared.23

I also talked about it at a great meeting on ‘‘Sensory Communication’’ in

1959 at MIT, held at Endicott House.24 I remember it being a very interest-

ing meeting, over several days, and also one of the first international meet-

ings I went to, so I particularly enjoyed it. They had a very good swimming

pool and a very good bar! It was also notable as the first time I got to speak

to certain people for any length of time. For instance, this was where I first

met Jerry Lettvin—one of the amazing personalities from that era—and got

to visit his lab. I also renewed my acquaintance with Warren McCulloch

and got to know him better. Later the proceedings from the meeting were

translated into Russian for a Soviet edition. My contribution was the

only one that was expunged; for some reason it was thought to be too

subversive!

PH: Had you discussed it at the Ratio Club?

HB: I don’t recall giving a talk on it at the Ratio Club but I do remember

trying to discuss it with Donald Mackay. He was extremely good at express-

ing his own ideas but he wasn’t always terribly eager to learn about other

people’s. I got nowhere at all with him, except for him to say something

like he’d already thought about it years ago and that kind of thing. But ear-

lier talks and discussion at the club would have influenced the develop-

ment of the idea.

I was very enthusiastic about how information was now something we

could measure, but when you are actually confronted with doing an exper-

iment on a physiological preparation, the prevalent techniques were all

based on classical statistical measures rather than Shannon information, as

was most of signal detection theory. So there was a problem in using it

practically. I think this is part of the reason the idea rather fizzled out

in neuroscience, to be reintroduced again in the 1980s by people like

Simon Laughlin. Another reason may have been that important empirical

advances were coming from people like Hubel and Wiesel who, like Adrian,

were antitheoretical. Of course now information theory and other statis-

tical ideas are quite strong in some areas of neuroscience.

PH: Sometime later you moved toward the idea of redundancy exploita-

tion.25 Can you say a bit about how you changed your mind?

HB: Well, initially I thought the idea of redundancy reduction was a per-

fectly plausible supposition because there were so many cells in the brain

and, for instance, in the cortex it appeared most are very rarely active.

It was only really when people started recording from awake behaving

monkeys, and particularly when they started recording from MT [middle
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temporal cortex], which has much higher maintained discharge rates than

elsewhere, it became pretty difficult to hang on to the notion that the

mean firing rate in the brain is so low that the information capacity dic-

tated by that supported the idea of redundancy reduction. I probably

hung on to the idea, which is a kind of extreme version of sparse coding,

for too long.

PH: Of course your famous 1972 neuron doctrine paper relates to these

issues.26 In that paper you propose the influential idea of sparse, or eco-

nomical, coding in which ‘‘the sensory system is organized to achieve as

complete a representation of the sensory stimulus as possible with the min-

imum number of active neurons.’’ In all you laid down five speculative

dogmas. How do you think that paper has stood the test of time?

HB: Oh, reasonably well. There were some new ideas that needed to be

discussed and thought about and I don’t think I was too wide of the mark

with most of the ideas.

PH: One of the things you pointed out was the complexity of single neu-

rons and the potential complexity of the processing they are capable of.

Since then considerably more complexity has been revealed with the dis-

covery of mechanisms such as volume signaling, and now intracellular pro-

cesses are starting to be probed.

HB: Indeed, and I think that there is probably a great future in that

direction—intra-neural processing may well turn out to be very important.

It was work on E. coli that really opened my eyes to that possibility. Intra-

cellular mechanisms successfully run their lives with all the important deci-

sions being made by biochemical networks inside a single cell about the

size of a bouton in the cortex.27 If all that can go on in one bouton, one

has to wonder if we’re missing something about what a pyramidal cell can

do. Maybe over the next decade or so we shall find out a bit more.

PH: Some people have remarked that the neuroscience establishment

never really showed researchers like you and Jerry Lettvin the kind of

appreciation you deserved, partly because they thought you were too

theoretical.

HB: Well, they would be dead right up to a point. But it shouldn’t be

either/or. In this context I’m reminded of something Rutherford was sup-

posed to have said in the 1930s when Jews were under threat in Germany

and scientists like Einstein were looking to get out. In many ways Cam-

bridge was an obvious place for Einstein to go, but it is claimed Rutherford

said something like ‘‘Einstein’s theories are all very well, but I think we can

manage without him.’’ So it wasn’t just in neurophysiology that there was

this prevailing antitheoretical attitude.
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PH: I’d like to finish with a few rather general questions. First, looking

back at the development of neuroscience over the sixty or so years you

have been involved in it, has it turned out very different from what

you might have imagined going back to the start of your career?

