THE SHAPING OF
DEDUCTION IN GREEK
MATHEMATICS:

A Study in Cognitive History

Reviel Netz

Cambridge University Press




The aim of this book is to explain the shape of Greek mathemati-
cal thinking. It can be read on three levels: first as a description of
the practices of Greek mathematics; second as a theory of the
emergence of the deductive method; and third as a case-study for
a general view on the history of science. The starting point for
the enquiry is geometry and the lettered diagram. Reviel Netz
exploits the mathematicians’ practices in the construction and let-
tering of their diagrams, and the continuing interaction between
text and diagram in their proofs, to illuminate the underlying
cognitive processes. A close examination of the mathematical use
of language follows, especially mathematicans’ use of repeated
formulae. Two crucial chapters set out to show how mathemati-
cal proofs are structured and explain why Greek mathematical
practice manages to be so satisfactory. A final chapter looks into
the broader historical setting of Greek mathematical practice.

Revier NeTz Is a Research Fellow at Gonville and Caius
College, Cambridge, and an Affiliated Lecturer in the Faculty
of Classics.



This Page Intentionally Left Blank



IDEAS IN CONTEXT j{I

THE SHAPING OF DEDUCTION
IN GREEK MATHEMATICS



IDEAS IN CONTEXT

Edited by QuenTin SkKINNER (General Editor)
LorrAINE DastoN, WoLF LEPENIES, J. B. SCHNEEWIND

and James TuLLy

The books in this series will discuss the emergence of intellectual traditions
and of related new disciplines. The procedures, aims and vocabularies that
were generated will be set in the context of the alternatives available within
the contemporary frameworks of ideas and institutions. Through detailed
studies of the evolution of such traditions, and their modification by different
audiences, it is hoped that a new picture will form of the development of ideas
in their concrete contexts. By this means, artificial distinctions between the
history of philosophy, of the various sciences, of society and politics, and of
literature may be seen to dissolve.

The series is published with the support of the Exxon Foundation.

A list of books in the series will be found at the end of the volume.



THE SHAPING OF DEDUCTION
IN GREEK MATHEMATICS

A Study in Cognitive History

REVIEL NETZ

CAMBRIDGE

& 5/ UNIVERSITY PRESS



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge c¢s2 1rp, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge, cs2 2ru, United Kingdom  http://www.cup.cam.ac.uk
40 West 2oth Street, New York, Ny 1oo11—4211, usa  http://www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Reviel Netz 1999
This book is in copyright. Subject to statutory exception and to the provisions of relevant
collective licensing agreements, no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1999
Printed in the United Kingdom at the University Press, Cambridge
Typeset in 11/125pt Baskerville No. 2 [cc]
A catalogue record for this book is available from the British Library

Library of Congress cataloguing in publication data

Netz, Reviel.
The shaping of deduction in Greek mathematics: a study in
cognitive history / Reviel Netz.
p. cm. — (ldeas in context; 51)
Includes bibliographical references and index.
ISBN 0 521 62279 4 (hardback)
1. Mathematics, Greek. 2. Logic. 1. Title. 1. Series.

0A27.G8N47 1999
510".938—dCc21 98-20463 crP

ISBN 0 521 62279 4 hardback



To Maya



This Page Intentionally Left Blank



Contents

Preface

List of abbreviations
The Greek alphabet
Note on the figures

Introduction

A specimen of Greek mathematics

I

2

S O o W

7

The lettered diagram
The pragmatics of letters
The mathematical lexicon
Formulae

The shaping of necessity
The shaping of generality

The historical setting

Appendix:

The main Greek mathematicians cited in the book

Bibliography
Index

page Xi
Xiil
XVi
XV

12

68

1277
168

240

271

313

316
323



This Page Intentionally Left Blank



Preface

This book was conceived in Tel Aviv University and written in the
University of Cambridge. | enjoyed the difference between the two,
and am grateful to both.

The question one is most often asked about Greek mathematics is:
‘Is there anything left to say?’ Indeed, much has been written. In the
late nineteenth century, great scholars did a stupendous work in edit-
ing the texts and setting up the basic historical and mathematical
framework. But although the materials for a historical understanding
were there, almost all the interpretations of Greek mathematics offered
before about 1975 were either wildly speculative or ahistorical. In the
last two decades or so, the material has finally come to life. A small but
highly productive international community of scholars has set up
new standards of precision. The study of Greek mathematics today
can be rigorous as well as exciting. | will not name here the individual
scholars to whom | am indebted. But | can — | hope — name this small
community of scholars as a third institution to which | belong, just as
| belong to Tel Aviv and to Cambridge. Again | can only express my
gratitude.

So | have had many teachers. Some were mathematicians, most
were not. | am not a mathematician, and this book demands no know-
ledge of mathematics (and only rarely does it demand some knowledge
of Greek). Readers may feel | do not stress sufficiently the value of
Greek mathematics in terms of mathematical content. | must apo-
logise — | owe this apology to the Greek mathematicians themselves.
| study form rather than content, partly because | see the study of
form as a way into understanding the content. But this content — those
discoveries and proofs made by Greek mathematicians — are both
beautiful and seminal. If | say less about these achievements, it is
because | have looked elsewhere, not because my appreciation of them
Is not as keen as it should be. | have stood on the shoulders of giants —

Xi



Xii Preface

to get a good look, from close quarters, at the giants themselves. And
if 1 saw some things which others before me did not see, this may be
because | am more short-sighted.

I will soon plunge into the alphabetical list. Three names must stand
out — and they happen to represent the three communities mentioned
above. Sabetai Unguru first made me read and understand Greek
mathematics. Geoffrey Lloyd, my Ph.D. supervisor, shaped my view of
Greek intellectual life, indeed of intellectual life in general. David Fowler
gave innumerable suggestions on the various drafts leading up to this
book — as well as giving his inspiration.

A British Council Scholarship made it possible to reach Cambridge
prior to my Ph.D., as a visiting member at Darwin College. Awards
granted by the ORS, by the Lessing Institute for European History
and Civilization, by AVI and, most crucially, by the Harold Hyam
Wingate Foundation made it possible to complete graduate studies at
Christ’s College, Cambridge. The book is a much extended and re-
vised version of the Ph.D. thesis, prepared while | was a Research
Fellow at Gonville and Caius College. It is a fact, not just a platitude,
that without the generosity of all these bodies this book would have
been impossible. My three Cambridge colleges, in particular, offered
much more than can be measured.

| owe a lot to Cambridge University Press. Here, as elsewhere, |
find it difficult to disentangle ‘form’ from ‘content’. The Press has
contributed greatly to both, and | wish to thank, in particular, Pauline
Hire and Margaret Deith for their perseverance and their patience.

The following is the list — probably incomplete — of those whose
comments influenced directly the text you now read (besides the three
mentioned already). My gratitude is extended to them, as well as to
many others: R. E. Aschcroft, Z. Bechler, M. F. Burnyeat, K. Chemla,
S. Cuomo, A. E. L. Davis, G. Deutscher, R. P. Duncan-Jones, P. E.
Easterling, M. Finkelberg, G. Freudental, C. Goldstein, I. Grattan-
Guinness, S. J. Harrison, A. Herreman, J. Hoyrup, E. Hussey, P.
Lipton, 1. Malkin, J. Mansfeld, 1. Mueller, J. Ritter, K. Saito, J. Saxl,
D. N. Sedley, B. Sharples, L. Taub, K. Tybjerg, B. Vitrac, L. Wischik.

' | have mentioned above the leap made in the study of Greek mathematics over the last two
decades. This owes everything to the work of Wilbur Knorr, who died on 18 March 1997, at
the age of 51. Sadly, he did not read this book — yet the book would have been impossible
without him.
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NOTE ON GENDER

When an indefinite reference is made to ancient scholars — who were
predominantly male — | use the masculine pronoun. The sexism was

theirs, not mine.



The Greek alphabet

Capital

approximately Lower case

the form used in a form used in

ancient writing modern texts Name of letter
A o Alpha

B B Beta

r Y Gamma
A 5 Delta

E £ Epsilon
Z A Zeta

H n Eta

S) 9 Theta

l 1 Iota

K K Kappa
A A Lambda
M U Mu

N Y Nu

= & Xi

O 0 Omicron
T i Pi

P P Rho

)3 o ¢ Sigma
T T Tau

Y v Upsilon
) P Phi

X X Chi

Y ) Psi
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" A modern form for the letter in final position.
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Note on the figures

As is explained in chapter 1, most of the diagrams in Greek math-
ematical works have not yet been edited from manuscripts. The figures
in modern editions are reconstructions made by modern editors, based
on their modern understanding of what a diagram should look like.
However, as will be argued below, such an understanding is culturally
variable. It is therefore better to keep, as far as possible, to the dia-
grams as they are found in Greek manuscripts (that is, generally speak-
ing, in Byzantine manuscripts). While no attempt has been made to
prepare a critical edition of the Greek mathematical diagrams pro-
duced here, almost all the figures have been based upon an inspection
of at least some early manuscripts in which their originals appear, and
| have tried to keep as close as possible to the visual code of those early
diagrams. In particular, the reader should forgo any assumptions about
the lengths of lines or the sizes of angles: unequal lines and angles may
appear equal in the diagrams and vice versa.

In addition to the ancient diagrams (which are labelled with the
original Greek letters), a few illustrative diagrams have been prepared
for this book. These are distinguished from the ancient diagrams by
being labelled with Latin letters or with numerals.

While avoiding painterly effects, ancient diagrams possess consider-
able aesthetic value in their austere systems of interconnected, labelled
lines. 1 wish to take this opportunity to thank Cambridge University
Press for their beautiful execution of the diagrams.

XVil
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Introduction

This book can be read on three levels: first, as a description of the
practices of Greek mathematics; second, as a theory of the emergence
of the deductive method; third, as a case-study for a general view on
the history of science. The book speaks clearly enough, | hope, on
behalf of the first two levels: they are the explicit content of the book.
In this introduction, | give a key for translating these first two levels
into the third (which is implicit in the book). Such keys are perhaps
best understood when both sides of the equation are known, but it is
advisable to read this introduction before reading the book, so as to
have some expectations concerning the general issues involved.

My purpose is to help the reader relate the specific argument con-
cerning the shaping of deduction to a larger framework; to map the
position of the book in the space of possible theoretical approaches. |
have chosen two well-known landmarks, Kuhn’s The Structure of Scientific
Revolutions and Fodor’s The Modularity of Mind. | beg the reader to
excuse me for being dogmatic in this introduction, and for ignoring
almost all the massive literature which exists on such subjects. My
purpose here is not to argue, but just to explain.

THE STRUCTURE OF SCIENTIFIC REVOLUTIONS

The argument of Kuhn (1962, 1970) is well known. Still, a brief résumé
may be useful.

The two main conceptual tools of Kuhn’s theory are, on the one
hand, the distinction between ‘normal science’ and ‘scientific revolu-
tions’ and, on the other hand, the concept of ‘paradigms’. Stated very
crudely, the theory is that a scientific discipline reaches an important
threshold — one can almost say it begins — by attaining a paradigm. It
then becomes normal science, solving very specific questions within

I



2 Introduction

the framework of the paradigm. Finally, paradigms may change and,
with them, the entire position of the discipline. Such changes consti-
tute scientific revolutions.

What Kuhn meant by paradigms is notoriously unclear. One sense
of a ‘paradigm’ is a set of metaphysical assumptions, such as Einstein’s
concept of time. This sense is what has been most often discussed
in the literature following Kuhn. The focus of interest has been the
nature of the break involved in a scientific revolution. Does it make
theories from two sides of the break ‘incommensurable’, i.e. no longer
capable of being judged one against the other?

| think this is a misguided debate: it starts from the least useful sense
of ‘paradigm’ (as metaphysical assumptions) — least useful because much
too propositional. To explain: Kuhn has much of interest to say about
normal science, about the way in which a scientific community is
united by a set of practices. But what Kuhn failed to articulate is that
practices are just that — practices. They need not be, in general, state-
ments in which scientists (implicitly or explicitly) believe, and this for
two main reasons.

First, what unites a scientific community need not be a set of beliefs.
Shared beliefs are much less common than shared practices. This will
tend to be the case in general, because shared beliefs require shared
practices, but not vice versa. And this must be the case in cultural
settings such as the Greek, where polemic is the rule, and consensus is
the exception. Whatever is an object of belief, whatever is verbalisable,
will become visible to the practitioners. What you believe, you will
sooner or later discuss; and what you discuss, especially in a cultural
setting similar to the Greek, you will sooner or later debate. But the
real undebated, and in a sense undebatable, aspect of any scientific
enterprise is its non-verbal practices.

Second, beliefs, in themselves, cannot explain the scientific process.
Statements lead on to statements only in the logical plane. Historically,
people must intervene to get one statement from the other. No belief is
possible without a practice leading to it and surrounding it. As a corre-
late to this, it is impossible to give an account of the scientific process
without describing the practices, over and above the beliefs.

This book is an extended argument for this thesis in the particular
case of Greek mathematics. It brings out the set of practices common
to Greek practitioners, but argues that these practices were generally
‘invisible’ to the practitioners. And it shows how these practices func-
tioned as a glue, uniting the scientific community, and making the
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production of ‘normal science’ possible. The study is therefore an
empirical confirmation of my general view. But the claim that ‘para-
digms’ need not be propositional in nature should require no empirical
confirmation. The propositional bias of Kuhn is a mark of his times.
The Structure of Scientific Revolutions may have signalled the end of positiv-
iIsm in the history and philosophy of science, but it is itself essentially a
positivist study, belonging (albeit critically) to the tradition of the Inter-
national Encyclopedia of Unified Science, its original place of publication.
It is a theory about the production of propositions from other pro-
positions. To us, however, it should be clear that the stuff from which
propositions are made need not itself be propositional. The process
leading to a propositional attitude — the process leading to a person’s
believing that a statement is true — consists of many events, and most
of them, of course, are not propositional. Kuhn’s mistake was assimi-
lating the process to the result: ‘if the result is propositional, then so
should the process be’. But this is an invalid inference.

Much has happened since Kuhn, and some of the literature in
the history of science goes beyond Kuhn in the direction of non-
propositional practices. This is done mainly by the sociologists of sci-
ence. | respect this tradition very highly, but I do not belong to it. This
book should not be read as if it were ‘“The Shapin of Deduction’, an
attempt to do for mathematics what has been so impressively done for
the natural sciences." My debt to the sociology of science is obvious,
but my approach is different. 1 do not ask just what made science the
way it was. | ask what made science successful, and successful in a real
intellectual sense. In particular, 1 do not see ‘deduction’ as a sociologi-
cal construct. | see it as an objectively valid form, whose discovery was
a positive achievement. This aspect of the question tends to be sidelined
in the sociology of science. Just as Kuhn assimilated the process to the
result, making them both propositional, so the sociologists of science
(in line with contemporary pragmatist or post-modern philosophers)
assimilate the result to the process. They stress the non-propositional
(or, more important for them, the non-objective or arbitrary) aspects
of the process leading to scientific results. They do so in order to
relativise science, to make it seem less propositional, or less ideology-
free, or less objective.

But I ask: what sort of a process is it, which makes possible a positive
achievement such as deduction? And by asking such a question, I am

' E.g. (to continue with the distinguished name required by the pun) in Shapin (1994).



4 Introduction

led to look at aspects of the practice which the sociologist of science
may overlook.

To return to Kuhn, then, what | study can be seen, in his terms, as
a study of the paradigms governing normal science. However, this
must be qualified. As regards my paradigms, they are sets of practices
and are unverbalised (I will immediately define them in more precise
terms). As regards normal science, there are several differences be-
tween my approach and that of Kuhn. First, unlike — perhaps — Kuhn,
and certainly unlike most of his followers, the aim of my study is
explicitly to explain what makes this normal science successful in its
own terms. Further: since my view is that what binds together practi-
tioners in normal science is a set of practices, and not a set of beliefs,
| see revolutions as far less central. Development takes the form of
evolution rather than revolution. Sets of practices are long-lived, in
science as elsewhere. The historians of the Annales have stressed the
conservatism of practice in the material domain — the way in which
specific agricultural techniques, for instance, are perpetuated. We in-
tellectuals may prefer to think of ourselves as perpetually original. But
the truth is that the originality is usually at the level of contents, while
the forms of presentation are transmitted from generation to genera-
tion unreflectively and with only minor modifications. We clear new
fields, but we till them as we always did. It is a simple historical
observation that intellectual practices are enduring. Perhaps the most
enduring of them all has been the Greek mathematical practice. Argu-
ably — while modified by many evolutions — this practice can be said to
dominate even present-day science.’

THE MODULARITY OF MIND

It is still necessary to specify what sort of practices | look at. The
simple answer is that | look at those practices which may help to
explain the success of science. In other words, I look at practices which
may have an influence on the cognitive possibilities of science. To

> While such an approach is relatively uncommon in the literature, I am not the first to take it;
see, for instance, Gooding (1990), on Faraday’s experimental practices.

5 There is a question concerning the relation between mathematics and other types of science. |
do not think they are fundamentally distinct. The question most often raised in the literature,
concerning the applicability of Kuhn to mathematics, is whether or not there are ‘mathemati-
cal scientific revolutions’ (in the sense of deep metaphysical shifts. See e.g. Gillies (1992)). But
what | apply to mathematics is not the concept of scientific revolution, but that of normal
science, and in this context the distinction between mathematics and other types of science
seems much less obvious.
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clarify what these may be, a detour is necessary, and | start, again
from a well-known study, Fodor’s The Modularity of Mind (1983).

Fodor distinguishes two types of cognitive processes: ‘input/output
mechanisms’ (especially language and vision), on the one hand, and
‘central processes’ (for which a key example is the fixation of belief —
the process leading to a person’s believing in the truth of a statement)
on the other. He then argues that some functions in the mind are
‘modules’. By ‘modules’ are meant task-specific capacities (according
to this view syntax, for instance, is a module; that is, we have a faculty
which does syntactic computations and nothing else). Modules are
automatic: to continue the same example, we do syntactic computations
without thinking, without even wishing to do so. Syntactic parsing
of sentences is forced upon us. And modules are isolated (when we
do such computations in this modular way, we do not bring to bear
any other knowledge). Modules thus function very much as if they
were computer programs designed for doing a specified job. The
assumption is that modules are innate — they are part of our biological
make-up. And, so Fodor argues, modules are coextensive with input/
output mechanisms: whatever is an input/output mechanism is a
module, while nothing else is a module. The only things which are
modular are processes such as vision and language, and nothing else in
our mind is modular. Most importantly, central processes such as the
fixation of belief are not modular. They are not task-specific (there is
nothing in our brain whose function is just to reach beliefs), they are
not automatic (we do not reach beliefs without conscious thoughts and
volitions), and, especially, they are not isolated (there are a great many
diverse processes related to any fixation of belief). Since central pro-
cesses appeal to a wide range of capacities, without any apparent rules,
it is much more difficult to study central processes.

Most importantly for the cognitive scientist, this difference between
modules and central processes entails that modules will be the natural
subject matter of cognitive science. By being relatively simple (espe-
cially in the sense of being isolated from each other), modules can be
described in detail, modelled, experimented on, meaningfully analysed
in universal, cross-cultural terms. Central processes, on the other hand,
interact with each other in complicated, unpredictable ways, and are
thus unanalysable. Hence Fodor’s famous ‘First Law of the Nonexist-
ence of Cognitive Science’: “The more global . . . a cognitive process is,
the less anybody understands it.™

* Fodor (1983) 107.
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| am not a cognitive scientist (and this study is not an ‘application’
of some cognitive theory). 1 do not profess to pass any judgement on
Fodor’s thesis. But the facts of the development of cognitive science
are clear. It has made most progress with Fodorean modules, espe-
cially with language. It has been able to say less on questions concern-
ing Fodorean central processes. Clearly, it is very difficult to develop a
cognitive science of central processes. But this of course does not mean
that central processes are beyond study. It simply means that, instead
of a cognitive science of such aspects of the mind, we should have a
cognitive history. “The Existence of Cognitive History’ is the direct
corollary to Fodor’s first law. Fodor shows why we can never have a
neat universal model of such functions as the fixation of belief. This is
registered with a pessimistic note, as if the end of universality is the
end of study. But for the historian, study starts where universality ends.

It is clear why cognitive history is possible. While there are no
general, universal rules concerning, for example, reasoning, such rules
do exist historically, in specific contexts. Reasoning, in general, can be
done in an open way, appealing to whatever tools suggest themselves —
linguistic, visual, for example — using those tools in any order, moving
freely from one to the other. In Greek mathematics, however, reason-
Ing is done in a very specific way. There is a method in its use of
cognitive resources. And it must be so — had it not been selective,
simplified, intentionally blind to some possibilities, it would have been
unmanageable. Through the evolution of specific cognitive methods,
science has been made possible. Specific cognitive methods are specific
ways of ‘doing the cognitive thing’ — of using, for instance, visual
information or language. To illustrate this: in this book, I will argue
that the two main tools for the shaping of deduction were the diagram,
on the one hand, and the mathematical language on the other hand.
Diagrams — in the specific way they are used in Greek mathematics —
are the Greek mathematical way of tapping human visual cognitive
resources. Greek mathematical language is a way of tapping human
linguistic cognitive resources. These tools are then combined in spe-
cific ways. The tools, and their modes of combination, are the cogni-
tive method.

But note that there is nothing universal about the precise shape of
such cognitive methods. They are not neural; they are a historical
construct. They change slowly, and over relatively long periods they
may seem to be constant. But they are still not a biological constant.
On the one hand, therefore, central processes can be studied (and this
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Is because they are, in practice, in given periods and places, performed
methodically, i.e. not completely unlike modules). On the other hand,
they cannot be studied by cognitive science, i.e. through experimental
methods and universalist assumptions. They can only be studied as
historical phenomena, valid for their period and place. One needs
studies in cognitive history, and | offer here one such study.>

| have promised | would locate this book with the aid of two land-
marks, one starting from Kuhn, the other starting from Fodor. These
two landmarks can be visualised as occupying two positions in a table
(see below), where cognitive history can be located as well.

Sources of knowledge

Cultural Biological
Propositional Kuhnian history
Status of knowledge of science
knowledge | p,., (ices of Cognitive history Fodorean cognitive
knowledge science

Cognitive history lies at the intersection of history of science and
the cognitive sciences. Like the history of science, it studies a cultural
artefact. Like the cognitive sciences, it approaches knowledge not through
its specific propositional contents but through its forms and practices.

An intersection is an interesting but dangerous place to be in. | fear
cognitive scientists may see this study as too ‘impressionistic’ while
historians may see it as over-theoretical and too eager to generalise.
Perhaps both are right; | beg both to remember | am trying to do what
Is neither cognitive science nor the history of ideas. Whether | have
succeeded, or whether this is worth trying, | leave for the reader to judge.

5 It remains to argue that the subject of my study is a central process and not a module. Whether
‘deduction’ as such is a module or not is a contested question. Rips (1994), for instance, thinks
it is a module; Johnson-Laird (1983) disagrees. | cannot discuss here the detail of the debate
(though 1 will say that much of my study may be seen as contributing to Johnson-Laird’s
approach), but in fact | need not take any stance in this debate. What | study is not ‘deduction’
as such; what I study is a specific form, namely the way in which Greek mathematicians argued
for their results. It will be seen that the mechanisms involved are very complex, and very
different from anything offered by those who argue that deduction is a module. If indeed there
is some module corresponding to deduction, then it is no more than a first-level stepping stone
used in mathematical deduction (in much the same way as the modules of vision are necessary
for the perception of mathematical diagrams, but yet we will not try to reduce mathematical
cognition into the modules of vision).



8 Introduction
PLAN OF THE BOOK

The first four chapters of the study describe the tools of the Greek
mathematical method. The first two chapters deal with the use of the
diagram, and chapters g and 4 deal with the mathematical language.

How is deduction shaped from these tools? | do not try to define
‘deduction’ in this study (and | doubt how useful such a definition
would be). I concentrate instead on two relatively simpler questions:
first, what makes the arguments seem necessary? (That is, I am looking
for the origins of the compelling power of arguments.) Second, what
makes the arguments seem general? (That is, | am looking for the ori-
gins of the conviction that a particular argument proves the general
claim.) These questions are dealt with in chapters 5 and 6, respectively.
In these chapters | show how the elements of the style combine in
large-scale units, and how this mode of combination explains the
necessity and generality of the results.

The final chapter discusses the possible origins of this cognitive mode:
what made the Greek mathematicians proceed in the way they did? |
try to explain the practices of Greek mathematics through the cultural
context of mathematics in antiquity, and, in this way, to put deduction
in a historical context.



A specimen of Greek mathematics

Readers with no acquaintance with Greek mathematics may wish to
see a sample of it before reading a description of its style. Others may
wish to refresh their memory. | therefore put here a literal translation
of Euclid’s Elements 11.5, with a reconstruction of its diagram.'

In this translation, | intervene in the text in several ways, including
the following:

* | add the established titles of the six parts of the proposition.
These six parts do not always occur in the same simple way as
here, but they are very typical of Euclid’s geometrical theorems.
They will be especially important in chapter 6.

* | mark the sequence of assertions in both construction (with roman
letters) and proof (with numerals). This is meant mainly as an aid
for the reader. The sequence of assertions in the proof will inter-
est us in chapter 5.

x Text in angle-brackets is my addition. The original Greek is
extremely elliptic — a fact which will interest us especially in
chapter 4.

Note also the following:

» Letters are used in diagram and text to represent the objects of
the proposition in the middle four parts. These letters will interest
us greatly in chapters 1—2.

» Relatively few words are used. There is a limited ‘lexicon’: this is
the subject of chapter g.

* These few words are usually used within the same phrases, which
vary little. These are ‘formulae’, the subject of chapter 4.

' Note also that | offer a very brief description of the dramatis personae — the main Greek math-
ematicians referred to in this book — before the bibliography (pp. 316—22).

9
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A I A B

E H Z

Euclid’s Elements 11.5.

[ protasis (enunciation)]
If a straight line is cut into equal and unequal <segments>, the rectangle
contained by the unequal segments of the whole, with the square on the
<line> between the cuts, is equal to the square on the half.

[ekthesis (setting out)]
For let some line, <namely> the <line> AB, be cut into equal <segments>
at the <point> I, and into unequal <segments> at the <point> A;

[diorismos (definition of goal)]
| say that the rectangle contained by the <lines> AA, AB, with the square
on the <line> A, is equal to the square on the <line> I'B.

[kataskeue (construction)]
(a) For, on the <line> I'B, let a square be set up, <namely> the <square>
'EZB,
(b) and let the <line> BE be joined,
(c) and, through the <point> A, let the <line> AH be drawn parallel to
either of the <lines> I'E, BZ,
(d) and, through the <point> ©, again let the <line> KM be drawn parallel
to either of the <lines> AB, EZ,
(e) and again, through the <point> A, let the <line> AK be drawn parallel
to either of the <lines> '\, BM.

[apodeixis (proof)]
(1) And since the complement I'® is equal to the complement ©Z;
2) let the <square> AM be added <as> common;
g) therefore the whole 'M is equal to the whole AZ.
4) But the <area> I'M is equal to the <area> AA,
5) since the <line> AT, too, is equal to the <line> I'B;

(
(
(
(



A specimen of Greek mathematics 11

6) therefore the <area> AA, too, is equal to the <area> AZ.

7) Let the <area> '© be added <as> common;

8) therefore the whole A® is equal to the gnomon MNEZ.

g) But the <area> A© is the <rectangle contained> by the <lines> AA, AB;
10) for the <line> A© is equal to the <line> AB;

11) therefore the gnomon MNZ, too, is equal to the <rectangle contained>
by the <lines> AA, AB.

(12) Let the <area> AH be added <as> common

(13) (which is equal to the <square> on the <line> T"'A);

(14) therefore the gnomon MNZ= and the <area> AH are equal to the rec-
tangle contained by the <lines> AA, AB and the square on the <line> I''A;
(15) but the gnomon MNZ= and the <area> AH, <as a> whole, is the square
'EZB,

(16) which is <the square> on the <line> I'B;

(17) therefore the rectangle contained by the <lines> AA, AB, with the
square on the <line> A, is equal to the square on the <line> I'B.

(
(
(
(
(
(

[sumperasma (conclusion)]
Therefore if a straight line is cut into equal and unequal <segments>, the
rectangle contained by the unequal segments of the whole, with the square
on the <line> between the cuts, is equal to the square on the half; which it

was required to prove.



CHAPTER 1

The lettered diagram

PLAN OF THE CHAPTER

That diagrams play a crucial role in Greek mathematics is a fact often
alluded to in the modern literature, but little discussed. The focus of
the literature is on the verbal aspect of mathematics. What this has to
do with the relative roles of the verbal and the visual in our culture, |
do not claim to know. A description of the practices related to Greek
mathematical diagrams is therefore called for. It will prove useful for
our main task, the shaping of deduction.

The plan is: first, a brief discussion of the material implementation
of diagrams, in section 1. Some practices will be described in section o.
My main claims will be that (a) the diagram is a necessary element
in the reading of the text and (b) the diagram is the metonym of
mathematics. | will conclude this section with a discussion of the
semiotics of lettered diagrams. Section g will describe some of the
historical contexts of the lettered diagram. Section 4 is a very brief
summary.

This chapter performs a trick: | talk about a void, an absent object,
for the diagrams of antiquity are not extant, and the medieval dia-
grams have never been studied as such.' However, not all hope is lost.
The texts — whose transmission is relatively well understood — refer to
diagrams in various ways. On the basis of these references, observa-
tions concerning the practices of diagrams can be made. | thus start
from the text, and from that base study the diagrams.

' The critical edition most useful from the point of view of the ancient diagrams is Mogenet
(1950). Some information is available elsewhere: the Teubner edition of the Data, for instance,
is very complete on lettering; Jones’s edition of Pappus and Clagett’s edition of the Latin
Archimedes are both exemplary, and Janus, in Musici Graeci, is brief but helpful. Generally,
however, critical apparatuses do not offer substantial clues as to the state of diagrams in
manuscripts.

12
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I THE MATERIAL IMPLEMENTATION OF DIAGRAMS

There are three questions related to the material implementation of
diagrams: first, the contexts in which diagrams were used; second, the
media available for drawing; finally, there is the question of the tech-
nique used for drawing diagrams — and, conversely, the technique
required for looking at diagrams (for this is a technique which must be
learned in its own right).

One should appreciate the distance lying between the original mo-
ment of inspiration, when a mathematician may simply have imagined
a diagram, and our earliest extensive form of evidence, parchment
codices. In between, moments of communication have occurred. What
audience did they involve?

First, the ‘solitaire’ audience, the mathematician at work, like some-
one playing patience. Ancient images pictured him working with a
diagram.* We shall see how diagrams were the hallmark of mathemati-
cal activity and, of course, a mathematician would prefer to have a
diagram in front of him rather than playing the game out in his mind.
It is very probable, then, that the process of discovery was aided by
diagrames.

The contexts for communicating mathematical results must have
been very variable, but a constant feature would have been the small
numbers of people involved.? This entails that, very often, the written
form of communication would be predominant, simply because fellow
mathematicians were not close at hand. Many Greek mathematical
works were originally set down within letters. This may be a trivial
point concerning communicative styles, or, again, it may be signifi-
cant. After all, the addressees of mathematical works, leaving aside the
Arenarius,* are not the standard recipients of letters, like kings, friends
or relations. They seem to have been genuinely interested mathemati-
cians, and the inclusion of mathematics within a letter could therefore
be an indication that works were first circulated as letters.>

* This is the kernel of the myth of Archimedes’ death in its various forms (see Dijksterhuis (1938)
goff.). Cicero’s evocation of Archimedes ‘from the dust and drawing-stick’ (Tusc. v.64) is also
relevant. Especially revealing is Archimedes’ tomb, mentioned in the same context. What is
Einstein’s symbol? Probably ‘E = MC*’. Archimedes symbol was a diagram: ‘sphaerae figura et
cylindri’ (ibid. v.65).

3 See the discussion in chapter 7, subsection 2.2 below (pp. 282—92).

+ As well as Eratosthenes’ fragment in Eutocius.

5 Pappus’ dedicatees are less easy to identify, but Pandrosion, dedicatee of book 1, for instance,
seems to have been a teacher of mathematics; see Cuomo (1994) for discussion.



14 The lettered diagram

Not much more is known, but the following observation may help
to form some a priori conclusions. The lettered diagram is not only a
feature of Greek mathematics; it is a predominant feature. Alternatives
such as a non-lettered diagram are not hinted at in the manuscripts.
There is one exception to the use of diagrams — the di’ arithmon, ‘the
method using numbers’. While in general arithmetical problems are
proved in Greek mathematics by geometrical means, using a diagram,
sometimes arithmetical problems are tackled as arithmetical. Signifi-
cantly, even this is explicitly set up as an exception to a well-defined
rule, the dia grammon, ‘the method using lines’.” The diagram is seen as
the rule from which deviations may (very rarely) occur.

It is therefore safe to conclude that Greek mathematical exchanges,
as a rule, were accompanied by something like the lettered diagram.
Thus an exclusively oral presentation (excluding, that is, even a dia-
gram) is practically ruled out. Two methods of communication must
have been used: the fully written form, for addressing mathematicians
abroad, and (hypothetically) a semi-oral form, with some diagram, for
presentation to a small group of fellow mathematicians in one’s own
city.

1.1 The media available for diagrams

It might be helpful to start by considering the media available to us.
The most important are the pencil/paper, the chalk/blackboard and
(gaining in importance) the computer/printer. All share these charac-
teristics: simple manipulation, fine resolution, and ease of erasing and
rewriting. Most of the media available to Greeks had none of these,
and none had ease of erasing and rewriting.

The story often told about Greek mathematicians is that they drew
their diagrams in sand.® A variation upon this theme is the dusted

6 1 exclude the fragment of Hippocrates of Chios, which may of course reflect a very early,
formative stage. | also ignore for the moment the papyrological evidence. | shall return to it in
n. g1 below.

7 1 shall return to this distinction below, n. 61.

% Sand may be implied by the situation of the geometry lesson in the Meno, though nothing
explicit is said; if the divided line in the Republic was drawn in sand, then Cephalus’ house must
have been fairly decrepit. Aristotle refers to drawing in yf — e.g. Metaph. 1078a20; it may well
be that he has the Meno in mind. Cicero, de Rep. 1.28—g and Vitruvius vi.1.1, have the following
tale: a shipwrecked philosopher deduces the existence of life on the island on whose shores he
finds himself by (Vitruvius’ phrase) geometrica schemata descripta — one can imagine the wet sand
on the shore as a likely medium. The frontispiece to Halley’s edition of the Conics, reproduced
as the cover of Lloyd (1g9r), is a brilliant reductio ad absurdum of the story.
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surface. This is documented very early, namely, in Aristophanes’ Clouds;?
Demetrius, a much later author, misremembered the joke and thought
it was about a wax tablet® — a sign of what the typical writing medium
was. Indeed, the sand or dusted surface is an extremely awkward
solution. The ostrakon or wax tablet would be sufficient for the likely
size of audience; a larger group would be limited by the horizontality
of the sand surfaces. And one should not think of sand as directly
usable. Sand must be wetted and tamped before use, a process involv-
Ing some exertion (and mess)." Probably the hard work was done by
Euclid’s slaves, but still it is important to bear in mind the need for
preparation before each drawing. Sand is a very cheap substitute for a
drawing on wood (on which see below), but it is not essentially differ-
ent. It requires a similar amount of preparation. It is nothing like the
Immediately usable, erasable blackboard.

The possibility of large-scale communication should be considered —
and will shed more light on the more common small-scale communi-
cation. There is one set of evidence concerning forms of presentation
to a relatively large audience: the evidence from Aristotle and his
followers in the peripatetic school.

Aristotle used the lettered diagram in his lectures. The letters in the
text would make sense if they refer to diagrams — which is asserted in
a few places.” Further, Theophrastus’ will mentions maps on pinakes
(for which see below) as part of the school’s property.” Finally, Aristo-
tle refers to anatomai, books containing anatomical drawings, which
students were supposed to consult as a necessary complement to the
lecture.™

What medium did Aristotle use for his mathematical and semi-
mathematical diagrams? He might have used some kind of prepared
tablets whose medium is nowhere specified.” As such tablets were,

9 Ashes, sprinkled upon a table: Aristophanes, Nu. 177. To this may be added later texts, e.g.
Cicero, Tusc. v.64; ND 11.48.

'* Demetrius, de Eloc. 152.

" | owe the technical detail to T. Riehl. My own experiments with sand and ashes, wetted or
not, were unmitigated disasters — this again shows that these surfaces are not as immediately
usable as are most modern alternatives.

" E.g. Meteor. 363a25—6, APr. 41b14. Einarson (1936) offers the general thesis that the syllogism
was cast in a mathematical form, diagrams included; while many of his individual arguments
need revision, the hypothesis is sound.

% D.L. v.yi—2. ' See Heitz (1865) 70—6.

5 Jackson (1920) 193 supplies the evidence, and a guess that Aristotle used a leukoma, which is
indeed probable; but Jackson’s authority should not obscure the fact that this is no more than
a guess.
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presumably, portable, they could not be just graffiti on the Lyceum’s
walls. Some kind of special surface is necessary, and the only practical
option was wood, which is the natural implication of the word pinax.
To make such writing more readable, the surface would be painted
white, hence the name leukoma, ‘whiteboard’ — a misleading transla-
tion. Writings on the ‘whiteboard’, unlike the blackboard, were diffi-
cult to erase.”

Two centuries later than Aristotle, a set of mathematical — in this
case astronomical — leukomata were put up as a dedication in a temple
in Delos.” This adds another tiny drop of probability to the thesis
that wide communication of mathematical diagrams was mediated by
these whiteboards.” On the other hand, the anatomai remind us how, in
the very same peripatetic school, simple diagrams upon (presumably)
papyrus were used instead of the large-scale leukoma.

Closer in nature to the astronomical tables in Delos, Eratosthenes,
in the third century sc, set up a mathematical column: an instrument
on top, below which was a résumé of a proof, then a diagram and
finally an epigram.’ This diagram was apparently inscribed in stone or
marble. But this display may have been the only one of its kind in
antiquity.*

The development envisaged earlier, from the individual mathemati-
cian thinking to himself to the parchment codex, thus collapses into
small-scale acts of communication, limited by a small set of media,
from the dusted surface, through wax tablets, ostraka and papyri, to
the whiteboard. None of these is essentially different from a diagram
as it appears in a book. Diagrams, as a rule, were not drawn on site.
The limitations of the media available suggest, rather, the preparation
of the diagram prior to the communicative act — a consequence of the
inability to erase.

' See Gardthausen (1911) 32—g.

71D 3. 1426 face B. col. m.50ff.; 5. 1442 face B. col. m.40ff.; 3. 1443 face B. col. m.108ff.

® It is also useful to see that, in general, wood was an important material in elementary math-
ematical education, as the archaeological evidence shows; Fowler (1987) 271—g has 6qg items, of
which the following are wooden tablets: 14, 16, 18, 24, 25, 39, 42, 44, 45, 59

"9 Eutocius, In SC m.94.8—-14.

* Allow me a speculation. Archimedes’ Arenarius, in the manuscript tradition, contains no dia-
grams. Of course the diagrams were present in some form in the original (which uses the
lettered convention of reference to objects). So how were the diagrams lost? The work was
addressed to a king, hence, no doubt, it was a luxury product. Perhaps, then, the diagrams
were originally on separate pinakes, drawn as works of art in their own right?
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1.2 Drawing and looking

In terms of optical complexity, there are four types of objects required
in ancient mathematics.

1. Simple 2-dimensional configurations, made up entirely by straight
lines and arcs;

2. 2-dimensional configurations, requiring more complex lines, the most

important being conic sections (ellipse, parabola and hyperbola);

g-dimensional objects, excluding:

4. Situations arising in the theory of spheres (‘sphaerics’).

@

Drawings of the first type were obviously mastered easily by the
Greeks. There is relatively good papyrological evidence for the use of
rulers for drawing diagrams.*' The extrapolation, that compasses (used
for vase-paintings, from early times)** were used as well, suggests itself.

On the other hand, the much later manuscripts do not show any
technique for drawing non-circular curved lines, which are drawn as
if they consist of circular arcs.” This use of arcs may well have been a
feature of ancient diagrams as well.

Three-dimensional objects do not require perspective in the strict
sense, but rather the practice of foreshortening individual objects.*
This was mastered by some Greek painters in the fifth century sc;* an
achievement not unnoticed by Greek mathematicians.*

Foreshortening, however, does little towards the elucidation of spheri-
cal situations. The symmetry of spheres allows the eye no hold on
which to base a foreshortened ‘reading’. In fact, some of the diagrams
for spherical situations are radically different from other, ‘normal’ dia-
grams. Rather than providing a direct visual representation, they employ

* See Fowler (1987), plates between pp. 202 and 203 — an imperative one should repeat again
and again. For this particular point, see especially Turner’s personal communication on PFay.
9, p. 213.

** See, e.g. Noble (1988) 104—5 (with a fascinating reproduction on p. 105).

3 Toomer (1990) IXxxv.

*+ In fact — as pointed out to me by M. Burnyeat — strictly perspectival diagrams would be less
useful. A useful diagram is somewhat schematic, suggesting objective geometric relations rather
than subjective optical impressions.

5 White (1956), first part.

% Euclid’s Optics 36 proved that wheels of chariots appear sometimes as circles, sometimes as
elongated. As pointed out by White (1956: 20), Greek painters were especially interested in the
foreshortened representation of chariots, sails and shields. Is it a fair assumption that the
author of Euclid’s theorem has in mind not so much wheels as representations of wheels?
Knorr (1992) agrees, while insisting on how difficult the problem really is.
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a quasi-symbolical system in which, for instance, instead of a circle
whirling around a sphere, its ‘hidden’ part is shown outside the sphere.”
| suspect that much of the visualisation work was done, in this special
context, by watching planetaria, a subject to which | shall return
below, in subsection g.2.2. But the stress should be on the peculiarity of
sphaerics. Most three-dimensional objects could have been drawn and
‘read’ from the drawing in a more direct, pictorial way.*

It should not be assumed, however, that, outside sphaerics, dia-
grams were ‘pictures’. Kurt Weitzman offers a theory — of a scope
much wider than mathematics — arguing for the opposite. Weitzman
(1971, chapter 2) shows how original Greek schematic, rough diagrams
(e.g. with little indication of depth and with little ornamentation) are
transformed, in some Arabic traditions, into painterly representations.
Weitzman’s hypothesis is that technical Greek treatises used, in gen-
eral, schematic, unpainterly diagrams.

The manuscript tradition for Greek mathematical diagrams, | re-
peat, has not been studied systematically. But superficial observations
corroborate Weitzman'’s theory. Even if depth is sometimes indicated
by some foreshortening effects, there is certainly no attempt at painterly
effects such as shadowing.*® The most significant question from a math-
ematical point of view is whether the diagram was meant to be metrical:
whether quantitative relations inside the diagram were meant to corre-
spond to such relations between the objects depicted. The alternative
Is @ much more schematic diagram, representing only the qualitative
relations of the geometrical configuration. Again, from my acquaint-
ance with the manuscripts, they very often seem to be schematic in this
respect as well.>

7 Mogenet (1950). Thanks to Mogenet’s work, we may — uniquely — form a hypothesis concern-
ing the genesis of these diagrams. It is difficult to imagine such a system being invented by
non-mathematical scribes. Even if it was not Autolycus’ own scheme, it must reflect some
ancient mathematical system.

¢ While foreshortening is irrelevant in the case of spheres, shading is relevant. In fact, in Roman
paintings, shading is systematically used for the creation of the illusion of depth when columns,
i.e. cylinders, are painted. The presence of ‘strange’ representations for spheres shows, there-
fore, a deliberate avoidance of the practice of shading. This, I think, is related to what I will
argue later in the chapter, that Greek diagrams are — from a certain point of view — ‘graphs’
in the mathematical sense. They are not drawings.

*0 Effects which do occur in early editions — and indeed in some modern editions as well.

% Compare Jones (1986) 1.76 on the diagrams of Pappus: ‘“The most apparent . . . convention is
a pronounced preference for symmetry and regularization . . . introducing [e.g.] equalities
where quantities are not required to be equal.” Such practices (which I have often seen in
manuscripts other than Pappus’) point to the expectation that the diagram should not be read
quantitatively.
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To sum up, then: when mathematical results were presented in
anything other than the most informal, private contexts, lettered dia-
grams were used. These would typically have been prepared prior to
the mathematical reasoning.’® Rulers and compasses may have been
used. Generally speaking, a Greek viewer would have read into them,
directly, the objects depicted, though this would have required some
Imagination (and, probably, what was seen then was just the schematic
configuration); but then, any viewing demands imagination.

2 PRACTICES OF THE LETTERED DIAGRAM

2.1 The mutual dependence of text and diagram

There are several ways in which diagram and text are interdepend-
ent. The most important is what | call ‘fixation of reference’ or
‘specification’.’

A Greek mathematical proposition is, at face value, a discussion
of letters: alpha, bea, etc. It says such things as ‘AB is bisected at I"".
There must be some process of fixation of reference, whereby these
letters are related to objects. | argue that in this process the diagram is
indispensable. This has the surprising result that the diagram is not
directly recoverable from the text.

Other ways in which text and diagram are interdependent derive
from this central property. First, there are assertions which are directly
deduced from the diagram. This is a strong claim, as it seems to
threaten the logical validity of the mathematical work. As I shall try to
show, the threat is illusory. Then, there is a large and vague field of
assertions which are, as it were, ‘mediated’ via the diagram. | shall try
to clarify this concept, and then show how such ‘mediations’ occur.

3t P. Berol. 17469, presented in Brashear (1994), is a proof of this claim. This papyrus — a second-
century ao fragment of unknown provenance — covers Elements 1.9, with tiny remnants of 1.8
and r.10. For each proposition, it has the enuncation together with an unlettered diagram, and
nothing else. It is fair to assume that the original papyrus had more propositions, treated in the
same way. My guess is that this was a memorandum, or an abridgement, covering the first
book of Euclid’s Elements. Had someone been interested in carrying out the proof, the lettering
would have occurred on a copy on, e.g. a wax-tablet. (The same, following Fowler’s suggestion
(1987) 211-12, can be said of POxy. i.29.)

To anticipate: in chapter 2 | shall describe the practices related to the assigning of letters to
points, and will argue for a semi-oral dress-rehearsal, during which letters were assigned to
points. This is in agreement with the evidence from the papyri.

32 The word ‘specification’ is useful, as long as it is clear that the sense is not that used by Morrow
in his translation of Proclus (a translation of the Greek diorismos). I explain my sense below.



20 The lettered diagram

2.1.1 Fixation of reference
Suppose you say (fig. 1.1):

Let there be drawn a circle, whose centre is A.

Figure 1.1.

A is thereby completely specified, since a circle can have only one
centre.
Another possible case is (figs. 1.2a, 1.2b):

Let there be drawn a circle, whose radius is BC.

Figure 1.2a. Figure 1.2b.

This is a more complicated case. | do not mean the fact that a circle
may have many radii. It may well be that for the purposes of the proof
it is immaterial which radius you take, so from this point of view saying
‘a radius’ may offer all the specification you need. What | mean by
‘specification’ is shorthand for ‘specification for the purposes of the proof’.



Practices of the lettered diagram 21

But even granted this, a real indeterminacy remains here, for we
cannot tell here which of BC is which: which is the centre and which
touches the circumference. The text of the example is valid with both
figures 1.2a and 1.2b. B and C are therefore underspecified by the text.

Finally, imagine that the example above continues in the following

way (fig. 1.g):

Let there be drawn a circle, whose radius is BC. | say that DB is
twice BC.

Figure 1.3.

D in this example is neither specified nor underspecified. Here is
a letter which gets no specification at all in the text, which simply
appears out of the blue. This is a completely unspecified letter.

We have seen three classes: completely specified, underspecified,
and completely unspecified. Another and final class is that of letters
which change their nature through the proposition. They may first
appear as completely unspecified, and then become at least under-
specified; or they may first appear as underspecified, and later get com-
plete specification. This is the basic classification into four classes.
| have surveyed all the letters in Apollonius’ Conics 1 and Euclid’s
Elements xir, counting how many belong to each class. But before
presenting the results, there are a few logical complications.

First, what counts as a possible moment of specification? Consider
the following case. Given the figure 1.4, the assertion is made: ‘and
therefore AB is equal to BC’. Suppose that nothing in the proposition
so far specified B as the centre of the circle. Is this assertion then a
specification of B as the centre? Of course not, because of the ‘there-
fore’ in the assertion. The assertion is meant to be a derivation, and
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Figure 1.4.

making it into a specification would make it effectively a definition, and
the derivation would become vacuous. Thus such assertions cannot
constitute specifications. Roughly speaking, specifications occur in the
imperative, not in the indicative. They are ‘let the centre of the circle,
B, be taken’, etc.

Second, letters are specified by other letters. It may happen that
those other letters are underspecified themselves. | have ignored this
possibility. I have been like a very lenient teacher, who always gives his
pupils a chance to reform. At any given moment, | have assumed that
all the letters used in any act of specification were fully specified them-
selves. | have concentrated on relative specification, specification of a
letter relative to the preceding letters. This has obvious advantages,
mainly in that the statistical results are more interesting. Otherwise,
practically all letters would turn out to be underspecified in some
way.

Third and most important, a point which Grattan-Guinness put
before me very forcefully: it must always be remembered, not only
what the text specifies, but also what the mathematical sense demands.
| have given such an example already, with ‘taking a radius’. If the
mathematical sense demands that we take any radius, then even if the
text does not specify which radius we take, still this constitutes no
underspecification. This is most clear with cases such as ‘Let some point
be taken on the circle, A’. Whenever a point is taken in this way, it
IS necessarily completely specified by the text. The text simply cannot
give any better specification than this. So | stress: what | mean by
‘underspecified letters’ is not at all ‘variable letters’. On the contrary:
variable points have to be, in fact, completely specified. | mean letters
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which are left ambiguous by the text — which the text does not specify
fully, given the mathematical purposes.

