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PREFACE AND ACKNOWLEDGMENTS 

Knowledge is a resource for inquiry and deliberation. So 
understood it often stands in need of improvement. The en
terprise of knowledge seeks to satisfy that need. 

Even if cognitive resources render other services, at a very 
minimum they make an important contribution to the realiza
tion of the aims of persons and institutions regardless of 
whether the aims are political, ethical, economic, or scientific. 
We may, therefore, obtain some understanding of these re
sources through a grasp of the way they should function in 
rational decision making. 

When justifying a choice between feasible options, a dis
tinction needs to be made between hypotheses concerning 
consequences of these options which are possibly true and 
hypotheses concerning options which are not possible as far 
as the agent knows. To assess the expected values of these 
options a still finer discrimination among possibly true hy
potheses with respect to probability is also helpful. 

A body of knowledge serves in such deliberation as a stan
dard for serious possibility. A credal state appraises the pos
sibly true with respect to probability. 

An account of the improvement of knowledge ought to ex
plain in as systematic a fashion as is acceptable how revisions 
of knowledge and credence may be brought under critical 
control for the purpose of improving them as cognitive re
sources for deliberation and inquiry. 

Contemporary preoccupation with the "incommensurabil
ity" of rival "paradigms" has tended to leave the impression 
that at critical points in the development of science we are 
compelled to make revisions in a manner which cannot be 
justified without begging questions. Such views are untenable 
both as they bear on the revision of corpora of knowledge and 
on the revision of credal states. 

At the same time, I regard efforts to eviscerate inquiry by 

PREFACE AND ACKNOWLEDGMENTS 
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removing human agents and institutions with their aims, prob
lems, and resources from a centrally relevant role in an ac
count of deliberation and inquiry to be an exaggerated re
sponse to the excesses of psychologism, sociologism, and 
historicism. We can attain objectivity enough without ascent 
to Popper's third world. 

This book elaborates on these themes. The first three chap
ters discuss the functioning of a corpus of knowledge in inquiry 
and deliberation as a standard for serious possibility. The 
implication that, for the investigator, his corpus or standard 
should be regarded as infallibly true is explained and defended 
against the charge that it precludes reasoned revisions of 
knowledge. The correct view that knowledge is corrigible
i.e., subject to critically controlled revision-is severed from 
the thesis of fallibilism according to which knowledge is or 
ought to be possibly false from the agent's viewpoint. 

Chapters 4-10 seek to extend the epistemological outlook 
already applied to the improvement of knowledge to proba
bility judgment. The Bayesian ideal is rejected. According to 
that ideal, rational agents should always be committed to cre
dal states of probability judgment representable by unique 
probability measures on the grounds that such an ideal pro
hibits suspension of judgment between rival numerically pre
cise credal states relative to the same body of evidence. An 
ideally rational agent should sometimes suspend judgment by 
embracing a credal state which is indeterminate in the sense 
that more than one probability measure is considered permis
sible for the purpose of computing expected values in delib
eration. 

To be persuasive such an argument needs supplementation 
by an account of rational choice and statistical inference suf
ficiently comprehensive to cover cases where probability judg
ment is determinate and where it is indeterminate. The dis
cussion of indeterminate probability judgment, indeterminate 
utility judgment, decision theory, inductive logic, chance, and 
statistical inference which takes up most of the space in this 
book seeks to establish the existence of such an account. The 
result is sufficiently comprehensive, so I hope, to recognize 
Bayesian prescriptions as legitimate in special cases while 
acknowledging that Bayesian doctrine is not as universally 
applicable as it claims to be. Yet, the aim is to avoid the 
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skepticism and eclecticism so characteristic of anti-Bayesian 
critics by supplying a rival to Bayesianism pretending to the 
scope so many Bayesians claim for their doctrine. 

I learned from reading R. B. Braithwaite's Scientific Expla
nation that no useful semantics for predicates attributing ob
jective probabilities or chances to systems can be given; and 
that clarity concerning the connections between chances and 
test behavior can be obtained only through studying direct 
inference from knowledge of chances to judgments about test 
behavior and inverse inference from knowledge of test behav
ior to judgments about chances. 

Building on the results of the first ten chapters, chapters 
11-13 offer an account of direct and inverse inference linking 
chance with test behavior. Chapters 14-18 contrast my ac
count with other alternatives. 

My original intent was to extend and improve upon the 
epistemological outlook presented in my book, Gambling with 
Truth. In addition to contributing to the elaboration and mod
ification of my own epistemological outlook, however, the 
analytical apparatus I have constructed should interest stu
dents of epistemology, philosophy of science, decision theory, 
probability theory, and statistical inference even if they are 
not committed and are, indeed, opposed to my orientation. 

Ever since reading about "spans of confirmation" in Fred
eric Schick's doctoral dissertation, I have been intrigued with 
the idea of representing probability judgments by sets of prob
ability distributions. Over the years we have argued, often 
vehemently, about topics in value theory, individual decision 
making, collective decision making, and probability theory. 
These discussions have been invaluable to me and have 
touched every aspect of the account of rational choice offered 
here. 

In earlier days, I reacted to Henry Kyburg's worries about 
acceptance. His pioneering work on indeterminate probability 
has been one of the sources of my ideas for this volume. But 
I am especially grateful to him for the opportunity to disagree 
with his views on direct inference. In disagreeing with him, I 
have learned more about this topic than from anyone else. 

I initially thought the originality of the scheme I was de
veloping for using indeterminate probabilities (as compared 
with the pioneering work of B. 0. Koopman, Kyburg, I. J. 
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Good, C. A. B. Smith, and Schick) resided chiefly in the 
account of inductive probability, logical probability, and de
cision theory and in the account of the revision of probability 
judgment. Howard Stein helped me to see that the technical 
articulation of my ideas on probability judgment departed sig
nificantly from ordinalist and intervalist views which currently 
dominate discussions of indeterminate probability. 

Teddy Seidenfeld was a graduate student at Columbia while 
this book was being written. It has been my good fortune to 
have supervised and to have learned from his doctoral disser
tation. His insightful work on the fiducial argument has been 
of great help to me in writing chapters 14-17 and traces of my 
discussions with him appear throughout this book. 

This book was written at a time when interest in modal logic 
and its applications to metaphysics and epistemology domi
nated much discussion. I have been fortunate to have had the 
opportunity to discuss some of my reservations with James 
Higginbotham and Charles Parsons. I remain convinced that 
this new wave is a retrograde step in philosophy but, thanks 
to Higginbotham and Parsons, my reservations are more in
formed than they otherwise would have been. 

I regard this present work as a fragment of an account of 
how the context of inquiry directs the revision of knowledge. 
This was Dewey's problem. I became interested in it under 
the tutelage of Ernest Nagel and Sidney Morgenbesser. 

I was prompted to check into the methodological discus
sions in the Rasmussen report thanks to a conversation with 
Seymour Melman and Raymond Siever. This led to the belated 
addition of the appendix to the book. 

Henry Kyburg, Sidney Morgenbesser, Ernest Nagel, 
Charles Parsons, Frederic Schick, Teddy Seidenfeld, Stephen 
Spielman, and Howard Stein have read various portions of 
this book at some stage in its composition and have given me 
their critical reactions. I wish to thank them all. 

Work on this book began during the winter of 1973 while I 
was a visiting scholar at Corpus Christi College, Cambridge. 
I wish to thank the Master and Fellows of Corpus Christi and 
the members of the Faculties of Philosophy and History and 
Philosophy of Science at Cambridge for their gracious hospi
tality which facilitated my embarking on this project. Partial 
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support for this work was supplied by the National Science 
Foundation. 

The writing of this book has been long and arduous. At 
various stages, my wife, Judith, has helped me remove im
portant infelicities from the prose and avoid needless digres
sions. More importantly, she has offered me the love and 
support I required to see the project through. I dedicate this 
volume to her. 

Isaac Levi 
New York City 
October, 1978 
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1 

1.1 
Knowledge 
without 
Pedigree 

FALLIBILITY AND CORRIGIBILITY 

Knowledge is widely taken to be a matter of pedigree. To 
qualify as knowledge, beliefs must be both true and justified. 
Sometimes justification is alleged to require tracing of the 
biological, psychological, or social causes of belief to legiti
mating sources. Another view denies that causal antecedents 
are crucial. Beliefs become knowledge only if they can be 
derived from impeccable first premises according to equally 
noble first principles. But whether pedigree is traced to origins 
or fundamental reasons, centuries of criticism suggest that our 
beliefs are born on the wrong side of the blanket. There are 
no immaculate preconceptions. 

Where all origins are dark, preoccupation with pedigree is 
self-defeating. We ought to look forward rather than backward 
and avoid fixation on origins. 

Epistemologists should heed similar advice. Whatever its 
origins, human knowledge is subject to change. In scientific 
inquiry, men seek to change it for the better. Epistemologists 
ought to care for the improvement of knowledge rather than 
its pedigree. They ought to ask whatX (who may be a person or 
a group) should do, given his knowledge at a time t, to render 
that knowledge more efficient in performing its functions. 

Even though attention is shifted from the pedigree of knowl
edge to its improvement, a question of justification, nonethe
less, remains. X should not modify his body of knowledge 
unless in doing so he improves it. Hence, even though X need 
not justify having h in his corpus of knowledge once he has 
accepted it, prior to doing so he will be under some obligation 
to justify adding h to his body of knowledge. Furthermore, 
should he contemplate removing h from his corpus once it is 
in, he ought to consider whether such a deletion is warranted. 

Prior to adding h, his, from X's point of view, a hypothesis 
being entertained for naturalization into X's corpus of knowl
edge. Once X has concluded that adding h to his corpus is 
justified as an improvement to his corpus and has implemented 

I.I KNOWLEDGE WITHOUT PEDIGREE 



1.2 
Knowledge as 
a Standard for 
Serious Possi
bility 

his decision, h ceases, for X, to be a hypothesis. It has become 
a premise, evidence, settled assumption, or part of the "back
ground knowledge" to be used in subsequent inquiries into 
the credentials of other statements as well as in practical 
deliberations aimed at moral, political, economic, or other 
practical objectives. Whether h is a theory, law, statistical 
claim, or observation report, and regardless of the grounds on 
which it has been added, its status as an item in X's corpus 
has been settled and the grounds on which it has been added 
no longer matter. 

To be sure, the status of X's belief that h as knowledge is 
by no means secure--even from X's point of view. X can 
consistently recognize that occasions might arise where his 
body of knowledge will be improved by removing h. But just 
as adding new items to a corpus of knowledge requires justi
fication, so does removing an item. In addition, the justifica
tion should be based on the assumptions in X's corpus prior 
to removing h-i.e., when h is still in the corpus and is still 
entitled to the status of knowledge. In general, neither the 
origins of X's having h in his corpus nor the grounds on which 
he justified adding h to his corpus in the first place will be 
relevant to deciding whether to remove h unless consideration 
of origins can be shown to have a bearing on whether elimi
nation of h will improve X's corpus.t 

X's knowledge at time t is a resource he uses in subsequent 
inquiries and deliberations. What are the uses to which X puts 
his knowledge or is committed to putting his knowledge? 

t I have been talking here of X's justifying a revision of his corpus to himself. 
There are, of course, other contexts calling for justification. X may be con
cerned to justify X's revising his corpus in a certain manner to Y. A more 
important task would be for X to justify to Y Y's revising Y's corpus in a 
certain manner. In this last case, X might, for example, already accept h in 
his own corpus. In his effort to show Y that Y should add h to his corpus, X 
should not appeal to his (X's) corpus containing h but to a corpus of "shared 
agreements" with Y. In doing this, X is in no way acknowledging that his 
(X's) acceptance of h stands in need of justification to X. Xis not in doubt as 
to the truth of h. Y is. That is the point of X's effort to show Y that he should 
add h to his corpus. 

In spite of the pragmatic differences in these several sorts of justification, 
I contend that justification always involves justification of a shift from one 
corpus to another where the contents of the initial corpus are the "premises" 
of the justification. 

FALLIBILITY AND CORRIGIBILITY 

X's knowledge at t serves as a standard for distinguishing 
t~~~-value-bearing hypotheses whose truth is a serious pos
s1b1lity according to X at t from those whose truth is not a 
serious possibility according to X at t. 

Whe~ witnessing the toss of a coin, X will normally en visage 
as possibly true the hypotheses that the coin will land heads 
up and that it will land tails up. He may also envisage other 
possibilities-e.g., its landing on its edge. However, if he takes 
fo: granted even the crudest folklore of modem physics, he 
will rule out as impossible the coin's moving upward to outer 
space in the direction of Alpha Centauri. He will also rule out 
the hypothesis that the Earth will explode. 

Of course, it is logically possible that the coin will fly out 
towards Alpha Centauri upon tossing and even that the Earth 
will explode under these conditions. But this means only that 
if X were in that (different) cognitive state wherein his standard 
for serious possibility consists exclusively of logical truths, 
these hypotheses would be serious possibilities according to 
X.t 

In real life, men do not restrict their knowledge to logical 
truths. If X were offered a gamble on the outcome of the toss 
of the coin, he would not take seriously the logical possibility 
that the coin will fly out towards Alpha Centauri. Nor would 
he take into account the logical possibility that the Earth will 
explode. Logically possible though these hypotheses may be, 
X ~oth would and should ignore them because they are not 
senously possible from his point of view. His knowledge rules 
them out. 

Judgments of subjective or credal probability are intimately 
related to evaluations of hypotheses with respect to serious 
possibility. If hypothesis h bears positive credal probability 
according to X at t, X should evaluate the truth of h as a 
serious possibility. If it is not a serious possibility according 

t In t~e following discussion, I shall regard rational agents as prohibited from 
adoptmg the set of logical truths as their standard of serious possibility. The 
weakest such standard allowable shall be the urcorpus UK discussed in section 
I.~. I shall call the truth of h logically possible if and only if h is consistent 
with_ UK: If h is logically possible in this sense, it is, of course, logically 
poss1?l~ m _the usual sense; but the converse fails. This practice suppresses 
the d1~tmct10n between logical and mathematical possibility which may loom 
13!ge 1~ other contexts but which will rarely be of any importance in this 
d1scu ss10n. 

L2 A ST AND ARD FOR SERIOUS POSSIBILITY 
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to X at t that h and g bear different truth values, X should 
assign h and g the same credal probability at t. . . 

We should not conclude that if h bears 0 credal probability 
according to X at t that h is not a serious possibility according 
to X at t. X might assume that a rod has a length representable 
by a real number in some interval without knowing what ~hat 
real number is. According to X, noncountably many nval 
hypotheses are serious possibilities. Yet, he might assign them 

all 0 credal probability. 
Care should be taken to distinguish hypotheses discounted 

in practical deliberations because they are not serious. possi
bilities from hypotheses which are ignored because their truth 
values are irrelevant give'n the goals and values being pro
moted in deliberation. When facing the decision as to whether 
to accept the bet, it may be a serious possibility according to 
X that the coin will land heads and a Republican president will 
be elected in 1980. It will also be a serious possibility that the 
coin will land heads and a Republican will not be elected. But 
X will ignore these alternatives. Instead, he will focus ori 
whether the coin will land heads regardless of who will be 
president in 1980. That information has no importance for him 
insofar as he is concerned to decide whether to accept or 
reject the bet. All relevant possibilities must be serious ones; 

but the converse need not hold. t 

t Failure to attend to the distinction between serious a.nd relev.ant_ possibility 
contributes to legitimizing some pernicious forms of wishful th~nking. . 

Once X's corpus at t is fixed, the distinction between what 1s .an.d w~at is 
not a serious possibility according to X at t should be fixed. Vanatton in the 
problems X addresses and the goals and values he seeks to promo~e should 
not justify alteration of the distinction as long as. the, corpus remains fixed· 

But even if the corpus remains fixed, a change in X s problems, goals, and 
values could alter his assessment of which serious possibilities are relevant 
possibilities to be taken into account in X's deliberations. . 

Consequently, if care is not taken and relevant possibility is. conf~se~ with 
serious possibility so that assigning h the status of a hypothesis which is not 
relevantly possible suffices to mandate assigning it_ 0 ~rectal, P.e:son.al, ~r 
subjective probability, a change in X's values could Justify a r~v1s10n ~n ~ s 
state of probability judgment. This is the pernicious form of wishful thinking 

to which I am referring. . . , 
Thus, Popper writes: "What is the upshot of all this? I~ 1s .that. abs~lut~ 

certainty' is a limiting idea, and that experienced or subjective certainty 
depends not merely upon degrees of belief a~d upon evi~ence •. bu~ also upo~ 
the situation-upon the importance of what is at stake. (Ob{~c~zve Kn~wl 
edge. London: Oxford University Press, .1972, p. _79). Pe:haps w1shf~l think
ing'• is inaccurate. Someone is guilty of wishful thinking 1f he tends to increase 

FALLIBILITY AND CORRIGIBILITY 

I 
! 

l 
i 
I 

The distinction between logical possibilities which are se
rious and those which are not is important in scientific inquiry 
as well as practical deliberation. When devising hypotheses 
about the constitution of quasars, no one considers the logical 
possibility that they are conglomerations of drosophila flies to 
be a serious possibility. In designing experiments, one takes 
into account only those hypotheses as to the outcome which 
are serious possibilities. 

Nothing I have said or will say amounts to an explication 
of the concept of serious possibility. That is to say, no defi
nition in other terms will be offered. I have indicated that 
"serious possibility" is relational: h is a serious possibility 
according to X at t. Moreover, a necessary condition for X to 
assign positive credal probability to h at t and to do so legiti
mately is that the truth of h be a serious possibility according 
to X at t. In later chapters, an account of rational choice and 
scientific inquiry will be outlined which will furnish more 
structure to the concept of serious possibility by articulating 
its relevance to deliberation and inquiry. 

Assuming, however, some understanding of the notion of 
serious possibility, I am advancing a thesis about the use of 
knowledge in deliberation and inquiry-to wit, that X's body 
of knowledge, evidence, or settled assumptions at t is his 
standard for serious possibility at t. h is a serious possibility 
according to X at t if and only if h is consistent with his corpus 
of knowledge at t. 

1.3 If X's corpus of knowledge at t serves as X's standard for 
Incorrigibility serious possibility at that time and if, in addition, X's corpus 

of knowledge is subject to revision, X's standard for serious 
possibility is also subject to change. 

But if we are to concentrate on such revision in a systematic 
manner, we need some way of representing a corpus of knowl
edge or standard for serious possibility so that we can mark 
changes in corpus or standard. 

his judgments of probability in favor of hypotheses he wants to be true. 
Popper seems to think that the more attractive a hypothesis and the more 
important the issue at stake, the less probable it should be judged to be. I 
cannot see, however, that Popper's prescription is any less pernicious than 
a recommendation to think wishfully. Both approaches see judgments of 
probability as depending on the agent's values and desires. 

1.3 INCORRIGIBILITY 
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To this end, I propose that we focus attention on X's stan
dard for serious possibility for hypotheses expressible in a 
suitably regimented language L. I do not suppose that X 
speaks or reads L or is in any other way familiar with it. I use 
L as a device for discussing revisions in standards for serious 
possibility. At least some revisions, so I shall suppose, are 
representable as changes in the way X is committed to eval
uating hypotheses expressible in L with respect to serious 
possibility; and those which are not so representable can be 
reached (again so I assume) by enriching L in appropriate 

ways. 
X's standard for serious possibility, insofar as it is expres-

sible in L, is a set K 1.,1 of sentences in L such that all hy
potheses expressible in L which are seriously possible accord
ing to X at tare consistent with K1·,1, and only such hypotheses 

are. 
Throughout this book I shall be concerned only with those 

revisions of knowledge which are tantamount to revisions in 
X's standard for serious possibility. This decision on my part 
has some implications for how a corpus expressible in L is to 

be understood. 
Suppose that -h is inconsistent with X's corpus K1.1 ex-

pressible in L. Yet, h, though deducible from K1.t• is not a 
member of K

1
,
1

• We could then consider the addition of h to 
K

1
,
1 

as a change in knowledge; and there are important con
texts where it is useful to mark such changes. Thus, X might 
prove a new theorem or, after having taken a course in some 
branch of mathematics, discover that h is a consequence of 

assumptions he already has made. 
Such changes, however, are not changes in X's standard for 

serious possibility or, at any rate, in the evaluations of hy
potheses in L with respect to serious possibility which X is 
committed to making by his standard. But it is only changes 
in the evaluations of hypotheses in L with respect to serious 
possibility which X is committed to making by his standard 
that are of concern to me in this investigation. Consequently, 
changes of the sort just described are not at the center of 

attention. 
By the same token, I do not propose to consider any sort 

ofrevision in the standards for serious possibility which allows 
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hypotheses inconsistent with truths of first-order logic, set 
theory, or mathematics to be serious possibilities. 

Both of these decisions impose limitations on the scope of 
my account of the revision of knowledge. I am concerned with 
changes in knowledge which are changes in standards for 
serious possibility and I do not wish to countenance changes 
which allow the falsity of truths of first-order logic, set theory, 
or mathematics to be serious possibilities. 

These considerations suggest that we can, for the purposes 
of this essay, represent a corpus of knowledge expressible in 
L by a deductively closed set of sentences in L containing a 
set UK (to be called the urcorpus). UK consists of all logical 
truths, set theoretical truths, and mathematical truths expres
sible in L, as well as any other items expressible in L which 
might qualify as incorrigible in the sense that they are immune 
from removal from the standard for serious possibility (or are 
not possibly false according to any allowable standard). 

On what basis should a hypothesis be considered eligible 
for membership in the urcorpus of incorrigible claims UK? 
My aim is to see into UK those assumptions which any corpus 
should have if an account of the revision of knowledge of the 
sort I seek to construct is to stand a chance of working. But 
I do not pretend that I have shown that the items I include in 
the urcorpus meet this (vaguely formulated) standard. 

Categorical incorrigibility should be distinguished from idio
syncratic incorrigibility. X (whether Xis a person, or a group, 
or an institution) may need to presuppose X's existence by 
some version of the cogito argument, although he does not 
need to assume that Y exists as an incorrigible assumption. 
. The. distinction between categorically incorrigible assump

tions m an urcorpus and sentences which, if they are in X's 
corpus at t, are liable to removal under suitable circumstances 
does not coincide with distinctions between analytic and syn
thetic truths, a priori and a posteriori truths, or conceptual 
and nonconceptual truths. Conceptual, a priori, or analytic 
truths are often taken to be open to revision. However, it is 
typically maintained that the sort of revision of knowledge 
allowed is a revision in conceptual framework and is to be 
.distinguished from the sort of changes with which I am inter
ested here. In particular, as I shall explain shortly, avoidance 
of errors should be a desideratum of all legitimate revisions of 
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1.4 
Truth 

knowledge. According to those who allow for changes in con
ceptual framework, such changes entail a change in the ve.ry 
conception of error and, hence, cannot be evaluated with 
respect to prospects of importing or avoiding error fro~ the 
vantage point of the conceptual framework employed pnor to 
change in any intelligible and non-question-begging manner. 

In effect, I have already conceded that changes in logic or 
set theory are to count as changes in conceptual framework 
in this latter sense. But I do not propose to discuss such 
changes. As for the rest, I propose to outline an account of 
the revision of knowledge which minimizes the significance of 
conceptual changes. In particular, I wish to emphasize the 
importance of avoidance of error as a desideratum in inqu~ry 
and to discount the excuse for ignoring this desideratum which 
appeals to the claim that a certain sort of change is a concep-

tual change. 

Setting to one side those items I have identified as categori
cally or idiosyncratically incorrigible, I wish to maintain. t~at 
all items in X's corpus Kx,t are not merely open to rev1s1on 
but are corrigible in the sense that avoidance of error should 
be taken into account in revising the corpus. That is to say, 
X should take avoidance of error into account in contemplating 

alternative revisions of his corpus. 
But since X's corpus at t is his standard for serious possi-

bility at t, then, by his lights, no item in that corpus is possibly 
false. Hence, they are all true. My contention is that X should 
be concerned to avoid error in a sense that presupposes the 

truth of all items in his corpus. 
Insofar as we represent X's corpus at t by sentences in L, 

the conception of truth involved may be characterized by a 
definition of "true in L." Once more, I do not assume that X 
is consciously or explicitly aware of such a truth definition or 
even that he has any mastery of the language L. The truth 
definition is intended to represent a feature of his goals in 

seeking to revise his knowledge. 
I suppose that the definition of "true in L" proceeds along 

Tarskian lines. 
A hierarchy of more and more inclusive languages L, Li, 

... , L;, ... is introduced. For each L;, there is an appropriate 
urcorpus U Ki. Each U Ki contains assumptions sufficient to 
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provide a minimal definition of "true in L;_ 1" along Tarskian 
lines. However, as just noted, if X's corpus expressible in L 1 

at tis Kb, the definition of "true in L1_ 1" which captures the 
sense of truth and, hence, of error in which Xis concerned to 
avoid error when revising Kt;} is one which assumes as part 
of the truth definition that all items in Ktl are true in L;_ 1. 

In section 1.3, I introduced the requirement that every X adopt 
as his corpus expressible in L a body of assumptions repre
sentable by a deductively closed set of sentences in L con
taining the urcorpus UK for L. In section 1.4, I implicitly 
suggested extending that representation so that it becomes a 
sequence of sets of sentences Kx, 1, Kk, 1, • • , Kb, ... 
expressible in languages L, Li. ... , L;, ... , respectively, 
meeting the following conditions: 

(a) each Kb contains the urcorpus UK1 for the appropriate 
L;, 
(b) L; ~ Li+ 1 and K\. 1 ~ K~~l. 
(c) Kttl furnishes a characterization of "true in L;'' meeting 
Tarskian requirements and implying the truth of all sentences 
in Kb. 

This complication in the mode of representation should not 
loom large in subsequent discussions; for insofar as we are 
focusing attention primarily on changes in knowledge expres
sible in L, we need attend to changes in corpora at higher 
levels only insofar as they are automatically induced by the 
changes in the corpus in L. 

On the other hand, the introduction of the hierarchy returns 
us to an issue only partially considered in section 1.3. 

Suppose that X is interested in the integer in the billionth 
decimal place in the decimal expansion of TT. Of the ten hy
potheses of the form "The integer in the billionth decimal 
place in the decimal expansion of TT is j" where j is a standard 
designator for one of the first 10 nonnegative integers, exactly 
one is consistent with the urcorpus UK which, it should be 
remembered, contains mathematical truths. On the other 
hand, since we may suppose that X has not made the required 
calculations and cannot resort to a calculator of any sort for 
help, there is an important sense in which X does not know 
which of these hypotheses is entailed by UK and, hence, does 
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not know what the integer in the billionth decimal place of the 
decimal expansion of Tr is. 

In section 1.3, I contended that the sort of change which 
would take place were X somehow to make the required cal
culations is not a change in X's standard for serious possibility 
and, hence, could be ignored in this investigation. 

But it may be objected that when X fails to make the cal
culations he is in no position to rule all but one of the ten 
hypotheses out of consideration as serious possibilities. Con
sequently, making the calculations does lead to a change in 
X's standard for serious possibility. 

At this point, I suggest that we distinguish between the 
standard for serious possibility to which X is committed at 
time t and X's awareness at t of the standard to which he is 
committed; or equivalently of the corpus to which he is com
mitted. In our example, Xis not aware of all his commitments 
due to an inability to make certain calculations. On other 
occasions, X's memory may fail him. Or X may suffer from 
emotional disturbance (if X is a person) or some social dis
turbance (if Xis an institution). 

If X is committed to a standard for serious possibility, he 
should live up to that commitment to the extent that he is 
able. Such ability depends, in part, on the extent to which X 
is aware of that commitment. Men and societies vary widely 
in their capacities for making computations, for storing infor
mation, and for maintaining emotional and social stability. A 
normative account of the improvement of knowledge should 
prescribe no more than persons and institutions are capable 
of implementing. Thus, it would be foolish to require that 
rational X identify all the logical consequences of the assump
tions he explicitly makes. We can, at most, expect him to 
identify those consequences insofar as he is able. 

The standard for serious possibility to which Xis committed 
at t is, on this view, the standard to which he would be 
conforming were he ideally situated (i.e., endowed with per
fect computational facility, memory, and emotional or social 
health) and were he also rational. I do not suppose, however, 
that agents (persons or institutions) are ideally situated and 
rational. I do take them to be real agents with commitments 
of various kinds-including commitments to standards for se-
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rious possibility; and I urge them to be rational in the sense 
that they live up to their commitments insofar as they are able. 

Thus, changes in X's awareness of his commitments at t 

ought to be distinguished from changes in X's commitments. 
The former sort of change may be compared to a shift towards 
an equilibrium. The more fully aware Xis of his commitments, 
the closer he is to a state of cognitive equilibrium. On this 
analogy, Xis committed at t to a state of cognitive equilibrium 
whether he has actually attained it or not. The features of 
rational equilibrium I have been discussing have been intro
duced by an appeal to those functions which X's corpus of 
knowledge ought ideally to perform. 

Given an adequate characterization of states of cognitive 
equilibrium, the account of the revision of knowledge built on 
it may be viewed as an analogy to what is sometimes called 
"comparative statics." Thermodynamics and some branches 
of economic theory illustrate comparative statical theories 
which investigate changes in equilibrium states of systems 
suitably specified without scrutinizing the details of the paths 
such systems follow in moving from one equilibrium state to 
another. The normative analogue of such theories of the sort 
I am aiming to construct here prescribes shifts from one state 
of cognitive equilibrium to another without prescribing details 
of the psychological or social changes which are made in 
implementing the revision. 

Thus, although on my approach a change in cognitive state 
will be represented by a shift from one deductively closed set 
of .sentences in L to another, I am not recommending that 
rat10nal agents immediately make revisions in this way. I do 
~ot assume that men or institutions are able to realize equilib
num states. I do believe they are able to approach equilibrium 
to a sufficiently good approximation to render it less than 
utterly quixotic to regard them as committed to making the 
effo~t. At the same time, on the comparative statical approach, 
one 1s absolved from prescribing the details of the psycholog
ical or social processes to be undergone in attempting to ap
proach equilibrium. 

For these reasons, the only relevant way in which psychol
ogy or sociology can be used to criticize the prescriptions 
concerning changes in cognitive equilibrium of interest here is 
by showing that men or institutions are incapable of moving 
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toward equilibrium or making changes in commitments by 
some path or other. It is not enough to show that men often 
fail to conform to the dictates of such norms. And since the 
norms do not prescribe the details of the social or psycholog
ical paths to be followed in changing commitments, they can
not be rejected on the grounds that they cannot be imple
mented by following some specific path or because they cannot 
be implemented in a certain fixed period of time. Psychology, 
the social sciences, and various technologies (such as computer 
technology) are of relevance to the topics of interest here 
insofar as they can contribute to our ability to live up to our 
commitments by improving our computational facility, mem
ory, and emotional or social health. When they focus instead 
on the extent of our incapacities and disabilities without seek
ing remedies, they are not doing the job that is needed. 

If X fails to live up to his commitments or is unaware of 
what these commitments are, his state of knowledge is in 
cognitive disequilibrium. I lack an adequate analysis of aware
ness and have no criterion of awareness in terms of linguistic 
or other behavior or in terms of introspection of "internal" 
states. I do assume, however, that to be aware of one's com

mitments is to know what they are. 
Hence, in a state of cognitive equilibrium, X should know 

which hypotheses (expressible in L) are possibly false and 
which are not possibly false according to his mode of evalu
ating hypotheses with respect to serious possibility at that 
time. This condition of self-knowledge is expressed by the 
following requirements to be added to conditions (a)-(c) cited 

previously: 

(d) if h E Li and h E K'.Y.t• 
(e) if h E Li and h (f;. K~.t• 

rh E Kb1 E K'./J; 
rh (f;. Kb1 E K~~l· 

For most purposes, we may ignore the hierarchy of corpora 
expressible in the sequence of metalanguages which represents 
X's state of knowledge in cognitive equilibrium at t. We need 
consider the corpus expressible in L alone. We shall wish to 
consider, to be sure, the alternative corpora expressible in L 
to which X could become committed under some circum
stances or other. Such potential corpora expressible in L are 

deductively closed sets containing UK. 
UK represents the corpus of all incorrigible assumptions, as 
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explained previously. It may be construed as representing the 
cognitive equilibrium state of an agent in a state of extreme 
modal ignorance. 

Potential corpora in L are partially ordered by the set-inclu
sion relation. K is weaker than K' if and only if K c K'. The 
weakest corpus in the lattice so generated is, of course, the 
urcorpus UK. The strongest is the inconsistent corpus. 

The central theme of the preceding sections has been that X's 
corpus of knowledge or evidence at t serves as his standard 
at t for discriminating between those hypotheses whose truth 
is a serious possibility according to X at t and those whose 
truth is not a serious possibility. This theme has motivated the 
way in which a body of knowledge is formally represented and 
how a change in knowledge is to be understood. Above all, it 
supplies a key element in understanding how X's corpus of 
knowledge functions or should function in practical delibera
tion and scientific inquiry. 

An immediate consequence of the thesis that X's corpus at 
t serves as his standard for serious possibility at t is that, 
according to X at t, no item in his corpus at tis possibly false 
in the sense of serious possibility. If h E Kx. 1, then h is 
infallibly true according to X at t in a straightforward and 
important sense. Thus if Y should disagree with X at t, from 
X's point of view, Y is certainly in error. It would be incon
sistent for X to concede to Y that he (X) might be mistaken if 
by this X acknowledges the falsity of has a serious possibility. 

Of course, X may consistently acknowledge that items he 
accepted in his corpus at previous times or will assume in the 
future are possibly false. He is not committed to the view that 
whatever he has endorsed in the past or will accept as evidence 
in the future is infallibly true. But at t, Xis committed to the 
view that whatever he assumes as part of his corpus at t is 
infallibly true. 

Denying this thesis of epistemological infallibilism entails 
rejection of the view of knowledge as a standard for serious 
possibility and, hence, the view of how knowledge functions 
as a resource for inquiry and deliberation which I am advo
cating. Those who reject epistemological infallibilism, there
fore, are under some obligation to supply an alternative view 
of the functions and value of knowledge. 

l.6 INFALLIBILISM 
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Perhaps, however, epistemological infallibilism is not at 
odds with the fallibilist epistemologies so widely advocated by 

modern authors. 
Charles Peirce characterized fallibilism as the doctrine "that 

we can never be sure of anything" 1 or "that we cannot attain 
absolute certainty concerning matters of fact." 2 Peirce un
doubtedly intended to deny that men can attain permanent 
certainty of matters of fact. But this may mean either that all 
logical possibilities (or, more accurately, items consistent with 
UK) are or ought to be serious possibilities (so that rational 
agents should never attain certainty of matters of fact) or that 
standards for serious possibility are subject to revision (so that 
X may be certain at t that h is true and be justified in ceasing 

being convinced at t'). 
This claim is quite compatible with epistemological infalli-

bilism and the claim that knowledge is used as a standard for 
serious possibility. Rejection of permanent certainty, together 
with the thesis that knowledge is the standard for serious 
possibility, implies either that X should stick permanently to 
the urcorpus as his corpus of knowledge or that knowledge is 

corrigible. 
Peirce, however, seems to have intended to claim more than 

that we cannot attain permanent certainty concerning any mat
ter of fact. He meant to deny that we can attain maximum 
certainty-at least when we adopt the scientific attitude. t Ac
cording to Peirce's fallibilism, at no time should X discount 
the falsity of any matter of fact as not a serious possibility. 
Thus all logical possibilities (i.e., hypotheses consistent with 
the urcorpus UK) should be considered serious possibilities 
by every X and at every time. I shall call this thesis categorical 

f allibilis m. 
Categorical fallibilism is consistent with epistemological in-

fallibilism. When the two theses are conjoined, rational X is 

t C. s. Peirce, Collected Papers (Cambridge, Mass.: Harvard University 
Press, 193 I), v. 1, p. 347. This passage supports a concl~sion con~em~ng 
Peirce's intentions which seems obvious in any case-to wit, that scientific 
men should not be maximally certain about any matters of fact. Since, in my 
opinion, Peirce failed to distinguish between maximum and permanent cer
tainty when discussing fallibilism, many of his writings reveal, to anyone who 
is sensitive to the distinction, considerable ambiguity. Hence, although I 
believe my interpretation of Peirce is a fair one, it is difficult to offer citations 
so free from ambiguity as to preclude alternative readings. 
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obliged to restrict his corpus of knowledge to the urcorpus 
UK. Thus, the conjunction of the thesis that knowledge serves 
as the standard for serious possibility in inquiry and deliber
ation and the doctrine of categorical fallibilism implies the 
incorrigibility of knowledge. 

Here we come to the crux of the matter. For Peirce, a 
central feature of the doctrine of fallibilism is its commitment 
to the corrigibility of human knowledge. "The scientific spirit 
requires a man to be at all times ready to dump his whole 
cartload of beliefs, the moment experience is against them." J 

The thesis of corrigibilism, however, contradicts the joint as
sertion of categorical fallibilism and the claim that knowledge 
is the standard for serious possibility. 

One alternative is to give up the thesis of corrigibilism and 
restrict knowledge to the contents of the urcorpus. Some em
piricists modify this rather bleak view by allowing the urcorpus 
UK to be augmented by observation reports. I agree with 
Peirce in refusing to follow either of these courses. Predictions 
about the future as well as conclusions about the past may 
find their way into X's corpus. So may theories, laws, and 
statistical claims. Of course, corpora of this sort are subject 
to critical review and revision. The thesis of corrigibilism 
ought, therefore, to be endorsed. 

We are faced, therefore, with a choice of abandoning the 
thesis that knowledge is a standard for serious possibility
and thus also its corollary, the thesis of epistemological infal
libilism--or of rejecting the thesis of categorical fallibilism. 

I favor abandoning categorical fallibilism while endorsing 
epistemological infallibilism and knowledge as a standard for 
serious possibility. 

Peirce took the opposite view: 

We have seen how success in mathematics would necessarily 
create a confidence altogether unfounded in man's power of 
eliciting truth by inward meditation without any 'aid from ex
perience. Both its confidence in what is within and the absolute 
certainty of its conclusions lead to the confusion of a priori 
reason with conscience. For conscience, also, refuses to sub
mit its dicta to experiment, and makes an absolute dual dis
tinction between right and wrong. One result of this is that 
m~n begin to rationalize about questions of purity and integ
rity, which in the long run, through moral decay, is unfavour
able to science. But what is worse, from our point of view, 
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they begin to look upon science as a guide to conduct, tha~ isi 
no lon er as pure science but as an instrument for ~ pr~ctica 
end. Jne result of this is that all ~robable ~easo.nmg is de
s ised. If a proposition is to be applied. to act10n, i.t has to be 
e~braced or believed without reservation. There is n~ ro?;1 
f doubt which can only paralyze action. But the s.c1ent1 c 
so~rit req~ires a man to be at all times re.ady to. dump. his whole 
c~rtload of beliefs, the moment experience is agamst them. 
The desire to learn forbids him to be perfectly cocks~re th~t 
he knows already .... Thus the real ~haracter of sc1e~ce is 
destroyed as soon as it is m~de an. adJu~ct to ~onduct, and 
especially all progress in the inductive sciences is brought to 
a standstill. 4 

Peirce's contrast between the importance of probabilistic 
reasoning in science and its unimporta~c.e in prac~ical conduct 
is surely mistaken. In practical dec1S1on makmg, ac~~u~t 

should often be taken of risks and, hence, of probab1hst1c 
considerations. . 

Peirce is nearer to the mark when he concedes .that m prac-

tical deliberation some logical pp~ssib~liti.est arheowd1escv~~n:~:t ~~ _!,: 

not being serious possibilities. eirce ms1s s, . , . 
scientific inquiry all logical possibilities are senous. . f 

According to Peirce, therefore, the standard for senous po~- J• 

sibility used in science cannot be the same as that u~ed m I 
practical deliberation. To the extent that science supplies us l~ 
with extralogical knowledge, that knowledge cannot serv~ as 
a standard for serious possibility in ~cience ~wher.e ~l logic~ 
possibilities are serious) or in practical deliberation, for,. s 
Peirce maintains, science should not be looked upon as a gmde 
to conduct. . 

Thus, Peirce seems to reject two assumptions I am mak.mg: 
the thesis that knowledge serves as a standard for senous 
possibility (which entails epistemological inf~ll.ibilis~) and the 
thesis that rational X should, during any mm1mal mter:a!. of 
time, be committed to a single standard f~r serio~s pos~1b1hty 
both for theoretical inquiry and for practical dehberat1on. In 
these two respects, Peirce drives a wedge between theory and 
practice I seek to remove. . 

To be sure, there is a measure of truth m the double-stan
dard thesis. Recall that an agent X need not be ~ person. X 
can be a community such as a scientific community or a po
litical party or a school or some institution which has goals, 
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makes decisions, and adopts various propositional attitudes. 
I follow the practice of students of the theory of consumer 
demand who attribute demand curves and even utilities to 
consumers even though the consumer may be a family or a 
firm and not a person. Obviously, to imitate this practice 
entails sweeping many problems under the rug. I am con
cerned, however, with an account of revisions of standards 
for serious possibility applicable regardless of who or what 
the agent is, provided the agent can adopt propositional atti
tudes, make decisions, and engage in inquiry and deliberation. 

Observe, however, that one and the same person may be
long to different communities each of which has its own goals 
and values and each of which may have different and some
times conflicting standards for serious possibility. 

It is at least entertainable that when X identifies himself as 
a member of community Y, he commits himself to the standard 
for serious possibility adopted by that community. But X might 
also identify himself with community z and in the same way. 
This need not be the case, but could be so. Insofar as X finds 
himself in this predicament, he may be committed to a cog
nitive schizophrenia embracing different standards for serious 
possibility corresponding to his diverse roles. Though Xis a 
single person, he may be several agents. 

There is another way to describe the situation. We may say 
that X is a single agent with a single inconsistent standard for 
serious possibility derived from his joint commitment to con
flicting standards for serious possibility endorsed by diverse 
communities. 

I do not care whether X is described as a single person who 
is several agents each committed to a single standard for se
rious possibility or a single agent with an inconsistent stan
dard. The kernel of truth in Peirce's double standard view is 
that owing to the fact that persons belong to different com
munities they will typically exhibit schizophrenia or inconsis
tency. 

Peirce seems to accept this circumstance with equanimity. 
It is right and proper that the man of science who is also a 
member of other communities will be committed to different 
and conflicting standards for serious possibility at a given time. 
He should not take steps to remove the conflict even if he is 
capable of doing so. In science, every logical possibility should 
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. . . ractical affairs it should not. There 
be a serious possibility. In P "f th demands of science and 
is no way in which X can grah Y fl"et The gulf between the-

. t · ing the con 1c . 
practice without re a~n . h h" phrenia or inconsistency. 
ory and practice entail~~it ::n~car~o I stand opposed to such 

In rejecting ~he dou : s "ther p~ychologically nor socially 
equanimity. It is no dou. t nei . t cy or schizophrenia. But 

. e all mconsis en 
feasible to remov all gents whether they are 
insofar as it is feasible to do ~~· haould ~ommit themselves 

. . or commumtles, s 
individual pers~ns ds for serious possibility. When 
to single consistent stan_da_r . bl will and when it is de-
inconsistency arises, as it mevita . Y_ , • 

d b t ken to ehmmate it. 
tected, steps shoul e atandard is rejected, we must either 

But once th~ do~ble sand in ractice all logical possibilities 
insist that both m science P h Id abandon categorical 

. ht to be or we s ou 
are senous or ~ug . , d. r ctical deliberation. I favor fallibilism both m science an m P a 

the latter alternative. . . . . abandoned, both in science 
Once categorical falhb1hsm is . t di"ction in ac-

. "b f n there is no con ra 
and in practical deh era io , h Id be the standard 

. h thesis that knowledge s ou .. 
ceptmg both t e . . . d the thesis of the corrigibil1ty of for serious poss1b1hty an 

knowledge. . . . "nfallibilist in two special senses: (~) 
The resulting view is i . h t dard for serious possi

The thesis that knowledge is_ t e slang1"cal infallibilism. From 
. . h th is of ep1stemo o 

bility implies t e es . . us possibility that any . . t t there is no seno 
X's pomt of view a , . l (b) Rejection of categorical 
item in his corpus at t is fa se. serious possibility should 
fallibilism implies tha_t stand~br~l.st forf many extralogical (extra-

. dmit the imposs1 i 1 Y o 
sometimes a hematical) propositions. 
set-theoretical and extramat .t. ema1"ns fallibilist insofar as 

h h d my pos1 ion r , 
On the ot er ~n • . "bT m-the thesis that X s 

fallibilism is eq~1valent t~b~~;n~~r1 ~sorpus of knowledge) is 
standard for senous poss1 Y . . n On this score, 

. . t 1 subject to revisio . 
sometimes legitima e Y . wand Peirce's or, for 

· t between my vie 
there is no d1sagreemen h "th respect to the issues 

K l Popper's (w o, w1 . h 
that matter, ar t be in agreement wit being considered here, appears o 

Peirce). . d "stemological infallibilism, f g categoncal an epi f 
In advoca m . . f llib"lity for any source o I also do not intend to claim m a 1 
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1.7 
Truth as a 
Value in 
Inquiry 

information such as the Delphic oracle or the Pope where a 
source of information is infallible if whatever it reports is true. 

Finally, even X should acknowledge that when h is not 
possibly false in the serious sense directly pertinent to the 
conduct of deliberation and inquiry, it remains, nonetheless, 
logically possible that it is false (provided, of course, that h is 
not a logical truth). 

Thus, in advancing the theses of epistemological and cate
gorical infallibilism, I do not mean to counsel absurdity or 
dogmatism. On the other hand, if knowledge is to have the 
role as a resource in inquiry and deliberation which, in my 
opinion, it should have-namely, as a standard for serious 
possibility-it is of the first importance to understand that 
some elements of so-called fallibilist epistemologies require 
modification. My advocacy of epistemological and categorical 
infallibilism is intended to call attention to some of the nec
essary modifications. 

I lack a demonstration that the epistemological outlook 
which emerges is correct. Yet, a conception of the uses of 
knowledge both in scientific inquiry and in practical delibera
tion is promised which avoids introducing the chasm between 
theory and practice to which both Peirce and Popper seem 
committed. For this reason alone, the epistemological outlook 
deserves a further hearing. 

Peirce believed that advocacy of infaUibilism places road
blocks in the path of inquiry. Rejection of corrigibilism creates 
obstacles. Categorical infallibilism does not. 

Categorical infallibilism is no obstacle to the revision of a 
corpus of knowledge. Agents do and are capable of changing 
their minds. Moreover, they can justify such revisions pro
vided the objectives they seek to promote in making revisions 
are of the right sort. 

Peirce (and Popper too) maintained, however, that truth is 
a desideratum of scientific inquiry. Scientific methods of fixing 
beliefs are superior to others because a community of inquirers 
using such methods would, in the long run, converge on the 
true complete story of the world. 5 

For Peirce, the true complete story is true in the sense that 
it is the system of assumptions to which the community of 
inquirers using scientific methods would converge in the long 
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run. We need not endorse the conception of truth in this 
account in order to entertain as a serious view of the aims of 
inquiry the thesis that the ultimate goal is to attain a body of 
knowledge furnishing a true complete story. Popper endorses 
a Tarskian conception of truth. Yet he regards convergence 
on the truth as the ultimate aim of inquiry. He does not claim 
that we can be certain that scientific methods as he envisages 
them will succeed in attaining that goal. Yet he does claim 
that scientific methods are the best available means for at
tempting to attain that objective. 6 

In chapter 3, I shall attempt to explain why advocates of 
either Peirce's or Popper's version of the view that the ulti
mate aim of science is convergence on the true complete story 
would argue that corrigibilism requires rejection of categorical 
infallibilism and, hence, epistemological infallibilism together 
with the thesis that knowledge is the standard for serious 
possibility. If this analysis is on the right track, the heart of 
the controversy between fallibilism of the Peirce-Popper va
riety and corrigibilist infallibilism of the sort I am defending 
turns on a controversy concerning the aims of inquiry. I reject 
the view that convergence on the true complete story of the 
world is the ultimate aim of efforts to improve knowledge. 

Nonetheless, avoidance of error is an important desideratum 
of the proximate aims of specific inquiries concerned with 
specific revisions of standards for serious possibility or cor
pora of knowledge. 

Insofar as Xis worried about importing error into his corpus 
by adding h to it, he should have no worries if h is already in 
his corpus. Nor should he be concerned to remove h from his 
corpus in order to avoid error. From his point of view, there 
is no serious possibility that his false. 

There may, indeed, be good reasons for removing h from 
his corpus. Such reasons will be examined in chapter 3. For 
the present, it is sufficient to note that avoidance of error 
cannot furnish a warrant for removing h. 

X would have excellent reason for avoiding the importation 
of h into his corpus in case -h were already in his corpus. 
From X's initial point of view, -h is infallibly and certainly 
true and h infallibly and certainly false. If X were concerned 
to avoid error, he would attempt to avoid importing h into his 
corpus. 
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.. s.uppo~e neith~r h nor -h is in X's corpus at t. From X's 
'.mtral pomt of view, importing one or the other hypothesis 
mto. the corpus runs a risk of error. In considering what con
clusions to draw, X should take these risks seriously and 
should. be willin.g to incur them only if there is sufficient com
pensation promised from other cognitive goals. 

Thu~, X should seek to avoid error in revising his corpus at 
t r~latrve to a definition of "true in L" (expressible in Li) 
which secures the truth in L of all items in X's corpus of 
knowledge at t expressible in L. 

To be sure, "true in L" could be defined relative to UK and 
held .fixed. As I describe the situation, that truth definition 
remams ~part of the definition to which Xis committed at t. 
As x. r.ev1ses his corpus of knowledge, he also revises his truth 
defimhon for L. 

I am .not, however, interested in verbal hocus-pocus. I am 
att~mptt~g to explain the sense in which avoidance of error is 
an mvanant feature of what should be the proximate goals of 
effo~ts to revise corpora of knowledge by adding new infor
m~tion to them. I am advancing a thesis, alternative to the 
Pe'.rce-Popper view, about what ought to be the aims of in
qurry. 

There is no single objective which all special inquiries seek 
to promote. One reason (by no means the only one) is that as 
~nowled~e changes, the respects in which avoidance of error 
is a desideratum in inquiry also change. Even if it were 
conceded to Peirce and Popper that, from X's point of · 
h 1 · view, 

t e u trmate aim of inquiry is to obtain a true complete story 
o~ the world, it would still be the case that aft~r X has revised 
his corpus of knowledge, his conception of what constitutes 
a true complete story alters as well. 

" It. may be objected that "h is true" has been equated with 
h is known or assumed by X to be true." That is not so. 

Fr?m X's point of view at t, everything X knows at t is true. 
~tis no: the case that from X's point of view, everything that 
rs true rs known by X at t. 

Someone might complain that truth has been relativised to 
perso.ns and times. I have, indeed, assumed that X's knowl
edge is knowledge for X at t and have insisted that X's the 
f h . ory 

o tr4t rs a system of truth conditions adopted by x at t. In 
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this sense and in this sense alone is the charge of relativity 

correct. 
However, the truth conditions adopted by X at t supply a 

definition of "h is true in L" and not of "h is true in L for X 
at t." Truth in this work remains as atemporal and objective 

as it is in any other Tarskilike conception. 
Thus, when Xis interested in modifying his knowledge while 

at the same time avoiding error, the revisions he makes should 
not be regarded by him or anyone else as involving his "mak
ing true" or "making false" various sentences. In modifying 
his corpus of knowledge, Xis changing his system of assump
tions as to what sentences are true and thereby changing his 
commitments as to the conditions under which sentences in L 

are true. 
Have we now so far lowered our sights as to settle for a 
relativistic doctrine of truth rating the statements of each the
ory as true for that theory, and brooking no higher criticism? 
Not so. The saving consideration is that we continue to take 
seriously our own particular aggregate science, our own par
ticular world theory or loose total fabric of quasi-theories, 
whatever it may be. Unlike Descartes, we own and use our 
beliefs of the moment, even in the midst of philosophizing, 
until by what is vaguely called scientific method we change 
them here and there for the better. Within our own total 
evolving doctrine, we can judge truth as earnestly and abso
lutely as can be, subject to correction, but that goes without 

saying.7 

My only reservation concerning this admirable passage from 
Quine is that earnest judgment of truth is something more than 
earnest affirmation or earnest conviction. Our earnest judg
ments of truth furnish us with the characterization of error in 
the sense in which error is a desideratum in inquiries aimed at 
correcting our own total evolving doctrine. 

My rejection of the Peirce-Popper view of the aims of in-
quiry runs much deeper than the comments just made con
cerning the role of X's corpus of knowledge in specifying truth 
conditions indicates. To seek a true complete story of the 
world as the ultimate aim of inquiry implies that all revisions 
of knowledge should be appraised in terms of their long-run 
tendencies to yield a maximally informative and error-free 
corpus of knowledge. It is open to an advocate of the Peirce
Popper position to concede that X's conception of the ultimate 
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aim .of. inquiry changes with revisions of his knowledge and 
yet ms1st that seeking a true complete story . . . ~ f , . is an mvanant 
eature o X s ultimate aim at each stage of inquiry. 

I mean to deny this view. Avoidance of error is an . . 
feature of th . mvanant . e proximate goals of inquiries concerned with the 
im~r?vement of knowledge. That is to say, in contemplating 
rev1s10ns of knowledge X should d . . . . . . ' esire to avoid error in 
makmg the rev1s10n immediately contemplated. Speculation 
as to the prospects of that revision leading to the 'd 
or im t r f . avo1 ance 

l por a wn o error m further revisions which might take 
P ace later on are not to be taken into account On . X h Id · my view, 

s ou not be concerned as to whether the revisions he . 
about to make will or will not import error in the long run ~s 
should ~e ~oncerned with whether the revision he is abo~t t~ 
make will im.~ediately import error or not. But once he has 
m~de the rev1s10n and his conception of error has changed he 
w1ll .n~ l?~ger be concerned with avoidance of error accordin 
to his 1?1t1al v.ie.w. His new conception of error will take ove; 
and gmde rev1s10ns at the next stage. 

Once t.his view of the role of avoidance of error as a desi-
~eratum m the proximate aims of inquiry is adopted th . mm · · . , ere 1s, 

Y op1mon, no senous obstacle to endorsing the th . f 
the use fk 1 d es1s o . . ~ ~ow ~ ge as .a standard for serious possibility (both 
m sc1~nt1fic mqurry and m practical deliberation) the coroll 
of epistemological infallibilism and in addition' the th . aryf 

· 'b'l' ' , es1s o 
corr1g1 I ism. I shall attempt to show this to be so t I . tr · , a east m 
ou me, m the two chapters which follow. 

The Peirc~-Popper view, according to which convergence 
on the truth .1s the ultimate aim of inquiry, precludes, as I shall 
argue, consistent advocacy of both corr1'g1'b'l' d . 

1 
· . 1 ism an episte-

mo og1cal mfallibilism. As I have stated reiect1'on of . I · 1 · ' ~ ep1ste-
mo og1ca mfallibilism leads both Peirce and Po t h is · · pper o w at 

, m. my view, an untenable separation between theory and 
p~a~tice and to an obscure (I suspect nonexistent) conception 
o t e us~~ of knowledge in inquiry and deliberation. 

In add1t10n, respect for truth becomes a value in inquiry 
plac~d on a remote pedestal to be worshipped from af 
A ~01dance a.nd ris~ of error seem to play no role for eit:;; 
~hdosopher m the immediate concerns of inquiry. By way of 
contrast, I seek to develop an account of the improvement of 
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knowledge which sees respect for truth as vitally relevant to 

the immediate objectives of science. 
Thus, for Popper, the best method for converging on the 

truth (i.e., an error-free maximally consistent story) is to de
vise testworthy hypotheses, test them, and if they survive 
such testing, test them again. Nothing in Popper's criteria for 
testworthiness indicate that, save for the minimal requirement 
of consistency, avoidance of error is a serious consideration 
in the appraisal of hypotheses as testworthy. In specific in
quiries, a scientist's immediate aim should not, according to 
Popperian doctrine, take avoidance of error into account at 
all. Truth enters into the picture only insofar as in some way 
(which I do not understand) the persistent and serious testing 
of highly test worthy hypotheses leads to ultimate convergence 
to the truth. In the name of objectivity, truth is to be wor
shipped from afar, but it should not intrude into the real busi

ness of science. 
Popper himself has acknowledged and, indeed, insisted that 

testing hypotheses requires "background knowledge." 8 Prima 
facie, the need for background knowledge derives from the 
importance of restricting the space of serious possibilities 
more tightly than taking all logical possibilities would do. 
However, precisely for this reason, it ought to be the central 
concern of an epistemology focused on the "growth of knowl
edge," as Popper's allegedly is, to devise criteria for modifying 
such knowledge. Otherwise, it may appear that revisions of 
background knowledge are not subject to critical control at all 
and surely not to criticism which takes avoidance of error 

seriously. t 
Popper has contributed nothing to the question of the revi-

sion of background knowledge. He has, instead, emphasized 
the testworthiness of hypotheses on the assumption that we 
devise hypotheses in order to test them. But surely we often 
test hypotheses in order to modify such background knowl
edge so that it can be used in subsequent inquiries in science 
and to guide the conduct of daily life. And presumably the 
point of such tests is to keep the risk of error incurred by the 
subsequent revisions at an acceptably low level. 

t I suspect that for ,Popper what constitutes "background knowledge" de
pends on the "situation" in the sense which certainty allegedly does according 
to the passage cited from Objective Knowledge in the footnote on p. 4. 
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Pop~er's view concerning the ultimate aims of inquiry pre
vent him from conceding this. Although he flirts with incon
~istenc_y by acknowledging the role of background knowledge 
m testing hypotheses, he does not quite concede that back
ground knowledge serves as a standard for serious possibility. 
Hence, he avoids epistemological infallibilism in order to en
dorse both corrigibilism and categorical fallibilism. That is 
why Popper has failed to take the revision of background 
knowledge seriously. There is no obvious way in which he 
could focus on this matter without threatening his commitment 
to both categorical and epistemological fallibilism or his con
ception of the ultimate aims of inquiry. 

Given a suitably regimented language L and the hierarchy of 
metalanguages generated by it, all changes in X's knowledge 
expressible in L can be represented by changes in deductively 
closed sets of sentences in L all of which contain UK. Four 
kinds of changes are recognizable. 

(i) Expansion: A shift is made from K, to K2 containing K, 
obtained by adding a sentence e (or a set of sentences) to K, 
and forming the deductive closure. 

(ii) Contraction: A shift is made from K, to K2 , where K 1 is 
an expansion of K2 • 

(iii) Replacement: A shift is made from a consistent K, con
taining h to a consistent K2 containing -h. 

(iv) Residual Shift: One that belongs to none of the other 
three categories. 

Expansion occurs when X adds information to his corpus 
via observation or testimony furnished by individuals X as
sumes to be truthful and competent. It also occurs when X 
concludes that his current corpus (including "background 
knowledge" and data obtained via observation and testimony) 
furnishes sufficient warrant for adding a law, theory, or pre
diction to his corpus and he converts an erstwhile hypothesis 
into an assumption he is committed to using as part of his 
standard of serious possibility in subsequent inquiry. 

Contraction occurs when X concludes that some item in his 
corpus ought to be subjected to critical scrutiny and test and 
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should, therefore, cease being an assumption or evidence and 
should become, instead, a hypothesis. 

Replacements take place when X is converted from a .co.m
mitment to one theory to a commitment to another confhctmg 
with the first. This kind of shift has received the lion's share 
of attention in recent years from those authors who have been 
concerned with the "revolutionary" character of important 

changes in scientific knowledge. 
Residual shifts have received little attention in the literature, 

and are mentioned here for the sake of completeness. 
It is customary to represent changes such as these by sen

tences which are added or removed from a corpus. However, 
according to the view I am presenting, revisions of knowledge 
ought to be represented, strictly speaking, by changes of sets 

of sentences. 
For example, "inductive inference" is often taken to be a 

mode of expansion whereby a generalization is added to a 
corpus containing, among other things, a set of reports of so
called confirming instances of the generalization. However, 
the expansion requires that the deductive consequences of.the 
generalization should be added in addition to the gen~rah~a
tion itself. The "data" do not "confirm" the generahzat10n 
but confirm the addition of a set of sentences. We can, to be 
sure, represent what is confirmed by a single sentence-to 
wit, a sentence which, when added to the corpus, generates 
via deductive closure the entire set of new sentences to be 
added. Such a sentence is a strongest sentence whose addition 
to the corpus is warranted and, in that sense confirmed, by 
the data and other information already in the corpus. 

Imagine that X had in Kx,t a set of statements of the form 
"a is neither a raven nor black" and no sentences of the form 
''a is a raven.'' Let us concede, for the sake of the argument, 
that X should expand his corpus by adding "everything is a 
nonblack nonraven" along with its deductive consequences. 
Perhaps this is questionable. What is not questionable, in my 
opinion, is that ifthe data as described warrant adding '_'ev~?
thing is a nonblack nonraven," they also warrant addmg all 

ravens are black." 
Under typical conditions, it would be puzzling if "data" 

consisting exclusively of nonblack nonravens warranted add
ing" All ravens are black" but failed to support adding "every-
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thing is a non black nonraven.'' That is to say, it is implausibb 
that under normal circumstances such data warrant adding 
"all ravens are black" as a strongest added statement to a 
corpus although it is quite plausible that its addition to the 
corpus is warranted if the addition of "everything is a non
black nonraven" is warranted. In my opinion, what has gone 
wrong in discussions of the so-called paradoxes of confirma
tion has been that the "conclusion" to be supported by data 
has always been taken to be a sentence or proposition rather 
than a set of sentences or propositions added to a corpus to 
make a deductively closed set. t 

All feasible bodies of knowledge are expansions of or iden
tical to UK. UK is itself noncontractible. This amounts to 
saying that all items in UK are incorrigible items of every 
feasible corpus expressible in L. Hence all items in UK are 
certainly and infallibly true for all agents at all times (if they 
are rational). However, if Kx,t contains items not in UK, then 
from X's point of view at t, there are sentences not in UK 
which are quite as certainly and infallibly true as the assump
tions in UK. Incorrigibility implies infallibility. The converse 
does not hold. Hence, from X's point of view at t, the theories, 
laws, statistical claims and observation reports he accepts in 
his corpus are as infallibly and certainly true as truths of logic, 
set theory, and mathematics. Certainty and infallibility are one 
thing. Corrigibility is another. 

The feasible or potential corpora in L can be partially or
dered by the set-inclusion relation. Moreover, it is plausible 
to require that for X, K should be at least as informative as K' 
if K' is a subset of K. K rules out more logical possibilities 
than K'. The least informative corpus is UK itself. The most 
informative one is the contradictory corpus. 

Nothing prevents a contradictory corpus from being feasi
ble. There is some value in being able to consider both changes 
in knowledge which end up in contradictory corpora and 
changes which move away from contradiction. 

To allow X to consider a contradictory corpus to be feasible 
does not imply that if he should detect inconsistency in his 

t For further elaboration and qualification of this approach to the so-called 
paradoxes of confirmation, see my "A Paradox for the Birds" in Essays in 
Memory of lmre Lakatos (edited by R. S. Cohen, P. K. Feyerabend, and 
M. W. Wartofsky. Dordrecht: Reidel, 1976, pp. 371-378). 
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corpus he should rest content. When X's corpus is inconsist
ent, it breaks down as a standard of serious possibility. It 
furnishes a truth definition which is unsuitable for character
izing the aim of avoiding error. It is useless as a resource for 
inquiry and deliberation. 

Moreover, should X contemplate expanding into an incon
sistent corpus from one which is consistent, he would be well 
advised not to do so; for, from his initial point of view, such 
a move would deliberately import error into his corpus. For 
this reason, respect for truth would argue against expanding 
into contradiction. (This observation will be somewhat quali
fied ;n the next chapter.) 

We should distinguish between commitments imposed on X 
by his having a corpus of knowledge at a given time by prin
ciples of epistemic logic specifying "equilibrium conditions" 
and those commitments to improve his corpus generated by 
X's epistemic or cognitive aims and values. I propose to regard 
the desirability of moving away from contradiction and avoid
ing moving into contradiction as derived from commitments 
of the second kind. Consistency, on this view, is not a con
dition of rational equilibrium. 

Objections may be raised against the cavalier downgrading of 
the classical formula that knowledge is true, justified belief. It 
may be claimed that some variant of the formula is needed to 
accommodate the widely acknowledged distinctions between 
knowledge and true but unjustified belief or between knowl
edge and justified false belief. 

I do, indeed, reject the value of such distinctions when 
made by X at l concerning his beliefs at l. From X's point of 
view at l, there is no difference between what he fully believes 
at l and what he knows at l. From his point of view at l, if he 
fully believes h at l, the falsity of h is not a serious possibility 
for him at l. Hence, according to X, his true. There is no need 
for justification. How could there be, given that the falsity of 
h is not a serious possibility? Only if one insists that in order 
to claim knowledge that h, X must also show that he admitted 
h into his corpus legitimately, could an opening be made for 
a distinction between his knowing that h and his believing that 
h. But it is precisely this sort of pedigree epistemology that I 
mean to reject. 
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Nonetheless, X can consistently distinguish between what 
Y knows and what Y believes or between what X himself did 
know or will know and what he did or will believe. 

More importantly, even from X's point of view, X can ask 
whether he is justified in revising his current corpus in one 
way or another and can, from his current point of view rec
ognize that he may be justified and yet import error in;o his 
corpus. 

Thus, in contemplating an expansion of his corpus by adding 
h and its deductive consequences, X can recognize as a serious 
possibility that in doing so he will admit error into his corpus. 
Nonetheless, he may, as I shall argue later, be justified in 
doing so. Hence, prior to expansion, X can recognize a sig
nificant distinction between "coming to know that h" when 
~is expansion is justified and error free, coming to have jus
tified but erroneous belief that h and coming to have error-free 
but unjustified belief that h. 

Notice, however, that once he has expanded by adding h to 
his corpus, from his new point of view, h is certainly and 
infallibly true. Hence, as long ash remains in his corpus, from 
his point of view, X knows that h even though his initial 
expansion happened to be illegitimate. To be sure, if he comes 
to recognize somehow that he committed an error in expansion 
or that the expansion was unjustified, this may prove relevant 
to a decision as to whether to contract. However, it need not 
be automatically decisive in favor of contraction; for, it should 
be kept in mind, that as long ash is in X's corpus, he considers 
h to be infallibly and incorrigibly true. In chapter 3, I shall 
elaborate on the topic of contraction at greater length. The 
point I wish to emphasize now is that the distinction between 
knowledge, true belief, and justified belief does have some 
relevance when X reflects on his own beliefs at other times or 
on Y's beliefs. It also has importance when revisions of belief 
are considered. But it has no relevance from X's point of view 
for the purpose of making discriminations within his corpus 
at l. 

Let X's corpus at 11 be K 1 • He adds h to that corpus. 
Suppose he is justified in doing so. In virtue of deductive 
closure, his corpus K 2 at 12 contains not only h but h V g. At 
11 when X elected to expand, he did not know whether in 
expanding he would avoid error. Hence, even though he had 
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concluded that in expanding, he would come to justifiable 
belief that h and that h V g, he could not claim that he had 
come to know that h. 

Suppose that Y (at t2) has -h in his corpus. He concedes 
that X was justified relative to K 1 in expanding the way he did. 
Moreover, Y has g in his corpus so that, from Y's point of 
view, h V g is true though h is false. 

Edmund Gettier asked: Does X know h V g? From X's point 
of view after expansion, it is obvious that he does. What about 
from Y's point of view? 

There are two distinct questions: Did X come to know 
h V g? In my view, the answer is negative. In expanding from 
K 1 to K2 , error is imported if a single false proposition is 
added. If so, X has failed to come to know that h V g from Y's 

point of view because in expanding, X has added false h to his 
corpus. 

On the other hand, Y can consider the matter from an 
entirely different angle. He may ask what X should do in order 
to remove error from his corpus. Clearly, Y would recommend 
that X remove h from his corpus. Would he recommend that 
X remove h V g? Given Y's opinions, it would be clearly 
foolish for X to do so. He would be surrendering true infor
mation. X should not cease to believe h V g either from X's 
point of view or Y's. From both points of view, he is justified 
in retaining it. Moreover, from both points of view, h V g is 
true. In what sense, therefore, should Y claim that X does not 
know h V g? Only in the sense that he failed to come to know 
it. But that observation is irrelevant, once we have ceased 
worrying about pedigree, in determining whether he should 
give h V g up. In this sense, Y can in good conscience concede 
that X knows that h V g. 

I dS> not offer this account as an analysis of the presyste
matic usage of the verb "to know." There are many terms, 
and "know" is one of them, where presystematic usage and 
our "intuitions" about them are heavily burdened with the 
commitments of philosophical ideology; so that consultation 
with intuition rarely avoids begging the issues under dispute. 
I put this account of the Gettier problem forward only to 
illustrate how puzzles such as this appear from the perspective 
of the epistemology I have been outlining here. · 
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Advocacy of epistemological and categorical infallibilism ap
pears to undercut some liberal arguments in favor of free 
speech and open criticism. If from X's point of view at t 

(whether X is a person or a social group) there is no serious 
possibility that h is false, then with respect to any decision to 
be taken to which the truth value of h is relevant X might 
regard dissent from his (or its) views concerning the truth 
value of h as an impediment to making the right decision. 
Advocating infallibilism seems to furnish part of a grounding 
for circumscribing free speech. 

Even if it were true, this complaint would not suffice to 
make the case for endorsing categorical fallibilism; for even if 
X were obliged to be uncertain about the truth of every extra
logical statement, he would be. guided in his conduct by his 
discriminations between hypotheses with respect to degrees 
of uncertainty. If anyone dissents from his appraisals and, 
hence, his judgments concerning the policies which should 
be adopted, from X's point of view the dissent would remain 
an impediment to rational choice. If a case for circumscribing 
free speech and criticism can be sustained by categorical in
fallibilism, it could be sustained by invoking categorical falli
bilism as well. 

The alleged implication of categorical infallibilism is invalid. 
Whether tolerating or promoting free speech and dissent is 
undesirable from X's point of view should depend on the 
usefulness, from X's point of view, of institutional arrange
ments protecting free speech and criticism in promoting im
provements in X's knowledge and, through such improve
ments, in furnishing a better basis for policy making. To make 
a case for free speech and inquiry on these grounds, X must 
be committed to the view that his knowledge is open to im
provement. Corrigibilism is a necessary assumption. But cor
rigibilism is not to be confused with categorical fallibilism as 
such exponents of the liberal view as Popper have done. 

In any case, corrigibilism alone, though not an impediment 
to defending free speech, is not a sufficient basis for endorsing 
it. A case needs to be made that the improvement of knowl
edge is, in point of fact, promoted by tolerance and encour
agement of dissent; and this, for some, may remain an open 
question. 

It does seem clear that if in science or government reliable 
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information is to be obtained, sufficient freedom must be 
granted to scientific investigators or government agents (e.g., 
spies and diplomats) so that they can furnish the information 
requested. Governments are prone, however, to circumscribe 
such freedom so that agents can perform the functions de
manded by government but cannot exercise their freedom in 
other domains. Policies of the Soviet Union towards scientists 
and artists furnish a familiar example of governments confront
ing this problem; but the efforts on the part of the United 
States government to restrict the dissemination of "classified 
information" or the capacity of government employees to en
gage in public criticism of some aspects of government policy 
illustrate the same point. 

Of course, from the point of view of private citizens, the 
problem of obtaining useful information for the making of 
public policy as well as for taking private decisions will be 
seen in a different light. The question of what is an optimal 
allocation of freedoms for the purpose of obtaining reliable 
information will be considered in different ways depending on 
the sorts of information being sought. 

Given that even X (whether Xis the government, a scientific 
community, or a private citizen) can recognize the existence 
of conflicts between his needs on this score and the needs of 
other agencies, the question of determining how to allocate 
freedom of speech and criticism to individuals and groups in 
society can be recognized by X to be a moral and political 
problem of optimal distribution. 

Here I do not intend to go into this topic any further. I am 
concerned only to show (a) that liberal conclusions concerning 
the importance of promoting free speech and criticism are 
neither entailed by nor undermined by advocacy of categorical 
infallibilism, (b) that commitment to corrigibilism appears 
more critical to the liberal point of view, and (c) that even such 
a commitment to corrigibilism will not, without appeal to other 
moral and political assumptions concerning just distributions 
of freedoms and without careful scrutiny of how various in
stitutional frameworks do and do not facilitate the improve
ment of knowledge, furnish a sufficient grounding for the lib
eral conclusion. 

I am sympathetic with this conclusion; but it seems to me 
that efforts on the part of authors like Mill and Popper to 
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1.11 
Is Revision 
Possible? 

but.tress their liberal convictions by appeal to their epistemo
log1es (and vice versa) do not succeed. 

I ~ave _claimed that corrigibilism is compatible with both 
ep1stem1c and categorical infallibilism provided that seek·n 
the _truth is not tak~n to be the ultimate aim of inquiry tho~g~ 
avo1_dance of error 1s regarded as a proximate desideratum of 
particular inquiries. To support this claim we must consider 
how ~ c~~ ~easonably modify his corpus of knowledge given 
that h~s m1tial corpus is, as far as he is concerned, infallible 
and given that among his epistemic goals in modifying h" 
knowledge is a concern to avoid error. is 

This question can now be seen to have four parts: 

(a) How is expansion possible? 

(b) How is contraction possible? 

(c) How is replacement possible? 

(d) How is a residual shift possible? 

These questions will be cons1"dered 1n h t e two chapters 
which follow. 

1.11 IS REVISION POSSIBLE" 
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New, Error
Free Informa
tion 
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The idea that scientific progress is marked by a steady accu
mulation of knowledge is an object of contemporary scorn. 
Thanks to the efforts of T. Kuhn and P. K. Feyerabend it is 
widely held that in science theories are often overt?ro.w.n and 
replaced by other theories. Yet, Kuhn insists that md1v1d~als 
and scientific communities often modify their knowledge m a 
manner conforming to a cumulative model. Prima facie, 
knowledge is modified by expansion as well as by contraction 

and replacement. 
Why should an agent expand his corpus? The short answer 

is: To obtain new error-free information. 
The demand for new information will vary from context to 

context and will often be motivated by strikingly different 
conside~ations on different occasions. Not only will the sub
ject matters of different inquiries vary; the inquiries them
selves will be motivated by the desire either to resolve some 
practical question, to contribute to systematic understanding, 

or both. 
Whatever the demand for information might be, and what-

ever the reasons for that demand, it should be tempered by a 
concern to avoid injecting error into the corpus through ex
pansion. In nontrivial expansion, information not containe~ in 
Ku is added to it. From X's point of view at t, that information 
is possibly false. A scientifically responsi~le X sh~uld be con
cerned to avoid error. The proximate aim of his efforts to 
expand his corpus should be to obtain error-free informa~i~n. 

How could expansion be justified for the sake of obtammg 
new error-free information? Prior to expansion, X regards all 
items in his corpus as infallibly true. Hypotheses not in his 
corpus but consistent with it are fallible-i.e., po.ssibly fa~se. 
If X should add h to his corpus, he would be addmg a falhb~e 
hypothesis-counter to the claim that what is in his corpus is 

infallible. 
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This objection presupposes that possibility or infallibility 
belongs to sentences or propositions independently of the 
agent's corpus of knowledge. Even if this were so for logical 
possibility and other sorts of possibility considered in the 
literature, it is false in the case of serious possibility of the 
sort relevant to the conduct of inquiry and deliberation that is 
being discussed here. If X changes his corpus, he changes his 
standard for evaluating serious possibility and, hence, what is 
infallible for him. From X's point of view prior to expansion, 
adding h to his corpus is, indeed, a possible source of error. 
Accepting h is fallible ex ante. It is infallible according to X 
ex post. Once X has adopted h as an item in his corpus and 
shifted his point of view, h becomes infallible for the purpose 
of subsequent inquiry and deliberation. 

There is, however, a more serious objection to expansion. 
From X's point of view at t, h is possibly false. Adding h to 
his corpus entails a risk of error. Refusing to expand at all 
incurs no risk. Surely the desirability of avoiding error favors 
the latter option over expansion. 

Were the proximate aim of an effort to expand simply the 
avoidance of error, this point would be decisive. Yet X should 
be concerned not merely to avoid error but to acquire new 
information. The promise of obtaining new information may 
sometimes (though not always) compensate X, from his initial 
point of view, for the risk to be incurred. 

Expansions are inferential or routine. The former are a species 
of deliberate' decision making. The latter are instances of rou
tine or programed behavior. 

Tom is driving to destination B and has reached a fork in 
the road. He does not know whether to turn left or right. He 
decides quite deliberately that he will turn left if a coin he 
intends to toss lands heads up and right if the coin lands tails 
up. The coin lands tails up and Tom turns right. 

Tom does not deliberately choose to turn right. He does 
deliberately choose to let the outcome of the toss determine 
the direction in which he turns. With respect to the issue as 
to how he turns, Tom has acted in a routine or programed 
fashion. With respect to whether he shall follow a program 
and if so which program he will follow, Tom has acted delib
erately. 

2.2 ROUTINE AND INFERENTIAL EXPANSION 
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Dick is driving to the same destination and has reached ~he 
same fork in the road. There is a public telephone ~t the s~de 
of the road. Dick calls the AAA to ask for advice hav~ng 
decided in advance that he will do whatever they tell him. 

They tell him to turn right and so he does. 
Dick does not deliberately choose to turn right any more 

than Tom does. He does deliberately choo~e to.let t_he ou~come 
of his query to the AAA determine the direct10n in ~hich ~e 
turns. He too has acted in a routine or programed fash10n with 
respect to this issue. But he has chosen a different program 

than Tom and has chosen it deliberately. . 
Harry is also travelling to B and reaches the same fork in 

the road. He, like Dick, makes the telephone call to the _AAA 
and receives the same instruction after having ~ecided in ad
vance to follow the instructions whatever they might be. Upon 
returning to his car, Harry notices a road sign obscured by the 
trees which states that the road to B is the road to th~ left
counter to the AAA instructions. Harry ignores the sign be
cause he has committed himself already to following the AAA 
instructions. He too chooses to let the outcome of some proc
ess (interrogating the AAA) determine the direct~on he travels. 
He does, however, deliberately choose the routine. . . 

Had Harry, upon seeing the road sign, w~ighed the reliabil
ity of the AAA against the reliability of the signs and, perha~s, 
sought more data in order to resolve the conflict befor~ turning 
in one direction or the other' Harry would have dehb~rately 
chosen the direction in which he was to travel. In d~hberate 
decision making, the agent identifies the options available_ to 
him, his goals, and the available relevant evidence conce~n~ng 
the admissibility of the options for the purpose of ~eahzing 
these goals and values. The option chosen is deter_mi~ed rel
ative to these beliefs and values according to pnnc1ples of 

rational choice. . . . 
Such cases of deliberate choice contrast with situat10ns 

where action is the "output" of a process in which the agent 
responds to "inputs" according to so~~ p~ogram. The. pro
gram may be innate, acquired by cond1tiomng, or _may itself 
be chosen as the outcome of deliberation. Following such a 
program is letting the action to be performed be _settled as the 
outcome of some process which is often stochastic. The agent, 
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in effect, treats himself as part of a "chance setup" t being 
subjected to some sort of trial and lets the act performed 
depend on the outcome of the trial. 

To be sure, deliberate decision making itself is a process 
whose output is an act and whose inputs are other factors such 
as beliefs and values. Conceding the point does not undermine 
the distinction between deliberate and routine decision mak
ing. The "program" for deliberate decision making ought to 
be whatever general principles qualify as principles of rational 
decision making determining which options are admissible 
given specific information concerning the options the agent 
recognizes to be feasible for him, given his values and goals 
and given his beliefs. To characterize deliberate decision mak
ing is to furnish such principles of rational choice and to 
identify (within the limits of precision that are feasible) the 
domain of applicability of such principles. Much of this book 
is devoted to supplying materials which should help clarify 
these matters at least in part. Given such an account we would 
be in a better position to give a precise characterization of the 
distinction between deliberate and routine decision making. 
Lacking such an account at present, I shall take for granted 
that the distinction is legitimate and important. 

Routine expansions are instances of routine decision mak
ing. Thus, X may follow the practice of consulting Y on mat
ters concerning some domain. In interrogating Y, X is con
ducting a trial on a chance setup whose output is Y's report. 
X adopts a program utilizing that report as an input into an
other program whose output is X's adding Y's report to his 
corpus. The combined program amounts to employing a cer
tain kind of trial (interrogating Y) where the possible outcomes 
are modifications of X's corpus by expansion. 

Another important kind of routine expansion involves X's 
making observation reports in response to sensory stimulation 
and adding the reports made (or corrections of them) to his 
corpus.+ 

t The term "chance set-up"" was introduced by I. Hacking in his Logic of 
Statistical Jnfe;ence (Cambridge: Cambridge University Press, 1965, ch. II). 
See also section 11.20 of the present book. 
:j: Making the observation report that h is not to be confused with adding h to 
one's corpus via expansion. In making observations, X typically lets the 
outcome of sensory stimulation (i.e., the making of the observation report 
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Routine expansion via observation and routine expansion 
via the testimony of others involve X's adopting, prior to his 
conducting a "trial" and his ascertaining the result, some 
program which commits him to expand in a manner which 
depends on the observation report he makes in the case of 
routine expansion via observation or on the testimony of Yin 
case the program concerns expansion through consulting oth
ers. He is committed by adopting the program to carrying it 
through. 

In contrast to the foregoing, inferential expansion is a spe
cies of deliberate decision making. In deliberate decision mak
ing, X identifies a set of feasible options and undertakes to 
determine which of them is admissible given all of the infor
mation available to him prior to making his choice and given 
his goals and values. Of course, inferential expansion is not 
deliberate decision making aimed at realizing ethical, eco
nomic, political, or other such practical goals. As in routine 
expansion, the aims are cognitive. The options are potential 
expansion strategies which qualify as potential answers to the 
question under investigation, and the aim is to gratify the de-

that h) decide what he will add to his corpus. Often he does so as a matter of 
habit. But in carefully designed experimental situations, the circumstances 
under which he will let the outcome of sensory stimulation render a verdict 
are circumscribed. If X knows that observations made on a foggy night have 
a great chance of yielding false reports, he will refuse to add foggy-night 
sentences, even though they have been reported true, into his corpus. 

The sentence added to X's corpus via observation routine is not inferred 
from what is already in his corpus (including knowledge of the error proba
bility of the routine) and information concerning the response made to sensory 
stimulation. Rather, X is committed prior to observation to the practice or 
routine of letting the application of the routine legislate what he will add. 
Being so committed, the actual implementation of the routine is not an infer
ence at all. 

The structure of expansion via observation resembles the structure of sta
tistical decision making as construed by advocates of the Neyman-Pearson 
approach to statistics. According to that view, an investigator plans before
hand which outcomes of an experiment will lead to rejection of a "null 
hypothesis" and which will not. The probability of error (and other "operating 
characteristics," such as the power of the test) are determined relative to the 
knowledge available prior to the experiment, and the plan is evaluated on the 
basis of this information. This procedure stands in contrast to approaches 
according to which one decides whether one should reject the null hypothesis 
relative to a body of knowledge including information about the outcome of 
the experiment. This contrast is discussed in somewhat greater detail in 
chapter 17. 
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mand for information occasioned by the question while at the 
same time avoiding error. 

Thu~, an investigator seeking the true value of some param
eter might regard any point estimate as a potential answer. He 
will also consider weaker claims asserting that the true value 
falls in some interval or in one of a set of intervals. Or the 
i~~estigator might be seeking a theoretical basis for systema
tizing some subject matter and might be entertaining the al
ternatives of adding theory Ti to his corpus, adding T. re
jec~ing both theories (i.e., adding the residual hypothe~;s R 
which asserts that both are false), suspending judgment be
tween Ti and T2, between T1 and R, between T

2 
and R, and 

between all three alternatives. 

Given the demands of his question and the potential answers 
he has identified, X should attempt to justify adopting one 
potential answer rather than another utilizing all the knowl
edge already available in his corpus. 

By way of contrast, in routine expansion X does not choose 
one from a list of potential answers. He may not be seeking 
an answer to some specific question (although he could be) 
and he need not have identified a list of potential answers. X 
has be~n conditioned or committed to a program for selecting 
expansion strategies depending on the outcome of a trial of 
some kind but not depending on his finding out what that 
outcome is and combining it with the rest of his knowledge to 
decide upon an optimum expansion strategy. 

The aim of both routine and inferential expansion is the 
acquisition of new error-free information. However, the way 
concern to avoid error and to obtain new information trade 
off is different in the two kinds of expansion. 

Thus, if, in response to sensory stimulation, X makes an 
observation report inconsistent with what is already in his 
corpus and, hence, certainly false from the point of view he 
adopted prior to carrying out the observation routine, X is 
committed to following through and admitting the report to his 
corpus. This is so even though carrying through converts his 
corpus to an inconsistent one. 

Following through in this way does not trample on the 
desideratum of avoiding error. When X committed himself to 
the routine, he might have assumed that the routine had a 
small chance of yielding an erroneous expansion (due to the 
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fallibility of X's senses) but thought it justifiable to follow the 
routine because the chance of error was sufficiently ~mall to 
be amply compensated for by the information p~om1sed b.y 
following the routine. Once he adopted the routme on this 
basis, the fact that, from his initial point of view, an e~rone~us 
report was made in the specific case under cons1derat10n 
means that in having elected to follow the routine beforehand 
he took a risk and lost. But it does not mean that X deliberately 

imported error into his corpus. . . 
Similar remarks apply to routine expans10n via appeal to 

the testimony of competent witnesses or experts. Suppo~e that 
x assumes y to be competent and reliable in giving testimony 
on a certain topic. That is to say, X assumes that the chance 
of y answering erroneously when questioned on matters per
taining to the topic is low. X might regard the information to 
be gained by importing Y's testimony as a matter ?f course 
into his own corpus as worth the risk of error. Notice, .h~w
ever, that y might sometimes testify in a manner contrad1ct~ng 
items already in X's corpus. Hence, X's following the routme 
will lead to his expanding into contradiction. Nonetheles~, X 
has not deliberately done this. The contradiction is obtame.d 
by x following a routine for expansion which he assun:es is 
highly albeit not perfectly reliable. He has accepted a nsk of 
error for the sake of new information and lost. 

By way of contrast, in inferential expansion, X does not l~t 
some stochastic process decide for him what to ad~ to ~1s 
corpus. Instead, X compares rival expansion strategies with 
respect to both risk of error and informational be~efits ~rom
ised relative to all the information available to him pnor to 
expansion and decides which strategy furnishe~ the b~st trade
off. Although the informational benefits promised will some
times warrant risking error, no such benefits should warrant 
risking certain error. X should not deliberat~ly import error 
into his corpus for certain. X should not deliberately expand 

into contradiction. 
Thus if instead of using Y's testimony as input into a pro-

gram t; which X committed himself beforehand for expanding 
his corpus, X had first added the information that Y had made 
a report contradicting what is already in X's corpus, X ~hou~d 
not expand by adding Y's report to his corpus expressible m 

L. 
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Neither the testimony of the senses nor of other witnesses 
added via an expansion routine are, once admitted to X's 
corpus, distinguishable from theories, laws, statistical as
sumptions, predictions, or other singular hypotheses with re
spect to certainty or infallibility. From X's point of view, all 
items in his corpus are equally certain and infallible. Nor do 
observation reports have a special status with respect to cor
rigibility. Finally, they are not distinguished by their content. 

Observation reports are distinguished by the way they gain 
admission into a corpus. Like the testimony of competent or 
expert witnesses, they gain entry through the implementation 
of a routine. Unlike inferential or inductive expansion (I shall 
use these terms interchangeably in this book), routine expan
sion is capable of injecting contradiction into a corpus even 
when implemented in a way which respects the desideratum 
of avoiding error. 

This trait is far from being a virtue. It is a defect of all 
modes of routine expansion that they can breed error and, 
indeed, lead to the contradiction of our most cherished theo
ries. We put up with the defect because of the information to 
be gained by consulting the testimony of our senses and of 
other reliable witnesses. We ought not, however, make a vir
tue out of our necessity and maintain that our senses are the 
ultimate arbiter of what should and should not be in a corpus 
of knowledge. There is no such ultimate arbiter. 

2.3 In seeking new error-free information via expansion of his 
Abduction vs. corpus, X tries to answer some question. Often, however, the 
Induction question or demand for information is obscure and part of the 
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task of inquiry is clarification of the question. The most im
portant aspect of this effort will be identifying potential an
swers to the question under investigation. 

The task is sometimes trivial. If X is estimating the average 
height of undergraduates at Columbia College in 1975, the 
range of potential answers is relatively easy to identify. Con
siderable genius may be required, however, to identify a the
ory worthy of consideration for the purpose of systematizing 
some subject matter. 

Once, however, potential answers are proposed for the sta
tus of potential answers to the question under consideration, 
it is sometimes important to determine whether the hypotheses 
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proposed do indeed qualify as potential answers to the ques
tion under consideration. Also, even if they do to some extent 
respond to the demands for information occasioned by the 
question, it is also important to ascertain how well they gratify 
these demands when the question of truth value is set to one 
side. 

In large measure, such appraisals of expansion strategies 
depend on the question being investigated and the demands 
for information occasioned by it. However, to some extent, 
these appraisals may be regulated by criteria applicable to 
members of a large class of demands for information. Thus, 
certain types of explanation-seeking question may be such that 
potential answers should meet certain conditions in order to 
gratify the demands for information to a high degree-Le., in 
order to bear high informational value relative to the question 
being considered. 

Criteria of this sort correspond, at least roughly, to what 
C. S. Peirce called principles of abduction. 

At least on some occasions, Peirce does not regard abduc
tion to be a mode of inference leading to the fixing of beliefs
i.e., he does not consider them to be a way of adding new 
items to a corpus of knowledge via inference to be used as 
premises in subsequent inquiry. The "conclusion" of an ab
ductive "inference" is an evaluation of an expansion strategy 
as a potential answer to a given question. 

It is to be remarked that, in pure abduction, it can never be 
justifiable to accept the hypothesis otherwise than as an inter
rogation. But as long as that condition is observed, no positive 
falsity is to be feared. 1 

As Peirce notes, the "conclusion" of an abduction can entail 
no error; for such a conclusion is the mere entertaining of a 
hypothesis for further test, scrutiny, and inquiry in an effort 
to answer some demand for information. In inductive infer
ence (i.e., inferential expansion), on the other hand, an erst
while hypothesis which is already taken to be a potential 
answer to the question under investigation is added to the 
corpus of knowledge, its status as hypothesis is stripped from 
it, and it becomes a settled answer to the question. From X's 
point of view prior to making this inductive infer~nce, to do 
so does entail a risk of error. 

In the context of abduction, the only factors which need to 
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be taken into account in appraising hypotheses are their in
formational virtues. For example, when the aim is to add 
theories to the corpus which furnish systematic explanations 
of phenomena in some domain, good potential answers are 
good potential explanations possessing such virtues as gener
ality and simplicity. Neither the truth values nor the proba
bilities of potential answers are relevant to the evaluation of 
such potential answers as good potential explainers. Hence, 
there is no need to decide whether informationally attractive 
hypotheses are or are not true or are likely or unlikely to be 
true. 

Hence, even if simplicity is an informational virtue, there is 
no need, in the context of abduction, to settle the question of 
whether nature is simple or not. To do so would, in any case, 
be dubious. The concept of simplicity is notoriously ambigu
ous and, even when it is disambiguated in ways which render 
it prima facie relevant in scientific inquiry, evaluations of hy
potheses with respect to simplicity seem to depend on the 
question under investigation. 

Even in situations where widely shared criteria for assessing 
simplicity can be invoked, as in some curve-fitting cases, it is 
not true that simpler hypotheses are more probable. Relative 
to data represented by two points, it is no more probable that 
the true hypothesis is a straight line passing through the two 
points than that it is some particular circle passing through 
those points. Fortunately, in the context of abduction we do 
not have to suppose otherwise. In that context, probability of 
truth and of error is irrelevant. 

Inductive or inferential expansion is an entirely different 
affair. Informational desiderata relevant to the assessment of 
the quality of hypotheses as potential answers continue to be 
relevant when the concern is to choose one of the list of 
potential answers for addition to a corpus of knowledge. But 
the risks entailed by the various potential answers must be 
taken into account as well. Probability of error does matter. 

Many authors seem to hold that the difference between 
abduction and induction is a matter of degree or that induction 
is a species of abduction. In effect, such authors claim that 
the same criteria apply to the evaluation of abductions and to 
the evaluation of inductions. They are, therefore, committed 
to one of the following two alternatives: 
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. otheses which are informationally attractive-per-
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induction though not to abduction. This means that hy
potheses which earn high marks when informational desiderata 
alone are taken into account may, nonetheless, fail to gain 
admission into X's corpus because the risk entailed by such 
expansion is too great. In other situations, simplicity may be 
a sufficient inducement to incur the risk. 

Thus, we do more than judge truth earnestly and seriously 
relative to our evolving doctrine. Our judgments of truth de
fine for us our aims in revising our doctrine-or, at least, that 
aspect of our aims characterized by the desideratum that error 
be avoided. To be sure, our judgments of truth must be sup
plemented by judgments of probability of truth and of error. 
That is a topic which shall be discussed at great length in later 
chapters. But the relevance of probability of error to the eval
uation of expansion strategies in induction is a manifestation 
of our concern to avoid error. 

The set of potential answers X has identified for the question 
under investigation may be represented by specifying a set U 
of hypotheses such that Kx, 1 entails the truth of at least and 
at most one element of U and each element of U is consistent 
with K 1·, 1• Following terminology I have used elsewhere, the 
set U is an ultimate partition. 5 

A potential answer may be represented as a case of rejecting 
all and only members of a subset of U. That is to say, Kr, 1 is 
expanded by adding the deductive consequences of the asser
tion that the true element of U is not in the subset of rejected 
elements. When no elements of U are rejected, the expansion 
strategy is a degenerate one where X does not modify K 1·, 1 at 
all but remains in full suspense between all alternatives in U. 
At the other extreme, X might reject all elements of U and 
deliberately expand into contradiction. If X rejects all ele
ments of U but h;, then X adds h; to his corpus along with its 
deductive consequences. Such a potential answer is a strong
est consistent potential answer. When more than one element 
of the ultimate partition survives rejection, X suspends judg
ment after expansion between the rival unrejected alterna
tives. 

When the ultimate partition contains a finite number n of 
hypotheses, the number of potential answers, including the 
contradictory one, is 211

• These may be partially ordered with 

2.4 POTENTIAL ANSWERS AND INFORMATIONAL VALUE 



46 

respect to informational value. If one potential answer in
volves rejection of all and only hypotheses in the ultimate 
partition in a proper subset of the set of hypotheses rejected 
according to another potential answer it is less valuable infor
mationally than the second potential answer. Rejecting no 
elements of the ultimate partition is, therefore, the least val
uable informationally of all the potential answers. Rejecting 
all of them (and, hence, contradicting oneself) is the most 

valuable informationally. 
The ultimate partition can contain a countable or even a 

noncountable infinity of alternatives-e.g., in situations where 
the problem is to ascertain the true value of some real-valued 
parameter or n-tuple of real-valued parameters. In the case 
where the number of alternatives is countably infinite, the 
remarks made thus far concerning the finite case need not be 
modified. When the ultimate partition is noncountably infinite, 
rejecting elements of any subset might be considered a poten
tial answer. I shall restrict attention to situations where only 
Lebesgue measurable subsets need be considered. 

6 

The condition imposed on the assessment of informational 
value by the partial ordering cited above is, in effect, a prin
ciple of abductive logic. It is intended to be a principle that 
regulates the evaluation of information regardless of the de
mand for information under investigation. Similarly, the con
dition that the set of potential answers be generated by an 
ultimate partition can be construed as a principle of abductive 

logic. 
However, neither of these principles exhaust what can be 

said about abduction. In particular, they do not imply that X's 
set of potential answers is uniquely determined by his current 
corpus. In addition, the demand for information which occa
sions X's question has to be taken into account. Such a de
mand controls in part what shall count as an element of an 
ultimate partition for the problem under investigation. The 
potential answers appropriate to demands for information 
about genetic linkage are obviously different from those ap

propriate to the study of business cycles. 
Furthermore, the evaluation of the informational value of 

potential answers will also depend on the demands for info~
mation. If X is seeking a theory which will furnish systematic 
explanations in some domain and has identified two potentially 
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expl~natory theories T, and T2 , his ultimate partition may 
co~s1st of these two rival (i.e., incompatible) theories and the 
residual hypothesis R which asserts that both T, and r 2 are 
false. A~tho~gh R will be an element of the ultimate partition 
and ad~mg 1t to the corpus is a potential answer, doing so is 
!es: satisfact~ry informationally than adding T, or adding r 2 • 

R ~s less satisfactory for the obvious reason that it fails to 
satisf~ the demand for a theory which will systematize the 
domam u_nder investigation. Furthermore, there may be im
portant differences ?etween T, and T2 with respect to explan
~tory ad~quacy which may warrant assigning them different 
mform~t10nal values. Assessments of this kind are part of the 
abduct1ve task. To some extent, these assessments may be 
regulated by criteria which are applicable to a large class of 
pro~lems. It ~ay, perhaps, be possible to identify certain 
desiderata which determine explanatory power and simplicity 
relevant to t~e ~ssessment of informational value in inquiries 
where the aim 1s to obtain explanations of some kind. It is 
doubtful, however, that such desiderata can be converted into 
~r~teria for the evaluation of informational value which render 
it irrelevant to consider the peculiarities of the particular de
mands for information motivating specific inquiries. Indeed 
such restrictions on the assessment of informational value ar~ 
like!~ to be very weak. Such assessment is, in my opinion, 
heavily context dependent. 

My concern here is not, however, to explore the extent to 
which informational value is or is not context dependent. The 
question is an important one and I hope to explore it further 
elsewhere. I will only mention one proposal that I have al
ready made as a restriction on all assessments of informational 
value, as it will be important in the subsequent discussion. 

Under idealized circumstances, I propose that the evalua
tion of the informational value of potential answers can be 
represented in the case of an ultimate partition with a finite 
number of elements by a function which assigns to elements 
of the ultimate partition positive real values such that the sum 
of the v_alues as~igned elements of the ultimate partition equals 
1. The mformational value of a potential answer is the sum of 
the_ values as:igned to the elements of the ultimate partition 
which are rejected according to that potential answer. The 
contradictory potential answer receives the maximum value of 
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I and the potential answer according to which no element of 
the partition is rejected receives the informational value 0. 
The partial ordering with respect to informational value men
tioned earlier is preserved by this type of evaluation. 

The assignment of values to elements of the ultimate parti
tion is represented by a function M(h;). This can obviously be 
extended to a probability function by assigning g, which is a 
disjunction of elements of the ultimate partition, an M-value 
equal to the sum of the M-values assigned elements of the 
disjunction (where each element in the disjunction is counted 
once and only once). The value M(g) represents the informa
tional value of rejecting g or, alternatively, of adding the 
disjunction of all elements of the partition which are not dis
juncts in g to the corpus together with their deductive conse
quences. 

This M-function is an information-determining probability. 
It represents X's evaluation of the informational value of rival 
potential answers. The adequacy of the representation de
pends on the demands of the question under consideration for 
new information. It does not represent X's assessment of the 
probability of error involved in adopting the potential an~w.er. 
It is not what shall be later called an expectation-determcncng 
probability or credal probability. Its function in inquiry is 
quite different from that of credal probability (as it is also from 
chance or statistical probability and from confirmational prob
ability, both of which will be discussed at length subse
quently). t 

I have no proof that informational value should be assessed 
in a manner satisfying the condition just cited. Indeed, in one 
important respect, I do not think that the condition _should 
always be satisfied. Sometimes numerical representat10ns of 
informational value are inappropriate. In section 8.6, I con
sider cases where X's evaluations of informational value 
should be representable by convex sets of M-functions but not 
necessarily single M-functions. But the case where such eval
uations are representable by a single M-function remains an 
important special one and much that can be said about it 

t My view stands in opposition to opinions expressed by Y. Bar-Hillel, R. 
Carnap, R. Hilpinen, J. Hintikka, and K. R. Popper who use credal, confir
mational, or "logical" probabilities as information-determining. 
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relatively simply applies with appropriate technical qualifica
tions to the general case. 

Sometimes the elements of the ultimate partition U are rep
resentable by indices which are n-tuples (} of real numbers 
corresponding to points in some region in an n-dimensional 
space. A potential answer involves concluding that the true 
value of(} falls in some subset of points in that region. The M
value of a potential answer specifying that the true value of (} 
falls in some subregion of the region in the n-dimensional 
space is characterizable as the value off m(O)d(} over points in 
that region, where the function m(O) is a density function. 1 

The density function can be used in lieu of the M-function to 
represent the evaluations with respect to informational value. 

When U is countably infinite or when we are dealing with 
continuous parameters ranging over all points in an n-dimen
sional space, new problems of a technical nature emerge. A 
common sort of problem is estimating the variance of a nor
mally distributed random variable. Often the demands for in
formation suggest that interval estimates of the value of the 
logarithm of the variance of equal length should be assigned 
equal M-value. This implies, however, that if the density is 
positive, the integral over the entire interval from -oo to +x 
will diverge and if the density is 0 the total integral is 0. Similar 
problems arise when U is countably infinite and where each 
element of U is assigned equal M-value. 

Difficulties such as these are generated by the peculiarities 
of infinity. They are important and should not be ignored; but 
they should not be raised as objections to the basic idea of 
representing informational value by means of information-de
termining probability measures. Parallel problems arise for 
expectation-determining probabilities and I shall discuss them 
in section 5 .11. The suggestions made there can be adapted to 
the representation of information-determining probability. 

Setting the reservations and qualifications just mentioned to 
one side, my proposal is that the results of abduction should 
be the specification of an ultimate partition and a set of poten
tial answers generated thereby together with an information
determining M-function characterizing the informational val
ues of the various potential answers. This proposal, it should 
be emphasized, imposes rather weak conditions on the results 
of abduction. It does not answer questions as to how an M-
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function is to be selected and how the specific demands for 
information occasioned by an inquiry at han~ control_ that 
selection. For the present I intend only to provid~ a relatively 
abstract representation of abduction to be used ~n an equa~ly 
abstract characterization of criteria for evaluating potential 
expansion strategies, that in tum determine which of a set of 
potential answers can be adopted at the inductive stage. 

If X's aim in inferential expansion were solely t? obt~in new 
information pertinent to the question under considerat10n, the 
evaluations of the potential answers generated by the M-func
tion would provide a sufficient basis for deciding which _pot~n
tial answer to adopt. The informational value M(g~ ~f re3ec~ing 
all elements of the ultimate partition which are disJunct_s in g 

is the value of endorsing that expansion strategy relative_ to 
the aim of obtaining new information pertinent to the quest10n 
without regard for the avoidance of error. This ~alu~ ac~rues 
to the potential answer regardless of whether i~ rejecting g 

X does so erroneously (i.e., when g is true) or without error. 
Hence, X need not be concerned with the credal or e~pecta
tion-determining probability that g is true in evaluating _the 
rejection of g in relation to alternative e~pansio~ strat~gies. 

