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extend beyond anything that we can establish with mathematical
certainty.

As T have indicated earlier in this chapter, communication
theory as Shannon has given it to us deals in a very broad and
abstract way with certain important problems of communication
and information, but it cannot be applied to all problems which
we can phrase using the words communication and information
in their many popular senses. Communication theory deals with
certain aspects of communication which can be associated and
organized in a useful and fruitful way, just as Newion’s laws of
motion deal with mechanical motion only, rather than with all the
named and indeed different phenomena which Aristotle had in
mind when he used the word motion.

To succeed, science must attempt the possible. We have no
reason to believe that we can unify all the things and concepts for
which we use a common word. Rather we must seek that part of
experience which can be related. When we have succeeded in
relating certain aspects of experience we have a theory. Newton’s
laws of motion are a theory which we can use in dealing with

mechanical phenomena. Maxwell’s equations are a theory which
we can use in connection with electrical phenomena. Network
theory we can use in connection with certain simple sorts of elec-
trical or mechanical devices. We can use arithmetic very generally
in connection with numbers of men, stones, or stars, and geometry
in measuring land, sea, or galaxies.

Unlike Newton’s laws of motion and Maxwell’s equations, which
are strongly physical in that they deal with certain classes of
physical phenomena, communication theory is abstract in that it
applies to many sorts of communication, written, acoustical, or
electrical. Communication theory deals with certain important but
abstract aspects of communication. Communication theory pro-
ceeds from clear and definite assumptions to theorems concerning
information sources and communication channels. In this it is
essentially mathematical, and in order to understand it we must
understand the idea of a theorem as a statement which must be
proved, that is, which must be shown to be the necessary conse-
quence of a set of initial assumptions. This is an idea which is the
very heart of mathematics as mathematicians understand it.
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especially in the work of Carnot.? Our knowledge of aerodynamics
and hydrodynamics exists chiefly because airplanes and ships
exist, no because of the existence of birds and fishes. Our knowl-
edge of electricity came mainly not from the study of lightning,
but from the study of man’s artifacts.

Similarly, we shall find the roots of Shannon’s broad and ele-
gant theory of communication in the simplified and seemingly
easily intelligible phenomena of telegraphy.

The second thing that history can teach us is with what difficulty
understanding is won. Today, Newton’s laws of motion seem
simple and almost inevitable, yet there was a day when they were
undreamed of, a day when brilliant men had the oddest notions
about motion. Even discoverers themselves sometimes seem in-
credibly dense as well as inexplicably wonderful. One might expect
of Maxwell’s treatise on electricity and magnetism a bold and
simple pronouncement concerning the great step he had taken.
Instead, it is cluttered with all sorts of such lesser matters as once
seemed important, so that a naive reader might search long to find
the novel step and to restate it in the simple manner familiar to us.

It is true, however, that Maxwell stated his case clearly elsewhere.

Thus, a study of the origins of scientific ideas can help us to value
understanding more highly for its having been so dearly won. We
can ofien see men of an earlier day stumbling along the edge of
discovery but unable to take the final step. Sometimes we are
tempied to take it for them and to say, because they stated many
of the required concepts in juxtaposition, that they must really have
reached the general conclusion. This, alas, is the same trap into

which many an ungrateful fellow falls in his own life. When some-

one actually solves a problem that he merely has had ideas about,
he believes that he understood the matter all along.

Properly understood, then, the origins of an idea can help to
show what its real content is; what the degree of understanding
was before the idea came along and how unity and clarity have |
been attained. But to attain such understanding we must trace the
actual course of discovery, not some course which we feel discovery .

1N, L. 8. Carnot (1796-1832) first proposed an ideal expansion of gas (the Carnor

cyele) which will extract the maximum possible mechanical energy from the thermal
energy of the steam.
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should or could have taken, and we must see problems (if we
as the men of the past saw them, not as we see them today o)
fa_lfn' looking for the origin of communication theory one is apt to
_mnto an almost trackless morass. I would gladly avoid this
entlre_ly but cannot, for others continually urge their readers to
enter it. I only hope that they will emerge unharmed with the hel
of the foI}owing grudgingly given guidance. P
A Partmglgr quantity called entropy is used in thermod ami
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communication theory. After all, thermodynamics anﬁ statisticgi
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; <t3rmat10_n m resolving a particular physical paradox. From these
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_ This easy but misleading idea has caused 3 great deal of confu
Slon even among technical men. Actually, communication theo ,
evolved from an effort to solve certain problems in the field r)tC
elecjcncal communication. Its entropy was cafled entropy by mathg-
matical analogy with the entropy of statistical mechanics, The
chief rele:_vance of this entropy is to problems quite diﬁ"erent.f
those which statistical mechanics attacks. o
t In thermodynamics, the entropy of a body of gas depends on its
emperature, volume, and mass—and on what gas it is—just as the
energy of the body of gas does, If the gas is allowed to expand
:1 cylinder, pushing on a slowly moving piston, with no ﬁowpof he:;
tﬁe?;l t;:'lom the gas, the gas will become cooler, losing some of its
e energy. Th1§ Energy appears as work done on the piston.
¢ work may, for Instance, Jift a weight, which thus stores th
energy lost by the gas. , o
- This 15 a reversible process. By this we mean that if work is don
in pu.shlrfg tht? piston slowly back against the gas and so rec:orne
PIessmg it to its original volume, the exact original ener res:
sure, and temperature will be restored to the gas Ing};ﬁh
reversible process, the entropy of the gas remains cor;stant hila
Its energy changes. e
Thus, entropy is an indicator of reversibility; when there is no
change of entropy, the process is reversible. In the example dis-
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cussed above, energy can be transferred repeatedly back and forth
between thermal energy of the compressed gas and mechanical
energy of a lifted weight.

Most physical phenomena are not reversible, Trreversible phe-
nomena always involve an increase of entropy.

Imagine, for instance, that a cylinder which aliows no heat flow
i1 or out is divided into two parts by a partition, and suppose that
there is gas on one side of the partition and none on the other.
Imagine that the partition suddenly vanishes, so that the gas
expands and fills the whole container. In this case, the thermal
energy remains the same, but the entropy increases.

Before the partition vanished we could have obtained mechani-
cal energy from the gas by letting it flow into the empty part of
the cylinder through a little engine. After the removal of the par-
tition and the subsequent increase in entropy, we cannot do this.
The entropy can increase while the energy remains constant in
other similar circumstances. For instance, this happens when heat
flows from a bot object to a cold object. Before the temperatures
were equalized, mechanical work could have been done by making
nse of the temperature difference. After the temperature difference
has disappeared, we can no longer use it in changing part of the
thermal energy into mechanical energy.

Thus, an increase in entropy means a decrease in our ability to
change thermal energy, the energy of heat, into mechanical energy.
An increase of entropy means a decrease of available energy.

While thermodynamics gave us the concept of entropy, it does
not give a detailed physical picture of entropy, in terms of positions
and velocities of molecules, for instance. Statistical mechanics does
give a detailed mechanical meaning to entropy in particular cases.
In general, the meaning is that an increase in entropy means a
decrease in order. But, when we ask what order means, we must
in some way equate it with knowledge. Even a very complex
arrangement of molecules can scarcely be disordered if we know
the position and velocity of every one. Disorder in the sense in
which it is used in statistical mechanics involves unpredictability
based on a lack of knowledge of the positions and velocities of
molecules. Ordinarily we lack such knowledge when the arrange-
ment of positions and velocities is “complicated.”
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Let us return to the example discussed above in which all the
molecules of a gas are initially on one side of a partition in a
f:ylinder. If the molecules are all on one side of the partition, and
if we know this, the entropy is less than if they are distributed on
both _sides of the partition. Certainly, we know more about the
positions of the molecules when we know that they are all on one
side of the partition than if we merely know that they are some-
where within the whole container. The more detailed our knowl-
edge is concerning a physical system, the less uncertainty we have
concerning it (concerning the location of the molecules, for
instance) and the less the entropy is. Conversely, more uncertainty
means more entropy.

Thus, in physics, entropy is associated with the possibility of
converting thermal energy into mechanical energy. If the entropy
does not change during a process, the process is reversible. If the
entropy increases, the available energy decreases. Statistical me-
f:hamcs interprets an increase of entropy as a decrease in order or
if we wish, as a decrease in our knowledge. ,

The applications and details of entropy in physics are of course
much broader than the examples I have given can illustrate, but I
believe that I have indicated its nature and something of its i}npor—
tance. Let us now consider the quite different purpose and use of
the entropy of communication theory.

In co.mmunication theory we consider a message source, such
as a writer or a speaker, which may produce on a given occasion
any one of many possible messages. The amount of information
conveyed by the message increases as the amount of uncertainty
as to what message actually will be produced becomes greater. A
message which is one out of ten possible messages conveys a
smaller amount of information than a message which is one out
of a million possible messages. The entropy of communication
theory is a measure of this uncertainty and the uncertainty, or
entropy, is taken as the measure of the amount of information
conveyed by a message from a source. The more we know about

what message the source will produce, the less uncertainty, the
less the entropy, and the less the information. ’

We see that the ideas which gave rise to the entropy of physics
and the entropy of communication theory are quite different. One
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can be fully useful without any reference at all to t.he other. None-
theless, both the entropy of statistical mechanics and that of
communication theory can be described in terms of uncertainty,
in similar mathematical terms. Can some significant anc.l useful
relation be established between the two diﬁ"":rent entropies and,
indeed, between physics and the mathematical theory of com-
munication? . .
Several physicists and mathematicians have been anxious to
show that communication theory and its entropy arc _ex.tren}ely
important in connection with statistical mechanics. This is still a
confused and confusing matter. The confusion is sometimes aggra-
vated when more than one meaning of z'nformqtion creeps mio a
discussion. Thus, information is sometimes assomatet_i with the 1<_iea
* of knowledge through its popular use rather than with uncertainty
and the resolution of uncertainty, asitisin communication theory.
We will consider the relation between communication theory
and physics in Chapter X, after arriving at some understanding of
communication theory. Here I will merely say that the efforts to
marry communication theory and physics have been more interest-
ing than fruitful. Certainly, such attempts have not produced
important new results or understanding, as communication theory
has in its own right. .

Communication theory has its origins in the study of electrical
communication, not in statistical mechanics, and some of the
ideas important to communication theory go back to the very
origins of electrical communication. :

During a transatlantic voyage in 1832, Samuel F. B. Morse se
to work on the first widely successful form of electrical telegraph.
As Morse first worked it out, his telegraph was much more com-
plicated than the one we know. It actually drew short and long
lines on a strip of paper, and sequences of these represented, not
the letters of a word, but numbers assigned to words in a diction-
ary or code book which Morse completed in 1837. This is (as we
shall see) an efficient form of coding, but it i8 clumsy. _

While Morse was working with Alfred Vail, the old coding was
given up, and what we now know as the Morse code had been
devised by 1838. In this code, letters of the alphabet are represente_d
by spaces, dots, and dashes. The space is the absence of an electric
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current, the dot is an electric current of short duration, and the
dash is an electric current of longer duration. |

Various combinations of dots and dashes were cleverly assigned
to the letters of the alphabet. E, the letter occurring most frequently
in English text, was represented by the shortest possible code
symbol, a single dot, and, in general, short combinations of dots
and dashes were used for frequently used letters and long combi-
nations for rarely used letters. Strangely enough, the choice was
not guided by tables of the relative frequencies of various letters
in English text nor were letters in text counted to get such data.
Relative frequencies of occurrence of various letters were estimated
by counting the number of types in the various compartments of
a printer’s type box!

We can ask, would some other agsignment of dots, dashes, and
spaces to letters than that used by Morse enable us to send English
text faster by telegraph? Our modern theory tells us that we could
only gain about 15 per cent in speed. Morse was very successful
indeed in achieving his end, and he had the end clearly in mind.
The lesson provided by Morse’s code is that it matters profoundly
how one translates a message into electrical signals. This matter
is at the very heart of communication theory.

In 1843, Congress passed a bill appropriating money for the
construction of a telegraph circuit between Washington and Balti-
more. Morse started to lay the wire underground, but ran into
difficulties which later plagued submarine cables even more
severely. He solved his immediate problem by stringing the wire
on poles.

The difficulty which Morse encountered with his underground
wire remained an important problem. Different circuits which
conduct a steady electric current equally well are not necessarily
equally suited to electrical communication. If one sends dots and
dashes too fast over an underground or undersea circuit, they are
run together at the receiving end. As indicated in Figure II-1,
when we send a short burst of current which turns abruptly on and
off, we receive at the far end of the circuit a longer, smoothed-out
rise and fall of current. This longer flow of current may overlap

the current of another symbol sent, for instance, as an absence of
current. Thus, as shown in Figure II-2, when a clear and distinct
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signal is transmitted it may be received as a vaguely wandering
rise and fall of current which is difficult to interpret.

Of course, if we make our dots, spaces, and dashes long enough,
the current at the far end will follow the current at the sending end
better, but this slows the rate of transmission. It is clear tha:t t_hgre
is somehow associated with a given transmission circuit a limiting
speed of transmission for dots and spaces. For submarine cables
this speed is so slow as to trouble telegraphers; for wires on poles
it is so fast as not to bother telegraphers. Early telegraphists were
aware of this limitation, and it, too, lies at the heart of commum-

cation theory.
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Even in the face of this limitation on speed, various things can
be done to increase the number of letters which can be sent over
a given circuit in a given period of time. A dash takes three times
as long to send as a dot. It was soon appreciated that one could
gain by means of double-current telegraphy. We can understand
this by imagining that at the receiving end a galvanometer, a
device which detects and indicates the direction of flow of small
currents, is connected between the telegraph wire and the ground.
To indicate a dot, the sender connects the positive terminal of his
battery to the wire and the negative terminal to ground, and the
needle of the galvanometer moves to the right. To send a dash, the
sender connects the negative terminal of his battery to the wire and
the positive terminal to the ground, and the needle of the galva-
nometer moves to the left. We say that an electric current in one
direction (into the wire) represents a dot and an electric current
in the other direction (out of the wire) represents a dash. No
current at all (battery disconnected) represents a space. In actual
double-current telegraphy, a different sort of receiving instrument
is used.

In single-current telegraphy we have two elements out of which
to construct our code: current and no current, which we might call
1 and 0. In double-current telegraphy we really have three elements,
which we might characterize as forward current, or current into
the wire; no current; backward current, or current out of the wire;
or as +1, 0, — 1. Here the + or — sign indicates the direction of
current flow and the number 1 gives the magnitude or strength of
the current, which in this case is equal for current flow in either
direction.

In 1874, Thomas Edison went further; in his quadruplex tele-
graph system he used two intensities of current as well as two
directions of current. He used changes in intensity, regardless of
changes in direction of current flow to send one message, and
changes of direction of current flow regardless of changes in
intensity, to send another message. If we assume the currents to
differ equally one from the next, we might represent the four
different conditions of current flow by means of which the two
messages are conveyed over the one circuit simultaneously as 43,
+1, —1, —3. The interpretation of these at the receiving end is
shown in Table L.
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TABLE 1
Meaning
Current Transmitted Message 1 Message 2
3 on on
4 off on
1 off off
_ 3 on Oﬁ‘

Figure II-3 shows how the dots, dashes, and spaces of two
simultaneous, independent messages can be represented by a suc-
cession of the four different current values.

Cleaﬂy, how much information it is possible to send over a
circuit depends not only on how fast one can send successive
symbols (successive current values) over the circuit but also on ho;vv
many different symbols (different current values) one has availab (13
to choose among. If we have as symbols only the two currents +
or 0 or, which is just as effective, the two currents -|-1 gpd -1,
we can convey to the receiver only one Qf two possibilities at a
time. We have seen above, however, that if we can choose among
any one of four current values (any one of four symbols) at a

MESSAGE

ON
I

OFF

ON l——— L
2

OFF ]

: ——L
CURRENT R (e R

Fig. I1-3
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time, such as +3 or +-1 or —1 or -3, we can convey by means
of these current values (symbols) two independent pieces of infor-
mation: whether we mean a 0 or 1 in message 1 and whether we
mean a 0 or | in message 2. Thus, for a given rate of sending succes-
sive symbols, the use of four current values allows us to send two
independent messages, each as fast as two current values allow us
to send one message. We can send twice as many letters per minute
by using four current values as we could using two current values.

The use of multiplicity of symbols can lead to difficulties. We
have noted that dots and dashes sent over a long submarine cable
tend to spread out and overlap. Thus, when we look for one symbol
at the far end we see, as Figure I1-2 llustrates, a little of several
others. Under these circumstances, a simple identification, as 1 or
Oorelse +1or — 1, is easier and more certain than a more com-
plicated indentification, as among +3, 41, —1, —3.

Further, other matters limit our ability to make complicated
distinctions. During magnetic Storms, extraneous signals appear
on telegraph lines and submarine cables.? And if we look closely
enough, as we can today with sensitive electronic amplifiers, we
see that minute, undesired currents are always present. These are
akin to the erratic Brownian motion of tiny particles observed
under a microscope and to the agitation of air molecules and of
all other matter which we associate with the idea of heat and
temperature. Extraneous currents, which we call noise, are always
present to interfere with the signals sent.

Thus, even if we avoid the overlapping of dots and spaces which
is called intersymbol interference, noise tends to distort the received
signa] and to make difficult a distinction among many aliernative
symbols. Of course, increasing the current transmitted, which
means increasing the power of the trapsmitted signal, helps to
overcome the effect of noise. There are limits on the power that
can be used, however. Driving a large current through a submarine
cable takes a large voltage, and a large enough voltage can destroy
the insulation of the cable—can in fact cause a short circuit. It is
likely that the large transmitting voltage used caused the fajlure
of the first transatlantic telegraph cable in 1858,

?The changing magnetic field of the earth induces currents in the cables. The

changes in the earth’s magnetic field are presumably caused by streams of charged
particles due to solar storms.
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Even the early telegraphists understood intuitively a good deal
about the limitations associated with speed of signaling, interfer-
ence, or noise, the difficulty in distinguishing among many alter-
native values of current, and the limitation on the power that one
could use. More than an intuitive understanding was required,
however. An exact mathematical analysis of such problems was
needed.

Mathematics was early applied to such problems, though their
. complete elucidation has come only in recent years. In 1855,
William Thomson, later Lord Kelvin, calculated precisely what
the received current will be when a dot or space is transmitted over
a submarine cable. A more powerful attack on such problems
followed the invemtion of the telephone by Alexander Graham
Bell in 1875. Telephony makes use, not of the slowly sent off-on
signals of telegraphy, but rather of currents whose strength varies
smoothly and subtly over a wide range of amplitudes with a
rapidity several hundred times as great as encountered in manual
telegraphy.