HB: I think it is a pity that more attention is not paid to trying to find

simple preparations that exemplify particular cognitive or brain tasks. I

think we have much more chance of ironing out the basic principles

by studying these simpler systems. For instance, there seems to be some

progress in understanding the cerebellum partly because people have found

electric fish and things like that where it is possible to do observations and

experiments which actually reveal what the cerebellum is doing. This ties

in with what I was saying earlier about the need for a coherent theoretical

framework.

On more theoretical developments, I’m a bit critical of what has hap-

pened in some areas of computer modeling. I don’t think many, if any, of

the neural network models are good models in the sense that the Hodgkin-

Huxley model was—that dealt with quantities that could be defined and

measured in a single cell. The neural network models tend to be consider-

ably removed from anything you could measure at the cell level. I think

they have got to be pulled down to a more biophysical basis. I’m more

interested in the Bayesian approaches because I think that there they are

getting much closer to realistic models of what certain quantities (here

probabilities rather than simple physical values) might actually represent.

The emphasis on probabilistic inference in certain strands of modern mod-

eling is very good; I think that has a future.

I remember that when I was starting out in my research career there was

quite a bit of optimism about how quickly some form of machine intel-

ligence would be developed. Those members of the Ratio Club more

involved in that area were very hopeful. But a computer wouldn’t beat a

grand master at chess until the 1990s. None of us would have predicted

that back then; we all thought it would be much sooner. I remember being

more sceptical than many at how much progress would be made, but obvi-

ously not sceptical enough. But of course there have been tremendous

advances in processing power and miniaturization of electronics and so

on, much of which most of us wouldn’t have foreseen, which has meant

that the use of computer-based technology has had a big impact on neuro-

science. Initially this was more for data collection and analysis. But now,

and even more in the future, the important thing is that you can test

whether a theoretical idea, or a model mechanism, can actually perform in

the way the real brain performs. That’s a fantastic advance.
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PH: Are you surprised at how much progress has or hasn’t been made in

neuroscience during your career?

HB: It’s come a long way in one sense. When I was a graduate student, in

neurophysiological circles the idea of being able to understand what was

going on in the cortex was dismissed as being utterly impossible. It

was just too complex. Of course we don’t believe that now; we think we’ll

find out all about it next week. That’s equally far from the truth, but the

outlook is much more hopeful. I was one of the few people back then who

thought we would understand these things physiologically, and I think we

have made a lot of progress, but there is still a hell of a way to go.

PH: Finally, you’ve made a lot of important contributions, but is there any

particular piece of your research that stands out for you?

HB: I’m always rather disappointed by the general response to the

attempts that I’ve made to measure the actual statistical efficiency of both

psychophysical performance and neural performance,28 because it does

seem to me that when you can say that the brain is using whatever per-

centage it may be of the statistical information that is available in the

input, this has an importance for understanding the brain comparable

with being able to say that a muscle uses whatever percentage it is of avail-

able chemical energy in generating mechanical movement. I think this is a

big step forward in getting to grips with one aspect of what the brain actu-

ally does. Imagine how we would regard intelligence tests if they were of

this nature, if they were actual measures of mental efficiency at performing

some task, which they obviously are not; they’re ad hoc plastered-up God

knows what.
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Figure 19.1

Jack Cowan. Image courtesy of Jack Cowan.



19 An Interview with Jack Cowan

Jack Cowan was born in Leeds, England, in 1933. Educated at Edinburgh Uni-

versity, Imperial College, and MIT, he is one of the pioneers of continuous

approaches to neural networks and brain modeling. He has made many

important contributions to machine learning, neural networks, and com-

putational neuroscience. In 1967 he took over from Nicolas Rashevsky as chair

of the Committee on Mathematical Biology at the University of Chicago,

where he has remained ever since; he is currently professor in the Mathematics

Department.

This is an edited transcript of an interview conducted on the November 6,

2006.

Philip Husbands: Can you start by saying a little about your family back-

ground, in particular any influences that might have steered you towards a

career in science.

Jack Cowan: My grandparents emigrated from Poland and Lithuania at the

turn of the last century; I think they left after the 1908 pogroms and they

ended up in England, on my mother’s side, and Scotland on my father’s.

My mother’s parents had a clothing business in Leeds and my father’s

family sold fruit in Edinburgh. My father became a baker. My mother was

clever and did get a scholarship to go to university but she had to decline

because of the family finances. So I was the first member of my family to go

to university.

PH: Did you get much influence from school?

JC: Yes, in that I went to a good school. My parents were very encourag-

ing from an early age—my mother claims that I started reading when I was

very young and that I was bossing the other kids in kindergarten! Anyway,

we moved to Edinburgh from Leeds when I was six years old and I went to

a local school there for about three years, but my parents could see that

I had some aptitude so they got me into George Heriot’s School, a very



good private school. I got bursaries all the way through and ended up the

top boy in the school—I was Dux of the school—and got a scholarship to

Edinburgh University.

PH: What year did you go to university?