Now to the results.3 In Euclid’s Elements xmr, about 47% of the
letters are completely specified, about 8% are underspecified, about
19% are completely unspecified, and about 25% begin as completely
unspecified or underspecified, and get increased specification later. In
Apollonius’ Conics 1, about 42% are completely specified, about 37%
are underspecified, about 1% are completely unspecified, and about
16% begin as completely unspecified or underspecified, and get in-
creased specification later. The total number of letters in both surveys
Is 838.

Very often — most often — letters are not completely specified. So
how do we know what they stand for? Very simple: we see this in the
diagram.

In fact the difficult thing is to ‘unsee’ the diagram, to teach oneself
to disregard it and to imagine that the only information there is is that
supplied by the text. Visual information is compelling itself in an un-
obtrusive way. Here the confessional mode may help to convert my
readers. It took me a long time to realise how ubiquitous lack of
specification is. The following example came to me as a shock. It is, in
fact, a very typical case.

Look at Apollonius’ Conics .11 (fig. 1.5). The letter A is specified at
38.26, where it is asserted to be on a parallel to AE, which passes
through K. A is thus on a definite line. But as far as the text is con-
cerned, there is no way of knowing that A is a very specific point on
that line, the one intersecting with the line ZH. But | had never even
thought about this insufficiency of the text: I always read the diagram
into the text. This moment of shock started me on this survey. Having
completed the survey, its implications should be considered.

First, why are there so many cases falling short of full specification?
To begin to answer this question, it must be made clear that my results
have little quantitative significance. It is clear that the way in which
letters in Apollonius fail to get full specification is different from that in
Euclid. I expect that there is a strong variability between works by the
same author. The way in which letters are not fully specified depends
upon mathematical situations. Euclid, for instance, in book xir, may
construct a circle, e.g. AB "'AEand then construct a pentagon within

33 The complete tables, with a more technical analysis of the semantics of specification, are to
appear in Netz (forthcoming).
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A

Figure 1.5. Apollonius’ Conics 1.11.

the same circle, such that its vertices are the very same AB T'AEThis
Is moving from underspecification to complete specification, and is
demanded by the subject matter dealt with in his book. In the Conics,
parallel lines and ordinates are the common constructions, and letters
on them are often underspecified (basically, they are similar to ‘BC’ in
figs. 1.2a, 1.2b above).

What seems to be more stable is the percentage of fully specified
letters. Less than half the letters are fully specified — but not much less
than half. It is as if the authors were indifferent to the question of
whether a letter were specified or not, full specification being left as a
random result.

This, | claim, is the case. Nowhere in Greek mathematics do we
find a moment of specification per s¢, a moment whose purpose is to
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make sure that the attribution of letters in the text is fixed. Such
moments are very common in modern mathematics, at least since
Descartes.>* But specifications in Greek mathematics are done, liter-
ally, ambulando. The essence of the ‘imperative’ element in Greek math-
ematics — ‘let a line be drawn .. .”, etc. — is to do some job upon the
geometric space, to get things moving there. When a line is drawn
from one point to another, the letters corresponding to the start and
end positions of movement ought to be mentioned. But they need not
be carefully differentiated; one need not know precisely which is the
start and which is the end — both would do the same job, produce the
same line (hence underspecification); and points traversed through this
movement may be left unmentioned (hence complete unspecification).

What we see, in short, is that while the text is being worked through,
the diagram is assumed to exist. The text takes the diagram for granted.
This reflects the material implementation discussed above. This, in
fact, is the simple explanation for the use of perfect imperatives in the
references to the setting out — ‘let the point A have been taken’. It
reflects nothing more than the fact that, by the time one comes to
discuss the diagram, it has already been drawn.®

The next point is that, conversely, the text is not recoverable from
the diagram. Of course, the diagram does not tell us what the propo-
sition asserts. It could do so, theoretically, by the aid of some symbolic
apparatus; it does not. Further, the diagram does not specify all the
objects on its own. For one thing, at least in the case of sphaerics, it
does not even look like its object. When the diagram is ‘dense’, satu-
rated in detail, even the attribution of letters to points may not be
obvious from the diagram, and modern readers, at least, reading
modern diagrams, use the text, to some extent, in order to elucidate
the diagram. The stress of this section is on inter-dependence. | have
not merely tried to upset the traditional balance between text and

3¢ In Descartes, the same thing is both geometric and algebraic: it is a line (called AB), and it is
an algebraic variable (called a). When the geometrical configuration is being discussed, ‘AB’
will be used; when the algebraic relation is being supplied, ‘a’ is used. The square on the line
is ‘the square on AB’ (if we look at it geometrically) or a* (if we look at it algebraically). To
make this double-accounting system workable, Descartes must introduce explicit, per se speci-
fications, identifying symbols. This happens first in Descartes (1657) 300. This may well be the
first per se moment of specification in the history of mathematics.

3% The suggestion of Lachterman (1989) 65—7, that past imperatives reflect a certain horror operandi,
is therefore unmotivated, besides resting on the very unsound methodology of deducing a
detailed philosophy, presumably shared by each and every ancient mathematician, from lin-
guistic practices. The methodology adopted in my work is to explain shared linguistic practices
by shared situations of communication.
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diagram; | have tried to show that they cannot be taken apart, that
neither makes sense in the absence of the other.

2.1.2  The role of text and diagram for derivations
In general, assertions may be derived from the text alone, from the
diagram alone, or from a combination of the two. In chapter 5, | shall
discuss grounds for assertions in more detail. What is offered here is
an introduction.

First, some assertions do derive from the text alone. For instance,
take the following:3°

As B Hs to EA, so are four times the rectangle contained by B EEA
to four times the rectangle contained by AE, EA.

One brings to bear here all sorts of facts, for instance the relations
between rectangles and sides, and indeed some basic arithmetic. One
hardly brings to bear the diagram, for, in fact, ‘rectangles’ of this type
often involve lines which do not stand at right angles to each other; the
lines often do not actually have any point in common.*

So this is one type of assertion: assertions which may be viewed as
verbal and not visual.®® Another class is that of assertions which are
based on the visual alone. To say that such assertions exist means that
the text hides implicit assumptions that are contained in the diagram.

That such cases occur in Greek mathematics is of course at the
heart of the Hilbertian geometric programme. Hilbert, one of the
greatest mathematicians of the twentieth century, who repeatedly re-
turned to foundational issues, attempted, in Hilbert (189g), to rewrite
geometry without any unarticulated assumptions. Whatever the text
assumes in Hilbert (189g), it either proves or explicitly sets as an axiom,
This was never done before Hilbert, mainly because much information
was taken from the diagram. As is well known, the very first proposition

3¢ Apollonius’ Conics 1.33, 100.7—8. The Greek text is more elliptic than my translation.

37 Here the lines mentioned do share a point, but they are not at right angles to each other. See,
for instance, Conics 1.34, 104.3, the rectangle contained by KB, AN — lines which do not share
a point.

% This class is not exhausted by examples such as the above (so-called ‘geometrical algebra’). For
instance, any calculation, as e.g. in Aristarchus’ On Sizes and Distances, owes nothing to the
diagram. It should be noted that even ‘geometrical algebra’ is still ‘geometrical’: the text does
not speak about multiplications, but about rectangles. This of course testifies to the primacy of
the visual over the verbal. In general, see Unguru (1975, 1979), Unguru and Rowe (1981—2),
Unguru and Fried (forthcoming), Hoyrup (19g90a), for a detailed criticism of any interpretation
of ‘geometrical algebra’ which misses its visual motivation. The term itself is misleading, but
helps to identify a well-recognised group of propositions, and | therefore use it, quotation
marks and all.
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r

Figure 1.6. Euclid’s Elements 1.1.

of Euclid’s Elements contains an implicit assumption based on the
diagram — that the circles drawn in the proposition meet (fig. 1.6).%

There is a whole set of assumptions of this kind, sometimes called
‘Pasch axioms’.* ‘A line touching a triangle and passing inside it touches
that triangle at two points’ — such assumptions were generally, prior to
the nineteenth century, taken to be diagrammatically obvious.

Many assertions are dependent on the diagram alone, and yet
involve nothing as high-powered as ‘Pasch axioms’. For instance,
Apollonius’ Conics mr.1 (fig. 1.7):#' the argument is that AAB 4s equal to
ATZ and, therefore, subtracting the common AEB Zthe remaining
AAE is equal to 'B EAdopting a very grand view, one may say that
this involves assumptions of additivity, or the like. This is part of the
story, but the essential ground for the assertion is identifying the
objects in the diagram.

My argument, that text and diagram are interdependent, means
that many assertions derive from the combination of text and diagram.
Naturally, such cases, while ubiquitous, are difficult to pin down pre-
cisely. For example, take Apollonius’ Conics 1.45 (fig. 1.8). It is asserted —
no special grounds are given — that MK:KT™::T"TA:AA.# The implicit ground
for this is the similarity of the triangles MK, TAA. Now diagrams
cannot, in themselves, show satisfactorily the similarity of triangles.
But the diagram may be helpful in other ways, for, in fact, the similarity

%9 Most recommended is Russell (1903) 404ff., viciously and in a sense justly criticising Euclid for
such logical omissions.

# For a discussion of the absence of Pasch axioms from Greek mathematics, see Klein (1939)
201—2.

# 318.15-18.  ** 138.10—1I.
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Figure 1.7. Apollonius’ Conics 1.1 (Parabola Case).

m >

r
o B
Figure 1.8. Apollonius’ Conics 1.45 (Hyperbola Case).

of the relevant triangles is not asserted in this proposition. To see
this similarity, one must piece together a few hints: A is parallel to
KO (136.27); M lies on K© (underspecified by the text); I'K is parallel to
A© (138.6); A lies on A© (underspecified by the text); M lies on T'A
(136.26). Putting all of these together, it is possible to prove that the
two triangles are similar. In a sense we do piece together those hints.
But we are supposed to be able to do so at a glance (a significant
phrase!). How do we do it then? We coordinate the various facts
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involved, and we coordinate them at great ease, because they are all
simultaneously available on the diagram. The diagram is synoptic.

Note carefully: it is not the case that the diagram asserts information
such as ‘TK is parallel to A®’. Such assertions cannot be shown to be
true in a diagram. But once the text secures that the lines are parallel,
this piece of knowledge may be encoded into the reader’s representa-
tion of the diagram. When necessary, such pieces of knowledge may
be mobilised to yield, as an ensemble, further results.

2.1.3 The diagram organises the text
Even at the strictly linguistic level, it is possible to identify the presence
of the diagram. A striking example is the following (fig. 1.g):#

H
E
A
Z
M
I N A
A B =
O
P
K
)3
T
S)

Figure 1.9. Apollonius’ Conics 1.50 (Ellipse Case).

# Apollonius, Conics 1.50, 150.23—5: kai €iAnPBw T1 &l Tfis Topfis onueiov 1O A, kai 81 alToU
) EA mapdAAnios Aixbw ) AM=, ) 8¢ B H 1 APN, ff 8¢ E© © MII.
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A A I E

Figure 1.10. Archimedes’ PE 1.7.

And let some point be taken on the section, A, and, through it, let
AMZ= be drawn parallel to EA, APN to B HMIT to E©.

Syntactically, the sentence means that MTT passes through A — which
MTT does not. The diagram forces one to carry A over to a part of the
sentence, and to stop carrying it over to another part.*#* The pragmat-
ics of the text is provided by the diagram. The diagram is the frame-
work, the set of presuppositions governing the discourse.

A specific, important way in which the diagram organises the text
Is the setting of cases. This is a result of the diagrammatic fixation
of reference. Consider Archimedes’ PE 1.7: EZH, AB [are two similar
sections; Z©, B /are, respectively, their diameters; A, K, respectively,
their centres of gravity (fig. 1.10). The proposition proves, through a
reductio, that ZA:A©::B KA. How? By assuming that a different point,
M, satisfies ZM:M@::B KA. M could be put either above or below A.
The cases are asymmetrical. Therefore these are two distinct cases.
Archimedes, however, does not distinguish the cases in the text. Only the
diagram can settle the question of which case he preferred to discuss.

There are many ways in which it can be seen that the guiding
principle in the development of the proof is spatial rather than logical.
Take, for instance, Apollonius’ Conics r.15 (fig. 1.11): the proposition
deals with a construction based on an ellipse. This construction has
two ‘wings’, as it were. The development of the proof is the following:
first, some work is done on the lower wing; next, the results are re-
worked on the ellipse itself; finally, the results are transferred to the

# Compare also the same work, proposition g1, g4.2—3: the syntax seems to imply that A© passes
through E; it does not. In the same proposition, g2.23—4: is I on the hyperbola or on the
diameter? The syntax, if anything, favours the hyperbola; the diagram makes it stand on the
diameter: two chance examples from a chance proposition.
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Figure 1.11. Apollonius’ Conics r.15.

upper wing. One could, theoretically, proceed otherwise, collecting
results from all over the figure simultaneously. Apollonius chose to
proceed spatially.* There are a number of contexts where the role of
spatial visualisation can be shown, on the basis of the practices con-
nected with the assignment of letters to objects, and I shall return to
this issue in detail in chapter 2 below. The important general observation
Is that the diagram sets up a world of reference, which delimits the
text. Again, this is a result of the role of the diagram for the process of
fixation of reference. Consider a very typical case: A in Apollonius’
Conics 1.6. It is specified in the following way (fig. 1.12):*° ‘From K, let a

® The first part is 60.5-19, the second is 60.19—29, the third is 60.29—62.13. That the second part
casts a brief glance — seven words — back at the lower wing serves to show the contingency of
this spatial organisation.

0 90,3,
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A

Figure 1.12. Apollonius’ Conics 1.6 (One of the Cases).

perpendicular, to B [be drawn (namely) K©A.” The locus set up for A
is a line. How do we know that it is at the limit of that line, on the
circle 'KB? Because A is the end point of the action of drawing the
line KOA — and because this action must terminate on this circle for this
circle is the limit of the universe of this proposition. There are simply no points
outside this circle.

Greek geometrical propositions are not about universal, infinite space.
As is well known, lines and planes in Greek mathematics are always
finite sections of the infinite line and plane which we project. They are,
it is true, indefinitely extendable, yet they are finite. Each geometrical
proposition sets up its own universe — which is its diagram.
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2.1.4 The mutual dependence of text and diagram: a summary
Subsections 2.1.1—2.1.3, taken together, show the use of the diagram as
a vehicle for logic. This might be considered a miracle. Are diagrams
not essentially misleading aids, to be used with caution?

Mueller, after remarking on Greek implicit assumptions, went on to
add that these did not invalidate Greek mathematics, for they were
true.¥” This is a startling claim to be made by someone who, like Mueller,
Is versed in modern philosophy of mathematics, where truth is often
seen as relative to a body of assumptions. Yet Mueller’s claim is correct.

To begin with, a diagram may always be ‘true’, in the sense that it
Is there. The most ultra-abstract modern algebra often uses diagrams
as representations of logical relations.*® Diagrams, just like words, may
be a way of encoding information. If, then, diagrams are seen in this
way, to ask ‘how can diagrams be true?’ is like asking ‘how can lan-
guage be true? — not a meaningless question, but clearly a different
question from that we started from.

But there is more to this. The problem, of course, is that the dia-
gram, qua physical object, does not model the assertions made concern-
ing it. The physical diagram and the written text often clash: in one,
the text, the lines are parallel; in the other, the diagram, they are not.
It is only the diagram perceived in a certain way which may function
alongside the text. But this caveat is in fact much less significant than
It sounds, since whatever is perceived is perceived in a certain way, not
in the totality of its physical presence. Thus the logical usefulness of
the diagram as a psychological object is unproblematic — the important
requirement is that the diagram would be perceived in an inter-
subjectively consistent way.

Poincaré — having his own axe to grind, no doubt — offered the
following interpretation of the diagram:* ‘It has often been said that
geometry is the art of reasoning correctly about figures which are
poorly constructed. This is not a quip but a truth which deserves
reflection. But what is a poorly constructed figure? It is the type which
can be drawn by the clumsy craftsman.’

Immediately following this, Poincaré goes on to characterise the
useful diagram: ‘He [the clumsy craftsman] distorts proportions more
or less flagrantly . . . But [he] must not represent a closed curve by an

7 Mueller (1981) 5.

# See e.g. Maclane and Birkhoff (1968), passim (explanation on the diagrammatic technique is
found in 5ff.).

49 | quote from the English translation, Poincaré (1963) 26.
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open curve . .. Intuition would not have been impeded by defects in
drawing which are of interest only in metric or projective geometry.
But intuition will become impossible as soon as these defects involve
analysis situs.’

The analysis situs>® is Poincaré’s hobby-horse, and should be ap-
proached with caution. The diagram is not just a graph, in the sense of
graph theory. It contains at least one other type of information, namely
the straightness of straight lines; that points stand ‘on a line’ is con-
stantly assumed on the basis of the diagram.> This fact is worth a detour.

How can the diagram be relied upon for the distinction between
straight and non-straight? The technology of drawing, described in
section 1 above, showed that diagrams were drawn, probably, with no
other tools than the ruler and compasses. Technology represented no
more than the distinction between straight and non-straight. The man-
made diagram, unlike nature’s shapes, was governed by the distinction
between straight and non-straight alone. The infinite range of angles was
reduced by technology into a binary distinction.>* This is hypothetical,
of course, but it may serve as an introduction to the following suggestion.

There is an important element of truth in Poincaré’s vision of the
diagram. The diagram is relied upon as a finite system of relations. I
have described above the proposition as referring to the finite universe
of the diagram. This universe is finite in two ways. It is limited in
space, by the boundaries of the figure; and it is discrete. Each geo-
metrical proposition refers to an infinite, continuous set of points. Yet
only a limited number of points are referred to, and these are almost
always (some of) the points standing at the intersections of lines.’> The
great multitude of proletarian points, which in their combined efforts
construct together the mathematical objects, is forgotten. All attention
Is fixed upon the few intersecting points, which alone are named. This,

% Corresponding — as far as it is legitimate to make such correspondences — to our notion of
‘topology’.

' That the full phrase of the form 7 e¥6ela ypouun AB is almost always contracted to the
minimum 7 AB, even though this may equally well stand for 1|, ypauun AB simpliciter — i.e. for
a curved rather than a straight line — reflects the fact that this basic distinction, between
curved and straight, could generally be seen in the diagram.

> So far, the technology is not confined to Greece; and Babylonian ‘structural diagrams’,
described by Hoyrup (1ggoa: 287-8), are useful in this context.

3 In Archimedes’ SL, which includes 22 geometrical propositions (i.e. a few hundred letters),
there are 24 which do not stand in extremes, or intersections, of lines, namely proposition 14:
B, I K 15: B, K;16: B, I, K, N; 17: B, K, N; 18: B, I, K, A; 19: B, E, K, A; 20: B, A; 21: A; 28:
B. I choose this example as a case where there are relatively many such points, the reason
being Archimedes’ way of naming spirals by many letters, more letters than he can affix to
extremes and intersections alone — essentially a reflection of the peculiarity of the spiral.
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finally, is the crucial point. The diagram is named — more precisely, it
Is lettered. It is the lettering of the diagram which turns it into a system
of intersections, into a finite, manageable system.

To sum up, there are two elements to the technology of diagrams:
the use of ruler and compasses, and the use of letters. Each element
redefines the infinite, continuous mass of geometrical figures into a
man-made, finite, discrete perception. Of course, this does not mean
that the object of Greek mathematics is finite and discrete. The per-
ceived diagram does not exhaust the geometrical object. This object is
partly defined by the text, e.g. metric properties are textually defined.
But the properties of the perceived diagram form a true subset of the
real properties of the mathematical object. This is why diagrams are
good to think with.>*

2.2 Diagrams as metonyms of propositions

A natural question to ask here is whether the practices described so
far are reflected in the Greek conceptualisation of the role of dia-
grams. The claim of the title is that this is the case, in a strong sense.
Diagrams are considered by the Greeks not as appendages to proposi-
tions, but as the core of a proposition.

2.2.r Speaking about diagrams®
Our ‘diagram’ derives from Greek diagramma whose principal meaning
LSJ) define as a ‘figure marked out by lines’, which is certainly
etymologically correct. The word diagramma is sandwiched, as it were,
between its anterior and posterior etymologies, both referring simply
to drawn figures. Actual Greek usage is more complex.

Diagramma is a term often used by Plato — one of the first, among
extant authors, to have used it — either as standing for mathematical

s A disclaimer: I am not making the philosophical or cognitive claim that the only way in which
diagrams can be deductively useful is by being reconceptualised via letters. As always, 1 am a
historian, and | make the historical claim that diagrams came to be useful as deductive tools in
Greek mathematics through this reconceptualisation.

% That they put diagrams as ‘appendages’ — i.e. at the end of propositions rather than at their
beginning or middle — shows something about the relative role of beginning and end, not
about the role of the diagram. It should be remembered that the titles of Greek books are also
often put at the end of treatises. My guess is that, reading a Greek proposition, the user would
unroll some of the papyrus to have the entire text of the proposition (presumably a few
columns long) ending conveniently with the diagram. It was the advent of the codex which led
to today’s nightmare of constant backwards-and-forwards glancing, from text to diagram,
whenever the text spills from one page to the next.

56 Part of the argument of this subsection derives from Knorr (1975) 69—75.
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proofs or as the de rigueur accompaniment of mathematics.”” With
Aristotle, diagrammata (the plural of diagramma) can practically mean
‘mathematics’, while diagramma itself certainly means ‘a mathematical
proposition’.s® Xenophon tells us that Socrates used to advise young
friends to study geometry, but not as far as the unintelligible
diagrammata,> and we begin to think that this may mean more than just
very intricate diagrams in the modern sense. Further, Knorr has shown
that the cognates of graphein, ‘to draw’, must often be taken to carry a
logical import.” He translates this verb by ‘prove by means of dia-
grams’. Certainly this phrase is the correct translation; however, we
should remember that the phrase stands for what, for the Greeks, was
a single concept.

Complementary to this, the terminology for ‘diagram’ in the mod-
ern sense is complex. The word diagramma is never used by Greek
mathematicians in the sense of ‘diagram’. When they want to empha-
sise that a proposition relies upon a diagram, they characterise it as
done dia grammon — ‘through lines’, in various contexts opposed to the
only other option, di’ arithmén — ‘through numbers’.*"

A word mathematicians may use when referring to diagrams present
within a proof is katagraphe — best translated as ‘drawing’.”® The verb
katagraphein is regularly used in the sense of ‘completing a figure’, when
the figure itself is not specified in the text. The verb is always used
within this formula, and with a specific figure: a parallelogram (often
rectangle) with a diagonal and parallel lines inside it.

57 As in Euthd. 2goc; Phaedr. 73b; Theaetet. 169a; the [pseudo?]-Platonic Epin. gg1e; and, of course,
Rep. 510C.

% E.g. APr. 41b14; Meteor. 375b18; Cat. 14b1; Metaph. gg8azs, 1051a22; SE 175a27.

% Mem. v.7.3. % Knorr (1975) 69—75.

® See, e.g. Heron: Metrica 1.10.3; Ptolemy: Almagest .10, 32.1, viiL5, 193.19, Harmonics 1.5, 12.8;
Pappus v1.600.9—13. Proclus, In Rem Publicam 1.23. The treatment of book i by Hero, as
preserved in the Codex Leidenensis (Besthorn and Heiberg (1goo: 8ff.), is especially curious: it
appears that Hero set out to prove various results with as few lines as possible, preferably with
none at all, but with a single line if the complete avoidance of lines was impossible (one is
reminded of children’s puzzles — ‘by moving one match only, the train changes into a bal-
loon’). Hero’s practice is comparable to the way a modern mathematician would be interested
in proving the result X on the basis of fewer axioms than his predecessors. Modern mathema-
ticians prove with axioms; Greek mathematicians proved with lines.

%2 See e.g. Euclid’s Elements .33, 1v.5, x1r.4; Apollonius, Conics rv.27. Archimedes usually refers
simply to oxfuata (CF 11.394.6, 406.2, 410.24; SC 11.224.3). This is ‘figure’ in the full sense of
the word, best understood as a continuous system of lines; a single diagram — especially an
Archimedean one! — may include more than a single oxfjuo. Finally, Archimedes uses once
the verb Umoypd&gev (PE 1.5 Cor. 2, 132.12), a relative of kataypdeerv.

% The first five propositions of Euclid’s Elements xm, and also: 1.7, 8; vi.27—9; x.91—6. The
formula is a feature of the Euclidean style — though the fact that Apollonius and Archimedes
do not use it should be attributed, I think, to the fact that they do not discuss this rectangle.
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Aristotle’s references to diagrams are even more varied. On several
occasions he refers to his own diagrams as hupographai, yet another
relative of the same etymological family.’* Diagraphai — a large family —
are mentioned as well.”> None of these diagrams are mathematical dia-
grams; when referring to a proof where a mathematical diagram
occurs, Aristotle uses the word diagramma, and we are left in the dark as
to whether this refers to the diagram or to the proof as a whole. What
does emerge in Aristotle’s case is a certain discrepancy between the
standard talk about mathematics and the talk of mathematics. We will
become better acquainted with this discrepancy in chapter s.

Mathematical commentators may combine the two discourses, of
mathematics and about mathematics. What is their usage? Pappus
uses diagramma as a simple equivalent of our ‘proposition’.*® In several
cases, when referring to a diagram inside a proposition, he uses
hupographe.®” Proclus never uses diagramma when referring to an actual
present diagram, to which he refers by using the term katagraphe or,
once, hupogegrammene.®® Eutocius uses katagraphe quite often.® Schema,
in the sense of one of the diagrams referred to in a proposition, is used
as well. It is interesting that one of these uses derives directly from
Archimedes,” while all the rest occur in — what | believe is a genuine
— Eratosthenes fragment.”

The evidence is spread over a very long period indeed, but it is
coherent. Alongside more technical words signifying a ‘diagram’ in
the modern sense — words which never crystallised into a systematic
terminology — the word diagramma is the one reserved for signifying
that which a mathematical proposition is. Should we simply scrap, then,
the notion that diagramma had anything at all to do with a ‘diagram’?
Certainly not. The etymology is too strong, and the semantic situation
can be easily understood. Diagramma is the metonym of the proposition.

64 de Int. 20a22; Meteor. 346a32, 363a26; HA 510a30; EE 1220b37.

% EE 1228a28; EN 1107833; HA 497832, 525a9. The yeypauuévon of de Part. 642a12 is probably

relevant as well; I guess that the last mentioned are &varouai-type diagrams, included in a

book, and that diagrams set out in front of an audience (e.g. on wooden tablets) are called

Utroypagad; but this is strictly a guess.

E.g. vi.638.17, 670.1—2. When counting propositions in books, Pappus often counts 8ecoptjpaTa

ATor Slaypdupata, ‘theorems, or diagrams’ — a nice proof that ‘diagrams’ may function as

metonyms of propositions.

%7 Several cognate expressions occur in 1v.200.26, 272.14, 298.6; V1.542.11, 544.19 and, perhaps,

I11.134.22.

In Eucl.: xataypagn: 340.11, 358.11, 370.14, 400.9—15, UTroyey paupévn: 286.22.

% Seventeen times in the commentary to Archimedes, for which see index i to Archimedes
vol. 1.

216.24. 7' 88.15, 92.7, 94.13, 19.

68
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It is so strongly entrenched in this role that when one wants to make
quite clear that one refers to the diagram and not to the proposition —
which happens very rarely — one has to use other, more specialised
terms.”

2.2.2 Diagrams and the individuation of propositions

That diagrams may be the metonyms of propositions is surprising for
the following reason. The natural candidate from our point of view
would be the ‘proposition’, the enunciation of the content of the pro-
position — because this enunciation individuates the proposition. The
hallmark of Euclid’s Elements 1.47 is that it proves ‘Pythagoras’ theorem’
— which no other proposition does. On the other hand, nothing, logic-
ally, impedes one from using the same diagram for different propositions.

Even if this were true, it would show not that diagrams cannot be
metonyms, but just that they are awkward metonyms. But interestingly
this is wrong. The overwhelming rule in Greek mathematics is that
propositions are individuated by their diagrams. Thus, diagrams are
convenient metonyms.”

The test for this is the following. It often happens that two separate
lines of reasoning employ the same basic geometrical configuration.
This may happen either within propositions or between propositions.’*
Identity of configuration need not, however, imply identity of diagram,
since the lettering may change while the configuration remains. My
claim is that identity of configuration implies identity of diagram within
propositions, and does not imply such identity between propositions.

What is an ‘identity’ between diagrams? This is a matter of degree —
one can give grades, as it were:

1. ‘ldentity simpliciter’ — the diagrams may be literally identical.
2.1. ‘Inclusion’ — the diagrams may not be identical, because the sec-
ond has some geometrical elements which did not occur in the

7 Note that | am speaking here not of diachronic evolution, but of a synchronic situation. It is
thus useful to note that in contexts which are not strictly mathematical 81&ypoupua has clearly
the sense ‘diagram’ — e.g. Bacchius, in Musici Graeci ed. Janus, 305.16—17: Ai&ypoppa . . . Ti
€0TI; — 2UCTNMATOS UTTOBElypa. f)Tol oUTwS, d1&ypapud é0TL oXNPa &miTedov . . .

7 Here it should be clarified that the ‘diagram’ of a single proposition may be composed of a
number of ‘figures’, i.e. continuous configurations of lines. When these different figures are not
simply different objects discussed by a single proof, but are the same object with different cases
(e.9. Euclid’s Elements 1.g5), the problem of transmission becomes acute. Given our current
level of knowledge on the transmission of diagrams, nothing can be said on such diagrams.

74 Such continuities may be singled out in the text by the formulae Té&v oTédv Utrokeipéveov/
KaTaokeuaoBévTov, kal T& &AM T& alTtd Tpokeiobuw/kaTaokeudobuw — see e.g. Euclid’s
Elements 1.3, 14; vi.2, 3; Archimedes, SC 1.6; Apollonius, Conics mr.6. | will argue below that
such continuities do not imply identities. Whether the continuity is explicitly noted or not does
not change this.
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first (or vice versa). However, the basic configuration remains.
Furthermore, all the letters which appear in both diagrams stand
next to identical objects (some letters would occur in this dia-
gram but not in the other; but they would stand next to objects
which occur in this diagram but not in the other). Hence, wherever
the two diagrams describe a similar situation they may be used
interchangeably.

2.2. ‘Defective inclusion’ — diagrams may have a shared configura-
tion, but some letters change their objects between the two dia-
grams. Thus, it is no longer possible to interchange the diagrams,
even for a limited domain.

3. ‘Similarity’ — the configuration is not identical, and letters switch
objects, but there is a certain continuity between the two diagrams.

‘F’. No identity at all — although the two propositions refer to a math-
ematical situation which is basically similar, the diagrams are
flagrantly different.

Conics 1 offers many cases of interpropositional continuity of subject
matter. | have graded them all.”> The results are: a single first, seven
2.1, four 2.2, six thirds and four fails. Disappointing; in fact, the results
are very heterogeneous and should not be used as a quantitative guide.
The important point is the great rarity of the first — which makes it
look like a fluke.

To put this evidence in a wider context, it should be noted that
Conics 11 is remarkable in having so many cases of continuities. More
often, subject matters change between propositions, ruling out identical
diagrams. An interesting case in the Archimedean corpus is CF 4/5:
a 2.2 by my marking system, but the manuscripts are problematic.
Euclid’s schama, used in the formula ‘and let the figure be drawn’ to
which | have referred in n. 63 above, is usually in the range 3—F.”
There are no relevant cases in Autolycus; | shall now mention a case
from Aristarchus (and, in n. 79, Ptolemy).

The best way to understand the Greek practice in this respect is to
compare it with Heath’s editions of Archimedes and Apollonius. One
of the ways in which Heath mutilated their spirit is by making dia-
grams as identical as possible. This makes the individuated unit larger

1. 46 (identical to 45); 2.1: 2 (compared with 1), 14 (13), 29 (28), 47-50 (15); 2.2: 7—8 (6), 10 (8),
21 (20); 31 3 (1), 6 (5), 9 (6), 25 (24), 35 (34), 38 (37); F: 11 (8), 12 (11), 36 (34), 40 (39)-

7*In this I ignore Elements x.q91—6, which is a specimen from a strange context. In general, book
x works in hexads, units of six propositions proving more or less the same thing. It is difficult
to pronounce exactly on the principle of individuation in this book: are propositions individuated,
or are hexads?
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than a given proposition: it is something like a ‘mathematical idea’.
But such identities ranging over propositions are Heath’s, not
Archimedes’ nor Apollonius’.

The complementary part of my hypothesis has to do with internal
relations. It is not at all rare for a proposition to use the same configu-
ration twice. For instance, this is very common in some versions of the
method of exhaustion, where the figure is approached from ‘above’
and from ‘below’. The significance of the diagram changes; yet, there
IS no evidence that it has been redrawn.”

The following case appears very strange at first glance: the construc-
tion of Aristarchus 14 begins with ¢éotew 16 alTd oxfjuax TG TPdTEPOV
— ‘let there be the same figure as before’.”® Having said that, Aristarchus
proceeds to draw a diagram which | would mark 2.2 — not at all the
identity suggested by his own words (figs. 1.13a and 1.13b)! How can we
account for this? I suggest the following: Aristarchus’ motivation is to
save space; that is, he does not want to give the entire construction
from scratch — that would be tedious. But then, saying ‘let A and B be
the same, C and D be different, and so on’ is just as tedious. So he
simply says ‘let it be the same’, knowing that his readers would not be
misled, for no reader would expect two diagrams to be literally ident-
ical. When you are told somebody’s face is ‘the same as Woody Allen’s’,
you do not accept this as literally true — the pragmatics of the situation
rule this out. Faces are just too individual. Greek diagrams are, as it
were, the faces of propositions, their metonyms.”

2.2.3 Diagrams as metonyms of propositions: summary
| have claimed that diagrams are the metonyms of propositions; in
effect, the metonyms of mathematics (as mentioned in n. 58 above).

77 See, e.g. Archimedes, CS 21 352.9, 25 380.16, 26 388.10, 27 402.7—8, 29 420.15; SC 11.6 204.14;
QP 16 296.26. For examples from outside the method of exhaustion, see Apollonius’ Conics 1.26
82.20-1; 32 96.23—6; Euclid’s Elements 111.g 172.17, 14 204.11.

7 Aristarchus 14 398.23. Incidentally, this is another mathematical use of oxfjua for ‘diagram’.

7 | have not discussed Ptolemy’s diagrams in this subsection. Ptolemy often uses expressions like
‘using the same diagram’. Often the diagrams involved are very dissimilar (e.g. the first
diagram of Syntaxis v.6, in 380.18-19, referring to the last diagram of v.5). Sometimes Ptolemy
registers the difference between the diagrams by using expressions such as ‘using a similar
diagram’ (e.g. the first diagram of xr.5, in g93.1—2, referring to the first diagram of xr.1).
Rarely, diagrams are said to be ‘the same’ and are indeed practically identical (e.g. the fourth
diagram of ur5, in 245.6—7, referring to the third diagram of ur5). But this is related to
another fact: Ptolemy uses in the Syntaxis a limited type of diagram. Almost always, whether he
does trigonometry or astronomy, Ptolemy works with a diagram based on a single circle with
some lines passing through it. A typical Greek mathematical work has a wide range of dia-
grams; each page looks different. Ptolemy is more repetitive, more schematic. L. Taub sug-
gested to me that this should be related to Ptolemy’s wider programme — that of preparing a
‘syntaxis’, organised knowledge.
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Figure 1.13a. Aristarchus 1s.

That diagrams were considered essential for mathematics is proved
by books v, vi—ix of Euclid’s Elements. There, all the propositions are
accompanied by diagrams, as individual and — as far as the situations
allow — as elaborate as any geometrical diagram. Yet, in a sense, they
are redundant, for they no longer represent the situations discussed. As
Mueller points out, these diagrams may be helpful in various ways.*

o Mueller (1981) 67.
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Figure 1.13b. Aristarchus 14.

Yet, as he asserts, they no longer have the same function. They reflect
a cultural assumption, that mathematics ought to be accompanied by
diagrams. Probably line diagrams are not the best way to organise
proportion theory and arithmetic. Certainly symbolic conventions such
as ‘=', for instance, may be more useful. The lettered diagram func-
tions here as an obstacle: by demanding one kind of representation, it
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obstructs the development of other, perhaps more efficient repres-
entations.” An obstacle or an aid: the diagram was essential.

2.3 The semiotic situation

So far | have used neutral expressions such as ‘the point represented by
the letter’. Clearly, however, the cognitive contribution of the diagram
cannot be understood without some account of what is involved in
those ‘representations’ being given. This may lead to problems. The
semiotic question is a tangent to a central philosophical controversy:
what is the object of mathematics? In the following I shall try not to
address such general questions. | am interested in the semiotic relation
which Greek mathematicians have used, not in the semiotic relations
which mathematicians in general ought to use. | shall first discuss the
semiotic relations concerning letters, and then the semiotic relations
concerning diagrams.

2.3.1  The semiotics of letters
Our task is to interpret expressions such as éotw TS pev dobtv onueiov
6 A% — ‘let the given point be the A’. To begin with, expressions such
as 16 A, ‘the A’, are not shorthand for ‘the letter A’; A is not a letter
here, but a point.®* The letter in the text refers not to the letter in the
diagram, but to a certain point.

Related to this is the following. Consider this example, one of many:*

goTtw evbeia 11 AB
(I will give a translation shortly).

This is translated by Heath as ‘Let AB be a straight line.’®> This creates
the impression that the statement asserts a correlation between a sym-
bol and an object — what | would call ‘a moment of specification per se’.

8 By a process which eludes our knowledge, manuscripts for Diophantus developed a limited
system of shorthand, very roughly comparable to an abstract symbolic apparatus. Whether
this happened in ancient times we can’t tell; at any rate, Diophantus requires a separate study.

% Euclid’s Elements 1.2, 12.21.

% This can be shown through the wider practice of such abbreviations, which | discuss in
chapter 4.

% Euclid’s Elements xrr.4, 256.26; Heath’s version is vol. m.447.

% Heath probably preferred, in this case, a slight unfaithfulness in the translation to a certain
stylistic awkwardness. It so happens that this slight unfaithfulness is of great semiotic signifi-
cance. It should be added that I know of no translation of Euclid which does not commit —
what | think is — Heath’s mistake. Federspiel (1992), in a context very different from the
present one, was the first to suggest the correct translation.



44 The lettered diagram

In fact, this translation is untenable, since the article before AB can
only be interpreted as standing for the elided phrase ‘straight line’,* so
Heath’s version reads as ‘let the straight line AB be a straight line’,
which is preposterous. In fact the word order facilitates the following
translation:

‘Let there be a straight line, [viz.] AB.’

First, what such clauses do not assert: they do not assert a relation
between a symbol and an object. Rather, they assert an action — in the
case above, the taking for granted of a certain line — and they proceed
to localise that action in the diagram, on the basis of an independently
established reference of the letters. The identity of ‘the AB’ as a certain
line in the diagram is assumed by Euclid, rather than asserted by him.

So far, expressions use the bare article and a combination of one or
more letters. This is the typical group of expressions. There is another,
rarer, group of expressions, which may shed some light on the more
common one. Take the Hippocratic fragment, our evidence for earli-
est Greek mathematics” (fig. 1.14):

A
E;é ; H
A
Z
A K r B

Figure 1.14. Hippocrates’ Third Quadrature.

€0Tw KUKAOS oU diaueTpos ép fj AB  kévtpov 8¢ aitol ép ¢ K

‘Let there be a circle whose diameter [is that] on which AB, its
centre [that] on which K.

% While the feminine gender, in itself, does not imply a straight line, the overall practice
demands that one reads the bare feminine article, ceteris paribus, as referring to a straight line.
% Becker (1936b) 418.32.
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Figure 1.15. Archimedes’ SC 1r.9.

| translate by ‘on which’ a phrase which in the Greek uses the prepo-
sition epi with the dative (which is interchangeable with the genitive).™
Our task is to interpret this usage.

Expressions such as that of the Hippocratic fragment are character-
istic of the earliest Greek texts which use the lettered diagram, that is,
besides the Hippocratic fragment itself, the mathematical texts of Aris-
totle.” However, Aristotle — as ever — has his own, non-mathematical
project, which makes him a difficult guide. | shall first try to elucidate
this practice out of later, well-understood mathematical practice, and
then | shall return to Aristotle.

The Archimedean corpus contains several expressions similar to the
epi + dative. First, at SC .9 Archimedes™ draws several schanata, and
in order to distinguish between them, a I" (or a special sign, according
to another manuscript)®' is written next to that schema (fig. 1.15). Later

% For the genitive in the Hippocratic fragment, see Simplicius, In Phys. 65.9, 16; 67.21—2; 68.14.
It is interesting to see that in a number of cases the manuscripts have either genitive or dative,
and Diels, the editor, always chooses the dative: 64.13, 15; 67.29, 37 — which gives the text a
dative-oriented aspect stronger than it would have otherwise (though Diels, of course, may be
right).

% E.g. Meteor. 375b22, 376a5, 15, bs, 13, etc.; as well as many examples in contexts which are not
strictly mathematical, e.g. Meteor. 363a34, HA 510831, 550a25; Metaph. 1092b34. The presence
of a diagram cannot always be proved, and probably is not the universal case.

9 Qr some ancient mathematical reader; for our immediate purposes, the identification is not so

important.

The same sign (astronomical sun) is used to indicate a scholion, in PE 1.7, 188.18.

©
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A
Figure 1.16. Archimedes’ CS 6.

©| |6 |6 |06|6

Figure 1.17. Archimedes’ CS 2.

in the same proposition, at 250.6—7, when referring to that schema, the
expression used is pos & To I onueiov — ‘that, next to which is the
sign®® . This uses the preposition pros with the dative. | shall take CS
6 282.17—18 next. In order to refer to areas bounded by ellipses, in turn
surrounded by rectangles, Archimedes writes the letters A, B inside the
ellipses (fig. 1.16), then describes them in the following way: &oTtw
TrEPIEXOPEVA X wpla UTTO dEuywviou kwvou Topds, év ois Ta A, B —
‘let there be areas bounded by ellipses, in which are A, B’. This uses
the preposition en with the dative. Proposition 2 in the same work refers,
first, to signs which stand near lines and, consequently, within rectangles
(fig. 1.17). It comes as no surprise now that the rectangles are mentioned
at 268.1 as &v ofs t& O, I, K, A = ‘in which the ©, I, K, A’. More
interestingly, the lines in question are referred to at, e.g. 266.22—3 as
¢&p v...0, I, K, A =‘on which ©, I, K, A" — where we finally get as
far as the epi + genitive.> A certain order begins to emerge.

92 Undoubtedly this is the sense of onueiov here. That the word becomes homonymous is not
surprising: we shall see in chapter g that, in the border between first-order and second-order
language, many such homonyms occur.

9 For further examples of prepositions with letters, see Archimedes, SL 46.27, 48.20, 52.22, 72.18,
76.21, 80.24, 84.5, 86.11, 92.24, 102.13, 24 116.22; CS 266.17, 268.7, 19, 270.2, 276.7—9, 276.14,
280.29—5, 282.18, 24, 372.18, 276.3, 12-13, 378.13, 19, §90.10, 394.9, 396.12, 400.12, 410.27,
414.5, 418.10, 426.20; Apollonius, Conics 1113, 338.12; Pappus, book 1, passim (in the context
‘&p1Bpol &@ v T& AL .)).
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When Archimedes deviates from the normal letter-per-point con-
vention, he often has to clarify what he refers to. A fuller expression is
needed, and this is made up of prepositions, relatives and letters. Now
the important fact is that the prepositions are used in a spatial sense —
as is shown by their structured diversity. Different prepositions and
cases are used in different spatial configurations. They describe various
spatial relationships between the letters in the diagram and the objects
referred to.

There is a well-known distinction, offered by Peirce, between three
types of signs. Some signs are indices, signifying by virtue of some
deictic relation with their object: an index finger is a good example.
Other signs are icons, signifying by virtue of a similarity with their
object: a portrait is a good example. Finally, some signs are symbols,
signifying by virtue of arbitrary conventions: most words are symbols.
We have gradually acquired evidence that in some contexts the letters
in Greek diagrams may be seen as indices rather than symbols.
My theory is that this is the case generally, i.e. the letter alpha signifies
the point next to which it stands, not by virtue of its being a symbol
for it, but simply because it stands next to it. The letters in the
diagram are useful signposts. They do not stand for objects, they stand
on them.

There are two different questions here. First, is this the correct
interpretation of epi + dative/genitive in the earliest sources? Second,
should this interpretation be universally extended?

The answer to the first question should, I think, be relatively straight-
forward. The most natural reading of epi is spatial, so, given the pres-
ence of a diagram which makes a spatial reading possible, I think
such a reading cannot be avoided. It is true that many spatial terms
are used metaphorically (if this is the right word), probably in all
languages. In English, one can debate whether ‘Britain should be
inside the European Union’, and it is clear that no spatial reading is
intended: ‘European Union’ is (in a sense) an abstract, non-spatial
object. The debate can be understood only in terms of inclusion in
a wide, non-spatial sense. But if you ask whether ‘the plate should be
inside the cupboard’, it is very difficult to interpret this in non-spatial
terms. When a spatial reading suggests itself at all, it is irresistible. 1
have argued that the mathematical text is focused on the strictly spa-
tial object of the diagram. It is as spatial as the world of plates and
cupboards; and a spatial reading of the expressions relating to it is
therefore the natural reading.
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The case of Aristotle is difficult.* Setting aside cases where a refer-
ence to a diagram is clear, the main body of evidence is from the
Analytics. There, letters are used very often.”> When the use of those
letters is of the form ‘A applies to all B, etc., the bare article + letter is
used, i.e. the epi + dative/genitive is never used in such contexts. From
time to time, Aristotle establishes a relation between such letters and
‘real’ objects — A becomes man, B becomes animal, etc. Usually, when
this happens, the epi + dative/genitive is used at least with one of the
correlations, and should probably be assumed to govern all the rest.?°
A typical example is goaso:

¢p @ d¢ 1o [N &vbpwTros

‘And [if that] on which T [is] man’ / ‘and [if that] which I stands
for [is] man’.

| have offered two alternative translations, but the second should
probably be preferred, for after all I does not, spatially speaking, stand
on the class of all human beings. It’s true that the antecedent of the
relative clause need not be taken here to be ‘man’. Indeed, often it
cannot, when the genders of the relative pronoun and the signified
object clash.”” But there are other cases, where the gender, or more
often the number of the relative pronoun do change according to the
signified object.”® The most consistent feature of this Aristotelian usage
Is its inconsistency — not a paradox, but a helpful hint on the nature of
the usage. Aristotle, | suggest, uses language in a strange, forced way.
That his usage of letters is borrowed from mathematics is extremely
likely. That in such contexts the sense of the epi + dative/genitive
would have been spatial is as probable. In a very definite context —
that of establishing external references to letters of the syllogism —
Aristotle uses this expression in a non-spatial sense. Remember that
Aristotle had to start logic from scratch, the notions of referentiality
included. | suggest that the use of the epi + dative/genitive in the
Analytics is a bold metaphor, departing from the spatial mathematical

9 Readers unfamiliar with Greek or Aristotle may prefer to skip the following discussion, which
is relatively technical.

% The letter A is used more than 1,200 times; generally, the density of letters is almost compara-
ble to a mathematical treatise.

9% There are about — very roughly — a hundred such examples in the Analytics, which I will not list
here. In pages 30—49 of APr. the examples are: goago, 31bs, 28, 34a7-8, b4, 39, 37b1, 38a31,
b2o, 44a13-17, 26, b3, 46bg—5, 13, 34, 47b21—2, 30-1, 4823, 33—4, 4806, 49a15-16, 32, 34, 39, b1.

97 E.g. APr. 64a24: iaTpikn & ép oU A.

% E.g. APr. g4a13: emépeva & A ¢ v B; AP0. g4a29: fluiosia Suoiv dpboiv & s B.
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usage. Aristotle says, ‘let A stand on “man’’, implying ‘as mathemati-
cal letters stand on their objects and thus signify them’, meaning ‘let A
signify “man’’. The index is the metaphor through which the general
concept of the sign is broached.” This, I admit, is a hypothesis. At
any rate, the contents referred to by Aristotle are like ‘Britain’ and
‘European Union’, not like ‘plates’ and ‘cupboards’; hence a non-
spatial reading becomes more natural.

Moving now to the next question: should the mathematical letters
be seen as indices even in the absence of the epi + dative/genitive and
its relatives?

The first and most important general argument in favour of this
theory is the correction offered above to Heath’s translation of expres-
sions such as éoTw eUbeia ) AB, ‘let there be a line, <namely> AB’. If
the signification of the ‘AB’ is settled independently, and antecedently
to the text, then it could be settled only via the letters as indices. The
setting of symbols requires speech; indices are visual. The whole line of
argument, according to which specification of objects in Greek math-
ematics is visual rather than verbal, supports, therefore, the indices
theory.

Next, consider the following. In the first proposition of the Conics —
any other example with a similar combination of genders will do — a
point is specified in the following way:'*°

€0TW KWVIKN ETIPAVEIX, NS KOpuPn TO A onueiov
‘Let there be a conic surface, whose vertex is the point A’.

The point A has been defined as a vertex, and it will function in the
proposition qua vertex, not qua point. Yet it will always be called, as in
the specification itself, To A, in the neuter (‘point’ in Greek is neuter,
while ‘vertex’ is feminine). This is the general rule: points, even when
acquiring a special significance, are always called simply ‘points’, never,
e.g. ‘vertices’. The reason is simple: the expression to A is a periphrastic
reference to an object, using the letter in the diagram, A, as a signpost
useful for its spatial relations. This letter in the diagram, the actual
shape of ink, stands in a spatial relation to a point, not to a vertex — the
point is spatial, while the vertex is conceptual.