Many men helped to establish an adequate mathematical treat-
ment of the phenomena of telephony: Henri Poincaré, the great
French mathematician; Oliver Heaviside, an eccentric, English,
minor genius; Michael Pupin, of From Immigrant to Inventor fame;
and G. A. Campbell, of the American Telephone and Telegraph
Company, are prominent among these.

The mathematical methods which these men used were an
extension of work which the French mathematician and physicist,
Joseph Fourier, had done early in the nineteenth century in connec-
tion with the flow of heat. This work had been applied to the study
of vibration and was a natural tool for the analysis of the behavior
of electric currents which change with time in a complicated fash-
ion—as the electric currents of telephony and telegraphy do.

It is impossible to proceed further on our way without under-
standing something of Fourier’s contribution, a contribution which
is absolutely essential to ail communication and communication
theory. Fortunately, the basic ideas are simple; it is their proof and
the intricacies of their application which we shall have to omit here.

Fourier based his mathematical attack on some of the problems
of heat fiow on a very particular mathematical function called a
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sine wave. Part of a sine wave is shown at the right of Figure II-4.
The height of the wave h varies smoothly up and down as time
passes, fluctuating so forever and ever. A sine wave has no begin-
ning or end. A sine wave is not just any smoothly wiggling curve.
The height of the wave (it may represent the strength of a current
or voltage) varies in a particular way with time. We can describe
this variation in terms of the motion of a crank connected to a shaft
which revolves at a constant speed, as shown at the left of Figure
I'I-4. The height & of the crank above the axle varies exactly
simusoidally with time.

A sine wave is a rather simple sort of variation with time. It can
be characterized, or described, or differentiated completely from
any other sine wave by means of just three quantities. One of these
13 the maximum height above zero, called the amplitude. Another
is the time at which the maximum is reached, which is specified
as the phase. The third is the time T between maxima, called the
period. Usually, we use instead of the period the reciprocal of the
period called the frequency, denoted by the letter J If the period
T of a sine wave is 1/100 second, the frequency fis 100 cycles per
second, abbreviated cps. A cycle is a complete variation from
crest, through trough, and back to crest again. The sine wave is
peri'odf'c in that one variation from crest through trough to crest
again is just like any other.

Fourier succeeded in proving a theorem concerning sine waves
which astonished his, at first, incredulous contemnporaries. He
showed that any variation of a quantity with time can be accurately
represented as the sum of a number of sinusoidal variations of

i
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different amplitudes, phases, and frequencies. The quantity con-
cerned might be the displacement of a vibrating string, the height
of the surface of a rough ocean, the temperature of an electric iron,
or the current or voltage in a telephone or telegraph wire. All are
amenable to Fourier’s analysis. Figure II-5 illustrates this in a
simple case. The height of the periodic curve g above the centerline
is the sum of the heights of the sinusoidal curves b and ¢

The mere representation. of a complicated variation of some
physical quantity with time as a sum of a number of simple sinus-
oidal variations might seem a mere mathematician’s trick. Its
utility depends on two important physical facts. The circuits used
in the transmission of electrical signals do not change with time,
and they behave in what is called a linear fashion. Suppose, for
instance, we send one signal, which we will call an input signal,
over the line and draw a curve showing how the amplitude of the
received signal varies with time. Suppose we send a second input
signal and draw a curve showing how the corresponding received
signal varies with time. Suppose we now send the sum of the two
input signals, that is, a signal whose current is at every moment
the simple sum of the currents of the two separate input signals.
Then, the received output signal will be merely the sum of the two
output signals corresponding to the input signals sent separately.

We can easily appreciate the fact that communication circuits
don’t change significantly with time. Linearity means simply that

NVANBERVAN

N NN
(b) VARV

Fig. II-5
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if we know the output signals corresponding to any number of
input signals sent separately, we can calculate the output signal
when several of the input signals are sent together merely by adding
the output signals corresponding to the input signals. In a linear
electrical circuit or transmission s$ystem, signals act as if they were
present independently of one another; they do not interact. This is,
indeed, the very criterion for a circuit being called a linear circuit.

While lincarity is a truly astonishing property of nature, it is by
no means a rare one. All circuits made up of the resistors, capaci-
tors, and inductors discussed in Chapter I in connection with
network theory are linear, and so are telegraph lines and cables.
Indeed, usually electrical circuits are linear, except when they
include vacuum tubes, or transistors, or diodes, and sometimes
even such circuits are substantially linear.

Because telegraph wires are linear, which is just to say because
telegraph wires are such that electrical signals on them behave
independently without interacting with one another, two telegraph
signals can travel in opposite directions on the same wire at the
same time without interfering with one another. However, while
linearity is a fairly common phenomenon in elecirical circuits, it
is by no means a universal natural phenomenon. Two trains can’t
travel in opposite directions on the same track without interference.
Presumably they could, though, if all the physical phenomena
comprised in trains were linear. The reader might speculate on the
unhappy lot of a truly linear race of beings.

With the very surprising property of linearity in mind, let us
return to the transmussion of signals over electrical circuits. We
have noted that the output signal corresponding to most input
signals has a different shape or variation with time from the input
signal. Figures II-1 and JI-2 illustrate this. However, it can be
shown mathematically (but not here) that, if we use a sinusoidal
signal, such as that of Figure II-4, as an input signal to a linear
transmission path, we always get out a sine wave of the same
period, or frequency. The amplitude of the output sine wave may
be less than that of the input sine wave; we call this attenuation of
the sinusoidal signal. The output sine wave may rise to a peak later
than the input sine wave; we call this phase shift, or delay of the
sinusoidal signal.
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The amounts of the attenuation and delay depend on the fre-
quency of the sine wave. In fact, the circuit may fail entirely to
transmit sine waves of some frequencies. Thus, corresponding to
an input signal made up of several sinusoidal components, there
will be an output signal having components of the same frequencies
but of different relative phases or delays and of different ampli-
tudes. Thus, in general the shape of the output signal will be
different from the shape of the input signal. However, the difference
can be thought of as caused by the changes in the relative delays
and amplitudes of the various components, differences associated
with their different frequencies. If the attenuation and delayof a
circuit is the same for all frequencies, the shape of the output wave
will be the same as that of the input wave; such a circuit is
distortionless. _

Because this is a very important matter, I have illustrated it in
Figure 11-6. In 2 we have an input signal which can be expressed
as the sum of the two sinuscidal components, b and c. In trans-
mission, & is neither attenuated nor delayed, so the output 4" of
the same frequency as b is the same as 5. However, the output ¢’
due to the input ¢ is attenuated and delayed. The total output &/,
the sum of " and ¢/, clearly has a different shape from the input
a. Yet, the output is made up of two components having the same
frequencies that are present in the input. The frequency compo-
nents merely have different relative phases or delays and different
relative amplitudes in the output than in the input.

The Fourier analysis of signals into components of various fre-
quencies makes it possible to study the transmission properties of
a linear circuit for all signals in terms of the attenuation and delay
it imposes on sine waves of various frequencies as they pass
through it.

Fourier analysis is a powerful tool for the analysis of transmis-
sion problems. It provided mathematicians and engineers with a
bewildering variety of results which they did not at first clearly
understand. Thus, early telegraphists invented all sorts of shapes
and combinations of signals which were alleged to have desirable
properties, but they were often inept in their mathematics and
wrong in their arguments. There was much dispute concerning the
efficacy of various signals in ameliorating the limitations imposed
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by circuit speed, intersymbol interference, noise, and limitations
on transmitted power.

In 1917, Harry Nyquist came to the American Telephone and
Telegraph Company immediately after receiving his Ph.D. at Yale
(Ph.D.’s were considerably rarer in those days). Nyquist was a
much better mathematician than most men who tackled the prob-
lems of telegraphy, and he always was a clear, original, and
philosophical thinker concerning communication. He tackled the
problems of telegraphy with powerful methods and with clear
insight. In 1924, he published his results in an important paper,
“Certain Factors Affecting Telegraph Speed.”
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This paper deals with a number of problems of telegraphy.
Among other things, it claxifies the relation between the speed of
telegraphy and the aumber of current values such as +1, —1
(two current values) or +3, +1, —1, — 3 (four current values).
Nyquist says that if we send symbols (successive current values)
at a constant rate, the speed of transmission, W, is related to m,
the number of different symbols or current values available, by

W = Klogm

Here K is a constant whose value depends on how many successive
current values are sent each second. The quantity log m means
logarithm of m. There are different bases for taking logarithms. If
we choose 2 as a base, then the values of log m for various values
of m are given in Table II.

TaBLE II
m log m
1 0
2 1
3 1.6
4 2
8 3
16 4

To sum up the matter by means of an equation, log x is such a
number that

ogz — x
We may see by taking the logarithm of each side that the following
relation must be true: ‘
log 2es s = log x
If we write M in place of log x, we see that
log 2 = M

All of this is consistent with Table IL. . '
We can easily see by means of an example why the logarithm is
the appropriate function in Nyquist’s relation. Suppose that we
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wish to specify two independent choices of off-or-on, 0-or-1, simul-
taneously. There are four possible combinations of two independ-
ent (-or-1 choices, as shown in Table III.

TasLg II1
L First 0-or-1 Second 0-0r-1
Number of Combination Choice Choice
1 0 i}
2 0 1
3 1 0
4 1 1

Further, if we wish to specify three independent choices of 0-or-1
at the same time, we find eight combinations, as shown in Table IV.

TapLE IV

First 0-or-1  Second 0-or-! Third 0-OR-1

Number of Combination Choice Choice Choios

0 - O\ Lh 2 W RO e
_——— 0 OO S
—_——o o~ —~OC
_—O D D = O

Similarly, if we wish to specify four independent 0-or-1 choices,
we find sixteen different combinations, and, if we wish to specify
M different independent 0-or-1 choices, we find 2¥ different
combinations.

If we can specify M independent 0-or-1 combinations at once,
we can in effect send M independent messages at once, so surely
the speed should be proportional to M. But, in sending M messages
at once we have 2¥ possible combinations of the M independent
0-or-1 choices. Thus, to send M messages at once, we need to be
able to send 2¥ different symbols or current values. Suppose that
we can choose among 2¥ different symbols. Nyquist tells us that
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we should take the logaritbm of the number of symbols in order
to get the line speed, and

log 2% = M

Thus, the logarithm of the number of symbols is just the number
of independent 0-or-1 choices that can be represented simulta-
neously, the number of independent messages we can send at once,
so to speak.

Nyquist’s relation says that by going from off-on telegraphy to
three-current (41, 0, — 1) telegraphy we can increase the speed of
sending letters or other symbols by 60 per cent, and if we use four
current values (+3, +1, —1, —3) we can double the speed. This
is, of course, just what Edison did with his quadruplex telegraph,
for he sent two messages instead of one. Further, Nyquist showed
that the use of eight current values (0, 1,2, 3,4, 5,6, 7, or +7, +5,
+3, +1, —1, =3, —5, —7) should enable us to send four times
as fast as with two current values. However, he clearly realized that
fluctuations in the attenuation of the circuit, interference or noise,
and limitations on the power which can be used, make the use of
many current values difficult.

Turning to the rate at which signal elements can be sent, Nyquist
defined the /ine speed as one half of the number of signal elements
(dots, spaces, current values) which can be transmitted in a second.
We will find this definition particularly appropriate for reasons
which Nyquist did not give in this early paper.

By the time that Nyquist wrote, it was common practice to send
telegraph and telephone signals on the same wires. Telephony
makes use of frequencies above 150 cps, while telegraphy can be
carried out by means of lower frequency signals. Nyquist showed
how telegraph signals could be so shaped as to have no sinusoidal
components of high enough frequency to be heard as interference
by telephones connected to the same line. He noted that the line
speed, and hence also the speed of transmission, was proportional
to the width or extent of the range or band (in the sense of strip)
of frequencies used in telegraphy; we now call this range of fre-
quencies the band width of a circuit or of a signal.

Finally, in analyzing one proposed sort of telegraph signal,
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Nyquist showed that it contained at all times a steady sinusoidal
component of constant amplitude. While this component formed
a part of the transmitter power used, it was useless at the recejver,
for its eternal, regular fluctuations were perfectly predictable and
could have been supplied at the receiver rather than transmitted
thence over the circuit. Nyquist referred to this useless component
of the signal, which, he said, conveyed no intelligence, as redundant,
a word which we will encounter later.

Nyquist continued to study the problems of telegraphy, and in
1928 he published a second important paper, “Certain Topics in
Telegraph Transmission Theory.” In this he demonstrated a num-
ber of very important points. He showed that if one sends some
number 2NV of different current values per second, all the sinusoidal
components of the signal with frequencies greater than N are
redundant, in the sense that they are not needed in deducing from
the received signal the succession of current values which were sent.
If all of these higher frequencies were removed, one could still
deduce by studying the signal which current values had been
transmitted. Further, he showed how a signal could be constructed
which would contain no frequencies about & cps and from which
it would be very easy to deduce at the receiving point what current
values had been sent. This second paper was more quantitative and
exact than the first; together, they embrace much important mate-
rial that is now embodied in communication theory.

R. V. L. Hartley, the inventor of the Hartley oscillator, was
thinking philosophically about the transmission of information at
about this time, and he summarized his reflections in a paper,
“Transmission of Information,” which he published in 1928.

Hartley had an interesting way of formulating the problem of
communication, one of those ways of putting things which may
seem obvious when stated but which can wait years for the insight
that enables someone to make the statement. He regarded the
sender of a message as equipped with a set of symbols (the letters
of the alphabet for instance) from which he mentally selects symbol
after symbol, thus generating a sequence of symbols. He observed
that a chance event, such as the rolling of balls into pockets, might
equally well generate such a sequence. He then defined H, the
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information of the message, as the logarithm of the number of
possible sequences of symbols which might have been selected and
showed that

H=nlogs

Here 7 is the number of symbols selected, and s is the number of
different symbols in the set from which symbols are selected.

This is acceptable in the light of our present knowledge of
information theory only if successive symbols are chosen independ-
ently and if any of the s symbols is equally likely to be selected.
In this case, we need merely note, as before, that the logarithm of
s, the number of symbols, is the number of independent 0-or-1
choices that can be represented or sent simultaneously, and it is
reasonable that the rate of transmission of information should be
the rate of sending symbols per second », times the number of
independent 0-or-1 choices that can be conveyed per symbol.

Hartley goes on to the problem of encoding the primary symbols
(letters of the alphabet, for instance) in terms of secondary symbols
(e.g., the sequences of dots, spaces, and dashes of the Morse code).
He observes that restrictions on the selection of symbols (the fact
that E is selected more often than Z) should govern the lengths of
the secondary symbols (Morse code representations) if we are to
transmit messages most swiftly. As we have seen, Morse himself
understood this, but Hartley stated the matter in a way which
encouraged mathematical attack and inspired further work. Hart-
ley also suggested a way of applying such considerations to con-

. tinuous signals, such as telephone signals or picture signals.

Finally, Hartley stated, in accord with Nyquist, that the amount
of information which can be transmitted is propertional to the
band width times the time of transmission. But this makes us
wonder about the number of allowable current values, which is also
important to speed of transmission. How are we to enumerate
them?

After the work of Nyquist and Hartley, communication theory
appears to have taken a prolonged and comfortable rest. Workers
busily built and studied particular communication systems. The
art grew very complicated indeed during World War II. Much new
understanding of particular new communication systems and
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devices was achieved, but no broad philosophical principles were
laid down.

During the war it became important to predict from inaccurate
or “noisy” radar data the courses of airplanes, so that the planes
could be shot down. This raised an important question: Suppose
that one has a varying electric current which represents data con-
cerning the present position of an airplane but that there is added
to it a second meaningless erratic current, that is, a noise. It may
be that the frequencies most strongly present in the signal are
different from the frequencies most strongly present in the noise.
If this is so, it would seem desirable to pass the signal with the noise
added through an electrical circuit or filter which attenuates the
frequencies strongly present in the noise but does not attenuate
very much the frequencies strongly present in the signal. Then, the
resulting electric current can be passed through other circuits in
an effort to estimate or predict what the value of the original signal,
without noise, will be a few seconds from the present. But what
sort of combination of electrical circuits will enable one best to
predict from the present noisy signal the value of the true signal
a few seconds in the future?

In essence, the problem is one in which we deal with not one but
with a whole ensemble of possible signals (courses of the plane),
so that we do not know in advance which signal we are dealing
with. Further, we are troubled with an unpredictable noise.

This problem was solved in Russia by A. N. Kolmogoroff. In this
country it was solved independently by Norbert Wiener. Wiener
is a mathematician whose background ideally fitted him to deal
with this sort of problem, and during the war he produced a
yellow-bound document, affectionately called “the yeliow peril”
(because of the headaches it caused), in which he solved the diffi-
cult problem.

During and after the war another mathematician, Claude E.
Shannon, interested himself in the general problem of communica-
tion. Shannon began by considering the relative advantages of
many new and fanciful communication systems, and he sought
some basic method of comparing their merts. In the same year
(1948) that Wiener published his book, Cybernetics, which deals
with communication and control, Shannon published in two parts
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a paper which is regarded as the foundation of modern communi-
cation theory.

Wiener and Shannon alike consider, not the problem of a single
signal, but the problem of dealing adequately with any signal
selected from a group or ensemble of possible signals. There was
a free interchange among various workers before the publication
of either Wiener’s book or Shannon’s paper, and similar ideas and
expressions appear in both, although Shannon’s interpretation
appears to be unique.

Chiefly, Wiener’s name has come to be associated with the field
of extracting signals of a given ensemble from noise of a known
type. An example of this has been given above. The enemy pilot
follows a course which he choses, and our radar adds ncise of
natural origin to the signals which represent the position of the
plane. We have a set of possible signals (possible courses of the
airplane), not of our own choosing, mixed with noise, not of our
own choosing, and we try to make the best estimate of the present
or future value of the signal (the present or future position of the
airplane) despite the noise.

Shannon’s name has come to be associated with matters of so
encoding messages chosen from a known ensemble that they can
be transmitted accurately and swiftly in the presence of noise. As
an example, we may have as a message source English text, not
of our own choosing, and an electrical circuit, say, a noisy telegraph
cable, not of our own choosing. But in the problem treated by
Shannon, we are allowed to choose how we shall represent the
message as an electrical signal —how many current values we shall
allow, for instance, and how many we shall transmit per second.
The problem, then, is not how to treat a signal plus noise so as to
get a best estimate of the signal, but what sort of signal to send
so as best to convey messages of a given type over a particular sort
of noisy circuit.

This matter of efficient encoding and its consequences form the
chief substance of information theory. In that an ensemble of
messages is considered, the work reflects the spirit of the work of
Kolmogoroff and Wiener and of the work of Morse and Hartley
as well.

It would be useless to review here the content of Shannon’s
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work, for that is what this book is about. We shall see, however,
that it sheds further light on all the problems raised by Nyquist
and Hartley and goes far beyond those problems.