Relative to the goal of obtaining new information ':ith?ut 
regard for truth value, the best potential answer is the re3~c~ion 
of all elements of U; for that expansion strategy maximizes 
the information obtained as a result of expansion. But to do 
so is to expand deliberately into contradiction. T~e f~ct that 
no one is prepared to endorse this recommendatio~ is _some 
indication that the aim of an inquiry where the ch01ce_ is be
tween rival expansion strategies should not be to obtain new 
information regardless of truth value. . 

I have stated before that I take the positio~ that t~e proxi-
. h Id be to obtain new error-free information. mate aim s ou . . 

When X considers rejecting g' he is, as we have indicated, 
certain that he will obtain informational value worth M(g). 

However, from his initial point of view (where he do~s not 
know whether g is true or false), there is a difference _in the 
epistemic value or utility to X of rejecting g when g is true 
and when g is false. . 

According to proposals I have made elsewhere, s the epis
temic value of rejecting g can be represented by the number 
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2.6 
Inferential 
Expansion 

(1 - a)M(g) when g is true and g is rejected erroneously and 
by a + (l - a)M(g) when g is false and rejecting g avoids 
error. The proposal is based on the idea that we can consider 
the effort to obtain error-free information as involving a bal
ancing or trade-off between two desiderata: acquisition of new 
information and avoidance of error. If acquiring new infor
mation were the sole desideratum, options would be evaluated 
by reference to the values of the M-function. If avoidance of 
error were the sole desideratum, rejecting g would receive the 
value I if g is false and the value 0 if g is true. (Throughout 
this discussion, these "values" or "utilities" are to be under
stood to be unique up to a linear transformation so that in lieu 
of I and 0 any values a and b could have been assigned 
provided that a is greater than b. However, it is convenient to 
use I and 0. Similarly, instead of the function M(g) any linear 
transformation of that function could be used. Once more 
convenience argues in favor of M(g).) 

In my view neither the desideratum of obtaining new infor
mation nor the desideratum of avoiding error should be fa
vored to the exclusion of its rival. Hence, a should not be set 
at 0 or at 1. Indeed, a should never be less than .5; for if it is, 
rejecting g erroneously could bear higher epistemic utility than 
rejecting g' correctly where M(g') is sufficiently lower than 
M(g). The desirability of avoiding error should preclude this 
sort of evaluation. 

Criteria for evaluating expansion strategies to identify the best 
or a best strategy for the purpose of obtaining new error-free 
information should be derived by showing that these criteria 
pick out those strategies according to principles of rational 
choice which apply not only to such "cognitive decision prob
lems" but apply also to problems where the aim is to choose 
an option (from a set of feasible options) in order to promote 
some practical, moral, economic, or political goal. 

In this preliminary discussion, the general principle of ra
tional choice I shall employ is the principle of maximizing 
expected utility. In chapter 4 and the chapters following, I 
shall replace this crude Bayesian decision theory with a more 
sophisticated approacJ;i which recognizes the applicability of 
the principle of maximizing expected utility in special cases 
but denies its applicability in general. The more sophisticated 
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decision theory entails modifications of the approach to eval
uating expansion strategies to be outlined in this section. 
Nonetheless, the account offered in this section serves well 
as an introduction to the general approach to inferential ex
pansion I favor. The modifications required according to the 
more sophisticated decision theory will not undermine the 
main ideas concerning inferential expansion outlined here. In 
any case, these ideas characterize the common thread con
necting the address to inferential expansion advocated in this 
book and the proposals advanced in Gambling with Truth, 
"Information and Inference," and "Acceptance Revisited." 

9 

Consider the expansion strategy involving the rejection of 
all and only the elements of U which are disjuncts in g. The 
epistemic utility of rejecting g without error is, according to 
the argument in section 2.5, a + (1 - a)M(g). The epistemic 

utility of rejecting g erroneously is (1 - a)M(g). 
Let the credal probability the agent X assigns to the hy

pothesis that g is false be representable by the real number 
Q(-g) = 1 - Q(g) where Q(g) is the credal probability X 
assigns the hypothesis g. The strategy of rejecting all elements 
of the ultimate partition which are alternatives in g bears an 
expected epistemic utility equal to Q(-g)(a + (1 - a)M(g)] 

+ Q(g)(l - a)M(g). 
Let q = (1 - a)/a. Because a is restricted to values from 

.5 to l, q ranges between 1 and 0. When q = 1, the relative 
importance attached to the desideratum that error be avoided 
is at a minimum. Anyone who adopts a value of a determining 
that value of q is prepared to exchange the maximum allowable 
risk of error for a given amount of informational value. As q 
declines, X will require a much-reduced risk of error before 
he will be prepared to expand to obtain a certain amount of 
informational value. As q increases, I shall say that X's "de
gree of caution" decreases or, using an expression introduced 
by R. C. Jeffrey, his "degree of boldness" increases. 

It can be shown that any expansion strategy which bears 
maximum expected utility rejects each element h; of the ulti
mate partition such that Q(h;) is less than qM(h;) where Q(h;) 
is the credal or expectation-determining probability of h; rel
ative to X's corpus K

1
,
1

• Furthermore, any expansion strategy 
which rejects the h;'s such that Q(h;) is less than qM(h;) and 
fails to reject those h/s where Q(h;) is greater than qM(h;) bear 
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relative to the other. In that case . . ns1on strategy 
problems into account in det . '. X his obliged to take both 
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meet the condition that Q(h;)/ M(hi) is at a maximum. t When 
the M-values for all elements of the ultimate partition are 
equal, this means that those elements of the partition bearing 
maximum Q-values will survive rejection. . 

Some authors have found the procedure of reiterated apph
cation of the criterion for expansion objectionable. However, 
if X expands his corpus the first time, he no longer regards 
the rejected elements of the ultimate partition as serious pos
sibilities. He has a new enlarged corpus which he is entitled 
to us~ as a standard for serious possibility in further efforts at 
expansion. 

However, in many and, indeed, most contexts, the results 
of reiterated application of the criterion for expansion when 
q = 1 do appear to be presystematically objectionable: . 

For example, suppose that a coin known to be unb1ase~ is 
tossed n times (where n is odd). X wishes to predict the rel~t~ve 
frequency of heads in the n tosses. His ultimate p~rt1t10n 

consists of the n + l hypotheses as to the true relative fre
quency. If each of these hypotheses bears equal informational 
value, they will all receive equal M-values of 1/(n + 1). If 
q = 1, an element of the ultimate partition specifying t~at ~he 
relative frequency is rf n will be rejected on the first apphcat10n 
if and only if (~)(.5)n is less than 1/(n + 1). By reiterating ~he 
procedure, X will be led to the conclusion that t~e relati~e 
frequency of heads will be exactly .5. Presystematlcally, t~1s 
seems absurd. It may be plausible to conclude that the relative 
frequency is approximately 50% but that it is exactly 50% 
even in cases where n is very large seems much too strong.:j: 

t Let l,Q be the sum of the Q-values of elements of the ultimate partition U 
surviving rejection on the first application of the rule when q = 1, and let 
l M be the sum of the M-values. 1 

If h, goes unrejected after the first expansion, its new Q-value ~s. Q,(h,): 
Q(h;)/l,Q and its new M-value is M,(h,) = M(h,)/l,M: T~e cond1t1on. un~ r 
which survivors will avoid rejection on the second apphcation of the rejection 
rule is that for every such h1 surviving rejection the first time, Q,(h,) 2 M,(h,). 
This holds if and only if for every h1 unrejected the first time, Q(h;)/M(h,) 2 

l,Q/l1M =constant. . . · ·n 
More generally, if h, survives rejection on the first k apphc~t10ns, it w1. 

survive the application (k + 1) if and only if Q.(h,) 2: M.(h,). ~ and ?nl~ if 
Q(h,)/M(h,) 2 l.QllkM. If U is finite, the onl.y eleme?ts surv1vmg reJect10n 
at some stage are those for which Q(h1)/M(h,) 1s a maximum. 
:j: In my opinion, this point decisively undermines an approach fa~?r~d by K. 
Lehrer. See Lehrer's "Induction, Consensus and Catastrophe, m Local 
Induction (edited by R. Bohdan, Reidel, 1975, pp. 131-132). 
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To avoid this awkward result, it seems plausible to require 
that, in general, q should be less than I. However, there are 
circumstances where q might be allowed to go to 1; so that 
although normally q should be less than 1 (and, indeed, less 
than .5), it seems unwise to impose a blanket requirement that 
this always be so. 

The criteria for expansion introduced in this and the pre
ceding section have been formulated for cases where the ul
timate partition is finite. Their extension to cases where it is 
infinite involve technical complications, some of which have 
been mentioned previously. However, it will be useful to in
dicate how these criteria can be extended to some special 
situations. 

Suppose that X knows that a given coin has been tossed n 
times and has landed heads r times. X does not know what 
the chance or statistical probability p of obtaining heads on a 
single toss is, although he knows that the tosses are sto
chastically independent and that the chance p of heads is the 
same on each of the n tosses. He attempts to obtain infor
mation as to the true value of p on the basis of what he already 
knows, and he identifies as his ultimate partition all hypotheses 
specifying exact values for p. His ultimate partition is non
countably infinite. 

I shall suppose, as would normally be plausible in such a 
case, that X regards each hypothesis specifying an exact value 
for p as informative as any other. This evaluation of infor
mational value can be represented by the density function 
m(p) = 1 for all values of p between O and 1. 

I shall also assume that X's credal probability judgments 
are representable by a density function 

(n + I)! 
f(p) = r!(n - r)! pr(I - p)n-r. 

In this case, the rules for expansion described previously can 
be extended so that an estimate of the exact value of p is 
rejected if and only if f(p) is less than qm(p). Moreover, the 
process can be reiterated. It can be shown that when q = I, 

the reiterations must approach the result that the true value of 
Pis r/n. This is the value for p for whichf(p) is a maximum. 
When q is less than 1, the conclusion warranted by reiteration 
is that the true value of p falls in an interval around rf n whose 
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width depends on the value of q and the value of n. The larger 
n, the narrower the interval. The smaller q, the wider the 
interval. 

Suppose that q is fixed at some value less than I and pre
sumably less than .5 and that n is large enough to warrant as 
a result of reiteration the conclusion that p is in the interval 
from (r/n) - e to (r/n) + E where e is arbitrarily small. If e is 
sufficiently small, X may be prepared to "throw caution to the 
winds" and let q = !. Then he can reiterate further and reach 
an exact point estimate as to the value of p. 

Thus, if X has found out in a large number of tosses that 
the coin has landed heads every time, he may be justified in 
concluding that the coin always lands heads on a toss. He can 
do so even though the hypothesis that p = l has an expecta
tion-determining probability equal to 0. 

This example shows how a hypothesis bearing 0 credal 
probability can, under appropriate circumstances, be added to 
a corpus of knowledge. One does not have to assign hy
potheses positive credal probability in order for this to happen, 
as many authors including Hintikka, Jeffreys, and Shimony 
have supposed. 12 

The coin example illustrates one class of cases where the 
ultimate partition is infinite. There are others, but these latter 
involve further technical complications. For the present, they 
shall be ignored. t 

The criteria for expansion outlined in this chapter require 
further elaboration and illustration. My immediate purpose has 
been, however, to cite enough detail to indicate the sense in 
which inferential expansion may be understood as involving 
a trade-off between risk of error and informational value. 

The proposed criteria are heavily context dependent. They 
depend on X's corpus and credal state (i.e., his judgments of 
credal probability). They also depend on his demands for 
information and the potential answers he has identified as 
means for gratifying these demands. They depend on his eval
uations of the informational values of these potential answers 

t Section 13.5 contains a brief explanation of how to handle cases where U 
is countably infinite or consists of hypotheses representable by points in an 
n-dimensional space. 
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CONTRACTION, REPLACEMENT, REVOLUTION, 
AND TRUTH 

Critics of accumulation models of the growth of knowledge 
deny that expansion is the sole way in which knowledge is 
modified or improved. Theories are often discarded and re
placed by others inconsistent with them. Emphasis on this 
correct observation lies at the heart of the critical philosophy 
of K. R. Popper and various political models of the growth of 
knowledge such as T. Kuhn's vision of normal change alter
nating with revolutionary change or P. K. Feyerabend's an
archistic conception of scientific inquiry. 

How is it possible to concede the obvious and acknowledge 
the legitimacy of removing assumptions from a body of knowl
edge and, indeed, replacing them with conflicting assumptions, 
while insisting on the infallibility of knowledge and on the 
avoidance of error as a desideratum of scientific inquiry? How 
is infallibilism compatible with corrigibilism? 

Those who sense the difficulty sometimes beg the question 
by presupposing that infallibility is equivalent to incorrigibil
ity. Or they assume that necessity and possibility belong to 
hypotheses independent of X's knowledge. Objections based 
on such assumptions need not disturb us to any greater degree 
in regard to contraction and replacement than they did in 

regard to expansion. 
There are, however, more serious problems. From X's point 

of view at t, all items in Kx.t are true. Xis certain at t that 
they are true. There is no serious possibility that they are 
false. For X to contract his corpus is for him to surrender 
error-free information. Replacement involves not only the 
abandonment of error-free information, but also the substitu
tion of information that, from X's point of view at t, is certainly 
and infallibly false. If X does take all items in his corpus to be 
infallibly true and seeks error-free information, it appears to 
be counterproductive for him to contract or to replace cer
tainties with hypotheses he is certain are false. Counter to 
what I have claimed, infallibilism presupposes incorrigibilism. 
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Consider first the problem of contraction. X cannot import 
error into his corpus by contracting. Importation of error in
volves adding information to the corpus. Hence, the desider
atum of avoiding error presents no obstacle to contraction. 

The trouble with contraction is that it entails a deliberate 
loss of information which, from X's initial point of view, 
counts as certainly and infallibly true. Since Xis presumably 
interested in obtaining information, what could induce him to 
contract and lose information? If X thought there was a risk 
of error in retaining the information whose removal is under 
consideration, there might be an inducement to contract. But, 
under infallibilism, X should not, from his point of view, regard 
himself as running such a risk. The loss of information through 
contraction appears gratuitously counterproductive. 

There are cases, however, where contraction is responsive 
to a legitimate demand. If X detects inconsistency in his initial 
corpus Kx.c. he has excellent reason to contract. An incon
sistent corpus fails as a standard for serious possibility to be 
used in inquiry and deliberation. The corpus is useless to X at 
t and should be modified. t 

t When X's corpus expressible in L is inconsistent, that corpus breaks down 
as a standard for assessing the possible truth of sentences in L and for 
specifying truth conditions for sentences in L. This may seem to provide solid 
grounds for prohibiting X's corpus from ever being inconsistent-at least if he 
is rational. However, as we have noted, even when X has perfect memory 
and suffers no limitations in his capacities to make calculations and draw 
explicitly the deductive implications of his assumptions, his corpus can be
come inconsistent due to routine expansion. We should not talk of prohibiting 
inconsistent corpora but of the problem of shifting from an inconsistent corpus 
via contraction. The breakdown of the functions which corpora of knowledge 
are intended to perform in inquiry and deliberation when they are inconsistent 
furnishes good reason for undertaking efforts to shift from them; but this 
should not be confused with good reasons for prohibiting inconsistency in the 
first place. 

When X shifts from corpus K, to corpus K2 , any justification X can offer to 
himself for making the shift should be based on the assumption (expressed in 
the metalanguage L,) that all items in K, are true (in L) and infallibly so. 
However, when K, is inconsistent, X cannot proceed in this manner. If he 
did so, the inconsistency infecting K, would spread to his metacorpus ex
pressible in L1o and so on. X would have no coherent basis for evaluating 
alternative ways to contract from K,. 

For this reason, I suggest that we look on such situations as cases where 
X treats the object language L syntactically (as long as his corpus in L is 
inconsistent) and treats K, and other potential contractions of K, as so many 
different uninterpreted systems of sentences. He can, in this way, retain the 
consistency of his metacorpus and avoid begging questions as to which of the 
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Even if X were so ideally situated and competent that he 
avoided mistakes of computation and memory and, hence, did 
not contradict himself due to lapses of these kinds, he could 
still end up with an inconsistent corpus. X cannot justifiably 
expand his corpus into contradiction via inferential expansion. 
Doing so would deliberately import error into X's corpus. But 
contradiction can be injected via routine expansion, as ex
plained in the previous chapter. Observations sometimes con
tradict our most cherished theories. Men whose authority we 
respect sometimes disagree with us. In both cases, the result 

is pressure to contract. 
Other good reasons exist for contracting a corpus. Suppose 

the initial corpus contains some theory T 1• A second theory 
T., contradicts T

1
• From X's initial point of view, T2 is certainly 

false. Yet it may be superior in all other respects to T1 as a 
means for furnishing systematic explanations in some domain. 
X could recognize the superior explanatory virtues of statis
tical mechanics even though he is certain that it is false and 

that classical thermodynamics is true. 
In such cases, X might be prepared to suffer a loss of 

information due to the removal of T1 from his corpus in order 
to be in a position to take the truth of T2 to be seriously 
possible. In that event, X exchanges a given amount of infor
mation for the opportunity to give an informationally attractive 

hypothesis a hearing. 
To contract in this case is not to reject T1 as false and to 

accept T
2 

as true but to shift to a position where judgment is 
suspended between these rival hypotheses so that investiga
tions can be undertaken to decide whether T1 should be rein
stated via inferential expansion or T2 should take T1' s place. 

Notice that contraction to give some new theory a hearing 
is by no means automatic. A case must be made for giving the 
new theory a hearing by establishing its informational value. 

potential contraction strategies to adopt by assuming at the outset that some 
items in K 

1 
are possibly false and others are not. Of course, sentences in UK 

will, on my view, be immune from revision, and discriminations will be made 
between other items in K, with respect to vulnerability to revision. But these 
discriminations will not involve any presupposition that the items less vul
nerable to revision are more likely to be true than those which are more 

vulneFable. 
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Given a demand for contraction occasioned either by the need 
to remove contradiction or to give a hypothesis a hearing, how 
should a contraction strategy be chosen? In general, several 
such strategies will be available; any one of them can provide 
the desired hearing. 

Some potential contraction strategies will be superior to 
others-at least relative to the problem which occasioned the 
demand for contraction. Hence, relative to that problem some 
items in the corpus prior to contraction will be more vuln,erable 
to removal than others. 

Thus, sentences in a corpus will differ from one another 
with respect to grades of corrigibility or vulnerability to re
moval from the corpus. 

It would be a mistake, however, to construe such grades of 
corrigibility as grades of certainty or probability. This wide
spread error is nothing but a manifestation of the confusion of 
infallibility and certainty with incorrigibility. 
. F:om X's point of view prior to contraction, all assumptions 
m his corpus are equally certain and infallible. t Yet some are 
more vulnerable to removal than others. Some assumptions 
a_r~ maximally certain and infallible, and, yet, are highly cor
ngible. Others may be equally as certain and yet eminently 
'.ncorrigible (e.g., items in the urcorpus). Grades of corrigibil-
1ty cannot be grades of certainty.+ 

In contraction, the aim should be to m1mm1ze the loss of 
informational value resulting from contraction subject to the 
constraint that the need occasioning the demand for contrac-

t When the initial co_rpus to be contracted is consistent, all items in the corpus 
~r~. maximally_ c~rtam and are infallible-from X's point of view. When the 
initial corpu~ 1s 1~consist~nt, this remains the case from X's point of view: 
?ut, fr?m X s pomt of view, the negation also holds. The point is that an 
m~ons1stent corpus no longer can serve as a standard for serious possibility. 
~ the other hand, as pointed out in the preceding footnote, no relevant 
difference can ~e recognized between items in the inconsistent corpus with 
respect to certamty and infallibility. Yet, some items are more vulnerable to 
removal than others. 
:t:_ V.:e may go further. Distinctions between statements with respect to corri
g1b1hty can be drawn only between statements which are members of a corpus 
and, hence, are all eq~ally and maximally certain relative to that corpus. If 
bot~ the trut~ and falsity of his a serious possibility for X at t and, hence, X 
assigns h an mtermed1ate grade of credal probability between O and 1, it will 
make no sense for X to also evaluate h with respect to its vulnerability to 
removal. From what corpus is it to be removed? 
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the ether hypothesis. Michelson took these for granted as 
background knowledge, and was attempting to test only a 
hypothesis of Stokes concerning the relative motion of the 
earth and the surrounding ether. 1 When Lorenz subsequently 
noticed that the Stokes hypothesis conflicted with mechanics 
and electromagnetic theory, Michelson's results were recog
nized to have generated a conflict within the settled scientific 
corpus. Not only were various items in that corpus subjected 
to scrutiny, but so were the data obtained by Michelson. 

Sometimes the results of observation present anomalies for 
settled theories. Anomalous data do not contradict the settled 
theories. They are phenomena which the settled theories al
legedly should be able to explain (perhaps supplemented with 
suitable collateral assumptions), but for which no explana
tions, in terms of these theories, have thus far been found. 

The difference between anomaly and contradiction is im
portant. When data contradict a settled theory, the demand 
for contraction is always legitimate. When data present an
omalies for settled theories, the legitimacy of demands for 
contraction is by no means automatic. Indeed, the thrust of 
research is to find explanations of the anomalies which elimi
nate their anomalous character with the aid of the settled 
theories. When this is done successfully, contraction may be 
avoided altogether. Even when such efforts have failed, con
traction will not become legitimate unless a rival theory can 
be identified relative to which the anomaly is explicable. Thus, 
anomaly generates pressure to contract only when a theory 
inconsistent with what is currently in X's corpus furnishes 
explanations more satisfactory than those available through 
the resources of the corpus itself. Contraction is then war
ranted in order to give an informationally attractive theory a 
serious hearing. 

3.5 The most impressive revisions of scientific knowledge (many 
Replacement of which are called "revolutions") are replacements. Replace

ments are shifts from corpora to other corpora inconsistent 
with the initial ones. 
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From X's initial point of view when he adopts a theory T1 , 

replacement of T1 with T2 inconsistent with T1 is tantamount 
to the deliberate substitution of a certainly false hypothesis 
for one which is certainly true. That is to say, that is the way 

3.5 REPLACEMENT 



64 

x should view the matter if his corpus serves as his standard 
for serious possibility and the theses of epistemol~gical and 
categorical infallibility obtain. If, in addition, X mtends to 
avoid error in revising his corpus, it is utterly counterpro
ductive from his point of view to undertake the replacemen~. 

The legitimacy of replacement could be denied; but this 
would be to condemn a historically important mode of devel-

opment of scientific knowledge as illegitimate. . . 
One could deny the relevance of avoidance of error m JUS-

tifying replacements; but to do so is incompatible with my 
thesis that avoidance of error is an invariant feature of the 
proximate aims of efforts to revise a bo~y. ~f knowledge. 

Categorical and epistemological falhb1hsm c_ould be _en
dorsed; but this is also incompatible with the ep1stemolog1cal 

outlook of this book. 
There is, however, a fourth alternative. We might deny the 

legitimacy of efforts to justify shifting directly from ~'. con
taining h to K

2 
containing-h, but might allow the leg1t1m_acy 

of such replacement provided that it can be decompose~ mt_o 
a sequence of contractions and expansions each of which is 

justified. 
Suppose that at t

1 
when he adopts K1, X has go~d rea~on to 

contract his corpus by removing h in order to give g mcon
sistent with h a hearing. The result of contraction will be a 
shift to K

3 
relative to which X will suspend judgment between 

h and g and, hence, between h and---h. . 
x may then engage in inquiry in order to determme wh~ther 

to expand by readmitting h into his corpus or by. a_ddmg g 

instead. Often such investigation will involve obtammg ~ew 
information via observation or other routine; so that X might 
shift to corpus K

4 
containing more data, but which as yet does 

not settle the question regarding hand g. But whether X do~s 
shift from K

3 
to K

4 
through subsidiary investigation, he will 

often stop and, relative to what he then knows, will contem

plate expansion in order to answer the que_st~on. 
If x expands by adding g and, hence, sh1ftmg to co~pus K2, 

the net effect is a shift from K 1 to K 2 inconsistent with K1-
i.e. replacement. Yet, the replacement may be decomposed 
int~ a sequence of revisions each of which is either a contrac
tion or an expansion justified in a manner which respects 

avoidance of error as a desideratum in inquiry· 
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The key idea here is scarcely novel. When X considers 
replacing h with-h, if he attempts to settle the matter from 
his initial point of view, he will beg the issue in favor of h. If 
he considers by way of anticipation how matters would appear 
once he has endorsed-h, the question will be begged the 
other way. By contracting to a corpus containing neither h nor 
-h, he may explore the matter without committing himself 
one way or the other to the question under dispute. 

Notice that residual shifts may also be analysed as se
quences of contractions and expansions. Hence both contrac
tion and expansion can be viewed as the fundamental types of 
revision subject to critical control, and all other sorts of re
visions may be then understood as sequences of changes of 
these kinds. 

I am not claiming that the historical record will reveal that 
replacements of one theory by another always take place as 
the net result of an explicitly or consciously implemented 
sequence of contractions and expansions. However, if such 
replacements are defensible, they should be decomposable 
(for purposes of analysis) into sequences of this sort; in such 
a sequence, each step must be justifiable. 

3.6 As I understand him, Kuhn claims that there are at least some 
Contextualism occasions in the development of science when replacements 

cannot be rationalized along the lines I am suggesting, but 
where their scientific legitimacy should nonetheless be ac
knowledged. However, there is one important respect in which 
my approach is closer to that of Kuhn than it is to that of 
many of his critics. 
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The benefits we have reaped from the legacies of Frege and 
Husserl have been accompanied by the curse of an exagger
ated hostility to psychologism. The lust for "objectivity" has 
led many sober authors to equate the context-dependent with 
the idiosyncratic and both with the "irrational," "arbitrary," 
or "subjective." Consequently, insofar as what counts as le
gitimate revision of the state of human knowledge is taken to 
be context dependent (i.e., dependent on the research pro
grams of the investigators, the demands for information en
gendered by these programs, the problems encountered, the 
potential answers identified as solution& to these problems, 
etc.), it is taken to be beyond systematic critical control and 
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to be "subjective" or "irrational." Only historians, psychol
ogists, sociologists, and other social scientists can reflect upon 

it with profit. 
Kuhn has explicitly denied that the "growth of knowledge" 

is beyond critical control; yet he has emphatically insisted on 
the "historical" -i.e., context-dependent-character of sci
entific change. By implication, he must be rejecting the as
sumption that what is context dependent is beyond critical 

control. Indeed, his rejection is rather explicit. 

What I am denying then is neither the existence of good 
reasons nor that these reasons are of the sort usually de
scribed. I am, however, insisting that such reasons constitute 
values to be used in making choices rather than rules of choice. 
Scientists who share them may nevertheless make different 
choices in the same concrete situation. Two factors are deeply 
involved. First, in many concrete situations, different values, 
though all constitutive of good reasons, dictate different co.n
clusions, different choices. In such cases of value-conf11ct 
(e.g., one theory is simpler but the other is mo~e accur~te~ t?e 
relative weight placed on different values by different mdn:1d
uals can play a decisive role in individual choice. More im
portant, though scientists share these values and must con
tinue to do so if science is to survive, they do not all apply 
them in the same way. Simplicity, scope, fruitfulness, and 
even accuracy can be judged quite differently ... by different 

people.2 

Everyone (or nearly everyone) agrees that if X and Y have 
different bodies of evidence, they may, as reasonable men, 
disagree in the choices they make or the conclusions they 
reach. To this extent, even anticontextualists are willing to 
allow for the relevance of context in formulating critical stan-

dards. 
Kuhn points out that even if X and Y agree on the evidence 

but differ in what they regard as valuable in a scientific hy
pothesis, they might legitimately come to different conclu
sions. Indeed, even if they agree on what are the marks of an 
attractive hypothesis (e.g., if they regard simplicity and ac
curacy as such desiderata), they might differ in their judgments 

as to how these desiderata are to be weighed. 
On these matters, I have no quarrel with Kuhn. Thus, in 

my account of inferential expansion, room is given for agents 
to differ not only with respect to an initial body of knowledge, 
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but also w!th respect (i) to the potential answers identified, (ii) 
to evaluat10ns of such answers with respect to informational 
value (as represented by an M-function) and (iii) to the relative 
importance attached to avoidance of error as compared to the 
quest for new information as mirrored in the index of caution 
(se~tion 2.5). Oth~r contextual factors are relevant to the ap
?ra1sal ~f .contractions. Nonetheless, taking context seriously 
m ~p~ra1smg expansions and contractions does not imply that 
rev1s1ons of these kinds are immune from critical evaluation. 
It means only that relevant contextual parameters have to be 
taken into account in such evaluation. 

Suffering from an overdose of antipsychologism, followers 
of R. Carnap and Popper often overlook this point. They 
charge that those who emphasize the context-dependent char
acter of human knowledge are focusing on the irrational and 
idiosyncratic at the expense of the rational and objective. 
Kuhn maintains there are other alternatives. So do I. 

But Kuhn defends another dualism which I find untenable
namely, the contrast between revolutionary and normal sci
ence. Although Kuhn does not explicitly say so, replacements 
which occur in the course of normal science may be recon
struc:ed as sequences of contractions and expansions along 
the Imes I have outlined. One can move to a neutral basis 
relative to which no questions are begged and adjudicate the 
merits of rival hypotheses in a manner which respects the 
desirability of avoiding error and taking risk of error into 
account. 

In a revolutionary phase, replacement of one theory T1 by 
anot?~r. T2 cannot proceed in this manner. Contracting from 
the 1mt1al corpus T1 to a corpus which begs no questions 
concerning the truth values of T1 and T2 cannot happen. The 
c~~t:acted corpus cannot serve as a standard for serious pos
s1b1hty and as a basis for a truth definition. Consequently, the 
c?ntracted corpus is useless for the purpose of evaluating the 
nval hypotheses in a neutral manner and, in particular, for 
taking avoidance of error into account in subsequent efforts 
at expansion. Whatever else Kuhn might mean by calling two 
such the.ories T1 and T2 "incommensurable," he does appear 
to be qmte clear that incommensurability precludes moving to 
a neutral non-question-begging base and, hence, in my jargon, 
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l t contraction fol-precludes rationalizing a rep acemen as a 
lowed by an expansion. 

Thus, Kuhn writes: "Sir Karl takes it for granted that pro
ponents of competing theories do share a ~eutral language 
adequate to the comparison of such observation reports. I am 
about to argue that they do not. If I am right, t~en 'tr~th' 
may, like 'proof,' be a term with only intra-theoretic applica
tions." 3 

Thus, revolutionary changes in Kuhn's sense appear to be 
akin to what I take to be changes in conceptual framework 
due to revisions in what counts as conceptually but not cate
gorically incorrigible. I have already stated my ai~ to c~n
struct an account of the revision of knowledge which demes 
that there should be revisions of this sort. On my view, there 
are no revolutionary changes or, at any rate, there should not 
be. 

On the other hand, this does not mean that I advocate 
normal science in a sense akin to Kuhn's. 

In the first place, although I am inclined to the view that 
there are some fixed methodological norms (counter to the 
position of Feyerabend4

), these norms are extremely weak 
and heavily dependent for their operation on contextual ~ac
tors which change with developments in scientific inqulfy. 
Consequently, I too am "against method" if by this one m~~ns 
a very substantive method immune to criticism and r~v1s1on 
during the course of inquiry itself. Nonetheless, I remam' c~n
vinced that at any given stage of inquiry, Feyerabend s m
sistence that "anything goes" should be rejected. 

Secondly, even though I contend that we should judge truth 
earnestly relative to our evolving doctrine, I do not mean _to 
suggest that institutional arrangements for the conduct of m
quiry should be set up so as to suppress the development. of 
rivals to currently established doctrine and method. In section 
1.10, I pointed out that my rejection of fallibilism need not 
undermine promotion of institutions protecting free s~e~ch. 
Similarly nothing in my insistence that all legitimat~ rev1s1~ns 
of corpus should be justified expansions or contractions ~~~ch 
respect the desirability of avoiding error and the acqu1s~t~on 
of worthwhile information should be construed as entailing 
curtailment of imaginative efforts to construct rivals to re-
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ceived doctrine attractive enough to warrant contraction in 
order to give them a hearing. 

To be sure, I remain unconvinced by Feyerabend's conten
tion that positive encouragement of the proliferation of rivals 
to settled doctrine is desirable for progress in inquiry or the 
development of authentic, independent agents. I grant that the 
construction of rival theories is crucial to the successful appeal 
to anomaly as a justification for removing a settled theory 
from its privileged status as a part of a standard for serious 
possibility. When earnest efforts to accommodate anomaly 
utilizing existing theory have failed, it makes sense to encour
age the construction of rival theories which do remove the 
anomaly; for then the inquirer may be in a position to justify 
contraction of his corpus to give a hearing to an alternative 
which promises to improve the informational value of his cor
pus. On this basis, a good case can be made for protecting the 
rights of inquirers to proliferate rivals. But it does not follow 
from this concession that the proliferation of rival theories 
should be positively encouraged regardless of whether the 
need to accommodate anomaly by appeal to alternatives to 
existing doctrine is urgent or not. 

Feyerabend would, of course, dismiss this advocacy of ju
dicious proliferation. On his view, we do not proliferate rivals 
to provide good reasons for contraction to give hypotheses 
which promise to accommodate anomaly better than current 
doctrine a proper hearing. Feyerabend, like Kuhn, thinks that 
rivals to comprehensive theories are incommensurable so that 
the idea of giving a rival a hearing makes little sense. A shift 
from a corpus contanining one comprehensive theory to a 
corpus containing a rival theory is always a replacement where 
the desideratum of avoiding error is flouted. Yet, Feyerabend 
believes that it is a good thing for such replacements to take 
place and that proliferating rivals is an effective means for 
doing so. 

I mean to reject Feyerabend's cognitive anarchism or da
daism just as I reject Kuhn's vision of revolution alternating 
with normal science; and I reject the thesis of incommensur
ability which is central to both of their outlooks. 

Kuhn and Feyerabend supply many illustrations of incom
mensurability. I believe these examples can be reconstructed 
so as to disarm the claims: but I shall not try to substantiate 
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my view here. Instead, I shall attempt to provide the frag
ments of a positive account of the revision of knowledge pred
icated on the assumption that all legitimate revisions of knowl
edge may be rationalized as sequences of contractions and 
expansions. There are no incommensurable theories. There 
are no revolutionary replacements. 

Popper, as C. S. Peirce before him, emphasizes that approach
ing the true complete story of the world is the ultimate long
run aim of scientific inquiry. Kuhn raises doubts about this 
view. s So do I. Those who sympathize with some variant of 
the Peirce-Popper view must find my position as objectionable 
as they find Kuhn's. Indeed, they must find replacements of 
allegedly incommensurable theories immune to rationalization 
along the lines I have suggested illegitimate; but they must 
also object to replacements where the rival theories are com
mensurable and the replacements can be rationalized as se
quences of contractions and expansions. 

Consider the charge that my account of replacement is pe
dantic and formal sham. When X shifts from Ki to K3 by 
removing h and giving g a hearing, he will often be able to 
calculate that from his new position he will be justified in 
expanding by adding g and, hence, -h to his corpus K3· Thus, 
prior to contraction X may be certain that if he contracts he 
will subsequently add -h to his corpus so that the net effect 
will be to substitute something he is certain is false (namely, 
-h) for something he is certain is true. In such cases, con
traction courts error just as effectively as does replacement! 

It is no use denying that situations of this sort arise. If X 
contemplates removing classical thermodynamics from his 
corpus after finding out the results of the experiments of Sved
berg and Perrin on Brownian motion, he may anticipate that 
he will then be justified in endorsing statistical mechanics. If 
prior to contraction he is certain that statistical mechanics is 
false, he would be foolish to contract if he were seriously 
concerned to avoid error in subsequent revisions of his corpus. 

In any case, even if prior to contraction Xis not certain that 
removing h will lead to his accepting g into his corpus, there 
will, from X's point of view, be some positive probability that 
he will do so. Hence, counter to what I suggested previously, 
even contraction seems to incur a risk of error-error that, 
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when combined with the loss of information it also incurs, 
renders it extremely difficult to compute the costs and benefits 
of contraction and subsequent replacement. 

This objection rests on the following assumptions: (a) the 
agent X uses his initial corpus as his standard for serious 
possibility and as the basis for the conception of truth he 
employs in seeking to avoid error and (b) in seeking to avoid 
error as understood relative to his initial corpus, the agent 
should be concerned to avoid error not only at the next step 
but in subsequent revisions as well. 

Peirce and Popper agree that the ultimate aim of inquiry is 
convergence on the truth-i.e., the true complete story of the 
world. As I understand their views, this means that if they 
thought that (a) obtained, they would also embrace (b). But 
then, for reasons just explained, contraction would become 
indefensible. Since Peirce and Popper both endorse the revis
ability of knowledge, they are committed by their conception 
of the aims of inquiry to reject (a). But this means they reject 
the thesis of epistemological infallibilism, and thus the concept 
of knowledge as a standard for serious possibility which entails 
that thesis. 

I agree with Feyerabend, Kuhn, and W. V. O. Quine in 
rejecting the Peirce-Popper concept of the ultimate aims of 
scientific inquiry. I do not deny that X may have longer-run 
objectives than those impinging directly on the revision im
mediately under consideration. But I do deny that truth in the 
sense explained plays a significant role in such aims. 

On the other hand, I do claim, counter both to Feyerabend
Kuhn-Quine and Peirce-Popper, that avoidance of error is an 
invariant feature of the diverse proximate goals directing spe
cific inquiries concerned with the revision of knowledge. In 
contemplating the contraction from K

1 
to K

3
, X should be 

concerned as to whether in taking that step he will import 
error into his corpus. He should not be concerned with the 
prospects of doing so at subsequent stages. However, once he 
does contract and thus shifts to K3 , he should be concerned 
to avoid error as judged relative to K3 in contemplating further 
expansions or contractions of K3 • In this respect, X's concern 
for truth and avoidance of error should be myopic. 

I cannot prove that I am right in singing the praises of 
myopia. Nonetheless, the alternatives seem far less attractive. 

3.8 MYOPIA AND CONVERGENCE TO THE TRUTH 
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According to the Peirce-Popper view of the ultimate aims 
of inquiry, the revisability of knowledge via contraction and 
replacement can be legitimate only if knowle_dge ~~~s n~t 
serve as a standard for serious possibility and mfalhb1hsm is 
abandoned. 

But if one embraces fallibilism, it becomes a mystery as to 
why one should seek to revise knowledge; for one is then 
entitled to ask whether knowledge has any use at all, either 
practical or theoretical. 

A possible way out is to insist on a double standard for 
serious possibility: one for practical purposes and ~ne _for 
theoretical or cognitive purposes. I doubt whether this view 
is coherent. In any case, it implies an untenable dualism be
tween theory and practice. 

Finally, although both Peirce and Popper insist on c~nv_er
gence to the truth as characteristic of the aims of scientific 
inquiry, neither author explains how avoidance of error can 
function as a desideratum in the resolution of the special prob
lems of specific inquiries. Their concern with truth is an empty 
act of piety. For them, the avoidance of error cannot_ play _a 
role as a desideratum of the proximate aims of specific sci
entific inquiries (for both normal or revolutionary inquiries); 
and truth turns out to be irrelevant in precisely the context 
where it ought to count the most. . 

This is the kind of view one is led to if one eschews myopia 
and seeks convergence to the truth as an ultimate aim of 
inquiry. In my opinion, myopia wins hands down! 

I have been trying to outline a concept of the uses of knowl
edge in inquiry and deliberation, a view of the pro~imate aims 
of efforts to improve knowledge, and an explanation of ho':, 
given such aims, one can consistently claim that knowledge is 
corrigible and yet infallible. 

I have treated the various modes of revising knowledge on 
the assumption that revising knowledge is a goal-directed a~
tivity and that revisions of knowledge should be evaluate_d. m 
terms of estimates of their efficacy in realizing given cogmtive 
goals. . 

I also believe that the principles of rational choice or rational 
goal attainment governing deliberation in science ought to be 
the same as those regulating the rational attainment of moral, 
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political, economic, and other practical objectives. The differ
ences between theoretical inquiry and practical deliberation is 
a difference in goals and not a difference in the criteria for 
rational choice that regulate efforts to realize these goals. 

Thus, even an outline of an account of the improvement of 
knowledge of the sort advanced here should offer some system 
of principles for rational choice. It should also furnish some 
characterization of the way probability judgment cooperates 
with knowledge and value judgment in guiding rational choice. 
Probability is important in other ways as well. Thus concern 
for avoiding error manifests itself in inquiry as a concern to 
minimize risk of error. But risk of error is best understood in 
terms of probability. 

Because probability judgment supplements X's corpus of 
knowledge as a resource for inquiry and deliberation, a sys
tematic account of the improvement of knowledge which ne
glects the problem of improving probability judgment is seri
ously defective. 

For these reasons, the remainder of this book will be given 
over to a discussion of rational choice, the role of probability 
judgment in decision making, and an account of the improve
ment of probability judgment. 

I do not claim that this volume contains a complete account 
of these matters. To the contrary, I aim merely to outline a 
framework within which more detailed investigations may be 
pursued. I hope, however, that enough will have been said to 
delineate the epistemological program I am advocating. 

3.9 THEORETICAL AND PRACTICAL 
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CREDENCE AND DELIBERATION 

Whoever denies he is certain of anything is neurotic. Whoever 
claims certainty of everything is foolish. For sufficiently rich 
L, X's corpus expressible in L should rarely, if ever, be a 
maximally consistent set. X should be certain of the truth 
values of some hypotheses and uncertain about others. 

The corpus Kx.t allows X to discriminate at t between what 
is and what is not seriously possible but by itself fails to grade 
serious possibilities with respect to probability. 

Yet, such discriminations are relevant to deliberation and 
inquiry. Their relevance is best explained in terms of an ac
count of rational choice that shows how judgments of credal 
probability, together with the underlying evaluations of hy
potheses with respect to serious possibility, contribute to the 
evaluation of rival feasible options in decision making. 

Such an account of rational decision making is important 
for another reason. X's corpus of knowledge (i.e., his standard 
for serious possibility) and his credal state (i.e., his system of 
judgments of hypotheses with respect to credal probability) 
constitute X's cognitive resources for deliberation and inquiry. 
A comprehensive approach to the improvement of knowledge 
should seek to account for the improvement of all cognitive 
resources. According to the outlook expressed in the previous 
chapters, such improvements are judged such because they 
are taken to be admissible means for promoting the objectives 
which prompt efforts to improve cognitive resources. The 
criteria for admissibility, however, should be sufficiently gen
eral to be applicable to all forms of deliberate decision making, 
regardless of whether the options and the aims are ·'cognitive" 
or whether they are moral, political, economic, or otherwise 
•'practical.'' 

Thus, an account of the principles of rational decision mak
ing is fundamental to an approach to the improvement of 
cognitive resources of the sort I seek to develop; not only 
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because it illuminates the sense in which these cognitive re
sources are, inde~d, resources for deliberation and inquiry, 
but al.so be~a~se 1t should constitute a cornerstone for con
structmg pnnc1ples for evaluating any subsequent revisions of 
these resources. 

_An _account of deliberate rational decision making furnishes 
cr~tena for appraising the admissibility of feasible options rel
ative to X's cognitive resources-Le., his corpus of knowledge 
~nd credal state-and relative to X's system of valuations 
mduced by his goals and values. Consequently, it will be 
necessary to discuss general conditions of rational valuation 
preference, or utility. Conditions on potential corpora and' 
henc_e,_ ~n the evaluation of hypotheses with respect to seriou~ 
poss1b1hty have already been considered. But attention will 
have to be given to conditions for the rational evaluation of 
hypothesis with respect to credal probability. 

I~ this book I shall not explore criteria for evaluating would
be 1'.11prove~ents in all factors which are resources for delib
era~1on and mquiry, but only improvements in those factors 
which I have called cognitive resources-i.e., corpora of 
knowl_edge and credal states. Improvements in goals and val
ues will not be considered in any systematic manner. 

Thus, we have four questions to consider: 

(a) The question of rational cognition: 

~i) ~ational standards for serious possibility: The spec-
1fi~ation of conditions on the evaluation of hypotheses 
w1~h r~spect to serious possibility leading to the charac
t~nzat10n of potential corpora given in chapter I. 
(11) Rational credence: The specification of conditions 
on cre~al states which ought to be satisfied by all rational 
agents msofar as they are able. 

(b) The question of revising cognitive resources: 
(i) Revising corpora of knowledge. 
(ii) Revising credal states. 

(c) The question of rational valuation. 

(d) The question of rational choice. 

Considerable attention has already been devoted in the first 
th_ree ehapters to part (i) of both (a) and (b), and these topics 
will reappear from time to time in the remainder of this book. 

4.1 THE FOUR QUESTIONS 
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senting credal states will emerge as the discussion develops in 
this chapter and in the remaining portions of this book. 

Suppose K I- h = h'. If X should adopt K as his standard 
for serious possibility, he should evaluate h and h' in exactly 
the same way with respect to serious possibility. Either both 
are evaluated as possible or as not possible. Similarly, both 
hypotheses should be evaluated in the same way with respect 
to credal probability. I take it that anyone who is willing to 
countenance judgments of subjective or credal probability will 
concede that ideally situated rational agents should make judg
ments of credal probability conforming to this requirement. 

This condition, however, suffices to show that if X adopts 
K as his standard for serious possibility, certain credal states 
are forbidden to him which might be permitted had he en
dorsed some alternative corpus. 

Thus, conditions for credal rationality must be formulated 
relative to potential corpora and may be thought of as condi
tions on a pair (K, B) where K is a potential corpus expressible 
in Land is deductively closed and contains UK. 

Credal Coherence: If Q E B, then Q is a finitely additive and 
normalized probability measure relative to K. 

Credal coherence is an example of what I shall call a prin
ciple of inductive logic. Whether agent X endorses corpus K 
or not and regardless of X's other circumstances or who he or 
it is, X should regard any credal state relative to K which 
contains a Q-function violating credal coherence as forbidden 
to rational agents who endorse K. Any such Q-function is 
logically impermissible relative to K. 

Some authors who endorse credal coherence would favor 
strengthening the requirement by insisting that E be restricted 
to the set of hypotheses bearing positive Q-values in condition 
(1) on probability measures, that all hypotheses consistent 
with K and e bear positive Q-value conditional on e (credal 
regularity) and that condition (3) be supplemented by a prin
ciple of countable additivity. 

I shall not impose any of these conditions, and this decision 
will prove relevant to some of the technical developments in 
the subsequent discussion. These matters will be discussed in 
chapter 5, and sections 12.14-12.15 and 15.9. 

4.2 RATIONAL CREDENCE 



78 

B. De Finetti1 and L. J. Savage2 contend that credal coher
ence is the sole principle of inductive logic. Other authors 
have endorsed much more powerful inductive logics. I shall 
return to this controversy later in this chapter and elsewhere 
in this book. 

Some principles of credal rationality do not qualify as prin
ciples of inductive logic because they do not unconditionally 
prohibit membership to Q in B relative to K. Rather they 
specify how many Q-functions satisfying the requirements of 
inductive logic may be in a single set B. I endorse the following 
two conditons: 

Credal Consistency: B -:f- 0 if and only if K is consistent. 

Credal Convexity: For any Q-function relative to K and e 
consistent with K, let Qe(h) = Q(h; e). Let B be a credal state 
relative to K. Be is the set of all Qe-functions obtained from 
Q-functions in B. For every e consistent with K, Be is con
vex-i.e., if Q~ E Be and Q~ E Be, then m E Be where Q~ = 

am + (l - a)Q~ for every a such that 0 :::; a :::;I. 

Many philosophers, statisticians, and decision theorists ad
vocate a view which I shall call strict Bayesianism. Advocates 
of strict Bayesianism offer characteristic answers to the four 
questions raised in section 4.1. To be sure, H. Jeffreys3 and 
R. Carnap4 differ not only with each other but with the views 
of De Finetti,5 and Savage6 (and the later Carnap). 7 Nonethe
less, disputes among strict Bayesians arise within a framework 
of broadly shared agreements which furnish comprehensive 
guidelines concerning how the four questions ought to be an
swered. 

In particular, it is worth noting that strict Bayesians all 
agree in endorsing the conditions of credal coherence, credal 
consistency, and credal convexity. To this extent, the view of 
credal rationality I have been developing should prove quite 
acceptable to the most orthodox Bayesians. 

To be sure, there will be differences concerning the propri
ety of strengthening credal coherence or regarding the merits 
of adding further principles of inductive logic. But disagree
ments concerning these matters already exist among strict 
Bayesians. 

The point where my view departs from strict Bayesian or-
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thodoxy concerns credal convexity. Strict Bayesians endorse 
a stronger condition than credal convexity: 

Credal Uniqueness: There is at most one Q-function in B. 

I reject credal uniqueness as a condition on credal states 
obligatory on all rational agents under all circumstances. Ra
tional X's credal state need not be representable by a single 
Q-function. 

. Rej~ction of this fundamental tenet of strict Bayesian doc
trine 1s not new. J. M. Keynes,s B. O. Koopman,9 I. J. 
Good, 1° C. A. B. Smith, 11 F. Schick12 , H. E. Kyburg,13 and 
A. P. Dempster14 have pioneered in exploring alternatives to 
credal uniqueness as a condition on credal rationality. None 
of them, however, has rested content with a condition as weak 
as credal convexity. In any case, the ramifications of rejecting 
credal uniqueness remain to be explored. 

As I shall explain later on in this chapter, my motivation 
for rejecting credal uniqueness as a condition on credal ra
tionality is that it has objectionable philosophical ramifications 
for the revision of credal states. Substantially the same moti
vation argues in favor of replacing credal uniqueness by credal 
convexity, as I shall explain in chapter 9. It is now time to 
turn to the second of our four questions-the revision of credal 
states. 

I have already noted that adoption of K as one's corpus of 
knowledge precludes endorsing some credal states which 
would be permitted were some other corpus adopted. Within 
the framework of restrictions on credal rationality I have im
posed thus far, however, there is considerable room for choice 
among credal states relative to a fixed corpus of knowledge. 

Carnap and Jeffreys envisaged constructing an inductive 
logic so powerful that all rational agents would be obliged to 
agree on the credal state to adopt relative to any given corpus 
of knowledge. I shall return to this point shortly. But even if 
the Carnap-Jeffreys program is rejected, we may suppose that 
rational X at time t is committed to a rule for choosing credal 
states relative to various potential corpora. Such a rule could 
be represented as a function C(K) = B, whose domain consists 
of the potential corpora and whose range consists of the credal 

4.3 CONFIRMATION AL COMMITMENTS 
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states. I shall call rules of this kind confirmational commit
ments .t 

If we assume that rational X should adopt a confirmational 
commitment Cx.i. it follows from the intended interpretation 
that the following condition holds: 

Total Knowledge Requirement: Cx.1(Kx,1) = Bx,t· 

I know of no decisive argument in favor of requiring that 
rational X always be committed to a rule of the sort envisaged. 
However, the following considerations may be advanced in 
favor of such a view. 

Let K' be the expansion of K obtained by adding e consist
ent with K to K and forming the deductive closure. Let B be 
a nonempty set of Q-functions satisfying the requirements of 
credal coherence relative to K and let B' be a nonempty set 
of Q' -functions satisfying credal coherence relative to K'. 
Then we can state that: 

B' is the Conditionalization of B with Respect to K and K' if 
and only if for every Q E B there is a Q' E B' and for every 
Q' E B' there is a Q E B such that if f is consistent with K', 

then Q'(h; f) = Q(h; f & e). 

Suppose X at t endorses corpus Kx.t and credal state Bx.1· 
Consider any potential corpus K' which is an expansion of 
Kx,t· Strict Bayesians maintain that, from X's point of view at 
t, X should judge that if he were to shift from Kx, 1 to K' by 
some system of transformations or other he should adopt as 

t Confirrnational commitments correspond approximately to credibilities in 
the sense of Carnap in "The Aim of Inductive Logic." However, a confir
mational commitment need not be a "permanent disposition for forming be
liefs on the basis of observations" (see p. 311 of "The Aim of Inductive 
Logic," in Logic Methodology and Philosophy of Science, edited by E. Nagel, 
P. Suppes, and A. Tarski, Stanford: Stanford University Press, 1962). I do 
not assume that X's confirrnational commitment is permanent. Furthermore, 
the body of evidence or knowledge which determines a credal state according 
to a confirmational commitment may contain theoretical assumptions, laws, 
or statistical assumptions, in addition to reports of observations. The agent 
is presumed to be committed to a rule for determining what his credal state 
(beliefs) should be for each potential corpus. The rule can be used to make 
revisions in credal state as long as it is held fixed. But not all revisions in 
corpus are expansions via observation and, hence, the rule provides for 
changes in credal state other than "on the basis of observations." 
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his credal state the conditionalization of B.Y.t with respect to 
Kx.t and K'. 

I shall offer an argument in favor of this requirement in 
chapter 10 based on decision-theoretic considerations. If the 
requirement is acceptable, it implies that once X has a credal 
state Bx.1 at t relative to his corpus Kx.t he has a rule which 
specifies for each potential expansion of Kx. 1 what his credal 
state should be. 

To obtain the full rule defined for all potential corpora, we 
would have to extend the function thus defined to potential 
corpora which are not expansions of Kx, 1• Such extensions are 
not determinable by reference to X's current credal state and 
the conditionalizing arguments just noted without further sup
plementation. 

However, in real life X will sometimes have views as to 
what his credal state should be relative to some contraction of 
his current corpus; and failures in X's ability to identify a full 
range of commitments can be imputed to limitations on mem
ory, computational facility, emotional stability, and other such 
disabilities. 

I shall suppose that all rational agents adopt confirmational 
commitments and that such commitments satisfy the following 
condition: 

Confirmational Conditionalization: If K' is a consistent ex
pansion of K, C(K') is the conditionalization of C(K) with 
respect to K and K'. 

Confirmational conditionalization is a condition on potential 
confirmational commitments. Adopting such a commitment at 
t does not obligate X to actually implement the dictates of the 
rule when he changes his corpus; but if X remains faithful to 
the confirmational commitment through such a change in cor
pus he should obey the rule. 

Suppose X shifts from corpus K and credal state B at t to 
corpus K' and credal state B', where K' is the expansion of K 
and B' is the conditionalization of B with respect to Kand K'. 
Such a shift is a temporal credal conditionalization. 

If X shifts from K' to K, where K is the contraction of K' 
(so that K' is the expansion of K) and B' is the conditionali
zation of B with respect to K and K', a shift from B' to B is 
an inverse temporal credal conditionalization. 

4.3 CONFIRMATIONAL COMMITMENTS 
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Confirmational conditionalization by itself does not entail 
that shifts in credal state due to expansion should be temporal 
credal conditionalizations, nor that shifts in credal state due 
to contraction should be inverse temporal credal conditional-

izations. 
Thus, anyone who insists that all revisions of credal state 

due to expansion should be temporal credal conditionaliza
tions and all revisions due to contraction should be the inverse 
of this are committed to the view that rational X should remain 
faithful to the same confirmational commitment. t 

Anyone who endorses this extreme view advocates confir
mational tenacity. As shall become apparent, I reject confir

mational tenacity. 
Given confirmational conditionalization, a potential confir

mational commitment can be defined by specifying the value 
of C(UK). I shall call the probability measures relative to UK 
P-functions of the type P(h; e). Since every potential K is an 
expansion of UK, if K is consistent, C(K) is the conditionali
zation of C(UK) with respect to UK and K. 

As long as confirmational conditionalization is in place, 
therefore, the full force of credal coherence, consistency, and 
convexity can be secured by imposing these conditions ini-

t In The Logic of Decision (New York: McGraw Hill, 1965, pp. 160-161), 
R. C. Jeffrey argues that once a statement has probability 1, conditionalization 
precludes its probability being modified. If conditionalization is temporal 
credal conditionalization and the only sort of revision in credal state permitted 
is one conforming to temporal credal conditionalization, Jeffrey's claim is 
correct. But this is no argument for refusing to permit observation reports or 
any other extralogical statements from being assigned probability 1. This is 
good reason for abandoning temporal credal conditionalization as obligatory 
in all situations. Even if confirmational tenacity were mandated, X would not 
be obliged to conform to temporal credal conditionalization in all cases but 
only in those cases where his corpus is expanded. Jeffrey himself acknowl
edges this point on p. 154 of his book, where he writes that "there are cases 
in which a change in the probability assignment is clearly called for, but where 
the change is not occasioned simply by learning of the truth of some propo
sition E." The most obvious example of this sort of situation emerges when 
the agent revises his corpus of evidence by contraction. Jeffrey, of course, 
was not thinking of this sort of change when he acknowledged that condition
alization (i.e., what I call temporal credal conditionalization) is restricted in 
applicability to cases of "learning of the truth of some proposition £"-i.e., 
to expansion. But that does not excuse him from, in effect, arguing against 
the feasibility of contraction by claiming that once a hypothesis is in a corpus 
and has probability 1 conditionalization precludes its removal. The circle 

should be obvious. 
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tially on C(UK). Confirmational conditionalization guarantees 
that they will be satisfied by C(K) for every potential K. 

Since some authors (most notably Kyburg and Dempster)t 
reject confirmational conditionalization, it is important to keep 
in mind formulations of the several requirements on credal 
rationality that do not depend on confirmational conditionali
zation. 

In any case, the various conditions on credal rationality 
already introduced and those to be considered subsequently 
may be understood to be constraints on potential confirma
tional commitments as well. In some contexts, it is helpful to 
think of them in that way. 

Let Kand e (consistent with K) entail that at least and at most 
one of the hypotheses h1 , h2 , ••• , hn is true and that each h1 

is consistent with Kand e. Let Q E B = C(K). The calculus 
of probabilities guarantees that if the Q-function is a proba
bility measure as credal coherence requires, the following 
holds: 

Bayes' Theorem: Q(hi; e) = Q(e; h1)Q(h;)/'.if= 1Q(e; h;)Q(h;). 

Strictly speaking, Bayes' theorem is a theorem of the cal
culus of probabilities. When the calculus of probabilities is 
applied to representation of Q-functions eligible for member
ship in credal states as credal coherence requires, Bayes' 
theorem becomes a consequence of credal coherence. In this 
last sense, Bayes' theorem is a condition on credal rationality. 
In neither sense does Bayes' theorem by itself provide any 
prescriptions for revising credal states. 

Suppose, however, that K' is the expansion of K obtained 
by adding e, and let B' = C(K'). Confirmational conditionali
zation requires that B' be the conditionalization of B = C(K) 
with respect to Kand K'. Hence, for any Q EB, there is a Q' 
EB' such that Q'(hJ) = Q(h1; e); and then, by Bayes' theorem, 

Q'(h;) = n Q(e; h;)Q(h1) • 

2-1= 1 Q(e; h;)Q(h1) 

Thus, once confirmational conditionalization is imposed as 
a constraint on confirmational commitments. Bayes' theorem 

t The ideas of Kyburg and Dempster will be considered in chapter 16. 
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can be employed to derive features of the Q-functions in the 
credal state relative to K' from features of the corresponding 
Q-functions in the credal state relative to K, where K' is an 
expansion of K. 

Furthermore, if X remains faithful to his confirmational 
commitment during a shift from K to the expansion K', tem
poral credal conditionalization will apply to the revision of 
credal state and Bayes' theorem can be used to compute the 
credal state relative to K' from the credal state relative to K. 

Notice that the applicability of confirmational conditionali
zation and Bayes' theorem does not depend on the strict 
Bayesian demand that all credal states be representable by 
single Q-functions as credal uniqueness requires. Even if B 
relative to K contains several Q-functions, Bayes' theorem 
can be applied to every one of these functions to obtain Q
values for h; conditional on e and, hence, a conditional Q
distribution over the h;'s on the datum e. And confirmational 
conditionalization can then be used to determine a correspond
ing unconditional Q' -distribution over the h;' s in the new cre
dal state B' relative to K'. 

Of course, strict Bayesians do insist on credal uniqueness; 
and the use of Bayes' theorem is customarily introduced with 
this requirement taken for granted. In order to lay the ground
work for later developments, it is important to understand that 
credal uniqueness is not presupposed by confirmational con
ditionalization, temporal credal conditionalization, its inverse, 
or the applications of Bayes' theorem in discussions of the 
revision of credal states. 

Most self-styled Bayesians not only endorse credal unique
ness but take for granted that when X expands his corpus by 
adding datum e, the degree of credence to be assigned hy
pothesis h; relative to the expanded corpus should equal 
Q(h;; e) where Q represents the initial credal state B and 
Q(h;; e) is computed from the values of Q(h;) for all the h/s 
and the values of Q(e; h;) for all the h;'s via Bayes' theorem. 
For this reason, Q(h;; e) is called the posterior probability of 
h; one, Q(h;) the prior probability. Q(e; h;) is sometimes called 
the likelihood of h; on e. 

This terminology is somewhat misleading. Critics of Bayes
ian doctrine might be prepared to endorse credal coherence, 
and hence Bayes' theorem, as a condition on Q-functions 
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eligible for membership in credal states. Yet, they might reject 
confirmational conditionalization. In that case, Bayes' theorem 
may not play a fundamental role in an account of the revision 
of credal states. Talk of prior and posterior credal probability 
clearly becomes inappropriate. 

I myself am willing to endorse confirmational conditionali
zation even though I reject confirmational tenacity. Conse
quently, I do not think that shifts in credal state due to ex
pansion should be temporal credal conditionalizations in all 
cases. Yet, out of respect for tradition, I shall continue to talk 
of posterior and prior credal probability. 

The chief point of interest here, however, is not a matter of 
terminological propriety, but the fact that there are many ways 
Bayesian doctrine on the revision of credal states can be mod
ified without eviscerating it and leaving Bayes' theorem with 
no role to play. 

The principles of inductive logic specify necessary conditions 
which a Q-function relative to K (or a P-function relative to 
UK) must satisfy in order to be eligible for membership in a 
credal state relative to K (relative to UK). As such they impose 
constraints on confi~mational commitments. Moreover, they 
are context independent in that they are obligatory on all 
rational agents at all times and regardless of circumstances. 

If a Q-function satisfies all the conditions imposed by a 
complete inductive logic IL relative to K, it is a logically 
permissible Q-function relative to K. A logically permissible 
P-function is, of course, a P-function satisfying the require
ments of IL relative to UK. 

Provided confirmational conditionalization is obeyed, the 
set of logically permissible P-functions determines the set of 
logically permissible Q-functions relative to potential K for 
every such K. 

Jeffreys and Carnap entertained the ambition of developing 
principles of inductive logic IL so powerful that exactly one 
P-function would be logically permissible relative to UK (for 
given language L) and, hence, exactly one Q-function logically 
permissible relative to each potential corpus. is 

The implications of this view are considerable. All rational 
agents would.be obligated, insofar as they are able, to endorse 

4.5 INDUCTIVE LOGIC 



86 

credal states which satisfy credal uniqueness and would be 
obligated to do so by principles of inductive logic. 

Furthermore, all rational agents would be committed to 
adopting a single standard confirmational commitment (for the 
language L) by the principles of inductive logic. This commit
ment CIL would be the logical confirmational commitment 
representable by the set of all logically permissible P-functions 
and such that CIL(K) consists of all logically permissible Q
functions relative to K. Because that set is single-membered 
for all potential K, we can represent the confirmational com
mitment CIL by the P-function which is the unique member 
CIL(VK) and may with some propriety call that P-function a 
logical-probability function. Or we may follow Carnap's prac
tice and regard it as a measure of degree of confirmation, 
understood as a measure of degree of logical probability. 

Rational agents would also be obligated by inductive logic 
to obey confirmational tenacity. Given the applicability of 
confirmational conditionalization, all changes in credal state 
due to an expansion of corpus would have to be temporal 
credal conditionalizations and all changes in credal state due 
to contraction would have to be inverse temporal credal con
ditionalizations. 

Consequently, if a complete inductive logic of the sort en
visaged could be defended, all the main elements of the clas
sical strict Bayesian view of credal rationality and the revision 
of credal states would be tenable. 

I do not believe that an inductive logic as powerful as that 
envisaged by Carnap in his earlier writings on the subject can 
be defended. On this matter, my views conform to what is 
now the received opinion. 

Some authors agree with De Finetti and Savage that a com
plete inductive logic is restricted to a principle of credal co
herence. I shall call such a view coherentist. 

Other authors would supplement credal coherence with a 
principle of direct inference which stipulates how knowledge 
of chances or objective probabilities determines credal judg
ments about the outcomes of trials on chance setups. An 
account of direct inference will be postponed until chapter 12 
where i.t will be considered in connection with a discussion of 
chance or objective probability. However, many authors who 
seem to endorse the intelligibility of a conception of objective 
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probability or chance, such as R. A. Fisher, 16 J. Neyman, 
E. S. Pearson, 17 and H. Reichenbach, 18 seem committed to 
some version of a principle of direct inference-as does Ky
burg, 19 who, while dispensing with notions of chance, intro
duces principles of direct inference from knowledge of relative 
frequencies in appropriately specified reference classes. 

Objectivist inductive logic is restricted to credal coherence 
and direct inference. Objectivist inductive logic is insufficient 
for the purposes of the Jeffreys-Carnap program. 

Other principles of inductive logic have also been advo
cated. I shall discuss some of them later. My own view is that 
an objectivist inductive logic is a complete inductive logic. In 
any case, few authors nowadays seriously maintain that a 
complete inductive logic allows exactly one P-function to be 
logically permissible relative to UK. 

Suppose X is committed to corpus K at time t. Principles of 
inductive logic determine which Q-functions are logically per
missible relative to K. If several Q-functions are logically 
permissible, then, as far as inductive logic is concerned, Xis 
free to endorse a credal state consisting of any convex subset 
of them. 

Credal consistency cuts down the degree of arbitrariness by 
obligating X to pick a nonempty subset. Credal uniqueness 
obligates X to pick a single-membered subset. 

Thus, if we insist on remaining strict Bayesians and em
bracing credal uniqueness, X is obliged as a rational agent to 
choose one of several (typically infinitely many) numerically 
determinate credal states allowed by inductive logic relative 
to the corpus K. 

The arbitrariness mandated in all of this may be reduced 
somewhat by requiring X to conform to the dictates of confir
mational tenacity. That is to say, X should endorse a numer
ically precise confirmational commitment and remain loyal to 
it indefinitely. In this way, X is not compelled to make an 
arbitrary selection of a credal state relative to every shift in 
his corpus but only one grand arbitrary choice of a confirma
tional commitment. 

I shall call anyone who embraces one of these views a 
personalist or an intemperate personalist. I am not sure 
whether intemperate personalism coincides precisely with the 
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views of any historical authors. However, it approximates 
views advanced by Savage and De Finetti. 

One objection which might be raised against intemperate 
personalism is that X will often be incapable of identifying a 
numerical representation as accurately describing his credal 
state. Anxieties concerning this matter seem to have led many 
authors to explore ways and means of helping X elicit infor
mation about his credal state from data concerning his pref
erences, qualitative judgments of credal probability, and 
choices. 

In my opinion, such problems are akin to worries about the 
implementability of the deductive closure requirement on X's 
corpus of knowledge. They are, when rightly construed, of 
genuine importance. However, I understand strict Bayesians 
to be concerned with X's commitments and not with the extent 
to which X succeeds or is capable at the moment of living up 
to his commitments. The same limitations on computational 
facility, memory, and emotional and social stability which 
pose obstacles to living up to the commitments imposed by 
deductive closure also pose obstacles to living up to the de
mands imposed by principles of credal rationality and the 
revision of credal states. I mean to bypass them here, as I did 
when discussing the standards for serious possibility. 

My objection is to the prescriptions intemperate personalists 
insist on making as to what X's commitments ought to be. 
Given his corpus K, X is in a situation, so intemperate per
sonalists maintain, where he has no warrant for choosing one 
logically permissible Q-function rather than another as the sole 
member of his credal state. Yet, insofar as he is able, X should 
embrace a credal state containing exactly one such Q-function 
as its sole member. 

Such arbitrariness would not be offensive, perhaps, if the 
choice of a Q-function made little difference in deliberation 
and inquiry. In point of fact, however, it will often make a 
considerable difference. 

When X is in a predicament where he lacks a warrant for 
choosing one credal state rather than another, wisdom dictates 
that X should suspend judgment between the alternatives
i.e., select a credal state which expresses such suspension of 
judgment. 
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Thus, if the only considerations which warrant ruling out Q
functions are principles of inductive logic, X should not rule 
out any logically permissible Q-functions. He should endorse 
a credal state which avoids such elimination of Q-functions 
without warrant by suspending judgment between them. 

A Q-function is seriously permissible according to X at t if 
and only if X at t has not ruled that Q-function out of his 
credal state Bx, 1 relative to his corpus Kx,t· The set of Q
functions constituting a credal state is the set of Q-functions 

· seriously permissible when X endorses that credal state as his 
own. 

My thesis is that X's credal state relative to K-i.e., the set 
of Q-functions seriously permissible according to X relative to 
K-should consist of all those Q-functions which X has no 
warrant for ruling out as impermissible relative to K. If the 
sole warrant for ruling out such Q-functions is that they fail to 
satisfy conditions of inductive logic, what I am recommending 
is that X's credal state should consist of all Q-functions which 
are logically permissible relative to K. 

There is yet another way to state this position. Recall that 
the logical confirmational commitment is the rule CIL which 
specifies for every K that CIL(K) be the set of all Q-functions 
logically permissible relative to K. Because Carnap thought 
that inductive logic could be strengthened to the point where 
exactly one Q-function is logically permissible for every K, he 
held that all rational agents are obligated to endorse CIL. 

But even if one abandons Carnap's view of inductive logic, 
one can still recommend that ideally rational agents endorse 
the weakest confirmational commitment CIL. One is not com
pelled to do so by inductive logic. However, two other as
sumptions provide a compelling basis for the requirement: 

(a) The contention that principles of inductive logic provide 
the sole warrant for ruling out Q-functions as not being seri
ously permissible. 

(b) The contention that one should not rule out Q-functions 
unless one has a warrant for doing so. 

Savage called the Jeffreys-Carnap view that one should en
dorse a numerically definite CIL necessary. 20 I shall call any 
view which obligates rational X to embrace CIL necessitarian. 
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The import of necessitarianism differs depending on what one 
regards a complete inductive logic to be. 

Thus, Keynes was a necessitarian; but he differed from 
Jeffreys and Carnap in that he refused to maintain that exactly 
one Q-function is logically permissible relative to potential K. 

Keynes is regarded as at least partially within the Bayesian 
tradition. Fisher, Neyman, and Pearson are not. Yet, they 
recognize the propriety of using Bayes' theorem under certain 
conditions in deriving new appraisals of hypotheses with re
spect to what looks like credal probability from old appraisals 
prior to the acquisition of new data. 

I favor interpreting these authors as being committed to an 
objectivist inductive logic. To the extent that credal coherence 
and direct inference fail to mandate a numerically precise Q
distribution over a set of alternative hypotheses, they all seem 
to suggest that no probability judgments are to be made. On 
the other hand, when direct inference and credal coherence 
can be used to make precise determinations, we are obliged 
to do so. I propose reading these authors as intending to say 
that when credal coherence and direct inference fail to man
date a numerically precise Q-distribution, all Q-distributions 
logically permissible according to an objectivist inductive logic 
ought to be seriously permissible. 

Such a reading introduces some historical distortion. 
However, I do not think the distortion does serious injustice 
to the authors being considered and, if it does, it still remains 
the case that the views I am attributing to these authors are 
worth considering even if they did not hold them. 

Necessitarianism avoids the excesses of intemperate per
sonalism. Is it tenable? That, in large measure, depends on 
how powerful one can make inductive logic be without ab
surdity. If inductive logic is very powerful, the logical confir
mational commitment will be fairly definite even if credal 
uniqueness is not strictly obeyed. This may turn out to suffice 
for the uses of credal states in decision theory and scientific 
inquiry. Furthermore, necessitarianism entails confirmational 
tenacity and, hence, provides an account of how credal states 
should change with changes in knowledge. An account of the 
revision of credal states reduces to an account of the revision 
of corpora of knowledge. 

If, however, inductive logic is very weak, CIL may not be 
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able to be used to furnish credal states helpful in deliberation 
and inquiry and, worse yet, there may be little hope that 
through further inquiry one could obtain a credal state which 
would be helpful. Necessitarianism would counsel a sort of 
skepticism which would render it unfeasible to carry on delib
eration and inquiry. 

I adopt an objectivist inductive logic. Chapters 15-17 argue 
that objectivist necessitarianism is untenable and that variant 
forms of necessitarianism are no better. 

Must we then reject thesis (b) and embrace an intemperate 
personalism? In my opinion, we should explore ways and 
means of modifying condition (a) so that (b) can be obeyed. 
This alternative will now be considered. 

4.6 Intemperate personalists and necessitarians share an impor
Contextualism tant assumption in common. It is contention (a) of section 4.5, 

which asserts that the only justification for ruling out a Q
function as not being seriously permissible relative to one's 
corpus K is that it is not logically permissible relative to K. 
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Intemperate personalists and necessitarians do disagree 
concerning contention (b). Intemperate personalists require 
rational agents to choose a single Q-function as the sole seri
ously permissible one relative to K without warrant. Neces
sitarians insist that no Q-function should be ruled out unless 
there is some warrant for doing so. 

The principles of inductive logic, it may be recalled, impose 
constraints on Q-functions eligible for membership in credal 
states relative to potential corpora obligatory on all agents at 
all times. They are context-independent principles in the sense 
that ideally rational X is committed, insofar as he is able, to 
endorsing a confirmational commitment conforming to the re
quirements of inductive logic regardless of what his corpus of 
knowledge, his goals and values, or other circumstances hap
pen to be. 

To be sure, principles of inductive logic fix credal states in 
a context-dependent manner to the extent that the logical 
permissibility of a Q-function is relative to a potential corpus. 
But confirmational commitments are controlled by such prin
ciples in a context-independent way. 

Suppose, however, that the confirmational commitment X 
should endorse at t' depends on the following factors: 
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(i) The corpus K 1., 1 that X endorses at the prior stage t. 

(ii) The confirmational commitment C:.t that X endorses at t 
(which together with Kx,1 determines Bx.1). 

(iii) X's goals and values, the problems he is investigating, 
the way he has succeeded in identifying potential solutions, 
and other circumstantial factors. 

A contextualist might adopt the view that Cx,1• should re
main the same as C:.;, 1 , everything else being equal-i.e., unless 
there is some relevant feature in the vaguely specified factors 
of type (iii) that warrants a change. Of course, if one is going 
to take contextualism seriously, one would have to state more 
precisely what factors of type (iii) are relevant and how they 
direct revisions of confirmational commitments from t to t' 

given Kx,t and C1·.1· 

However, we do not have to spell out details to see that if 
such a contextualist view is endorsed, contention (a) of section 
4.5 will have to be abandoned. The Q-functions which are 
ruled out as not being seriously permissible at t' may be ruled 
out with justification, even though the justification relies on 
more than principles of inductive logic. Appeal may be made 
to the prior confirmational commitment and corpus and to 
factors of the type specified vaguely under (iii). 

In his admirable "Scientific Inference," A. Shimony has 
outlined an approach to probabilistic judgment based on an 
explicitly contextualist outlook. 21 Shimony acknowledges, 
however, that supplementing principles of inductive logic by 
reference to the problems under consideration and potential 
solutions identified will, in general, fail to single out a numer
ically precise confirmational commitment or even a numeri
cally precise credal state relative to the corpus at the new 

stage t'. 
In chapter 13, I shall outline a view of how contextual 

considerations control the adoption of confirmational commit
ments and their revision. Although this proposal differs in 
technical details from Shimony's and is more closely tied to 
issues of inferential expansion than his is, in a rough and ready 
way our views concerning the sorts of contextual considera
tions that should be considered relevant seem to be quite 

similar. 
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However, Shimony and I disagree concerning how to re
spond to the fact that contextual considerations will fail, in 
general, to single out a unique Q-function relative to K as 
eligible for consideration as seriously permissible. Shimony 
follows the intemperate personalists in insisting that rational 
X should obey credal uniqueness and adopt a credal state 
allowing exactly one Q-function to be seriously permissible 
even though it is not justifiably distinguished from the other 
Q-functions which survive criticism from inductive logic and 
contextual considerations. Shimony calls himself a tempered 
personalist. As I understand him, this means that unlike in
temperate personalists he does take contextual considerations 
into account. 

I, for my part, sympathize with the necessitarian insistence 
that contention (b) of section 4.5 be upheld. Although I side 
with Shimony against both intemperate personalists and ne
cessitarians in regarding appeals to context as providing rele
vant warrants for retaining or revising confirmational commit
ments, I side against both intemperate and tempered 
personalists and with necessitarians in insisting that rational 
X should refuse to rule out Q-functions relative to K which 
survive criticism from legitimate considerations. I shall call 
such a view revisionist. 

In section 2.7, I took the position that when two or more 
expansion strategies are admissible according to the principle 
of maximizing expected utility, one should avoid arbitrariness 
by adopting the strategy that allows for suspension of judg
ment between the admissible strategies. In section 3.3, I con
sidered how contraction strategies should be evaluated. There 
I took the view that one should seek to minimize the loss of 
informational value which must be incurred, but that where 
two or more strategies minimize the loss one should implement 
both or all of them. In this way, one expresses one's suspen
sion of judgment between these alternatives. 

Revision of confirmational commitments is not quite the 
same sort of problem as revision of corpora of knowledge. 
Yet, in all our activities, one should avoid arbitrary decisions 
insofar as this is feasible. This core idea lurks behind my 
advocacy of contention (b) of section 4.5 and my concern to 
reject both intemperate and tempered personalism. 

4.6 CONTEXTUALISM 
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Suppose X takes for granted in his corpus of knowledge that 
A" A

2
, ••• , Arn are options feasible for X but that X is con

strained to implement exactly one of them by some time t'. 

For each feasible option A;, let cil, c;2 , ••• , C;n, be a set of 
hypotheses such that the expansion K* obtained by adding 
"A; is implemented" entails that at least and at most one of 
the c·-'S is true and such that each cu is consistent with K* 

u 
and, hence, the truth of "If A; is chosen, cu is true" is a 

serious possibility according to X. 
X's goals and values induce a system of valuations of the 

cu's representable by a set G.l'.t of real-valued functions u(cu) 
defined over all the cu's. G1,1 should satisfy the following 

requirements: 

Valuational Consistency: Gx,t =I= 0. 

Closure under Linear Transformation: If u E G_,.,1 and if u' = 

a.u + f3 for every positive real value a. and for every real {3, 

then u' E Gx,t· 

Valuational Convexity: If u and u' are in Gl'.t then so is every 
weighted average of u and u' (with positive weights). 

All three requirements are endorsed by strict Bayesians. 
However, strict Bayesians would insist on the following 
strengthening of Valuational Convexity: 

Valuational Uniqueness: If u and u' are in G,.,i. then there is 
a positive real a. and a real f3 such that u' = a.u + {3. 

Strict Bayesians may acknowledge that even rational agents 
may lack the self-awareness to be able to identify their values 
precisely. But this sort of failure is analogous to the sort we 
have been neglecting all along. What strict Bayesians do seem 
to ·claim, however, is that rational agents ought to be so de
cisive in their values as to be committed to a system of values 
representable by a utility function unique up to a linear trans

formation. 
When Xis some institution or group, it is, of course, widely 

acknowledged that this view is problematic. Collective deci
sion making is a case where the group is often in conflict with 
regard to its values. Many different proposals have been ex
plored for identifying some ranking of alternatives, or even a 
utility function unique up to a linear transformation, that rep-
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resents the group resolution of the conflict, on the basis of 
which decisions should be taken. 

However, it is far from clear that collective agents are ir
rational if they fail to rank outcomes so as to remove all 
conflict or to represent their group valuation by means of a 
utility function unique up to a linear transformation. 

What is true of collective agencies is applicable to persons 
as well. Men often face decision problems under circum
stances where their values and goals are in conflict and there 
is no opportunity to find a basis for resolving the conflict prior 
to making a decision. 

In such cases, I contend that it is wrong to impose as a 
condition of rationality that agents (whether they are persons 
or communities) should arbitrarily pick a resolution of conflict 
in value as the basis for decision. As in the case of credal 
states, one should not reach unwarranted and arbitrary con
clusions. It is preferable to remain in suspense. 

I interpret a system of values representable by a set of 
utility functions unique up to a linear transformation to be one 
where all value conflicts are resolved. If there is unresolved 
conflict, G 1., 1 should contain two or more subsets of u-functions 
each of which satisfies strict Bayesian requirements. 

Finally, if there is unresolved conflict, I contend that X 
should avoid ruling out any potential resolution of the conflict 
between u-functions which have not been ruled out. By rea
soning which shall be explained in chapter 8, this informal 
requirement supports the convexity requirement on Gu. 

Given a decision problem of the sort specified in section 4. 7, 
the expected utility of a feasible option A; relative to a Q
function in B 1.,1 and a u-function in G1., 1 is given by 

n; 

E(A;; Q, u) = I Q(cu; A; is implemented)u(cu). 
j=l 

The method of ranking options with respect to expected 
utility (REV) stipulates that feasible option A; outranks A;' 
with respect to expected utility relative to Q and u if and only 
if E(A;; Q, u) > E(A;.; Q, u) and ranks with Ai' if and only if 
E(A;; Q, u) = E(A;·; Q, u). 

In chapter 5, alternative methods for ranking feasible op
tions with respect to expected utility relative to Q and u will 
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be considered. The following definitions are intended to apply 
regardless of which method for ranking feasible options is 
employed from among those considered. 

A; is optimal with respect to expected utility relative to Q 
and u if and only if there is no other feasible option which 
outranks Ai with respect to expected utility relative to Q and 

u. 
Ai is £-admissible relative to B.l'.t. Kx,t• and Gx.1 if and only 

if there is a seriously permissible Q-function in B1.,1 and a 
seriously permissible u-function in G1.,1 such that Ai is optimal 
with respect to expected utility relative to that Q-function and 

u-function. 
An option is admissible if and only if rational X is entitled 

as a rational agent to choose it from among the available 
options given his corpus, credal state, and goals. A principle 
or criterion ofrational choice specifies necessary and sufficient 
conditions for such admissibility. One such criterion would be 

the following: 

The Principle of £-Admissibility: All and only those feasible 
options which are £-admissible are admissible. 

If B.u and Gx.i obey conditions imposed by strict Bayesians, 
the principle of £-admissibility reduces to the following: 

The Principle of Maximizing Expected Utility: All and only 
those feasible options which bear maximum expected utility 
relative to the uniquely permissible Q-function and uniquely 
permissible u-function are admissible. 

The principle of maximizing expected utility becomes in
applicable when strict Bayesian conditions on credal states 
and goals and values are modified. The principle of £-admis
sibility is a natural generalization of the principle of maximiz
ing expected utility which covers all the new cases. It has 

been suggested by Good. 22 

In my opinion, neither the more general criterion nor its 

specialization are acceptable. 
In some decision problems, more than one feasible option 

may be £-admissible. This can happen even when strict Bayes
ian conditions are satisfied. Presumably X is compelled to 
choose some feasible option. Hence, as far as considerations 
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of £-admissibility are concerned, there is no basis for render
ing a verdict. 

It appears, therefore, that at the level of choice, an element 
of arbitrariness appears which cannot be avoided by suspend
ing judgment. 

However, there are, in my view, some sorts of decision 
problems where some options feasible for the agent express 
suspension of judgment. For example, if X adds h V g to his 
corpus K together with the deductive consequences, he sus
pends judgment between h and g and, in that sense, his ex
pansion strategy expresses suspension of judgment between 
adding h to K with all the deductive consequences and adding 
g to K with all the deductive consequences. 

There are other contexts where implementing one option 
may express suspension of judgment between others. This is 
true in contracting a corpus of knowledge. It may also be true 
in some contexts of practical decision making as well. How
ever, it may be one of the salient differences between cognitive 
decision making and various types of practical decision making 
that in the former sort of decision making, suspension of judg
ment between feasible options is expressible by another fea
sible option. 

I contend that when two or more feasible options are £
admissible and there is a feasible option which expresses sus
pension of judgment between them, it should, everything else 
being equal, be chosen. 

A full articulation of this principle will be postponed to 
chapter 6. However, endorsing it entails rejecting the principle 
of £-admissibility. 

I have already rejected that principle in the manner indi
cated in introducing a rule for ties to arbitrate between rival 
£-admissible expansion strategies (see section 2.7). In chapter 
6, the full ramifications of replacing the principle of £-admis
sibility by an alternative in the context of cognitive decision 
making will be discussed. 

A full characterization of the alternative rule must be de
ferred. The gist of the proposal is this: The notion of a ?
admissible option is introduced. If there is a feasible option 
which expresses suspension of judgment between all E-admis-

• sible options and it satisfies certain other requirements, it is 
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P-admissible. If there is no such option, all £-admissible op

tions are P-admissible. 
An S-admissible option is an option which is maximin 

among all the P-admissible options. A full discussion of this 
idea will be delayed to chapter 7. It is designed primarily to 
cover cases where all £-admissible options are P-admissible. 

Decision theorists are accustomed to distinguish between 
decision problems under risk where credal states are strictly 
Bayesian (as are goals and values) and decision problems 
under uncertainty where, in effect, credal states are maximally 
indeterminate-i.e., where all Q-functions obeying credal co

herence are permissible. 
Several criteria for rational choice have been proposed for 

decision making under uncertainty. A favorite is maximin. I 
myself am inclined to favor a suitably modified version of that 
principle for decision making under uncertainty. 

However, my main thesis is that whatever principle we use 
for decision making under uncertainty ought to be so under
stood that it applies to situations intermediate between deci
sion making under risk and decision making under uncertainty. 

Hence, I take an S-admissible option to be a maximin so
lution from among all P-admissible options rather than all 
feasible options. In the case of decision making under com
plete uncertainty, all "undominated" feasible options are £
admissible and P-admissible so that S-admissible options ac
cording to my proposal become maximin solutions in the usual 

sense. 
Thus, if we endorse the condition that S-admissibility is 

necessary for admissibility, we manage to provide an account 
of rational decision making which respects the desirability of 
avoiding arbitrary choice wherever feasible, conforms other
wise to the dictates of strict Bayesianism in one specifiable 
class of cases, conforms to a familiar theory of decision mak
ing under uncertainty in another class of special cases, and 
covers all sorts of intermediate cases as well. 

The chief attraction of strict Bayesian doctrine has been its 
capacity to provide a systematic approach to the four ques
tions posed .at the beginning of this chapter. As long as no 
alternative is offered which meets objections to strict Bayes
ianism while posing an alternative unified approach to these 
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questions, strict Bayesians will continue to have the excuse 
that nothing better is available. One of my aims in this chapter 
has been to show, at least in outline, that there is an alternative 
which offers systematic answers to the four questions while 
~eeting some of the difficulties confronting strict Bayesian-
1sm. 

Bayesianism, however, ought not be given more credit than 
it deserves. There is no decisive strict Bayesian answer to all 
aspects of question (b) of revising cognitive resources. Even 
Jeffreys and Carnap pretended to do no more than provide an 
account of how X's credal state should be determined by his 
corpus of knowledge and a confirmational commitment man
dated by very powerful principles of inductive logic. No ac
count is offered of how a corpus of knowledge should be 
revised. 

To be sure, Carnap sometimes leaves the impression that 
he is committed to the view that one may revise a corpus by 
routine expansion via observation and, perhaps, by some sort 
of conceptual change.23 

Notice, however, that these epistemological views of his are 
a supplement of his strict Bayesian doctrine, and do not follow 
from it. There are alternative approaches to the revision of 
corpora which could be advanced which do not conflict in any 
critical way with the Carnap-Jeffreys approach to the revision 
of credal states, given changes in corpus. One could provide 
for inferential or inductive expansion as well as routine ex
pansion. One could provide for contraction. 

What is crucial, however, is that a comprehensive approach 
to question (b) does require some account of the revision of 
corpora of knowledge. No strict Bayesian approach to revision 
of credal states, whether it is necessitarian like Carnap's, 
intemperately personalistic like De Finetti's, or of the tem
pered personalist variety advocated by Shimony, can avoid 
acknowledging that as long as there are some contexts where 
the legitimacy of revisions of credal states depends on obedi
ence to confirmational tenacity and conformity with confir
mational conditionalization, that legitimacy also depends on 
the propriety of making some sort of change in corpus. 

To be sure, those strict Bayesians who abandon the Carnap
Jeffreys project are no longer obliged to insist on conformity 
to confirmational tenacity on all occasions-although most 
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personalists seem to think that as a rule one should be tena
cious in keeping one's confirmational commitment fixed. 

But this only compounds the problem; for now the revision 
of credal states depends for its legitimacy on two factors: (i) 
whether the corpus is legitimately revised or not and, if so, 
how; and (ii) whether the confirmational commitment is legit

imately revised or not and, if so, how. 
Even less attention is devoted to the problem of revising 

confirmational commitments than to the problem of revising 

corpora of knowledge. 
One cannot object to strict Bayesians who disclaim any 

intention of investigating the twin problems of revising corpora 
of knowledge and confirmational commitments. One does not 
have to answer every question in order to make headway on 

some. 
The impression ought not to be left, however, that Bayes-

ians do qua Bayesians provide complete answers to our four 
questions. Even the answers offered to the question of revising 
credal states which depend on the use of conditionalization 
and Bayes' theorem are only partial and incomplete. 

In this chapter, I have tried to explain why answers to the 
problem of revising confirmational commitments meeting strict 
Bayesian requirements are unsatisfactory from my point of 
view. That outline requires some elaboration and a positive 
approach to the revision of confirmational commitments 
should be proposed. I shall attempt this in chapter 13. 

My approach to the revision of confirmational commitments 
involves the account I favor of inferential expansion. I have 
already discussed this approach in chapter 2. However, that 
discussion presupposes that strict Bayesian requirements on 
credal states and valuations in terms of epistemic utilities are 
satisfied. In chapter 6, I shall elaborate upon the outlook of 
chapter 2 by explaining the ramifications for inferential expan
sion of abandoning strict Bayesian requirements. 

The remaining portions of this book are devoted to elaborating 
on and defending a revisionist outlook towards changing credal 
states. There are several loose ends to the argument which 
should be picked up, however, before I attempt to offer an 
account of the revision of confirmational commitments. 

In chapter 5, I consider some relatively technical questions 
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concerning the conditions which ought to be imposed on prob
ability measures in the condition of credal coherence. Should 
a logically permissible Q-function relative to corpus K always 
assign positive value to a hypothesis consistent with K? 
Should Q(h; e) be defined only fore bearing positive Q-value? 
Should countable additivity be imposed as a requirement on 
probability measures in the condition of credal coherence? I 
answer all these questions in the negative. Chapter 5 explains 
the motives, outlines methods for handling some technical 
complications, and discusses some modifications which are 
required in the definition of £-admissibility because of the 
position I take. 

Chapter 6 elaborates on the notion of suspending judgment 
between options and explicates the concept of ?-admissibility. 
The results are applied to inferential expansion. 

Chapter 7 explicates S-admissibility and the role of maximin 
in the decision theory being proposed. 

Chapter 7 concludes the discussion of the general principles 
of the theory of rational choice I am proposing. No effort will 
be made to prove that the fundamental principles underlying 
that theory are correct. However, given the overall theory, 
some further explanation of how the conditions imposed on 
rational valuation and, in particular, valuational consistency 
and convexity are desirable components of the theory may 
prove helpful. This explanation is offered in chapter 8 in the 
context of a formal elaboration of the concept of conflict be
tween values. 

Chapter 9 focuses on the rationale of the requirement of 
credal convexity and some of its ramifications. 

Chapter 10 offers a rationale for confirmational condition
alization, relying on the elements of the decision theory al
ready adopted. 

I have already stated that I favor an objectivist inductive 
logic consisting of a principle of direct inference and the prin
ciple of credal coherence. To formulate the principle of direct 
inference I favor, however, it is first necessary to discuss the 
concept of chance (also called statistical or objective proba
bility). Chapter 11 discusses preliminary notions of ability and 
disposition presupposed by my account of chance. Chapter 12 
introduces the conception of chance and with it the principle 
of direct inference I favor. 

4.10 PROSPECTUS 
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Chapter 13 introduces an account of the revision of confir
mational commitments based on the assumption that objectiv
ist inductive logic is complete. This chapter concludes the 
discussion of the positive proposals I have to make concerning 
the revision of credal states and confirmational commitments. 

In my opinion, the important alternatives to objectivist re
visionism are various forms of necessitarianism and, in partic
ular, objectivist necessitarianism. If an acceptable account of 
deliberation and inquiry could be constructed on an objectivist 
necessitarian foundation, there would be no need to furnish 
an account of the revision of confirmational commitments 
based on an appeal to contextual considerations. All rational 
agents would be obliged to endorse the same standard confir
mational commitment. 

The first two sections of chapter 13 explain some serious 
objections to objectivist necessitarianism including the charge 
that the testimony of the senses cannot be used effectively by 
objectivist necessitarians in deliberation and inquiry. 

One way to meet the difficulty while remaining necessitarian 
is to strengthen inductive logic. Chapters 14 and 15 explore 
ways of doing so through rationalizing fiducial inference-in 
particular, by introducing I. Hacking's law of likelihood. 
Utilizing results obtained by T. Seidenfeld, Hacking's pro
posal and others resembling it will be shown to lead to incon
sistency. 

An alternative approach is to retain an objectivist inductive 
logic but modify confirmational conditionalization. This idea 
is implicit in Fisher's own outlook on fiducial inference. Ky
burg offers a modification of the principle of direct inference 
which entails deviation from confirmational conditionalization. 
A variant approach leaves direct inference unmodified but 
alters confirmational conditionalization. Such a view is sug
gested by proposals made by Dempster. Chapter 16 discusses 
Kyburg's view and the reconstruction of Dempster's view just 

mentioned. 
Chapter 17 discusses a version of the Neyman-Pearson

Wald approach to statistical theory which remains loyal to the 
strict letter of objectivist necessitarianism, accepts the alleg
edly offensive consequences of doing so, but denies that these 
consequences imply the uselessness of the testimony of the 
senses. Ways and means are devised to circumvent the charge 
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that data become useless by providing a new role for the 
testimony of the senses in inquiry and deliberation alternative 
to the role it plays according to those who emphasize the 
importance of using data with Bayes' theorem and condition
alization to modify judgments of credal probability. 

Chapters 13-17 are designed to serve two purposes: 
First, the diverse responses to the challenge to objectivist 

necessitarianism posed in chapter 13 are shown to be inade
quate, thereby undermining this alternative to objectivist re
visionism. 

Second, whether the objectivist revisionist view I favor or 
some alternative is endorsed, the method of representing cre
dal states by convex sets of probability distributions employed 
in this discussion affords an opportunity to discuss a wide 
variety of different and often conflicting positions on proba
bility judgment in a manner which identifies shared assump
tions and points of disagreement within a single framework. 
Anyone who has examined the topics discussed in this essay 
will appreciate how difficult it is to discuss diverse viewpoints 
without seeming to beg questions in one way or another. 

I do not pretend to avoid begging all questions. Yet, the 
framework for discussing probability judgment developed here 
can be employed by those who defend substantially different 
views from my own to develop a common discourse within 
which some progress may be made in clarifying some of the 
issues under dispute. Even those who remain unconvinced by 
my conclusions might find this feature of the discussion help
ful. 

4.10 PROSPECTUS 
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CREDAL COHERENCE, CREDAL CONSISTENCY, 
AND £-ADMISSIBILITY 

Credal states function together with standards for serious pos
sibility as resources in deliberation and inquiry. They are used 
chiefly to evaluate feasible options with respect to £-admis
sibility. They serve in this capacity in all contexts of deliberate 
decision making, both "practical" and "cognitive," where the 
concern is with the revision of cognitive states. 

The several requirements imposed on credal states as con
ditions of credal rationality are, to a large degree, a reflection 
of the use of Q-functions in credal states in computing ex
pected utilities and, hence, in determining £-admissibility. 

In this chapter, a brief accounting of the relations between 
£-admissibility and the conditions of credal coherence and 
consistency will be offered. The bulk of the discussion will be 
devoted to explaining why these relations do not warrant 
strengthening the condition of credal coherence. 

I shall first explain why none of the following requirements 
are appropriate: (1) that Q-functions in credal states be regular 
probability measures, (2) that for every Q-function, Q(h; e) be 
defined only for e such that Q(e) > 0, and (3) that Q-functions 
be countably additive measures. 

Persuasive arguments have been advanced for insisting upon 
a regularity condition derived from considerations of the role 
of Q-functions in computing expectations of the sort I shall 
invoke in defense of credal coherence. I shall show that these 
arguments have relied, in fact, on an oversight in discussions 
of how feasible options are to be ranked with respect to ex
pected utility; when that oversight is corrected, these argu
ments lose their force. 

Finally, I shall explore ways of representing Q-functions 
that violate countable additivity, which may prove helpful in 
clarifying some recent controversies concerning "improper" 
distributions. The account given in this chapter is preliminary 
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to further discussions which will be found in sections 12. 14, 
12.16, and 15.9. 

Worries about countable additivity are provoked by tech
nical concerns with infinity. Those readers who are not anx
ious may skip sections 5.9-5.11, returning to them only if some 
issue in the subsequent discussion should suggest a need to 
do so. 

5.2 The normative account of rational choice proposed here is 
Classieal Rep- intended to apply to contexts of deliberate and rational choice 
resentations of where agent X knows he is compelled to implement at least 
Decision Prob- and at most one option from set s'1 but is free to choose which 
lems one it will be. Each Ai E s'1 is associated with a set cgi of 
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hypotheses. X knows that if he implements A;, at least and at 
most one hypothesis from cgi is true. Moreover, for every cu 
E cgi. the statement "if Ai is implemented then C;j is true" is 
consistent with what X knows. 

Usually decision problems are formulated somewhat differ
ently. Given the set s'J, and a set U of hypotheses exclusive 
and exhaustive relative to K and each consistent with K (the 
states of nature), for each A; E s'1 and each hk E U, there is 
an hypothesis O;k such that K and the information that A; is 
implemented entails that hk is true if and only if o;k is true. 
For given A;, the set (Ji then serves as the set cg; of hypotheses 
concerning the consequences of implementing A;. 

Representations of decision problems of this kind shall be 
called classical representations. Given a representation of a 
decision problem of the first sort, it is possible to obtain a 
classical representation. 

I am assuming that s'1 and the <g/ s are all finite and that, 
therefore, there is a largest finite set cg7 bearing the number 
nt. 

Consider any other option A;• and <gi, with n;• < ni. One 
can take any element ci'i of cgi' and refine it into a disjunction 
of hypotheses h1 & ci•i V ... V hr & ci•;, equivalent given K 
and "Ai' is implemented" to ci'i· In this way, we can always 
extend the set <g1, so that its cardinality becomes nt. More
over, we should always be able to do this so that for every 
permissible u-function in G, the disjuncts all bear the same u

value as c;. 1• Having done this for each Ai. we have for each 
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feasible option a system of hypotheses about consequences, 
each system bearing the same number of elements. Enumerate 
them so that for each feasible option there is a first, second, 
etc. hypothesis. Let U consist of n;* exclusive and exhaustive 
alternatives such that hk asserts that for some i, Ai is imple
mented and the kth consequence for A; is true. 

There are, of course, many ways of carrying out the instruc
tions of this recipe. Moreover, there will sometimes be other 
ways of obtaining classical representations as well. There will 
be no problem in using classical formulations and no dearth of 
them for a given decision problem. I shall, for the most part, 
discuss decision problems under the assumption that they are 
given a classical formulation. 

Given any u-function in G and any Q-function in B, then 
n 

E(A;; Q, u) = I Q(o;k; A; is implemented)u(o;k) 

for any decision problem with a classical formulation. Since 

Q(o;k A; is implemented) = Q(hk; A; is implemented), 
then 

n 

E(A;; Q, u) = I Q(hk; A; is implemented)u(o;k). 
k=I 

This formula may be substituted for the one introduced in 
section 4.8 for the purpose of applying REU to rank feasible 
options with respect to expected utility. The earlier formula 
may be used regardless of whether the problem is formulated 
classically or not. This one presupposes a classical represen
tation of the decision problem. 

Relative to a classical formulation of a decision problem with 
states of nature in U, A; E .91 strongly dominates Ai' E .91 if 
and only if for every u E G and every hk E U, u(o;k) = u;k 

> Ui• k = u(oi' k). 
Relative to a classical formulation, A; weakly dominates A;, 

relative to G and U if and only if u;k :2': ui'k for every hk E U, 

and u1k > ut'k for some hk E U. 
Thanks to R. C. Jeffrey and R. Nozick, 1 it is now widely 

recognized that there are circumstances when strongly domi
nated options may be admissible while there are others wJ;iere 
they are not. Indeed, that should be obvious; for options may 
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be strongly dominated relative to one classical formulation of 
a decision problem and fail to be dominated relative to an
other. 

Some controversy exists concerning the necessary and suf
ficient conditions that a classical formulation should satisfy for 
a strongly dominated option to be forbidden as not £-admis
sible. 

There is no need to engage in the controversy here. 
Identification of a condition which is widely acknowledged 
to be sufficient for enjoining against allowing strongly dom
inated options to be £-admissible will help explain why 
Q-functions used to compute expected utilities should be 
required to conform to the requirements of the calculus of 
probabilities. 

The states of nature in U and feasible options in .91 are Q
independent of one another relative to a given Q-function if 
and only if Q(hk; A; is implemented) = Q(hk) for every A; E 
.91 and every hk E U. 

When Q-independence holds relative to Q, then 
n 

E(A;; Q, u) = I Q(hk)u(o;k) for every u E B. 
k=I 

The options in .91 are credally irrelevant to the states in U 
if and only if all states in U are Q-independent of the options 
in .91 relative to each permissible Q-function in B. 

The prohibition against choosing a strongly dominated op
tion is widely thought to be legitimate when the feasible op
tions are credally irrelevant to the states of nature. 

To guarantee that in this class of cases no strongly domi
nated option is admissible, the following stronger condition 
will be adopted: 

The Principle of Strong Dominance (SD): In a classical for
mulation of a decision problem where states in U are credally 
independent of the options in d, no option strongly dominated 
by another in .91 is £-admissible. 

The conditions on P-admissibility and S-admissibility to be 
explained in later chapters will guarantee that conformity with 
the principle of strong dominance secures that no strongly 
dominated option will be admissible. 

5.3 DOMINANCE 
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Consider any decision problem where the options are credally 
irrelevant to the states and modify the problem by selecting 
any Q-function from the credal state and letting the new credal 
state be the set whose sole member is that Q-function. The 
new decision problem must also satisfy the condition of credal 

irrelevance. 
In the same spirit, modify the set G by shifting to a new set 

consisting of linear transformations of exactly one u-function 

in G. 
The result is a strictly Bayesian decision problem which, 

nonetheless, is regulated by SD. 
Finally, any option A1, strongly dominated by A1 in the 

original decision problem will remain so in the modified strictly 
Bayesian decision problem no matter which Q-function and u

function is picked. 
In the strictly Bayesian decision problem so obtained, all £

admissible options will be optimal with respect to Q and u 
where optimality is determined by the ranking with respect to 

expected utility relative to Q and u. 
For the present, we have been assuming that REU regulates 

this ranking. 
From these considerations, it follows that if A; strongly 

dominates A;, in the original problem and, hence, in the mod
ified problem, A 1 outranks Ai' relative to Q and u. This is due 

to SD. 
REU entails that 

E(A1; Q, u) > E(A1,; Q, u). 