99 Another argument for the ‘metaphor’ hypothesis is the fact that the epi + dative/genitive is not
used freely by Aristotle, but only within a definite formula: he never uses more direct expres-
sions such as kai ' &’ &vBpoome — ‘and [if] T stands for man’ — instead he sticks to the
cumbersome relative phrase. Could this reflect the fact that the expression is a metaphor, and
thus cannot be used outside the context which makes the metaphor work?

00 8,05,
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Third, an index (but not a symbol) can represent simultaneously
several objects; all it needs to do so is to point to all of them. Some
mathematical letters are polyvalent in exactly this way: e.g. in
Archimedes’ SC g2, the letters O, =, stand for both the circles and for
the cones whose bases those circles are.”

Fourth, my interpretation would predict that the letters in the text
would be considered as radically different from other items, whereas
otherwise they should be considered as names, as good as any. There
Is some palaeographic evidence for this.™

Fifth, a central thesis concerning Greek mathematics is that offered
by Klein (1934—6), according to which Greek mathematics does not
employ variables. | quote: “The Euclidean presentation is not sym-
bolic. It always intends determinate numbers of units of measure-
ments, and it does this without any detour through a “general notion”
or a concept of a “general magnitude”.’

This is by no means unanimously accepted. Klein’s argument is
philosophical, having to do with fine conceptual issues.”** He takes it
for granted that A is, in the Peircean sense, a symbol, and insists that it
is a symbol of something determinate. Quite rightly, the opposition
cannot see why (the symbolhood of A taken for granted) it cannot refer
to whatever it applies to. My semiotic hypothesis shows why A must
be determinate: because it was never a symbol to begin with. It is a
signpost, and signposts are tied to their immediate objects.

Finally, my interpretation is the ‘natural’ interpretation — as soon as
one rids oneself of twentieth-century philosophy of mathematics. My
proof is simple, namely that Peirce actually took letters in diagrams as
examples of what he meant by ‘indices’:' ‘[W]e find that indices are

't Or a somewhat different case: Archimedes’ PE 1.3, where A, B are simultaneously planes, and
the planes’ centres of gravity.

21t should be remembered that, as a rule, Greek papyri do not space words. P. Berol. 12609,
from ¢.350—325 Bc (Mau and Mueller 1962, table m): the continuous text is, as usual, unspaced.
Letters referring to the diagram are spaced from the rest of the text. P. Herc. 1061, from the
last century Bc, contains no marking off of letters, but the context is non-mathematical. PFay.
o, later still, marks letters by superscribed lines, as does the In Theaetet. (early ap? CPF 1 g41,
n. ad xxix.42—xxx1.28). This practice can often be seen in manuscripts. Generally, letters are
comparable to nomina sacra. Perhaps it all boils down to the fact that letters, just as nomina sacra,
are not read phonetically (i.e. ‘AB’ was read ‘alpha-béta’, not ‘ab’)?

'3 The quotation is from the English translation (Klein 1968: 123). Klein has predominantly
arithmetic in mind, but if this is true of arithmetic, it must a fortiori be true of geometry.

¢ Unguru and Rowe (1981—2: the synthetic nature of so-called ‘geometric algebra’), Unguru
(1991: the absence of mathematical induction; I shall comment on this in chapter 6, subsection
2.6) and Unguru and Fried (forthcoming: the synthetic nature of Apollonius’ Conics), taken
together, afford a picture of Greek mathematics where the absence of variables can be shown
to affect mathematical contents.

% Peirce (1932) 171.
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absolutely indispensable in mathematics . . . So are the letters A, B, C
etc., attached to a geometrical figure.’

The context from which the quotation is taken is richer, and one
need not subscribe to all aspects of Peirce’s philosophy of mathematics
there. But | ask a descriptive, not a prescriptive question. What sense
did people make of letters in diagrams? Peirce, at least, understood
them as indices. | consider this a helpful piece of evidence. After all,
why not take Peirce himself as our guide in semiotics?

2.3.2  The semiotics of diagrams

So far, | have argued that letters are primarily indices, so that repre-
sentations employing them cannot but refer to the concrete diagram.
A further question is the semiotics of the diagram itself: does it refer
to anything else, or is it the ultimate subject matter?

First, the option that the diagram points towards an ideal math-
ematical object can be disposed of. Greek mathematics cannot be
about squares-as-such, that is, objects which have no other property
except squareness, simply because many of the properties of squares
are not properties of squares-as-such; e.g. the square on the diagonal
of the square-as-such is the square-as-such, not its double.”® It is not
that speaking about objects-as-such is fundamentally wrong. It is sim-
ply not the same as speaking about objects. The case is clearer in
algebra. One can speak about the even-as-such and the odd-as-such:
this is a version of Boolean algebra.””” Modern mathematics (that is,
roughly, that of the last century or so) is characterised by an interest
in the theories of objects-as-such; Greek mathematics was not.™®

So what is the object of the proof? As usual, I look to the practices
for a guide. We take off from the following. The proposition contains
Imperatives describing various geometrically defined operations, e.g.:
KUKAos yeypdpbw — ‘let a circle have been drawn’.'* This is a certain
action, the drawing of a circle. A different verb is ‘to be’, as in the

% The impossibility of Greek mathematics being about Platonic objects has been argued by
Lear (1982), Burnyeat (1987).

7 As the above may seem cryptic to a non-mathematician, | explain briefly. What is ‘the
essence’ of the odd and the even? One good answer may be, for instance, to provide their
table of addition: Odd + Odd =Even, O+E=0, E+O=0, E+E=E. One may then
assume the existence of objects which are characterised by this feature only. One would
thus ‘abstract’ odd-as-such and even-as-such from numbers. Such abstractions are typical of
modern mathematics.

8 Of course, the import of Greek proofs is general. This, however, need not mean that the
proof itself is about a universal object. This issue will form the subject of chapter 6.

9 Euclid’s Elements 1.1, 10.19-12.1.
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Figure 1.18. Euclid’s Elements rv.12.

following:"® ¢oTtw 1 Sobeloa e¥fsia memepaopévn 1 AB — ‘let the
given bounded straight line be AB’. The sense is that you identify
the bounded given straight line (demanded earlier in the proposition)
as AB. So this is another action, though here the activity is that of vis-
ually identifying an object instead of constructing it.

A verb which does not fit into this system of actions is noein, which
may be translated here as ‘to imagine’, as in the following:'"

vevonobw ToU &y yeypapuévou TTEVTAYWVOU TAV YWViwV OTUelx
TX A, KTA

‘Let the points A, etc. be imagined as the points of the angles of the
inscribed pentagon’.

What is the point of imagination here? The one noticeable thing
is that the inscribed pentagon does not occur in the diagram, which
for once should, with all the difficulties involved, be taken to reflect
Euclid’s diagram (fig. 1.18). On the logical plane, this means that

" Ibid. 10.16. " Euclid’s Elements v.12, 302.10-11.
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the pentagon was taken for granted rather than constructed (its
constructability, however, has been proved, so no falsity results).

Though not as common as some other verbs, noein is used quite
often in Greek mathematics."* It is used when objects are either not
drawn at all, as in the example above, or when the diagram, for some
reason, fails to evoke them properly. The verb is relatively rare be-
cause such cases, of under-representation by the diagram, are rela-
tively rare. It is most common with three-dimensional objects (especially
the sphere, whose Greek representation is indeed indistinguishable from
a circle). Another set of cases is in ‘applied’ mathematics, e.g. when a
line is meant to be identified as a balance. Obviously the line is not a
balance, it is a line, and therefore the verb noein is used.'

However, if the diagram is meant as a representation of some ideal
mathematical object, then one should have said that any object what-
ever was ‘imagined’. By delegating some, but not all, action to ‘imagi-
nation’, the mathematicians imply that, in the ordinary run of things,
they literally mean what they say: the circle of the proof is drawn, not
imagined to be drawn. It will not do to say that the circle was drawn in
some ideal geometrical space; for in that geometrical space one might as
easily draw a sphere. Thus, the action of the proof is literal, and the
object of the proof must be the diagram itself, for it is only in the diagram
that the acts of the construction literally can be said to have taken place.

This was one line of argument, showing that the diagram is the
object of the proposition. In true Greek fashion, I shall now show that
it is not the object of the proposition.

An obvious point, perhaps, is that the diagram must be false to some
extent. This is indeed obvious for many moderns,"+ but at bottom this

"* There are at least ten occurrences in Euclid’s Elements, namely 1v.12 g02.10, X1.12 34.22, XIL.4
lemma 162.21, 13 216.20, 14 220.7, 15 222.22 (that’s a nice page and line reference!), 17 228.12,
228.20, 18 242.16, 244.6. There are three occurrences in Apollonius’ Conics 1, namely 52
160.18, 54 168.14, 56 178.12. Archimedes’ works contain 38 occurrences of the verb in geo-
metrical contexts, which may be hunted down through Heiberg’s index. The verb is regularly
used in Ptolemy’s Harmonics. Lachterman (198g) claims on p. 8¢ that the verb is used by Euclid
in book xir alone (the existence of Greek mathematicians other than Euclid is not registered),
to mitigate, by its noetic function, the operationality involved in the generation of the sphere
and the cylinder. We all make mistakes, and mine are probably worse than Lachterman’s;
but, as | disagree with Lachterman’s picture of Greek mathematics as non-operational, | find
it useful to note that this argument of his is false.

"3 E.g. Archimedes, Meth. 434.23 — one of many examples. The use of the verb in Ptolemy’s
Harmonics belongs to this class.

" E.g. Mill (1973), vol. vir 225: “Their [sc. geometrical lines’] existence, as far as we can form any
judgement, would seem to be inconsistent with the physical constitution of our planet at least,
if not of the universe.” For this claim, Mill offers no argument.



54 The lettered diagram

is an empirical question. | imagine our own conviction may reflect
some deeply held atomistic vision of the world; there is some reason to
believe that atomism was already seen as inimical to mathematics in
antiquity."> An ancient continuum theorist could well believe in the
physical constructability of geometrical objects, and Lear (1982) thinks
Aristotle did. This, however, does not alter the fact that the actual
diagrams in front of the mathematician are not instantiations of the
mathematical situation.

That diagrams were not considered as exact instantiations of the
object constructed in the proposition can, | think, be proved. The
argument is that ‘construction’ corresponds, in Greek mathematics, to
a precise practice. The first proposition of Euclid’s Elements, for in-
stance, shows how to construct an equilateral triangle. This is medi-
ated by the construction of two auxiliary circles. Now there simply is
no way, if one is given only proposition 1.1 of the Elements, to construct
this triangle without the auxiliary circles. So, in the second proposi-
tion, when an equilateral triangle is constructed in the course of the
proposition,”® one is faced with a dilemma. Either one assumes that
the two auxiliary circles have been constructed as well — but how
many steps further can this be carried, as one goes on to ever more
complex constructions? Or, alternatively, one must conclude that the
so-called equilateral triangle of the diagram is a fake. Thus the equilat-
eral triangle of proposition 1.2 is a token gesture, a make-believe. It
acknowledges the shadow of a possible construction without actually
performing it.

We seem to have reached a certain impasse. On the one hand, the
Greeks speak as if the object of the proposition is the diagram. Verbs
signifying spatial action must be taken literally. On the other hand,
Greeks act in a way which precludes this possibility (quite regardless of
what their ontology may have been!), and the verbs signifying spatial
action must, therefore, be counted as metaphors.

To resolve this impasse, the ‘make-believe’ element should be stressed.
Take Euclid’s Elements mr.10. This proves that a circle does not cut a
circle at more than two points. This is proved — as is the regular

"5 Plato’s peculiar atomism involved, apparently, some anti-geometrical attitudes (surprisingly
enough), for which see Aristotle, Metaph. gg2azoff. Somewhat more clear is the Epicurean
case, discussed in Mueller (1982) g2—5. The evidence is thin, but Mueller’s educated guess is
that Epicureans, as a rule, did assume that mathematics is false.

" Euclid’s Elements 1.2, 12.25—6. Needless to say, the text simply says ‘let an equilateral triangle
have been set up on [the line]’, no hint being made of the problem | raise.
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Figure 1.19. Euclid’s Elements mr.10.

practice in propositions of this nature — through a reductio ad absurdum:
Euclid assumes that two circles cut each other at more than two points
(more precisely, at four points), and then derives an absurdity. The
proof, of course, proceeds with the aid of a diagram. But this is a
strange diagram (fig. 1.1g): for good geometrical reasons, proved in this
very proposition, such a diagram is impossible. Euclid draws what is
Impossible; worse, what is patently impossible. For, let us remember,
there is reason to believe a circle is one of the few geometrical objects
a Greek diagram could represent in a satisfying manner. The diagram
cannot be; it can only survive thanks to the make-believe which calls a
‘circle’ something which is similar to the oval figure in fig. 1.19. By the
force of the make-believe, this oval shape is invested with circlehood
for the course of the reductio argument. The make-believe is discarded
at the end of the argument, the bells of midnight toll and the circle
reverts to a pumpkin. With the reductio diagrams, the illusion is dropped
already at the end of the reductio move. Elsewhere, the illusion is main-
tained for the duration of the proof.

Take Punktchen for instance."” Her dog is lying in her bed, and she
stands next to it, addressing it: ‘But grandmother, why have you got
such large teeth?” What is the semiotic role of ‘grandmother’? It is not

"7 Kastner (1959), beginning of chapter 2 (and elsewhere for similar phenomena, very ably
described. See also the general discussion following chapter g).
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metaphorical — Plnktchen is not trying to insinuate anything about
the grandmother-like (or wolf-like) characteristics of her dog. But nei-
ther is it literal, and Pinktchen knows this. Make-believe is a tertium
between literality and metaphor: it is literality, but an as-if kind of
literality. My theory is that the Greek diagram is an instantiation of its
object in the sense in which Pinktchen’s dog is the wolf — that the
diagram is a make-believe object. It shares with Plnktchen’s dog the
following characteristics: it is similar to the intended object; it is func-
tionally identical to it; what is perhaps most important, it is never
questioned.

2.4 The practices of the lettered diagram: a summary

What we have seen so far is a series of procedures through which the
text maintains a certain implicitness. It does not identify its objects,
and leaves the identification to the visual imagination (the argument of
2.2). It does not name its objects — it simply points to them, via indices
(the argument of 2.3.1). Finally, it does not even hint what, ultimately,
its objects are; it simply works with an ersatz, as if it were the real thing
(the argument of 2.3.2). Obviously there is a certain vague assumption
that some of the properties of the ‘real thing’ are somehow captured
by the diagram, otherwise the mediation of the proposition via the
diagram would collapse. But my argument explaining why the dia-
gram is useful (because it is redefined, especially through its letters, as
a discrete object, and therefore a manageable one) did not deal with
the ontological question of why it is assumed that the diagram could in
principle correspond to the geometrical object. Undoubtedly, many
mathematicians would simply assume that geometry is about spatial,
physical objects, the sort of a thing a diagram is. Others could have
assumed the existence of mathematicals. The centrality of the dia-
gram, however, and the roundabout way in which it was referred to,
meant that the Greek mathematician would not have to speak up for
his ontology."®

"8 et me explain briefly why the indexical nature of letters is significant. This is because indices
signify references, not senses. Suppose you watch a production of Hamlet, with the cast wear-
ing soccer shirts. John, let’s say, is the name of the actor who plays Hamlet, and he is wearing
shirt number 5. Then asking ‘what’s your opinion of John?" would refer, probably, to his
acting; asking ‘what’s your opinion of Hamlet?” would refer, probably, to his indecision; but
asking ‘what’s your opinion of no. 5?” would refer ambiguously to both. Greek letters are like
numbers on soccer shirts, points in diagrams are like actors and mathematical objects are like
Hamlet.
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Plato, in the seventh book of the Republic, prized the ontological
ambiguity of mathematics, especially of its diagrams. An ontological
borderline, it could confuse the philosophically minded, and lead from
one side of the border to the other. He was right. However, this very
ambiguity meant also that the mathematicians could choose not to
engage in the philosophical argument, to stick with their proofs and
mutual agreements — a point (as claimed above) conceded by Plato.

To conclude, then: there are two main ways in which the lettered
diagram takes part in the shaping of deduction. First, there is the
whole set of procedures for argumentation based on the diagram. No
other single source of evidence is comparable in importance to the
diagram. Essentially, this centrality reverts to the fact that the specifi-
cation of objects is done visually. | shall return to this subject in detail
in chapter 5. Second, and more complex, is this. The lettered diagram
supplies a universe of discourse. Speaking of their diagrams, Greek
mathematicians need not speak about their ontological principles. This
Is a characteristic feature of Greek mathematics. Proofs were done at
an object-level, other questions being pushed aside. One went directly
to diagrams, did the dirty work, and, when asked what the ontology
behind it was, one mumbled something about the weather and went
back to work. This is not meant as a sociological picture, of course. |
am speaking not of the mathematician, but of the mathematical pro-
position. And this proposition acts in complete isolation, hermetically
sealed off from any second-order discourse.”® There is a certain single-
mindedness about Greek mathematics, a deliberate choice to do math-
ematics and nothing else. That this was at all possible is partly explicable
through the role of the diagram, which acted, effectively, as a substitute
for ontology.™

It is the essence of cognitive tools to carve a more specialised niche
within general cognitive processes. Within that niche, much is auto-
matised, much is elided. The lettered diagram, specifically, contributed
to both elision (of the semiotic problems involved with mathematical
discourse) and automatisation (of the obtaining of a model through
which problems are processed).

"9 | will discuss this in chapter g below.

* | am not saying, of course, that the only reason why Greek mathematics became sealed off
from philosophy is the existence of the lettered diagram. The lettered diagram is not a cause
for sealing mathematics off from philosophy; it is an important explanation of how such a
sealing off was possible. I shall return to discussing the single-mindedness of Greek mathemat-
ics in the final chapter.
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3 CONTEXTS FOR THE EMERGENCE OF
THE LETTERED DIAGRAM

The lettered diagram is a distinctive mark of Greek mathematics, partly
because no other culture developed it independently.”*' Indeed, it would
have been impossible in a pre-literate society and, obvious as this may
sound, this is an important truth.”* An explanatory strategy may suggest
itself, then: to explain the originality of the lettered diagram by the origi-
nality of the Phoenician script. The suggestion might be that alphabetic
letters are more suitable, for the purpose of the lettered diagram, than
pictograms, since pictograms suggest their symbolic content. The col-
oured constituents of some Chinese figures may be relevant here.'*

But of course such technological reductionism — everything the re-
sult of a single tool! — is unconvincing. The important question is how
the tool is used. This is obvious in our case, since the technology
involved the combination of two different tools. Minimally, the con-
texts of diagrams and of letters had to intersect.

The plan of this section is therefore as follows. First, the contexts
of diagrams and letters outside mathematics are described. Next, |
discuss two other mathematical tools, abaci and planetaria. These,
too, are ‘contexts’ within which the lettered diagram emerged, and
understanding their limitations will help to explain the ascendancy of
the lettered diagram.

3.1 Non-mathematical contexts for the lettered diagram

g.1.1  Contexts of the diagram

As Beard puts it,”** ‘It is difficult now to recapture the sheer profusion
of visual images that surrounded the inhabitants of most Greek cities.’
Greeks were prepared for the visual.

"t Babylonian and Chinese diagrams exist, of course — though Babylonian diagrams are less
central for Babylonian mathematics, or at least for Babylonian mathematical texts (Hoyrup
1990a), while Chinese diagrams belong to a different context altogether, of representations
endowed with rich symbolic significance (Lackner 19g2). Neither refers to the diagram with a
system similar to the Greek use of letters. Typically, in the Babylonian case, the figure is
referred to through its geometric elements (e.g. breadth and width of rectangles), or it is
inscribed with numbers giving measurements of some of its elements (e.g. YBC 7289, 8633:
Neugebauer 1945).

22 Also, while this point may sound obvious, it would have been impossible to make without
Goody (1977), Goody and Watt (1963) on the role of writing for the historical development of
cognition and, generally, Goody’s cuvre; this debt applies to my work as a whole.

% See Chemla (1994), however, for an analysis of this practice: what is important is not the
individual colours, but their existence as a system. In fact, one can say that the Chinese took
colours as a convenient metaphor for a system.

'+ Beard (1991) 14.
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This is true, however, only in a limited sense. Greek elite education
included literacy, numeracy, music and gymnastics, but not drawing
or indeed any other specialised art."* The educated Greek was experi-
enced in looking, not in drawing. Furthermore, the profusion of the
visual was limited to the visual as an aesthetic object, not as an in-
formative medium. There is an important difference between the two.
The visual as an aesthetic object sets a barrier between craftsman and
client: the passive and active processes may be different in kind. But in
the visual as a medium of information, the coding and decoding prin-
ciples are reciprocal and related. To the extent that | can do anything
at all with maps | must understand some of the principles underlying
them. On the other hand, while the ‘readers’ of art who know nothing
about its production may be deemed philistines, they are possible. The
visual as information demands some exchange between craftsmen and
clients, which art does not.

Two areas where the use of the visual qua information is expected
are maps and architectural designs. Herodotus gives evidence for world
maps, designed for intellectual (iv.g6ff.) and practical (v.49—51) pur-
poses. Such maps could go as far back as Anaximander.”® Herodotus’
maps were exotic items, but we are told by Plutarch that average
Athenians had a sufficiently clear grasp of maps to be able to draw
them during the euphoric stage of the expedition to Sicily, in 415 Bc."™
Earlier, in 427, a passage in Aristophanes’ comedy The Clouds shows an
understanding of what a map is: schematic rather than pictorial,*®
preserving shapes, but not distances.”® The main point of Aristophanes’
passage is clear: though diagrammatic representations were under-
stood by at least some members of the audience, they were a technical,
specialised form. It may be significant that the passage follows immedi-
ately upon astronomy and geometry.

Our later evidence remains thin. There is a map in Aristotle’s
Meteorology,'>* and periodoi g&5 — apparently world maps — are included, as

% Excluding mathematics itself — to the extent that it actually gained a foothold in education
(see chapter 7).

0 Agathemerus 1.1; D.L. m.1—2; Herodotus m.109. Anaxagoras may have added some visual
element to his book (D.L. .11 — the first to do so? See also DK 59A18 (Plutarch), Ags
(Clement)). 1 guess — and | can do no more — that this was a cosmological map (both
Plutarch’s and Clement’s reference come from a cosmological context).

7 Vit. Alc. xvir.g. The context is historically worthless, but the next piece of evidence could give
it a shade of plausibility.

% 208-9: a viewer of the map is surprised to see Athens without juries!

9 Shapes: 212, the ‘stretched’ island Euboea leads to a pun. Distances: 215-17, the naive viewer
is worried about Sparta, which is too near.

3¢ 363a206ff.
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mentioned already, in Theophrastus’ will.”' There is also some — very
little — epigraphic and numismatic evidence, discussed by Dilke.'** Most
interestingly, it seems that certain coins, struck in a military campaign,
showed a relief-map of its terrain.”* All these maps come from either
intellectual or propaganda contexts. As early as Herodotus, the draw-
ing of a map in pragmatic contexts was meant to impress rather than
to inform. Otherwise, much of the evidence comes from sources influ-
enced by mathematics.

Surprisingly, the same may be true of architectural designs.'** The
main tools of such design in classical times were either verbal descrip-
tions (sungraphai), or actual three-dimensional and sometimes full-scale
models of repeated elements in the design (paradeigmata). Rules of trade,
especially a modifiable system of accepted proportions, allowed the
transition from the verbal to the physical. There is a strong e silentio
argument against any common use of plans in early times. From Hel-
lenistic times onwards, these began to be more common, especially —
once again — in the contexts of persuasion rather than of information.
This happened when competition between architects forced them to
evolve some method of conveying their intentions beforehand, in an
impressive manner. Interestingly, the use of visual representations in
architecture is earliest attested in mechanics, which may show a math-
ematical influence.

What is made clear by this brief survey is that Greek geometry did
not evolve as a reflection upon, say, architecture. The mathematical
diagram did not evolve as a modification of other practical diagrams,
becoming more and more theoretical until finally the abstract geo-
metrical diagram was drawn. Mathematical diagrams may well have
been the first diagrams. The diagram is not a representation of some-
thing else; it is the thing itself. It is not like a representation of a
building, it is like a building, acted upon and constructed. Greek
geometry is the study of spatial action, not of visual representation.

However speculative the following point may be, it must be made.
The first Greeks who used diagrams had, according to the argument
above, to do something similar to building rather than to reflect upon
building. As mentioned above, the actual drawing involved a practical
skill, not an obvious part of a Greek education. Later, of course, the
lettered diagram would be just the symbol of mathematics, firmly

5" D.L. v.yi—2. ' Dilke (1985) chapter 2.
33 Johnston (1967).  *3* The following is based on Coulton (1977) chapter .
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situated there; but at first, some contamination with the craftsman-like,
the ‘banausic’, must be hypothesised. | am not saying that the first
Greek mathematicians were, e.g. carpenters. | am quite certain they
were not. But they may have felt uneasily close to the banausic, a point
to which | shall return in the final chapter.

g.1.2  Contexts of letters as used in the lettered diagram
Our earliest direct evidence for the lettered diagram comes from out-
side mathematics proper, namely, from Aristotle. There are no obvi-
ous antecedents to Aristotle’s practice. Furthermore, he remained an
isolated phenomenon, even within the peripatetic school which he
founded. Of course, logical treatises in the Aristotelian tradition em-
ployed letters, as did a few quasi-mathematical works, such as the
pseudo-Aristotelian Mechanics. But otherwise (excluding the mathemati-
cally inclined Eudemus) the use of letters disappeared. The great mu-
sician Aristoxenus, just like the great mechanician Strato — both in
some sense followers of Aristotle — do not seem to have used letters.
The same is true more generally: the Aristotelian phenomenon does
not recur. And, of course, nothing similar to our common language
use of ‘X” and ‘Y’ ever emerged in the Greek language.'s

Otherwise, few cases of special sign systems occur. At some date
between the fifth and the third centuries sc someone inserted an
acrophonic shorthand into the Hippocratic Epidemics m1."*° Galen tells
us about another shorthand designed for pharmaceutical purposes,
this time based, in part, upon iconic principles (e.g. omicron for
‘rounded’).”” A refined symbolic system was developed for the pur-
poses of textual criticism. Referring as it did to letters, the system
employed ad hoc symbols.’s® This system evolved in third-century Alex-
andria. Another case of a special symbolic system is musical notation,
attested from the third century sc but probably invented earlier.'s?
Letters, grouped and repeated in various ways, are among other sym-
bols considered to have magical significance.* Finally, many systems

% Which should not surprise us: the Greek letters as used in diagrams, being indices, were
inseparable from specific situations, unlike the modern symbolic ‘X’.

13 This is not a feature of the manuscripts alone — which might have suggested a Byzantine
origin — since Galen reports the system, xvir 600ff.

57 Galen xmr gg5—6. The system is due to Menecrates, of an early ap provenance.

188 See Turner (1968) esp. 112—18. 39 West (1992) chapter q.

"4 See Betz (1992) for many examples, e.g. 3, 17 (letters), 191 (other symbols). For a discussion,
see Dornseiff (1925).



62 The lettered diagram

of abbreviation are attested in our manuscripts, and while the vast
majority are Byzantine, ‘shorthand’ was known already in antiquity.'*
The common characteristic of all the above is their reflective, written
context. These are all second-order signs: signs used to refer to other
signs. Being indices to diagrams, the letters of Greek mathematics
form part of the same pattern.

What we learn is that the introduction of a special sign-system is
a highly literate act — this indeed should have been obvious to start
with. The introduction of letters as tools is a reflective use of literacy.
Certainly the social context within which such an introduction could
take place was the literate elite.

3.2 Mathematical non-verbal contexts

Generally speaking, mathematical tools are among the most wide-
spread cultural phenomena of all, beginning with the numerical sys-
tem itself and going through finger-reckoning, abaci, etc., up to the
computer.'* Many of these tools have to do with calculation rather
than proof and are thus less important for my purposes here. Two
tools used by Greek mathematics, besides the lettered diagram, may
have been of some relevance to proof, and are therefore discussed in
the following subsections: these are abaci and planetaria.

It is natural to assume that not all tools can lead equally well to the
elaboration of scientific theories. To make a simple point, science de-
mands a certain intersubjectivity, which is probably best assisted through
language. A completely non-verbalised tool is thus unlikely to lead to
science."s On the other hand, intersubjectivity may be aided by the
presence of a material object around which communication is organ-
ised. Both grounds for intersubjectivity operate with the lettered dia-
gram; | shall now try to consider the case for other tools.

4 See, e.g. Milne (1934). The compendia used in mathematical manuscripts are usually
restricted to the scholia. It doesn’t seem that abbreviations were important in Greek math-
ematics, as, indeed, is shown by the survival of Archimedes in Doric.

4 See, e.g. Dantzig (1967). Schmandt-Besserat (1992, vol. r: 184ff.) is very useful.

1 am thinking of the Inca quipu (where strings represent arithmetical operations) as a tool
where verbalisation is not represented at all (as shown by the problematic deciphering) (Ascher
1981).
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g.2.1 The abacus in Greek mathematics
The evidence is:

(a) Greeks used pebbles for calculations on abaci.'*

(b) Some very few hints suggest that something more theoretical in
nature was done with the aid of pebbles.'®

(c) It has been argued that a certain strand in early Greek arithmetic
becomes natural if viewed as employing pebbles. According to this
theory, some Greeks represented numbers by configurations of
pebbles or (when written) configurations of dots on the page: three
dots represent the number three, etc."** However:

(d) Not a single arithmetical sc text refers to pebbles or assumes a dot
representation of an arithmetical situation.

Philip'¥” argued that we should not pass too quickly from (b) to (c).
Certainly, Eurytus’ pebbles need not be associated with anything the
Greeks themselves would deem arithmetical. | shall argue below™?
that what is sometimes brought as evidence, Epicharmus’ fragment ¢,
belongs to (a) and not to (b), let alone (c). Similarly, Plato’s analogy of
mathematical arts and petteutike — pebble games*® — need not involve
any high-powered notion of mathematics.

This leaves us with two Aristotelian passages:

‘Like those who arrange numbers in shapes [such as] triangle and
square’;°

‘For putting gnomons around the unit, and without it, in this [case]
the figure will always become different, in the other it [will be]
unity’.”"

“* Lang (1957).

% The only substantial early hints are the two passages from Aristotle quoted below (which can
be somewhat amplified for Eurytus by DK 45A2: he somehow related animals(?) to numbers,
via pebble-representations).

5 Becker (1936a). Knorr (1975) goes much further, and Lefevre (1988) adds the vital operational
dimension.

“7 Philip (1951), appendix 1, esp. 202—3. " Chapter 7, subsection 1.1 272—5.

49 Grg. 450cd; Lgs. 81gd—820d; also relevant is Euthyph. 1od.

15 Metaph. 1092b11—12: doTep of Tous &pibuoUs &yovtes els T& oxNuaTa Tpiywvov kai
TETPAY WVOV.

5t Phys. 203a13-15: TepiTiBepévaoy y&p TV yvwpovwy Tept TO v Kal Ywpls 6TE uev EAAo &el
yiyveofou T €idos, 6T¢ 8¢ €v. Both passages are mere clauses within larger contexts, and are
very difficult to translate.
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Philip maintained that, however arithmetical these passages may
sound, they are relatively late fourth-century and therefore might be
due to the great mathematical progress of that century, and so need
have nothing to do with the late fifth century. Knorr>* quite rightly
objected that this makes no evolutionary sense: could that progress
lead to mathematics at the pebbles level? Knorr must be right, but he
does not come to terms with the fact that our evidence is indeed late
fourth-century. Moreover, the texts refer to Pythagoreans, in connec-
tion with Plato, and the natural reading would be that Aristotle refers
to someone roughly contemporary with Plato. Thus, our only evidence
for an arithmetical use of pebbles comes from a time when we know
that mathematically stronger types of arithmetic were available.

| certainly would not deny the role of the abacus for Greek arith-
metical concept-formation.’>® The question is different. whether any
arithmetical proof, oral or written, was ever conducted with the aid
of pebbles. The evidence suggests, perhaps, oral proofs. Aristotle talks
about people doing things, not about anything he has read. Why this
should be the case is immediately obvious. Pebble manipulations admit
a transference to a written medium, as is amply attested in modern
discussions. However, the special advantage of pebbles over other
types of arithmetical representations is a result of their direct, physical
manipulations, which are essentially tied up with actual operations. It
Is not the mere passive looking at pebbles which our sources mention:
they mention pebbles being moved and added. This must be lost in
the written medium, which is divorced from specific actions. Thus, it is
only natural that pebbles would lose their significance as the written
mode gained in centrality. They would stay, but in a marginal role,
emerging in a few asides by Plato and Aristotle, never as the centre of
mathematical activity."*

2* Knorr (1975) 135-7.

155 Lefevre (1988) offers a theory of such concept formation, with a stress on the general role of
operations for concept-formation.

5+ An important comparison is the following, which, however, being no Assyriologist, 1 will
express tentatively and in this footnote alone. The geometrical reconstructions offered by
Hoyrup (1ggoa) for Babylonian ‘algebra’ take the shape of operations upon spatial objects,
moved, torn and appended — following the verbs of the Akkadian text. | would say:

1. The loss of (most) diagrams from Babylonian mathematics is related to this manner in
which Babylonian mathematics was visualised. The texts refer to objects which were
actually moved, not to inscribed diagrams.

2. The visualisation was operational because the role of the text was different from what it is
in the Greek case. Babylonian mathematical texts are not context-independent; they are
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3.2.2  Planetaria in Greek mathematics
The earliest and most extensive piece of evidence on planetaria in
Greek astronomy is Epicurus’ — biased — description of astronomical
practices, in On Nature x1."> The description is of a school in Cyzicus,
where astronomers are portrayed as using organa, ‘instruments’, while
sullogizesthai, dialegesthai (i.e. reasoning in various ways), having dianoia
(translated by Sedley in context by ‘a mental model’) and epino&is
(‘thought-process’) and referring to a legomenon (something ‘said’ or ‘as-
serted’). What is the exact relation between these two aspects of their
practice, the instrument and the thought? One clue is the fact that
Epicurus claims that the aspects are irreconcilable because, according
to him, the assumption of a heavens/model analogy is indefensible.
This assumes that some dependence of the verbal upon the mechani-
cal is necessary. This dependence might be merely the thesis that ‘the
heavens are a mechanism identical to the one in front of us’, or it
might be more like ‘setting the model going, we see [e.g.] that some
stars are never visible, QED’. Where in the spectrum between these
options should we place the mathematicians of Cyzicus?*°

My following guess starts from Autolycus, a mathematician contem-
porary with this Epicurean text. Two of his astronomical works survive
— The Moving Sphere and The Risings and Settings. He never mentions any
apparatus, or even hints at such, even though The Risings and Settings
are practical astronomy rather than pure spherical mathematics. Nei-
ther, however, does he give many definitions or, generally, conceptual
hints.”” Furthermore, as mentioned above, his diagrams — belonging

the internal working documents of scribes, who know the operational context in which
these texts are meant to be used.

3. The different contexts and technologies of writing meant that in one case (Mesopotamia)
we have lost the visualisations alone, while in the other (Greek pebble arithmetic) we have
lost both visualisations and text.

4. Babylonian mathematics is limited, compared to Greek mathematics, by being tied to the
particular operation upon the particular case; which reflects the difference mentioned
above.

% Sedley (1976) g32—4. The text survives only on papyrus.

5 And not only them: the evidence for the use of planetaria (and related star-modelling mechan-
isms) in antiquity goes beyond any other archaeological evidence for mathematics. A truly
remarkable piece of evidence is the Antikytheran ‘planetarium’, described in Price (1974). See
there the evidence for sundials (51), and for other planetaria (55—60).

%7 That the definitions of The Moving Sphere are spurious is probable, though not certain. See
Aujac (1979) 40 (in the edition of Autolycus used in this study: see Appendix, p. 314), who
rejects them. If they are spurious, then they are the result of a perplexity similar to that which
the modern reader must feel. The definitions of The Risings and Settings explain the terminology
of observation, not the spatial objects discussed.
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as they do to the theory of spheres — are sometimes only very roughly
iconic. The reader — who may be assumed to be a beginner — is
immediately plunged into a text where there is a very serious difficulty
in visualising, in conceptualising. No doubt much of the difficulty would
have been solved by the Greek acquaintance with the sky. But a model
would certainly be helpful as well, at such a stage. After all, you cannot
turn the sky in your hands and trace lines on its surface. An object
which can be manipulated would contribute to concept-formation.’s®
This acquaintance is more than the mere analogy claim — the model is
used to understand the heavens — yet this is weaker than actually using
the model for the sake of proof.'

Timaeus excuses himself from astronomy by claiming that 6 Aéyewv
&veu Bl OWews TOUTWV aU TAOV PIPNPATWY PATXIOS &v €in TTOVOS
— ‘again, explaining this without watching models would be a point-
less task’.'™ This, written by the staunch defender of mathematical
astronomy! It seems that models were almost indispensable for the
pedagogic level of astronomy. The actual setting out in writing of
mathematical astronomy, however, does not register planetaria. Again,
just as in the case of the abacus, the tool may have played a part in
concept-formation. And a further parallelism with the abacus is clear.
Why is it difficult for Timaeus to explain his astronomy? Why indeed
could he not have brought his planetaria? The answer is clear: the
written text filtered out the physical model.

In Plato’s case, of course, not only physical models were out of the
guestion: so were diagrams, since the text was not merely written,
but also the (supposed) reflection of conversation, so that diagrams
used by the speakers must be reconstructed from their speeches
(as is well known, e.g. for the Meno). Plato’s text is double-filtered.
More generally, however, we see that the centrality of the written
form functions as a filter. The lettered diagram is the tool which,
instead of being filtered out by the written mode, was made more
central and, with the marginalisation of other tools, became the
metonym of mathematics.

158 For whatever its worth, it should be pointed out that Epicurus’ criticisms fasten upon the
concept-formation stage.

%9 This is certainly not the only purpose of building planetaria. Planetaria could do what maps
did: impress. Epicurus is setting out to persuade students away from Cyzicus. The plan-
etarium seems to have been set up in order to persuade them to come.

%o Plato, Tim. 4od2-3.
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4 SUMMARY

Much of the argument of this chapter can be set out as a list of ways in
which the lettered diagram is a combination of different elements, in
different planes.

(@) On the logical plane, it is a combination of the continuous (dia-
gram) and the discrete (letters), which implies,

(b) On the cognitive plane, a combination of visual resources (dia-
gram) and finite, manageable models (letters).

(c) On the semiotic plane, the lettered diagram is a combination of an
icon (diagram) and indices (letters), allowing the — constructive —
ambiguity characteristic of Greek mathematical ontology.

(d) On the historical plane, it is a combination of an art, almost
perhaps a banausic art (diagram) and a hyper-literate reflexivity
(letters).

The line of thought suggested here, that it is the fertile intersection
of different, almost antagonistic elements which is responsible for the
shaping of deduction, will be pursued in the rest of the book.



CHAPTER 2

T he pragmatics of letters

PLAN OF THE CHAPTER

Much has already been said on letters representing objects in the
diagram. The interest has so far focused on the light which such letters
throw upon the use of diagrams. Here we concentrate on the letters
themselves as they occur in the text. This is a convenient object: a
definite, small set, and the combinatorial possibilities are limited. The
results can therefore obtain an almost quantitative precision. The prac-
tices described here are interesting, then, mainly as a case-study for
Greek mathematical pragmatics in general. It 1s clear that Greek math-
ematics follows many conventions of presentation, some of which we
have noticed already. What can the origin of these conventions be?
I will take the conventions regarding letters as a first case-study.
Following an explanation of the nature of the practices involved,
I offer a hypothesis concerning the origins of those practices (section 1).
Then, in section 2, a few cognitive implications of the practices will be
spelled out. These implications are generally a development of points
raised in the preceding chapter, but they already suggest the issues
concerning the use of language, to be developed in chapters 3.

I THE ORIGINS OF THE PRACTICES

1.1 A preliminary description

The practices with regard to letters fall into two kinds. The first is what
I call ‘baptism’ — the process of attaching individual letters to indi-
vidual objects. Second, given the distribution of individual letters to
individual objects, many-lettered names can be made, e.g. if A and B
represent points, AB may be a many-lettered name representing the
straight line between those two points.

68
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A B I Z H

E

Figure 2.1. Euclid’s Elements 1x.20.

What do letters stand for? The baptised object in Greek mathemat-
ics 15 most often a point. In non-geometrical contexts, the baptised
object 1s often the term directly under discussion, e.g. a number. How-
ever, through the assimilation of arithmetic to geometry, numbers,
which are represented by lines, may sometimes be baptised indirectly.
Their ‘extreme’ points will be baptised instead. Thus, in Euclid’s Ele-
ments 1X.20, the letters A, B, I', H represent numbers, while the letters
A, E, Z represent extremes of line-segments (in turn representing num-
bers) (fig. 2.1)." The decision on which approach to take is not arbi-
trary. In Euclid, letters represent ‘extremes’ if and only 1if the represented
objects are meant to combine. This can be seen in fig. 2.1: the object
represented by AE + AZ will be used in the proposition, hence the
special treatment of these three letters. This 1s comparable with
the other type of situation where the principle of letter-per-point 1s
neglected. This 1s when merely ‘quantitative’ objects, which do not
take part in the geometrical configuration, are introduced, e.g. in
Archimedes’ §C' 1.9, © stands for an area which does not itself take part
in any geometrical configuration. It is introduced as the difference
between other areas, in themselves meaningful in terms of the geo-
metrical configuration (fig. 2.2).” The general principle, then, is that
whenever there 1s a scheme of interacting objects, they will be desig-
nated through their points of contact. Other, independent objects will
be designated directly. What this system avoids is the use of more than
one letter for an independent object (fig. 2.9) and the use of letters as

" The treatment of time in Archimedes’ SL 1 is similar: points represent ‘extremes’ of time.

* §C 1.90.16-18.
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B
E Z
S
A r
A
Figure 2.2. Archimedes’ SC 1.9.
A
B I
A B A
Figure 2.3. Figure 2.4.

non-punctual in interacting schemes (fig. 2.4).> This is another proof
of a central argument of the preceding chapter: that the diagram is
conceptualised as a discrete set of interacting objects (designated by
letters).*

So what we look for is, generally speaking, individual letters, stand-
ing for points, and many-lettered names, representing objects through
their points of intersection.

3 Tignore the extremely rare cases where the same point is used fwice in a single diagram: see the
diagram to Archytas’ duplication of the cube (Eutocius, /n SC 1m1.87; A is repeated to represent
movement), and Euclid’s Elements 1.5 (M is repeated: probably — as Heiberg hints — a well-
entrenched textual corruption).

* See chapter 1, subsection 2.1.4 above. There are some complications in this system, e.g. the use
of single letters to stand for either of the opposite sections, in Apollonius (e.g. A, B in Conics
m1.4). In this case the letter designates primarily a point, and, by extension, it is also taken to
designate the section on which the point stands. Other complications can often be explained in
similar ways.
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I follow two practices:

(a) The sequence of baptisms in a given proposition can be plotted. It
turns out to be often, though not always, alphabetic, i.e. the first
object tends to be called A, the second B, etc.

(b) Objects may change their many-lettered names. An AB may turn
into a BA, and then return to an AB. When this occurs, I say that
a ‘switch’ took place (there are thus two switches in the example
just given: a switch and a counter-switch, as it were). When, on the
other hand, the same object is referred to on two consecutive occa-
sions, and its name 1s the same, I call this a ‘repetition’.’ The class
consisting of both switches and repetitions is that of ‘reappear-
ances’. Most reappearances tend to be repetitions.

These rough estimates are based on precise surveys. I shall now
describe them.

1.2 Quantitative results

I have surveyed 100 sequences of baptisms: most of Apollonius’ Conics
1, as well as Archimedes” SC 1.° This means that I derive a string for
each proposition in these books. Consider a proposition in which
five letters are introduced, the first five letters of the Latin alphabet.
Say i1t starts ‘Let there be a triangle ABD, and let CE be some other
line intersecting with 1t’. Then the string I derive for this proposition
is ABDCE.

Twenty-nine of the 56 Apollonian propositions I have surveyed are
strictly alphabetical, as are 4 of the 44 Archimedean propositions.
Many sequences, while not strictly alphabetical, are a permutation of
the alphabetical: 1.e. as in the example above, they employ 7 letters,
which are the first n letters of the alphabet.” Fifty-one of the 56
Apollonian propositions are at least a permutation of the alphabetical,
as are 30 out of the 44 Archimedean propositions. Elsewhere, usually
no more than a few letters are ‘missing’.

The ‘distance’ of a sequence from the strictly alphabetical can be
measured by the minimal number of permutations of a given elementary

5> Thus, the following sequence, AB, BA, BA consists of one switch (4B — BA) and one repetition
(BA — BA).

® T will describe the results and not give (for reasons of space) my table, which can be sent to
interested readers.

7 Ignoring I, which tends to be avoided.
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form.” It is very difficult to calculate this quantity in a general way.
However, an acceptable rough first approximation is the number of
cases where letter, > letter,,,” (subscript n represents the ordinal number
of the letter in the string: letter,, for instance, 1s the second letter in the
string). I will call such a case ©>’, and say that a sequence where this

5 10

occurs twice ‘has two >’.

Over my entire survey, the number of possible > 1s g21, while the
number of actual > 13 141. The average percentage is therefore ap-
proximately 15%. I found only one proposition where the percentage
1s above 50%: Archimedes’ SC 1.1. This is in fact a very rare proposi-
tion. The diagram is not reconstructed verbally at all, and one plunges
directly into the proof — so that all the letters are, in the terms of the
preceding chapter, completely unspecified. As a result, the principle of
baptism is not alphabetical but, uniquely, spatial, namely counter-
clockwise (fig. 2.5).

The situation regarding many-lettered names 1s similar. I have
gathered some data, all of which cohere around a single picture.” It 13
very rare to find propositions without any switches at all, i.e. in which,
whenever a many-lettered name is repeated, it is never changed. The
usual level of switches is 20% or less.” I have not come across any

¥ The discussion will become now slightly mathematical. Readers may skip to my results. What

I mean by ‘elementary’ permutations are those which involve transplanting a whole sequence

wn tolo from one point to another, e.g. abCDef — abefUD (the transplanted sequence marked by

upper case).
9 I.e. cases where a letter from ‘higher up’ in the alphabet is immediately followed by a letter
from ‘below’ in the alphabet. In the example above, ABDCE, the only such case is D> C.
The maximum possible number of > in any sequence of n letters is, of course, (n— 1), and the
distribution of different numbers of > over all possible sequences is symmetric (by mirror-
inverting any sequence of n + 1 length with £ >, one gets a sequence with n — £ >. Therefore the
number of sequences with £ > is equal to that of sequences of n — £ >). Therefore the percent-
age of actual > out of possible > is a directly measurable, acceptable estimate of the distance
of a sequence from the alphabetical.
Again, for reasons of space, I will merely summarise here the results:

Apollonius’ Conics 1 has about 2300 reappearances and 358 switches: about 15%.

Autolycus’ works comprise 43 propositions. I have counted only 11 switches within that
corpus.

In Aristarchus’™ On the Sizes and Distances of the Sun and the Moon there are 12 relevant proposi-
tions. There, 87 switches occur. I have not counted the number of reappearances, but the
general profile seems comparable to Apollonius’ Conucs 1 (in Conies 1 there are about 6 switches
per proposition, as against more than 7 in Aristarchus; but the propositions of Aristarchus are
more complicated).

I have also made a detailed study of g0 propositions from many other sources, which
confirm the same picture.

It should be noted that the chance result here is not 50%, but higher: this is because some
many-lettered objects can be represented by many names (e.g. six in the case of triangles, so
chance level approximates 83%).
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E Z H

Figure 2.5. Archimedes’ SC 1.1.

proposition where the percentage is above 50%. About 30% 1is the
highest level that is still common."

This 1s interesting, then: both sets of practice show similar behav-
iour. Two options are ruled out. First, the results are not random.

" The issue of switches in many-lettered names involves a difficult textual question. How trust-
worthy are the many-lettered names as printed in the standard editions? I checked the first 7o
propositions in Euclid’s Data (an edition rare in giving variations of many-lettered names). We
can distinguish two sorts of variation between manuscripts. One is the mathematically inno-
cent one, where both manuscripts represent the same object with different letters (an AB/BA
difference). The other is the mathematically significant one, where one manuscript seems to
refer to a different object altogether (an AB/AC difference). The two types of mistake point at
very different cognitive situations. In the 4B/ BA variation, one of the copiers may (not neces-
sarily) have internalised the reference of the letters, and freely introduced his own designation
of the same object. In the AB/AC variation, it is clear that one of the copiers did not have a
sense of what the text meant, and misread, or miscopied through some other error, his original.

I have counted no more than 79 variations of the AB/BA type in the first 70 propositions of
the Data. This is around one variation per proposition. The number of many-lettered names in
each proposition is usually around 8o, with five manuscripts: 79 variations of the AB/BA sort
in about 28,000 many-lettered names, i.e. less than g per mille. (I have not counted variations
of the AB/AC sort, but they are clearly more common than AB/BA variations.)

A significant result, then, on the way in which mathematical texts were transmitted. The
copiers did not have a sense of the meaning of the text. They definitely did not internalise the
text; they did not creatively rewrite it by changing such trivial matters as the order of letters in
many-lettered names. They copied, slavishly. We may safely cross the ocean of the middle
ages and disembark, with almost precisely the same text, on the shores of antiquity. There, of
course, the terrain becomes more difficult. But what we have is at least some ancient text,
saying something about antiquity.
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Chance sequences of letters, or many-lettered names, do not look like
this. Second, explicit codification 1s ruled out. Explicit codification,
something like a style manual, would have yielded simpler results:
perhaps not 100% (mistakes occur, of course), but it would be a much
more compact scatter. These practices were neither random nor regu-
lated. Is there a third option between the two? I argue that there is,
indeed that it 1s characteristic of the conventionality of Greek math-
ematics In general.

1.3 Self-regulating conventionality: the suggestion

The image towards which I am striving is that of some sort of order,
of pattern which, however, does not result from a deliberate attempt
to create that pattern.