In looking back on the origins of communication theory, two
other names should perhaps be mentioned. In 1946, Dennis Gabor
published an ingenious paper, “Theory of Communication.” This,
suggestive as it is, missed the inclusion of noise, which is at the
heart of modern communication theory. Further, in 1949, W. G.
Tuller published an interesting paper, “Theoretical Limits on the
Rate of Transmission of Information,” which in part parallels
Shannon’s work.

The gist of this chapter has been that the very general theory of
communication which Shannon has given us grew out of the study
of particular problems of electrical communication. Morse was
faced with the problem of representing the letters of the alphabet
by short or long pulses of current with intervening spaces of no
current—that is, by the dots, dashes, and spaces of telegraphy. He
wisely chose to represent common letters by short combinations
of dots and dashes and uncommon letters by long combinations;
this was a first step in efficient encoding of messages, a vital part
of communication theory.

Ingenious inventors who followed Morse made use of different
intensities and directions of current flow in order to give the sender
a greater choice of signals than merely off-or-on. This made it
possible to send more letters per unit time, but it made the signal
more susceptible to disturbance by unwanted electrical disturb-
ances called noise as well as by inability of circuits to transmit
accurately rapid changes of current.

An evaluation of the relative advantages of many different sorts
of telegraph signals was desirable. Mathematical tools were needed
for such a study. One of the most important of these is Fourier
analysis, which makes it possible to represent any signal as a sum
of sine waves of various frequencies. .

Most communication circuits are linear. This means that several
signals present in the circuit do not interact or interfere. It can be
shown that while even linear circuits change the shape of most
signals, the effect of a linear circuit on a sine wave is merely to
make it weaker and to delay its time of arrival. Hence, when a
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complicated signal is represented as a sum of sine waves of various
frequencies, it is easy to calculate the effect of a linear circuit on
each sinusoidal component separately and then to add up the
weakened or attennated sinusoidal components in order to obtain
the over-all received signal.

Nyquist showed that the number of distinct, different current
values which can be sent over a circuit per second is twice the total
range or band width of frequencies used. Thus, the rate at which
letters of text can be transmitted is proportional to band width.
Nyquist and Hartley also showed that the rate at which letters of
text can be transmitted is proportional to the logarithm of the
number of current values used.

A complete theory of communication required other mathe-
matical tools and new ideas. These are related to work done by
Kolmogoroff and Wiener, who considered the problem of an
unknown signal of a given type disturbed by the addition of noise.
How does one best estimate what the signal is despite the presence
of the interfering noise? Kolmogoroff and Wiener solved this
problem.

The problem Shannon set himself is somewhat different. Suppose
we have a message source which produces messages of a given type,
such as English text. Suppose we have a noisy communication
channel of specified characteristics. How can we represent or

encode messages from the message source by means of electrical
signals so as to attain the fastest possible transmission over the
noisy channel? Indeed, how fast can we transmit a given type of
message over a given channel without error? In a rough and general
way, this is the problem that Shannon set himself and solved.

CHAPTER III A Mathematical
Model

%

A MATHEMATICAL THEORY which seeks to explain and to predict
the events in the world about us always deals with a simplified
model of the world, a mathematical model in which only things
pertinent to the behavior under consideration enter.

Thus, planets are composed of various substances, solid, liquid,
anq gaseous, at various pressures and temperatures. The parts of
their substances exposed to the rays of the sun reflect various
fractions of the different colors of the light which falls upon them
50 that when we observe planets we see on them various colored
features. However, the mathematical astronomer in predicting the
orbit of a planet about the sun need take into account only the total
mass of the sun, the distance of the planet from the sun, and the
speed and direction of the planet’s motion at some initjal instant.
For a more refined calculation, the astronomer must also take into
account the total mass of the planet and the motions and masses
of otl}er planets which exert gravitational forces on it.

This does not mean that astronomers are not concerned with
other aspects of planets, and of stars and nebulae as well. The
lmportant point is that they need not take these other matters into
consideration in computing planetary orbits. The great beauty and
power of a mathematical theory or model lies in the separation of
the relevant from the irrelevant, so that certain observable behavior

45
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can be related and understood without the need of comprehending
the whole nature and behavior of the universe.

Mathematical models can have various degrees of accuracy or
applicability. Thus, we can accurately predict the orbits of planets
by regarding them as rigid bodies, despite the fact that no truly
rigid body exists. On the other hand, the long-term motions of our
moon can only be understood by taking into account the motion
of the waters over the face of the earth, that is, the tides. Thus, in
dealing very precisely with lunar motion we cannot regard the
earth as a rigid body.

In a similar way, in network theory we study the electrical
properties of interconnections of ideal inductors, capacitors, and
resistors, which are assigned certain simple mathematical proper-
ties. The components of which the actual useful circuits in radio,
TV, and telephone equipment are made only approximate the
properties of the ideal inductors, capacitors, and resistors of net-

work theory. Sometimes, the difference is trivial and can be disre-
garded. Sometimes it must be taken into account by more refined
calculations.

Of course, a mathematical model may be a very crude or even
an invalid representation of events in the real world. Thus, the
self-interested, gain-motivated “economic man” of early economic
theory has fallen into disfavor because the behavior of the eco-
nomic man does not appear to correspond to or to usefully explain
the actual behavior of our economic world and of the people in it.

In the orbiis of the planets and the behavior of networks, we

bave. examples of idealized deferministic systems which have the
soit of predictable behavior we ordinarily expect of machines.
Astronomers can compute the positions which the planets will
occupy millennia in the future. Network theory tells us all the
subsequent behavior of an electrical network when it is excited by

a particular electrical signal.

Even the individual economic man is deterministic, for he will
always act for his economic gain. But, if he at some time gambles
on the honest throw of a die because the odds favor him, his
economic fate becomes to a degree unpredictable, for he may lose
even though the odds do favor him.

We can, however, make a mathematical model for purely chance
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fraction of E’s, or of any other letter, that everyone else does. In
fact, several untrammeled individuals have broken away from the
common pattern. William F. Friedman, the eminent cryptanalyst
and author of The Shakesperian Cipher Examined, has supplied
me with the following examples.

Gottlob Burmann, a German poet who lived from 1737 to 1805,
wrote 130 poems, including a total of 20,000 words, without once
using the letter R. Further, during the last seventeen years of his
life, Burmann even omitted the letter from his daily conversation.

In each of five stories published by Alonso Alcala y Herrera in
Lisbon in 1641 a different vowel was suppressed. Francisco Navar-
rete y Ribera (1659), Fernando Jacinto de Zurita y Haro (1654),
and Manuel Lorenzo de Lizarazu y Berbuizana (1654) provided
other examples.

In 1939, Ernest Vincent Wright published a 267-page novel,
Gadsby, in which no use is made of the letter E. I quote a paragraph
below:

Upon this basis I am going to show you how a bunch of bright young
folks did find a champion; a man with boys and girls of his own; a man
of so dominating and happy individuality that Youth is drawn to him as
is a fly to a sugar bowl. It is a story about a small towrn. It is not a gossipy
yarn; norisita dry, monotenous account, full of such customary “fill-ins”
as “romantic moonlight casting murky shadows down a long, winding
country toad.” Nor will it say anything about tinklings lulling distant
folds: robins carolling at twilight, nor any “warm glow of lamplight” from

‘a2 cabin' window. No. It is an account of up-and-doing activity; a vivid
portrayal of Youth as it is today; and a practical discarding of that worn-
- out notion that “a child don’t know anything.”

While such exercises of free will show that it is not impossible
to break the chains of habit, we ordinarily write in a more conven-
tional manner. When we are not going out of our way to demon-
strate that we can do otherwise, we customarily use our due
fraction of 0.13 E’s with almost the consistency of a machine or a
mathematical rule. ‘

We cannot argue from this to the converse idea that a machine
into which the same habits were built could write English text.
However, Shannon has demonstrated how English words and text
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letters, there are 10,000 successive pairs of letters, i.e., the first and
second, the second and third, and so on to the next to last and the
last. Of the pairs a certain number are the letters TH. This might
be 370 pairs. If we divide the total number of times we find TH,
which we have assumed to be 370 times, by the total number of
pairs of letters, which we have assumed to be 10,000, we get the
probability that a randomly selected pair of letters in the text will
be TH, that is, 370/10,000, or .037.

Diligent cryptanalysts have made tables of such digram prob-
abilities for English text. To see how we might use these in con-
structing sequences of letters with the same digram probabilities
as English text, let us assume that we use 27 hats, 26 for digrams
beginning with each of the letters and one for digrams beginning
with a space. We will then put a large number of digrams into the
hats according to the probabilities of the digrams. Out of 1,000
digrams we would put in 37 TH’s, 10 ‘WE’s, and so on.

Let us consider for a moment the meaning of these hats full of
digrams in terms of the original counts which led to the evaluations
of digram probabilities.

In going through the text letter by letter we will encounter every
T in the text. Thus, the number of digrams beginning with T, all

- of which we put in one hat, will be the same as the number of T’s.

~ The fraction these represent of the total number of digrams counted
is ‘the probability of encountering T in the text; that is, .10. We
might call this probability p(T)

2(T) = .10

We may note that this is also the fraction of digrams, distributed
among the hats, which end in T as well as the fraction that begin
with T.

Again, basing our total numbers on 1,001 letters of text, or
1,000 digrams, the number of times the digram TH is encountered
is 37, and so the probability of encountering the digram TH, which
we might call p(T, H) is

p(T,H) = 037

Now we see that 0.10, or 100, of the digrams will begin'with T

and hence will be in the T hat and of these 37 will be TH. Thus, §
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¥h$ ﬁsb(;ag]e]d 1—316 conditional probability that the letter following a
One can use these probabilities, which are
sented by the numbers of various digrams in thaédsgriif:yhzf n
the construction of text which has both the same Jetter fre uem;in.l
a}?d dzgraffn frequencies as does English text. To do this 01(116 dra‘::
}-1 e first digram at random from any hat and writes down its letters
¢ then draws a second digram from the hat indicated bv the
secor.ld Jetter of .the first digram and writes down the second ilette
of this second digram. Then he draws a third digram from the h: i
indicated by the second letter of the second digram and WI'ita
fiown ﬂle second letter of this third digram, and so on. The s af X
18 treated just like a letter. There is a particular probal;ilit tlfat :1:
;Ei.;e ‘lmll f011130‘*: ﬂfl particular letter (ending a “word”)y and a
cular probabilit } i
(stﬁrting aiew “WO%’ ’t)t-lat a particular letter will follow a space
¥ an equivalent process, Shannon
second-order approximation to EnglislS?i'ltSEmted what he calls 2

3. Second-order approximation (digram structure as in English).

IO)N IE ANTSOUTINYS ARE T INCTORE ST BE S8
EAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE
FUSO TIZIN .ANDY TOBE SEACE CTISBE

fCryptanalysts have even produced tables giving the probabilities
](; groups of three letters, called trigram probabilities. These can
e used to construct what Shannon calls a third-order approxima-
ton to English. His example goes: ®

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS
GROCID PONDENOME OF DEMONSTURES OF THE
REPTAGIN 1S REGOACTIONA OF CRE

i Whe_n we examine Shannon’s examples 1 through 4 we see an
ncreasing resemblance to English text. Example 1, the zero-order
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approximation, has no wordlike combinations. In ;x::jt:gl:o 21;1:‘117111(;11
takes letter frequencies into account, O'C?t ;1; e o roquen:
resemble Bnglish words. In example 3, whic g
ies i count, all the “words”™ are pronounceabie, 8= % ARE,
oy ;I}rtoafd AND’Y occur in English. In ex.ample 4,_ whic e
E’Ei’grar;x frequencies into account, we have e1gé;‘]c) E:gﬁjs)l;;vgbri o
many English-sounding words, such as GROCID,
DENGIO}fI?TI(J}REiSlEaud has carried out a similar process us_mit;g;
statilstics of Latin and has so _produced a th;rc}—o)rci:rs :g%rl?fgjnLaﬁn,
(one taking into account trigram frequencies
which I quote below: :

' 3
[BUS CENT IPITIA VETIS IPSE CUM VIVIV
SE ACETITI DEDENTUR

- The underlined words are genuine Latin words-. - achine certain
It is clear from such examples that by wfng11 e racular
statistics of a language, t2he pr;)bzl;ﬂ:;uie;tzrs’ nay gb e the
aching gm;gi]i('z)f’ ;f’llzfralérgrto ’Picking a ball from a hat, ﬂlPllT-lnge
mac!lera:hoosing a random number, e could make the mac r’:le
;:c(:cllrlll’ce a close approximation to anhlsjl} te:rcl; ?iro :10 ;e:tg; :othe
omplete infor e the
Othe;i1m%gzgrzo$h§0§;?;ewguldﬂts product resemble English oer
othe Im,t both in its statistical structure and to the human eth .
Oﬂ‘igrx;: 3:tliow the machine to choose groups of three 'lettgr; c:rlhich
basis of their probability, then any three-letter cc;r;rl:%;al g]ojsh hick
it produces must be an English word or a part 0 g e
;nlii any two letter «“word” must be an English word(.l_mrily chine
is, however, less inbibited than a person, who or 1ds D e
1c:léan only sequences of letters which do spell wor ti‘LONAs’IVE
misses ever writing down pompous PONDENOME, susp;:lcc:1 o bu;
somewhat vulgar GROCID, learned DEMONSTURES, &

delightful DEAMY. Of course, a man in principle could write down

inati inarily he doesn’t. .
binations of letters but o;dma_r* ) .
Sui;lfecg(r)?ﬂd cure the machine of this ability tf produce ;11’; Eg;g,li; X
words by making it choose among groups ok Jetters as long

longest English word. But, it would be much simpler merely to |
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supply the machine with words rather than letters and to let it
produce these words according to certain probabilities.

Shannon has given an example in which words were selected
independently, but with the probabilities of their occurring in
English text, so that the, and, man, etc., occur in the same propor-
tion as in English. This could be achieved by cutting text into
words, scrambling the words in a hat, and then drawing out a
succession of words. He calls this a first-order word approximation.
It runs as follows:

5. First-order word approximation. Here words are chosen inde-
pendently but with their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT

OR COME CAN DIFFERENT NATURAL HERE HE THE
A IN CAME THE TO OF TO EXPERT GRAY COME
TO FURNISHES THE LINE MESSAGE HAD BE THESE

There are no tables which give the probability of different pairs
of words. However, Shannon constructed a random passage in
which the probabilities of pairs of words were the same as in
English text by the following expedient. He chose a first pair of
words at random in a novel. He then looked through the novel for
the next occurrence of the second word of the first pair and added
the word which followed it in this new occurrence, and so on.

This process gave him the following second-order word approxi-
mation to English.
6. Second-order word approximation. The word transition prob-
abilities are correct, but no further structure is included.

THE HEAD AND IN FRONTAL ATTACK ON AN
ENGLISH WRITER THAT THE CHARACTER OF THIS
POINT I3 THEREFORE ANOTHER METHOD FOR THE
LETTERS THAT THE TIME OF WHO EVER TOLD THE
PROBLEM FOR AN TUNEXPECTED.

We sece that there are stretches of several words in this final
passage which resemble and, indeed, might occur in English text.
Let us consider what we have found. In actual English text, in
that text which we send by teletypewriter, for instance, particular
letters occur with very nearly constant frequencies. Pairs of Jetters
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and triplets and quadruplets of letters occur with almost constant
frequencies over long stretches of the text. Words and pairs of
words occur with almost constant frequencies. Further, we can by
means of a random mathematical process, carried out by a machine
if you like, produce sequences of English words or letters exhibiting
these same statistics.

Such a scheme, even if refined greatly, would not, however,
produce all sequences of words that a person might utter. Carried
to an extreme, it would be confined to combinations of words
which Aad occurred; otherwise, there would be no statistical data
available on them. Yet I may say, “The magenta typhoon whirled
the farded bishop away,” and this may well never have been said
before.

The real rules of English text deal not with letters or words alone
but with classes of words and their rules of association, that is, with
grammar. Linguists and engineers who try to make machines for
translating one language into another must find these rules, so that
their machines can combine words to form grammatical utterances
even when these exact combinations have not occurred before
(and also so that the meaning of words in the text to be translated
can be deduced from the context). This is a big problem. It is easy,
however, to describe a “machine” which randomly produces end-
less, grammatical utterances of a limited sort.

Figure III-1 is a diagram of such a “machine.” Each numbered
box represents a state of the machine. Because there is only a finite
number of boxes or states, this is called a finite-state machine.

From each box a number of arrows go to other boxes. In this
particular machine, only two arrows go from each box to each of
two other boxes. Also, in this case, each arrow is labeled Y. This
indicates that the probability of the machine passing from, for
instance, state 2 to state 3 is ¥ and the probability of the machine
passing from state 2 to state 4 is %.

To make the machine run, we need a sequence of random

choices, which we can obtain by flipping a coin repeatedly. We can :‘5
let heads (H) mean follow the top arrow and tails (T'), follow the §
bottom arrow. This will tell us to pass to a new state. When we do §

this we print out the word, words, or symbol written in that state
box and flip again to get a new state.
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As an example, if we started in state 7 and flipped the folillogin}gi
sequence of heads and tails: T H”H HTTHTTT
H, the “machine would print out

THE COMMUNIST PARTY INVESTIGATED THE CONGRESS.
THE COMMUNIST PARTY PURGED THE CONGRESS AND
DESTROYED THE COMMUNIST PARTY AND FOUND
EVIDENCE OF THE CONGRESS.

| This can go on and on, never r;tfachtlﬁ its whole course and
ing “ ” imited length.
Pff;fafélé%n 2;;101;:: ;Ziorc)di;ll;]:o a table o%probabilities of sequences
of symbols (letters and space) or words can qutllice rga;zg:nl
resembling English text. A finite-state machine with a dom
choice among allowed transitions from state to §tate czn p;o huce
material resembling English text. Either process1s called :3. stoc
tic process, because of the random element .mvolved 1111. 1h .t Cwe
We have examined a number of proper!tn?s of English tex e
have seen that the average frequency of E’s 1s commonly CO;.:IS ?Ee
for both the English text produced by one wriier a_nd, ac{sot, tc;;ﬁcs
text produced by all writers. Other more comphcatei ts a aj_rs),
such as the frequency of digrams (T H, WE, and other ;tte]g Pg]jsh:
are also essentially constant. Further, we have shown tha_ 1 st
like text can be produced by a sequence of rapdom c o1_ces,if 1ch
as drawings of slips of paper from hats, or .ﬂ1ps of a cccm,S he
proper Erobabi]jties are in some way built into thc;ﬂ pr%nis;e._ One
way of producing such text is icli'xlrn)lugh the use of a
i that of Figure 111-1.
ma“CYI;HLC;j: ﬁi:rsl seeking f]fnathematical model of a so.urce; ?{1;
English text. Such a model should be caPable of prodlllcmfo ue N
which corresponds closely to actual English text, close yhetemgis
so that the problem of encoding and transx_mtungd SUC g
essentially equivalent to the problgm of encod_mg anh trand‘::1 ing
actual English text. The mathematical properties of the ms mus
be mathematically defined so that us.eﬁll-l theorems can be gduces
concerning the encoding and transmission of the text is pr ation’
theorems which are applicab}f 1t10 a 1111gth del;glr(;eehc;fv aégfe);oiaﬁsmg
to the encoding of actual Englis text. would, e, _
msist that the production of actual _Enghsh text con
}(C))lc',n;.n\\;;:t};l t:ig?li;matical ex'fctitude to the operation of the model.
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The mathematical model which Shannon adopted to represent
the production of text (and of spoken and visual messages as well)
is the ergodic source. To understand what an ergodic source is, we
must first understand what a stationary source is, and to explain
this is our next order of business.