JC: I was an undergraduate from 1951 to 1955, studying physics. I remem-

ber when I was about fourteen we had the traditional argument between

Jewish parents and their son—they wanted me to become a doctor or a

dentist or lawyer or something like that and I kept telling them, ‘‘No way,

I’m going to be a scientist.’’ So I decided early on that I wanted to do

science and I can’t say there were any particular outside influences on this

decision; it seemed to come from within.

PH: How were your undergraduate days?

JC: Well from being top boy at Heriot’s my undergraduate career was a

disaster. I found the physics faculty and the lectures at that time really

boring. I didn’t do well at all.

But after that I was rescued by a man called J. B. Smith, who was head of

a section at Ferranti Labs in Edinburgh where I’d applied for a job. He had

also been the school Dux at Heriot’s—a decade or so before me—so I guess

he took a chance and hired me. I was in the instrument and fire control

section. I was there for three years from 1955, although in the middle of

that I was sent to Imperial College for a year to work with Arthur Porter,

one of the pioneers of computing in Britain. I also got to know Dennis

Gabor, whom I hit it off with. As well as being the inventor of holography,

he had a lot of interest in cybernetics, machine learning and things like

that. He worked on adaptive filters and introduced the idea of using gradi-

ent descent to solve for the coefficients of a filter that was learning by

comparing the input with the output. I would say that Gabor was a huge

influence on me.

PH: Was it going to Imperial that sparked the direction your work took,

leading you into machine learning and neural networks?

JC: To a large extent. But before that what really got me started, and actu-

ally I think what impressed Smith, was that I had read Norbert Wiener’s

book on cybernetics. I picked it up in the library when I was an undergrad-

uate and found it very, very interesting. Also while I was still an under-

graduate I heard a lecture by Gabor on machine learning, which was very

influential.

PH: What kind of work were you doing for Ferranti?

JC: The first project they gave me was to work out pursuit curves. Ferranti

worked on the computer guidance systems for the British fighter planes of
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the time; there was a consortium of Ferranti, English Electric, and Fairey

Aviation involved in the computers that controlled air-to-air missiles. So

they had me work with a couple of other people on the mathematical prob-

lems of prediction of missile trajectories and things like that. So I learned

quite a bit of useful mathematical stuff doing that.

A year or two before I started at Ferranti, Smith and a colleague, David-

son, had built a machine that solved logic problems by trial and error. I

got it working again and they arranged for me to take this machine down

to London to the Electrical Engineering Department at Imperial College

to demonstrate it to Porter and Gabor. That developed my interest in au-

tomata theory and machine learning. Anyway, Ferranti arranged for me to

spend a year at Imperial doing a postgraduate diploma in electrical engi-

neering. Porter wanted me to stay to complete a Ph.D., but I only had the

year. I had started to play around with many-valued logics to try and solve

logic problems in a better way than simple trial and error as embodied in

Smith’s machine. It was this that got Gabor interested in me and he be-

came my mentor.

I met a lot of interesting people during that year: Wilfred Taylor, who

was at University College and developed one of the very first learning

machines, Raymond Beurle, from Nottingham University, who had written

a very beautiful paper on the mathematics of large-scale brain activity and

many others.1 So I met all these guys, which was very inspiring, and in

1956, Ferranti also sent me to one of the earliest international meetings

on cybernetics, in Belgium, where I met Grey Walter, with his turtles, and

Ross Ashby, and that is where I first met Albert Uttley, who was working on

conditional probability approaches to learning, among other things.2 I also

remember a very interesting lecture at Ferranti given by Donald MacKay. So

by the time I was in my early twenties I’d already met most of the leading

people in Britain working in the area that interested me. And there was a

lot of very good work going on in Britain. As well as these interactions I

came across a number of papers that would prove influential later—for

instance, John Pringle’s paper on the parallels between learning and evolu-

tion, which really set the foundation for competitive learning, and Turing’s

work on the chemical basis for morphogenesis, which would inspire my

work a couple of decades on.3

A little later, essentially through Porter and Gabor, I ended up with a fel-

lowship from the British Tabulating Machine Company to go to MIT. They

ran a special scheme to send graduate researchers from Britain to MIT. This

attracted me, so I applied and got it.
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PH: When did you start at MIT?

JC: I arrived at MIT in the fall of 1958 as a graduate student. I joined the

Communications Biophysics group run by Walter Rosenblith. I was in that

group for about eighteen months, then I moved to the Warren McCulloch,

Walter Pitts, and Jerry Lettvin group.

PH: How did that move come about?