Such patterns are legion. Language, for instance, 1s such: extremely
well regulated, yet not introduced by anyone. Patterns of this kind
result from the regularity of our cognitive system, not from any cul-
tural innovation. This could, theoretically, be extended directly to our
case, like this: when an object reappears, there is a natural tendency —
no more — to repeat its name. However, memory being inexact, many
repetitions will be inexact. The interaction of the natural tendency
towards conservatism, on the one hand, and of memory, on the other
hand, result in the pattern described above. A similar story can be told
for baptism. The alphabetical sequence 13 memorised, and there is
thus a tendency to employ it. But this can be no more than a tendency,
hence our results.

I think it 1s wrong to go that far. Self-regulating conventions are the
track we should follow. But this should not lead us into believing that
the practices are the result of blind, totally impersonal cognitive forces.

It 1s difficult, first, to see what cognitive forces could lead to just the
pattern we observe. For instance, I once thought that short-term
memory might be the main factor in the reappearances of many-
lettered names. The assumption was that switches are strongly correlated
with reappearances over longer stretches. Two lines later, the exact
name 1s still remembered. Five lines later, and it 1s already processed
away: the reference is registered, the precise name is forgotten. I have
therefore surveyed the lengths of switches and of repetitions in some
propositions. The survey was not very large in terms of propositions —
no more than 11 — but the number of reappearances was quite large,
785, of which 161 were switches. The average length of switches turned
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Figure 2.6.

out to be larger than that of repetitions — by about a single line. The
average length of a repetition is about 5 to 6 lines, while the average
length of switches is about 6 to 7 lines.” The breakdown of this into
cases revealed that a great many switches are over a very small range
indeed, often within the same line, while most reappearances over a
long range were repetitions, not switches.

This suggests two conclusions: first, the slight tendency of switches
to be larger may be statistically meaningful, and it does show that
memory 1s a factor. It is probably true that one reason why the pattern
1s not 100% perfect 1s that the pattern is not followed with great care
and attention. In other words, it 1s clear that the text was not proofread
to expunge deviations. Such ‘blind’ cognitive factors can therefore go a
long way towards explaining a non-regular pattern. However, they
cannot be the key factor. Whoever switched a name within the very
same line did so on purpose. While most often names are not switched,
they are sometimes switched on purpose: 1.e. the behaviour is differen-
tial, and this differentiality 1s apparently intentional.

The way in which the behaviour is differential is significant. Com-
monly, what we see 13 that while several objects are switched often,
others are switched rarely, or not switched at all. This is differentiation
between different objects of the proposition. I sometimes plot the ‘his-
tories’ of individual many-lettered names in a proposition. Say, In a
proposition a name appears first as AB, then, again, as 4B, then BA,
then AB and then finally BA. Its ‘history’ is depicted in figure 2.6.

Look at the history of EX in Apollonius’ Conics 1.50 (fig. 2.7). This is
the history of a chaotic journey between two poles — a metal more or
less repelled by two magnets. Such names occur sometimes. They are
so changeable that they lose all identity. Some other objects, however,
just cannot be random. AM, AMP and MO, in the same proposition,
are repeated six times in a row, each without change. The probability
for this 1s about 1/250,000. Apollonius took care not to switch them.

' T calculated in Heiberg lines, which are not a constant unit, but are good enough for such
statistical purposes.
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Figure 2.7. History of EX, Apollonius’ Conics 1.50.

Apollonius deliberately chose not to switch a few objects, which means
that he deliberately chose to switch some others. More precisely, since
the more common practice 13 that of repetition, it is the switched
objects that become marked. Against the background of a general
tendency not to switch, switched objects are marked. And similarly,
against the background of alphabetical baptisms, non-alphabetical
objects are marked.

In some cases, it 1s possible to see the role of such marking. For in-
stance, a major reason for the non-alphabetical sequences in Archimedes’
SC 15 his frequent use of auxiliary objects which are not part of the
main geometrical configuration. Such objects are often introduced
non-alphabetically. By being out of order, their being out of the main
scheme 1s enhanced.”

‘Marking’ does not have its own signification. It 1s interpreted in
context, signifying what, in the given discourse, is worth being marked.
In Archimedes, what is being marked 1s often discontinuities in the
same proposition. In Apollonius, what 1s being marked is often conti-
nuities between different propositions, e.g. in the first 14 propositions
of the Conics, BI" always refers to the base of the axial triangle. In
propositions 1—14 this is dictated by the alphabetical sequence. In propo-
sition 14 (where the sequence of the construction is different) this is
already a deviation from the alphabetical. Thus, the letters are marked
in 14, and this serves to signal a continuity."

% E.g. 14: EZ; 1.7: EZHO are preceded by KAM and are thus made to be out of their normal
- sequence; 1.32: Z0.
" A similar case is the letters AT in Conics 1.46, repeating the closely related 1.42.
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Many switches are explicable as markings of this sort. For instance,
Conics 1.45: three triangles are mentioned, BEZ, HOZ and AI'©. The
last two reappear immediately, but switched, as ZHO© and 'A©. Why
1s that? We must remember that Apollonius most often uses three-
lettered names for rectangles, in expressions such as ‘the rectangle by
ABC [= the rectangle contained by the lines AB, BC|’. Because of its
deep structure, the three-lettered name ‘the rectangle by ABC” can be
permuted in only two ways, ABC or (CBA (‘the rectangle by ACB’
would already be that by the lines AC, CB). On the other hand, a
triangle 1s a three-lettered name which can be freely permuted, in all
six ways. By permuting the triangles in exactly the way impossible for
rectangles, the objects are marked — to stress further that they are
triangles and not rectangles.

That switches are semantically meaningful is clear from the follow-
ing: if two objects share the same letters, they are often distinguished
by the sequence of their letters (besides the articles and prepositions
differentiating between them).” And again, switches, just like non-
alphabetical baptisms, may mark continuities between propositions.
In Conics 1.48, EA from L. 20 1s switched into AE in 1. 22. This 1s in the
context of the reference to a result of the preceding proposition, which
was expressed in terms of AE.

We can begin, then, to identify the various factors at work. There is
a general conservative tendency to follow a pattern. This, however, is
not followed with great care, and thus negative performance factors
such as short-term memory, or positive factors such as visualisation,
make this pattern far short of 100% perfection. However, this still
leaves a recognisable pattern, against which deviations may be in-
formative. So there are three main forces going against strict adher-
ence to the regularity:

% negative performance factors (such as limitations of short-term
memory);

% positive, interacting, cognitive factors (such as visualisation);

% 1ntentional, informative deviations.

Each factor 1s in itself limited, responsible for no more than a few
per cent of deviation. They combine, however, in complex ways (thus,
for instance, once objects begin to get switched, for some positive

7 For instance, this is very common with circles and arcs on circles in Autolycus, e.g. in The

Mouving Sphere 9, the circle EHK and the arc HKE.
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reason, it becomes more difficult to memorise them, and hence there
1s an increased tendency to switch because of negative performance
reasons). This combination finally leads to the general result of approxi-
mately 85% regularity.

The conventionality, therefore, is not the result of any explicit
attempt to conventionalise a practice. Further, the conventionality is
not just the operation of blind, general cognitive forces. It does have a
component of intentional agency. This agency, however, does not shape
the overall structure of the regularity. Rather, it takes this overall
structure and uses it for its own purposes. The overall structure is
‘usually — but not always’, and it is possible to use such a structure to
convey information by deviations from the pattern. The deviations are
allowed by the ‘but not always’ clause, and are informative because of
the ‘usually’ clause. I now proceed to generalise.

1.4 Self-regulating conventionality

We imagine a group of speakers, and a corpus of texts unified by
subject matter, produced by those speakers.”® Because of the unity of
subject matter, the cognitive forces shaping the texts have a certain
unity. Hence, some characteristic patterns will emerge in the corpus.
Now we add a further assumption: that the speakers are well ac-
quainted with the texts. Thus, whether they articulate this to them-
selves explicitly or not, they are aware of the patterns. This means that
they are able to operate with those patterns, either by deviating from
them informatively or, alternatively, by trying to remain close to them.
What starts as the raw material of conventions, what is merely the
work of natural forces, becomes, by being tinkered with, a meaningful
tool, a convention. Can such a tool be transmitted? Certainly — simply
by a deep acquaintance with the texts. More than this: the very use
of the tool assumes a deep acquaintance with the texts on the part
of the readers.

I shall now use the word ‘professional’ to mean a speaker with a
deep acquaintance with the texts. What I have argued can be trans-
lated into the following claim: that in any professionalised group, con-
ventions of the sort described above will necessarily emerge. They will

" The written medium itself is immaterial here; I shall use ‘texts’ and related terms in a general
sense.
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be spontaneously transmitted, as a natural result of the process of
professionalisation, of getting acquainted with the texts. And the
professionalised group would come to be ever more marked, as its
texts could reveal their full meaning only to professionals, to members
of that group. This is the process of self-regulating conventionality.
It will necessarily emerge wherever professionalisation (in my very
limited sense) occurs. And it is self-regulating, in the sense that it is self-
perpetuating and in need of no explicit, external introduction. This 1s
the general principle accounting for the tendency towards perpetua-
tion and growing differentiation of professional groups and genres.

Of course, conventions may be introduced by other routes as well.
They may be explicitly introduced. I shall argue in detail, as we pro-
ceed, that explicit introductions played a very minor role in Greek
mathematics, and that its conventionality was self-regulating.

The practices described in this chapter are interesting as examples
of a self-regulating conventionality. They have other, specific, cogni-
tive meanings, and I proceed now to discuss these.

2 THE IMPLICATIONS OF THE PRACTICES

Some implications of the practices are direct consequences of fea-
tures discussed sufficiently already. First, we saw how second-order
information is carried implicitly by first-order language. For instance,
the use of letters may imply a continuity between propositions or a dis-
continuity between parts in the same proposition. This is second-
order information: it is not about the geometrical objects, but about
the discourse about those geometric objects. However, this is conveyed
without recourse to any second-order language. Generally, within a
professional group, the manner will say something about the approach
taken towards the matter. Specifically, the tendency of Greek math-
ematicians to avoid second-order language, and its isolation from first-
order language, will be a main theme of the next chapter.

Further, we saw that there is no regular relation between signifier
and signified in Greek mathematics: specific letters do not represent
stereotypical objects (no ‘7 for radius’). Rather, the principle of baptism
is mainly alphabetical. It may happen that, for a stretch of a few
propositions, a local regular relation between signifier and signified
1s established. But this 1s strictly local. Consider, for instance, Y in
Archimedes’ CS. It 1s very late in the alphabet and therefore its use in
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any normal proposition (one without a huge cast) would constitute a
dramatic break from the alphabetical convention. It can thus be used
meaningfully. However, in (S 1, where there are 24 objects, Y appears
normally and does not play any particular role. Later, in propositions
4—0, 1t represents a specific circle — so here we hit upon a sign—denota-
tion relation. But as we move on, the stage 1s meanwhile silently cleared,
the stage-workers rearrange the requisites, and when the lights return
in proposition 21 Y has become a specific cone, in which function it
will continue to serve, on and off, until the end of the treatise. The
same object may serve, even in the same treatise, in different roles. In
itself, ¥ means nothing. There is nothing particularly Y-ish about cir-
cles or cones (which are rather K-ish, if anything). So it is not ¥ which
means a particular circle or cone; it is the entire structure of conven-
tional practice which implies that there is something being referred to.
Y is a mere cipher in that system.

There 1s one type of point which does have a meaning of its own,
and this did evolve a rudimentary relation between signifier and signi-
fied. I refer to the pair (letter K)/(centre of circle). K is the centre in
Eudemus’ (?) version of the fourth Hippocratic quadrature;” also in
the second mathematical proposition of the Meteorology;*® and it 1s con-
sistently the same in a whole treatise, Theon’s (or Euclid’s?) edition of
the Optics.” On the other hand, such a consistent application of the
relation K/centre is very rare. If we move from Aristotle’s second to
his first theorem, we see that K 1s not a centre there. Furthermore,
even when representing the centre by some non-alphabetical letter,
this letter often 1s not K. The K/centre relation comes naturally, given
that letters represent points, and that the centre 1s such an obviously
significant point. But this relation is only very rudimentary in Greek
mathematics — and even so, it is unique. The overwhelming principle
is that there 1s no regular sign/denotatum relation. This of course 1s
natural, given that letters are indices, not symbols, as argued in the
preceding chapter, and we have seen now an important indication of
this. The very principle of alphabetic sequence points in this direction.
Letters are assigned to objects in the way in which serial numbers are
attached to car plates, or identity cards. And, like car plates indeed,
they are essentially arbitrary signs fixed in space upon the objects they
are meant to represent.

' The textual problems of this treatise are enormous; the most trustworthy reconstruction
remains Becker (1936b).
%0 Meteor. g75b20.  *' See Knorr (1994) for the problems of ascription.
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A A K S
Figure 2.8. Euclid’s Data 61.

2.1 The role of visualisation

There are many cases where it is clear that many-lettered names are
switched because of a visualisation, but most important is the simple
observation that switches occur. The identity of a Greek object, a line,
a triangle, a circle, 1s not that of a fixed symbol (AB remaining always
AB). It is that of the visual object itself, represented by (possibly) alter-
nating combinations of letters. Greeks take it for granted that AB and
BA are exactly the same object, and this is because that object is
stabilised not through a stable nomenclature but through a stable physi-
cal presence in the diagram.
An especially fascinating case 1s the following derivation:*

‘... the ratio of ZB to I'A 1s given . . . but I'A 1s equal to KB; there-
fore the ratio of KB to I'H is also given’.

(I have omitted a few details, with no bearing on the structure of this
particular argument.)

The structure seems to be: ‘a:b 1s given. b = ¢. Therefore ¢:d 1s given’.
This does not make any sense, unless we have the diagram (fig. 2.8).
Then it becomes clear that ['H is equivalent to ZB. They are two ways
of representing the same quadrilateral by its opposite vertices. Such

* Data 61, 112.3—6.
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A B
C D
Figure 2.9.

A B
D G
Figure 2.10.

cases are not very common — after all, even simple switches tend to be
avoided — but this case 1s not unique.” And the reason for this case is
instructive. By switching from ZB to ['H, the directionality of the par-
allelogram has switched from south-eastern to north-eastern, the same
as KB, the parallelogram mentioned in the conclusion of the argu-
ment. The switch 1s motivated by the desire to represent a pair
isodirectionally. This 1s of course a visual motivation. As usual, the
textual difficulties are considerable. But for the sake of the argument, it
1s worth trusting our manuscripts (as by and large I think we should) to
check such questions in general. One place to look for such visual
motivations is the isodirectionality of parallels. When two lines are
presented as parallel, the text says something about this, say, ‘4B 13
parallel to CD’. This expression may be either isodirectional (as with
fig. 2.9: the flow 4B 1s the same as CD) or as counter-isodirectional (as
with fig. 2.10: the flow 4B 1s opposite CD). I have checked the first 100
cases in Apollonius’ Conics, as well as 28 Archimedean cases, chosen at
random through the index. Of the 100 Apollonian cases, 74 were
1sodirectional; of the 28 Archimedean cases, 22 were isodirectional.
This is clearly meaningful and shows a visual bias.

Even more regular is the phenomenon of linearity. This practice is
the following. The sequence of letters in a many-lettered name may be
either linear (i.e. corresponding with some continuous survey of the
line, e.g. ABC for the line A—B—C) or non-linear (e.g. ACB for the
same line). Out of the 142 relevant cases* in Apollonius’ Conics 1, 136
are linear. As usual in Greek mathematics, no rule 1s sacred, and the

% E.g. the equivalence AB < Al in Data 69.
* Most many-lettered names are irrelevant: a line called AB, or a circle called ABC, for instance,
are automatically linear. I do not count such irrelevant cases.
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six counter-examples are meaningful.® But the tendency is overwhelm-
ing. This 1s the strongest convention we have seen so far, and it is
visual in nature. This is a useful indication of the role of visualisation.*

We have seen a number of ways in which the practices of many-
lettered names betray a strong visualisation. Baptism, pursued point by
point, cannot be used in exactly the same way — a point 1s a point is a
point, and there is little to say about its visualisation. But the sequence
of baptisms must tell us a lot about the integration of the diagram into
the text of the proposition, which is our next topic.

2.2 The drawing of the diagram

What we are looking at now is the relation between a number of
processes, at least in principle separate:

(a) the formulation of the text prior to its being written down;
(b) the writing down of the text;

(c) the drawing of an unlettered diagram;

(d) the lettering of the diagram.

The processes may interact in many different ways. For instance, it
is possible that the drawing of the figure, and its lettering, are simulta-
neous (the author letters immediately what he has just drawn) or draw-
ing may completely precede lettering. The total number of possible
combinations 1s very large, and it is probable that diagrams were drawn
in more than one way. However, it is clearly possible to rule out a
number of options.

First, the alphabetical nature of baptism proves that, in general,
lettering the diagram did not precede the formulation of the argument.
When lettering the diagram, the author must have known at least the
order in which objects were to be introduced in the proposition. Result
1: leltering does not precede the formulation of the argument.

Further: when the proposition is not strictly alphabetical, it usually
tends to be a permutation of the alphabetical: all of the # first letters of
the alphabet are used (and when this is not the case, it can often be
explained as a meaningful deviation), i.e. the author has to know the

®» Naming a closed shape in a non-linear way connotes the plane of the shape (represented by
two non-parallel straight lines joining vertices on the shape). This seems to be the point of
counter-examples such Conics 1.32.4, 9; 34.16.

Of course, the results are not unique to Apollonius. I have checked Euclid’s Elements 11: all 19
relevant cases are linear.

26
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number of letters to be used in the text. This shows that, when the
diagram is being lettered, at least the number of letters which will be
required in the proposition must be known in advance. Now this rules
out another option, namely: it i1s impossible that the lettering is done
simultaneously with the final writing down of the proposition. For if
the lettering were to be done simultaneously with the final writing
down of the proof, then it would have to be ‘blind’, just as the text is,
to what comes next. At least a census of the number of the letters
required in the proposition must precede its being finally written down;
and 1if a census, then probably also the actual lettering. Of course, it is
strictly impossible that lettering should come afler the final writing
down of the proposition — the final written text assumes those letters. It
is thus almost certain that as a rule lettering preceded the final writing
down of the proposition. Result 2: lettering precedes writing down the text.

Furthermore, 1t is clear that the formulation of the argument had to
refer to some diagram (certainly following what we saw concerning the
role of the diagram in Greek mathematics). Thus the drawing of the
figure itself probably preceded the formulation of the argument. Result
3: drawing precedes the formulation of the argument.

I now bring in another sort of argument: completely unspecified
letters. We have seen in the preceding chapter that letters may be
introduced into the proposition without their being specified anywhere.
In such cases, the specification of those letters is completely dependent
upon the diagram. Thus, it is clear that at least while the final version
of the proposition is being written down, the letters must have been
already present in the diagram. All this is clear and based on evidence
already marshalled. Another piece of evidence is the following.

Take two examples. Suppose you say, with fig. 2.11:

C
A I B

Figure 2.11.

‘Draw the line AB. Then AC equals CB.
Or you say, with fig. 2.12:

B
A I G

Figure 2.12.

‘Draw the line AC. Then AB equals AC”
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In both cases there is a completely unspecified letter. In the first case
this 1s (; in the second case it 1s B. In the first case the completely
unspecified letter 1s alphabetical: it is introduced into the proposition
in the right order (C follows 4 and B). In the second case, it is not
alphabetical, but would have become alphabetical had the text been complete at
exactly the moment B was produced. If we assume that, while AC was being
drawn, B was inserted as well (but tacitly), then the sequence becomes
alphabetical again. In Greek mathematics, completely unspecified let-
ters behave like B, not like . They seem to have been introduced in
the text at the right moment, tacitly.”

Unspecified letters furnish some evidence, therefore, for a process
of lettering which takes place according to the spatial sequence of the
proposition, but not according to the final written version of the propo-
sition. That such letters were introduced into the diagram before their
introduction to the text has always been clear; what we have learned is
that those letters were often introduced into the diagram according to
the sequence of spatial events in the proposition. Result 4: lettering may
be structured following the sequence of geometrical actions (instead of the sequence of
the text).

So let us recapitulate our results so far:

Result 1: lettering does not precede the formulation of the argument.

Result 2: lettering precedes writing down the text.

Result §: drawing precedes the formulation of the argument.

Result 4: lettering may be structured following the sequence of geo-
metrical actions (instead of the sequence of the text).

None of our pieces of evidence 1is conclusive, but each is convincing,
and they all lead to a similar picture, to a similar sequence of events:

1. When a rough idea for the proposition has been formulated, a
diagram is drawn.

2. It is lettered, simultaneously with a (possibly oral) dress rehearsal of
the text of the proposition.

3. Finally, a text, which assumes this lettered diagram, is written down.
Because this text assumes this lettered diagram, it will be different
from the dress rehearsal, e.g. in the phenomenon of unspecified
letters.

7 In Apollonius’ Conics 1, of 19 relevant letters, only 4 behave differently. In Euclid’s Elements xi1,
of 42 relevant letters, 14 behave differently (these, however, are mostly from the first two
propositions, whose diagrams are interconnected, thus introducing much ‘noise’ — not a typi-
cal case).
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A final question remains: what shape can this dress rehearsal take?
The options are an informal, oral rehearsal (perhaps aided by a few
written notes); or a fully written version. The second option is prob-
lematic. This i1s because it implies a transformation from one fully
written version to another, 1.e. very much like proofreading of the kind
we have ruled out already. If one already has a completely written
version, why rewrite it completely? A few modifications, perhaps; but
changes such as the omission of reference to unspecified letters involve
a major transformation of the text, which the written medium makes
less probable.

Such changes, however, are very natural in the transformation from
the oral to the written. And in general, there were very few written
cognitive aids available to the Greek mathematician (apart, that is,
from the lettered diagram itself). He had no machinery of mathemati-
cal symbolism. In all the stages prior to the writing down of the proof,
there were no written short-cuts the Greek mathematician could use.
On the other hand, as we shall see in chapter 4, there was an aural
mechanism, of formulae.

My hypothesis can therefore be reformulated in very precise terms.
Greek propositions originated in many ways, but the most common
was to draw a diagram, to letter it, accompanied by an oral dress
rehearsal — an internal monologue, perhaps — corresponding to the
main outline of the argument; and then to proceed to write down the
proposition as we have it.

This 1s a hypothesis. What it reflects 1s the complicated structure
of interrelation between text and diagram. The text assumes the dia-
gram, and the diagram assumes the text. The visual and the verbal are
closely interrelated — and we begin to see the possible role of orality.
The issue of orality will be discussed mainly in the context of the
mathematical language. But there is one further piece of evidence
concerning letters, which may be relevant here.

2.3 ‘Memory’ and many-lettered names

I have suggested above that one factor relevant for the explanation of
the distribution of switches is that of memory. It is very difficult to
formulate what memory exactly is at work here. Is it the unaided
short-term memory, i.e. essentially an oral phenomenon? Or 1s the use
of writing an aid to memory? One obvious point 1s that the willingness
to switch so often shows that the written medium was not used as an
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aid to memory. Had the writer wanted, he could refrain completely
from switching, simply by using the possibility of referring backwards
while writing. This clearly he did not do. This may lead us to think,
then, that the writing down of the text was done as if oral; that the
writing was done on the model of the oral. The process of writing down
was akin to dictation, and indeed may have been that of dictation.

The evidence from the behaviour of many-lettered names is con-
flicting. The tendency of switches to be somewhat longer than repeti-
tions could be the result of short-term memory effects. Yet in writing,
too, physical distance makes a difference: looking five lines up is frac-
tionally more difficult than looking four lines up. On the other hand,
unaided short-term memory would have broken down completely over
long distances. But we see that there 1s in fact a tendency not to switch,
even in long distances. Clearly in some cases, therefore, the author
actually ‘looked up his text’.

In a textually minded context, it 1s natural to think of one form as
the ‘canonic’, presumably the one first struck. Thus, even if switches
occur, for some reason, we should expect a tendency for counter-
switches to occur immediately afterwards, to return to the original
canonic form. You write AB; for some reason, to stress some point, you
switch to BA4; but then the ‘canonic’ 4B (so one would expect) will be
resumed. On the other hand, in the absence of a canonic form, the
tendency would be simply to use the last-mentioned form, and any
switch would immediately create a locally preferred form. Here, again,
the evidence 1s difficult to interpret in a consistent manner. Of the 109
relevant cases I have identified in Apollonius’ Conucs 1, 59 have counter-
switches following switches, while 50 have a locally preferred form
established. That the evidence is confusing in this way is, I believe, not
an accident. Goody has stressed the ways in which a ‘fixed text” would
be much more elastic in an oral context, much more static in a written
context.”” He has also stressed that the cognitive implications of lit-
eracy will be secondary: they will not be the result of an exposure to
the very process of writing, but rather the results of the entire culture
derived from writing, the entire set of practices and assumptions con-
comitant to writing.” Our text is written, doubly so, as it includes the
reflective use of letters as signs in the diagram. But it does not display
the fixity we expect from a written culture. Writing itself is present, but

* E.g. Goody (1977).
* Goody (1987) 221-3: the term there for my ‘secondary’ is ‘mediated’.
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the implications, the possible uses of literacy, are not there in any
consistent manner. While the author no doubt looked up his text from
time to time (the text as a physical object was there, after all), such
procedures did not become part of his ordinary method, which was
still partly akin to a more oral method.

The suggestion is, then, that the origins of the conventions govern-
ing our texts were in a transitional, ambiguous stage, which, while
literate, did not see writing as canonic. We shall pursue this suggestion
in more detail in the following chapters.

3 SUMMARY

This chapter had three main themes. First, it looked backwards, to the
preceding chapter. It complemented the results of chapter 1, showing
that the anchor, the object whose fixity sustains the assertions made in
the proposition, was the diagram. We have seen further evidence for
the indexicality of the letters, and for the fact of visual specification.
Another main theme looked forwards, to the following two chapters,
which discuss the use of language. I have offered the hypothesis of the
oral dress rehearsal, and I have described the variability of one linguis-
tic object (many-lettered names). In the following two chapters, I shall
discuss in detail the variability of other linguistic units, and the oral/
written nature of the linguistic practices. I have also pointed out how
second-order information may be implicit in first-order language. The
relation between first- and second-order languages will also be treated
in the following chapter. Finally, an important theme 1s that of the
nature of the conventionality employed in Greek mathematics. This
will be picked up again and again in the rest of the book. We will see
many more conventions, and most of them, I will argue, are the result
of self-regulating conventionality.



CHAPTER §j

‘T he mathematical lexicon

INTRODUCTION AND PLAN OF THE CHAPTER

Greek mathematical deduction was shaped by two tools: the lettered
diagram and the mathematical language. Having described the first
tool, we move on to the second.

Before starting, a few clarifications. First, my subject matter 1s not
exhausted by that part of the mathematical language which is exclu-
sively mathematical. The bulk of Greek mathematical texts 1s made up
of ordinary Greek words. I am interested in those words no less than
in ‘technical’ words — because ordinary words, used in a technical way,
are no less significant as part of a technical terminology.

Second, I am not interested in specific achievements in the develop-
ment of the lexicon such as, say, Apollonius’ definitions of the conic
sections. Such are the fruits of deduction, and as such they interest me
only marginally. When one 1s looking for the prerequisites ot deduction,
the language 1s interesting in a different way. It is clear that (a) a
language may be more or less transparent, more or less amenable to
manipulation in ways helpful from the point of view of deduction. It is
also clear that (b) a language 1s influenced by the communication-
situation. The focus of this chapter is on the ways in which (a) the
lexicon served deduction; I shall also try to make some remarks here
concerning (b) the probable contexts for the shaping of the lexicon.

Third, there is much more to any lexicon than just one-word-long
units. The short phrase 1s — I argue — no less important in Greek
mathematics. I will call such short phrases ‘formulae’ (following a prac-
tice established in Homeric studies) — which of course should not be
confused with ‘mathematical formulae’. This chapter is devoted mainly
to one-word-length items; the next chapter focuses on formulae.

The linguistic tool is unlike the diagram in many ways, and one way
in which the difference forces upon me a different approach is that the

89
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linguistic tool was, relatively, more visible. Words are manipulated by
Greek mathematicians, in definitions. In these moments before the
start of the works proper, words stand briefly in the spotlight of atten-
tion. Such words, such moments, are then illuminated by another
spotlight, that of modern (and ancient) scholarship. The scholarship
was always fascinated by definitions — mistakenly, I will argue: even
here, in terminology, explicit codification is of minor importance.

Section 1 discusses definitions. I describe what Greek definitions
were actually like, and then show their limitations as tools mn the shaping
of deduction. Section 2 goes on to the actual functioning of the lexicon
as a tool for deduction. It consists of descriptions of global features of
the lexicon, as well as descriptions of some test-cases (e.g. the lexicon
for logical connectors), and what I call ‘local lexica’ (e.g. the lexicon of
Archimedes’ Floating Bodies). Section g offers, briefly, some comparisons
with other disciplines, mainly as a further background for the question
of the emergence of the lexicon. Section 4 1s an interim summary —
‘Interim’, since chapter 4, on formulae, is required as well, before the
results on mathematical language can be summarised.

Of course, more Greek is necessary than elsewhere in this book. In
a few cases I have left untransliterated Greek in the main text, and
I apologise for this. The chapter is readable without any knowledge of
Greek. All the non-Greek reader will miss 1s the detail of some examples,
while the argument, I hope, will be clear to non-Greek readers as well.’

I DEFINITIONS: WHAT THEY DO AND WHAT THEY DON’T

The question of the title can get us into deep philosophical waters.
This 1s not my intention. I concentrate on much simpler questions:
What are those stretches of text in Greek mathematics which we call
‘definitions’> How do they appear in their context? What do they
define? Even those simpler questions are difficult and, I find, the an-
SWers are surprising.

I have collected some definitions: all the definitions in Euclid’s
Elements and Data, and all the definitions in the works of Autolycus,

" At this point I would like to bring to the readers’ attention the extraordinary study by Herreman
(1996), where the lexicon of homology theory, 1895-1935, is rigorously analysed. Herreman’s
goals are different from mine: not explaining the mathematical achievement but, almost the
opposite, showing how mathematics does not differ fundamentally from other discourses. For
this reason, Herreman stresses the absolute complexity of the semiotic structures and not (as I
do) their simplicity, relative to other, non-mathematical discourses. Allowing for such different
goals, Herreman’s results can be seen, I believe, as complementary to those offered here.
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Archimedes and Apollonius. The list contains somewhat fewer than
300 definitions (counting definitions, as I will explain in subsection 1.2
below, 1s not as simple as it seems). Most of my arguments are based
on checks performed on this list.

1.1 What is a definition?

That which comes first tends to gain canonical status, and ‘a point is
that which has no part™ is perhaps generally taken as an ideal-type
definition. And indeed it is a convenient case, one where a thing — a
noun — 1s given a definition. But already definition ‘4’ 1s more difficult
(more on the quotation marks around the numeral, below). ‘A straight
line 1s . .. What is being defined here? ‘Line’ has been defined in the
preceding definition ‘2’. Or 1s ‘straight’ defined here?

Or look at the first definition of Elements 111: ‘equal circles are <those>
whose diameters are equal, or <those> whose radii are equal’.* This, of
course, defines neither ‘circles’ nor ‘equal’. The phrase ‘equal circles’ 1s
defined — if, indeed, the connotations of the word ‘define’ are not too
misleading. What 1s the function of such a ‘definition’? Clearly neither
to abbreviate nor to explicate!

The problem is that of the logical and syntactical form of definitions
— and logic and syntax are hard to tell apart here. Perhaps the most
useful preliminary classification 1s into the following four classes of
definienda, based on syntactic considerations.’

1. The defintendum may be a noun, as in ‘a pomt 1s that which has
no part’.

2. The definiendum may be a noun phrase consisting of a noun plus
an adjective, as In ‘a straight line is a line which lies evenly with the
points on itself’.

3. The definiendum may be a noun phrase other than a noun plus
an adjective, as in ‘a segment of a curcle 1s the figure contained by a
straight line and a circumference of a circle’.’

The first definition in Euclid’s Elements: onueidv éoTiv, oU pépos oUbev.

3 eUfela ypapun éoTwv. ..

* jool kUKAoL gioiy, v al didueTpol foal gioiv, f§ oV ol &k TV kévTpwv ioc eiciv. Note the
last formula which is translated by the single English word ‘radiz’.

5 I use the following established terms: definiendum for the term defined (as ‘point’ in ‘a point is

that which has no part’), definiens for the defining term (as ‘that which has no part’ in the same

example).

° Elements n1. Def. 6.
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4. Finally, the definiendum may not be a noun phrase, as in ‘a straight
line 1s said fo touch a curcle: which, meeting the circle and being
produced, does not cut the circle’.’

First of all, quantitative results. I have counted 33 nouns, 105
nouns+adjectives, 8o other noun phrases and 55 non-noun phrases. It
is clear that the first group — which, as noted above, I suspect is usually
taken to be the 1deal type — is the least important in quantitative terms.
It 1s of course an important group in other ways. These are often
the primitive terms of their respective fields, and appear at strategic
starting-points: especially the two geometrical starting-points of the
Elements, books 1 (point, line, surface, boundary, figure, circle, semicircle,
square, oblong, rhombus, rhomboid, trapezia) and X1 (solid, pyramid,
prism, sphere, cone, cylinder, octahedron, icosahedron, dodecahedron):
21 nouns, most of the nouns in my survey. Defined nouns are mostly
things in space. They appear as the subjects in sentences in general
enunciations. They are what geometry teaches about.

However, they are not so much what geometry speaks about. Geo-
metrical texts speak mostly about specific lettered objects, and refer-
ences to them often abbreviate away the noun, leaving only articles,
prepositions and diagrammatic letters. For mnstance, as noted already
in chapter 1, Greeks often say ‘the A’ for ‘the point A’. More on this
later.

The second group is the most numerous. What is defined here?
To repeat the example of 11.1: ‘“Equal circles are those the diameters of
which are equal, or the radii of which are equal.” This does not state
an equivalence between expressions. This is an assertion, as is often the
case with definitions (see subsection 1.2 below). And the assertion is not
about the composite whole ‘equal circles’. It is about the relation be-
tween the two components in the definiendum. The assertion amounts
to saying that the adjective ‘equal’ applies to ‘circles’ under given
conditions. Such definitions, then, in general specify the conditions
under which an adjective may apply to a noun. More precisely, such
definitions specify the conditions under which a property may be as-
sumed to apply to an object. Hence the importance of this group.
Greek mathematics is the trading of properties between objects. Argu-
ments often start from the existence of a set of properties, to conclude
that another property obtains as well. Theorems in general claim that

7 Elements m1. Def. 2.
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when a certain property obtains, so does another.” Definitions are at
their most practical where they supply the building blocks for such
structures.

The third group consists most typically of two nouns (together with
appropriate articles), one in the nominative, the other in the genitive.
Often the focus of the definition 1s on the noun in the nominative.
When defining ‘a segment of a circle’, the definition regulates the use
of the noun ‘segment’. The noun in the genitive, in some simple cases
as this one, serves simply to delimit the scope in which the noun in the
nominative should be employed. In other, more interesting cases, the
genitive represents the fact that the definition is an extension of a con-
cept, e.g. in Archimedes’ CS, where ‘axis’, ‘vertex’ and ‘base’ repeat-
edly appear in the nominative in definitions with different nouns in the
genitive: the two types of conoid and the spheroid and their (as well
as the cylinder’s) segments, so we have defined such objects as the ‘axis
of a spheroid’.? So when definitions are extensions, they serve to codify
a new lexicon. Most importantly, by extending words already used in
earlier contexts, the definitions help to assimilate the new lexicon to
the old, and thus serve to conserve the overall shape of the lexicon.
This, the formation of new lexica, is an important phenomenon which
we shall look at in more detail later on.

The fourth group — where the definiendum 1s not a noun phrase — 1s
made of formulae alone. Most often the definiendum in this group is a
verb phrase. Most definitions in the Data, for instance, belong to this
category: e.g. definition 5: ‘A circle 1s said to be given in magnitude
whose radius is given in magnitude’™ (harking back to definition 1,
which defined ‘being given in magnitude’ for areas, lines and angles).
In a sense, then, this 1s like the second group (and verb phrases are,
after all, like adjectives: they are complements to nouns). Such defini-
tions specify when a certain property, expressed by a verb (rather than
by an adjective), is said to belong to an object (Euclid invariably uses
‘18 said’, legetai, in such definitions).

To sum up: there are two preliminary questions concerning defini-
tions. First: does the definition define, or does it specify, instead, condi-
tions where a property (independently understood) is assumed to belong
to an object (independently understood)? Second, is the object of the
definition a single word, or 1s it a phrase? I attempt no precision on the

¢ 1 return to this subject in chapter 6 below.
9 246.20, 21; 248.3, 6, 7; 250.1, 2, 11, 14, 15; 252.23, 24; 254.2, 4, 5; 258.27, 28, 29; 260.12, 14.
'° kUKAOS T peyeDer Beddobon AéyeTan, oU SedoTan 1) €k TOU KEVTpou T PeyEDel.
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first question, because the borderline in question 1s fuzzy; but clearly
most definitions seem to belong to the second type. As for the second
question, it 1s simpler: defined words are the ‘nouns’ in the classifica-
tion above, about 12% of the definitions in my survey. Most definitions
do not define individual words. ‘A point is that which has no part’ 13
the exception, not the rule.

2.2 How do defimitions appear?

David Fowler had to wake me from my dogmatic slumbers. I trusted
Heiberg and assumed that Greek mathematical texts often started with
neatly numbered sequences of definitions. Seeing a specimen first page
of a manuscript of the Elements, and glancing at Heiberg’s apparatus,
should dispel this myth. Numbers were not part of the original text."

That numbers are absent from the original is not just an accident,
the absence of a tool we find useful but the Greeks did not require.
The absence signifies a different approach to definitions. The text of
the definitions appears as a continuous piece of prose, not as a discrete
juxtaposition of so many definitions. This is most clear in the
Archimedean and Apollonian corpora. There, a special genre was
developed, the mathematical introduction, which was not confined to
these authors. Hypsicles’ Elements X1v contains a similar introduction,
and the Sectio canomis (a mathematico-musical text transmitted in the
Euclidean corpus) also has some sort of itroduction. So the principle
is this. Mathematical texts start, most commonly, with some piece of
prose preceding the sequence of proved results. Often, this is devel-
oped into a full ‘introduction’, usually in the form of a letter (prime
examples: Archimedes or Apollonius). Elsewhere, the prose is very
terse, and supplies no more than some reflections on the mathematical
objects (prime example: Euclid).

I suggest that we see the shorter, Euclid-type introduction as an
extremely abbreviated, impersonal variation upon the theme offered
more richly in Archimedes or Apollonius. Then it becomes possible to
understand such baffling ‘definitions’ as, e.g., Elements 1.3: ‘and the
limits of a line are points’.” This ‘definition’ 1s not a definition of any
of the three nouns it contains (lines and points are defined elsewhere,

11

The editorial notes on the numbers of definitions include ‘Numeros definitionum om. PFBb’
(Elements 1), ‘Numeros om. PBY’ (Elements 1), ‘Numeros om. PBFV’ (Elements 1n); or ‘numeros
om. codd.” (Data); or ‘numeros add. Torellius’ (Archimedes’ SC). Elsewhere in Archimedes
(and in Apollonius and Autolycus) not even the modern editors add numbers.

ypapufis 8¢ mépata onueia. The 8¢ relates to the previous definitions, revealing the inappro-
priateness of division into numbered definitions.
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and no definition of limits 1s required here). It is a brief second-order
commentary, following the definitions of ‘line’ and ‘point’.” Greek
mathematical works do not start with definitions. They start with second-
order statements, in which the goals and the means of the work are
settled. Often, this includes material we identify as ‘definitions’. In
counting definitions, snatches of text must be taken out of context, and
the decision concerning where they start 1s somewhat arbitrary. (Bear
in mind of course that the text was written — even in late manuscripts
— as a continuous, practically unparagraphed whole.)"

So far I have played the role of definitions down, noting that they
are just an element within a wider fabric of introductory material. The
next point, however, stresses their great importance in another system,
that of axiomatic starting-points. As I owe the previous point to Fowler,
so I owe the next one to Mueller. In Mueller (1991) it is noted that,
outside the extraordinary introduction to book 1 of the FElements, ‘axi-
oms’ in Greek mathematics are definitions.” We have seen partly why
this may be the case. Most definitions do not prescribe equivalences
between expressions (which can then serve to abbreviate, no more).
They specify the situations under which properties are considered to
belong to objects. Now that we see that most definitions are simply
part of the introductory prose, this makes sense. There 1s no meta-
mathematical theory of definition at work here. Before getting down to
work, the mathematician describes what he 1s doing — that’s all.
Fuzziness between ‘definition’ and ‘axiom’ 1s therefore to be expected.

The reason for giving definitions thus becomes an open question.
Definitions cannot be separated from a wider field, that of metamath-
ematical interests. And indeed it 1s clear, from the attention accorded
to definitions by commentators” and later mathematicians,” that

¥ Compare the similar ending of definition 17: fiTis <= the diameter> kol dixa TEUVeEL TOV KUKAOV.

' Tt should be noted also that this second-order material is not confined to the beginning of works
— though it is much more common there. Rarely, mathematicians explicitly take stock of their
results so far: e.g. following Archimedes’ SC 1.12, or following Conics 1.51. Sometimes, such
second-order interventions include definitions: following Elements X.47, 84; following Archimedes’
SL 115 following Conics 1.16. Worse still, definitions appear sometimes — not often, admittedly —
inside propositions: e.g., the sequence Elements X.79-8; or ‘diameter’ in Archimedes’ CS 272.3—
6; most notably, the conic sections themselves, Conics 1.11-14. The whole issue of the second
order has, of course, wider significance, and I will return to it in section 2 below.

% Going outside pure mathematics, it is possible to add the postulates at the beginning of

Aristarchus’ treatise, as well as the Optics; in pure mathematics, but later in time, add

Archimedes’ SC. But these exceptions do not invalidate Mueller’s point.

114 pages of Proclus’ In Eucl. are dedicated to the axiomatic material (mainly to the definitions),

and 234 pages are dedicated to the propositions themselves. The proportion in Euclid’s own text

is less than 5 pages (dense with apparatus) for the axiomatic material, to 54 pages of propositions.

"7 T refer to Hero’s (or pseudo-Hero’s) work, Definitions, given wholly to a compilation of definitions.
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definitions may be a focus of interest in themselves. They answer such
questions as the ‘what is . . . ?” question. Only such an interest can explain
such notorious definitions as FElements viL.1: ‘A unit 1s that by virtue of
which each of the things that exist is called one.” No use can be made
of such definitions in the course of the first-order, demonstrative dis-
course. Such definitions belong to the second-order discourse alone.

In general, we should view the Greek definition enterprise as be-
longing to the discourse about mathematics — the discourse where math-
ematicians meet with non-mathematicians — precisely the discourse
least important for the mathematical demonstration.

1.3 What s not defined?

My survey is far from exhaustive, but it 1s fair to estimate the number
of extant definitions as a few hundred; and definitions are very well
represented in the manuscript tradition. I suspect the total number
of definitions offered in antiquity was in the hundreds.

These definitions cover a smaller number of word-types. Even
ignoring the rare cases of double definition (e.g. ‘solid angle’, defined
in two different ways in Elements X1. Def. 11), definitions often return
to the same word-type, though in different combinations (for instance,
to pick up ‘solid angle’ again: this 1s a combination of ‘angle’, defined
in Elements 1. Def. 8, and ‘solid’, X1. Def. 1). It 1s thus to be expected that
some, perhaps most, of the words used in Greek mathematics will be
undefined. This is the case, for two separate reasons. First, the role of
formulae. Return to the first definition: ‘A point 1s that which has no
part. The definiendum is the Greek word semewon. As I repeatedly
explained above, this is not what a Greek mathematician would nor-
mally use when discussing points. Much more often, he would use an
expression such as 16 A, ‘the A’ (the gender of ‘point’ supplied by the
article). This 1s a very short formula indeed — the minimum formula —
yet a formula. But — and here 1s the crucial point — 16 A is nowhere
defined. It was only sémewn which was defined. The concept was defined,
conceptually, but the really functional unit was left undefined. The
same may be said of the most important words (often, the defined
nouns): words such as ‘line’, ‘triangle’, ‘rectangle’, ‘circle’. Beneath the
process of defining such concepts explicitly, there runs a much more
powerful silent current, establishing the real semantic usage through
formulae. I shall return to this subject in the next chapter.
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A second issue 1s that defined words belong to a very specific cat-
egory. Mueller’s survey, in the light of modern definition theory, of
those words which are used in Euclid’s postulates,”® is useful here.
Mueller has found five classes:"

(1) Verbs describing mathematical activity;
(1) Expressions of relative position [mainly prepositions and preposi-
tional phrases|;
(111) Expressions of size comparison [mainly adjectives];
(iv) Expressions of extent;
(v) General terms designating geometric properties and objects.

Mueller observes that all the defined terms belong to (v), and that
all the terms in (v), in this particular passage, excluding diastema, are
defined.

The main difference between (i)—(iv), on the one hand, and (v), on
the other, seems to be that (v) 1s much more distinctively ‘geometrical’.
Words such as ago, ‘to draw’ (from class 1); apo, ‘from’ (i1); meizon,
‘greater’ (111); or aperron, “unlimited’ (iv) occur in non-mathematical texts
(though not as often as in mathematical texts). Semeion, ‘point’, occurs
only minimally in non-mathematical texts. Definitions therefore do
define the prominent words in the mathematical discourse, but the
‘prominence’ 1s misleading. The defined terms of Greek mathematics
cover a small part of the word-tokens in the mathematical texts. These
word-tokens are specifically ‘mathematical’ not because they are re-
sponsible for much of the mathematical texts but because they are
responsible for no more than a tiny fraction of non-mathematical texts.
Cuisines are characterised by their spices, not by their varying use of
salt and water. I study the salt, even the water, not so much the pepper
(which, I admit, 1s in itself very interesting!).

Mueller did not list (justifiably, from his point of view) two classes
occurring in Euclid’s postulates:

(*vi) grammatical words: ‘and’, ‘to be’, articles;
(*vi1) ‘second-order’ words, here represented by the verb aies, ‘I
postulate’.

There are 70 such word-tokens, 36 word-types. I will use the terms ‘word-tokens’ and ‘word-
types’ in the following way: by ‘word-tokens’ I mean words counted separately for each
occurrence (in the phrase ‘to be or not to be’ there are thus 6 word-tokens). By ‘word-types’
I mean words counted once only for each occurrence (in the phrase ‘to be or not to be’ there
are thus 4 word-types: ‘to’, ‘be’, ‘or’, ‘not’).

Y Mueller (1981) 39.
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One sees why Mueller preferred not to discuss these classes. They
cannot be expected to be defined fully in any context, be it the most
axiomatically stringent. One must have a metalanguage, some of whose
terms are understood without definition. Naturally, such a metalan-
guage borrows some of its terms from common language. The points
I would like to stress, however, are:

(a) The borrowing of common language grammatical items (class (*vi))
is not limited, in Greek mathematics, to metalanguage passages
such as the postulates. The entire discussion is conducted in nor-
mal language. Instead of saying that 4 = B, Greeks say that 6 A
iocov o1l T B, ‘A is equal to B’.

(b) The behaviour of second-order terms is consistently different in
Greek mathematics from that of first-order terms, as I have already
suggested. Here we see an example. There 1s a logical difficulty
about defining al/ second-order terms, but one could easily define
some second-order terms (indeed philosophers, Greek philosophers
included, hardly do anything else); Greek mathematicians defined
none. Again, we see an area where definitions could be used, but
were not.

So a dual process renders definitions relatively unimportant as regu-
lators of the actual texts. First, they are confined to a small group of
concepts, namely the saliently mathematical objects; and then those
saliently mathematical objects themselves are referred to in the text
not through those defined words, but through formulae, whose prag-
matics develop independently of any explicit codification.

I have made a census of the words used in Apollonius’ Conics 1.15.
There are 783 word-tokens, of which 648 are either grammatical words*
or lettered combinations, such as ‘the A’ (meaning ‘the point A’). Need-
less to say, no grammatical word is defined.

There are 40 non-grammatical word-types, responsible between them
for 195 word-tokens. Defined®" words are (in brackets, number of word-
tokens):

analogon (2), diwelonti (1), diametros (5), elletpsis (2), eutheia (2), homoios (3),
orthos (1), parallélos (7), sémeion (3)

* T refer to what is known in linguistics as ‘closed class’ words: words such as the article,
pronouns, prepositions, etc. These words lack the open-ended productivity of genuine nouns,
adjectives, verbs or adverbs (which are therefore known as ‘open class’).

* I.e. defined in the extant literature (though I do not think more surviving works would change
the results).
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Figure 3.1. Two segments, not one.

Nine word-types, responsible for 26 word-tokens, constitute g per
cent of the text. This 13 the order of magnitude for the quantitative role
of definitions in the Greek mathematical lexicon.

1.4 What don’t definitions do?

One thing a definition can do, in principle, is to disambiguate — to set
out clearly what a term means. There are a number of cases where
Greeks seem strangely content with definitions falling short of this
ideal.

1. Elements 1. Def. 6: ‘A segment of a circle 1s #e figure contained
by a straight line and a circumference of a circle’.** I have stressed the
article. It shows that the segment 1s supposed to be unigue. The prob-
lem 1s obvious: there are two such segments — which is meant by the
definition (see fig. 3.1)? Heiberg argues (convincingly) that the words
added in the manuscripts, ‘whether greater than a semicircle or smaller
than a semicircle’,” are a late scholion. Someone in (late, probably
very late) antiquity felt the ambiguity strongly enough to add a scholion;
Euclid and his readers either did not feel the ambiguity (which is very
doubtful) or did not care.**

2. Is a zig-zag a lme (rather than a sequence of lines) (fig. 3.2)?
Eutocius explains, correctly, that the answer must be affirmative if we

* Tufjuex KUKAoU €0Ti TO Treplexouevoy oxfua UTTd Te eUbeias kal KUKAOU Treplpepeias.