The general idea of a stationary source is well conveyed by the
name. Imagine, for instance, a process, i.e., an imaginary machine,
that produces forever after it is started the sequences of characters

AEAEAEAEAE,e tc

Clearly, what comes later is like what has gone before, and
stationary seems an apt designation of such a source of characters.

We might contrast this with a source of characters which, after
starting, produced

A EAAEEAAAEEE,aetc.

Here the strings of A’s and E’s get longer and longer without end;
certainly this is not a stationary source,

Similarly, a sequence of characters chosen at random with some
assigned probabilities (the first-order letter approximation of ex-
ample 1 above} constitutes a stationary source and so do the
digram and trigram sources of examples 2 and 3. The general idea
of a stationary source is clear enough. An adequate mathematical
definition is a little more difficult.

The idea of stationarity of a source demands no change with
time. Yet, consider a digram source, in which the probability of
the second character depends on what the previous character is.
If we start such a source out on the letter A, several different
letters can follow, while if we start such a source out on the letter
Q, the second letter must be U, In general, the manner of starting
the source will influence the statistics of the sequence of characters
produced, at least for some distance from the start.

To get around this, the mathematician says, let us not consider
just one sequence of characters produced by the source. After all,
our source is an imaginary machine, and we can quite well imagine
that it has been started an infinite number of times, so as to produce
an infinite number of sequences of characters. Such an infinite
number of sequences is called an ensemble of sequences.

These sequences could be started in any specified manner. Thus,
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in the case of a digram source, we can if we wish start a fraction,
0.13, of the sequences with E (this is just the probability of Ein
English text), a fraction, 0.02, with W (the probability of W), and
so on. If we do this, we will find that the fraction of E’s is the same,
averaging over all the first letters of the ensemble of sequences, as
it is averaging over all the second letters of the ensemble, as it is
averaging over all the third letters of the ensemble, and so on. No
matter what position from the beginning we choose, the fraction
of E’s or of any other letter occurring in that position, taken over
all the sequences in the ensemble, is the same. This independence
with respect to position will be true also for the probability with
which TH or WE occurs among the first, second, third, and sub-
sequent pairs of letters in the sequences of the ensemble.

This is what we mean by stationarity. If we can find a way of
assigning probabilities to the various starting conditions used in
forming the ensemble of sequences of characters which we allow
the source to produce, probabilities such that any statistic obtained
by averaging over the ensemble doesn’t depend on the distance
from the start at which we take an average, then the source is said
to be stationary. This may seem difficult or obscure to the reader,
but the difficulty arises in giving a useful and exact mathematical
form to an idea which would otherwise be mathematically useless.

In the argument above we have, in discussing the infimte en-
semble of sequences produced by a source, considered averaging
over-all first characters or over-all second or third characters (o
pairs, or triples of characters, as other examples). Such an average
is called an ensemble average. It is different from a sort of average
we talked about carlier in this chapter, in which we lumped
together all the characters in one sequence and took the average
over them. Such an average is called a fime average.

The time average and the ensemble average can be different.
For instance, constder a source which starts a third of the time with
A and produces alternately A and B, 2 third of the time with B and
produces alternately B and A, and a third of the time with E and
produces a string of E’s. The possible sequences are

I.ABABABAB,et
2. BABABABA e
3. EEEEEEEEetc
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We can see that this is a statio
are nary source,
probabilities shown in Table V. yet we have the

TABLE V

Probability  Time Average Time Average Time Average  Ensemble

of Sequence (1) Sequence (2) Sequence (3) Average
A %) ) 0 4
B - s ) 0 )
E 0 0 1 %

When a source is stationary, and when every possible ensemble
average (of letters, digrams, trigrams, etc.) is equal to the corre-
sponding time average, the source is said to be ergodic. The
theorems of information theory which are discussed in subse;.luent
chapters' apply to ergodic sources, and their proofs rest on th
assumption that the message source is ergodic.t )

While we have here discussed discrete sources which produce
sequences of characters, information theory also deals with con-
tinuous sources, which generate smoothly varying signals, such as
the_ acoustic waves of speech or the fluctuating electric ’cu.rrents
which correspond to these in telephony. The sources of such signal
are also assumed to be ergodic. T

Whyis an ergodic message source an appropriate and profitable
mathematical model for study? For one thing, we see by examinin
the d(_tﬁmtwn of an ergodic source as given above that for aﬁ
ergodic source the statistics of a message, for instance, the fre-
quency of occurrence of a letter, such as E, or of a d.igr’am such
as TH, do not vary along the length of the message. As we a,I;al ze
alonger and longer stretch of a message, we get a better and be1)::‘.er
estimate of the probabilities of occurrence of various letters and
letter groups. In other words, by examining a longer and longer
stretch of a message we are able to arrive at and refine a matlgl
matical description of the source. -
Further, the probabilities, the description of the source arrived
at through such an examination of one message, apply equall
well to a/l messages generated by the source and’ not just ctlo thz

Some Ol'k has beeﬂ. i
? one ont i it i
1 W f S d he enCOd]ng of nonstatlonary sources, but it is
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particular message examined. This is assured by the fact that the
time and ensemble averages are the same.

Thus, an ergodic source is a particularly simple kind of prob-
abilistic or stochastic source of messages, and simple processes are
easier to deal with mathematically than are complicated processes.
However, simplicity in itself is not enough. The ergodic source
would not be of interest in communication theory if it were not
reasonably realistic as well as simple.

Communication theory has two sides. It has a mathematically
exact side, which deals rigorously with hypothetical, exactly ergodic
sources, sources which we can imagine to produce infinite en-
sembles of infinite sequences of symbols. Mathematically, we are
free to investigate rigorously either such a source itself or the
infinite ensemble of messages which it can produce.

We use the theorems of communication theory in connection
with the transmission of actual English text. A human being is not
a hypothetical, mathematically defined machine. He cannot pro-
duce even one infinite sequence of characters, let alone an infinite
ensemble of sequences.

A man does, however, produce many long sequences of charac-
ters, and all the writers of English together collectively produce a
great many such long sequences of characters. In fact, part of this
huge output of very long sequences of characters constitutes the
messages actually sent by teletypewriter.

We will, thus, think of all the different Americans who write out
telegrams in English as being, approximately at least, an ergodic
source of telegraph messages and of all Americans speaking over
telephones as being, approximately at least, an ergodic source of
telephone signals. Clearly, however, all men writing French plus
all men writing English could not constitute an ergodic source. The
output of each would have certain time-average probabilities for
letters, digrams, trigrams, words, and so on, but the probabilities
for the English text would be different from the probabilities for
the French text, and the ensemble average would resemble neither.

We will not assert that all writers of English (and all speakers
of English) constitute a strictly ergodic message source. The statis-
tics of the English we produce change somewhat as we change
subject or purpose, and different people write somewhat differently.
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Too, in producing telephone signals by speaking, some people
speak softly, some bellow, and some bellow only when they E:e
angry, What we do assert is that we find a remarkable uniformit
in many statistics of messages, as in the case of the probability 0);‘
E for . different samples of English text. Speech and writing as
;rgodm sources are not quite true to the real world, but they are
ue; gfer than is the economic man. They are true enough to be
This difference between the exactly er godic source of the mathe-
matical theory of communication and the approximately ergodic
Inessage sources of the rea] world should be kept in mind. We must
exercise a.reasonablc caution in applying the conclusions of the
mathemat}cal theory of communication to actual problems. We are
used to this in other fields. For instance, mathematics te]ls. us that
we can deduce the diameter of a circle from the coordinates or
locations of any three points on the circle, and this is true for
absolutely exact coordinates. Yet no sensible man would try to
determine the diameter of a somewhat fuzzy real circle drawn on
a sheet of paper by trying to measure very exactly the positions of
three points a thousandth of an inch apart on its circumference
R_ather, he would draw a line through the center and measure the;
d1a:metcr directly as the distance between diametrically opposite
p;nnts. Thi§ is just the sort of judgment and caution one must
;r:gsir(s: ;s: alsrz .applylng an exact mathematical theory to an inexact
Whatever caution we invoke, the fact that we have used a ran-
dom, probabilistic, stochastic process as a model of man in his role
ofa message source raises philosophical questions. Does this mean
tha.t we imply that man acts at random? There is no such impli-
:itéoll:i. I;ErI:aps if we knew enough about a man, his enviroﬁmgnt
s history, we could ict j ,
"o o one a;ynem- always predict just what word he would
In communication theory, however, we assume that our onl
knowledge of the message source is obtained either from thz
messages that the source produces or perhaps from some less-than-
complete study of man himself. On the basis of information so
obtained, we can derive certain statistical data which, as we have
seen, help to narrow the probability as to what the n,ext word or



62 Symbols, Signals and Noise

letter of a message will be. There remains an element of uncer-
tainty. For us who have incomplete knowledge of it, the message
source behaves as if certain choices were made at random, insofar
as we cannot predict what the choices will be. If we could predict
them, we should incorporate the knowledge which enables us to
make the predictions into our statistics of the source. If we had
more knowledge, however, we might see that the choices which we
canmot predict are not really random, in that they are (on the basis
of knowledge that we do not have) predictable.

We can see that the view we have taken of finite-state machines,
such as that of Figure III-1, has been Hmited. Finite-state machines
can have inputs as well as outputs. The transition from a particular
state to one among several others need not be chosen randomly;
it could be determined or influenced by various inputs to the
machine. For instance, the operation of an electronic digital com-
puter, which is a finite-state machine, is determined by the program
and data fed to it by the programmer.

It is, in fact, natural to think that man may be a finite-state
machine, not only in his function as a message source which pro-
duces words, but in all his other behavior as well. We can think if
we like of all possible conditions and configurations of the cells of
the nervous system as constituting states (states of mind, perhaps).
We can think of one state passing to another, sometimes with the
production of a letter, word, sound, or a part thereof, and some-
times with the production of some other action or of some part of
an action. We can think of sight, hearing, touch, and other senses
as supplying inputs which determine or influence what state the
machine passes into next. If man is a finite-state machine, the
aumber of states must be fantastic and beyond any detailed mathe-
matical treatment. But, so are the configurations of the molecules
in a gas, and yet we can explain much of the significant behavior
of a gas in terms of pressure and temperature merely.

Can we someday say valid, simple, and important things about
the working of the mind in producing written text and other things
as well? As we have seen, we can already predict a good deal
concerning the statistical nature of what a man will write down on
paper, unless he is deliberately trying to behave eccentrically, and,
even then, he cannot help conforming to habits of his own.

Such broad considerations are not, of course, the real purpose
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or meat of this chapter. We set out to find a mathematical model
adequate to represent some aspects of the human being in his role
as a source of messages and adequate to represent some aspects
of the messages he produces. Taking English text as an example,
we noted that the frequencies of occurrence of various letters are
remarkably constant, unless the writer deliberately avoids certain
le:ﬂ:ers. Likewise, frequencies of occurrence of particular pairs,
triplets, and so on, of letters are very nearly constant, as are
frequencies of various words.

We also saw that we could generate sequences of letters with
frequencies corresponding to those of English text by various ran-
dom or stochastic processes, such as, cutting a lot of text into letters
{or words), sqrambling the bits of paper in a hat, and drawing them
out one at a time. More elaborate stochastic processes, including
finite-state machines, can produce an even closer approximation
to English text.

Thus, we take a generalized stochastic process as a model of a
message source, such as, a source producing English text. But, how
must we mathematically define or limit the stochastic sources we
deal with so that we can prove theorems concerning the encoding
of messages generated by the sources? Of course, we must choose
a definjtion consistent with the character of real English text.

The sort of stochastic source chosen as a miodel of actual message
sources is the ergodic source. An ergodic source can be regarded
as & hypothetical machine which produces an infinite number of
or ensemble of infinite sequences of characters. Roughly, the nature
or statistics of the sequences of characters or messages produced
Py an ergodic source do not change with time; that is, the source
1s stationary. Further, for an ergodic source the statistics based on
one message apply equally well to all messages that the source
generates.

The theorems of communication theory are proved exactly for
truly _ergodic sources. All writers writing English text together
constitute an approximately ergodic source of text. The mathe-
matical model—the truly ergodic source—is close enough to the
actual situation so that the mathematics we base on it is very
usefirl. But we must be wise and careful in applying the theorems
and _results of communication theory, which are exact for a mathe-
matical ergodic source, to actual communication problems.



crapter 1V Encoding and
Binary Digits

A SOURCE OF INFORMATION may be English text, a man speaking,
the sound of an orchestra, photographs, motion picture films, or
scenes at which a television camera may be pointed. We have seen
that in information theory such sources are regarded as having the
properties of ergodic sources of letters, numbers, characters, or
electrical signals. A chief aim of information theory is to study how
such sequences of characters and such signals can be most effec-
tively encoded for transmission, commonly by electrical means.

Everyone has heard of codes and the encoding of messages.
Romantic spies use secret codes. Edgar Allan Poe popularized
cryptography in The Gold Bug. The country is full of amateur
cryptanalysts who delight in trying to read encoded messages that
others have devised.

In this historical sense of cryptography or secret writing, codes
are used to conceal the content of an important message from these
for whom it is not intended. This may be done by substituting for
the words of the message other words which are listed in a code
book. Or, in a type of code called a cipher, letters or numbers may
be substituted for the letters in the message according to some
previously agreed upon secret scheme.

The idea of encoding, of the accurate representation of one
thing by another, occurs in other contexts as well. Geneticists
believe that the whole plan for a human body is written out in the
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chromosomes of the germ cell. Some assert that the “text” consists
of an orderly linear arrangement of four different units, or “bases,”
in the DNA (desoxyribonucleic acid) forming the chromosome.
This text in turn produces an equivalent text in RNA (ribonucleic
acid), and by means of this RNA text proteins made up of
sequences of twenty amino acids are synthesized. Some cryptana-
lytic effort has been spent in an effort to determine how the four-
character message of RNA is reencoded into the twenty-character
code of the protein.

Actually, geneticists have been led to such considerations by the
existence of information theory. The study of the transmission of
information has bronght about a new general understanding of the -
problems of encoding, an understanding which is important to any
sort of encoding, whether it be the encoding of cryptography or the
encoding of genetic information. ‘

We have already noted in Chapter II that English text can be
encoded into the symbols of Morse code and represented by short
and long pulses of current separated by short and long spaces. This
is one simple form of encoding. From the point of view of infor-
mation theory, the electromagnetic waves which. travel from an FM
transmitter to the receiver in your home are an encoding of the
music which is transmitted. The electric currents in telephone
circuits are an encoding of speech. And the sound waves of speech
are themselves an encoding of the motions of the vocal tract which
produce them.

Nature has specified the encoding of the motions of the vocal
tract into the sounds of speech. The communication engineer,
however, can choose the form of encoding by means of which he
will represent the sounds of speech by electric currents, just as he
can choose the code of dots, dashes, and spaces by means of which
he represents the letters of English text in telegraphy. He wants to
perform this encoding well, not pootly. To do this he must have
some standard which distinguishes good encoding from bad encod-
ing, and he must have some insight into means for achieving good
encoding. We learned something of these matters in Chapter II.

It is the study of this problem, a study that might in itself seem
limited, which has provided through information theory new ideas
important to all encoding, whether cryptographic or genetic. These
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new ideas include a measure of amount of information, cailed
entropy, and a unit of measurement, called the biz.

I would like to believe that at this point the reader is clamoring
to know the meaning of “amount of information” as measured in
bits, and if so I hope that this enthusiasm will carry him over a
considerable amount of intervening material about the encoding
of messages.

It seems to me that one can’t understand and appreciate the
solution to a problem unless he has some idea of what the problem
is. You can’t explain music meaningfully to a man who has never
heard any. A story about your neighbor may be full of insight, but
it would be wasted on a Hottentot. I think it is only by considering
in some detail how a message can be encoded for transmission that
we can come to appreciate the need for and the meaning of a
measure of amount of information.

It is easiest to gain some understanding of the important prob-
lems of coding by considering simple and concrete examples. Of
course, in doing this we want to learn something of broad value,
and here we may foresee a difficulty.

Some important messages consist of sequences of discrete char-
acters, such as the successive letters of English text or the successive
digits of the output of an electronic computer. We have seen,
however, that other messages seem inherently different.

Speech and music are variations with time of the pressure of air
at the ear. This pressure we can accurately represent in telephony
by the voltage of a signal traveling along a wire or by some other
quantity. Such a variation of a signal with time is illustrated in @
of Figure IV-1. Here we assume the signal to be a voltage which
varies with time, as shown by the wavy line.

Information theory would be of limited value if it were not
applicable to such confinuous signals or messages as well as to
discrete messages, such as English text.

In dealing with continuous signals, information theory first
invokes a mathematical theorem called the sampling theorem,
which we will use but not prove. This theorem states that a con-
tinuous signal can be represented completely by and reconstructed
perfectly from a set of measurements or samples of its amplitude
which are made at equally spaced times. The interval between such
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samples must be equal to or less than one-half of the period of the
highest frequency present in the signal. A set of such measurements
or samples of the amplitude of the signal 4, Figure IV-1, is repre-
sented by a sequence of vertical lines of various heights in » of
Figure IV-1.

We should particularly note that for such samples of the signal
to represent a signal perfectly they must be taken frequently
enough. For a voice signal including frequencies from 0 to 4,000
cycles per second we must use 8,000 samples per second. For a
television signal including frequencies from 0 to 4 million cycles
per second we must use 8 million samples per second. In general,
if the frequency range of the signal is f cycles per second we must
use at least 2f samples per second in order to describe it perfectly.

Thus, the sampling theorem enables us to represent a smoothly
varying signal by a sequence of samples which have different
amplitudes one from another. This sequence of samples is, how-
ever, still inherently different from a sequence of letters or digits.
There are only ten digits and there are only twenty-six letters, but
a sample can have any of an infinite number of amplitudes. The
amplitude of a sample can lie anywhere in a continuous range of
values, while a character or a digit has only a limited number of
discrete values.