Hence, 

n n 

I Q(hk)U1k > I Q(hk)U1'k· 
k=I k=I 

Thus, Q-values assigned the hk's must satisfy conditions 
implied by this inequality for every u-function we might en
visage where the strong dominance of Ai' by A; obtains. 

If we assume that condition (2) on Q-functions (section 4.2) 
which are probabilities should be satisfied to secure univocal
ity, the unconditional Q-distribution over elements of U can 
be shown to take nonnegative values as (1) requires, finite 
additivity as in (3) is satisfied and the disjunction of all ele
ments of U must take some positive and finite Q-value a so 
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that dividing the Q-values for hypotheses equivalent given K 
to Boolean combinations of elements of U by a yields a new 
function which not only satisfies (1), (2), and (3) for uncondi
tional Q-functions, but (4) as well. 

These results are due essentially to F. P. Ramsey and De 
Finetti. 2 However, they formulated their arguments in a man
ner which entailed that credal uniqueness is a condition on 
credal rationality. I have done no such thing. 

Stripping away their tacit assumption of credal uniqueness, 
we see that they showed that SD and REU mandate that Q
distributions over the states which are unconditional or con
ditional on the options conform to conditions (1)-( 4) of section 
4.2. 

It also possible to show that, given REU and credal coher
ence (or, at any rate, that part of credal coherence which 
implies that when credal irrelevance of states on acts obtains, 
the unconditional Q-distributions over the states obey condi
tions (l)-(4)), SD obtains. 

In this sense, a case can be made out for at least part of the 
condition of credal coherence on the grounds that it secures 
that SD is satisfied when credal states are characterized as 
functioning in inquiry and deliberation as furnishing "weights" 
for computing expected utility needed in applying REU to 
assess £-admissibility. It must be emphasized that this argu
ment does presuppose that credal states do have a certain kind 
of function in deliberation and inquiry. Anyone who withholds 
this function from credal states or questions SD is free to 
reject the argument. 

In the case of classical representations of decision problems 
where options are credally irrelevant to hypotheses in U, we 
could envisage forbidding the admissibility of options which 
are weakly dominated by other feasible options and by an 
argument parallel to that given previously introduce the fol
lowing requirement: 

Weak Dominance (WD): In a classical formulation of a de
cision problem where options in .91 are credally irrelevant for 
states in U, no option weakly dominated by another in .91 is £
admissible. 

5.5 WEAK DOMINANCE AND CREDAL REGULARITY 
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Should weak dominance be obeyed? I think so. Surely of 
two options, one of which is sometimes (i.e., for some serious 
possibilities) better than the other and is never worse, that 
option ought to be recommended. Yet, as Shimony showed, 3 

conformity to REU and WD entails that unconditional Q-dis
tributions over U and Boolean combinations thereof should 
assign positive values to all such hypotheses consistent with 
K as the conditions of credal regularity mentioned in section 
4.2 requires. Shimony concludes that credal regularity should 
be imposed on Q-functions in credal states; Carnap seconds 
this view. 4 

De Finetti has explicitly rejected WD on the grounds that 
it leads to a commitment to credal regularity which he rejects. 5 

I think De Finetti is right in rejecting credal regularity as a 
condition which the Q-functions in credal states of rational 
agents must satisfy. Consideration of the following cases 
should help explain why. 

Case 1: Suppose X considers the problem of estimating the 
value of a real-valued parameter which ranges between k* and 
k*. He might, for example, be concerned to estimate the un
known chance of obtaining heads on a toss of a coin. (This is 
not an example which De Finetti would use.) X does not know 
which of the noncountably many possible values is the true 
one. Any hypothesis specifying that such a value is the true 
one is a serious possibility according to him. 

If credal regularity were to obtain, at most countably many 
of these hypotheses could bear positive Q-value if the other 
requirements on credal coherence are to be obeyed. Thus, 
either it must be admitted that some seriously possible hy
potheses bear 0 Q-value or situations where X suspends judg
ment between noncountably many rival hypotheses must be 
precluded. 

It seems to me gratuitously dogmatic to follow the second 
route, and, in any event, doing so flouts our practice. One of 
the achievements of Kolmogorov and his predecessors was to 
enable us to deal with such cases with the aid of measure 
theory-albeit while retaining some restrictions of doubtful 
legitimacy, such as countable additivity. In any case, that 
approach does allow credal regularity to be violated and it 
would be desirable to follow this view. 
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Let there be n hypotheses exclusive and exhaustive relative 
to K. Inductive logic should not mandate assigning equal Q
values of 1 In to all n hypotheses; but it should not forbid a 
credal state which does so. 

Case 2: The same is true, as n goes to infinity and we face 
a countably infinite number of alternatives. We should not 
obligate X to assign each alternative equal Q-value; but we 
should not forbid it. But we cannot assign positive Q-values 
to all the alternatives which are equal without violating the 
condition of finite additivity or normalization. Hence, credal 
coherence mandates that all hypotheses must be assigned 0 Q
value. 

As a variant of this case, consider a situation where X is 
interested in the value of a continuous variable taking real 
values between -x and +x. If we wished to regard all point 
estimates as equally probable in this sort of case, not only 
would each point estimate be assigned 0 probability, but the 
point estimate would be assigned 0 density so that any hy
pothesis to the effect that the true value fell in a given finite 
interval would also bear 0 probability. Again, a credal state 
represented by Q-distributions of this sort should not be man· 
dated; but neither should it be prohibited. 

Case 3: Suppose it is known that a coin is to be tossed until 
it lands heads for the first time. It is also known that the coin 
is fair. Thus, X's degree of credence that the coin tossing will 
stop on the nth toss is (.5)n. The hypothesis that the tossing 
will never stop is, however, a serious possibility (if we can 
assume some mechanism is operative which secures that the 
conditions specified above do, indeed, hold). Yet, it receives 
0 Q-value. 

Such a case should not be precluded by principles of induc
tive logic. 

Keep in mind that I am not claiming that in realistic situa
tions we will ever find cases which we must literally describe 
as being of one of these kinds. Perhaps the coin tossing game 
cannot be fully implemented. Perhaps no one ever seriously 
allows it to be possible that the log of the variance of some 
normally distributed random variable takes any value between 
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-co and +co. We may never be compelled to face such cases; 
but we should not rule them out on grounds of inductive logic. 

Nonetheless, there is a genuine difficulty. Shimony has a 
strong argument in favor of credal regularity. REU and WD 
imply it. 

Should we follow De Finetti's example and give up WD? 
I think not. Ramsey, 6 De Finetti, 7 and Shimony8 all agree 

that conditional Q-values can also be employed in ranking 
options with respect to expected utility in order to discount 
what I shall call irrelevant possibilities. And the method of 
ranking with respect to expected utility so obtained contradicts 
REU in its unmodified form. 

Furthermore, this contradiction emerges only when credal 
regularity is violated. 

Consequently, if we are to refuse to endorse credal regular
ity, we must avoid trouble on two fronts: the violation of WD 
and the conflict between REU and the alternative method of 
ranking. This can be done with one fell swoop by abandoning 
REU. 

The critical element in this argument is how conditional Q
functions play a role in ranking options with respect to ex
pected utility and, hence, in the determination of £-admissi
bility. 

Consider the decision problem in classical form shown in table 
5.1. The matrix entries are utility values. Wand Lare positive. 

If the options are credally irrelevant to the states, it seems 
entirely plausible that the serious possibility that e is false 
(i.e., that -e is true) may nonetheless be ignored in ranking 
the two options with respect to expected utility. This holds 
for the comparison of A; and Ai· even if they are just two of 
many feasible options in the given decision problem and even 
if the payoff structure according to the u-function is different 
for the columns under h & e and -h & e. 

In general, in a decision problem where the options are 
credally irrelevant to the states, the state hk is not a relevant 

possibility for the purpose of comparing A; and Ai' (even 
though it is a serious possibility) relative to a given u-function 
if and only if u;k = ui' k· 

In cases such as those described by the matrix representa
tion, where -e is an irrelevant possibility, Ramsey, De Finetti, 
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Table S_l Decision Matrix 

Options States of Nature 

A; 

A,. 

h&e 

w 
0 

-h & e 

-L 
0 

The matrix entries are utility values. W and L are positive. 

-e 

K 

K 

and Shimony recommended ranking Ai over A;· with respect 
to expected utility relative to Q and u if and only if 
Q(h; e)/Q(-h; e) > L/W. But this holds if and only if the con

ditional expected utility of A; on e is greater than the condi
tional expected utility of A 1• on e. 

The conditional expected utility of an option A; on e in a 
classical decision problem is given by: 

n 

E(A;; e; Q, u) = 2: Q(hk; e & A; is implemented)u;k· 
k=I 

Under the condition of credal irrelevance, the options are 
Q-independent of the states. Hence, if e is a disjunction of 
some subset of U and hk is a disjunct of e, 

Q(hk; e & A;)Q(e; A; is implemented) 
= Q(hk & e; A; is implemented) 
= Q(hk; A; is implemented) 
= Q(hk). 

Moreover, Q(e; A;) = Q(e). But 

Q(hk; e)Q(e) = Q(hk & e) = Q(hk). 

Hence, 

Q(hk; e & A; is implemented) = Q(hk; e). 

Thus, we have 
n 

E(A;; e;Q, u) = 2: Q(hk; e)u;k· 

In the sequel, I shall write E(A1; e) in lieu of E(A;; e; Q, u) 
where no misunderstanding is likely to arise. 

In cases where credal irrelevance obtains in a decision prob
lem, and letting e* be the disjunction of all those elements in 
u which are not irrelevant possibilities for comparing A 1 with 
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A;,, then Ramsey, De Finetti, and Shimony appear committed 
to ranking these two options in this way: 

A 1 outranks A 1, if and only if E(A1; e*) > E(A,,; e*). 

At the same time, these same authors are also committed to 
ranking the same options in accordance with the unconditional 
expected utility function or in accordance with the conditional 
expected utility conditional one**, where e** is a disjunction 
of elements of U that includes all states which are relevant 
possibilities for the purpose of comparing A 1 and A,, but that 
may also include some irrelevant possibilities as well. 

In effect, they are committed to the following method for 
ranking feasible options with respect to expected utility rela
tive to Q and u when options are Q-independent of states 
relative to Q: 

Ranking with Respect to Conditional Expected Utility 
(RCEU): Let e** be a disjunction of elements of U including 
all elements of U relevant for comparing A 1 and A". A, out
ranks A 1, if and only if E(A 1; e**) > E(A;,; e**). 

The disjunction of all elements of U contains all relevant 
possibilities. Hence, RCEU entails REU. 

On the assumption that the ranking obtained with respect 
to Q and u is a consistent one, the following condition must 

be satisfied: 

Strong Condition of Compatibility of Evaluations of Expected 
Utility: Let e* be the disjunction of all and only elements of 
U relevant for comparing A 1 and A 1, and e** a disjunction of 
elements of U entailed by e*. Then 

E(A 1; e*) > E(A 1,; e*) if and only if E(A,; e**) > E(A;,; e**). 

If credal regularity is satisfied, the strong condition of com
patibility can be guaranteed to hold. It can also be guaranteed 
to hold on the assumption of credal coherence provided that 
we modify condition (1) of section 4.2 so that E is the set of 
all hypotheses in L bearing positive unconditional Q-values. 
Let us call this condition (1 *). 

Suppose that in the matrix for A 1 and A,,, Q(h & e) = 

Q(-h & e) = Q(e) = 0. E(A 1) = E(A") = K. On the other 
hand, it could very well be the case that E(A1; e) > E(A,,; e). 
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But RCEU mandates that the pair of options be ranked in 
accordance with both measures of expected utility and, hence, 
expects them both to rank in the same manner as the strong 
condition of compatibility requires. This is not the case in our 
example. Hence, either we abandon RCEU, impose credal 
regularity, or refuse to define Q(h; e) and Q(-h; e) in this case 
and, hence, avoid defining E(A1; e) and E(A1,; e). 

I have already indicated that imposing credal regularity is 
objectionable in my view. I follow De Finetti also in refusing 
to restrict the set E in condition (1) of section 4.2 to hypotheses 
bearing positive Q-value. 9 The reasons for this are substan
tially the same as those which favor refusing to impose credal 
regularity. 

Consider a case 1 situation from the preceding section. In 
particular, let the situation be one where the rival hypotheses 
are point estimates of the unknown chance of obtaining heads 
on a toss. Let hp assert that the chance of r heads in n tosses 
is (~)pr(l - pr-r. If X knows that a coin is to be tossed n 

times but does not know whether hp is true, and if er is the 
hypothesis that on that particular sequence of tosses the coin 
will land heads r times, Q(er; hp) is often taken to be equal to 
the chance of r heads in n tosses when hp is true-i.e., 
(~)pr(t - pr-r. This is due to the principle of direct inference, 
to be discussed in chapter 12. The point to be emphasized 
here is that Q(er; hp) is defined even though Q(hp) = 0. More
over, it is customary practice in statistical applications to 
proceed in this manner even though the Kolmogorovian ax
ioms on probability prohibit the definition. 

Case 2 also provides examples. If we are given a countable 
infinity of exclusive and exhaustive alternatives and are to 
take them all as bearing equal Q-value (which must, therefore, 
be 0), we may wish to assign Q(hk; e) the value l/n where e 
is a disjunction of n elements from these alternatives including 
hk. 

In my opinion, once we allow violations of credal regularity, 
we should not balk at allowing conditional probabilities to be 
defined on hypotheses with 0 Q-values. It appears that con
dition (1) imposes the right requirements for membership in 
E. Q(h; e) is defined in case e )s consistent with the corpus
i.e., its truth is a serious possibility according to the corpus. 

Thus, to avoid the contradiction, either credal regularity 
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should be imposed or the strong compatibility requirement 
abandoned. I favor the latter alternative. 

Given the conditions on Q-functions introduced in section 
4.4 and required by credal regularity, there is a weaker com
patibility requirement which may be imposed: 

Compatibility of Evaluations of Expected Utility: If e* is a 
disjunction of states in U including all those which are relevant 
possibilities for comparing Ai with Ai' relative to u, if e* entails 
e**, and if E(A;; e**) > E(Ai'; e**), then E(A;; e*) > 
E(A;·; e*). 

Abandoning RCEU and restricting the ranking procedure to 
REU avoids entailing the strong compatibility requirement 
while conforming to the compatibility requirement. Indeed, 
the latter requirement then plays no role in ranking with re
spect to expected utility; for conditional expectations are 

never used. 
This, in my opinion, is a serious objection to this approach; 

for conditional Q-values lose the significance in guiding ap
praisals of options in decision making which De Finetti, Ram
sey, and Shimony all agreed they should have. Once that 
function is lost, it becomes unclear why conditional Q-func
tions should obey requirements (1)-(4) of section 4.2 or why 
the multiplication theorem should be satisfied. 

The compatibility condition acquires teeth, however, if we 
do wish to follow Ramsey, De Finetti, and Shimony in allow
ing conditional expectations a role in ranking options with 

respect to expected utility. 
To be sure, RCEU must still be modified. But there are 

alternatives to reverting to REU. One can devise some method 
of ranking (several can be envisaged) which gives precedence 
to rankings in accordance with conditional expected utility, 
where the condition is a disjunction of all and only relevant 
possibilities over rankings with respect to unconditional ex
pected utility or conditions entailed by the disjunction of all 
and only relevant possibilities. 

A specimen of such a method of ranking with respect to 

expected utility is the following: 

Qualified Ranking with Respect to Expected Utility 
(QRCEU): 10 Let e* be the disjunction of all states of nature 
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in U relevant for comparing Ai and Ai,. A 1 ranks over Al' if 
and only if there is a disjunction e* * of elements of U entailed 
by e* such that E(A1; e* *) > E(A1,; e* *). 

QRCEU induces a quasi ordering of feasible options with 
respect to expected utility relative to Q and u. The quasi 
ordering becomes an ordering when the Q-function satisfies 
regularity. In that case, the ordering coincides with that in
duced by RCEU and REU.t 

One can still obtain from such a quasi ordering a set of 
options optimal relative to Q and u and, hence, proceed to 
define £-admissibility along the lines indicated in chapter 4. 

There is a modification of QRCEU, MQRCEU, that also 
conforms to the compatibility condition but yields a connected 
ordering for all options." It is not necessary, however, to 
explore this ordering here. 

What is crucial to notice is that if one uses QRCEU, 
MQRCEU, or some other variant that ranks options as REU 
and RCEU do when credal regularity obtains, not only do we 
avoid the contradiction bred by violating credal regularity 
when the strong compatibility requirement is adopted but cre

dal regularity may be violated while obeying WD. 
Consider the decision-problem matrix given in table 5.1. 

Modify the payoffs by allowing L to be negative and, hence, 
-L to be positive. In that case Ai weakly dominates A;,. If 
Q(e) = 0, E(A1) = E(Ai,) = K. However, given conformity to 
conditions (1)-(4) on Q-functions of section 4.2, then E(A;; e) 

> E(a;•; e). There is a conflict in the ranking according to 
unconditional and conditional expected utility. The ranking 
according to unconditional expected utility violates WD. The 
ranking according to conditional expected utility does not. 
QRCEU and MQRCEU both give precedence to the condi
tional ranking. 

Thus, the argument which justifies imposition of credal reg
ularity in order to secure conformity to WD is less than com
pelling not because Shimony or others who have used it made 
mistakes in their proofs but because they smuggled in debat
able assumptions-in particular, assumptions to the effect that 

t T. Seidenfeld has pointed out to me that QRCEU fails to induce an ordering. 
H. Stein showed that it would yield a quasi ordering. 
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rankings with respect to expected utility should agree with 

REU. 
The considerations adduced here suggest that there are good 

reasons to reject this kind of assumption. We need not decide 
between allowing violations of credal regularity and requiring 
conformity with WD; and, in the light of the considerations 

adduced here, it seems sensible to do both. 

Case 2 has been used previously to illustrate situations where 
credal regularity is violated and where conditional probability 
on conditions with 0 Q-values are defined. 

It also illustrates situations where countable additivity is 
violated. Countable additivity requires that if g asserts that 
one of a countable infinity of exclusive and exhaustive hy
potheses is true, then Q(g; e) = :Li=1 Q(h;; e) where h;_ E U 
= the set of exclusive and exhaustive hypotheses (relative to 

K). 
Given countable additivity, 

Q(g &f; e) =I Q(h; &f; e) = IQ(f; h; & e)Q(h;; e). 
i=l i=l 

Hence, if K, e f- g, then K, e f- g &f==f. Therefore, 

Q(f; e) = I Q(f; h; & e)Q(h;; e). 
i=l 

This last result captures the force of what De Finetti calls 
conglomerability.12 If we do not impose countable additivity 
as a requirement on Q-functions, conglomerability is not re

quired either. 
Once more, I follow De Finetti in refusing to adopt a re-

quirement of countable additivity because it prohibits a~ a 
matter of inductive logic the adoption of credal states which 
ought not to be prohibited in this categorical manner. 

Thus, requirements to be imposed on Q-functions by the 
principle of credal coherence ought, in my opinion, to be 
restricted to those introduced in section 4.2. 

Credal consistency requires that a credal state relative to K 

should be nonempty if and only if K is inconsistent. The 
rationale of this requirement is that if, relative to consistent 
K, B is empty, any decision problem X faces when K is his 
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corpus can have no £-admissible options and, by the criteria 
for admissibility to be constructed, can have no admissible 
options. The implication would be that even if Xis constrained 
to choose one of the options (although he is free to choose 
which one he will implement) there is no option which X, as 
a rational agent, is permitted to choose. 

Any theory of rational choice which leads to such a result 
should be revised. Credal consistency, in the light of the other 
requirements, prevents such an untoward consequence. 

Of course, the rationale for valuational consistency is pre
cisely the same; for an empty G will also lead to the absence 
of £-admissible options. 

Of the conditions on credal rationality, only the requirement 
of credal convexity remains to be considered. That topic will 
be postponed until chapter 9, when sufficient background will 
be available for consideration of various aspects of the matter. 

5.9 Suppose X is concerned to find out which of n exclusive and 
On Infinitely exhaustive alternatives h 1 , h2 , ••• , hn E U are true relative 
Many Alterna- to corpus K. For the present we are concerned with properties 
tives of probability measures and, hence, it will be convenient to 
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proceed as though X's credal state contained exactly one Q
function. This may happen but need not and should not on all 
occasions. But under the circumstances, it is convenient to 
focus on those occasions where credal uniqueness obtains. 

Whether the Q-function satisfies credal regularity or not, 
given the unconditional Q-values for all elements of U, the 
unconditional Q-values for all hypotheses equivalent given K 
to disjunctions of finitely many elements of U are all deter
mined. 

Furthermore, if credal regularity obtains, the Q-function 
(defined over a Boolean algebra) conditional on the truth of 
the disjunction of finitely many elements of U can always be 
derived from the unconditional Q-function for the same alge
bra. 

Suppose, however, that credal regularity breaks down. 
Then unconditional Q-functions cannot determine conditional 
ones in all cases. This is so even when U is finite. 

Thus, if U consists of three hypotheses h 1 , h2 , h3 , where h 1 

and h2 bear 0 Q-values and h3 bears the Q-value l, we cannot 
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automatically determine the value of Q(h1; h, V h2) from the 
multiplication theorem. 

It may be thought that when U is finite there is no pressure 
to consider irregular Q-functions. But that is by no means 
always so. 

Suppose X wishes to test the hypothesis that the leaf color 
of some plant is inherited in accordance with a simple Men
delian model. X knows that he is crossing plants which are 
purebreds with respect to traits A and a, and he also knows 
that A dominates a. (Past breeding experiments might have 
established this.) If the simple Mendelian model is correct, 
the chance of an offspring exhibiting the dominant trait should 
be exactly ~-

But X initially might suspend judgment as to what the true 
chance is. As far as he is concerned, the t:·ue chance might be 
any real value between 0 and 1. Moreover, X might assign 0 
credence to every point estimate of the value of that chance. 

Consequently, even though in the context of his investiga
tion X might be concerned only with whether the chance is ~ 
or not and, hence, with a finite U, credal regularity will be 
violated. 

Another example is to be found in cases where X wishes to 
estimate the unknown chance in a binomial process (as in the 
above example) but where U consists of the three hypotheses: 
h1 (p = 0), h2 (p = 1), and h3 (0 < p < 1). Here the first two 
alternatives bear 0 Q-value, and the third a Q-value of 1. At 
any rate, a credal state of this sort ought not to be prohibited 
as irrational. And in this case, the value of Q(h 1 ; h1 V h2) is 
undetermined. 

This does not mean that this conditional Q-value is unde
fined, but only that it cannot be derived from Q-values ob
tained unconditionally for the elements of U and Boolean 
combinations thereof. 

In my opinion, this result is inescapable and quite accept
able. 

Our examples, however, do point to a moral which ought 
to be emphasized. In most cases where there is pressure to 
violate credal regularity when U is finite, it is because there 
is some refinement of U into a system of exclusive and ex
haustive alternatives which is infinite. In the examples we 
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have been considering, indeed, the new U is uncountably 
infinite. 

Here, however, we face several technical problems. Con
sider fir~t those cases where U is countably infinite. For them, 
our regimented language L may be able to express all the 
elements of U by sentences hi. h2 , ••• , h; , .... However 
it will be desirable to assign Q-values to all hypotheses which 
assert that the true h; belongs to a subset of U. There are 
noncountably many such hypotheses and at most countably 
many of these are expressible in L. 

There are several ways to handle this matter. I shall proceed 
by appending indices to the elements of U, and then introduce 
a probability measure defined over all elements of the power 
set of all the indices. Countably many of these sets of indices 
that are members of the power set will be correlated with 
sentences in L asserting that the true h; has an index in the 
power set; and these sentences will obtain Q-values equal to 
the probability measure assigned the corresponding set. tJ 

The power set of the set of indices is not merely a 
Boolean algebra but a a-algebra and the underlying probability 
measure defined over the power set (which shall when no 
confusion threatens, be called a Q-function jus~ like the 
measure on the sentences in L) is, therefore, a measure on a 
a-algebra. 

The unconditional probability measure on the a-algebra may 
obey credal regularity or it may violate it. It may be countably 
additive or fail to be so. 

When countable additivity obtains, the situation appears 
analogous to that which obtains in the finite case. Whether 
credal regularity holds or not, the unconditional Q-function 
for e~ements of U uniquely determines the unconditional Q
funct10n over the entire a-algebra. If credal regularity is sat
isfied, the unconditional Q-function over the a-algebra 
uniquely determines the conditional Q-values for all elements 
of the algebra conditional on any member of the algebra con
sistent with K. When credal regularity is violated, this no 
longer obtains. 

When countable additivity fails, the situation changes. Be
fore considering such cases, however, let us first consider 
situations where U is noncountably infinite. 

5.9 ON INFINITELY MANY ALTERNATIVES 
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The Contino- asserts that (J is some real number in the interval from -co to 
ous Case +co or asserts that it falls in some subinterval thereof. (The 
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argument will be the same if K asserts that (J is an n-tuple of 
real numbers located in an n-dimensional space or in some 
specified region thereof.) U is then the set of point estimates 
and is noncountably infinite. For the purpose of this essay, 
attention will be focused on situations where noncountably 
infinite U is of this kind or can readily be handled once this 

kind of case is understood. 
In such cases, not even the elements of U can be expressed 

in L. We have more reason than before to begin with an 
underlying probability measure defined for points and sets of 
points in the given n-dimensional space and then use that 
measure to induce Q-values for hypotheses in L which assert 
that the true value of (J belongs to such and such a set. 

We are supposing that length of a (closed, open, half open) 
interval in the one-dimensional case (or the volume of an n

dimensional interval in the n-dimensional case) is defined 
and that this measure is extended to the a-algebra of either 
Borel sets or Lebesgue measurable sets of elements of U. 

A probability measure can be induced over the elements of 
this a-algebra and then the question might arise as to whether 
it can be extended to apply to all sets in the power set of U. 

If the extended measure is to obey countable additivity, the 
extension cannot be implemented. Hence, either one thinks of 
restricting the domain of definition to the domain of Lebesgue 
measurable sets or gives up countable additivity. De Finetti 
argues for the latter alternative and I sympathize. 14 

However one could, nonetheless, retain a qualified en
dorsement ~f countable additivity of the following kind. One 
could insist that countable additivity apply to those sets that 
are Lebesgue measurable, although it must be violated in the 
extension. The considerations arguing against countable ad
ditivity alluded to previously suggest that this requirement 
remains excessively restrictive. Nonetheless, many probabil
ity measures employed in applications do satisfy the require
ment and it is worth considering some of the philosophically 
interesting features. Consequently, when I say that countable 
additivity is satisfied in the continuous case, I mean that count
able additivity is satisfied by the measure on the domain of 
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Lebesgue measurable sets but not on the domain of elements 
of the power set. When, in the next section, I say that count
able additivity is allowed to be violated, I mean that it is 
violated even within the domain of the a-algebra of Lebesgue 
measurable or even Borel sets. 

Under the circumstances specified, at most countably many 
points in U may bear positive unconditional probability. Non
countably many such points must bear 0 unconditional Q
values. Credal regularity is perforce violated. 

Furthermore, even if countable additivity is satisfied, the Q
values for all Lebesgue measurable sets are not uniquely de
termined by the Q-values for the points in U. In general, a 
specification of the unconditional Q-values for all n-dimen
sional volumes (including degenerate volumes of intervals of 
lower dimension) must be given. 

In the continuous cases to be considered here, Q-values can 
be determined by starting with a cumulative distribution func

tion (cdt) F((J) = F(x1, x2 , ••• , Xn) which specifies the Q-value 
for the hypothesis that the ith component of (J has a value less 
than or equal to xi for each i and where the cdf F((J) is contin
uous and totally differentiable over the domain of points in U. 
Discrete cases where there are at most countably many points 
of discontinuity can also be treated, but attention will be fo
cused on the continuous cases here. 

An alternative mode of representation is obtained by using 
the density function f(X1, Xz, ... , Xn) = anF/ax1aXz, ... axn. 

These are all alternative methods of characterizing the (un
conditional) joint distribution over the points in the n-dimen
sional space and each can be used to uniquely determine the 
Q-value associated with each measurable set. It is important 
to remember, however, that all of this presupposes countable 
additivity over the domain of Lebesgue measurable sets. 

Because credal regularity is violated, unconditional Q-val
ues will often fail to determine conditional Q-values. On the 
other hand, if countable additivity is satisfied, there is an 
extension of the multiplication theorem that may be used to 
partially-but only partially-remedy the situation. 

For notational simplicity, let us suppose the values of (J to 
be points in a two-dimensional space. The observations to be 
made here can be extended to higher dimensions if desired. 
Letf(x, y) = f((J) be thejoint density function, which equals 

5.10 THE CONTINUOUS CASE 
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azF(x, y)/axay. If countable additivity holds, we can define a 
marginal cumulative distribution function G(x) for x specifying 
the Q-value that the value of that real variable is less than or 
equal to x; for it should be equal to the Q-value for that 
hypothesis conditional on the value of y falling anywhere in 
the range allowed by the corpus K and this, in turn, is equal 
to F(x, y) - F(x, y) where y is the maximum value permitted 
to y and ;r the mi~mum. (These could be +co and -co respec-

tively.) Then 

g(x) = dG/dx = aF(x, y)/ax - aF(x, x_)/ax = r· f(x, y)dy. 
!.'. 

The marginal distribution for y can also be characterized by 
a marginal cdf H(y) and a marginal density h(y). 

For some specific value x*, let g(x*) > 0. Then g(x*)dx 

approximates the Q-value for the hypothesis that the true 
value of x falls between x* and x* + dx; this Q-value is 
positive. f(x*, y)dxdy specifies that the true value of x falls 
between x* and x* + dx and that the true value of Y falls 
between y and y + dy. In virtue of the multiplication theorem, 
the conditional probability that the value of y falls in its spec
ified interval conditional on the assumption that the value 
of x falls in its given interval is approximated by 

f(x*, y)dxdy/g(x*)dx = f(x*, y)dy/g(x*). 

Now this ratio performs the function of a conditional density 
function for y, and can be used to compute Q-values for hy
potheses that y falls in some interval conditional on the true 
value of x being in the interval from x* to x* + dx. At least, 
this is so to a good degree of approximation. 

What about the distribution for y conditional on the true 
value of x being x*? Here we have a case where the condition 
bears O Q-value and the multiplication theorem mandates noth
ing. However~ because the function h(y; x*). = f(x*, y)/g(x*) 

is the limiting case of conditional densities where the condition 
is that x falls between x* and x* + dx for decreasing dx, the 
multiplication theorem is extended to govern such densities so 

thatf(x, y) = h(y; x)g(x). 
There is nothing in our original conditions which mandates 

adopting a credal state where this extended version of the 
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multiplication theorem obtains. However, where countable 
additivity obtains in the continuous case, in normal applica
tions it is taken for granted that it does hold and I shall 
consider only such cases. In this way, the capacity to compute 
conditional Q-functions from unconditional ones is somewhat 
extended. 

Care must be taken, however, not to use this extension 
beyond its permitted scope of applicability. Consider, for ex
ample, the hypothesis that the true value of x is either x* or 
x* *. That hypothesis has unconditional credence of 0. The 
conditional densities h(y; x*) and h(y; x**) are both deter
mined by the argument just given. What about h(y; x* V x**)? 
One might think that the analogy with probability computa
tions could be extended further and this density equated with 
h(y; x*)Q(x*; x* V x* *) + h(y; x* *)Q(x* *; x* V x* *). This 
much is correct. But what about Q(x*; x* V x**)? Noth
ing in what has been said warrants . equating this with 
g(x*)/(g(x*) + g(x**)). 

To be sure, nothing precludes assigning the Q-values in this 
way. However, by suitable transformation of x (e.g., to log x 
= z) we obtain a density function k(z)dz = g(x)dx so that 
k(z) = g(x)x. Q(z*; z* V z**) must equal Q(x*; x * V x**). 
But g(x*)/(g(x*) + g(x**)) * k(z*)/(k(z*) + k(z**)). 

Since there is no useful way of identifying which variable 
one should use to compute conditional Q-values from uncon
ditional densities, there is no reason to restrict attention to 
conditional Q-values constructed one way or another. 

Nonetheless, the foregoing method for extending the mul
tiplication theorem with the aid of joint and marginal densities 
does have useful applications. It appears in standard applica
tions of Bayes' theorem. I shall take for granted that it is 
operative unless explicit indication to the contrary is given. 

Occasions where countable additivity is violated can arise 
both when U is countably infinite and when it consists of 
noncountably many hypotheses representable by points in a 
region of an n-dimensional space. As noted before, stock ex
amples are, in the countable case, assigning equal Q-value to 
all elements of a countably infinite U and, in the continuous 
case, assigning equal Q-value to all line segments of equal 
length of the real line from -co to +co. If the assignments in 
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question are all positive,finite additivity entails that condition 

(4) of section 4.2 cannot be satisfied. 
De Finetti rightly concludes from this that the Q-values in 

question should be set at 0 if credal coherence is to be sat
isfied as everyone with any sympathy for Bayesian ideas re
quires. But, in that case, countable additivity is violated. 

The customary response is to endorse countable additivity 
and to prohibit credal states of the sort just cited. Curiously 
enough those who are sympathetic to De Finetti's view that 
such prohibition is unwarranted have not been prepared al
ways to bite the bullet and abandon countable additivity. 

H. Jeffreys, for example, preferred assigning positive Q
values to elements of U when they are countably infinite and 
also positive density to points on the real line in the case of 
the uniform distribution, even though for both these assign
ments the total probability assigned to all elements of U (to 
the real line) then becomes infinite. 15 Jeffreys excused his 
procedure by suggesting that it constituted a mere change in 
the scale on which probabilities are measured. 

It is, indeed, true that condition (4) of section 4.2 can be 
altered by substituting any other positive finite number for 1 

without changing the account of credal rationality in any im
portant way-provided that the same positive finite number is 
used as the maximum for probability throughout. In this sense, 
the choice of 1 is a convention as Jeffreys rightly insists. 

But Jeffreys' procedure cannot be excused by this obser
vation. In the first place, if the maximum probability is infinite, 
no change of scale (i.e., no method of multiplying the proba
bility measure by a positive finite constant) will diminish it to 
a finite value. Furthermore, as I. Hacking has pointed out, the 
same maximum should be used throughout one's calcula
tions.16 Jeffreys uses 1 as the maximum except when com
pelled to do otherwise in order to represent uniform distribu-

tions. 
There is no escaping the conclusion drawn by De Finetti 

that if one wishes to allow credal states of the sort of interest 
to Jeffreys (and De Finetti agrees with Jeffreys in wishing to 
do so) the elements of U must be assigned 0 Q-value or 0 

density. 
In spite of this, Jeffreys' instincts are, in my opinion, quite 

sound. 
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Given an assignment of 0 as the Q-value for each element 
of U in the countable case or an assignment of 0 as the Q
value for every finite interval in the continuous case, there is 
no determination of the Q-values for the other elements of the 
a-algebra of members of the power set when U is countably 
infinite or of Lebesgue measurable sets in the continuous case. 
Furthermore, assigning 0 Q-value fails to make discriminations 
which there is some warrant for seeking to represent. 

Consider a countably infinite U and contrast a case (i) where 
each h; in U is intended to have equal Q-value with every 
other and where the conditional Q-value for h; conditional on 
one of n elements of U (including h;) being true is l/n with the 
case (ii) where V* is obtained from U by refining the partition 
through identifying g 11 with h1, construing h2 as the disjunction 
of gz1 and g22 , and, more generally, construing h; as the dis
junction of i exclusive alternatives g;1, g;2 , ••. , g;; where 
Q(g;;; h;) = l/i. In this latter case, Q(gn) = Q(g21 ) = 0. Yet, 
there is a sense in which the evaluations of these alternatives 
with respect to credal probability do not rank them equally. 

One way to bring this out is to define Q(g11 ; g11 V g21 ) = 

2/3. Observe, however, that this assignment is not mandated 
by those previously made. And, in any case, insofar as feasible 
it would be desirable to be able to determine such conditional 
Q-values from unconditional appraisals. 

Jeffreys was seeking ways and means to do this and, in so 
doing, for extending the applicability of Bayes' theorem to 
situations where "prior" Q-distributions are improper in the 
sense we have been considering. 

His mistake, in my opinion, was not in using a measure 
function which obeys countable additivity but "blows up" 
because it assigns positive measure to infinitely many alter
natives covering the entire space of alternatives. Rather, he 
erred in taking that measure to be the probability measure. 

We have already seen that there are other ways to represent 
credal states than by means of probability measures. Q-func
tions can be determined, for example, by densities or cumu
lative distribution functions. It is a mistake, however, to think 
of a density measure as a probability measure. So too it is a 
mistake to think of Jeffreys' "improper" measures as proba
bility measures. Th~y do, however, have· a use in the system
atic representation of Q-functions. 
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Given a countably infinite U, consider the power set gen
erated by U. An (unconditional) measure on U is a a-finite 

measure defined for all members of the power set if and only 
if it is (i) nonnegative, (ii) countably and, hence, finitely ad
ditive, and (iii) there is some countably infinite partition of the 
set U such that each element of the partition is assigned finite 
measure. 17 The same definition applies in the continuous case 
except that the a-algebra over which the measure is defined 
is the class of Lebesgue measurable or Borel sets. Otherwise 
we can obtain density functions as before. 

Thus, reverting to our example of countably infinite alter
natives, in the case of U*, we assign g 11 the a-finite value 
mK(g11) = k, mK(g21) = mK(g22) = k/2, ... , mK(g,.;) = k/i, .... 
For each h; in U, we have, on the other hand, mK(h;) = k. 

It does not matter here what positive finite value is attrib
uted to k. Any system which assigns ak instead of k (a > 0) 
will lead to equivalent results as far as we are concerned here. 

Given such a a-finite measure, unconditional Q-values can 
be determined for many (though not all) elements of the a

algebra. The rules for the procedure are as follows: 

(a) If mn(h) and mK(-h) are both finite, then let Q(h) = 

mK(h)/(mn(h) + mK(-h)). 

(b) If mn(h) is finite and mK(-h) infinite, then let Q(h) = 0. 

(c) If mK(h) is infinite and m/{(-h) is finite, then let Q(h) = 1. 

Thus, in our example, Q(g11) = Q(g21 ) = Q(h2) = 0 even 
though the m-values for these alternatives are not all the same. 

Thus far, we have failed to consider cases where both hand 
-hare assigned infinite ml\ values. Consider, for example, the 
case where h is associated with the set of alternatives h; with 
even subscripts and -h with those bearing odd subscripts. 

The a-finite measure we have used will prove insufficient 
to handle this case. In such cases, we repartition the original 
partition U or U* into finitely or countably many alternatives 
each of which bears an infinite mK-value and define a new a

finite measure over these which can then, in turn, be used to 
determine unconditional Q-values for more hypotheses in the 
a-algebra. 

This procedure can be reiterated as necessary, introducing 
as many a-finite measures as desired. 
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Thus fa: only unconditional mK-values and Q-values have 
been. ~onside red. Let e be consistent with K and consider the 
cond1t1onal measure mK,e associated with mK. There are three 
cases to consider: 

mK(e) is finite and positive. mK,e(g) = mK(g & e)/mK(e) = 
Q(g; e). 

mK(e) = 0. mK,e(g) is given independently. It is a a-finite 
meas~re for. the partition U' obtained by deleting elements 
of U mcons1stent with K and e. 

mK(e) = 00
- mK,e(g) = kmK(g & e) for some finite constant 

k > 0. 

Rules (a), (b), and (c) are to be used to obtain Q(g; e) from 
mK,e(g). 

T_he most _important case is the first in situations where e is 
eqmvalent given K to an infinity of alternatives in U. 

Thus, let U consist of alternatives of the form e & h. "o · d · . , , t' r 1 
an. J rangmg over all the integers. Let mK(h1) be a positive 
fimte constant the same for all h·'s. Let m ·(e·) > o Q( .·h·) 

) 11. i • ei, J 

and Q(hi;e,) are both defined even though Q(h) = o and, 
perhaps, Q(e) = 0 as well. Indeed, 

Q(h,; e,) = Q(e,; hi)m"(hi) Q(e;; h1) 

2:}=1 Q(e,; h,)mK(h,) 2:}= 1 Q(e;; hi) 

Thu~ our rules allow in such cases the use of Jeffreys' 
extens10n of Bayes' theorem to derive posteriors from priors. 
Instead of using a prior probability distribution over the h.'s 

however, the uniform a-finite measure was used. Had ~h~ 
prior been improper in some other way a different a-finite 
measure could have been used. 

These techniques can be readily adapted to apply to contin
uous cases. 

This scheme is, in its essentials, derived from 
A. Renyi.

18 
Renyi, however, does not define unconditional Q

values except in cases where both the "event" and its com
plement bear finite measure according to the a-finite measure 
used. Thus, when U is countably infinite and all elements are 
to be treated alike, this is revealed in the mK-measure· but 
Renyi does not introduce a probability measure assignin~ val
ues to the elements of U. I follow De 'Finetti in being prepared 
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to assign Q-values to all elements of the a-algebra. By failing 
to do so, Renyi disguises the departure from countable addi
tivity which De Finetti makes explicit. 

Yet, the class of cases I am considering here is not quite as 
extensive as that which De Finetti is prepared to consider. To 
illustrate, consider the following example. 19 

Let U consist of countably many exclusive and exhaustive 
alternatives such that each hi is equivalent (given K) to g; V f;, 
where K entails that g; &f; is false. For each i, Q(g;) = Q(f;) 

> 0. Then set LQ(g;) = LQ(f;) = 1/3. Let g assert that at least 
one of the g;' s is true and g assert that at least one of the f;' s 
is true. Both of these hypotheses must receive Q-values at 
least as great as 1/3 but one must receive a Q-value greater 
than 1/3. Hence, countable additivity will be violated. Yet all 
the other requirements on Q-functions, including credal reg
ularity, may be satisfied. 

This example of De Finetti's cannot be represented with 
the aid of a-finite measures of the sort introduced here. In the 
spirit of tolerance which has been the basis for my defense of 
violations of countable additivity in the first place, I see no 
reason for ruling out such cases as a matter of principle. On 
the other hand, none of the applications where countable ad
ditivity is violated-such examples will appear in later chap
ters-will be of this sort. At present, De Finetti's example is 
an interesting mathematical possibility. Its significance for ap
plications remains obscure. 

In recent years, M. Stone and other statisticians have intro
duced a raft of paradoxes which arise in cases where "im
proper" distributions of the sort utilized by Jeffreys are intro
duced. It is argued that the "contradictions" which emerge 
provide decisive reason for prohibiting such improper distri
butions. As a consequence, important practitioners of this 
black art such as D. V. Lindley have recanted. 20 

An example of such a paradox will be discussed in section 
12.6. In that example and others like it, contradictions result 
from the use of countable additivity. Since countable additivity 
is already violated by the introduction of the improper prior 
(understood as a a-finite representation of a finitely but not 
countably additive prior) and since the derivation of a paradox 
employs countable additivity, it is scarcely surprising that 
contradiction emerges. The source of the difficulty, however, 
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is not in the use of improper distributions but in the incon
sistent assumption and rejection of countable additivity. 
De Finetti argued against this practice many years ago. It is 
high time we took his admonitions to heart.21 

Many of the paradoxes discussed by Stone are not to be 
analysed in the manner of section 12.6. T. Seidenfeld argues 
that these so-called "marginalization" paradoxes concern rea
soning about conditional probabilities where the conditions 
bear 0 probability as well as countable additivity. He intends 
to discuss this matter elsewhere. In any case, the marginali
zation paradoxes pose no obstacle to the use of improper 
priors-i.e., priors violating countable additivity. 
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SUSPENDING JUDGMENT BETWEEN OPTIONS 

Sections 2.3-2.8 contain a summary of the account of infer
ential ~xpansion proposed in Gambling with Truth 1 and ex
tended in "Information and Inference" 2 and "Acceptance 
Revisited." J I assume in those sections, as in my previous 
publications, that the criteria for choosing expansion strategies 
should be derivable from general principles of rational choice 
together with a specification of the goals and options involved 

in inferential expansion. 
These accounts presuppose that strict Bayesian conditions 

on credal rationality are satisfied and that the cognitive goals 
are representable by an "epistemic utility function" unique up 
to a linear transformation. This utility function is determined 
(up to a linear transformation) once the M-function and the 
value of the caution parameter q are specified. 

I have always accepted these strict Bayesian requirements 
with some embarrassment;4 but, in this section, I shall tem

porarily continue to require them. 
If the principle of expected utility, which specifies that £

admissibility is both necessary and sufficient for admissibility, 
is adopted, it follows that all and only those expansion strat
egies which are optimal (and hence bear maximum expected 
epistemic utility) are admissible. However, according to the 
theory developed in chapter 2 and in my previous work, when 
two or more expansion strategies are £-admissible, it remains 
the case that exactly one is admissible. 

The cognitive options or expansion strategies may be par
tially ordered with respect to strength by counting one option 
stronger than another if it rejects a proper subset of elements 
of the ultimate partition U containing all elements of U re
jected by the second option (or if the disjunction of elements 
of U "accepted as strongest via induction from K" according 
to the first option entails (given K) the disjunction of elements 
of U accepted as strongest according to the second expansion 

strategy but not vice versa). 
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Moreover, I have shown that, given strict Bayesian condi
tions on credal and valuational rationality, the epistemic utility 
functions I propose guarantee the existence of exactly one £
admissible expansion strategy such that no other £-admissible 
expansion strategy is weaker than it is. 5 

Taking this into account I proposed a "rule for ties," ac
cording to which that particular weakest £-admissible cogni
tive option should be counted uniquely admissible among the 
cognitive options.6 

The rule for ties violates the principle of expected utility by 
denying that £-admissibility is sufficient for admissibility. This 
ought not, however, count as an objection to the rule for ties. 

A satisfactory account of admissibility ought to guarantee 
that if there is exactly one £-admissible option it should be 
uniquely admissible. To this extent considerations of expected 
utility ought to dominate all other considerations in assessing 
admissibility. 

It is tempting to extend this requirement to situations where 
two or more options are £-admissible, and to insist that in 
those situations as well only £-admissible options should be 
admissible. As a rule, I think this stipulation is sound; but as 
shall emerge in the subsequent discussion, I also think a case 
is available for allowing some exceptions to the rule. 

The rule for ties, in the strict Bayesian case, does prescribe 
choosing an £-admissible expansion strategy in the context of 
inferential expansion. But it proscribes alternative expansion 
strategies even though they are £-admissible. Thus it satisfies 
the requirements just cited. And, in addition, it satisfies a 
demand deeply ingrained in the epistemological outlook I am 
attempting to articulate. 

In cognitive decision making in general and in inferential 
expansion in particular, the options can be partially ordered 
with respect to strength. Indeed, in inferential expansion, the 
partial ordering has the properties of a lattice. Consequently, 
given any set of cognitive options, there is exactly one strong
est option as weak as or weaker than all options in the set. In 
choosing that option, X can be viewed as expressing a sort of 
suspension of judgment between options in the initial set. 
Thus, if the initial set consists of the options of accepting gas 
strongest via induction and of accepting g' as strongest, if X 
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adopts the option of accepting g V g' as strongest, he is not 
only suspending judgment as to the truth values of g and g', 

but also expressing a sort of suspense concerning the merits 
of g and g' by leaving open the opportunity for subsequent 
expansion to render a verdict between those two strategies. 

The aforementioned deeply ingrained demand is manifested, 
in my view of inferential expansion, in the prescription to 
suspend judgment between all £-admissible expansion strate
gies. In cases where two or more cognitive options are £
admissible, I contend that it would be arbitrary in an objec
tionable sense to choose one over the other except in a way 
which leaves open the opportunity for subsequent expansions 
to settle the matter as a result of further inquiry. 

I wish to extend this attitude to other contexts of decision 
making as well. In inferential expansion, it seems clear enough 
to say that choosing to accept g V g' as strongest via induction 
leaves open the acceptance of g as strongest (or of g' as 
strongest) and expresses suspension of judgment between 
these two cognitive options. But in other decision problems, 
it is not so easy to characterize the sense in which choosing 
one option expresses suspension of judgment between others. 

In my opinion, the problem reduces to identifying some 
quasi ordering of the options feasible in the decision problem, 
which identification is interpretable as ordering the options 
with respect to strength. Given such an ordering, the attitude 
I wish to emphasize can be brought to bear in other contexts 

besides inferential expansion. 
I shall return to the issue of extending the idea of ordering 

options with respect to strength to other contexts subse
quently. For present purposes, it suffices to insist that consid
erations of expected utility ought not to so outweigh other 
considerations as to lead us to allow all £-admissible options 
to be admissible and so prevent us from favoring suspension 
of judgment between £-admissible options in those contexts 
where it makes sense to do so and is feasible to do so. 

The rule for ties is not the only principle that may be in
voked with some cogency when considerations of expected 
utility fail to render a verdict. Minimax principles, among 
others, have been devised to evaluate options when expected 
utility fails. I shall discuss such principles in the next chapter. 
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I mention them here only to emphasize that the idea of mod
ifying the principle of maximizing expected utility (understood 
as counting £-admissibility as necessary and sufficient for ad
missibility) has ample precedent. 

Thus, the rule for ties represents an attitude favoring sus
pension of judgment over arbitrary choice when, in cognitive 
decision making, more than one option is £-admissible. I con
tend that even though using that principle to give expression 
to that attitude violates the principle of maximizing expected 
utilit_y, the violation is not without precedent and, in any event, 
contmues to respect the relevance of expected utility in eval
uating options with respect to admissibility by insisting that 
the options between which judgment is to be suspended should 
be £-admissible ones. 

But the rule for ties has been formulated on the assumption 
that strict Bayesian conditions are satisfied and for cognitive 
decision problems concerning inferential expansion. In the 
next section, I shall continue to deal with inferential expansion 
~ut shall relax the assumptions embedded in the strict Bayes
ian case. 

In the strict Bayesian case, X's credal state for the elements 
of the ultimate partition U contains exactly one Q-function. 
His demands for information are represented by a single M
function. The expected epistemic utility of accepting g as 
strongest is equal to Q(g) - qM(g). This in turn is equal to 
L[Q(h;) - qM(hJ)] where the sum is taken over all h 's in the 
ultimate partition that are disjuncts in g. 

1 

If g bears maximum expected epistemic utility, then (i) no 
~isjunct h; which is in U and in g is such that Q(h;) - qM(h;) 
is negative; (ii) for every h; in the ultimate partition such that 
Q(hJ) - qM(h;) > 0, h1 is a disjunct in g; and (iii) elements of 
U for which Q(h;) - qM(h1) = 0 may or may not be disjuncts 
in g. 

Clearly there must be a weakest cognitive option bearing 
maximum expected utility-to wit, the g satisfying (i) and (ii) 
and containing as disjuncts all elements of U cited in (iii). 
. Hence, in the strict Bayesian case, the injunction to suspend 
Judgment between all £-admissible options leads to the adop
tion of an £-admissible option. £-admissibility fails to be suf-
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ficient for admissibility according to the rule for ties but it 

remains necessary. 
This no longer holds true when we consider violations ~f 

strict Bayesian requirements. To illustrate the P?int numen
cally, let u contain hi. h2, ha, and h4 , each bearing an equal 
M-value of 1/4, and let q = .5; so that if there were only one 
Q-distribution over the elements of U, the rule for ties would 
lead to rejecting all and only those hypotheses whose Q-values 

were less than 1/8 = .125. 
Let X's credal state be the convex hull (the set of weighted 

averages) of the following two distributions: Q(hi) = .7, Q(h2) 

= .2, Q(h
3

) = .01, and Q(h4) = .09; Q'(hi) = .7, Q' (h2) = .01, 

Q'(h 3) = .2, and Q'(h4) = .09. . . 
According to the Q-function, the uniquely E-adm1ss1ble op-

tion is accepting hi V h2 as strongest. According to the . Q' -
function it is accepting hi V h3 as strongest. If we consider 
other w~ighted averages of these two functi~ns, we ~an find 
some for which the optimal cognitive option is accepting hi as 
strongest. However, there is no Q-distribution in the cred~l 
state ~ccording to which accepting hi V h2 V ha as strongest is 
optimal. Hence, this cognitive option is not £-admissible. Yet, 
it is the strongest cognitive option as weak as or weaker than 

all the £-admissible cognitive options. 
Thus if we are to extend the rule for ties to apply to 

inferen;ial expansion when strict Bayesian conditions are not 
satisfied, we shall have to abandon the requirement that £-

admissibility is necessary for admissibility. t . 
There are two considerations which mitigate the seriousness 

of this deviation from the principle of maximizing expected 

utility: 
(a) The strongest potential answer as weak as or weaker 

than all £-admissible potential answers is E-undominated. 
That is to say, there is no cognitive option which bears hig~er 
expected utility than it relative to every permissible Q.-fu~ct10n 
in the credal state and every permissible utility function in the 
system of goals and values. All £-admissible options are E
undominated· but the converse does not, in general, hold. 

(b) I am n~t suggesting that rational X should ignore con-

t Thus, I modify the position I took in "Indeterminate Probabilities," 1. 

Phil., V. 71 (1974), p. 410. 
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siderations of £-admissibility. Rather he should avoid when
ever feasible rendering a verdict between £-admissible options 
by remaining in suspense. Thus, £-admissibility continues to 
be taken into account even though suspension of judgment 
entails adopting a cognitive option which is not itself £-ad
missible. 

If one is prepared to accept this violation of the injunction 
to restrict admissible options to £-admissible ones (as I am 
prepared to do) for the sake of the rule for ties, the criteria for 
inductive expansion obtained can be characterized as follows: 

Reject hi in U if and only if for every Q-function in B, Q(hi) 

< qM(hi). 

We may generalize still further. Thus far we have supposed 
that X's epistemic utilities are representable with the aid of a 
definite value of the index of caution q and a single M-function. 
Let us, for the moment, keep q fixed but allow all M-functions 
in a given convex set to be used. The criteria for expansion 
conform to the rule just cited except that hi is rejected if and 
only if Q(h;) < qM(hi) for every permissible Q-function and 
every allowed M-function. 

Finally, we may allow X to be undecided as to the index of 
caution q. In that event, he should use the glb of the range of 
permitted values for q to assess rejection. 

The idea behind this procedure is that an element of the 
ultimate partition U is to be rejected if and only if it is rejected 
according to all permissible rankings of cognitive options with 
respect to expected epistemic utility where the procedures for 
assessing expected utility employed are those described in 
chapter 2 and proposed by me in earlier publications. 7 

6.3 The extended rule for ties presented in section 6.2 applies 
P-Admissibility only to inferential expansion. Inferential expansion, however, 

is a species of deliberate decision making-so I have main
tained. Consequently, the criteria for rational choice regulating 
inferential expansion ought to be seen as derivable from fun
damental criteria for deliberate decision making applicable not 
only when the goals are cognitive but even in contexts of 
noncognitive decision making where the goals are moral, po
litical, economic, or otherwise different from the aims of in
ferential expansion. For this reason, the criteria for rational 
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choice invoked in the previous section in contexts of infer
ential expansion ought to be reformulated in a manner allowing 
recognition that noncognitive as well as cognitive decision 

making is subject to these criteria. 
Following the terminological practice adumbrated in section 

4.8, I shall call those options P-admissible which survive the 
tests discussed in section 6.2 when they are generalized so as 
to cover a broader range of decision problems. P-admissibility 
will be defined in a way which implies that options prescribed 
by the extended rule for ties in the context of inferential 
expansion become uniquely P-admissible. But the concept of 
P-admissibility will be applicable in other contexts as well. 

I am not certain whether the extended concept of P-admis
sibility has much more than a purely formal significance. To 
repeat, I introduce it here primarily to establish my contention 
that my account of inferential expansion sees such decision 
making as a special case of a more general class of decision 
problems covering both cognitive and noncognitive decision 
problems. In the next section, I shall consider some simple
minded examples of practical decision making where consid
erations of P-admissibility might turn out to be relevant in a 
nontrivial way; but the question remains an open one. 

I shall suppose that the options feasible for the agent are 
subject to a quasi ordering with respect to strength. In the 
special case of a cognitive decision problem, that quasi order
ing is a partial ordering with the properties of a lattice. But I 
am not supposing that these conditions always obtain. Indeed, 
in most practical decision problems, I suspect they do not. 
Moreover, I shall postpone until the next section what such 
a quasi ordering might mean in the context of a practical 
decision problem. I wish to focus on formal problems for the 

present. 
In section 6.2, it was noted that in inferential expansion 

with epistemic utility functions meeting the requirements I 
have imposed, at least one cognitive option exists which is (a) 
as weak as or weaker than all £-admissible options, (b) no 
weaker than any other option satisfying (a), and (c) £-undom-

inated. 
The existence of such an option cannot be guaranteed when 

the quasi ordering with respect to strength fails to meet the 
requirements of a lattice structure or the utility functions fail 
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to beha:Ve like epistemic utility functions of the sort I h 
been usmg A d . ave . n eve_n if such an option exists, there could be 
more than one-unlike th · . . . 

d
. e s1tuat10n m inferential expansion 

as 1scussed in section 6.2. 

. fiLet us call an option meeting the three conditions just sat-
1s ed a WU-opti I · ~ . on. n m1erent1al expansion, there must al-
":ays be one and ?nly one WU-option. The extended rule for 
ties recommends It as uniquely admissible. 

It seems enti_rely plausible to allow that when there are 
several ~U-opt_1ons the considerations of option preservation 
suspens10n of Judgme t d . ' . n an strength bemg invoked fail to 
render a verdict between them. That is to say all h . 
should count as P-admissible. ' sue options 

ev;uppose, h?wever, that there are no WU-options. In that 
nt, t_here I~ no £-undominated option which allows for 

suspension of Judgment between all £-admissible options I 
t~a~ case, considerations of option preservation, suspen~io: 
~hJudg~e.nt, and of _strength have failed to render a verdict. 
he e dec1s1on maker I~ left with as indeterminate a solution as 

·1~as when he appraised the options with respect to expected 
ut1_ 1t~. In ~hat case, the set of P-admissible options should 
comc1de with the set of £-admissible options. 

T~es_e _c_onsiderations suggest the following definition of P
adm1ss1b1hty: 

If th~r~ are any WU-options, all and only WU-options are P
a~m1ss1b!e. If there are no WU-options, all and only £-admis
sible options are P-admissible. 

In ~he preceding section I have outlined a way that cognitive 
options may be partially ordered with respect to strength in a 
ma~ner relevant to the evaluation of these options in infer
ential expansion. Should we seek to extend th' 'd . . . 1s 1 ea to con-
texts of .noncogmt1ve decision making? 

. We ~1ght attem~t _to do so in the following manner: If Jacob 
Is co~vmced that I~ Is feasible for him to marry Rachel, he is 
certa1~ that choosm~ t? marry Rachel implies his marrying 
her. G1:en such conv1ctions, Jacob is entitled to employ a rule 
or routme for expansion which adds to h' h . Is corpus t ose hy-
potheses 'W~ose truth Is entailed by the information that he 
chooses a given option provided that he chooses that option. 
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Each feasible option in a decision problem is associated with 
a set of sentences or propositions to be added to the agent's 
corpus upon choosing that option. This applies ~o all kind~ of 
decision making and is not restricted to inferential expansion. 

Consequently, feasible options might be ordered with re
spect to the strength of the information added due to such 

choosing true. . 
This is not, however, the way in which cognitive options 

are ordered with respect to strength in efforts at inferential 
expansion. Consider the option of adding g to K tog.ether with 
all deductive consequences of g and Knot already m K. That 
option is represented as accepting g as strongest via induction 

from K. . . 
If X chooses that cognitive option, the strongest proposition 

he chooses true is "X accepts g as strongest via induction 
from K.'' X does not choose g to be true at all. 

In cognitive decision making, the options are ranked with 
respect to the strongest sentences to be added to K when the 
options are implemented. They are not ranked with respect to 
the strongest proposition chosen true. 

In point of fact, in cognitive decision making, the strongest 
proposition chosen true in choosing to accept g as ~trongest 
does not imply the strongest proposition chosen true m choos
ing to accept g V g' as strongest. The propositions involved 
are incompatible (given X's knowledge). Thus, the two _prop
ositions are not comparable with respect to strength if the 
ordering with respect to strength proceeds i_n this man?er. 
Precisely the same point applies to the compansons of options 
in practical decision problems. . 

Suppose, for example, Laban, with a shotgun pointed at 
Jacob's head, compels Jacob to marry Rachel or to marry 
Leah but not both. Jacob has two options. Given his corpus, 
choosing "Jacob marries Rachel" implies choosing "Jacob 
does not marry Leah"; and choosing "Jacob marries Leah" 
entails choosing "Jacob does not marry Rachel." The s~ron~
est proposition chosen true according to the one option_ is 
incompatible given K with the strongest chosen true accordmg 

to the other. 
Suppose Laban gives Jacob a further option: letting Laban 

decide which of the daughters he will marry. If Jacob "cannot 
make up his mind,'' he might be willing to follow this option; 
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but the strongest proposition chosen true in choosing this . 
option is inconsistent with the strongest proposition chosen 
true in choosing to marry Rachel (or in choosing to marry 
Leah) and, hence, cannot be said to be weaker. Ranking op
tions with respect to the logical strength (relative to K) of 
strongest propositions chosen true will not do. 

Remember, however, that this method of ranking options 
with respect to strength is not followed in inferential expan
sion. Why should it be followed elsewhere? How, if at all, 
may we extend the notion of ordering options with respect to 
strength to the noncognitive case? 

Keep in mind that the principle of ?-admissibility is a "test" 
for the admissibility of feasible options to be administered 
once X's knowledge, credal state, and values have been fully 
exploited in an evaluation of feasible options with respect to 
expected utility. To identify ?-admissible options, new fea
tures of options are taken into account that were hitherto not 
emphasized. 

Thus, in ranking expansion strategies with respect to 
strength, certain interesting features are abstracted from X's 
evaluation of the outcomes of the several cognitive options 
with respect to epistemic utility. The M-function induces a 
total ordering of the potential answers with respect to infor
mational value. This M-function agrees with the quasi ordering 
with respect to logical strength I recommend using. The 
weaker the potential answer, the higher the M-value. Thus, 
the ranking of options for purposes of testing for ?-admissi
bility depends upon selecting features of the goals and values 
employed in evaluating the feasible options with respect to 
expected utility. It involves some aspect which, from the point 
of view of the agent, is or should be salient. 

In constructing epistemic utility functions, I have recom
mended that in inferential expansion the proximate cognitive 
goals meet certain conditions. In so doing, I am advocating a 
certain vision of what the aims of such inquiry should be like. 
I have no proof of my thesis. The best that can be done is to 
explore the ramifications of this view to find out whether its 
consequences are acceptable in an account of good scientific 
inquiry. 

In the same spirit, I contend that in .evaluating options for 
?-admissibility, cognitive options should be ranked with re-
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spect to strength in the manner indicated. This claim is another 
ingredient in my view of what the proximate aims of efforts at 
expansion should be. It is not relevant when attention is fo
cused merely on considerations of expected utility. Nor is it 
an element in the account of rational choice I am proposing. 
It is no more a feature of my account of rational choice than 
my claim that in efforts at expansion scientists should seek 
error-free information. 

When other types of decision making are .considered with 
different goals and values, there may be no standard principle 
for selecting an aspect of the goals and values to be used in 
inducing a quasi ordering of options for purposes of testing 
P-admissibility. The specification of a quasi ordering can be 
regarded as itself an addendum to X's goals and values perti
nent to the decision problem under consideration. t 

This approach does not trivialize the principle of P-admis
sibility. Even in cases where X counts all feasible options as 
noncomparable with respect to strength-as, I suspect, is the 
case in many practical decision problems-the principle re
mains applicable. It implies, under such conditions, that all 
and only £-admissible options are P-admissible. 

On the other hand, in those cognitive decision problems 
where the method for ranking options with respect to strength 
is clearly indicated (which should be the case in contraction 
as well as inferential expansion), P-admissibility prescribes a 
different sort of result. The set of P-admissible options will 
not, in general, coincide with the set of £-admissible options. 
And similar results may obtain should some nontrivial way of 
ranking options with respect to strength be endorsed. 

Suppose, in some practical decision problem, that X cannot 
make up his mind how to rank options with respect to strength. 
X may then employ the quasi ordering that stipulates that one 

t Formally the proposal is that the partial ordering is relative to a partition 
W. For each feasible option, we can identify the strongest disjunction of 
elements of W to be added to the corpus if the agent elects that option. In 
inferential expansion, Wis the ultimate partition U. Notice also that in infer
ential expansion there is one and only one option associated with each distinct 
proposition expressible as a disjunction of el~ments of U: This is not true for 
all decision problems. For each feasible option, there will be at least a~d at 
most one disjunction in W; but several feasible option~ may be associated 
with the same disjunction. Furthermore, there may be disjunctions which are 
not associated with any feasible options. 
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option is at least as strong as another if and only if all methods 
of ranking entertained by X agree. Otherwise the options are 
noncomparable. 

Thus, the principle of P-admissibility does what it is de
signed to do. It is a principle applicable to all decision prob
lems which stands in favor of suspension of judgment in those 
cases where considerations of expected utility fail to yield a 
definite recommendation. It expresses this view quite ade
quately in the context of inferential expansion and is formu
lated in such a manner that differences between cognitive and 
practical decision making are due to the differences between 
characteristic features of the aims of cognitive decision making 
and practical aims rather than to differences in principles of 
rational choice. 
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tional distributions are all identical with each other and with 
the corresponding unconditional Q-distribution over U. Yet, 
enormous indeterminacy remains if every unconditional Q
distribution over U obeying the calculus of probabilities is 
permissible. No option weakly dominated by any other will be 
£-admissible. All other options will be £-admissible. The in
crease in credal determinacy due to commitment to credal 
irrelevance of options for states does not carry very far. 

In their classical compendium, R. D. Luce and H. Raiffa 
characterize decision making under risk as decision making 
where the probabilities of outcomes of options are given. In 
decision making under uncertainty, "the probabilities of these 
outcomes are completely unknown or are not even meaning
ful." 1 

One of the advantages of the method proposed here for the 
representation of credal states and utilities is that it permits 
clearer and more sophisticated discriminations than those in
volved in this crude classification. In practice, Luce and Raiffa 
appear to restrict decision making under risk to cases where 
credal states are strictly Bayesian and options are credally 
irrelevant for states. I suspect that decision making under 
uncertainty was intended to cover cases corresponding to sit
uations where maximal credal indeterminacy obtains, subject 
to the constraint that credal irrelevance also holds. This is not 
at all clear, however; and perhaps cases of maximal indeter
minacy where credal irrelevance no longer obtains are also to 
be covered. 

The important fact is that many authors for diverse reasons 
have attempted to formulate criteria for decision making under 
uncertainty. Among the criteria which have been proposed are 
minimax regret, optimism-pessimism criteria, maximin, and 
leximin. t All of these criteria rule out strongly dominated 

t Luce and Raiffa, in Games and Decisions (New York: Wiley, 1958), ch. 
13, discuss minimax regret as minimax risk. The criterion is attributed to 
L. J. Savage, who minimizes his own originality in The Foundations of 
Statistics (New York: Wiley, 1954), p. 170. Savage calls the rule minimax 
loss. But loss is often used as the negative of utility and, in this form, it is the 
minimax principle used by A. Wald in his On the Principles of Statistical 
Inference (Notre Dame, Ind.: University of Notre Dame Press, 1942). This 
latter principle is equivalent to the maximin principle discussed and so called 
by Luce and Raiffa, and it is under this name that I shall discuss it. Luce and 
Raiffa attribute the optimism-pesimism criterion to L. Hurwicz due to his 
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options-and leximin rules out weakly dominated options as 
well-as will become apparent when we formulate them. 
Thus, whether we employ them in contexts of decision making 
under uncertainty construed as presupposing or not presup
posing credal irrelevance makes relatively little difference. In 
either case, we can construe these criteria as applying to all 
those options which have survived the tests of £-admissibility 
and P-admissibility-which, in effect, is to say that the criteria 
apply to virtually all of the feasible options. _ . 

Yet there is a subtle but important difference between this 
way o'f approaching the matter and the way students of deci
sion making under uncertainty customarily perceive the prob
lem. No matter which criterion is employed, it is applied to 
the appraisal of all the feasible options rather than to that 
subset consisting of £-admissible (and hence, under the con
ditions assumed to prevail, P-admissible) options. 

In practice this view makes little difference except for the 
evaluation of dominated options. But the conventional under
standing of these criteria prevents recognition of the oppor
tunities available for applying these criteria in contexts where 
there is more credal determinacy. 

If, as proposed here, principles of choice designed for de
cision making under uncertainty are formulated as criteria for 
evaluating P-admissible options with respect to admissibility 
rather than for evaluating feasible options with respect to 
admissibility, it becomes apparent that the domain of appli
cability of these criteria may be extended beyond contexts of 
decision making under uncertainty. 

As just indicated, however, there are many different criteria 
for decision making under uncertainty to consider. Those men
tioned previously by no means exhaust the list of those which 
have been proposed. But they are the major contenders. We 
must somehow obtain some sort of appraisal of their merits. 

I shall adopt a generalized version of a maximin criterion-

paper Optimality Criteria for Decision Making under Ignorance (Cowles 
Commission discussion paper, Statistics, No. 370, 1951). However, a more 
general approach of this sort had already been p~blished_by ~- L. S. Shackle 
in Expectation in Economics (Cambridge; Cambndge Umvers1ty_ Press, 19~9). 
The lexicographical maximin or leximin criterion is discussed m connect10n 
with welfare orderings in A. K. Sen, Collective Choice and Social Welfare 
(San Francisco: Holden-Day, 1970), p. 138. 
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although I am quite prepared to adopt leximin instead. In 
section 7 .3, I shall offer some considerations in favor of choos
ing maximin or leximin. Before, however, doing so, it will be 
useful to furnish more explicit characterizations of all the 
criteria mentioned: minimax regret, optimism-pessimism, 
maximin, and leximin. 

Given the states of nature in U according to some classical 
representation of a decision problem and given a permissible 
u-function in G, let ut be the maximum value the u-function 
assigns an oik for fixed hk E U and for all A/s in d. 

The regret r(Ai; hk) in implementing Ai conditional on hk 
being true is equal to ut - u(oik). The regret level r(AJ for Ai 
is the maximum value for r(A;; hk) among all hk's in U. 

The function r(AJ is determined by the states in U and the 
u-function in G and induces a complete ordering of the feasible 
options with respect to regret relative to the given u-function. 

A feasible option is regret optimal relative to u if and only 
if its regret level is a minimum among the P-admissible options 
relative to u. Alternatively, it is a minimax regret solution 
relative to the P-admissible options. 

An option is regret admissible if and only if it is regret 
optimal for some permissible u-function in G among the P
admissible options. 

In discussions of decision making under uncertainty, it is 
often assumed that the decision maker has a set G of u-func
tions such that all members of G are linear transformations of 
one another. In effect, the regret admissible options are all 
minimax regret solutions relative to the same u-function. 
When G is allowed to violate the condition of uniqueness 
under linear transformation, minimax regret solutions relative 
to one u-function may not be minimax regret solutions relative 
to another and this accounts for the complication in the char
acterization of regret admissibility. 

The other point to notice is that regret admissible options 
are characterized as minimax regret solutions among the set 
of all P-admissible options and not among the feasible options. 
In this way, the minimax regret criterion is rendered applicable 
to all contexts of decision making and not merely decision 
making under uncertainty. 

In defining ut, we might take it to be the maximum value 
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among all P-admissible options rather than all feasible options. 
It will give substantially the same results in contexts of deci
sion making under uncertainty; but in more determinate situ
ations, there can be a variation in the prescriptions made. 

The hope level h(A;) relative to a u-function in G is the 
maximum value for u(o;k) among all hk's in U. The security 
level relative to the same u-function is the minimum value 

s(A;) for u(o;k) among the hk's in U. 
For each option, the optimism-pessimism or focal pair con-

sists of the hope level and the security level. G. L. S. Shackle, 
the originator of this criterion, introduced what one might call 
an adjusted optimism-pessimism pair or what he called stand
ardized focus values. 2 I shall not introduce this complication 

here. 
Let us suppose that we have some principles for ranking the 

various optimism-pessimism pairs which satisfies a Pareto con
dition. To fix ideas, we shall consider a ranking according to 
the weighted average ah(A;) + (1 - a)s(A;) for 0 :'.:S a :'.:S 1. The 
ranking need not be of this form but could be so. 

Relative to such a ranking using some permissible utility 
function in G, options among the P-admissible can be identi
fied as optimism-pessimism optimal and optimism-pessimism 
admissible; OP-admissible options are those that are OP-op
timal relative to some permissible u-function. 

Strictly speaking, there are as many different notions of OP
admissibility as there are criteria for ranking optimism-pessi
mism pairs. Thus, for each choice of a value for the index a 

a different criterion is constructed. 
When a = 0, the criterion which emerges is a maximin 

criterion. Options are ranked relative to u with respect to 
security, and a definition of security optimality (S-optimality) 
among P-admissible options relative to u is easily constructed. 
An option is S-admissible if and only if it is S-optimal relative 
to some u-function-i.e., if it is a maximin solution for some 

u-function among the P-admissible options. 
There may be many maximin solutions relative to a given 

u-function. One can rank these according to a so-called lexi
cographical maximin or leximin ranking. This compares op
tions with the same security levels by considering the second 
worst possible outcomes and, if these are equal, looks at the 
third worst and so on until no more comparisons are available 
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or the tie is broken. Leximin optimality relative to u can then 
~e. ~efined a~d an option becomes lex-admissible if and only 
if 1t 1s lex-optimal among P-admissible options relative to some 
permissible u-function in G. 

Regardless of whether one countenances regret admissibil
ity, OP-admissibility, S-admissibility or lex-admissibility as 
necessary and sufficient for admissibility, in situations where 
the set of £-admissible and P-admissible options coincide the 
options which become admissible are £-admissible opti,ons. 
They are, in this sense, Bayes solutions. 

Some authors conclude from this fact that in choosing an 
option according to one of these criteria one is acting as if 
one's credal state is one where the uniquely permissible Q

function renders that option optimal with respect to expected 
utility. 

For example, it is often alleged that maximin is a pessimistic 
~rocedure. The agent who uses this criterion is proceeding as 
1f nature is against him. 

It is then objected that such pessimism is unwarranted and 
indeed, blatantly so; for it presupposes that any change in th~ 
agent's values will lead to an adjustment in nature's strategy 
so as to thwart the agent. 

The interpretation of maximin involved in this objection is 
not the interpretation of maximin I am using. t 

Maximin is a criterion for evaluating those options that have 
survived tests for £-admissibility and P-admissibility. Consid
erations of expected utility have failed to decide between these 
options. This is often due to credal indeterminacy. According 
to some permissible Q-functions in the credal state, the max
imin solution is optimal with respect to expected utility. Had 
o_ne of these Q-functions been uniquely permissible, that op
tion would have been uniquely £-admissible. Given the agent's 

t I? The Foundations of Statistics (New York: Wiley, 1954), p. 181, Savage 
claims that "ultrapessimism"' is unfairly charged to the minimax rule in de
cision theory by confusing it with the use of minimax in two-person zero-sum 
gam~s _whe~~ minimax loss means minimax the negative of income (i.e., 
m~~tmm _utihty~ .. Confusion is avoided, so Savage thinks, by interpreting 
mm1max m dec1s1on theory as minimax regret. At the same time, so is the 
charge of ultrapessimism. It appears that Savage believes that a decision 
theory based on minimaxing negative income or utility is an ultrapessimistic 
theory. See also J. Harsanyi, "Can the Maximin Principle Serve as a Basis 
for Morality? A Critique of John Rawls's Theory," Essays on Ethics, Social 
Behavior, and Scientific Explanation. Dordrecht: Reidel, 1976, pp. 39-40. 
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values, that strictly Bayesian credal state would have been a 

pessimistic one. 
But X does not endorse such a pessimistic credal state. Had 

he done so, invoking maximin would have been unnecessary. 
Considerations of expected utility alone would justify choosing 
what we are calling the maximin solution. It is precisely when 
the agent is neither committed to nor opposed to pessimism 
that he must go beyond expected utility and invoke other 
considerations in making a decision. But the decision made is 
to choose the maximin solution-not the pessimistic credal 
state. X should remain in suspense between the pessimistic Q
functions that render the maximin solution optimal with re
spect to expected utility and those Q-functions that are per
missible according to his credal state but that do not render 
the maximin solution optimal. Considerations of security and 
of security alone decide in favor of the maximin solution. 

Strict Bayesians, of course, deny that there are any genuine 
contexts of decision making under uncertainty or of even in
termediate credal indeterminacy. Hence, the problems we are 
dealing with ought not to be of concern to them. Many authors 
of this persuasion are prone to look upon advocates of maxi
min or one of the other criteria cited here as either worried or 
wishful thinkers who let their credal states (taken to be strictly 
Bayesian) be modified by changes in their values. Ingenious 
arguments are adduced to show that maximiners are closet 
Bayesians who lapse into incoherence because of their wishful 
thinking. But all such arguments (as well as similar arguments 
against the rival approaches described here) beg the question 
by interpreting the criteria of choice not as conditions on 
admissibility to be applied after considerations of expected 
utility (and other relevant factors such as P-admissibil~ty) h~ve 
failed to render a verdict but as covert ways of mvokmg 

considerations of expected utility. 
We shall have occasion to explore a few examples of this 

sort of question-begging subsequently.t The question whic~ 
needs to be faced now is whether there is any way of arbi
trating between the alternative criteria mentioned in this sec-

tion. 

t Harsanyi, ibid., pp. 39-40 and 46-47, furnishes ample illustration of a Bayes
ian dogmatism which refuses to countenance situations where credal states 

are indeterminate. 
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In the summer of 1973, I read in the newspapers that English 
bookmakers were prepared to bet 2 to 1 that Nixon would not 
be impeached and to take the other side of the gamble at odds 
of 1 to 3. They were not, however, prepared to take bets of 
the first kind at odds longer than 2 to 1 nor bets of the second 
kind nearer to I to 2. 

Bookmakers are notoriously acquisitive men interested in 
a good rate of return on their money and this, no doubt, 
accounts in part for the spread in the odds. However, the 
spread is considerable and bookmakers tend to be more cau
tious than their customers. It is not at all implausible to sup
pose that their behavior at the time revealed an indeterminacy 
in their evaluations with respect to credal probability of the 
hypothesis that Nixon would be impeached. 

To explain how spreads in the odds might arise due to credal 
indeterminacy, consider the following artificial gambling situ
ation: 

Case 1: h.4 asserts that the chance of coin a landing heads on 
a toss is .4 and h.6 asserts that the chance of a landing heads 
is .6. X knows that h.4 V h.6 but does not know which of these 
alternatives is true. X also knows that a is to be tossed and 
will land heads (eH) or tails (-eH). 

Suppose that X is offered a gamble on the outcome of the 
toss where he receives S dollars if eH is true and nothing 
otherwise. X, so it shall be assumed, has neither taste nor 
aversion for gambling per se and, for such small sums of 
money, the utility of gains or losses in money is linear in the 
amount of the gain or loss. To all intents and purposes, X's 
goals and values may be represented by any linear transfor
mation of his monetary payoff function. 

Xis asked how much he is willing to pay for the gamble. If 
he pays P dollars, then if eH turns out to be true, X receives 
S - P dollars; and if false he receives -P dollars. Clearly a 
gamble where P is reduced is favored over one where it is 
increased. But the issue is how high P becomes before X 
refuses the gamble and, as a consequence, receives 0 dollars 
regardless of the outcome of the toss. 

The question presupposes that there is, indeed, a threshold 
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price beyond which X will refuse the purchase of the gamble 

when the stake S is fixed. 
Suppose X's credal state were strictly Bayesian so that 

Q(eH) = r. We can, in point of fact, determine that r must be 
some number greater than or equal to .4 and less than or equal 

to .6. 
In virtue of the principle of direct inference (whose formu-

lation will come in later chapters) and given X's knowledge, 
every Q-function in his credal state should satisfy the require
ments that Q(eH; h.

4
) = .4 and Q(eH; h.6) = .6. Credal coher

ence requires, therefore, that Q(ett) = .4Q(h.4) + .6Q(h.s), 
where Q(h.

6
) = 1 - Q(h.4). Hence, given a value x = Q(h.4) 

somewhere between 0 and l, a value for Q(eH) somewhere 
between .4 and .6 will be determined. If Q(eH) = r for all 
permissible Q-functions in the credal state, then all permissible 
Q-functions assign h. 4 the same numerical value and, for the 
purposes of the problem, the situation is strictly Bayesian. 

The threshold value for P can then be determined. It is the 
price for which the expected utility of the gamble utilizing r 
= Q( eH) is equal to the expected utility of refusing the gamble, 
i.e., O. That is to say, r(S - P) - (1 - r)P = 0. Hence, P = 

rS. 
The ratio PIS = r, where Pis the threshold price, is called 

a fair betting quotient for the gamble. This ratio should be the 
same regardless of variations in the magnitude of the stake S 
and regardless of its sign. If S > 0, the fair odds are Pl(S - P). 
If Sis negative, the fair odds are (S - P)IP-i.e., the recip
rocal of the fair odds when S > 0. The fair odds when S is 

negative are odds against eH· 
These are the consequences in the strict Bayesian case. 

There can be no spread in the odds. If, as is the case in real 
life, there are spreads in the odds and the credal state is strictly 
Bayesian, the behavior is rational only if utility is nonlinear in 
the monetary payoff (due to taste for or aversion to gambling 
or to a lust for profits of a fixed minimum size or the like). In 
our hypothetical case 1 we can stipulate that such factors are 

to be ignored. 
Following C. A. B. Smith, 3 I contend that in cases like case 

1 even in real life X's credal state will not always or even 
often be strictly Bayesian. It will allow many Q-values to be 
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permissible for Q(h.4) and, as a consequence, the set of per
missible Q-values for eH will form a subinterval of the interval 
from .4 to .6. (All the points in the subinterval, except perhaps 
for endpoints, will be permissible due to the convexity con
dition.) To simplify the discussion, suppose that the interval 
is the entire interval from .4 to .6. 

Smith's thesis is that in this kind of situation there will 
continue to be a threshold price for stake S where S > O and 
a threshold price for stake S' (of the same magnitude) where 
S' > 0. However, PIS will be less than P' IS'. That is to say, 
the odds at which Xis willing to bet on eH are not the reciprocal 
of the odds at which he is willing to bet against. There is a 
spread in the odds, as in the case of the London bookmakers, 
due here to indeterminacy in credal state. 

Indeed, Smith assumes that the threshold betting quotient 
for S > 0-i.e., the lub of betting quotients for positive stakes 
at which X will accept rather than refuse the gamble-should 
equal .4. The threshold when S < 0-i.e., the glb of betting 
quotients at negative stakes at which X will accept rather than 
refuse the gamble-should equal .6. 

In general, Smith's contention is that when S > 0, the 
threshold is the endpoint of the interval of permissible Q
values for the hypothesis in question to the left or the ''lower 
pignic probability"; and when S > 0, the threshold is the 
endpoint to the right or the "upper pignic probability." 

I contend that, in the face of credal indeterminacy of the 
sort described, rational agents should appraise such gambles 
in a manner which allows for such a spread in the odds. I do 
not know how to prove this to be so; and if someone is 
unconvinced I can offer nothing to convince him. However, 
one small advantage of making this assumption is that, given 
that the agent is rational and that utility is linear with respect 
to the monetary payoff, one might entertain the devising of 
circumstances which reveal whether his credal state for eH is 
numerically precise or indeterminate. 

According to the account of rational choice being proposed 
here, how does the case 1 situation appear with indeterminate 
credal state? When the betting quotient Pf S is less than .4 and 
S is positive, the expected utility of accepting the gamble is 
positive regardless of the Q-function, permissible according to 
the credal state, that is u~ed to compute expe'cted utility. 

7.3 SPREADS IN THE ODDS 
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Accepting the gamble is uniquely £-admissible, uniquely P

admissible, and, hence, uniquely admissible. If PIS > .6, re
fusing the gamble is uniquely admissible by similar reasoning. 

If PIS falls in the interval from .4 to .6, both accepting the 
gamble and refusing it are £-admissible and, hence, P-admis-

sible. 
According to Smith's proposal, if .4 is the lowest permissible 

Q-value for eH and .6 the highest such value, gambles for such 
"medial" betting quotients should be rejected and the thresh

old betting quotient should be .4. 
By similar reasoning if S < 0, then the gamble is uniqu~ly 

£-admissible for betting quotients greater than .6 and refusmg 
the gamble uniquely admissible for betting quotients less than 
.4. Once more Smith's prescription recommends rejecting 

gambles for medial betting quotients. 
Thus in hypothetical gambling situations such as case 1, 

wherein accepting a gamble for a given stake and betting 
quotient is compared with rejecting it, Smith's proposal does 
give a condition for determining which £-admissible (and, 
hence, P-admissible) options are admissible. 

On the other hand, the question remains open as to how to 
proceed in general. Suppose there are three P-admissible o_p
tions or more than three. Or suppose there are two P-adm1s
sible options but different payoffs for three or more states of 

nature. 
In such cases, I think Smith regards all £-admissible and, 

hence, P-admissible options to be admissible. But I am not 
sure. If, however, this is his view, it stands in contradiction 
to his treatment of pairwise choices of the sort exemplified in 

case 1. 
A general approach can be obtained, however, by consid-

ering the various criteria for decision making under uncer
tainty as generalized previously. We can ask, for each of them, 
whether they allow for spreads in the odds in case 1 situations. 
If they do not, there are at least some slender grounds for 

dismissing them. 
I propose to use Smith's approach to case 1 predicaments 

as a condition of adequacy for evaluating these criteria; but I 

do so very tentati.Vely. . . 
Of the four criteria canvassed, only the criteria of S-adm1s-

sibility and lex-admissibility may be used as conditions for 
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admissibility while permitting spreads in the odds in case I 
situations in the manner described by Smith. 

That these two criteria pass is apparent. There are only two 
possible consequences with distinct payoffs if the gamble is 
chosen and one if the gamble is refused. Consequently, when 
these options are £-admissible, they can qualify as S-admis
sible if and only if they are lex-admissible. In these cases, the 
one criterion yields the same results as the other. 

Furthermore, refusing the gamble always bears higher se
curity than accepting it (as long as S > P). Consequently, 
when both options are £-admissible (and, hence, P-admissi
ble), the criterion of S-admissibility favors refusing the gam
ble. Hence, for medial odds, the gamble should be refused just 
as Smith requires. 

If regret-admissibility or OP-admissibility are used as nec
essary and sufficient for admissibility, results conflicting with 
Smith's prescriptions can occur. 

Consider regret admissibility. In case 1 when S > 0, ac
cepting the gamble has regret 0 when eH is true and regret P 
when eH is false. Refusing the gamble has regrets S - P and 
0, respectively. Refusing the gamble has lower regret level 
than accepting it if and only if S - P < P, i.e., if and only if 
PIS> .5. And if Sis negative, accepting the gamble has regret 
P - S and 0 for the two states whereas refusing has re
grets 0 and - P. Refusal has lower regret if and only if 
-P < P - S, i.e., if and only if PIS < .5. 

Consequently, there can be no spread in the odds in our 
case 1 predicament. The threshold betting quotient is the same 
whether S is positive or negative and it is different from the 
lower and upper permissible Q-values. If the interval in other 
variants of case 1 fails to cover the value .5, then if the upper 
credal or pignic probability is less than .5, the threshold is at 
that upper value. If the lower credal probability is greater than 
.5, the threshold betting quotient is at that value. These con
sequences clearly conflict with Smith's prescription. 

Using OP-admissibility sometimes allows for a spread in the 
odds. Recall, however, that Smith requires that the threshold 
for betting quotients when S is positive is to equal the lower 
probability and the threshold when S is negative is to equal 
the upper probability. As a consequence, the former threshold 
is less than or equal to the latter. 
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But if a is greater than .5 this cannot be the case; for when 
S is positive and PIS is medial, the gamble is accepted if and 
only if PIS < a. When S is negative and PIS is medial, the 
gamble is accepted if and only if PIS < (1 - a). When a is 
greater than .5, (l - a) < a. 

So let us restrict a to values less than .5. We obtain a spread 
in odds but the thresholds will not coincide with the lower and 
upper credal probabilities unless a is less than or equal to .4. 
By changing the examples so that the lower probabilities are 
arbitrarily close to 0 and the uppers arbitrarily close to l, the 
value of a is forced to 0. But when a = 0, OP-admissibility 
coincides with S-admissibility. 

Let us then sum up the argument. Four well-known criteria 
for decision making under uncertainty have been reformulated 
so that they are applicable not only in contexts of maximal 
credal indeterminacy but in contexts of intermediate credal 
indeterminacy as well. They have also been modified so that 
sets of utility functions may represent payoff structures even 
though they are not unique up to a linear transformation. 

These four criteria have then been applied to a hypothetical 
gambling situation where partial credal indeterminacy obtains. 
Under the special circumstances of that kind of decision prob
lem, Smith's view that gambles at medial odds should be 
refused is adopted as a standard for evaluating the applicability 
of our four criteria to such situations. Of the four criteria, 
minimax risk and OP-admissibility fail and maximin (or S
admissibility) and leximin (or lex-admissibility) pass. 

On this tenuous basis, I propose to endorse either S-admis
sibility or lex-admissibility as necessary and sufficient for ad
missibility. For simplicity's sake and because it has been more 
widely advocated, I shall adopt S-admissibility here. Most of 
what wiJ be said about S-admissibility applies mutatis mutan
dis to lex-admissibility so that this decision, though arbitrary, 
makes no significant difference to the development of the 

themes to be discussed. 

7.4 A. Wald pioneered in the use of maximin criteria in statistical 
On Appraising decision making. He thought that through the use of a statis
Security tical decision theory based on maximin he could systematize 

and generalize the approach of J. Neyman and E. S. Pearson 
to the handling of statistical data. 4 
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As I understand them, Neyman, Pearson, and Wald were 
objectivist necessitarians (see chapter 4). They recognized that 
objectivist necessitarians are faced with a serious challenge to 
explain how data can be useful in deliberation and inquiry 
and, in particular, in experimentation. This challenge will be 
explained in chapter 14; the Neyman-Pearson-Wald response 
will be discussed in chapter 17. Wald undertook to make a 
version of the maximin criterion the centerpiece of his own 
response. As a preliminary to those later discussions, some 
comparison of Wald's version of maximin and the one used 
here to construct a criterion of S-admissibility is in order. 

The criterion of S-admissibility was built on the basis of the 
notion of a security level for an option relative to a permissible 
u-function. Given that notion, P-admissible options could then 
be ranked with respect to security relative to the u-function 
and an S-admissible option understood to be one which is 
optimal with respect to security among P-admissible options 
according to the security ranking relative to some permissible 
u-function in G.t. 

Thus, the applicability of the criterion of S-admissibility 
depends on how security levels are determined relative to u

functions. The previous discussion has glossed over an im
. portant ambiguity in the instructions for doing this which must 

now be faced. It lies at the heart of the issue which Wald's 
version of maximin raises. 

Consider the following hypothetical decision problem: 

Case 2: h.4 , h.6 , and eH are as defined previously. X has a 
choice between three options: G1 is a gamble with a stake of 
one dollar and a price of $0.45 on the coin landing heads on 
a toss. G2 is a gamble with a stake of $2.00 and a price of $0.80 
on the coin landing tails. G3 is the option of refusing the gamble 
with neither loss nor gain. X must choose exactly one of these 
options. 

The payoff matrix is shown in table 7. I. 
Assume that options are credally irrelevant to states. Direct 

inference requires that Q(ett; h.4 ) = Q(-htt; h.6 ) = .4 and 

t Wald does not appear to have restricted his criterion to ?-admissible or 
even £-admissible options but there is some small indication that he might 
have been prepared to do so (On the Principle of Statistical Inference, Notre 
Dame, Ind.: University of Notre Dame Press, 1942, p. 44). 
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Table 7.1 Payoff Matrix 

h.4 & eH h_. & -eH h.6 & eH h.s & -eH 

G, .55 -.45 .55 -.45 

-.80 1.20 
G2 -.80 1.20 

0.00 0.00 
G, 0.00 0.00 

Q(eH; h.
6

) = Q(-eH; h.4) = .6. Let r be the Q-value for h.4 and 
(1 - r) for h.

6
• Then the Q-values for the various states of 

nature become .4r, .6r, .6(1 - r), and .4(1. - r), respectively. 
The expected utilities for the three options relative to the Q
function assigning h.4 the unconditional value r are 

E(G
1

) = .22r - .27r + .33(1 - r) - .18(1 - r), 

E(G
2

) = -.32r + .72r - .48(1 - r) + .48(1 - r), 

E(G3) = 0. 

To identify which of the feasible options are £-admissible 
requires a specification of the range of permissible Q-values 
for h.

4
-i.e., the range of values which r may take. Let us, for 

the moment, assume it is the maximum range from 0 to 1. If 
r = 0, thenE(G

1
) = .15 andE(G2) = E(G3) = 0. As rincreases, 

the expected utility of G1 declines to a minimum of - .05 when 
r = 1. The expected utility of G2 increases from 0 to .4. The 

expected utility of G3 remains 0. 
Consequently, among these three options, G3 fails to be 

optimal relative to any permissible Q-function and, hence, is 
£-inadmissible. The other two options are both £-admissible 
and presumably P-admissible. Considerations of security need 

to be invoked to arbitrate between them. 
Notice that, following on the way possible consequences 

are partitioned and payoffs specified in table 7 .1, G3 bears the 
highest security level, G1 is next, and G2 bears the lowest 
security level. But G3 is ruled out of court because of consid
erations of expected utility. We need to consider only G1 and 
G

2
. G

1 
seems uniquely S-admissible and, hence, admissible. 

It should be chosen. 
But there are other ways to look at the matter. According 

to table 7 .1, four hypotheses as to the outcome of an option 
are specified. Thus, for option G1 these hypotheses are that 
G

1 
is implemented while h.4 & eH is true, while h.4 & -eH is 
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Table 7.2 

eH -eH 

G, .55 -.45 

G2 -.80 1.20 
Ga 0.00 0.00 

true, while h.6 & eH is true, and while h.6 & -eH is true. Similar 
characterizations may be offered for G2 and G3. 

Observe, however, that eH is equivalent given the back
ground_ knowledge K to h.4 & eH V h.6 & eH. Given the imple
mentation of any one of the options, the payoff is the same 
regardless of which of the two disjuncts in eH is true. Hence, 
no m~t~er which permissible system of Q-values is adopted, 
the utility assigned implementing option G; while either h.4 & 
eH o~ h.6 & eH is true is the same. If the option is Gi. it is .55, 
G2 y1e_lds - ._so and G3 gives 0. The u-value for implementing 
G; while eH 1s true is credally insensitive in this sense. 

The same applies to -eH. We can rewrite our payoff matrix 
as shown in table 7 .2. 

The permissible Q-values for eH range from .4 to .6 as r 
ranges from 0 to 1. Obviously the evaluations with respect to 
£-admissibility remain as before. So do the evaluations with 
respect to S-admissibility. 

Clearly what we have done here is derived a new system of 
states of nature and system of possible consequences for each 
feasible option by taking disjunctions of possible conse
quences in the original "partitions" to form a new system of 
partitions. The credal insensitivity to which reference was 
made previously enabled us to determine a-values for each 
possible consequence in the new system independent of a 
selection of a Q-function from the set permissible according 
to the credal state. 

Observe, however, that there is another way to coarsen 
these partitions. h.4 is the disjunction of h.4 & eH and h.6 & 
- eH, and h.6 may be obtained in a similar manner. 

Now given the truth of h.4, the ultimate payoff for any option 
(except G3, which remains 0 throughout) depends on whether 
eH is true or false. Nonetheless, a definite u-value can be 
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attributed to h.4 given implementation of an option. For option 
G1 , that expectation is 

E(G1 ; h.4) = Q(eH; h.4)(.55) - Q(-ett; h.s)(.45). 

This u-value for h.4 would be credally sensitive were it not 
for the fact that the principle of direct inference, so we are 
assuming here, mandates that every permissible Q-function 
meet the condition that Q(eH; h.4 ) = .4. Hence, regardless of 
the permissible Q-function in the credal state being used, the 
utility assigned h.4 when G1 is implemented becomes .22 - .27 
= - .05. Similar computations for h.6 and for all options yields 
the payoff matrix shown in table 7.3. 

Like the payoff structure shown in table 7 .2, this payoff 
structure is obtained by coarsening the initial structure in a 
credally insensitive manner. Consequently, the resulting pay
off structure has no effect upon how £-admissibility is to be 
evaluated. G1 and G2 come out £-admissible. G3 does not. The 
representations, though different, are-so it seems-of the 
same decision problem. Yet, in table 7 .3 the security level of 
G2 is higher than G1-counter to the result according to the 

matrix of table 7 .1 or 7 .2. 
Thus, we can see that formulations of a given decision 

problem which are equivalent as far as evaluations of expected 
utility are concerned can, nonetheless, yield distinct appraisals 
with respect to S-admissibility. And the difference is traceable 
to the way security levels are determined. 

Wald and other students of statistical decision theory for
mulate decision problems so that the states of nature are sta
tistical hypotheses such as h.4 and h.6 specifying what the 
chances of various outcomes of some sort of experiment bear
ing on the payoff will be. The utility assigned to choosing 
feasible option A; when such a statistical hypothesis is true is 
the expected utility of A; conditional on that hypothesis. This 
expected utility can be computed from the payoffs in utility 
after the process has been carried to completion for some u

function because direct inference (so, at any rate, it is as
sumed) determines the requisite conditional Q-values for the 
outcomes of experimentation given the statistical hypothesis. 
Thus, in case 2, Q(eH; h.4) = .4 and Q(eH; h.6 ) = .6 regardless 
of the Q-function being used to compute expectations. The 
payoff matrix of table 7.3 illustrates the procedure. 
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But payoff matrices 7 .1 and 7 .2 also may be used to deter
mine security levels and, in our example and in many others, 
it can be shown that the options which become S-admissible 
will be different. I shall call the procedures for fixing security 
exemplified in these matrices method (a) and Wald's proce
dure method (b) for fixing security levels. In our case 2 ex
ample, there are other methods available as well; but it will 
suffice for present purposes if we consider these two. 

Is there any right or wrong concerning the fixing of security 
levels according to method (a), method (b) or some other 
method? 

I have taken for granted all along that an account of rational 
choice should not mandate what a rational agent ought to do 
in any given situation. The agent's knowledge, credal state 
and values need to be specified. Given this specification, I 
have proposed a criterion for evaluating feasible options with 
respect to £-admissibility. However, no stipulation concerning 
what X's goals and values ought to be (except for minimal 
consistency requirements) has been imposed. To do more than 
this would be to enter into questions of morals and politics. I 
do believe that there is, in some suitably qualified sense, a 
right and a wrong about such matters; but the determination 
of right and wrong is often difficult and, to a large degree, 
criteria for rational choice may be proposed without settling 
the issues under dispute. Decision theorists ought not to be 
moralists, politicians, or guidance counselors. 

What is obvious in the case of appraisals of £-admissibility 
ought to be obvious also in the case of appraisals of P-admis
sibility and S-admissibility. Thus, I contended that evaluations 
of feasible options with respect to strength to be used in 
assessing P-admissibility reflect the agent's goals and values 
and that decision theory should not legislate what these should 
be. 
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The same point applies to fixing security levels. How X 
selects security levels is a reflection of another aspect of X's 
goals and values. Decision theorists should not legislate how 
this should be done, except to insist that it be done in a 
consistent and coherent manner. 

My contention is, therefore, that insofar as Wald and others 
have advocated method (b) rather than method (a) or some 
other method for fixing security levels in determining S-ad
missibility, they have been engaged in moral and political 
argumentation and have gone beyond a discussion of rational 
decision making. 

In a free society, there should be no objection to moral 
exhortation of this sort. However, intellectual clarity requires 
that men not be condemned as irrational because they refuse 
to fix security levels in one manner rather than another. 

Thus, an investor on the stock market may not know how 
the Congress will decide on some taxation policy. If they 
decide one way, a given investment will have one expected 
value. If they decide in another, the investment will have 
another expected value. The Wald prescription is that the 
security level for the investment should be the smallest of 
these expectations. Method (a) prescribes attending to the 
worst that can happen when the investment is exchanged for 
money or some other commodity. The investor who looks to 
the ultimate payoffs in assessing security is no less rational 
than the agent who attends to the expectations conditional on 
the congressional decision. He has different values regarding 
security. 

Suppose agent Xis conflicted as to whether to use method 
(a) or method (b) or some other method for fixing security 
levels. How should he proceed? The spirit of the approach I 
have been advancing urges the agent to consider as S-admis
sible any option which comes out S-admissible relative to 
some method of fixing security levels taken seriously. 

7.5 The import of this conclusion for Wald's approach to statis
Mixed Options tical theory will be developed further in chapter 17. One im

portant ramification can be mentioned here. 
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Suppose case 2 is modified by furnishing X with a fourth 
option G4 • A spinner is spun with a .8 chance of falling in area 
1 on a dial and a .2 chance of falling in area 2. If it falls in the 
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first area, X receives payoffs from the toss of the coin in 
accordance with G,; if it falls in area 2, X receives payoffs in 
accordance with G2. 

G4 is a mixture of the pure options G1 and G2. By direct 
inference we know that regardless of the permissible Q-func
tion used to compute expected utilities, £(G4) = .8£(G1) + 
.2E(G2). Also E(G4 ; h. 4) = .8E(G1 ; h. 4) + .2£(G2; h.4 ) = .36. 
By similar calculation, £(G4 ; h. 6) = .12. 

This option is £-admissible because for Q(h.4 ) = r = .5, 
E(G4) = .24 whereas £(G1) = .05 and E(G2) = .2. On the other 
hand, G1 and G2 remain £-admissible. (Consider values of r 
near 1 and 0.) P-admissibility, once more, makes no differ
ence. Considerations of security must decide. 

If we follow Wald's method (b), the security level for G4 

will be E(G4 ; h.6 ) = .12 which is superior to that of the other 
two £-admissible options. Hence, the mixed option will be 
favored over the pure one on grounds of security. 

On the other hand, if method (a) is employed, the mixed 
option G 4 has the same security level of - .80 as the pure 
option G2, which is inferior to the security level of G,. Not 
only does it fail to improve security levels, it should positively 
be avoided. 

Notice that there is a third method for fixing security levels 
here. One could use Wald's method for the pure options and 
then fix the security level of the mixed option as the worst 
outcome of the two pure options (as method (a) requires). 
Once more, the mixed option furnishes no benefit. 

Wald's method for fixing security levels is, of course, not 
original with him. In discussing two-person zero-sum games, 
J. Von Neumann and 0. Morgenstern exploit mixed strategies 
to gain the existence of a solution to every two-person zero
sum game. 5 Of course, the solution is gained by identifying 
the security levels of mixed strategies in a manner analogous 
to Wald's method. 

However, if a decision maker facing such a game does not 
fix security levels in this manner, this does not show that 
he is irrational. It only demonstrates a limitation of the 
Von Neumann-Morgenstern theory of two-person zero
sum games. 