JC: Well, my interests were a bit more theoretical than what was going on

in the Communications Biophysics group—they were mainly interested in

auditory psychophysics, which I didn’t find as interesting as the more the-

oretical aspects of cybernetics. I had been working on many-valued logics

at Imperial and through reading von Neumann’s paper in Claude Shannon

and John McCarthy’s Automata Studies collection had got very interested

in the problem of reliable computation using unreliable elements.4 So I

started to work on applying many-valued logic to that problem. That kind

of thing didn’t really fit in the Rosenblith group.

In 1959, while I was still in his group, Rosenblith organized a very inter-

esting meeting at MIT on sensory communication.5 That was a great meet-

ing for a graduate student like me to attend, there were all kinds of very

interesting people there (I’ve got the proceedings here): Fred Attneave,

Horace Barlow, Colin Cherry, Peter Elias, J. C. R. Licklider, Donald Mackay,

Werner Reichardt, Willie Rushton, Pat Wall, to name a few! It was an amaz-

ing meeting. The stand-out talks for me were Horace Barlow’s, ‘‘Possible

Principles Underlying the Transformations of Sensory Messages,’’ where he

talked about the possible role of redundancy reduction in the nervous sys-

tem, and Werner Reichardt’s ‘‘Autocorrelation: A Principle for the Evalua-

tion of Sensory Information by the CNS,’’ in which he presented an early

version of the famous Reichardt motion-detector model.6 That was also

where I first heard about the Lettvin, Maturana, Pitts, and McCulloch

work on the frog’s visual system, which was also extremely good, and that

was what got me really interested in joining the McCulloch and Pitts

group.7 McCulloch was also interested in the reliability problem, so I

joined.

PH: What was MIT like at that period?

JC: In those days MIT was absolutely fantastic. I got to know a huge range

of people; I consider myself to have been very lucky to be there at that

time. I remember the first day I got there I was taken to lunch by Peter Elias

and David Huffman, Huffman of Huffman coding and Elias who was one of

the big shots in information theory, and they said to me, ‘‘You know, grad-

uate school at MIT is not like in England. It’s like a factory with an assem-
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bly line and you get on and it goes at a certain rate and if you fall off—too

bad!’’ They warned me that it was very hard going and rigorous. They were

right!

But it was an amazing place. As well as great names from cybernetics and

information theory—Wiener, McCulloch, Pitts, Shannon—Noam Chom-

sky was down the hall, Schutzenberger was there working with him on for-

mal linguistic theorems, Roman Jakobson was around. Some of the classes

were incredible—for instance, being taught by the great pioneers of infor-

mation theory.

PH: Who were the major influences on you from that time?

JC: McCulloch, Pitts, Wiener, and Shannon. I was very lucky that Shan-

non arrived at MIT from Bell Labs the year I got there. So I took courses on

information theory with Bob Fano, Peter Elias, and Claude Shannon, I had

the benefit of a set of lectures from Norbert Wiener, and I interacted all the

time with Warren McCulloch and also to quite an extent with Walter Pitts.

PH: So Pitts was still active in the lab?

JC: He was still sort of functional. In fact I was one of the last students to

really talk to him at length about his interests and work. He and Wiener

probably had the biggest influence on me because it was through talk-

ing with them—separately, because by then Wiener had fallen out with

McCulloch and Pitts—that I decided to start working on trying to develop

differential equations to describe neural network dynamics and to try to do

statistical mechanics on neural networks. Pitts directly encouraged me to

look at continuous approaches to neural networks.

PH: I seem to remember that you have an unfinished thesis by Pitts . . .

JC: Well, I don’t have a thesis but what I have is a fragment of an unpub-

lished manuscript which I copied. He gave it to me for a while and let me

copy it. So I hand copied it, imitating his writing, and then gave it back

to him. Jerry Wiesner, who was then head of RLE, the Research Lab of

Electronics, to which we belonged, actually offered money to anyone who

could get Pitts to write something up and publish it so that they could give

him a degree. But unfortunately this thing was only a fragment; he never

finished it.

PH: It was on the beginnings of a statistical mechanics treatment of neural

networks wasn’t it?

JC: Yes. It was the beginnings of Walter’s attempt to do something, but

unfortunately it didn’t go very far. But remember that when he did that,

in the late fifties, this was long before any of the statistical mechanics tech-

niques needed for solving the problem had been developed.
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PH: Did you interact with Oliver Selfridge?

JC: I had some very nice talks with Oliver, who was working on the Pan-

demonium research at that time.8 But he had also done some very nice ear-

lier work with Wiener and Pitts on the origins of spirals in neural models,

with possible applications to cardiac problems.9 In fact, some of the stuff I

work on now is closely related to what they were doing. Marvin Minsky

also got involved with that work. There is a very nice study by them on

reverberators and spirals.

PH: So when did your period at MIT end?