The manner in which information theory copes with samples
having a continuous range of amplitudes is a topic all in itself, to
which we will return later. Here we will merely note that a signal
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need not be described or reproduced perfectly. Indeed, with real
physical apparatus a signal cannot be reproduced perfectly. In the
transmission of speech, for instance, it is sufficient to represent the
amplitude of a sample to an accuracy of about 1 per cent. Thus,
we can, if we wish, restrict ourselves to the numbers 0 to 99 in
describing the amplitudes of successive speech samples and repre-
sent the amplitude of a given sample by that one of these hundred
integers which is closest to the actual amplitude. By so quantizing
the signal samples, we achieve a representation comparable to the
discrete case of English text. .

We can, then, by sampling and quantizing, convert the problem
of coding a continuous signal, such as speech, into the seemingly
simpler problem of coding a sequence of discrete characters, such
as the letters of English text.

We noted in Chapter II that English text can be sent, letter by
letter, by means of the Morse code. In a similar manner, such
messages can be sent by teletypewriter. Pressing a particular key
on the transmitting machine sends a particular sequence of elec-
trical pulses and spaces out on the circuit. When these pulses and
spaces reach the receiving machine, they activate the corresponding
type bar, and the machine prints out the character that was trans-
mitted.

Patterns of pulses and spaces indeed form a particularly useful
and general way of describing or emcoding messages. Although
Morse code and teletypewriter codes make use of pulses and spaces
of different lengths, it is possible to transmit messages by means
of a sequence of pulses and spaces of equal length, transmitted at
perfectly regular intervals. Figure IV-2 shows how the electric
current sent out on the line varies with time for two different
patterns, each six intervals long, of such equal pulses and spaces.
Sequence a is a pulse-space-space-pulse-space-pulse. Sequence b
is pulse-pulse-pulse-space-pulse-pulse.

The presence of a pulse or a space in a given interval specifies
one of two different possibilities. We.could use any pair of symbols
to represent such patterns of pulses or spaces as those of Figure
IV-2: yes, no; +, —; 1, 0. Thus we could represent pattern a as
follows:
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Or in binary notation
001010 = 1810

In binary numbers, each 0 or 1 is a binary digit. To describe the
pulses or spaces occurring in six successive intervals, we can use
a sequence of six binary digits. As a pulse or space in one interval
is equivalent to a binary digit, we can also refer to a pulse group
of six binary digits, or we can refer to the pulse or space occurring
in one interval as one binary digit.

Let us consider how many patterns of pulses and spaces there
are which are three intervals long. In other words, how many
three-digit binary numbers are there? These are all shown in

Table VI.

TABLE VI
000 0)
001 (N
010 (2)
011 (3)
100 %)
101 5)
110 (6)
111 )

The decimal numbers corresponding to these sequences of I’s
and 0’s regarded as binary numbers are shown in parentheses to
the right. '

We see that there are 8 (0 and 1 through 7) three-digit binary
numbers. We may note that 8 is 23. We can, in fact, regard an
orderly listing of binary digits 7 intervals long as simply setting
down 2» successive binary numbers, starting with 0. As examples,
in Table VII the numbers of different patterns corresponding to
different numbers 7 of binary digits are tabulated.

We see that the number of different patterns increases very
rapidly with the number of binary digits. This is because we double
the number of possible patterns each time we add one digit. When
we add one digit, we get all the old sequences preceded by a 0 plus

all the old sequences preceded by a 1.
The binary system of notation is not the only alternative to the
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TaBLE VII

n (Number of Binary Digits) Number of Patterns (2»)

2

4

8

16

32

1,024
1,048,576

S O WV AW

1
2

decimal system, The octal s i i
. ystem 1s very important to people who
use computers. We can regard the octal system
eight digits 0, 1, 2, 3, 4, 5, 6, 7. ¢ s made up of the
When we write 356 in the octal system we mean

IxX8+5x846%x1
:3)(64+5X8+6>(1
= 238 in decimal notation

We can convert back and forth between the octal and the binary
S}ff‘stems very 31m.p1.y. We need merely replace each successive block
of three binary digits by the appropriate octal digit, as, for instance,

binary 010 111 011 110
octal 2 7 3 6

People who work with binary notation in connection with com-
puters ﬁnd it easier to remember and transcribe a short sequence
of octal digits than a long group of binary digits. They learn to
regard patterns of three successive binary digits as an entity, so that
they will think of a sequence of twelve binary digits as a sm;cession
of folur'pattem_s of three, that is, as a sequence of four octal digits

It is interesting to note, too, that, just as a pattern of pulses anci
Spaces can correspond to 2 sequence of binary digits, so a sequence
of pulses of various amplitudes (0, 1, 2, 3,4, 5, 6, 7 c’an correspond
to a sequence of octal digits. This is illustrated in Figure IV—I; In
@, we have the sequence of off-on, 0-1 pulses corresponding to -the
g%%ry m&n.lbir (})1101 11011110. The corresponding octal number is

, and in & this is represented
current having a.mplitudlés 2,73, g,y ? seanence of four pulses of



72 Symbols, Signals and Noise
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Conversion from binary to decimal numbers is not so easy. On
the average, it takes about 3.32 binary diglt_s to re.pl"esent one
decimal digit. Of course we can assign four b}nary digits to each
decimal digit, as shown in Table VIIL, but this means that some
patterns are wasted; there are more patierns than we use.

It is convenient to think of sequences of 0’s and 1’s or sequences
of pulses and spaces as binary numbers. This helps us to under-

TasLE VIII
Binary Number Decimal Digit
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 3
1001 9
1010 not used
1011 not used
1100 not used
1101 not used
1110 not used
1111 not used
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stand how many sequences of a different length there are and how
numbers written in the binary system cormrespond to numbers
written in the octal or in the decimal system. In the transmission
of information, however, the particular number assigned to a
sequence of binary digits is irrelevent. For instance, if we wish
merely to éransmit representations of octal digits, we could make
the assignments shown in Table IX rather than those in Table VL.

TaBLE IX

Sequence of Binary Digits
000
001
010
011
100
101
110
111

Octal Digit Represented

W © o= -] L

Here the “binary numbers” in the left column designate octal
numbers of different numerical value.

In fact, there is another way of looking at such a correspondence
between binary digits and other symbols, such as octal digits, a way
in which we do not regard the sequence of binary digits as part of
a binary number but rather as means of choosing or designating
a particular symbol.

We can regard each 0 or 1 as expressing an elementary choice
between two possibilities. Consider, for instance, the “tree of
choice” shown in Figure IV-4. As we proceed upward from the root
to the twigs, let O signify that we take the left branch and let 1
signify that we take the right branch. Then 0 1 1 means left,
right, right and takes us to the octal digit 6, just as in Table IX.

Just as three binary digits give us enough information to deter-
mine one among eight alternatives, four binary digits can determine
one among sixteen alternatives, and twenty binary digits can deter-
mine one among 1,048,576 alternatives. We can do this by assign-

ing the required binary numbers to the alternatives in any order
we wish.
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5 7 1 6

Fig.

The alternatives which we wish 10 specify by successions of
binary digits need not of course be numbers at all. In fact, we bega}t
by considering how we might encode English text s as to transmi
it electrically by sequences gf p o
represented by sequences of binary digis. _

1.)A bare essential in transmitting English text letter l?y Iett:}rh;s
ace, or twenty-seven symbols in all. This
of course allows us no punctuation and no AIa!ch nun}bers. d e

We can write out the numbers (three, not 3) if we wish and us

twenty-six letters plus a sp

words for punctunation, (stop, €O

Mathematics says that a choice among 27 symbols corresponds

o 4 2 ]

4

ulses and spaces, which can be

mma, colon, etc.).

to about 4.75 binary digits. If we are not too concerned with

efficiency, we can assign a different 5-digit binary number to each

i i igit bi bers unused.
hich will leave five 5-digit binary numoeIs
iy pon 1('ier has 48 keys, including shift and shift lock. We

My typewrl ]
might add two more “symbols

line advance, making a total of 50. I could encode my actions 1
typing, capitalization, punctuation, an

paper) by a succession of choic
correspon

numbers, which is too many.
have 50 characters, we have 12
ordered characters. There are

ding to about 5.62 binary digits. We could use 6 l?inary
digits per character and waste some sequences of binary d1g11) .
This wastc arises because there are only thirty-two 5-digit biary

ich i , while there are sixty-four 6-digit binary
b, W ey How can we avoid this waste? If we

’ representing carriage return and

d all (but not insertion of t_he
es among S0 symbols, each choice

5,000 possible different groups of 3
131,072 different combinations of
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17 binary digits. Thus, if we divide our text into blocks of 3 succes-
sive characters, we can specify any possible block by a 17-digit
binary nurnber and have a few left over. If we had represented each
separate character by 6 binary digits, we would have needed 18
binary digits to represent 3 successive characters. Thus, by this
block coding, we have cut down the number of binary digits we use
in encoding a given length of text by a factor 17/18.

Of course, we might encode English text in quite a different way.
We can say a good deal with 16,384 English words. That’s quite a
large vocabulary. There are just 16,384 fourteen-digit binary num-
bers. We might assign 16,357 of these to different useful words and
27 to the letters of the alphabet and the space, so that we could
spell out any word or sequence of words we failed to include in
our word vocabulary. We won’t need to put a space between words
to which numbers have been assigned; it can be assumed that a
space goes with each word.

If we have to speil out words very infrequently, we will use about
14 binary digits per word in this sort of encoding. In ordinary
English text there are on the average about 4.5 letters per word.
As we must separate words by a space, when we send the message
character by character, even if we disregard capitalization and
punctuation, we will require on the average 5.5 characters per
word. If we encode these using 5 binary digits per character, we

. will use on the average 27.5 binary digits per word, while in encod-

ing the message word by word we need only 14 binary digits
per word. ‘

How can this be so? It is because, in spelling out the message
letter by letter, we have provided means for sending with equal
facility all sequences of English letters, while, in sending word by
word, we restrict ourselves to English words.

Clearly, the average number of binary digits per word required to
represent English text depends strongly on how we encode the text.

Now, English text is just one sort of message we might want to
transmit. Other messages might be strings of numbers, the human
voice, a motion picture, or a photograph. If there are efficient and
inefficient ways of encoding English text, we may expect that there

will be efficient and inefficient ways of encoding other signals
as well.
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Indeed, we may be led to believe that there exists in principle
some best way of encoding the signals from a given message source,
a way which will on the average require fewer binary digits per
character or per unit time than any other way.

If there is such a best way of encoding a signal, then we might
use the average number of binary digits required to encode the
signal as a measure of the amount of information per character or
the amount of information per second of the message source which
produced the signal.

This is just what is done in information theory. How it is done
and further reasons for so doing will be considered in the next
chapter.

Let us first, however, review very briefly what we have covered
in this chapter. In communication theory, we regard coding very
broadly, as representing one signal by another. Thus a radio wave
can represent the sounds of speech and so form an encoding of
these sounds. Encoding is, however, most simply explained and
explored in the case of discrete message sources, which produce
messages consisting of sequences of characters or numbers. For-
tunately, we can represent a continuous signal, such as the current
in a telephone line, by a number of samples of its amplitude, using,
each second, twice as many samples as the highest frequency
present in the signal. Further we can if we wish represent the ampli-
tude of each of these samples approximately by a whole number.

The representation of letters or numbers by sequences of off-or-
on signals, which can in turn be represented directly by sequences
of the binary digits O and 1, is of particular interest in commmuni-
cation theory. For instance, by using sequences of 4 binary digits
we can form 16 binary numbers, and we can use 10 of these to
represent the 10 decimal digits. Or, by using sequences of 5 binary
digits we can form 32 binary numbers, and we can use 27 of these
to represent the letters of the English alphabet plus the space. Thus,
we can transmit decimal numbers or English text by sending
sequences of off-or-on signals.

We should note that while it may be convenient to regard the
sequences of binary digits so used as binary numbers, the numerical
value of the binary number has no particular significance; we can
choose any binary number to represent a particular decimal digit.
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If we use 10 of the 16 possible 5-digit binary numbers to encode
the 10 decimal digits, we never use (we waste) 6 binary numbers
We could, put never do, transmit these sequences as sequences of‘
oﬁ"-gr-on signals. We can avoid such waste by means of block
cg@mg, in which we encode sequences of 2, 3, or more decimal
digits or other characters by means of binary digits. For instance
a1‘1 sequences of 3 decimal digits can be represented by 10 binar);
digits, while it takes a total of 12 binary digits to represent sepa-
rately each of 3 decimal digits.

Any sequence of decimal digits may occur, but only certain
sequences of English letters ever occur, that is, the words of the
English language. Thus, it is more efficient to encode English words
as sequences of binary digits rather than to encode the letters of
the words individually. This again emphasizes the gain to be made
by encoding sequences of characters, rather than encoding each
character separately.

All of this leads us to the idea that there may be a best way of

encoding the messages from a message source, a way which calls
for the least number of binary digits.



cuapTER V  Entr opy

IN THE LAST CHAPTER, we have considered varicus ways in which
messages can be encoded for transmission. Indeed, all communica-
tion involves some sort of encoding of messages. In the electrical
case, letters may be encoded in terms of dots or dashes of electric
current or in terms of several different strengths of current and
directions of current flow, as in Edison’s quadruplex telegraph. Or
we can encode a message in the binary language of zeros and ones
and transmit it electrically as a sequence of pulses or absences
of pulses.

Indeed, we have shown that by periodically sampling a continu-
ous signal such as a speech wave and by representing the ampli-
tudes of each sample approximately by the nearest of a set-of
discrete values, we can represent or encode even such a continuous
wave as a sequence of binary digits.

We have also seen that the number of digits required in encoding
a given message depends on how it is encoded. Thus, it takes fewer
binary digits per character when we encode a group or block of
English letters than when we encode the letters one at a time.

More important, because only a few combinations of letters form
words, it takes considerably fewer digits to encode English text
word by word than it does to encode the same text letter by letter.

Surely, there are still other ways of encoding the messages pro-
duced by a particular ergodic source, such as a source of English
text. How many binary digits per letter or per word are really
needed? Must we try all possible sorts of encoding in order to find

78

Entropy 79

out? But,. if we did try all forms of encoding we could think of, we
1\:vou.ld still not be sure we had found the best form of encod’ing
0} the best fon:n Imght be one which had not occurred to us,
s there not, in principle at least, some statistical measurement
w; can n_lake on. the messages produced by the source; a measure
;:; 1-1:h wl;llltelllﬁ u; the minimum average number of binary digits
ymbol which will serve
P symbol 0 encode the messages produced by
In considering this matter, let us
_ ) return to the model of a -
slallge source which we discussed in Chapter III. There we regai'l(liisd
the message source as an ergodic source of symbols, such as letters
or worc?s. Such an ergodic source has certain unvarying statistical
properties: the_ relative frequencies of symbols; the probability that
one symbgl will follow a particular other symbol, or pair of sym-
bols, or triplet of symbols; and so on. &
thIn the_case of Eng!ish text, we can speak in the same terms of
iy :rgei:itﬁvlf iflrequenmes of words and of the probability that one
ollow a particular word or a particul ir, tri
other_ combination of words. g 1 P triplet or
II::1 illustrating the statistical properties of sequences of letters or
Wm;1 §, we showed how material resembling English text can be
produced b)_r 4 sequence of random choices among letters and
words, provided that the letters or words are chosen with due

} regard for their probabilities or their probabilities of following a

{E’fgedix}g s;quence of letters or words. In these examples, the
W ol a die or the picking of a letter out of ’
“choose” the next symbol. * hat can serve o
y Inhwrmng or speaking, we exercise a similar choice as to what
€s ?)11 set down or say next. Sometimes we have no choice; Q
:nustt) le_ foIIo?veq by U. We have more choice as to the next
ymool in beginning a word than in the middle of a word. How-

| ever, in any message source, living or mechanical ice i

¢ 1 ce, , choice is con-
] tinually exercised. O_ther\mse, the messages produced by the source
T would be predetermined and completely predictable.

Cé)rrgsponding to the choice exercised by the message source in
producing the message, there is an uncertainty on the part of the

;' ;ec?pfent of th.e message. This uncertainty is resolved when the
. e];:;pmpt €xammes the message. It is this resolution of uncertainty
| which is the aim and outcome of communication.
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If the message source involved no choice, if, for instance, it
could produce only an endless string of ones or an endless string
of zeros, the recipient would not need to receive or examine the
message to know what it was; he could predict it in advance. Thus,
if we are to measure information in a rational way, we must have
a measure that increases with the amount of choice of the source
and, thus, with the uncertainty of the recipient as to what message
the source may produce and transmit.

Certainly, for any message source there are more long messages
than there are short messages. For instance, there are 2 possible
messages consisting of 1 binary digit, 4 consisting of 2 binary
digits, 16 consisting of 4 binary digits, 256 consisting of 8 binary
digits, and so on. Should we perhaps say that amount of informa-
tion should be measured by the number of such messages? Let us
consider the case of four telegraph lines used simultaneously in
transmitting binary digits between two points, all operating at the
same speed. Using the four lines, we can send 4 times as many
digits in a given period of time as we could using one line. It also
seems reasonable that we should be able to send 4 times as much
information by using four lines. If this is so, we should measure
information in terms of the number of binary digits rather than
in terms of the number of different messages that the binary digits
can form. This would mean that amount of information should be
measured, not by the number of possible messages, but by the
logarithm of this number.

The measure of amount of information which communication
theory provides does this and is reasonable in other ways as well.
This measure of amount of information is called entropy. If we want
to understand this entropy of communication theory, it is best first
to clear our minds of any ideas associated with the entropy of
physics. Once we understand entropy as it is used in communica-

tion theory thoroughly, there is no harm in trying to relate itto
the entropy of physics, but the literature indicates that some |

workers have never recovered from the confusion engendered by
an early admixture of ideas concerning the entropies of physics
and communication theory.

The entropy of communication theory i measured in bits. We
may say that the entropy of a message source is so many bits per
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letter, or per word, or per message. If the source produces symbols
at a constant rate, we can say that the source has an entropy of
$0 many bits per second.

Entropy increases as the number of messages among which the
source may choose increases. It also increases as the freedom of
choice {or the uncertainty to the recipient) increases and decreases
as the freedom of choice and the uncertainty are restricted. For
instance, a restriction that certain messages must be sent either very
frequently or very infrequently decreases choice at the source and
uncertainty for the recipient, and thus such a restriction must
decrease entropy.