7.5 MIXED OPTIONS 
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8 VALUE CONFLICT 

8.1 That men fail to appeal explicitly to utility functions in ordi-
Lack of Self- nary deliberation is a familiar fact. Strict Bayesians know this 
Awareness and are rarely disturbed by it. Even when the attribution of 

strict Bayesian rationality is made an explanatory or prescrip
tive claim, strict Bayesians do not maintain that the agent 
explicitly or consciously identifies his utility function, his cre
dal probability function, or his expected-utility function. The 
assertion that X's values are representable by a utility function 
unique up to a linear transformation is a theoretical claim 
introduced for purposes of prediction or explanation of X's 

choices and his answers as to what his choices would be in 
various hypothetical decision problems .1 
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Of course, if strict Bayesian conditions are taken as pre
scriptions designed for policing credal states, goals and values, 
and choices in deliberation, the norms are applicable only 
insofar as X is able to apply them. Applying the norms may 
require becoming explicitly aware of the evaluations. But lim
itations of time, memory, computational facility, imagination, 
and emotional health impose serious bounds on X's ability to 
identify a utility function unique up to a linear transformation 
representing his goals and values. If X should begin to make 
progress in making such identification, he may have already 
modified these values. Psychological inhibitions and defenses 
may engender self-deception. Or X may be conceptually con
fused. Such factors may place insuperable obstacles in the 
way of X's identification of his goals and values. Unbeknownst 
to himself, X's values and goals may be impeccable according 
to strict Bayesian standards; but unless he can identify the 
appropriate utility functions to a reasonably good degree of 
approximation, this will help him very little in determining 
which of alternative options he should choose within the par
ticular context in which he finds himself. 

Defenders of the Bayesian faith sometimes take this objec-
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tion seriously. They recommend that X find out whatever he 
can about himself relevant to identifying his utility function. 
Even if the information he obtains is insufficient for singling 
out his utility function, it may be strong and accurate enough 
to show that some option is uniquely optimal with respect to 
expected utility and, hence, is uniquely admissible. Even when 
such definiteness is not to be obtained, some options may be 
eliminated on the grounds that they are clearly not optimal. 2 

This approach will seem unsatisfactory to advocates of the 
principle of maximizing expected utility or of the principle of 
S-admissibility I have adopted. When X is compelled to 
choose between options with partial knowledge of his own 
values, he cannot guarantee that he will maximize expected 
utility relative to a utility function correctly representing his 
system of values. At the very best, he can avoid choosing an 
option which he knows to be inadmissible according to those 
values. 

One could try the following resolution of the difficulty. If X 
is ignorant as to which of rival u-functions truly represents his 
goals and values, he should have a credal state for the rival 
hypotheses as to what that u-function is. Given any particular 
hypothesis, an expected-utility function for the feasible op
tions is defined. Multiply each such function by the probability 
that the u-function used is the correct representation of X's 

goals and values and take the sum. This provides a new ex
pected-utility function to be used in evaluating the options. 3 

Several objections are decisive against this view: 
(I) In effect, X is using a utility function to compute ex

pected utilities which is a weighted average of the utility func
tions between which he suspends judgment. The weights are 
the degrees of credence he assigns the rival hypotheses as to 
which u-function is the correct one. The weighted average 
would often, however, be different from any of the u-functions 
between which X suspends judgment. Hence, from X's point 
of view, it is certain that the computed u-function does not 
represent his goals and values; hence, using it is a betrayal of 
these values. 

(2) X's lack of self-knowledge can extend to his credal state. 
If we follow the same procedure for the credal state which is 
suggested for the u-function, X should have a credal state over 
rival hypotheses' as to what his corre.ct Q-function is. 4 The 

8.1 LACK OF SELF-AWARENESS 
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new Q-function will differ, in many instances, from those 
between which X suspends judgment. Moreover, if X is in 
doubt as to what his credal state over his credal state is, he 
may have to move to a still higher level. Obviously we are at 
the brink of an infinite regress. 5 

(3) Suppose X suspends judgment as to whether u1 or u2 is 
the correct representation of his goals and values. Of course, 
if u1 is the correct representation, so is any linear transfor
mation thereof. The same holds for u2 • Let r be the credal 
probability that u1 is the correct utility function and (1 - r) 

the credal probability that u2 is the correct utility function. 
The proposal being canvassed suggests that ru 1 + (1 - r)u2 be 
adopted as the utility function. But why should X not use ru; 

+ (1 - r)u2 instead, where u; is some linear transformation of 
u1? If he does, the new weighted average will not be a linear 
transformation of the original one. 

Clearly ordinary mortals are quite incapable of identifying 
their goals and values with sufficient clarity so as to represent 
them by means of convex sets of utility functions or by single 
utility functions. To this extent, in real life it will often not be 
feasible to implement strict Bayesian prescriptions or prescrip
tions based on S-admissibility. 

Recall, however, that the same is true of the principle of 
deductive closure imposed on a corpus of knowledge. In sec
tion 1.5, I contended that X is committed to regarding as not 
possibly false (in the sense of serious possibility) all conse
quences of items in his corpus. It was not required that he live 
up to his commitments but only that he live up to his com
mitments insofar as he is able. 

In the same spirit, we need not interpret strict Bayesians as 
flouting the principle that "ought" implies "can." They may 
regard systems of values and credal states as commitments 
that agents embrace at given times, and understand the con
ditions of rational valuation and credence as imposing con
straints on such commitments. Bayesians may recognize that 
limitations of memory, computational facility, imagination, 
and emotional health may prevent complete identification of 
these commitments and obedience to them. They need not, 
therefore, tailor their views to what the best psychology and 
sociology tells us is feasible. To the contrary, when deductive 
closure cannot be obeyed because of failures of memory, com-
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putational facility, or imagination, deductive closure should 
not be abandoned as a principle of rationality. Instead the 
advice of expert mathematicians is sought, computers are em
ployed, and techniques for improving the memory and retriev
ing information are devised. When Bayesian conditions of 
rationality seem beyond our grasp, strict Bayesians can rea
sonably urge us to employ the available technology and psy
chotherapeutic techniques to enable us to live up to our com
mitments better than we have previously done. 

No interesting system of norms can be applied under all 
circumstances. Provision must be made for excuses due to 
lack of feasibility. We should, therefore, recognize a distinc
tion between principles of rationality regulating an agent's 
commitments and the suggestions which may be made when 
he cannot live up to them. That distinction parallels the fa
miliar distinction drawn by statisticians between "exact" 
methods of estimation and "approximate" ones. 

To be sure, any proposed system of principles of rational 
credence or valuation intended to be imposed on commitments 
is not entirely exempt from the demand that it demonstrate its 
applicability. What is needed is some indication that at least 
in principle methods can be devised for identifying commit
ments with the precision required for real-life application. 
Moreover, some effort should be made to establish that the 
practical applicability of the theory is not excessively limited 
or, if it is, to show that "approximate" methods or "sugges
tions" based on the principles regulating rational commitments 
can be concocted which render the theory relevant in real life. 

Many efforts have been undertaken by strict Bayesians to 
show that their principles understood as constraints on com
mitments are at least in principle identifiable by methods of 
interrogation concerning hypothetical choice situations. And 
some Bayesians have focused attention on the problem of 
what an agent should do when he cannot live up to his com
mitments.6 Some of these matters are subject to controversy. 
However, I do not think a decisive objection can be leveled 
against strict Bayesians because ordinary agents are often 
incapable of numerical representations of their values or their 
credal states. 

To my knowledge serious critics of the deductive-closure 
requirement do not complain of its applicability, but raise 
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other objections which purport to show (wrongly I think) that 
a rational agent should not commit himself to all deductive 
consequences of items in his corpus. 7 The dispute is over what 
the commitments should be, and not whether the commitments 
proposed can always be satisfied. The same attitude should 
prevail in confronting strict Bayesian doctrine concerning ra
tional valuation and rational credence. 

A strictly Bayesian valuation of possible consequences of 
feasible options in a decision problem is representable by a 
utility function defined over these hypotheses which is unique 
up to a linear transformation. According to what has just been 
said, this utility function represents X's commitments as to 
how hypotheses about consequences should be evaluated with 
respect to their success in promoting his values and goals. 

I reject this strict Bayesian view of conditions which such 
commitments should satisfy. To repeat, my objection is not 
that ordinary agents are incapable of living up to such com
mitments. Rather it is that rational agents should not embrace 
such commitments in the first place. Even if X is so ideally 
situated that he is able to identify his commitments as to how 
possible consequences are to be appraised with respect to 
utility, he sometimes should not endorse commitments rep
resentable by a utility function unique up to a linear transfor
mation. Although I do maintain that these commitments 
should satisfy the requirements of valuational consistency, 
closure under linear transformation, and valuational convexity 
cited in section 4.7, the additional strict Bayesian requirement 
of valuational uniqueness should not only not be imposed but 
in some contexts is positively to be violated. 

Jacob is compelled to choose between marrying Leah (A 1), 

marrying Rachel (A2), and marrying Zilpah (A3). Jacob knows 
that if he chooses A 1 , he will be marrying an extremely ugly 
woman but superb cook (01). If he chooses A2 , he will be 
marrying a divinely beautiful woman but poor cook (02). 

Finally if he chooses A3 he will be marrying a woman of 
mediocre beauty and culinary ability (o3). 

Jacob faces a decision problem under certainty-i.e., where 
he is certain of what the consequences of each feasible option 
will be under a relevant description. The Bayesian principle 
of maximizing expected utility reduces in this case to selection 
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of that option or one of those options whose consequence 
bears maximum utility. To apply the principle Jacob need only 
have a valuation of consequences representable by a utility 
function over the o/s. 

Indeed, we do not need even this much. Jacob need have 
only a rank ordering of the o/s with respect to his values. 

If Jacob cared only for a wife who cooked well but not at 
all about beauty, he would rank 0 1 over o3 over 0 2 • Marrying 
Leah would be uniquely £-admissible and admissible. 

If Jacob cared only for a beautiful wife regardless of how 
she cooked, he would rank o2 over o3 over 0 1. Marrying Rachel 
would be uniquely £-admissible and admissible. 

Suppose, however, that Jacob is seeking both a beauty and 
a good cook. Ideally he would want a wife at least as beautiful 
as Rachel and as good a cook as Leah. He does not have the 
opportunity to marry such a paragon. If he marries Leah, he 
sacrifices beauty for good cooking, and if he marries Rachel, 
he sacrifices cooking for beauty. If he marries Zilpah, he 
settles for mediocrity in both. 

As long as Jacob is conflicted between these two desiderata 
and has failed to resolve the conflict, neither of the rankings 
described above represents his goals and values. 

Indeed, there is no ranking in this case which represents his 
system of valuations. 0 1 is neither better than, worse than, or 
equally as good as o2 (or o3) as far as Jacob is concerned. The 
three consequences are not comparable with respect to utility 
or value. 

A fortiori there is no utility function unique up to linear 
transformation which represents Jacob's goals and values. 

Bayesians are compelled to deny that Jacob's values are 
rational if they are of the sort described. But they cannot 
seriously deny that rational men can often be conflicted in 
their values as Jacob is conflicted between seeking a beauty 
and a good cook. Hence, Bayesians must deny that in cases 
like Jacob's, the agent's commitments are not representable 
by a utility function unique up to a linear transformation. 

One method open to the Bayesians for doing this is to admit 
the presence of conflict but contend that it is resolved. 

Suppose utility function 11 1 represents the valuation of the 
o/s according to Jacob insofar as he focuses on his concern 
to marry a beautiful woman: u1(02) > u1(03) > 11 1 (01). The 
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function u2 represents the valuation with respect to cooking: 

U2(01) > U2(03) > U2(02). 

Each of these utility functions taken by itself represents a 
strictly Bayesian goal where there is no conflict. The two goals 
are conflicting goals. But when taken separately the u-func
tions can be used to evaluate £-admissibility. If X were offered 
a lottery in which he was offered the prospect of marrying one 
of the three women with definite probabilities and was com
mitted to a goal representable by u1 , he could evaluate the 
goal in terms of expected utility using u1 • If Y were offered a 
lottery where the payoffs were the same but the function u2 

represented his goals and values, u2 could be used to compute 
expected utility. 

Jacob's goals and values are conflicted because they are 
representable by a utility function ua which is a function of u, 

and u2 and, in particular, is equal to au, + (1 - a)u2, 0 :::; a 

~ l. 
The function ua is a resolution of the conflict between u 1 

and u2 • It involves a relative evaluation of the two desiderata 
represented by u1 and u2 • This relative evaluation can be 
represented by "weights" attached to the two utility func
tions. If Jacob attaches 0 weight to u 1 and weight of 1 to u2, 

he cares only for a good cook. Alternatively, assigning a = 1 
and (1 - a) = 0 reveals Jacob as concerned only with beauty. 

Strict Bayesians who follow this approach deny that Jacob, 
if he is rational, has a genuine conflict in values. When Jacob 
is alleged to have a conflict in values, this means merely that 
the system of valuations to which Jacob is committed is a 
resolution in something like the sense just indicated of two or 
more conflicting valuations or desiderata. However, precisely 
because the conflict is resolved, there is no genuine conflict 
remaining. What such strict Bayesians deny is that, if Jacob 
is rational, he can be committed to a system of valuations 
involving an unresolved conflict between rival desiderata. 

Of course, Bayesians who endorse this view may concede 
that Jacob might not be able to tell what that resolution is. He 
might be able to say only that he is concerned to marry a 
woman who is a good cook and, at the same time, to marry 
a beautiful woman. He might recognize the conflict between 
these two descriptions of his values. Strict Bayesians would 
insist, however, that Jacob is committed to some resolution 
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of the conflict and that he would more aptly describe his values 
as being some resolution of the conflict between these desi
derata even if he could not state precisely what that resolution 
IS. 

This response denies the presence of genuine unresolved 
value conflict by reducing it to a situation where Jacob has 
definite strict Bayesian values but is incapable of fully speci
fying what his commitments are. Such moves are given some 
legitimacy in presystematic discourse by the description of 
Jacob as not knowing what his goals and values are. I do not 
think, however, we should rely on the vagaries of ordinary 
language as grounds for denying the existence of genuine un
resolved value conflict. 

The Bayesian move would be entertainable if we construed 
value or utility in terms of satisfaction, desirability, prefer
ence, or in some other such utilitarian vein. Of course, even 
this is debatable. Ever since Plato, philosophers have noted 
that even our inclinations and desires can come into conflict 
and that it is by no means automatic that such conflicts are 
resolved. 

Whatever the psychology of preference might be, however, 
utility functions need not represent only desirability or pref
erence. They can be used to represent moral, economic, po
litical, or various professional goals and values. I have used 
them to represent epistemic values appropriate to the char
acterization of the aims of certain kinds of inquiries. The 
notorious psychological facts are that men are often committed 
to several such systems of values and that on many occasions 
these may come into conflict. 

Indeed, conflicts of this kind, when they occur, are often of 
the most serious kind in the moral life of individuals and the 
political life of a society. Nor are men and institutions irra
tional because there are conflicts between the values to which 
they are committed. A person who never faces such conflicts 
(if such a person exists) would be considered naive, simple 
minded, and morally insensitive (albeit ensconced in a certain 
sort of bliss). 

Furthermore, when such conflicts arise, it is implausible to 
suppose that they reflect nothing more than a lack of self- , 
knowledge on the part of the agent. If a soldier in Vietnam is 
called upon by his superiors to perform actions involving, in 
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his judgment, the gratuitous slaughter of human beings and is 
conflicted between his commitment as a soldier to obey the 
orders of superiors and his commitment to avoid the gratuitous 
slaughter of human beings, it would be absurd to say that the 
soldier's problem is to discover his own commitments. From 
his point of view, the challenge is not to unearth the resolution 
of conflict to which, unbeknownst to himself, he is already 
committed but to modify his commitments which are in con
flict by finding a resolution toward which he can justifiably 
move. 

The difference is not merely verbal. If the soldier were 
concerned only to unearth his own commitments, he might 
engage in the kind of self-interrogation concerning how he 
would make choices in various hypothetical situations which 
might help elicit such commitments. If he is concerned to 
modify his values, he will do more than that. He will attempt 
to justify to himself the propriety of endorsing one resolution 
of the conflict rather than another. The considerations relevant 
to such an inquiry will resemble those which arise between 
two parties in debate who disagree with one another over 
some issue of value and attempt to make a case for one point 
of view or another. 

In cases such as this, the soldier lacks the excuse for vio
lating Bayesian requirements that he does not know what his 
values are. He is, indeed, very clear what his values are and 
that they are in conflict. Moreover, he is also clear that he has 
not, as yet, found a way to resolve the conflict. 

Bayesians must condemn the soldier as irrational. 8 

But this is untenable. Not only is the soldier quite rational, 
but he would be acting irrationally if he arbitrarily and without 
justification fixed on a resolution of the conflict between his 
value commitments just in order to save himself from the 
opprobrium of the Bayesians. 

A rational agent should undertake inquiries to resolve con
flicts in his values before making a decision-provided he is 
able to do so. 

By the same token, it is a betrayal of reason to latch on to 
a resolution without justification. It is far better to acknowl
edge that the conflict is unresolved and to make one's deci
sions taking that into account. 

Someone might insist, in reply, that it remains an open 
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question whether all modifications in value commitments are 
objectively arguable. Be that as it may, it seems to me that 
the arguability of such matters ought not to be foreclosed at 
the outset by a view of rational value commitment which 
obliges a rational agent to resolve value conflicts before choice 
whether such resolution is arguable or not and whether, if 
arguable, a justification can be offered for the resolution fixed 
upon. 

The problem of resolving value conflicts will not be dis
cussed in this essay. But any view which insists at the outset 
that the arguability of such matters is neither feasible nor 
relevant seems suspect. The Bayesian view of rational val
uation has such an antirationalist implication and should for 
that reason be rejected. 

Let G be any potential commitment to a system of goals and 
values for possible outcomes of options feasible in a given 
context of choice. G is Bayesian if and only if it satisfies 
valuation al consistency, closure under linear transformation, 
and valuational uniqueness (section 4. 7). 

Two Bayesian goals G1 and G2 conflict if and only if they 
are distinct sets of u-functions. G3 is a Bayesian resolution of 
the conflict between Bayesian G1 and G2 if and only if G3 is 
Bayesian and for some u1 in G1 and some u2 in G2 there is a 
u3 in G3 such that u3 = au 1 + (I - a)u2 for some 0 :o; a :S 1. 

The notion of distinct goals being in conflict should be dis
tinguished from a single goal being in conflict. X is in goal 
conflict if he is "in suspense" between two or more Bayesian 
systems of goals and values which are in conflict. 

When X is in suspense between two Bayesian systems of 
goals and values, he is committed to taking into account the 
rankings of feasible options with respect to expected utility 
according to both systems in assessing £-admissibility. That 
is to say, the conflicted system of goals and values he endorses 
contains u-functions of the two Bayesians goals which conflict 
as permissible. This is the sense in which Jacob's goals and 
values are in conflict in the example discussed in the previous 
section. 

When X's goals and values are in conflict of this sort, I 
assume that not only should he take into consideration all the 
values represented by the conflicting Bayesian goals and val-
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ues but all values represented by potential Bayesian resolu
tions of the conflict. 

If this assumption is endorsed, the set G of permissible u

functions continues to satisfy valuational consistency and clo
sure under linear transformation; but valuational uniqueness 
will be violated. G will fail to be strictly Bayesian. As I have 
been arguing, it will be conflicted. However, G will satisfy the 
following condition (mentioned in chapter 4): 

Valuational Convexity: If u. and u' are in G then w = au + 
(1 - a)u' is also in G for every 0 ::S a ::S 1. 

Unconflicted goals (that is to say, Bayesian goals) meet 
these three requirements. But they satisfy the stronger require
ment of valuational uniqueness as well. However, conflicted 
goals also meet them. Hence, if rational agents are allowed to 
have conflicted goals and values, valuational convexity should 
replace valuational uniqueness as a condition on valuational 
rationality. 

This conclusion rests on the following theses: (i) Rational 
agents are sometimes appropriately committed to conflicted 
systems of goals and values. (ii) In such conflict, u-functions 
which are not linear transformations of one another are per
missible. (iii) All u-functions representing potential resolutions 
of the conflict should be permissible. (iv) A potential resolution 
of the conflict between values represented by distinct u-func
tions is a weighted average of the u-functions in conflict. 

I have little to add to what has already been said in the 
previous section concerning (i). That (ii) is a plausible as
sumption about conflicted values should be apparent once the 
view of how an agent's goals and values are used to assess 
options with respect to expected utility and thereby to deter
mine £-admissibility which has been outlined previously is 
adopted. To be in conflict between rival u-functions is to be 
incapable of coming down in favor of the one or the other for 
the purpose of ranking options with respect to expected utility. 
In such a case, ranking is done according to both utility func
tions, and options regarded as optimal according to at least 
one of them are counted as £-admissible. 

Thesis (iii) also appears innocuous enough as it stands. If 
X has not ruled out two alternative ways of ranking options 
with respect to expected utility and consequences of options 
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with respect to his goals and values, he has not ruled out these 
two potential resolutions of his conflict. He should not rule 
out any other modes of evaluating options and consequences 
which qualify as potential resolutions if they exist. 

What is nontrivial is the combination of thesis (iii) with a 
specification of the class of potential resolutions. Thesis (iv) 
offers such a specification. 

A potential resolution of the conflict between G1 represented 
by u1 and G2 represented by u2 should be another Bayesian 
goal G3 represented by another u-function u3 • 

It seems noncontroversial that u3 should be uniquely deter
mined by u1 and u2 up to a linear transformation. Furthermore, 
if we begin with linear transformations of u 1 and u2 , the same 
class of linear transformations of u3 should be determined as 
is determined by u 1 and u2 • Finally, given any possible payoffs 
x, y, and z over which the three u-functions are defined such 
that u;(x) > u;(Y) > u;(z), there is some probability value such 
that X would rank obtaining y for certain with obtaining x with 
probability p and z with probability 1 - p-i.e., such that 
pu;(x) + (1 - p)ui(z) = u;(y). 

Armed with these conditions on potential resolutions of 
Bayesian goals by other Bayesian goals, one may use an ar
gument of J. Harsanyi's designed for determining social utili
ties as functions of individual utilities to establish that a po
tential resolution must be representable by a linear 
transformation of some weighted average of u1 and u2 •

9 

Thesis (iii) becomes, in the light of this argument for thesis 
(iv), an injunction to take into account every weighted average 
of u-functions in conflict when evaluating £-admissibility. This 
is, of course, what valuational convexity requires. 

Let G be a set of permissible u-functions over possible 
consequences of feasible options in some decision problem. 
The set G induces a quasi ordering of the possible conse
quences. The consequence o;k is at least as highly valued as 
oi'k' according to G if and only if u(o;k) ;;:: u(oi'k') for every 
permissible u-function in G. 

This qausi ordering need not be a total ordering. Possible 
consequences may be noncomparable with respect to X's sys
tem of v.aluations. Such noncomparability is a sure sign of 
value conflict. 

Thus, clear-headed and rational Jacob might be able to to-
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tally order his three options (in the example in the previous 
section) when taking into account his desire for a beautiful 
wife. He might do just as well when considering his interest 
in marrying a good cook. But since Jacob's goals and values 
or, if one likes, his "preferences" are in conflict, the possible 
consequences 01 , Oz, and o3 are noncomparable. None of these 
outcomes is better than or equal in value to any other, all 
things considered. 

Suppose Jacob is not conflicted but cares only to marry a 
beautiful woman. Strictly speaking my proposal for repre
senting goals and values implies that Jacob is committed to a 
goal satisfying the strict Bayesian requirement of valuational 
uniqueness. However, there is no important conflict if the set 
of permissible u-functions consists of all those ranking Oz over 
o3 over 01 • 

The terminology of my proposal does, indeed, deviate from 
presystematic discourse in this respect; but the deviation 
seems harmless. We can distinguish between decision prob
lems where X, if it is otherwise feasible and legitimate for him 
to do so, should resolve conflicts fully in order to identify a 
uniquely admissible option and those where it suffices to 
achieve only a partial resolution. In Jacob's decision problem, 
there is no need for further resolution of the goal conflict once 
he has a single total ordering of his options. 

Of course, if Jacob were faced with a choice of marrying 
Zilpah or accepting a lottery where he has a chance p of 
marrying Rachel and a chance 1 - p of marrying Leah, the 
conflict due to the fact that Jacob regards as permissible every 
u-function ranking 01 or Oz over o3 would have bite. 

Consider the following variants of Jacob's predicament: 

Case 1: Jacob's goals and values are representable by the set 
G1 of u-functions ranking Oz over o3 over 01 • 

Case 2: Jacob's goals and values are representable by the set 
Gz of u-functions ranking 0 1 over o3 over Oz. 

Case 3: Jacob's goals and values are representable by the set 
c; of u-functions such that u(Oz) - u(o3) > u(o3) - u(o,) > 0. 

Case 4: Jacob's goals and values are representable by the set 
c; of u-functions such that u(o,) - !1(03) > u(o3) - u(o2) > 0. 
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Cases 1 and 3 induce the same ranking of Jacob's options 
with respect to expected utility. Az ranks over A3 which in 
tum ranks over A,. Similarly cases 2 and 4 rank A, over A

2 

over A3. 

Case 5: G3 is the convex hull of the u-functions in G1 and 
Gz-i.e., the set of all weighted averages of all pairs of u

functions consisting of one from G, and one from G2 • 

In case 5, none of the three o;'s is comparable with any of 
the others. Moreover, there is some permissible ranking 
among the several conflicting permissible ones which ranks 
each of the three o; 's best. Hence, each of the feasible options 
is £-admissible even though the three options are not equal in 
expected utility. 

Case 6: G; is the convex hull of the u-functions inc; and c;. 

As in case 5, the three o;'s (and, hence, the A;'s) are not 
comparable with respect to utility. However, unlike case 5, 
only A, and A 2 are £-admissible. There is no permissible u

function which ranks A3 on top. 
In both cases 5 and 6, every u-function in G, (or G;) and in 

G2 (or in G~) ranks marrying Zilpah second of the three alter
natives. In case 5, however, there are some permissible u

functions which rank marrying Zilpah as best. Marrying Zilpah 
is a way of expressing a potential resolution of the conflict. 

In case 6, this is not the case. That is because in both c; 
and G~ marrying Zilpah is "second worst" rather than "sec
ond best" according to all u-functions. Hence, in the convex 
hull c;, marrying Zilpah cannot express a potential resolution 
of the conflict. The fact that in cases 5 and 6 the quasi ordering 
of the options is the same fails to bring out all of the relevant 
differences between the two cases. 

Consider the following variant on Jacob's predicament: 

Case 7: Jacob is quite clear that his goals and values are 
representable by either G, or G2 , but he cannot tell which. 

This is not a case of goal conflict of the sort considered 
here. Jacob is not conflicted between the desire to marry a 
beautiful wife arid to marry a good cook. He is clear that he 
has no such conflict. He is in douot, however, as to which of 
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two rival hypotheses as to what his goals and values are is 
true. 

My approach is no more adequate to handle Jacob's predic
ament in case 7 than is strict Bayesian theory. At best, we can 
say that marrying Zilpah is not £-admissible; for that option 
is not £-admissible according to either G1 or G2 • This stands 
in contrast to case 5, which might be confused with case 7, 
where Jacob is clear as to what his goals and values are and 
recognizes them to be conflicted between the desiderata of 
marrying a beautiful wife and marrying a good cook. In that 
case, all three options are clearly £-admissible. In case 7, 
Jacob knows that either marrying Rachel or marrying Leah is 
admissible but does not know which. 

The contrast between case 5 and case 7 brings out the 
difference between indeterminacy in values due to lack of self
knowledge (case 7) and due to value conflict (case 5). 

There are some further interpretations of indeterminacy in 
utility as a form of ignorance as to truth values of hypotheses 
which should be briefly considered. 

Given any u-function ui, let Vi be a corresponding truth
value-bearing hypothesis specifying for each hypothesis to 
which u; assigns a utility that that utility measures the objec
tive desirability or worth of the hypothesis. 

A utility function represents a potential appraisal by an 
agent of truth-value-bearing hypotheses with respect to value. 
If that utility function (and linear transformations of it) are 
uniquely permissible according to X, X has a certain propo
sitional attitude towards the hypotheses evaluated which is 
represented by the u-function. 

According to one version of the view now under consider
ation, that propositional attitude is itself as truth-value-bearing 
as accepting a hypothesis in a corpus of knowledge (i.e., fully 
believing it) is. To count the u-function ui as uniquely admis
sible (up to a linear transformation) is to accept the hypothesis 
V; as evidence. u; is seriously permissible according to X if 
and only if Ui is seriously possible according to X. 

This view is clearly untenable. If Vi and U;, are genuinely 
truth-value-bearing hypotheses, X should be in a position to 
acce,pt U; V Ui' in his corp.us without accepting either disjunct. 
But in that event, X's goals and values should count only u; 
and u;' as permissible--counter to the convexity requirement. 
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Suppose someone argues that the convexity requirement 
should be abandoned. If X suspends judgment between V; and 
V;, he should adopt a credal state over these rival hypotheses. 
Let his credal state be strictly Bayesian and let the degree of 
credence be r for U; and (1 - r) for Vi'. 

It seems clear that if X knew that U; is true, his utility 
function WOUJd be U; and that if he knew that Vi' is true, it 
would be u;,. Hence, in his current state of knowledge, his 
utility function should be ru; + (1 - r)ui'. 

Two difficulties immediately emerge: 
(a) Instead of two u-functions being permissible (along with 

their linear transformations) we now have a new set of per
missible utility functions. This set consists of all linear trans
formations of ru1 + (1 - r)u;,. But, by hypothesis, that set 
corresponds to some truth-value-bearing hypothesis V* which 
contradicts both V; and V1,. X cannot consistently accept V* 
as evidence and suspend judgment between V; and V;,. 

(b) By keeping r fixed and taking linear transformations of 
u, and u2 , every weighted average of these u-functions be
comes permissible--counter to the view under consideration. 

These considerations are decisive against views which insist 
that valuations of hypotheses concerning the consequences of 
options with respect to utility themselves have truth values. 

Of course, the valuations to which X is committed may be 
grounded in his knowledge and credal state. Jacob is in conflict 
in values because of what he knows about the three women 
with regard to cooking ability and physical features. This 
knowledge constitutes part of the warrant for the valuations 
he endorses. But these grounds are not truth conditions for 
the valuations. 

Thus, the indeterminacy in valuations of hypotheses with 
respect to utility should not be equated with ignorance con
cerning the truth values of truth-value-bearing hypotheses. We 
have seen before that equation with ignorance of self will not 
do. I am now contending that ignorance about objective 
circumstances is no better. 

The indeterminacy in such evaluations is, indeed, a sort of 
suspension of judgment; but it is not reducible to suspension 
of judgment between truth-value-bearing hypotheses. It is per
haps best to call it conflict in values. 

8.5 CONFLICT VS. IGNORANCE 
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In section 2.6, I suggested that the proximate aim of any effort 
to expand a corpus of knowledge inductively is the acquisition 
of error-free information. This proximate aim was construed 
as involving two conflicting desiderata: avoidance of error and 
acquisition of new information meeting the demands of the 
question under investigation. The desideratum of avoidance 
of error can be represented by a utility function T(g; x) where 
T(g; t) is the utility afforded according to this desideratum 
when g is added to K and the deductive closure K0 formed 
when g is true and T(g; f) is the utility when g is false. The 
utility of new information is representable by a probability 
measure defined over all the Boolean combinations of ele
ments of the ultimate partition V and hypotheses which are 
equivalent to these given K. This information-determining 
probability or M-function defines the informational value of 
expanding to K 0 from K to be 1 - M(g) = M(-g). These two 
utility functions represent two conflicting strictly Bayesian 
goals. A potential resolution of the conflict is a weighted av
erage of these utility functions (or linear transformation 
thereof). In efforts at inferential expansion, I contend that we 
should restrict such potential resolutions to those where no 
error is ever ranked higher in epistemic utility to any case of 
avoiding error. 

If we let T(g; t) = 1 and T(g; f) = 0, then 

V(g; x) = aT(g; x) + (1 - a)M(-g), 

where .5 s a s 1. Here q = (1 - a)/a represents what may 
be called the degree of boldness. 

Thus, I have insisted all along that inferential expansion 
involves the resolution of conflicts. However, in my previous 
work, I have followed strict Bayesians in refusing to consider 
unresolved conflicts. In Gambling with Truth and other writ
ings, I have acknowledged the existence of unresolved con
flicts in epistemic values due to consideration of different lists 
of potential answers (different ultimate partitions) and differ
ent M-functions. I explicitly restricted the applicability of the 
inductive acceptance rules proposed as criteria of inferential 
expansion to cases where there is no such conflict. 10 

I was less clear, however, as to what an investigator should 
do in case of conflict between the demands of information 
occasioned by diverse questions except to· suggest that he 
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should inquire further in the hope of resolving such conflict. 
In particular, it was not clear what ·inductive conclusions 
should be reached in the face of unresolved conflict. 

The account of value conflict discussed in this chapter pro
vides the basis for an answer to these questions. Epistemic 
value conflict can arise from three sources: conflict in the 
choice of a degree of boldness (or degree of caution), due to 
the choice of an M-function, or due to the ultimate partition 

used. 
Let us suppose that the ultimate partition is held fixed for 

the moment. If the M-function is also secure and the only 
issue is the choice of a value for q, the proposal derivable 
from the considerations adduced in this chapter imply that one 
should take the convex hull of all epistemic utility functions 
derived from using the various values of q seriously consid
ered. In section 6.2, it was shown that the P-admissible option 
is the one which leads to rejection of all and only elements of 
V which are rejected for the smallest of these q-values (or for 
the glb of seriously considered q-values). 

If the conflict concerns the choice of M-function, one can 
consider the set of all epistemic utility functions obtained by 
considering the convex hull of M-functions initially pro

pounded. 
The criterion for evaluating expansion strategies which then 

emerges is one which stipulates that an element hk of V is 
rejected if and only if Q(hk) < qM(hk) for every permissible 
Q-function in B and every permissible M-function and for the 

lowest permissible value of q. 
The only problem now remaining is how to handle cases 

where two questions are under investigation each of which 
has a different ultimate partition. In that event, X should adopt 
a new ultimate partition V* consisting of all consistent con
junctions of one element from V 1 and another from V2. How
ever, the problem is one of extending the M-functions used 
relative to V 1 and those used relative to V2 to V*. 

How the extensions are to be made depends on the demands 
for information which occasioned the inquiries for which Vi 
and V

2 
generate lists of potential answers. There are, how

ever, two kinds of extensions which, in my opinion, are legit

imate. 
Sometimes the inquiry for which Vi provides potential an-
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swers is such that for each hk E U 1 and for each gm E U2 

consistent given K with hk, the informational value of hk & gm 

is no greater than the informational value of hk and, indeed, 
as far as X is concerned when he focuses on that inquiry, it 
does not matter to him whether hk & gm is true or hk & -gm 

is true as long as hk is true; so that if hk is true, T(hk & gm; t) 

= T(hk & gm; f) = 1 and M(hk & gm) = M(hk). In that event, 
U 1 is maximally determinate relative to the extension to U*. 

In other cases, the demands for information are such that 
the I-function and M-function for U* satisfy the requirements 
we have imposed previously and, in addition, are such that 
M(hk) is equal to what it is when U 1 is used for every hk. 

There are intermediate cases. It can be the case that relative 
to U*, the hk for some elements of U 1 are fully determinate, 
as in the first sort of extension, yet fail to be so for other 
elements of U2 • 

These intermediate cases can be represented as derivable 
from considering extensions of U 1 to partitions which are 
refinements of U, but coarser than U* and where indetermi
nacy prevails as in the second sort of extension, and then 
extensions from that intermediate case to U* which are max
imally determinate. 

Similar steps can be taken for U2 • The upshot is that epis
temic utility functions will be defined over U* which, in gen
eral, will be in conflict. The convex hull can be generated and 
the P-admissible options determined relative to the epistemic 
utility functions in that convex hull. 

I have outlined elsewhere how two inquiries can often be 
quite independent of one another, so that attending to the one 
without attending to the other can lead to the same conclusions 
when the results of both are pooled as would be the case were 
they considered together .11 

It is not my intention to elaborate on these matters any 
further. I mean only to point out that the account of conflict 
in values which has been developed can be used to good 
advantage in dealing with a question of some importance left 
unanswered in my earlier work on inferential or inductive 
expansion. 
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CREDAL CONVEXITY 

In its root meaning, ignorance is lack of knowledge. When X 
does not know whether h is true or false, X is ignorant con
cerning the truth value of h. 

Such cognitive ignorance is part of the setting against which 
efforts to expand a corpus of knowledge take place. The entire 
point of the exercise is to acquire new error-free information 
and thereby to relieve some of the cognitive ignorance. 

According to the account of inferential expansion developed 
in chapters 2, 6, and 8, which of rival expansion strategies
generated by an ultimate partition U of exclusive and exhaus
tive hypotheses relative to K-should be adopted depends 
upon X's demands for information as represented by a (con
vex) set of M-functions, X's credal state relative to K, and his 
index of caution q. Once such a strategy is adopted, then 
ignorance concerning some hypotheses will be removed. X 
will come to know whether g is true or false. That is to say, 
this will be so unless the recommended expansion strategy is 
not to expand at all. 

Let g be equivalent given K to a disjunction of elements of 
U. If g is consistent, there will be some value q(g) of the index 
q such that for q > q(g), g is rejected; for q :5 q(g), g goes 
unrejected. If g is inconsistent with K, then q(g) = 0. The 
degree of confidence of rejection or degree of potential sur

prise d(g) is defined by d(g) = 1 - q(g). The quantity d(g) 

behaves formally like the measures of potential surprise pro
posed by G. L. S. Shackle. 1 Given the corpus, the demands 
for information, and the credal state, it measures the strength 
of the warrant for eliminating cognitive ignorance concerning 
the truth value of g by rejecting - g. In this sense, it captures 
an important aspect of Keynes' idea of weight of argument. 2 

Suppose that d(g) = d(-g) = 0. This means that no matter 
how bold Xis prepared to be (consonant with the requirement 
that q be less than or equal to 1), X lacks a warrant for 
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removing cognitive ignorance concerning the truth value of g 
either by adding g to his corpus or by adding - g. Under the 
circumstances, X's only recourse is to engage in further in
quiry. 

In such a situation, X is in a state of ignorance in a sense 
somewhat stronger than the sense of cognitive ignorance 
alone. Not only does he not know the truth value of g, but his 
current knowledge and his demands for information are insuf
ficient warrant for settling the matter. I shall call this strong 
cognitive ignorance. 

When X is in a state of cognitive ignorance concerning 
elements of a set U of hypotheses exclusive and exhaustive 
relative to K, X has, of course, a credal state for the elements 
of U. 

Some Bayesians have sought to formulate a principle of 
inductive logic-a principle of indifference or insufficient rea
son-which would obligate all rational agents to assign equal 
Q-value to all elements of U provided that the corpus K sat
isfied certain conditions. 

It has not, however, proven easy to formulate a principle 
which is at once compelling and consistent; and, for the most 
part, efforts to formulate such a principle of inductive logic 
have been abandoned. However, the idea lingers on in the 
conception of a state of ignorance concerning hypotheses in 
U which obtains if and only if the credal state for the elements 
of U is representable by a single Q-function assigning all ele
ments of U equal value. 

In such a state of Bayesian ignorance, principles of induc
tive logic together with the corpus K fail to obligate X to assign 
each element of U equal Q-value. The grounds for being in a 
state of Bayesian ignorance are left entirely open. Being in a 
state of Bayesian ignorance is simply adopting a credal state 
assigning each element of U equal Q-value. 

I shall not quarrel with calling such states states of ignorance 
of some sort. Nonetheless, calling them states of ignorance is 
rather misleading. The credal state for U is just as definite as 
any other credal state for elements of U representable by a 
single probability function. 

There is, however, another sense in which credal states can 
manifest ignorance of a sort which is worth considering. 

In chapter 4, a contrast was drawn between those who, 
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while lacking any warrant for endorsing one strictly Bayesian 
credal state rather than another relative to what they know, 
choose one such state arbitrarily, and those who, also lacking 
the warrant, refuse to make the choice and endorse a credal 
state where all entertainable Q-distributions (i.e., those that 
have survived criticism based on considerations of inductive 
logic and contextual considerations) are taken into account in 
evaluating feasible options with respect to expected utility. 

Those who pursue the latter course perforce adopt numer
ically indeterminate credal states. They take many Q-functions 
to be permissible. And, in so doing, they stay in a state of 
suspense of a sort. Precisely for that reason, they can be said 
to be in a state of credal ignorance vis-a-vis the evaluation of 
Boolean combinations of elements of U with respect to credal 
probability. 

Strict Bayesians deny credal ignorance just as they deny 
decision making under uncertainty. Sometimes, however, it is 
wise to acknowledge credal ignorance just as it is wise to 
acknowledge cognitive and, indeed, strong cognitive igno
rance. 

Credal ignorance should not be confused with cognitive 
ignorance. Cognitive ignorance entails suspension of judgment 
between rival truth-value-bearing hypotheses with respect to 
their truth value. Credal ignorance entails suspension of judg
ment between alternative systems of evaluations of hy
potheses with respect to credal probability. These modes of 
evaluation lack truth values. Suspension of judgment between 
them is not reducible to suspension of judgment between rival 
truth-value-bearing hypotheses with respect to truth value. 

It is very tempting to preserve a strictly Bayesian outlook 
by asserting the contrary. One might concede that X should 
sometimes be in suspense between rival Q-distributions over 
U. But then it might be insisted that such suspense is equiv
alent to suspension of judgment between rival truth-value
bearing hypotheses. There are two ways in which one might 
interpret this claim: 

(a) One might construe the propositional attitude of allowing 
exactly one Q-function to be permissible as equivalent to ac
cepting as evidence (in some suitably enriched version of L) 

a statement of metaphysical probability. The function Q is 
uniquely permissible according to X at t if and only if X accepts 
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as evidence in the corpus expressible in the enriched language 
that M(Q) is the true metaphysical probability distribution 
where M(Q)(h; e) = Q(h; e). Suspending judgment between 
Q1 and Q2 is taken to be tantamount to suspending judgment 
between the claim that M(Q1) is the true metaphysical proba
bility distribution and the claim that M(Q2) is. 

(b) One might construe the propositional attitude of allowing 
exactly one Q-function to be permissible as obtaining when X 
is fully aware of what his strictly Bayesian credal state is. 
When Xis not clear as to what his credal state is, he entertains 
several hypotheses concerning what his strictly Bayesian state 
is and this accounts for the indeterminacy. 

Both of these moves seek to reduce credal ignorance to 
cognitive ignorance, but in different ways. The first does so 
by translating it into ignorance concerning which of rival meta
physical probability distributions .is correct. The second re
duces credal ignorance to cognitive ignorance of one's own 
credal state. 

Both approaches are untenable. 

I. J. Good is one of the pioneers in work on indeterminate 
probability judgment; his contributions are indispensable even 
to those who, like myself, differ as to the interpretation of 
what he has done. 

According to Good, X's credal state is representable by a 
"black box" containing a numerically precise probability func
tion. X does not know the contents of the black box in full 
detail, but can make comparisons of hypotheses with respect 
to credal probability. Given this information and the assump
tion that the black-box credal state is, indeed, coherent, partial 
information about the contents can be gleaned and used m 
enabling X to behave in a coherent manner. t 

t I. J. Good, "Subjective Probability as the Measure of a Non-measurable 
Set," in Logic Methodology and Philosophy of Science, edited by E. Nagel, 
P. Suppes, and A. Tarski, Stanford: Stanford University Press, 1962, pp. 
319-329. See pp. 324-325 for an explicit statement that the black-box model 
proceeds as if the agent adopts a strictly Bayesian credal state unknown 
(Good says "unknowable") to him in all detail. On p. 327, Good introduces 
the idea of assigning type II distributions to hypotheses concerning the con
tents of the black box. Good seems to think that given a single type II 
distribution over alternative type I distributions (hypotheses about the con
tents of the black box), one can generate a new type I distribution. 
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Acknowledgment was made in chapter 1 that rational X 
would often fail to be aware of all of his commitments con
cerning the evaluation of hypotheses with respect to serious 
possibility. Yet, having acknowledged this point, attention was 
focused on X's commitments and their revision. Given this 
concern, X was taken to be committed to knowing what his 
evaluations were and the issue of lack of awareness was ig
nored. 

A similar attitude was taken towards evaluations of hy
potheses concerning the consequences of feasible options with 
respect to goals and values. While granting that X might not 
be fully aware of his commitments, attention was directed to 
the character of the commitments. 

Similarly my concern when considering X's credal state is 
with his commitments. Failures to be fully aware of what these 
commitments are-due to emotional difficulty, limitations of 
memory, and computational inadequacy-are ignored. 

There can be no objection, of course, to Good's directing 
attention to precisely those matters regarding which I have 
little or nothing to say. It is important, however, to appreciate 
the difference between examining indeterminacy in credal 
judgment due to lack of awareness of the contents of the black 
box and indeterminacy in credal judgment which is bona fide 
indeterminacy in the contents of the black box. 

I disagree with what appears to be Good's strictly Bayesian 
commitment to credal uniqueness as a condition on black 
boxes. My reason is the one originally stated in chapter 4 and 
just repeated-namely, that strict Bayesian doctrine obliges X 
to be arbitrarily committed to a single Q-distribution even 
when inductive logic supplemented by contextual considera
tion fails to rule out many alternatives from consideration. 
There should be room for acknowledging genuine credal ig-

This is a confusion. Formally the type II distribution furnishes weights for 
the rival type I distributions and the resulting weighted average is another 
type I distribution. But, given the intended interpretation, the agent cannot 
be committed to the view that the weighted average is the correct hypothesis 
about the contents of the black box. Indeed, if the weighted average is 
different from the other type I distributions, it is not even a possibly true 
hypothesis about the contents of the black box from the agent's point of view. 
There is nothing wrong with a type II distribution provided one does not 
misuse it to derive such a new type I distribution. 
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norance without confusing it with cognitive ignorance of one's 
own credal states. 

X's credal state is a sort of propositional attitude or system of 
propositional attitudes adopted by X at a certain time toward 
a system of hypotheses. It is a system of appraisals of hy
potheses with respect to credal probability. 

Some propositional attitudes are intelligibly said to be true 
or false. Thus, X may accept h as evidence in his corpus of 
knowledge. We, in considering X's corpus, can raise th·e ques
tion as to whether X's belief is true or false. The belief will be 
true when the hypothesis h is true and false when h is false. 

However, propositional attitudes do not always bear truth 
values. Hoping that h is true lacks truth value. Of course, a 
modern-day realist might toy with the idea of maintaining that 
X hopes that h is true if and only if X accepts the hypothesis 
that h is objectively hopeworthy and, hence, that hoping has 
a truth value after all. I hope that no one will pursue this idea 
and will not myself pursue it any further. 

Yet, some attention should be paid to another doubtful idea. 
It is conceivable that someone will advance the view that 
when X assigns h a credal probability of r, Xis accepting the 
hypothesis that the metaphysical probability that h is equal to 
r. Consequently, X's credal judgment has a truth value. 

There is already some precedent for moves of this sort. 
Consider the case of possibility. If the truth of h is a serious 
possibility according to X at time t, many will think that X 
accepts the hypothesis that h is objectively or metaphysically 
possible-i.e., that Xis certain that h is true in some possible 
world. 

My own view is that appraisals of truth-value-bearing hy
potheses with respect to serious possibility and with respect 
to credal probability both lack truth values and that meta
physical possibility and probability ought to be assigned the 
same status as objective hopeworthiness. 

Suppose we do say that the credal probability that h ac
cording to X is r if and only if X accepts (in his corpus in a 
suitably enriched language) the hypothesis that the metaphys
ical probability that h is equal to r. 

Consider now a case where X is in suspense as to whether 
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the Q-value for h is r or r'. On the view being discussed, X is 
in suspense as to whether the metaphysical probability that h 
is r or r'. Because the two alternative hypotheses about meta
physical probability have truth values, X has some credal state 
for these alternatives. Let X assign x as the degree of credence 
for the hypothesis that the metaphysical probability that h is 
r and 1 - x to the alternative. 

If x is different from 0 and from 1, credal coherence requires 
that the Q-value for h be rx + r'(l - x) which will be different 
from both r and r'. But this contradicts the assumption that X 
is in suspense between the hypothesis that the metaphysical 
probability is r and that the metaphysical probability is r'. To 
avoid contradiction, x must be either 0 or 1. 

Thus, X cannot be in suspense between rival hypotheses 
with respect to metaphysical probability and, hence, cannot 
be in suspense between rival permissible Q-values for h. 

Consequently, if we take appraisals of hypotheses with re
spect to credal probability to be assumptions about metaphys
ical probability which bear truth values, we are prevented 
altogether from allowing suspension of judgment between rival 
Q-functions. This is so even though no principle of logic of 
any sort or any other consideration might warrant our picking 
one assumption of metaphysical probability rather than an
other. 

These difficulties can be avoided if we say that if X accepts 
the hypothesis that the metaphysical probability that h is rand 
his corpus contains no further relevant information (however 
that is to be understood), X should assign h a degree of cre
dence equal to r. Then, however, evaluating a hypothesis with 
respect to credal probability will no longer be equivalent to 
accepting a statement of objective metaphysical probability as 
true and will no longer bear a truth value. 

I myself consider the introduction of such metaphysical 
probabilities under these conditions to be gratuitous meta
physics. But no matter what one wishes to say about this, 
what is clear is that credal probability is not thereby seen as 
a truth-value-bearing mode of appraisal. One cannot see the 
sort of suspense between Q-functions involved in credal ig
norance as reducible to suspension of judgment as to the truth 
of truth-value-bearing hypotheses. 
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It may, perhaps, be worth noting in passing that similar re
marks apply mutatis mutandis to appraisals of truth-value
bearing hypotheses with respect to serious possibility. 

Suppose someone maintains that it is seriously possible that 
h according to X at t if and only if X accepts (in an enriched 
corpus) the hypothesis that it is metaphysically possible that 

h. 
Suppose X suspends judgment as to whether it is meta-

physically possible that h or not. 
X should, after all, be allowed to do so in situations where 

no consideration in logic, the available evidence, or context 
warrants favoring one alternative rather than the other. 

Yet, under the conditions specified, this posture of suspense 

is precluded. 
Consider that X must either accept h in his corpus, suspend 

judgment as to the truth of h, or accept -h into his corpus. In 
the first and second case, the truth of h is a serious possibility 
according to X. Hence, X must accept "it is metaphysically 
possible that h." In the third case, the truth of h is not a 
serious possibility according to X. Hence, X must deny "it is 
metaphysically possible that h.'' There is no circumstance 
where X can be in suspense concerning the metaphysical pos

sibility that h. 
This embarrassing consequence may be avoided by weak

ening the link between serious and metaphysical possibility. 
If the truth of h is seriously possible according to X, then X 

accepts that it is metaphysically possible that h. The converse, 
however, should fail. Similarly, if X accepts that it is meta
physically impossible that h, the truth of h should not be 
seriously possible according to X. Once more the converse 

must fail. 
But if this view is adopted, metaphysical possibility no 

longer supplies truth conditions for appraisals with respect to 
serious possibility. Such appraisals lack truth values. Yet eval
uations of hypotheses with respect to serious possibility have 
an important role to play in deliberation and inquiry. Meta
physical possibility lacks such a clear role. It appears emi

nently expendable. 
This, at any rate, is the view I shall adopt in this book. 
There are, to be sure, truth-value-bearing statements of de 
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dicto possibility. For example, "it is possible that h according 
to X at t" is a truth-value-bearing report about X's appraisals. 

Sometimes we make possibility statements which are to be 
construed. as statements concerning the consistency of hy
potheses with potential corpora of knowledge. It is in this 
sense that I understand logical possibility-i.e., consistency 
with the urcorpus. To be sure, one could equate logical pos
sibility with logical consistency-Le., consistency with the 
truths of logic. But why have two terms where one will do? 
Unless we consider the set of logical truths to be the weakest 
potential corpus and, hence, consistency with the set of!ogical 
truths as a potential standard for serious possibility, there 
seem little benefit to the equation. 

In chapter 11, I shall concede that there is, indeed, an 
important sense in which there are objective possibilities. But 
possibilities in that sense are not de dicto at all. Such possi
bilities are abilities and capacities such as the ability of a coin 
to land heads on a toss. In chapters 11 and 12, I shall also 
consider objective probabilities or chances and these too share 
some of the features of abilities. They are no more to be 
confused with de dicto probabilities (i.e., credal probabilities) 
than abilities are to be confused with serious possibilities. 

Let h,4 ,h.6 , and e8 receive the interpretations they receive in 
case 1 of section 7. 3. 

Case 1: X has the following choice of options: 

A1 : If e8 is true, receive .45. If false, -.55. 

A2 : If e8 is true, receive -.55. If false, .45. 

A3 : Nothing in any case. 

Let the credal state for h.4 and h.6 be described as follows: 
Xis in suspense as to whether to consider Q(h.4) = 0 or Q(h.6) 

= 0 as uniquely permissible and so counts them both as per
missible but nothing else. 

If the credal state were so constructed, then there would be 
two Q-functions to use to assess expected utility. According 
to the first, with Q(h.4) = 0, the expected utilities of the three 
options come out as follows: .05, -.15, 0. When Q(h.4) = 1, 
the expectations are as follows: -.15, .05, 0. 
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The triple of numbers for each case can be viewed as having 
the properties of utilities assigned the hypotheses that the 
options are implemented. When so viewed, the suspension of 
judgment between the two Q-functions is manifested as a sort 
of conflict between two systems of values analogous to the 
conflicts confronting Jacob in the previous chapter. 

Thus, weighted averages of the two expected-utility func
tions have all the earmarks of potential resolutions of the 
conflict; and, given the assumption that one should not pre
clude potential resolutions when suspending judgment ·be
tween rival systems of valuations, all weighted averages of the 
two expected-utility functions are thus to be taken into ac
count. 

This is by no means unimportant. If only the two expected
utility functions were considered, then only A 1 and A 2 would 
be £-admissible. However, when the requirement is to con
sider all potential resolutions, then A3 is admissible as well. If 
security levels are controlled by ultimate payoffs, A3 becomes 
uniquely admissible. 

The convexity of the credal state which requires that all 
weighted averages of the Q-functions assigning h.4 the values 
0 and 1 guarantees the convexity of the set of expected utility 
functions. 

As explained before, considerations such as this do not 
prove the convexity requirement. I have no proof. But the 
consideration just adduced explains how the convexity re
quirement fits in with the other ideas upon which this theory 
is being constructed. 

Case 2: The options are as follows: 

B1 : If eH, receive .55. If -eH, -.45. 

B2 : If eH, receive -.45. If -eH, .55. 

B3 : Nothing in any case. 

In case 2, even with convexity, only B1 and B2 are £-ad
missible. If Q(h.4 ) = 0 and Q(eH) = .6, then the expected 
utilities are .15, -.05, 0. If Q(h.4 ) = 1 and Q(eH) = .4, then 
the expected utilities are -.05, .15, 0. 

In case I, A 3 , the option of refusal, is, like marrying Zilpah, 
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a second best case in the sense that no matter which valuation 
scheme one uses, it is nearer the best than the worst. Hence, 
there are potential resolutions for which it is best. In case 2, 
B3 , the option of refusal, is like marrying Zilpah when that is 
second worst for the conflicting modes of appraisal. 

Discriminations of this sort break down if we do not man
date credal convexity. 

9.6 According to credal consistency and coherence, a credal state 
Convexity and B relative to consistent K is a nonempty set of functions each 
the Multiplica- member of which is a probability measure. Let Q1 E B. The 
tion Theorem corresponding unconditional measure Q11(h) = Q1(h; t), where 
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K entails t, has already been identified. The set B1 is the set 
of unconditional Q-functions obtained from the Q-functions in 
B in this manner. 

In a similar vein, for any e consistent with K, Q1e(h) = 
Q1(h; e) and, more generally, Be is the set of Qe-functions 
derived from Q-functions in B in this fashion. 

For any Qi-function in B1 for which Qi(e) > 0, there is a 
unique Qe-function in Be such that 

Q (h) = Q1(h & e) 
e Q,(e) . 

Each such matching corresponds to a distinct Q-function in B. 
For those Qi-functions for which Qi(e) = 0, uniqueness 

no longer holds; in such cases the multiplication theorem 
can yield more than one associated Qe-function. Nonetheless, 
each such matching still corresponds to a distinct Q-function 
in B. 

Let We be the set of Qe-functions associated with Qi-func
tions in Bi via the multiplication theorem. Then credal coher
ence implies that We = Be. 

Credal convexity entails that for two Qi-functions in Bi. Q1t 
and Q21 , Qa1 = aQ1i + (I - a)Q21 is also in B1 for every 0 :s a 
:s 1. 

If Q1t(e) and Q21(e) are both positive, then the corresponding 
conditional Qe-functions are given by 
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The multiplication theorem requires that both of these func
tions be in B •. 

Let v. be the set of functions of the form 

Qae = aQ1e + (1 - a)Q2e 

for all 0 :S a :S 1. 
w. is the set of Q.-functions of the form 

Credal convexity entails that v. ~ B •. 
Credal convexity for B1 and the multiplication theorem entail 

that We~ B •. 
Furthermore, since the set of Q1-functions consisting of all 

and only weighted averages of the form Qa1 of Q11 and Q21 

form a potential unconditional credal state relative to which 
credal convexity entails that Ve = Be, and since the multipli
catiori' theorem entails that We = Be, we must either have Ve 
= We or reject the assumption that every nonempty convex 
set of unconditional Q-functions can qualify as an uncondi
tional credal state. 

The matter is of some importance. It is obvious, for ex
ample, that if B1 is single-membered and Q1(e) > 0, both We 
and Ve are single-membered and coincide. If it were to turn 
out, counter to fact, that the only circumstances under which 
credal coherence and credal convexity could be jointly satis
fied in a nonempty credal state is when the credal state is 
strictly Bayesian, the effort undertaken to provide a means for 
representing suspension of judgment regarding such appraisals 
of credal probability would be in serious difficulty. 

Fortunately, that is not the case. We must be identical with 
Ve for any nonempty convex B1 obeying coherence. 

The proof to be offered presupposes that both Q11(e) and 
Q21(e) are positive. When one or the other is equal to 0, neither 
We nor Ve is determined by the set of weighted averages of 
the Q1cfunction and the Q21-function. We are free to guarantee 
their identity, therefore, without worrying about conflict with 
the multiplication theorem. 

The proof that We = Ve runs as follows: 
For every 0 s as l, 
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Q':(h) = aQ1.(h) + (1 - a)Q2.(h) 

= a Q11(h & e) + (l _ a) Q21(h & e) . 
Q11(e) Q21(e) ' 

QaeCh) = Qa1(h & e) 
Qa1(e) 

= aQ;i(h & e) + (1 - a)Q21(h & e) 

aQ11(e) + (1 - a)Q21(e) 

For any such value of a, let 

{3 = aQ11(e) 
Qai(e) · 

It follows that 

(1 _ {3) = (1 - a)Q21(e) 
Qai(e) 

It also follows that 0 s {3 s 1. Finally, 

Q~(h) = a Q11(e)Q11(h & e) + (1 _ a) Q2tCe)Q21(h & e) 
Q11(e)Qa1(e) Q21(e)Qa1(e) 

= Qa1(h & e) 
Qa1(e) 

= Qa.(h). 

Consequently ,_given any function QaeCh) in V., there is ex
actly one {3 such that Q~(h) in We is identical to that function. 
Conversely, given any Q~(h) in W., one can find exactly one 
a such that Qa.(h) in Ve is identical to it. Thus the mapping 
between We and Ve is one-to-one onto, i.e., We = Ve. 

In effect, what has been established in this section is that 
given any convex set of Qi-functions for which QtCe) is positiv~ 
and letting Be be the set of Qe-functions determined by the 
members of B1 via the multiplication theorem, Be must itself 
be convex. 

Consequently, as long as we focus on cases where Q
1
(e) in 

B1 is positive, the credal convexity condition could be for
mulated simply as requiring that B1 be convex. The convexity 
of Be would follow automatically. Because, however, some 
functions in B1 may be such that Q1(e) = 0, we must supply 
the extra stipulation that BP be convex. " 
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Suppose that U is exclusive and exhaustive relative to K and 
each element of U is consistent with K. Also let Ube finite. 

If we focus attention on X's credal state for hypotheses 
equivalent, given K, to elements of U and to disjunctions of 
elements of U, it is possible to provide a geometrical charac
terization of the unconditional credal state. 

Let Qi E Bi and, for each hi EU, let xi= Qi(hi)· Since U is 
finite and since the Qi-values for all Boolean combinations of 
elements of U are determined once the x;'s are determined, 
the function Qi can be represented by a vector consisting of 
n - 1 linearly independent components x1 , x2 , ••• , Xn- i· We 
may drop Xn because Xn = 1 - 2:'.f,,;;-11 

X;. 

Because of this, the Qi-function may be thought of as a point 
in an (n - 1)-dimensional Euclidean space or, more narrowly, 
of that region in (n - 1)-dimensional Euclidean space, Si. 
consisting of the points whose coordinates satisfy 2:'.f,,;;-11 x1 :5'; 1. 

A convex set of points in the (n - 1)-dimensional Euclidean 
space is any set of such points such that the points on the line 
segment joining any two of them are in the set. 

Qi is an extreme point of Bi if and only if there is no pair of 
points in Bi both distinct from Qi such that Qi is a weighted 
average of these points-i.e., such that Qi falls on the line 
segment defined by these points. If Bi is a closed convex 
subset of Si, it is the convex hull of its extreme points. 

These ideas may be illustrated by the case where the number 
of elements of U is 3. In that event, the convex set Si is the 
one-one right-angle triangle with right angle at the origin, as 
shown in figure 9 .1. 

In this diagram, the values of 1Qi(h1), 
2 Qi(h1) can be read off 

by finding the value of the xi-coordinate. The same can be 
done for the values for h2 by finding the value of the x2-

coordinate. To determine the value of h3 , one can measure the 
perpendicular distance to the hypotenuse and divide by Vz/2. 

The line segment from 1Qi to 2 Qi represents a convex set of 
Qi-functions. If the convex set includes the endpoints, the set 
is closed and all points in the set are boundary points. The 
line segment represents a potential unconditional credal state 
for the elements of U. 

Consider all lines with a definite slope which are tangent to 

CREDAL CONVEXITY 

9.8 
Intervalism 

197 

I 
I 
I 
I 
I 
I 
I 

- r----

Figure 9.1 

the convex set. There must be at least one such line and at 
most two for any nonempty convex set and for any slope. 
Such lines are supporting lines for the convex set with the 
given slope. 

When n = 4, we should speak of supporting planes and for 
n > 4, supporting hyperplanes. 

Supporting lines parallel to the axes and parallel to the 
hypotenuse which is the boundary for Si are of special interest. 
If there is exactly one supporting line for the convex set 
parallel to one of the axes (or the hypotenuse), then the un
conditional credal state allows exactly one Qi-value to be per
missible for the corresponding element of U. If two such 
distinct supporting lines exist, they determine upper and lower 
Qi-values. 

Suppose that U contains three hypotheses as before and let 
the lower and upper unconditional Q-values for the three hy
potheses in U be J:ShJ and r(h1) for each h1. 

Figure 9.2 furnishes a geometric representation of the upper 
and lower probabilities. 

The area inscribed by the bounded lines including the points 
on the boundary is the largest convex set with those supporting 
lines and it qualifies as a potential credal state relative to K. 
The shaded area in figure 9.3 represents, however, another 

9.8 INTERVALISM 



198 

r<h 3>-.ff./2.,..- -
' ' 

Figure 9.2 

' ' 

' ' 

convex set with precisely the same supporting lines and, 
hence, with the same upper and lower probabilities. 

It should be obvious from the diagram that there are infi
nitely many convex sets of Q1-functions for any given set of 
supporting lines. 

If so, a specification of upper and lower unconditional credal 
probabilities for each element of U fails to determine the 
unconditional credal state B1 uniquely. 

Furthermore, supplementing these specifications with iden
tifications of the upper and lower unconditional credal prob
abilities for Boolean combinations of elements of U cannot 
help; for the upper Qrvalue for h1 V h2 is one minus the lower 
Qi-value for h3 , etc. 

Suppose U has n > 3 elements. Let U* consist of g g 1' 2, 

and g3 , each of which is a disjunction of distinct elements of 
U. Specifying upper and lower Qi-values for the gt's in U* fails 
to determine the credal state for Boolean combinations of U*. 
Let Q(hk; g;) have a fixed value for all Q-functions in B for hk 
which is a disjunct in g;. In that event, for every permissible 
Qi-function in B1, Q1(hk) is a maximum when Qi(g1) is a maxi
mum and is a minimum when Q1(g1) is a minimum. Conse
quently, for such credal states over Boolean combinations of 
el~ments of U, a specification of upper and lower, Q1-values 
fails to determine the unconditional credal state uniquely. 
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B. 0. Koopman introduced axioms for comparative credal 
probability sufficiently powerful to determine for each hypoth
esis in a Boolean algebra of propositions that it have an upper 
and lower credal probability. 3 Koopman did not assume that 
the axioms of comparative credal probability guaranteed a 
total ordering of the hypotheses with respect to unconditional 
credal probability. 

Good investigated the properties of upper and lower prob
abilities on the assumption that they represent the lower and 
upper bounds of the range of values which the unknown 
uniquely permissible Q-function in a strictly Bayesian black 
box might assign to hypotheses under consideration. 4 

C. A. B. Smith proposed a method of identifying upper and 
lower pignic probabilities in terms of betting behavior. 5 

H. E. Kyburg prescribed how rational agents should assign 
upper and lower probabilities relative to knowledge of relative 
frequencies. 6 

F. Schick suggested a method of extending Carnap's pro
gram to cover cases where the relative widths of predicates 
are not definitely determined (as they would be for Carnap, so 
Schick maintained, in the case of disposition predicates). His 
proposal involved the introduction of upper and lower prob
abilities. 7 
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More recently, A. P. Dempster has joined the ranks of those 
who take lower and upper probabilities seriously. t 

Some of the authors cited tend to construe indeterminate 
probability judgment in accordance with Good's black-box 
metaphor. Others tend to understand it as an expression of 
suspense between rival strictly Bayesian credal states. 

Whatever the intention, the formal apparatuses developed 
could conceivably be used to represent states of indeterminate 
credal judgment. What are the formal and substantive similar
ities and differences between this mode of representing credal 
states and the convex-set method? 

According to the convex-set method, one begins with the 
nonempty, convex set of Q-functions obeying the calculus of 
probability relative to consistent K and determines the glb and 
lub of permissible Q-values for each hypothesis in the algebra 
of propositions. These become the lower and upper probabil
ities for these hypotheses according to the interval-valued 
probability measure thus determined. This interval-valued 
function envelops the convex set in the sense just explained. 

Intervalists go in the opposite direction. They begin with an 
interval-valued probability measure obeying some system of 
postulates belonging to those introduced by the authors cited 
above. If they are concerned about a convex set representa
tion at all, they consider the set of all probability measures 
obeying the specifications of the interval-valued function. A 
measure obeys these specifications when the value assigned 
a hypothesis by the measure falls in the interval assigned that 
hypothesis by the interval-valued function. 

The two methods are equivalent if and only if (i) permissible 
credal states are restricted to the largest convex sets of prob-

t A. P. Dempster, "Upper and Lower Probabilities Induced by a Multivalued 
Mapping," Annals Math. Stat., v. 38 (1967), pp. 325-339. Dempster, to my 
knowledge, was the first to notice in print that upper and lower probabilities 
do not uniquely determine a convex set of probability measures; but Dempster 
credits the observation to L. J. Savage, The Foundations of Statistics (New 
York: Wiley, 1954), pp. 332-333. Dempster himself, however, endorses re
strictions on credal states which guarantee that specifications of upper and 
lower probabilities determine the credal state to be the largest convex set 
compatible with the specifications. Indeed, he restricts credal states to a 
subset of sets constructible in this fashion. He also (mistakenly, I think) 
attributes to Smith the view that a credal state is representable by any convex 
set and, hence, is not fully characterized by upper and lower probabilities. 
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ability measures obeying the interval-valued functions which 
envelop them and (ii) interval-valued functions are restricted 
to functions which are envelopes of convex sets of probability 
measures. 

Suppose condition (i) is satisfied. Suppose further than an 
interval-valued probability function is used to represent acre
dal state which is not the envelope of the largest set of prob
ability measures obeying its specifications. In that case, (ii) is 
violated. Notice, however, that once the convex set is deter
mined by the interval-valued function, the interval-valued 
function which does envelop the set of probability measures 
can be determined. If we treat the two interval-valued func
tions as equivalent, the violation of (ii) is nullified. Otherwise 
it is significant. 

I contend that two credal states are similar in all respects 
relevant to deliberation and inquiry if and only if the same 
probability measures are permissible according to both credal 
states. This thesis is a consequence of the conception of the 
role of permissible Q-functions in the evaluation of £-admis
sibility both in practical deliberation and cognitive inquiry 
which I have been developing. 

Given this contention, if the same set of probability meas
ures is the largest agreeing with two distinct interval-valued 
functions, the two functions cannot represent distinct credal 
states but must be equivalent characterizations of the same 
credal state. On the assumption that condition (i) is satisfied, 
it does not then matter which of the interval-valued functions 
is employed from among the infinitude of such functions gen
erally available for a given convex set. As a rule, however, it 
will be convenient to use the envelope function. 

Some intervalists may question my contention that all rel
evant information about a credal state is conveyed by the set 
of permissible Q-functions. If so, they should state what rel
evant information is lost and for what purpose it is useful. 
Only then can we ascertain whether there are grounds for 
disagreement and if so what they are. For the present, I shall 
carry on taking my thesis for granted. The upshot is then that 
if condition (i) obtains, condition (ii) ought to be satisfied as 
well and the two methods of representing credal states are 
equivalent. 

But should condition (i) be satisfied? 
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Figure 9.3 illustrates a situation where an interval-valued 
function envelops a convex set of probability measures with
out being the largest such set enveloped by the interval-valued 
function. 

An intervalist might argue, however, that there is no rele
vant difference between the credal state represented by figure 
9.3 and the credal state represented by figure 9.2. 

Given the conception of the role of credal states in the 
evaluation of feasible options with respect to £-admissibility 
and through that with respect to admissibility, this view is 
mistaken. A numerical example may help settle the matter. 

Let U consist of hypotheses h 1 , h2 , and h3 and consider Bi 
and B; for V where Bi is the convex hull of the triples of Qr 
values 

(a) 1/8, 3/8, 4/8 

(b) 1/8, 4/8, 3/8 

(c) 3/8, 4/8, 1/8 

(d) 4/8, 3/8, 1/8 

and where B; is the convex hull of (a), (b), and (d). Bi is the 
largest convex set of unconditional probability measures en
veloped by the interval-valued function assigning the following 
to the elements of U: (1/8, 4/8), (3/8, 4/8), (1/8, 4/8). B; is 
enveloped by the same interval-valued function. 

Thus, the interval-valued representation just described can
not distinguish between the two credal states Bi and B;. 

Perhaps, however, we have not probed far enough. Differ
ences might emerge if we tum to the conditional credal states. 
That turns out not to be so. Thus, the lower and upper Q
values conditional on h1 V h2 for both disjuncts according to 
both credal states are (1/4, 4/7) and (3/7, 3/4). An examination 
of the two other conditional credal states reveals no difference 
in the lower and upper Q-values in those cases either. 

Pressing on, we may still ask whether the differences be
tween Bi and B; are significant for the evaluation of the ad
missibility of options. 

Suppose X is offered a gamble on a take it or leave it basis 
where he wins 15 cents if h1 is true, loses 30 cents if h2 is true, 
and wins 40 cents if h3 is true. Utility is linear in money. The 
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options are noncomparable with respect to strength so that 
the set of £-admissible and P-admissible options coincide. 

When the credal state is Bi, both options are £-admissible 
and, hence, P-admissible. Since the security level for refusing 
the gamble is better than that for taking it, refusing the gamble 
is uniquely S-admissible and, hence, admissible. 

According to B;, accepting the gamble is uniquely £-admis
sible. Hence, it is uniquely admissible. 

Notice that even if we restricted attention solely to the 
assessment of £-admissibility, the two credal states yield dif
ferent verdicts. 

Thus, unless an intervalist is prepared to endorse an account 
of how credal states determine the admissibility of options 
radically different from the one proposed here, he cannot say 
that differences between convex sets of Q-functions enveloped 
by the same interval-valued function are insignificant. 

One remaining avenue of defense remains open to the in
tervalist who endorses (i) and (ii). 

Such an intervalist might argue that the principles of induc
tive logic restrict the set of Q-functions logically permissible 
relative to corpus K to the largest convex set agreeing with 
the specifications of a given interval-valued function. This 
assumption and a commitment to necessitarianism would ar
gue in favor of following Kyburg and claiming that credal 
states (states of epistemological probability) be fully describ
able by means of interval-valued functions in accordance with 
condition (i). 

I have already expressed my opposition to necessitarianism. 
But various forms of necessitarianism represent important 
viewpoints meriting serious critical scrutiny. At this stage of 
the discussion, it would be undesirable to prejudge the merits 
of necessitarianism one way or another. If we ruled out all 
credal states violating the requirements of condition (i), we 
would be tilting in favor of an intervalist necessitarianism. On 
the other hand, refusing to rule out such credal states at this 
stage of the discussion does not prejudice the case for doing 
so on the basis of considerations which may emerge later on 
in the discussion. 

Thus, pending further reflection on the merits of necessitar
ianism, the representation of credal states by interval-valued 
functions cannot be taken to be equivalent to representation 
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by convex sets of probability measures. I shall continue to 
employ the convex-set method. 

In their authoritative Foundations of Measurement, D. H. 
Krantz, R. D. Luce, P. Suppes, and A. Tversky "attempt to 
treat the assignment of probabilities to events as a measure
ment problem of the same fundamental character as the meas
urement of, e.g., mass or momentum." 8 They claim that from 
that point of view "the debates about the meaning of proba
bility" are about "acceptable empirical methods'; of deter
mining comparative probabilities. 

These remarks seem to imply that attributing a numerical 
value to the mass of an object is to be understood to mean 
identifying the empirical methods appropriate for comparing 
objects with respect to whether they have more or less mass. 
Similarly, assigning numbers to propositions or events repre
senting their degrees of credal or subjective probability is to 
be understood by identifying the empirical methods appropri
ate for comparing objects with respect to whether they are 
more or less probable. 

Good used his black-box metaphor to express the idea that 
X's vagueness in probability judgment is due to lack of aware
ness of his own strictly Bayesian credal state. Good then 
considered how X might secure critical control over that par
tial information concerning X's strictly Bayesian credal state 
available to him in the form of comparisons with respect to 
credal probability. 

Students of measurement theory seem to be concerned with 
two problems related to Good's: 

(1) What sort of data about X's comparisons of hypotheses 
with respect to credal probability would be necessary, suffi
cient, or necessary and sufficient to secure complete infor
mation about X's credal state? 

(2) Given the answer to (1), what conclusions of a partial 
sort may be obtained concerning X's credal state from the 
sorts of information about X's comparative judgments which 
might sometimes be practically available either to X or to 
another observer of X's behavior? 

As I understand Krantz et al., an answer to (1) is critical to 
their project. Even if it is not feasible practically to elicit 
sufficient data about X's comparisons with respect to credal 
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probability to obtain complete information about his credal 
state, it should at least be feasible "in principle." Otherwise 
the interpretation of credal or subjective probability in terms 
of "acceptable empirical methods" of determining compara
tive probabilities will not be forthcoming. 

In any case, the formal address to both questions is the 
same. A "relational structure," consisting of a domain of 
propositions and comparative probability relations on these 
propositions satisfying appropriate axioms, is proposed. Then 
the questions are asked: Is there a numerical probability meas
ure that represents the relational structure and, if so, is it 
unique? If not, what is the extent of the system of probability 
measures qualifying as representations? 

As I understand them, measurement theorists tend to re
semble Good in being closet Bayesians committed to the view 
that a relational structure which yielded a complete charac
terization of X's credal state should be representable by a 
unique probability measure over the domain of the relational 
structure. 

This is revealed in the attention devoted to the problem of 
identifying necessary axioms for a unique representation, suf
ficient axioms, and necessary and sufficient axioms. More to 
the point, however, is the failure of such authors to devote 
any attention to formulating axioms characterizing indetermi
nate credal states. 

To be sure, some measurement theorists have belatedly 
devoted attention to indeterminacy. Suppes has recently at
tempted to deal with the topic of lower and upper probabili
ties. 9 He concedes that we cannot devise methods for meas
uring credal probabilities such that each proposition could be 
assigned a definite numerical probability. The situation is com
pared to a measurement of mass wherein the measuring in
struments and procedures can yield only approximate deter
minations of mass, and this always with a positive error. 
Suppes suggests that we need a theory of approximate meas
urement in the case of mass and in the case of probability as 
well. 10 

Suppes proposes a theory of approximate measurement of 
probability that assumes all events or propositions to be com
parable with respect to credal probability .11 He postulates a 
Boolean subalgebra of the algebra of propositions generated 
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by n atoms all of which are equal in credal probability. Let g 
belong to the algebra. There must be some number k from 0 
to n such that g is at least as probable as a disjunction of k 
atoms of the subalgebra and a disjunction of k + 1 elements 
of the subalgebra is at least as probable as g. 

Sometimes g will equal one of these disjunctions in proba
bility. In that event, the data warrant concluding that X's 
assignment of a degree of credence to g is exactly k/n or 
(k + 1)/n as the case may be. Otherwise, kin is what Suppes 
considers a lower probability and (k + 1)/n an upper proba
bility. 

However, Suppes explicitly states that he thinks of the up
per and lower probabilities as representing the bounds of the 
interval within which the true credal probability for g lies. 12 

Given that this is Suppes' view of what the upper and lower 
probabilities are, it is unclear why he insists on considering 
data consisting of comparisons which yield comparability with 
respect to probability. 

Given Suppes' prejudice in favor of strict Bayesian credal 
rationality, it is understandable that he should require rela
tional structures describing credal states completely to be 
grounded on complete orderings of the propositions-since 
this requirement is necessary for the existence of a unique 
probability representation. 

But his stated project in the aforementioned paper is to 
study approximate determinations, and for this there is no 
need to insist on comparability with respect to probability 
everywhere in the domain. 

To be sure, the scheme proposed by Suppes will not work 
if full comparability is not assumed. Then we could not guar
antee that there will be data to the effect that g is at least as 
probable as the disjunction of the k atoms of the subalgebra, 
nor that k + 1 atoms will form a disjunction at least as probable 
as g for some k from 0 to n. 

But a scheme avoiding full comparability was proposed by 
Koopman a long time ago; this scheme assumes the existence 
of Suppes-like subalgebras for every integral value of n. In the 
face of the absence of full comparability, one could still de
termine that the strictly Bayesian credal state assigns a definite 
value within definite bounds to g. Koopman does not commit 

• CREDAL CONVEXITY ~07 

himself to that interpretation of upper and lower probability, 
but his formalism can be bent to the purpose. 13 

S. Spielman has also developed systems of comparative 
probability which do not assume connected orderings. 
Whereas Koopman's postulation of the existence of partitions 
into n equiprobable alternatives suffices to guarantee the ex
istence of at least one probability representation, Spielman 
supplies necessary and sufficient conditions. 14 

Spielman does explicitly embrace a strictly Bayesian view 
of the contents of the black box. 15 

Is it mere oversight or is it a consequence of philosophical 
conviction that so many students of the theory of measure
ment-including those who focus on question (2) and, hence, 
are alert to the formal issues pertaining to indeterminacy
remain faithful to strict Bayesian doctrine? 

I believe that it is ideology which is decisive here. For if 
strict Bayesian doctrine were to be abandoned and any convex 
set of Q-functions relative to K taken to qualify as a credal 
state, measurement theorists would face a serious problem. 
Data concerning X's comparisons of propositions with respect 
to credal probability would then be compatible with the con
jecture that X's credal state is the largest convex set of rep
resentations consistent with the ordering with respect to credal 
probability or with any convex subset thereof, including 
strictly Bayesian subsets. 

That may not appear too serious. After all, if the data fail 
to single out a definite hypothesis as to what X's credal state 
is, that circumstance is no different from what prevails even 
when it is assumed at the outset that whatever that state is it 
is strictly Bayesian. 

The serious trouble is that there does not seem to be any 
way in which one can obtain complete information about X's 

credal state from data about comparative probability when 
that state is one which violates strict Bayesian requirements. 
Consider the unconditional credal states B1 and B; of section 
9.8, wherein h1 , h2 , and h3 are all noncomparable. Any dis
junction of a pair of them is no less probable than the third. 
The three disjunctions of pairs are noncomparable. This is 
true regardless of which credal state is considert:d. There is, 
in short, no way to distinguish between the credal states by 
appealing to comparisons of probability. 
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Thus if an empirical characterization of the meaning of cre
dal probability requires a complete characterization of credal 
states as relational structures for comparative probability, we 
cannot obtain an empirical characterization. 

One response to this predicament would be to reject views 
like the one I am advocating, which allow that agents may at 
least be committed to credal states which cannot be fully 
described in terms of comparisons with respect to credal prob
ability on the grounds that otherwise we lack even a concep
tion of the empirical import of what it would be like to live up 
to such commitments. 

It is not my aim here to argue the merits of rival views 
concerning phenomenalism and realism, behaviorism and re
alism, or any other such cognate controversy. Fortunately 
there is little need to do so. 

I have already indicated how a difference in credal states 
sharing the same upper and lower probability specifications 
can be revealed in decision making on some occasions. In the 
next section, I shall outline a system for ideal experimentation 
which could "in principle" reveal completely an agent's credal 
state within the framework of the theory I am proposing. The 
methods involve appealing to choices an agent would make in 
hypothetical decision problems of various sorts; but measure
ment theorists cannot complain about such methods since they 
seem prepared to use them. What cannot be obtained are 
complete descriptions from comparisons with respect to credal 
probability. 

Before turning to that matter, however, it is worth drawing 
attention to a difference between the views of Bayesians and 
the approach I favor concerning decision making: this differ
ence is important in its own right and contributes to supporting 
my claim that, whatever_ the merits of the approach towards 
credence and decision making I favor, it is significantly dif
ferent from those of closet Bayesians such as Good, Spielman, 
Suppes, and other measurement theorists who speak of inde
terminacy in probability. 

Return to case 2 discussed in section 9.5. Suppose that, 
instead of facing a choice between B 1 , B2 , and B3 , X is· com
pelled to choose between B 1 and B3 • .Both Bi and B3 would.be 
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£-admissible and P-admissible. But B3 is uniquely S-admissi
ble and, hence, admissible. 

However, as soon as the option B2 is added to the set of 
feasible options, B3 ceases to be admissible altogether and, 
what is worse yet, Bi becomes admissible. 

This circumstance stands in flagrant violation of what Luce 
and H. Raiffa call the condition of independence of irrelevant 
altematives. 16 The violation becomes more blatant if the loss 
from choosing Bi when eH is false is reduced to 44 cents so 
that it bears higher security level than B2 • Then when all three 
options are available, Bi becomes uniquely admissible even 
though when the choice was between Bi and B3 it was inad
missible. 

Strict Bayesians must find this result anathema. If X's credal 
state is strictly Bayesian and B3 is uniquely admissible when 
a decision is between Bi and B3 , then either B3 bears higher 
expected utility than Bi or the pair of options bear equal 
expected utility (so that B3 is favored because of its security). 
The introduction of a third option with no other relevant 
change in the decision problem cannot increase the expected 
utility of Bi over B3 • Indeed, given the numerical payoffs 
specified for the example, there is no strictly Bayesian credal 
state assigning eH a definite value between .4 and .6 for which 
both B1 and B2 are optimal. And if all three options are avail
able, B3 cannot be optimal. Hence, if Bi is no better than B3 , 

then B2 must be uniquely optimal. It is simply impossible for 
the introduction of a new option to convert an inadmissible 
option to an admissible one. 

Furthermore, those who are convinced that an agent's 
choices between pairs of options reveal their rankings of these 
options with respect to utility or expected utility will find 
violation of independence of irrelevant alternatives unpalata
ble. 

Observe, however, that if the choice is between B1 and B3 , 

both options are £-admissible. When all three options are 
available, B 1 and B2 are £-admissible. The introduction of a 
new option does not convert an erstwhile inadmissible option 
with respect to expected utility into an £-admissible option. 
If only considerations of expected utility are considered, the 
independence of irrelevant alternatives is satisfied. 

The truth of the matter is that B1 and B3 are noncomparable 
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with respect to expected utility. They are comparable with 
respect to security and, in this respect, Ba is better. The 
introduction of a new option makes no difference to this. 
However, on the account of rational choice advocated here, 
admissibility is determined through the application of a lexi
cographically ordered sequence of criteria each of which gen
erates its own ranking within its domain where that domain 
depends on the application of the criterion appearing earlier 
in the sequence. Ba is better than B1 with respect to security 
and noncomparable with B 1 with respect to expected utility 
(and strength). This is so regardless of the availability of B2 or 
not. The introduction of B2 , however, removes Ba from the 
status of £-admissible, leaving B 1 and B2 to be considered. 
Then the superiority of Ba with respect to security over B1 no 
longer matters. Hence, the deviation from the independence 
of irrelevant alternatives. 

According to the approach to rational decision making I 
favor, X's choice of an option from a set of feasible options 
does not reveal a weak preference for that option over every 
other option either with respect to expected utility, with re
spect to strength, or with respect to security. The situation is 
more complicated. But it is the very complexity which permits 
a specification of conditions under which X's decisions, as
suming he conforms to the prescriptions proposed here, could 
reveal his credal state. 

Students of the measurement of credence have, of course, 
utilized the work of F. P. Ramsey, B. De Finetti, and L. J. 
Savage to draw conclusions about X's allegedly strict Bayesian 
credal state from the manner in which X makes decisions. 

As we saw in section 7.3, if Xis offered a gamble on eH (the 
hypothesis that a given coin lands heads on a given throw) 
with a stake S and is asked what the lub of prices at which he 
would accept the bet is, the ratio PIS should be the same 
regardless of the magnitude of S or its sign when X's credal 
state is strictly Bayesian. 

On the other hand, if X's credal state is indeterminate as in 
case 1 of section 7 .3 the ratio will be different if S is negative 
than it is when S is positive. As Smith contended, when S' is 
equal to -S for S > 0, then PIS will be less than or equal to 
P'IS'. Moreover, if the lowest permissible Q-value for eH is!. 
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and the highest permissible Q-value is r so that!. :S r, then 
r. =PIS and r = P'IS'. 

Smith showed how X's assignments of upper and lower 
credal probabilities could be revealed by his testimony as to 
how he chose in such hypothetical gambles. 

To be sure, Smith's approach presupposed not only that X 
could adopt a numerically indeterminate credal state, but also 
that for gambles where the "betting quotient" is "medial" X 
would or should refuse the gamble. 

I have avoided making strong claims about the actual be
havior of all decision makers under all or even normal condi
tions. However, I have agreed with Smith that rational agents 
are often in situations where they should adopt indeterminate 
credal states and, moreover, that in gambles of the sort illus
trated by case 1 of section 7 .3, the gambles should be refused 
if the betting quotient is medial-i.e., that there should, in
deed, be a spread in the odds. 

I argued that this result could be rationalized by assuming 
that admissible options are S-admissible or alternatively that 
they were lex-admissible. In making this assumption, we have 
a means for extending Smith's approach to decision making in 
special cases exemplified by case 1 of section 7 .3 to other 
sorts of decision problems. 

The interesting implication is that, with the aid of this de
cision theory based on a system of criteria for admissibility 
lexicographically ordered in the manner proposed here, we 
can extend Smith's method for determining upper and lower 
credal probabilities to obtain a complete determination of X's 
credal state. 

In section 9.7, we saw that for the case where we focus on 
credal states for a set U of three alternatives, h1, h2, and ha, 
exclusive and exhaustive relative to K (and each consistent 
with it) as well as the Boolean combinations of these alterna
tives, for any arbitrary slope, there is at least one and at most 
two supporting lines to a convex set of points representing a 
potential credal state. 

If we could determine the supporting lines for such a convex 
set for every possible slope, we could uniquely determine the 
boundary of the convex set and, hence, the convex set itself 
(save for whether the points on the boundary do or do not 
belong to the set). 
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As we saw, the upper and lower credal probabilities for h 
h 

1' 

2, and h3 determine only three pairs of supporting lines, and 
this fails to determine uniquely the convex set (section 9.8). 

Smith's methods provide a technique for determining the 
upper and lower credal probabilities of the elements of U and 
hence, of their negations as well. As they stand, they fail t~ 
supply information about other supporting lines. This fact 
constituted the technical basis for the reservations I advanced 
~gainst. intervalist views of indeterminate probability judgment 
m sect10n 7 .8. 

As I understand him, Smith did not go beyond an intervalist 
view. However, his techniques could have been extended to 
accommodate a more general approach . 
. Consider gambles of the following type: A stake S1 is spec
ified for h1. Another stake S2 is specified for h2. Xis asked to 
specif~ the lub of the prices he is willing to pay for the op
portumty to take the gamble. 

To appreciate the significance of the gamble, consider first 
the. set of Q-functions for which a gamble paying S1 - p when 
h1 is true, S2 - P when h2 is true, and -P when h3 is true is 
"just fair"-i.e., bears 0 expectation. That set consists of 
points which satisfy the linear equation x1S1 + x2S2 - p = o. 
They are representable by the points on the line segment in 
the right triangle of figures 9.1-9.3 of the line with slope 
equal to -S1/S2. 

Recall now that any convex set representing a credal state 
has at least one and perhaps two supporting lines with the 
slope -S1/S2. These supporting lines determine a set of lines 
with slope -S1/S2 consisting of all such lines which are either 
supporting lines or fall between such supporting lines. 

Given a gamble with payoffs determined by the stakes S
1 

and S2 and a price P which determines such a line, it must be 
the c.ase ~hat the gamble bears 0 expectation for some Q
funct10n m the convex set representing the credal state. 
Hence, there are some permissible Q-functions in the credal 
state for which both accepting and rejecting the gamble is £
admissible and, hence, P-admissible. Hence, rejection of the 
gamble is uniquely S-admissible and admissible. 

Consider now some line with the same slope outside the 
i~ner s~t. It intersects the credal state nowhere. Consequently, 
either it bears positive expectation for every permissible Q-
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function in the credal state or negative expectation for every 
permissible Q-function in the credal state. 

Suppose the gamble bears positive expectation. Then a gam
ble with stakes -Si and -S2 and price -P bears negative 
expectation for all permissible Q-functions. 

Now if it should tum out that the absolute magnitude of the 
lub of the price at which X is willing to accept a gamble with 
stakes S1 and S2 is the same as the lub of the price when the 
stakes are -Si and -S2 there is only one supporting line. 
Otherwise there are two. 

Thus a procedure for identifying the supporting lines for X's 
credal state with any slope has been provided. This procedure 
is as empirically grounded as the procedures which could be 
used to ascertain fair betting quotients if they exist or upper 
and lower credal or pignic probabilities by looking at spreads 
in the odds. 

When -Si/S2 = -1, the supporting lines are parallel to the 
hypotenuse. If -Si/S2 = O~ the supporting lines are parallel to 
the x1-axis. If the ratio is infinite, they are parallel to the x2-
axis. These three types of supporting lines are those which 
Smith's techniques reveal. Indeed, the method described here 
is equivalent to Smith's for those cases. 

If the set U of exclusive and exhaustive alternatives with 
which we begin contains n elements, we need to determine all 
pairs of supporting hyperplanes for the convex set in an 
(n - 1)-dimensional Euclidean space. These are given by con
structing gambles which specify stakes for the first n - 1 
hypotheses and ask X to indicate the lub of the prices he is 
willing to pay for a gamble of this kind. 

Since we can "in principle" identify the supporting lines 
(or planes or hyperplanes) in any orientation for the convex 
set in the manner outlined, if we could determine all such 
supporting lines (planes or hyperplanes) for all orientations, 
we could determine X's credal state completely. Of course, 
noncountably many determinations would be required so that, 
in practice, some method of calculation would be needed. I 
doubt, however, that students of the problem of measurement 
who follow the current orthodoxies can complain that credal 
states representable by convex sets which are nonempty and 
nonunique are inaccessible to some sort of empirical scrutiny. 

Of course, this conclusion is based on the use of criteria for 
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rational choice quite different from the conditions which meas
urement theorists customarily assume are applicable. In par
ticular, a generalization of Smith's theory has been applied 
which itself is based on a lexicographically ordered sequence 
of tests for admissibility which culminates in either a maximim 
or leximin criterion. 

If these considerations are sound, students of the theory of 
measurement have no basis for objecting to the approach to 
credal rationality advocated here on the grounds that there 
would be no way in principle of ascertaining whether one was 
in a credal state of the sort allowed. To be sure, if agents were 
to satisfy the conditions for credal rationality and to make 
decisions in accordance with principles embedded in my pre
scriptions, the problem of measuring credence could not read
ily be formulated in the manner which measurement theorists 
currently favor. 

I am far from prepared to claim that agents do actually 
satisfy the requirements of my theory with any great regular
ity. I simply do not know. I remain moderately confident that 
they could be trained to satisfy them to a moderate degree and 
that doing so would be better than urging them to behave like 
strict Bayesians. I am not deterred by the small inconvenience 
widespread practice along the lines I favor would cause prac
titioners of the current orthodox approach to measurement. 

The case for abandoning credal uniqueness is grounded on a 
conviction that, wherever feasible, men should suspend judg
ment rather than make unwarranted and arbitrary decisions. 

The substitution of convexity for uniqueness is based on a 
view of the use of Q-functions in evaluating options with 
respect to expected utility combined with the conviction that 
when two such systems of evaluation conflict without any 
warranted resolution being available, all potential resolutions 
should be considered permissible. 

Of course, suspension of judgment incurs a cost. When 
credal states go indeterminate, more options are counted £
admissible and decisions become arbitrary or must be decided 
by considerations other than expected utility. 

There is an unavoidable tension between the demand for 
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definiteness and the desirability of avoiding arbitrariness in 
credal judgment. A wise man has a just appreciation of that 
tension. One of my chief concerns in this book is to contribute 
something to an understanding of what a just appreciation of 
that tension entails. 

9.12 CONCLUSION 
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In section 4.3, the assumption was made that rational X should i 
always be committed to a view as to what his credal state ~ 
should be relative to every potential corpus (expressible in L). 1 

That confirma:tional commitment was represented by a func- ¥ 
tion from potential corpora to credal states. It was not as- -
sumed that every X should endorse the same confirmational 
commitment. That is an issue open to debate. It was also not 
assumed that X should remain faithful to the same confirma
tional commitment throughout his career as a rational agent, 
as the principle of confirmational tenacity entails. However, 
at any given time, Xis required to be committed to some such • 

i rule. 
If X is committed to Cx, 1 at t, it obviously follows that t 

Cx, 1(Kx,i) = Bx,1 as the principle of total knowledge requires. • 
In section 4.3, the principle of confirmational conditionali- i 

zation was introduced. This states that if K' is the expansion i 
of K by adding e consistent with K and forming the deductive 
closure, then, for every potential confirmational commitment 
C, C(K') is the conditionalization of C(K) with respect to K 

and K'. 
Every potential corpus is an expansion of the urcorpus UK. 

Hence, C(K) is the conditionalization of C(UK) with respect 
to UK and K provided that confirmational conditionalization 
is satisfied. C( UK) is the credal state that should be endorsed 
in a state of complete cognitive ignorance (section 9.1) by any 
agent who adopts the confirmational commitment C. Proba
bility measures of the form P(h; e) in C(UK) shall be called 
P-functions, to distinguish them from Q-functions relative 
to other potential corpora. 

Once the set of P-functions in C( UK) is specified, confir
mational conditionalization entails that if K is obtained from 
UK by adding e, C(K) is the set of Q-functions relative to K 
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obtained by taking each P-function in C( UK) and constructing 
Q(h;f) = P(h;f & e). 

Consequently, once confirmational conditionalization is 
adopted, confirmational commitments can be determined by 
identifying the set of permissible P-functions according to 

C(UK). 
The conditions of credal rationality discussed previously 

require that C(K) should be a nonempty set of probability 
measures relative to K satisfying credal convexity, for every 
c and every consistent K. Confirmational conditionalization 
allows us to reformulate these requirements by requiring that 
C(UK) be nonempty, that each P-function in C(UK) be a 
probability measure re la ti ve to UK, and that C( UK) satisfy 
the convexity condition. 

In chapter 4, mention was made of the fact that at least two 
authors, H. E. Kyburg and A. P. Dempster, do not endorse 
confirmational conditionalization. I think they are mistaken 
and, hence, think it perfectly acceptable to recast the con
ditions of credal rationality discussed previously as conditions 
on C( UK) and to deduce the implications for C(K) from con
firmational conditionalization. However, when considering the 
views of dissenters like Ky burg and Dempster as I shall even
tually do it is important not to beg questions. For this reason, 
the conditions of credal coherence, consistency, and convex
ity have been formulated directly as requirements on credal 
states relative to any potential corpus and not merely on UK. 

Somewhat similar considerations motivate the way in which 
conditional probability is treated in this book. Given confir
mational conditionalization, then (for any P-function in 
C( UK)) P(h; f & e) defines a permissible Q-function relative 
to the corpus obtained by adding e to UK. Hence, it is tempt
ing to think of the P-function itself as a representation of a 
strictly Bayesian rule for determining credal states relative to 
potential expansions of UK. If credal uniqueness is aban
doned, the set of permissible P-functions becomes the rule. 

Because conditional probability relative to potential K has 
customarily been considered under the assumption that con
firmational conditionalization is operative, the construal of P
functions as furnishing instruction as to what credal states 

• 
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should be adopted relative to various potential expansions of 
UK is quite common. 

The same observation applies with some important qualifi
cation to conditional Q-functions for Q-functions in C(K). If 
K' is a consistent expansion of K, then confirmational condi
tionalization implies that if Q E C(K), there is a Q' in C(K') 

such that Q'(h;f) = Q(h; f & e) (where K' is obtained from K 
by adding e). Thus, conditional Q-functions relative to K can 
be used as rules for determining credal states relative to po
tential expansions of K. However, they cannot be used to 
determine credal states relative to all potential corpora. 

Even with this qualification, however, it is easy to under
stand why conditional credal probability is understood as rep
resenting how, from X's point of view, he should change his 
probability judgments upon the acquisition of new informa
tion. 

It should be remembered, however, that conditional credal 
probability has an important function to play in evaluating 
feasible options with respect to £-admissibility. At any rate, 
this was the view of authors such as F. P. Ramsey, B. De 
Finetti, and A. Shimony. In section 5.6, a version of this view 
was elaborated by introducing QRCEU or MQRCEU as prin
ciples for ranking feasible options with respect to expected 
utility relative to specific Q-functions. 

When confirmational conditionalization is endorsed, these 
two construals of conditional credal probability may both be 
endorsed without confusion. Suppose, however, confirma
tional conditionalization is abandoned. How should 
Q(h; f & e) relative to K be understood? It can be understood 
in its role in ranking feasible options with respect to expected 
utility when K is the corpus, or in its role in determining what 
Q'-functions should be permissible relative to K' obtained 
from K by adding e. These two interpretations no longer co
incide. We have two notions and need two notations. 

To avoid confusion, I have followed the practice of con
struing conditional credal probability in its functioning in eval
uating expected utility. Instead of introducing another notion 
of conditional probability, I have directly introduced confir
m~tional commitments ~s functions from potential corpora to 
credal states. 

Instead of proceeding as I have done, one could have intro-
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duced another notion of conditional probability. 1 Let P(h;fle) 
be understood as determining a permissible Q-function Q(h; f) 

relative to K obtained from UK by adding e. If confirmational 
conditionalization obtains, then P(h;fle) = P(h;f & e). How
ever, if it fails, the equation might fail as well. Also, 
P(h; f & e) obeys the multiplication theorem. But if confir
mational conditionalization is not applicable, P(h;fle) might 
not do so. The set of permissible functions of type P(h;fle) 
corresponds to C(K) in my notation. If t E UK, the set of 
permissible functions of type P(h;flt) corresponds to C(UK). 

I can see no objection to introducing this second notion of 
conditional probability and using it to characterize what I call 
confirmational commitments rather than employing my pro
cedure-provided that one does not neglect the other notion 

of conditional credal probability which plays an important role 
in ranking feasible options with respect to expected utility. 

No difficulty arises as long as confirmational conditionali
zation is endorsed. The two conditional probabilities are then 
one. I find the use of two notions and notations for conditional 
probability confusing when considering views which reject 
confirmational conditionalization-but each to his own con

fusion. 

P(h; fie), so I suggested, might represent a permissible Q

function relative to a corpus obtained by adding e to UK 

according to some confirmational commitment. 
In a similar spirit, we might introduce Q(h;fle) for e con

sistent with K to represent a permissible Q'-function re la ti ve 
to K' obtained from K by adding e. If K itself is the deductive 
closure of UK and g, Q(h;fle) = P(h;fle & g). Hence, if 
confirmational conditionalization holds, 

Q(h; fie) = P(h; f & e & g) = Q(h;f & e). 

W. Harper has proposed a new sort of conditional Q-func
tion which I shall represent as Q(h;fQe). 2 When e is consistent 
with K, then Q(h;f#e) = Q(h;fle). 

However, the Harper function is also defined for e incon-

sistent with K. t 

t Harper ("Rational Belief Change, Popper Functions, and Counterfactuals," 
Synthese, v. 30 (1975), pt. 2, p. I) attributes his conditional probability meas
ures to Popper and calls them "Popper functions." This is done on the basis 
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In such cases Q(h;f§e) = P(h;fle & w), where K* is the 
expansion of UK obtained by adding e & w to UK and forming 
the deductive closure; in addition, K* is that corpus, consist
ent and containing e, that most resembles K (in some unspec
ified sense). 

One way to explicate this notion of K* entailing a minimal 
revision of K is by regarding K* as the result of first contract
ing K through removing -e in a manner which minimizes loss 
of informational value (or implementing all contraction strat
egies which minimize) and then adding e to the result, thereby 
ending up via deductive closure with K*. 

For those who think of conditional probabilities as useful in 
performing the functions of confirmational commitments, Har
per functions might appear to be a natural generalization from 
customary measures. But the generalization is quite seriously 
confusing. 

(a) When conditional probability is understood in the sense 
in which it is used to rank feasible options with respect to 

of appendices *iv and *v of Popper's Logic of Scientific Discovery (London: 
Hutchinson, 1959). The attribution is misleading in several respects: 

(I) The idea of beginning with conditional probability as primitive is not 
origi~~l with Popper. Nor is the idea of doing so and permitting probability 
cond1t1onal on events of measure 0. I do not know who is the first to exploit 
both ideas, but in a paper published in Italian in 1949 and reissued in English 
translation as chapter 5 of his Probability, Induction and Statistics (New 
York: Wiley, 1972) De Finetti does just this. 

(2) Popper, unlike De Finetti, does permit probability to be defined on 
impossible events. Popper does, however, acknowledge (at least indirectly) 
that _h~pothese_s bea~ng 0 probability need not be impossible. Probability 
cond1t1onal on 1mposs1ble events must be I. Probability conditional on events 
of 0 probability need not be if the events are not impossible. 

(3) Harper assumes that hypotheses bearing 0 probability, where probability 
represents an agent's state of belief, are inconsistent with the agent's corpus 
of knowledge and, hence, are, in my sense, not serious possibilities. Yet, 
unless they are inconsistent with the urcorpus, they remain possible for the 
purpose of applying Popper's theory. That is to say, if e is inconsistent with 
X's corpus but consistent with UK, the unconditional probability of e will be 
0 yet the conditional probability function relative to e will be a normal one 
with some hypotheses receiving conditional probability less than I. 