JC: 1962. So I was there for four years. During that period I recruited

Shmuel Winograd, who went on to become a major figure at IBM, to the

group. I was working on the reliability stuff with McCulloch, and Shmuel

and I got interested in the capacity of computing devices. We developed a

theory of how to design optimal reliable network configurations of com-

puting elements. We came up with one of the earliest designs for a parallel

distributed computing architecture. This work got us known and we wrote

a monograph on it.10

PH: Would you say it was during this period that your interests started to

move more towards biology?

JC: Yes. It was definitely at MIT, through the influence of McCulloch and

others, that I moved from thinking about automata towards starting to

think about the nervous system. So it was a defining period in that sense.

PH: At about that time approaches to machine intelligence began to di-

verge to some extent. Minsky and McCarthy and others were very active

in exploring and promoting new directions in what they called artificial

intelligence, and cybernetics was starting to wane. So things were at a

cusp. What are your memories of the expectations people had?

JC: Well, there was always this tremendous hype about artificial intelli-

gence around Marvin and McCarthy and Allen Newell and Herb Simon

and so on. I remember Herb Simon coming to give a talk and it was the

same message we got from Marvin; if we had bigger and faster computers

we would be able to solve the problems of machine translation and AI and

all kinds of stuff. But they set up the AI Lab and were instrumental in the

development of lots of useful technology.

Through McCulloch I got to know Marvin Minsky very well and in fact

I recruited Seymour Papert to join our group, but by the time he arrived

I’d gone back to England so he ended up working with Marvin.

PH: So what was the reaction in the McCulloch group to all the hype sur-

rounding AI?
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JC: Great skepticism.

PH: Do you remember what your own personal views were at the time on

what was likely to be achieved and on what the important problems were?

JC: Well I was still in the middle of learning as much as I could and trying

to think out what direction I should take. I had a strong bent towards

applying the methods of theoretical physics and I was getting more and

more interested in the nervous system and neural network models. As I

mentioned earlier, Pitts and Wiener had influenced me to look in the direc-

tion of continuous approaches to neural networks, and I started to think

that the statistical mechanics of neural networks was a very important

problem. I remember sitting in the office I shared with McCulloch and hav-

ing the idea that there is an analogy between the Lotka-Volterra dynamics

of predator-prey interactions in populations and excitatory and inhibitory

neuron interactions in neural networks, and that set me going for the rest

of my career.

PH: How was the transition back to England in 1962?

JC: Well, in 1962 I was at a meeting in Chicago when I was approached by

two gentlemen from the Office of Naval Research who asked me if I would

like grant support. I said, ‘‘Well, yes!’’ and so they gave me my own per-

sonal grant that I was able to take back to England with me. I had to go

back to Britain for at least a year because that was part of the terms for the

fellowship I had that funded me at MIT.

So I went back to Imperial as an academic visitor. Meanwhile I got a mas-

ter’s degree at MIT, but neither Shmuel Winograd nor I decided to brave

the doctoral program there, on the advice of Claude Shannon. After Claude

had written his first famous paper, on the application of Boolean algebra

to switching networks, he took the doctoral qualifying exam in electrical

engineering and failed; I think he failed the heavy-current electrical engi-

neering part. So he went to the Math Department and did his Ph.D. there.

So we took his advice and Shmuel got his doctorate from NYU and I

returned to Imperial without a Ph.D.

PH: How did your work develop at Imperial?

JC: So I went back to the Electrical Engineering Department at Imperial

and got involved in a number of things. I started doing a bit of teaching,

labs on numerical methods and computing and things like that, and I

started supervising students, even though I was really technically still a stu-

dent myself! I worked on the monograph on reliable computing from unre-

liable elements with Winograd, which got published by MIT Press after the

Royal Society rejected it!11 We made the link between von Neumann’s
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work and Shannon’s work on the noisy-channel coding theorem and intro-

duced the parallel distributed architecture thirty years before its time. After

we finished that I turned to the problem of neural network dynamics, and

by about 1964 I had the beginnings of a way to do the mathematics of

neural networks using systems of nonlinear differential equations. I did a

version of it that led to a statistical mechanics, but it wasn’t quite the right

version; it was a special case, the antisymmetric case.12 This came from the

analogy with population dynamics, where an excitor neuron is coupled to

an inhibitor that is coupled back to it, so the weights are antisymmetric.

In this work I introduced the sigmoid nonlinearity into neural models.13

There was another special case that I didn’t follow up at the time but it

was followed up fifteen or so years later by John Hopfield, the symmetric

case.14 Hopfield networks were the other special case of the network popu-

lation that I introduced in about 1964. Anyway, when I was doing that

work in the sixties I realized that there was clearly a relationship between

what I had done and Raymond Beurle’s work on a field theory of large-scale

brain activity—a kind of continuum model.15 So I spent quite a bit of time

working on that and wrote it all up in a report for the Office of Naval

Research.

PH: So who else in the UK were you interacting with at that time?