It is best to illustrate entropy first in a simple case. The mathe-
maticgl theory of communication treats the message source as an
ergodic process, a process which produces a string of symbols that
are to a degree unpredictable. We must imagine the message source
as selecting a given message by some random, i.e., unpredictable
means, which, however, must be ergodic. Perhaps the simplest case
we can imagine is that in which there are only two possible sym-
bols, say, X and ¥, between which the message source chooses
rePeatedIy, each choice uninfluenced by any previous choices. In
this case we can know only that X will be chosen with some
probability po and ¥ with some probability p;, as in the outcomes
of the toss of a biased coin. The recipient can determine these
probabilities by examining a long string of characters (X’s, ¥’s)
produced by the source. The probabilities py and p; must not
change with time if the source is to be ergodic.

~ For this simplest of cases, the entropy H of the message source
is defined as

H = —(polog po + p1 log p1) bits per symbol

Thus, the: entropy is the negative of the sum of the probability po
that X" will be chosen (or will be received) times the logarithm of

| Po and the probability p, that ¥ will be chosen (or will be received)

times the Jogarithm of this probability.
Whatever plausible arguments one may give for the use of

“ entropy as defined in this and in more complicated cases, the real
] and true reason is one that will become apparent only as we
i proceed, and the justification of this formula for entropy will
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therefore be deferred. It is, however, well to note again that there

are different kinds of logarithms and that, in information theory, B

we use logarithms to the base 2. Some facts about logarithms to
the base 2 are noted in Table X.

TaslE X
; Another Way of Still Another Way Lo
Fraction p Writing p of Writing p 23
3 1 2415 — 415
4 7.415
1 1 9-1 -1
2 21
3 L 2-1415 —1415
8 21.415
1 1 3-2 -2
4 22
1 L 23 -3
8 23
1 1 2-4 -4
16 24
L L 26 -6
64 26
1 1 58 _s
256 28

The logarithm to the base 2 of a number is the power to which
2 must be raised to give the number. . '

Let us consider, for instance, a “message source” which consists
of the tossing of an homest coin. We can let X represent heads and
Y represent tails. The probability p; that the coin will turn up
heads is % and the probability po that the coin will turn up tails
is also %. Accordingly, from our expression for entropy and from
Table X we find that

H=—(%hlog¥ + %logk)
H=~[(5B) (-1 + (£)(=1]
H = 1 bit per toss
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If the message source is the sequence of heads and tails obtained
by tossing a coin, it takes one bit of information to convey whether
heads or tails has turned up.

Let us notice, now, that we can represent the outcome of succes-
sively tossing a coin by a number of binary digits equal to the
number of tosses, letting 1 stand for heads and 0 stand for tails.
Hence, in this case at least, the entropy, one bit per toss, and the
number of binary digits which can represent the outcome, one
binary digit per toss, are equal. In this case at least, the number
of binary digits necessary to transmit the message generated by
the source (the succession of heads and tails) is equal to the entropy
of the source.

Suppose the message source produces a string of I’s and (’s by
tossing a coin 50 weighted that it turns up heads % of the time and
tails only % of the time. Then

Pl = 3[#

PO — 1/1

H = —(%log % + % log %)

H= ~[(4)(=2) + (%) (—415)]
H = .811 bit per toss

We feel that, in the case of a coin which turans up heads more
often than tails, we know more about the outcome than if heads
or tails were equally likely. Further, if we were constrained to
choose heads more often than tails we would have less choice than
if we could choose either with equal probability. We feel that this
must be so, for if the probability for heads were 1 and for tails 0,
we would have no choice at all. And, we see that the entropy for
the case above is only .811 bit per toss. We feel somehow that we
ought to be able to represent the outcome of a sequence of such
biased tosses by fewer than one binary digit per toss, but it is not
immediately clear how many binary digits we must use.

If we choose heads over tails with probability p1, the probability
Po of choosing tails must of course be 1 — p;. Thus, if we know py
we know pg as well. We can compute H for various values of py
and plot a graph of H vs. p3. Such a curve is shown in Figure V-1.
H has a maximum value of 1 when py is 0.5 and is 0 when py is 0
or 1, that is, when it is certain that the message source always
produces either one symbol or the other.
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Really, whether we call heads X and tails ¥ or heads Y and tails

X is immaterial, so the curve of H vs. p; must be the same as H [

vs. po. Thus, the curve of Figure V-1 is symmetrical about the
dashed center line at p; and py equal to 0.5.

A message source may produce successive choices among the
ten decimal digits, or among the twenty-six letters of the alphabet,
or among the many thousands of words of the English lapglmge.
Let us consider the case in which the message source prodiices one
among n symbols or words, with probabilites which are independ-
ent of previous choices. In this case the entropy is defined as

7 ‘.
H=— 2 pi log p; bits per symbol Al |

i=1 .
Here the sign 2 (sigma) means to sum or to add up various terms.
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Piis the probability of the i & symbol being chosen. The i = 1 below
and n above the £ mean toleti be 1, 2, 3, etc. up to s, so the equa-
tion says that the entropy will be given by adding p; log p; and
P21log ps and so on, including all symbols. We see that when 7 — 2
we have the simple case which we considered earlier.

Let us take an example. Suppose, for instance, that we toss two
coins simultaneously. Then there are four possible outcomes, which
we can label with the numbers 1 through 4:

H Horl
H Tor2
T Hor3
T Tor4

If the coins are honest, the probability of each outcome is % and
the entropy is

H= —(Y%log Y + % log Y% + Yalog % + % log %)
H=—(-%-%_-% 1)
H = 2 bits per pair tossed

It takes 2 bits of information to describe or convey the outcome
of tossing a pair of honest coins simultaneously. As in the case of
tossing one coin which has equal probabilities of landing heads or
tails, we can in this case see that we can use 2 binary digits to
describe the outcome of a toss: we can use 1 binary digit for each
coin. Thus, in this case too, we can transmit the message generated
by the process (of tossing two coins) by using a number of binary
digits equal to the entropy.

If we have some number n of symbols all of which are equally
probable, the probability of any particnlar one turning up is 1/n,

so we have 7 terms, each of which is 1/x1og 1/n. Thus, the entropy
is in this case

H = —log 1/n bits per symbol

For instance, an honest die when rolled has equal probabilities of
turning up any number from 1 to 6. Hence, the entropy of the

sequence of numbers so produced must be — log %, or 2.58 bits
per throw.

More generally, suppose that we choose each time with equal
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likelihood among all binary numbers with N digits. There are 2¥
such numbers, so

n =2
From Table X we easily see that
logl/n =log2™¥ = —N

Thus, for a source which produces at each choice with equal likeli-
hood some N-digit binary number, the entropy is ¥ bits per num-

ber. Here the message produced by the source is a binary number

which can certainly be represented by binary digits. And, again,

the message can be represented by a number of binary digits equal

to the entropy of the message, measured in bits. This example

illustrates graphically how the logarithm usi be the correct
mathematical function in the entropy.

Ordinarily the probability that the message source will produce
a particular symbol is different for different symbols. Let us take
as an example a message source which produces English words
independently of what has gone before but with the probabilities
characteristic of English prose. This corresponds to the first-order
word approximation given in Chapter IIL
In the case of English prose, we find as an empirical fact that if

we order the words according to frequency of usage, so that the
most frequently used, the most probable word (¢he, in fact ) is word
number 1, the next most probable word (of) is number 2, and so
on, then the probability for the rtt word is very nearly (if » is not
too large)

pr=1/r (5.2)

If equation 5.2 were strictly true, the points in Figure V-2, in which
word probability or frequency p, is plotted against word order or
rank r, would fall on the solid line which extends from upper left
to lower right. We see that this is very nearly so. This empirical
inverse relation between word probability and word rank is known
as Zipf’s law. We will discuss Zipf’s law in Chapter XII; here, we
propose merely to use it.

We can show that this equation (5.2) cannot hold for all words.
To see this, let us consider tossing a coin. If the probability of heads
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t;ﬂm;qg upis % and ﬂ:le probability of tails turning up is %, then
o ismo other Pc_)ss1b1e outcome: % + 4% = 1. If there wére

3;’ Oultéo;al piobabﬂity of Yo that the coin would stand on edge i:
ave to conclude that in a hundred ¢t :

110 outcomes: heads 50 tirge i i ot st ot

. : 8, tails 50 times, and i

o s X standing on edge

mutslﬁte;a];h;st;s Esjtf;ﬂN abst;.rd. The probabilities of all futcom%:s

_ - INOW, let us note that if we add u -

tsil;;flely P1plus py, ete., as given by equation 5.2, we find thgtsltl;oct;‘e

€ We came to pgrpy the sum of the Successive probabilities has

Nonetheless, the error is not great, and Shannon used equation
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5.2 in computing the entropy of a message source which produces
words independently but with the probability of their occurring in
English text. In order to make the sum of the probabilities of all
words unity, he included only the 8,727 most frequently used words.
He found the entropy to be 9.14 bits per word

In Chapter IV, we saw that English text can be encoded letter
by letter by using 5 binary digits per character or 27.5 binary digits
per word. We also saw that by providing different sequences of
binary digits for each of 16,357 words and 27 characters, we could

encode English text by using about 14 binary digits per word. We |

are now beginning to suspect that the number of binary digits
‘actually required is given by the entropy, and, as we have seen,
Shannon’s estimate, based on the relative probabilities of English
words, would be 9.14 binary digits per word.

As a next step in exploring this matter of the number of binary
digits required to encode the message produced by a message
source, we will consider a startling theorem which Shannon proved
concerning the “messages” produced by an ergodic source which
selects a sequence of letters or words independently with certain
probabilities. :

Let us consider all of the messages the source can produce which

consist of some particular large number of characters. For exam- |

ple, we might consider all messages which are 100,000 symbols
(letters, words, characters) long. More generally, let us consider
messages having a number M of characters. Some of these messages
are more probable than others. In the probable messages, symbol
1 occurs about Mp, times, symbol 2 occurs about Mp; times, etc.
Thus, in these probable messages each symbol occurs with about

the frequency characteristic of the source. The source might pro-

duce other sorts of messages, for instance, a message consisting of
one symbol endlessly repeated or merely a message in which the
numbers of the various symbols differed markedly from M times
their probabilities, but it seldom does.

The remarkable fact is that, if H is the entropy of the source per
symbol, there are just about 2#¥ probable messages, and the rest |
of the messages all have vanishingly small probabilities of ever |
occurring. In other words, if we ranked the messages from most |
probable to least probable, and assigned binary numbers of MH {
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! digits to the 2% most probable messages, we would be almost
| certain to have a number corresponding to any M-symbol message
L that the source actually produced.

Let us illustrate this in particular simple cases. Suppose that the

L symbols produced are 1 or 0. If these are produced with equal
j probabilities, a probability % that for 1 and a probability % that
- for 0 the entropy H is, as we have seen, 1 bit per symbol. Let us
- let the source produce messages M digits long. Then MH = 1,000,
1 and, according to Shannon’s theorem, there must be 21900 different
- probable messages. '

Now, by using 1,000 bnary digits we can write just 21000 different

j binary numbers. Thus, in order to assign a different binary num-
 ber to each probable message, we must use binary numbers 1,000
b digits long. This is just what we would expect. In order to desig-
- nate to the message destination which 1,000 digit binary number
| the message source produces, we must send a message 1,000 binary
F digits long. '

But, suppose that the digits constituting the messages produced

b by the message source are obtained by tossing a coin which turns
b up heads, designating 1, % of the time and tails, designating 0, %
i of the time. The typical messages so produced will contain more
§ 1's than O’s, but that is not all. We have seen that in this case the
- entropy H is only .811 bit per toss. If M, the length of the message,
15 again taken as 1,000 binary digits, MH is only 811. Thus, while
¥ as before there are 21900 possible messages, there are only 2811
i probable messages.

Now, by using 811 binary digits we can write 2811 different

| binary numbers, and we can assign one of these to each of the
E 1,000-digit probable messages, leaving the other improbable 1,000-
¢ digit messages unnumbered. Thus, we can send word to a message
¢ destination which probable 1,000-digit message our message source
| produces by sending only 811 binary digits. And the chance that
| the message source will produce an improbable 1,000-digit mes-
 sage, to which we have assigned no number, is negligible. Of
| course, the scheme is not quite foolproof. The message source may
 still very occasionally turn up a message for which we have no label
f among all 2811 of our 811-digit binary labels. In this case we can-
_‘.‘ ‘Dot transmit the message—at least, not by using 811 binary digits.
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We see that again we have a strong indication that the number
of binary digits required to transmit a message is just the entropy
in bits per symbol times the number of symbols. And, we might
note that in this last illustration we achieved such an economical
transmission by block encoding—that is, by lumping 1,000 (or some
other large number) message digits together and representing each
probable combination of digits by its individual code (of 811 binary
digits).

How firmly and generally can this supposition be established?

So far we have considered only cases in which the message
source produces each symbol (number, letter, word) independently
of the symbols it has produced before. We know this is not true
for English text. Besides the constraints of word frequency, there
are constraints of word order, so that the writer has less choice as
to what the next word will be than he would if he could choose it
independently of what has gone before,

How are we to handle this sitzation? We have a clue in the
block coding which we discussed in Chapter IV, and which has been
brought to our mind again in the last example. In an ergodic
process the probability of the next letter may depend only on the
preceding 1, 2, 3, 4, 5, or more letters but not on earlier letters. The
second and third order approximations to English given in Chapter
III illustrate text produced by such a process. Indeed, in any
ergodic process of which we are to make mathematical sense the
effect of the past on what symbol will be produced next must
decrease as the remoteness of that past is greater. This is reasonably
valid in the case of real English as well. While we can imagine
examples to the contrary (the consistent use of the same name for
a character in a novel), in general the word I write next does not
depend on just what word I wrote 10,000 words back.

Now, suppose that before we encode a message we divide it up
into very long blocks of symbols. If the blocks are long enough,
only the symbols near the beginning will depend on symbols in the
previous block, and, if we make the block long enough, these
symbols that do depend on symbols in the previous block will
form a negligible part of all the symbols in the block. This makes
it possible for us to compute the entropy per block of symbols by
means of equation 5.1. To keep matters straight, let us call the
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probability of a particular one of the multitudinous long blocks of

symbols, which we will call the 7th block, P(B;). Then the entropy
per block will be

H =~ P(B;) log P(B;) bits per block
i
Any mathematician would object to calling this the entropy. He
would say, the quantity H given by the above equation approaches
the entropy as we make the block longer and longer, so that it
includes more and more symbols. Thus, we must assume that we
make the blocks very long indeed and get a very close approxima-
tion to the entropy. With this proviso, we can obtain the entropy

per symbol by dividing the entropy per block by the number N of
symbols per block

H=—(1/N) > P(B;) log P(B,) bits per symbol (5.3)
i
_ In general, an estimate of entropy is always high if it fails to take
lnto account some relations between symbols. Thus, as we make
A, the number of symbols per block, greater and greater, H as
gwven by 5.3 will decrease and approach the true entropy.

We have insisted from the start that amount of information must
be so defined that if separate messages are sent over several tele-
graph wires, the total amount of information must be the sum of
the amounts of information sent over the separate wires. Thus, to
get the entropy of several message sources operating simultane-
ously, we add the entropies of the separate sources, We can g0
furth_er and say that if a source operates intermittently we must
mult_1p1y its information rate or entropy by the fraction of the time
that it operates in order to get its average information rate.

Now, let us say that we have one message source when we have

Just sent a particular sequence of letters such as TH. In this case

the probability that the next letter will be E is very high. We have
an_other particular message source when we have Just sent NQ, In
this case the probability that the next symbol will be U is unity.
We calculate the entropy for each of these message sources. We
rr}l.}ltlply the entropy of a source which we label B; by the proba-
bility p(B;) that this source will occur (that is, by the fraction of
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instances in which this source is in operation). We multiply the
entropy of each other source by the probability that that source
will occur, and so on. Then we add all the numbers we get in this
way in order to get the average entropy or rate of the over-all
source, which is a combination of the many different sources, each
of which operates only part time. As an example, consider a source
involving digram probabilities only, so that the whole effect of the
past is summed up in the letter last produced. One source will be
the source we have when this letter is E; this will occur in .13 of
the total instances. Another source will be the source we have when
the letter just produced is W; this will occur in .02 of the total
instances.

Putting this in formal mathematical terms, we say that if a
particular biock of N symbols, which we designate by B,, has just
occurred, the probability that the next symbol will be symbol S; is

Pe,(S)

The entropy of this “source” which operates only when a particu-
lar block of N symbols designated by B; has just been produced is

—>" p5.(S)) log pa;(5))
I
But, in what fraction of instances does this particular message
source operate? The fraction of instances im which this source
operates is the fraction of instances in which we encounter block
B; rather than some other block of symbols; we call this fraction

p(Bi)

Thus, taking into account all blocks of N symbols, we write the
sum of the entropies of all the separate sources (each separate
source defined by what particular block B; of N symbols has
preceded the choice of the symbol S;) as

Hy = —> p(B)pa,(S)) log pz(S) (54)
Lj
The i,j under the summation sign mean to let 7 and j assume all
possible values and to add all the numbers we get in this way.

‘As we let the number N of symbols preceding symbol S; become 5
very large, Hy approaches the entropy of the source. If there are g

Entropy 93

no statistical influences extending over more than N symbols (this
will be true for a digram source for N = 1 and for a trigram
source for N = 2), then Hy is the entropy.

Shannon writes equation 5.4 a little differently. The probability
P(By ;) of encountering the block B; followed by the symbol §;
15 the probability p(B;) of encountering the block B; times thé

probab.ility P5;(S;) that symbol S; will follow block B;. Hence, we
can write 5.4 as follows: ’

Hy= > p(B, 8)) log ps,(S))
Lj

In Chapter IIT we consider a finite-state machine, such as that
shown in Figure I11-3, as a source of text. We can, if we wish, base
our computation of entropy on such a machine. In this cas’e we
regard each state of the machine as a message source and coml;ute
the entropy for that state. Then we multiply the entropy for that
state by the probability that the machine will be in that state and
sum (a.dd up) all states in order to get the entropy.
_ _Puttmg the matter symbolically, suppose that when the machine
1810 a particular state i it has a probability pi(j) of producing a
particular symbol which we designate by j. For instance, in a state
la‘peled i = 101t might have a probability of 0.03 of producing the
third letter of the alphabet, which we label J = 3. Then

p10(3) = .03

The entropy H; of state i is computed in accord with 5.1:
Hi= —> p(j) log pi(j)

)
Now, we say that the machine has a probability P; of being in the

i state. The entropy per symbol for the machine as a source of
symbols is then

H= ZPJA bits per symbol

I
We can write this as

H =~ Pip(j) log pi(j) bits per symbol (5.5)
L
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P; is the probability that the finite-state machine is in the i** state,
and p;() is the probability that it produces the /& symbol when
it is in the ith state. The 7 and f under the = mean to allow both i
and j to assume all possible values and to add all the numbers so
obtained.

