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Figure 1.2 A pressure waveform of the wave motion shown in figure 1.1. Time is again shown 
on the horizontal axis. The vertical axis shows the distance between people. 

(the signal-to-noise ratio) may be difficult to detect if the movement is small. The 
rate of sound dissipation in air is different from the dissipation of a movement in 
a line, because sound radiates in three dimensions from the sound source (in a 
sphere). This means that the number of air molecules being moved by the sound 
wave greatly increases as the wave radiates from the sound source. Thus the 
amount of energy available to move the molecules (energy per unit surface area 
on the sphere) decreases as the wave expands out from the sound source, con
sequently the amount of particle movement decreases as a function of the distance 
from the sound source (by a power of 3). That is why singers in heavy metal 
bands put the microphone right up to their lips. They would be drowned out by 
the general din otherwise. It is also why you should position the microphone 
close to the speaker's mouth when you record a sample of speech (although it is 
important to keep the microphone to the side of the speaker's lips, to avoid the 
blowing noises in [p]'s, etc.). 

1.3 Types of sounds 

There are two types of sounds: periodic and aperiodic. Periodic sounds have a pat
tern that repeats at regular intervals. They come in two types: simple and complex. 

1.3.1 Simple periodic waves 

Simple periodic waves are also called sine waves: they result from simple harmonic 
motion, such as the swing of a pendulum. The only time we humans get close to 
producing simple periodic waves in speech is when we're very young. Children's 
vocal cord vibration comes close to being sinusoidal, and usually women's vocal cord 
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Figure 1.3 A 100 Hz sine wave with the duration of one cycle (the period) and the peak 
amplitude labeled. 
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Figure 1.4 Two sine waves with identical frequency and amplitude, but 90° out of phase. 
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vibration is more sinusoidal than men's. Despite the fact that simple periodic 
waves rarely occur in speech, they are important, because more complex sounds 
can be described as combinations of sine waves. In order to define a sine wave, 
one needs to know just three properties. These are illustrated in figures 1.3-1.4. 

The first is frequency: the number of times the sinusoidal pattern repeats per 
unit time (on the horizontal axis). Each repetition of the pattern is called a cycle, 
and the duration of a cycle is its period. Frequency can be expressed as cycles per 
second, which, by convention, is called hertz (and abbreviated Hz). So to get the 
frequency of a sine wave in Hz (cycles per second), you divide one second by the 
period (the duration of one cycle). That is, frequency in Hz equals 1 IT, where T 
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is the period in seconds. For example, the sine wave in figure 1.3 completes one 
cycle in 0.01 seconds. The number of cycles this wave could complete in one 
second is 100 (that is, one second divided by the amount of time each cycle takes 
in seconds, or 1/0.01 = 100). So, this waveform has a frequency of 100 cycles per 
second (100 Hz). 

The second property of a simple periodic wave is its amplitude: the peak 
deviation of a pressure fluctuation from normal, atmospheric pressure. In a sound 
pressure waveform the amplitude of the wave is represented on the vertical axis. 

The third property of sine waves is their phase: the timing of the waveform 
relative to some reference point. You can draw a sine wave by taking amplitude 
values from a set of right triangles that fit inside a circle (see exercise 4 at the end 
of this chapter). One time around the circle equals one sine wave on the paper. 
Thus we can identify locations in a sine wave by degrees of rotation around a 
circle. This is illustrated in figure 1.4. Both sine waves shown in this figure start 
at 0° in the sinusoidal cycle. In both, the peak amplitude occurs at 90°, the 
downward-going (negative-going) zero-crossing at 180°, the negative peak at 
270°, and the cycle ends at 360°. But these two sine waves with exactly the same 
amplitude and frequency may still differ in terms of their relative timing, or 
phase. In this case they are 90° out of phase. 