A pellovos fiukukAiou f) EA&TTOVOS fiuiKUKAioU.
* The same ambiguity is then repeated in 1. Defs. 7-8.
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Figure 3.2. A ‘curved line’™

are to make sense of a definition in Archimedes SC.* Archimedes
does not explain this, and no one before Eutocius did. To complicate
matters further, Archimedes implicitly subsumes zig-zag lines under
curved lines — clearly a counter-intuitive move. This occurs in one of
the greatest meta-geometrical moments in history, where convexity
and concavity are first correctly defined, and where ‘Archimedes’ axiom’
is best articulated. The original introduction of new concepts is care-
fully executed. Details, such as possible remaining ambiguities, do not
tax Archimedes’ mind.*

3. Conic sections are the result of an intersection between planes
and surfaces of cones. A parabola, for instance, is the section resulting
when the plane is parallel to a line in the surface of the cone. Further,
conic sections are characterised by a certain quantitative property (which
happens to be equivalent to their definition in modern, analytical geo-
metry). This property is known as their ‘symptom’, and Apollonius
names the conic sections after their symptoms: the parabola, for in-
stance, 1s that section whose symptom involves equality (parabolé 1s
Greek for (equal) ‘application of areas’). But does he also define conic
sections after their symptom? In other words, what is the definiens, the
construction or the symptom?

Conies 1.11-13, where the sections together with their symptoms are
introduced, are ambiguous. After introducing both construction and
symptom, Apollonius proceeds to say ‘let this be called parabola’ (or
other sections as the case may be). So either, or both, may serve as
definiens. However, when he 1s solving the problem of constructing the
sections, in propositions 52—60, the problem 1s consistently considered
solved as soon as the construction-requirement is met. So what u the

% Eutocius In SC1.4.8-13. Archimedes’ text is SC 6.2—5.
0" A similar ambiguity in the same text is with zig-zag surfaces, implicitly understood by Archimedes
as a kind of curved surface.
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definiens of the conic sections? As far as the texts go, this 1s an idle
question.

Again, the context 1s not that of a careless discussion. On the con-
trary, this is the only case where a massive redefinition occurred in
Greek mathematics. Apollonius redefined the cone and its sections —
and was proud of it. This is a unique case, where scoring points in a
mathematical competition involved not only new demonstrations but
also a new definition. Where to worry more about ambiguities, if not
here? But Apollonius is explicit about his goals: the first book is better
than its predecessors in its constructions (geneseis) and its prime symploms
(archika sumptomata).”” Apollonius does not mention definitions. Again,
we see the interests: specifically geometrical results, not meta-geometrical
definitions.

4. Euclid’s definition of a tangent (1. Def. 2) is a line which ‘meeting
the circle and being produced, does not cut the circle’.*®

The definiendum ephaptestha:, ‘being a tangent’, 1s no more than a
compound of haptesthar, ‘meeting’, the verb used i the definition.
Haptesthar, in turn, 1s nowhere defined; and as far as the natural senses
of the words go, there is not much distinction between the definiens
and the definiendum (both mean ‘to fasten’). The funny thing is that
Euclid himself uses the two verbs interchangeably, as if he never de-
fined the one by means of the other.* Clearly the tangle of the haptestha
family was inextricable, and post-Euclidean mathematicians evaded
the tangle by using (as a rule) a third, unrelated verb, epipsauein.®® This
verb originally meant ‘to touch lightly’. One wonders why Euclid did
not choose it himself. At any rate, a regular expression for tangents in
post-Euclidean mathematics was a non-defined term, whose reference
was derived from its connotations in ordinary language.

This shows how ambiguous tangents were, even with circles alone.
Another problem 1s that of extension. We do not possess a definition

7 4.1-5: TIEPLEXEL BE TO HEV TIPATOV TAS YEVECELS TEOV TPLAV TOUGV Kl TGOV AVTIKEIHEVWY Kol
T& v aUTOdS APYIKX CUUTITOMATX €Tl TTAéov Kol KaBoAou pdAAov ECelpyaopéva TTopd Ta
UTTO TAOV BAAWY YEY pOMUEVQL.

&trTopévn ToU KUKAoU Kal EKPoAAoPéVN oU TEPVEL TOV KUKAOV.

* The definition in book 1v would be wrong if &mTecbon did not mean a tangent. Archimedes,
too, often uses &mreofat in this sense (judging by the index, at least 25 times; while &mrTectan
in the wider sense is used no more than g3 times). Autolycus uses &mteofar regularly for
tangents. It is also interesting to note that Aristotle, in a mathematical context, uses ép&mTectan
in the general sense of ‘being in contact’ (Meteor. 37625, 576b8).

See Mugler (1958) s.v. As mentioned in the preceding note, Archimedes uses &mrecbon for
‘being a tangent’ at least 25 times. ép&mTecfan is used for the same purpose 31 times. émyavev
is used at least 269 times.

28

30
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of ‘tangent’ for the conic sections, but if' Apollonius did not offer one,
probably no one did. However, the definition cannot be extended
directly from circles to parabolas or hyperbolas. This reflects a deeper
ambiguity, of the term ‘cut’ used in the definition above. We know
what cutting a circle is. This 1s like cutting bread: it produces two
slices. Our intuitions fail us with parabolas and hyperboles, which
encompass either infinite space or no space at all.

Apollonius has two different properties which he obviously associ-
ates with being a tangent: ‘intersecting and produced both sides falls
outside the section’,* and ‘in the space between the conic section and
the line [sc. the tangent] no other line may pass’.>* None 1s offered as
a definition. They are simply properties of lines which happen to be
tangents. In the context of the conics, ‘tangent’ is taken as a primitive
concept, which is clarified by the accumulation of geometrical infor-
mation concerning it.%

In this case it is clear that the clarity of the concept owes a lot to
visual intuition. It is obvious what a tangent is — you see this. That it is
such that no other line may be placed between it and the curve is then
an interesting discovery. In general, the logical role of the diagram can
help explain why less need is felt for verbal definitions. As usual, the
visual may fulfil, for the Greeks, what we expect the verbal to do.
Setting aside such possible explanations, the fact remains: in some
cases (and I do not claim at all to have exhausted such cases) Greek
defined concepts were ambiguous.

1.5  Summary

Most of my results are negative — the negations of what were at least
my own innocent views on definitions.

The definiendum, usually, 1s not a single word but a short phrase.
This of course 1s related to the central place of formulae, which I will
discuss in the next chapter.

Further, most commonly, definitions do not settle linguistic usage
but geometrical propriety: they set out when a property, independ-

3 oupTmiTTovoa ékBaAlouévn €@ EkaTépa EKTOS TITITN THS Toufs. See, with variations, Conics
.23 76.26—7, 1.24 78.19—21, 1.25 80.7—9, 1.28 86.16—17, 1.33 100.4, 100.23, 1.34 104.16—17.

3 glg TOV peTaU TOTTOV Ti)S TE KWvou Toufs kai Th)s eUbeias éTépa eUbeiar o¥ TrapepTreoeiTal.
See, with variations, Conics 1.32 94.23—4, 1.95 104.23-75, 1.36 106.28-30.

3 Properties of intersections between lines and sections occupy the section of Conics 1 immedi-
ately following the generation of the conic sections, propositions 17—-92. Just as the generation
of the conic sections renders their precise definition redundant, so the accumulation of prop-
erties on tangents (and cutting lines) renders redundant their definition. Ambiguity is dispelled
by accumulating information on the objects, not on the terms.
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ently understood, 1s considered to hold. This is why definitions can
function as axioms, as stressed in Mueller (1991).

Definitions do not occur as clearly marked, discrete units. They
occur within larger second-order contexts. Their motivation may be
within this second-order context: sometimes they may be not so much
preparation for mathematics as reflection upon mathematics. They
stand 1n such cases apart from the main work of demonstration.

Finally, Greeks did not set out systematically to disambiguate con-
cepts with the aid of precise definitions. This, then, is not the main
goal of definitions.

Why are definitions there? Partly because of the general second-
order curiosity, suggested already — the wish to say something on the
‘what 1s 1t?” question. Or definitions may function as axioms; or they
are used to express explicitly the extension of concepts, e.g. as is done
i Archimedes’ CS. The reasons are diverse, but, as I have said,
disambiguation is not one of them. Definitions are not there to regu-
late the lexicon — and they cover only a small part of the actual lexicon
n use.

One significant contribution of definitions, however, is in their very
presence. The content of definitions — the definiens — 1s perhaps less
important than the very existence of a place where a definiendum 1s
set out. The existence of a definition must strengthen, to some extent,
the tendency to employ the definiendum instead of other, equivalent,
expressions or words. But this 1s no more than a tendency. As ex-
plained above, brief formulae such as &% 4 may appear in the text,
while the definiendum i1s sémewn. Or the notorious Elements 1. Def. 22:
heteromekes, there, 13 what Euclid himself generally refers to as chorion,
while rhomboeides, there, 1s what Euclid generally refers to as par-
allelogrammon. Again and again, the lexicon 1s found to be governed
by forces other than the definitions. These, in turn, were never meant
to govern the lexicon. We should therefore move on to look at the
realities of the lexicon.

2 THE SHAPE OF THE LEXICON

I have tried to argue against the view that the Greek mathematical
lexicon was structured mainly through definitions. I have concentrated
on the nature of Greek definitions. Now 1s the time to say that the
emphasis on definitions is fundamentally misplaced, regardless of what
definitions may do. This is because the emphasis on definitions implies
an emphasis on words, piecemeal, rather than on the lexicon as a
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whole. It is the lexicon as a whole which 1s the subject of the following
discussion.?*

2.1 Description

As already mentioned above, I have made a census of the words of
Apollonius’ Conics 1.15.

Most importantly, the text 13 made up of few word-types: 74 differ-
ent word-types are responsible for 783 word-tokens® (the first 783 word-
tokens of Aristotle’s Metaphysics A, which I have also surveyed, are
made up of 200 word-types. I will concentrate on this pair, Apollonius
and Aristotle, but I have made some other surveys, whose results can
be seen in table g.1).

Table g.1. Word-types and word-tokens in some Greek texts.

Conics®® Metaph.> SC3 Elem.> Opt.*°
Tokens (+ letters) 783 783 510 578 423
Types (— letters) 74 200 86 63 65
Types (+ letters) 142 200 99 98 95
hapax (— letters) 19 100 37 14 20
hapax (+ letters) 52 100 44 26 38
Article 213/ 1" 118/1 137/1 132/1 97/1
Prepositions 107/ 10 48/12 44/10 76/9 40/9
Letters 169/68 0/0 44/13 101/35 76/31
Other
Closed-class 159/23 339754 99/22 125/19 92/27
Total
Closed-class 648/ 102 505/ 67 324/ 46 434764 305/38
Open-class 135/ 40 278/133 186/53 144/ 34 118/27

3 To clarify my own usage: it is significant that talk of #e lexicon of Greek mathematics is at
all possible. The lexicon is a constant. Yet some variations do occur from text to text, so I
will speak on occasion of, say, ‘the lexicon of Archimedes’ Floating Bodies’, and it is also possible
to speak of lexica of specific portions of texts such as ‘the lexicon of introductions’.

% In this calculation, all the 4,8 words are taken as a single type. If we differentiate them

according to their different references (AB being a different word from BI", though not from

BA) the number of word-types rises to 142. Both ways of counting are legitimate. Approached

from the outside, the whole 4,B phenomenon is a characteristic of Greek mathematics, best

understood as a single word, highly declinable. Approached from the inside, each 4,8 word
has its own individuality. The outside approach helps to characterise Greek mathematics as
distinct from other genres and, for our immediate purposes, it is more useful.

Apollonius’ Conies 1.15. 37 First 789 words of Metaphysics /\.

¥ SC1g2. 3 Elements m.10.  * Optics 34.

# In the form #/#, the first number is the number of tokens and the second number is that of

types.

36
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Why does Greek mathematics use so few word-types? First, it uses
few hapax legomena (in a relative sense, that i1s, words occurring only
once within the specific text). There are 19 such hapax legomena in 1.15,
100 in Aristotle’s text: approximately 26% of the word-types in the
mathematical text versus 50% 1in the philosophical, clearly a statisti-
cally meaningtul difference.* The mathematical text is strongly repeti-
tive: there are no dead ends which are entered once but never followed
up later. Further, the relative paucity of hapax legomena results also from
another, more purely lexical feature: the text includes no synonyms or
near-synonyms (1.e. words expressing close shades of meanings). I shall
return to this later.

Ignoring hapax legomena, one 1s left with 6§ word-types in Apollonius
responsible for 763 word-tokens (approximately 12 tokens per type),
against 100 word-types In Aristotle responsible for 682 word-tokens
(approximately 7 tokens per type). This 1s still a meaningtul difference.
How should this be accounted for? One surprising feature is that
mathematical texts employ the article more often. The article is re-
sponsible for 213 word-tokens in Apollonius’ text, approximately 28%
of the whole, against 118, approximately 15%, in Aristotle.* Adding
to this the prevalence of 4,B words in the mathematical text (169,
approximately 22%), and of prepositions (107, approximately 14% in
Apollonius; g6, approximately 5% in Aristotle), the face of the lexicon is
at once made clear. The majority of word-tokens are made up of short
phrases composed of letters, articles and prepositions (the three classes
together responsible for 64% of the whole in Apollonius): phrases such as:

N umo TtV ABIT
literally, ‘the by the ABI”, meaning:
“The <angle contained> by the <lines> ABI".

I will discuss such phrases in detail in the next chapter.

# Ledger (1989) 22994 has statistics on the first 4950 words in Plato’s Euthyphro and Critias.
These show that in a more literary context hapax legomena are the majority — approx. 70% — of
the word-types used in the text. Ledger’s sense of ‘word’, however, is that of a string of
characters: his computer-searches are morphology-blind. Still, one would certainly get much
higher results for 783-word-long chunks of literary works. It seems therefore that even Aristotle
has relatively few hapax legomena compared to literary texts — which should not come as a
surprise. (It is interesting to note in this context results quoted by Ledger of approx. 20% hapax
legomena among word-types in Shakespearian plays, each about 20,000 words long.)

# Statistically more significant, the article is used 4196 times in Euclid’s Data, whose total length
is about 19,000 words: approx. 22%. The low percentage compared with Apollonius’ Conics
L.15 1s due to the fact that the Data is made up of very short propositions, which means that the
ratio protasis/ekthesis 1s higher in the Data. In the protasis context, the article+prepositions+letters
combination does not feature, and more normal Greek takes its place (just a chance example:
the protasis of Data 71 1s 28 words long, of which 2 are articles, approx. 7%).
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Greek mathematics i1s object-centred. It is not about circles, lines,
etc., 1.e. about general objects and their properties, but about concrete
objects, individuated through the article and the letters and spatially
organised through the prepositions. However, this ‘concreteness’
(stressed already in chapter 1 above) is tempered by the almost surreal
nature of the text, which 1s due to the fact that the most common
word-tokens are, in a sense, not lexical items of the Greek language at
all. They are either grammatical (the article and the prepositions), or
the ad hoc indices constituted by Greek letters. The Greek mathemati-
cal lexicon 1s strange — marking mathematics strongly.

The article 1s used often; other grammatical words are, relatively
speaking, ignored. Apollonius’ text has 34 closed-class word-types, re-
sponsible for 479 word-tokens; Aristotle has 67 closed-class word-types,
responsible for 505 word-tokens. I will not take the difference in the
number of word-tokens as statistically meaningful.** The difference in
the numbers of word-types 1s qualitative and important. It means that
the mathematical text is less diversely structured. To begin with, take
demonstratives. Aristotle has, e.g., ekemnos, hode, houtos, all giving various
shades of ‘this’ and ‘that’: in all, he has 11 such word-types, responsible
for 67 word-tokens. Apollonius has 6 such word-types, responsible for
15 word-tokens. The mathematical text does not refer to objects in
periphrastic ways; it confronts them directly.

Even more surprisingly, the mathematical text has few logical words
such as conjunctions and negations. The Apollonian text has 15 such
word-types, responsible for 111 word-tokens; Aristotle has g2 such word-
types, responsible for 227 word-tokens. Aristotle constantly correlates
his statements in ever-shifting ways. Apollonius simply states them,
with monotonic £az (‘and’, 36 occurrences) or ara (‘therefore’; 15 occur-
rences) interspersed between the logical components.

The set of closed-class words apart from the article and the preposi-
tions includes 2 word-types in Apollonius. In the other mathematical
texts n table g.1, the numbers are: 22 in Archimedes, 19 n the Ele-
ments, 27 i the Optics. Eleven of these words are common to all four
mathematical texts,” a further two are common to Apollonius, the

# Tignore here 4,B names. If they are included, Apollonius has approx. 61% closed-class, against
approx. 65% in Aristotle; the comparative texts have: Archimedes, approx. 55%; Elements,
approx. 60%; Optics, approx. 55%. But then again, even if there is a consistent difference here,
it may be related to Aristotle rather than to the mathematicians, especially to Aristotle’s elliptic
sentences, made up of closed-class items.

® &pa, aUTS, Yyap, 8¢, B, &av, eival, émel, kal, pév, OTIL.
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Elements and the Optics,* one is shared by Apollonius, Archimedes and
the Elements*’ and another, finally, is shared by Apollonius, Archimedes
and the Optics (the relative pronoun, remarkably underused by math-
ematicians). I do not go into intersections between couples of texts: this
Venn diagram is rich enough with the foursome and threesomes.

This brings us to the main observation: the Greek mathematical
lexicon 1s invariant across several dimensions. It is invariant within
portions of the same continuous text (this 1s the essence of the paucity
of word-types). It 1s invariant within authors: the entire Archimedean
corpus is made up of 851 words.** I have made a list of the 143 words
most often used by Archimedes. Sampling the corpus,® I found that
these words accounted for around 95% of the word-tokens in the
Archimedean corpus (excluding the Arenarius).

This result should surprise the reader. Archimedes’ work is, in a
sense, highly heterogeneous, ranging from the purest geometry, through
abstract proportion-theory (in some propositions of SL, (.S), to mech-
anics, hydrostatics, and the delightful hybrids of the Method and the
Arenarius. There 1s some local lexical variation, which I will discuss
in subsection 2.4 below, but the overwhelming tendency is to carry
over, from one discipline to another, the same, highly limited, lexical
apparatus.”

Most of these 149 Archimedean stars could be found, for instance, in
Euclid’s Data. Some TLG surveys on Euclid’s Data are helpful in order
to get a feeling of the monstrous repetitiousness of the mathematical
text. Logos, ‘ratio’, is used 655 times; pros, ‘to’, 869 times; the verb ‘to
be’, in its various forms, about 1,000 times; didomz, ‘to be given’, more
than 1,500 times. To remind the reader: the text is about 19,000 words
long, almost half of which are the article and A,B words.

The interesting variability is not so much between authors or works
as within parts of the same work: the introduction/text distinction.
I shall discuss this in subsection 2.5 below.

® 115, SHoTe. ¥ Te.

# T have counted the number of entries in the index, which is apparently complete. The number
of word-tokens in the Archimedean corpus must be in the order of 100,000. To compare:
according to Ledger (1989) 229—-34, 4,950-word-long Platonic chunks hold more than 1,000
word-types.

# T surveyed all the pages whose number divides by 50 (4% of the whole, since only even pages
have Greek in the Teubner). I excluded the Arenarius (whose vocabulary is different) and
substituted 11.392 for 11.400 (as the last is partly Latin).

% We have noticed already the tendency to use definitions not to create new terms but to extend
the sense of old terms from one field to another, most noticeably in Archimedes’ CS.
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To sum up, then, our first description: the Greek mathematical
lexicon i1s tiny, strongly skewed towards particular objects (whose prop-
erties and relations are only schematically given) and is invariant, within
works and between authors.

2.2 The one-concept-one-word principle

We saw on p. 101, above, the trio haptesthai/ephaptesthai/ epiypsauen, all
meaning ‘to be a tangent’. Here the concept of the tangent is covered
by three different words, and the single word #haptesthair covers two
different concepts (‘touching’ in the sense of sharing at least one point
and ‘touching’ in the sense of being a tangent). The existence of many
words for a single concept constitutes synonyms; the existence of many
concepts per single word constitutes homonyms. I shall now claim that
Greek mathematics has got very few synonyms, and even fewer domain-
specific homonyms. A related feature 1s the absence of nuances. The
lexicon 1s constituted of words clearly marked off from each other, not
of a continuous spectrum of words shading into each other.

Why should this be the case? Consider the following pairs and trios:*

anthuphairesis/antanairesis (an operation, akin to continuous fractions)
goma/glochis (angle)
gramme/kanon (line)
dwastema/apostasis (interval)
emballo/enteind (insert)
kentron/meson (centre)
kuklos/strongulos (circle)
kulindros/ oloitrochos (cylinder)
logos/diastéma (ratio)
paraballo/ paratemno (apply)
semewon/stigmé (point)
stereos/soma/nastos (solid)
sphaira/sphairoeides (sphere)

chorion/embadon/ heteromekes (rectangle)

% For &vBugaipeois, &vTavaipeols, ywvia, ypouun, Kavwv, Si&oTnud, ATOCTAOLS, KEVTPOV,
KUKAOS, KUALWSpOS, AOYos, onueiov, OTIyun, OTepeds, owua, opaipa, Xwpiov, éupadov,
éTepounkns, see Mugler (1958), s.vv. For yAwxis see Hero, Def. 15. For péoov see (e.g.) Plato’s
Parm. 197¢, which see also for oTpoyyUlos. For dAoitpoyos see Democritus fr. 162. For
(another sense of ) SidoTnua see also the Sectio Canonis. For vaoTds see Democritus fr. 208.
For &vteivw, TapaTeivw see Plato’s Meno 86e—87a. For opaipoeidns see Plato’s Tim. g3b, 63a.
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At least some of the entries above reflect cases of synonymy in the
early, formative period of Greek mathematics. Perhaps kanon never
meant ‘line’, perhaps Plato’s Meno 86e—87a 1s intentionally ‘wrong’,>
but some, e.g. sémeion/stigme, are excellently documented. In all of them,
only one of the candidates survived into classical Greek mathematics
(the one I give as the first). Some of these words were revived, in
mathematical contexts, in late antiquity, and all of them were continu-
ously used throughout antiquity in non-mathematical contexts — it is
not as if general changes in the Greek language rendered some words
obsolete. We see therefore a process, characterising mathematics, of
brutal selective retention of words. This, rather than a fine adaptation
into niches, was the process by which the classical lexicon evolved.

The remaining cases for synonymy are, first, the case of tangents,
discussed above; also the following:

s ewdos/schema, both meaning, roughly, ‘figure’. This 1s such a gen-
eral concept that it could almost be considered second-order.
Schéma in Archimedes, as a rule, 1s not used in expressions such as
10 AEZI" oxfpx (‘the figure AEZI™), but in expressions such as T&
oxnuoTx T Teplexopeva uto Tddv AE, EZ, ZI* (‘the figures
contained by the [lines] AE, EZ, ZI”). Schéma is not the name of
the object lying between those lines (as tetragonon, say, is — witness
expressions such as 10 ABI'A TeTp&ywvov). It is an element in a
second-order description of the object. Further, both schema® and
eidos® are often used in locally conventionalised and distinct senses.

For which see Lloyd (1992).
% Some such adaptation did occur, of course, to some degree; mainly, this is restricted to
compound verbs, for which see below.
% Cf. Archimedes, SC 1.12 48.21.
% ] have already mentioned above (chapter 1, subsection g.2.1) Euclid’s use of the formula
KoTayeypdpbw TO oxfua, ‘let the figure be drawn’, with ‘the figure’ referring to a very
specific kind of figure. This is an example of the way in which a local deviation from the
lexicon immediately leads to a new, implicitly defined, local lexicon. Taken in the wider sense
of oxfua, the expression kaTayeypdebw TO oyxfua is strangely vague. Such vagueness is
unacceptable within the Euclidean discourse. To make it acceptable, the reader supplies,
without being told, a more precise meaning: a self-regulating convention at work.
The word €i8os is just as general as oxfjua, and we see it undergoing a similar self-regulating
process in Apollonius’ Conics book 11. In proposition 1 it first appears within T6 TéTapTov ToU
Umo tév ABZ €i8ous “} of the shape [contained] by ABZ’ — a deviation from the earlier
Apollonian practice, where this idea is normally expressed by 16 TéTapTov ToU Umd TédOv ABZ
— ‘4 of that [understood xwpiov, area, and conventionally meaning rectangle] <contained> by
ABZ’. So something is beginning to build up; €805 is about to be conventionalised. Already in
the third proposition it will occur within 16 TéTopTov ToU Tpds THi BA €idous - | of the
shape next to [the line] BA’ — which, strictly speaking, is too vague to mean anything. This
will be the regular expression from now on (with Tap& sometimes replacing Tpos, as in
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So we are reminded of the role of self-regulating conventions.
Against the background of the one-concept-one-word expectation,
two words for a single concept are immediately taken as having
some meaningful distinction between them — hence some specialisa-
tion, 1n this case that of occurring within specific formulae.
Another couple is SidoTnpa/1 ék ToU kevtpou. Here didoTnua
is taken 1n the sense of a ‘radius’, which is otherwise expressed by
the formula 7} ék ToU kévtpou. Of course d1&doTnpax means ‘dis-
tance’ and no more; it 1s only within the formula, kévTpw pev T
A, dlooTtnpaTt 8¢ T AB, yeypdebw kUxkAos (‘Let a circle be
drawn with the centre A, radius [distance] AB’), that didoTnpx
takes the meaning of ‘radius’. So actually the synonymy evapo-
rates. The Greeks have one concept, the construction of circles,
to which one formula is attached; another, similar to our ‘radius’,
expressed by another formula. We are reminded of the fact that
the semantic units may be more than one word long.

The participles sunkeimenos, sunémmenos occur both in exactly the
same position 1n a certain formula, that of the composition of ratios
(on which much more in the next chapter). This 1s a long and very
marked formula, but it is not so frequent that its constituent words
could each memorised and regulated. This is instructive. It is an
important feature of self-regulating convention that they work on
masses. Only the explicit codification can touch the less common.
A small class of near-synonyms 1s made up of some verbs and
their composites: thus, anagein means almost the same as agen.
This 1s almost inevitable in Greek, especially the later Greek of
the mathematical texts. Many of these compounds, however, do
come to have very specific meanings, for instance anagemn 1s often
used especially for the construction of perpendiculars (see Mugler,
s.v.). More on this in subsection 2. below.

In a few cases, well-differentiated senses may have overlapping
references: e.g. periphereia, ‘circumference’ (the line constituting
the border of a circle, or an arc) may overlap with perumetros,
‘perimeter’ (the border of any two-dimensional object, curved or

proposition 15). Again, there is a combination of two facts: the expression deviates from the
regular lexicon, and it is used schematically within a given context (where we are never
interested in anything but the quarter of the shape!).

For Pappus, this becomes one of the technical senses of the word €i8os. This is the result of

Pappus’ reading in Apollonius: so we see how such conventions are transmitted (note that, of
course, this convention is nowhere fixed in a definition).
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rectilinear).” The adjective euthugrammon, ‘rectilinear’; is used for
any object which is not curved;*® the adjective polugonon, ‘many-
angled’ — ‘polygonal’ — 1s used for any five- or more-sided poly-
gon. These polygons may also be referred to as euthugrammon.”® Or
the two expressions, k&Betos &i, ‘perpendicular on’, and Tpos
opbds, ‘at right angles to’, may refer to the same line though, of
course, from different points of view. Such cases are interesting
but they have nothing to do with synonymy.

The one major exception 18 a set of synonyms, or very close
near-synonyms, occurring within second-order language. These
include:*

aitema/ hupolambanon (postulate)

analuein/luen (to solve)

axioma/kommon ennoton (axiom)

detknumi/apodetknumi (to prove)

epitagma/protasis (that which the proposition sets out to obtain)
katagraphé/diagraphe, etc. (diagram)

horos/horismos (definition)

One should add a couple occurring within first-order proofs, but
of course essentially a second-order expression, logical rather than
mathematical:

atopon/ adunaton (absurd/impossible — used interchangeably)

Brutal selection was applied in first-order language alone. We shall

return to this difference between first-order and second-order in sub-
section 2.5 below.

To sum up on synonyms: the Greek mathematical, first-order lexi-

con does not accumulate words. Diachronically, it does not deepen,
like a coastal shelf; it 1s gradually eroded. Cases of synonymy are few
and far between, and usually reveal, under closer inspection, a differ-
ence in use (within constant formulae) if not in sense.

57
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There is a tendency to avoid mepipeTpos for curved figures: in Archimedes this is found only in
the deeply corrupt DC; and in a single place in SC (10.10, 13). But already Hero speaks about
the mepipeTpos of a circle without any difficulty, e.g. Metr. 1.25.

E.g. angles: the first occurrence of this adjective in the Elements is in Def. 9, defining ‘rectilinear
angles’ (those contained by straight lines only; the Greeks recognised other angles as well).
An example: in SC'1.13, 54.12, 17, the two words are used in two consecutive sentences for the
same object.

For aitnpoa, &&iwpa, &vallew, Avey, Seikvupl, &modeikvupl, ETiTOypd, TPOTAOLS, OPOS,
6piopods see Mugler (1958) s.vv. For UmoAdupavov see Archimedes’ index; for kowal évvoion
see, of course, Euclid. For the terms for diagrams, see chapter 1, subsection g.2.1.
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Now to homonyms. The definition of homonymy 1s of course prob-
lematic — it 1s something of a question whether ‘the centre of a circle’
and ‘the centre of a sphere’, for instance, use the word ‘centre’
homonymously. I do not think the speakers felt this was a homony-
mous use of the concept.

The role of formulae, once again, should be borne in mind. Con-
sider, for instance, meros: taken alone, it means a ‘part’, but in the
formula epi ta auta/hetera merée, and only within it, it means ‘direction’
(see Mugler 1958, s.v.). Similarly, when special senses become attached
to certain conjugations of the verb and no others, this should not be
considered homonymous. Hupothesis 1s a hypothesis, hupokeimenon 1s a
figure laid down; sunfithenar 1s to solve a problem synthetically, but
sunkeisthar 1s reserved for the composition of figures — but also for the
composition of ratios (see Mugler 1958, s.vv.).

The last examples are interesting in two ways. First, we see that
something approaching a homonym occurs at the boundary between
first-order and second-order language (in both cases, the active sense 1s
second-order, the passive first-order). The case of sunkeisthar 1s even
stronger, and involves a real homonym, cutting across domains, in this
case plane geometry and proportion theory. Generally, Greek math-
ematics allows several real homonyms to cut across domains, especially
across the first-order/second-order border. Akros and enallax belong to
both plane geometry and proportion theory; a large group, apotome,
gnomon, dunanus, epipedos, kubos, homouos, stereos and tetragonos belong to
both geometry and number theory. All three Apollonian names for
conic sections also retain their meaning from the theory of the applica-
tion of areas. Anagein, anastrephein, ekkeisthar, epharmozein, horos and sunagein
mean different things as first- or second-order terms.” Two more sur-
prising cases are lego and luo. Lego has the natural meaning of ‘say’,
which 1s of course employed within second-order language, as in (but
not only) the formula lego /oti, ‘I say that’; it also has the more technical
first-order sense of the assighment of ratios.”® Luo is a second-order
term, a near-synonym of analuo, for which see Mugler (1958) s.v.; it also
has the first-order spatial significance of ‘being suspended’.”

% For all of which see Mugler (1958), s.vv., and s.v. Adyos for &vactpépew. The case of ouvTifnu
as used with Adyos presents a further complication: the dative form of a participle, ouvBévTi,
is a certain operation on proportions (nothing to do with solving a problem synthetically).
See Archimedes’ index, s.v. Aéyw, the references to the passive, finite, present forms of the
verb (e.g. AéyeTa, 1.978.19).

Archimedes’ QP 6 274.11, 10 280.19, 12 284.2.

62
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To conclude: within any treatise (which will concentrate — as Greek
treatises do — on a single domain) the only synonymy or homonymy is
between first- and second-order discourse.

2.9 Holistic nature of the lexicon

My theory is simple. We have seen that the lexicon is small, and
operates on the principle of one-concept-one-word. As soon as such an
environment is established, the users of the lexicon will easily get a
grasp of the lexicon as a whole and, working with the one-concept-
one-word principle, they will assume structures of meaning. This is
self-regulating conventionality.

The most ubiquitous case and the best example claritying what I
mean by ‘structures of meaning’, is /0/he. These words (the neuter and
feminine articles) are technical in Greek mathematics (as soon as let-
ters are added to them): the neuter means a point, the feminine a line.
These are the two pillars on which Greek mathematics was erected,*
and they are defined simply by being set apart from each other, each
with its own gender. And here clearly some historical process took
place, since, in earlier times (and, in non-mathematical contexts,
always), stigme, feminine, meant ‘point’ as well. The disappearance of
stigmé from the mathematical scene occasioned some discussion,” which
tried to clarify what had been wrong with the word stigmé as such.
The truth is that there 1s nothing bad about the word (it is, in the
relevant senses, practically synonymous in everyday Greek with sémeion).
It 1s just that there i1s a competitor, the word sémewon, and there 1s
a niche waiting to be taken, that of the neuter (because the feminine
1s already firmly taken by gramme, a ‘line’). So we see that the relev-
ant factor i1s the entire ecological system, not the merits of this or
that word.”

Such ‘systemic’ processes could take place when new words were
introduced. Their very novelty was striking for the practitioner who
was versed in the system, and therefore such a practitioner, employing
the one-concept-one-word principle of interpretation, would look for
a relevant new concept to match the new word. This could happen
without any explicit definition.

% 1 occurs 1001 times in the Data, f) or THv occur 1058 times, while 6 or Tév occur only g2
times.
% See, e.g. Vita (1982).  ° I shall discuss the system of such phrases in the next chapter.
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I have mentioned in the preceding section several cases of remark-
able specialisation, not befween verbs, but within verbs — the way in
which different forms of suntithenar, for instance, acquire specific, con-
sistent usages. Less spectacularly, such specialisations occur between
verbs, again excluding haptesthai/ephaptesthai. T'ake, to begin with, agemn
and graphen.”” Both are practically synonymous within Greek math-
ematics — ‘to draw’ — that 1s, if the contexts of usages are ignored. The
contexts are consistent: agemn 1s used when drawing straight lines, graphein
is used when drawing curved lines. Now look further. The respective
compounds, anagemn and anagraphein, both mean ‘to erect’, and, again,
their meaning is differentiated in practice, but the difference does not
correspond to the difference between agein and graphein, presumably
because ‘to erect a curved line’ 1s hardly a necessary concept. Thus
anagein 1s to erect a line, anagraphen 1s to erect a figure.

The case of the adverb méker, ‘in length’, illustrates well the holistic
nature of the lexicon. Generally, in the expression for the ratio ‘<the
line> AB to <the line> CD’, it 1s understood implicitly that the relation
is between lengths. In some cases, however, the author may need to
refer to ratios between (what we see as) squares of those lines, and this
is expressed by ‘<the line> AB to <the line> CD duname’ (the adverb
dunamer meaning in this context — of course without a definition —
something like ‘in square’). In such cases, and only then, méker may be
used as well, e.g. in a proportion: ‘as <the line> 4B to <the line> CD
dunamet, so <the line> EF to <the line> GH méke:’. The meket means
nothing. In this context, however, and only here, it acquires a mean-
ing, dependent upon that of dunamer: it signifies the negation of duname:.

There is nothing surprising, then: words acquire their meaning
through internal structural relations. This is true in general, no doubt.
The fact that the mathematical lexicon is so small means that such
processes are much more conspicuous. The number of components 13
small enough to make their internal relations immediately transparent.
This will be even stronger in the smaller or local lexica, to which I
Now pass.

2.4 Smaller or local lexica

I offer here two test-cases, significant in different ways. The first, that
of logical connectors, 1s important because of its contents, obviously

57" All the terms discussed from now on in this section are in Mugler (1958).
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relevant for deduction. The second, that of Archimedes’ Floating Bodes,
1s important as a case where a lexicon 1s introduced for the first time.

2.4.1  Logical connectors
There are a few indicators of logical relations which are consistently
used in Greek mathematics. ‘Consistently’ here means that:

% connectors are almost never missed out. If a logical move 1s made,
a logical indicator is very often employed;®
there are only a few such indicators employed;
those which are so employed are used in a few limited ways.

Take, for instance, Apollonius’ Conics 1.41. The logical connectors
are:

kai eper / alla / de / ara / kav eper / toutestin / eti de / ara / [kownos
aphewrestho] / ara / alla men / de / ara / de / ara / [enallax] / de / gar /
kai / kai ara / ara / toutestin / de / [to homoion kai homoios anagegrammenon]
/ ara / ara / epet oun / kar / de / ara / alla / ara / ara / ara

Compare this with Euclid’s Data 64:

eper gar / kar / de / kai ara / ara / ara / kai / hoste kai / kar ara / alla
/ kar / kar / ara

In three cases in the text from Apollonius, the assertion was a for-
mula of a kind having a clear relation to the logical structure of the
argument, and the connector was consequently dropped. Otherwise,
all the assertions in these two proofs were marked by some connector,
signifying their relations to other assertions. The general principles by
which the connectors are given are simple.

Most results are marked by an ara (‘therefore’; all such translations
are only rough),” or hdste (‘so that’).”” When an assertion is added to a

% The exceptions have to do with formulae implying logical relations, as explained below.

The word most typical of Greek mathematical discourse; it is used 567 times in Euclid’s Data
(total about 19,000), 3778 times in Euclid’s Elements (total about 150,000), 72 times in Hypsicles’
‘book x1v’ (total about 4000) and 429 times in Hero’s Metrica (total about 21,000). It is probably
responsible for 2—g per cent of the total word-tokens in Greek mathematics. The Politicus, a
Platonic work roughly the same size as the Data, and with some interest in argumentation, has
the word g2 times; and Plato is very lavish with his particles. Generally in Hellenistic Greek,
the main particles are 8¢, kai, &AA&, and y&p (Blomquist 1969, table 21). Greek mathematics
can be characterised as Greek prose with &pa — and my study can be characterised as The Shaping
of &pa, a study of the new specific sense of an old emphatic particle.

Much less common than &pay, it is still a regular feature of the style, used 44 times in the Data
(compared with 6 in the Politicus. Also used 112 times — quite a lot — in Hero’s Metrica, 6 times

69
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previous assertion, so that in their combiation they will yield some other
assertion, the added assertion is marked by de”* (best translated simply as
‘and’), alla™ (‘but’) or ki (‘and’). When an assertion supports a preced-
ing assertion, the supporting assertion is marked by a gar (‘for’)”* or, less
commonly, an ¢pei (‘since’)”® or even (in some contexts) dia (‘through’).”

The above holds for continuous stretches of argumentation, where P
leads to Q, leading to R, etc. When a stretch of argument starts, or 13
restarted following a hiatus in the argumentation, epe: (‘since’) is used,
anticipating the following ara.”

As with all rules in Greek mathematics, this system is not religiously
followed, and in particular contexts there are some variations, e.g. alla
meén 1s not very common in Euclid’s Elements — go times in all. But 20 of
these go times are in the arithmetical books. A similar situation obtains
with eperdeper and solid geometry. The use of oukoun in a number of
treatises, and in them alone, is a similar phenomenon.” As ever, there
are local variations.

in Hypsicles’ ‘book x1v’). There is a tendency to use ®oTe when a result of an activity, rather
than a logical result, is intended (e.g. all of the 18 occurrences in the first hundred pages of
Archimedes’ SC are of this sort).

7 Very popular in mathematical texts; in fact, a feature of the mathematical language is that 5¢
is used much more often than pév (3¢ is used 409 times in the Data, while pév is used 70 times;
the corresponding figures for the Politicus are 276/215. Also: 95/24 in Hypsicles, 610/166 in
Hero). In other words, Greek mathematical texts tend, on the one hand, to use 8¢ absolutely,
and, on the other hand, not to use it as the correlate of pév.

7 Not as common as 3¢ used 440 times in the Elements (compared with 2452 times for 8¢). Still,
of course, this is often enough to be a normal part of the mathematical lexicon. (Compare:
Hypsicles: 3; Hero: 46.)

3 Naturally, the word is enormously common — 6143 times in the Elements — but many of these
are not logical connectors between sentences.

" Very common, where applicable: it is used 964 times in Euclid’s Elements. (Compare: Hypsicles:
14; Hero: 81). The word is generally very common in Greek argumentative discourse: e.g. 146
times in the Politicus, compared with 188 times in the Data. However, it should be noted that
most often the word is simply inapplicable in Greek mathematics, where justifications of
assertions by following assertions are rare (I shall return to this in chapter 5).

% In the Archimedean corpus, émei is more common in assertions following the assertions they

support, than in assertions preceding the assertions they support. Even so, there are only 46

cases in the Archimedean corpus. The émel y&p, common in Euclid’s Elements (168 uses), appears

usually at the very beginning of proofs, and I discuss this strange-looking y&p in chapter 6.

This happens 29 times in the Archimedean corpus, and 26 times in Euclid’s Elements (I am

excluding the formula S1& T& 7).

77 gmel 1s used 1110 times in Euclid’s Elements, 1007 of which are in the contexts kai &ei (558 uses),

gtrel y&p (168), el oUv (164) or oA émel (117). &mrel y&p and &mel oUv are used, generally

speaking, to start an argument; kai émel and &AW el to restart it. Other statistics for éei

(without distinctions of use): Hypsicles: 15; Hero: 89.

See Knorr (1994) 25—8. The treatises are Euclid’s (or pseudo-Euclid’s?) Optics, Catoptrics and the

Sectio Canons.
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However, the main elements are fixed. The preceding footnotes
show a considerable degree of fixity of ratios between the frequen-
cies of the connectors in different works. The senses are also well
regulated, especially compared to the general context of ancient Greek
(gar, for instance, is very limited in scope). It is true that Greek
mathematics derives from the Hellenistic period when, as 1s well
known, a general process of simplification occurred in the Greek
use of particles in general. However, comparisons between math-
ematical Greek and Hellenistic Greek prove the independence of
mathematics.

I follow here Blomquist (1969g). Chapter 1, ‘Frequency and use of
individual particles’ begins with mentoz, and Blomquist notes (27) its
frequency in Hellenistic Greek in general, except for its absence from
mathematical authors.”” This in fact can be repeated for each of the
case-studies offered by Blomquist — except one, alla men, where math-
ematical authors account for about half of all examples from Hellenis-
tic Greek (61). So Greek mathematicians do not follow the wider profile:
they have their own, very distinctive, distribution of particles. And, as
Blomquist shows (chapter g), it is wrong to think of Hellenistic Greek
as much less rich in particles than classical Greek. It uses fewer em-
phatic particles, no more than that.

Moreover, there is more to logical connection than just particles.
For instance, the genitive absolute, ubiquitous in Greek in general,
and appropriate for the description of many logical relations, i1s hardly
ever used within mathematical proofs.* Perhaps most surprising is i,
‘if”. What is more fitting for mathematics? It is used only 16 times in
the first book of Euclid’s Elements, and there almost always in the
formulaic context of the beginning of the reductio, ez gar dunatos, ‘for if
possible . . .". As a connector, ¢ is hardly ever used.”

A final remark from Blomquist: to argue for his thesis — that parti-
cles did not decline sharply in use in Hellenistic times as was some-
times thought — he points out that two particles, never used elsewhere
in mathematical works, are used by Apollonius in his wtroductions: mentos,

7% As well as Apollonius of Citium.

% 1 am ignoring the formula used sometimes before proofs, as an abbreviation of construction,
TGOV aUTdOV UTrokelpévwy (see especially Conices 111, e.g. the beginning of propositions 2-3, 6-12).
For an exceptional use of the genitive absolute within proofs, see Conics 1.33, 100.18-19.

¥ In the Archimedean corpus there are a few occurrences, all of them within the PE (150.7,
156.25, 202.12, 206.11), always within the locally conventionalised formula, i 8¢ ToUTo.
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ou alla mén.” Once again, we see the systematic difference between
first- and second-order discourse.

2.4.2  On floating bodies

When Archimedes wrote On Floating Bodies, he was establishing a wholly
new field. Of course, his treatment was geometrical, so many terms
were taken over from his general mathematical lexicon, but the intro-
duction of some specific terms was inevitable. The fact that the lexicon
was new means that it stands on its own. And this is all the more
remarkable, since the axiomatic apparatus of the work® is made up
from a single hypothesis. As far as vocabulary is concerned, the work is
left to fend for itself.

The source from which Archimedes builds up his local lexicon is
everyday Greek. Below is a list, aiming to be complete, of such words
(numbers are occurrences in On Floating Bodies, based on the index;
‘at least’ represents failings of that index):

(a) Verbs expressing motion or rest:
Pepelv (at least 41), &vaépelv (), KXTAPEPELY (3), EAKELY (1), &Pinut
(39), kabioTnui (27), &mokabioTnul (g), dUvelY (14), KATABUVELY (5),
KaTaXBaivelv (3), BEvewY (29);
(b) Verbs expressing force and other relations:
ECwbelv (5), OAIPechon (18), dvTiOAIPew (2), Pradev (3), kabelpyewv (1);
(c) Nouns:
Uypos (at least 100), y7) (12), B&pos (at least 18), &ykos (17);
(d) Adjectives:
KOUPOTEPOS (20), PapuTepos (6), &kivnTos (9);
(e) Adverbs of direction:
&vw (16), Utrepavw (1), Emdvoe (1), K&Tw (18), UToK&TwW (2).

The first overall observation is that this local lexicon shares the
usual leanness of the Greek mathematical lexicon. All the words are
very mundane, and many synonyms would have been possible in prin-
ciple. Yet the classes (b)—(d) are free of any synonyms. In the classes (a)
and (e), where synonyms occur, they are rare, as if they represented
an oversight.

Some precise senses are specialised, e.g. the clusters @épev/ avaépev/
KaTapépely, or kabioTnut/ &mokabioTnul. A more interesting speciali-
sation 1s that of kaToPaivew, as distinct from the dUvewv root; the

% Blomquist (1969) 140. % CF 318.2-8.
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former, but not the latter, denotes in Archimedes a complete sinking,
though both may mean this in common Greek. But some synonyms
are still there, namely €Akewv (1), kaTaduvel (5), Utrepdvw (1), ETAVW
(1), Utrok&Tow (2). It will be seen that, quantitatively speaking, these are
not very important. Qualitatively, however, they show that, while
Archimedes tends to use the same words again and again, he is not
religiously avoiding any variation.

2.5 Compartmentalised nature of the lexicon

To say that the lexicon is compartmentalised, following my arguments
for its holistic nature, may sound paradoxical. However, the discussion
concerning local lexica should make us aware of the possibility of slight
differences from one part of the text to another, and it is such differ-
ences, though they occur on a regular basis, which I call ‘compart-
mentalisation’. The texts are made up of several types of discourse.
The best way to see this is through hapax legomena. We saw how few
of them there are locally in each individual proposition. Paradoxically,
taking corpora as wholes, there are many hapax legomena in Greek math-
ematics. In the Archimedean corpus, out of a total of 851 words, 228
are hapax legomena — about 26%, an extraordinary result for a corpus in
the range of 100,000 words. This is easily explicable. When a text 1s
split into different registers, the number of hapax legomena must rise,
since the chance that any given word would be repeated 1s smaller in
such a case. The text 1s really a juxtaposition of different, unrelated
small corpora, and the number of hapax legomena rises accordingly.
The Archimedean text is divided into three parts:

(a) introductions, taking the form of letters;
(b) the Arenarius;

(c) the remaining, ordinary mathematical text.

Those types of text vary enormously in quantity, with (a) and (b)
each responsible for no more than a few per cent of the corpus as a
whole, which is taken up almost entirely by (c). The results for hapax
legomena are much more equal. Eighty-two of the hapax legomena occur
in the introductions; 72 in the Arenarius; only 74 occur in the whole of
the rest of the text. Here then we come to the real gulf separating
registers in Archimedes. One 1s the letter form (the Arenarius being,
after all, a letter), the other the mathematical form. The first talks
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about mathematics; the latter s mathematics. We have glimpsed this
distinction often before: we now confront it directly.

It should be stressed that Archimedes does not use the letter form
to commend the attractions of Syracuse or to complain about his
health. The introductions are mathematical texts, as dry as any. The dif-
ference of register could not be explained by a difference of subject
matter.

Or perhaps, as ever in the lexicon, a more structural approach
should be taken? The important thing is not /ow the second-order
lexicon 1s different, but that i1t 1s different. The two are separated.
Indeed, they are sealed off from each other, literally. Second-order
interludes between proofs, not to mention within proofs, are remark-
ably rare.’* The two are set as opposites. And it is of course the first-
order discourse which 1s marked by this, since the second-order discourse
is simply a continuation of normal Greek prose.

I have said already that Greek mathematics focuses directly on ob-
jects. The compartmentalisation of lexica 1s one of the more radical
ways in which this 1s done. When it is talking about objects, the lexicon
is reduced to the barest minimum, so that any wider considerations
are ruled out — because there are no words to speak with, as it were.
And, in this, the main body of Greek mathematics is marked off from
ordinary Greek, as no other Greek subject ever was.”

2.6 Summary

Some of the results we have obtained are significant for the question of
the shaping of the lexicon. These are the small role of definitions, the
persistence of exceptions to any rule, the role of the structure of the
lexicon as an entirety, and the great divide between first- and second-
order discourse. I shall return to such points later on.

More positively for the lexicon itself, we saw that it 1s dramatically
small — not only in specifically mathematical words, but in any words,
including the most common Greek grammatical words. It 1s strongly
repetitive, within authors and between authors. And it follows, on the
whole, a principle of one-concept-one-word.

% One thinks of CF 374.16, coming in the middle of proposition 8: ToUTo & fjv elxpnoTov ToTi
T 8€eifan — ‘now that was useful for the proof’. I do not think there are more than a handful
of such remarks in the whole of Greek mathematics (and, needless to say, ebxpnoTos is a hapax
legomenon in the Archimedean corpus).