Thus, we have gone easily and reasonably from the entropy of
a source which produces symbols independently and to which
equation 5.1 applies to the more difficult case in which the proba-
bility of a symbol occurring depends on what has gone before. And,
we have three alternative methods for computing or defining the
entropy of the message source. These three methods are equivalent
and rigorously correct for true ergodic sources. We should remem-
ber, of course, that the source of English text is only approximately
ergodic.

Once having defined entropy per symbol in a perfectly general
way, the problem is to relate it unequivocally to the average
number of binary digits per symbol necessary to encode a message.

We have seen that if we divide the message into a block of letters
or words and treat each possible block as a symbol, we can com-
pute the entropy per block by the same formula we used per
independent symbol and get as close as we like to the source
entropy merely by making the blocks very long.

Thus, the problem is to find out how to encode efficiently in
binary digits a sequence of symbols chosen from a very large group
of symbols, each of which has a certain probability of being chosen.
Shannon and Fano both showed ways of doing this, and Huffman
found an even better way, which we shall consider here.

Let us for convenience list all the symbeols vertically in order of
decreasing probability. Suppose the symbols are the eight words
the, man, to, runs, house, likes, horse, sells, which occur independ-
ently with probabilities of their being chosen, or appearing, as
listed in Table XI.

We can compute the entropy per word by means of 5.1; it is 2.2]
bits per word. However, if we merely assigned one of the eight

3-digit binary numbers to each word, we would need 3 digits to | ]
transmit each word. How can we encode the words more efficiently? &

Figure V-3 shows how to construct the most efficient code for
encoding such a message word by word. The words are listed to the
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TasLe XI
Word Probability
the .50
man 15
to 2
runs 10
house .04
likes 04
horse 03
sells 02

!eft, and the probabilities are shown in parentheses. In construct-
ing the code, we first find the two lowest probabilities, .02 (sells)
anf;i. .03 (horse), and draw lines to the point marked .05, the prob-
ability of either horse or sells. We then disregard the ’individual
probabfL}ties connected by the lines and look for the two lowest
probabilities, which are .04 (like) and .04 (house). We draw lines
to the right to a point marked .08, which is the sum of .04 and .04
The two lowest remaining probabilities are now .05 and .08 s0 we
draw a line to the right connecting them, to give a point n;arked

THE (.50) 1
MAN  (.15)
TO (.12)
RUNS (.10)
HOUSE (.04)
LIKE (.04)
HORSE (,03)
SELLS (.52)
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.13. We proceed thus until paths run from each word to a common
point to the right, the point marked 1.00. We then label each upper
path going to the left from a point 1 and each lf)v_ver path 0. The
code for a given word is then the sequence of digits e?ncountetred
going left from the common point 1.00 to the word in question.
The codes are listed in Table XII.

TaBLE XII

Word  Probabilityp  Code ”’I.’;bz.’;;{; jiig‘ s Np
the 50 1 1 50
man 15 001 3 45
to ’ 12 011 3 36
runs .10 010 3 .30
house 04 00011 5 20
likes 04 00010 5 20
horse 03 00001 b NE)
sells 02 00000 5 _.10

' 236

In Table XII we have shown not only each word and its code | i

but also the probability of each code and the number of digii:.s .in
each code. The probability of a word times the number'of digits
in the code gives the average number of digits per word in a long

message due to the use of that particular word. If we add the |

products of the probabilitics and the numbers of digits for .all the
words, we get the average number of digits per word, Whlch is 2.26.
This is a little larger than the entropy per word, which we found
to be 2.21 bits per word, but it is a smaller number of d1g1ts. than
the 3 digits per word we would have used if we had merely assigned
a different 3-digit code to each word. .

Not only can it be proved that this Huffman codf: is the most
efficient code for encoding a set of symbols having different prob-

.abilities, it can be proved that it always calls for ll_ess than one @&
binary digit per symbol more than the entropy (in the above B

example, it calls for only 0.05 extra binary digits per symbol).

Now suppose that we combine our symbols into blocks .of L2, B
3, or more symbols before encoding. Each of these blocks will have §
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a probability (in the case of symbols chosen independently, the
probability of a sequence of symbols will be the product of the
probabilities of the symbols). We can find a Huffman code for these
blocks of symbols. As we make the blocks longer and longer, the
number of binary digits in the code for each block will increase.
Yet, our Huffman code will take less than one extra digit per block
above the entropy in bits per block! Thus, as the blocks and their
codes become very long, the less-than-one extra digit of the Hufi-
man code will become a negligible fraction of the total number of
digits, and, as closely as we like (by making the blocks longer), the
number of binary digits per block will equal the entropy in bits
per block.

Suppose we have a communication channel which can transmit
a number C of off-or-on pulses per second. Such a channel can
transmit C binary digits per second. Each binary digit is capable
of transmitting one bit of information. Hence we can say that the
information capacity of this communication channel is C bits per
second. If the entropy H of a message source, measured in bits per
second, is less than C, then, by encoding with a Huffman code, the
signals from the source can be transmitted over the channel.

Not all channels transmit binary digits. A channel, for instance,
might allow three amplitudes of pulses, or it might transmit differ-
ent pulses of different lengths, as in Morse code. We can imagine
connecting various different message sources to such a channel.
Each source will have some entropy or information rate. Some
source will give the highest entropy that can be transmitted .over
the channel, and this highest possible entropy is called the channel
capacity C of the channel and is measured in bits per second.

By means of the Huffman code, the output of the channel when
it is transmitting a message of this greatest possible entropy can
be coded into some least number of binary digits per second, and,
when long stretches of message are encoded into long stretches of
binary digits, it must take very close to C binary digits per second
to represent the signals passing over the channel.

This encoding can, of course, be used in the reverse sense, and
C independent binary digits per second can be so encoded as to
be transmitted over the channel. Thus, a source of entropy H can
be encoded into H binary digits per second, and a general discrete
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channel of capacity C can be used to transmit C bits per second.

We are now in a position to appreciate one of the' fundamental
theorems of information theory. Shannon calls this the funda-
mental theorem of the noiseless channel. He states it as follows:

Let a source have entropy H (bits per ‘syml.aop and 2 channel have a
capacity [to transmit] C bits per second. Then it is Posauble to encode the
ousput of the source in such a way as to transmit at the average rafte
(C/H) — e symbols per second over the channel, where e is arbitrarily
small. It is not possible to transmit at an average rate greater than C/H.

Let us restate this without mathematical niceties. Any diss:rf:te
channel that we may specify, whether it transmits bingry fhglts,
letters and numbers, or dots, dashes, and spaces of cert.am distinct
lengths has some particular umique channel capacity C. Any
ergodic message source has some particular entropy H. If H is less
than or equal to C, we can transmit the messages generated by the
source over the channel. If I is greater than C, we had better not
try to do so, because we just plain can’t. ‘

‘We have indicated above how the first part of this theorem can
be proved. We have not shown that a source of entropy H cannot
be encoded in less than H binary digits per symbol, but this also
can be proved.

We have now firmly arrived at the fact that the entropy of a
message source measured in bits tells us how many binary digits
(or off-or-on pulses, or yeses-or-noes) are required, per character,
or per letter, or per word, or per S‘;('JOI'ld in ordffr to trans.nut
messages produced by the source. This 1dent1ﬁcat10n‘ goes right
back to Shannon’s original paper. In fact, the word bit is merely
a contraction of binary digit and is generally used in place of
binary digit.

Here I have used bir in a particular sense, as a measure of
amount of information, and in other contexts I have used a d11?fer—

ent expression, binary digit. I have done this in order to avoid a

confusion which might easily have arisen had I started out by using |

bit to mean two different things. o 1
After all, in practical situations the entropy in bits is usually

different from the number of binary digits invelved. Suppose, for |

instance, that a message source randomly produces the symbol 1
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with a probability % and the symbol 0 with the probability 3% and
that it produces 10 symbols per second. Certainly such a source
produces binary digits at a rate of 10 per second, but the informa-
tion rate or entropy of the source is .811 bit per binary digit and
8.11 bits per second. We could encode the sequence of binary digits
produced by this source by using on the average only 8.11 binary
digits per second.

Similarly, suppose we have a communication channel which is
capable of transmitting 10,000 arbitrarily chosen off-or-on pulses
per second. Certainly, such a channel has a channel capacity of
10,000 bits per second. However, if the channel is used to transmit
a completely repetitive pattern of pulses, we must say that the
actual rate of transmission of information is O bits per second,
despite the fact that the channel is certainly transmitting 10,000
binary digits per second.

Here we have used bit only in the sense of a binary measure of
amount of information, as a measure of the entropy or information
rate of a message source in bits per symbol or in bits per second
Or as a measure of the information transmission capabilities of a
channel in bits per symbol or bits per second. We can describe it
as an elementary binary choice or decision among two possibilities
which have equal probabilities. At the message source a bit repre-
Sents a certain amount of choice as to the message which will be
generated; in writing grammatical English we have on the average
a choice of about one bit per letter. At the destination a bit of
information resolves a certain amount of uncertainty; in receiving
English text there is on the average, about one bit of uncertainty
as to what the next letter will be.

When we are transmitting messages generated by an information
source by means of off-or-on pulses, we know how many binary
digits we are transmitting pet second even when (as in most cases)
we don’t know the entropy of the source. (If we know the entropy
of the source in bits per second to be less than the binary digits
used per second, we would know that we could get along in prin-
ciple with fewer binary digits per second.} We know how to use the
binary digits to specify or determine one out of several possibilitics,
either by means of a tree such as that of Figure IV-4 or by means
of a Huffman code such as that of Figure V-3. It is common in such
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a case to speak of the rate of transmission of binary digits as a bit
rate, but there is a certain danger that the inexperienced may
muddy their thinking if they do this.

All that I really ask of the reader is to remember that we have
used bif in one sense only, as a measure of information and have
called 0 or 1 a binary digit. If we can transmit 1,000 freely chosen
binary digits per second, we can transmit 1,000 bits of information
a second. It may be convenient to use bit to mean binary digit, but
when we do so we should be sure that we understand what we
are doing.

Let us now return for a moment to an entirely different matter,
the Huffman code given in Table XII and Figure V-3. When we
encode a message by using this code and get an uninterrupted
string of symbols, how do we tell whether we should take a particu-
lar 1in the string of symbols as indicating the word the or as part
of the code for some other word?

We should note that of the codes in Table XII, none forms the
first part of another. This is called the prefix property. It has
important and, indeed, astonishing consequences, which are easily
illustrated. Suppose, for instance, that we encode the message: the
man sells the house to the man the horse runs to the man. The
encoded message is as follows:

'the‘ man | sells | the‘ house |
1 00100 00010 0011
|
i likes i man Ethel
to l theb man ‘ the | horse ‘
o011 1 001 1 000O01
to i the! man i the i horse i
runs ‘ to ‘the‘ man l
010 01 1 1 0 0 1
runs i to ithei man |

Here the message words are written above the code groups.
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Now suppose we receive only the digits following the first vertical
dashed line below the digits. We start to decode by looking for the
shortest sequence of digits which constitutes a word in our code.
This is 00010, which corresponds to /ikes. We go on in this fashion.
The “decoded” words are written under the code, separated by
dashed lines.

We see that after a few errors the dashed lines correspond to the
solid lines, and from that point on the deciphered message is
correct. We don’t need to know where the message starts in order
to decode it as correctly as possible (unless all code words are of
equal length) .

When we Jook back we can see that we have fulfilled the purpose
of this chapter. We have arrived at a measure of the amount of
information per symbol or per unit time of an ergodic source, and
we have shown how this is equal to the average number of binary
digits per symbol necessary to transmit the messages produced by
the source. We have noted that to attain transmission with neg-
ligibly more bits than the entropy, we must encode the messages
produced by the source in long blocks, not symbol by symbol.

We might ask, however, how long do the blocks have to be? Here
we come back to another consideration. There are two reasons for
encoding in long blocks. One is, in order to make the average
number of binary digits per symbol used in the Huffman code
negligibly larger than the entropy per symbol. The other is, that
to encode such material as English text efficiently we must take
into account the influence of preceding symbols on the probability
that a given symbol will appear next. We have seen that we can
do this using equation 5.3 and taking very long blocks.

We return, then, to the question: how many symbols N must the
block of characters have so that (1} the Huffman code is very
efficient, (2) the entropy per block, disregarding interrelations
outside of the block, is very close to N times the entropy per
symbol? In the case of English text, condition 2 is governing.

Shannon has estimated the entropy per letter for English text
by measuring a person’s ability to guess the next letter of a message
after seeing 1, 2, 3, etc., preceding letters. In these texts the
“alphabet” used consisted of 26 letters plus the space.

Figure V-4 shows the upper and lower bounds on the entropy
of English plotted vs. the number of letters the person saw in
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making his prediction. While the curve seems to drop slowly as
the number of letters is increased from 10 to 15, it drops substan-
tially between 15 and 100. This would appear to indicate that we
might have to encode in blocks as large as 100 letters long in order
to encode English really efficiently.

From Figure V-4 it appears that the entropy of English text lies
somewhere between 0.6 and 1.3 bits per letter. Let us assume a
value of 1 bit per letter. Then it will take on the average 100 binary
digits to encode a block of 100 letters. This means that there are
2190 probable English sequences of 100 letters. In our usual decimal
Dotation, 21%0 can be written as 1 followed by 30 zeroes, a fantas-
tically large number.

In endeavoring to find the probability in English text of all
meaningful blocks of letters 100 letters long, we would have to
count the relative frequency of occurrence of each such block.
Since there are 1030 highly likely blocks, this would be physically
impossible.

Further, this is impossible in principle. Most of these 1030
sequences of letters and spaces (which do not include aif meaning-
ful sequences) have never been written down! Thus, it is impossible
to speak of their relative frequencies or probabilities of such long
blocks of letters as derived from English text.

Here we are really confronted with two questions: the accuracy
of the description of English text as the product of an ergodic
source and the most appropriate statistical description of that
source. One may believe that appropriate probabilities do exist in
some form in the human being even if they cannot be evaluated
by the examination of existing text. Or one may believe that the
probabilities exist and that they can be derived from data taken
in some way more appropriate than a naive computation of the
probabilities of sequences of letters. We may note, for instance,
that equations 5.4 and 5.5 also give the entropy of an ergodic
source. Equation 5.5 applies to a finite-state machine. We have
noted at the close of Chapter III that the idea of a human being
being in some particular state and in that state producing some
particular symbol or word is an appealing one.

Some linguists hold, however, that English grammar is incon-
sistent with the output of a finite-state machine, Clearly, in trying
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to understand the structure and the entropy of actual English text
we would have to consider such text much more deeply than we
have up to this point.

It is safe if not subtle to apply an exact mathematical theory
blindly and mechanically to the ideal abstraction for which it holds.
We must be clever and wise in using even a good and appropriate
mathematical theory in connection with actual, nonideal problems.
We should seek a simple and realistic description of the laws gov-
erning English text if we are to relate it with communication theory
as successfully as possible. Such a description must certainly
involve the grammar of the language, which we will discuss in the
next chapter.

In any event, we know that there are some valid statistics of
English text, such as letter and word frequencies, and the coding
theorems enable us to take advantage of such known statistics.

If we encode English letter by letter, disregarding the relative
frequencies of the letters, we require 4.76 binary digits per character
(including space). If we encode letter by letter, taking into account
the relative probabilities of various letters, we require 4.03 binary
digits per character. If we encode word by word, taking into
account relative frequencies of words, we require 1.66 binary digits
per character. And, by using an ingenious and appropriate means,
Shannon has estimated the entropy of English text to be between
.6 and 1.3 bits per letter, so that we may hope for even more
efficient encoding.

If, however, we mechanically push some particular procedure
for finding the entropy of English text to the limit, we can easily
engender not only difficulties but nonsense. Perhaps we can ascribe
this nonsense partly to differences between man as a source of
English text and our model of an ideal ergodic source, but partly
we should ascribe it to the use of an inappropriate approach. We
can surely say that the model of man as an ergodic source of text
is good and useful if not perfect, and we should regard it highly
for these qualities.

This chapter has been long and heavy going, and a summary
seems in order. Clearly, it is impossible to recapitulate briefly all
those matters which took so many pages to expound. We can only
re-emphasize the most vital points.
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In communication theory the entropy of a signal source in bits
per symbol or per second gives the average number of binary
digits, per symbol or per second, necessary to encode the messages
produced by the source.

‘We think of the message source as randomly, that is, unpre-
d1f:tably, choosing one among many possible messages for trans-
mission. Thus, in connection with the message source we think of
entropy as a measure of choice, the amount of choice the source
excercises in selecting the one particular message that is actually
transmitted.

We think of the recipient of the message, prior to the receipt of
the message, as being uncertain as to which among the many
possible messages the message source will actually generate and
transmit to him. Thus, we think of the entropy of the message
source as measuring the uncertainty of the recipient as to which
message will be received, an uncertainty which is resolved on
receipt of the message.

If the message is one among n equally probable symbols or
messages, the entropy is log n. This is perfectly natural, for if we
have log » binary digits, we can use them to write out

2]087’5 =n

different binary numbers, and one of thes¢ numbers can be used
as a label for each of the » messages.

More _generally, if the symbols are not equally probable, the
entropy is given by equation 5.1. By regarding a very long block
of symbols, whose content is little dependent on preceding symbols,
as a sort of super symbol, equation 5.1 can be modified to give the
entropy per symbol for information sources in which the proba-
bility that a symbol is chosen depends on what symbols have been
chosen previously. This gives us equation 5.3. Other general
expressions for entropy are given by equations 5.4 and 5.5.

By assuming that the symbols or blocks of symbols which a
source produces are encoded by a most efficient binary code called
a Huﬂ'man code, it is possible to prove that the entropy of an
ergodic source measured in bits is equal to the average number of
binary digits necessary to encode it.

An error-free communication channel may not transmit binary
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digits; it may transmit letters or other symbols. We can imagine
attaching different message sources to such a channel and seeking
(usually mathematically) the message source that causes the en-
tropy of the message transmitted over the channel to be as large
as possible. This largest possible entropy of a message transmitted
over an error-free channel is called the channel capacity. It can be
proved that, if the entropy of a source is less than the channel
capacity of the channel, messages from the source can be encoded
so that they can be transmitted over the channel. This is Shannon’s
fundamental theorem for the noiseless channel.

In principle, expressions such as equations 5.1, 5.3, 5.4, and 5.5
enable us to compute the entropy of a message source by statistical
analysis of messages produced by the source. Even for an ideal
ergodic source, this would often call for impractically long compu-
tations. In the case of an actual source, such as English text, some
naive prescriptions for computing entropy can be meaningless.