JC: Mainly Gabor, Uttley, and MacKay at that stage, and a little bit with

Christopher Longuet-Higgins and David Willshaw, who were doing inter-

esting neural-network research in Edinburgh—associative-memory work. I

also used to interact a bit with Richard Gregory, whom I got on very well

with.

PH: You went and worked with Uttley’s group, didn’t you?

JC: Yes. I spent four years at Imperial, ’62 to ’66, and then in ’66 to ’67 I

split my time—about a day a week at Imperial and the rest at the National

Physical Laboratory at Teddington. Albert Uttley had invited me to go out

there to work in his Autonomics Division. I mainly worked with Anthony

Robertson, who was a neurophysiologist working in that group.

PH: What did you think of Uttley’s ideas at that time?

JC: Well, I always liked Uttley’s ideas; I think he was undervalued. He had

some very good ideas which were precursors to more modern work on ma-

chine learning. He had the right ideas—for instance, using a conditional

probability approach16—he just didn’t have a clean enough formulation.

Of course this was long before people discovered the relationship between

statistics and neural networks.

PH: What about the wider field of theoretical biology that was gaining

strength in Britain at about this time?
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JC: Yes, that was another group of very interesting people I was involved

in. My link to that started back in Edinburgh when I was growing up. One

of my friends was Pearl Goldberg, who got married to Brian Goodwin, the

theoretical biologist. We met up in Boston when I was at MIT and through

me they ended up staying with McCulloch for a while. Anyway, Brian had

developed a statistical-mechanics approach to cell metabolism. I liked that

a lot and I realized my Lotka-Volterra thoughts on neural networks could

be done the same way. So Brian’s work was a trigger to my first statistical-

mechanics approach to neural networks. When I got back to London in ’62

I’d meet up with Brian, who was at Edinburgh University, and through him

I got to know Lewis Wolpert, the developmental biologist. And so we

had a discussion group on theoretical biology, which Michael Fisher

used to come to occasionally, and so that’s when I really started to get

into the wider field. Then Conrad Waddington, who was also in Edin-

burgh, organized the ‘‘Towards a Theoretical Biology’’ meetings,17 and

through Brian I got to go to those. That was quite an interesting collection

of people. The mathematicians René Thom and Christopher Zeeman were

there, and so were Ernst Mayr, John Maynard Smith, and Dick Lewontin,

the evolutionary biologists, and Lewis Wolpert, Donald Michie, who at

that time was still working in genetics, Christopher Longuet-Higgins, Brian,

and me.

Now Lewontin was on the lookout for someone to take over from

Rashevsky at the University of Chicago. Nicolas Rashevsky had set up the

Committee on Mathematical Biology in the late 1930s, but by 1965 he

had resigned and they were looking for a replacement.18 They settled on ei-

ther Brian Goodwin or me, and Brian wasn’t interested, as he had not long

before moved to Sussex University. So I went for a long walk with Lewontin

and Ernst Mayr in the woods outside the Villa Serbelloni, where we were

having the meeting, which overlooked Lake Como. I remember Ernst was

amazing, pointing out every animal and insect and plant in the woods.

Anyway, they talked me into thinking seriously about taking the job. At

that time I wanted to go to Sussex to work with Brian. I had applied to

the UK Science Research Council for a grant to work on the statistical me-

chanics of large-scale brain activity and told them that if I didn’t get the

funding I’d have to go to the U.S. And they didn’t give me the funding.

The referees, who included Donald Mackay, claimed it was too speculative.

So I ended up taking the job and moving to Chicago.

I’d been appointed a professor and chairman of the Committee on Math-

ematical Biology at Chicago and I still didn’t have a Ph.D. So I decided it

really was time and I took a week out to write up some of my work into a
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thesis, and I had a viva exam with Gabor as my internal examiner and Ray-

mond Beurle as the external. The viva lasted two minutes and then we

drank some champagne! So I got my Ph.D. on the statistical mechanics of

neural networks, the first ever Ph.D. in that area.

I arrived in Chicago with my wife, who was seven months pregnant, the

day after a monster snowstorm in the winter of 1967.

PH: Had the intellectual climate changed much in the time you’d been

away? I’m wondering if the AI bandwagon had had a negative impact on

funding in the areas you were interested in?

JC: Yes and no. It didn’t do anything to mathematical biology, but it did

damage the field of neural networks. When Minsky and Papert published

their attack on the perceptron in 1969, and they’d been giving talks on

that stuff for a while before, they made the claim that you couldn’t solve

the perceptron training problem.19 In retrospect I had invented the ma-

chinery necessary to solve the problem, and show that they were wrong,

in the mid-sixties—the sigmoid model I used in my Lotka-Volterra-like

network-dynamics model. But I didn’t work on that aspect; I put it aside.