This is a special application of Popper's formalism and by no means the 
one Popper ~imself appeared to have in mind. I think it entirely appropriate 
to honor the mventor of the application by calling functions interpreted in the 
manner indicated "Harper functions." 
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expected utility, it makes no sense to define Q(h; e) when e is 
inconsistent with K. Suppose, for example, that X is offered 
a gamble where he receives S - P if h & e is true (S > 0), 
-P if -h & e is true, and 0 if e is false. If he refuses the 
gamble, X receives 0. What is the maximum value of P for the 
fixed value of S (or the lub of such values) at which the gamble 
ranks higher than the alternative with respect to expected 
utility? The standard answer is that if e is consistent with K, 
then PIS = Q(h; e). Hence, the conditional Q(h; e) plays a 
significant role in evaluating the options with respect to ex
pected utility. If, on the other hand, e is inconsistent with K 
so that the truth of e is not a serious possibility, the two 
options are ranked equally regardless of the value of PIS or of 
Q(h; e)-assuming the latter to be defined. That is why Q(h; e) 

goes undefined when e is inconsistent with K and conditional 
probability plays its role in ranking options with respect to 
expected utility. If we seek to preserve a notion of conditional 
probability which plays that role, it is desirable that that notion 
not be confused with Harper's conditional measures. The best 
way to avoid confusion is to avoid such measures if we can 
do without them. We can. 

(b) Conditional credal probability understood as a factor in 
ranking options with respect to expected utility can perform 
that function even if the condition e has a value Q(e) = 0-
provided e is consistent with K. The ramifications of this point 
were discussed in chapter 5. There has been a tendency among 
students of Harper functions to overlook the difference be
tween Q(e) = 0 and e being impossible (i.e., inconsistent with 

K). 
(c) The properties one ascribes to Harper functions depend 

on how one thinks a shift from K containing -e to that K* 
which is a minimal revision of K consistently containing e is 
determined. Clarity is best served, I think, by distinguishing 
that matter from the question of specifying the properties of 
the confirmational commitment which also contribute to the 
characterization of Harper functions. Harper functions mask 
the differences between the contributions of the confirmational 
commitment and one's view of what constitutes a minimal 

revision of K. 
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Consider the following hypothetical cases: 

Case 1: X is offered a choice between the following pair of 
options: 

A1 : Win S - P if h & e is true, win -P if -h & e is true, 
and receive 0 if e is false. 

A2 : Receive 0 regardless of what is the case. 

Case 2: X is offered a choice between the following pair of 
options: 

B,: Win S - P if h & e is true, win -P if -h & e is true, 
and receive R if e is false. 

B2 : Receive 0 in any case. 

In both case 1 and case 2, h & e, -h & e, and -e are 
serious possibilities. The credal state for these three alterna
tives is identical. 

Hence, in both cases, the truth of-e is a serious possibility. 
Yet, as explained in section 5.6, the truth of -e is not a 
relevant possibility in case 1. It is a relevant possibility in case 
2. 

Let case la be exactly like case 1 except that X adds to his 
corpus the information that e is true. Let case 2a be derived 
from case 2 in the same way. 

We are going to assume that the change in knowledge does 
not alter X's confirmational commitment in any way. 

If this assumption is considered an unhappy one, we can 
consider X to have the initial corpus K and ask him about 
cases 1 and 2 and la and 2a from his current perspective when 
his corpus is K, his confirmational commitment is C, and his 
credal state is B = C(K). 

Relative to both la and 2a, the truth of -e is no longer a 
serious possibility. In that case, the two cases are exactly 
alike. It appears entirely reasonable that A; is admissible in la 
if and only if B; is admissible in case 2a. 

Let us now return to cases 1 and 2. -e is a serious but 
irrelevant possibility in case 1 but is relevant as well as serious 
in case 2. The credal state may be such that option Ac is 
admissible in case 1 without option B; being admissible in case 
2 and vice versa. 
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Compare now case 1 with case la. The sole difference 
between the two cases is that what was an irrelevant but 
serious possibility in case 1 is no longer a serious possibility 
in case la. Initially X was guaranteed that he would neither 
win nor lose if -e is true. In case la, such a guarantee no 
longer matters; for, as far as Xis concerned, the truth of -e 
is not a serious possibility. Does the difference between the 
two cases matter for admissibility? 

The answer seems obvious to me. If the sole difference in 
the two situations is the change in the information as to the 
truth of e, whichever options are admissible in case 1, and 
only those options, should remain admissible in la. Since Ac 
is admissible in case la if and only if B; is admissible in case 
2a, it follows that A; is admissible in case 1 if and only if Br is 
admissible in case 2a. 

Of course, what is obvious to me may not be obvious to 
everyone. I lack a proof that rational agents should evaluate 
admissibility so that the options admissible in case 1 are the 
same as the options admissible in case la. However, I confess 
that I am at loss to comprehend the view of anyone who 
differs about this matter. 

To be sure, in coming to know that e is true, some other 
circumstance may also be altered which justifies a change in 
X's confirmational commitment; but I am inviting the reader 
to consider situations where no such change in circumstance 
arises. Only in those cases do I claim that the evaluations of 
admissibility in cases 1 and la should be the same. 

The idea is that to be insured against gain or loss because 
of the payoff structure and to be insured against gain or loss 
because a logical possibility is not a serious possibility are 
both ways of being insured against gain or loss; and it should 
not make any difference in deliberation which way the insur
ance is obtained. 

If this assumption is granted, a strong case for confirma
tional conditionalization becomes available. 

In case 1, ranking with respect to expected utility depends 
on the use of the Q-function conditional on e for each permis
sible Q-function in B = C(K). 

If the confirmational commitment does not change but the. 
corpus is expanded to K' by adding e so that C(K') = B', 
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ranking with respect to expected utility will use the uncondi
tional Q' -functions in B . 

Yet, the results of ranking should be the same-or so I am 
assuming. Hence, for a Q EB, there should be a Q' EB' (and 
conversely) such that Q(h; e) = Q'(h). 

It would be tedious to elaborate further. It should be ap
parent that for potential expansions of K (which are consist
ent), confirmational conditionalization should be observed .. In 
keeping with the idea that the confirmational commitment is 
defined for potential consistent expansions of UK, generali
zation of our conclusions favors imposing confirmational con
ditionalization throughout. 

Confirmational conditionalization, however, is a restriction 
on potential confirmational commitments. An agent X is sup
posed to endorse such a commitment at time t and the rule so 
adopted represents what, in his view at t, should be his credal 
state relative to every potential corpus. 

Recall, however, that in inviting the comparison between 
cases 1 and la, it was assumed that there is no relevant dif
ference between the two cases except the change in standard 
for serious possibility-i.e., in the corpus of knowledge. 

If there are relevant differences, the analysis might break 

down. 
What are relevant differences? Differences in circumstance 

which could warrant a revision of confirmational commitment. 
Whether there are such relevant differences and, if so, what 
they are are questions which an account of the revision of 
confirmational commitments should attempt to answer. Some 
attention to these matters will be given in chapter 13. 

It is important to understand now, however, that the case 
made for confirmational conditionalization does not warrant 
temporal credal conditionalization or its inverse. (See section 
4.3.) The argument proves much less than some advocates of 
conditionalization might wish to defend. 

To endorse temporal credal conditionalization and its in
verse requires adoption of confirmational tenacity in addition 
to confirmational conditionalization-i.e., that no circum
stance other than a change in corpus may warrant a revision 
in credal state. Such a view implies that if, in shifting from 
case 1 to la, there is no change in knowledge other than the 
discovery that e is true (as we have been assuming all along), 
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then no matter what other changes in circumstance might 
occur, the two cases should be treated alike. I made no such 
claim. 

10.5 In both decision making and in scientific inquiry, X sometimes 
Confirmational designs experiments in order to obtain data on the basis of 
Irrelevance which to make a decision or to expand his corpus via induc-
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tion. 
In designing such experiments to test hypotheses, investi

gators seek information from the data relevant to determining 
which (if any) of rival hypotheses to add to the body of knowl
edge or what practical policy to implement. Costs of reporting 
and storing the data argue against obtaining irrelevant infor
mation concerning the hypotheses under investigation. 

Thus, if, in testing the efficacy of a drug, only the percent
ages of successful and unsuccessful drug therapies are relevant 
but data as to who was cured and who not irrelevant, it would 
be pointless to retain the extra information. On the other hand, 
if there is some doubt about relevance, it might become de
sirable to incur the costs of storage. In any case, judgments 
of relevance and irrelevance are of considerable importance 
to the design of experiments and the processing of information 
obtained from them. 

The notion of relevant information in a corpus of knowledge 
should be distinguished from the notion of a relevant possi
bility discussed in section 10.4. In case 1 of section 10.4, -e 
is not a relevant possibility in the context of that decision 
problem because the serious possibility that -e is true may 
be ignored in assessing the admissibility of the available op
tions. On the other hand, if -e were to be added to the initial 
corpus, the two feasible options in case 1 would then be ranked 
equally even though they were ranked differently before. 
Moreover, the new credal state for the rival hypotheses would 
be modified. Adding -e to the initial corpus would be quite 
relevant in these two respects. 

But even when the concept of relevant information is dis
tinguished from the notion of relevant possibility, ambiguity 
is possible. I am now concerned with the impact of new in
formation on the credal state when the acquisition of that 
information is unaccompanied by a change in confirmational 
commitment. The idea is that such new information is irrele-

10.5 CONFIRMATIONAL IRRELEVANCE 
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vant according to a given confirmational commitment when 
the confirmational commitment prescribes no change in the l 
credal state through the adding of that information to the 
corpus. 

Clearly, however, the acquisition of new information must 
always change the credal state in some respect-especially if 
the new information bore a degree of credence less than 1 
prior to its acquisition. 

However, in designing an experiment, we are interested in 
hypotheses belonging to a set U of exclusive and exhaustive 
hypotheses relative to an initial corpus K such that each g; 
E U is consistent with K. Attention is focused on changes in 
the set RB of unconditional Q-distributions over the elements 
of U which are permissible according to the credal state B = 

C(K) and where the changes are due to the acquisition of new 
information without alteration in confirmational commitment. 

Let d = ei & e2. Let Ke, and Kd be the corpora obtained by 
adding e, and d respectively to K and forming the deductive 
closures. Let RBe, be the set of Q-distributions over the ele
ments of U obtained from that C(KeJ which is the condition
alization of C(K) with respect to K and K.,; and similarly for 
RBd. Thus, if Q E C(K), then Q' is the corresponding member 
of C(K.,) and Q" of C(Kd); and Q'(g;) = Q(g;; e 1) and Q"(g;) 
= Q(g;; d) = Q'(g;; e2). 

The sentence e2 is confirmationally irrelevant to the ele
ments of U according to the confirmational commitment C 

relative to K and e, if and only if RB., = RBd. 

If e1 is entailed by K, the relativity to e 1 may be suppressed. 
If the corpus is UK, the relativity to the corpus may be 

suppressed. 
Suppose X were to conduct an experiment and find out via 

routine expansion that d is true. That is to say, he expands 
from K to Kd while keeping his confirmational commitment 
constant. In reporting the results of his experiment, he might 
feel justified in furnishing only the information that e 1 is true 
if e2 is confirmationally irrelevant. The reason is that the credal 
state for the rival hypotheses in U (which are the hypotheses 
of interest) is the same relative to Ke, and relative to Kd. 

Insofar as X's credal state for elements of U controls his 
choices or his conclusions, the information that e2 is true can 
play no useful role once X finds out that e 1 is true. 

CONDITIONALIZA TION AND IRRELEVANCE 

In this sense, the notion of confirmational irrelevance cap
tures an important conception of irrelevance. 

It has an additional advantage. Suppose that C(K) is strictly 
Bayesian-Le., contains exactly one Q-function. Then e2 is 
confirmationally irrelevant to the elements of U according to 
C relative to K and e, if and only if Q(g;; d) = Q(g;; e,) for 
every g; E U. This conception of confirmational irrelevance 
is widely adopted in some form or another by strict Bayesians. 
The notion I favor recognizes the strict Bayesian version as 
a special limiting case. 

10.6 There is another generalization of the strict Bayesian case 
Strong which might also be considered. e2 is confirmationally irrele-

Confirmational vant in the strong sense for the elements of U according to C 

Irrelevance and relative to K and e, if and only if Q(g;; d) = Q(g;; e,) for 
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every Q-function in B and for every g; E U. 
It is obvious that strong confirmational irrelevance is suffi

cient for confirmational irrelevance. It is important to under
stand, however, that it is not necessary. 

The sentence e2 could furnish useless information as far as 
credal judgments about the elements of U are concerned, even 
though e2 was not confirmationally irrelevant in the strong 
sense. 

To illustrate, let U consist of g and -g, RB., be the convex 
hull of Q~ 1(g) = .6 and m,(g) = .4, and RBd be the convex 
hull of m(g) = mJg) and Qa(g) = Q~Jg). Clearly RBd = RBe" 

so that confirmational irrelevance obtains. 
Finally, let Q~ 1 (e2 ) = .833, m,(g & e2) = .5, mJe2) = .75, 

and m,(g & e2) = .3. 
Let Q,xe, = aQ~, + (1 - a)Q~, for 0 :5 a :5 1. Then 

QaeJg) = .6a + .4(1 - a). 

The function Qad(g) = QaeJg; e2) is determined via the mul
tiplication theorem to be equal to the ratio 

Qae,(g & e2) 

Qne 1(e2) 

.5a + .3(1 - a) 

.833a + .75(1 - a) · 

Let a = .5. Then 

QaeJg) = .5. 

10.6 STRONG CONFIRMATIONAL IRRELEVANCE 
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Thus, the condition for strong confirmational irrelevance is 
violated even though confirmational irrelevance obtains. 

Yet, from the point of view of agent X, a gamble on the 
truth of g when the corpus is Ke1 is to be evaluated with 
respect to expected utility as it is to be evaluated relative to 
the corpus Kd. The fact that the condition for strong confir
mational irrelevance is not satisfied does not matter. t 

The concept of strong confirmational irrelevance is not ut
terly useless. It works well in the special strictly Bayesian 
case. It is a sufficient condition for confirmational irrelevance. 
Moreover, it is possible to identify a set of interesting condi
tions relative to which strong confirmational irrelevance be
comes necessary and sufficient for confirmational irrelevance. 

According to Bayes' theorem (see chapter 4), every permis
sible Q-function in C(K) = B for which Q(e1) and Q(d) are 
positive satisfies 

(1) 

(2) 
Q(d; gi)Q(g;) 

Q(gi; d) = ~j~1Q(d; g;)Q(g1) 

_ Q(e2 ; gi & e1)Q(g;; e1) 

- ~;~1Q(e2; g; & e1)Q(g;; e1) · 

The unconditional Q-distribution over the g/s is called ·a 
prior distribution over the elements of U. Prior distributions 
are elements of RB. 

For fixed e 1, Q(e1; g1) is the likelihood of g; on e 1. 

Q(gi; e 1) is the posterior Q-value for gi on e 1 • By confirma-

t I owe R. D. Luce a debt of gratitude for having inadvertently shown me 
how examples such as the one cited in the text exemplify situations where 
confirmational irrelevance holds but strong confirmational irrelevance fails. 
The observation that confirmational irrelevance is critical to decision making 
is mine. Incidentally the account of irrelevance offered here seems to me to 
be substantially superior to those offered by investigators who wish to take 
a notion of comparative probability as primitive. Their idea seems to be to 
require of a "representation" of a qualitative characterization of irrelevance 
(or "independence") that it be such that Q(h; e) = Q(h). The set of such 
representations amount formally to a scheme for which strong confirmational 
irrelevance obtains. (See D. H. Krantz, R. D. Luce, P. Suppes, and A. 
Tversky, Foundations of Measurement, New York: Academic Press, 1971, 
v. I, sec. 5.8.) 
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tional conditionalization, the posterior Q-distribution on e1 

over U is equal to a function in RBe,· Likelihoods and posterior 
distributions over U relative to d are defined in a similar 
manner. 

In this discussion, U is taken to be finite and both Q(e1) and 
Q(d) assumed to be positive. 

Let us now assume that the credal state B is such that 
Q(e 1 ; g;) = m; and Q(d; gi) = ki for every Q-function in B. 
That is to say, it shall be assumed the X's credal state is such 
that the likelihood function on d is the same for all permissible 
Q-functions and that the likelihood function on e1 is the same 
for all permissible Q-functions. This is the assumption of 

unique likelihoods. 

Credal coherence implies that 

Q(d; e 1 & g;) = Q(e2; e1 & g;) 

= kJm; 

= C;. 

The sufficiency condition implies that ci 

and g/. 
c;' for every g; 

Lemma I: If the sufficiency condition holds (so that the 
assumption of unique likelihoods obtains), then ci > 0 for 
every g;. 

Lemma II: If the sufficiency condition holds, then, for every 
Q-function in B, Q(g;; d) = Q(g;; e1) and e2 is confirmationally 
irrelevant in the strong sense for elements of U relative to K 
and e1. 

Lemma III: If there is at least one Q-function in RBe1 assign
ing positive value to every element of U and if for that function 
Q(g1; e 1) = Q(g;; d) for every element gi in U, then the suffi
ciency condition holds (under the assumption of unique like
lihoods). 

Lemma IV: If confirmational irrelevance of e2 for elements 
of U obtains so that RBd = RBe 1 , then Q(g;; d) = Q(g;; e1) for 
every extreme point of RBe 1 and corresponding point in RBd 

and for every gi in U. 

Lemma V: Under the assumption of unique likelihoods and 
the condition that at least one 6Xtreme point of RBe1 assigns 
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positive value to every element of U, lemmas III and IV imply 
that confirmational irrelevance entails the sufficiency condi
tion and, hence, by lemma II, that confirmational irrelevance 
in the strong sense holds. 

Thus, provided that Q(e 1) and Q(d) are positive for every 
Q-function, the assumption of unique likelihoods obtains, and 
at least one extreme point of RBe, assigns positive value to 
every g; in U, strong confirmational irrelevance is not only 
sufficient for irrelevance but necessary as well. Needless to 
say, this result presupposes confirmational conditionalization 
as do the other results obtained in this section. 

Let the elements of U be represented by points with real
valued coordinates in a finite region of an n-dimensional space. 
No Q-function in RB, RBe" or RBd can assign positive value 
to more than a countable infinity of elements of U. (See section 
5.10.) However, if every set of points with positive Lebesgue 
measure is assigned a positive value according to some Q
function which is an extreme point of RBe, and the assumption 
of unique likelihoods obtains, lemma V still applies. 

Suppose U contains a countable infinity of elements. Ac
cording to section 5 .11, it is possible for all of them to bear 0 
Q-value. Indeed, RBe, could be a convex set of such distri
butions and, yet, lemma V expected to apply. This will be 
true (given the assumption of unique likelihoods) provided at 
least one extreme point in RBe, is representable by a CT-finite 
measure assigning positive value to every element of U. 

Suppose X knows that the chance of obtaining r heads in n 
tosses of coin a in some specific order is equal to p'(l - p)n-r 

for some real value of p between 0 and 1. Any hypothesis 
which specifies the exact value of p is a simple-chance hy
pothesis asserting that coin a has a certain characteristic called 
a chance distribution or an objective probability distribution. 
The concept of objective probability or chance will be dis
cussed at greater length in the next two chapters. In any case, 
we are now supposing that X considers U relative to K to 
consist of all hypotheses hp specifying the exact value of p for 
real values between 0 and 1. 

If X knows that coin a is to be tossed n times and K satisfies 
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conditions to be formulated in chapter 12, the principle of 
direct inference requires that the Q-value to be assigned the 
hypothesis dr that describes the outcome of the n tosses as a 
specific sequence with r heads relative to the expansion KP 
obtained from K by adding hp to be equal to pr(l - py-r. 

Confirmational conditionalization entails, therefore, that 
every Q-function in C(K) should satisfy the requirement that 
Q(dr; hp) = pr(l - p)n-r. 

If hp is true, the chance of obtaining r heads in n tosses 
regardless of the order of heads and tails is equal to 
(~)pr(l - p)n-r. Let er assert that on the specific occasion of 
tossing coin a n times, the coin lands heads r times. Direct 
inference and confirmational conditionalization imply that 
every permissible Q-function in C(K) = B satisfy the condition 
that 

Q(er; hp) = (~)pr(l - p)"-r. 

Thus, confirmational conditionalization and direct inference 
secure that for fixed r, the likelihood functions for elements of 
U relative to er and dr are unique-i.e., the same for every Q
function in B. 

Furthermore, it is apparent that for each hp, the ratio of the 
likelihood relative to er to the likelihood relative to dr is (~). 

which is the same for every value of p. 

Thus, the sufficiency condition is satisfied. By lemma II, 
the information concerning the order of heads and tails con
veyed by d, is confirmationally irrelevant in the strong sense 
for U relative to K and er. Hence, confirmational irrelevance 
holds in the weak or unqualified sense as well. 

Statisticians often regard the "statistic" reported by er to 
be a "contraction" of the "statistic" conveyed by dr. Because 
the ratio of the likelihood of hp given er to the likelihood of hµ 
given dr is a constant for all values of p, the statistic reported 
by er is often called a "sufficient statistic." The sufficient 
statistic does not remove any relevant information from the 
data. As we see, this remains true according to the approach 
developed here. 

On the other hand, suppose the contraction is not a suffi
cient statistic. Consider, for example, the report eH which 
asserts that coin a lands heads on the first of the n tosses. By 
direct inference and confirmational conditionalization, every 
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permissible Q-function in B = C(K) satisfies the requirement 1 
that Q(eH; hp) = p. Relative to d,, it is apparent that contract-
ing the data to eH will lead to a violation of the sufficiency 
condition. 

From this it follows that there are some Q-functions in B 
= C(K) such that Q(hll.p; dr) does not equal Q(h:.p; eH) where 
h:.p asserts that the true value of p is in the interval from p to 
p + lip-namely, those where Q(h:.p; eH) is positive. Since for 
some interval from some p to p + lip there must be at least 
one Q-function in the credal state for which Q(h:.p; eH) is 
positive, it follows that if sufficiency breaks down, confirma
tional irrelevance in the strong sense also breaks down. 

However, from this it does not follow that if sufficiency 
breaks down, eH fails to cover all the relevant information. 
The extra information suppressed by reporting that eH might 
be confirmationally irrelevant. 

Suppose, for example, that RB (the prior credal state for 
elements of U) recognizes as permissible every distribution 
over the elements of U satisfying the requirements of the 
calculus of probability. Indeed, suppose we restrict attention 
to distributions satisfying countable additivity over the field of 
Lebesgue measurable sets in the interval from 0 to 1. 

Under one of these circumstances, the extreme points of 
the convex set of Q-distributions will contain no Q-function 
assigning positive Q-value to every Lebesgue measurable set. 
And it is demonstrable that for every interval from p to p + 
lip, Q(h:.p) = Q(h:.p; eH) = Q(hll.p; er) = Q(h:.p; dr) for the 
corresponding extreme points in RB, RBett• RBe,

1 
and RBd,; so 

that these four sets are identical. Confirmational irrelevance 
obtains even though sufficiency breaks down. 

The point being made here will reemerge later on, after the 
principle of direct inference has been formulated and we come 
to consider whether objectivist necessitarianism is tenable. 

The moral here is that if the sufficiency condition is to be 
not only sufficient but necessary for irrelevance for elements 
of U, the following requirements must be met: 

(i) Confirmational conditionalization must be satisfied by the 
confirmational commitment. 

(ii) The likelihood functions for elements of U relative to e1 
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and d must be unique (the same for all Q-functions in B =. 

C(K)). 

(iii) In the finite case, Q(g;; e 1) must be positive for all g; 
according to at least one Q-function in B determining an ex
treme point of RBe1 • For the other infinite cases, suitable 
modifications must be made as indicated in section 10.8. 

Tampering with these requirements will lead to severe qual
ifications of the role of the sufficiency condition in determining 
the relevance of information conveyed by the data. 
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ABILITIES AND DISPOSITIONS 

Contrast the following two sentences: 

(i) The probability that coin a lands heads conditional on its 
being tossed at time t is .5 and the probability that it lands 
tails conditional on its being tossed at time t is .5. 

(ii) The probability of coin a landing heads on a toss is .5 and 
of its landing tails on a toss is also .5. 

The sentence (i) expresses X's appraisal of the hypotheses 
"coin a lands heads at t" and "coin a lands tails at t" with 
respect to conditional credal probability, where the condition 
is that coin a is tossed at t. In section 9.3, I argued that such 
appraisals lack truth values and, hence, cannot themselves be 
appraised with respect to serious possibility and credal prob
ability. 

The sentence (ii), on the other hand, is a truth-value-bearing 
statement. Moreover, its truth conditions do not involve ref
erence to the cognitive states of agents but only to the state 
of the coin a. It is a statement of statistical or objective 
probability, rather than expression of an evaluation with re
spect to credal probability. 

Following I. Hacking, I shall reserve the term chance for 
objective or statistical probability and shall speak of the 
chance of a landing heads on a toss rather than the probability 
of coin a landing heads on a toss. t 

t I. Hacking, Logic of Statistical Inference, Cambridge: Cambridge Univer
sity Press, 1965, pp. 10-11. In Gambling with Truth, I used "statistical 
probability" but now use Hacking's more felicitous terminology. The ap
proach to chance I advanced in Gambling with Truth and shall elaborate 
further in this chapter and chapter 12 is heavily influenced by the ideas of 
R. B. Braithwaite, who defended the view that chance predicates are theo
retical primitives. 

In Gambling with Truth I compared chance predicates with disposition 
predicates construed as theoretical terms having a pragmatic placeholding 
role in investigations concerned to find explanatory systematizations. (This 
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The concept of chance plays an important role in scientific 
inquiry. In designing experiments aimed at ascertaining which 
of rival hypotheses belonging to some set U is true, an effort 
is made to find a "statistical model" such that each element 
of U may be equated (given the background knowledge K) 
with a statistical hypothesis specifying chances for various 

idea was broached by S. Morgenbesser and myself in "Belief and Disposi
tion," American Phil. Quarterly v. I (1964), pp. 221-232.) 

By claiming that chance and disposition predicates are theoretical primi
tives, I mean that satisfaction conditions cannot be formulated for them in 
terms of descriptions of the test behavior to which they are allegedly related. 
As Braithwaite correctly saw, once this is conceded, the main problem in 
"interpreting" chance is in specifying the epistemological relation between 
chance and test behavior. 

Hacking recognized this problem and the connection with Braithwaite's 
work quite independently from myself. Hacking concentrated his attention on 
formulating conditions relating what I call credal probabilities to objective 
probabilities or chances, whereas I recognized two problems in my earlier 
work: the problem of relating chance to credal probability and the problem of 
furnishing criteria for accepting hypotheses about the outcomes of testing on 
the basis of knowledge of chances and the inverse question of accepting (and 
rejecting) hypotheses about chances on the basis of knowledge of test behav
ior. 

In Gambling with Truth, I was impressed chiefly with the analogies between 
chances and dispositions. In two interesting papers ("Possibility," Phil. Re
view v. 75 (1967), pp. 143-168 and "All Kinds of Possibility," Phil. Review 
v. 84 (1975), pp. 321-337), Hacking emphasized a parallelism between de 
dicto epistemic possibility and epistemic (i.e., credal) probability, on the one 
hand, and de re objective possibility and objective probability or chance on 
the other. Many of the points suggested by this parallelism are already implied 
by my earlier point of view, as well as by the account of knowledge as a 
standard for serious possibility that I developed independently of Hacking. 
There are also many crucial respects in which my understanding of the 
parellelism differs from Hacking's. Nonetheless, Hacking's papers have been 
of great help to me in reformulating my own view of chance and in articulating 
some sort of response to the currently fashionable modal realism. It would be 
helpful to read this chapter along with the two papers by Hacking to appreciate 
the points of similarity and difference. 

It may be worth mentioning that I have ignored Hacking's use of gram
matical tests for support in making distinctions. I do not think grammar has 
much relevance to the problems under discussion. 

Finally, I should disclaim any commitment to Hacking's views concerning 
the ways in which duality with regard to possibility and with regard to prob
ability came to be recognized. (See Hacking's The Emergence of Probability, 
Cambridge: Cambridge University Press, 1975.) I tend to be less impressed 
than Hacking by the role limitations imposed by "conceptual spaces" play in 
intellectual history, and rather suspicious of the role which the conceptual 
spaces of writers about such limitations play in their views on intellectual 
history. 
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"possible outcomes" of experimentation. In this manner, the 
problem is reduced to one of finding out which of rival statis
tical hypotheses is true. 

It is by no means a trivial matter to construct a satisfactory 
statistical model; but the desirability of doing so if feasible is 
clear. In such cases, numerically definite likelihood functions 
relative to each possible outcome of experimentation are ob
tainable in virtue of the principle of direct inference, and the 
utilizability of Bayes' theorem in deriving posterior distribu
tions from priors in a nonarbitrary manner is at least partially 
achieved. (The coin example of section 10.9 illustrates this 
point.) 

For this reason, it is important to acquire an understanding 
of the concept of chance sufficient to elucidate the warrant for 
introducing a principle of direct inference as a principle of 
inductive logic additional to the principle of coherence. 

The concept of chance and the principle of direct inference 
will be examined in chapter 12. As a preliminary, some atten
tion should be paid to the concepts of ability and compulsion; 
for these notions are presupposed by the concept of chance. 

Sentence (ii) of section 11.1 is intended to convey (among 
other things) the following information. 

(a) Coin a is compelled to land heads or tails on a toss. 

(b) Coin a is incapable of landing boths heads and tails on a 
toss. 

(c) Coin a is capable of landing heads on a toss and of land
ing tails on a toss. 

(d) Coin a has a .5 tendency to land heads on a toss and a .5 
tendency to land tails. 

These items of information are normally summed up by 
specifying the kind of trial (tossing), the chance setup (coin 
a), a sample space of possible outcomes of trials of the given 
kind-i.e., of kinds of responses the chance setup is capable 
of making on trials of the given kind (landing heads or landing 
tails)-that are exclusive and exhaustive, and a probability 
distribution over the sample space. 

Items (a), (b), and ( c) concern the specification of the chance 
setup, the kind of trial, and the sample space. They employ 
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notions of ability and compulsion. They intimate objective 
modality. Instead of saying that coin a is able to land heads 
on a toss, we might say that it is possible for coin a to land 
heads on a toss. In the same spirit, we can say that it is 
impossible for coin a to land both heads and tails on a toss 
and that coin a must land heads or tails (i.e., it is impossible 
for coin a to fail to land either heads or tails on a toss). 

Thus, just as we have a contrast between objective chance 
and credal probability, it appears that we have a contrast 
between objective abilities and serious possibility. Moreover, 
the latter contrast seems in some way to lurk behind the 
former. Consequently, in this chapter, I shall discuss ability 
and compulsion (or disposition). In the next chapter I shall 
elaborate on the notion of tendency conveyed by (d)-i.e., on 
the notion of chance. 

X knows that some iron bars attract iron filings placed nearby 
whereas other iron bars do not. X wishes to account for the 
difference in behavior by appealing to some trait or circum
stance present in iron bars of one kind but absent in the others. 
That is to say, X seeks a predicate D such that the following 
statement is true and lawlike. 

(1) Whenever iron filings are placed near an iron bar which 
is a D, the iron filings move towards the bar. 

It is not difficult to identify a predicate D filling the bill. 
Consider "is disposed to attract iron filings placed in close 
proximity" or "is constrained to attract iron filings placed in 
close proximity" or "must attract iron filings placed in close 
proximity.'' 

Of course, explaining why a particular iron bar a attracts 
iron filings placed nearby by noting that it is disposed to do so 
is as lame as the explanation invoking the "dormitive powers" 
of opium that was lampooned by Moliere. 

Why is the explanation a lame one? S. Morgenbesser and 
I suggested some time ago 1 that disposition predicates function 
as "placeholders" in stopgap explanations that are lame pre
cisely because they are stopgap explanations. Whether this 
view implies that dispositions are not real depends on what 
realism is supposed to be claiming. To assert that a is disposed 
to attract iron filings placed nearby is either true or false; and 
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. 1 
its truth value does not depend on the subjective state of any ~ 

agent. In that sense, the view Morgenbesser and I advanced 
is congenial with realism. What we deny is that placeholding 
predicates, as long as they remain in that status, can be al
lowed to appear in lawlike statements in fully acceptable ex
planations. What qualifies as a fully acceptable explanation 
depends on the state of inquiry and the programs for expla
nation to which the investigators are committed. Predicates 
that are deficient relative to some program for explanation 
may, nonetheless, be used in stopgap explanations pending 
further inquiry; this latter will either render those predicates 
acceptable for purposes of explanation or will replace them 
with predicates that are acceptable. 

The proposal to construe dispositionality as placeholding 
for purposes of explanation is just that-a proposal. No claim 
is or was made that this idea captures all aspects of presys
tematic usage. It does, however, seem to capture some as
pects. 

There is one important respect in which this proposal, like 
most other contemporary discussions of dispositionality, is 
misleading. Presystematically to say that a is disposed to re
spond in manner R on a trial of kind S does not imply that a 
is compelled to respond in manner R on a trial of kind S. 
However, R. Carnap's view of dispositionality suggests such 
an implication2 and, on this point, most writers have followed 
Carnap. According to Carnap, if a is disposed to respond in 
manner R on a trial of kind S at any time, then at that time, 
if a is subjected to a trial of kind S, a will respond in manner 
R and, in point of fact, this claim is taken not only to be true 
but lawlike. Yet, presystematically we do not always mean to -
imply that a piece of glass will break if dropped when we claim c 

that it is disposed to break when dropped. We may imply that 
this is so; but we may claim only that the chances are high 
that it will do so. 

In any case, I shall follow current practice and construe 
dispositionality to be invariable dispositionality or compul
sion. Indeed, it is in just this sense that a predicate attributing ~ 

to objects a disposition to R when S'd serves as a placehold& 
1 

in stopgap explanation. ~ 
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Let N be such a predicate and consider the statements: 

(2) Every N R's when S'd. 

(3) Every F R's when S'd. 

(4) All F's are N's. 

The placeholding function of the predicate N is character
ized by the claims: 

(5) Statement (2) is true and is a stopgap lawlike sentence. 

(6) For any predicate F appearing in sentences such as (3) 

and (4), if (3) is true and lawlike, then (4) is true and is a 
stopgap lawlike sentence. 

In virtue of (5), it becomes clear that predicating N of some 
object is claiming that the object is compelled to respond in 
manner R whenever subjected to a trial of kind S. 

I shall call any placeholding predicate of this sort a dispo
sition predicate or a predicate of compulsion or a predicate of 
necessitation or, finally, an N-predicate. 

Suppose an N-predicate is denied to be true of some object 
a. The object a is not compelled to R when S'd. In that sense, 
a is able to fail to R when S'd. It is possible for a not to R 
when S'd. I shall call the negation of an N-predicate a predi
cate of ability or possibility or a P-predicate. 

Some disposition predicates or predicates of compulsion wear 
their status on their sleeves. Others wear their status covertly; 
and others fail to do so in any obvious manner at all. Consider 
the difference between "is compelled to dissolve when im
mersed in water" and "is water soluble" or between "is 
disposed to attract iron filings placed nearby" and "is mag
netic." In both cases, the first term in the pair is explicitly 
dispositional whereas the second term is less so. 

The difference carries some small importance. If an N-pred
icate is explicitly so in the sense that it clearly indicates the 
kind of trial and outcome with respect to which it is disposi
tional as well as indicating on its face that it is dispositional, 
the claim that (2) is true is incorrigible in an important sense 
as is the claim that if(3) is true so is (4). Moreover, the stopgap 
lawlike status of (2) and (4) cannot be eliminated. This is not 
so if an N-predicate is not explicitly so. 
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Thus, it is entirely envisageable that the "reduction sen-. 
tences" linking "is magnetic" with test behavior may be re
vised in important ways and that the predicate "is magnetic" 
might become so acceptably integrated into scientific theory , 
that it loses its placeholder status. This is not so for "is 
compelled to attract iron filings placed nearby." 

To understand the difference, let "is an N(R/S)" be an 
explicit compulsion predicate to be paraphrased as "is com
pelled to respond in manner R when S'd." Imagine that a 
given text contains the following sentence: 

(7) a is an N. * 

At the bottom of the page, there appears a footnote: 

*(5) is true and so is (6). 

We could, however, contemplate modifying the footnote by 
an abbreviation understood by everyone: 

*(R/S). 

Finally, we could eliminate the footnote by converting it to 
an index on the predicate in the sentence (7) so that we have 
the following: 

(7') a is an N(R/S). 

The point of this exercise is to suggest that the prima facie 
structure in the explicit compulsion predicate "is compelled 
to respond in manner R when S'd" is to supply background 
information concerning true lawlike statements in which the 
N-predicate appears. Anyone who is prepared to use the ex
plicit N-predicate is thereby committed to assuming the al
leged background information as part of his corpus of knowl
edge. In this sense, it may be regarded as part of the 
incorrigible urcorpus UK for the language in which the pred
icate "is an N(R/ S)" appears. 

In the case of predicates like "is magnetic" such back
ground information is not explicitly supplied in using the pred
icate and that information can be modified while the use of the 
predicate is retained. 

Similar remarks apply mutatis mutandis to predicates of 
ability. There are explicit predicates of ability of the form ''is 
a P(R/S)"-i.e., "is able to R when S'd." 
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Suppose "Everything R's when S'd" is true and lawlike. 
In such cases, there is no point in introducing a placeholding 

predicate "is an N(R/S)" for purposes of explanation. If we 
explain why something R'd by citing the law and the fact that 
the object was S'd, there is no point in adding the further gloss 
that the thing was compelled to R when S'd. 

Yet, when we have a linguistic device to generate new 
predicates out of old which has a function in some contexts, 
there is a temptation to use it even in contexts where it has no 
function. As long as we understand what is happening, there 
is little harm in it. We should not be deceived into thinking 
we have added anything to our knowledge when we claim that 
everything is compelled to R when S'd. 

Attributions of abilities to agents and things are often qual
ified in various ways. Thus, Levi is physically incapable of 
running a four-minute mile. It is physically possible for Levi 
to spend a fortune at the roulette table at a Las Vegas Casino 
but it is not economically possible for him to do so. 

The claim that it is physically impossible for Levi to run a 
four-minute mile is equivalent to the contention that he is 
physically compelled to fail to run a four-minute mile in an 
effort on his part to do so. The adverb "physically" is an 
explicit indication that the description of Levi's traits and 
circumstances which should be sought as a replacement for 
the placeholding N-predicate should be constituted out of 
terms of physical theory (however that is to be understood). 
Much the same can be said for "biologically," "psychologi
cally," "economically," et al. To say that it is technologically 
possible (or impossible) is not to allude to replacement by 
terms appropriate to some specific domain, theory, or science 
but to promise replacement by descriptions of the agent's 
knowledge or ignorance and the resources available to him. 

Thus, to assert that it is physically impossible for Levi to 
run a four-minute mile is not to claim that it is inconsistent 
with the true laws of physics that Levi runs a four-minute 
mile. To my knowledge, there is no such inconsistency. How
ever, the true statement that Levi is incapable of running a 
four-minute mile together with the appropriate stopgap law of 
type (2) entails that Levi does not run a four-minute mile. The 
attribution of physical impossibility here is an attribution of 
physical incapacity. 
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I have no objection to introducing the notion of physical 
impossibility as inconsistency with the true laws of physics. 
Observe, however, that so-construed physical impossibility is 
not predicated of things and agents but of statements. One 
might claim that it is physically possible that Levi run a four
minute mile at time t and place p because it is consistent with 
the true laws of physics that this be so. Yet, we can deny that 
Levi is capable of running a four-minute mile at time t and 
place p. That is to say, we can deny that it is physically 
possible for Levi to perform such a feat. 

Once this is understood, we may coherently speak of a 
contrast between physical possibility that and physical possi
bility for, biological possibility that and biological possibility 
for, et al. But whereas there is good sense in claiming that it 
is technologically possible for an agent to do so and so, it 
makes no sense to say that it is technologically possible that 
the agent do so and so-unless one insists that there are laws 
of technology. 

Consider now logical possibility. It makes sense to speak of 
logical possibility that h; for that amounts to no more than 
logical consistency. What about logical possibility for an agent 
or object to do something? 

Some authors appear to think that objects may be logically 
compelled or constrained to certain kinds of behavior just as 
they may be compelled, disposed, or constrained physically 
or biologically to other kinds of behavior. t I find such views 
incomprehensible. 

If we are to follow the analogy with physical possibility or 
physical compulsion, to say that a is logically compelled to R 
when S'd is to say that a is an N(R/S) and to promise replace
ment of the N-predicate by a description in purely logical I 
terms. I cannot make very much sense out of this. Perhaps, f 
what is intended is that the variant of (2) becomes a logical j 
truth when the placeholder is replaced by the new description. , 

; 
But if "everything R's whenever it is S'd" is not a logical f 
truth, then (2) cannot be a logical truth unless the substitution , 
for "is an N(R/S)" is inconsistent. t 

t Hacking, "All Kinds of Possibility," Phil. Review, v. 84 (1975), pp. 332-
334. In all fairness to Hacking, he recognized the bizarre character of his 
conclusion and put it forward only because of the encouragement he found in 
Kripke's work. 
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We can obtain a sort of logical compulsion if, in those cases 
where "everything R's whenever it is S'd" is a logical truth, 
we introduce the predicate "is an N(R/S)" with the back
ground stipulation in lieu of (5) and (6) as follows: 

(8) "Everything is an N(R/S)" is true and lawlike. 

No harm arises from using this device provided its operation 
is well understood; but there is no great benefit in it either. If 
one wishes, it can be said to be a predicate of logical com
pulsion and its negation a predicate of logical possibility-i.e., 
logical ability. 

N-predicates are normally introduced as placeholders for 
conditions under which processes or behaviors of some kinds 
occur once other processes have occurred. There is no need, 
therefore, for N-predicates of N-predicates. We do not need 
"is compelled to N(R/S) on a trial of kind T" or "is an 

N(N(R/ S)/T)." 
On the other hand, we do acknowledge that some objects 

are magnetizable in the sense that they are compelled to be
come magnetic when subjected to a trial of a given kind. We 
can have "is compelled to become an N(R/S) on a trial of kind 
T." Such N-predicates do not illustrate iteration of the N

operator. 
Carnap's account of disposition predicates implies that con

ducting a trial of kind S and obtaining a result of kind R is 
sufficient warrant for attributing the disposition to R on a trial 
of kind S. This is a mistake. Coin a is tossed once and lands 
heads. a is capable of landing heads on a toss; but it is not 
compelled to land heads on a toss nor is it invariably disposed 
to land heads on a toss. 3 

Some will complain that my treatment of ability and compul
sion does not qualify as analysis because it fails to specify 
necessary and sufficient satisfaction conditions for such pred
icates in terms of test behavior. 

No such semantics has been offered; but no such semantics 
(and, hence, no such analysis) is needed. Once the commen
tary for a given N-predicate is specified, X has instructions as 
to how to evaluate hypotheses with respect to serious possi
bility concerning the test behavior of objects of which the N

predicate is known to be true. 
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Furthermore, X's corpus, confirmational commitment, and 
the commentary will provide a basis for X to reach conclusions 
as to whether statements of compulsion and ability should or 
should not be added to his corpus. Thus, if a is known to have 
responded without fail in manner R on a great many trials of 
kind S, X might have a credal state which assigns credal 
probability to the hypothesis that a is able to fail to R on a 
trial of kind S sufficiently low to warrant-given his demands 
for information-rejecting that hypothesis. 

Of course, it may be desirable to find necessary and suffi
cient satisfaction conditions for N-predicates. Indeed, their 
function as placeholders for purposes of explanation suggests 
that it is eminently desirable to find alternative equivalent 
descriptions which are explanatorily adequate; but this is tan
tamount to looking for necessary and sufficient satisfaction 
conditions of a certain sort. 

The required conditions might tum out to be specifications 
of microstructures of the objects having the disposition rather 
than descriptions of test behavior (although microstructural 
descriptions need not be obtained in order to integrate an N
predicate into a theory.) 

Thus, I am not denying that predicates of inability and 
ability often need a semantics; but the semantics wanted is not 
to be obtained by invoking a possible-worlds semantics. Nor 
is to be sought by tampering with "logical form" so as to cosy 
up to convention T without infinitely many primitives. Rather 
it is to be sought through the conduct of special inquiries into 
the subject matters for which the predicates of ability and 
inability are used. 

We improve our understanding of predicates such as "is 
compelled to attract iron filings placed nearby" by studying 
magnetic theory, and not by studying possible worlds or any 
other armchair semantics. 

Suppose X confronts an um b containing a large number of 
coins. X knows that some of the coins are two-headed and 
some are two-tailed and none have heads on one side and tails 
on the other. The um band its contents are the "setup." Let 
a trial of kind S be drawing a coin from the urn while blind
folded and after the contents have been thoroughly mixed and 
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tossing the coin twice. Let R describe the outcome of the coin 
landing heads on the second toss in a trial of kind S. 

X knows that b is able to respond in manner R on a trial of 
kind S. 

Let a trial of kind T be one where a trial of kind S is 
performed and the coin lands tails on the first toss. 

X knows that b is incapable of responding in manner R on 
a trial of kind T. 

Suppose X knows that at t a trial of kind S has occurred. 
Is the hypothesis "a result of kind R occurs at t" a serious 

possibility according to X? 
This question broaches the issue of how knowledge of ob

jective possibility and impossibility-i.e., ability and compul
sion-controls or should control appraisals of hypotheses with 
respect to serious possibility. 

It is useful to consider this question as a preliminary to the 
question of direct inference. This last question concerns the 
conditions under which judgments of credal probability are 
grounded on knowledge of objective chance. The question 
now under consideration concerns the conditions under which 
judgments of serious possibility are grounded on knowledge 
of objective compulsion and ability. 

At the outset, we should remember the considerations ad
duced in section 9.4 against construing appraisals of hy
potheses with respect to serious possibility as bearing truth 
values. It is not the case that h is seriously possible according 
to X at t if and only if X accepts as evidence that it is meta
physically possible that h. 

On the other hand, under certain circumstances, X's knowl
edge that it is possible for a result of kind R to occur on a trial 
of kind S and that a trial of kind S has occurred warrants his 
evaluating the truth of the hypothesis that a result of kind R 
occurs as a serious possibility. In this sense, knowledge of 
objective possibility can justify an evaluation of a hypothesis 
with respect to serious possibility. 

Observe, however, that the knowledge of objective possi
bility involved is knowledge that it is objectively possible for 
a setup b to respond in a certain manner R on a trial of kind 
Sand not knowledge that it is objectively (i.e., metaphysically) 
possible that b respond in a certain manner R at time t. Pos-
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sibility for is ability. The knowledge is that b is capable of 
responding in manner R on a trial of kind S. 

Furthermore, this knowledge is not equivalent to appraisal 
of the hypothesis that b responds in manner R at t as seriously 
possible. 

Indeed, the link between the knowledge of objective pos
sibility or ability and the appraisal with respect to serious 
possibility is quite fragile. It depends on X not knowing too -
much. 

Suppose, for example, that X also knows that the trial of 
kind S under consideration is also a trial of kind T. Then even 
though he continues to know that it is possible for b to respond 
in manner R on a trial of kind S, he no longer evaluates "b 
responds in manner Rat t" as seriously possible. He considers 
it as not seriously possible in virtue of his new knowledge and 
the knowledge he already has that b is compelled not to R on 
a trial of kind T. 

Thus, the grounding of appraisals of hypotheses about out
comes of trials with respect to serious possibility on knowl
edge of abilities or objective possibility depends on X's other 
knowledge. The additional knowledge at his disposal can pre
vent evaluating such a hypothesis as a serious possibility even 
in the face of knowledge of ability or objective possibility. 

The point is familiar enough. However, the analogy to direct 
inference is not always appreciated. In grounding judgments 
of credal probability on knowledge of chances or objective 
probabilities, it is crucial that care be taken that X's other 
knowledge not prevent a given judgment from going through. 

j Thus, if X knows that the chance of heads on a toss of coin 1 

a is .5, everything else being equal, knowledge that coin a is ¥ 
tossed should warrant his assigning credence of .5 to the hy- i 
pothesis that the coin lands heads. But "everything else being 

1 

equal" involves X not knowing too much or too little. f 
' Disposition statements and statements of ability support sub- ,. 

junctive conditionals. What does "support" mean here? 

Counterfactual conditional~ of thfe typde 
1
"if h ~ere1 ~ruet' g . 

would be true'' are express10ns o mo a appra1sa JUS as 
statements such as "it is possibly true that h" are. Since such 
unconditional modal appraisals lack truth values, so do coun- t 
terfactual modal appraisals. 
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Counterfactual modal appraisals are made relative to a cor
pus where the hypothesis h in the antecedent is known to be 
false. -h E K. 

Such appraisals are evaluations of hypotheses occurring in 
the consequents of the conditionals with respect to possibility 
relative to corpora that are transformations of K of certain 
kinds. The corpus K 2 is obtained from K by first contracting 
to K 1 through removing -h in a manner which minimizes loss 
of informational value. (See chapter 3.) Then K2 is the deduc
tive closure of K 1 and h. 

Open subjunctive conditional appraisals are made when nei
ther h nor-his in K. The idea is then to obtain K2 by adding 
h to K and forming the deductive closure. 

In both the counterfactual and open conditional appraisal, 
the consequent is that g would be true just in case g is entailed 
by K 2 and is that g could be true if g is consistent with ~2· 

It is important to understand that neither form of subjunc
tive appraisal has a truth value. Consequently, subjunctive 
conditionals are not to be evaluated themselves with respect 
to serious possibility or credal probability. The recent contro
versy concerning whether the probability of a conditional_is a 
conditional probability or not is one of the more egregious 
examples of a nonissue emerging from modal metaphysics. 4 

To illustrate the way this view applies to the connection 
between knowledge of ability and inability, suppose X knows 
that the following are true: 

(9) a is an N(R/S). 

(10) A trial of kind Sis not performed on a at t. 

In addition, X knows the background information contained 
in the abbreviated gloss "(R/S)"-in particular, that (2) is true 

and that the following is true: 

(11) An event of kind R does not occur at a at t. 

x now considers the counterfactual appraisal expressed by 
''if a were S' d at t, it would have R' d.'' The contracted corpus 
K involves removing (10) in a manner minimizing loss of in-

1 • 

formation. It is a condition of the problem that (9) remam. 
Hence either (11) or (2) must go. But·(2) is lawlike and the 
loss of information incurred relatively substantial. (11) is the 
obvious candidate for removal by this criterion. Expansion to 
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K2 by adding the contradictory (10) brings in the denial of ( 11), 
and the evaluation expressed in the counterfactual is sup
ported. 

Among the many virtues of this approach to subjunctive 
conditionals is that the notion of similarity between possible 
worlds is replaced by evaluations of contractions of K through 
removing -h, which minimizes the loss of information. Ap
praisals of potential contraction strategies with respect to in
formation losses become the key to handling the question of 
cotenability. The role of informational value is going to be 
central to an account of the revision of knowledge anyhow. It 
is a pleasant fact that it can contribute to our understanding 
of cotenability in a manner which eliminates the gratuitous 
mysteries of modal metaphysics. 

An obvious implication of the approach I favor is that one 
should abandon efforts to provide satisfaction conditions for 
predicates of compulsion and ability in terms of counterfactual 
or other subjunctive conditionals. One may go a small step 
further. Any effort to explicate disposition predicates in terms 
of the counterfactuals they support appears to put the cart 
before the horse. 

The way to explicate predicates of compulsion and ability 
is to identify the postulates appearing in the commentary as
sociated with such predicates. That commentary and the prag
matic role provide all one can expect in the way of "concep
tual analysis" of such predicates. The point is a small one. It 
looms a little larger when we turn to a discussion of chance. 

Return to sentence (ii) of section 11.1. In section 11.2, I 
claimed that sentence (ii) contained the four items of infor- 1 
mation (a), (b), (c), and (d). The first three conditions specify f 
the setup a of which the chance predicate is predicated, the f 
kind of trial, and the sample space. In specifying the sample 
space, these conditions assert that the chance setup is com
pelled to respond in certain ways on the kind of trial and is i 
able to respond in other ways. i 

I suggest that we introduce the technical device of a CD- I 
predicate of the type "is a CD(ff(f!)/S)." This sort of predicate t_

is a complex placeholding predicate. To explain it, consider 1 
a family of predicates of the type R., where a is a standard l 
designator for a subset of a set n of n-tuples of real numbers t 
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belonging to a Boolean or CT-algebra ff(f!) containing all unit 

sets and n. 
The expression "(ff(f!)/S)" is to be understood as an ab-

breviation for the commentary: 

(a) All CD's are N(Rn/S)'s. 

(b) Given any a and {3 such that a n /3 = 0 and a E ff(f!) 
and {3 E ff(f!), then "All CD's are N(-(Ra & R 13)/S)'s" is 

true. 

(c) If a is a unit subset of ff(f!), then "all CD's are 

P(Ra/S)'s" is true. 

The predicate S and the various predicates of the type Ra 

are predicates true or false of events. t Notice that if a is a 
CD(ff(f!)/S), the marginal commentary does not guarantee that 
a is a CD(ff(f!)/S & T). This inference is prevented by con
dition (c). In the case of the tossed coin, (c) asserts that it is 
possible for the coin to land heads and for the coin to land 
tails on a toss. But suppose a trial which is both S and T is a 
toss where the manner of tossing is heads-inducing. The coin 
is incapable of landing tails on a trial of that kind. 

The specification of a sample space and a kind of trial 
provides us with a CD-predicate. But a CD-predicate is not 
yet a chance predicate. Chance predicates are also placehold
ing predicates of an explicit kind carrying allusion to a back
ground commentary. Part of the commentary is the specifi
cation of a CD-predicate. But two distinct chance predicates 
can presuppose the same sample space. Coin a may have 
landing heads and landing tails as possible outcomes of a toss 
and so may coin b. Yet, the chance of heads on a toss of a 

might be .4 and the chance of heads on a toss of b might be 
.6. In the next chapter, I address this difference. 

t Standard names for elements of .?f(fl) serve as subscripts for predicates 
describing outcomes of trials of kind S. Rau{J = R0 V Ra, where a indexes 
-R-. = R •. U/_, a 1 indexes a predicate true of an event if and only if for some 
a,, R

01 
is true of that event. How sets in .?f(fl) correlate with the predicates 

they index is supposed to be determined by the gloss. 
Substitution of extensionally equivalent predicates for one another in CD

predicates does not, in general, preserve the extension of the CD predicate. 
However, if a = f3, then R0 is the same predicate as Ra. 

By a sample space I mean either the set fl from which the indices are 
generated or the set of predicates indexed by the unit sets whose elements 
are in fl. 

11.10 SAMPLE SPACES 
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Statistical statements share much in common with disposition 
statements and statements of ability. To assert that the chance 
of coin a landing heads on a toss is .5 and the chance of a 

landing tails on a toss is .5 is to attribute a certain property or 
condition to coin a just as the attribution to a of the disposition 
to land heads or tails on a toss or the attribution to a of the 
ability to land heads on a toss is to predicate a property or 
condition of a. 

Indeed, when the chance predicate is asserted true of a, it 
is presupposed that a has both the ability to land heads on a 
toss and the ability to land tails as well as the disposition to 
land heads or tails and the inability to land both heads and 
tails. 

Furthermore, the chance predicate resembles explicit N
predicates and P-predicates in appearing to have a complex 
structure. Yet, I have advocated treating N-predicates and P
predicates as though such structure contributes nothing to ! 
their semantics. Instead, I propose treating that structure as I 
an abbreviated commentary supplying background informa
tion. 

Finally, just as knowledge of dispositions and abilities can, j 
under the right conditions, furnish a warrant and backing for 
appraisals of hypotheses about the outcomes of experiments 
with respect to serious possibility, knowledge of chances can, 
again under the right conditions, supply backing for appraisals 
of hypotheses about the outcomes of experiments with respect 
to credal probability. 

The pseudo structure of chance predicates which quite 
genuinely supplies background commentary identifies three 
types of information: ( 1) a kind of trial S, (2) a sample 
space n indexing possible outcomes of trials of kind s' and 
(3) a probability measure F(/3; a) defined for f3,· a E ~(11) 

where a "'0. 

CHANCE AND DIRECT INFERENCE 
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Thus, we might write a chance predicate in the form, "is a 

C(il/S/F)." 
The background commentary furnished by the specification 

of a kind of trial and a sample space in the case of a chance 
predicate corresponds to the commentary afforded by the 
predicate "is a CD(n/S)" of section 11.10. These elements of 
the commentary allow the chance predicate to function in 
appraisals of hypotheses about the outcomes of tests with 
respect to serious possibility in the manner in which disposi
tion and ability predicates do. 

Suppose X knows the following bits of information: 

(i) The chance of coin a landing heads on a toss is .5 and 
of landing tails is also .5. 

(ii) Coin a is tossed at t. 

(iii) The toss of a at t is also of kind T. 

The background commentary informs us that X is commit

ted to the following: 

(iv) Coin a is able to land heads on a toss. 

Provided that X's corpus does not contain information to 
the effect that a is incapable of landing heads on a toss of kind 
T and the information about the toss specified in (iii) is all the 
information about the toss available to X in his corpus, X is 
obliged to appraise the truth of the hypothesis that the coin 
lands heads at t as a serious possibility. 

Furthermore, X is obliged to rule out the hypothesis that 
the coin lands both heads and tails as a serious possibility 
because he knows that a is incapable of landing both heads 

and tails on a toss. 
Finally, X rules out the hypothesis that the coin fails to land 

either heads or tails because he knows that it is compelled to 
do one or the other on a toss. 

These are the appraisals with respect to serious possibility 
which X is warranted in making in virtue of his knowledge of 
chances. They correspond to the appraisals with respect to 
serious possibility warranted by the associated CD-predicate. 

But chance predicates are introduced to do more than that. 
Two chance predicates may specify the same kind of trial and 
sample space and yet differ in the chance distribution they 
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introduce. The significance of this difference is that knowledge 
of the one chance predicate will warrant different judgments 
of credal probability for hypotheses about the outcome of 
experiment than the other. 

Thus, knowledge of (i), (ii), (iii), and that the information 
that the toss is of kind Tis stochastically irrelevant (in a sense 
shortly to be explained) with respect to warrants assigning the 
hypotheses that the coin a lands heads at t and that the coin 
a lands tails at t equal Q-values of .5. 

This assignment of Q-values is mandated by a restriction on 
credal states specified in the background commentary for the 
chance predicate abbreviated by the chance distribution 
F({3; a), which, in our example, states that the chance of heads 
and the chance of tails on a toss are each .5. 

In effect, the specification of a chance distribution imposes 
a constraint on confirmational commitments by stipulating 
how knowledge of the specific chance predicate under consid
eration determines credal states for hypotheses about test be
havior. 

Strictly speaking, corresponding to each chance predicate, 
there is a correlated context-independent constraint on confir
mational commitments and, in this sense, each chance predi
cate is associated with its own principle of inductive logic. 
However, all such principles instantiate the same schema. For 
this reason, it is convenient to speak of a single principle of 
inductive logic-the principle of direct inference. 

The first task to be faced in elaborating on the concept of 
chance or objective probability advocated in this book is to 
offer a formulation of this principle of direct inference. 

12.2 Suppose a specification of a kind of trial S and a sample space 
Simple Chance is provided by a chance predicate. In addition, the specifica
Predicates tion of the chance distribution is given by a function F({3; a) 
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such that logic, set theory, mathematics, and standard desig
nators for sets {3 and a in .'ffe(il) entail that F({3; a) = r, where 
r is a standard designator for a real number. In that case, "is 
a C(il/S/F)" is a simple chance predicate and any singular 
statement of the form "a is a C(il/S/ F)" is a simple statistical 
hypothesis. 

For example, "has a normal distribution with a mean of 10 
and a unit variance" is a simple chance predicate but "has a 
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normal distribution with mean between -10 and + 10" is not 
a simple chance predicate. (The latter is customarily called 
composite by statisticians.) 

Similarly, "has a chance of heads on a toss equal to the 
percentage of heroin addicts in New York and a chance of 
tails equal to the percentage of New York residents who are 
not addicts" is also composite. 

More complicated chance predicates can also be con
structed. A measuring instrument may be held to give readings 
on any object measured normally distributed around the value 
of the magnitude measured and with unit variance. In effect, 
the measuring instrument is taken to have a nonstatistical 
disposition to have chance properties of a certain sort when 
hooked up to an object to be measured. In this case, the 
measuring apparatus has the simple chance property of yield
ing errors in readings on trials on a fixed object being measured 
which are normally distributed with 0 mean and unit variance. 

These and other complications are often present in appli
cations of chance predicates in inquiry. However, the prob
lems of fundamental concern pertaining to direct inference 
are, in the first instance, questions about how knowledge of 
simple chance hypotheses justifies or determines credal states. 

Suppose chance setup bis an urn containing 100 coins, half of 
which have a .4 chance of landing heads on a toss and half of 
which have a .6 chance of landing heads on a toss. Let a trial 
of kind S be selecting a coin from the urn blindfolded after the 
contents of the urn have been thoroughly mixed, so that the 
method of selection is a "random" one-i.e., one where each 
item in the urn has an equal chance of selection as any other 
one-followed by a tossing of the coin selected. 

The sample space consists of two possible outcomes-i.e., 
urn b is capable of responding in two ways to a trial of kind 
S. The coin selected can land heads or it can land tails. 

The chance distribution over this sample space is quite 
definite. The chance of heads is .5 and the chance of tails is 
also .5. 

Consider now a trial of kind S which is also one where the 
coin selected is a .4 coin. Call a trial of such a kind a trial of 
kind S & T. 

12.3 STOCHASTIC IRRELEVANCE 
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The sample space is the same as it was for a trial of kind S. 
So is the chance setup. Both trials are trials on the urn. 

But the chance distribution is different for trials of kind S 
& T. The chance of heads is .4 and the chance of tails is .6. 

This is an illustration of stochastic relevance of information 
about a trial on a chance setup. Some trials of kind S on setup 
b might be of kind T and others not. If the chance distribution 
over the sample space is different on a trial which is both S 
and T on setup b from what it is on a trial on b which is S, 
the information that a trial on b which is of kind S is also 
of kind T is stochastically relevant to events represented by f 
the sample space n for trials of kind S on b. The extra in- ! 
formation is stochastically irrelevant if it is not stochastically 

1 

' l relevant. 
Whether such extra information is stochastically relevant or 

irrelevant depends on the stochastic properties of the coin and f 

its abilities and inabilities. It does not depend on our knowl- i 
edge. ; 

There is an analogy of limited interest between stochastic ~ 

I relevance and irrelevance and the much less important notion 
of modal relevance and irrelevance. An object b might be able 
to respond in manner R on a trial of kind S but be quite 
incapable of responding in manner R on a trial of kind S which 
is also T (see section 9.8). In that case, the extra information 
that a trial of kind S on b is also of kind T is modally relevant 
to the "space" consisting of the "outcomes" of R'ing and 
failing to R. 

Modal relevance and irrelevance, like stochastic relevance 
and irrelevance, is a nonepistemological notion. Whether extra 
information about a kind of trial is stochastically or modally 
relevant does not depend on X's knowledge but on the abilities 
and stochastic properties of the chance setup. 

Consider some simple chance predicate "is a C(D,/ SI F)." The 
background supplied by the abbreviated commentary informs 
us that whatever is a C(11/S/F) is a CD(11/S). What we need 
now is some account of that part of the background which 
indicates how knowledge that a chance setup is a C(11/S/F) 
controls X's credal state for test behavior. 

Consider a corpus K meeting the following conditions: 
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I. Knowledge of chance. K contains the following: 

(i) a is a C(D,/S/F). 

II. Total Trial Information. K contains the following infor
mation about a trial on chance set up a at t: 

(ii) a is subject to a trial of kind S & Tat time t. 

K contains no additional information concerning the trial of 
kind S & Tat t (except logical consequences). 

III. Stochastic Irrelevance. K contains the following: 

(iii) a is a C(n/S & T/F). 

Let a, {3 E .'ffe(D,) for the sample space n associated with the 
simple chance predicate under consideration. The sentence ea 

asserts that the trial of kind S & T occurring at t is followed 
by an event of kind Ra. and e13 asserts that the trial is followed 
by an event of kind R 13 • 

The background commentary supplied by an explicit simple 
chance predicate stipulates that for any designator a of a 
chance setup, if the corpus K satisfies conditions I, II, and 
III, every permissible Q-function in C(K) should satisfy 

Q(e 13 ; e,,) = F({3; a). 

This stipulation furnishes the application of the principle of 
direct inference pertinent to the particular simple chance pred
icate under consideration. Each such application is a principle 
regulating the use of knowledge of the chance property char
acterized by the chance predicate involved in determining 
credal states. For each simple chance predicate, therefore, we 
have a special principle obligatory on the confirmational com
mitments of all rational agents who use the predicate. Each 
such principle is incorrigible in a sense similar to that in which 
the "reduction sentence" specifying a necessary condition for 
the application of a disposition or N-predicate is incorrigible. 

In section 11.5, it was explained that the background com
mentary generated by an explicit N-predicate and represented 
by (5) and (6) of section 11.4 cannot be revised without re
moving the explicit N-predicate from its status as an explicit 
predicate of compulsion or disposition. 

The same is true, mutatis mutandis, of the constraint im-
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posed on confirmational commitments associated with simple 
chance predicates. To be sure, a constraint on a confirmational I 
commitment is not incorrigibly true; for neither Q-functions in J 
credal states nor confirmational commitments have truth val- , 
ues. But such constraints qualify as principles of inductive l 
logic. 

On the view I am proposing, there is a separate such prin
ciple for each simple chance predicate. However, we can 
consider a schema to characterize the entire family of such 
constraints. It is such a schema which shall be referred to as 
the principle of direct inference. Strictly speaking, this prin
ciple is not itself a principle of inductive logic; rather, it char
acterizes a family of such principles. But it will do little harm, 
at least in most contexts, to speak as though it itself is a single 
principle. 

According to my proposal, a simple chance predicate is to be 
regarded as primitive for the purpose of supplying necessary 
and sufficient satisfaction conditions with relatively incorrigi
ble status. To accord chance predicates such "theoretical" 
status may not, perhaps, appear objectionable-except for one 
thing. It is sometimes held that an adequate "interpretation" 
of chance or of objective or statistical probability should sup
ply a model of the formal calculus of probability. In failing to 
do this, my proposal violates an important condition of ade
quacy. 

I reject the condition of adequacy; but in order to meet the 
challenge of the objection, let me repeat once more what I am 
disclaiming when I refuse to supply a semantics for simple f 
chance predicates. 

' Consider first the case of N-predicates of the type "is an 
N(R/S)." Syntactic rules may be formed allowing for the for
mation of such a predicate from well-formed predicates or f 
open sentences R and S. When a semantics is sought for such ~ 

predicates, the usual expectation is that satisfaction conditions 1· 
for "is an N(R/S)" will be controlled by the semantical inter- f 
pretation of R and S. 

Most authors would agree that expressions such as R and 
S occur nonextensionally in predicates like "is disposed to R 
when S'd" and, hence, would not undertake to determine the 
extensions of N-predicates as functions of the extensions of i 
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their constituents. Students of the voluminous literature initi
ated by G. Frege and B. Russell will no doubt entertain var
ious moves for spelling out satisfaction conditions for N-pred
icates in terms of the meanings (somehow specified) of their 
parts. 

Such efforts serve no useful purpose, as far as I can see, in 
assisting us to come to grips with the role of knowledge of 
dispositions, incapacities, and capacities in inquiry and delib
eration. I have suggested, therefore, construing the "constit
uents" as providing an abbreviated side commentary speci
fying the truth and lawlikeness of appropriate reduction 
sentences. In the case of N-predicates, the background com
mentary supplies necessary satisfaction conditions in terms of 
satisfaction conditions for the constituent predicates R and S; 
but that is all. 

Chance predicates offer a more elaborate set of constituents. 
There are descriptions of a kind of trial and of kinds of out
comes indexed for formal convenience by sets in a field gen
erated by a sample space n. The predicates characterizing 
these kinds of events occur in nonextensional contexts in the 
chance predicates; and, for substantially the same reasons as 
in the case of N-predicates, are to be treated in the same way. 
The marginal commentaries for simple chance predicates sup
ply necessary satisfaction conditions for these predicates in 
terms of descriptions of test behavior. 

The remaining "constituent" of the chance predicate is the 
probability function F(f3; a) defined over sets belonging to 
.'ffe(il). The background commentary, in this case, does not 
supply any satisfaction condition at all for the chance predi
cate. Instead, an epistemological constraint is imposed in the 
guise of a condition on confirmational commitments. 

Thus, my refusal to supply a semantics for simple chance 
predicates means at least this much: necessary and sufficient 
satisfaction conditions for chance predicates are not deter
mined as functions of the semantics of their constituents. 

But my indifference to semantics goes still further. 
Suppose that "a is a CD(D,/S)" is true. 
Someone might seek necessary and sufficient truth condi

tions for "a is a C(11/S/F)" conditional on the truth of the 
supposition. If this could be _done, one might claim to have 
offered some sort of interpretation of the probability function 
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and, in this sense, an interpretation of the calculus of proba
bilities. 

I do not know how to provide such an interpretation, and -
think efforts to do so are both gratuitious and diversionary as 
far as the main problems about chance are concerned-which 
problems are to furnish an account of how knowledge of 
chance controls credaljudgments (and other judgments) about 
test behavior. 

The project of interpretation might be weakened yet further !· 
by seeking some necessary truth condition for the simple , 
chance statement on the supposition that the CD-statement is 
true. 

This latter project is, I suspect, the one which J. Venn, 
R. Von Mises, and C. S. Peirce undertook when they sought 

;;: 

j 
~ 

"interpretations" of the calculus of probabilities by reference ~ 

to limits of relative frequencies in sequences of trials of the f 
sort Von Mises called "collectives." On this view, "a is a _. 

; 
C(O/S/F)" is true only if a is disposed to yield results of kind 
R,, with a limiting relative frequency F(a) (where F(a) = 
F(a; 0)) in an infinite sequence of repetitions of trials of kind 
S satisfying the conditions for a collective. t 

I find it difficult to take the infinitely long run as much more 
than a bad joke. If coin a has a .5 chance of landing heads 
and a .5 chance of landing tails on a toss, it is able to land 
heads on a toss and is also able to land tails. Under the 
circumstances, it seems utterly implausible to claim that coin 

t The truth is that neither Venn, Peirce, nor Von Mises are very clear. The 
dominant theme in Von Mises is that the formal calculus of probability needs 
an interpretation which he provides by introducing the notion of a collective 
and limits of relative frequency in collectives. Von Mises claims that the 
probability calculus so interpreted is a scientific theory. 

Prima facie Von Mises is committed to the reality of such collectives. 
However, he denies this. He claims collectives are idealizations as are, on his 
view, all theoretical concepts. (See Von Mises, Probability, Statistics, and 
Truth, London: Allen and Un win, 1957, pp. 6-8.) 

The best I can do in order to make sense of these mysteries is to appeal to 
an analogy with measuring length. If we claim that a rod is exactly 1.89 meters 
long, we do not claim that measurement will yield this value as an exact 
reading. Setting aside random error, measuring rods yield readings with some 
round-off error so that we can obtain values only to the nearest value at some 
decimal place. 

Nonetheless, we might attribute a length of 1.89 meters to the rod intending 
to claim that the rod is disposed to furnish interval-valued readings containing 
the value I.89 (setting aside random error) no matter how narrow the interval 
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a is incapable of landing heads every time in a million tosses 
or even an infinite sequence of tosses. Von Mises agrees about 
the million tosses but it is crucial to his interpretation of 
chance that coin a be incapable of landing heads every time 
in an infinite number of tosses. 

To be sure, on a trial of coin a consisting of an infinite 
sequence of tosses where the chance of r heads inn tosses for 
an initial segment of n tosses of the infinite sequence is (~)(.5)n, 
the chance of all heads in the infinite sequence is 0. Given that 
coin a has the property of yielding heads on a single toss and 
tails on a single toss with an equal chance of .5 if and only if 
it has the chance property just described, it might be thought 
that coin a is incapable of landing heads every time in an 
infinite sequence of tosses because the chance is 0. 

Observe, however, that the chance of heads and tails in any 
specific order leading to a limit of relative frequency equal to 
.5 on the infinite sequence of tosses is also equal to 0. If the 
coin is incapable of landing heads every time in an infinite 
sequence of tosses because the chance of doing so is 0, the 
chance of landing heads and tails in any particular sequence 
should also be impossible for the coin to achieve on an infinite 
sequence of tosses for the same reason even if the limit of 
relative frequency is .5. 

Intuitions about the infinitely long run, however, are noto
riously shaky. Neither the judgments of limit of relative-fre
quency theorists nor those who share my attitude will settle 

the dispute. 

is-i.e., how precise the measuring instrument is. (I ignore complications due 
to quantum mechanics.) . 

Von Mises seems to think that when a chance of .5 of landmg heads on a 
toss is attributed to coin a, this is an idealization in the sense that "measure
ment" of this chance property by means of relative frequency of heads in a 
finite albeit large number of tosses will not invariably yield a relative frequency 
equal to .5. However, increasing the number of tosses (the alleged analogue 
to making more precise measurements) will in the long run lead to relative 
frequencies converging on .5. 

Understood in this manner, Von Mises is not implying that chance state
ments .presuppose that measurements are ever made. Not even an initial 
segment of a collective need occur. In effect, the chance setup 1s alleged to 
have a disposition to a limit of relative frequency of .5 in a sequence of tosses 
forming a collective analogous to the. disposition attributed to ~he ro~ t~ 
respond in certain ways to measurement. This is the ~onstru~l of Von_ ~1ses 
view J am now using. I am not sure it is accurate to his mtent1on; but 1t 1s the 
most charitable reading I can think of. 
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If the proposed limit of relative-frequency interpretation of · 
chance could shed light on connections between chances and 
outcomes of finite sequences of trials, including very long 
sequences, the objection just raised would scarcely be deci
sive. 

Von Mises' interpretation of the calculus of probability fails 
to supply an ~nderstanding of these connections. To supply 
an understandmg of these connections requires appeal to some · 
epistemological constraint. I contend such constraints come 
in the first instance, in the form of principles of direct infer~ 
ence. Once we have such principles, we do not need Von 
Mises' interpretation of the calculus of probability to obtain 
an adequ~te u~der~tanding of the concept of chance. I 

My chief obJect10n to Von Mises' view, therefore, is that t 
by itself it contributes nothing to the understanding of chance _ 
and, what is worse, generates a diversion from the central i 
problems by directing attention to the irrelevant question of f 
how to define a collective. 

Von Mises proclaimed that "the theory of probability is a 
science similar to others." 1 His idea seems to have been that 
the "theory of probability" is the product of furnishing the 
formal calculus of probability with a model or interpretation 
which could be used in explaining and predicting "mass phe
nomena" in a wide variety of domains. 

The idea is obviously untenable. Chance predicates occur 
in the formulation of laws and theories covering diverse sub
ject matters, both minute and large. To suppose that there is 
a single science of chance covering quantum mechanics, ge
netics, statistical mechanics, and various branches of sociol
ogy and economics is reminiscent of the grandiose and Pick
wickian claims sometimes made on behalf of general systems 
theory and general semantics. 

One of the advantages of taking chance predicates to be 
primitive placeholding predicates is that this view emphasizes 
the absurdity of a science of probability. The idea is as bizarre 
as the idea of developing a science of abilities, incapacities, 
dispositions, and possibilities. (Modal realists have not been 
as frank about their ambitions as Von Mises was about his. 
But it may be worthwhile registering an anticipatory protest 
just in case someone harbors in his breast the ambition of 
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devising a science of possible worlds that would be as ac
ceptable as any other science.) 

There is one demand made by those who seek a semantics for 
chance which has thus far not been considered. 

The function F({3; a) has been required to be a probability 
measure over the domain .'ffe(O). No rationale for this require
ment has been offered within the framework of my account of 
chance. Why should the function F obey the requirements of 
the calculus of probabilities? 

Recall that the point of introducing simple chance predicates 
into the language L is to have a means of describing conditions 
knowledge of the presence of which warrants (everything else 
being equal) credal states for hypotheses about outcomes of 
trials known to have occurred. According to the principle of 
credal coherence, the permissible Q-functions representing 
such credal states should obey the calculus of probabilities. 
The principle of direct inference associated with a simple 
chance predicate stipulates that the permissible Q-function for 
hypotheses about the outcome of a given trial should be iden
tical with the function F({3; a) given the appropriate correla
tion of "events" /3 and a with hypotheses about the outcome 
of the trial. 

The rationale for credal coherence is found in the account 
of how permissible Q-functions function in deliberation and 
inquiry in the evaluation of feasible options with respect to 
expected utility. The principle of direct inference is the key
stone to the account being proposed for characterizing the 
way knowledge of chances determines credence. To guarantee 
the consistency of these two principles of inductive logic, the 
chance distribution for any simple chance predicate should 
obey the requirements of the calculus of probabilities. 

I see no reason for searching for some rationale additional 
to this. 

Consider the following pair of sentences: 

(1) The chance of coin a landing heads on a toss is .5 and 
the chance of tails is also .5. 

(2) The chance of coin a landing heads on a toss is .1 and 
of landing tails is .9. · 
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According to my proposals, (1) and (2) predicate distinct 
predicates true of the chance setup a. There is no logical 
inconsistency in doing so. More to the point, nothing has been 
~ssumed which precludes the joint truth of the two assump
tions. 

We can easily introduce as an additional gloss in the back
ground commentary of every simple chance predicate a pro
viso that no simple chance predicate specifying the same kind 
of trial and sample space but a different chance distribution is , 
true of any chance setup of which the chance predicate in i 
question is true. I favor a slightly weaker stipulation preclud
ing the joint truth of such predicates only when the setup is 
capable of being subjected to the kind of trial under consid
eration. 

We still lack, however, a rationale for introducing such a 
proviso. 

Suppose X's corpus K contained (1) and (2) and, in addition, 
information to the effect that coin a is tossed at time t. Suppose 
X knows that all additional information about the toss is sto
chastically irrelevant concerning the particular toss at t. 

The principle of direct inference mandates assigning the t 

hypotheses that the coin lands heads up and that it lands tails t 
up equal Q-values of .5. The principle of direct inference also ~ 
mandates assigning the two hypotheses the Q-values of .1 and ~ 
.9 respectively. ! 

That is to say, all permissible Q-functions are supposed to t 
make both sorts of assignments. No permissible Q-function 
can do so. Hence, the set of Q-functions will be empty-in 
violation of credal consistency. 

The only way to escape the violation of credal consistency 
and preserve the principle of direct inference is to guarantee 
that the corpus K is inconsistent. It will be so if the back
ground information is guaranteed to contain the provisos pre
venting the joint truth of (1) and (2) mentioned above. 

Consider the following pair of statements: 

(3) The chance of die b landing with i spots up (for i from 1 
to 6) is 1/6. 

(4) The chance of die b landing with one spot up is 1/2 and 
with some other number of spots up is 1/2. 

CHANCE AND DIRECT INFERENCE 
26.1 

In the case of this pair of statements, the sample space 
indexing possible outcomes is different; hence, the example is 
not the same as the one where (1) and (2) are considered. 
However, some possible outcomes generated by one of the 
sample spaces coincide with those generated by the other and, 
for those outcomes, the chances differ. 

Considerations similar to those adduced previously argue 
for inclusion in the incorrigible background assumptions of 
stipulations to the effect that (3) and (4) are not both true. 

Refer back to the urn b of section 12.3. Compare the follow
ing statements: 

(5) The chance of heads up on a trial of kind S & T is .4. 

(6) The chance of heads up conditional on obtaining a .4 
coin on a trial of kind S is .4. 

Both statements predicate a stochastic property of urn b. 
The predicates are distinct and are primitive. There is no 
ground in what has been explicitly stated thus far for supposing 
that the first predicate should be true of exactly the same 
setups as the second. Yet, it should be apparent that they 
should. 

The reason is this. If X knows that (6) is true and that a 
trial of kind S has occurred and, moreover, lacks additional 
stochastically relevant information about the trial, all Q-func
tions in his credal state should assign a Q-value of .4 to the 
hypothesis that the coin selected lands heads up conditional 
on the coin selected being a .4 coin. 

If, at that stage, X should add to his corpus the information 
that the coin selected is a .4 coin, confirmational conditional
ization mandates that X assign an unconditional Q-value of .4 
to the hypothesis that the coin selected lands heads up. 

But this new corpus is one where X knows that the trial is 
of kind S & T. If the chance of heads up on a trial of kind S 
& T were assumed to be different than .4, direct inference 
would mandate a Q-value different from .4 to heads up. Hence, 
relative to the same corpus, X would be obliged to both assign 
and refuse to assign a unique Q-value of .4 to the hypothesis 
that the coin lands heads up. To avoid this, the chance spec
ified in (5) should be the same as that specified in (6). 

I shall not undertake the effort of specifying in a systematic 
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and exhaustive manner the background postulates for chance 
predicates which could be introduced into the urcorpus in the 
manner indicated. The principle operative here for justifying 
such postulates should, however, be fairly clear. The principle 
of direct inference should apply without conflicting with prin
ciples of credal coherence and consistency. 

All setups which are C(D.ISIF)'s are CD(D,/S)'s. In general, 
the converse does not hold. The question arises, however: Is 
every CD(D.IS) a C(D./SIF) for some function F(f3; a) or other? 

Suppose box a has two compartments. The left compart
ment contains 40 black balls and 60 white balls while the right 
compartment contains 40 red balls and 60 blue balls. A trial of 
kind S is selecting a ball at random from the left compartment 
and a trial of kind S' is selecting a ball at random from the 
right compartment. The sample space for trials of kind S 
consists of drawing a black ball and drawing a white ball. The 
sample space for trials of kind S' consists of drawing a red 
ball and drawing a blue ball. Chances are defined for both 
kinds of trials over their respective sample spaces. 

Consider trials of kind S V S'. There is indeed a sample 
space consisting of drawing a red ball, a blue ball, a black ball, 
and a white ball. However, there is no chance distribution 
over the sample space. 

To see why no chance distribution is defined, consider that 
the sample space for trials of kind S V S' is such that a result 
consisting of obtaining a red or a blue ball is equivalent to 
obtaining a result of conducting a trial of kind S. Similarly 
obtaining a black or white ball is equivalent to obtaining a I 
result of conducting a trial of kind S'. If there were a chance f 
distribution over the sample space for trials of kind S V S', I 
that distribution would assign a chance to obtaining a result of I 
a trial of kind S on a trial of kind S V S'. (Similarly for results I 
of a trial of kind S' .) Thus, conducting a trial of kind S V S' · 
would be conducting a trial of kind S with some definite chance 
or statistical probability. 

There is no a priori consideration precluding such chances; 
but there is no guarantee that such chances are defined either. 
In the example under consideration, we would normally deny 
that they are. 

To be sure, if we were to conduct a trial consisting of tossing 
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a coin with a known chance of heads and of tails and then 
conduct a trial of coin S if the coin lands heads and a trial of 
kind S' if the coin lands tails, there would be a definite chance 
of conducting a trial of kind S (and of kind S') on such a trial. 
But the trial is not merely of kind S V S'. It has an additional 
feature-namely that whether a trial of kind S or of kind S' is 
conducted depends on the outcome of a stochastic process. 
The trial is of kind T where all trials of kind T are trials of 
kind S VS', but not conversely. 

Suppose that chance setup a is a C(D.ISIF) for some chance 
distribution F. Consider trials of kind S & T. a will be a 
CD(D.' IS & 1) for some fl' ~ n. I assume that for some F' 
defined over .'ffe(fl'), a is a C(D.' IS & TIF'). On the other hand, 
as the previous example illustrates, if chances are defined on 
a trial of kind S & T for setup a, they need not be defined for 
the same setup relative to trials of kind S. 

Thus, given that the chance of coin a landing heads on a 
toss is p and of landing tails is 1 - p, there is some value O 
:5 p* :5 1 such that the chance of coin a landing heads on a 
toss by Isaac Levi on June 30, 1978, at 12:00 noon in 715 
Philosophy Hall is equal to p*. 

Suppose X knows that the extra information about the toss 
on June 30, 1978, at 12:00 noon in 715 Philosophy Hall addi
tional to its being a toss of coin a is 

(i) that it took place on June 30, 1978; 

(ii) that it took place in 715 Philosophy Hall; 

(iii) that the toss was conducted by Isaac Levi. 

If, in addition to this, X knows that this information is 
stochastically irrelevant concerning outcomes of tossing coin 
a-i.e., that p* = p, then X's credal state for hypotheses 
concerning the outcome of the toss will depend on his knowl
edge of the value of p and, if he is in suspense concerning 
alternative hypotheses concerning that value, on his credal 
state over these alternatives. 

In particular, if eH is the hypothesis that the coin lands 
heads and hp specifies that the value of the chance of heads 
on a toss is p, X's credal state must be such that Q(eH; hp) = 

p. 
This much is mandated by direct inference. 
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Thus, X has the right to ignore the information contained in 
(i), (ii), and (iii) provided he knows that this information is 
stochastically irrelevant. If X lacks such knowledge, he must 
base his direct inference on whatever knowledge he does have 
concerning the chances of heads on a trial having the features 
specified by (i), (ii), and (iii). 

Of course, X can and, indeed, must ignore information he 
does not have in his corpus. For example, X may know that 
tosses of a certain kind are invariably heads-inducing and that 
tosses made under other conditions are invariably tails-induc
ing so that information that a toss is heads-inducing is sto
chastically relevant. But X does not know of the trial under 
consideration whether it is heads-inducing or tails-inducing 
and, hence, can ignore these prospects. 

Thus, the credal states determined via direct inference de
pend critically on X's knowledge of stochastic irrelevance. 
The point is not entirely without precedent. Whether one can 
infer from knowledge that a is able to R on a trial of kind s 
and that a is subjected to a trial of kind S an appraisal of the 
hypothesis that responds in manner R with respect to serious 
possibility depends on the extra information one has concern
ing the trial in question. 

One good reason for allowing chances to be defined over 
sample spaces relative to trials of a highly specific kind now 
emerges. 

Suppose X knows, as before, that coin a is to be tossed in 
715 Philosophy Hall at the time mentioned and by Isaac Levi. 
Suppose X also knows that the chance of coin a landing heads 
on a toss is p. 

Unlike the previous case, however, we do not allow chances 
to be defined relative to kinds of trials specified to be tosses 
meeting conditions (i), (ii), and (iii). I suspect that many au
thors would be inclined to take such a position-in opposition 
to my view that if chances are defined relative to trials of kind 
S they are defined relative to trials of kind S & T. 

One implication of such a view is that information furnished 
by (i), (ii), and (iii) no longer qualifies as stochastically relevant 
or irrelevant. It is stochastically nonrelevant. 

But saying this does not decide whether the extra informa
tion precludes or does not preclude X's adopting the credal 
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other words, nothing is decided as to whether X may or may 
not ignore the extra information about the toss in making 
uirect inferences. 

If one says that when chances are undefined for trials de
scribed in a manner which includes the extra information that 
the extra information may be ignored, one is treating the extra 
information as if it were stochastically irrelevant. However, 
by refusing to allow assumptions to that effect into the corpus, 
one prevents recognition of the feasibility, on some occasions, 
of revising such judgments of stochastic irrelevance. 

If, on the other hand, a blanket license to ignore stochasti
cally nonrelevant information is not given in direct inference, 
our principle of direct inference is utterly deprived of serious 
applicability; for few realistic situations would arise where 
there would be no such stochastically nonrelevant informa
tion. 

By insisting that chances are defined relative to trials of 
kind S & T if they are defined relative to trials of kind S, the 
conditions under which extra information about trials of kind 
S may be ignored can be formulated in a straightforward man
ner. 

The various postulates stipulated to belong ''in the back
ground" for chance predicates, the specifications of the scope 
of definability of chance, and the characterization of principles 
of direct inference have all been motivated by a view of the 
role of chance predicates as placeholder characterizations of 
properties of objects knowledge of which can be used to eval
uate hypotheses about test behavior with respect to credal 
probability. 

Thus, not only are chance predicates placeholders (as are 
disposition and ability predicates) but their placeholding func
tion can be explicated only by appealing to restrictions on 
confirmational commitments. In a sense, the characterization 
of chance proposed here is more intimately bound up with 
epistemological considerations than is the account of disposi
tion predicates. 

Nothing in the view proposed, however, implies that chance 
predicates are interpreted epistemologically. Chance state
ments do not describe cognitive states of agents. They bear 
truth values and attribute properties or conditions to objects 
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which they have or lack independent of the subjective states 
of knowing subjects. Agents can accept or remove chance 
statements from their corpora and may suspend judgment as 
to their truth and they may adopt credal states regarding 
chance hypotheses. 

The epistemological component of the analysis proposed 
here is designed to identify an important connection between 
knowledge of chance and credal judgments concerning test 
behavior. In lieu of reduction sentences which establish such 
connections for N-predicates, principles of direct inference 
functioning as principles of inductive logic are employed. 

But if chance is parasitic on credal probability in this way, 
why should chance predicates be introduced into the language 
altogether? Could we not dispense with chance statements and 
rest content with credal judgments about test behavior? 

This sort of conclusion has been advanced by B. De Finetti, 
L. J. Savage, and others who have undertaken to show that 
hypotheses about objective chance are expendable in scientific 
inquiry and in practical deliberation. 2 

But chance predicates are no more expendable in inquiry 
and deliberation than disposition predicates are. 

Some iron bars attract iron filings placed near them and 
others do not. As a first step toward understanding the differ
ences between the two sorts of iron bars, X may say that one 
sort of bar has a disposition to attract iron filings and the other 
does not. Of course, this description of the difference is but ~ 

a first step. That is why explicit disposition predicates are 
placeholders for more adequate characterizations of the rele
vant differences. Nonetheless, they have an important func
tion, and in many instances an indispensable one, in inquiry 
and deliberation. 

Suppose X's credal state for the hypothesis that coin a will _. 
land heads r times in n tosses conditional on its being tossed 1 

n times at time tis (~)(.sr. His credal state for the hypothesis • 
that coin b will land heads r times in n tosses conditional on ~ 

its being tossed n times at t is (~)(.9)'(. l)n-r. 

As far as the requirements of credal coherence are con- t 
cerned, X may endorse a state embodying both credal com- ! 
mitments even if he assumed that a and b are similar in all ~ 

i respects except that a came off the mint just before b did. ~ 

Yet, not even De Finetti would say under these circum-
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stances that such a credal state makes sense. There is nothing 
in De Finetti's view of credal rationality which prevents such 
a credal state from being adopted; but there would be wide 
agreement that such a credal state makes no sense unless there 
is some significant difference in the characteristics of coin a 

and coin b. 
That is not to say that X should be in a position to offer an 

explanatorily adequate characterization of the difference be
tween the coins; but he should be committed to the view that 
there is a difference in traits. The coin a has some property 
C such that given knowledge that an object has C, ceteris 
paribus, X's credal state for hypotheses specifying relative 
frequencies of heads on n tosses should be as specified above. 
Similarly, b has some property C' knowledge of the presence 
of which licenses a credal state of the sort attributed to hy
potheses about b's behavior. 

One way of putting it is to say that coin a is unbiassed 
whereas coin b is heavily biassed in favor of heads. Another 
way to put it is to specify the explicit simple chance predicates 
which are true of a and of b concerning outcomes of n tosses. 

De Finetti is quite right when he complains of the deficien
cies of descriptions of differences between coin a and coin b 
in terms of differences in chances or objective probabilities. 
He is wrong, however, in supposing that the deficiencies are 
to be removed by restricting credal judgments to hypotheses 
about test behavior and forbidding the acceptance of chance 
hypotheses into evidence or the assignment of credal proba
bilities to them. 

The defects in chance predicates are to be removed not by 
eliminating chance statements from the language because 
chance is alleged to be metaphysical moonshine, but by inte
grating chance predicates into theories through inquiry as is 
attempted in genetics, statistical mechanics, and quantum me
chanics in differing ways. 

Those who are unhappy about treating chance predicates as 
primitives for the purposes of semantics may also be granted 
their sop to Cerberus. Qua placeholders chance predicates 
have deficiencies for purposes of explanation and prediction 
and these deficiencies may be removed only by integrating the 
chance predicates into explanatorily satisfactory theories. One 
way (but not the only one) in which this might be done is 
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through finding theoretically adequate predicates extensionally • 
equivalent to the chance predicates in question. j 

This point leads to another partial concession to De Finetti. ' 
Suppose that the chance predicate "has a .5 chance of landing 
heads on a toss and a .5 chance of landing tails on a toss" is ; 
discovered to be extensionally equivalent to a description of 
the physical characteristics of the coin-say in terms of its 
shape and the distribution of mass over the coin; and this 
equivalence is taken to hold as a matter of law. 

If this physical description is abbreviated by using the pred
icate "is an M," we are entitled to make direct inferences 
from knowledge that coin a is an Mand that it has been tossed 
to the judgment that the hypothesis "coin a lands heads on 
that toss" has a degree of credence equal to .5. 

This direct inference, however, is not licensed by principles 
of inductive logic alone. It is only because the corpus contains 
the information that "is an M" is true of all and only those 
objects having an equal chance of landing heads on a toss and 
of landing tails on a toss that we are entitled to make credal 
evaluations via direct inference in this fashion. 

Thus, in a certain sense, the placeholding chance predicate 
is expendable for purposes of direct inference; but only in a 
sense. The replacement of the placeholder simple chance pred
icate does not enable us to dispense with reasoning from 
knowledge that the setup has the physical property M to credal 
judgments about test behavior. And our warrant for such di- ] 

l 
rect inference depends on knowledge of the equivalence in 
extension of the physical predicate and the chance predicate j 
it replaces. -4 

Thus, the progress which has been made in finding a phys- ~ 

icochemical basis for genetic processes has not allowed us to t 
dispense with direct inference in making predictions about the • 
traits of offspring of parents of known genotype. j 

Some care should be taken to avoid confusing this last j 
remark with a commitment to some strong form of determin- I 
ism. Replacing the chance predicate for the coin by the exten- ,
sionally equivalent "is an M" will not and cannot yield a 
deterministic law to the effect that all M's land heads when . 
tossed. On the other hand, it may tum out that some tosses 
meet additional conditions such that all M's land heads when j .. 
tossed in a manner meeting these additional conditions. Fur- j 
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nishing an extensionally equivalent "basis" for a chance pred
icate in explanatorily acceptable terms does not suffice for the 
purpose of converting statistical explanations into nonstatis
tical ones. But it does not preclude finding nonstatistical ex
planations either. 

Even those who might grant that chance predicates are place
holders useful in predicting and explaining test behavior in a 
stopgap fashion may object that the test behavior of interest 
concerns the relative frequencies with which results of various 
kinds occur in long sequences. Knowledge of the chances of 
heads and of tails on a toss of coin a is of interest for the 
purpose of explaining or predicting the relative frequency with 
which a lands heads on long sequences of tosses. 

Nothing said thus far provides a link between knowledge of 
chances and test behavior on repeated trials. The principles 
of direct inference which have been proposed specify, in the 
case of the coin, how X should evaluate credal probabilities 
for hypotheses about the outcome of a single toss given knowl
edge of chances of heads and tails on a single toss. What are 
the implications of these principles concerning how knowledge 
of chances of heads and of tails on a single toss control eval
uations of hypotheses concerning relative frequencies of heads 
and of tails in the long run? 

Two points may be made by way of a preliminary response. 
(1) Even though it is true that knowledge of chances is used 

to explain and predict relative frequency in long runs, it is also 
used to evaluate hypotheses about outcomes of single trials. 

(2) The account of chance proposed here provides for ap
praisal of hypotheses concerning relative frequencies of out
comes on sequences of trials of some kind. Suppose that X 
knows that the chance of coin a landing heads r times and tails 
n - r times in a definite order on a trial consisting of sequence 
of n tosses is (.5}ll. He then knows that the chance of r heads 
in n tosses regardless of order is (~)(.5}ll. The kind of trial is 
tossing coin a n times in a row. The sample space consists of 
the 2n distinct sequences of heads and tails in n tosses. Given 
the additional knowledge that on some specific occasion coin 
a has been tossed n times and that all further information 
about the n tosses is stochastically irrelevant, X is obligated 
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by direct inference to assign to each hypothesis concerning 
the relative frequency of heads a Q-value equal to (~)(.5)n. 

This answer is not fully responsive to the demands of the 1 
objection. Contrast the two simple statistical predicates: 

(i) "has a .5 chance of landing heads on a toss and a .5 
chance of landing tails on a toss.'' 

(ii) "has a chance of (~)(.5)n of yielding r heads on n 

tosses.'' 

Nothing in the account proposed guarantees that the first 
predicate is true of the same objects as the second and only , 
these. Direct inference establishes a link between knowledge 
that the second predicate is true of chance setup a and its 
behavior on n tosses. Knowledge that the first predicate is 
true of a establishes a basis for judging outcomes of a single 
toss, but not for n > 1. 

We might propose introducing another postulate in the ur
corpus specifying that the first chance predicate is true of a 
coin if and only if the second is (and that this is so for arbitrary 
n). 

Sometimes X does and should accept such an assumption 
in his corpus. When he does he is assuming that sequences of 
n tosses are sequences of stochastically independent tosses 
where the chance of heads remains the same on each toss. (To i1. 

say that the tosses are stochastically independent is to say that 
the chance of heads on the ith toss is the same regardless of 1 __ _ 
the outcome of the i'th toss.) ~ 

Such assumptions are eminently open to revision and should I 
not be embedded in UK. -

Thus, X might believe that coin a is not very durable so that 
each toss alters the chance of heads on the next toss and that 
how it alters the chance is a function of the result of the 
preceding tosses. X might believe that coin a, which has never 
been tossed, has a .5 chance of landing heads on a toss as long 
as it remains untossed. Yet, he might not believe that the -
chance of r heads on n tosses is (~)( .5)n. t 

t I have been too glib in speaking of tosses rather than tosses under such and 
such conditions. X may not believe that the chance of heads on a toss of coin 
a in a sequence of n tosses is the same for each toss in the sequence or that 
the tosses are stochastically independent. Yet, he may believe this for tosses 
under conditions C. 
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To be sure, if X believes that the chance of the untossed 
coin's landing heads on a toss is .5 as long as it is untossed, 
he should also believe that the chance of heads on the first of 
a sequence of n tosses is .5. This assumption relies on the 
conviction that the behavior of the coin on tosses after the 
first in an n-fold sequence does not influence its behavior on 
the first toss. In principle, the assumption is open to revision; 
but, given the current state of knowledge, it will, I trust, be 
widely accepted. 

The crucial point is the absence of any conceptual, incor
rigible, or a priori links between chances on single trials and 
chances on sequences of trials of the same kind. The quest 
for such links is misguided and ought to be abandoned. 

Of course, processes involving sequences of stochastically 
independent trials where chances are constant for each trial in 
the sequence constitute an important chapter in discussions of 
chance and statistical inference. But they constitute but one 
chapter. There are others. Chances on single trials are linked 
with chances on sequences of trials in other ways as well. The 
situation for each kind of chance setup and trial has to be 
investigated separately. 

It is also high time to question the old dogma that kinds of 
trials for which chances are definable should be repeatahlc. 
Suppose bottle a is disposed to break into pieces when 
dropped. The kind of trial (dropping the bottle) is not repeat
able on the setup a. Yet the bottle may be said to have the 
disposition. We can also say that the bottle a has a chance p 

or breaking into 10 pieces when dropped even though the trial 
is not repeatable. Illustrations of the nonrepeatability of kinds 
of trials on the same setup abound in quantum mechanics. The 
phenomenon, however, is not restricted to that domain. 

To be sure, bottles similarly "prepared" and, hence, having 
the same dispositions or "propensities" to break can be sub
jected to the test. In that sense, the kind of trial is repeatable. 

Observe, however, that the assumption that all the similarly 
prepared bottles have an equal chance of breaking into 10 
pieces when dropped presupposes the intelligibility of talking 
about the chance of any specific one of the bottles breaking 
into 10 pieces when dropped. 

Moreover, there is no principle which guarantees the re
peatability of trials of some kind on similarly prepared setups. 
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Finally, chances are definable relative to trials which can be 
conducted on at most one chance setup and at most once
e.g., trials which are tossings of coin a by Isaac Levi at 12 
noon in Philosophy Hall on June 30, 1978. 

In rejecting repeatability as a condition on kinds of trials, 
I do not mean to deny that the primary importance of chance 
concepts in inquiry and deliberation relates to relative fre
quencies on repeated trials. This important and true obser
vation does not warrant the conclusion that there is some 
incorrigible connection between chance and relative fre
quency. Chance is sometimes related to relative frequency and 
sometimes not; and when it is so related, the connections can 
be of different sorts. Which links obtain depend on the chance 
setup, its properties, and the kinds of trials being contem
plated. Only inquiry can find out what these connections are. 
No amount of armchair reflection will determine the outcome. 

Reduction sentences establish the only incorrigible links be
tween dispositionality and test behavior. Principles of direct 
inference determine the only fixed links between knowledge 
of chances and judgments about test behavior. 

However, knowledge of chances is often used to make pre
dictions about relative frequencies of outcomes in sequences 
of trials. Thus, if coin a which is known to have a chance p 

of landing heads on a single toss is tossed n times where the 
tosses are known to be stochastically independent and with 
constant chance p of heads on each toss, it is to be expected 
that coin a will land heads approximately 100p% of the time. 

What does "it is to be expected" mean here? I suggest that 
X is warranted in expanding his corpus inferentially to accept 
as strongest the conclusion that the relative frequency falls 
within some small interval of values around p. 

Of course, the legitimacy of an inductive expansion depends 
on the set of potential answers as determined by an ultimate 
partition, the demands for information as represented by an 
M-function, and the value of an index q. But in contexts of 
the sort under consideration, it is not too difficult to suppose 
that demands will normally be of a sort where X is interested 
in predicting relative frequencies. 

This means that in a binomial process of the sort being 
envisaged, on n trials, there are n + 1 hypotheses specifying 
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distinct relative frequencies of positive outcomes (heads, say). 
Accepting any one of these is a potential answer and each of 
these answers should bear equal M-value of 1/(n + 1). 

The ultimate partition can be taken to consist of these n + 
1 alternatives or, if one likes, of the 2n hypotheses specifying 
distinct sequences of heads and tails in the n tosses. All se
quences yielding r heads on n tosses-there will be m of 
these-should bear equal M-value and, hence, M-value equal 
to r!(n - r)!/(n + 1)!. In any case, the hypothesis that rout of 
n tosses land heads will be rejected if and only if 

qr!(n - r)! pr(l _ p)R-r < __.:_ __ _ 
(n + 1)! 

This holds if and only if 

(n)pr(l _ p)n-r < q 
r (n + 1) 

It can be shown3 that as n increases the warranted conclu
sion is that the value of r/ n will be very close to p, and that 
the interval around p becomes smaller and smaller as n in
creases provided that q is held constant. 

If reiteration of the rule is allowed, the stable conclusion 
(see section 2.8) will be even stronger. 

Similar results can be obtained for repeated trials where 
there are k possible outcomes and n stochastically independent 
repetitions with chances the same on every trial. Well-behaved 
results can also be obtained for other distributions as well 
(such as repetitions of trials where outcomes are represented 
by normally distributed random variables). 