% T shall return to show this in section g below. Blomquist (1969) also shows that no other set of
authors had similar peculiarities in their use of particles.
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We saw how the lettered diagram created a small, finite, discrete
system out of infinite continuous geometrical situations. The Greek
mathematical lexicon did the same to Greek language (hardly less
infinite or continuous than Euclidean space!) and the significance for
deduction is similar. But the moment to discuss this in detail will come
only after we have seen the all-important phenomenon of formulae.

3 GOMPARATIVE REMARKS

At this stage readers may respond by saying that my description can,
mutatis mutandis, serve to characterise any scientific discourse — that
it 1s simply the nature of a scientific discourse to be brief, free from
ambiguity and redundancy. I beg such readers to notice that in the
third century BC no discourse approached the mathematical one in
these terms. Perhaps the lexica of other scientific disciplines began to
approach the mathematical lexicon only following the scientific revo-
lution with its more geometrico bias. But leaving aside such speculations,
let us take, as an example, the pre-Galenic Greek anatomical lexicon,
following Lloyd’s (1983) discussion.” Here are several important points
of difference:

% Date. Though an anatomical vocabulary of sorts is part of
any natural language, and as such is as old as dated references
to ‘anatomy’ (in our case Homer), a technical use of anatomical
terms was no more than foreshadowed in the Hippocratic
treatises. It was mainly a Hellenistic creation, and stabilised
only following Galen. The scientific terminology of anatomy was
much younger than the science of medicine, while the science of
mathematics seems practically to have been born armed with its
terminology."

% Authonity. 'There are good reasons for ruling out the hypothesis
according to which ‘Euclid (or any other individual) settled the
Greek mathematical lexicon’.? The anatomical terminology was
settled — to a great extent — following Galen.

% Ambiguity. Ambiguities are common, especially in the Hippocratic
corpus (that 1s, what the terms refer to is a matter of guesswork —

% T am referring to the chapter entitled “The Development of Greek Anatomical Terminology’,
149—67.

% Homer: ibid. 152. The Hippocratic corpus: 153—7. Hellenistic times: 157{. Galen: 167 n. 106.

% T shall return to this in chapter 7.
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for modern lexicographers, and apparently for many Greek read-
ers as well). It 1s true that anatomical objects do not allow simple
definitions (compared to mathematics), but this could mean that
anatomists would have to use more elaborate and complex termi-
nology. That is what they do today. As a matter of fact, they used
a lexicon that was not very elaborate, and defined hardly any-
thing. The ancient reader, lacking our hindsight, dictionaries and,
probably, patience, could never have deciphered the words unless
they were defined, ostensively, in front of him — which entails an
altogether different communication situation from the one we
meet in the mathematical context.*

Homonymy and synonymy. Even when, in Hellenistic times, a certain
degree of clarity was achieved, homonymy and synonymy were
still widespread in the anatomical lexicon.”” Note that both were
present simultaneously. It 1s not as if the physicians had too many
or too few words: they had, as it were, just the correct number,
only they were unevenly spread, some objects getting too many
words and some words getting too many objects.

Conage. Though possessing a rich stock of pre-technical terms to
borrow from and refine, anatomists were fond of inventing new
words, 1 marked contradistinction to the mathematical lexical
conservativeness.” Indeed, the main feature of the anatomical
vocabulary as discussed by Lloyd is its permanent flux. Lloyd
shows the relation between the shape of the anatomical lexicon
and a strongly competitive, partly oral communication situation,
one which is inimical to the development of any consensus.”

Very briefly, I should like to add some comments on the philosophi-
cal lexicon. Here the first noticeable feature is a strong tradition of
second-order discussion. The Metaphysics A 1s a concentrated example
of what 1s after all one of the main traits of Aristotle, at least: a
conscious, critical use of philosophical language, often made in order
to solve philosophical problems by pointing to their lexical origins. That
this was not only an Aristotelian game is clear, e.g. from an Epicurean
fragment® where several terms related to ‘space’ and ‘void’ are de-
fined and distinguished. A concern over terms is indeed probably nec-
essary for anyone seriously interested in philosophy. However, this did

% For ambiguity and its modern deciphering, see especially Lloyd (1983) 154—7.
% Synonymy: ibid. 160—1. Homonymy: 161—5. ' Ibid. 165. % Ibid. 165—7.
% L&S, 5D = Usener 271.
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not lead to any consensus in antiquity: first, because much of this
interest 1s descriptive rather than prescriptive; second, because the
situation was no less competitive in philosophy than it was in medi-
cine. Many of the entries in Urmson’s Greek Philosophical Vocabulary,”
for example, have special meanings, specific to different authors or
schools.” If the terminology was at all settled, this was not at the level
of the entire scientific community, as in mathematics, but within more
local groups. Nor was such local codification ever complete. Sedley
(1989) discusses the nature of intra-school controversies in Hellenistic
periods. The presence of an institutional setting, together with a quasi-
religious cohesion, did not make the communicative interchange any
less competitive. And much of the controversy was about the meaning
of words as used by the founders of the school.”” What we see is the
philosophical habit of referring to terms in a second-order approach,
the tendency to problematise the lexicon. This tendency results in the
fastening of controversies, whatever their origin, upon terminological
issues. This, in turn, prevents the development of any established lexi-
con. We begin to see the importance of the historical setting, and I
shall add a few comments on it below. A detailed discussion of the
historical setting will wait until chapter 7.

4 THE SHAPING OF THE LEXICON

The lexicon did not emerge through some explicit codification, an
‘Index of Prohibited Words’. I have made this claim already; more
should be said to prove it. The hapax legomena in Archimedes are rel-
evant. As mentioned above, the purely mathematical portions of the
text contain 74 hapax legomena. Some of these are due to rare 2-order
interpolations, such as eUxpnoTds, oToixelwOls, etc.; some are simply
very rare words which could not be ruled out by any ‘Index’, for
instance specific numbers like éxkaideka; but this still leaves us with
at least 12 words:”’

% Urmson (1990). Unfortunately, this is not, nor does it profess to be, the philosophical counter-
part of Mugler (1958). Apparently, the relative anarchy of the Greek philosophical terminology
makes such a project enormously complicated.

% Of the first 3o entries, 22 have such specific meanings. I think it is safe to say that most entries

are like this.

The specific example is the use of Téxvn by the founders of Epicureanism.

97 See the index to Archimedes s.vv. It is easier to check hapax legomena but further evidence could
be set forth: why, for instance, is such a natural preposition as ANV used only twice?
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&mrAws, €itrep, Eupoobey, €vBA&de, peTdyeEly, PndETEPOS, OALYOS,
Otrooos, OTrov, OTe, OUBETTOTE, OUKETL.

Each of the above could be used often. The fact that they are used so
rarely must imply some reluctance to use them. But then again, the
fact that they are used at all means that the nature of this reluctance is
not explicable by any prohibition. The situation is similar to that we
have seen in chapter 2 above: the conventionality is not of a sacred-
rule type, simply because it 1s sometimes broken. We have seen in On
Floating Bodies a similar phenomenon: a strong tendency to use specific
words, which, however, is not absolute. In the more established parts
of the lexicon, deviations become rarer, but they do not disappear.

Words were not expelled by a fiat, nor were they similarly intro-
duced. One should make an effort to realise how mundane Greek
mathematical terms are. We translate fome by ‘section’, tméma by ‘seg-
ment’, fomeus by ‘sector’. Iry to imagine them as, say, ‘cutting’, ‘cut’
and ‘cutter’. The Greeks had no Greeks or Romans to borrow their
terms from. Greek mathematical entities are not called after persons,
as modern entities are. They are not called after some out-of-the-way
objects. They are called after some of the most basic spatial verbs —
B&AAew (to throw), &yew (to draw), mimTev (to fall), Tépvev (to cut),
AopPavelv (to take), ioTdvan (to stand), etc.; some everyday spatial
objects — TAgup& (side), ywvia (‘corner’ = angle), kUkAos (circle), etc.
Often, when a new name 1s required, an old name is extended: 3-
dimensional terminology, for instance, builds upon 2-dimensional ter-
minology, and similar extensions occur between domains such as
proportion theory, the theory of numbers, and geometry (for which see
subsection 3.2 above).

So was there a Style Manual? The question 1s rhetorical, but still, it
is useful — 1t brings us to the heart of the a prior argument against the
hypothesis of the ancient Style Manual. A Style Manual must be a
written form, to which one can return. We know of no written discus-
sions of style in ancient Greek mathematics, and the second-order
discussions we do get make us think that no such discussion of siyle
existed (apart, of course, from discussions of second-order terminology:
say, whether propositions should be called ‘theorems’ or ‘problems’).%”
We cannot look for written influences in this direction. There are,
however, written texts working within Greek mathematics. These are
the mathematical texts themselves. And 1if their style 1s well regulated, this

% See Proclus’ In Fucl. 77-8.
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regulation must be explained through the texts themselves. The Greek
mathematical lexicon must be a self-regulating organism. In the fol-
lowing I shall try to indicate briefly how — I believe — this could have
come about.

First, it 1s time to remind ourselves of our main goal, namely the
shaping of deduction, and for this purpose it is especially the absence
of ambiguity which 1s of interest.

When we say that Greek mathematical texts are unambiguous we
mean that the fixation of reference is distinct (the referent, taken by
itself, 1s a well-defined object) and certain (there is no question as to the
identity of the referent). The distinctness of reference 1s mainly due to
the absolute, small size of the lexicon. This means that there 1s a small
universe of referents, which one can learn once and for all. It also
means that the process of initiation, the acquisition of the model of this
universe, 1s short, because the items of the lexicon are repeated over
and over again. By the time one has learned the first book of Euclid’s
Elements, say, a considerable subset of the Greek mathematical lexicon
must have been interiorised.

The small size of the lexicon also means that it 1s easily marked off
from other texts. One does not need a title to know that a certain work
1s mathematical. Even more, one does not need special headings to
know that certain passages within a mathematical text are only quasi-
mathematical (namely the second-order portions of the text). Thus the
first-order mathematical discourse is easily identified.

Now assume an advanced student, one who has already interiorised
this system — who, as I claimed above, need not be much more than a
moderately good reader of some books of Euclid. Suppose him to
encounter a mathematical text: he would immediately identify it as
such, and expect a specific lexicon. Suppose he encounters there a
word unfamiliar to him. He would immediately try to associate with it
a new reference, driven by the logic of self-regulating conventions.
And this means that, had no new meaning been intended, the text
would fail to convey its meaning.

What we see is that the logic of self-regulating conventions is a
constraint on the development of the lexicon. A small, well-defined
lexicon is thus a self-perpetuating mechanism.

In the discussion above I have fastened upon the process of
disambiguation in, as it were, the ontogenetic plane. It will be seen
that my hypothesis concerning the phylogenetic plane 1s exactly simi-
lar. Once the lexicon began to take the shape described in chapter 2,
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it could not but go on to develop in the same direction — given, of
course, a co-operative, rather than polemic, communication situation.

And what made the lexicon begin to move in such a direction?
Partly, the answer involves the nature of the mathematical world. It 1s
a small world; no surprise that it has a small lexicon. It 1s a well-
defined world; no surprise that it has a well-defined lexicon. In other
contexts, nuances in terminology could be made to correspond to
undefined, barely felt nuances in the objects themselves. Thus, haptesthar
and ephaplesthar are probably only a shade away in normal discourse:
but the mathematical world knows only sharp black and white, either
a tangent or not. Such a line of explanation surely has its validity, and
to this extent we may say that the Greek mathematical lexicon is the
natural result of putting mathematics into a written communication
context. Not all written communication contexts, however, would nec-
essarily have brought about a similar result. I have mentioned the need
for a co-operative communication situation — a strong demand indeed
in Greek settings. Add to this the following. Paradoxically, one import-
ant aid to the development of the lexicon was the absence of explicit
codification. After all, a writer could easily say ‘and, by the way, by all
the words 4, B, and ('I mean exactly the same thing’, thus making sure
that some synonyms would enter the lexicon. The Invisible Hand would
codify the discourse only under an invisible, free competition. The Greeks
do not speak about their mathematical language, and thus it develops
according to the rules of a self-regulating conventionality (here the
comparison with the philosophical vocabulary is especially revealing).
So, in this way, the desire to distinguish first- and second-order discourse
is a contributing factor to the shaping of the lexicon.

More generally, without this distinction between first-order and
second-order lexicon, the lexicon could never have been so small and
regimented. But how can we explain this distinction? Here probably
wider sociological factors are at work. I gave some background in the
comparative remarks in section g above; I shall return to this issue in
chapter 7 below.



CHAPTER 4

Formulae

INTRODUCTION AND PLAN OF THE CHAPTER

The term ‘formula’ is inevitable. Yet it is also very problematic. ‘Greek
mathematics’ 1s at an intersection of two fields, in both of which the
term has (completely independently) already been put to use. The
general mathematical use 1s easy to deal with. Suffice to say that my
‘formulae’ are not equations. They are a (relatively) rigid way of using
groups of words. And here 1s the second problem. ‘Formulae’ as groups
of words are the mainstay of twentieth-century Homeric scholarship
(and, derivatively, of much other folklorist and literary scholarship).
Thus, they evoke a specific — if not always a precise! — connotation.
This connotation is not wholly relevant to my purposes. However, it
is not entirely misleading, either. While my use of ‘formulae’ is not the
same as that of Homeric scholarship, it is related to it in some ways.

This chapter, therefore, will start from the Homeric case. In section
1, both the problematics and the definition of ‘formulae’ will be ap-
proached through the Homeric case. Section 2 offers a typology of
Greek mathematical formulae. Besides giving the main groups, I also
describe some key parameters along which different formulae may be
compared. Section § then analyses the behaviour of formulae. In sec-
tion 4 I return to the Homeric case, and summarise the possibilities
concerning the emergence and the function of Greek mathematical
formulae.’

' As with diagrams, so with formulae: it is often asserted that ‘Greek mathematics employs a
formulaic language’, but hardly anyone ever studied the subject. The outstanding exception is
the important article Aujac (1984), which analyses a wealth of useful material (parts of which
are not covered in this chapter). I owe a lot to that article, but I must warn the reader that
Aujac’s main interpretative claim (that Greek mathematical education was oral and compara-
ble to the transmission of oral poetry) is unconvincing and unsatisfactorily argued. Aujac makes
it clear that this is no more than a tentative guess, and in the light of the current literature on
the oral and the written this guess is seen to be very implausible.
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I THE HOMERIC CASE AS A STARTING-POINT

1.1 The problem

People have noted repetitions in the Homeric corpus from time imme-
morial; the term ‘formula’” was given its technical Homeric sense only
in the context of a certain theory, to which my present study 1s related
in several ways. The theory is roughly as follows:* Homeric singers
were 1illiterate; further, they were public performers. To cope with the
necessity of singing long stretches of metrical text without a script, they
developed a certain tool, namely ‘formulae’. These are short phrases,
of given metrical shapes, and therefore fitting into specific ‘slots’ in the
Homeric line, which are then used schematically. The point about
‘schematically’ 1s that these formulae have very little variability: on the
whole, once the metrical conditions as well as the general idea are set,
the formula can not vary very much.? Very roughly speaking, there-
fore, the Homeric singer who has internalised the formulaic lexicon
should be able to produce metrical verse with relatively little need for
creativity — In some senses of creativity. Instead of laboriously pro-
ducing word after word and then checking their metrical fitness, the
singer chooses, for much of the time, from among ready-made metrical
sequences.

Such — again, very roughly speaking — was the form of the theory.
Note that this 1s cognitive history. It defines a certain cognitive tool,
and claims that this tool was necessary for the achievement of a certain
cognitive task (namely, the creation of Homeric poems), given the
absence of some other cognitive tool (namely, writing). The theory
posits some universal claims: it is wmpossible to 1mprovise Homeric
poems unless one has formulae. Conversely, with the aid of such for-
mulae, this 1s possible. Writing makes formulae superfluous. All 1talicised
adjectives are supposed to be cognitive universals. The theory posits a
certain historical hypothesis concerning the availability of cognitive

* I follow the original formulation of Parry (first offered in 1928, most easily accessible in Parry
1971), not because this is still considered valid in its detail (it is not), but because it is the clearest
presentation of the theory as a theory, a single solution to a single problem. The main line of
development since Parry has been to break down ‘formula’ into types, each having its own
cause and function (see, e.g. Hainsworth 1993, with references to the important contributions).
In basic outline, however, Parry’s theory is still adhered to, so I present something which has
much more than just historical interest.

3 This aspect of the theory has been corrected. Many Homeric formulae are flexible (Hainsworth
1968). Still, the Homeric formula is much less flexible than similar structures from written
literature.
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tools in Homer’s time, namely the absence of writing. It also implies
some assumptions concerning the social background, for it 1s assumed
that the structure of formulae evolved gradually, within a community
which approved of the formulae and accumulated them.*

It will thus be seen that the main thesis of this book is structurally
similar to the formulaic theory as developed in Homeric scholarship.
This 1s not surprising: Homeric scholarship 1s at the heart of the orality/
literacy 1ssue, which is the single most important topic in the discus-
sions of history and cognition. All the more embarrassing, therefore,
that the case of mathematical formulae should seem to be so unlike
that of the Homeric formulae. The illiteracy of ‘Homer’ is a hypothesis
based on some implicit evidence in the poems as well as on external
archaeological and historical data; the literacy of Greek mathematics
1s explicitly stated by the texts, which, after all, rely on a specific use
of the alphabet in the lettered diagram. Mathematical texts were
edited by their authors, quite unlike the improvisation visualised by
the Homeric formulaic theory. Consider Apollonius’ Introduction to
book 1: the text asserts itself as a corrected second edition, superior to
an earlier one which suffered from being prepared in haste. Likewise,
the text sets itself up as competing with an earlier written attempt
by Euclid.> One therefore pictures the Greek mathematician as toil-
ing over wax tablets and papyri: those of his fellow mathematicians
and those of his own. This picture i1s confirmed by further evidence.
Hypsicles reads Apollonius, just as Apollonius read Euclid, and Arch-
imedes refers to his own manuscripts, in ways similar to Apollonius’
self-reference.’

The following chapter, therefore, would not try to import the results
of Homeric scholarship into the history of Greek mathematics. It 1s
simply absurd to try to imagine Greek mathematicians as more or less
illiterate improvisers. But I shall try to keep the structure of the argu-
ment of the Homeric formulaic theory, which indeed is the structure
of my argument throughout: for formulae to exist, they must perform
some cognitive task for the individual who uses them, and they must

* The process of initiation of singers and their interaction with their community are the focus of,
for instance, Lord’s presentation of the theory in Lord (1960), chapter 2.

5 A corrected second edition: introduction to Conics 1.2.7—22. The earlier edition being done in
haste: 13-17. Bad marks for Euclid: 4.3—5 (implied), 4.19-16 (named).

% Hypsicles: see introduction to Elements x1v. Archimedes: see introductions to SC 1, 1, CS, SL,
Meth. Indeed, it seems that one of the main functions of the mathematical introductions was to
fix the bibliographic coordinates of the work in question: where it stood in relation to other
written works of the same author and of his predecessors.
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be somehow encouraged and maintained by the context of the com-
municative exchange.’

1.2 The problem of definition

Parry’s classic definition 1s: ‘a group of words which s regularly employed
under the same metrical conditions to express a given essential idea’.® Obviously
the ‘metrical conditions’ mentioned in this definition have no counter-
part in the mathematical case. This 1s not a trivial point, given that
much Greek science — and other science — was transmitted in metrical
form.? Greek mathematics was written in prose, which makes its for-
mulae even more perplexing.

Two basic ideas in Parry’s definition are left. One is ‘regular em-
ployment’, the other 1s ‘to express a given essential idea’. Both require
some analysis.

The couple of English words ‘in the’ has been used seven times so
far in this chapter, so it has been ‘regularly used’: 1s it a formula of
my style? Clearly not, and this for two reasons. First, while this couple
of words was used often relative to other couples of words, it was not
used often relative to its use in other comparable texts. The use of this
couple of words does not mark my text from other texts. Second, this
couple of words was the natural way to say a certain thing which, for
independent reasons, was said over and over again. The repetitive use
of the words ‘in the’ was parasitic upon the repetitive use of the syn-
tactic structure represented by ‘in the’. There was nothing repetitive
about the specific choice of words.

So we can begin to refine our terms.

A group of words is regularly used if it 1s used more often than other
groups of words.

7 The point can be stated in much more general terms. Once you look for them, formulae are
everywhere: in law as in poetry, in everyday speech as in literature. You can find their parallels
in music and, if so, why not in painting? (Think, for instance, of the emblems attached to
medieval saints as the visual counterparts of the Homeric ornamental epithet.) Or look around
you, at the buildings, the furniture: everywhere, you can find repeated patterns in artefacts. 1s this
then the relevant unit of description? It is useful to have this level of generality in mind — but
mainly in order to avoid the tendency to transfer results hastily from one field to another.

Repeated patterns are everywhere, but this means that their causes and functions would vary.

Parry (1971) 272.

9 Goncentrating on the Greek case, there are well-known philosophical examples (e.g. Parmenides,
Empedocles), but also an important genre closely related to mathematics: descriptive astronomy,
often rendered poetically (Aratus is the foremost example, but the tradition begins with Hesiod,
and gets even closer to mathematics proper with the poetic (lost) original of the Ars Eudoxi, for
which see Blass 1887). One of the ‘modern’ features of the Almagest is its use of a specifically written
form (the table) for catalogues of stars which were traditionally represented in metrical poems.



‘The Homeric case 131

It 1s markedly repetitive 1f 1t 1s used in the text more often than it is used
in comparable texts.” I take Parry’s ‘regular employment’ to refer to this.

Finally, a group of words may be semantically marked. This, in its most
general form, can be defined as follows. For the expression E, find the
set of equiwvalent expressions (a fuzzy concept, depending on how wide
your sense of ‘equivalence’ 1s). Find the frequency in which E is used
relative to its equivalent expressions in a group of texts. If, in a particu-
lar text, the frequency of E relative to its equivalent expressions is
higher than in the wider group of texts, then E is semantically marked in
that text (thus, ‘in the’ was not semantically marked in the above, since
it was not used more often than is necessary for saying ‘in the’). Some-
times, however, a group of words may be semantically marked per se,
even 1f it 1S not comparatively frequent. This happens through non-
compositionality.” Sometimes the non-compositionality may be the
result of ellipsis only (see n. 11); sometimes it will involve a metaphori-
cal use of language. Whatever the route leading to non-compositionality,
it yields semantic markedness. There are two routes to semantic mark-
edness: quantitative, through the relative frequency defined above,
and qualitative, through non-compositionality. This semantic marked-
ness 1s, I think, behind Parry’s ‘to express a given essential idea’.

Each of the three concepts (regularly used, markedly repetitive, semantically
marked) amounts to ‘being used more often than’ — relative to different
contexts. Regularly used groups of words are used more often than
other groups of words. Markedly repetitive groups are used more often
than the same groups of words in other relevant texts. Semantically
marked groups (in the quantitative sense) are used more often than
their semantic counterparts, relative to the distribution in other rel-
evant texts. So I pause for a moment. The definition proves complex —
and still it leaves the definienda fuzzy, for the concepts are contextual,
and the contexts cannot be set precisely and are not accessible.”
Further, the definitions use the word ‘more’ — which 1s fuzzy. My goal
1s not to eliminate fuzziness, but to obtain a clear understanding of
fuzzy objects. This clarity 1s worth our trouble; let us continue.

Notice that groups of words may be regularly used but not markedly repetitive, as are ‘in the’
in my text; or markedly repetitive but not regularly used, as are in fact most Homeric formulae.
A non-compositional phrase is one whose content can not be reduced to the contents of its
constituents and their syntax. For example: I once went to a Cambridge feast wearing what
I thought was a ‘black tie’ — i.e. a tie which was also black. I analysed the expression into
its constituents and its syntax. Only there I discovered that ‘black tie’ is a formula for ‘a black
bow-tie’ (what I will call non-compositionality through ellipsis).

Either in the Greek case or in any other case, since the relevant contexts can always be
extended beyond written corpora.
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Of the three concepts, only the last two lead to formulaic status.
An unmarked group of words can not have any special status — and a
regularly used group of words, which is neither markedly repetitive
nor semantically marked, is certainly unmarked.

Homeric formulae are both markedly repetitive and semantically
marked. Now let us think of other possible cases. What about the case
of being markedly repetitive, but hardly, if at all, semantically marked?
This means that the text repeatedly uses some groups of words, refer-
ring to a specific content. The groups are used much more often than
they are used elsewhere. But they are just as interchangeable as they
are elsewhere; none of them 1s semantically marked. So perhaps the
text may be said to be non-formulaic? One may say, perhaps, that it
does not use language in a limited, constricted fashion, that it simply
talks over and over again about the same topic. But this first reaction
is misleading, and again some fuzziness must be admitted. For here
quantity becomes quality. By repeatedly using the same groups of
words much more (a doubly fuzzy relation) than elsewhere, at least a
quasi-formulaic effect is created. The relevant groups of words become
all too well known. They are glanced over, processed away through
sheer familiarity. They numb our semantic apparatus: we no longer
reconstruct them from their constituents, we read them oftf as
unanalysed wholes. While originally compositional, they are read as
f non-compositional — and therefore they are not unlike semantic-
ally marked formulae. This does not fall under Parry’s definition —
but then the Homeric text (while repetitive in its way, with repeated
themes) 1s nowhere as repetitive in subject matter as Greek math-
ematics 1s.

Here 1s my definition, then: I count a group of words as formulaic
if 1t 1s semantically marked or it is very markedly repeated — a non-
exclusive disjunction. One corollary of the definition should be pointed
out immediately: it allows one-word-long formulae — so we have come
a long way indeed from the Homeric starting-point.

The definition offers symptoms, means for diagnosis.” The essence
behind them is different, and I will not attempt to define it here. This
1s a cognitive entity, having mostly to do with the non-compositional,
holistic parsing of certain groups of words: it will emerge as we
proceed.

¥ And it offers them in a particular context. In the general field of ‘repeated patterns’, different
means for diagnosis will be useful with different patterns. The definition is not meant to be
universal.
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2 GREEK MATHEMATICAL FORMULAE: A TYPOLOGY

I have already said that one of the lessons of the Homeric scholarship
since Parry 1s the need to look carefully at the different types of for-
mulae. Mathematical formulae can be analysed into five distinct, each
fairly homogeneous types — in itself a mark of how simple the system
1s. This 1s the taxonomy. To this I add a typology based on ‘para-
meters’ — no longer discrete types, but dimensions expressing features
which formulae may have to varying degrees.

2.1 The taxonomy

2.1.1  Object formulae
The main group of formulae 1s that of objects: the diagrammatic ‘things’.
In the most important cases, these are made up mainly of letters.

As explained in the preceding chapter, the common expression for
‘a point’ in Greek mathematics is not sémeion — what the dictionary
offers for ‘point’ — but rather 16 A, ‘the (neuter)* + {letter}’. “To A’ 1s
a minimal formula. It is semantically marked (in the wider context —
1.e. anywhere outside mathematical works — the noun will not be elided,
and in this wider context it may be interchanged with stgme, for n-
stance). By its ellipsis, it is non-compositional (the neuter hints at the
noun, but does not supply it fully. Note that this 1s a very mild non-
compositionality). It is very markedly repetitive (though the repetitive-
ness results from subject matter).

The Homeric system fits an epithet for many combinations of char-
acter and metrical position,” and the Greek mathematical system fits
an object formula for the most important ‘characters’ of Greek math-
ematics. Naturally, articles run out quickly, but there are prepositions
as well, and thus a rich system 1s constructed:

1. 70 A — ‘the (neut.) {letter}” — point

2. | AB — ‘the (fem.) {2 letters or more}’ — line

3. ) umo TtV ABI — ‘the (fem.) by the (gen. pl. fem.) {g letters}’ —
angle

4. ) Tpos 1O A — ‘the (fem.) next to the (neut. acc.) {letter}’ — angle
5. 6 ABI" — ‘the (mas.) {3 letters or more}’ — circle

* The Greek article has different forms for the three genders (feminine, masculine and neuter).

® See e.g. Hainsworth (1968) 8—9.
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6. 16 AB — ‘the (neut.) {2 letters/4 letters or more}’® — area

7. TO ABI" — ‘the (neut.) {g letters}’ — triangle

8. 10 &mo TRs AB — ‘the (neut.) on the (gen. fem.) {2 letters}’ —
square

9. 7O Umo TV ABI — ‘the (neut.) <contained> by the (gen. fem.)
{g letters}’ — rectangle

10. 6 A/AB — ‘the (mas.) {1/2 letters}’ — number

These are the most important object formulae. They are character-
ised by the fact that everything save article, preposition and letter may be
elided. Sometimes fuller versions are given, and then the same formu-
lae become fully compositional.

The first striking fact about this system 1s its generative nature: g,
8, 9 use, as one of their building-blocks, the formula 2. For instance,
3, ‘the (fem.) by the (fem. gen. pl.) {3 letters}’ is, when fully unpacked,
‘the angle contained by the lines AB, BC’. The italicised element is
formula 2. Indeed, in a sense, all geometric formulae of this sort build
upon the formula for a point. All these formulae include a ‘variable’
element, letters standing for points.

The generative structure explains the slight extent to which the
system 1s uneconomic. ‘Angle’ 13 covered by two formulae, § and 4.
Formula g 1s generated from the formula for ‘line’, 4 1s generated
from the formula for ‘point’. Whatever the origins of the system, it 1is
not motivated by a conscious effort to reduce to one-formula-per-
concept.” However, it is quite economical and, especially, it avoids
‘homonyms’. To explain: § and 4 are ‘synonyms’ — two different for-
mulae expressing the same object. Homonyms will be the same formula
referring to two different objects. These are avoided throughout the litera-
ture. This can be seen as follows. In book 11 of the FElements, the word
‘gnomon’ 1s unabbreviable. The expression 1s throughout

11. 6 {3 letters} yvopwv ‘the gnomon {3 letters}’,"

not

*11. “The (mas.) {3 letters}’.

Areas may be conceptualised either through (in the quadrilateral case) two opposite vertices,
or through their entire vertical circuit (the distinction from triangles should be kept clear: the
elided noun in areas is Xwpiov, while in triangles it is Tpiywvov).

7 Note also that formulae 3 and 4 coexist in the same works: e.g. Elements 11, 148.25-6: formula
3; 154.1-2: formula 4.

This is semantically unmarked, but in its own context it is sufficiently markedly repetitive to
count as a formula.
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This i1s because *11 would result in a homonym, for *11 13 the same
as 5 above, circle. But the crucial thing to notice 1is the context in which
11 occurs, Flements 11. This 1s interesting, because the context of Elements
11 makes no reference to circles. It is the system which 1s universally felt, not
its individual constituents."

As we begin to see, there are more specialised object formulae, and
some of these do not mvolve drastic ellipsis. One of the more elliptic 1s

13. | €&k ToU kévtpou ToU {g letters or more} kUkAou, ‘the <line
drawn> from the centre of the {3 letters or more} circle <to its
circumference>’.

This 1s the common expression for ‘radius’. Here ellipsis yields strong
non-compositionality, and this 1s a relatively rare case, where a Greek
mathematical formula would have been identifiable even in 1solation.
It is qualitatively semantically marked, in a strong way.

Other cases are almost compositional: for instance, the expression

14. TO di1x ToU &Govos Tpiywvov, ‘the triangle through the axis’.

The verb i1s elided, and should be, perhaps surprisingly, ‘cut’.* In the
context of the beginning of Apollonius’ Conics 1, where axes of cones
and planes cutting them are constantly referred to, the sense is clear,
and the expression feels natural: repetitive, no doubt,” but clear. In
Archimedes’ SC 1.16, however, the setting-out starts with ‘let there be
a cone, whose triangle through the axis is equal to ABI”,** and here
the sense can not be given by the context. In this more alien context,
the formula 1s revealed much more sharply. This 1s the general rule:
idioms which the native speaker does not notice strike the alien, and
formulae are most noticeable when they are ‘alien’; when they appear
outside their most natural context.

"9 Similarly, in Archimedes’ SL, ‘chronos’, ‘time’ is unabbreviable: the expression is throughout

12. 6 {2 letters} xpovos, ‘the time {2 letters}’,
not
*12. “The (mas.) {2 letters}’.

This is meant to prevent homonymy with ‘number’, which again is not a formula used at all
in SL.

This 1s supplied from the context in which the term is introduced by Apollonius, Conics 1.5
16.25—7.

* I have counted 15 occurrences in Conics 1. pp. 16—48.  ** SC 1.70.9-10.
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In Elements 11, which I have selected as a case-study (admittedly, as a
simple, short text), there are 15 object-formulae, which include formu-
lae 1, 2, 3, 4, 6, 7, 8, g and 11 above, as well as 6 others.”

2.1.2  Construction_formulae

Objects are constructed, and they are constructed in specific ways,

with specific verbs, in specific tenses and moods:** in a word, construc-

tions have their formulae. Obviously, these formulae have a structure

which consists, among other things, of specific object-formulae.
Parallels, for instance, are almost always drawn with the following

matrix:

21. S1& {formula 1: point, in the genitive} {formula 2: line, in the
dative} TrapaAAnAos fixbw {formula 2: line, in the nominative}, ‘let
{formula 2: line} a parallel to {formula 2: line} be drawn through
{formula 1: point}’.

The verb ‘to draw’ may occur in other structures as well, e.g.

22. fixbw {formula 2: line} émypavouoa, ‘let the tangent {formula
2: line} be drawn’.

In a case such as 22, the formula 1s too brief to allow semantical
markedness, and in some cases there i1s no semantical markedness.
This 1s most clear 1n

3 As there may be an interest in the list of formulae in Elements 11, 1 shall give in a footnote, at the
end of each description of type, the formulae belonging to this type. To save space, I shall not
translate the added formulae in these footnotes.

Object formulae of Elements 11 are:
A. Specific to the universe of book 1r:

15. T& TePl TNV SIAUETPOV TTAPAAANASY PAUU
16. T& SUo TTaPATTANPOUATA.

B. Types of angles:

17. 1) &KTOS Yywvia

18. 1) évTos Kol &mevavTiov ywvia

19. o &mevavTiov ai {either of formulae §/4}.

C. Finally,
20. 1| OAn, ‘the whole’

is repeatedly used instead of ‘the whole line’. I see this systematic abbreviation as a basis for
granting formulahood, but this brings us face to face with the fuzziness of the definition.

* The distinction between subjunctive (in the general enunciation, ‘if a line s cut...”) and
imperative (in the particular construction and setting-out, ‘let a line be cut’) does not, however,
change the structure and function of such formulae, and therefore I see the two as two
different morphological expressions of the same formula. But this is a delicate decision (and
I will deal differently with the indicative, as we shall see below with predicate formulae, e.g.

71, 31).



Greek mathematical formulae 157

23. €0Tw {any unlettered object formula} {a lettered equivalent},
‘let there be {some object} <namely> {some lettered object}’.

This 1s certainly very markedly repetitive, but is also a very transparent
piece of Greek.

The construction formulae in Elements 11 include 21, 29 above, as well
as 16 others.®

2.1.3 Second-order formulae

So far one distinctive feature of the types of formulae has been their
form: noun phrases, often lettered, in object formulae; verb phrases,
often in the imperative, in construction formulae. The remaining groups
are defined by subject matter. The group of second-order formulae is
very distinct. This is to be expected, since, as we saw in chapter 3
above, the first-order/second-order distinction 1s central to the Greek
mathematical language. However, these formulae occur within the
main, first-order discourse, not in the second-order introductions to
works (such introductions are relatively speaking unformulaic). Thus,
second-order formulae, unlike second-order words, are as regimented
as their first-order counterparts.

®» Very markedly repetitive but not semantically marked:

24. keloBw {any object formula in the dative} icos {any object formula}

25. &éPePAnobew {formula 2: line}

26. émeCeuyBw {formula 2: line}

27. OUVEOTATW {any figure}.

A particular development of 25:

28. &kPePAnocbuwoav kai cupmmTETwoav kaTd {formula 1: point} (.10 148.10-11).
Less compositional are:

29. dvayeypdpbw &mo {formula 2: line, in the genitive} TeTpdywvov {formula 6: area}
30. kévTpw pév {formula 1: point} SiaxoTnuaTt 3¢ {formula 2: line} yeypdpbw {formula 5:
circle}

31. Tpookeicbw avuTn elbeia &’ eUbeias (146.24)

32. KaTayeypdgbw TO oxfpa (136.5).

The ‘cutting’ family, especially important in this book:

33. TeTunobw {formula 2: line} kot {formula 1: point}

34. TeTunobw {formula 2: line} dixx

35. TeTunobw {formula 2: line} els pev oo katd {formula 1: point}, eis d¢ &uioca KaT&
{formula 1: point} (1.5 128.23-130.1)

36. Tundf els doadnmoTolv TUNUaTX (1.1 118.10-11).

The ‘drawing’ family, which includes formula 21 above and:

37. dimxbw {formula 2: line} émi {formula 1: point}

38. fixbw {formula 2: line} pos 6pfas {formula 2: line, in the dative}

39. fxBw &mo {formula 2: line, in the genitive} émi {formula 1: point} k&Betos {formula 2:
line}.
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Second-order formulae occur as signposts within arguments. For
instance, in the structure known as analysis and synthesis, the math-
ematician does the analysis, and then most often introduces the syn-
thesis by:

40. ouvtebnoeTon &1 TO TPOPANUa oUTws, ‘so the problem will

be “synthesised” as follows’.*

This formula occurs within a specific structure. Freer, ‘floating’
second-order formulae include:

41. Opoiws dn deiopev, ‘so similarly we will prove . . .,
42. 31 T&X aUT& O, ‘so through the same’.

Both, of course, can occur in many contexts.

It is typical that second-order formulae come armed with specific
particles. This reflects the technical use of particles, described in the
preceding chapter, and it is such features which make these expres-
sions (in themselves quite natural) semantically marked.

So far we saw simple cases: the second-order expression demanded
some complement, but it consisted of a continuous stretch of Greek.
Other, more complicated cases are second-order formulae constituted
mainly by their complement, which 1s @fived rather than suffixed to
them. One such case 1s the Euclidean

43. ...&px. .. (the enunciation, repeated verbatim). OTrep €del Seiau:

“Therefore . . . QED".

The formula 1s a matrix: a syntactic, no less than semantic, unit. It
1s in such a context that the famous

44. Meyw 671, ‘I say that’

should be understood. The formula is constituted not only by its two
words, but also by what precedes it (setting-out) and what follows it
(definition of goal). On a higher level still, it is possible to see the entire
proposition structure as such a matrix, with 43 and 44 as two of its
constituents. It is through formulae that the structure of the proposi-
tion should be approached. I shall return to this point later on.

* E.g. SC w1, 172.7.
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Elements 11 contains 12 second-order formulae, including 42, 43 and
44 above.”

2.1.4  Argumentation formulae

These are expressions validating an argument. Their essence is that
they combine assertions in a fixed matrix in which the result 1s known
to derive from the premisses.

A central group of such formulae covers arguments in proportion
theory. All these formulae are generated from the basic formula for
proportion, which in turn is generated from the formula for ratio. As
an introduction, therefore, I put forward the following two formulae:

54. © Adyos {any object in the genitive} Tpos {any object in the
accusative}, ‘the ratio of {any object} to {any object}’.

54 18 an object formula.

55. @s {formula 54: ratio} oUTws {formula 54: ratio}, ‘as {ratio} so
{ratio}’.

55 belongs to another type of formula, which I will describe below.
It will also be seen that the words 6 Adyos are regularly elided in this
formula.

We can now move on to the basic group of argumentation formulae
in proportion theory:

56. {formula 55: proportion} kai évaAA&S {formula 55: proportion}
— ‘alternately’,

*7 Three formulae tied to specific tasks:

45. €3eixbn B¢ {clause in the indicative}
46. & 87 ToUuTou avepodv, OT1 {clause in the indicative}
47. Yéyovos &v €in T é¢mTaydév (160.15).

Two formulae are among the main matrices of definition:

48. {noun phrase} A¢yeTan {verb phrase} (Def. 1)
49. {noun phrase} {noun phrase} koAeiofw (Def. 2).

The two main matrices for the enunciation are:

50. €&&v {clause in subjunctive} {clause in indicative}
51. &v {noun phrase} {clause in the indicative}.

Problems appear here always with the same structure, which involves two matrices:

52. The matrix for the enunciation is: {a clause in the genitive absolute} {a clause governed
by an infinitive }

53. The matrix for setting-out is: {a series of verb formulae} d¢i &7 {a clause governed by
an infinitive}.
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57. {formula 55: proportion} kai &vamaAwv {formula 55: propor-
tion} — ‘inversely’,

58. {formula 55: proportion} kai cuvbévT {formula 55: proportion}
— ‘In composition’,

59. {formula 55: proportion} kai d1€AovTi {formula 55: proportion}
— ‘separately’,

60. {formula 55: proportion} kai &vaocTpeyavTi {formula 55: pro-
portion} — ‘conversely’.

All these formulae above involve also a specific relation between the
their constituent formulae. Let us analyse, for instance, 56.

56 =

gTrel 55 Kol EVOAAGS 55 =

grel s 54 oUTWS 54 Kl EVOAALS, @S 54 oUTWS 54 =

¢mel s {first object} mTpos {second object} oUTws {third object}
pos {fourth object} kal &vaAA&E, s {first object} mpdos {third
object} oUtws {second object} Tpos {fourth object}

The whole group 56—60 can be analysed similarly, though only
56—57 can be described ‘syntactically’, without reference to the contents
of the objects.

Besides their rich internal structure, such formulae stand in a struc-
tural relation to each other. It is possible to conceptualise this group as
a single formula, with five different manifestations, or to see the five
formulae as equivalent transformations of each other. I will return to
this later on.

Argumentation formulae are often richly structured: they correlate
rich contents. They are thus not unlike some of the matrices described
for second-order formulae. And in fact the following argumentation
formula seems almost like a second-order matrix, so fundamental 1s it:

601. €l y&p dUvaTov, €oTw {some property}. {some argument} {some
property} &mep €oTiv &dUvatov/&Totrov. oUk &pa {the first prop-
erty}. &pa {the negation of the first property}, ‘For if possible, let
{some property} be. {some argument} {some property, considered
impossible/absurd} which i1s impossible/absurd. Therefore not {the
first property}. Therefore {the negation of the first property}’.

This 1s the reductio. To understand this form of argument, the first
thing 1s to put it in its wider context of Greek mathematical argumen-
tative formulae.
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We see that argumentation formulae may be more or less general,
more or less content-specific. A formula covering a relatively wide
range of contents 1s:

62. {context: equality of objects 1 and 2}. kowov Tpookeictw/
&epnpeéobaw {some object g}. dSAov/Aoimov &po {object made of
1 plus/minus g} icov éoTi {object made of 2 plus/minus g in the
dative}: {1 equals 2} ‘let § be added <as> common, therefore the
whole/remainder {1 plus/minus g} is equal to {2 plus/minus g}’.*"

Some argumentation formulae, on the other hand, are very content-
specific. Therefore they can not be, in general, very markedly repeti-
tive. But they are semantically marked: they repeat the grounds for
the move 1n a very specific way, from which there 1s little deviation. In
other words, they may be compared to quotations of the grounds for
the move. For instance, consider the following:

63. émel {formula 35: cutting a line into equal and unequal seg-
ments, expressed in the indicative instead of the imperative} &pa
{formula g: rectangle, its two lines being the two unequal segments}
ueta ToU {formula 8: square, its line being the difference between
the unequal and the equal cut; in the genitive} icov éoTi {formula
8: square, its line being the equal section; in the dative}.

This 1s what we express by (¢ + b)(a— b) =a*— b*. Our neat typo-
graphic symbol is expressed, in the Greek, by a baroque structure of
formulae.*

What makes the formula most strongly felt 1s the fact that it is not
the general result, proved elsewhere, which 1s referred to. It is the
general result expressed in the particular terms of the case at hand.
The Greek mathematician does not pause to say ‘and when a line is
cut into equal and unequal segments, etc.’. Rather, he says ‘and since
the line AB was cut into equal segments at D, into unequal segments

at ¢. .. .

* In this case I did what was only suggested for formulae 56—60 above: I collapsed the two

formulae, for addition and for subtraction. I saw the two as manifestations of a single, higher
formula.

Bear in mind that each of the formulae g5, g, 8 is itself a structure of formulae. To express this
in term of brackets (a representation I shall explain below), the formula is:

63[35[2,1,1],9[2],8[2],8[2] |

Even this is a simplification, however, since it does not list the matrix for equality as a formula.

29
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Thus, the use of the general result i1s not a quotation: it is a formula.
When a Greek proves a general result, what he does 1s to validate a
matrix, in which particular objects are, from that moment onwards,
allowed to be fitted.

Book 1 of the FElements contains nine argumentation formulae,
including 62 and 63 above.*

2.1.5 Predicate formulae
The remaining group 1s formulae denoting predicates (in the wide
sense, including relations).

I have already given above a few of these formulae (which, naturally,
are often constituents in larger formulae): first, 55, the all-important
formula for proportion. This signifies a relation between two ratios, and
we saw 1t as a constituent in formulae 56—60.

I have also mentioned, without numbering it:

71. €is aUTAS éureTTwKeY {formula 2: line}, ‘{formula 2: line} meets
them’.

3 Three other formulae of the same type as 63:
64. What we express by (a+ b)* = a* + 2ab + b°. &mel {formula g3: cutting a line} s &tuyxev,
&pa {formula 8: square} icov foTi {formula 8: square} xai 3is {formula g: rectangle}
(based on prop. 1.4, used in 156.6—9).
65. What we express by b(2a + b) + a* = (a + b)*. émel {formula 34: bisecting a line}, {formula
31: adding a line} &pa {formula g: rectangle} peta {formula 8: square} ioov éoTi {formula
8: square} (based on prop. 1.6, used in 152.214).
66. What we express by (a+ 0)* + b*=2b(a+ b) + a*. émel {formula g3: cutting a line} ds
gTuxev, &pa {formula 8: square} ioa éoTi T¢ Te Sis {formula g: rectangle} kai {formula 8:
square}.

A similar formula is:

67. étel TapdAANASs éoTv {formula 2: line} {formula 2: line}, kai €is oS EuTrémTwKEY
{formula 2: line}, {formula 17: external angle} {formula 3: angle} fon éoTi {formula 18:
internal angle} {formula g: angle}. This is based on 1.29, and the formula occurs in
126.4—06.

What is in fact the other half of the same formula is:

68. émel Tap&AANASs éoTiv {formula 2: line} {formula 2: line}, kad €is a¥TdS EuTTéTTWKEY
{formula 2: line}, {formula §: angle} &pa dUowv dpbais focu eiov.

This occurs in 148.4—6 with a somewhat different phonological form. I shall discuss the
variability of formulae below. 67 and 68 show that phrases such as eis aTas EumémTwkey
{formula 2: line} are themselves formulae: they belong to the next and final type.
Two simpler formulae (involving no such matrices, at least in the sense that they do not infix
so much) are:
69. TapaAnpwpaTa y&p ToU {formula 6: area} TTapoAAnAoypdupou (e.g. 140.7—8, argu-
ing for the equality of the complements — a very local formula)
70. gvaAAa§ ydp (used for the equality of alternate angles, 148.19).
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This formula signifies a relation between three lines. We saw it as a
constituent of 69—70 above. We also saw:

72. TTPOSs Opbas, ‘at right angles’,

a constituent of 38.
Moving from relations to predicates in the strict sense, we saw

79. WS €TUYEY, ‘as 1t chances’.

This formula signifies a manner for an operation; it is thus naturally
a constituent in construction formulae.
Another adverbial formula which we have seen already is:

74. €1 eUfelas {formula 2: line, in the dative}.

This 1s a constituent of formula g1 above.
We have also seen the following relational matrices:

75. {object} icov éoTi {object} peta {object}
76. {object} ioov éoTi {object} kai {object}
77. {object} ioov éoTi {object} Te kai {object},

which are three ways of representing a + b = ¢, and also
78. {object} ioov éoTi {object},

which 1s simply a = b.

Here 1t will be objected that I describe what 1s a normal distribution
of a Greek semantic range. But my definition takes account of this.
Formulae 7578 are only slightly semantically marked (see below), but
they are extremely markedly repetitive in Greek mathematics. They
are responsible for a large proportion of the text of the proofs. For
instance, of the 104 words of the proof of Elements 1.1, 61 occur within
matrices of equality.

Another mmportant set of matrices 1s that of identity, indeed very
simple 1 its formulation:

79. {object} {object} (used as a full clause)
8o. {object} TouTéoTIv {0bject} (used parenthetically within a clause).

Matrices for equality and identity are what Greek mathematics mostly
deal with. They are transparent, but they are so repetitive as to be
formulaic — and they are felt as formulaic within the larger formulaic
context.
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Elements 11 contains 17 predicate formulae.”

To sum up, then, we have seen five groups: object formulae, con-
struction formulae, second-order formulae, argumentation formulae
and predicate formulae. Very occasionally, I will call these O, C, S, A
or P. This allows the use of a simple code: for instance, predicate
formula 8o may be represented as P,

We have repeatedly referred to various parameters. Before moving
onwards, I will recapitulate these parameters as well.

2.2 Parameters for formulae

2.2.1  Markedly repetitive? semantically marked? non-compositional?

We saw that formulaic status may derive both from semantical
markedness and from marked repetitiveness. But we also saw that the
semantic markedness tends to be quite weak. When formulae are
non-compositional, this 1s almost always due to ellipsis. The degree of
non-compositionality is the degree of ellipsis. Formula 13, 1| ék TOU
KévTpou ToU {3 letters or more }/kUkAov, ‘the <line drawn> from the
centre of the {g letters or more}/circle <to its circumference>’, is a
highly elliptic formula. It is also heavily semantically marked. But even
here, the general practice makes it very easy to supply the noun ‘line’

3 These include a matrix, almost as important as that of equality, namely inequality:
81. {object} peifwv {object in the genitive} {object in the dative}.
A local, illuminating variation on the matrices of equality is:
82. {object} oUv {object}.