1.3.2 Complex periodic waves 

Complex periodic waves are like simple periodic waves in that they involve a 
repeating waveform pattern and thus have cycles. However, complex periodic 
waves are composed of at least two sine waves. Consider the wave shown in 
figure 1.5, for example. Like the simple sine waves shown in figures 1.3 and 1.4, 
this waveform completes one cycle in 0.01 seconds (i.e. 10 milliseconds). However, 
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Figure 1.5 A complex periodic wave composed of a 100 Hz sine wave and a 1,000 Hz sine wave. 
One cycle of the fundamental frequency (Fa) is labeled. 
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it has an additional component that completes ten cycles in this same amount of 
time. Notice the "ripples" in the waveform. You can count ten small positive 
peaks in one cycle of the waveform, one for each cycle of the additional fre
quency component in the complex ",:ave. I produced ~his example by adding a 
100 Hz sine wave and a (lower-amphtude) 1,000 Hz sme wave. So the 1,000 Hz 
wave combined with the 100 Hz wave produces a complex periodic wave. The 
rate at which the complex pattern repeats is called the fundamental frequency 
(abbreviated Fo)· 

Fundamental frequency and the GCD 

l've snow'l\ in figure 1.5 has a fundamental frequency of 100 Hz and also 
OOlrri:ponent sine wave. It turns out that the fundamental frequency of 

the greatest common denominator (GCD) of the frequencies 
tnonet\t sine waves. For example, the fundamental frequency (Fo) of 

with 400 .Hz and 500 Hz components is 100Hz. You can see 
'ifyo\l draw the complex periodic wave that results from 

',Hz 'Sine wave and a 500 Hz sine wave. We will use the sine wave 
'tl!.e starting point for this graph. The procedure is as follows: 

graph paper. 
the period of a 400 Hz sine wave. Because frequency is equal to 

1~,t":9J~,:diivi4;ted by the period (in math that's f = 1 In, we know that the period 
toone divided by the frequency (T = Ilf). So the period of a 400 
wave is 0.0025 seconds. In milliseconds (l/1,oooths of a second) 

(0.0025 times 1,000). 
period ofa 500 Hz sine wave. 

gOing to derive two tables of numbers that constitute instructions 
*'''l'alwlg,,~mHz and 500 Hz sine waves. To do this, add some new labels 
ll'U.'lim,e, axis on figure 1.3, once for the 400 Hz sine wave and once for 

sine wave. The 400 Hz time axis will have 2.5 ms in place of 0.Q1 
'. 400 .Hz sine wave completes one cycle in 2.5 ms. In place of 
.:the400 Hz time axis will have 1.25 ms. The peak of the 400 Hz 

accurs at 0.625 InS, and the valley at 1.875 ms. This gives us a 
'"'''GU.''''' amplitude values for the 400 Hz wave (where we assume 

IlmpUWCle of the peak is 1 and the amplitude of the valley is -1, 
~ .... , ......... y.u,~u,,"""value given for time 3.125 is the peak in the second cycle): 

0.625 
1 

1.25 
o 

1.875 
-1 

2.5 
o 

3.125 
1 

~i}lntPT";lll between successive points in the waveform (with 90° between 
1iII:::J'lninH is 0.625 InS. In the SOO Hz sine wave the interval between 

.'Pal'able points is 0.5 ms. 
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5 Now on your graph paper mark out 20 ms with 1 ms intervals. Also mark 
an amplitude scale from 1 to -1, allowing about an inch. 

6 Draw the 400 Hz and 500 Hz sine waves by marking dots on the graph 
paper for the intersections indicated in the tables. For instance, the first dot 
in the 400 Hz sine wave will be at time 0 ms and amplitude 0, the second at 
time 0.625 ms and amplitude I, and so on. Note that you may want to extend 
the table above to 20 ms (I stopped at 3.125 to keep the times right for the 
400 Hz wave). When you have marked all the dots for the 400 Hz wave, 
connect the dots with a freehand sine wave. Then draw the 500 Hz sine wave 
in the same way, using the same time and amplitude axes. You should 
have a figure with overlapping sine waves something like figure 1.6. 

7 Now add the two waves together. At each 0.5 ms point, take the sum of the 
amplitudes in the two sine waves to get the amplitude value of the new 
complex periodic wave, and then draw the smooth waveform by eye. 