There were two major things that I should have done but didn’t at

the time. One, as I’ve already mentioned, was to do the other case of the

Lotka-Volterra network, which is essentially what Hopfield did, and the

other was to use the sigmoid model to do perceptron training, which is

what David Rumelhart, Geoff Hinton, and Ronald Williams did in 1986.20

So I kick myself for not doing either.

PH: How did things pan out in the Committee on Mathematical Biology?

JC: Well, I was chairman for six years and I built it into a department of

theoretical biology. I recruited people like Stuart Kaufmann and Art Win-

free, who both went on to become very prominent, and various other peo-

ple. It actually had quite a decent influence on theoretical biology in the

U.S. and elsewhere. But then we merged with the biophysics department,

because it was thought that small departments were not so viable, but that

proved to be a mistake. The merged department then got further merged to

become part of something that also accommodated genetics and molecular

biology and other branches of biology. So in 1980, or thereabouts, I moved

to the mathematics department and I’ve been there ever since.

PH: What was the main focus of your work from the late 1960s?

JC: So my idea of correcting and extending Beurle’s work paid off and I

was very fortunate to recruit a very good postdoc, Hugh Wilson, to work

with me on that. So Wilson and I published a couple of papers, in ’72 and

’73, which triggered a great deal of activity.21 We basically gave the first
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nontrivial and useful field theory, what we would now call a mean field

theory, for looking at large-scale brain dynamics. But even then I knew

that that work wasn’t really the answer to the problem I’d set myself of

doing statistical mechanics of neural networks. Even when, in the late sev-

enties, Bart Ermentrout and I showed that you could apply modern mathe-

matical techniques to calculate the various patterns that could form in

networks of that kind, which turned out to be useful for various kinds of

applications, it still wasn’t really getting to grips with what might be going

on in the nervous system.22 So I made a start on trying to do that in 1979

and discovered the key to doing it in 1985 while working at Los Alamos

with two physicists, Alan Lapedes and David Sharp, and got a first version

going in about 1990. I worked on it a bit more with a student, Toru Ohira,

but it is only in the last two or three years, with a really bright graduate stu-

dent named Michael Buice, have we actually solved the problem. So now

we are in possession of a field theory for large-scale brain activity, which is

exactly the kind of object that Norbert Wiener and Walter Pitts were clearly

pointing at nearly fifty years ago. We’ve solved the problem that was put to

me by Pitts and Wiener all those years ago. We finished the first paper on

this only last week [October 2006], so it will see the light of day in due

course. It uses Wiener path integrals as well as all the machinery of modern

statistical mechanics and field theory, and it’s made exactly the right

contact with physics that I was hoping for and it’s relevant to data at every

level of analysis. It’s a great boon at my age to be in the middle of all this

new stuff. It might be the Rosetta Stone that unlocks a lot of how large-

scale brain activity works.

PH: That sounds very exciting; I look forward to reading more about it.

Can we just go back a little in that trajectory and talk about your work in

pattern formation in neural networks and how it links to Turing?

JC: Well, the bulk of that research goes back to 1979, when I was working

with another extremely bright graduate student, Bart Ermentrout. I went to

a conference that Hermann Haken organized in Germany in 1977 on what

he called synergetics—a modern version of cybernetics, but stressing the

role of excitation. While at that meeting I realized that Turing’s 1952 work

on the chemical basis of morphogenesis could be applied to neural net-

works.23 I realized that the stuff I’d done with Hugh Wilson was an ana-

logue of the reaction-diffusion networks that Turing had worked on. There

was a very good talk at that meeting by an applied mathematician from the

U.S. called David Sattinger showing how to apply the techniques of nonlin-

ear analysis, bifurcation theory as it’s called, in the presence of symmetry
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groups, to things like fluid convection. And I realized there was an ana-

logue of that in the nervous system. When I got back I mentioned this to

Bart and he immediately saw what I saw.

We realized that we could apply it to the problem of what is going on in

the cortex when people see geometric patterns when they are hallucinat-

ing. This happens after taking hallucinogens, or through meditation, or

sometimes in other conditions. The Chicago neuropsychologist Heinrich

Klüver did a lot of field work in the sixties to classify these types of geomet-

ric hallucinations. He mainly experimented on himself, using peyote.24

Anyway he discovered that there were only four classes of patterns; they

were the same for everyone experiencing these kinds of hallucinations. So

we produced a first treatment of why people see these patterns—tunnels,

funnels, spirals, and honeycombs—in the visual field. Applying the Turing

mechanism we showed what kind of neural architecture would spontane-

ously give rise to these patterns and showed that is was consistent with

the neuroanatomy that had been discovered by Hubel and Weisel and

others going back to Sholl.25 In recent years we’ve followed that up, work-

ing with Paul Bressloff, Martin Golubitsky, and some of my students, and

we now have more detailed explanations.26 We have a series of papers

that will come out in due course that extend the model to cover hallucina-

tions involving color, depth, and motion. We’ve extended the analysis to

look at why people see themselves falling down tunnels with light at the

end and so forth. We believe this work tells us quite a lot about what

the architecture of the relevant parts of the brain must be like to generate

these things. I was at a computational neuroscience and vision conference

recently and I discovered that some of the techniques we have introduced

in this work may be very relevant to computational vision, and that there

may be some deep links between the field equations Wilson and I intro-

duced and problems in vision such as color matching. So this is a new

direction I am going to collaborate in.