This is used in 1.6 192.8—9 and elsewhere to signify precisely that the addition is not intended

within a matrix of equality; that the addition is simply a composition, creating a new object.

The formula works by being different, by using oUv instead of petd. If one is meant to

distinguish the two concepts, these two Greek prepositions are a happy choice. But they do not

signify it in themselves. It is the entire semantic structure which signifies the difference — and,

in such ways, innocent prepositions such as these do begin to be somewhat semantically marked.
A local development of the matrix of equality is:

83. mAeup& {formula 2: line} mAeup& {formula 2: line} fon.

Simpler cases are the relation:

84. &l T& {optional: adT&/ETepa, or some object} uépn (148.9-10),
the adverbial predicate:

85. cs &mo pioas (138.11-12)
and these widely important predicates:

86. dpbn

87. Sobels.

These two are very markedly repetitive in Greek mathematics; also, through ellipsis, 86 is
mildly non-compositional.
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for the feminine article (after all, formula 2, for line, is easily the most
common one in Greek mathematics). So the formula may perhaps be
translated as ‘the line from the centre of the circle’, which after all 1s
not so opaque as a ‘radius’.

Very rarely, ellipsis 1s joined by a metaphor of kind. Perhaps the
most prominent case of ‘metaphor’ is

88. {formula 2: line} duvdauel, literally ‘line, in potential’.

This 1s a predicate formula, roughly speaking the square on a line. How
‘potentiality’ denotes ‘squareness’ is an open question, which I will not
tackle here.® It has attracted a lot of attention just because it 1s such a
rare case of what seems like metaphor in Greek mathematics. In general,
formulae — just like the lexicon itself — do not work through coinage,
1.e. through the creation of original metaphorical concepts. They work
through the twin processes (paradoxically twinned!) of repetition, on the
one hand, and ellipsis, on the other. They start from natural language,
and then employ a small subset of it. A glaring contrast to the Homeric
system, then. Not for us rose-fingers, the riches of the Homeric lan-
guage. Mathematical formulae are the children of poverty.

2.2.2  Hierarchic structure

Almost all formulae we saw included an element of ‘variables’, repre-
sented by {}. In a few simple cases, these variables are diagrammatic
letters. In other cases, the variables are very general, such as {object}.
Most often, at least some of these variables are formulae themselves.
This results in a hierarchic structure. It is most naturally described by
a ‘phrase-structure’ tree.® To take a very simple case, involving formu-
lae 2, | AB (the (fem.) {2 letters or more} =line), and 3, | UTTO TQOV
ABI" — (the (fem.) by the (gen. pl. fem.) {3 letters} = angle):

or a more complicated case, that of formula 21. Its structure is:

21. 01 {formula 1: pomt, in the genitive} {formula 2: line, in the
dative} TrapaAAnAos fixbw {formula 2: line, in the nominative}, ‘let
{formula 2: line} a parallel to {formula 2: line} be drawn through
{formula 1: point}’.

3 See, e.g. Szabo (1969), 1.2; Knorr (1975), 11.1; Hoyrup (1990b).
3 The term — as well as the tree itself — is borrowed from linguistics.
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This corresponds to the tree:

G,

/’\

O O O

2 2 1

To save space, linguists often use an equivalent non-graphic, linear
bracketing presentation, e.g. G, [O,,0,,0,] (what is immediately out-
side the brackets governs the contents of the brackets).

Fig. 4.1 15 the tree of Elements 11.2, an entire proposition. The typical
branching involves no more than two or three branches. In other
words, a hierarchic formula correlates two or three simpler formulae.
With the set of formulae given above, it is possible to make similar
trees for the entirety of book 11. It is all governed by the same limited
number of recurring, hierarchically structured formulae.

2.2.3 Contextual constraints

In some cases formulae have formulae as constituents because these
constituent formulae are written into them (thus, the formulae for line
and point are written into the formula of drawing a parallel); or they
may have formulae as constituents by chance, as it were: the formula
demands some complement (not necessarily a given formula), which
happens to be a certain formula. This is for instance the case in the
matrices for equality, etc. Since expressions representing objects in
Greek mathematics are formulaic, these matrices will govern formu-
lae. So, besides the parameter of hierarchic structure, another impor-
tant parameter 1s the strength of contextual constraints. The contextual
constraints of ‘draw a parallel’ are strong: it occurs only with ‘line, line,
point’.3* The contextual constraints of ‘is equal’ are minimal. These
parameters have little resemblance to the Homeric case. In a limited
way, 1t 1s possible to use phrase-structure trees to analyse Homeric
patterns of formulae.®> But this has not been pursued far, not even
by those Homerists who set out to apply modern linguistics.?* Why is

3 Even this does not determine the context, of course: the lines and points may vary. Most
significantly, they may, or may not, be lettered.

% See, e.g. the sentence-pattern discussed in Hainsworth (1968) 15.

3% Nagler (1967, 1974) uses generative grammar mainly in the distinction between deep-structure
and surface-structure — which, incidentally, has meanwhile been rejected by Chomsky. May
this serve as a warning: never apply the most recent theories! More recently, however, some
work was done on Homeric patterns, e.g. Visser (1987) and (following him) Riggsby (1992).
(Kiparsky 1974 — the most competent discussion of the subject from the point of view of
generative linguistics — is really an analysis of idioms, not of formulae, and has not been taken
up in Homeric scholarship.)
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that? It should be clear that whatever humans produce has structure
which can be represented by such phrase-structure trees. People do
not stop after every act (or word) to consider what their next one will
be: they proceed by following structures which they fill up with acts
(or words). The point 1s that the Homeric structure is prosodic. The
Homeric author thinks in lines which break down into prosodic
units (known as cola). The only relevant ‘tree’, therefore, 1s that of the
line governing the cola, each colon governing (optionally) a formula
(Homeric formulae are generally colon-sized). Such a representation
tells us nothing beyond the fact, which we knew all along, that the text
consists of lines and cola.

But the mathematical case is different. Because mathematics is writ-
ten as prose, the relevant units are syntactic, and not prosodic. There-
fore much greater ‘depth’ is possible in the trees, and the hierarchical
structure becomes much more important. So some order begins to
emerge: the Homeric formulae are based on prosodic form, whereas
the mathematical formulae are based on syntactic form. But we have
already moved from typology to analysis of behaviour.

34 THE BEHAVIOUR OF FORMULAE

3.1 The flexibility of formulae

I have made a survey of 50 occurrences of formula 89 (all the cases
in Archimedes, and in Apollonius’ Conics 1. The round number 1s
accidental). I explain the survey and the formula in a footnote.”

I have found 11 variants (out of the possible 64). The canonical, full
version, while by far the most common, is responsible for no more
than about a third of the occurrences.

But is there any regularity? Does the term ‘canonical form’ mean
anything? My answer 1s positive. The variations, in the great majority
of cases, take the form of ellipsis, not of substitution. In most occur-

3 89. (6 Aoyos oUykertal) €k [Te] [ToU] [Ov Exer] {X} mpos {Y} kal [ék] [ToU] [ov Exel] {Z}
mpos {W}.

The phrase-structure is Py [O,,,0,,,0,,]. I collapse the constituent formulae of ratios into the
formula itself, which is useful for the description of variability.

The formula has six ‘degrees of freedom’: each square-bracketed element is optional (so
there are 64 possibilities). This is like a binary number: I attached to each occurrence its
binary number, and checked, of course, for other possible variations (which turn out to be
much rarer).
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rences, some of the elements of the formulae are elided. But a substitu-
tion of one element for another i1s much rarer, occurring only 7 times
out of my 50. Most commonly, therefore, the mathematician deviates
from the formula in ellipsis only. He does not go through all the
motions, but only through some. If indeed formulae are parsed as
wholes, this 1s natural: why say more when you can get the same effect
more economically?

Significantly, however, the Greek mathematician almost always
goes through at least some of the motions. Of my 50 formulae, only one
1s a zero formula, one in which all the optional items have been left
out. All the cases where the mathematician chose a more-than-zero
formula are cases of redundancy. Once the motivation for ellipsis is
understood, one is rather surprised by the tendency nof to be brief.
And why are full formulae so common?

The main distinction inside propositions is between the letterless,
general enunciation and the rest of the proposition, structured around
the proof. The two foci of the propositions are the general and the
particular. These foci extend their fields of gravity. Thus, it is certainly
no accident that Apollonius’ Conics 1.39—41, where the full form of the
formula is so common (10 out of 15, with 2 almost-full occurrences) are
also the only cases in my survey where the formula occurs in the
enunciation. The enunciation is where language 1s most self-consciously
used, where it 1s not yet lost in the heat of the discursive argument, so
formulae are more strongly adhered to there.

What, then, is the identity of the formula? We should separate here
two questions. One 13, what the mathematician thought that the formula
was. Another is, what the formula actually was. Very probably, the
Greek mathematician would say that the formula was the full version.
I even 1imagine Apollonius would have been surprised to know that he
used 1t so little. When the formula 1s being deliberately, self-consciously
written, the full version 1s employed. But in reality, the formula is not
a fixed sequence of words, it 1s not a phonological unit. It 1s a matrix
within which words are fitted, and very often some of the slots are not
phonologically fulfilled. Indeed, in some cases, some phonological
values in the slots may be substituted for others. And this, most prob-
ably, happens without the mathematician even noticing it. The pres-
ence of such small, hardly noticed variations is a fact which must
qualify all my description so far. Again: we do not see the strict rigidity
of the Style Manual, of the proofread text.
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3.2 The productivity of formulae

Formulae are productive in more than one way. First, formulae beget
formulae: a formula may transform into another formula. Second,
formulae may be created from non-formulaic materials. The two main
practices through which such formulae are created — indeed, from
which all formulae are ultimately created — are ellipsis, on the one
hand, and repetition, on the other.

2.2.1  Transformations on _formulae
This of course 1s related to the flexibility of formulae which was
described above.

Formulae are syntax-sensitive. When the formula for ‘line’ 1s used in
the genitive position, it changes from 1) {2 letters} to TQs {2 letters}.
This 1s a different production of the same formula: there is nothing
distinctive about the genitive form: it is not a specific form, having its
own separate meaning. This is similar to some transformations from
verbal to nominal form. For instance, the simplest construction for-
mula in the ‘draw’ family is:

go. &mo {formula 1: point} émi {formula 1: point} fixfw {formula 2:
line}, ‘let a {line} be drawn from {point} to {point}’.

This may transform into:

goa. {formula 2: line} &mo {formula 1: point} émi {formula 1: point}
&youévn, ‘the {line} drawn from {point} to {point}’.

goa 1s a transformation of go: it is probably best seen as a distinct
formula, since it already belongs to the clearly defined group of object
formulae.

Similarly, construction formulae may transform into predicate for-
mulae. Transforming the imperative of the construction into the in-
dicative yields a new formulae, one describing a property. We have
seen:

31. Trpookeioctw aUTh) eUbeia €’ eUbeias, ‘and let a line be added to
it in a straight line’ (Elements 11.146.24).

This may transform into:

g1a. TpookelTan aUTh {formula 2: line}, ‘a line has been added to
1t (Elements 11.152.22).
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Formula g1a 1s a constituent in the argumentation formula:

65. émel {formula g4: bisecting a line}, {formula g1: adding a line}
&pa {formula g: rectangle} peta {formula 8: square} icov éoTi
{formula 8: square} (Elements 11.152.21—4)

which I have given above: it 1s not 31 itself, but its transformation,
31a, however, which is used there. And the same 1s true for other argu-
mentation formulae. Argumentation formulae state the legitimate
transition from one predicate formula to another, so when they argue
from an action to its result, they transform the construction formula
involved in the action into a predicate formula.

Another possible transformation i1s from object formulae to pre-
dicate formulae. For instance, the formula

9. TO Umo {formula 2: line}, ‘the (neut.) <contained> by {line}’
may transform into

ga. mepiexeTan Utro {formula 2: line}, ‘it is contained by {formula 2:
line}’ (Elements 11.120.6—7).

The hidden participle of g, Trepiexduevov, ‘contained’, becomes visible
in ga.

In the cases above, it seems reasonable to view one of the forms as
more basic than the other. However, we have already seen some cases
where formulae are reciprocally related, in the case of, for example:

62. {context: 1=2}. kowov Tpookeichw/&pnpéctw {3}. SAov/
Aorrov &pa {1 plus/minus 3} iocov éoTi {2 plus/minus 3}, ‘{1 =2},
let g be added <as> common, therefore the whole/remainder {1
plus/minus g} i1s equal to {2 plus/minus 3}’.

I have chosen to see two formulae as a single, variable formula.
In the case of formulae 56—60 I have done otherwise:

56. {formula 55: proportion} kai évaAA&§ {formula 55: proportion}
— ‘alternately’

and the following with the same structure but with a different adverb:

57. &vatraAly — ‘inversely’

58. ouvBevTl — ‘In composition’
59. d1€AovTl — ‘separately’

60. &vooTpéyavTl — ‘conversely’.



152 Formulae

These formulae may be seen as a single, variable formula; or they
may be seen as a set of formulae, reciprocally transformable. And it
1s natural to assume that, diachronically, one of these formulae came
first, the rest being created by analogy from the first.

3.2.2  Ellpsis
We saw that formulae may undergo ellipsis, and yet retain their for-
mulaic status. Paradoxically, the process of ellipsis may also be the
source of the formulaic status itself. For a test-case, I take the two
Autolycean treatises, and the development of the concept of the hori-
zon. For the purpose of the discussion I assume that the Moving Sphere
1s In some sense preliminary to the Rusings and Settings.

The horizon first appears in Moving Sphere 4, where, in the enuncia-
tion, it 1s described as a

gI. MEYI0TOS KUKAOS, ‘greatest circle’

(what we call ‘great circle’).3® This is an object formula. To this is
added the construction formula:

92. O6piln 1O Te &Paves Kal TO PAVEPOV MUloPaiplov TS opaipas,
‘divides the invisible and the visible hemispheres of the sphere’.

Immediately afterwards in the same proposition the formula trans-
forms, in the setting-out, to:

Op1CeTd TO TE PavepoV THs opaipas kai TO &pavés — ‘let 1t divide
the visible of the sphere and the invisible’.

Something has already been omitted — the reference to hemispheres.

In the enunciation of the next proposition the horizon is that which
opifn TO TE Qavepov kai TO &paves — ‘divides the visible and the
invisible’ — now the word ‘sphere’ has been left out; and in the very
same sentence it is already called, simply,

93. O 6piCwv, ‘the divider’.

Hence, of course, our ‘horizon’. g3 1s already an object formula and,
through ellipsis, it has become non-compositional.

In the following propositions, 611, the horizon is consistently men-
tioned in the enunciation. It is usually used in a relatively full form
(‘sphere’ included, ‘hemispheres’ not). It is also interesting to note that

3% Already elliptic for péyioTos kUkAos TGV &v Tf opaipa KUKAw.
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the sequence has by now been settled (‘visible’ first, which makes sense).
In the process of each proposition, the expression is commonly abbre-
viated to the plain ‘the divider’. In a single case, proposition 8, ‘the
divider’ is used throughout.

In none of the enunciations of the Risings and Settings is the horizon
mentioned. However, it is mentioned in practically all the proposi-
tions, and almost always as ‘the divider’. Twice, in 1.4 and in 1.6,
fuller forms are used. It is not as if the group of words ‘the divider’
has ousted the larger group. It is felt to be an abbreviation of a fuller
expression, and I guess that, had it appeared in enunciations, ex-
panded versions would have been more common.

The general rule is as follows: repetition creates formulae of marked
repetitiveness. In such formulae of marked repetitiveness, ellipsis 13
natural — the unit 1s parsed as a whole, and therefore parts of it may
become redundant. Ellipsis then leads to non-compositionality and
to semantic markedness. This may form not only a new source of
formulaicity, but a veritable new formula.*

3.2.3  The vanability of formulae — and thewr origin

Above all, of course, formulae are produced through repetition. And
so, a paradox seems to confront us: we have insisted on the flexibility
of formulae; we saw the transformability of formulae; we have now
shown the significance of ellipsis for the very production of formulae —
and ellipsis 1s the opposite of rigid repetition. And yet repetition is the
essence of formulae. What makes a formula is the fact that an author
chooses to use the same expression again and again, and then another
author comes and uses it yet again.

And indeed formulae are repetitive, and are originally introduced as
such. Again, Archimedes’ On Floating Bodies 1s useful to show what
happens where the language 1s formed. So take the following predicate
formula:

96. &gebeis eis 1O Uypodv, ‘immersed in the water’

% Compare the predicate formula:
94. TTop iy dUvavTal oi KaTnyopéval TeToyMeEvws (e.g. Conics 1.11 42.2),
leading to the extreme ellipsis
95. {formula 2: line} Tap’ fiv dUvavTtan (e.g. Conics 1.15 48.20).

This is already an object formula, describing the object having the property of 94.
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This 1s repeated 29 times — put together, 116 word-tokens, a significant
proportion of this short work.*” It i3 Archimedes’ repetitiveness which
makes us see this as formulaic.

But this is not a paradox: it is another reminder of the fact that the
conventions we study are self-regulating conventions. They are not the
result of external, explicit codification. In chapter 2 above we saw
the ‘15 per cent’ tendency: both baptisms and many-lettered names
switches followed a rule but broke it about 15 per cent of the time. The
repetition of formulae cannot be quantified in the same way, but
it 1s essentially similar. The rule is to repeat; the rule is not always
followed; and when 1t is broken, this may yield new, meaningful
structures.

3.3 The generative grammar of formulae
The setting-out of Archimedes’ SL 13 contains the following:

€0Tw ... &pXX . .. TGs €Aikos TO A capeiov, ‘let the point A be the
origin of the spiral’.

This expression 1s the formula
23. €0Tw {object} {object}

with the first object filled by the formula
97. &pY & TaS EALKOSH

and the second filled by formula 1: point.

This is the first occurrence of g7 inside 24 in this work, and hence
(since Archimedes discovered spirals), this 1s the first occurrence of g7
inside 29 in Greek mathematics.

The example is simple. Yet no further examples need to be given
(though thousands could). This example proves the fundamental char-
acteristic of formulae: they are generative. When Archimedes pro-
duces the expression above, he does not consult any manual. He follows
his interiorised grammar of formulae, and this grammar allows him —

4 This includes a transformation into a construction formula:
97. &geiobw &5 TO Uypdv (e.g., §22.9), ‘let it be immersed in the water’.

# As the formula is distinctively Archimedean, I give its Doric form. Naturally, formulae can
cross dialects — which in itself can be used to argue for their generative, non-mechanical
nature.
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certainly without any need for thought at all** — to generate this com-
plex formula. Thus the different aspects of the behaviour fall together:
the hierarchic structure (it 1s through such structures that formulae
are generated); the flexibility (explained by generative, as opposed to
mechanical, uninteriorised production); the transformability and the
creativity (both expressions of generativity). Instead of thinking in
terms of a set, once-and-for-all list of formulae, we should understand
Greek mathematical formulae as a rule-governed, open-ended system.

This can be viewed from several perspectives. One is the perspective
of the individual who uses the system: we see him as a creative, inde-
pendent writer. Another 1s the perspective of the individual who ac-
quires the system: and now we see why the explicit codification is not
an option at all. Grammar can not be taught just by external dictation.
It must be internalised. How the internalisation takes place is then
another question, not so simple to answer (for indeed, do we quite
understand how natural language, let alone natural second language,
1s acquired?). But the analogy itself 1s clear: the acquisition of a techni-
cal language 15 like the acquisition of a second language — but not
quite: the acquisition of a technical language s an acquisition of a
second language.

Finally, this may be viewed from the perspective of the system itself.
Once formulae are viewed as generated according to a grammar, their
systematic nature is emphasised. I have stressed the holistic nature
of the lexicon. The lexicon can not be reduced to its constituents. The
same 1s true for formulae.

The holistic nature of the lexicon had two main aspects:

(a) Economy — the one-concept-one-term principle;
(b) Recognisability — the text 1s manifestly ‘technical’, through its
global lexical features.

These two features are present in the case of formulae. For instance,
we saw how object formulae formed by ellipsis constitute a system, and
are perceived as such (see formulae 1-10 above). This 1s a case of
economy — there 1s generally a single formula for a single concept, and
certainly no two concepts are referred to by the same formula (even
though contextual considerations could, in principle, differentiate the

# A crucial conceptual point: ‘generative’ does not exclude ‘automatic’. On the contrary: the
prime example of generative behaviour, namely language, is also the prime example of auto-
mated behaviour. When I say that formulae are generated, I mean that they are internalised
(and thus to some extent automated), just as a second language is.
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two uses of the single formula). As for recognisability, no argument is
required. The formulaic nature of the text is its most striking feature.”

Formulae constitute a system in a way going beyond that of the
lexicon. The lexicon is atomic — it is made up of unanalysable words.
Formulae are molecules. They have an internal structure, and there-
fore they may resemble each other, or they may result from each other
through transtormations, or they may be embedded in each other. I
gave a number of examples for each of these procedures. I will now
concentrate on a single system of formulae. An especially important
system (as will be explained in the next chapter) is that of proportion
theory. I have already given a number of formulae from this system.
First, the building-block for all the rest, the object formula:

54. 6 Aoyos {any object in the genitive} Tpos {any object in the
accusative}, ‘the ratio of {any object} to {any object}.

On the basis of this, another important predicate formula is:

55. @s {formula 54: ratio} oUTws {formula 54: ratio}, ‘as {ratio} so
{ratio}’.

A variation on this is:

98. {formula 54: ratio} Tov adTOV Adyov Exel, Ov {formula 54:
ratio}, ‘{object to object} has the same ratio which {object to
object}’.**

This has a number of cognates:

99. {formula 54: ratio} peiCova Adyov exel, fmep {formula 54:
ratio}, ‘{object to object} has a greater ratio than {object to
object}’;

100. {formula 54: ratio} éA&oocova Adyov éxel, Atep {formula 54:
ratio} (the same as g9, with ‘smaller’ for ‘greater’);

101. {formula 54: ratio} d1TAaciova Adyov éxet, fiTrep {formula ry4:
ratio} (the same as gg—100, with ‘twice’ instead of ‘greater/smaller’.
The reference 1s to the ‘square’, not to the ‘double’).

An even more complex predicate formula 1s:

89. {formula 54: ratio} oUykeiton €k Te {formula 54: ratio} kai [éx]
{formula 54: ratio}, ‘{ratio} is composed of {ratio} and {ratio}’.

# Even though, paradoxically, the structure behind the system of formulae is not so obvious.
The amateur reader sees an artificial, unstructured system of ad hoc formulae, while the profes-
sional internalises the system and no longer articulates it to himself explicitly.

# In 98, the elements of 54 are used directly, whereas, in 55, 54 is used as a composite unit.
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And, as already explained above, a number of argumentation for-

mulae are based on these formulae, especially on 55 (but also on 99—
100, with obvious modifications):

56. {formula 55: proportion} kai évaAA&§ {formula 55: proportion}
— ‘alternately’,

57. {formula 55: proportion} kai &vamaAwv {formula 55: propor-
tion} — ‘inversely’,

58. {formula 55: proportion} kai cuvbévTi {formula 55: proportion}
— ‘In composition’,

59. {formula 55: proportion} kai di1€AovTi {formula 55: proportion}
— ‘separately’,

6o. {formula 55: proportion} kai &vacTpewavTl {formula 55: pro-
portion} — ‘conversely’.

And another similar formula 1s:

102. {formula 55: proportion} 8¢ {formula 55: proportion} &t icou
&pa {formula 55: proportion} — ‘ex aequali’.

Another argumentation formula, much more complex i internal

structure, 1s:

103. ws 6Aov {formula 54: ratio SAov} oUtws &eaipedév {formula
54: ratio &paipebev}, ‘as whole X is to whole Y, so remainder Z is to
remainder (J’.%

This, then, is a system made up of 14 formulae.** As explained

above, 1t 1s possible to represent linearly the trees of these formulae,
and such a presentation makes the interrelations immediately obvious:

45

46

Here, again, the combination of the elements, in constituting a new formula, can not be
reduced to simple additions. I do not go here into these difficulties, which represent not so
much the complexities of Greek mathematical formulae as the complexity of Greek (or of
most other languages).

The list does not give all the formulae related to proportion: what it does is to give all the
important formulae based on formula 54. There are a few other groups, more specialised. The
most noteworthy is the system of two formulae for the mean proportional, a construction
formula (and, as such, transformable into a predicate formula):

104. TeTunobw {formula 2: line} &kpov kad péocov Adyov, ‘let {line} be cut in extreme and
mean proportion’

and a predicate formula, shading into an object formula:
105. béon &vdhoyov (I take the feminine as representative), ‘a mean proportional’.

The interest in this system is the specialisation of the two formulae. The two approaches —
the construction/predicate and the predicate/object — use completely different morphological
forms. This is directly comparable with the system for the radius, with the completely unrelated
object formula 19 and the construction formula g0. Also, in both systems, the formulae are strongly
semantically marked. Such repeated structures show the necessity for the structural approach.
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0,,[0,0,]

P [0O,,[0,0,],0,,[0,0,]]

P98 [054 [Ox: Ox] 5 054 [Ox> Ox] ]

ng [054 [OX,OX] 9054 [OX,OX] ]

P.0[0;,10,0,],0,,[0,0,]]

P..[0,[0,0,],0,[0,0,]]

P89 [054 [Ox: Ox] 5 054 [Ox> Ox] 7054 [Ox> Ox] ]

Ass[Ps5[05,1 00,05, [0, 0] ,P[0,,[0,,0,],0,,[0,,0,] ]|
Ay [P[04,[0,0,],0,,[0,0,]1,P;[0;,[0,,0,],0,,]0,0,]]]
Ay[P5[0,,[0,0,],0,,[0,,0,]1,P;[0,,[0,0,],0,[0,,0,]]]
A[P5[04,10,0,],0,,[0,0,]1,P;[0,,]0,,0,],0,,[0,0]]]
Ago[P5[0,,[0,0,1,0,[0,,0,]1,P[O,,[0,,0,],0,[0,,0,]1]
Aw[PH0,[0,0]0,[0,0]LP[0,[0,0]0,[0,0] P[0, [0,0]0,[0.0]]]
Au3[05,105,0,],0,,10,,0,],0;,,[0,,0,] ]

Two features of this system are most important:

(a) The entire system is produced through combinations and transfor-
mations on 54—55.

(b) The system in which the formulae are interrelated mirrors the way
in which the concepts themselves are related (e.g. the mathemati-
cal cognates are identical in form). In argumentation formulae, logic
and form are 1dentical. I shall return to this in the next chapter.

To sum up: the generative nature of formulae helps to explain both
their accessibility and their deductive function. Formulae are accessi-
ble to the user because they are produced from a few simple building-
blocks. They are deductively functional because their form mirrors
logical relations.

The generative grammar of formulae 1s their most important quali-
tative feature, the one which encapsulates most of the rest. But qualita-
tive features are not enough: a quantitative detour is necessary before
we move on.

3.4 Quantitative remarks

It 1s thus necessary to try to quantify the phenomena — but it is
also very difficult. One would like to know, for instance, how many

¥ At this stage it should be noticed that second-order formulae form their own separate system:
they are not transformable into or from other formulae, they are less flexible, and their
hierarchic structures do not specify other formulae. This is typical of the way in which second-
order language, in general, differs from first-order language.
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formulae are used in Greek mathematics. But, the limitations of the
corpus aside, how can you count an open-ended system? Or another
important question is that of the percentage of the text which is taken
up by formulae. In a sense the answer 1s an immediate (and therefore
unhelpful) ‘everything’. Looked at more carefully, the question becomes
very difficult: if a formula is a matrix, a form of words, are we to count
all the words occurring mside the matrix as part of that formula? Or
only the ‘topmost’, fixed words? For instance, in % 4, ‘the <point> A’
what 1s formulaic? The article? Probably yes: this is the fixed part of
the formula. The letter A? Perhaps not: it may be replaced by other
letters. But then what is left of the formula? It feels most formulaic
with this strange-looking pseudo-word ‘4’! And, in this way, it be-
comes very difficult to approach another central question, that of the
average size of formulae: how are we to measure such sizes? What we
see 1s that formulae are form, not matter — and form 1s much more
difficult to measure.

Parry could approach the question of the quantitative role of for-
mulae in Homer 1n a straightforward way. The main example in Parry
(1971) was two samples taken from anything but a neutral context: the
first 25 lines of each of the epics. There, he simply underlined for-
mulae. Fortunately, it took me some time to realise the complexity of
the questions and, when I started working on the problem of formulae
in mathematics, I followed Parry for a number of propositions.*’ Look-
ing again at my survey, I can see that I underlined the constituents of
the more strongly semantically marked formulae. This 13 not a meaning-
less survey: it gives us the portions of the text which immediately strike
us as formulaic. I have discovered considerable variability. The limits,
however, are clear. No proposition contains no semantically marked
formulae at all. No proposition consists of such formulae alone. The
rule 1s a roughly equal distribution of the text between semantically
marked and non-semantically marked formulae. In Parry’s examples,
around 70% of the text is formulaic,” significantly above my results
(though Parry’s result is approached in more formulaic propositions,
such as those of the Euclidean Data). In the mathematical text, but not
in Homer, significant chunks of text may occur without any ‘abnormal
words’ at all: for instance, the first 35 words of Apollonius’ Conics 1.1.
The mathematician may speak, for a few lines, a language which 1s

® These are: Autolycus, Moving Sphere 11; Euclid, Data 57; Apollonius, Conics 1.1—4, 12, 25;
Archimedes, CS 20, Meth. 1. I also counted numbers of formulae per proposition.

¥ Parry (1971) 118, 120.
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essentially natural (though repetitive); or he may use a language in
which semantically marked and ‘normal’ words are roughly equally
and evenly distributed; or, finally, he may speak a language which 1s
composed of formulae-within-formulae and practically nothing else.
Propositions, as a rule, are made up of all three types of language, but
exact proportions may vary considerably from one proposition to
another.

The numbers of semantically marked formulae in the propositions
surveyed range between 7 and 21. This should be compared with the
sizes of the propositions, which range between 100 and 600 words.
The number of such formulae in propositions, while dependent to
some extent on the absolute size of the proposition, is more constant:
a standard proposition has between 10 and 20 formulae. The number
of semantically marked formulae 1s a good measure of the conceptual
size of a proposition. Whatever becomes a focus of interest for the
mathematician tends to get a semantically marked formula. The num-
ber of semantically marked formulae is comparable to the number
of objects and situations of mathematical interest. Between 10 and
20 such objects and situations are the size for a deductively interesting
proposition.

Finally, the total number of formulae in Greek mathematics: we
have seen the difficulty of even defining it. Could we nevertheless say
anything useful about 1t? Mugler’s dictionary offers, sometimes, the
formulae within which the words surveyed by him are being used. In
all, he gives 76 formulae. (Clearly, Mugler does not aim at complete-
ness, but gives what he sees as the most interesting or common for-
mulae.) Archimedes’ index, which 1s much more complete (but is still
conservative in its conception of what a formula 1s), supplies at least
about 150 formulae, which include most of Mugler’s formulae. In my
(definitely not exhaustive) survey, I listed 105 formulae, of which 71 are
the complete set of formulae in Elements 11 alone. Most of the 71 formulae
of Elements 11, however, appear in many other contexts as well.

The numbers have a certain coherence. A large sample (Mugler’s
dictionary; Flements 1) gives fewer than 100 formulae; a huge sample
(Archimedes’ corpus) gives fewer than 200 formulae. The range of
magnitude is therefore clear: hundreds. Of these, the ‘mainstream’
formulae, those commonly used, can not number more than a few
hundred.

We get two sets of numbers, then. One set, that of formulae within
a single proposition, are in the range 10—20. Another set, that of the
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total number of ‘mainstream’ formulae, 1s in the range of a few hun-
dred. We shall meet these two kinds of numbers again, in the next
chapter.””

3.5 The Greek mathematical language: recapitulation

It 1s possible now to put together the results of chapters g and 4.
A large Greek mathematical corpus — say, something like all the
works 1n a given discipline — will have the following characteristics:

* Around 100—200 words used repetitively, responsible for 95% or
more of the corpus (most often, the article, prepositions and the
pseudo-word ‘letters’).

A similar number of formulae — structures of words — within which
an even greater proportion of the text is written (most often, lettered
object-formulae). These formulae are extremely repetitive.

* Both words and formulae are an economical system (tending, espe-
cially with words but also with formulae, to the principle of one
lexical item per concept).

* The formulae are flexible, without losing their clear identity. The
flexibility usually takes the form of gradual ellipsis, which in turn
makes the semantics of the text ‘abnormal’.

* Further, about half of the text 1s made up of strongly semantically
marked formulae, which serves further to mark the text as a whole.

* The flexibility sometimes takes the form of transformations of one
formula into another and, more generally, formulae are structurally
related (either vertically — one formula is a constituent in another
— or horizontally — the two formulae are cognate).

* Thus a web of formulae is cast over the corpus. Alongside and above
the linear structure of the text, we will uncover a structure consti-
tuted by repeated, transformed, cognate or dependent formulae.

Since all the text is formulaic, and formulae are repetitive and
hierarchically structured, the text can be seen as a structured system of
recurrences.

This 1s most strongly felt within individual propositions. In fig. 4.1,
the analysis of Elements 11.2, the proposition can be seen as a single tree,
made up of 14 formulae. Given this analysis, the structural relations of

% We have already met the second number in the preceding chapter, on the lexicon: 143
Archimedean words account for g5% or more of the Archimedean corpus — remarkably
similar to the number of formulae in the corpus!
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the propositions become apparent: the enunciation is a pair construc-
tion formula/predicate formula; the same sequence 1s repeated in the
pairs setting-out/definition of goal; construction/proof. Finally, the
conclusion reverts to the original sequence. A limited group of object
formulae 1s governed by those construction and predicate formulae:
the construction and predicate formulae operate on the small group of
object formulae, rearrange them and yield the necessary results.

The global relation between construction and predicate formulae —
the sequence of four repetitions of these sorts of formulae — 1s the key
for generality. I will discuss this in detail in chapter 6 below.

The more local relation between object formulae, governed by
construction and predicate formulae (and, elsewhere, argumentation
formulae) 1s one of the keys for necessity. I shall return to this in the
next chapter.

4 SUMMARY: BACK TO THE HOMERIC CASE

4.1 Contexts of formulae

First, an obvious point: the use of a system of formulae (especially non-
compositional formulae) implies a professionalised, inward-looking and
surprisingly homogeneous group. This enhances the results of chapter
3, and I shall return to this issue in chapter 7 below.

I shall move straight to the main issue, that of orality and literacy —
returning to Homer. In the Homeric case, formulae are seen by most
of the scholars as signs of orality. As explained above, this can not
be imported directly into the mathematical case. But the problem
remains: what sort of language use is implied by the use of formulae?

The word ‘oral’ is sometimes used to mean ‘lliterate’: in this sense
certainly it 1s inapplicable to the mathematical case. But this use of
‘oral’ 1s misleading (as i1s now well known, e.g. following Finnegan
1977). This 1s because there 1s no sharp dichotomy, ‘oral’ and ‘written’.
The cognitive reality 1s much more complex. The presence of writing
may be influential to varying degrees, in varying ways. So consider,
for instance, the flexibility of formulae. The text is repetitive — but not
verbatim repetitive. This is comparable to the result in chapter 2 above,
concerning the behaviour of many-lettered names. And we shall re-
turn to the same result in the next chapter, with the quotation of
earlier results. Whether the Greek looked up his text or not, at any
rate he did not operate under the expectation that one should look up
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one’s text. This expectation may be an impact of the use of writing, but
there was no such impact of writing on Greek mathematics.

Another point is more difficult. What constitutes the unity of a
formula? What makes it perceived as a single, organic object? In the
Homeric case, this i1s the prosodic form of the formulae. In the math-
ematical case, this is the internal structure: in general, mathematical
formulae are structures. Now language in general is structural (just as
language in general is prosodic — and, incidentally, prosody in general
1s structural). The generative structure of Greek mathematical formu-
lae 1s a reflection of language in general. Formulae import the proper-
ties of natural language into a sub-language.

Both awareness of prosodic form and awareness of structure are
built into the human linguistic capacity. The Homeric formulae and
the mathematical formulae are both based on (different aspects of)
this natural capacity. The Homeric case is specifically aural: it is based
on the specifically heard properties of language. It is pre-written in a
strong sense. The mathematical formula i1s not based on this phono-
logical level. It 1s more abstract. But still, 1t is pre-written in a more
limited sense. It is based on a capacity which antedates writing and
which 13 independent of it. The awareness of linguistic form is a fea-
ture of natural language as such, which does not require writing. And
it 13 this feature of natural language which constitutes the essence of
mathematical formulae.

Most 1mportantly: the linear presentation of texts in writing,
unspaced, unpunctuated, unparagraphed, aided by no symbolism re-
lated to layout, was no help for the hierarchical structures behind
language. It obscures such structures. In:

A+ B=C+ D

for instance, the hierarchical relations between the objects are strongly
suggested by the symbolism. But consider this:

THEAANDTHEBTAKENTOGETHERAREEQUALTOTHECANDTHED

This 1s how the Greeks would write ‘A + B= C+ D’, had they written
in English. And it becomes clear that only by going beyond the written
form can the reader realise the structural core of the expressions.
Script must be transformed into pre-written language, and then be
interpreted through the natural capacity for seeing form in language.

Greek mathematical formulae are post-oral, but pre-written. They
no longer rely on the aural; they do not yet rely on the layout. They
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are neutral: rather than oral or written, they are simply artefacts of
language.

Yet could these formulae take root without writing? In a sense, the
answer 1s positive. Clearly here (as in the lexicon in general) explicit
definitions are of minor significance. True, some sets of definitions
deal with groups of formulae. For instance, the definitions of the Data
cover the various data formulae, and the definitions in Elements v.12—17
cover the main argumentation formulae of proportion theory. But
even those definitions do not cover the actually used form: the Data
defines the formulae with the verb in the infinitive (‘X 1is said o be
given . .."), while the actual use of the formulae is in the participle ("X
1s giwen . . .’); book v defines the formulae with an adjective (‘an mnverted
ratio . .."), while the actual use of the formulae is with an adverb
(“. . . wnwersely . . ). Of the 71 formulae of Elements 11, three are defined
(though only one is defined in exactly the way it 1s used — and this is
also a one-word-long formula). These are g (for rectangle, defined in
1.1), 11 (for gnomon, defined in 11.2) and 86 (‘right’ as an adjective of
angle, defined in 1.10).

So definitions — those written introductions to works — do not gov-
ern the behaviour of formulae. The formulae are governed by the texts
themselves, not by their introductions — as 1s true for the lexicon in
general. These texts, however, were written. Is it possible to imagine
the conservation and transmission of formulae in the Greek math-
ematical case, without the presence of writing? Now, finally, the an-
swer must be negative.

I will approach this through the argument that follows, returning to
oral poetry. I do not mean to say anything dogmatic about oral poetry,
just to remind ourselves of the possibilities by going through the better
understood data of oral poetry. There 1s a certain paradox about oral
poetry. As noted by Goody, poetry deriving from strictly oral cultures
is not more formulaic than Homer’s, but less formulaic.’" The presence
of writing (which in one way or another must have influenced the
Homeric tradition) could help to conserve and transmit formulae. Even
if there 1s no expectation of looking up the text, there is certainly the
possibility of doing so in the written context — and this will help the
conservation and transmission of formulae. But does this argument not
run counter to the main oral hypothesis? After all, is the Homeric text
not formulaic just because it 1s oral?

% Goody (1987) 99.
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The paradox 1s illusory. The two horns of the dilemma point to
different, unrelated processes. Briefly: formulae help an oral performer;
they are helped by a written background. There 1s a limit to how
formulaic a totally oral work can be (without any help from writing,
there is a limit on the emergence of a rigid, repetitive system). There is
a limit on how developed a non-formulaic work can be, in a context
which 1s to some extent oral (without formulae, it is difficult to create
a developed work). I will therefore say this. Without writing, the for-
mulaic system of Greek mathematics could not have been conserved
and transmitted (though, as explained above, nothing in the actual
Jfunction of these formulae owes anything to the specific written aspects
of the text, such as layout). This in itself is speculative, yet the sub-
stantive claim 1s almost tautologic. Without writing, there would be no
Greek mathematical continuity at all — as will be explained in chapter 7
below. We can therefore safely say that writing made the emergence
of mathematical formulae possible. And yet, the specific shape of for-
mulae represents pre-written assumptions.

4.2 Formulae and cognition

As explained above, formulae can help an oral performer. We know
what Homer gained from his formulae. What was Euclid’s gain, then?
What was the gain for his readers? There are at least five ways in
which formulae are directly helpful to proceeding deductively.

(a) Formulae strengthen the tendency of the lexicon as a whole (as noted
in the preceding chapter) to be concise and thus manageable.

(b) The structures of formulae parallel the logical properties of the
objects or procedures to which those formulae refer. In particular,
the mternal structure of an argumentation formula mirrors its logi-
cal content.

(c) Similarly, on a larger scale, the hierarchic, internal and external
structures of formulae make the logical relations between their
contents more transparent. Objects are repeated as object for-
mulae, within clearly marked predicate and construction formulae.

(d) Going beyond the individual proposition, the tool of formulae serves
as a means for transferring results from one proposition to another.

(e) Finally, the overall formulaic structure of the proposition serves as
the basis for generality.



166 Formulae

Point (a) 1s a continuation of chapter g. Points (b)—~(d) will be ex-
plained in detail and discussed in the next chapter; point (e) will be
explained in detail and discussed in chapter 6.

How do such deductive contributions of the formulae explain their
emergence? The question is not simple — nor is it simple in the Ho-
meric case. It 1s not as if someone set Homer the task: ‘improvise epic
poems orally’, and Homer came up with the idea ‘I shall devise a
system of formulae’. The process of emergence is much more complex:
useful tools, easily transmittable tools, tend to accumulate — and to
shape, in their accumulation, the task itself. The evolution of cognitive
tasks and tools is intricate and reciprocal. As I have stressed at the
beginning of this chapter, ‘formulae’ are ubiquitous. Wherever there
are artefacts, there are repeated patterns. And this is not surprising:
artefacts are repeatedly made, and the repetition of action implies
some repetition of result. The Homeric singer sings day in day out, in
each song frequently returning to the same themes.>® Such repetition
in subject matter naturally leads to the emergence of repeated patterns
— in Homeric song as in any other product. Those patterns are con-
served and transmitted which are especially useful for the practitioner
and the audience. It is, then, possible to analyse artefacts according to
their characteristic patterns, and these characteristic patterns will teach
us about the requirements of the practitioner and the audience.

I will concentrate on the way in which logical relations are mirrored
by linguistic structures. It is in this that mathematical formulae are not
unlike Homeric formulae. Both kinds of formulae harness a natural
linguistic skill for the specific task in hand, and thus make the task
much easier. The natural skill, in the Homeric case, 1s prosodic aware-
ness. In the mathematical case, i1t 1s awareness of form. Moreover, in
both cases, the economy of the system makes it even easier to access
the individual formulae.

In an expression such as ‘as the 4B is to the CD, so the EF is to the
GH, therefore, alternately, as the AB is to the EF, so the CD is to the
GH’, it 1s essential that the expression is not perceived linearly. It is
perceived structurally, as a ‘tree’. The expression represents a proved
result: this is why 1t is valid. But it 1s immediately convincing (which
is what deduction requires) not because it was proved earlier, but
because it 1s perceived as a structured whole. This has two aspects:
first, it has the typical hierarchic structure of formulae; second, it 1is

5% Hainsworth (1993) 12.
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well known to its user, and 1s thus perceived directly, as a whole (as 1s
true for formulae in general).

Greek mathematicians were not oral performers — they were not
performers at all (see chapter 7 below). But then, imagine a Greek
mathematician during the moment of creation. He has got a diagram
in front of him, no doubt. But what else? What can he rely upon, what
1s available in his arsenal? There are no written symbols there, no
shortcuts for the representation of mathematical relations, nothing
besides language itself. He may jot down his thoughts, but if so, this
1s precisely what he does: write down, in full, Greek sentences.

The lettered diagram is the metonym of mathematics not only be-
cause 1t 1s so central, in itself, but also because it 1s the only tangible
tool. There is no tangible mediation between the mathematician and
his diagram — except, of course, his language. The immediacy of the
mathematical creation 13 thus not unlike that of the Homeric per-
formance. Both have nothing but words to play with, and therefore both
must shape their words into precise, task-specific tools.

Return now to the Greek mathematician: we see him phrasing to
himself — silently, aloud, or even in writing — Greek sentences. Most
probably he does not write much — after all, there is nothing specifi-
cally written about his use of language. For four chapters, we have
looked for the Greek mathematician. Now we have finally found him:
thinking aloud (chapters 2—), in a few formulae (chapter 4) made up
of a small set of words (chapter 3), staring at a diagram (chapter 1),
lettering it (chapter 2). This is the material reality of Greek mathemat-
ics. We now move on to see how deduction is shaped out of such
material.



CHAPTER }§

1 he shaping of necessity

PLAN OF THE CHAPTER

My argument is simple. Some statements and arguments are seen as
directly necessary — they are the building-blocks, the ‘atoms’ of neces-
sity. These then combine in necessity-preserving ways to yield the
necessity of Greek mathematics.

There are two types of atoms, and two types of combinations of
these atoms. The two kinds of atoms are: first, assertions which are
taken to be necessarily true in themselves. An assertion such as ‘4 is
either greater than B, or it is not’ is taken as necessarily true in itself.
I call such assertions the ‘starting-points’ for arguments. Note that
this class 1s much larger than the ‘axioms’ used in Greek mathematics;
in fact, it contains any assertions which are unargued for in the text.
Section 1 discusses starting-points.

The other kind of atoms 1s ‘arguments’, but it must be understood
immediately that I use the term ‘arguments’ in a technical sense. I will
call an ‘argument’, in the singular, only what is an unanalysable argu-
ment. To explain, take the hypothetical derivation:

(1) a=b,(2) b=¢,(3)s0 a=c¢, (4) ¢>d, (5) soa>d

This 1s not a single argument. There are two arguments here: one
consisting of steps (1)—(3), the other consisting of steps (3)—(5). Section 2
discusses arguments. A method I often use in order to visualise the
logical structure of arguments is to have them depicted as if in a ‘tree’,’
e.g. the argument above will be represented as fig. 5.1:

" Not to be confused, of course, with the ‘phrase-structure’ trees of the preceding chapter.

168
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1 2
Figure 5.1.

In this ‘tree’, it can be seen how steps (1) and (2) combine to produce
(3), which in turn combines with (4) to produce (5). In this way the
concepts of ‘starting-point’ and ‘argument’ get a concrete sense. The
starting-points of this derivation are (1), (2) and (4) — all the points
‘with nothing below’. The arguments are the two triangles, (1)+g) and
(3)-(5).

By looking at such trees, then, it 1s possible to visualise the structure
of combinations of starting-points and arguments within a single proof.
This kind of combination is discussed in section 3.

The other kind of combination is the way in which the results of
proofs become available for use in other, later proofs: how a ‘tool-box’
of known results 1s created and accessed. This is discussed in section 4.
Section 5 1s a summary.

I STARTING-POINTS

The first thing to note about starting-points 1s that there are so many
of them. I have surveyed g1 propositions.” In 18 of the 31, between
35% to 45% of the assertions are starting-points. Of the 5 which have
less, almost the lowest is Archimedes’ SC 1.90, with 25%, still a consid-
erable percentage; and this proposition has 8 assertions. It 1s safe to say
that the typical proposition has more than a third of its assertions
consisting of starting-points, but less than half (true of 29 of the 3g1).

* I will often refer to the same survey, so I give the list: Aristotle, Meteor. 373a5-18; Hippocrates
of Chios’ third quadrature (Becker’s text); Autolycus’ Ort. 1.13; 11.15, 18; Euclid’s Elements 1.5, 11.5,
115, 1v.5, Data 61; Aristarchus’ On Sizes and Distances 1, 12; Archimedes’ SC 1.10, 20, 30, 40, SL 9,
Meth. 1, Arenarius 226—92; Apollonius’ Conics 1.9, 13, 15, 26, 37, 41, 46, 1.2, 1L.17; (quoted in)
Anonymous, In Theatet. cols. xxix.42-xxx1.28; Diocles’ On Burning Mirrors 2 (Toomer’s text);
Ptolemy’s Harmonics 11.2, pp. 9o—1.
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For each assertion which 1s unargued for in the proposition, there are
usually no more than two assertions (but no less than one) which are
argued for.

Where are the starting-points? Everywhere in the proof. The only
general rule 1s that the first assertion in a proposition tends to be a
starting-point, while the last assertion tends not to be. Otherwise, the
position of starting-points 1s flexible. It 1s true that, often, the frequency
of starting-points 1s reduced as the proposition progresses. Take
Apollonius’ Conics 1.9: 1t starts with 2 starting-points, followed by
2 argued assertions; then a single starting-point followed by a single
argued assertion; then another single starting-point followed by g
argued assertions; again, one starting-point followed by three argued
assertions; then a starting-point followed by 6 argued assertions; and,
finally, a starting-point followed by 4 argued assertions. This is a rela-
tively simple structure,® and even here the reduction in frequency 1s
not monotonic.

The point of this is, first, that Greek mathematical proofs are the
result of genuine cross-fertilisation. What I mean by the metaphor is
the following: one way of doing mathematics, in principle, would be
to take an assertion, develop some of its results, and then to combine
these results until something interesting emerges. So one would get a
few starting-points at the beginning, and then a continuous stretch of
argued assertions. As a matter of fact, it 1s difficult to produce interest-
ing things in this way: the cross-breeding of relatives tends to be
barren. Derivatives of a single assertion must carry similar informative
contents, whose intersection could be neither surprising nor revealing*
(we shall return to this point when discussing the tool-box).

Second, we begin to see something about the global structure of
proofs (to which I will return in section g): proofs do not reuse over
and over again materials, which have been presented earlier, once and
for all. Instead, whatever 1s required by the proof is brought in at the
moment when it 1s required. The introduction of new material for
deductive manipulation goes on through the length of the proof.