Of course, these results, which plainly conform to presys
tematic judgment, depend not only on X's knowledge of 
chances, but also on his demands for information. Critics can 
object that bizarre results can also be obtained using criteria 
for inferential expansion of the sort I have advocated by al
tering the ultimate partition or the M-function. 

Remember, however, that the legitimacy of an inferential 
expansion depends on the demands for information which the 
agent is committed to realizing. If the agent is seriously con
cerned with predicting relative frequencies of outcomes on n 
trials, he will be committed to ultimate partitions and M-func
tions yielding results such as those I have just specified. 
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One cannot have it both ways. One cannot complain that 
my view of inferential expansion cannot account for how 
knowledge of chances warrants predictions about relative fre
quencies by citing cases where agents are not interested in 
such prediction but have other demands for information. 

Statements of chance, like disposition statements, allegedly 
support subjunctive conditionals. 

Consider a fair coin a. Asserting that it is fair supports the 
counterfactual judgment that if a were tossed 1,000 times, it 
would land heads approximately 500 times. It also supports t 
the counterfactual judgment that were a tossed 1,000 times, it • 
could land heads every time. • 

Students of possible-world semantics will no doubt worry i 
about inconsistency. They will seek to avoid trouble by for
bidding the first appraisal. They will suggest instead that the j 
chance statement supports the judgment that if a were tossed ' 
1,000 times, in all probability it would land heads approxi- i 
mately 500 times. Such a move is high-handed adhockery 
designed solely to avoid trouble in an outlook built on fantasy 
in the first place. There is another way out that is no better. 
It may be suggested that the measure of similarity between 
this world and other possible worlds used in the first appraisal 
and the second is different. Clearly this suggestion is as ad 
hoc as the first one. 

The approach to counterfactuals I favor can do much better. 
Let the initial corpus K contain the following: 

(i) Coin a has a .5 chance of heads on a toss and a .5 
chance of tails; and repeated tosses are stochastically inde
pendent and do not alter the chances. 

(ii) Coin a is not tossed during time t. 

(iii) Coin a does not land heads or tails during time t. 

Let K1 be obtained from K by removing (ii) with minimum 
loss of information. Assuming that (i) is not to be removed 
and that the background information specifying that a is com
pelled to land heads or tails on a toss remains intact, removing 
(ii) compels removal of (iii). 

Let K2 be obtained by adding the hypothesis that coin a is 
tossed 1,000 times during t to K 1• Relative to K 2 , the hypotl'l-
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esis that coin a lands heads every time in the 1,000 tosses is 
a serious possibility. Thus it is that (i) supports the counter
factual "if a were tossed 1,000 times, it could land heads every 
time." 

Consider now an inferential expansion relative to K 2 , seek
ing to predict the relative frequency of heads on the 1,000 
tosses. Given the method of assigning M-values described in 
the previous section, for appropriate values of q one can ex
pand to Ka by adding a hypothesis of the form "the frequency 
of heads is between 500 - k and 500 + k. 

My proposal is that the subjunctive "if the coin a were 
tossed 1,000 times, a would land heads approximately 500 
times" is supported by the chance assumption when the sub
junctive appraisal involves an appraisal with respect to serious 
possibility relative to a corpus obtained by first contracting 
with minimal loss of information, then expanding by adding 
the antecedent of the counterfactual conditional, and finally 
making an inferential expansion. 

The prima facie conflict between the first and the second 
counterfactual appraisal is due to the fact that in the second 
appraisal the corpus used for appraisal with respect to serious 
possibility involves the first two transformations of the initial 
corpus but not the third. 

Which kind of counterfactual (or subjunctive) evaluation is 
intended can only be gleaned from context. 

The chief point is that we should not be tempted to analyze 
"has a .5 chance of heads on a toss and a .5 chance of tails" 
in terms of the relative frequencies with which heads (tails) 
would occur on long sequences of repeated tosses. Even if we 
incorporate the stipulation that the repeated tosses be sto
chastically independent and the chances constant (which al
ready introduces chance predicates) in the counterfactual an
tecedent, the evaluations of modality would have to be relative 
to a corpus like Ka. To obtain Ka, we have to invoke a 
principle of direct inference relative to K2 to obtain the credal 
state used in making an inferential expansion. 

These last moves already presuppose understanding of the 
concept of chance and, indeed, are essential to that under
standing. Any counterfactual analysis of chance can only be 
understood by already having a grasp of direct inference and 
inductive expansion. 

12.12 SUBJUNCTIVE CONDITIONALS 
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Thus, we return to the main theme: The principle of direct 
inference associated with a simple chance predicate is critical 
to the understanding of that predicate and of the connections 
between knowledge of chances and judgments of test behav
ior. It is because of this centrality that we are entitled to 
consider such principles of direct inference to be principles of 
inductive logic. 

Attention has been devoted until now to direct inference from 
knowledge of simple statistical or chance hypotheses to judg
ments about test behavior. 

Suppose, however, that X knows the following information: 

(1) Setup a is a CD(fl/s). 

(2) For some chance distribution F 8 where (} E 8, a is a 
C(fl/S/F8). 

(3) At time t a trial of kind S & T occurs to a. 

(4) The information that the trial is of kind T is stochasti-
cally irrelevant. 

Let ea assert that a response of kind Ra occurs where a E 

8/i(fl). For any (} E 8, h8 asserts that a is a C(fl/S/F8). he 
asserts that a is C(fl/S/F8) for some(} E 8. he is the assertion 
(2). 

The problem we are now concerned with is to determine 
what implications the principle of direct inference has for 
permissible values of Q(ea) = Q(ea; he). 

Partial headway may be made by noting that according to 
credal coherence every permissible Q-function must satisfy 

L Q(ea; ho)Q(ho; he) 
Bee 

2: Q(ea; ho)Q(ho). 
8Ee 

Borrowing De Finetti's terminology and modifying it 
slightly, 4 I shall call this condition finite conglomerability. It 
derives from the condition of finite additivity of Q-functions 
imposed in section 4.2. 

Confirmational conditionalization and direct inference imply 
that Q(ea; ho) = Fo(a) for every (} E 8. Direct inference re
quires that ea be assigned F 0(a) as its unconditional Q-value 
relative to the expansion of X's corpus obtained by adding h8• 
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Confirmational conditionalization then determines the result 
thus cited. 

Consequently, from (5) and the principle of direct inference 
from knowledge of simple chance hypotheses and confirma
tional conditionalization we obtain 

(6) Q(e)J = Q(ea; he) = 2: Fo(a)Q(ho). 
8E6 

Thus, the set of permissible Q-values for the hypothesis ea 

depends on the permissible Q-distributions over the simple 
statistical hypotheses h0 that are disjuncts in the composite 
statistical hypothesis he. 

To illustrate, suppose that X knows that h.4 , which asserts 
that the chance of coin a landing heads on a toss is .4, or h.6 • 

asserting that the chance is .6, is true. X also knows that coin 
a is to be tossed at t. Finally, stochastic irrelevance obtains. 

eH asserts that coin a lands heads on the toss. 
Direct inference and confirmational conditionalization imply 

that Q(eH; h.4) = .4 and Q(eH; h.6) = .6 for every permissible 
Q-function in the credal state. Credal coherence and this result 
implies that 

Q(eH) = .4Q(h.4) + .6Q(h.6) 

and that 

Q(h.4 ) = 1 - Q(h.6). 

Thus, the set of permissible Q-distributions over eH and 
-eH is determined by the set of permissible Q-distributions 
over h.4 and h.6 • 

Credal convexity guarantees that the set of Q-distributions 
onr h.4 and h.6 is a convex subset of all probability distribu
tions over these alternatives. It follows that the permissible 
Q-values for eH constitute a subinterval of the interval from 
.4 to .6. 

These are the strongest results obtainable in this example 
relying on principles of objectivist inductive logic alone. Ob
jectivist inductive logic (section 4.5) claims that the principles 
of inductive logic are exhausted by credal coherence and direct 
inference. The only way more definite results could be derived 
from these principles is through invoking direct inference from 
knowledge of chances concerning how coin a was obtained. 
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Thus, if coin a were drawn at random from an um containing 
.4 coins and .6 coins in some definite proportions, direct in
ference could mandate assigning Q(h.4 ) a Q-value equal to the 
known proportion of .4 coins in the urn; for, in this context, 
to select a coin at random is to conduct a kind of trial on the 
urn which yields .4 coins with a chance equal to their propor
tion in the um. 

Knowledge of this sort will not, however, always be avail
able and objectivist inductive logic will have nothing left to 
tell us. 

Observe, however, that if X is a necessitarian who thinks 
one should suspend judgment between Q-functions not forbid
den by inductive logic and is, in addition, an objectivist, he 
will be obliged in our example to assign h.4 and h.6 all Q-values 
(x, 1 - x), where 0 :::s x :::s 1. Consequently, the interval of 
permissible Q-values for eH will range from .4 to .6. 

Formula (6) shows how to generalize these observations to 
cases of direct inference from composite statistical hypotheses 
where the set 8 of simple statistical alternatives is finite. 

In section 12.13, we assumed 8 to be finite. Consider now a 
situation where 8 is countably infinite. 

In this case, condition (5) is equivalent to countable addi
tivity and implies the condition De Finetti called conglomer
ability-namely, that if the conditional probability of a prop
osition on each of a countably infinite range of exclusive and 
exhaustive alternatives falls in a given interval, the uncondi
tional probability also falls in that interval. In section 5 .11, the 
question of violating countable additivity was discussed. I 
registered agreement with De Finetti's view that we should 
not be obliged to obey it as a matter of credal rationality or 
inductive logic. 

This circumstance renders the investigation of direct infer
ence from composite hypotheses more complex in the count
ably infinite case than it was in the finite case. The technical 
details are summarized in this section. Following the approach 
of section 5.11, Q-functions in credal states will be represented 
by CT-finite measures. We shall assume that mn·(he) = be > 0 
and finite for (} E 8. 

By.direct inference, Q(e"; he) = Fe(cx) =Pe· 
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Case (i): "I-8=ibe is finite. Hence "I-8= 1Q(he) = 1. Countable 
additivity obtains so that conglomerability is satisfied and for
mula (5) of the previous section can be used. Then 

Thus, case (i) can be handled in substantially the same 
manner as the finite case. 

Case (ii): "I-8= 1be = oo; mK(eJ = "I-il=ibePe is finite. In this case, 
mK.(-eJ = oo. Hence, Q(ea) = 0. 

It can be shown that the glb of the Pe's is 0. If it were 
positive and equal to the value k, then "I-il=ibek < mK(e"). But 
this is impossible since "I-8=ibe = oo and mK(e") is finite. Hence, 
the glb is equal to 0. 

Thus, in case (ii) not only do direct inference, credal co
herence, and confirmational conditionalization yield a definite 
value for Q(e)-namely 0-from the Q-distribution of the he's; 
but that value is one of the bounds of the range of values for 
the Pe's. 

When mK(ea) is infinite while mK(-eJ is finite, then Q(e") 
= 1. In this case, like the one just considered, direct inference 
from knowledge of composite chance assumptions assigns e" 
a Q-value which is one of the bounds of the range of values 
for the Pe's. 

To this extent, therefore, case (ii) situations resemble those 
of case (i). It is now time to turn to cases which deviate more 
radically from the finite case. 

Case (iii): "I-8=1be = mK·(ea) = mK(-ea) = 00 • 

In section 5 .11, it was noted that derivation of values for 
Q(eJ and Q(-ea) in this case requires appeal to a new CT-finite 
measure nK defined over a CT-subalgebra of the original CT
algebra. 

If matters are left in this state, we shall not be in a position 
to determine the value for Q(ea) from the Q-distribution or mn-
distribution for the he's, coherence, conditionalization, and 
direct inference. The function nK will have to be invoked as 
well. 

The important point is that Q(ea) might as a result be as-
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signed a Q-value that falls outside the interval within which Pe 
ranges. 

To acknowledge this is to do no more than to admit that 
conglomerability may be violated once countable additivity is 
abandoned. 

However, there are some special variants of case (iii) where 
we may derive values for Q(ea) falling within the range of 
values for Pe· It is important that these cases be identified. 

It is entertainable that infinitely many he's specify chance 
distributions over the sample space which assign the same 
chance to R,,. Let that chance be q0 • Let g 0 be the composite 
chance hypothesis asserting that exactly one of these he's is 
true. 

The example of the die discussed in section 12.7 can be 
used to support the view that the background commentaries 
for chance predicates guarantee that if we consider the sample 
space consisting of the events Ra and -Ra. the simple chance 
hypothesis / 0 asserting that the chance of Ra is equal to q0 is 
true if any one of the he's entailing g0 is true. Hence,/0 is true 
if g 0 is true. But direct inference and confirmational condi
tionalization guarantee that Q(ea; / 0) = q 0. To secure consist
ency, we must have Q(ea; g 0) = q 0. 

Case (iiia): Let the he's specify only finitely many distinct 
values q0 as chances for Ra. By what has just been said, the 
he's can be grouped into finitely many distinct categories cor
responding to finitely many hypotheses g 0 such that Q(ea; g0) 

= q0. 

Suppose, in the first instance .• there is exactly one such 
value q 0. Since '2.8=1be = oo, then mK(ea) = 'L8=1beq0 = q000 = 
oo. Similarly, mK(-ea) = oo. Thus we have a bona fide case (iii) 
predicament. 

Direct inference, however, mandates that Q(ea; g 0) = q0. 

Hence, there must be a suitable CT-finite measure nK such that 
nK(ea & g0)/nn{g0) = q0. 

A variant on this situation emerges when there is more than 
one value q0 , although at most finitely many, and where only 
one q0 contains infinitely many disjuncts. It can then be shown 
in case (iii) that only the mK(g0) with infinitely many disjuncts 
has infinite value. Hence, that hypothesis obtains Q-value of 
I and Q(ea) = Q(ea; g 0) = q 0 for that particular value of <f>. 
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Case (iiib): This is like case (iiia) except that more than one 
but finitely many of the g 0' s are disjunctions of infinitely many 
he's. This case parallels in a straightforward manner the finite 
case of the previous section. 

Case (iiic): The he's specify infinitely many distinct pe's and, 
hence, q0 's. There are infinitely many g 0 's each of which is a 
disjunction of finitely many he's. 

Case (iiid): As (iiic) except that one g0 is a disjunction of 
infinitely many h0 's. 

Case (iiie): As (iiic) except that finitely many g0's are dis
junctions of infinitely many he's. 

Case (iiit): As (iiic) except that infinitely many g0's are dis
junctions of infinitely many he's. 

Cases (iiid) and (iiie) reduce to cases (iiia) and (iiib), re
spectively. Case (iiif) reduces to distinct cases parallel to cases 
(i), (ii), and (iii), only now with nn-functions replacing the mn
functions. 

We are left, therefore, with case (iiic). Let mK(g0) = b0, 

which is positive and finite. So is mK(ea & g0). Moreover, 
mK(ea & g 0)/mK(g0) = q 0 (or a positive multiple thereof) by 
direct inference. 

On the other hand, mn·(ea) = mK(-ea) = oo. The CT-finite 
measure mK determines, therefore, the values of Q(ea; g0) and 
Q(g0) for each g 0 • The first value is q0 and the second is 0. 
Hence, 2,~ 1 Q(ea; g0)Q(g0) = 0. Yet, Q(eJ is left entirely un
determined. Its value depends on how the function nK is 
chosen. 

Thus, in case (iiic) it is possible to pick a value of Q(eJ 
outside the interval within which values of Pe or q0 fall without 
violating direct inference. 

Case (iiic) situations rarely loom large, and throughout the 
remaining discussion we shall have no occasion to consider 
them. Yet, it is important to understand that in principle 
circumstances may arise where a numerically precise credal 
state over rival simple chance hypotheses fails to yield a def
inite Q-value for ea through the offices of direct inference and 
confirmational conditionalization. 

Such cases may be bizarre. That is my excuse for ignoring 
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them in what follows. However, someone might identify im
portant or interesting situations meeting the specifications of 
case (iiic) in future applications. They may prove less bizarre 
than I now think. 

Let us assume that the simple chance hypotheses in he con
stitute a noncountably infinite set indexed by n-tuples (}of real 
numbers belonging to some finite region of an n-dimensional 
space. If, as before, p 8 is the chance of obtaining result Ra on 
a trial of kind S according to h8 , then Q(e a) will equal f p8f(O)d(J 

provided we have a suitable continuous density function f(O) 
over the points in the region 8. 

Of course, I am supposing that in this situation we do have 
a probability measure which obeys countable additivity at least 
for the set of Lebesgue measurable sets in the region. 

This requirement of countable aditivity, however, is aban
doned for some situations where 8 is the entire space. Thus, 
if (} ranges from -oo to +oo, and if f(O) is constant, then f(O) 

must equal O; and this leads to a violation of countable addi
tivity. 

The technical complexities which emerge parallel those dis
cussed in the previous section, and will not be repeated here. 

Violations of countable additivity occur in those cases where 
X wishes to adopt as his credal state for countably many 
alternative hypotheses one which assigns each alternative 
equal Q-value. Thus, if X considers each value of the mean of 
a normally distributed random variable to be seriously possible 
and partitions the space of possible values into intervals of 
equal finite length, he might wish to regard the hypothesis that 
the true value falls in one such interval as equally probable as 
the hypothesis that the true value falls in another such interval. 

Objections have been raised to the use of such distributions 
on the grounds that they breed paradoxical results and, in 
recent years, a small industry has developed in the production 
of such paradoxes. M. Stone is one of the leading contributors 
and it may be useful at this point to consider a relatively 
elementary example propounded by Stone himself. 5 My aim 
is to show that the paradox is obtained by appealing to count
able additivity at a critical stage in the argument. Since count
able additivity is violated at the outset by adopting a uniform 
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distribution over countably many alternatives, it is not sur
prising that a contradiction can be generated. To use this fact 
as an objection to using so-called improper distributions, how
ever, is to beg the question under dispute. 

De Finetti went over the same ground many years ago with 
more elementary and clearer examples. 6 I go through the ex
~rcise here simply to point out that his entirely cogent position 
is not refuted by hiding behind the skirts of complexity. 

Consider a plane marked off in a grid whose intersections 
are the points (x, y), where x and y are taken to be integers. 
A point (w, z) is adjacent to (x, y) if and only if either w = x 

± 1 and z = y or w = x and z = y ± 1. There are, therefore 
four points adjacent to any given point. ' 

A path (} is a finite sequence of points such that the points 
preceding and succeeding a given point in the sequence are 
adjacent to it-if such points exist (i.e., if the point in question 
is not an endpoint). 

For a sequence of n points, where n ;::::: 1, the length of the 
sequence is n - 1; so the sequence can have any nonnegative 
finite value. Every sequence has a first point and a last point. 
There are a countable infinity of distinct paths. 

.Let an endpoint of a path (} be identified by (a, b). On a 
tnal, one of four outcomes can occur with a chance of 1/4. If 
the outcome is 1, 2, or 3, the path is extended to one of three 
adjacent points not already on (} in accordance with a definite 
procedure for deciding which of the three extensions to make 
on the basis of the result of the trial. 

If the outcome is 4, the path is shortened by moving back 
on the path to the point adjacent to (a, b) already on the path. 

In the special class of cases where the length of a path is o 
(there are infinitely many of these), the path is lengthened in 
each of the four possible ways depending on which of the four 
outcomes of the trial takes place. 

Thus, for every value of(}, the chance of lengthening (} on 
a trial of this sort is 3/4 for all O's of positive length and 1 for 
all O's of 0 length. 

Suppose X knows that a trial is to be conducted on some 
specific occasion, but neither the value of (} nor the outcome 
of the trial is known. 

However, X knows the hypothesis e which states which 
path results from conducting the experiment. 
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Leth assert that a lengthening has taken place and -h assert 
that a shortening has taken place. Let g assert that the length 
of the true (}is positive and -g assert that it is 0. J -I 

By direct inference, Q(h; g) = 3/4 and Q(h; -g) = 1. De- ; 
pending on the permissible Q-values for g and -g, Q(h) takes i 
a value somewhere from 3/4 to 1. 

Recall that X knows e. Hence there are four hypotheses as 
to the true value of (} consistent with what he knows. 

One of these implies that a lengthening has taken place and 
the other three imply that a shortening has taken place except 
when the path described by e has 0 length. In that case, X 
knows for sure that a shortening has taken place. 

By direct inference, it can be shown that for each of the 
four values of (} compatible with the information specified by 
e, Q( e; 0) = 1I4 according to the credal state prior to finding 
out that e is true. 

Suppose that X's credal state prior to finding out the truth 
of e assigns each hypothesis as to the true value of (} equal Q
value and, hence, 0 Q-value. That is to say, we have a er-finite 
measure mK such that mK(O) = c for all 0. Hence, mK(e & O) 
must equal c/4 for values of(} consistent with e and otherwise 
0. Hence, MK(e) = c. Thus, for all e's, Q(O; e) = 1/4 if (} is 
consistent with e and 0 otherwise. 

Recall, however, that for e specifying a path of positive • 
i length, there is exactly one (} for which that path is a length- ,. 
! ening. Hence, Q(h; e) = 1/4. If e describes a path of 0 length, i 

Q(h; e) = 0. ~ 

Thus far, there is nothing to dispute about the reasoning. 
Consider the hypothesis/ asserting that one of the countable f 

infinity of hypotheses of type e specifying a path of positive J 
length is true and let -! assert that the path resulting from the ,_ .. 
trial has a 0 length. 

What are the values of Q(h; j) and Q(h; -f)? 
We know that Q(h; -f) = 0 simply because his inconsistent 

with/. 
What about Q(h; f)? 

We cannot say that it equals 1/4 by direct inference. If, 
however, we invoke countable additivity), Q(h; f) is equal to 
the countable sum of all products of the type Q(h; t>)Q(e) for 
all e specifying a positive length and this should lead to Q(h;J) 
= 1/4. Conglomerability will have been established. 
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If this were the case Q(h) would be confined to values 
between 0 and 1/4. That is in contradiction to our previous 
argument which confined the value to the range between 3/4 
and 1. 

Stone calls results of this sort examples of "strong incon
sistency.'' 7 

There is no inconsistency here unless one insists on man
dating conglomerability as a general condition on Q-functions. 
We have, therefore, a choice between giving up the uniform 
"prior" distribution over the paths (} oi abandoning conglom
erability and thereby rejecting countable additivity. But any
one prepared to allow uniform distributions is prepared to 
allow violations of countable additivity and presumably con
glomerability as well. 

Suppose X is offered 1 dollar for 3 in a gamble on the truth 
of h. He is to decide whether to accept or reject the gamble 
after finding out the path which results from the experiment 
(so that he knows which e is true). 

Given that information, X should assign h a degree of cre
dence equal to 1/4 or 0 depending on whether the length of 
the path is positive or 0. He should, therefore, reject the 
gamble as unfavorable to him. 

On the other hand, had X been constrained to plan which 
option to choose depending on the path e he discovers after 
the experiment is performed but to do so before finding out 
which e is true, the chance of winning by accepting the bet 
regardless of what he finds out is at least 3/4; so that he should 
be prepared to accept the bet regardless of what happens. 

Stone finds this result objectionable. It has driven former 
users of improper distributions to abandon their practice. 8 

The counterintuitive air surrounding the betting phenome
non derives from an illicit extrapolation from what is objec
tionable in cases where considerations of infinity are not in
volved to the infinite case. De Finetti puts the matter well 
when he writes: 

From Bolzano (Paradoxien des Unendlichen) to Borel (Les 
Paradoxes de l' Infini) every new property of infinity has been 
considered paradoxical. Cantor's ideas were for a long time 
rebutted: logical paradoxes pushed logic into a quandary. No 
wonder if our case is no exception. 9 
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INVERSE INFERENCE 

Chapter 12 focused on a family of principles of direct inference 
designed to regulate adoption of hypotheses about test behav
ior on the basis of knowledge of chances. Section 12.11 re
viewed some procedures for statistical prediction based on 
criteria for deliberate inductive expansion. In such expansion, 
knowledge of chances may be used to justify predictions about 
relative frequencies in large sequences of trials. 

To have a grasp of the role of chance in inquiry and delib
eration also requires an account of how knowledge of chances 
may be acquired on the basis of information about test behav
ior. Given a corpus Ke containing information about test be
havior and an ultimate partition U of rival statistical hy
potheses, which elements of U may be eliminated via 
deliberate inductive expansion on the basis of the evidence in 
Ke and the investigator's demands for information? 

The view of inferential expansion proposed earlier requires 
appeal to X's credal state for elements of U relative to the 
corpus Ke. Of course, that credal state is determined by Ke 

and X's confirmational commitment. Consequently, the legit
imacy of an inferential expansion in which X adds information 
about chances to his corpus depends on the corpus Ke and X's 
confirmational commitment. This dependence points to the 
desirability of exploring how knowledge of test behavior con
tained in Ke determines through the confirmational commit
ment what X's credaljudgments for rival statistical hypotheses 

should be. 
Let Ke be the deductive closure of K and information e 

concerning the outcome of some experiment and consider X's 

credal state C(K) relative to K. Let h E U and, for the sake 
of simplicity, consider a Q-function in C(K) for which Q(e) 
> O. The multiplication theorem embedded in credal coher

ence implies that 
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Q(h) 
Q(h; e) = Q(e; h) Q(e) , 

where, following the jargon of section 4.3, Q(h; e) is the pos
terior Q-value for h relative to e, Q(h) is the prior Q-value for 
h, and Q(e; h) is the likelihood of h on e according to that 
particular Q-function in C(K). 

According to Bayes' theorem (section 4,3), credal coherence 
requires that Q(h; e) be determinable by the prior Q-value for 
h, its likelihood on e, and the prior Q-'.jalues and likelihoods 
on e of all other elements of U. This last result derives from 
the fact that Q(e) = 2.h'EuQ(e; h')Q(h'). 

Q(h; e) is a permissible posterior Q-distribution over the 
elements of U according to the credal state C(K). For any 
such permissible posterior distribution, let Q' (h) = Q(h; e) 
where h is a member of U. Confirmational conditionalization 
requires that Q' (h) define a permissible unconditional distri
bution over the elements of U according to C(K,). Thus, pos
terior distributions determined via Bayes' theorem for the 
credal state C(K) become unconditional distributions in C(Ke) 
through the application of confirmatio.nal conditionalization. 

Of course, if X begins with confirmational commitment C 
and corpus K, conducts an experiment, and adds e to his 
corpus to form Ke, he might also revise his confirmational 
commitment by shifting--from C to C'. His new credal state 
C'(Ke) will not be the conditionalization of C(K). But it will 
be the conditionalization of C'(K). It may be the case that the 
warrant for a shift from C to C' derives from a comparison of 
the properties of C(K) and C'(K), and, in particular, a com
parison of the permissible prior Q-distributions for elements 
of U and permissible likelihood functions on the possible out
comes of experiments. Thus, even if we take into account that 
temporal credal conditionalization may break down in shifting 
from K to Ke, it is important to understand the ramifications 
of Bayes' theorem. 

The application of Bayes' theorem depends on determina
tion of two factors: prior credal states for elements of U and, 
for each hypothesis describing an outcome of experimentation, 
the set of permissible likelihood functions relative to that hy
pothesis. 

13.1 DIRECT INFERENCE AND BAYES. THEOREM 
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The principle of direct inference can play an important role 
in the determination of both of these factors. 

To illustrate, consider the following artificially constructed 
example: 

X knows that urn b contains some coins biased in favor of 
heads with a .9 chance of landing heads on a toss of kind S 

and some coins biased in favor of tails with a .1 chance of 
landing heads on a toss of kind S. The percentage of coins of 
the first type is 100x% and of the second type is 100(1 - x)%. 

X selects a coin from urn b at random-i.e., by a method 
known to select coins biased in favor of heads with a chance 
equal to the relative frequency x of such coins in urn b. Let 
that coin be a. 

X is now concerned to find out whether coin a is biased in 
favor of heads (h.9) or tails (h. 1). 

X will toss coin a in manner S exactly once and observe 
whether the coin lands heads (eH) or not. 

A toss of kind S is conducted by selecting a tossing device 
at random from urn c of such devices. Some devices in urn c 
are of type A and others are of type B. Some are red and 
others are blue. The chance of heads on a toss of a coin biased 
in favor of heads with a red type A device or a blue type B 
device is .98. With a blue type A device or a red type A device, 
it is .1. The chance of heads on a toss biased in favor of tails 
with a red type A device or a blue type B device is .1, and 
with a blue type A device or a red type B device is .98. 

The percentage of devices of type A that are red or type B 
that are blue must be 90.91%. Otherwise, the chance of heads 
on a trial of kind S would not be .9 for coins biased in favor 
of heads. 

When X conducts a trial of kind S on coin a, he will find 
out the color of the tossing device but not whether it is of type 
A or of type B. Thus, he will know not only that the trial is of 
kind S but also kind TR or T8 depending on whether the tossing 
device used is red or blue. 

If, however, the percentage of type A devices in urn c 
among the red ones is equal to the percentage of red type A 
or blue type B devices-Le., 90.91%-the information con
cerning the color of the device will be stochastically irrelevant. 
Suppose X does know this. 

The principle of direct inference obligates X to assign h.9 the 
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precise value x as uniquely permissible relative to X's knowl
edge prior to finding out whether eH is true: Q(h.9) = x. The 
same principle obligates X to adopt a credal state where for 
all permissible Q-values, Q(eH; h.9) = .9 and Q(eH; h.

1
) ~ 1. 

According to Bayes' theorem, 

Q(h ) .9x 
·9 ; eH = .9x + .1(1 - x) · 

When X finds out that eH is true and adds this information 
to form a new corpus KH, the principles of inductive logic and 
confirmational conditionalization obligate him to assign h the .9 

value .9x/[.9x + .1(1 - x)] as the uniquely permissible uncon-
ditional Q-value relative to KH. This is so regardless of other 
changes he may or may not make in his confirmational com
mitment. In this sense, his knowledge and the principles of 
inductive logic dictate what his posterior credal state should 
be because they determine what his prior credal state for the 
rival hypotheses should be and what his likelihood function on 
the data should be. 

The inductive logic used is an objectivist inductive logic in 
the sense of section 4.5. The sole principles of inductive logic 
invoked are credal coherence and direct inference. 

Of course, the results obtained depend on more than induc
tive logic. X knows (accepts as evidence in his initial corpus 
K) a substantial amount of information about chances. He 
knows that coin a was selected at random from urn b and also 
knows the chance of obtaining a coin biased in favor of heads 
on such a trial. He knows that a is tossed in manner S with a 
red tossing device. He also knows that the chance of heads 
on a toss of a in manner S with a red tossing device is equal 
to the chance of heads on a toss of coin a in manner s re
gardless of whether a is biased in favor of heads or tails. That 
is to say, he knows the information concerning the color of 
the tossing device to be stochastically irrelevant. 

With such information, he is in a position to invoke direct 
inference to determine prior credal probabilities and likeli
hoods. 

There are two ways in which deprivation of background 
information about chances could frustrate the application of 
Bayes' theorem for the purpose of deriving posterior credal 
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distributions for rival statistical hypotheses on the basis of 
data: 

(a) X's corpus may not warrant deriving a numerically pre
cise prior credal distribution for the rival statistical hy
potheses. 

(b) X's corpus may not warrant deriving a unique likelihood 
function for the rival hypotheses on the data for all possible 
outcomes of experimentation. 

Breakdown of one sort or another does not by itself preclude 
adopting numerically precise priors and likelihoods. However, 
such priors and likelihoods would not be mandated by objec
tivist inductive logic and the available knowledge alone. 

Critics of the use of Bayes' theorem to derive posterior 
probabilities from priors, such as R. A. Fisher, have not 
claimed that such uses are always illegitimate. Indeed, Fisher 
himself has cited instructive illustrations where such applica
tion is legitimate. 

Fisher considers a situation where a black mouse which is 
born to black heterozygous parents is mated with a brown 
mouse (which must be homozygous, because the color brown 
is recessive). The chance of a black offspring of two hetero
zygous parents being homozygous is 1/3. Hence, if one wished 
to test to find out whether the black mouse is homozygous by 
investigating the color of its offspring with the brown mouse, 
direct inference provides a prior credal probability of 1/3 for 
the hypothesis that the mouse is homozygous black. Fisher 
considers how the likelihood function for the two hypotheses 
(the mouse is homozygous and the mouse is heterozygous) 
can be determined on the basis of the observation of seven 
offspring by appeal to direct inference. He then explains how 
Bayes' theorem can be used to compute a posterior distribu
tion for the two hypotheses from the prior credal distribution 
and the likelihood function. Fisher then writes: 

If, therefore, the experimenter knows that the animal under 
test is the offspring of two heterozygotes, as would be the 
case if both parents were known to be black, and a parent of 
each were known to be brown, or if, both being black, the 
parents were known to have produced at least one brown 
offspring, cogent knowledge a priori would have been avail
able, and the method of Bayes could properly be applied. But, 
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if knowl~dge of the origin of the mouse tested were lacking, 
no expenmenter would feel he had warrant for arguing as if 
he knew that of which in fact he was ignorant, and for the lack 
o~ data Bayes' method of reasoning would be inapplicable to 
his problem. 1 

Fisher's remarks are instructive in several ways. 
He sees no objection to utilizing Bayes' theorem in deriving 

posterior credal probabilities provided that all the information 
required for deriving priors (and likelihoods) via direct infer
ence is available. 

Furthermore, when such information is not available he 
objects to the adoption of numerically precise priors without 
derivation from knowledge of chances via direct inference. 
The applications of Bayes' theorem Fisher objects to (in the 
passage cited) are those designed to obtain numerically precise 
posterior probabilities from numerically precise prior proba
bilities without any warrant for adopting precise priors 
grounded in knowledge of chances. 

Fisher is quite clearly committed in his writings to a dis
tinction between objective statistical probability or chance, on 
the one hand, and judgments of what I have called credal 
probability on the other. His characterizations of both ideas 
are sketchy and, hence, I cannot claim that his way of drawing 
the distinction coincides in all details with mine. But there is 
sufficient clarity in what he says to justify interpreting him as 
committed to some principle of direct inference and to restrict
ing the justified assignment of numerically precise credal prob
abilities to hypotheses only when such justification is grounded 
on knowledge of chances and ignorance about features of the 
kinds of trials being conducted that would prevent such judg
ments of credal probability. 2 

J. Neyman appears to take a more restricted view, allowing 
only a notion of objective or statistical probability to be mean
ingful. Yet, Neyman would, no doubt, acknowledge that if 
agent X has knowledge of such objective probability or 
chances specifying that the chance of heads on a toss is p and 
knew that the coin is to be tossed, the agent should adopt p 

as a "fair betting quotient" for bets on the outcome of the 
toss. I prefer to understand his rejection of the meaningfulness 
of probability assignments to hypotheses as a rejection of the 
legitimacy of assigning numerically precise credal probabilities 
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to hypotheses unless these are derivable via direct inference 
from knowledge of chances. When so understood, his stand 
is close to Fisher's on this particular matter. Bayes' theorem 
may be used to derive numerically precise posterior credal 
probabilities from numerically precise priors when the priors 
can be derived via direct inference from knowledge of 
chances. Otherwise Bayes' theorem cannot legitimately be 
used in this way. 3 I think E. S. Pearson's outlook on this issue 
is substantially the same. 4 

In making these observations, I do not intend to mask the 
important differences between the views of Fisher, on the one 
hand, and Neyman and Pearson on the other. I am interested 
in emphasizing a shared outlook toward the limitations in 
applying Bayes' theorem to the derivation of numerically pre
cise posteriors on the basis of experimental data from precise 
prior credal distributions over rival statistical hypotheses. 

Both the concession that Bayes' theorem can be used in this 
way provided the prior distribution (and the likelihood func
tion) can be derived via direct inference from knowledge of 
chances and that it cannot be so employed when such knowl
edge is lacking are basic doctrine for many students of statis
tical theory. 

These two claims are implied by the view I called "objec
tivist necessitarianism" in section 4.5. This· position insists 
that an objectivist inductive logic consisting of credal coher
ence and direct inference is a complete inductive logic. It also 
insists that relative to corpus K no Q-function should be 
counted impermissible provided that it conforms to the dic
tates of inductive logic. 

Consequently, when knowledge of chances fails to justify 
adoption of a numerically precise prior via direct inference, 
objectivist necessitarians prohibit the adoption of such a prior 
on the grounds that there is no justification for such a choice 
and the choice would, therefore, be arbitrary. On the other 
hand, if the requisite knowledge of chances is available, 
Bayes' theorem and confirmational conditionalization, to
gether with the fact that necessitarians are obliged to remain 
faithful to their confirmational commitment, entail the deri
vation of a numerically precise posterior. 

Neither Fisher nor Neyman and Pearson endorse every jot 
and tittle of objectivist necessitarian doctrine. 
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Thus, in cases where direct inference fails to yield a nu
merically precise prior from the available knowledge of 
chances, none of these authors explicitly say that all prior Q
distributions obeying credal coherence are permissible. They 
can just as readily be construed as denying the permissibility 
of any Q-distribution in such cases. The former interpretation 
is the charitable one, as section 5.8 explains; but the historical 
record does not always support charity. 

These authors undoubtedly endorse some version of the 
principle of direct inference. Whether they accept the one I 
favor and have built into objectivist necessitarianism is an
other, and an open, question. It is also unclear whether they 
would permit violations of confirmational conditionalization. 

Further speculation on the views of these authors will be 
postponed until later chapters. My concern now is to note that 
objectivist necessitarianism does capture some widely held 
views concerning derivation of posteriors from priors via 
Bayes' theorem. Moreover, objectivist necessitarianism would 
not be wholeheartedly endorsed by anyone, because it has 
some embarrassing consequences. Outlooks such as Fisher's 
or the family of views derivative from the Neyman-Pearson 
approach may be understood as attempts to avoid the embar
rassing consequences while severely limiting the applicability 
of Bayes' theorem in the manner indicated above.-

Perhaps no one has ever been a strict objectivist necessi
tarian (just as no one, in his heart of hearts, is a strict Bayes
ian). But the objectivist necessitarianism represents a ten
dency which is quite attractive. In the first place, the only 
principles of inductive logic which it endorses are principles 
for which some sort of rationale can be found in the applica
tions of probability in deliberation and inquiry. In the second 
place, necessitarianism avoids the excesses of personalism by 
forbidding rational men to adopt one numerically precise cre
dal state rather than another when there is no warrant for 
doing so. 

As I stated in chapter 4, my chief reservation with objectiv
ist necessitarianism is its presupposition that the only sort of 
warrant for ruling out a Q-function relative to K is failure to 
satisfy the requirements of inductive logic. Later in this chap
ter, I shall explain some further considerations which may, on 
some occasions, warrant ruling out other Q-functions. 

13.l DIRECT INFERENCE AND BAYES' THEOREM 



13.2 
Objectivist Ne
cessitarianism 
and the Rele
vance of Data 

296 

Even so, objectivist necessitarianism would remain a com
pelling doctrine and my reservations mere carping criticism 
were it seriously applicable in scientific inquiry and practical 

deliberation. 
It is not applicable or, at the very least, there is a prima 

facie case that is not. In the following section, I shall explain 
the basis for this claim. The rest of the chapter will then be 
given over to an outline of those fragments of a positive ac
count of the revision of credal states and confirmational com
mitments that I can offer at present. 

The chapters that follow will then consider a few responses 
to the predicament of objectivist necessitarianism alternative 
to my own-including responses that to some degree are re
;;onstructions of the views of Fisher on the one hand, and 
Neyman and Pearson on the other. 

Consider the example of the coin a in section 13.1. Let us 
suppose that X knows that the color of the tossing device used 
on a trial of kind S is stochastically irrelevant, so that direct 
inference can be used to determine a uniquely . permissible 
likelihood function. Take Q(eH; h.9) = .9 and Q(eH; h.1) = .1. 

However, unlike the situation in the original example, X 
does not know how coin a was obtained and, hence, lacks any 
knowledge on the basis of which to determine a numerically 
precise prior Q-value Q(h.9) = x via direct inference. 

According to an objectivist necessitarian, every value for x 
from Oto 1 is permissible relative to K. Bayes' theorem implies 
that C(K) contains Q-functions for which Q(h.9; eH) = Y for 0 
:::; y :::; 1. Confirmational conditionalization implies that C(KH) 
allows all values for z where 0 ::5 z ::5 1 to be assigned as 
unconditional Q-values for h.9 • Since the confirmational com
mitment is CIL (section 4.5), there is no change in confirma
tional commitment as X expands from K to Ktt as a result of 
observing the outcome of his experiment. 

The upshot is that the outcome of the experiment has no 
effect on X's unconditional credal state for the two hypotheses 

h.9 and h.1· 
The same result would emerge if the experimenter were to 

toss the coin a in manner S a large number of times, where it 
is known that repetitions are stochastically independent and 
that chances are constant on each trial. 
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Nor is the result altered if the set U of rival simple statistical 
hypotheses he specifying chance distributions of type Fe over 
sets in 8/i(fl) contains more than two and even infinitely many 
elements, or if the sample space contains more than two and 
even infinitely many points. 

Unless the data of experimentation entails the falsity of 
some element of U, such data will be confirmationally irrele
vant for the elements of U relative to K in the sense of section 
10.5. To be sure, that data will remain confirmationally rele
vant in the strong sense of section 10.6; but the conditions 
under which strong confirmational relevance entails confir
mational relevance do not obtain when objectivist necessitar
ianism is endorsed. 

Prima facie, therefore, objectivist necessitarianism implies 
the uselessness of data concerning test behavior for modifying 
credal states for hypotheses about chances except under spe
cial circumstances when prior knowledge justifies relatively 
determinate prior credal states via direct inference. This al
leged implication, if sound, constitutes a decisive objection to 
objectivist necessitarianism. Those who are sympathetic to its 
intent must find some way to modify or repair the damage. 

One possibility is to concede that the data are confirmation
ally irrelevant, but to deny that they are therefore useless. I 
think that some such view as this is favored by Neyman and 
Pearson and their followers. I shall consider views such as 
this in chapter 17. 

Another response is to remain necessitarian, but to 
strengthen inductive logic by adding new principles. However, 
unlike the classical Bayesians from Bayes himself to H. Jef
freys and R. Carnap, someone sympathetic to objectivist ne
cessitarianism might restrict such additional principles to those 
that might be thought to articulate incorrigible features of the 
use of concepts of chance in inquiry and deliberation. This 
view has been advanced by I. Hacking. I shall consider it in 
chapter 15. 

An alternative strategy is to modify or reject confirmational 
conditionalization. H. E. Kyburg has proposed doing so 
through modifying the principle of direct inference. I suspect 
his outlook resembles Fisher's view mo~e than other recon
structions do. A. P. Dempster has also recommended modi-
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fying confirmational conditionalization. Kyburg's and Demp
ster's approaches will be discussed in chapter 16. 

Instead of tampering with objectivist inductive logic, one 
might abandon necessitarianism in favor of personalism of 
either the intemperate or the tempered varieties. I shall not 
reiterate my opposition to such views here. 

Finally, one can explore ways and means of exploiting con
textual factors additional to the available knowledge for the 
purpose of adjusting credal states and modifying confirma
tional commitments. Elements of an objectivist but revisionist 
view of this sort will be sketched in the remainder of this 
chapter. 

13.3 The use of Bayes' theorem and confirmational conditionali
Likelihood and zation to derive posterior credal states conditional on the out
Irrelevance come of experimentation depends not only on the prior credal 
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state for the rival elements of U but on the permissible like
lihood functions on the data. In the previous discussion, at
tention was focused on the problem of identifying the appro
priate prior credal state for the purpose of using Bayes' 
theorem; and this same problem will preoccupy us in most of 
the remaining portions of the discussion. 

It must not be forgotten, however, that the determination 
of likelihoods also poses problems. 

These problems may appear to be less severe even for an 
objectivist necessitarian when the elements of U are alterna
tive simple statistical hypotheses specifying rival chance dis
tributions over a sample space 11 on trials of a given kind S. 
The likelihood of the hypothesis he asserting that the chance 
distribution is Fe on the datum ea asserting that result Ra (for 
a E 8/i(O)) occurs on the trial of kind S in question may be 
held to be equal to Fe(a), on the basis of direct inference and 
confirmational conditionalization. 

But matters are rarely so simple as this. In real life, X will 
know more about the kind of trial than that it is of kind S. He 
will have additional information to the effect that the trial is 
of kind T. Unless X knows that regardless of which (} is the 
true one the information that the·trial is of kind Tis stochast
ically irrelevant, the principle of direct inference will fail to 
obligate X to assign likelihoods in the manner just indicated. 

Indeed, for an objectivist necessitarian matters are still 
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worse than this. If X does not know whether the extra infor
mation is stochastically irrelevant or not, he will not know 
what the chance of a result of kind Ra is on a trial which is 
both an Sand a T when he is true. Relative to the initial corpus 
K, CIL(K) could conceivably allow permissible Q(ea; he) to 
take any value from 0 to 1. This could happen even if the prior 
credal state for the he's is numerically determinate. As a con
sequence, the posterior credal state determined by Bayes' 
theorem would be indeterminate-indeed, maximally so in 
some situations, in spite of the numerical precision of the 
prior. Acquisition of new data would be harmful, rather than 
helpful or merely irrelevant. 

Return to the example of coin a discussed in section 13. I. 
Suppose now that X knows that coin a was selected from urn 
b at random and that exactly 50% of the coins in urn b are 
biased in favor of heads and exactly 50% are biased in favor 
of tails, so that the priors for h.9 and h. 1 are determined by 
direct inference. X also knows that the toss of coin a is of type 
S and that the tossing device used is a red one. 

Unlike the previous case, however, X lacks any information 
as to the chances of heads on a trial of kind S with a red type 
A or a blue type B device when h. 9 is true or when h. 1 is true. 
He also lacks such information for trials of kind S with a blue 
type A or red type B tossing device. Finally, he knows nothing 
of the percentages of red type A, blue type A, red type B or 
blue type B devices in urn c. All he knows is that the coin a 
is tossed with the aid of a tossing device selected from urn c 
and that the device so obtained is red and, in addition, that 
the chance of heads on a toss with the aid of a device selected 
at random from urn c is .9 if h.9 is true and .1 if h.1 is true. 

For all X knows, the color of the tossing device may be 
stochastically irrelevant. But, for all he knows, it may be 
stochastically relevant. In his ignorance, Q(eH; h.9) can take 
any value from 0 to 1. And Q(eH; h. 1) is equally indeterminate. 
In particular, the Q-function for which Q(eH; h.9) = 1 and 
Q(eH; h. 1) = 0 and the Q-function for which Q(eH; h.9) = 0 and 
Q(eH; h. 1) = 1 are both permissible. 

Bayes' theorem allows, therefore, Q(h.9 ; eH) to take any 
value from 0 to 1 even though the prior is numerically precise. 

Needless to say, if X began with background knowledge of 
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the sort just described, he would see little point in conducting 
a trial of kind Son coin a to find out whether h.9 or h. 1 is true. 

To be sure, if X endorsed a confirmational commitment 
according to which, conditional on h_9 , say, being true, the 
information that the trial is one with a red tossing device is 
confirmationally irrelevant in the strong sense for deciding 
whether eH is true or false relative to the information that the 
trial is a toss of a of kind S, he could then invoke direct 
inference to establish that Q(ett; h.9) = .9 and Q(eH; h.1) = .1. 
But this restriction on X's confirmational commitment cannot 
be justified by an appeal to direct inference and coherence 
alone. 

Thus, an objectivist necessitarian cannot invoke such an 
appeal to confirmational irrelevance to fill the gap which ig
norance of stochastic irrelevance leaves; and even those who 
are not objectivist necessitarians must offer some basis for 
such a restriction on confirmational commitments. 

The coin example used to illustrate the point was an artificial 
one; but the problem is not artificial. 

Suppose X is interested in comparing the effectiveness of 
two different kinds of manure for the growing of wheat of a 
certain kind. He divides a number of fields into two plots. He 
undertakes to make the two plots in any given field as similar 
in all discernible respects as he is able. On each field, he 
spreads one type of manure in one plot and the other type in 
the other. He then plants similar amount of seed in each field 
and assures cultivation under as uniform conditions as is fea
sible. At harvest, X then determines the difference in yield for 
pairs of plots in each field and forms the average of the dif
ferences. This data together with data concerning the observed 
variation in the differences can then be used to compute a 
value of the so-called Student's t-statistic. 

If there is no difference in the efficacy of the two methods 
of manuring the fields (the "null hypothesis") the chance dis
tribution for values of t on trials of the sort just described is 
determined. Hence, on experimental data concerning the value 
of the t-statistic, the likelihood of the null hypothesis is deter
mined-provided that the extra information available to the 
experimenter concerning the kind of trial is known !O be sto
chastically irrelevant. 

Now the experimenter does know, for each field, in which 
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plot (the "left" or the "right" one) which manure was spread. 
He may have other such differentiating knowledge as well. 
Even though the experimenter may have taken all precautions 
practicable to guarantee that there are no discernible differ
ences between the left and right plots in any given field, he 
may, nonetheless, not be prepared to take for granted that 
which plots received which treatments is stochastically irrel
evant information. Indeed, in some agricultural experiments, 
there may be some prior background information indicating 
that such information about treatments in plots is stochasti
cally relevant without there being clear information as to how 
it is relevant. 

One possible way to confront such difficulties is to engage 
in preliminary inquiries aimed at identifying such sources of 
systematic error (e.g., by conducting "uniformity trials" 
through treating both plots in every field with the same manure 
or with no manure in order to ascertain peculiarities in the 
plots which might lead to systematic error.) If such efforts are 
feasible and successful, one might then hope to correct for 
such systematic errors when conducting the experiment. 

Fisher pointed out, however, that such approaches are often 
not practicable and even when they are feasible may be too 
costly. 5 

To adopt a confirmational commitment which secured the 
confirmational irrelevance of the information as to which treat
ments were made in which plots in which fields would, under 
the circumstances, be to adopt a confirmational commitment 
much stronger than objectivist necessitarians can allow. 

Fisher's remedy was to recommend artificial randomiza
tion. 6 That is to say, the choice of which manure is to be 
spread in which plot is to be based on the outcome of the toss 
of a coin known to be fair or on some other experiment on a 
chance setup that selects both plots for a given treatment with 
equal chance. 

Fisher apparently believed that through randomization, in
formation about kinds of trials which could not otherwise be 
ignored could be ignored. And there is, indeed, a sense in 
which Fisher is right. 

Prior to finding out the results of randomization, the chance 
distribution for the t-statistic on the null hypothesis is perfectly 
determinate and if the experimenter could ascertain the value 

13.3 LIKELIHOOD AND IRRELEVANCE 



302 

of that statistic without ever finding out which plots were 
selected for which treatment as a result of randomization, 
direct inference would justify a numerically definite likelihood 
for the null hypothesis (and any simple alternatives to it). 

In practice, however, information as to which plots received 
which treatments is known and, indeed, used when computing 
the value of the !-statistic. And once it is known, the mere fact 
that the treatments were assigned to plots at random contrib
utes nothing to establishing the stochastic irrelevance of the 
information. Without such knowledge, however, direct infer
ence cannot justify definite likelihood for the null hypothesis 
or any other simple alternative to it. 

Thus, it seems to me that the technique of artificial random
ization used in comparative experiments (and in other sorts of 
experimentation such as sample surveys) has very little to 
recommend it insofar as the rationale for it is the one which 
Fisher, who is more responsible than anyone for its wide
spread use in experimental design, offered for it. 

To be sure, randomization has other virtues. Like double
blind techniques, systematic arrangements (which are the op
posite of random arrangements), and the like, randomization 
removes the experimenter from the experiment in ways that 
help prevent unwitting bias or contamination-especially in 
medical research. But randomization is not the sole means for 
preventing such contamination, and this cannot account for 
the often strident insistence that randomization is a conditio 
sine qua non of a good experimental design. 

Were Fisher's rationale cogent, such a claim could be made 
with justification. My own view is that Fisher's argument is 
not cogent, but that the problem to which he directed attention 
is an important one. In any experiment, the experimenter will 
have a considerable amount of extra information about the 
kind of trials being conducted. On some occasions, his back
ground knowledge will suffice to secure the assumption of 
stochastic irrelevance, or at least of approximate stochastic 
irrelevance, so that on data obtained concerning the outcome 
of the experiment a fairly definite likelihood function can be 
constructed in conformity with the dictates of objectivist ne
cessitarianism. 

On other occasions, X's background knowledge will not 
suffice for the purpose. In such cases, either X will have to 
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look for an improved experimental design, conduct side in
vestigations to ascertain whether the extra information is sto
chastically relevant or irrelevant and the extent to which it is, 
or he will have to abandon objectivist necessitarianism. Ob
viously these are not exclusive alternatives. 

In any case, it should be apparent from all of this that in an 
investigation aimed at finding out which of rival simple statis
tical hypotheses in U is true on the basis of some experiment 
or series of experiments, the use of direct inference to obtain 
a definite likelihood function on data depends on a substantial 
amount of background knowledge concerning chances. 

Such background knowledge includes specification of the 
sample space for trials of kind S, the set of rival simple statis
tical hypotheses he specifying chance distributions Fe over the 
sample space fl, specification that a trial of kind S & T is 
occurring at t on the chance setup in question, and, finally, 
the assumption that the information that the trial is of kind T 
is stochastically irrelevant information. 

This is precisely the kind of information presupposed for 
the purpose of direct inference from composite chance hy
potheses in sections 12.13-12.16. Its centrality in discussions 
of inverse inference from knowledge of test behavior to credal 
states over rival statistical hypotheses emphasizes the fact that 
knowledge of chances cannot be obtained from the testimony 
of the senses alone. As noted before, expansion on the basis 
of the data to a conclusion rejecting some of the rival simple 
statistical hypotheses depends on a successful use of the data 
to obtain suitable posterior credal distributions over the rival 
alternatives; and, as I have been stating and restating, such 
use of Bayes' theorem depends on likelihood functions which, 
if they are to be nonproblematic consequences of the use of 
direct inference, presuppose substantial background informa
tion. 

Thus, even that form of inverse inference to statistical hy
potheses involving the assignment of credal probabilities to 
hypotheses on the basis of data presupposes that X's corpus 
prior to experimentation extends substantially beyond truths 
of logic and set theory, alleged conceptual truths, the testi
mony of the senses, and the records of the memory. If the 
likelihood functions on the data are uniquely determined by 
the principle of direct inference and the background know!-
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edge, that background knowledge will contain substantial in
formation about chances. 

Such knowledge is clearly open to revision. Some infor
mation about chances may be removed and other information 
added in its stead. But if such revisions are subject to critical 
control and a systematic account of the matter is worth con
structing, the problem of inductive expansion or inductive 
acceptance must be recognized as an important problem for 
epistemology and especially that part of epistemology con
cerned with the conditions under which experimental data can 
be used to determine credal probability assignments to statis
tical hypotheses via Bayes' theorem. 

Let K be X's initial corpus relative to which at least and at 
most one hypothesis h8 where (} E e (or h8 E U) is true and 
each is consistent with K. Each of the h8's is a simple chance 
hypothesis specifying a chance distribution over the sample 
space fl on trials of kind S on chance setup a. K also contains 
information to the effect that at some specific time a trial of 
kind S is to occur which is also a T and that the information 
that the trial of kind S is also of kind T is stochastically 
irrelevant. If ea asserts that on the trial in question, result of 
kind Ra occurs, the principle of direct inference mandates that 
every permissible Q-function in C(K) satisfy the requirement 
that Q(ea.; hB) = F9(a). Thus, direct inference guarantees the 
existence of a unique likelihood function on the data ea. The 
anxieties of the previous section are allayed, at least for 
awhile. 

X presumably begins with some sort of confirmational com
mitment just as he begins with an initial corpus. S. Spielman 
has raised doubts about this. 7 His doubts would be entirely 
justified were X obliged to have a numerically precise confir
mational commitment specifying a uniquely permissible Q
function for every potential corpus. 

The view I favor does not demand this. Indeed, X at the 
outset could embrace a confirmational commitment that allows 
every Q-distribution over the elements of U to be permissible 
conforming to the requirements of the calculus of probability
provided, of course, that these distributions also conform to 
the requirements of inductive logic, confirmational condition-
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alization, credal convexity, and the constraints otherwise 
adopted by X for his confirmational commitment. 

I suspect that in many experimental contexts X might very 
well begin with such a maximally indeterminate prior-al
though this need not always be so. For the present, however, 
I shall suppose that he does. 

But as we have seen in section 13.2, such maximal indeter
minacy implies that the data obtained as a result of experi
mentation will fail to lead to any change of credal state if the 
confirmational commitment remains unchanged. Objectivist 
necessitarians obligate X to retain the confirmational commit
ment unrevised. However, once necessitarianism is rejected, 
revisions of confirmational commitment are allowed provided 
that there is good reason for such revision. It is clear that if 
the prior credal state is initially maximally indeterminate, there 
is very good reason for attempting to strengthen the confir
mational commitment by removing some of the prior Q-distri
butions over the elements of U. 

The problem is, however, how such strengthening should 
be done. There should be some good reason for strengthening 
one way rather than another. If there is none, one should 
suspend judgment between all allowable strengthenings 
through adopting their convex hull as the prior credal state. If 
no potential strengthening is ruled out, this implies that no 
strengthening will take place. 

We cannot, however, appeal to considerations of inductive 
logic to help us in establishing the superiority of one strategy 
for strengthening over another. 

However, if Xis conducting the experiment in order to find 
out which element of U is true and if he has evaluated the 
rival potential answers with respect to informational value and 
has adopted a value q for his index of boldness (or caution), 
X might reasonably argue that any Q-distribution over the 
elements of U which is such that, for some h 9 , Q(h8) < qM(h9) 

ought to be ruled out of consideration as the uniquely permis
sible element of the revised prior credal state. To strengthen 
to such a prior credal state would justify X in rejecting ele
ments of U, whereas prior to the strengthening he was not 
entitled to do that. 

Any strengthening leading to such a result is objectionable; 
for X would then rationalize an expansion without changing 
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the evidence or the demands for information, but merely by 
altering his prior credal state. 

In cases where U is finite, any prior Q-distribution for which 
Q(h8) 2: qM(h8) avoids the objectionable consequence and, 
hence, is a candidate for consideration for the purpose of 
strengthening the prior credal state. But if there is no basis 
for discriminating between such unbiased Q-distributions, 
none of them should be ruled out and the revision of the prior 
credal state should involve shifting to the set of unbiased prior 
Q-distributions relative to the corpus K, ultimate partition U, 
information-determining M-function (section 2.4), and index 
q. Notice that if q = l, there will be exactly one unbiased 
prior Q-distribution-namely, Q(h0) = M(ho). 

If there is more than one permissible M-function according 
to X's demands for information, the prior credal state should 
consider the set of all unbiased priors relative to all of these 
M-functions (which form a convex set). 

13.S When U is infinite, special technical problems arise. 
Strongly Un- Let U be countably infinite and suppose each element of U 
biased Priors is informationally as valuable as any other. The M-function 

must then assign M(h0) = 0 for all ho E U. 
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According to my rejection rules, an element of U is to be 
rejected relative to whatever corpus is given if and only if 
Q(h8) < qM(h0). However, in this case, no such rejection is 
ever possible, since M(h8) = 0. Furthermore, we cannot seek 
relief from the difficulty by shifting to densities as we can 
when we have continuous parameters and the M-distribution 
is characterizable by a density function. Obviously the meth
ods for evaluating expansion strategies have to be revised. 

My proposal is this. Take any element h0 in U. Take any 
set of n elements of U including h8 and find the conditional Q
distribution over elements of this subset given that one of 
them is true. The corresponding conditional M-distribution 
assigns each element in the subset an M > 0. Indeed, when 
the M-function is uniform, then M = 1/n for each element in 
the subset. 

Apply the usual rejection rule and reiterate the application 
until a stable result is obtained in the sense of section 2.8. If 
there is no set of n elements of U containing h8 leading to 
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stable rejection of h0, then h8 is n-unrejected. If there is such 
a set, it is n-rejected. 

h8 is rejected if and only if it is n-rejected for every n greater 
than some n*. 

A Q-distribution over U (or the u-finite measure represent
ing it) is unbiased relative to K, U, M, and q if and only iffor 
any h0 in U there is no n* such that h0 is n-rejected for every 
n > n*. 

Notice, however, that unbiasedness does not preclude an 
element of U from being rejected relative to the Q-distribution 
for some n-member subset of U. It seems reasonable, how
ever, in this case that we would seek to prevent any element 
of U from being n-rejected for any positive value of n prior to 
experimentation. A distribution over countably many elements 
of U having this property is strongly unbiased. 

In the countably infinite case, we have thus far defined 
strong unbiasedness only when the M-function is uniform. 
However, the characterization applies just as well to situations 
where the M-distribution is not uniform. 

Furthermore, strong unbiasedness can be defined for cases 
where U is finite as well. 

In both the countably infinite and the finite case, a strongly 
unbiased prior is such that for no finite subset of U in which 
ho belongs is ho rejected given that some element of that subset 
is assumed true but otherwise matters are left as they were. 

Finally, if (} is continuous and the information-determining 
M-function is represented by a density, we can require for 
strong unbiasedness that if we consider a set of .alternatives of 
the form "the true value of (} falls in the interval from (Ji to 8; 
+ d(}" for finitely many distinct 8/s and conditionalize the Q
function and M-function on the assumption that one of these 
alternatives is true, then no matter how small but positive 
d8 is allowed to be, no element of the set of alternatives is 
rejected for the given value of q. 

I propose that when X begins with a situation where the 
prior credal state for U is maximally indeterminate and X 
seeks to strengthen it, he should adopt as his new prior credal 
state. the set of all strongly unbiased Q-functions relative to K, 
U, q, and every permissible M-function according to his de
mands for information. 
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13.6 Let us focus on cases where there is exactly one M-function 
Standardized in the set representing X's demands for information. 
Priors and When q = l, there can be at most one strongly unbiased 
Posteriors prior Q-distribution Q*(h8) = M(h 8) relative to U and M. 
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Even when q < 1, Q* is strongly unbiased. I shall call Q* 

the standardized prior Q-distribution. 

Corresponding to the standardized prior distribution, there 
is a standardized posterior distribution Q*(h8; e.,) conditional 
one.,. 

Letting the likelihood L(h8; e.,) = Q(e.,; h8) be given, let 

L *(e.,) = I L(h8; e.,)M(h8). 
8E6 

Then 

Whatever the index of caution q might be, if rejections are 
based on the standardized posterior, h8 is rejected if and only 
if 

(2) Q*(h8; eJ < qM(h8). 

In the light of (1), (2) holds if and only if 

(3) L(h8; e.,) < qL *(e.,). 

When q = l, condition (3) states a necessary and sufficient 
condition for rejecting an element of U on the data e., assuming 
that X began with a prior credal state consisting of strongly 
unbiased priors. 

In that special case, reiterating the rejection rule until a 
stable conclusion is obtained yields the result that all elements 
of U are rejected but those bearing maximum likelihood on 
the data. 

In most contexts, it seems to me that X should not be so 
bold as this but should adopt a q < 1. 

In that case, the prior and the posterior credal states will be 
indeterminate. The rejection rule stipulates that h8 be rejected 
if and only if the maximum value for Q(h8 ; eJ derived by 
Bayes' theorem from a strongly unbiased prior is less than 
qM(h8). 

To compute exact values for these maximum posterior val
ues will be difficult in many cases. However, it is possible to 
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obtain approximations for such maxima which are multiples 
of the standardized posterior values. In some cases, the ap
proximation is rather good. In other cases, it is not so good. 
However, the method of approximation proposed has the vir
tue that when applied to the problem of rejection it errs on 
the side of caution. It leads to rejecting only elements of U 
that would be rejected utilizing exact methods, although it 
sometimes fails to lead to rejections permitted by exact 
methods. 

Take the easiest case first. Suppose U is finite and the M
function assigns the same M-value of 1/n to each h8 in U. 

Take any value (} of the parameter and consider the strongly 
unbiased prior distribution over U assigning h8 a Q-value 
which is a maximum assignable by any strongly unbiased 
prior. 

If h8' is any other element of U, it is known that 

Q(hB; h8 V h8,) ::s 1 - q M(h 8') = 1 _ !l = 2 - q 
M(h8 V hg,) 2 2 

According to that Q-function, Q(h8,; h8 V h8,) 2: q/2. 

From this it follows that 

This is true for every (}' =fa (}. Hence, to obtain a maximum 
prior Q-value for h8 , every other element of U should be 
assigned the same Q-value x and Q(h8) should equal 
(2 - q)x/q. 

Since the number of elements of U is a finite number n, 
x = q/[q(n - 2) + 2). 

Since the M-function assigns equal M-value to all elements 
of U, 

L*(e.,) = L L(h8.; e.,)M(h8.) = L L(h8.; eJ 

8'E6 8'E6 n 

(see section 13.6). 
Let 
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If every h8 , in U distinct from h8 is assigned the prior Q
value x and h8 is assigned the prior Q-value (2 - q)x/2, the 
posterior value for h8 determined by Bayes' theorem must be 

(l) L(h9; ea)(2 - q) . 
Lt(eJq 

(1) must be the maximum posterior value for h8 allowed by 
the given likelihood function, Bayes' theorem, and the set of 
strongly unbiased priors. But (1) is less than 

(2) L(h8 ; eJ(2 - q) ~ L(h9; eJ(2 - q) = Q*(h
8

; eJ (2 - q) . 
nL *(e,..)a L *(ea)q q 

Q*(h8 ; eJ is the standardized posterior of section 13.6. 
Thus, we may use (2) as an approximation for the maximum 

posterior value for h8 obtainable from a strongly unbiased 
prior. This approximation becomes exact when q = 1 and is 
excellent for values of q near 1. Moreover, even when q is 
fairly small, when L *(eJ is large compared to L(h8 ; eJ the 
approximation will continue to be a good one. 

These results extend quite naturally to cases where U is 
countably infinite and the uniform M-function is represented 
by a a-finite measure. It also can be extended to cases where 
(} is continuous and the M-function representable by a contin
uous density. In this guise, the claims just made are known as 
theorems of "stable estimation." 8 

Theorems of stable estimation apply to cases where priors 
are approximately uniform-i.e., where they are strongly un
biased relative to uniform M-functions. It is of interest to 
extend these theorems to cover cases where posteriors are 
derived from approximations of standardized priors-i.e., 
priors strongly unbiased relative to other M-functions besides 
uniform ones. 

Consider the finite case. Order all elements of U in order of 
increasing M-value. The order of elements of U with equal M
value is immaterial. 

Let 

if i * i' 
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Let Q be the Q-function assigning maximum value to h8, 

among all strongly unbiased priors. Then 

Q(h
8
J) ~ Q(h91)M(h9) 

Z(8;, (Ji> q) 

for every h8J where}* i. If i = j, the equality is strict. 
Let 

n 

Ll,*(eJ = I L(h91; ea)Q(h9) 
i=l 

> 2./!.1L(h91; ea)Q(h9)M(h9) 
- Z(8;, 8i, q) 

Let j* be such that Z(8;, (Ji*, q) is the maximum for all Z

values where 8; is held fixed. Then 

Lt,*(ea) ~ L/!.1L(h91; ea)Q(h9,)M(h9) = L *(ea)Q(h 8,) ' 

Z(8;, 8i*, q) Z(8;, (Ji*, q) 

and 

L(h9,; eJM(h9,)Z(8;, 8i*, q) 
L *(eJM(h8,) 

Q*(h9,; ea)Z(8;, 8i*, q) 

M(h9,) 

We know already that when q = 1, Q(h8,; eJ should equal 
the standardized posterior Q*(h8,; ea). Compatibility with this 
requirement is guaranteed by the fact that the quantity 
Z(8;, (Ji*, q)/M(h 8,) approaches 1 as q approaches 1. 

As M(h 8,) approaches M(h 8J.) the ratio approaches (2 - q)/q. 

These results may be extended to cover cases where n goes 
to infinity, and continuous cases as well. 

This discussion began by considering a situation where X is 
concerned to conduct an experiment and obtain data on the 
basis of which elements of some subset of the ultimate parti
tion U will be rejected. X has demands for information rep-
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resented by an information-determining M-function and is 
committed to a standard of caution q. 

Before conducting the experiment and relative to the initial 
corpus K, X's prior credal state for elements of U is maximally 
indeterminate. This circumstance furnishes a warrant for X's 
revising his confirmational commitment by strengthening his 
prior credal state for elements of U in order that the data of 
experiment will be worth acquiring for the purposes of the 
inquiry being undertaken. 

In this kind of situation, X should shift to the prior credal 
state consisting of all strongly unbiased prior distributions over 
elements of U relative to K, U, M, and q. 

In section 13. 7, methods for approximating maximum per
missible Q-values for elements of U conditional on ea were 
introduced; it was there shown that for a given he the approx
imation should be some multiple of the standardized posterior 

Q*(he; ea). 
It is now time to explore the application of these approxi

mate maximum posterior values to the problem of inferential 
expansion when X finds out that ea is true after experimenta

tion. 
In the special case where the demands for information are 

represented by a uniform M-distribution, it has been shown 
that every permissible posterior Q-distribution is such that 

Q(he; ea) < Q*(he; ea)(2 - q) . 
q 

Furthermore, he in U is to be rejected if and only if 

Q(he; ea) < qM 

for every permissible posterior Q-function, where M = M(he) 

= I/n for all he in U. 
Consequently, if we are content with approximation which 

errs on the side of caution (i.e., leads to rejecting fewer ele
ments of U than exact methods warrant), we should adopt the 
prescription recommending the rejection of he in U if and only 

if 

qzM 
Q*(h · e) <--e, a 2 - q 
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But this condition holds if and only if 

q2L*(eJ 
L(he; ea) < 

2 
, 

-q 

where 

L *(ea) = M 2: L(he; ea), 
eee 

as section 13.6 requires. 
This approximate rule recommends rejecting an element of 

U if and only if its likelihood on the data is less than L *(ea) 
times some constant k ::s I. The value of the constant k varies 
from 1 when q = 1 to 0 when q = 0. 

If the rejection rule is reiterated until a stable result is 
obtained, the stable result specifies that an element of the 
initial U is rejected if and only if its likelihood on the data is 
less than some fraction of the maximum likelihood on the data. 

Both the initial likelihood-based rejection rule and the one 
derived from reiteration have been discussed in the literature 
before. 9 What is interesting about the argument for utilizing 
such rules here is that, according to the approach adopted, 
likelihood-based rejection rules are not taken to be fundamen
tal but to be applicable when the circumstances are appropri
ate. 

Furthermore, the relevant contextual parameters consid
ered here concern not only the background information K and 
the initial maximally indeterminate prior credal state, but also 
the ultimate partition U, the demands for information that 
rated all elements of U equally informative, and the value of 
the index q. 

The conditions for reaching the results described will not 
always be satisfied. Likelihood-based rejection rules cannot 
be used in inductive expansion on every occasion. The context 
matters. What has been shown is that certain combinations of 
contextual factors do justify the use of likelihood-based rejec
tion rules. 

Furthermore, it is entirely plausible to suppose that in a 
great many contexts of research where the potential answers 
are rival simple statistical hypotheses or alternations of such, 
the information-determining M-function will rate all simple 
alternatives as equally informative. There is no principle of 

13.8 LIKELIHOOD AND REJECTION RULES 



314 

reason which mandates this. The demands for information 
occasioning the inquiry will control the M-function. Perhaps 
these demands themselves are determined by research pro
grams of some sort. We need not settle that matter here. I 
contend only that on many occasions rival simple statistical 
hypotheses will be counted as equally informative. 

It is in inquiries of this kind that prior credal states are often 
plausibly strengthened to sets of strongly unbiased priors 
which approximate uniform priors. As we have seen, the pos
terior distributions conform approximately to the requirements 
of the likelihood function. This circumstance explains the use
fulness of likelihood-based rejection rules. 

Because the circumstances for legitimately using likelihood
based rejection rules may be fairly widespread, there is pre
systematic cogency to adopting likelihood-based rules that 
renders it tempting to try to make likelihood a fundamental 
notion in inference and to take likelihood-based rejection rules 

as universally applicable. 
In my opinion, this is a mistake. Prior credal states should 

not always be unbiased; and, even when there is justification 
for endorsing such states, the M-function need not always be 
uniform. When it is not, approximate rejection rules are no 
longer always likelihood-based in the sense explained previ

ously. 
Suppose the M-function defined over finite U is not uniform. 

The rejection rule stipulates that h8 is rejected, given the new 
data ea. if and only if Q(h8 ; eJ < qM(h 8) for every permissible 

Q-function. 
According to section 13. 7, 

Q*(he; ea)Z(8, 8*, q) 
Q(ha; ea) :S M(ha) 

Tue right-hand side of this inequality is less than qM(ha) if 

and only if 

qM(he)L *(ea) 
L(he; ea) < Z(8 , 8., q) · 

This latter condition may serve as an approximate rejection 
rule when the M-function is not uniform. The right-hand side 
depends on the value of 8 when the M-function is not uniform 
and q is less than 1. Hence, when the M-function is not uni-
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form and q << I, the rejection rule does not stipulate, even as 
an approximation, that h8 is to be rejected if and only if its 
likelihood on the data is less than a fixed level which is the 
same for all elements of U. The rejection level depends on the 
value of M(h8). 

13.9 Since Bayes and Laplace, when Xis in some sort of state of 
Ignorance and ignorance over elements of U, he has been urged to adopt as 
Strongly Un- his prior credal state a uniform distribution over the alterna-
biased Priors tives. This recommendation is often advocated as being 

grounded on context-independent principles of inductive logic 
which mandate what every rational X should adopt as his 
credal state given that his corpus of knowledge represents a 
suitable sort of ignorance. 
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Principles of insufficient reason are plagued with all sorts of 
difficulties. Inconsistencies threaten and ad hoc repairs are 
made to prevent trouble, thereby removing whatever shred of 
presystematic cogency the principles might have had in the 
first place. Both proponents of such principles and many of 
their critics are concerned with the objectivity of the prior 
distributions used in deriving posteriors. The critics rightly 
complain of the arbitrariness involved in the choice of sets of 
alternative hypotheses over which principles of insufficient 
reason are to be applied. 

Critics tend to respond in one of two ways. They either 
become personalists and adopt priors without any justification 
other than the alleged need to adopt some numerically precise 
one. Or they refuse to adopt any precise prior at all, becoming, 
on my reconstruction, advocates of maximally indeterminate 
priors. 

I have been advocating a point of view according to which 
considerations other than logic, language, and the available 
evidence play a role in the justification for adopting a prior 
credal state. The problem under investigation, the rival poten
tial answers identified for it, their evaluation with respect to 
informational value, and the index of caution may also play a 
role. 

Often when such factors are taken into account, the prior 
credal state that results consists of a family of priors resem
bling those the advocates of insufficient reason recommend. 

But there are some vital differences. First, only rarely will 
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the prior recommended be precise. Second, the prior is not 
recommended by an appeal to principles of inductive logic 
applicable regardless of the question under consideration and 
the demands for information involved in it. 

Critics may complain that the view which emerges is no 
different from the personalist position. Insisting on the con
text-dependence of choices of prior credal states is no protec
tion against subjectivism. 

Suppose X begins with the same initial corpus and ultimate 
partition but alters his M-function or his index q. The set of 
strongly unbiased priors will vary in ways which could lead to 
markedly different posteriors and rejections. 

Of course, X might change his M-function arbitrarily in the 
manner indicated. But he might change his corpus arbitrarily 
too. The fact that credal states are dependent on X's body of 
knowledge is often acknowledged, even though this is a con
textual and historical factor just as X's demands for informa
tion are. 

Needless to say, X should not alter either his corpus or his 
demands for information willfully. Changes in corpus and in 
demands for information ought to be kept under careful critical 
control or, at any rate, within certain limits they should be. 

It is true that the revisionist approach I favor agrees with 
both intemperate and tempered personalism in giving up the 
pipe dream of context-independent objectivity in inquiry. But 
revisionism does not sanction anarchy. Nor does it maintain 
that probability judgment depends on the context and leave it 
entirely to judgment and insight to say how context controls 
probability judgment. 

Return to the problem discussed by Fisher of testing a black 
mouse to find out whether it is homozygous or heterozygous. 
The experiment is to mate it with a brown mouse and note 
the color of the offspring. 

We shall consider the case where no information about the 
origin of the mouse is available so that, in Fisher's words, 
"no experimenter would feel he had warrant for arguing as if 
he knew that of which in fact he was ignorant." 

I take this to mean that no experimenter begins his inves
tigation with a numerically definite pripr obtained via direct 
inference from knowledge of chances. No such knowledge is 
available. Hence, at the outset, the investigator X adopts a 
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maximally indeterminate prior credal state for the two rival 
hypotheses (h, asserting homozygosity and h2 asserting het
erozygosity). 

In this case, I take it that most investigators would agree 
that the two rival hypotheses bear equal M-value of .S. If they 
do not, they would have to consider all seriously proposed M
values and take their convex hull. But I shall simplify by 
supposing that there is exactly one permissible M-function 
which assigns both alternatives equal M-value. 

In this case, the class of strongly unbiased priors permits 
values for Q(h,) to range from .Sq to 1 - .Sq and similarly for 
Q(h2) = 1 - Q(h,). 

If the test mouse is mated with a brown mouse (known, 
therefore, to be homozygous) and h, is true, the chance of 
obtaining only black offspring is 1. If h2 is true, the chance of 
r blacks out of n offspring is (~)(.S)n. 

Clearly, if r is less than n, the hypothesis h, is false and h., 
is established. But suppose all n offspring are black. The 
chance of this happening if h2 is true is (.S)n. Let this result be 
reported by en. Q(en; h1) = 1 whereas Q(en; h2) = (.S)". 

The maximum posterior for h
2 

is ~.S)n(l - .Sq) . 
(.S) (1 - .Sq) + .Sq 

For h2 to be rejected, this ratio would have to be less than 
.Sq. 

The maximum posterior for h, is ___ I_-_.S....::q __ 
I .Sq + (.S)n+'q . 

The rejection condition is, once more, that this be less than 
.Sq. 

It is clear that if q = I, then h2 is rejected because its 
likelihood on the data is below the threshold. On the other 
hand, as q is reduced, h2 may escape rejection unless n is 
increased. The hypothesis h,, of course, avoids rejection be
cause its likelihood always remains higher than that of h •. 

When q = 1, a numerically precise and uniform prior should 
be adopted as proponents of insufficient reason advocate. 
However, the experimenter should not adopt this prior by 
arguing "as if he knew that of which he is in fact ignorant." 
He should adopt the uniform prior because it is the only prior 
distribution which avoids prejudging the conclusion to be 
adopted via inferential expansion. 

If q < 1, there are many such distributions and X is not 
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entitled to select one of them in preference to the others. He 
should suspend judgment between them all. 

If q = l, observation of one black offspring (and no brown) 
suffices to warrant rejection of h2 • If q = .5, it takes obser
vation of four black offspring to warrant such rejection. If q 

= .05, observation of seven is needed. 
These calculations are exact. The approximate methods dis

cussed before favor rejecting h2 if and only if 

2 

L(h2 ; en) = .5n < (1 + .5n).5 2 ~ q · 

As before, if q = 1, it takes one black offspring to warrant 
rejection of h

2 
and four if q = .5. However, if q = .05, 11 

black offspring are needed. 
The approximate methods do not err at all until q becomes 

less than .5; and when they do, they err on the side of caution. 
A. Shimony appealed to the demands of the problem under 

investigation and the potential answers identified as solutions 
to that problem in considering how prior credal probability 
judgments are to be modified. 10 He too was concerned that 
priors be modified so that seriously proposed potential an
swers be capable of "winning" or "losing" in some sense as 
a result of inquiry but without prejudicing the result. 

My proposals are made in the same spirit. They too are tied 
to the problem under investigation and potential answers iden

tified by the inquirer. 
Unlike Shimony, I construe "winning" and "losing" in 

terms of inferential expansion-i.e., whether a hypothesis is 
admitted into evidence, its negation is, or neither. Further
more, although Shimony acknowledges that his methods will 
not rule out all but one prior distribution, he still urges picking 
one of these as uniquely permissible. He remains a personal

ist-albeit a tempered personalist. 
These differences ought not, however, to obscure the im

portant points of agreement between Shimony' s view and 

mine. 
Contextual considerations may be systematically exploited 

without breeding rampant psychologism or constructing fan
tastic third worlds. We need not be burdened by the curse of 
Frege-who has frightened so many with the threat of psy
chologism that they retreat to a sterile pseudo objectivity. 
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leaving many important matters open to historical, psycholog
ical, and sociological study but immune to critical review. 

Many occasions arise where the conditions for applying the 
methods for selecting prior credal states just outlined do not 
apply. 

For example, when prior credal states are derivable via 
direct inference from knowledge of chances already available, 
principles of inductive logic mandate the choice of a fairly 
determinate credal state prior to experimentation. 

But even when inductive logic fails to determine a prior 
credal state relative to prior background knowledge, X might 
already have some confirmational commitment which assigns 
the elements of U a fairly determinate prior credal state. 

Suppose X is convinced that the black test mouse is the 
offspring of a homozygous black and a homozygous brown 
mouse. Given his knowledge of genetics, X knows the test 
mouse is heterozygous. Hence, he is not at all concerned to 
test the mouse for heterozygosity. Why should he do so when 
he already knows the answer? Perhaps, however, he has some 
other reason for mating the mouse with a brown mouse (known 
to be homozygous). He might be interested, for example, in 
illustrating some aspect of the workings of Mendelian genetics 
to students. 

In particular, he might be interested in showing the students 
that the mouse's offspring will be approximately 50% black 
and 50% brown as Mendelian theory predicts. 

Suppose that 20 offspring are obtained and they are all 
black. The result is perfectly consistent with the assumption 
in X's initial corpus K, that the mouse is heterozygous. Yet, 
on the assumption, the result is not "what is to be expected." 
X might wish, therefore, to give a hearing to a rival hypothesis 
which can do better in explaining the result. 

He could question Mendelian theory; but the loss of infor
mation incurred would be severe. It would be preferable to 
question the parentage of the mouse and contract from the 
corpus K; (the expansion of K 1 by adding the data concerning 
the 20 offspring) to K;, relative to which X suspends judgment 
between the hypothesis of homozygosity h, and of heterozy
gosity h2 • 

Notice that the data concerning the 20 offspring are not 
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evidence against heterozygosity when K; is the corpus. To 
say so is incoherent; for the assumption of heterozygosity is 

part of the evidence. 
The data provide a good reason for contracting the corpus 

K; to K; so that the hypothesis h1 of homozygosity can be 
given a hearing (see chapter 3). 

Let K; be the new contracted corpus. X's credal state for 
rival hypotheses about genotype of the test mouse could be 
maximally indeterminate. Were this the case, X's confirma
tional commitment would have to be such that the credal state 
C(K

2
) for h

1 
and h2 would also have to be maximally indet~r

minate where K; is the expansion of K 2 obtained by addmg 
the data about the 20 mice to Kz. 

Clearly, however, X might have already been committed to 
a confirmational commitment according to which the distri
butions for h1 and h2 in C(K2) are strongly unbiased relative to 
K

2
, U, M, and q (where M assigns the two elements of U 

equal value of .5). The set of distributions over the elements 
of U in C(K;) will no longer be indeterminate. Indeed, the 
maximum Q-value for h2 will be sufficiently low to reject the 
hypothesis of heterozygosity without any further experime~
tation. The observation of the 20 black mice would be evi
dence enough to warrant the conclusion. 

There are other scenarios to consider; but we cannot ex
haust them all here. Let us focus on the two just mentioned. 

In the case where the credal state for elements of U relative 
to K~ is indeterminate, the analysis offered in the previous 
secti~ns is applicable. X should strengthen to the set of 
strongly unbiased distributions relative to K;. He should not 
strengthen to the set of strongly unbiased distributions relative 
to K

2
; for he would then, by a change in confirmational com

mitment alone, so change his appraisals of risk as to warrant 
expansion which was not justified initially. Such shifts reveal, 
in my opinion, a lack of respect for the desirability to avoid 
error or, at least, to take risk of error seriously. 

Thus, in the case under consideration, X will be obliged to 
conduct additional experiments to determine the fate of the 
two hypotheses about the genotype of the test mouse. The 
data concerning the 20 mice were warrant for opening up a 
new inquiry but were insufficient warrant for then replacing 
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the hypothesis of heterozygosity with the hypothesis of hom
ozygosity. 

Turn now to the second case, where X has an antecedent 
confirmational commitment which assigns h2 extremely low 
credal probability relative to K;. 

There are two possibilities. X might be prepared to expand 
by rejecting H 2 without further experimentation. In that event, 
the data about the 20 mice not only justified contraction from 
K; to K;, but also the subsequent expansion to the conclusion 
that the mouse is homozygous. 

But X might demur. He might consider that he had con
tracted initially in order to give the hypothesis of homozygos
ity a hearing. But there are two senses to giving that hypoth
esis a hearing. One can give a hearing relative to the 
contracted corpus or one can give a serious hearing through 
an inquiry which begins with the contracted corpus but then 
obtains new information (through experimentation and other 
side investigations) that is then to be used to decide the issue. 

I know of no general principle which can be used to decide 
when one should rest content with giving a mere hearing or 
whether one should give a serious hearing. I suspect that this 
matter is resolved by considering a trade-off of several epis
temic benefits. 

In any case, to give a fair or serious hearing involves pre
venting a resolution of the matter prior to further experimen
tation. 

(Incidentally, there is an interesting difference between 
cases where upon contraction there is a warrant for expansion 
reinstating the hypothesis initially removed and cases where 
there is a warrant for expansion introducing a rival to that 
hypothesis as in the example considered here.) 

In our example, giving such a hearing requires modifying 
the prior credal state. However, such modification ought not 
ignore the initial credal state. X, after all, begins with an 
earnest commitment to it. Claims are made that he should 
modify his commitment so as to prevent expansion by ac
cepting h 1 without further experimentation; but this can be 
done without leading X to rule out the distributions he initially 
considers permissible as being impermissible. To the contrary, 
he can retain these distributions as permissible and add others 
to prevent a premature resolution of the issue. He can, in 
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particular, adopt the convex hull of the set of distributions he 
initially regards as permissible and the set of strongly unbiased 
distributions. 

In our example, doing so will lead to a situation little dif
ferent in practice from one where the prior credal state con
sists exclusively of strongly unbiased priors. This is because 
the only circumstance under which h1 can be rejected is where 
a sample containing at least one brown mouse is obtained. 

However, cases arise where the rival hypotheses are all 
such that rejection does not follow from deductive logic and 
the data alone. The methods just illustrated, when applied to 
such cases, will give an edge to hypotheses strongly probable 
according to the initial confirmational commitment by render
ing them more difficult to eliminate on the basis oi the data. 
Yet, it will not be impossible to eliminate them. The other 
alternatives will receive a hearing, resulting in a demand for 
the acquisition of new data. 

These considerations illustrate further how contextual con
siderations can lead to the revision of confirmational commit
ments. They also indicate that the task of exploring the ways 
in which confirmational commitments may legitimately be re
vised is important unfinished business. 

Part of the unfinished business, it should not be forgotten, is 
the determination of likelihood functions. Such determination 
depends, of course, on the principle of direct inference. But 
it depends also on knowledge of chances sufficient to secure 
stochastic irrelevance of extra information about kinds of 
trials. If such knowledge is lacking, X might sometimes en
dorse a confirmational commitment according to which the 
extra information about the kind of trial is confirmationally 
irrelevant to hypotheses about the outcome of testing. 

An important question about the revision of confirmational 
commitments concerns conditions under which X is justified 
in modifying his confirmational commitment so as to secure 
such a result. 

The problem is a difficult one which deserves further inves
tigation. In practice, it can sometimes be avoided by rede
signing experiments so that one can rely on background knowl
edge of stochastic irrelevance. But this is not always feasible; 
and randomization is not the panacea Fisher alleged it to be. 
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In chapters 1-3 of this book I have argued for the importance 
of developing an account of the improvement of knowledge 
construed as a standard for serious possibility used as a re
source in inquiry and deliberation. 

In chapters 4-13 I have sought to extend the outlook of the 
first three chapters to the revision of probability judgment. X's 
cognitive resources for inquiry and deliberation include both 
his standards for serious possibility and his appraisals of hy
potheses counted as seriously possible with respect to credal 
probability. 

I have not pretended here to offer a complete account of 
either the improvement of knowledge, confirmational commit
ments, or credal states. But I have offered a framework for 
discussing these questi0ns and made a few substantive claims. 

Several large conclusions may be drawn if the approach 
advocated here is on the right track. (I) Contextual consider
ations can be taken into account in a systematic manner with
out precluding the critical control of the revision of knowledge. 
(2) Those authors who deny the existence of a fixed scientific 
method are, in all essentials, in the right. The principles of 
inductive logic, deductive logic, rational choice, and valuation 
proposed here are relatively weak and are applicable to all 
aspects of conduct. Any stronger canon of scientific method 
that may prevail at some historical moment is subject to crit
ical review. The growth of knowledge is at the same time the 
development of method. (3) The problem of acceptance will 
not go away no matter how often simple-minded Bayesians 
may declare it dead. The question of revising probability judg
ments and the question of revising standards for serious pos
sibility (which is the problem of acceptance) are inextricably 
linked with one another. ( 4) There is no gulf between the weak 
principles of rationality regulating practical deliberation and 
theoretical inquiry. (5) On the other hand, the cognitive values 
of scientific inquiry have a life of their own distinct from the 
values of commerce or politics, or from ethical considerations. 

Even those who disagree with some or all of these large 
conclusions or with some of the technical proposals made here 
may, nonetheless, find some value in some of my proposals. 
The account of indeterminate probability that has been con
structed is useful as a means for comparing rival views of 
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probability judgment and induction without begging questions 
for or against competing views. 

To demonstrate this, the remaining chapters of this book 
will be devoted to discussing some views concerning proba
bility judgment alternative to the one I favor. These views are 
all, in a sense, understandable as responses to the difficulties 
facing objectivist necessitarianism that attempt to meet the 
problems while somehow remaining loyal to the spirit if not 
the letter of objectivist necessitarianism. 

The discussion will, I hope, illustrate the use of the methods 
developed here for representing probability judgments. It will 
also contribute to an important step of my argument which 
has not, as yet, been taken. 

In this chapter I have assumed that objectivist inductive 
logic is a complete inductive logic but that objectivist neces
sitarianism is not viable. On this basis, I have concluded that 
some sort of revisionism ought to be favored. 

I do not know how to prove that objectivist inductive logic 
is complete. However, we can consider ways to improve on 
objectivist necessitarianism to see whether there is a oromising 
alternative to revisionism. I do not think that there is; but 
there is a need to consider the chief alternatives. 
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TAME FIDUCIAL INFERENCE 

In 1930, R. A. Fisher proposed a form of argument which he 
seems to have thought would yield numerically definite pos
terior distributions without commitment to numerically defi
nite priors. 1 Fisher called such arguments "fiducial" infer
ences. In his later writings, Fisher explicitly insisted that 
fiducial probability distributions are appraisals of hypotheses 
with respect to probability on the data-as are appraisals on 
the data derived via Bayes' theorem-even though in fiducial 
inference there is no appeal to prior distributions. 2 

If Fisher is to be taken seriously, he must have been com
mitted to rejecting one of the conditions which have been 
imposed on confirmational commitments in this book· for 
these conditions imply that no numerically definite post~rior 
can be obtained unless there is a numerically definite prior. 

Fisher failed to indicate which of the principles proposed 
previously he was prepared to modify. He appears to have 
invoked all of them at least tacitly at one point or another. 
Hence, it is almost impossible to make an educated guess as 
to what his considered opinion was. 

Nonetheless, I am inclined to think that Fisher's view in his 
later writings favors modifications of the principle of direct 
inference (as formulated in this book) and confirmational con
ditionalization, so that direct inference and credal coherence 
unaugmented by other principles of inductive logic would suf
fice for the derivation of fiducial posteriors without violating 
any condition on rational probability judgment. 

In any case, a project of this sort has been undertaken and 
defended by H. E. Kyburg and is interesting in its own right. 
I shall discuss Kyburg's theory in chapter 16, together with 
A. P. Dempster's alternative proposal for abandoning confir
mational conditionalization. 

Alth,ough fiducial inferences have often seemed disreputable 
to writers on probability, induction, and statistical inference, 
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they have been honored by efforts on the part of serious 
authors to tame them by assimilating them into more orthodox 
views. Thus, J. Neyman initially thought his theory of confi
dence-interval estimation was an extension of Fisher's ac
count of fiducial inference. 3 Since in a limited domain there is 
a formal similarity between confidence-interval estimation and 
fiducial inference, one might attempt to rationalize Fisher's 
theory within the framework of the Neyman-Pearson theory. 
The Neyman-Pearson approach will be considered in chapter 
17 in a general way, but this particular application of that 
approach will not be developed. 

From H. Jeffreys onward, sympathizers with the Bayesian 
tradition have sought to interpret fiducial inferences in a man
ner consistent with the requirements of strict Bayesian doc
trine. 4 Doing so requires reconstructing such inferences so 
that the fiducial posteriors are also derivable via Bayes' theo
rem from appropriate numerically definite priors. 

Following this course requires interpreting Fisher counter 
to the only clear intention manifested in his discussion of the 
fiducial argument. Nonetheless, the project is worth consid

ering. 
If a system of circumstances can be identified relative to 

which fiducial inferences can be prescribed in a manner con
sistent with the requirements of objectivist inductive logic, we 
may be in a position to formulate an additional principle of 
inductive logic to those contained in objectivist inductive 

logic. 
To be sure, we would expect more than a consistent exten

sion of objectivist inductive logic. The new principle would 
also have to be cogent. 

In this chapter, fiducial inference will be "tamed" by intro
ducing a principle of inductive logic which mandates its use in 
certain kinds of situations and which has been alleged to be 

consistent. 
In chapter 15, I. Hacking's method for deriving this prin

ciple from a prima facie more compelling principle will be 
explored and the question of the consistency of fiducial infer
ence and Hacking's theory will be investigated. 

14.2 In contexts where fiducial arguments are to be applied, agent 
Three Cases X knows that some chance setup is capable of responding on 
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a trial of kind S in one of several ways each representable by 
a point or a set of points in a sample space. X knows that the 
chance distribution over the points in the sample space is 
characterized by exactly one he E U where the members of U 
are parameterized by 8 E 0. But he does not know which of 
these distributions is the correct one. 

With only slight complication, it is possible to consider 
situations where the sample space varies for different values 
of 8. I shall avoid the complication and discuss only cases 
where the sample space remains the same relative to all values 
of 8. 

Fisher introduced fiducial arguments for application in sit
uations where the chance distributions are known to be con
tinuous. I shall restrict attention to the one-dimensional case 
where the points in the sample space are representable by real 
numbers in some interval (finite or infinite) on the real line. 
Fisher also considered situations where points in the sample 
space are representable by ordered n-tuples of real numbers 
which are coordinates for points in a region (finite or infinite) 
in n-dimensional space; but, for the sake of simplicity, I shall 
focus only on those cases which can be transformed into one
dimensional cases. 

I shall modify the previous notation so that Fe(x) is the 
(statistical or chance) cumulative distribution function speci
fying the chance according to he that the result of a trial of 
kind S is representable qy a point x' :S x. I take Fe(x) to be 
continuous and differentiable in x (over the entire interval of 
points representing the sample space) so that the density func
tion fe(x) = dFe(x)/dx is defined. 

I shall refer to situations of this sort as continuous cases in 
the subsequent discussion even though I am dealing only with 
one dimension. 

Thanks to Hacking, examples of fiducial inferences appli
cable in cases where there are only a finite number of points 
in the sample space have been constructed, 5 and it is also 
possible to construct them for situations where there are a 
countable infinity of points as well. Such examples are of little 
interest from the point of view of serious applications. How
ever, it is helpful to begin a discussion of fiducial inference by 
attending to these cases. The reason is that the bare bones of 
the structure of such inference and the assumptions required 
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to employ it are thereby revealed, uncomplicated by the spe
cial features required to deal with the continuous case. 

When dealing with such discrete cases, I shall let Fa(x) be 
the cumulative distribution function as in the continuous case. 
fa(x), however, shall be used to represent the chance according 
to ha that the event Rx occurs on a trial of kind S. In the 
continuous case, of course,f8(x) does not represent this chance 
(the chance is O). However, f 8(x)dx approximates the chance 
that an event indexed by a value between x and x + dx occurs. 

The discrete case may be divided into two cases: the finite 
and the countably infinite cases. I shall consider them sepa
rately. Thus, there will be three cases to discuss: the finite, 
countably infinite, and continuous. 

These do not exhaust all cases where fiducial arguments 
might be applied. However, consideration of these three will 
suffice for the purposes of this discussion. 

Fiducial inferences of the three types under consideration can 
be analyzed as involving three steps: a pivotal step, an inver
sion step, and a commitment to irrelevance. 

In order to take the first two steps, no new principle of 
inductive logic need be invoked. However, the initial corpus 
of knowledge prior to finding out via observation which value 
of x occurred (i.e., for which x an event of kind Rx occurred) 
has to satisfy certain conditions for the pivotal step to be 
legitimate; it has to satisfy yet more conditions for the inver
sion step to be legitimate; and, in the continuous case but not 
the others, it must satisfy still another condition in order for 
the commitment to irrelevance to be made. 

In case all these conditions are satisfied by the initial corpus 
K, the principles of direct inference, coherence, and confir
mational conditionalization suffice to legitimate the pivotal 
step and the inversion step. To obtain a legitimate commitment 
to irrelevance, either X must transgress the bounds of neces
sitarianism or he must adopt a new principle of inductive logic 
which mandates adoption of the commitment to irrelevance 
when the corpus K satisfies the conditions that have been 
specified for the pivotal, inversion, and (in the continuous 

case) irrelevance steps. 
This last strategy is the one to be considered. 
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Hacking's example is eminently suited to illustrate these 
three steps and the knowledge required to permit them to be 
taken in the finite case. 

X knows that coin a has either a .4 chance of landing heads 
on a toss (and a .6 chance of landing tails) or a .6 chance of 
landing heads on a toss (and a .4 chance of landing tails). 
The parameter space contains two points (} = .4 and (} = .6, 
representing h.4 and h.6 respectively. The sample space con
tains two points: x = 0 for tails up and x = 1 for heads up. 

In this example, a result of a toss of coin a is a winner if 
and only if either it lands heads up when h.6 is true or lands 
tails up when h.4 is true. Otherwise the result is a loser. 

X knows by deductive closure that on a toss of coin a either 
a winner or a loser will occur. 

Moreover, he knows that a winner will occur if and only if 
coin a lands heads up if h.6 is true and a winner will occur if 
and only if coin a lands tails up if h.4 is true. Similar remarks 
apply for losers. 

Finally, he knows that the chance of obtaining a winner is 
.6 whether h.6 is true or h.4 is true and that the chance of a 
loser is, therefore, .4. 

By direct inference, therefore, X is in a position to assign 
a degree of credence of .6 to the hypothesis that coin a comes 
up a winner provided he knows the coin to be tossed and that 
any extra information he has about the toss is known by 
him to be stochastically irrelevant. Assuming his initial cor
pus K has the information about the toss, the assignment of 
such degrees of credence via direct inference is the pivotal 
step. 

The key feature of the pivotal step is the construction of a 
new sample space consisting of points v such that v is uniquely 
determined for each(} and x, and, hence, such that v = v(x, 8). 

This v-function is called the pivotal function. 
In our example, the pivotal function assigns the value "win

ner" to (0, .4) and (1, .6) and "loser" to (1, .4) and (0, .6). 
For convenience, let the numerical index for winners be 1 and 
for losers be 0. 

Of course, simply constructing such a function is not suffi
cient to obtain a function permitting the pivotal step. X must 
have the following knowledge: 
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(a) For every v, x, and (}, if v(x, 8) = v and h8 is true, a result 
of kind Tv occurs on a trial of kind S if and only if a result of 
kind Rx occurs on a trial of kind S on setup a. 

The chance of a result of kind Tv occurring on a trial of kind 
S equals the chance of a result of kind Rx occurring on a trial 
of kind S on setup a-i.e., f9(x) = g9(V). 

(b) gh) = g9.(v) = g(v) for every (}and (}'. 

In our example, X does have the knowledge required by (a) 
and (b). 

By the principle of direct inference (applicable because X 

presumably has the requisite knowledge of stochastic irrele
vance concerning trials of kind S), the degree of credence 
assigned to the hypothesis dv asserting that the result is of 
kind Tv should be equal to g(v). That is to say, for every 
permissible Q-function relative to K according to the credal 
state, Q(dv) = g(v). Thus, the pivotal step is taken. 

Conditions (a) and (b) specify knowledge about the sample 
space generated by the function v(x, 8) necessary and suffi
cient for counting the function a pivotal function. Given that 
K contains information that a trial of kind S has occurred and 
that all extra information is known to be stochastically irrel
evant, these conditions are necessary and sufficient to secure 
applicability of the pivotal step. 

These remarks apply, it should be remembered, to the finite 
case. 

The statements (a) and (b) imply that 

(c) The number of values for v is the same as the number of 
values for x. For every (}, the function v(x, 8) = v8(x) is a one
to-one mapping of the values of x onto the values of v. 

Returning to the example and turning to the inversion step, 
let d1 assert that a winner occurs on the trial of kind S and d0 

that a loser occurs. e1 asserts that the coin lands heads up and 
e0 that it lands tails up. The corpus K and e1 entail the equiv
alence of h.6 and d1 and the equivalence of h.4 and d0 • K and 
e0 entail the equivalence of h.6 and d0 and of h.4 and d1 • 

Because the corpus K has the property just specified, credal 
coherence requires that 

TAME FIDUCIAL INFERENCE 331 

Q(h.s; e,) = Q(d1; e1) 

Q(h.6; eo) = Q(d0 ; e0 ) 

Q(h.4; e,) = Q(d0 ; e 1) 

Q(h.4; eo) = Q(d,; e0 ), 

for every permissible Q-function in C(K). 

Imposing these conditions on the Q-functions in the credal 
state is the inversion step. 

As in the pivotal step, the crucial consideration is whether 
the corpus K satisfies conditions which justify appealing to 
the principles of inductive logic to mandate the inversion step. 

If t~e corpus does satisfy these conditions, and the experi
ment is conducted, confirmational conditionalization implies 
that the unconditional Q-value for h.6 relative to the new cor
pus in. case e1 is added will equal Q(h.6; e,) ( = Q(d,; e,)), 
ac~ording to the old credal state. Similar remarks apply mu
tatis mutandis when observations generate the admission of e

0 into the corpus. 

The condition on K which is necessary and sufficient to 
justify the inversion step (given that K satisfies (a), (b), and 
(c) and that all the conditions on confirmational commitments 
adopted before are in place) for situations where the range of 
values for x is finite may be formulated as: 

(d) For every x, vx(8) = v(x, 8) is a one-to-one mapping of the 
values of(} onto the values of v. 

I shall call this the condition of invertibility. Notice that this 
condition implies, given the conditions already imposed on K, 
that Kand ex entail the equivalence of h8 and dv for x, v, and 
8 such that v(x, 8) = v. It also implies that the number of 
possible values for (} is the same as the number of values of 
v which, by condition (c), is the same as the number of values 
for x. 

With these implications in force, for every x, v, and (} such 
that v(x, 8) = v, we have that Q(dv; ex) = Q(h8 ; ex) for every 
permissible Q-function in C(K) by virtue of credal coherence. 