Take a look at the complex periodic wave that results from adding a 400 Hz 
sine wave and a 500 Hz sine wave. Does it have a fundamental frequency of 
100 Hz? If it does, you should see two complete cycles in your 20 ms . long 
complex wave; the waveform pattern from 10 ms to 20 ms should be an exact 
copy of the pattern that you see in the 0 ms to 10 ms interval. 

Figure 1.6 shows another complex wave (and four of the sine waves that were 
added together to produce it). This wave shape approximates a sawtooth pattern. 
Unlike the previous example, it is not possible to identify the component sine 
waves by looking at the complex wave pattern. Notice how all four of the com
ponent sine waves have positive peaks early in the complex wave's cycle and 
negative peaks toward the end of the cycle. These peaks add together to produce 
a sharp peak early in the cycle and a sharp valley at the end of the cycle, and 
tend to cancel each other over the rest of the cycle. We can't see individual peaks 
corresponding to the cycles of the component waves. Nonetheless, the complex 
wave was produced by adding together simple components. 

Now let's look at how to represent the frequency components that make up a 
complex periodic wave. What we're looking for is a way to show the component 
sine waves of the complex wave when they are not easily visible in the waveform 
itself. One way to do this is to list the frequencies and amplitudes of the com
ponent sine waves like this: 

frequency (Hz) 
amplitude 

100 
1 

200 
0.5 

300 
0.33 

400 
0.25 

500 
0.2 

Figure 1.7 shows a graph of these values with frequency on the horizontal axis and 
amplitude on the vertical axis. The graphical display of component frequencies is 
the method of choice for showing the simple periodic components of a complex 
periodic wave, because complex waves are often composed of so many frequency 

o 
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100 Hz, amp 1 

200 Hz, amp 0.5 

300 Hz, amp 0.33 

400 Hz, amp 0.25 

0.01 
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Figure 1.6 A complex periodic wave that approximates the "sawtooth" wave shape, and the four 
lowest sine waves of the set that were combined to produce the complex wave. 

components that a table is impractical. An amplitude versus frequency plot of 
the simple sine wave components of a complex wave is called a power spectrum. 

Here's why it is so important that complex periodic waves can be constructed 
by adding together sine waves. It is possible to produce an infinite variety of 
complex wave shapes by combining sine waves that have different frequencies, 
amplitudes, and phases. A related property of sound waves is that any complex 
aCOUstic wave can be analyzed in terms of the sine wave components that could 
have been used to produce that wave. That is, any complex waveform can be 
decomposed into a set of sine waves having particular frequencies, amplitudes, 
and phase relations. This property of sound waves is called Fourier's theorem, 
after the seventeenth-century mathematician who discovered it. 
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Figure 1.7 The frequencies and amplitudes of the simple periodic components of the complex 
wave shown in figure 1.6 presented in graphic format. 

In Fourier analysis we take a complex periodic wave having an arbitrary number 
of components and derive the frequencies, amplitudes, and phases of those 
components. The result of Fourier analysis is a power spectrum similar to the 
one shown in figure 1.7. (We ignore the phases of the component waves, because 
these have only a minor impact on the perception of sound.) 

133 Aperiodic waves 

Aperiodic sounds, unlike simple or complex periodic sounds, do not have a 
regularly repeating pattern; they have either a random waveform or a pattern 
that doesn't repeat. Sound characterized by random pressure fluctuation is called 
"white noise." It sounds something like radio static or wind blowing through 
trees. Even though white noise is not periodic, it is possible to perform a Fourier 
analysis on it; however, unlike Fourier analyses of periodic signals composed of 
only a few sine waves, the spectrum of white noise is not characterized by sharp 
peaks, but, rather, has equal amplitude for all possible frequency components 
(the spectrum is flat). Like sine waves, white noise is an abstraction, although 
many naturally occurring sounds are similar to white noise. For instance, the 
sound of the wind or fricative speech sounds like [s] or [fl. 