3 Try Conies 1.41 (P for starting-point, n for non-starting-point):
PPPn PnPnPn PP nnnnn PP nn Pn P nnn PP n P nnn

* The lowest percentage of starting-points in my survey is FElements 1.5, the dreaded pons asinorum
(for this name see Heath 1926, vol. 1, 415-16) which is in fact a mule, mechanically reprocessing
over and over again the same equalities until the final result is ground out of the machine.
Here, however, Euclid may say in his defence that the mulish quality of the proposition is due
to the lack of materials, necessary in what purports to be the fifth link in a first chain. Life must
precede sex.
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Deduction, in fact, is more than just deducing. To do deduction,
one must be adept at noticing relevant facts, no less than combining
known facts. The eye for the obviously true is no less important than
the eye for the obvious result and, as is shown by the intertwining of
starting-points and argued assertions, the two eyes act together.’

1.2 The necessity of starting-points

The main distinction to be drawn is between relative and absolute
starting-points. Think for a moment of Greek mathematics in its en-
tirety as a huge, single proof (a completely ahistorical exercise, meant
to clarify a point of logic), 1.e. if proposition X relies on proposition Y,
then wclude proposition Y inside proposition X. It is clear that some
assertions which appear as starting-points now (in the context of a
‘normal’ proof as it occurs in, say, Archimedes) would immediately
become results of other assertions (which are now contained in other
propositions, say, in Euclid). Such assertions are only relative starting-
points, that is, they are starting-points relative to the proof in which
they appear. Relative to Greek mathematics taken as a global system,
they are not starting-points but argued assertions. Other starting-points
would remain starting-points even in this hypothetical case, and they
are therefore absolute starting-points.
Relative starting-points occur in the following ways:

(a) Explicit reference. For instance, the first assertion of Apollonius’
Conics 1.46° is:

O1X TQ OeBEIYUEVT €V TG TEOCTOAPAKOOTE OEUTEPW BewpnpaTl
“Through the things proved in the forty-second theorem’.

Such references are very rare (and therefore there is no point in
discussing in detail the — real — possibility that they are inter-
polations; but see section 4 below).

(b) The tool-box. The notion of the tool-box was raised above, and
it can be better understood now, as being distinct from explicit

> One typical Greek mathematical method is to assume the desired result, and to work back-
wards until a starting-point is reached such as can be satisfied by the mathematician. This is
known as ‘the method of analysis’. I will not discuss it here, but I will point out that, in order
to understand this method, it must be seen within the terms of this chapter — as a method of
obtaining starting-points (this is in agreement with the argument of Hintikka and Remes (1974),
that analysis obtains necessary auxiliary constructions).

140.2475,
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Figure 5.2. Aristarchus 1.

references. The essence of the tool-box 1s that it 1s taken for
granted. Consider, for instance, the following, from Aristarchus’
first proposition (fig. 5.2)

ion 8¢ 1) pev AA 1) Al

‘and AA is equal to Al”.

Nothing in the proposition so far supports the claim; still, it is
simply put forward, without a hint that any justification is required.
In fact, both A" and AA are radii of the same circle, so the result
1s indeed obvious. It can be seen to result from Euclid’s definition

7 Heath g58.2.
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Figure 5.3. Archimedes’ SL q.

1.15," but it can hardly be assumed that the ancient author, or the
ancient audience, consulted their Euclid at this point. On the other
hand, it is hard to imagine a geometer, of whatever level, who has
not internalised the truth that all radii of the same circle are equal
to each other. Unlike explicit references, starting-points taken from
the tool-box are a common feature of Greek mathematics.

More or less complex implicit arguments. These can be character-
ised as assertions which are used as if they were part of the tool-
box, but probably were not in the tool-box. This 1s the one most
frustrating feature for the reader of Greek (or any other) math-
ematics who 1s not as intelligent as the mathematicians themselves.
Archimedes was more intelligent, which makes him more frustrat-

ing. Here 1s the first assertion made in Archimedes’ SL g (fig. 5.9):°
¢ooeiTon 01 peiwv [6 Adyos 6v éxel & Z mroTi Tav H] kad T0U,
ov gxer a KI' moti 1w 'A
‘[The ratio of Z to H] 1s also greater than that which KI" has
to ['/\.

% A circle is a plane figure comprehended by a single line, [so that] all the straight [lines which
are| drawn from a single point, [which is one] of those inside the figure, towards it [i.e. the
comprehending line] are equal to each other.’

9 Heiberg 28.2.
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The ‘also’ refers to an earlier comparison, where it was hypo-
thesised that (algebraically paraphrasing) Z:H > T©:OK. The
Archimedean reader sees immediately that the angle KOI" must be
assumed to be right, the angle KI'A must be right through the
properties of the tangent, and the angles ©I'K, 'KA must be equal,
since Al" and KA were assumed to be parallel (remember as well,
of course, the properties of parallel lines), so that the triangles
OI'K, 'KA are similar, and in such a way that (algebraically para-
phrasing) [(©:0OK::KI":['/A, and the assertion is seen to obtain.

Is this a starting-point, an ‘immediately obvious assertion’? The
answer 1s partly negative, in the sense that one could reasonably
ask what the grounds of the assertion are. The answer is also
positive, in the sense that Archimedes did not ask. Was it a start-
ing-point for his mind which we, with our puny brains, cannot
quite grasp? Or may he have been impatient? Or just showing off ?
I offer a hypothesis in a footnote,” but it 1s impossible to get any
certitude on such questions.

These are the three kinds of relative starting-points. There are also
three kinds of absolute starting-points.

(d) Hypothesis. The most typical hypotheses in a Greek mathematical
proof are those which are laid down in the construction. This is
part of the story concerning the last example from Archimedes’
SL. The intricate argument relied, ultimately, on the hypothesis
that a certain ratio was greater than another:"

5edoofw . . . kal Adoyos, ov gxel & Z moTi Tav H, peifwv ToU,
ov éxel & [© ToTl Tav OK

‘Let a ratio, which Z has to H, be given, greater than that which
['© has to ©K’.

'* The assertion becomes less mysterious once it is recognised that Archimedes went through the
same territory in earlier propositions. (Most importantly, in the very preceding proposition, SL
8, 24.24—5, where the same assertion is made not as a starting-point but as an argued result of
the relevant lines’ being parallel. This is still a very deficient description of the necessary
assumptions, but it provides at least the direction for the derivation.) The text demands a deep
understanding of the mathematical issues, but this can be sustained if the text is read seriously.
Archimedes is not just playing games with us. So this leads to the problem of what I call ‘local
tool-boxes’ — assertions which become self-evident locally, rather than in the context of Greek
mathematics as a whole. I shall return to this in section 4.

" Archimedes, SL g 26.29—8.1.



Starting-points 175

This clause 1s governed by an imperative. It is not an assertion that
such-and-such 1s the case. Instead, it 1s a demand that such-and-
such will be the case.” Later in the proof this demand is picked up
again, and an assertion is made, based on this demand. This asser-
tion then is true ex hypothesi.

In this way, hypothesis is the most common starting-point.

(e) Next comes the diagram. Most Greek proofs include several start-

ing-points which are simply the unpacking of visual information.
Take, e.g. Euclid’s Elements 1.5 (fig. 5.4):"
¢rel oUv ion éoTiv 1) pev AZ Tt AH 1 8¢ AB Tf) Al, Vo dn
oai ZA, Al Suoi T1ais HA, AB ioai eiolv ékaTépa éxkaTepar kol
ywviav kownv Tepiéxovot tTnv umo ZAH

‘So since AZ 1s equal to AH, AB to AT, the two ZA, Al are equal
to HA, AB, each to each; and they contain a common angle,
that <contained> by ZAH’.

A

E

Figure 5.4. Euclid’s Elements 1.5,

Look at the last assertion, that ‘they contain a common angle’. Is
it compelling without the diagram? With some effort, it can be
understood that the ‘they’ refers to the couples of lines mentioned
immediately before. (The diagram is crucial even for understand-
ing the reference of this demonstrative pronoun, but for the sake of
the argument let us imagine that this can be done without the

It is possible to look at the question ‘what makes it permissible to lay down this piece of
construction?’. To simplify the analysis, I have ignored such questions, i.e. I have concentrated
on theorems instead of problems (further motivation for this simplification, in section 4 below).
20.15-18.
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(a)

diagram.) Now, this 1s equivalent to saying that the angles ZAT,
HAB are both identical with the angle ZAH. Al" and AH are the
same line, and AB and AZ are the same line (this again can be
supported by some passages earlier in the text, but only with the
greatest difficulty — while of course this 1s immediately obvious in
the diagram). In this way, the claim can be propositionally de-
duced, and perhaps some New Maths crank may still inflict such
proofs upon innocent children. But clearly the Greeks did not,
and the assertion was immediately supported by the diagram and
nothing else.

Finally, assertions may be intrinsically obvious. It might be thought
that Greek mathematics knows only a few of these, namely Euclid’s
axiomatic apparatus, but actually there are many intrinsically
obvious assertions which the Greeks do not formulate as axiomatic.
Take Euclid’s Elements 11.5, the clinching of the argument:™

..M EZ &pa T EH éoTiv ion 1| éAdoowv T peiCovi: STrep
€oTiv &SUVATOV

‘...s0 EZ 1s equal to EH, the smaller to the larger; which is
impossible’.

The ‘which 1s 1impossible’ clause 1s a starting-point here, tanta-
mount to saying that the smaller cannot be equal to the larger. I do
not know of anything in Greek mathematics which legitimates this.
This 1s not meant as a criticism — I see, together with Euclid, that
the assumption is correct as far as he is concerned.” But it means
that the assumption is indeed a direct intuition.

Incidentally, how do we know, in this case, that EZ is smaller
than EH? The answer is that we see this (fig. 5.5). This should
remind us that the distinction made between types of starting-
points cuts across starting-points, not between them. Assertions
may be obvious through a variety of considerations.

To recapitulate, then, the sources of necessity identified above were:

Explicit references

(b) The tool-box

" 176.15-16.

' It ceases to be true as soon as set-theoretical discussions of infinity, so central to modern
mathematics, are started. The differences in cognitive styles between Greek and twentieth-
century mathematics owe much to such real differences in mathematical content.
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Figure 5.5. Euclid’s Elements 1.5,

(c) Implicit arguments
(d) Hypotheses
(e) Diagram
(f) Intuitions
It 1s clear that the last two are primary. The first three are relative.
Hypotheses also do not add information beyond the fact that they
were willed by the mathematician; and to the extent that they carry
the information that the hypothesis involved was legitimate, other sources
of necessity are required (mainly the tool-box, but also the diagram).
The diagram and intuitions, are (as far as starting-points are con-
cerned) the only information-producing mechanisms. These two merit,
therefore, a closer look.

1.2.1  The diagram and starting-points

What is the quantitative role of starting-points based on the diagram?
Here the statistical limitations of my survey become serious. The obvi-
ous thing would be to count all the starting-points in the 31 proofs I
surveyed, and to come up with percentages. I have even attempted to
do this, but this exercise 1s almost meaningless. It should be stressed
that the typology above is useful for large-scale analysis, not for de-
tailed surveys, mainly because so many starting-points are combina-
tions of different sources of necessity. Furthermore, a detailed survey
shows that there 1s much variability, reflecting different subject matter.
Different sources of necessity operate, according to the specific logical
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situations. Thus, the statistical value of such a survey is very limited.
I can disclose my results,” but the reader is asked to forget them.

I will record some qualitative facts, instead. First, proofs without
diagram starting-points occur. Archimedes’ SC 1.90 is one such, and
so 1s the much longer and more interesting Apollonius’ Conics 1.41. But
clearly most proofs have some diagram starting-points. Some proofs
have several: e.g. Archimedes’ SC 1.10 has six diagram starting-points.

An mmportant consideration is that many starting-points have a ‘dia-
grammatic’ aspect, even if they are not just derived from the diagram.
For instance, I said that Archimedes’ SC 1.30 includes no diagram
starting-points. It begins with the following assertion:"”

¢v 160 EZHO xUkAw moAUywvov icdTAeupov EyyeypomTal Kal
&pTIOyWVIoV

‘In the circle EZHO an equilateral and even-sided polygon has been
inscribed’.

This is a standard hypothesis starting-point (notice the typical per-
fect tense), but EZHO, interestingly, is not yet mentioned in the propo-
sition. It refers back (perhaps) to an earlier proposition and (certainly)
to the diagram; without them, the assertion is meaningless.

In short: a starting-point may be a diagram starting-point in a strong
and 1n a weak sense. The weak sense is that the assertion would fail to
compel had it not been for the diagram, even though the logical grounds
for the assertion need not be related to the diagram. The strong sense
is that the content of the assertion is contained, non-verbally, in the
diagram, and the written assertion is an unpacking of this information.
In the weak sense diagram starting-points are ubiquitous, but less
startling. In the strong sense they are less common, say one or two per
proposition on average (ranging from zero to a few).

Sometimes it 1s not clear whether the starting-point is a diagram
starting-point in a strong or in a weak sense. This is when the starting-
point 1s also an implicit argument. In such cases, you cannot easily
say what the explicit argument would look like. I am thinking especially
of symmetry arguments. Take Aristarchus’ proposition 12" (fig. 5.6):

' A good third of the starting-points are hypothesis starting-points; another quarter are tool-box
starting-points, and a sixth are diagram starting-points. This leaves about a quarter, divided
between intuitions (somewhat more), implicit arguments (somewhat less) and explicit refer-
ences (almost negligible).

7 110.25-6. " Heath (1913) 390.15.
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!
I

A

Figure 5.6. Aristarchus 12.
tomt Ths TE B # AET
‘AEI" 1s twice ['E’.

This 13 simply stated in the proposition, and the implicit argument
1s not difficult to reconstruct: say, angle ABE would be equal to
angle EBI" (due to another simple argument showing that the relev-
ant triangles are congruent), so the relevant arcs must be equal. The
argument 1s very easy to recreate. But why 1s it so easy to recreate?
Because it asserts a manifest symmetry, so that one hardly needs an
argument.

It 15 true that Greek mathematicians are no blind followers of
appearances when symmetries are concerned. Euclid’s Elements 1.5, for
instance, sets out to prove exactly such a symmetry feature (that angles
at the bases of 1sosceles triangles are equal). However, once such terri-
tories are conquered, Greek mathematicians become more relaxed,
and allow themselves to be especially brief where the eye may profitably
lead the mind. This does not mean that the diagram adds information,
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but it does mean that the diagram saves ‘logical space’, as it were, and
thus makes deduction at least easier."”

In some cases it is possible to identify postulates which the Greeks
‘left out’ and which the diagram substituted. This is especially true
concerning betweenness assumptions, already mentioned in chapter 1
above. For instance, in the case mentioned above from Euchd’s Ele-
ments 111.5, the diagram (fig. 5.5) was responsible for the obviousness of
EH > EZ: E, Z and H were all on a straight line, and Z was between the
other two. With some care, this could be shown. Instead, 1t was merely
stated. It 1s more difficult to put one’s finger on missing postulates in
the following case. Quite often, diagram starting-points express a de-
composition of the objects in the diagram. I shall take as an example

Archimedes’ SC 1.20* (fig. 5.7):

N émedvela ToU ABIT kwvou oUykertar ék Te This ToU EBZ xad THs
uetalu TV EZ, Al

“The surface of the cone ABI is composed of that of EBZ and of that
between EZ, Al”.

Figure 5.7. Archimedes’ SC 1.20.

9 The third quadrature of Hippocrates of Chios relies in a strong sense upon symmetry assump-
tions (Becker 1936b: 418.99—45). Is this lax logic on the part of a mathematical pioneer? Or a
simplification introduced by an ancient editor?

% 84.22-3.

* This is preceded by an opoiws, referring back to proposition 19 (82.9). But this is no real
complication for there, as well, no grounds for the assertion were made explicit.
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Clearly, there is some general assumption involved (the whole as
sum of its parts?) which could be spelled out. But what postulate could
support the 1dentification of these specific areas as parts of that specific
whole? This 1s a particular, not a general claim, and could thus be
supported only by some particular fact. None 1s forthcoming in the
text, and the only source of necessity is the diagram. Such decomposi-
tions are very common, especially in formulae such as the xoivov
Tpookeicbw (‘let . . . be added in common’), referred to above as ‘equals
added to equals’.** As 1s well known, Greek mathematics does not
speak about plane figures being equal ‘in area’. They are just equal
(or unequal) simpliciter. The same 1s true for lines and lengths. What
is being compared is not a certain function of the objects, but the
objects, directly. When it is considered that the elementary form of
comparison of sizes 1s superposition,” and that the relation between
whole and parts is directly perceived rather than verbalised, the Greek
practice becomes clear. The metric relations of Greek mathematics
are not conceptual, but concrete. As such, they can easily be supported
by an appeal to concrete evidence, namely the diagram.

Why 1s the diagram reliable? First, because references to it are refer-
ences to a construction, which, by definition, is under our control. Had
one encountered an anonymous diagram, it would have been impossi-
ble to reason about it.** The diagram which one constructed oneself,
however, 1s also known to oneself, because it 1s verbalised. Note the
combination: the visual presence allows a synoptic view, an easy access
to the contents; the verbalisation limits the contents. The text alone 1s
too difficult to follow; the diagram alone is wild and unpredictable.
The unit composed of the two 1s the subject of Greek mathematics.

What in the diagram is referred to? As already noted above in chap-
ter 1, the diagram 1s not directly relied upon for metric facts. My con-
clusion in chapter 1 was that the diagram was seen mainly through the
relations between the lettered objects it contained. Those are exactly
the betweenness and composition relations which we have seen above.

Diagrams were also used to help intuition in order to make argu-
ments simpler. Hilbert’s geometry is no less deductive than Euclid’s,
but it 1s much more cumbersome, and so its cognitive style is different.
It 1s deductive through a different process, more ‘strategic’ in nature.

* Of course, decomposition and recomposition of objects are central to some specific theories, such
as book 11 of the Elements and, interestingly, already Hippocrates of Chios” quadrature of lunules.

® As in Euclid’s Elements 1.4, 8.

* As noted by Plato — while making a rather different point — in Rep. 529d—e.
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When we have surveyed all the elements of necessity in Greek math-
ematics, we may be able to spell out this notion of ‘strategic’.

1.2.2  ‘Intuttion’ starting-points

I now move to the last group of sources of necessity. This was charac-
terised above simply as ‘intuitions’, which would tend to make us think
of it as a diffuse group made of unconnected sets of mental contents.
But 1t 1s possible to see a certain affinity between the diagram-inde-
pendent intuitions which are at work in Greek mathematics.

First, such intuitions cover arithmetic. Apollonius assumes in Conics
1.33, for instance, that — excuse the anachronism — (2a)° =4a*® As
noted already in chapter 1 above, arithmetic is common in Greek
mathematics, which often (especially in astronomy) calculates things.
Simple arithmetical facts are not proved, but seen and memorised.
In terms of the practices of Greek mathematics, that 5+ equals 12
was a piece of true judgement, not of knowledge.*

That such judgements could be made with this sort of transparency
reflects, perhaps, a ‘tool-box’ of a very rudimentary sort, like our mul-
tiplication-table;”” or it may reflect the inherent simplicity of judge-
ments such as 7 + 5 = 12 which are similar, after all, to the geometrical
decompositions noted above. They are the discrete equivalent of the
continuous spatial intuitions of the diagram.

The structure of such abstract decompositions is partially captured
by Euclid’s common notions. I do not suppose that anyone really relied
upon Euclid’s common notions (although they are invoked, rarely, in
Euclid’s Elements),”® but even these do not define the concepts of equiva-
lence used in Greek mathematics, no matter how expansively we take
the manuscript tradition. Take, for instance, Archimedes’ SC 1.10:*

1 AHE, HEZ, TEZ 7Tpiywva peta TtoU © éoTiv ta AEA, AED
Tply wvx

“The triangles AHE, HEZ, TEZ together with © are the triangles
AEA, AET”.

* 100.18—20. In fact, the assumption may be purely geometric (that the square on a line twice the
length is four times larger), but, even so, it does not appear that a visualisation is at work here.

* Cf. Plato’s Theaetetus 195eft.

7 The existence of such a — widely shared — tool-box is beyond doubt; see Fowler 1987 (270—9),

1995, for the evidence.

See, e.g. Elements 1.1 12.10—11. This is related to the larger question of explicit references, to

which I shall return later.

* 38.94.

28
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This relies upon the provision made much earlier in the proposition:*

@ On peiCovd éoTiv T& AEA, ATE Tpiywva teov AEH, HEZ, ZET
TPy VWY, €0Tw TO © Ywplov

“That by which the triangles AEA, AI'E are greater than the
triangles AEH, HEZ, ZET, let the area © be’.

I am not denying that the first quotation is a hypothesis starting-
point, but it must be realised that it is also an intuition. That a+b=¢
1s equivalent to a=c¢— b may seem trivial, but it is still a necessary
element in Archimedes’ argument. What is more, this truth is not
covered by Euclid’s common notions.

Basic assumptions about relations of decomposition and equalities/
inequalities permeate the use of proportion theory. Consider Apollonius’
Conics 1.41:%

ws 1 Al mpos 'O, To &mo Ths Al wpos 16 umo Twv Al'©

‘As Al 1s to 'O, the <square> on Al is to the <rectangle con-
tained> by A['©’.

No diagram, I believe, is required in order to see the force of the
assertion. Of course, the assertion may come from the tool-box,* but
its obviousness is related to the intuition of composition and decom-
position behind it. You start with the lines, and you compose them
with the same thing — so nothing was changed and the equivalence is
retained.

Similar intuitions are at work in the composition-of-ratios structure:
‘the ratio of AB to CD is composed of the ratio of AB to EF and of the
ratio of FE to (D’. ‘Composition’ 1s indeed the right term. We saw in
the preceding chapter the verbal underpinning of this operation, as a
formula. The text 1s not laboriously read. The constituents are directly
read off, and all one needs to do is to ascertain that they compose the
formula according to the slots it prepares.

Just as the lettered diagram is the concrete substratum which sup-
ports diagram starting-points, so, in many cases, formulaic language 1s
the concrete substratum which supports intuition starting-points.

% 86.8-10. ¥ 124.15-16.

% The truth of this may be extracted from FElements vi.1, but the extraction demands some
thought. Some ancient version of Elements may have contained the result referred to here
directly, but I am in general against this line of interpretation (I shall return to this in section

4 below).
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The most important intuition, perhaps, is yet another relative of
‘decomposition’ intuitions, only here the whole of logical space is de-
composed. I refer to a starting-point such as in Archimedes’ SC 1.10:%

TO On © xwplov fitor &AatTtév foTiv TéOV AHBK, BZI'A
&TTOTUNUATWY T} OUK EAQTTOV

“The area © is either smaller than the segments AHBK, BZI'A,

or 1t 1s not smaller’.

This 1s what I call a grid argument. A certain grid 1s laid over the
logical space, and everything is said to fall under it. The grid is exhaus-
tive, hence the necessity it conveys. After all the options have been
surveyed, no alternative should be left open.

The quotation from Archimedes is a case where the grid divides
logical space by a certain relation holding, or failing to hold. Here,
then, the assertion is supported by the logical intuition behind the
tertium non datur. In other cases, the intuition may be less logical and
more spatial, as in Euclid’s Elements 1v.5 (fig. 5.8):3*

b \

ouptrecoUvTan 81 flTol évtos ToU ABIT Tprycvou 7 émi Ths Bl
eUfeias 1) ékTos Ths Bl

“They will fall either inside the triangle ABI" or on the line BI' or
outside BI".

N K AP
7 E B Z r Z/

Figure 5.8. Euclid’s Elements 1v.5.

Here the diagram is required in order to grasp the necessity of the
argument, but the logical structure i1s similar to the case above from
Archimedes.

It should be noted that grid arguments are essential not only for
argumentation by exhaustion of the kind we have just seen, but to any

¥ g6.10-12. 3 280.224.
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reductio argument. The refutation of the hypothesis of the reductio leads
to the demonstration of the negation of the Aypothesis through a grid-
argument (often implicit).®

To survey quickly, then, the ground we have covered so far: we
have seen that the diagram vyields directly one set of starting-points,
and is indirectly responsible for many other starting-points. Another
important set of starting-points — intuitions — 1s sometimes mediated
through the formulaic use of language. (And we will see in section 4
below that starting-points arising from the tool-box also sometimes
rely on formulae.) On the whole, however, I would say that the linguis-
tic cognitive tools employed by Greek mathematics are important mostly
for arguments, for the co-ordination of arguments into clusters, and
for the management of the tool-box, rather than for starting-points,
where the diagram is most important.

2 ARGUMENTS

The typology of sources of necessity in starting-points can serve as
a preliminary approximation. Of the six sources mentioned there,
two are irrelevant: ‘implicit arguments™® and, of course, ‘hypotheses’.
So we are left with four types of sources of necessity:

(a) References
(b) Tool-box
(c) Diagram
(d) Intuitions

The ‘tool-box’ and ‘mtuitions’ are much richer in the context of
arguments than they are in the context of starting-points.?”

% The grid has a special interest, in that it can be connected to wider anthropological discussions

of the role of tabulation in thinking; see Lloyd (1966); Goody (1977), chapter 4. Because of their

role in the reductio, grid arguments are also relevant to the question of the relation between

Greek mathematics and Greek philosophy, especially following Szabo (1969). Progress can be

made only if we put grid arguments in the context of other decomposition arguments.

It is pointless to distinguish ‘completely explicit’ and ‘partly implicit’ arguments, in the absence

of a meta-mathematical theory of completeness. In Greek mathematical arguments, there are

more or less immediately compelling arguments, and all of them are in a sense ‘complete’ — in
the sense that they sufficed to convince someone.

% The statistical limitations of such surveys have been explained already. Granted this qualifica-
tion, I will say that intuition arguments and tool-box arguments are responsible, each, for
almost half the total arguments (often, in conjunction with the diagram). Of the remaining 10
per cent or so, almost all rely upon the diagram, with a very small minority being reference
arguments.
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2.1 Reference

Reference arguments are those where some explicit justification for the
argument 1s made. That 1s: besides stating the premisses and the result,
a reference argument asserts, in some form, ‘when the premisses, then
the results’.

This is rare, even in a minimal form. The following is an example

(fig. 5.9):"

grel oUv s OAov éoTi TO &mo AE mpos SAov Tto AZ, oUTows
&oaipebey TO UTo AAB Trpds &panpebev 10 AH, kai Aoimrov éoTi
TPOS AoITrov, ws OAov_Tpos OAov. &mo 8¢ ToU &mo EA éav
&oaipebf) 1O Uo BAA, Aoimdv éoti TO &mo AE: s &pa TO &Tro
AE mpos tnv Utmrepoxnv fjv Utrepexel To AZ ToU AH, oUTtws TO
&mo AE mpos 10 AZ

‘Now since, as 1s the whole square on AE to the whole area AZ, so
1s the subtracted rectangle <contained> by AAB to the subtracted
AH, and the remaining is to remaining as whole to whole. But if
the rectangle under BAA i1s subtracted from the square on EA, the
remaining 1s the square on AE; therefore as the square on AE 1s to
the difference, by which AZ is more than AH, so is the square on
AE to AZ’.

Z

Figure 5.9. Apollonius’s Conics 1.41 (Ellipse Case).

I have underlined the sentence in which a general principle 1s cited:
an argumentation formula. Significantly, it 1s just cited, without giving

3% Apollonius’ Conics 1.41. 126.26-128.3.
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A

Figure 5.10. Apollonius’ Conics 1.26 (Parabola Case).

the reference.? In fact, the general principle is enigmatically alluded to
in our example even by the words ‘whole’, ‘remaining’. 7his is the
more typical way of allusion in Greek mathematics. The underlined
sentence 1s therefore an over-allusion. Even when over-alluding, the
Greek mathematician still does not refer to his source by book and
proposition numbers. This will be important in section 4 below.

The rarity of such meta-statements in Greek proofs is significant in
another way. What Greek mathematics eschews is not just condition-
als (assertions of the form ‘but when P, then @), but also general
statements (‘but in general, when P, then Q). Proofs move from one
particular statement to the next, always remaining close to the particu-
lar objects discussed (and visualised in the diagram).

2.2 Diagram

The diagram 1s less important for arguments than it is for starting-
points. Many arguments are mediated visually (so many tool-box argu-
ments and intuition arguments are, partly, also diagram arguments),
and sometimes arguments seem to rely upon diagrams directly, as in

the following (fig. 5.10):*

% Euclid’s Elements v.19.  *° Apollonius’ Conics 1.26, 82.8—.
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N EZ &pa ékPoAropevn Tepvel Ty O doTe xad T TOWR
OUMUTTECEITOL

“The line EZ, produced, cuts the line ©r7 so it will meet the section
as well’.

Ol 1s a line inside the section, and EZ 1s a line outside it, so it does
seem obvious that EZ cannot cut ©I unless it cuts the section as well.
This 1s a betweenness argument which could never rely, in Greek
mathematics, upon anything except the diagram.

Similarly, diagrammatic ‘composition’ may be relevant for an argu-
ment rather than for a starting-point, as in the following (fig. 5.11):*

¢rel AN 1| AZ OAn T AH éoTwv ion, dv 11 AB 1) Al éoTv ion,
Aoty &pa ) BZ Aoy 1 H éoTiv ion
‘Now since the whole AZ is equal to the whole AH, of which [both]

AB 1s equal to Al therefore the remaining BZ is equal to the re-
maining ['H’.

Figure 5.11. Euclid’s Elements 1.5.

2.3 Tool-box

The fact that the tool-box 1s important for arguments shows that the
tool-box contains conditionals (assertions of the form P — Q). This
should not surprise us, as the tool-box is made mostly of theorems,
which are usually of the form P— Q.*

The tool-box will be discussed in section 4. Here I will note just that
it 1s a source of necessity. Our evidence 1s that Greek mathematicians

# Euclid’s Elements 1.5, 20.23-5.  * I will discuss this issue in detail in chapter 6.
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are unworried about it. Tool-box arguments are presented just like
any other arguments. Consider Apollonius’ Conics 1.97:*3

(1) s 1) EZ 1pos ZB, 1) ZB mpos BA. (2) icov &pa eoTi TO UTO
EZA ¢ &mo ZB

‘(1) As EZ to ZB, so 1s ZB to BA. (2) The rectangle under EZA is,

therefore, equal to the square on ZB’.

The result assumed here is relatively simple, but it i1s compelling
only by virtue of its being proved elsewhere.** However, this is not
marked here (by a ‘for it is proved’, say). Remember that arguments
are generally clearly charted by logical connectors, by ‘therefore’ and
‘since’ relations. The unmentioned premiss, Flements vi.17, 1s therefore
marked by its absence. Apollonius effectively asserts that the grounds
for the claim in (2) are the claim in (1) and nothing else. Elements vi.17
is a background for the derivation, not a part of it. Elements vi.17
functions here in the same way as Greek grammar does. It i3 a neces-
sary piece of background, but it is not even noticed. I shall discuss and
qualify this in section 4.

2.4 Intuition

This is not a homogeneous group. Some intuition arguments, for in-
stance, rely upon arithmetic. Most belong, however, like their counter-
parts In starting-points, to a well-defined famuily.

Consider, for mstance, the following:®

¢rel €oTv, ws TO amo MY Tpos 16 &mo Y, 10 Umo ATIB Trpos
16 Umo AlITE, &AX s To Utmo ATIB Trpos to umo ATIE, 10 &mo
AT 1pds 10 &mo T, kai ws &pa To &mo MY mpos 16 &mo Yl, 10
&mo AT Trpos 16 &mo Tl

‘Since, as the <square> on MY to the <square> on YI, so is the
<rectangle contained> by ATIB to the <rectangle contained> by
ATIE, but as the <rectangle contained> by ATIB to the <rectangle
contained> by ATIE, so 1s the <square> on AT to the <square> on
TT, therefore also as the <square> on MY to the <square> on YI,
so 1s the <square> on AT to the <square> on TI'.

# 110.18-19. The numbers (1) and (2) are mine. ~ * Elements v1.17.
% Apollonius’ Conics 1v.46, 72.4-8.
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The structure of the argument 1s (a:6::c:d and c¢:d::e;f ) = azb::e:f. This
1s the transitivity of proportionality. By understanding what propor-
tionality 1s, we see that the relation between a:b and ¢:d which 1s
implied by a:b::c:d 1s such that, in other proportionality contexts, a:b
and ¢:d may be substituted salva veritate (1.e. with truth-values remaining
the same). For instance, we see that, if a:b::¢:d, then ¢:d::a:b. Changing
the order 1s immaterial.

This intuition may be backed by the underlying symbolism. In
‘acb::c:d’, for instance, both the distinction into two parts and the sym-
metry between the two parts are clearly preserved. The Greek formula
— formula 55 of the preceding chapter — has the following structure:

P.[0,,,0,,] =
as [054] SO [054] =
as [[d] to [6]] so [[¢] to [d]]

This is the best possible oral approximation to a:b::c:d.*°

The most important thing for both systems of symbolism, the typo-
graphic and the oral, 1s that both support the salva veritate substitution
intuition by supplying slots in which elements may be substituted: the
two flanks of the ‘::” in the typographic symbol, or the two clauses n
the oral symbol.¥

The concept of substitution salva veritate 1s the key to most proofs.
The structure 1s usually the following: a certain property 1s asserted for
A; a substitution salva veritate between A and B 1s established; the prop-
erty 1s transferred to B; the proof, or a major result needed for the
proof; is thereby settled. Take Euclid’s Elements 1x.6. This proves that if
A’ is a cube, so 1s A. The proof starts off by laying down B as A*, and
[ as (A*B). Then the argument moves on to the seemingly quite irrel-
evant 1:A::A:B. This has nothing obvious to do with the proof, but it
allows a certain interchangeability. Indeed, the proof then continues to
arrive at 1:A::B:". Here comes the crucial argument:*

goTv &pat s N povds Tpos Tov A, oUTtws & B mpos Tov I
[‘1:A::B:[7; the conclusion of the second line of reasoning]. &AX dds
N dovas Trpos Tov A, oUTws & A mpos Tov B [‘1:A::A:B’; the first

9 “@:b::c:d’ is, of course, a matter of typography, and in oral contexts a modern reader may well

supply ‘as a is to . ..” as the reading of that typographical symbol.
¥ Going one level lower, one may substitute individual constituents of a ratio instead of a
complete ratio.

¥ 348.20—3.
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line of reasoning is recalled] ki s &pa & A pos Tov B, 6 B mpos
Tov [ [*A:B::B:[7; the salva veritate argument 1s effected and the proof
can now unfold, having secured the central result].

One type of substitution is the salva veritate, where a single element is
replaced within a single slot. A more complex type of substitution is
where the substitution of 4 by B is compensated by the substitution of
some other ('by D. Most argumentation formulae in proportion theory
belong to this type, e.g. formula 56 in chapter 4:

S56 [P55 [0549054] >P55 [0547054] 1=

Sis[ Pyl al to [], [c] to [d]], P [[a] to [c], [b] to [d]]] =

Syl [as [a] to [b], so [¢] to [d]], [as [a] to [c], so [0] to [d]]] =

B? ][a] to [b], so [¢] to [d]] therefore, enallax, [as [a] to [c], so [b] to

All that has happened is that 4 and ¢ have been interchanged. Yet
how much is involved! One must identify at a glance the correct slots
(hence the all-importance of the awareness of form, harnessed by the
formulaic structure). And the result is vast: for instance, the arithmeti-
cal equivalent, Elements vi1.13, 1s directly used by Euclid in his arith-
metical books 16 times. And then, enallax is only one of a set of similar
formulae (discussed in chapter 4, subsection g.2). No other single set 1s
as important.*

Is there an ancient Greek proof that (a:b::c:d & c:d::e.f ) = (a:bze:f)?
There 1s: Euclid’s Elements v.11. But this 1s the exception. Book v of the
Elements 1s a rare treatise in its logical completeness, and even there,
crucial theorems are left implicit. For instance, Euclid never proves
that (a:b::c:d) <> (c:d::a:b), and, therefore, it 1s not a proved result of
(a:b::e:d & exfi:c:d) that (a:b::exf ).

Excluding the (partial) descriptions of the logical structures of equal-
ity (in the Common Notions) and proportionality (in book v), no effort to
capture such logical structures was made by Greek mathematicians.
However, it 1s chiefly this logic of relations which is responsible for the
original component (as opposed to the tool-box) in the arguments
made in Greek mathematics.>

4T shall discuss the relative importance of various parts of the tool-box in section 4 below. While
this is the most important set of argumentation formulae, it is not the most important set of
results. The most important results are those which do not rely on formulae alone (i.e. are not
book v), but those which mediate between diagram and formulae (i.e. book vi).

Other relations whose logic is only implicit in Greek mathematics include: inequality, propor-
tional inequality, similarity, congruity, addition and subtraction.

50
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Just as starting-points based on the intuition of decomposition of
objects into their components are directly compelling by virtue of their
visual appeal, so arguments based on substitution are directly compel-
ling by virtue of their linguistic appeal, arising from the formulaic use
of language. There is a parallelism between the two triads:

Starting-points — Decomposition — Diagram
Arguments — Substitution — Formula

I will now widen the concept of substitution, parallel to the way I
have widened the concept of decomposition in the preceding section.
Consider the following:'

TopX TNV dobeicav &pa eUbeiav TNV AB TG SobevTi elbuypaupw
16 [ foov mapaAAnAdypoppov TTapaPEPAnTar 1O 2T EAAciTTOV
€1del TTaXpoAANAOYpaupw TG TIB Spoiew dvti 16 A

“Therefore the parallelogram 2T, equal to the given rectilinear I,
deficient by the parallelogram TTB (this parallelogram being similar
to A), has been applied on the given straight line AB’.

This 1s the conclusion of an argument, perhaps the most crucial
in its proposition. But it is nothing but a renaming, a reidentification
of the objects. The objects are reidentified as falling under specific
descriptions. This 1s a very typical ending. The point 1s often (as in the
case quoted here) to equate the assertion arrived at with that which the
proof set out to prove. Or reidentifications may be important in other
ways, e.g. the main argument in Archimedes’ SC'is a reidentification of
the solid created by rotating a polygon with a series of cones and
truncated cones (fig. 5.12).°° This allows Archimedes to carry over prop-
erties shown for polygons to cones. The possibility of seeing the same
thing as equivalent with some other allows the author to move back
and forth between the two equivalent representations, yielding deduc-
tively fertile combinations.

What makes such substitutions workable? The structure is: (1) 4
occurs once 1n the substitution warrant, the assertion stating its inter-

3 Euchid’s Elements v1.28, 166.11—14.

% This 1s SC 1.23, the first proposition of this kind; there are several in this book. Another case
where reidentifications are the key to argumentation is the identity, used in Archimedes’
Method: area <> set of lines.
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V4 AN

N

A

Figure 5.12. Archimedes’ SC 1.23.

changeability with B; (2) B occurs in another context; (3) 4 1s inserted
in that context, replacing B.> This requires two things: 4 must be
labelled consistently, so that its identity is secure; and the context in
which B occurred and, later, A occurred, must be 1dentifiable, 1.e. the
context in which B occurred must be conceptualised as an open func-
tion, in which the slot used by A/B is left empty. The existence of
verbal formulae is the basis of both these conditions.

The constant reshuffling of objects in substitutions may be securely
followed, since it 1s no more than the refitting of well-known verbal
elements into well-known verbal structures. It is a game of decomposi-
tion and recomposition of phrases, similar, indeed, to the game of
decomposition and recomposition of visual objects which we have seen
in the preceding section.

I now move to a detailed and more technical example (readers
without Greek may prefer to skip it). I take the first three arguments of
Apollonius’ Conics 1.50 (fig. 5.13):

\ 2/

(1) kad émel fon eotiv ) E[T T TK, (2) s d¢ ) EI" pos KI', 1) EZ
TPos 20, (3) lon &pa kad 1) EX T 20. (4) xad émel éoTwv, s §) ZE

C

mpos EH, 1) OE mpos v SimAacioav Ths EA, (5) kai éoTi Ths EO

5 The precise sequence may vary, of course.
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nuiceia | EX, (6) éoTiv &pa, s 1 ZE mpos EH, | 2E mpods EA.
(7) ws 8¢ ©) ZE mpds EH, 1 AM mpos MIT (8) cos &pax 1) AM 1rpos
MTI, f) 2E 1pos EA

‘(1) And since EI" 1s equal to 'K, (2) but as EI' to KI', EX to 20,
(3) therefore EZ is equal to 20, (4) and since, as ZE to EH, OE to
twice EA, (5) and EO 1s half EZ, (6) therefore, as ZE to EH, 2E to EA.
(7) But as ZE to EH, AM to MIT (8) therefore as AM to MII, ZE to
EA.

H
E
A
Z
M
I N A
A B =
@)
P
K
>
T
©

Figure 5.13. Apollonius’ Conics 1.50 (Ellipse Case).

The development of the argument can be visualised as in the follow-
ing ‘tree’ (fig. 5.14a):
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Figure 5.14a.

The formulae are (numbers are those of the preceding chapter):>*

2 — Line 55 — Proportion
54 — Ratio 78 — Equality

Fig. 5.14b is the phrase-structure trees of the assertions:

1 2 3 4
Py P P Py
N /\ PN
O2 02 O)Jf 054 02 02 054 054
I A NERVAN | VANNVAN
Er TK (|)2 (|)2 (|)2 (|)2 EE SO O|2 C|)2 C|)2 C|)2
Er K EX 3O ZE EH ©E DOUBLE
EA
5 6 7 8
HALF P.. P.. P,
/N N N N
Oz O2 054 054 054 054 054 054
| VA NEVAN VANERVAN /N /N

E© E> O, (|)2 (|)2 O, O, (|)2 (|)2 O, O, O, (|)2 (|)2

ZE EH ZE EA ZE EH AM MP AM MP ZE EA
Figure 5.14b.
% “T'wice’ and ‘half’ I do not view as formulaic. As explained in chapter 4, numbers tend to be

non-formulaic. The reciprocal relation between ‘twice’ and ‘half’ is directly perceived: an
arithmetical intuition.
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All the formulae govern, ultimately, ‘line’ formulae, in turn govern-
ing pairs of letters. It 1s solely by substituting structures of such couples
of letters that the text proceeds.

The substitutions are:

First argument (assertions 1-3)

The phrase-structure tree of assertion 1 1s one of the constituents of the
tree of 2; 2 asserts an equivalence between its two topmost consituents.
Hence 1 may be inserted into 2. This 1s 3.

Second argument (assertions 4—06)

On an unformulaic basis, we understand that ‘twice’ is the reciprocal
of ‘half’. Hence moving from ‘twice’ to the thing itself, or by moving
from the thing itself to its ‘half’, the equivalence 1s retained: 4 directly
contains one member as a ‘twice’ (twice EA), and its correlate member,
E2, is identified, in 5, as that whose half is E©. Hence the two may
simultaneously transform with the equivalence kept. All this pertains to
only one wing of 4, and, this wing changed, 6 results. Not so many
formulae — but notice how much awareness of form is required here!
Third argument (assertions 6-8)

The simplest possible case: 7 asserts an equivalence between two wings,
one of which occurs in 6. The substitution results in 8.

Everywhere, substitution and awareness of form is the crucial ele-
ment — no doubt, much facilitated by the accessibility of the referents
via the diagram (notice the substitutability, so well known from chap-
ter 2, of, e.g. 'K and KI').

Before the section on substitution is concluded, an even wider gen-
eralisation i1s required. What is it about Greek mathematics which
makes it so amenable to the operation of substitution? Of course,
formulae are the material reality which make substitution work — this
requires no further argument. But why substitutions to begin with?

The answer must confront the subject matter. The crucial thing is
that Greek mathematics relies so much upon relations of equivalence,
such as identity, equality, proportionality. These formulae operate in a
double role: once as a substratum for manipulation, once again as a
licence for manipulation. a:b::¢:d 1s both a set of objects, in which ‘a:5’,
for instance, 1s ready for substitution by other, equivalent ratios, and it
is also a statement about objects, asserting the substitutability of ‘a:d’
and ‘c:d’. Equivalence relations are both the raw material and the
machines in the factory of Greek proofs.
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On a wider view still, another small class, of relations which are
transitive without being equivalence relations, governs much of what
remains of Greek proofs:»® mainly, the relations ‘greater/smaller’. The
combinations of transitive relations and equivalence relations yield the
set of legitimate substitutions which is the core of Greek mathematical
argumentation.

I have counted the assertions in the first ten propositions of Elements
m and the first five propositions of FElements vi*° Of a total of 276
assertions, 199 assert relations, while 77 assert single-place predicates.
Of the 199 relations, 152 are equivalences, 45 are transitive, and only
two are neither.”” The majority of assertions i1s that of equivalences.
I have already noted in the previous chapter the enormous repetitive-
ness of the relation ‘equality’ in Greek mathematics. We now see the
logical significance of this centrality.

So the logicists were right. It 1s the logic of relations which sets
mathematics going.*® Mathematical relations fall under specific logical
relations, and this is why the deductive machine (as far as formulae are
concerned) is capable of dealing with them. So what shall we say then?
Perhaps, that to the — significant — extent that deduction works with
formulae, we can say that Greek mathematics is ultimately deductive,
because it deals with transitive relations.”® This answer is partly valid.
The empirical world is recalcitrant, it does not yield to logic, and this
1s because it behaves by degrees, by fine shades, by multiple dimen-
sions. Shading into each other, the chains of the relations operating in
the real world break down after a number of steps: the quantity of
liquid, transferred again and again from vessel to vessel, will finally
reduce; the preferability of 4 to B and of B to (' does not always entail
that of 4 to C. Mathematical objects are different.

Or are they just assumed to be different? Are they constructed as
different? We are historians — we do not have to answer such ques-
tions. All we have to note 1s that there 1s a decision here, to focus on

% A transitive relation is such that pRg (signifying ‘p stands in the relation R to ¢’), with ¢Rs,
entails pRs. A subset of the class of transitive relations is equivalence relations, which are also
symmetric (pRq entails ¢Rp) and reflexive (pRp for every p).

56 The combination is meant to yield a more or less ‘representative’ sample, 11 being free of
proportion, while v is all about proportion.

5 Twice, the relation ‘twice’ in VILI.

Russell (1903) 23: ‘A careful analysis of mathematical reasoning shows (as we shall find in the

course of the present work) that types of relations are the true subject-matter discussed.” By his

‘analysis’ Russell meant a remaking of mathematics, not a historical appreciation. I now offer

a historical vindication of Russell’s claim.

% ] focus on transitivity, a more difficult concept than symmetry or reflexivity.
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relations n so far as they are transitive. Whether they really exist
independently of the decision i1s a question left for the philosopher to
answer; the historian registers the decision. At some stage, some Greeks
— impelled by the bid for incontrovertibility, described in Lloyd (1990)
— decided to focus on relations in so far as they are transitive, to
demand that in discussions of relations of area and the like, the make-
believe of ideal transitivity should be entertained. Here is finally the
make-believe, the abstraction truly required by Greek mathematics.
Whether the sphere 1s made of bronze or not 1s just immaterial. The
important requirement — the point at which mathematics takes off
from the real world — 1s that if the sphere is equal in volume to some
other object, say 2/g the circumscribed cylinder, and this cylinder in
turn 1s equal to some other object X, then the sphere will be equal to
X. This 1s true of ‘equal’ only in an ideal sense, a sense divorced from
real-life applications and measurements. And this 1s the qua operation,
the make-believe at the heart of Greek mathematics.

Finally, a paradox. It 1s just because there 1s an inherent make-
believe in the diagram that the make-believe of transitivity is naturally
entertained. “This is equal to that, and this to that, so this to that’ —
‘Oh really? Have you measured them?’ — ‘Come on, don’t be a fool.
There’s nothing to measure here — it’s only a diagram.’

‘Nothing to measure here’: I have invented this retort, but it 1s there
in the original — in the behaviour of the diagram. It is precisely this
metric aspect, these relations of measurement, that the diagram does
not set out to represent. Such relations were represented by a system
of formulae. Diagrams and formulae are thus functionally related in a
single structure.

The diagram and (more generally than just formulae) the technical
language are the two complementary tools, yielding atoms of necessity.
We now move on to see how these atoms are combined in necessity-
preserving ways.

4 THE STRUCTURE OF PROOFS

3.1 Size

Proofs are combinations of arguments (in the limited sense of ‘argu-
ment’ used above). What size of arguments? And how many?

As always, the statistical value of my survey is limited, but I will
venture this on the size of arguments: roughly, about half (or more) of
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all arguments are two-assertion arguments, 1.e. of the form P— Q
(The assertion P yields the assertion Q). Of those remaining, the great
majority are three-assertion arguments, 1.e. of the form (P& Q) — R
(the assertions P and @, together, yield R). A few arguments (less than
10%) are four-assertion arguments, i.e. of the form (P & Q & R) = §.
Larger arguments exist, but are a rarity.

We see therefore that arguments are short — and this i1s one way
in which they are easy to follow. Another way is the explicitness of
arguments, 1.e. the use of logical connectors, which I have already
discussed in chapter g above. The system of logical connectors is
small and relatively rigid. So a proof consists of short, clearly marked
arguments. How many of these?

There are §49 arguments in the g1 propositions I have surveyed,
somewhat more than 10 arguments per proof. However, I have tended
to choose longer proofs, so the true average is in fact below 10. This
can be understood better when we analyse proofs according to their
main types. These are best seen by means of ‘trees’. As was explained
in the introduction to this chapter, it is possible to draw a ‘tree’ — a
diagram depicting the logical progress of a proof. Look at the follow-
ing trees, then. First, Archimedes’ SC 1.30 (fig. 5.15):”

Figure 5.15.

This 15 a good example of a simple proof. It consists of a single,
direct argument. There are no asides, no breaks, no internal structure.
Compare this to Apollonius’ Conucs 1.41 (fig. 5.16):

% T follow Heiberg’s judgement on what is ‘authentic’. Since this is just an example, not much
hinges on this.



200 The shaping of necessity

18 19

Figure 5