Finally, if Ke:r is the deductive closure of K and ex, then 
every permissible Q-function in C(K.:r) must be such that 
Qe:r(dv) = Qe:r(h9). 

Returning once more to the example, it is known prior to 
finding out the result of the toss that the chance of a winner 
is .6 and, hence, by direct inference, Q(d1) = .6 for every 
permissible Q-function in C(K). Suppose X finds out that the 
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coin lands heads, so that e 1 is in the expanded corpus. For 
every permissible Q-function in C(Ke), Q,,(d,) = Q,,(h.6) and 
for every permissible Q-function in C(K) Q(d,; e,) = Q(h.6; e,). 

If we were to assume that, relative to K, the information 
that e

1 
holds is confirmationally irrelevant to whether either a 

winner or a loser occurs, Q(d1 ; e1) would be equated with 

Q(d,) = .6. 
Notice, however, that confirmational irrelevance can be 

adopted only if the principles of objectivist inductive logic and 
the initial corpus K do not already preclude this commitment. 
Suppose, for example, X knows that coin a is selected at 
random from an um with 90% coins with a .4 chance of heads 
and 10% with a .6 chance of heads. In that case, Q(d,) would 
still equal .6; but Q(d,; e 1) would be less than .15. 

To take care of this eventuality, another condition should 

be imposed on the corpus K: 

(e) Relative to K, the principles of objectivist inductive logic 
do not prohibit Q-functions such that Q(dv; ex) = Q(dv) for v 

= v(x, 8). 

If condition (e) is satisfied, v is an irrelevance-allowing piv

otal function. 
Given a corpus meeting the conditions guaranteeing that v 

is an invertible and irrelevance-allowing pivotal, objectivist 
inductive logic does not mandate assuming confirmational ir
relevance in the manner illustrated by my example. But it does 

not prohibit it either. 
However, if I were to introduce another principle of induc-

tive logic mandating the adoption of confirmational irrelevance 
without further qualification, I would get into trouble. 

The coin example can be used to illustrate the problem. 
Suppose X knows in his initial corpus that coin a was tossed 

once before and had landed heads. Let K* be the corpus such 
that K is the deductive closure of K* and the information that 
the coin landed heads on this earlier toss. 

Relative to K*, a smoothly invertible and irrelevance-allow
ing pivotal function could have been constructed. If the new 
principle of inductive logic mandates the irrelevance step for 
that case, relative to K, the Q-value for h.6 would be equal to 
the Q-value for obtaining a winner on that first toss which is 
.6. Hence, the prior Q-value for h.6 for the purpose of consid-
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ering the second toss is .6. Bayes' theorem then implies that 
Q(h.6 ; e 1) = .36/.52 = 9/13. 

Observe, however, that winning and losing determine a 
smoothly invertible and irrelevance-allowing pivotal function 
relative to K for the second toss. If inductive logic mandates 
that, relative to K, Q(d1; e1) = Q(d1) = .6, then Q(h.6; e1) = 

. 6-rather than 9/ 13. 
Thus, if one utilizes the principle of inductive logic with 

regard to the first toss and corpus K*, one cannot consistently 
use it for the second toss relative to K (and conversely). Yet, 
the contemplated principle of inductive logic mandates its own 
application in both cases because the pivotal functions for the 
first and second tosses are both smoothly invertible and irre
levance-allowing. 

The source of the difficulty can be elucidated as follows: 
Let / 1 assert that the coin lands heads up on the first toss 

and / 0 that it lands tails up. 
Relative to K*, direct inference mandates that every per

missible Q*-function satisfy 

(i) 

(ii) 

Q*(fl; h.6) = .6 
Q*(/1 & e1; h.6) = .36 
Q*(fl; h.4) = .4 
Q*(/1 & e1; h.4) = .16; 

Q*(h . 1') - .6Q*(h.6) 
"
6

' JI - .6Q*(h.6) + .4Q*(h.4) 

Q*(h . I' & e _ .36Q*(h.6) 
.6,J

1 i) - .36Q*(h.6) + .16Q*(h .. ) . 

Hence, unless Q*(h.6) equals 0 or 1, 

(iii) Q*(h.6; f, & e1) * Q*(h.6; !1). 

Similarly, 

(iv) Q*(h.6; e1) * Q*(h.6; !1 & e1). 

Consequently, if we assume confirmational conditionaliza
tion applies (as we are doing), it makes quite a difference 
whether f 1 is in K, so that K* is a contraction of K, or is not, 
so that K* = K, if we are attending to the Q-value assigned to 
h. 6 conditional on e1• But the principle proposed as a principle 
of inductive logic is insensitive to this difference, and hence 
leads to the contradiction. 

14.3 THE FINITE CASE 
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To avoid such a difficulty, a further constraint must be 

imposed on the corpus K: 

(f) Let K* be the weakest contraction of K satisfying condi
tions (a)-(d) relative to the given sample space and set U of 
simple statistical hypotheses. Let K be the deductive closure 
of K* and f. The principles of objectivist inductive logic do 
not prohibit Q*-functions relative to K* from satisfying the 

condition 

Q*(h9; ex & f) = Q*(h9; ex) 

for every (} and x. 

In the coin example, if X does have in his corpus K infor
mation about previous tosses of coin a, condition (f) is violated 

by the corpus K. 
With condition (f) in place, I am now in a position to propose 

a new principle of inductive logic. 

The Principle of Fiducial Inference for the Finite Case: If K 
entails that at least and at most one of a set U of hypotheses 
h9 is true and each h9 is consistent with K, if each h9 is a 
simple statistical hypothesis specifying a chance distribution 
over the sample finite sample space n on trials of kind S, if K 
entails that a trial of kind S & T occurs where the information 
that the trial is of kind T is stochastically irrelevant to hy
potheses as to which event represented by a point inn occurs, 
and if K satisfies conditions (a)-(f), then 

Q(dv; ex) = Q(dv) = g(v) 

for every Q-function in C(K) and v, x, (}such that v = v(x, 8). 

The multiplication theorem requires that 

Q(h 
. ) = Q(ex; h9)Q(h9) 

9, ex Q(e;r) 

for every Q-function in C(K), provided that Q(ex) > 0. 
By the principle of fiducial inference, Q(h9; ex) = g(v) if K 

satisfies the conditions of the principle. But if K satisfies those 
conditions, then Q(ex; h8) = g(v) = Q(h 9; ex). Hence, 
Q(h9) = Q(ex) for every (}and x. 

This last result obtains if and only if every h9 is assigned an 
equal unconditional (i.e., prior) Q-value. 
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Thus, in the finite case, the principle of fiducial inference 
mandates a uniform prior over the rival simple statistical hy
potheses. 

In this respect, the principle of fiducial inference looks sus
piciously like the principle of insufficient reason. However, it 
is not liable to the objection for the finite case which a principle 
of insufficient reason can face. If U contains three or more 
elements, the principle of insufficient reason cannot explain 
why it should be applied to elements of that partition rather 
than to some partition obtained by coarsening U. 

The principle of fiducial inference in the finite case stipulates 
that X's knowledge and credal state pertaining to U satisfy 
certain stringent conditions. Thus, even for finite U, the prin
ciple of fiducial inference in the finite case is more stringent 
in its domain of applicability than a principle of insufficient 
reason would be. 

Of course, this circumstance only shows that the principle 
of fiducial inference in the finite case avoids obvious inconsis
tency. But it is possible to fix up the principle of insufficient 
reason in the finite case in many ways so as to avoid patent 
inconsistency. Doing so only reveals formal ingenuity. It does 
not, in any way, argue for the cogency of supplementing ob
jectivist inductive logic by an additional principle of the sort 
contemplated. 

At this point, however, I am not concerned to argue pro or 
con the adequacy of the principle but only to explain it. 

However, before turning to the other cases, it should be 
emphasized once more that the resulting reconstruction is not 
in any obvious sense Fisher's. Fisher thought that fiducial 
inference entailed no commitment to a prior which is numer
ically precise. The principle of fiducial inference as formulated 
here does entail such a commitment. This deviation from 
Fisher's view is not surprising, given our quest for a method 
of taming fiducial inference by rendering it compatible with 
the other principles already imposed on confirmational com
mitments. 

The principle of fiducial inference for finite cases can be ex
tended to apply to countably infinite cases as well by letting 
the sample space contain a countably infinite set of points. 
Otherwise the conditions are the same as in section 14.3, and 
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the fiducial argument can be obtained by constructing an in
vertible pivotal and applying the three steps. 

Consider, e.g., a situation where the values of IJ are all 
negative and positive integers and 0, as are the values of x. 
(Incidentally, because of the invertibility condition, when the 
number of values of x is countably infinite so is the number of 
values of IJ.) Let 

{ 
.5 

fe(x) = (.5) 1~x1+2 
for e = x 

for e * x . 

v = e - xis an invertible pivotal function with g(v) = .5 if v 

= 0 and (.5)v1v1+2 otherwise. 
By reasoning exactly analogous to that used in the previous 

section, the prior Q-distribution over the values of IJ (and also 
over the values of x) must be uniform. Since there is a count
able infinity of such values, they must all equal 0. Hence, in 
this kind of case, fiducial inference can proceed consistently 
only at the expense of countable additivity. Those who insist 
on imposing countable additivity as a condition on Q-distri
butions cannot consistently adopt the principle of fiducial in
ference for countably infinite cases. (See sections 5.11 and 
12.14-12.16 for related topics.) 

14.5 The fiducial argument in the continuous case has three steps, 
The Contino- as in the two discrete cases just considered; and the legitimacy 
ous Case of these steps depends not only on inductive logic but on X's 
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corpus. However, the requirements on the corpus will be 
strengthened in certain ways appropriate to the problems 
posed by continuity. 

Thus, we seek a pivotal function v(x, IJ) which not only 
satisfies condition (a) of section 14.3, but also the following 
stronger requirement: 

(a*) For every v', x', v", and IJ, where v' = v(x', IJ) and v" = 

v(x", IJ), and when h9 is true, a result indexed by a point in the 
interval from v' to v" occurs on a trial of kind S if and only if 
a result indexed by a point in the interval from x' to x" occurs 
on a trial of kind S. The chance of a result of the first kind 
occurring on a trial of kind S equals the chance of a result of 
the second occurring on a trial of kind S. That is to say, 

IFo(x") - Fo(x')j = IGo(v") - G a(v')j. 
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Condition (b) is strengthened as follows: 

(b*) Go(v) = Go.(v) for every e and IJ'. 

(a*) and (b*) presuppose that v(x, IJ) satisfies 

(c*) The number of values for v is the same as the number of 
values for. x. v(x, O) = vo(x) is a strictly monotonic differenti
able function of x with continuous derivative which maps onto 
the valu~s of v (and, hence, is one-to-one onto v). The density 
go(v) exists and g 9(v)dv = f 9(x)dx. For every e and 91 , go(v) 
= go.(v) = g(v). 

. Condition~ (a*) and (b*) (or condition (c*)) specify condi
tions for a pivotal function in the continuous case. 

In a similar vein, condition (d) is strengthened as follows: 

(d*~ For every x, vx(O) = v(x, IJ) is a strictly monotonic differ
entiable function of IJ with a continuous derivative that maps 
all values of IJ onto the range of values for v. 

A. pivotal function satisfying this condition is smoothly in
vertible (following J. Tukey). 6 

If t~e pivotal function is smoothly invertible, the values of 
0 fall m some interval on the real line. For v' = v(x IJ) and " 
-(O")K ' v .- v x, , and ex entail that the value of v falls in the 
mterval from v' to v" if and only if the true value of 8 lles 
betw~en 8' and ff'. Let Hx(O) be the cumulative distributi~~ 
f~~ction for 8 representing the (or a) Q-distribution for 8 con
ditional on ex. Smooth invertibility implies that either 

Hx(8) = Gx(v) 

or 

If G~(v) is continuous and differentiable with respect to v with 
~ontmu~us derivative, then Hx(8) is continuous and differen
tiable with respect to 8 with continuous derivative. In that 
case, hx(8)d8 = gx(v)dv. 

To license the step at which confirmational irrelevance is 
ad~pted, the smoothly invertible pivotal function v must also 
be irrelevance-allowing. In the continuous case, this condition 
should be strengthened as follows: 

14.5 THE CONTINUOUS CASE 
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(e*) Relative to K, the principles of objectivist inductive logic 
do not prohibit Q-functions where the distribution over values 
of v are representable by a cumulative distribution function 

Gx(v) = G(v). 

Because G(v) is continuous and differentiable in v with con
tinuous derivative g(v), so is Gx(v). Thus, gx(v) = g(v). Hence, 
H,rCO) is continuous and differentiable in (} with continuous 

derivative hx(O). 
By smooth invertibility, we have 

(1) gx(v)dv = hx(O)d(}. 

By the conditions on pivotal functions, 

(2) g(v)dv = f 8 (x)dx. 

By the adoption of confirmational irrelevance, 

(3) gx(v)dv = g(v)dv. 

From the properties already derived for smoothly invertible 
pivotal functions, it follows that, for fixed v, Ov(x) = (} is a 
strictly monotonic differentiable function of x with continuous 
derivative where v(x, (}) = v if and only if (},,(x) = 0. If f.,(x) is 
the density for values of x conditional on d,, and h,,(O) the 
corresponding density for (}, 

(4) f.,(x)dx = h,,(O)d(}. 

By the multiplication theorem, 

(5) J.,(x)g(v) = gx(v)f(x), 

(6) fv(x) = f(x), 

because gx(v) = g(v) by (3). 
By similar reasoning, 

(7) h,,(O) = h(O). 

From (4) and (6) and (7), it follows that 

(8) ao/ax = f,,(x)/hv(O) 
= f(x)/ h((}). 

Condition (8) is derived from the assumption of confirma
tional irrelevance. But it asserts that the function v(x, (}) = v 

must be such that ao/ax is a product of a function of (} alone 
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and of x alone. Hence, if the pivotal is irrelevance-allowing in 
the sense of (e*), this condition must be satisfied even if 
confirmational irrelevance is not adopted. 

But aoJax (where (} is taken to be a function of x and v) is 
the product of a function of x alone and of (} alone if and only 
if 

(9) O(x, v) = J(B(x) + C(v)). 

This in turn holds if and only if 

(10) v(x, (}) = l(D(x) + E(O)). 

Hence, a smoothly invertible pivotal is irrelevance-allowing 
if and only if (10) is satisfied. 

If condition (10) holds, one can find one-to-one transfor
mations w(v), y(x), and <f>(O) such that w(y, <f>) = y + <f>. w is 
a smoothly invertible pivotal trivially satisfying (10). 

One further condition must be imposed on K. A condition 
(f*) analogous to (f) for the discrete cases must be added. The 
only modification needed is that the Q*-function used in (f) 

should be replaced by appropriate cumulative distribution 
functions for (}conditional on ex & f and ex, respectively. 

I am now in a position to formulate a principle of fiducial 
inference for the continuous case. 

The Principle of Fiducial Inference for the Continuous Case: 
If K entails that at least and at most one of a set U of hy
potheses h9 is true and each h8 is consistent with K, if each h8 

is a simple statistical hypothesis specifying a chance distri
bution over a sample space consisting of all points in some 
interval fl of the real line on trials of kind S, if K entails that 
a trial of kind S & T occurs where the information that the 
trial is of kind T is stochastically irrelevant to hypotheses as 
to which event represented by a point in fl occurs, and if K 
satisfies (a*)-(f*), then gx(v) = g(v) for every Q-function in 
C(K) and v, x, (}such that v = v(x, (}). 

This principle may be illustrated by situations where it is 
known that x is normally distributed with unit population vari
ance and unknown population mean (}, i.e., where 
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Let v = x - 0. Then, for every(}, 

1 
•12 giv) = g(v) = -:-r,:= e-v . 

V27T 

The pivotal is smoothly invertible and irrelevance-allowing. 
Given evidence that on a single trial a result of kind Rx has 
occurred, the posterior distribution for (} is given by 

hx(O) = ~ e-(x-8!•12. 

In this example, by letting <f> = -(}, we obtain v = x + <f>. 
And if we have any irrelevance-allowing, smoothly invertible 
pivotal, we can obtain w = y + <f>. For the sake of our notation, 
let x = y, w = v, and (} = <f>, so that v = x + (}. It then follows 
that 

ao = 1 ax . 
From (11) and (8) we derive 

( 12) h(O) = 1 
fix) 

for every (} and x. 
This can happen if and only if the densities for (} and x are 

everywhere uniform. If the initial corpus K is such that the 
principle of fiducial inference in the continuous case is appli
cable, then one can always find a transformation of pivotal, 
random variable, and parameter such that the prior distribu
tion of the parameter is uniform. t 

In our example, -oo < x < oo. Hence, -oo < (} < oo. Hence, 
as in the countably infinite case, countable additivity must be 
violated. 

t The results obtained here are based on D. V. Lindley's paper "Fiducial 
Distributions and Bayes' Theorem," J. Royal Stat. Soc., ser. B, v. 20 (1958), 
pp. 102-107. Lindley considers the continuous case and claims to specify 
necessary and sufficient conditions for the consistency of the fiducial argument 
in the one-parameter case. Lindley's claim is mistaken, as T. Seidenfeld has 
shown and as will be explained in the next chapter. What is true is that no 
inconsistency will appear with Bayesian principles as long as all "data" are 
outcomes of repetitions of trials of a single kind S. I have exploited Lindley's 
conditions in formulating the principle of fiducial inference for the continuous 
case. 
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Suppose the kind of trial yielding the normally distributed 
outcomes is repeated n times so that the data consist of n 
values of x. A point in the sample space is an n-tuple in an n

dimensional space. However, the information conveyed by 
any such point can be condensed into a specification of the 
value of the sample mean i and the sample variance s2 • The 
chance according to h9 of obtaining a given value i for the 
sample mean and a given value s2 for the sample variance is 
equal to k(.i, s2

) times the chance of obtaining an n-tuple en
tailing such a mean and sample variance where k(.i, s2) is 
constant for all values of(}. Thus, given the information about 
the value of .i and s2

, the extra information as to which n-tuple 
of values of x has occurred from among those entailing these 
values is confirmationally irrelevant to the value of (} in the 
strong sense. Hence, we may ignore this extra information 
and focus on the value of i and s2 • 

However, the chance of .i is independent of the chance of 
s

2 
on a series of n repetitions. Hence, if we consider the kind 

of trial which is a series of n repetitions of the trial of kind S 
in which the sample variance is s2 , the extra information that 
the sample variance is s2 is known to be stochastically irrele
vant. 

If we begin with a corpus K where it is known that series 
of n repetitions of trials of kind S yielding a sample variance 
s2 

has taken place, we can let v = .i - (}; v will be a smoothly 
invertible irrelevance-allowing pivotal function, and a fiducial 
argument can be developed in accordance with our principles. 

As before, the prior for (}will be uniform. Indeed, if incon
sistency is not to threaten, this must be so. 

This account of fiducial inference in the continuous case is 
far too weak to handle all the problems Fisher wished to 
consider. For example, the fiducial distribution for the normal 
mean when both mean and variance are unknown involves a 
use of Student's t-statistic. The fiducial argument which ap
plies in this case requires stronger principles than I have pro
posed here. 

A more extensive treatment of fiducial arguments has been 
given by T. Seidenfeld. 7 The philosophical issues to be raised 
here, however, do not require our entering into the technical
ities involved in a more general treatment. The more technical 
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issues are philosophically interesting; but I mean to avoid 

them here. 

Tame fiducial inference must perforce yield numerically defi
nite posteriors that presuppose numeric~lly. definite ~rior~. 
Fisher did not wish to understand fiducial inference m this 
manner. Hence, we should not suppose that his fiducial infer
ences were tame ones. 

But whether Fisher would have adopted the principle of 
fiducial inference as a principle of inductive logic or not, it is 
entirely reasonable to inquire into its adequacy. 

In the next chapter, an attempt to rationalize adoption of a 
principle of fiducial inference by an appeal to an analysis of 
the concept of chance will be considered. If such an attempt 
could be rendered acceptable, the principle of fiducial infer
ence would be on much the same footing as the principle of 
direct inference. I do not believe such a rationalization can be 
achieved, but the attempt is worth exploring. 
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LIKELIHOOD 

According to R. A. Fisher, apart from the simple test of 
significance, "there are to be recognized and distinguished, 
between the levels of certain knowledge and total nescience, 
two well-defined levels of logical status for parameters lying 
on a continuum of possible values, namely that in which the 
probability is known for the parameter to lie between any 
assigned values, and that in which no probability statements 
being possible, or only statements of inequality, the Mathe
matical Likelihood of all possible values can be determined 
from the body of observations available." 1 

In this passage and Fisher's various elaborations of it, he 
fails to clarify his intent in speaking of the "logical status" for 
the parameters in question. He does seem to think, however, 
that when numerically precise probability judgments cannot 
be made concerning rival statistical hypotheses represented 
by values of a continuous parameter, information about like
lihoods may, nonetheless, be usefully exploited. 

From a strict Bayesian point of view, there is no doubt that 
likelihood has importance; for posterior credal probabilities 
are a function of prior probabilities and likelihoods. Likelihood 
may be construed as furnishing a measure of the contribution 
of the data of experimentation to the modification of the credal 
state from the prior to the posterior one. Because credal prob
abilities have a definite use in inquiry and deliberation, likeli
hoods acquire a derivative import as well. 

One does not have to endorse strict Bayesianism to ac
knowledge this import. Provided that the prior credal state is 
not maximally indeterminate, likelihoods can be used to de
termine modifications of that state due to the contribution of 
the data of experimentation. 

Trouble arises, however, when the prior credal state is max
imally indeterminate. In that case, the data make no contri
bution to the determination of the posterior credal state except 
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through deductive logic. Likelihood cannot, therefore, make 
any contribution. 

Yet, Fisher does seem to hold that in such cases likelihoods 
supply relevant and useful information. What can be meant by 
this? 

It is not helpful to claim that likelihood provides a measure 
of evidential support, relevance, or confirmation. All of these 
terms have been used in so many ways and with such obscurity 
that unless some indication is given of how such assessments 
of support are to be employed in inquiry and deliberation, this 
characterization of the import of likelihood is hopeless. t 

The difficulty is not that measures of likelihood fail to pro
vide probabilistic appraisals of hypotheses. No doubt many 
important modes of appraisal are not probabilistic. 

Thus when seeking to expand his corpus, an investigator 
should be concerned to evaluate rival potential answers with 
respect to how worthy they are of being added. In at least one 
sense, such appraisal is an evaluation of support, confirma
tion, or the like. Moreover, such evaluation is important. 
Nonetheless, it is not probabilistic. The support for a hypoth
esis in this sense is, according to the approach I favor, rep
resented by the permissible values for expected epistemic util
ity allocated to the rival potential answers. 2 Such support 
depends on judgments of credal probability, but is a mode of 
appraisal which itself is distinctlv nonprobabilistic. 

There are other modes of appraisal useful for other purposes 
which are also nonprobabilistic, such as, e.g., G. L. S. 
Shackle's measures of potential surprise. These too may be 
called measures of support. 

The point is that calling a mode of appraisal a way of meas
uring or assessing support is not helpful. A specification of the 
use or function of the mode of appraisal in inquiry and delib
eration is needed, whether the method is probabilistic or not. 

The observation applies to likelihood as to other measures. 
Granted that likelihoods function in a clearly identifiable and 
important way in deriving posteriors from priors when priors 

t Thus, in spite of its elegance, sophistication, and comprehensiveness, A. 
W. F. Edwards' book Likelihood (Cambridge: Cambridge University Press, 
1972) fails to furnish useful clues as to how likelihood appraisals are to be 
used in inquiry and deliberation. We are told only that they furnish evaluations 
of support or confirmation. 
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are definite, what purpose do they serve when priors are max
imally indeterminate? Fisher seems to maintain that they serve 
an important purpose in such contexts. But it is simply insuf
ficient to say they measure support in such cases. 

The position might be taken that conclusions reached in 
science are evaluated according to different standards than 
decisions taken in practical deliberation. In part I agree. The 
aims of scientific inquiry differ from the aims of moral, eco
nomic, political, and other forms of practical deliberation. Yet, 
there are certain general criteria for rational choice that apply 
to decision making in scientific inquiry and practical deliber
ation alike. Unless apologists for likelihood as an index of 
support can show how likelihood is relevant according to these 
general criteria or is relevant to the special aims of science, 
their views remain incomplete. 

The only clear role for likelihoods identified thus far has 
been in the determination of posterior probabilities from priors 
on the data of experimentation via Bayes' theorem and con
firmational conditionalization. 

Likelihoods make no contribution to the modification of 
priors on the basis of data if the prior credal state is maximally 
indeterminate and objectivist inductive logic is endorsed. 
Likelihoodists face a predicament analogous to the one con
fronting fiducialists: Either new principles need to be added 
to objectivist inductive logic sufficient to render prior credal 
states less than maximally indeterminate on the basis of con
siderations of inductive logic and the available evidence, or 
some of the conditions already imposed on confirmational 
commitments (e.g., confirmational conditionalization and di
rect inference) have to be modified. 

I. Hacking has sought to make likelihood central to an 
account of evidential support and a reconstruction of fiducial 
inference. As I understand him, his approach seeks to take 
fiducial inference and likelihoodism in a Bayesian manner; so 
he should be regarded as following the first strategy. 

Hacking does not, to be sure, formulate his theory using the 
apparatus I have constructed. He begins by endorsing Koop
man' s postulates for comparative probability as a "logic of 
support" and adds further conditions. 3 In the course of his 
discussion, he rather abruptly adds the stipulation that when 
a quantitative determination of support can be given, it should 
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obey Kolmogoroff's axioms for probability including counta
ble additivity. t 

Hacking fails to indicate whether, on his view, there should 
be at least one numerical representation obeying the require
ments of the calculus of probability when support is no rep
resentable by a unique measure. I adopt the charitable view 
that he is committed to credal coherence and consistency. I 
shall also suppose (without any textual warrant) that he is 
committed to credal convexity and, indeed, that on his view 
X's credal state relative to K should be the largest convex set 
of Q-distributions relative to K compatible with some quasi 
ordering obeying Koopman's axioms and permitting a proba
bilistic representation. In Hacking's discussion of fiducial in
ference, there is substantial indication of his at least implicit 
commitment to confirmational conditionalization. 

These attributions are far more precise than anything that 
can be supported by Hacking's text. For this reason, the 
following discussion runs the risk of placing Hacking in a 
Procrustean bed. Nonetheless, the reconstruction of Hack
ing's theory that emerges is interesting in its own right and 
instructive concerning strategies for making likelihood central 
in inverse inference. 

The resulting theory is stronger than mine, for it requires 
that credal states be describable completely in terms of quasi 
orderings and that permissible Q-functions satisfy countable 
additivity. The first difference will prove unimportant in this 
discussion. The second will play a small role later on. 

Hacking is committed to a principle of direct inference 
(which he calls "the frequency principle"). 4 But he is no 
objectivist. He explicitly introduces two additional principles 
into his logic of support (i.e., his inductive logic). 

Both of these additional principles appeal explicitly to like
lihood. One of them, the principle of irrelevance, turns out to 
be unnecessary for the purposes Hacking uses it for. This will 
be shown later. It is important to understand at the outset, 

t I. Hacking, Logic of Statistical Inference (Cambridge: Cambridge Univer
sity Press, 1965), pp. 134-135. Hacking shies away from claiming that when 
support goes quantitative it should always conform to Kolmogoroff's axioms; 
but he does assume this to be so "for the special case of support for statistical 
hypotheses by statistical data" (ibid., p. 134). That concession will suffice for 
present purposes. 
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however, that Hacking's new principles license an appeal to 
likelihood in a Bayesian taming of the fiducial argument. 

Hence, when objectivist inductive logic fails to rule out any 
prior distribution over rival simple statistical hypotheses ren
dering the prior credal state maximally indeterminate if one 
remains an objectivist necessitarian, Hacking uses likelihood 
appraisals to cut down the permissible prior distributions so 
that likelihoods contribute to the determination of priors as 
well as to the derivation of posteriors from priors via Bayes' 
theorem. 

The first of the two principles added to objectivist inductive 
logic by Hacking is his so-called law of likelihood. 5 I shall first 
explain this principle as it applies in discrete (finite or count
ably infinite) cases and subsequently consider the continuous 
case. I shall show how principles of fiducial inference formu
lated in the previous chapter may be derived from Hacking's 
law of likelihood and the principles of objectivist inductive 
logic. Hacking himself appealed also to a principle of irrele
vance. 6 I shall discuss this principle and show that it is un
necessary for the purpose of deriving principles of fiducial 
inference. 

As in the previous chapter, X knows that at least and at 
most one of a set U of hypotheses parameterized by values of 
8 is true. Each specifies a chance distribution over the same 
space n. Let ex assert that a result of kind Rx occurs on a 
specific trial of kind S. 

Let W be the set of hypotheses of the form ex & he. We 
shall consider only hypotheses equivalent given K to elements 
of the a-algebra of propositions S(W) generated by the set W. 

A hypothesis g E S(W) is a simple joint proposition if and 
only if it asserts that a result of a certain kind occurs on the 
particular trial of kind S under consideration and specifies the 
chance of a result of that kind occurring on a trial of kind S 

or is equivalent given K to such a proposition. 
All elements of W are simple joint propositions. But so are 

hypotheses of the form e,, & he where e,, asserts that a result 
occurs indexed by a point in a ~ n. If there is a pivotal 
function v = v(x, 8), any hypothesis dv is a simple joint prop
osition or equivalent given K to one; for the corpus K entails 
h that specifies the chance distribution over the values of the 

15.2 THE LAW OF LIKELIHOOD IN THE DISCRETE CASE 



l 

l 

ll 

I~ 348 

pivotal function and dv & h is, therefore, equivalent given K 
to dv. 

For the present, attention will be focused on cases where 
n is finite or countably infinite. To simplify discussion, I shall 
consider only cases where h8 specifies a countably additive 
chance distribution over n. This is all that is considered in 
most contexts and, in any case, the restriction could be lifted 
if necessary. Moreover, I am not supposing that the Q-distri
butions over the hypotheses in S(W) must be countably addi
tive but only that the chance distributions according to the 
various simple statistical hypotheses are countably additive. 

In section 4.3, I took the likelihood (or a likelihood) of h 8 

on e.x in a credal state B relative to K to be any permissible 
value of Q(e.r; h8). Moreover, when K is such that all the extra 
information about the specific trial of kind S is known to be 
stochastically irrelevant, Q(ex; h9) = f /.._x) for all permissible 
Q-functions where f /...x) is the chance of obtaining a result of 
kind Rx on a trial of kind S. This is implied by the principle 
of direct inference. Hence, f /.._x) functions as the likelihood of 
h8 on e.x in the appropriate state of knowledge. 

Instead of defining likelihoods for simple hypotheses of the 
type h8 belonging to U relative to data points specifying values 
in the sample space, Hacking defines them for the simple joint 
propositions of the type e.x & h8 belonging to W or, more 
generally, for any simple joint proposition in S( W). Indeed, 
the still more general characterization of HL-likelihoods con
ditional on f is as follows: 

Let f be any hypothesis consistent with K and let g be any 
hypothesis equivalent given K and f to a simple joint hypoth
esis in S(W). The HL-likelihood of g conditional onf HL(g ;f) 
is equal to the chance of an outcome of the kind asserted by 
g to occur according to the simple hypothesis entailed by g 

(given K and/). 

Thus, HL(e.x & h8 ; e.x) = HL(h 8 ; ex) equals the chance f 8(x) 

of obtaining a result of kind Rx on a trial of kind S. Hacking's 
conception yields the usual notion of likelihood as a special 
case. 

However, HL(ex & h8 ; h8) also equals the chance fo(x) and 
it is equivalent to HL(ex; h8) which is the BL-likelihood of e.x 
on h8 • 
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The unconditional BL-likelihood of g is HL(g), where g is 
equivalent given K to some simple joint proposition in S(W). 
HL(g) is the chance of the appropriate result according to the 
simple statistical hypothesis asserted by g to be true: 
HL(e.x & h9) = fo(x). 

Thus, 

HL(h9; e.x) = HL(ex; h8) = HL(ex & h9) = fo(x). 

Let/ be consistent with Kand let V be a set of hypotheses 
which are simple joint propositions in S(W), exclusive and 
exhaustive relative to K and f and each consistent with K and 
f Then 

(i) If V is finite and Q is permitted relative to K by the prin
ciples of objectivist inductive logic, Q agrees with the condi
tional HL-function HL(g; f) where g E V if and only if for 
every g and g' in V, Q(g; f) :=:: Q(g'; f) if and only if 
HL(g;f) :=:: HL(g';f). 

(ii) If V is countably infinite and Q is permitted relative to K 
by the principles of objectivist inductive logic, Q agrees with 
the conditional HL-function HL(g;f) where g EV if and only 
if for every g and g' in V, mKjg) :=:: mK./g') if and only if 
HL(g; f) :=:: HL(g'; f) where the mK.rfunction is a (]'-finite 
measure over V characterizing the conditional Q-distribution. 

Hacking formulates his law of likelihood for discrete cases 
as asserting that if the BL-likelihoods of g and g' given/ exist, 
f supports g better than it supports g' if the likelihood of g 
given f exceeds the likelihood of g' given f. 7 I interpret his 
somewhat enigmatic formulations as implying that ranking of 
hypotheses with respect to credal probability should agree 
with ranking with respect to HL-likelihood. 

When V is finite or countably infinite, this stipulation is 
given precise formulation by requiring conditional Q-distri
butions over elements of V permissible in C(K) to those which 
agree in sense (i) or sense (ii) with the given conditional HL
function. 

Sometimes, however, the corpus K and the principles of 
objectivist inductive logic might prohibit any such conditional 
Q-distribution from being permissible. In that event, a clash 
between objectivist inductive logic and the law of likelihood 
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emerges. But this clash is avoidable. Agreeability will be man
dated only in cases where objectivist inductive logic and K 
permit it. This leads to the following rendition of Hacking's 
proposal: 

Law of Likelihood for Discrete Cases: Let V be a set of simple 
joint propositions in S( W) exclusive and exhaustive relative to 
K and f (where f is consistent with K) and each consistent 
with K and f. V is finite or countably infinite. If K and the 
principles of objectivist inductive logic permit at least some 
Q-distributions over V conditional on f to agree with the con
ditional BL-function BL(g; f), then, for every Q E C(K), 
Q(g; f) agrees (in sense (i) or sense (ii) depending on whether 
Vis finite or countably infinite) with BL(g;f). 

Hacking formulated the law of likelihood prior to introduc
ing his version of the principle of direct inference; this prin
ciple by itself has much of the power of the principle of direct 
inference. 

Suppose X knows that coin a is to be tossed twice with a 
chance of heads on each toss equal to .5 and X also knows 
that the tosses are stochastically independent. 

In that case, if X also knows that coin a is tossed twice, the 
BL-likelihood of the simple joint proposition that the coin 
lands heads twice is .25 as is the BL-likelihood of the hypoth
esis that it lands tails twice, lands heads first and tails second, 
and tails first and heads second. Relative to K these hy
potheses form an exclusive and exhaustive partition V of sim
ple joint propositions each with equal BL-likelihood. The law 
of likelihood implies that they should all bear equal Q-value 
and, hence, by coherence should bear Q-value of .25. This, of 
course, is already mandated by the principle of direct infer
ence. 

Hacking, however, endorses the frequency principle (i.e., 
principle of direct inference) and alleges that it "seems so 
universally to be accepted that it is hardly ever stated." 8 

The truly significant applications of the law of likelihood 
construed as an addendum to the principles of objectivist in
ductive logic concern inverse inference. Thus, if X is con
cerned with the range of Q-distributions over hypotheses hB in 
U conditional on ex, then V consists of all simple joint prop
ositions ex & h9 where x is fixed and () is allowed to vary over 
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all values consistent with K. When V is finite or countably 
infinite (i.e., when U is finite or countably infinite), 

Q(h9; ex) 2: Q(h 9,; e,,) 

if and only if 

BL(h9; ex) 2: BL(he·; e,;). 

This consequence is already substantially stronger than 
what objectivist inductive logic mandates. 

I have, however, said nothing about cases where Vis larger 
than a countably infinite set. Suppose, for example, that X 
does not know the true chance p of coin a landing heads on 
a toss but knows that it has been tossed once and has landed 
heads. There is, in that case, a definite BL-likelihood deter
mined for hypothesis hp specifying a precise value for the 
chance. Moreover, the likelihood function BL(hp) is a contin
uous function of p. (Indeed, BL(hp) = p.) Shall we say that 
relative to K, the higher the value of p the greater the support? 
Hacking's formulation of the law of likelihood seems to say 
this. But it is utterly unclear what this is supposed to mean. 
It cannot mean that the Q-value for hp increases with p, since 
that value may be positive for at most a countable number of 
values of p. Since the BL-function is continuous in p, it may 
be urged that the density ftp) increases continuously with the 
BL-likelihood. 

But this proposal runs into difficulties. Let, e.g., r =log p. 

The BL-likelihood for the hypothesis hP is also the BL-like
lihood for the hypothesis g"' where r = log p. We would have 
as much right to require that the density f*(r) increase contin
uously with the BL-likelihood. Butf*(r) = pf(p). Suppose that 
P > p'. According to the first prescription, f(p) > f(p'). Ac
cording to the second, f*(r) > f*(r'). But this holds if and only 
if pf(p) > p'f(p'). This latter result is compatible, however, 
with f(p) < f(p'). 

Fortunately in the reconstruction of the fiducial argument 
utilizing Hacking's law of likelihood, we do not have to deal 
with cases of this sort. When the sample space is finite, the 
invertibility requirement on pivotals implies that the range of 
parameter values must be finite. When the sample space con
tains a countable infinity of points, so does the parameter 
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space. For this reason, it seems to be desirable to minimize 
controversy and restrict applicability of Hacking's law to cases 
where it can be clearly formulated and where it seems most 

compelling. 

15.3 Let the sample space n be finite, and let v(x, 8) be an invertible 
The Law of and irrelevance-allowing pivotal function in the sense of chap-
Likelihood and ter 14. Let the corpus satisfy condition(/) of that chapter. 

For fixed v, consider all simple joint propositions ex & he 

such that v = v(x, 8). The unconditional BL-likelihoods of 
these propositions all have the value g(v). By the law of like
lihood, all such joint propositions have equal Q-value. Fur
thermore, by the properties of the pivotal function, the chance 
of obtaining a result of kind Rr on a trial of kind S according 

to he is equal to fe(x) = g(v). Hence, 

Fiducial Infer
ence in the 
Finite Case 
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Q(e.r & he) = Q(e.r; he)Q(he) = g(v)Q(he), 

by credal coherence and direct inference. 
From this it follows that Q(he) is a constant k for all 8. 

Therefore, 

Q(ex & d,,) = Q(ex & he) = kg(v) 

kg(v) 
Q(d,,; ex) = Q(ex) . 

But for fixed x and allowing v to vary, 

where the sum is over all values of v. Hence, k = Q(ex) 

Q(he) and 

Q(d,,; ex) = g(v) 
= Q(d.,) by direct inference. 

Thus, the assumption of confirmational irrelevance of ex for 
the d,,'s needed for the fiducial argument in the finite case is 
obtained using the law of likelihood for discrete cases as the 

sole addendum to objectivist inductive logic. 
The law of likelihood is used only once in the argument

namely, to establish that the BL-likelihoods of all simple joint 
propositions of type ex & he where v(x, 8) = v for some fixed 
value of v are equal and,. hence, bear equal Q-value. 
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Let _the sam~le space be countably infinite and v(x, 8) an in
vertible and irrelevance-allowing pivotal function in the sense 
of chapter 14. Condition (f) of that chapter is also satisfied. 

For fixed v, consider all simple joint propositions ex & he 

such that v = v(x, 8). The BL-likelihoods of these propositions 
all equal g(v). Hence, by the law of likelihood they should also 
bear eq~al a-~nite measure, i.e., m"(ex & he) = c(v). 

By direct inference and the conditions on the pivotal, 
Q(ex; he) = g(v) for v = v(x, 8). 

. By the stipulations on conditional a-finite measures of sec
tion 5.11, 

mn,h.Cex) = Q(ex; he) = g(v) 

and 

m. (e ) = m"(ex & he) 
K,he x k(8) 

where k(8) depends only on 8. Hence, c(v) = g(v)k(8). 

But as we have seen, if v is held constant and x and 8 varied 
so that v = v(x, 8), then 

m"(ex & he) = c(v), 

which is constant as long as v remains fixed. Hence, k(8) = k 
for all values of 8. 

Furthermore, 

m"(ex & he) = ml\(ex & dv) = kg(v) 

for v = v(x, 8). 

. By the stipulations on conditional a-finite measures of sec
tion 5.11, :rzn,e)dv) is directly proportional to m"(ex & dv) = 

kg(v) as xis held fixed and v allowed to vary. 
Hence, mK,e)dv) is directly proportional to g(v)-i.e., is 

equal to wg(v) for some constant w. Since the distribution for 
v sums to 1 in typical cases, 

Q(dv; ex) = Q(dv) = g(v). 

O~ course, if the a-finite values for the d,,'s conditional on 
ex yielded a divergent sum, then 

Q(d,,; ex) = Q(d,,) = g(v) = 0. 

This case is not seriously explored in applications of fiducial 
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arguments. Probability distributions over pivotal values nor
mally are expected to obey countable additivity. 

15.5 Let V be a set of simple joint propositions in S(W) exclusive 
The Principle and exhaustive relative to K and each consistent with K. 
of Irrelevance Consider some condition f consistent with K such that the 
in the Discrete elements g E V are all consistent with K and f. 
Case The unconditional BL-likelihood of g E V is equal to 
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B L(g; f). By the law of likelihood, Q(g) :=:: Q(g') for every Q 

E C(K), if and only if Q(g; f) :=:: Q(g'; f). 
From this it does not follow, however, that Q(g; f) = Q(g). 

Hacking's principle of irrelevance for discrete cases man
dates that when Vis finite or countably infinite, Q(g; f) = Q(g) 

for every g E V. 9 

Consider once more a situation where K insures the exist
ence of an invertible and irrelevance-allowing pivotal satisfy
ing the condition (f) of chapter 14 in the finite case. 

Let V consist of all hypotheses specifying a value of the 
pivotal function-i.e., of all hypotheses of the form dv. Let the 
condition be ex for some fixed x. Then BL(dv; ex) = 

BL(h 8 ; ex), where v = v(i, 8). This BL-likelihood equalsfB(x) 
= g(v). But BL(dv) = g(v). 

Thus, the conditions for applying the principle of irrelevance 
are met. We require, therefore, that Q(dv; ex) = Q(dv) for 
every Q E C(K). 

This, of course, is the critical step of adopting confirma
tional irrelevance. 

Notice that if V is countably infinite, the same result is 
obtainable using m/\functions. 

Hacking derives his fiducial argument in discrete cases (ac
tually only in finite cases) from an appeal to his principle of 
irrelevance. It is clear that the principle of irrelevance is not 
itself a consequence of the addition of the law of likelihood to 
the principles of objectivist inductive logic. 

It should also be clear that it is not necessary to introduce 
this principle in order to rationalize fiducial inference in dis
crete cases. 

The matter is of some importance. 
In the first place, it may turn out easier to defend the co

gency of the law of likelihood which is weaker in the relevant 
respects than the principle of irrelevance. 
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Secondly, should some difficulty appear in the conse
quences of using the fiducial argument, something may have 
to be modified. It is important to appreciate that abandoning 
the principle of irrelevance is of no help if the law of likelihood 
and objectivist inductive logic are retained. 

15.6 Let the sample space n be some interval of the real line where, 
The Law of for each 8, the chance distribution according to h

8 
is repre-

Likelihood in sentable by a continuous density fe(x). As before, Wis the set 
the Contino- of hypotheses of the type ex & h8 and S(W) is a a-algebra of 
ous Case propositions generated by W and all hypotheses equivalent 

given K to these. 
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Each element of W is representable by a point (x, 8) in the 
joint space n x e. 

71(x, 8) = fe(x) is the BL-density assigned the point (x, 8) in 
the joint space. 71(x, 8; f) = fe(x) is the BL-density assigned 
the point (x, 8) in the subspace of all points representing simple 
joint propositions consistent with f. It is the conditional BL
density function. 

Let y(x) be any strictly monotonic differentiable function of 
x with continuous derivative. We may construct a new joint 
space of points (y, 8) to represent elements of W. 71*(y, 8)dy/dx 
= 71(x, 8) is the BL-function for this new space. A similar 
definition applies to conditional BL-functions. 

Let f be some hypothesis consistent with K; let V be a set 
of elements of W exclusive and exhaustive relative to K and 
f, each element representing a hypothesis consistent with K. 
Moreover, one and only one element of V is associated with 
a value of x in the range of values of x. 

If V is as specified and Q is permitted relative to K by the 
principles of objectivist inductive logic, Q agrees with the 

conditional BL-density function 71(x, 8; f) if and only if the 
BL-density function ranges continuously over the points in V, 
Q conditional on f is representable by a continuous density 
function ranging over the values of x of the form f(x; f), and 
for every x and x', f(x; f) :=:: f(x'; f) if and only if 71(x, 8; f) 
:=:: 71(x', 8'; f) where (x, 8) and (x', 8') are points in V. 

Notice that the Q-distribution may also be representable by 
a density f*(y; f) where y is a strictly monotonic and differ
entiable function of x with continuous derivative and 
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dx dx 
f*(y;f) =f(x;f) dy = 71(x, O;f) dy = 71*(y, O;f). 

Thus, ambiguity in the condition of agreement is avoided. 
We are now in a position to state the law of likelihood for 

continuous cases. 

Law of Likelihood for Continuous Cases: Let V be as stipu
lated. If K and the principles of objectivist inductive logic 
permit at least some Q-distributions over V conditional onf to 
agree with the wnditional BL-function on f, then, for every 
Q E C(K), the Q-distribution over elements of V conditional 
onf is representable by a conditional density agreeing with the 

BL-density on f 
This formulation of the law of likelihood for the continuous 

case differs from Hacking's in several respects. 10 In the first 
place, I have restricted my definition of BL-densities to apply 
to points in the joint space representing simple joint proposi
tions in W. Moreover, the BL-density associated with such an 
element of W is not unique but depends on the joint-space 
representation of the simple joint proposition. If y = y(x), then 
e~ & h

8 
is equivalent given K to ex & h8• The point (x, fJ) 

represents the same element of W as (y, fJ) does in its different 
joint space. But the BL-density assigned (x, 8) differs from 

that assigned (y, 8). 
Hacking assigns neither BL-densities nor BL-likelihoods to 

the elements of W. Given any two such hypotheses, he intro
duces a likelihood ratio. His law of likelihood states that one 
joint proposition is better supported by the data if the likeli
hood ratio of the first to the other is greater than 1. The ratio 
is determined by taking the chance densities f h) and f8•(x') 

for the two hypotheses involved. But f 8(x)/f8,(x') could be 
greater than 1, whilefl(y)/ft.(y') is less than or equal to 1. 

To take care of this problem, Hacking introduces the notion 
of an experimental density. If y is a function of x and it is 
values of x which are determined by measurement, the exper
imental density of y according to h8 should be f 'x) = 

f8*(y)dy/dx. 
Hacking's experimental densities raise more problems than 

they solve. Let y be a strictly monotonic and differentiable 
function of x with continuous derivative. Assuming that we 
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have some method for measuring x, do we not also have a 
method of measuring y? On what basis does Hacking think 
priority may be given to one method of measurement over 
another? Hacking offers no explanation. 

Hacking does extend his requirement that experimental 
densities be used to cases where a chance density distribution 
is defined for a variable which is a function of both the param
eter () and random variable x. Thus, if v(x, 8) satisfies the 
requirements for a pivotal function, Hacking insists that the 
likelihood ratio for d,, to d,,. be given by f 8(x)/f8.(x), where v 

= v(x, fJ) and v' = v(x, ()') rather than g(v)/g(v'). This is so 
regardless of whether the likelihood ratio is unconditional or 
is conditional on ex. When the ratio is conditional, we can at 
least say relative to what value of x the experimental densities 
are given. But when ex is not given, as when the likelihoods 
are taken to be unconditional, there is no uniqueness in the 
likelihood ratio except under special circumstances. 

g(v)av/ax = f'x) for v = v(x, 8). If av/ax = k(v)w(x), then 
g(v)/g(v') = fh)/f8.(x) no matter what value of x is picked. 
This condition is met by smoothly invertible and irrelevance
allowing pivotal functions. 

But this entire exercise is utterly unnecessary. There is no 
need to consider likelihood distributions for values of v. We 
obtain Q-distributions for the hypotheses dv by the principle 
of direct inference which Hacking endorses anyhow. There is 
no need to apply the law of likelihood. 

As shall be explained shortly, Hacking invokes experimental 
densities in formulating his principle of irrelevance for the 
continuous case. Hence, we have another motive for consid
ering them. But as I shall show shortly, the principle of fiducial 
inference for the continuous case may be derived from objec
tivist inductive logic and the l;iW of likelihood for the contin
uous case as I have formulated it without appealing to the 
principle of irrelevance. 

The formulation of the law of likelihood introduced here 
makes no use of experimental densities. Instead, I do not 
require that a likelihood ratio be uniquely determined for any 
pair of elements of W. I assume that such ratios are relative 
to a representation of the hypotheses in W by points in the 
joint space n x e. If there is a strictly monotonic and differ
entiable transformation of the points in n with continuous 
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derivative, there must be a corresponding transformation of 
the BL-density function. With this proviso in place, a formu
lation of the law of likelihood no stronger than Hacking's (at 
least insofar as Hacking's formulation is clear at all) is obtain
able. Moreover, it is demonstrable that this formulation suf
fices for the purpose of deriving the fiducial argument in the 
continuous case. This will now be proven. 

Let the sample space be all points on some interval of the real 
line and let there be a smoothly invertible and irrelevance
allowing pivotal function satisfying condition (j*) of chapter 
14. 

Because the pivotal function is irrelevance-allowing, the 
parameter space, sample space, and space of pivotal values 
can be so recast that v(x, 8) = v = x + 8 and each of three 
variables ranges from -oo to +oo. There is no loss of generality, 
therefore, in considering the variables in a form satisfying this 
relation. 

Consider 71(x, 8; dv) for some fixed value of v. We have 
71(x, 8; dv) = fl...x) = g(v)av/ax. But av/ax = 1. Hence, 
71(x, 8; dv) = g(v) as x varies over its entire range. 

By the law of likelihood for the continuous case, for every 
Q E C(K), Q conditional on dv is representable by a density 
functionfv(x) = a constant k for all values of x. (This density 
will be a u-finite density because the range of x is over the 
entire real line.) For all points (x, v) where v is held at the 
given fixed value, the joint density must be fv(x)g(v) = kg(v), 

which is a constant. The joint density for points (x, 8) such 
that v(x, 8) = v for the fixed value of v must be fr,(x)h(8) = 

kg(v)av/ax, where av/ax = 1. Hence, h(8) = k, which is a 
constant independent of the value of 8. 

Consider now all elements in W consistent with K and ex 

for some fixed value of x. Each of these is representable by a 
point (x, v) with density kg(v). Hence, the conditional u-finite 
density gx(v) must be directly proportional to g(v). Since, 
however, f~.,g(v)dv = 1, we can let gx(v) = g(v) and represent 
the conditional Q-distribution as a Q-density. 

But this step is the adoption of confirmational irrelevance
the critical step of fiducial inference where a new principle of 
inductive logic is introduced. This step has been derived by 
adding the law of likelihood to our arsenal. 

LIKELIHOOD 

15.8 
The Principle 
of Irrelevance 
in the Contin
uous Case 

15.9 
The Law of 
Likelihood and 
Indifference 

359 

Hacking proceeds in the continuous case as he does in discrete 
cases by invoking a principle of irrelevance. 11 Let V be a set 
of simple joint propositions each consistent with K and such 
that K entails that at least and at most one is true. Let V be 
indexed by values of a parameter taking all real values in some 
interval on the real line. 

Let the experimental density values assigned to hypotheses 
in V equal the experimental density values assigned to hy
potheses in V conditional on f (save for a positive constant 
factor). In that case, Hacking claims that the Q-distribution 
conditional on f should equal the unconditional Q-distribution 
for hypotheses in V except for a positive constant factor. 

Thus, if the hypotheses in V are specifications of values of 
the pivotal v = v(x, 8), the experimental density for v is f /...x) 
= g(v)av/ax. This density function is not uniquely determined 
without specifying a value for x. If, however, the pivotal is 
irrelevance-allowing, then av/ax = k(v)w(x) so that fe(x) is a 
positive and constant multiple of f 9(x'). The likelihood of h9 

conditional on ex is given by f /...x) for the specific value of x. 
The conditional likelihood function is a positive constant mul
tiple of the unconditional likelihood function for v. Hence, the 
principle of irrelevance mandates the step of confirmational 
irrelevance when the pivotal function is smoothly invertible 
and irrelevance-allowing. 

I have already explained my reservations concerning ex
perimental densities. We now see why they appear so impor
tant in Hacking's argument. But as has been shown, they are 
not needed; for his principle of irrelevance can be dispensed 
with. The law of likelihood suffices as an addendum to objec
tivist inductive logic for the purpose of rationalizing fiducial 
reasoning. 

In the previous chapter, it was shown that the principles of 
fiducial inference, when added to objectivist inductive logic, 
must imply commitment to numerically definite prior credal 
distributions over the parameter space e. This is an inevitable 
consequence of taming fiducial inference in a Bayesian man
ner. 

Hacking's law of likelihood even in the weakened versions 
I have used suffices to derive the three principles of fiducial 
inference introduced in the previous chapter. Hence, in cases 
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covered by those principles, Hacking's new principle of in
ductive logic mandates numerically precise prior credal states. 

Hacking rather grudgingly acknowledges the commitment 
to priors at least in discrete cases but he seems to deny the 
commitment in continuous cases and, in any case, shrugs off 
such commitments with various obscure remarks. 

Thus, he points out that in fiducial inference there is no 
need to derive posterior distributions explicitly from priors via 
Bayes' theorem.12 

Of course this is true. But the force of his remark is not 
clear. The crux of the matter is that the law of likelihood 
entails a commitment to numerically precise priors regardless 
of how calculations are explicitly made. Euclidean geometry 
is axiomatizable in many ways. Adopting one set of axioms 
does not absolve one from commitment to the others. 

Hacking seems to think, however, that he has a more sub
stantial point to make than this. He correctly notes that if a 
pivotal function is smoothly invertible and irrelevance-allow
ing, all variables are transformable so that v = x + 8 and all 
three variables range over the entire real line. Moreover, the 
prior credal distribution for values of 8 must be uniform. H. 
Jeffreys was willing to embrace this result even though as
signing h8 positive density implies that the total probability is 
infinite. 

In section 5.11, note was taken of Hacking's correct objec
tion to Jeffreys' procedure in assigning h8 positive density. 
But Hacking thinks that the only coherent option to Jeffreys' 
practice is to refuse to define a prior credal distribution alto
gether .13 

But, in this case, Hacking's refusal is equivalent to assigning 
a uniform a-finite distribution representing a Q-distribution 
violating countable additivity. 

Hacking does not recognize this alternative and equivalent 
way of representing his view. Had he done so, he would have 
been compelled to recognize an inconsistency in his system; 
for, as noted previously, Hacking embraces Kolmogoroff s 
axioms for probability including countable additivity. 

Disavowing the implications of one's commitments does not 
make them disappear. In section 12.16, an illustration of how 
contradictions slip in when the question of countable additivity 
is not kept under critical control was given. The contradiction 
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is obtained by adopting a credal state allowing violations of 
countable addivity (without acknowledging this) and then us
ing countable additivity in the derivation of conclusions. The 
parallel between the arguments of M. Stone and his associates 
and Hacking's approach is inescapable-especially the incon
sistency. 

Of course, it is easy to eliminate the inconsistency. Either 
give up the law of likelihood or countable additivity. I think 
countable additivity should not be mandated as I have already 
e~plai~ed. If we are to take Hacking's theory seriously, I 
thmk 1t best to remove countable additivity from his system 
as well. 

The upshot, however, is that Hacking has failed to establish 
that his approach avoids commitment to numerically precise 
priors. 

It is one thing to insist that Hacking's theory commits him 
to methods for assigning numerically precise priors. It is quite 
another to hold that he is committed to some principle of 
indifference mandating uniform prior credal distributions in 
states of ignorance. 

Indeed, in my opinion, Hacking offers an interesting alter
native to Jeffreys' (and Jeffreys' followers') prescription of 
uniform distributions of certain kinds in states of ignorance. 

As I understand it, Hacking's thesis is that the law of like
lihood is to be endorsed as a principle of inductive logic be
cause it captures some conceptually necessary connection be
tween chance and support. Recall that in defending principles 
of direct inference as principles of inductive logic, I too con
tended that unless such principles were introduced, we would 
lack a characterization of the connection between knowledge 
of chances and judgments about test behavior needed to pro
vide chance with a meaningful role in inquiry and deliberation. 

Hacking appears to understand the law of likelihood in the 
same vein. It is in this spirit that I interpret the following 
comment by Hacking on the relation between his principle of 
irrelevance (which I replaced by the law of likelihood) and 
principles of indifference. 

The. principle of irrelevance has been stated in complete gen
erality. It makes no. mention of special conditions of any prob
lem. Its central notion, that degrees of support are as relative 
likelihoods, originates in the simplest conceptions about fre-
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quency. It seems merely to continue that explication of the 
fundamental fact about frequency and support which led to 
the laws of likelihood. And even then the principle of irrele
vance does not produce numerical degrees of support de 
nova, but merely, as it were, computes new probabilities out 
of those already established by the conventional frequency 
principle .... 

Thus if the principle of irrelevance is true at all, it seems to 
express a fundamental fact about frequency and support. But 
turning to alleged judgements of indifference, we find no fun
damental fact to express. 14 

If we take this strand in Hacking' s thought seriously, it 
seems quite unnecessary for him to deny or hedge on the fact 
that his inductive logic entails a commitment to numerically 
precise priors under certain conditions. Even objectivist in
ductive logic allows numerically precise priors under some 
conditions. To be sure, Hacking's theory mandates such priors 
even in cases where objectivist logic does not; but if his ar
gument is successful, his case for going beyond objectivism is 
congenial with views which spawn objectivism. 

The sole ground for strengthening coherentist inductive 
logic to objectivist inductive logic is that principles of direct 
inference establish certain incorrigible links between knowl
edge of chance and judgments about test behavior where the 
incorrigibility is based on the claim that without such links the 
concept of chance would have no useful role in inquiry and 

deliberation. 
If someone who accepts this argument is prepared to defend 

further principles on the grounds that they too impose restric
tions on the connections between chance and test behavior 
needed in order that the concept of chance may be used sig
nificantly in inquiry and deliberation, the dispute between him 
and objectivists becomes a disagreement over details within 
the framework of important shared agreements. 

Both parties to the dispute would agree that principles of 
inductive logic which are not introduced to establish needed 
links between cognitive attitudes towards chance hypotheses 
and hypotheses about test behavior are unacceptable-with 
the important exception of the principle of credal coherence, 
which has been defended on other grounds. 

There is no need for excessive dogmatism. Perhaps some 
compelling argument may be given for adducing additional 
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principles of inductive logic. I do not know what such argu
ments could be, except for the fact that one can try and 
support anything one likes by claiming that it is "intuitive." 
I think we should minimize reliance on intuition and restrict 
its appeal to what is fairly noncontroversial. 

I have not argued that Hacking's law of likelihood is, in
deed, acceptable as a new principle of inductive logic. I do, 
however, think that his approach to defending it is along the 
right lines. But right lines or no, is his defense successful? 

Thanks to T. Seidenfeld, it is demonstrable that Hacking's 
argument must fail as must any rationalization of fiducial in
ference along Bayesian lines. To this we now turn. 

Seidenfeld has shown that the principle of fiducial inference 
in the continuous case leads to contradiction. 15 The implica
tions of this result are of some interest. In the first place, the 
inconsistency arises when conditions are satisfied which D. V. 
Lindley claimed to have shown to be necessary and sufficient 
for the consistency of fiducial inference in the one-parameter 
case. 16 Secondly, it has been shown here that a weakened 
version of the law of likelihood when grafted on to objectivist 
inductive logic entails the principles of fiducial inference. Con
sequently, Seidenfeld' s result shows that either objectivist in
ductive logic must be abandoned or the law of likelihood 
modified. There seems to be no compelling way to tame fi
ducial inference along Bayesian lines and within the spirit of 
the objectivist view. 

Let us now turn to Seidenfeld's argument. 
X seeks to determine the volume of a hollow cube. He has 

two methods for doing so. 

Method 1: The cube is filled with liquid of known density. 
The liquid is removed and weighed on a balance whose read
ings are normally distributed with unit variance and mean 
equal to the weight of the object measured. x 1 is the reading 
for weight and 81 the true weight of the liquid. The chance 
distribution for x1 according to h8 , is 
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Let di be the density of the liquid; d 1xi = Yi is the mea
sured volume of the liquid and, hence, of the cube as revealed 
by the reading xi. The true volume is w = di8i. 

v
1 

= Xi - 8i is a smoothly invertible pivotal which is irre
levance-allowing and satisfies (j*). The principle of fiducial 

inference implies that 

(2) hx 1(8i) = fe1Cx1). 

The posterior distribution for w on the datum Xi or Yi is 

Consequently, 

1 
(3) ku1(w) = di fe,(X1) 

holds. 

Method 2: A metal bar is laid off against one edge of the cube 
and a length matching the length of one side of the cube is cut 
off. The bar has a constant cross-sectional area and constant 
density so that the length cut off is equal to a constant times 
its weight. If the true weight of the bar is 82 and the constant 
is d2 , the true volume of the cube is w = (d28z)3. 

The piece of bar cut off is weighed on the same balance as 
before and a reading x2 is obtained. The chance distribution 
for x 2 according to he2 is 

1 
(4) ffh.(X2) = -:-r:::.= e<x2-92>212. 

V2'7T 

Let y2 be a reading for the volume of the cube obtained 
from X2, so that Y2 = ( dzX2)3. 

v2 = x2 - 82 is a smoothly invertible irrelevance-allowing 
pivotal satisfying condition (j*). The principle of fiducial in
ference implies 

(5) hx2(82) = fe,(Xz). 

Since d82 /dw = 1/(3~8~), then 
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Suppose that X makes a determination of the volume via 
method 1 and obtains the fiducial distribution (3) for w. He 
then contemplates making a further measurement using 
method 2. The distribution for values of w relative to the 
information obtained from both measurements is ku

1
u

2
(w). It 

should be obtainable via Bayes' theorem using as a prior 
distribution for w the fiducial distribution (3) and as likelihoods 
the values for tw(y2) where this density satisfies the condition 

Appealing to (7) and (3), we conclude that 

1 
(8) ku,u,(w)cc 3d ,r.i 2 fe1(xi)fe,(X2). 

1u2X2 

Suppose X had proceeded in reverse order. First he applied 
method 2 and had obtained x2 and, hence, y 2 and the fiducial 
distribution ku2(w). Using this distribution as the prior, he then 
employed Bayes' theorem to derive a new posterior ku

2
u

1
(w) 

which must be directly proportional to the fiducial distribution 
ku2(w) times tw(yi). But the latter is 

1 
(9) tw(yi) = di feJX 1). 

From (9) and (6), we can conclude that 

1 
(10) kY2Yl(w) a: 3di~8~ fe1(X1)fe,(X2)· 

Compare (8) and (10). The right-hand sides are not only not 
equal but are not constant multiples of one another as w, and 
hence 82 , varies. Hence, the left-hand sides of (8) and (10) are 
not equal. But credal coherence requires that they be equal. 
We have a contradiction. 

The contradiction derives from the principle of fiducial in
ference when combined with objectivist inductive logic. It 
must, therefore, be implied by adding to objectivist inductive 
logic any principle implying the principle of fiducial inference. 
Hacking's law of likelihood as formulated here has this prop
erty. So does his principle of irrelevance. Not only does the 
reconstructed version of his theory developed here lead to 
contradiction; it seems that his own version cannot be recon-
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structed in any way reasonably matching what he claimed in 
his text without leading to the same contradiction. 

It is easy to see the source of the inconsistency within the 
framework of Bayesian theory. If the fiducial argument is used 
with method l, the prior for 81 is uniform (albeit an "im
proper" prior violating countable additivity). Hence, so is the 
prior for w, which is equal to the prior (density) for 81 divided 
by the constant d1 • 

If the fiducial argument is used with method 2, the prior for 
8~ is uniform (albeit improper). If the u-finite density is k, the 
prior density for w becomes k/(3~8D, which is not uniform. 

Those who have advocated principles of insufficient reason 
have had to face the problem of identifying for any given 
parameter 8 which transformation to use in introducing a uni
form distribution. Should the distribution of the unknown var
iance of a normal distribution prior to experimentation be 
uniform over values of the variance, the standard deviation, 
log variance, the precision, or what? The same applies to the 
mean and to every other continuous parameter. Unless some 
method for selecting a transformation of the parameter to use 
in assigning a uniform prior is given, principles of insufficient 
reason or indifference threaten to become inconsistent in the 
continuous case. 

This is not the only difficulty with such principles; but it is 
a difficulty. 

D. V. Lindley seemed to have shown that in those cases 
where fiducial arguments in one-parameter continuous cases 
avoid difficulties, there are definite criteria for identifying the 
appropriate transformations. 

Lindley' s results are correct provided one focuses attention 
only on data resulting from repetitions of the same kind of 
experiment. 

The importance of Seidenfeld's example is that the data 
used to "estimate" the value of the unknown parameter (here, 
the volume of the cube) come from diverse experiments. He 
showed that one cannot escape the inconsistencies plaguing 
indifferentists by insisting on fiducialist restrictions. 

But it is not only fiducialism that is undermined. Hacking's 
law of likelihood purports to formulate a principle of inductive 
logic that renders likelihood even more important to the un
derstanding of chance and inverse inference than objectivists 
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have been prepared to acknowledge. Because, as has been 
shown here, the law of likelihood, when combined with ob
jectivist inductive logic, leads to fiducial inference, Hacking's 
project of making likelihood the centerpiece of the logic of 
support has been decisively refuted. 

Before turning to the Kyburg-Dempster alternative to a Bayes
ian taming of fiducial inference, mention should be made of a 
method of linking likelihood and fiducial probability different 
from Hacking's. 

It has already been acknowledged that both from the point 
of view advocated here and the strict Bayesian outlook, like
lihoods are useful as indices of the contribution of information 
obtained from experimentation and observation to the deter
mination of posterior credal states. Given the likelihood func
tion on the data and the prior credal state, the posterior credal 
state can be uniquely determined by Bayes' theorem. 

There is one minor limitation on the use of likelihoods in 
this way. Likelihoods are not defined for composite chance 
hypotheses on the data. 

It is possible to use fiducial distributions as surrogates for 
likelihoods in "summarizing" the contribution of data to both 
composite and simple chance hypotheses when fiducial distri
butions exists. On this interpretation, fiducial probabilities are 
not construed as posterior credal probabilities but as factors 
which along with prior probabilities determine the posterior 
credal state. 

Let v = x + 8, and construct the fiducial distribution h,A8) 

= gx(v) = g(v). Let the posterior distribution hi(8) be deter
mined from this by setting 

* _ . hx(8)h*(8) 
hx(8) - J::hx(8)h*(8)d8 ' 

where the prior is h*(8). Needless to say ,if this prior distri
bution is uniform, the posterior distribution equals the fiducial 
distribution. 

What we have done, in effect, is to regard the posterior as 
directly proportional to the fiducial density times the prior 
density. 17 

Thus, we have a construal of fiducial probability which both 
Bayesians and those who are sympathetic to the proposals 
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made in this book can accept. (Notice that one can use the 
fiducial distribution with indeterminate priors to obtain inde
terminate posteriors.) Moreover, fiducial probability and like
lihood are understood as serving the same function. These 
aspects of the interpretation are congenial to the views of both 

Fisher and Hacking. 
However, both of these authors take fiducial probabilities 

to be probabilities on data in the same sense in which poste
riors computed via Bayes' theorem are. This interpretation of 
fiducial probability cannot, therefore, be the one they have 

been looking for. 
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inference and confirmational coherence did not have to be 
supplemented with additional principles in order to justify 
fiducial inferences. Fisher may not have adhered to these 
claims consistently; but he did seem to endorse them. To this 
extent, the efforts to tame fiducial inference of the sort de
scribed in chapters 14 and 15 cannot pretend to be a recon
struction of Fisher's view. 

There are two approaches to deriving probability judgments 
from data which appear to come closer to Fisher's view. 
H. E. Kyburg and A. P. Dempster have offered accounts of 
how to assign numerically precise probabilities to statistical 
hypotheses on the basis of data which do not entail a com
mitment to numerically precise priors. Kyburg's approach is 
explicitly based on a commitment to confirmational coherence 
and a principle of direct inference. Dempster's approach per
mits a similar interpretation. 

Such views must conflict somehow with the conditions on 
confirmational commitments entailed by an objectivist out
look. Kyburg and Dempster recommend rejecting confirma
tional conditionalization. Kyburg does so by modifying the 
principle of direct inference in a manner which entails such 
rejection. As I reconstruct his view, Dempster allows the 
principle of direct inference to stand more or less as I have 
formulated it but recommends a revision of the principle of 
confirmational conditionalization. 

Fisher's statements are far too enigmatic to warrant a de
cisive verdict as to who captures his intent best. I suspect that 
Kyburg's view comes closest to Fisher's. 

Perhaps the clearest statement of Fisher's view is found in 
"Mathematical Probability in the Natural~ Sciences," 1 al-

16.1 FISHER ON DIRECT INFERENCE 



370 

though he develops the same themes in Statistical Methods 
and Scientific Inference 2 and other writings of the late 1950s. 3 

In that essay, he claims that there are three "requirements of 
a correct statement of Mathematical Probability.'' 4 

The first of these he calls a "conceptual Reference Set 
which may be conceived as a population of possibilities of 
which an exactly known fraction possess some chosen char
acteristic.'' 

Thus, a "correct statement of Mathematical Probability" is 
based on knowledge. Such a statement may, therefore, be 
construed as an evaluation of a hypothesis with respect to 
credal probability relative to appropriate knowledge. 

Moreover, the knowledge specified by the first condition is 
of the percentage of members of a "conceptual Reference 
Set" which "possess some chosen characteristic." It is quite 
clear from Fisher's own elaborations that he does not intend 
literally that X know the percentage of events or objects having 
some characteristic in a conceptual reference class. Nor does 
he mean that the knowledge be of the relative frequency in 
some population of past, present, and future objects or events. 

However, the probability statements do not imply the exist
ence of any such population in the real world. All that they 
assert is that the exact nature and degree of our uncertainty 
is just as if we knew it to have been chosen at random from 
such a population. 5 

Unfortunately, Fisher fails to explain the import of the "as 
if" in this passage. It does seem clear, however, that the 
knowledge X has (not the "as if" knowledge) is analogous to 
knowledge (which X may sometimes have) that a certain pop
ulation contains members with a given trait with a definite 
relative frequency and that the chance of obtaining an object 
having that trait on a selection from that population of a certain 
kind called a "random selection" is equal to the percentage 
of objects in that population having that trait. 

This suggests that the knowledge X has is knowledge that 
a given chance setup has a simple chance property. Fisher 
does not interpret (in the sense of giving satisfaction condi
tions for) the chance predicate in terms of relative frequencies 
in a conceptual reference class but, as R. B. Braithwaite ob
served,6 uses the conceptual reference class as a model for 
heuristic purposes. Fisher is most emphatically not a partisan 
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of "frequency interpretations" of either chance (statistical 
probability) or of the probability of hypotheses (credal or con
firmational probability). This is clear both from the passage 
cited and from his chastisement of J. Neyman in the same 
essay. 7 

On this analysis, Fisher's first necessary condition for a 
"correct statement of Mathematical Probability" is knowledge 
that the chance of obtaining a result of kind R on a trial oJ 
kind S on chance setup a is some definite value r. 

Fisher's second requirement is that "it must be possible to 
assert that the subject of the probability statement belongs tc 
this set" -i.e., the conceptual reference set. 8 Within the 
framework I am using, this condition amounts to specifying 
that X know that the specific trial on chance setup a be of kind 
S. 

The third requirement, which Fisher insists is the most 
interesting, is that "no subset can be recognized having a 
different probability. Such subsets must always exist; it is 
required that no one of them shall be recognizable. This is a 
postulate of ignorance, and therefore unfamiliar to deductive 
reasoning, though a characteristic of inductive logic.'' 9 

The third requirement is intended to serve a function similar 
to the proviso in my principle of direct inference which states 
that extra information known to be true of the trial of kind S 
should be known to be stochastically irrelevant. However, it 
is not clear that the third condition is equivalent to this pro
viso. 

To explain the obscurity, I assume that Fisher's three "re
quirements" are not only individually necessary but jointly 
sufficient for a "correct statement of Mathematical Probabil
ity"-i.e., for an assignment of a numerically precise degree 
of credal probability to a hypothesis about the outcome of a 
trial on a chance setup. In other words, the three requirements 
are intended as a principle of direct inference combined with 
the stipulation that numerically precise credal states are legit
imate only when they are derivable via direct inference from 
knowledge of chances. 

The three conditions become, therefore, requirements on 
X's corpus of knowledge K individually necessary and jointly 
sufficient for assigning a numerically precise degree of ere-
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dence to a hypothesis about the outcome of a trial relative to 
that corpus. 

Let us rehearse the three conditions: 

(i) K contains "The chance of an R on a trial of kind S is 
equal top." 

(ii) K contains a statement asserting that at some time t a 
trial of kind S occurs. 

(iii) K does not contain a statement asserting that the trial of 
kind S at t is also of kind T where K also contains "The 
chance of an R on a trial of kind S & T differs from p." 

Fisher proceeds to illustrate condition (iii). 10 He cites situ
ations where K contains information that the trial of kind S is 
of kind T as well but also contains the assumption that the 
chance of an R on a trial of kind S & Tis equal top. In that 
event, X knows that the extra information is stochastically 
irrelevant and, hence, may be ignored. 

Fisher also considers cases where the trial is of kind T as 
well as of kind S but is not known to be of kind T. In agreement 
with my version of direct inference, he recommends that p be 
assigned as the degree of credence of the hypothesis that an 
event of kind R occurs. 

What about situations where K contains the information that 
the trial is of kind T as well as of kind S but lacks information 
concerning the precise chance of an R on a trial of kind S & 
T? As far as I can discover, Fisher nowhere explicitly deals 
with cases of this sort. 

Suppose, however, that the result in question were a pivotal 
event and the trial of kind S & T were a trial of kind S yielding 
a certain value for the random variable x. This is an example 
where the agent has knowledge of chances on trials of kind S 
(concerning pivotal values) but lacks such knowledge on trials 
of kind S & T. Fisher seems to think that direct inference 
alone mandates a degree of credence equal to the chance on 
a trial of kind S. That is to say, Fisher seems to hold that at 
least sometimes such extra information T may be ignored. 

If this is Fisher's intent, his principle of direct inference 
must differ from mine. According to the principle I have pro
posed, unless X knows the extra information to be stochasti
cally irrelevant, he should base his direct inference on' his 
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knowledge of the chance of an R on a trial which is of kind S 
& T. If he does not know the chance precisely but only knows 
a composite chance assumption, the degree of credence as
signed will depend on his credal probability state over the rival 
chance hypotheses ingredient in the composite chance hy
pothesis as explained in sections 12.13-12.15. 

For some such credal states, the degree of credence as
signed the hypothesis that an R occurs will equal p. But this 
presupposes commitment to the confirmational irrelevance of 
the extra information. That assumption of confirmational ir
relevance is not derivable from the principle of direct inference 
alone. 

Fisher's practice and some of his remarks suggest that on 
some occasions when the extra information about the kind of 
trial is not known to be stochastically irrelevant, the principle 
of direct inference should imply confirmational irrelevance. 
Unfortunately, Fisher fails to give us any explicit formulation 
of the circumstances when this is so. 

H. Reichenbach proposed an account of direct inference 
according to which one should base the direct inference on the 
narrowest reference class for which one had "reliable statis
tics." 11 Reichenbach failed to explain what he meant by reli
able statistics. I think he meant that one should have evidence 
warranting a precise judgment of chance or refative frequency 
in the reference class. 

Thus, if X knows that the chance of an R on a trial of kind 
Sis p but also knows that the trial is of kind S & T, X should 
assign a degree of credence to the hypothesis that an R will 
occur equal to p if he knows nothing as to the chance of an R 
on a trial of kind T or on a trial of kind S & T. In that event, 
the reference class of trials of kind S is the "narrowest" for 
which X has "reliable statistics" (precise information?). 

On the other hand, if X has reliable statistics for S and for 
T but not for S & T and the chance of an R on a trial of kind 
S differs from that for a trial of kind T, there is no unique 
narrowest reference class for which X has reliable statistics. 
Reichenbach acknowledges his prescriptions are ambiguous in 
such a case. The best he can do is suggest collecting further 
statistics about trials of kind S & T. 

Of course, this advice cannot always be followed. Reichen
bach does not say anything about "weight" or credence when 
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one cannot collect the extra statistics. I think it fair to say 
that in situations of the sort just envisaged, the degree of 
credence assigned to the hypothesis that an R occurred is the 
maximum interval 0 to 1. 

Neither Reichenbach nor Fisher deal with these cases in 
anything like a systematic or exhaustive fashion. To my 
knowledge, the only one to do so is Kyburg. This circum
stance is, in my opinion, scandalous, considering the consid
erable attention which has been devoted by philosophers to 
the reference class. 

To be sure, one can proceed as I have done and require that 
extra information must be known to be stochastically irrele
vant if it is to be ignored on the grounds of confirmational 
irrelevance. Such an approach is not, so I believe, Fisher's or 
Reichenbach's. One of the reasons (by no means the only one) 
why Kyburg's ideas are important to consider is that he alone 
has offered a systematic account of direct inference where 
confirmational irrelevance of extra information about kinds of 
trials is mandated by direct inference even though knowledge 
of stochastic irrelevance is absent. t 

As shall be explained, if this rival version of the principle 
of direct inference is adopted, it is, indeed, possible to secure 
the legitimacy of fiducial inferences without principles of in
ductive logic additional to confirmational coherence and the 
Kyburgian version of direct inference. Furthermore, commit
ment to numerically precise prior credal states is avoided. 

t Kyburg's principle of direct inference is embedded in his definition of an 
object being a "random member" of a set and in his definition of epistemo
logical probability. The theory is presented in Probability and the Logic of 
Rational Belief (Middletown, Conn.: Wesleyan University Press, 1961), es
pecially ch. 9 and The Logical Foundations of Statistical Inference (Dor
drecht: Reidel, 1974), especially chs. 9-11. Because I offer no definitions of 
credal or confirmational probability but, instead, impose conditions on con
firmational commitments and credal states and wish to explain Kyburg's view 
within this framework, my presentation of his view deviates from his in 
formulation. The notion of K-irrelevance corresponds roughly to his notion 
of random membership and his conception of epistemological probability 
relative to a corpus corresponds to the weakest or logical credal state relative 
to the corpus when the principle of direct inference I attribute to Kyburg is 
substituted for the one I advocate. Otherwise, the chief difference is that he 
takes direct inference to be based on knowledge of frequencies whereas I take 
it to be based on knowledge of chances. This latter difference is taken up in 
section 16.6. 

DIRECT INFERENCE AND CONDITIONALIZATION 

Thus, not only is the Fisherian idea of direct inference 
captured in a precise form; but Fisher's hopes for fiducial 
inference seem open to realization. The difficulties with ob
jectivist necessitarianism are surmounted by adopting a prin
ciple of direct inference alternative to the one I have proposed. 

16.2 Kyburg's account of direct inference is far more general than 
Kyburg's The- anything found in Fisher or Reichenbach. This is due not only 
ory to the manner in which he handles the so-called problem of 
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the reference class, but also due to the way he treats direct 
inference from knowledge of composite chance assumptions. 
Both Fisher and Reichenbach restrict their accounts to situa
tions where direct inference is based on knowledge of simple 
chance assumptions. 

The principle of direct inference I have proposed is also 
formulated to apply to cases where the knowledge is of simple 
chance hypotheses. On my account, direct inference from 
knowledge of composite chance assumptions relies on confir
mational coherence and conditionalization as well as on direct 
inference. Kyburg's principle of direct inference violates con
firmational conditionalization in a manner preventing him from 
handling inferences from knowledge of composite chance as
sumptions as I have done. Consequently, he formulates his 
principle in a manner applicable both to cases where the in
ference is based on knowledge of composite chance assump
tions and where the knowledge is of simple chance assump
tions. 

Kyburg is one of the first authors, after B. 0. Koopman, 
I. J. Good, and C. A. B. Smith, to develop an account of 
interval-valued credal or confirmational probability and, in 
many respects, he pushed his approach more deeply and sys
tematically than these authors did. 

According to Kyburg, probability is an "epistemological" 
notion. This means that probability, as he understands it, is 
relative to a corpus of knowledge. Such a notion corresponds 
to my notion of a confirmational commitment legislated by 
principles of inductive logic alone. 

In this sense, Kyburg's notion of probability resembles that 
considered by J. M. Keynes and H. Jeffreys and the one on 
which R. Carnap focused most of his attention. In effect, his 
epistemological probabilities are those credal probability judg-
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ments determined by the logical confirmational commitment
i.e., the weakest allowed by the principles of inductive logic. 

Kyburg allows the credal state to assign numerically inde
terminate but interval-valued degrees of credence to hy
potheses on the evidence. His principle of direct inference not 
only covers cases where the chance assumptions are compos
ite but where the credal states generated by knowledge of 
chances are numerically indeterminate. 

Another salient feature of Kyburg's view is his rejection of 
the concept of statistical probability or chance. On his view, 
direct inference is based on knowledge of frequencies. Unlike 
Fisher, he does not appeal to "conceptual" or "hypothetical" 
reference classes in a metaphorical manner. His reference 
classes are intended to be sets of events or objects. Instead of 
using knowledge of chances, he appeals to knowledge of rel
ative frequencies with which traits appear or occur in such 

populations. 
For the present I shall ignore this feature of Kyburg's 

approach, returning to it in section 16.6. No distortion of Ky
burg' s account of direct inference results. That account ap
plies to direct inferences based on knowledge of chances or 
inferences based on knowledge of relative frequencies in pop-

ulations. 
Let X know the following: 

(i) The chance of an R on a trial of kind S falls in the inter

val from p_ top. 
(ii) The chance of an R on a trial of kind T falls in the inter-

val from p_' top'. 
(iii) The chance of an R on a trial of kind S & T falls in an 

interval from g_ to ij. 

In all cases, the intervals specified are the narrowest in 
which the chance is known to fall. 

X also knows that the trial at some time is both of kind S 

and of kind T. 
To illustrate, let a trial of kind Z be the selection at random 

from the population of persons who are either Swedes or 
visitors to Lourdes and let the result of kind R be obtaining a 

Protestant on such a selection. 
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The chance of obtaining a Protestant on such a selection is 
then equal to the percentage of Protestants in that population. 

A trial of kind S is a trial of kind Z which yields a Swede. 
The chance of an R on a trial of kind S is equal to the per
centage of Protestants among the Swedes. 

A trial of kind T is a trial of kind Z yielding a visitor to 
Lourdes. The chance of an R on a trial of kind T is equal to 
the percentage of Protestants among the visitors to Lourdes. 

A trial of kind Z which is both of kind S and of kind T is 
one which yields a Swedish visitor to Lourdes. The chance of 
an R on a trial of that kind is equal to the percentage of 
Protestants among the Swedish visitors to Lourdes. 

Relative to X's corpus K as specified above, the information 
that a trial is of kind Tis L-irrelevant to the issue as to whether 
an R occurs on that trial relative to information that the trial 
is of kind S if and only if K contains the information that being 
of kind Tis stochastically irrelevant to yielding an R on a trial 
of kind S. 

In our example, the information that the random selection 
yields a visitor to Lourdes is L-irrelevant to whether the per
son selected is a Protestant relative to information that the 
person is a Swede if it is known that the percentage of Swedish 
visitors to Lourdes who are Protestant is identical with the 
percentage of Swedes who are Protestants. 

L-irrelevance is an epistemological notion specifying a fea
ture of the corpus K. Stochastic irrelevance is not epistemo
logical. The principle of direct inference I have proposed could 
be formulated as stating that all extra information about a trial 
of kind S be L-irrelevant rather than that it be known to be 
stochastically irrelevant. The concept of L-irrelevance is in
troduced here for the purely temporary purpose of comparing 
the principle of direct inference I have proposed with Ky
burg' s. 

Relative to K, the information that the trial under consid
eration is of kind Tis K-irrelevant to the issue as to whether 
an R occurs on that trial relative to information that the trial 
is of kind S if and only if X's corpus K implies the following: 

(a) The interval [[!_, p] falls within or coincides with the 
interval [ g_, ij]. 
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(b) The interval [e_, p] falls within or coincides with the 

interval [_e', p']. 

S is the total information K-relevant to the occurrence of 
an R if and only if S is known to be true of the trial event and 
the following two conditions are satisfied: 

(c) if S does not entail T (while Tis known to be true of the 
trial event), Tis K-irrelevant to the hypothesis that an R 
occurs with respect to S. 

(d) if S entails S* while S* does not entail S, there is some 
T* not entailed by S* but known true of the trial event 
which is K-relevant to the hypothesis that an R occurs with 

respect to S*. 

Kyburg's principle of direct inference stipulates that if S is 
the total information K-relevant to the occurrence of an R, the 
degree of credence which should be assigned to the hypothesis 
that an R occurs relative to the corpus K should be [_e, p]. 

This principle differs from the principle of direct inference 
proposed in this essay in two respects: (i) the condition of L
irrelevance is replaced by the condition of K-irrelevance and 
(ii) when X's knowledge of the chance of an R on a trial of 
kind Sis composite, the degree of credence to be assigned the 
hypothesis that an R occurs is mandated to be the entire 
interval from p top. 

The differe~ce of primary interest here is the first one. The 
second difference disappears in the case of objectivist neces

sitarianism. 
To appreciate the significance of the first difference and how 

it bears on the views of Fisher and Reichenbach, I shall con
sider a series of different cases and compare Kyburg's ap
proach to mine in each one. 

For the sake of simplicity, I shall suppose the strongest 
information X knows about the trial in question is that it is of 

kind S & T. 

Case 1: X knows 

(1) The percentage of Protestants among Swedes is .9. 

(2) The percentage of Protestants among visitors to Lourdes 

is .9. 
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(3) The percentage of Protestants among Swedish visitors to 
Lourdes is .9. 

Being a trial of kind Tis L-irrelevant and K-irrelevant with 
respect to being a trial of kind S; and being a trial of kind S 
is L-irrelevant and K-irrelevant with respect to being a trial of 
kind T. Both Kyburg's and my principles of direct inference 
mandate assigning a degree of credence of .9 to the hypothesis 
that the person selected is a Protestant. 

Case 2: X knows (1), (3), and 

(4) The percentage of Protestants among the visitors to 
Lourdes is .1. 

Being a trial of kind Tis L-irrelevant but not K-irrelevant 
with respect to being of kind S. Being a trial of kind S is both 
L-relevant and K-relevant to being of kind T. In spite of the 
differences, both principles of direct inference mandate as
signing a degree of credence of .9 to the hypothesis that the 
person selected is a Protestant. 

Case 3: X knows (1), (3) and 

(5) The percentage of Protestants among visitors to Lourdes 
is .85 or .95. 

Being of kind T is both L-irrelevant and K-irrelevant with 
respect to being of kind S. Being of kind S is both L-relevant 
and K-relevant with respect to being of kind T. Both principles 
of direct inference mandate assigning a degree of credence of 
.9 to the hypothesis that the person selected is a Protestant. 

Case 3a: X knows (1), (3), and 

(5a) The percentage of Protestants among visitors to Lourdes 
is .85, .9, or .95. 

Case 3b: X knows (1), (3), and 

(5b) The percentage of Protestants among visitors to 
Lourdes is· some value between 0 and 1. 

In case 3, X knows that the chance of obtaining a Protestant 
on a trial of kind T is different from the chance of obtaining 
a Protestant on a trial of kind S. In .cases 3a and 3b, X does 
not know this or its negation. The appraisals of K-irrelevance 
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and L-irrelevance remain the same as in case 3 and so does 
the verdict of direct inference. 

Case 4: X knows (1) and one of (2), (4), (S), (Sa), or (Sb). He 

also knows 

(6) The percentage of Protestants among Swedish visitors to 
Lourdes is .8S. 

Being of kind T is both L-relevant and K-relevant with 
respect to being of kind S and vice versa. The degree of 
credence assigned to the hypothesis that the individual drawn 
is Protestant is .8S according to both principles of direct in
ference. 

Case 5: This is like any of the cases covered by case 4 except 
that in lieu of (6) X knows 

(7) The percentage of Protestants among Swedish visitors to 
Lourdes is either .7S or .8S. 

Being of kind T is both L-relevant and K-relevant with 
respect to being of kind S and vice versa. According to Ky
burg, the degree of credence assigned to the hypothesis that 
the individual drawn is Protestant should be the interval from 
.7S to .8S. According to the principle of direct inference fa
vored here, it should be some subinterval of that one. If 
objectivist necessitarianism is endorsed, the interval should 
be, as for Kyburg, from .7S to .8S. 

Although some small differences emerge in case 2 concern
ing evaluations of K- and L-irrelevance, in neither this case or 
the other four considered is there any difference concerning 
the results of direct inference. 

Consider now the following hypotheses about the percent
age of Swedish visitors to Lourdes who are Protestants: 

(8) The percentage of Protestants among Swedish visitors 
to Lourdes is 8S% or 9S%. 

(8a) The percentage of Protestants among Swedish visitors 
to Lourdes is 8S%, 90%, or 9S%. 

(8b) The percentage of Protestants among Swedish visitors 
to Lourdes is anywhere from 0% to 100%. 

Reichenbach considered a case exemplified by 
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Case 6: X knows (1), (4), and (8b). 

In this case, X knows that the chance of an R on a trial of 
kind S is different from the chance of an R on a trial of kind 
T and knows nothing of the chance of an R on a trial of kind 
S & T. Reichenbach's view seems to be that the "weight" is 
undetermined in this case pending information about the 
chance of an R on a trial of kind S & T. That is to say, the 
degree of credence to be assigned the hypothesis that an R has 
occurred (a Protestant selected) is the interval from 0 to 1. 

Both my analysis and Kyburg's give this prescription as 
well. Being of kind T is both L-relevant and K-relevant with 
respect to being a trial of kind Sand vice versa. Kyburg's rule 
mandates the interval from 0 to 1. So does my rule when 
combined with necessitarianism. When necessitarianism is not 
mandated, some subinterval or other is required. 

Reichenbach fails to consider variants of this case where X 
knows (1), (4), and some more precise information than con
veyed by (8b) concerning the percentage of Swedish visitors 
to Lourdes who are Protestants. Case 4 provides an example, 
as do the variants on case 6 substituting (8) and (8a) for (8b). 
Let case 6a be the result of substituting (8) for (8b) and case 
6b be the result of substituting (8a). Both my rule and Kyburg's 
prescribe assigning the interval-valued credence from .8S to 
.9S. I think this is congenial with Reichenbach's outlook. 

Reichenbach seems to suggest, however, that when the 
chance of an R on a trial of kind S is the same as the chance 
of an R on a trial of kind T and the chance of an R on a trial 
of kind S & Tis not known-i.e., could range from 0 to 1-
the degree of credence to be assigned to the hypothesis that 
a result of kind R occurs should equal the chance of an R on 
a trial of kind S. Whatever Reichenbach may have intended, 
however, Ky burg does explicitly prescribe this result. 

Case 7: X knows (1), (2), and (8). 

Case 7a: X knows (1), (2), and (8a). 

Case 7b: X knows (1), (2), and (8b). 

In all three cases, being of kind Tis L-relevant with respect 
to being of kind S and vice versa. In all three cases, being of 
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kind Tis K-irrelevant with respect to being of kind S and vice 

versa. 
The principle of direct inference prescribes the interval from 

.8S to .9S in cases 7 and 7a. Kyburg's principle prescribes .9. 
In case 7b, the principle of direct inference prescribes the 
interval from 0 to 1. Kyburg's principle, once more, prescribes 
.9. My principle, of course, makes these prescriptions under 
the assumption of necessitarianism. 

The differences between Kyburg's view (which, so I be
lieve, captures Reichenbach's intent here) and my approach 
just exemplified is manifested in the following variations as 

well. 

Case 8: X knows (1) and either (S), (Sa), or (Sb) and either 
(S), (Sa), or (Sb). 

Being of kind T is L-relevant but K-irrelevant with respect 
to being of kind S. Being of kind Sis both L-relevant and K

relevant with respect to being of kind T. 
Kyburg's approach requires basing credence on knowledge 

of the chance of an R on a trial of kind S and, hence, recom

mends .9. 
My approach requires basing credence on knowledge of the 

chance of an R on a trial of kind S & T and, hence, recom
mends the interval from .SS to .9S if (S) or (Sa) are assumed 
and from 0 to 1 when (Sb) is accepted. 

Fisher was even less explicit than Reichenbach on the rel
evant cases. However, if we apply Kyburg's principle of direct 
inference to cases where fiducial inference is entertainable, 
Fisher's prescriptions are often mandated without adding any 
further principles of inductive logic. This will now be shown. 

Let v = v(x, 8) be a smoothly invertible and irrelevance-allow
ing pivotal satisfying (f) or (f*) of chapter 14. 

The prior credal state is assumed maximally indeterminate 
for the values of 8. 

The credal distribution for vis given by g(v) prior to finding 
out the result of experimentation. This is so according to 
Kyburg's theory and my own if, as I shall suppose, the trial 
is of kind S & T and being of kind T is L-irrelevant to being 
of kind S and, hence, is K-irrelevant as well. 
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An observation is made and the value x is discovered. But 
X does not know the chance distribution for the values v on 
a trial of kind S & T which yields that value x. That is to say, 
X does not know whether yielding value x is stochastically 
irrelevant or not. Hence, the information that the trial is one 
yielding the reading x is L-relevant information. According to 
my proposal, it cannot be ignored. An objectivist necessitarian 
is obligated to assign a credal distribution for values v condi
tional on ex which is maximally indeterminate. To obtain a 
fiducial distribution, the principle of fiducial inference has to 
be invoked with its untoward results. 

Observe, however, that although X does not know that the 
information that the trial is one yielding the reading x is sto
chastically irrelevant, he also does not know that it is sto
chastically relevant. Hence, it is K-irrelevant information. 

Kyburg's theory, therefore, allows X-indeed, obligates 
X-to ignore the extra information and adopt gx(v) = g(v) as 
his conditional distribution for v. From this, a numerically 
precise distribution for (J emerges conditional on ex as in fi
ducial inference. 

The situation here is quite analogous to that in case S. 
Thus, Kyburg's theory succeeds in doing what Fisher 

claimed his account of fiducial inference does-to wit, it ob
tains fiducial posteriors without a commitment to numerically 
precise priors and with the aid of direct inference where the 
choice of a "recognizable subset" is the critical factor. t 

However, Kyburg's success depends on his violating con
firmational conditionalization. Moreover, that violation must 
be due to the version of direct inference he endorses. This 
point should be brought out more explicitly. 

Let e be the hypothesis that the individual selected is a Prot-
Kyburgian Di- estant. h9 asserts that the percentage of Protestants among 
rect Inference Swedish visitors to Lourdes is 1008%. X knows that 90% of 
and Confirma- Swedes are Protestants. He is utterly ignorant concerning the 
tional Condi- percentage of visitors to Lourdes who are Protestants; but he 
tionalization 
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assumes that either h.89 , h.9 i. or h.92 is true. 

t Kyburg's theory is able to allow posterior distributions which are only 
partially indeterminate beginning with maximally indeterminate priors. Fisher 
does not recognize such cases. 

16.4 KYBURGIAN DIRECT INFERENCE 
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According to Kyburg's principle of direct inference, the 
following holds: 

(1) Q(e) = .9. 

If confirmational conditionalization is operative, Kyburg's 
principle implies the following conditions on Q-distributions 
in C(K) as well: 

(2) Q(e; h.89) = .89 

(3) Q(e; h.91) = .91 

(4) Q(e; h.92) = .92 

(5) Q(e; h.89 V h.91) = .9 

(6) Q(e; h.89 V h.92) = .9 

(7) .91 '.'S Q(e; h.91 V h.92) '.'S .92. 

Credal coherence implies that 

(8) Q(e) = Q(e; h.89 V h.9,)Q(h.89 V h.91; h.89 V h.91 V h.92) 
+ Q(e; h. 92)Q(h.92; h.89 V h.91 V h.92). 

From (1), (4), (5), and (8), we have 

(9) .9 = .9Q(h.89 v h.91; h.89 v h.91 v h.92) 
+ .92Q(h.92; h.89 v h.91 v h.92). 

Consequently, 

(10) Q(h.92) Q(h.92; h.89 v h.91 v h.92) 
= 0. 

By similar reasoning, 

(11) Q(h.91) = 0. 

Hence, 

(12) Q(h.89) = 1. 

But then it must be the case that 

(13) Q(e) = Q(e; h.89)Q(h.89) 
= .89. 

The statement (13), however, contradicts (1). 

Kyburg's earliest writings on the subject suggest that he 
might have been committed to confirmational cohere.nee and 
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consistency. t On this reading of his view, he was committed 
to abandoning confirmational conditionalization. 

In any case, he was committed to denying that all shifts in 
credal state where the confirmational commitment is held con
stant should guarantee that posterior credal states be derivable 
from the prior states via Bayes' theorem. More recently Ky
burg has recognized this explicitly and has cited some exam
ples of Bayesian breakdown. 12 He does not appear to have 
realized, however, . how intimately this breakdown is linked 
with his version of the principle of direct inference. 

The account of his view presented here renders this con
nection explicit and indicates how closely linked the problem 
of the reference class is to the question of the tenability of 
confirmational conditionalization. 

Once confirmational conditionalization is abandoned in the 
manner just indicated, Seidenfeld's example of the hollow 
cube does not yield a contradiction according to fiducialist 
principles. The contradiction is obtained with the aid of the 
assumption of confirmational conditionalization. Kyburg's 
theory may be used to provide an analysis of this situation; 
but it is too complex to consider here. 

Kyburg's theory entails a violation of confirmational condi
tionalization due to his modification of the principle of direct 
inference. An account of confirmational commitments is en
visageable that retains intact confirmational consistency, co
herence, convexity, and direct inference, but that revises con
firmational conditionalization. 

A. P. Dempster has proposed an account of interval-valued 
probability suggesting such an outlook. I say "suggesting" 
because I am not quite sure what Dempster's view actually 
is, even though it is possible to develop an account of the sort 

t See Probability and the Logic of Rational Belief (Middletown, Conn.: Wes
leyan University Press, 1961), pp. 222-224. On these pages, Kyburg correctly 
claims that given an interval-valued credal state meeting his requirements 
there is at least one probability distribution assigning probabilities within these 
interval specifications satisfying coherence requirements. Confirmational co
herence and consistency are, therefore, satisfied. On these pages and those 
preceding, he denies that his intervalist theory satisfies coherence require
ments-but this means only that upper and lower probabilities are not prob
ability measures and that, from Kyburg's point of view, credal states need 
not be numerically determinate. 
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just indicated from ingredients found in his writings. t The 
account to be presented is just such a reconstruction. 

K, is the expansion of K obtained by adding e and forming 
the deductive closure. Let the range of permissible values for 
e in C(K) range from ~ to s. 

C(Ke) is the D-conditionalization of C(K) with respect to 
K and K, if and only if (i) B* is the subset of C(K) consisting 
of Q-distributions assigning e the value s and (ii) C(Ke) is the 
conditionalization of B* with respect to K and Ke. 

D-Confirmational Conditionalization: For every K and K. 

where e is consistent with K, C(K.) is the D-conditionalization 
of C(K) with respect to K and K •. 

If every permissible Q-value in C(K) assigns e the same real 
value, C(K.) is the D-conditionalization of C(K) if and only if 
it is the conditionalization of C(K). Thus, the principle of D
confirmational conditionalization implies that the principle of 
confirmational conditionalization is applicable in special cases. 

But D-conditionalization can be consistently applied only if 
further restrictions are imposed on the credal states allowed 
relative to potential corpus K. To explain this, consider the 
three propositions e & f, e & -f, and -e and let the credal 
state C(K) be the convex hull of the four distributions 

(i) 

(iii) 
1/2, 1/8, 3/8 

1/8, 1/8, 3/4 
(ii) 

(iv) 
3/8, 3/8, 1/4 

1/8, 1/2, 3/8. 

Suppose the partition is refined by construing each of the 
three alternatives as a disjunction of hypotheses in which g is 

t The version of Dempster's view I am going to discuss is based on "Upper 
and Lower Probabilities Induced by a Multivalued Mapping," Annals Math. 
Stat., v. 38 (1967), pp. 325-339; and "A Generalization of Bayesian Infer
ence,"' J. Royal Stat. Soc., ser. B, v. 30 (1968), pp. 205-247 (with discussion). 
See also the somewhat different emphasis given in "New Methods for Rea
soning Towards Posterior Distributions Based on Sample Data," Annals 
Math. Stat., v. 35 (1966), pp. 355-374. My account of Dempster·s theory 
relies more heavily than his does on representations of probability states by 
convex sets of distributions. Dempster himself makes use of this mode of 
representation (e.g., in "Upper and Lower Probabilities," pp. 330-331 and in 
"A Generalization of Bayesian Inference," p. 245). To my knowledge, 
Dempster nowhere formulates what I call D-confirmational conditionalization 
in the form I give; but he uses a principle of "conditioning" which appears 
to be equivalent to it. I think Dempster is committed to a version of direct 
inference of the kind I favor (as opposed to Kyburg's); but I am not confident 
of this. 
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true and in which g is false and consider the conditional dis
tributions for g and -g relative to the three hypotheses. 

Ki is obtained from K by adding e, K2 from Ki by addingf, 
and K* from K by adding e & f. Hence K* = K 2 • The differ
ence lies only in the sequence of expansions involved in shift
ing from K to K*. 

In shifting from K to Kt> D-conditionalization mandates 
going to C(Ki) which is the ordinary conditionalization of (ii). 
The shift to K 2 must, perforce, be a conditionalization on the 
distribution (ii) conditionalized already on e. 

However, if the shift had been direct from K to K*, the shift 
would have been via conditionalization on (i) and not on (ii). 

Thus, it is entertainable that D-conditionalization will re
quire endorsing different credal states relative to the same 
corpus. 

Equivocation can be avoided by requiring that credal states 
be the largest convex sets compatible with an interval-valued 
specification of degrees of credence. 