PH: I wonder what your views are on the correct level of abstraction for

brain modeling. There is an awful lot more known today about some of

the low-level biochemical details, but still the higher-level overall picture

is rather obscure.

JC: It’s a very interesting question. We now have at Chicago Stephen

Smale, who is a great mathematician—a Fields Medalist for his work on

the Poincaré conjecture many years ago and many other honors—who

has got interested in machine learning and vision recently. He’s starting to

work with a number of people in these areas and he has a very abstract way

of thinking, but a very powerful way. There is a group of mathematicians
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who work on differential geometry and topology who are getting very

interested in what goes on in the nervous system. There are many different

levels of mathematical abstraction that can be applied to brain modeling. I

think there are going to be rich developments over the coming decades in

this area and we may see some rather different styles of modeling emerge

than have been used to date.

PH: Historically, one of problems faced by theoretical work in neuro-

science is indifference, or sometimes hostility, from the majority of those

working in neuroscience. Do you see that changing?

JC: Well this is something I’ve had to struggle with for nearly fifty years,

but I think it is changing. Most of the new young people coming through

have a different attitude. Many are much better educated than their equiv-

alents were even twenty-five years ago. I think more and more biologists

will become at least open to mathematics whilst remaining very good

empirical scientists. But the fact that experimental tools and methods

have become more precise means that there is a lot more data that cries

out for mathematical approaches. So I think attitudes are changing.

PH: If you put yourself back at the start of your career, right back to Fer-

ranti, and try and remember your general expectations then, are you sur-

prised at how far machine intelligence has come, or hasn’t come?

JC: Well, something that has always surprised me is how many times

ideas in this field are rediscovered by the next generation. For example I

recently heard a very nice lecture from Tommy Poggio, who has been in

the game a good while himself, on early vision. He used a mathematical

device that actually had been invented in the 1950s by Wilfred Taylor at

University College. Tommy wasn’t aware of that. A lot of the ideas and ma-

chinery that is current now has actually been sitting in the field for a very

long time. It’s just that we haven’t always seen the implications or how to

use them properly. But am I surprised at how difficult it has turned out to

do real machine intelligence? No, not at all. I always thought it would be

much harder than the people in strong AI claimed. Now back in about

1966, Frank Schmitt, who ran the neuroscience research program at MIT,

organized one of the first meetings on sensory coding and Shannon was at

that meeting. I remember Shannon said something very interesting during

the meeting. He said that he thought that while initially strong AI might

make some interesting progress, in the long run bottom-up work on neural

networks would prove to be much more powerful. He was one of the few

people at MIT in 1958 who responded positively to a lecture Frank Rosen-

blatt gave on the perceptron. Most were extremely negative in their re-

sponse to it, and I have to say it was a pretty bad lecture, with too many
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wild claims, but not Shannon. He said, ‘‘There could be something in this.’’

I consider him to be amazingly perceptive, much more so than most others

in the field. Him and McCulloch, Wiener and Pitts.

PH: What do you think are the most interesting developments in machine

learning at the moment?

JC: Well there is some very interesting work on data mining that the

mathematician Raphy Coifman at Yale and others have been involved in.

If you have a very large database from which you want to extract informa-

tion, you can get a big advantage if you can map the data space onto some

lower-dimensional manifold in a systematic way. What they found was

that simple things like averaging operators, smoothing Laplacian operators,

and things connected to diffusion, are immensely powerful for doing that.

In a strange way it’s connected to what underlies the solution to the Poin-

caré conjecture because that involves the smoothing of manifolds, and

smoothing plays a key role in this work on data mining. I’ve recently pro-

posed that the resting state of the brain is Brownian motion, which is also

closely related to that kind of operator. So I think there is something going

on in the nervous system and something going on to enable machine

learning that may be related and which will prove to be very interesting.

PH: Finally, is there a particular piece of your work that you are most

proud of?

JC: Well, I think that the work I’m doing now with Michael Buice, which

we discussed earlier, and which is the culmination of many years’ work, is

what I’m going to end up being most proud of. Even though I’m in my

anecdotage, as they say, I like to look forward, and what I’m doing now I

find is most interesting to me.
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