Figures 1.8 and 1.9 show the acoustic waveform and the power spectrum, 
respectively, of a sample of white noise. Note that the waveform shown in figure 1.8 
is irregular, with no discernible repeating pattern. Note too that the spectrum 
shown in figure 1.9 is flat across the top. As we noted earlier, a Fourier analysis 
of a short chunk (called an "analysis window") of a waveform leads to inaccuracies 
in the resultant spectrum. That's why this spectrum has some peaks and valleys 
even though, according to theory, white noise should have a flat spectrum. 

The other main type of aperiodic sounds are transients. These are various types 
of clanks and bursts which produce a sudden pressure fluctuation that is not 
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Figure 1.8 A 20 ms section of an acoustic waveform of white noise. The amplitude at any given 

point in time is random. 
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Figure 1.9 The power spectrum of the white noise shown in figure 1.8. 

sustained or repeated over time. Door slams, balloon pops, and electrical clicks are 
all transient sounds. Like aperiodic noise, transient sounds can be analyzed into 
their spectral components using Fourier analysis. Figure 1.10 shows an idealized 
transient signal. At only one point in time is there any energy in the signal; at all 
other times pressure is equal to zero. This type of idealized sound is called an 
"impulse." Naturally occurring transients approximate the shape of an impulse, but 
usually with a bit more complicated fluctuation. Figure 1.11 shows the power spec
trum of the impulse shown in figure 1.10. As with white noise, the spectrum is flat. 
'!his is more obvious in figure 1.11 than in figure 1.9 because the" im pulseness" of the 
Impulse waveform depends on only one point in time, while the "white noiseness" 
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Figure 1.10 Acoustic waveform of a transient sound (an impulse). 
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Figure 1.11 Power spectrum of the transient signal shown in figure 1.10. 

of the white noise waveform depends on every point in time. Thus, because the 
Fourier analysis is only approximately valid for a short sample of a waveform, 
the white noise spectrum is not as completely specified as is the impulse spectrum. 

1.4 Acoustic filters 

We are all familiar with how filters work. For example, you use a paper filter to 
keep the coffee grounds out of your coffee, or a tea ball to keep the tea leaves out 
of your tea. These everyday examples illustrate some important properties of 
acoustic filters. For instance, the practical difference between a coffee filter and a 

-
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Figure 1.12 Illustration of the spectrum of a low-pass filter. 

tea ball is that the tea ball will allow larger bits into the drink, while the coffee 
filter captures smaller particles than does the tea ball. So the difference between 
these filters can be described in terms of the size of particles they let pass. 

Rather than passing or blocking particles of different sizes like a coffee filter, 
an acoustic filter passes or blocks components of sound of different frequencies. For 
example, a low-pass acoustic filter blocks the high-frequency components of a 
wave, and passes the low-frequency components. Earlier I illustrated the difference 
between simple and complex periodic waves by adding a 1,000 Hz sine wave to 
a 100 Hz sine wave to produce a complex wave. With a low-pass filter that, for 
instance, filtered out all frequency components above 300 Hz, we could remove the 
1,000 Hz wave from the complex wave. Just as a coffee filter allows small par
ticles to pass through and blocks large particles, so a low-pass acoustic filter allows 
low-frequency components through, but blocks high-frequency components. 

You can visualize the action of a low-pass filter in a spectral display of 
the filter's response function. For instance, figure 1.12 shows a low-pass filter 
that has a cutoff frequency of 300 Hz. The part of the spectrum shaded white is 
called the pass band, because sound energy in this frequency range is passed by 
the filter, while the part of the spectrum shaded gray is called the reject band, 
because sound energy in this region is blocked by the filter. Thus, in a complex 
WaVe with components at 100 and 1,000 Hz, the 100 Hz component is passed, 
and the 1,000 Hz component is blocked. Similarly, a high-pass acoustic filter 
blocks the low-frequency components of a wave, and passes the high-frequency 
components. A spectral display of the response function of a high-pass filter 
shows that low-frequency components are blocked by the filter, and high
frequency components are passed. 