Dempster does, in point of fact, follow Smith and Kyburg 
in adopting such a restriction on credal states although he fails 
to explain why he does so in anything like the manner just 
indicated. t Indeed, in the papers on which I am relying here, 

t See "Upper and Lower Probabilities," pp. 330-331 and ''A Generalization 
of Bayesian Inference," p. 245. Dempster's classification of views is some
what misleading. He recognizes three views: Those which allow any convex 
set of Q-distributions to be a credal state (the set of such convex sets being 
D); those which allow any convex sets belonging to n, consisting solely of 
convex sets "defined solely by inequalities on probabilities of events": and 
those which allow any set belonging to n, of such sets satisfying Dempster·s 
requirement of representability by a multivalued mapping from a space over 
which an n-function is defined. n, appears to be the set of all convex sets 
representable as the largest convex sets consistent with interval-valued spec
ifications. Dempster claims that Smith allows any member of n. My reading 
of Smith's "Consistency in Statistical Inference and Decision'' (J. Royal Stat. 
Soc., ser. B, v. 23 (1961), pp. 1-37) suggests that he restricts credal states to 
convex sets in n, as does Kyburg. The evidence is that Smith defines upper 
and lower probabilities in terms of upper and lower odds on propositions. 
Dempster correctly recognizes that Smith's procedures determine supporting 
lines for convex sets. I surmise he thought that Smith extended his methods 
in something like the way I propose in section 9.11 and, hence, that Smith is 
committed to allowing all convex sets in n to represent credal states. 

This is sheer conjecture; for there is no explanation in Dempster of why he 
located Smith as he does. In any case, Dempster's interpretation of Smith is 
not, in my view, supported by Smith's paper. Aside from Dempster himself, 
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Dempster actually imposes a stronger restriction on credal 
states than that mandated by intervalists. 

Consider a space of simple joint propositions consistent with 
K of the form ex & h8 • Consider also a space of values r 

together with a multivalued mapping t(r) from values of r onto 
subsets of the set of simple joint propositions. Let T be a 
subset of the set of simple joint propositions and t* the set of 
all those values for r such that t(r) is equal to T or some 
nonempty subset of T. t* is the set of all those r's such that 
the intersection of t(r) and Tis nonempty. 

Finally, suppose we have a probability distribution over the 
values of r. 

The upper probability for the hypothesis that some element 
of Tis true is n(t*). The lower probability for that hypothesis 
is n(t.). 

Because there may be a value of r such that n(r) > 0 when 
t(r) = 0, to obtain suitably normalized measures for upper 
and lower probabilities, the values just defined are divided by 
1 minus the total n-value assigned to all values of r for which 
t(r) is nonempty. 

Dempster's restriction is that a credal state over the space 
of simple joint propositions be the largest convex set compat
ible with upper and lower probabilities characterizable by 
means of such a multivalued mapping from a system of values 
r and a distribution over such values. t 

Dempster's restriction is not easy to motivate. To under
stand its ramifications, a simple example is worth exploring. 

Let the space of simple joint propositions consist of eH & h.6 , 

eH & h.4• eT & h.6 , and eT & h.4, where the h.6 and h.4 specify 
the chance of heads on a toss of coin a to be .6 and .4, 
respectively, and eH and eT report the results of a toss to be 
landing heads and landing tails, respectively. 

I am, to my knowledge, the first to suggest allowing any member of n to be 
a credal state; and Dempster, in point of fact, merely entertained the idea in 
passing without in any way endorsing it. 
t Convex sets in n., of the preceding footnote are the largest convex sets 
satisfying the interval-valued specifications obtained in the manner just indi
cated in the text. Dempster explains these restrictions in both "Upper and 
Lower Probabilities" and in "A Generalization of Bayesian Inference," pp. 
208-209. 
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There are 16 subsets of the set of simple joint propositions. 
Let us consider the first 16 positive integers as the values of 
r and let t(r) be defined as follows: 

t(l) = 0 

t(2) = {eH & h.s} 

1(3) = {eH & h.4} 

t(4) = {eT & h.s} 

1(5) = {eT & h.4} 

t(6) = t(2) u t(5) (d,) 

t(7) = t(3) u t( 4) (do) 

t(8) = t(2) u t(3) (eH) 

t(9) = t( 4) u t(5) (eT) 

t(lO) = t(2) U t(4) (h.s) 

t(l 1) = t(3) u t(5) (h.4) 

t( 12) = t(2) 

t(13) = t(3) 

t(14) = t(4) 

t(15) = t(5) 

t(16) = the entire space of simple joint propositions. 

Dempster's restriction is that a credal state over elements 
of the space of simple joint propositions is the largest convex 
set determined by specifications of upper and lower probabil
ities for all hypotheses generated by the four simple joint 
propositions determined in the manner indicated before by a 
probability distribution over the values of r. 

Suppose, as a good objectivist necessitarian would, that the 
lower probability for h.6 is 0 and the upper is 1 (so that the 
same interval is assigned to h.4 as well). 

The set T associated with h.6 is t(lO). Hence t* = {2, 4, 10}. 
Because the lower probability for h.6 is 0, n(t *) should equal 
0. Hence, n({2, 4, 10}) = 0. Hence, n({2}) = n({4}) = n({lO}) 
= 0. 

By similar reasoning, we have n({3}) = n({5}) = n({ll}) = 0. 
A good objectivist necessitarian would assign the pivotal 

hypotheses d1 and d0 the Q-values .6 and .4, respectively, via 
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direct inference. Consider d 1 • The set T is t( 6), t * = {2, 5, 6}, 

and 

t* = {2, 5, 6, 8, 9, 10, 11, 12, 13 ,14 ,15 ,16}. 

Because the upper and lower probability is .6, n(t *) = n(t*) 

= .6 (provided we assume n(l) = O. This assumption does no 
harm.) Hence, the elements in the difference between t* and 
t* must bear 0 n-value. Hence only n({2}) and/or n({5}) and/or 
n({6}) can be positive. But we already know that n({2}) = n({5}) 
= 0. Hence n({6}) = .6. By similar reasoning n({7}) = .4. Since 
these n-values sum to l, all other values of r bear 0 n-value. 

From this it is easy to establish via Dempster's restriction 
that the lower probability for eH must be 0 and the upper 
probability must be 1, and similarly for eT. 

An objectivist necessitarian would, however, assign to eH a 
lower probability of .4 and an upper probability of .6. 

What has been shown is that if Dempster's requirement on 
credal states is imposed, three conditions which objectivist 
necessitarians would impose on the credal state cannot be 

simultaneously satisfied: 

(i) that the lower probability for h.6 be 0 and the upper prob

ability 1; 

(ii) that the probability for di = .6; 

(iii) that the lower probability for eH be .4 and the upper 

probability be .6. 

Perhaps we should not obligate rational agents to endorse 
the dictates of objectivist necessitarianism in this case. In
deed, I have been arguing that we should not do so. But 
neither should we prohibit joint satisfaction of these three 
conditions. This, however, is what Dempster's requirements 

do. 
To my knowledge Dempster does not consider precisely this 

sort of case. But by implication, he seems to favor endorsing 
(i) and (iii) and rejecting (ii) .13 Calculation using Dempster' s 
restriction leads to n({8}) = n({9}) = .4 and n({l6}) = .2. The 
lower probability for di becomes 0 and the upper probability 
1. This, of course, is in flagrant violation of the principle of 
direct inference-not only according to my principle but ac
cording to Kyburg's and to everyone else's. 
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This consideration suggests that Dempster's restriction on 
credal states is excessive, and that he should have rested 
content with endorsing the principle of D-conditionalization 
and the requirement that credal states be representable by the 
largest convex sets consonant with the upper and lower prob
ability specifications. However, matters are not so simple. 

The principle of direct inference as I formulated it in chapter 
12 applies to a corpus K containing knowledge of a simple 
chance hypothesis and knowledge of stochastic irrelevance 
concerning information about a suitable kind of trial. To obtain 
counsel about direct inference when the knowledge of chances 
is composite, confirmational conditionalization had to be in
voked. 

Consequently, if Dempster is construed as endorsing direct 
inference (as I formulate it) and D-conditionalization, (ii) must 
be endorsed; but even if (i) is adopted, it does not follow that 
(iii) is implied as well. 

The principle of direct inference mandates that the expan
sion of K obtained by adding h.6 (call it Kh .• ) is such that C(Kh .• ) 
mandates .6 as the Q-value for eH. From this, however, it does 
not follow that Q(eH; h.6) = .6 for every Q-function in C(K) as 
it would were confirmational conditionalization endorsed. 
What does follow is that Q(eH; h.6) = .6 for each Q-function 
in C(K) for which Q(h.6) bears its maximum value. If condition 
(i) is met, that upper probability is 1. 

From this we obtain the result that the upper probability of 
eH & h.6 must be .6-provided, of course, that condition (ii) is 
met, as it must be if direct inference is satisfied. On the other 
hand, if condition (i) is satisfied, eH & h.6 can bear a Q-value 
of 0. Hence, the interval range is from 0 to .6 as it is for eT 

& h.4· 
Continuing the calculations, we see that the lower proba

bility for eH & h.4 and eT & h.6 remains 0 while the upper is 
.4. 

Direct inference, coherence, and D-conditionalization do 
not impose further restrictions. Hence, there is nothing pre
venting the assigning of the total Q-value to eH & hA and eH 
& h.6 so that the upper probability of eH is 1 for a necessitarian 
who endorses objectivism but shifts to D-conditionalization. 

The upshot is that such a Dempsterian objectivist necessi
tarian would adopt (i) and (ii) but abandon (iii). He would, 
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thereby, conform to the restrictions on credal states imposed 

by Dempster. 
Consequently, a modified objecti vi st necessitarian who 

changes that doctrine by shifting from confirmational co~di
tionalization to D-conditionalization cannot escape the diffi
culties which Dempster' s own restrictions on credal states 

engender. 
I do not know whether Dempster developed his approach 

as a response to the problems facing objectivist necessitari
anism-although his discussion does suggest that he did. It 
seems clear that he did not follow Dempsterian objectivist 
necessitarianism as I have reconstructed it. Hence, I cannot 
pretend to have explained his own motivation for ~is work. 

However, it is true of his scheme as he presents it that the 
coin example cannot be analyzed in a manner satisfying (i), 
(ii), and (iii). It is also true that D-conditionalization, a ~rin
ciple he endorses, implies this untoward result when combmed 

with objectivist inductive logic. . 
It seems to me that even if one began with an open mmd 

concerning the viability of modifying confirmational condition
alization, these results would be unsatisfying and reinforce the 
suspicion that confirmational conditionalization ought not to 

be abandoned. 
In my view, violation of confirmational conditionalization 

is sufficient reason to reject an approach to probabilistic judg
ment. My basic case is predicated on the considerations intro
duced in chapter 10. Such considerations are reinforced by 
the untoward consequences which tampering with confirma
tional conditionalization incurs. This is illustrated by our con
sideration of D-conditionalization. 

Random Selec
tion vs. Ran
dom Memher
ship 

The principle of direct inference, so I have maintained, is 
required as a way of elucidating the links between knowledge 
of chance and judgments about test behavior. Such links are 
not needed if one dispenses with chance predicates altogether 
as B. De Finetti advocates doing. But if one dispenses with 
chance, the explanatory and predictive benefits which infor
mation about chances provides through the operation of the 

principle of direct inference will be lost. 
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An important feature of Kyburg's theory is that it allows 
him to have De Finetti's cake and to eat it too. Kyburg's 
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inductive logic does not obligate him to eschew chance; but, 
in point of fact, Kyburg agrees with De Finetti in regarding 
chance as a form of Unsinn. 

Nonetheless, Kyburg claims that direct inferences may be 
made from knowledge of the truth of frequency statements. 
Knowledge of relative frequencies provides the explanatory 
and predictive benefits which knowledge of chances is sup
posed to furnish. 

In illustrating Kyburg's approach to direct inference, exten
sive use was made of a situation where selections were made 
from the population of Swedes. In such examples, it may 
appear that knowledge of chances is expendable. After all, 
appeal was made to the percentage of Protestants among the 
Swedes, among the visitors to Lourdes and among Swedish 
visitors to Lourdes. 

Appearances are misleading; for X was required to know 
that the individual was obtained on a trial of kind S-i.e., on 
a random selection from the population consisting of the union 
of the members of the group who have visited Lourdes and 
those who are Swedes. 

To say that the selection is random is to say that the chance 
of obtaining one member of the population is equal to the 
chance of obtaining another. An implication is that the chance 
of obtaining a Protestant on a trial yielding a Swede is equal 
to the percentage of Protestants among the Swedes. Hence, 
given that the selection is a random one, there is a connection 
between chances and frequencies in the population. But to 
justify a direct inference (so I maintain) one must have knowl
edge of the connection given through knowledge that the mode 
of selection from the population is random. 

Kyburg's analysis of such situations is quite different. I 
ignored the difference in my original presentation of his view. 
This did not distort the discussion; for his account of direct 
inference is applicable both to knowledge of chances and to 
knowledge of frequencies in populations. 

My theory, on the other hand, is applicable only for direct 
inference from knowledge of chances. There can be no direct 
inference of any value unless one has knowledge of chances. 

Kyburg's theory does allow for direct inference from knowl
edge of relative frequencies whether there are chances or not. 

If I am right in rejecting his theory because it violates 
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confirmational conditionalization, a strong case can be made 
that one cannot follow Kyburg in rejecting the concept of 
chance as nonsense and yet provide for direct inference. One 
must either take De Finetti's view that chance is nonsense
and, hence, that there is no need for direct inference-or 
acknowledge the significance of chance. 

I cannot claim proof that these alternatives are exhaustive 
if Kyburg's theory is rejected. There may be variants of Ky
burg's theory which avoid violating confirmational condition
alization; but I do not know of any worth pursuing. 

In spite of the affinity of Kyburg's view to frequency inter
pretations of chance or statistical probability, he does not 
endorse such an interpretation. Kyburg simply does not allow 
conceptions of chance in his conceptual framework. He is 
entirely right in avoiding the widespread confusion of chance 
with relative frequency. 

The terms R and S which appear in "The chance of an R 
on a trial of kind S on setup a equals p'' occur nonextension
ally. They appear extensionally in "100p% of S's are R's." 
One cannot specify that the truth of the second statement is 
necessary and sufficient for the truth of the first. 

Kyburg does acknowledge that there are statements of prob
ability which are prima facie statements of chance or statistical 
probability. But he takes them to be epistemic statements 
asserting knowledge of frequencies. Hence, he can account 
for the nonextensional contexts by supposing them to be lo
cated in expressions of propositional attitude. Chance state
ments are not, therefore, statements of the objective features 
of chance setups but are subjective or epistemological. The 
only objective statements involved concern relative fre
quency, and such statements serve as major premises in the 
"statistical syllogisms" involved in direct inference. There are 
no intelligible statements of chance in the sense I favor. To 
this extent, Kyburg agrees with De Finetti. 

According to Kyburg's approach to the Petersen example, 
X knows that Petersen is a member of the set of Swedes and 
knows that 90% of Swedes are Protestants. Even if he knows 
nothing about how. Petersen was selected for presentation to 
him from among the Swedes, X may be entitled to equate the 
value of his degree of credence for the hypothesis e that 
Petersen is a Protestant with the value .9. 
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To mandate this, X's corpus must be such that any further 
knowledge of Petersen's membership in various sets must be 
K-irrelevant in a sense which is analogous to the case of direct 
inference from knowledge of chances. Thus, in case 8 of sec
tion 16.2, X's knowledge that Petersen is a member of the set 
of visitors to Lourdes is K-irrelevant and the degree of cre
dence for the hypothesis that he is a Protestant should be .9 
even if the example is modified so that it does not concern the 
results of random selection but concerns knowledge of mem
bership in various sets. 

Consider, however, that X knows by deductive closure that 
Petersen is a member of the set whose only member is Peter
sen. Is the information K-irrelevant? It clearly is; for all X 
knows about the percentage of Protestants in this set is that 
it is either 0% or 100%. 

Suppose we attempted to impose an analogue of L-irrele
vance in this case. X would have been obliged to consider the 
information that Petersen belonged to the unit set of which he 
is the sole member as L-relevant and would, if he were ne
cessitarian, be obliged to assign the degree of credence [0, 1) 
to the hypothesis that Petersen is a Protestant. 

If direct inference is from knowledge of frequencies in sets 
and knowledge of set membership as Kyburg proposes, im
posing the requirement of L-irrelevance always leads to the 
result that a maximally indeterminate interval will be man
dated. (I am, of course, assuming necessitarianism.) 

From the point of view of one who, like myself, favors 
conforming to confirmational conditionalization and imposing 
L-irrelevance on direct inference, no direct inference of this 
sort can be worthwhile. This constitutes a decisive objection 
to Kyburg's program for replacing knowledge of chances in 
direct inference by knowledge of relative frequencies. 

By shifting from the condition of L-irrelevance to K-irrele
vance, Kyburg is able to obviate this objection. Of course, he 
avoids one problem only to confront another-namely, his 
violation of confirmational conditionalization. 

It may, perhaps, be thought that the difficulty involved in 
using L-irrelevance rather than K-irrelevance in direct infer
ence from knowledge of frequencies applies to direct inference 
from knowledge of chances as well. This is not so. 

Suppose X knows that Petersen is randomly selected from 
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the Swedes. He also knows that the trial (of kind S) has yielded 
Petersen. What is the chance of obtaining a Protestant on a 
trial of kind S which yields Petersen? 

Nothing in logic implies that that chance should be 0 or 1. 
It could equal the chance of obtaining a Protestant on a trial 
of kind S. In other words, the information that the trial is one 
which yields Petersen could be stochastically irrelevant. If X 
knows this to be the case, the condition of L-irrelevance is 

met. 
Thus, when direct inference is from knowledge of chances, 

useful direct inference is not automatically precluded by the 
principle I have proposed. 

Perhaps, it will be argued that the chance of obtaining a 
Protestant on a trial of kind S yielding Petersen must be 0 if 
he is not a Protestant and 1 if he is. The argument is fallacious. 

Suppose that designators are assigned to Swedes at random. 
If r out of a total of n Swedes are named Petersen, the chance 
of any subset of r Swedes being so designated is the same as 
any other. If exactly one Swede is named Petersen, the chance 
of that Swede being so called is 1/ n. 

Under these circumstances, the chance of obtaining a Prot
estant on a trial of kind S yielding Petersen is equal to the 
chance of obtaining a Protestant on a trial of kind S and this 
value can be different from 0 and 1. 

Of course, X will not always know that the designator or 
description he uses to individuate the person sampled from 
the Swedes is a random designator in the sense just indicated. 
The information conveyed by the designator could be L-rele-

. vant. In that event, the condition of L-irrelevance prevents 
assigning .9 as the degree of credence to the hypothesis that 

Petersen is a Protestant. 
This is not mere pedantry. Much survey sampling involves 

using social security numbers as designators for members of 
a population selected at random. But social security numbers 
are not random designators. (Suppose, for example, one is 
concerned with age distribution in a population.) It is not 
always known that the information about social security num
bers is even approximately stochastically irrelevant. 

The important moral of the story is that direct inference, as 
I construe it, depends on knowledge of stGchastic irrelevance. 
Direct inference implies not merely some knowledge of 
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chances but a substantial amount. One must not only know 
that the selection of a Swede is random but that his being 
Petersen is stochastically irrelevant and that the selection 
being at time t is stochastically irrelevant, etc. 

Kyburg has complained of this ramification of my view of 
direct inference .14 Even if one is concerned to test a statistical 
hypothesis on the basis of experiment, knowledge of other 
chances must be presupposed. Consequently, there is no way 
in which one might reconstruct how knowledge of chances is 
acquired beginning exclusively with knowledge of data. Ky
burg finds this objectionable and is willing to go to great 
lengths to avoid it. He claims that by using his principle of 
direct inference one can avoid this result. Because of this, he 
is prepared to jettison confirmational conditionalization. 

My own view is that Kyburg has his priorities wrong. He is 
still bound to the prejudices of pedigree theories of knowledge 
which were mentioned at the beginning of chapter 1. In prac
tice, we always find ourselves with a commitment to a sub
stantial amount of background knowledge on which we base 
judgments of serious possibility and relative to which apprais
als with respect to credal probability are made. This back
ground contains assumptions about chance and other theoret
ical magnitudes as well as information acquired through the 
testimony of the senses and other more or less reliable wit
nesses. The origins of this information are quite irrelevant to 
the deliberations of the agent who has the information. 

If that is so, I fail to see the force of Kyburg's objection. 
What does matter is how judgments of credal probability are 
grounded on what is in the corpus and how both the corpus 
and the confirmational commitment ought to be revised over 
time. 

Thus, the issue of whether one should obey confirmational 
conditionalization or not is of rather greater moment than 
whether one could reconstruct one's knowledge at a time so 
that it is all derivable somehow from the testimony of the 
senses and the records of the memory within one's favorite 
conceptual framework. 

There is, in my view, no important philosophical cost in
curred by offering a negative answer to the second question 
once one is liberated from epistemologies dominated by a 
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preoccupation with pedigree; but there is substantial cost in 
giving up confirmational conditionalization. 

For me, at any rate, the verdict is clear. Kyburg is to be 
credited with having focused the issue of direct inference more 
sharply than any of his predecessors managed to do. He has 
helped the rest of us to think a little more clearly. But his own 
positive response to the challenge confronting objectivist ne
cessitarianism should be rejected precisely because its liabili
ties do outweigh its benefits. 
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ON USING DAT A AS INPUT 

X witnesses the toss of a coin and observes that it lands heads 
up. His observing that the coin lands heads up is a response 
to sensory stimulation constrained by his past conditioning and 
his biological and psychological constitution. X's response 
shall be called his ''making an observation report that the coin 
lands heads." 

Reporting that the coin lands heads is an event just as 
making the statement that the coin lands heads is. However, 
X may make an observation report without uttering or in any 
other way making a statement. X might acquire the disposition 
to respond affirmatively to the question "Is h true?" in re
porting that h. Perhaps, his reporting that h will be accom
panied by some feeling of conviction. I do not care to specu
late about such matters. I assume only that men do make 
observation reports in response to sensory stimulation, that 
such reportings are episodic propositional attitudes, and that 
the reportings are conditioned by the agent's biological and 
psychological constitution as well as any prior conditioning of 
that agent. 

Reporting that his not to be confused with adding h to one's 
standard for serious possibility or corpus. The difference 
should become apparent when the agent Xis not an individual 
person but some group. The testimony of the senses will 
consist of the reportings of some person or persons who may 
or may not be members of the group and whose reports may 
or may not be routinely added to the group corpus. But even 
when Xis a person and makes observation reports, we should 
distinguish between the making of the report that h in response 
to sensory stimulation and the accepting of h into evidence for 
use in subsequent inquiry. 

When X adds an observation report to his corpus of knowl
edge, he is not justified in doing so on the basis of some 
inference from evidence already in the corpus. The expansion 
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should be regarded as the output of a program X adopted 
beforehand designed for obtaining new error-free information, 
where the input is the observation report that h made in re
sponse to sensory stimulation. Neither the observation report 
that h nor the report that X reports that h (that h appears true 
to X) is a premise of an inference to the conclusion that h is 
true or that h should be added to X's corpus. 

For example, X may be committed to a program prescribing 
the addition of any sentence h describing the color of objects 
to X's corpus when X reports that h is true. When imple
menting such a program, X makes no inference from premises 
to conclusion but lets the report he makes in response to 
sensory stimulation determine what he shall add to his corpus 
in accordance with some previously adopted procedure. 

In chapter 2, where this idea of routine expansion was 
introduced, implementing such a program was taken to be 
equivalent to conducting a trial on a chance setup where the 
space of possible outcomes consists of possible expansions of 
X's corpus. Whereas Xis not obliged to justify the expansion 
resulting from implementing his program by appeal to an ar
gument from premises used as evidence, he may sometimes 
be obliged to justify his using the program he adopts. From 
X's point of view, a program is a good one if it is reliable, and 
he is entitled to use it if he knows this to be so-i.e., if he 
knows that the chance of his importing error into his corpus 
by using the program is sufficiently low. 

Insofar as inference is involved in observation, it becomes 
relevant when the programs X uses are being subjected to 
critical review. When that happens, X may be called upon to 
reach conclusions via inferential expansion concerning the 
reliability of various programs. But the actual implementation 
involves no inference at all. It is a matter of skill. 

Thus, a distinction should be made between (i) making an 
observation report that h, (ii) using the making of such a report 
as input into a program for expansion via observation, and (iii) 
using h as evidence in a corpus of knowledge in subsequent 
inquiry and deliberation. 

It may appear that although implementing a program for 
expansion involves no deliberation or inference, prior to every 
occasion on which a program is to be implemented, Xis faced 
with a choice between rival programs for expansion and should 
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weigh these alternatives relative to what X knows at that time. 
This is clearly not the usual practice and I do not mean to 
recommend it. 

It is true that pdor to making an observation report X must 
be committed to some program for using that report as input 
into a program for expansion. If he lacks such a program, he 
will lose the opportunity to expand via the testimony of his 
senses. Sometimes X may be in a position to anticipate his 
future opportunities for making observations and to plan for 
them. Yet, such opportunities usually occur unexpectedly; 
and even when they are anticipated, it is often too costly to 
design a program for each occasion. 

In order to exploit the testimony of the senses effectively 
as a source of reliable information, X should adopt a program 
applicable on a wide range of occasions easily identifiable so 
that on each occasion X is in a position to implement the 
program in a habitual or routine manner. Thus, expansion via 
the testimony of the senses is typically routine expansion as 
I claimed in chapter 2. 

In sum, expansion via the testimony of the senses has two 
important characteristics: (a) It is the result of using a program 
for using observation reports made in response to sensory 
stimulation as inputs; and (b) it is routinizable, so that X is 
prepared to implement it to obtain information otherwise in
accessible or too costly. 

None of this implies that if X is unprepared beforehand to 
implement a program for routine expansion, he forgoes all 
opportunity to add the sentence h reported true to his corpus. 
He loses only the opportunity to add h on that specific occa
sion in response to his reporting that h is true. 

But X may have other opportunities to make observations. 
Or X might use reports of the testimony of others as inputs. 
Finally, X might have sufficient knowledge to warrant an in
ferential or inductive expansion leading to his accepting h into 
his corpus. 

Nonetheless, X will often lack the knowledge to settle the 
question of the truth of h via inferential expansion; and the 
alternative method of routine expansion via the testimony of 
others may not be sufficiently reliable. At any rate, the testi
mony of the senses is an important source of information and 
it is desirable that it be exploited. 
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In chapter 2, routine expansion, whether via the testimony 
of the senses or the testimony of witnesses, was distinguished 
from deliberate or inferential expansion by its capacity to 
inject contradiction into a corpus. In inferential expansion, X 
evaluates rival potential answers to a given question in the 
light of the total knowledge available to him in order to obtain 
error-free information. He should not deliberately expand into 

contradiction. 
If prior to each occasion of observation X were in a position 

to design a program for expansion using observation reports 
as inputs, his concern to avoid error should preclude his en
dorsing a program which would lead to his injecting inconsis
tency into his corpus. But X is not in a position to hand-tool 
a program for expansion via observation on each occasion. 
Such a procedure is either too costly or not feasible. X will 
seek a program for expansion yielding information-say about 
colors-which is relatively insensitive to variations in his prior 
knowledge of the color of objects to be observed on various 
occasions. Thus, X will be in a position to employ an easily 
routinizable program not requiring close attention to the 
circumstances (in particular his state of knowledge) peculiar 
to each occasion of use. X will seek a program he can apply 
in a routine manner whether he knows that the color of the 
object to be observed is not purple or lacks such information 

prior to observation. 
Thus, X might know that the chance of his making a false 

report of the color of objects under conditions C is extremely 
low but not 0. In a situation where he already knows the color 
of an object not to be purple, he may continue to assume the 
chances of making an error very low. 

To be sure, X could design a routine expressly for that 
occasion-a routine that recommends adding the report made 
to the corpus except when the report that the color is purple 
is made. But the benefit to be obtained thereby is very small 
if the chance of reporting purple given that the color is purple 
is already very low. Furthermore, the cost of designing a 
special program for a special occasion in this manner may 
serve as a deterrent. Finally, since the chance of reporting 
purple is assumed low to begin with, should X, nonetheless, 
report that the color is purple, there would be some pressure 
to contract the corpus to give rival hypotheses a hearing any-
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how-just as there would be should the testimony of the 
senses inject contradiction into the corpus. Under the circum
stances, the benefits of routinization outweigh the costs-in
cluding the small risk (if the routine is reliable) of injecting 
contradiction into the corpus. 

Writers with an empiricist bias often emphasize the capacity 
of the observation to contradict our most cherished assump
tions. On the view I am developing, this is not a virtue of 
routine expansion but a cost which is compensated for by the 
circumstance that routine expansion via observation furnishes 
a new information in an efficient and fairly reliable manner. 

Thus, the kernel of truth in empiricism is the contention 
that some routines for expansion via observation reports are 
both highly reliable and yield useful information. To be sure, 
in the course of inquiry, our judgments of the reliability of 
such routines (like other knowledge) is open to revision and 
so may our judgments of the fecundity of routines in yielding 
new information. We cannot claim very fixed knowledge of 
which routines are reliable. 

The use of observation reports in routinizable programs is 
not restricted to routines for expansion. Programs can be de
vised and implemented where the outputs are actions of var
ious kinds. As in the case of routine expansion, observation 
reports are used as inputs without being used as part of the 
evidence on the basis of which the act performed is identified 
as admissible from among the available alternatives. 

Objectivist necessitarianism implies that observation reports 
admitted into evidence will, in general, be confirmationally 
irrelevant for statistical hypotheses being subjected to test. 
Exceptions occur when such observation reports entail the 
hypotheses under test; but this is of small consolation when 
dealing with statistical hypotheses. 

Objectivist necessitarianism seems to imply, therefore, that 
admitting observation reports into evidence is without value 
in much subsequent inquiry and deliberation. The presumption 
that the data of observation are of value in scientific inquiry 
conflicts with this apparent implication and constitutes the 
core of the objection raised previously against objectivist ne
cessitarian doctrine. 

The previous three chapters canvassed ways and means of 
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modifying objectivist necessitarianism so as to secure confir
mational relevance for observation reports without straying 
too far from the spirit of objectivist necessitarian doctrine. 
The considerations adduced suggest that none of these ap
proaches are satisfactory. 

My conclusion is that necessitarianism should be abandoned 
in favor of a revisionist outlook. But there is one other im
portant alternative remaining to be considered. Perhaps we 
have been too hasty in concluding that the data of observation 
are without value according to objectivist necessitarianism. 

There is no doubt that the implication that in many impor
tant contexts such data are confirmationally irrelevant is valid. 
What remains to be considered is whether that implication has 
the further consequence that the data are without value. 

What has been shown is that the sentences reported true in 
making observation reports are useless when accepted as evi
dence and used in this capacity. What remains an open ques
tion, however, is whether the making of observation reports 
is not useful as input into programs for selecting actions, 
policies, or expansion strategies. 

In 1933, J. Neyman and E. S. Pearson granted that using 
observation reports as evidence is useless: 

We are inclined to think that as far as a particular hypothesis 
is concerned, no test based on the theory of probability can 
by itself provide any valuable evidence of the truth or false
hood of that hypothesis .1 

Neyman and Pearson go on to say in a footnote that excep
tions arise when observation reports entail the falsity of a 

hypothesis. 
I. Hacking misinterprets these remarks when he attributes 

to Neyman and Pearson the view that "there is no alternative 
to certainty or ignorance." 2 Neyman and Pearson were pre
pared to recognize numerically precise credal states as legiti
mate, provided they could be derived from knowledge of 
chances via direct inference. Like R. A. Fisher, they were 
ready to endorse the use of Bayes' theorem to derive poste
riors from priors provided the priors could be obtained through 
direct inference from knowledge of chances. 

As I read them, Neyman and Pearson concede that when 
priors cannot be derived via direct inference, the use of ob-
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servation reports to obtain posteriors via Bayes' theorem is 
foreclosed. That is why observation reports fail to provide 
''valuable evidence of the truth or falsehood of that hypothe
sis." This reading is supported by Pearson in 1962: 

We [i.e., Neyman and Pearson] were certainly aware that 
inferences must make use of prior information and that deci
sions must take account of utilities, but after some consider
able thought and discussion round these matters we came to 
the conclusion, rightly or wrongly, that it was so rarely pos
sible to give sure numerical values to these entities, that our 
line of approach must proceed otherwise. Thus we came down 
on the side of using only probability measures which could be 
related to relative frequency. 3 

Hacking himself points out that Neyman and Pearson are 
committed to the legitimacy of inferring from knowledge that 
in a long series of stochastically independent trials in which a 
given kind of outcome occurs with constant chance p that it 
is "practically certain" that the relative frequency with which 
that kind of outcome occurs approximates p. He thinks he 
detects an inconsistency between this view and the thesis that 
"there is no alternative to certainty or ignorance." t There is, 
indeed, an inconsistency between these two views; but only 
one of them is attributable to Neyman and Pearson. 

The very circumstance that Hacking's reading of the Ney
man-Pearson doctrine renders it inconsistent when there is a 
readily available alternative interpretation argues against his 
construal. 

According to my interpretation of the passages cited, Ney
man and Pearson are affirming the implications of objectivist 
necessitarianism. They are prepared to accept the conclusion 

t Hacking (Logic of Statistical Inference, Cambridge; Cambridge University 
Press, 1965, pp. 104-105) makes much out of a claim by Neyman and Pearson 
which implies that it can be "proved" that the relative frequency approxi
mates p. He correctly notes that no proof in logic and probability theory can 
be given. But a more charitable interpretation would allow Neyman and 
Pearson "proofs" which rely at least implicitly on a principle of direct infer
ence. Hacking himself claims, somewhat glibly I think, that there is a "prin
ciple about support and chance" which "seems universally to be accepted 
that it is hardly ever stated" (ibid., p. 135). This principle is what Hacking 
calls the "frequency principle" and what I call "direct inference." Hacking 
fails to recognize the presence of substantial disagreements in the literature 
concerning the content of such a principle of the sort discussed in the previous 
chapter. But insofar as the principle is universally accepted or nearly so, why 
does Hacking think that Neyman and Pearson are exceptions? 

17.2 OBJECTIVIST NECESSITARIANISM A LA NEYMAN-PEARSON 



406 

that observation reports are confirmationally irrelevant when 
used as evidence except, of course, when they entail the falsity 
of some hypotheses subject to test. 

Having bitten the bullet, however, they are not prepared to 
rest content with the uselessness of observational data in in
quiry and deliberation. Following immediately on the heels of 
the passages cited from the 1933 paper, they write: 

But we may look at the purpose of the tests from another 
view-point. Without hoping to know whether each separate 
hypothesis is true or false, we may search for rules to govern 
our behavior with regard to them, in following which we insure 
that, in the long run of experience, we shall not be too often 
wrong. 4 

What Neyman and Pearson mean by "rules to govern our 
behavior" is not entirely clear. I suggest, however, that a 
good approximation to their intent is obtained by construing 
them as recommending the use of programs for using obser
vation reports as inputs into programs designed to select acts. 
Moreover, they appear to favor routinizable programs which 
may be used over and over again in appropriately similar 
situations and where the chance of success is high on each 
occasion so that in the long run it is "practically certain" that 
"we shall not be too often wrong." 

A familiar illustration of the sort of situation where Neyman
Pearson methods are alleged to be appropriate is in the design 
of procedures for quality inspection of goods at an appropriate 
state in the manufacturing process. The plant manager wishes 
to provide instructions to quality inspectors which they are to 
adhere to in a regular manner when passing on the suitability 
of putting the finished article on the market or returning it for 
reprocessing. By routinizing the inspection procedure, costs 
of inspection are reduced, reliance on the judgment of the 
inspectors is reduced, while the reliability of their verdicts 
over the long run is secured. From the plant manager's point 
of view, the observation reports made by the inspectors are 
used as inputs into a routinizable program for checking on the 
quality of the finished product. (The alienation of the quality 
inspector from his labor is even more extreme than what most 
Marxists dream of.) In this example, the plant manager uses 
the observation reports of others as inputs into programs. We 
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may entertain, however, using our own reports as inputs into 
such programs as well. 

Perhaps objectivist necessitarianism is untenable solely be
cause it implies the confirmational irrelevance of data and, 
hence, the uselessness of observation reports as evidence. But 
if we are going to give objectivist necessitarianism a run for 
its money, we should explore the extent to which observation 
reports may be usefully exploited as inputs in programs. 

The question acquires additional interest from the circum
stance that, if my interpretation of Neyman-Pearson doctrine 
is sound, the dominant outlook among students of contem
porary statistical theory endorses the view to be examined. 

That the making of observation reports can legitimately 
serve as inputs in programs for expansion or performing other 
acts is undeniable. To save objectivist necessitarianism, how
ever, what must be shown is that in important contexts where 
objectivist necessitarians concede that observation reports are 
useless as evidence but should, according to presystematic 
judgment, have value, they do have value as inputs into pro
grams. 

My main contention is that this thesis can be defended only 
by legislating strong conditions on the values and goals men 
should seek to promote. In the chapters immediately preced
ing this one, I objected to efforts to impose conditions on 
rational credence stronger than those mandated by objectivist 
inductive logic and to claim that they are principles of induc
tive logic obligatory on all rational agents under all circum
stances. I did not object to imposing some of these conditions 
under special circumstances. By the same token, I take ex
ception to views which claim that rational men should endorse 
constraints on goals and values stronger than the fairly weak 
ones advanced here in order to qualify as rational. I do not 
object to imposing such stronger constraints under special 
circumstances. Indeed, X may very well be committed to some 
special system of values and goals entailing much stronger 
restrictions on his valuations of hypotheses about conse
quences than the conditions on rational valuation imply. But 
agents should be allowed to conform to the dictates of prin
ciples of rational deliberation and valuation even when they 
differ widely in the goals and values they endorse. Perhaps, 
one party or the other (or both) in some dispute over values 
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is immoral, imprudent, impolitic, or the like. But because his 
values are offensive, he is not, therefore, irrational. 

Objectivist necessitarianism has to abandon the relative in
sentivity of principles of rational choice to variations in goals 
and values if it is to rescue itself from difficulty along the lines 
just sketched. In my opinion, this in untenable. 

Thus, adopting routine programs for using observation re
ports as inputs in selecting policies rather than using such 
reports as evidence in deliberate decision making may be de
sirable relative to the agent's goals and values. He might be 
interested in long-run benefits from repeated application of the 
program and in reducing costs of deliberation on each separate 
occasion. In such cases, objectivist necessitarians may be in 
a position to recognize making observation reports as having 
a value for the decision maker. 

This does not entitle objectivist necessitarians to insist that 
rational agents should always assess benefits in terms of the 
long run and should evaluate costs in such a manner as to 
favor routinization over deliberation. 

Perhaps, however, objectivist necessitarians can show that 
even when routinization is not deemed desirable, it is better 
to employ a program using reports as inputs than to use ob
servation reports as evidence. My contention is that, even in 
such cases, goals and values would have to be legislated to an 
excessive degree. 

In deliberation aimed at deciding between rival feasible op
tions in order to realize some system of goals and values 
(whether "practicar• or "theoretical"), objectivists are com
mitted to recognizing as £-admissible the largest set of feasible 
options which are "Bayes solutions" for some probability 
distribution compatible with the specifications of the problem. 
Because the set of £-admissible options tends to be so large, 
objectivist necessitarians have sought further criteria for ar
bitrating between rival £-admissible options. 

A. Wald's effort to develop a systematic theory of statistical 
decision making was noted in chapter 7. He claimed that his 
approach could serve as a generalization on and improvement 
of the approach of Neyman and Pearson. 5 Basic to his ap
proach was the use of the criterion, which singles out as 
admissible members of a subset of the £-admissible options. 
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In chapter 7, I interpreted Wald's criterion as a special case 
of the principle of S-admissibility I have proposed applicable, 
in particular, in those contexts where credal states are as the 
objectivist necessitarians recommend. 

Not all authors belonging to the Neyman-Pearson "school" 
follow Wald. However, the main points of criticism applicable 
to objectivist necessitarianism on the assumption that objec
tivist necessitarians follow Wald's approach should apply mu
tatis mutandis to variant approaches. 

In anY case, I have already endorsed the criterion of S
admissibility and, as a consequence, exploring the ramifica
tions of objectivist necessitarianism within the framework for 
rational choice I have been using amounts to exploring the 
ramifications of maximining. 

In chapter 7, I claimed that the identification of security 
levels for feasible options depends on how the space of hy
potheses concerning the consequences of a given option is 
partitioned. There are many ways of determining security 
levels for each feasible option and, hence, diverse ways of 
determining S-admissibility. The methods for fixing security 
levels which are used in practice belong to a fairly restricted 
set. Nonetheless, as I contended in chapter 7, there is no 
principle of rational choice which favors one method over 
another. The choice of a method of fixing security levels is a 
feature of the agent's goals and values just as the system of 
permissible utility functions is. 

In chapter 7, I considered two obvious methods for deter
mining security levels which I labeled (a) and (b). I noted that 
Wald favored method (b).t 

t A. Wald, On the Principles of Statistical Inference, Notre Dame, Ind.: 
University of Notre Dame Press, 1942, p. 44. Method (b) is, in effect, deter
mining security levels by means of what Wald calls a "risk function." Sym
pathetic critics of Wald's theory, such as E. L. Lehman (Testing Statistical 
Hyp~thes~s, New York: Wiley, 1959, pp. 13-14), do not question the propriety 
of using nsk functions in determining security levels. The fundamental com
plaint is that Wald fails to furnish an account of rational statistical decision 
making applicable to situations where X lacks sufficient prior information to 
warrant numerically precise priors but, nonetheless, has some information 
which indiscriminate use of maximin ignores. 

In my view, the complaint is just. Some of the proposals made in the 
present book are designed to meet it (e.g., restricting maximin to the set of 
P-admissible options). However, the Wald theory remains intact in those 
cases where priors are maximally indeterminate as they would be for objec-
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Given a commitment to method (b), it is possible to use 
observation reports as inputs into programs to great effect 
even when the programs are not routinized. On the other 
hand, if security levels are determined by method (a), the use 
of observation reports as inputs can be no more effective than 
using observation reports as evidence. 

Thus, Wald succeeds in establishing the value of data by 
adopting a specific method for fixing security levels. But the 
adoption of such a method is not mandated by principles of 
rational valuation or rational choice. Perhaps ethical, political, 
economic, or prudential considerations favor some method or 
other on some occasion. But it is inappropriate to insist that 
all rational agents should adopt method (b) so that the viability 
of objectivist necessitarian doctrine can be saved. 

X has an opportunity to accept gamble G1 where he receives 
.5 utiles if h.6 (the chance of heads on a toss of coin a is .6) is 
true and loses .5 utiles if h.4 is true or to accept gamble G2 

where he loses .4 utiles if h.6 is true and wins .4 utiles if h.4 

is true. X knows that either h.6 or h.4 is true and is assured 
that he will be paid off according to the terms of the gamble 
depending on which hypothesis is correct. K is the initial 
corpus and X is an objectivist necessitarian. 

Case 1: X is compelled to choose between G1 and G2 relative 
to K containing the information just specified and no other 
pertinent information. 

The credal state for h.6 and h.4 is maximally indeterminate. 
Both options are £-admissible and P-admissible. The security 
levels for each of the gambles is determined by the values of 
the gambles contingent on the truth of h.6 and h.4 • There will 
be no controversy about this. G2 has a security level of -.4, 
and G, of -.5. G2 is uniquely S-admissible and should be 
chosen. 

Case 2: Let X's options be enlarged in the following way: He 
is told there is a spinner which, when set in motion, stops with 

tivist necessitarians. In my opinion. the serious trouble is that the viability of 
the Wald theory derives from its requiring the use of minimax relative t!.' risk 
functions-Le., relative to method (b) for fixing security levels. 

ON USING DAT A AS INPUT 
411 

equal chance within one arc on the dial as it does within any 
other arc of equal arc length. Consequently, the dial can be 
divided into two portions so that the chance of falling into one 
portion is p and into the other is 1 - p. X can give instructions 
to agent Y as follows: Y is to adjust the apparatus so that p 

has some particular value between 0 and 1. The spinner is to 
be set in motion. If Y observes the pointer landing in the first 
section, he is to select option G1 and X is to reap the benefits 
or penalties. Otherwise Y is to select G2 with X receiving the 
payoff. 

In case 2, X uses Y's observation reports as inputs into a 
program for selecting a gamble. X need not find out which 
gamble is selected until after it is selected. At no point prior 
to selection does he add or have the opportunity to add Y's 
observation report to his body of knowledge to use as evi
dence. Furthermore, X could have dispensed with a human 
observer (assuming that the technology is available) and pro
gramed some computer which would print out the gamble to 
be selected in response to the behavior of the spinner. 

To avoid needless complications suppose that X accepts in 
his corpus of knowledge K that Y is a perfectly reliable ob
server of the outcome of the spin and will faithfully perform 
his instructions. The chance of Y making a false observation 
report is known to be 0. Hence, X knows that if he selects a 
given value of p, the chance of G1 being selected is p. By 
direct inference, X's degree of credence for the hypothesis 
that G1 will be selected conditional on his choosing a specific 
value of p is equal to the value of p chosen. From X's point 
of view, choosing the option Av (i.e., choosing the value p) is 
choosing a "mixture" of the pure options G1 and G2 • 

Mixed options were considered in chapter 7. The new ele
ment introduced here is the emphasis on the fact that in choos
ing a mixed option, Xis choosing a program for using data as 
input. In chapter 7, however, it was already noted that there 
are at least two methods for assessing security in such cases. 

If method (a) is employed and 0 < p < 1, AP has four 
possible consequences: choosing G1 when h.6 is true or when 
h.4 is true and choosing G2 when h.6 is true or when h.4 is true. 

The payoffs are .5, - .5, - .4, .4. The security level is - .5 
as it is for the option G1 (when p = 1). Only when p = O so 
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that the option is equivalent to choosing G2 is the security 
level - .4. This option is uniquely S-admissible. 

If method (b) is employed, AP has two relevant conse
quences h.6 and h.4. The payoffs are the expected utilities 
conditional on these hypotheses. These are .5p - .4(1 - p) 

= .9p - .4 and .4 (1 - p) - .5p = .4 - .9p, respectively. If 
X's goals and values warrant fixing security levels in this 
manner, the option with the largest security level is AP for p 

= 4/9. 
Thus, if method (b) is employed for determining security 

levels, Y's observation reports concerning the outcome of the 
toss of the spinner have some value as input into a program 
for selecting a gamble from X's point of view. As noted in 
chapter 7, this is the method Wald favored. 

There are four aspects of case 2 which bear emphasis: 
(1) X has the opportunity to use someone else's observation 

reports as inputs into a program for selecting an option. 
(2) X's choice of a program is not routine. Prior to imple

mentation of the program chosen, X considers which of the 
several programs available to him he should choose in the 
light of what he knows and his goals and values. 

(3) Even if X were in a position to add the observation 
reports made by Y to his corpus and use them as evidence, 
the reports would be confirmationally irrelevant to h.6 and h.4. 

This confirmational irrelevance of observation reports about 
the outcome of the trial on the spinner is not a consequence 
of objectivist necessitarianism peculiar to it. Even if X were 
to endorse a numerically precise prior credal state for h.6 and 
h.4, the information he would obtain about the outcome of the 
spin should not alter his credal state for these two alternatives. 
Consequently, in case 2, Y's reports would be useless as evi
dence regardless of whether objectivist necessitarianism is 
endorsed or not. Whether they are useful as input into a 
program for selecting a gamble does not depend, therefore, on 
their confirmational relevance or irrelevance to the hypotheses 
of concern. 

(4) The usefulness of Y's reports as inputs does depend, 
however, on how X fixes his security levels in evaluating S
admissibility. If X uses method (a), the reports are without 
value. If method (b) is employed, they have value. But X 
cannot be condemned as irrational for using method (a) rather 
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than method (b). Which method is employed is a question of 
goals and values. This does not imply that values are immune 
to critical review. However, an account of rational choice or 
goal attainment should restrict itself to imposing weak con
straints on goals and values and leave further critical judgment 
to inquiry into morals, politics, the law, and other domains of 
practical wisdom. 

Suppose X uses his own reports concerning the outcome of 
the spin as inputs into a program for selecting one of the 
gambles. This predicament resembles case 2 in all relevant 
respects except the first of the four aspects listed in section 
17.4. However, this modification introduces some special com
plications which warrant distinguishing it from case 2. For this 
reason we have 

Case 3: Exactly as in case 2 except that Y = X. 

In case 2, X has the opportunity to choose a pure or mixed 
option before Y witnesses the result of the spin. In case 3, X 
has the opportunity to choose a pure or mixed option before 
X himself witnesses the result of the spin. However, in case 
3 but not in case 2, X can wait until after he h~s made the 
observation report of the outcome of the spin and added this 
report to his corpus via routine expansion and then decide 
which of the two gambles to accept on the basis of the infor
mation in his expanded corpus. 

Situations can, indeed, arise where X is prevented from 
waiting until he obtains observational evidence in this way and 
is constrained to make a decision between programs before 
the spin is made and its outcome observed. In such cases, 
there is very little of interest distinguishing case 3 from case 
2. When, however, Xis not constrained in this way, there is 
something of interest to explore. 

Because the reports about the outcome of the spin are con
firmationally irrelevant to h.6 and h.4 regardless of whether 
objectivist necessitarianism is endorsed or not, waiting and 
using the report as evidence for choosing a gamble must lead 
to the same decision (choosing G2) favored in case 1 and in 
case 2 when method (a) for fixing security levels is adopted. 

Conflict arises, however, if X fixes security levels in ac
cordance with method (b). In contemplating what he should 
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do prior to witnessing the outcome of the spin, X assesses not 
only the several mixed options available to him but he can 
also calculate what he should do if he were to base his decision 
as to which gamble to choose on the evidence available to him 
after having made the observation report. Relative to what he 
knows at the time and given his goals and values-including 
his method of fixing security levels-he may justly reason that 
he should pick the mixed option for p = 4/9 rather than wait 
and see what the outcome of the spin will be. 

Xis not, thereby, violating the total knowledge requirement; 
for that requirement obligates X to employ the total knowledge 
available to him prior to making a decision. 

It may be objected that X does have the opportunity to 
postpone decision making until he observes the outcome of 
using the randomizer. Since doing so will preserve several 
options-in particular, the pure options G1 and G2-X should 
do so. 

This objection is without force. The option of delay in case 
3 is equivalent to choosing G2. It does not plausibly represent 
suspending judgment between two or more £-admissible op
tions-at least according to customary ways of ranking options 
with respect to strength. 

There is yet another objection. Suppose X chooses A419• 

makes the appropriate observation report, and then considers 
(on the basis of the knowledge he acquires via routine expan
sion) whether he should renege on the program previously 
adopted or not. Relative to the new corpus, he should choose 
G2 regardless of the dictates of the program initially adopted. 

This objection too is not decisive. In the first place, X may 
very well implement the program for selecting a gamble si
multaneously with implementing the program for routine ex
pansion and, indeed, if he has a choice in the matter, should 
do so; for he knows that if he reneges he will choose G2 which 
is inadmissible from his point of view prior to observing the 
outcome of the spin. But even if he cannot fully implement 
the program for selecting a gamble until after having made the 
observation report and adding it to his corpus, the costs of 
reneging may be too prohibitive. 

Thus, although some variants of case 3 may turn out to be 
such that reneging on the mixed option initially adopted is 
justified, there will be other cases where that is not so. To the 
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extent that reneging is unjustified, the fact that in case 3 X 
makes his own observation reports where in case 2 Y makes 
the observation reports turns out to make little difference to 
the policy X should follow. Furthermore, although it is nec
essary in cases 2 and 3 that deliberation be conducted prior to 
making observations of the outcome of the spin, the mere 
circumstance of temporal priority is not the salient factor. X 
can, after all, calculate prior to observation how to use reports 
as evidence after making observations. What is crucial in both 
cases 2 and 3 is that observation reports are used as inputs 
rather than as evidence and that the effective use of such 
reports as inputs depends on how the agent fixes security 
levels. 

Objectivist necessitarians of the Neyman-Pearson-Wald per
suasion have joined game theorists of the Von Neumann-Mor
genstern persuasion in extolling the virtues of mixed options. 
However, if all that the previous analysis succeeds in showing 
is that observation reports can sometimes be used effectively 
as inputs in programs for implementing mixed strategies, we 
shall have failed to make any progress whatsoever towards 
alleviating the difficulties plaguing objectivist necessitarian
ism. The observation reports used as inputs in cases 2 and 3 
are confirmationally irrelevant to h. 6 and h. 4 according to 
everyone, regardless of whether they are objectivist necessi
tarians or not. 

The trouble with objectivist necessitarianism is that it im
plies the confirmational irrelevance of reports which presys
tematically would be considered confirmationally relevant to 
such hypotheses-e.g., reports concerning the outcome of a 
sequence of tosses of the coin in question. To avoid the im
plication that such data are useless, objectivist necessitarians 
may seek to show that they function usefully as inputs into 
programs for selecting options. 

Case 4: Coin a is to be tossed once. The perfectly reliable 
observer Y is to report the outcome. X has the opportunity 
prior to observation to instruct Y to select one or the other of 
the two gambles for him depending on the outcome of the 
toss. X does not find out, however, what the outcome of the 
toss is before he is paid off. 
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The statement eH asserts that a lands heads on the toss and 
eT that it lands tails. eH is confirmationally relevant in the 
strong sense to h.6 and h.4 and is confirmationally relevant 
provided that the prior credal state is not maximally indeter
minate (see sections 10.5 and 10.6). Unlike cases 2 and 3, 
presystematic judgment would agree that data concerning the 
outcome of the toss has some value in deliberation concerned 
in choosing between G1 and G2 • Hence, the fact that objectivist 
necessitarians insist that the prior credal state be maximally 
indeterminate so that the data are confirmationally irrelevant 
constitutes a genuine difficulty. 

This is not the case with mixed options as in cases 2 and 3. 
Honest men do differ in presystematic judgments concerning 
the value of data about the outcome of spinning the spinner. 
Were such data to be useless, that would not present the deep 
objection to objectivist necessitarianism that the confirma
tional irrelevance of eH seems to pose. 

Nonetheless, cases 2 and 3 have been helpful; for they show 
that even data which is prima facie useless can sometimes 
have value as input into a program for selecting options pro
vided the method for fixing security levels is of the right sort. 
The next step in the discussion is to extend the idea to case 
4, where the data are prima facie useful. 

Excluding all mixed programs, there are four programs 
available to X in case 4: 

B 1 prescribes selecting G1 regardless of Y's report. 

B2 prescribes selecting G1 if Y reports that eH and G2 if Y 
reports that eT. 

B3 prescribes selecting G2 if Y reports that eH and G1 if Y 
reports that eT. 

B4 prescribes selecting G2 regardless of Y's report. 

The payoffs for these four programs are given in table 17.1. 
The expected payoffs conditional on h.6 and h.4 are given in 
table 17.2. 

From table 17 .2 it is apparent that B3 is not £-admissible. 
However, each of the other three programs ranks highest with 
respect to expected utility relative to some permissible assign
ment of Q-value to h.6 within the range from 0 to l. Hence, 
for an objectivist necessitarian, all options except B3 are E-
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Table 17.1 

h.s & eH h.6 & eT h.4 & eH h_. & eT 

B, .5 .5 -.5 -.5 

B• .5 -.4 -.5 .4 

Ba -.4 .5 .4 -.5 

B. -.4 -.4 .4 .4 

Table 17.2 

h .• h .• 

B, .5 -.5 

B• .14 .04 
Ba -.04 -.14 

B. -.4 .4 

admissible. They are also P-admissible assuming that no one 
of them represents suspense between any others. 

If method (a) is used to determine security levels, the first 
table reveals that the security level for B 4 is best and it should 
be chosen. But B 4 is equivalent to G2• Using the data as input 
is of no value in deciding which gamble to choose. 

If method (b) is employed, the second table rev"eals B2 to be 
uniquely S-admissible. Thus, the data of observation are ef
fectively used as inputs in determining which gamble to select. 

Suppose X had not been an objectivist necessitarian, but 
had adopted a prior credal state for h.6 and h.4 assigning to the 
former alternative credence equal to some subinterval of the 
interval [.4, .6]. If X were to observe the toss or to have Y do 
so and add the report to his corpus to use as evidence in 
basing his decision concerning which gamble to accept, he 
would choose G1 if he found out that eH is true and G2 if he 
found out that eT is true. 

Thus, X would simulate the program B 2 even though he is 
deliberately choosing a gamble on the basis of the total evi
dence to him after observation. 

It is a fallacy, however, to point to this simulation and then 
conclude that an objectivist necessitarian who chooses pro
gram B2 for using data as input is really using the data as 
evidence and adopting a prior credal state sharper than that 
prescribed by objectivist necessitarianism. Notice that had X 
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retained a credal state assigning the interval [.4, .6] to h. 6 but 
altered his method of fixing security levels, he would still 
simulate B2. But if X were objectivist necessitarian but had 
shifted to method (a) for fixing security levels, he would not 
follow program B2 • 

Case 5: Satisfies the conditions for case 4 except that Y = 
x. 

The relation between case 5 and case 4 is analogous to the 
relation between case 3 and case 2. 

There is, however, one point worth emphasizing. In case 3, 
when choosing between mixed options, it is crucial that X 
avoid adding the observation report he makes to his corpus 
until after the program selected is implemented. Everyone, 
whether they are objectivist necessitarians or not, acknowl
edges somehow that the observation reports are confirmation
ally irrelevant in such situations. They can be of use only if 
they are employed as inputs into programs. Hence, it is desir
able to avoid adding them to evidence until a program has 
been chosen and implemented. 

In case 5, however, presystematic judgment suggests that 
the observation reports are of value in a wide variety of cases 
and the value does not seem to depend on whether Xis entitled 
to avoid using the information he eventually obtains concern
ing the outcome of the toss of coin a as evidence in choosing 
a gamble. 

Objectivist necessitarians, however, must insist as a matter 
of principle that X avoid using such information as evidence. 

This appeal to pre systematic judgment cannot be considered 
decisive against objectivist necessitarianism; but the implica
tion is disturbing. 

But even if we waive this point, X must fix security levels 
according to method (b) rather than method (a) in both cases 
4 and 5. As I have argued repeatedly, to obligate X as a 
rational agent to follow this course is to confuse moral, polit
ical, or other valuation with conditions on rational valuation. 

I have complained previously of the tendency of many au
thors from Carnap to Hacking to impose as principles of in
ductive logic strong conditions on credal states and to con
demn those who violate these principles as deviants from 
perfect rationality. In my view, Wald took a step replicating 
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this practice in connection with questions of value. I do not 
claim that rational agents should be prohibited from fixing 
security levels in accordance with method (b); but they should 
not be coerced or cajoled into doing so merely to save the 
viability of objectivist necessitarianism. 

Thus, although it is undeniable that observation reports may 
be used to great advantage as inputs into programs for select
ing options even when these programs are not routines for 
expansion, doing so depends for its legitimacy to a consider
able degree on the goals and values of the agent. When the 
goals and values fail to meet the required conditions, we 
should not condemn the decision maker for his irrationality. 
It is objectivist necessitarianism that is in trouble. 

17. 7 The rationalization of the use of observation reports as inputs 
The Long Run into programs for action illustrated in cases 2-5 concerns jus

tifying the use of programs in contexts where the agent is 
interested solely in the gains and losses pertaining to decisions 
taken in that context. 
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Followers of Neyman and Pearson, however, often make 
appeals to the long-run benefits of repeated application of a 
program. What has been shown is that, provided that the agent 
fixes security levels in a certain way, such appeals to the long 
run are unnecessary. On the other hand, it remains worthwhile 
to consider ways of justifying the use of programs to realize 
long-run benefits. 

Consider first a situation exactly like case 4 or case 5 except 
that the alternative statistical hypotheses are h.99 and h_01 • 

Prior to experimentation, X's credal state is such that the 
hypotheses eT & h.99 and eH & h.01 have credence representable 
by the interval [O, .01]. Consequently, if X were to take all 
four simple joint propositions as an ultimate partition and 
assign to each element of U an M-value of 1/4, then as long 
as q > .04, he would reject the two simple joint propositions 
just cited and conclude prior to experimentation that eH & h.99 

V eT & h.ot· 
Even an objectivist necessitarian can reach this conclusion 

provided he has background knowledge of the sort I have 
described. 

But once X has reached this conclusion, he may argue that 
he should simulate the behavior prescribed by B2 • However, 
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he need not argue that he should use a program for employing 
his or Y's observation report as input. If he waits until he can 
add his report or Y's to his corpus before choosing a gamble, 
the report added will entail the truth of either h.99 or h.01 and 
will uniquely decide which of the options is £-admissible for 
him. There will be no need to invoke considerations of S
admissibility. 

Reasoning like this will work neatly enough only in special 
cases. It will not be compelling in the original cases 4 or 5 or 
more complicated variants of these. 

However, something very much like the case where the 
alternatives are h.99 and h.01 obtains in situations where X is 
designing a program he anticipates using repeatedly in a large 
number of similar situations. For example, X might anticipate 
having to choose between gambles like G1 and G2 in a large 
sequence of contexts where he is presented with a coin which 
either has a .6 or a .4 chance of landing heads and where he 
has an opportunity to observe a toss of the coin before ac
cepting the gamble (as in case 5). 

Suppose that Xis constrained to follow a policy of using the 
same program over and over again and that he is concerned 
to reap the greatest net benefit from repeated application in 
the long run. 

X does not know what kind of coin will be presented to him 
on each occasion. It could be either a coin with a .6 or a .4 
chance of landing heads. There are, therefore, zn distinct pos
sibly true hypotheses concerning the sequence of such coins 
he will face-given that the sequence has a length n. There 
are n + 1 distinct hypotheses as to the relative frequency of 
.6 coins in the sequence. 

Given any specific hypothesis as to the relative frequency 
of .6 coins, X can compute a chance distribution for the rela
tive frequency of heads among the tosses of .6 coins and for 
the relative frequency of heads among the tosses of .4 coins. 
By direct inference, he can assign, if he is an objectivist ne
cessitarian, an interval-valued credence to the proposition ob
tained by conjoining the hypothesis as to the relative fre
quency of .6 coins with a specification of relative frequency 
of heads on tosses of the .6 coins and of relative frequency of 
heads on tosses of th7 .4 coins. Let U consist of all such 
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hypotheses and let the M-function assign equal value to all 

elements of U. 
Even for low values of q, X will be justified in rejecting 

elements of U which assert (a) that r/n coins in the sequence 
are .6 coins, (b) that the percentage of heads in the r cases 
where a .6 coin is tossed deviates from 60% by a large amount, 

'and (c) the percentage of heads m the n - r cases where a .4 
coin is tossed deviates from 40% by a large amount. 

By bookkeeping through reiterating the rejection procedure, 
the conclusions can be strengthened. (See section 2.7.) Once 
such expansion has been made, then if X has only the four 
programs B 1 , B2 , B3 , and B4 for repeated use, the average long
run benefits of using one of these programs when n = r will 
be approximately equal to the expectation of that program 
conditional on h.6 • When n = 0, it will be approximately equal 
to the expectation conditional on h.4 • The average benefits for 
intermediate values of r will fall between these values. 

If X is interested in long-run benefits and fixes security 
levels according to method (a), repeatedly applying B1, Bz, and 
B4 would all be £-admissible and P-admissible, but only B2 

would be S-admissible. There would be no issue as to whether 
an alternative method of fixing security levels is to be used. 

The alternative policies have to be construed as programs 
for repeated use of observation reports as inputs. If the reports 
are used as evidence, the methods described could not support 
repeated use of B2 (i.e., simulating conformity to B2). 

Thus, there is a long-run rationale for adopting B2 that 
avoids relying on Wald's criterion or variants of it for each 
single case. It may seem, therefore, that we have found a 
rationale which avoids converting moral prescriptions into dic
tates of reason while rendering objectivist necessitarianism 
free from difficulty. 

That is not so. The rationale works only when X seeks to 
promote net long-run benefits-or equivalently average long
run benefits-rather than with the benefits involved on each 
occasion of use. 

Consequently, objectivist necessitarianism cannot be de
fended by appealing to long-run considerations unless it is 
claimed that men would be irrational unless they were con
cerned with long-run interests and not with the short run. 
Appeal to the long run has been made by a great many phi-

17.7 THE LONG RUN 



421 

losophers; but I balk at the notion that someone is irrational 
if he adopts a more myopic view. 

In section 17 .1, the benefits of routine expansion and deci
sion making were noted. But even routinization was seen as 
a benefit not because the long-run benefits are being promoted 
but because it minimizes various costs on each application 
and, in the case of routine expansion, enhances our capacities 
for using data in acquiring new information. 

Since routine programs are used where, so we assume, the 
error probabilities are very low, we could anticipate prior to 
each use of the routine that the observation report made will 
be true. Hence, if upon making a report, the report made 
conflicted with what is in the corpus, we would not escape 
contradiction by refusing to add the report to the corpus. 

In practice it will make little difference whether we expand 
the corpus via induction prior to each application of the routine 
or not. The need to obtain new information via the testimony 
of the senses plus the benefits of routinization will suffice to 
warrant adopting a routine provided the error probability is 
low enough. 

But it is neither feasible nor desirable to routinize all deci
sion making. We are, indeed, creatures of custom and habit 
most of the time. But we design experiments precisely in those 
cases where custom and habit have failed us. 

Proponents of the Neyman-Pearson-Wald school of thought 
attempt to convert all decision making to programed decision 
making where the agent is designed to respond in appropriate 
ways to observation reports. Wherever possible, the program 
is designed to be a routine to be applied over and over again 
in the hope of realizing some long-run benefit. Such ideas are 
not peculiar to Neyman, Pearson, and Wald. They are to be 
found in the writings of C. S. Peirce, among others. 

I contend that we often cannot and when we can sometimes 
should not obey the prescriptions of such an approach to 
decision making. In particular, in scientific inquiry, we are 
concerned to obtain new error-free information pertaining to 
the particular problem or cluster of problems under investi
gation. It is small consolation to be told, for example, that 
Neyman-Pearson methods of confidence interval estimation 
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will, in the long run of applications, only rarely lead to error. 
In inquiry, as in daily life, we are interested in the errors 
which might obtain in the specific context under scrutiny. t 

t The interpretation of confidence interval estimation as implementing a rou
tine program for using observation reports as inputs appears to capture the 
views of Neyman and Pearson. Some authors (e.g., A. Birnbaum, "Concepts 
of Statistical Evidence," in Philosophy, Science, and Method: Essays in 
Honor of Ernest Nagel, edited by S. Morgenbesser, P. Suppes, and M. White, 
New York: St. Martin's, 1969, pp. 121-124 and D.R. Cox and D. V. Hinkley 
in Theoretical Statistics, London: Chapman and Hall, 1974, pp. 45-46 and 
48-49) construe the calculation of a confidence interval as a summary of the 
evidential relevance of the data. They favor this conception of evidential 
import over others (e.g., likelihood) because it can be operationalized with 
reference to the long-run reliability of hypotheses favored by the evidence 
according to this concept. Nothing said in this chapter applies to these views. 
I do not understand them except in a formal way. For me a concept of 
evidential support becomes intelligible only if its function in inquiry and 
deliberation can be identified. This sort of "operationalization" seems to me 
to be crucial. Long-run sampling properties have only an obscure relevance 
to concepts of evidential support. 
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THE CURSE OF FREGE 

Frege opposed psychologism in deductive logic. He contended 
that laws of logic are not "psychological laws of takings-to
be-true but laws of truth." 1 Furthermore, "what is true is 
something objective and independent of the judging subject; 
for psychological logicians it is not.'' 2 

Frege did concede, however, that although logic does not 
describe how agents think, it does prescribe how they ought 
to think: 

It will be granted by all at the outset that the laws of logic 
ought to be guiding principles for thought in the attainment of 
truth, yet this is only too easily forgotten, and here what is 
fatal is the double meaning of the word "law." In one sense 
a law asserts what is; in the other it prescribes what ought to 
be. Only in the latter sense can the laws of logic be called 
"laws of thought"; so far as they stipulate the way in which 
one ought to think. Any law asserting what is, can be con
ceived as prescribing that one ought to think in conformity 
with it, and is thus in that sense a law of thought. This holds 
for laws of geometry and physics no less than for laws of 
logic. The latter have a special title to the name "laws of 
thought" only if we mean to assert that they are the most 
general laws, which prescribe universally the way in which 
one ought to think if one is to think at all. 3 

Frege apparently supposed that once we are given the laws 
of logic construed as objective truths, we may readily derive 
prescriptions regulating how agents ought to think. Conse
quently, there is little point in directing attention to prescrip
tions concerning the way one ought to think additional to that 
focused on the study of logical truth. This view is reiterated 
by Carnap, who applied it to inductive logic as well as deduc
tive logic. An objectivist view of logic construes principles of 
logic as objective truths "independent of the contingency of 
the facts of nature" and "not dependent upon whether or what 
any person -may happen to imagine, think, believe, or know 
about these sentences." 4 A qualified psychologistic view of 
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logic sees logic as regulating the way agents ought to think. 
According to Carnap, "psychologism thus diluted has virtually 
lost its content; the word 'thinking' or 'believing' is still there, 
but its use seems gratuitous.'' 5 

Frege and Carnap could not have intended to claim that 
prescriptions about the way agents ought to think are dedu
cible from logical truths. The logical truths must be supple
mented by some principle or system of principles licensing the 
derivation of such prescriptions from logical truths. Given 
these principles, the study of objective logical truth would 
suffice for the determination of norms of rational thought. 
Unfortunately neither Frege nor Carnap are clear concerning 
what these principles are like. 

Consider, for example, whether X's body of beliefs at t 

should be deductively closed. If the beliefs are consciously 
held beliefs, no one can meet the requirement even approxi
mately. For this reason, the prescription may be restricted in 
application to ideally rational agents. Alternatively one might 
follow the approach I favor and impose the deductive closure 
requirement not on an agent's consciously held beliefs but on 
propositions the agent is committed to accepting as evidence 
in deliberation and inquiry. Thus, the prescription may be 
imposed on agents who lack perfect memory, computational 
facility, and emotional health. But even this suggestion is 
fraught with controversy. Kyburg denies that we should be 
committed to deductively closed sets of hypotheses. To be 
sure, Kyburg's notion of acceptance or belief does not appear 
to be acceptance as evidence. But the existence of controversy 
over the domain of applicability of a requirement of deductive 
closure points precisely to what is wrong with the remarks of 
Frege and Carnap on what Carnap calls qualified psychologis
tic construals of logic. It is not a trivial matter to specify the 
overarching norms which link the objective truths of logic with 
prescriptions about how agents ought to think. Neither Frege 
nor Carnap are explicit about the domain of applicability of 
the laws of thought normatively construed. Nor do they indi
cate what form such laws ought to take. 

Nonetheless, there is a kernel of truth in what they say 
about qualified psychologism. The principles of qualified psy
chologistic deductive logic should be derivable from the truths 
of objective deductive logic and general principles "which 
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prescribe universally the way in which one ought to think if 
one is to think at all." 

These general principles should be applicable no matter who 
the agents are or the circumstances under which they are 
deliberating; and, given these general principles, the truths of 
objective logic should determine the normative laws of 
thought. Thus, for both Frege and Carnap, qualified psychol
ogistic logic imposes constraints on the way agents ought to 
think which are universally applicable regardless of circum
stance. 

I have followed Frege and Carnap in regarding normative 
principles regulating deliberation and inquiry to be principles 
of logic only if the norms are universally applicable and rela
tively context independent. This view of qualified psycholo
gistic logic has been employed both in relation to deductive 
and to inductive logic. I do not object to this aspect of the 
Frege-Carnap attitude towards qualified psychologism but to 
the casual manner in which they address the problem of de
riving normative laws of thought from objectivist logic. 

What remains to be considered is whether there are other 
context-dependent norms regulating inquiry and deliberation 
additional to those context-independent principles of logic. 
The only norms Frege and Carnap seem to countenance are 
context-independent principles. Once context is taken into 
account, critical control seems to vanish. Contextual factors 
may be investigated by psychology, sociology, and history; 
but how such factors regulate deliberation and inquiry is be
yond critical control. Consequently, we must say that either 
some aspect of scientific inquiry or of other forms of deliber
ation is subject to objective critical control in the sense that 
it is regulated by principles of qualified psychologistic logic or 
it is not subject to critical control at all. 

The pervasive influence of this polarity is exhibited in the 
tendency of students of rational probability judgment to divide 
into two camps. Necessitarians seek to defend the view that 
all rational agents should be obliged to make the same prob
ability judgments relative to the same evidence. In chapters 
14-17, several efforts to save necessitarianism have been con
sidered and found wanting. 

The typical response to the deficiencies of necessitarianism 
is to adopt some form of personalism which prescribes that 
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rational agents should choose numerically precise credal states 
subject only to the relatively weak constraints of credal co
herence and, perhaps, direct inference. 

Popper shared Carnap's concern to construe scientific in
quiry and deliberation as regulated by objective principles of 
criticism in the sense opposed to psychologism. 6 Unlike Car
nap, however, Popper was an extreme subjectivist concerning 
probability judgment. On Popper's view, it seems that even 
credal coherence may be violated. 7 Precisely because proba
bility judgment is beyond critical control, it cannot play a 
central role in scientific inquiry. Otherwise science would be 
infected with subjectivity. The objectivity of science is pro
tected by decontaminating it of the poisons of Bayesianism. 
Within Popper's theory, only the principles of deductive logic 
regulate thought. 

But, even within his own circle, Popper's outlook has been 
subjected to trenchant criticism. P. K. Feyerabend has argued 
that any methodological constraints of a fixed and context
independent variety which may be acceptable are too weak to 
impose significant restrictions on deliberation and inquiry. Just 
as intemperate personalists insist that anything goes (except 
for violation of credal coherence, consistency, and unique
ness) in the choice of credal states, Feyerabend claims that 
anything goes in our efforts to undermine and refute one the
ory through confrontation of that theory with others. 8 

Thus, both within the Bayesian tradition exemplified by 
Carnap's work on probability and within the Popperian tradi
tion, the objectivity of scientific inquiry is made to stand or 
fall with the existence of a fairly powerful and fixed system of 
principles applicable to all agents on all occasions. If such a 
system exists, the objectivity of scientific inquiry and knowl
edge is saved. If it does not, we must see scientific inquiry as 
buffeted by psychological, sociological, and historical factors 
in a manner beyond serious critical control. 

This polarization is not a new one; but it is interesting that 
both Carnap and Popper have seen their commitments to ob
jectivity as deriving from Frege's attack on psychologism, and 
that much contemporary discussion concerning scientific 
method proceeds on assumptions about the terms of debate 
advanced in their writings even when the particular outlooks 
of Carnap and Popper are rejected. 
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For this reason, I regard anyone to be suffering from the 
curse of Frege who submits to the polarization and chooses 
either in favor of method and against psychologism, sociol
ogism, and historicism or chooses against method and in favor 
of psychologism, sociologism, and historicism. Frege himself 
is not particularly responsible for spreading the curse in the 
form I have described; but his views on psychologism in de
ductive logic do seem to have been elaborated upon or mod
ified in ways central to the polarization. If the curse were, 
counter to fact, a blessing, few would object to honoring Frege 
by calling it after his name. There is little room for complaint 
in naming the curse in his honor. 

Not everyone suffers from the curse. A. Shimony, for ex
ample, has sought to identify relevant factors of the context 
of inquiry such as the problem under investigation and the 
potential answers to the question under serious scrutiny in 
devising critical principles for the determination of credal 
states additional to the weak advice which inductive logic can 
offer. Within the Popperian tradition,· I. Lakatos sought to 
indicate how features of a research program might direct the 
conduct of specific inquiries whose results might in turn lead 
to modification and eventual abandonment of the program 
itself. It is unnecessary to endorse the details of either Shi
mony' s or Lakatos's proposals in order to register approval 
of the general thrust of their approach. As pragmatists have 
recognized for a long time, contextual considerations may be 
invoked in appraising steps taken at various stages of inquiry. 
We need not rest content with deductive logic and the thin 
gruel that inductive logic has to offer. 

Exhortation alone will not exorcise a curse. One must seek 
to construct an alternative to suffering from its tyranny. In 
Gambling with Truth, I began constructing such an account 
by making some proposals concerning inductive expansion in 
certain special cases. In this book, I have sought to extend 
this account of inductive expansion and supplement it with an 
account of routine expansion and of contraction so that, at 
least in outline, a view of how revisions of bodies of knowledge 
or evidence construed as standards for serious possibility 
should be evaluated has been constructed. 

In the later chapters of the book, I have tried to integrate 
this view of the revision of knowledge with an account of the 
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revision of probability judgment which, like the proposals con
cerning standards for serious possibility, accords the contexts 
of specific inquiries an important place in critical appraisal of 
changes in cognitive commitment. 

Even if the proposals made here could be judged adequate 
without further modification or elaboration, more needs to be 
done. Factors like potential answers, informational value, 
problems worth investigating, and the like have been recog
nized to be relevant to the appraisal of revisions of cognitive 
commitments. I have not, however, explored the extent to 
which they are subject to critical control in inquiry and delib
eration. The topic of abduction has not as yet been adequately 
addressed. 

But even if a suitable account of abduction can be con
structed congenial with the outlook I have been advocating, 
it is doubtful whether context alone can guarantee definite 
conclusions and definite probability judgments with the level 
of precision we often desire. We should be prepared to ac
knowledge that we ought often to suspend judgment pending 
further inquiry rather than arbitrarily leap to conclusions. We 
should also acknowledge that inquiries occur in history, so 
that attention to context is important and that the knowledge 
we use and the methods we employ in such inquiries are 
themselves subject to revision in the course of these inquiries. 

Perhaps there is some incorrigible knowledge. Perhaps there 
are a few fixed methodological principles constraining the re
vision of knowledge and probability judgment. I have consid
ered some fixed features of method in this book and, if the 
conclusions reached here are sound, these fixed principles are 
very weak. 

This circumstance ought not lead, however, to skepticism 
about the objectivity of science or of its methods. What passes 
for scientific method at the moment depends on the current 
corpus of scientific knowledge and the current methods for 
appraising hypotheses with respect to probability. Our meth
ods are modified by our knowledge just as our knowledge is 
modified according to our methods. 

In revising our knowledge and methods, we are not en
thralled by frameworks, discourses, or other conceptual 
hobgoblins from which we can escape only by shifting to other 
apparitions of a similar character and only in a manner which 
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precludes reasoned appraisal of the rival frameworks from a 
vantage point which begs no questions. We are not prevented 
from seeking error-free information in a rational way relative 
to the best information available; and we can open our minds 
to rivals to current doctrine without succumbing to conver
sion. 

It is, therefore, possible to keep revisions of our changing 
doctrines and methods under critical control provided we are 
prepared to recognize the relevance of contextual factors to 
such control and to recognize that the relevance of context 
(and, in this sense, of historical circumstance) to the appraisal 
of progress does not threaten us with an objectionable psy
chologism, sociologism, or historicism. There is, indeed, very 
little fixed method; but, with all due respect to those who 
suffer from the curse of Frege, there is objectivity enough. 

THE CURSE OF FREGE 
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Advocates of the use of nuclear energy have urged us to 
compare the expected gains and losses deriving from the use 
of nuclear power with the expected gains and losses resulting 
from alternative approaches to energy supply. The public is 
encouraged to take into account how remote the probability 
of a serious accident is and consider whether the expected 
benefits adequately compensate for the risks incurred. Invok
ing the Bayesian principle to maximize expected utility, pro
ponents of nuclear energy dismiss the anxieties of those who 
worry about the worst possible consequences of extensive 
reliance on energy generated in nuclear power plants as based 
on irrational or foolish appeals to the principle of minimizing 
the worst possible consequences (or maximizing the minimum 
possible benefit). 

But maximining is not always foolish. Calculations of ex
pected utility require numerical evaluation of society's utilities 
and identification of numerically precise estimates of the prob
abilities of accidents of various sorts. If the available evidence 
fails to warrant a sufficiently definite system of credal proba
bility judgments for use in computing expected utilities, con
siderations of expected utility may fail to render a verdict 
concerning the merits of the alternatives of permitting and 
promoting nuclear power, prohibiting it, or more refined var
iant approaches to our energy problems. When neither per
mitting nor prohibiting the extensive use of nuclear power is 
ruled out by appeal to considerations of expected utility, it is 
perfectly reasonable to look at the worst possible conse
quences of each available option which has survived the test 
of expected utility (each £-admissible option) and identify that 
option or those options for which the worst possible conse
quence (the security level) is better (or at least no worse) than 
the worst possible consequence of all other £-admissible op-
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tions. Maximining comes into its own when maximizing fails 

to render a verdict. 
By and large the public seems to endorse values which 

recognize the worst possible consequences (the security level) 
of permitting a nuclear power plant to run to be worse than 
the worst possible consequences of prohibiting such a plant. 
Perhaps this assumption is mistaken or unclear. And perhaps 
we should not listen to society. These are difficult and vexing 
issues. I shall not attempt to settle them here. 

In any case, critics of extensive use of nuclear power do 
think the security level of a nuclear policy to be far inferior to 
the security level of prohibiting its use. Advocates of nuclear 
power do not question that assumption. Instead they belittle 
its relevance. We beg no questions by taking it for granted 

here. 
If the security level for refusing to run a nuclear plant is 

greater than the security level for permitting its use, the only 
condition under which permitting a nuclear power plant seems 
cogent is when the probability of serious accident is suffi
ciently low according to all permissible expection-determining 
probability distributions (i.e., all distributions not justifiably 
eliminated on the basis of the available evidence) to warrant 
the verdict that the option of running the plant is optimal with 
respect to expected utility according to all permissible distri
butions (i.e., is uniquely £-admissible). 

If that could be established, the circumstance that prohib
iting the plant bears a higher security level would not count 
against the policy of running the plant. 

Thus, advocates of nuclear power are right to appeal to 
calculations of expected utility as relevant to the assessment 
of rival policies. On the other hand, to make the case that 
such calculations are decisive, advocates must argue that no 
matter what expectation-determining or credal probability dis
tribution permitted by the evidence is used, running nuclear 
plants bears greater expected utility than prohibiting the use 

of such plants. 
Critics of nuclear power have a somewhat easier job. They 

do not have to show that prohibition bears greater expected 
utility than promotion. Success in establishing this would be 
sufficient t<Y make their case but not necessary. If prohibiting 
the running of nuclear power plants bears maximum expected 
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utility according to some expectation-determining probability 
distributions permitted by the evidence and permitting the 
running of such plants bears maximum expected utility ac
cording to other such distributions, considerations of expected 
utility fail to decide and maximin may be invoked. According 
to our assumptions about society's values, prohibiting the 
nuclear plants will be recommended. 

Much debate concerning energy policy and the role of nu
clear power plants does appear to polarize around advocates 
of nuclear power who argue like expected utility maximizers 
and critics who argue like maximiners. The approach to ra
tional choice advocated in this book and outlined in the pre
vious paragraphs denies that this dispute reveals a disagree
ment over public values or over principles of rational choice. 
Perhaps such differences are involved but this is not evident. 
The heart of the disagreement concerns assessments of the 
probabilities of accidents of a serious nature occurring at nu
clear power plants. Are the probabilities of accidents of a 
serious nature sufficiently low according to all permissible 
distributions to favor nuclear power or is the verdict suffi
ciently indeterminate to justify prohibiting extensive use of 
nuclear power because of considerations of security? 

In 1975, the Nuclear Regulatory Commission published a 
report entitled Reactor Safety Study which sought to give an 
assessment of probabilities of serious accidents in commercial 
nuclear reactors. In the first two appendices to this study, the 
methods employed in making the evaluations of probabilities 
are described. 1 There is considerable discussion of the diffi
culties involved in making such assessments and of the meth
ods employed to meet the difficulties. 

One important task is to identify the various types of epi
sodes which could lead to a major accident. Given the iden
tification of such episodes, the possible ways in which the 
backup and safety devices which are installed to prevent such 
episodes from leading to serious consequences need to be 
identified, and the probabilities that these devices will function 
as designed (or alternatively the probabilities that they will 
fail) need to be estimated. 

Unfortunately the available data on the reliability of backup 
and safety devices provide a poor basis for making the req
uisite estimates of chances. Information may be available con-
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cerning the performance of some of these devices at various 
plants; but the conditions of operation vary widely from plant 
to plant, so that one cannot assume that the chance of break
down of a system in a given interval of time will be the same 
for one plant as will the chance of breakdown of a correspond
ing system in another plant. 

The backup systems and safety devices (such as sources of 
alternative electrical supply, alternative cooling systems, etc.) 
are complex systems. The data base for deriving estimates of 
the chance of such a system breaking down might, therefore, 
be broadened by examining data for estimating failure proba
bilities for critical components of the system and calculating 
a failure probability distribution for the entire system from this 

information. 
To do this, one must be able to represent the condition of 

failure of the entire system as a Boolean function of the failure 
conditions of the critical components. In appendix 2 of Re
actor Safety Study, the method of fault tree analysis is intro
duced as a method of graphic representation of system failure 
as a Boolean function of failures of components. 

Thus, in an example used for illustrative purposes in appen
dix 2 (called program SAMPLE), seven distinct components 
are identified such that failure of the total system depends on 
appropriate distributions of failures among these components. 

If T represents the event of system failure and X(n) repre
sents failure of the nth component (where 1 s: n s: 7), program 
SAMPLE represents T as 

(1) Tiff [X(l) V X(6) V X(7) V [(X(2) V X(3)) & (X(4) V X(5))]]. 

The term "fault tree" derives from the use of tree diagrams 
as graphical representations of Boolean functions. 

There are 27 possible ways in which the seven components 
can be in states of failure and nonfailure. For some of these 
T holds (i.e., the system has failed) and for some it does not. 
The probability that T holds is the sum of the probabilities of 
the members of that subset of the 27 possible states of the 
seven components for which T holds. 

In general, empirical data are lacking concerning the proba
bilities of these 27 states (or the comparable 2n states of other 
systems of components for other complex systems). However, 
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some data may be available concerning the failure probabilities 
of each of the seven components separately. The authors of 
Reactor Safety Study described methods for simplifying com
putations so that calculations of system failure probabilities 
could be made from failure probabilities of the seven compo
nents. For the most part, the simplifications tended to increase 
failure probabilities and, hence, load the case against the 
safety of the reactors under investigation. For example, the 
probability of X(l) V X(6) was taken to be the sum of the 
probabilities for X(l) and X(7). The probability of X(l) & X(6) 

was not deducted from this, even though in a strict probabi
listic calculation it should be. On the other hand, in the ex
ample, the authors of the study did assume that X(3) and X(5) 
are probabilistically dependent (for illustrative purposes) and 
used a simplification which tended to reduce the probability 
of failure. Despite this, I shall employ the method of simpli
fication adopted in Reactor Safety Study for determining sys
tem probability of failure from failure probabilities of compo
nents. The simplified formula is 

(2) P(T) = (P(X(2) + P(X(3))(P(X(4)) + P(X(S))) 

+ P(X(l)) + P(X(6)) + P(X(7)) + P(Xcm). 

Here Xcm is the joint failure of the third and fifth component. 
Setting aside worries one might have about the methods of 

simplification involved (which in my view are marginal wor
ries), it should be pointed out that the analysis could overlook 
some potential source of breakdown of the system under 
study. The authors of the report are aware of this and attempt 
to make allowance for it and for human failure. In any case, 
failure to account for all serious and relevant possibilities 
threatens all deliberate decision making. This does not mean 
that we should not attempt to be as clear as we can concerning 
such possibilities. It means only that we should avoid con
gratulating ourselves too much and looking at our analyses as 
security blankets. I do not think the authors of Reactor Safety 
Study are to be faulted on this score. 

The failure rate for a given component at a given time t is 
the probability of that component breaking down in the inter
val from t to t + dt for extremely small dt (or; more accurately, 
an approximation to that probability). 

The authors of the study assumed that critical components 
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would be subject to regular test and maintenance. Under this 
assumption, the failure rate for a given component should be 
approximately constant over time and independent of the past 
background of breakdowns. In other words, the behavior of 
the component with respect to failure should exemplify a Pois
son process. The probability density flt) characterizing the 
probability distribution for t being the time of first breakdown 
starting from initial time 0 should approximate A.e->.t, and 
the constant failure rate should be A.. 

If failure rates for all components could be ascertained with 
reasonable precision, we might utilize (2) to obtain a failure 
rate for the entire system. 

But even if a failure rate can be imputed on the basis of the 
available data to the operation of a given component in the 
system operating in a specific plant, the assessment of the 
failure rate for the corresponding component of a correspond
ing backup system in another plant may and, indeed, is, in 
general, revealed to be different; for the conditions of opera
tion in different plants have an impact on failure rates (which, 
though they may not be small enough, are still small enough 
to be sensitive to variations in operating conditions relevant 
to calculations of expected losses due to accidents.) 

Thus, the available data show a spectrum of failure rates for 
a given type of component in a given type of system. If we 
seek an expected failure rate for a similar component in a new 
system of the same type or an average failure rate for all such 
systems in a planned network of nuclear power plants, it is 
desirable to ascertain the objective or statistical or chance 
probability distribution over values of the failure rate of the 
type of component falling in the detected or "assessed" in
terval of values for that failure rate. The new system (or the 
systems belonging to the planned network of nuclear power 
plants) is treated as if it were selected at random from a 
population of systems. The systems already in operation from 
which data are collected are also treated in the same manner 
and an effort is made on the basis of that data to ascertain the 
chance distribution of failure rates for the type of component 
in the population sampled. 

Notice that if a definite objective statistical or chance dis
tribution could be established on the basis of such data at least 
to a good degree of approximation, direct inference could then 
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license a uniquely permissible credal probability function to 
be used in computing expected losses from serious accidents 
should a nuclear plant be set in operation or should an entire 
network of such plants be set in operation. 

Unfortunately the range of failure rates assessed for a com
ponent on the basis of the data often range over two orders of 
magnitude-e.g., from .01 to .0001. If differences in failure 
rates of a given component of one in a thousand might matter 
to the safety of a given component or backup system, data 
even from a fairly large number of components of a given type 
might prove insufficient to exploit standard chi-square good
ness-of-fit tests effectively. Furthermore, the best that such 
tests can do is provide some approximate determination as to 
whether some hypothesis about the chance distribution of 
failure rates ought to be ruled out on the basis of the data or 
is in adequate agreement with the data. If the data are too 
sparse, it may turn out that many diverse distributions "fit" 
the data. 

The authors of Reactor Safety Study acknowledge the 
sparsity of the data and that such data are insufficient to favor 
a definite chance distribution. Nonetheless, the authors do 
adopt a definite distribution over the failure rates for each com
ponent investigated. They are prepared to construe that dis
tribution as an objective chance or frequency distribution in 
some contexts and as a "Bayesian" or credal distribution in 
others. I take them to mean that they are prepared to reach 
a conclusion as to what statistical probability distribution 
should be used as the basis for a direct inference to determine 
a credal distribution for use in computing expectations. 

The authors of Reactor Safety Study begin their search for 
a distribution for the failure rate A. by deriving an ''assessed 
range" of values for A. from the data. They then determine 
that log normal distribution for A. which entails a 5% proba
bility of A. taking a value below the lower bound of the assessed 
range and a 5% probability of its taking a value greater than 
the upper bound of the assessed range. 

For example, if the assessed range of values of A. is from 
.00125 to .02, the log normal distribution fitted to this interval 
according to the method just described has a mode of .00245, 
median of .. 005, and mean value of .00715. 

These measures of location are nearer the lower end of the 
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assessed range of failure rates than to the upper end, as is 
typical of the log normal distribution. 

Let v be the sum of the lower and upper bounds of the 
assessed range and K = v - A.. The value of K ranges over the 
same interval of values as the value of A.. It takes its maximum 
value when A. takes its minimum value and vice versa. The 
authors of Reactor Safety Study could easily have fitted a log 
normal distribution for K. In our example, v = .02125 and the 
mode, median, and mean value for K would be equal to the 
corresponding values for A. when A. is assumed log normal. But 
now the distribution of A. is such that the mode is .0188, the 
median is .01625, and the mean value is .0141. 

Thus, adopting a log normal distribution for K tends to 
concentrate more probability in the upper end of the assessed 
range for A. than in the lower range, in sharp contrast to 
adopting a log normal distribution for A.. 

If data were abundant, we might look forward to evidence 
supporting the elimination of one or the other of these distri
butions as not adequately in agreement with the data. The 
authors of Reactor Safety Study do not consider how well the 
log normal for K fits data, and I have not explored their data 
tables to make a determination. One suspects, however, from 
their own testimony that in many cases the data were too 
sparse to warrant ruling out either of these distributions even 
though the measures of location differ substantially in one 
case from the other. 

The authors of the report do appear to be mindful of the 
thin ice on which they are skating. They keep emphasizing 
that the data do not conflict with their use of the log normal 
distribution and that in those few cases where there were 
enough data for a chi-square test, the log normal for A. is 
"consistent" with the data. But, of course, the same data 
could be consistent with the log normal for K as well. I am not 
especially fond of the log normal for K. Any other distribution 
diverging from the log normal distribution for A. could do just 
as well. 

The authors note that 

The log normal distribution is thus a "natural" distribution 
for describing data which can vary by factors in the same way ' 
that a normal distribution is "natural" when the data can vary 
by additive or subtractive increments. In the study, one of the 
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reasons that the log normal was assessed to be suitable was 
that the component and other input data in general could vary 
by factors. For example, a failure rate estimated at 10-s could 
vary from 10-1 (= 10-6/IO) to 10-0 (= 10-6 • I0).2 

I am not sure why data which can vary by factors cannot 
also vary by increments. Most assuredly they do. I assume 
that the authors are alluding to a variety of formal properties 
of log normal distributions which render them attractive for 
purposes of computation of the sort they subsequently explain 
in somewhat greater detail. 

In any case, these formal properties (or nearly all of them) 
belong to the log normal distribution for K as well as to the log 
normal distribution for A. and do not explain the bias in favor 
of the latter distribution. There is one consideration invoked 
which does not apply to both distributions equally well: 

The log normal distribution form, in particular its positive 
skewness, can incorporate general reliability-associated be
haviors of the assessed data (the positive skewness accounts 
for the occurrence of less likely but large deviate values, such 
as abnormally high failure rates due to batch defects, environ
mental degradation, and other outlier causing effects). J 

Please observe that this argument on behalf of the log nor
mal for A. presupposes that the failure rates at the upper end 
of the assessed range are abnormal. The authors do not ac
tually say that the data establish this. They simply assume it. 
Given this assumption, skewing the distribution in the opposite 
direction as the log normal for K does is ruled out of consid
eration at the outset. 

The authors of Nuclear Safety Study comment on their 
arguments for the log normal for A. as follows: 

The above items of course do not constitute tenets for the 
dogmatic justification of the log normal as the only distribution 
applicable, but instead serve as a priori considerations. As a 
CO?Jpleme~t to the above considerations, from a pragmatic 
pomt of view the log normal was employed because it was 
ftexi?l~, it was consistent with reliability and data properties 
and 1t ~s a ~ta~dar_dly employed and straightforward (null hy
pothesis) d1stnbut10n. Checks and tests of its applicability to 
the data of this study do not contradict nor refute these a 
priori and pragmatic considerations. 4 

Finally the authors defend the care and objectivity with 
which they chose the log normal by comparing it with another 
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distribution of failure rates-the log uniform over the assessed 
range for A.. They found "insignificant differences" over the 
assessed ranges because of their size in using these two dis
tributions and, hence, regarded the choice of the log normal 
as "robust." We note, of course, that the log uniform is even 
more skewed in favor of low failure rates than the log normal. 

In spite of the bizarre character of some of the arguments 
advanced by the authors of Reactor Safety Study, I am not 
prepared to suggest that authors have chosen the log normal 
distribution precisely because it will load the dice in favor of 
a positive verdict concerning the reliability of backup systems 
for nuclear power plants. And I detect no basis in what I have 
read for the accusation that their judgments are politically or 
economically motivated. They present their reasons, no mat
ter how distressingly poor they might be, with a frankness 
which suggests that the authors of the report regard the rea
sons as perfectly good ones. 

What is troubling about the procedures described by these 
authors is that the methods they employ for assessing proba
bilities of failure conform to a wide variety of epistemological 
outlooks favored by contemporary philosophers and students 
of probabilistic inference. I think a great many epistemologists 
would be hard pressed to explain why, from their point of 
view, there is anything wrong with the choice of the log normal 

for A.. 
I do not see anything objectionable in pointing out that the 

data do not rule out that distribution. But there is something 
seriously wrong in choosing that distribution to guide conduct 
when there is no warrant for doing so. 

According to personalist Bayesians, we cannot expect too 
much help from the data in determining a uniquely permissible 
probability distribution in guiding our conduct. We are, 
nontheless, under an obligation to adopt a credal state satis
fying credal uniqueness-i.e., according to which one proba
bility distribution is uniquely permissible. As long as the dis
tribution favored by the authors of the report satisfies 
coherence requirements, there is nothing to complain about in 
the arbitrary choice of that distribution. What is needless, 
perhaps, is the elaborate effort to defend that choice by bad 
argument where no argument is needed. 

The authors of the report, however, did seem anxious to 
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ground judgments of credal probability on judgments as to 
which of rival statistical hypotheses concerning the objective 
chance distribution of failure rates is correct. In the face of 
insufficient data, the authors did not conclude that they should 
suspend judgment between the rival statistical hypotheses and 
look to their credal state for the various seriously possible 
rivals for help in determining (via direct inference) the credal 
state to adopt. If the view I have developed in the present 
book is correct, that approach would have led to an indeter
minate state of credal judgement concerning failure rates. 

Instead, the authors of Reactor Safety Study reasoned that 
when more than. one rival hypothesis "fits" the data reason
ably well, one is free to choose between the rivals by an appeal 
to "a priori" (which I interpret in this context to mean "for
mal" and "aesthetic") reasons or "pragmatic" considera
tions. 

They are not alone in finding such reasoning acceptable. It 
is Quine, after all, who observes that in fitting curves to data 
we should pick the simplest of the many curves agreeing with 
the data, acknowledging all the while that simplicity is to a 
considerable degree a question of taste. I see little difference 
between such appeals to simplicity and the appeals to "natu
ralness" in Reactor Safety Study. I detect little difference 
between the appeals to customary practice by the authors and 
appeals to the "taste for the familiar" or invocations of the 
tradition of some branch of inquiry in its "normal" phase. 
(The authors of Nuclear Safety Study appeal to what they ap
parently think is a paradigmatic application of the log normal.) 

One should not blame the personalists, Quine, or anyone 
else in the large list of distinguished authors whose episte
mologies do not prohibit the analysis carried out in Nuclear 
Safety Study for the excesses of that study. But it is surely 
worthwhile to reevaluate epistemological outlooks incapable 
of rendering a negative verdict on the practice of evaluating 
risks of a serious accident in nuclear plants in the manner of 
the authors of the study under review. 

The moral of the story is that we should learn to suspend 
judgment. We should, in the case under consideration, learn 
to acknowledge that the data justifies and, indeed, obligates 
us to suspend judgment concerning the objective chance dis
tribution over failure rates within a given range of values. We 
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should be prepared to adopt credal states for hypotheses about 
failure rates in specific cases which are indeterminate and 
which allow many diverse distributions to be permissible. 

This does not mean that we should become total skeptics. 
Scientific inquiry has furnished us with much knowledge and, 
in some contexts, with information which justifies appraising 
risks and expectations with a considerable degree of precision. 
But although we should prize precision when we can get it, 
we should never pretend to precision we lack; and we should 
be ever mindful of our ignorance even when it hurts. 

I do not know whether a reconsideration of the data con
tained in Reactor Safety Study in keeping with respect for our 
ignorance as well as for what we know would vindicate those 
who seek to halt our reliance on nuclear sources of energy or 
whether the proponents of nuclear energy would be shown to 
be in the right. 

However, it may be helpful to compare the analyses of 
program SAMPLE reported by the authors of Reac:or Safety 
Study with an analysis of their illustrative data in accordance 
with principles I find relevant to the problem at hand. 

Median failure rates are given (for illustrative purposes) for 
the seven factors in program SAMPLE together with an "error 
factor'' which determine the upper and lower bounds of the 
assessed range of failure rates for each factor. 

One method used to obtain a system failure rate was to 
substitute the median values for the failure rates for the X(n)' s 
(on the assumption of log normal distributions) and the cor
responding median value for Xcm (reckoned as ylQ2b, where 
a is the median for X(3) and b is the median for X(5)) into 
formula (2). This led to an estimated system failure rate of 
.0056. (The range of values for X(7) is from .00001 to .0000001 
and offers negligible contribution to the system failure rate. It 
was therefore omitted from computations in formula (2).) 

This estimate was then contrasted with a more sophisticated 
appraisal of system failure rates. A program for selecting val
ues in the assessed range of a given input factor at random (or 
simulating such selection) on the assumption that values are 
distributed in accordance with the log normal distribution for 
that factor. This is done for each of the input factors. The 
values are substituted into (2) and a system value is obtained. 
The process is repeated a great many times (1,200 times) and 
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a range of system of values is derived. A log normal distri
bution is then fitted to this range according to the method 
described previously and the median, upper, and lower values 
identified. 

The results for program SAMPLE give an upper bound of 
.0144, a median of .0078 and a lower bound of .0045. The 
median value obtained is thus higher than the result obtained 
by the first method. 

Keep in mind, however, that these results are obtained from 
the arbitrary choice of log normal distributions of failure rates 
for the several inputs. In the absence of any warrant for 
picking out any coherent probability distribution over failure 
rates in the assessed range for a given component, all such 
distribution.s should be permissible. If the result is a family of 
probabilities of serious accident in the reactor which fails to 
decide between permitting and prohibiting operation of the 
reactor on grounds of expected utility maximization, maximin 
should be invoked. 

This means, however, that a relevant assessment of the 
failure rate of the system under investigation (in our example 
it is program SAMPLE) need take into account only the sys
tem failure rate determined by substituting the upper bound 
values for the failure rates of the inputs. In program SAMPLE, 
one should substitute into formula (2) the largest value of the 
failure rate for X(n). For Xcm. this should be max(X(3), X(5)). 

The system failure rate computed on this basis is .0564. 
The result is nearly four times as great as the upper bound 

of the range of system failure rates obtained by the authors of 
Reactor Safety Study using Monte Carlo methods of propa
gation (the second method described above) and nearly eight 
times as great as the median value determined in that way. 

If failure rates for containment and backup systems were 
appraised in the manner I propose, we would not have to 
pretend to knowledge we do not have. And if probabilities of 
serious accidents remained sufficiently low, calculating failure 
rates in the manner indicated, the arguments of proponents of 
nuclear energy that the reactors are safe enough would be 
more compelling. 

Of course, better data could lead to sharper verdicts con
cerning failure rates. And improved technology might lead to 
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reconsideration of pessimistic assessments of the safety of 
nuclear plants. 

In the wake of recent episodes at nuclear power plants, not 
only have policies favoring nuclear energy been discredited in 
the eyes of the public; but the credibility gap has extended to 
pure scientists and engineers. I do not seek to join the chorus 
of critics of scientific approaches to the solution of problems. 
If the serious problems we face are to be solved, they will be 
solved only by careful and sophisticated inquiry. 

But the demands of such inquiry require that experts admit 
the limits to what they know. Scientists and technologists 
should not pretend to a knowledge they do not have because 
a government or a public demands that they be supplied with 
answers to questions for which there is insufficient evidence. 
And the public and government should understand and respect 
the limits on what they can expect of responsible scientists 
and engineers. They should refrain from putting unreasonable 
pressures on investigators to subvert their better judgment. 

Above all we should beware of epistemologies which permit 
us to violate this counsel and indulge our tastes for the famil
iar, simplicity, explanatory power, naturalness, paradigmatic 
methods of puzzle solving, and the like without regard to the 
risks of error both in theory and in practice which our indulg
ences may be incurring. 
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