An approximation to the entropy can be obtained by disregard-
ing the effect of some past symbols on the probability of the source
producing a particular symbol next. Such an approximation to the
entropy is always too large and calls for encoding by means of more
binary digits than are absolutely necessary. Thus, if we encode
English text letter by letter, disregarding even. the relative proba-
bilities of letters, we require 4.76 binary digits per letter, while if
we encode word by word, taking into account the relative proba-
bility of words, we require 1.66 binary digits per letter.

If we wanted to do even better we would have to take into
account other features of English such as the effect of the con-
straints imposed by grammar on the probability that a message
source will produce a particular word.

While we do not know how to encode English text in a highly
efficient way, Shannon made an ingenious experiment which shows
that the entropy of English text must lie between .6 and 1.3 bits
per character. In this experiment a person guessed what letter
would follow the letters of a passage of text many letters long.

cuapTER V1 Language and
' Meaning

THE TWO GREAT TRIUMPHS of information theory are establishing
the channel capacity and, in particular, the number of binary digits
required to transmit information from a particular source and
showing that a noisy communication channel has an information
rate in bits per character or bits per second up to which errorless
transmission is possible despite the noise. In cach case, the results
must be demonstrated for discrete and for continuous sources and
channels. '

After four chapters of by no means easy preparation, we were
finally ready to essay in the previous chapter the problem of the
number of binary digits required to transmit the information gen-
erated by a truly ergodic discrete source. Were this book a text on
information theory, we would proceed to the next logical step, the
noisy discrete channel, and then on to the ergodic continuous
channel.

At the end of such a logical progress, however, our thoughts
would necessarily be drawn back to a consideration of the message
sources of the real world, which are only approximately ergodic,
and to the estimation of their entropy and the efficient encoding
of the messages they produce.

Rather than proceeding further with the strictly mathematical
aspects of communication theory at this point, is it not more
attractive to pause and consider that chief form of communication,
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language, in the light of communication theory? And, in doing so, ]
why should we not let our thoughts stray a little in viewing an im- |}
portant part of our world from the small eminence we have |
attained? Why should we not see whether even the broad problems
of language and meaning seem different to us in the light of what §
we have learned? i

In following such a course the reader should heed a word of {
caution. So far the main emphasis has been on what we know. What
we know is the hard core of science. However, scientists find it very
difficult to share the things that they know with laymen. To under-
stand the sure and the reasonably sure knowledge of science takes
the sort of hard thought which I am afraid was required of the
reader in the last few chapters.

There is, however, another and easier though not entirely frivo-
lous side to science. This is a peculiar type of informed ignorance.
The scientist’s ignorance is rather different from the layman’s
ignorance, because the background of established fact and theory
on which the scientist bases his peculiar brand of ignorance ex-
cludes a wide range of nonsense from his speculations. In the higher
and hazier reaches of the scientist’s ignorance, we have scientifically
informed ignorance about the origin of the universe, the ultimate
basis of knowledge, and the relation of our present scientific knowl-
edge to politics, free will, and morality. In this particular chapter
we will dabble in what I hope to be scientifically informed ignor-
ance about language.

The warning is, of course, that much of what will be put forward
here about language is no more than informed ignorance. The
warning seems necessary because it is very hard for laymen to tell
scientific ignorance from scientific fact. Because the ignorance is
necessarily expressed in broader, sketchier, and less qualified terms
than is the fact, it is easier to assimilate. Because it deals with grand
and unsolved problems, it is more romantic. Generally, it has a
wider currency and is held in higher esteem than is scientific fact.

However hazardous such ignorance may be to the layman, it is
valuable to the scientist. It is this vision of unattained lands, of
unscaled heights, which rescues him from complacency and spurs
him beyond mere plodding. But when the scientist is airing his
ignorance he usually knows what he is doing, while the unwarned

layman apparently often does not and is left scrambling about on
- cloud mountains without ever having set foot on the continents of
¢ knowledge.

With this caution in mind, let us return to what we have already

encountered concerning language and proceed thence.
t  In what follows we will confine ourselves to a discussion of
p  grammatical English. We all know (and especially those who have
.had the misfortune of listening to a transcription of a seemingly
p intelligible conversation or technical talk) that much spoken Eng-
hsh. appears to be agrammatical, as, indeed, much of Gertrude
Stt?m is. So are many conventions and clichés. “Me heap big
chief” is perfectly intelligible anywhere in the country, yet it is
certainly not grammatical. Purists do not consider the inverted
word order which is so characteristic of second-rate poetry as being
grammatical.

Thus, a discussion of grammatical English by no means covers
the field of spoken and written communication, but it charts a
course which we can follow with some sense of order and interest.

We have noted before that, if we are to write what will be
accepted as English text, certain constraints must be obeyed. We
| cannot simply set down any word following any other. A complete
§ crammar of a language would have to express all of these con-

- stramnts fully. It should allow within its rules the construction of
any sequence of English words which will be accepted, at some
particular time and according to some particular standard, as
grammatical.

_The matter of acceptance of constructions as grammatical is a
difficult and hazy one. The translators who produced the King
James Bible were free to say “fear not,” “sin not,” and “speak not”
as well as “think not,” “do not,” or “have not,” and we frequently
repeat the aphorism “want not, waste not.” Yet in our everyday
speech or writing we would be constrained to say “do not fear,”
. “do not sin,” or “do not speak,” and we might perhaps say, “If

you are not to want, you should not waste.” What is grammatical
certainly changes with time. Here we can merely notice this and
pass on to other matters.

Qertainly, a satisfactory grammar must prescribe certain rules
| which allow the construction of all possible grammatical utterances
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and of grammatical utterances only. Besides doing this, satisfactory
rules of grammar should allow us to ana.l'yze a sentence so ;s;l to
distinguish the features which were determined merely by the rules
of grammar from any other features. .

If we once had such rules, we would be able to make a new esti-
mate of the entropy of English text, for we co_uld see what part of
sentence structure is a mere mechanical following of rules and what
part involves choice or uncertainty anc} hence _contnbutes to en-
tropy. Further, we could transmit English efficiently by transmit-
ting as a message only data concerning the choices exercised 1n
constructing sentences; at the receiver, we cpuld let a grammar
machine build grammatjcal sentences embodying the choices speci-
fied by the received message. .

Even grammar, of course, is not the wholg of language, fo'r a
sentence can be very odd even if it is grammatical. We. can imagine
that, if a machine capable of producing only grammatical sentences
made its choices at random, it might perhaps produce rfuch a sen-
tence as “The chartreuse semiquaver skinned the feelings of the
manifold.” A man presumably makes his choi(':cs in some other
way if he says, “The blue note flayed the emotions of the multi-
tude.” The difference lies in what choices one makes while follow-
ing grammatical rules, not in the rules themselves. An understand}
ing of grammar would not unlock to us all of the secrets o
Janguage, but it would take us a long step forw.ard. ‘

What sort of rules will result in the production of grammat}cal
sentences only and of all grammatical sentences, €Ven when f:hOlf:eS
are made at random? In Chapter IIl we saw that English-like
sequences of words can be produced by choqsing a word at ran-
dom according fo its probability of succeeding a preceding se-
quence of words some M words long. An example of a secon(‘iuord.cr
word approximation, in which a Wortsl is chosen on the basis of its
succeeding the previous word, was given. o _

One can construct higher-order word ap_prommanons by using
the knowledge of English which is stored in our hequ. On; can,
for instance, obtain a fourth-order word approximation by simply
showing a sequence of three connected.words to a person and asl(;—
ing him to think up a sentence in which the sequence of words
oceurs and to add the next word. By going from person 10 person

a long string of words can be constructed, for instance:
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1. When morning broke after an orgy of wild abandon he said
here head shook vertically aligned in a sequence of words signify-
ing what,

2. It happened one frosty look of trees waving gracefully against
the wall.

3. When cooked asparagus has a delicious flavor suggesting
apples.

4. The last time I saw him when he lived.

These “sentences” are as sensible as they are because selections
of words were not made at random but by thinking beings. The
point to be noted is how astonishingly grammatical the sentences
are, despite the fact that rules of grammar (and sense) were ap-
plied to only four words at a time (the three shown to each person
and the one he added). Still, example 4 is perhaps dubiously
grammatical.

If Shannon is right and there is in English text a choice of about
1 bit per symbol, then choosing among a group of 4 words could
involve about 22 binary choices, or a choice among some 10 mil-
lion 4-word combinations. In principle, a computer could be made
to add words by using such a list of combinations, but the result
would not be assuredly grammatical, nor could we be sure that
this cumbersome procedure would produce all possible grammati-
cal sequences of words. There probably are sequences of words
which could form a part of a grammatical sentence in one case
and could not in another case. If we included such a sequence, we
would produce some nongrammatical sentences, and, if we ex-
cluded it, we would fail to produce all grammatical sentences.

If we go to combinations of more than four words, we will favor
grammar over completeness. If we go to fewer than four words,
we will favor completeness over grammar. We can’t have both.

The idea of a finite-state machine recurs at this point. Perhaps
at each point in a sentence a sentence-producing machine should
be in a particular state, which allows it certain choices as to what
state it will go to next. Moreover, perhaps such a machine can deal
with certain classes or subclasses of words, such as singular nouns,
plural nouns, adjectives, adverbs, verbs of various tense and num-
ber, and so on, so as to produce grammatical structures into which
words can he fitted rather than sequences of particular words.

The idea of grammar as a finite-state machine is particularly
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appealing because a mechanist would assert that man must be a
finite-state machine, because he consists of only a finite number
of cells, or of atoms if we push the matter further. o
Noam Chomsky, a brilliant and highly re garded_modem linguist,
rejects the finite-state machine as either a po_ssﬂ)le or a proper
model of grammatical structure. Chomsky points out that there
are many Tules for constructing sequences of char_acters which can-
not be embodied in a finite-state machine. For instance, the: rule
might be, choose letters at random and write T.hem down unt_:l th;
Jetter Z shows up, then repeat all the letters since the preceding
in Teverse order, and then go on with a new set of letterg, and so
on. This process will produce a sequence of letters showing clear
evidence of long-range order. Further, there 1s no limit to the pos-
sible length of the sequence between Z’s. No finite-state machine
can simulate this process and this result. _ .
Chomsky points out that there is no limit to the possible lengt
of grammatical sentences in English and argues that Epghsh SCIle-
tences are organized in such a way that this 1s sufficient to rule
out a finite-state machine as a source of all possible English text.
But, can we really regard a sentence miles long as grgmmatmal
when we know darned well that no one ever has or wﬂl prc?ducc
such a sentence and that no one could understand it if 1t ems‘@d?
To decide such a question, we must have a st:':mdard of being
grammatical. While Chomsky seems to refer.bemg or not _bemg
grammatical, and some questions of punctuation anfi meaning as
well, to spoken English, I think that hl.S rqal cntenqn is: a sen-
tence is grammatical if, in reading or saying it a'lo1‘1d with a natural
expression and thoughtfully but 1pgenuous1y, it is deemed grax}rll—
matical by a person who speaks it, or perhaps by a person v;l 0
hears it. Some problems which might plague others may not bother
Chomsky because he speaks remarkably well-connected and gram-
matical English. o
Whether or not the rules of grammar can be _embodled in a
finite-state machine, Chomsky offers persuasive evidence that 1“_: 1s
wrong and cumbersome to try o generate a sentence by basing
the choice of the next word entirely and solely on words already
written down. Rather, Chomsky considers the course of sentence
generation to be something of this sort:
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We start with one or another of several general forms the sen-
tence might take; for example, a noun phrase followed by a verb
phrase. Chomsky calls such a particular form of sentence a kernel
sentence. We then invoke rules for expanding each of the parts of
the kernel sentence. In the case of a noun phrase we may first de-
scribe it as an article plus a noun and finally as “the man.” In the
case of a verb phrase we may describe it as a verb plus an object,
the object as an article plus a noun, and, in choosing particular
words, as “hit the ball.” Proceeding in this way from the kernel
sentence, noun phrase plus verb phrase, we arrive at the sentence,
“The man hit the ball.” At any stage we could have made other
choices. By making other choices at the final stages we might have
arrived at “A girl caught a cat.”

Here we see that the element of choice is not exercised sequen-
tially along the sentence from beginning to end. Rather, we choose
an over-all skeletal plan or scheme for the whole final sentence at
the start. That scheme or plan is the kernel sentence. Once the
kernel sentence has been chosen, we pass on to parts of the kernel
sentence. From each part we proceed to the constituent elements
of that part and from the constituent elements to the choice of
particular words. At each branch of this treelike structure grow-
ing from the kernel sentence, we exercise choice in arriving at the
particular final sentence, and, of course, we chose the kernel sen-
tence to start with.

Here I have indicated Chomsky’s ideas very incompletely and
very sketchily. For instance, in dealing with irregular forms of
words Chomsky will first indicate the root word and its particular
grammatical form, and then he will apply certain obligatory rules
in arriving at the correct English form. Thus, in the branching con-
struction of a sentence, use is made both of optional rules, which
allow choice, and of purely mechanical, deterministic obligatory
rules, which do not.

To understand this approach further and to judge its merit, one
must refer to Chomsky’s book,? and to the references he gives.

Chomsky must, of course, deal with the problem of ambiguous
sentences, such as, “The lady scientist made the robot fast while
she ate.” The author of this sentence, a learned information theo-

1Noam Chomsky, Syntactic Structures, Mouton and Co., ’s-Gravenhage, 1957.
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rist, tells me that, allowing for the vernacular, it has at least four
different meanings. It is perhaps too complicated to serve as an
example for detailed analysis.

We might think that ambiguity arises only when one or more
words can assume different meanings in what is essentially the same
grammatical structure. This is the case in “he was mad” (either
angry or insane) or “the pilot was high” (in the sky or in his cups).
Chomsky, however, gives a simple example of 2 phrase in which
the confusion is clearly grammatical. In “the shooting of the
hunters,” the noun hunters may be either the subject, as in “the
growling of lions™ or the object, as in “the growing of flowers.”

Chomsky points out that different rules of transformation applied
to different kernel sentences can lead to the same sequence of
grammatical elements. Thus, “the picture was painted by a real
artist” and “the picture was painted by a new technique™ seem to
correspond grammatically word for word, yet the first sentence
could have arisen as a transformation of “a real artist painted the
picture” while the second could not have arisen as a transforma-
lion of a sentence having this form. When the final words as well
as the final grammatical elements are the same, the sentence is
ambiguous.

Chomsky also faces the problem that the distinction between
the provinces of grammar and meaning is not clear. Shall we say
that grammar allows adjectives but not adverbs to modify nouns?
This allows “colorless green.” Or should grammar forbid the asso-
ciation of some adjectives with some nouns, of some nouns with
some verbs, and so on? With one choice, certain constructions are
grammatical but meaningless; with the other they are ungram-
matical. '

We see that Chomsky has laid out a plan for a grammar of
English which involves at each point in the synthesis of a sentence
certain steps which are either obligatory or optional. The processes
allowed in this grammar cannot be carried out by a finite-state
machine, but they can be carried out by a more general machine
called a Turing machine, which is a finite-state machine plus an
infinitely long tape on which symbols can be written and from
which symbols can be read or erased. The relation of Chomsky’s
grammar to such machines is a proper study for those interested
in automata.
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We should note, however, that if we arbitrarily impose some
bound on the length of a sentence, even if we limit the length to
1,000 orl million words, then Chomsky’s grammar does correspond
to a finite-state machine. The imposition of such a limit on sen-
tence length seems very reasonable in a practical way.

Once a general specification or model of a grammmar of the sort
Chomsky proposes is set up, we may ask under what circumstances
and how can an entropy be derived which will measure the choice
or uncertainty of a message source that produces text according
to the rules of the grammar? This is a question for the mathema-
tically skilled information theorist.

Much more important is the production of a plausible and
workable grammar. This might be a phrase-structure grammar, as
Chom:sky proposes, or it might take some other form. Suc},1 a
grammar might be incomplete in that it failed to produce or ana-
Iyze some c_onstructions to be found in grammatical English. It
seems more important that its operation should correspond to what
we know of the production of English by human beings. Further
it should be simple enough to allow the generation and analysis:
of text by means of an electronic computer. I believe that com-
puters must be used in attacking problems of the structure and
statistics of English text.

While a great many people are convinced -that Chomsky’s
phrase-structure approach is a very important aspect of grammar
some feel that his picture of the generation of sentences should bf;
mo@ﬁed or narrowed if it is to be used to describe the actual gen-
eration of sentences by human beings. Subjectively, in speaking
or listening to a speaker one has a strong impression that sentences
are generated largely from beginning to end. One also gets the
impression that the person generating a sentence doesn’t have a
very elaborate pattern in his head at any one time but that he
elaborates the pattern as he goes along. '

. I suspect that studies of the form of grammars and of the statis-
tics of their use as revealed by language will in the not distant
future tell us many new things about the nature of langnage and
a_bout the nature of men as well. But, to say something more par-
ticular than this, I would have to outreach present knowledge—
mine and others.

A grammar must specify not only rules for putting different types
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of words together to make grammatical structures; it must divide
the actual words of English into classes on the basis of the places
in which they can appear in grammatical structures. Linguists make
such a division purely on the basis of grammatical function with-
out invoking any idea of meaning. Thus, all we can expect of a
grammar is the generation of grammatical sentences, and this in-
cludes the example given earlier: “The chartreuse semiquaver
skinned the feelings of the manifold.” Certainly the division of
words into grammatical categories such as nouns, adjectives, and
verbs is not our sole guide concerning the use of words in produc-
ing English text.

What does influence the choice among words when the words
used in constructing grammatical sentences are chosen, not at
random by a machine, but rather by a live human being who,
through long training, speaks or writes English according to the
rules of the grammar? This question is not to be answered by a
vague appeal to the word meaning. Qur criteria in producing Eng-
lish sentences can be very complicated indeed. Philosophers and
psychologists have speculated about and studied the use of words
and language for generations, and it is as hard to say anything en-
tirely new about this as it is to say anything entirely true. In par-
ticular, what Bishop Berkeley wrote in the eighteenth century
concerning the use of language is so sensible that one can scarcely
make a reasonable comment without owing him credit.

Let us suppose that a poet of the scanning, thyming school sets
out to write a grammatical poem. Much of his choice will be exer-
cised in selecting words which fit inio the chosen rhythmic pattern,
which rhyme, and which have alliteration and certain consistent
or agreeable sound values. This is particularly notable in Poe’s
“The Bells,” “Ulalume,” and “The Raven.”

Further, the poet will wish to breng together words which through
their sound as well as their sense arouse related emotions or im-
pressions in the reader or hearer. The different sections of Poe’s
“The Bells” jllustrate this admirably. There is a marked contrast
between.:

How they tinkle, tinkle, tinkle,
In the icy air of night!
While the stars that oversprinkle
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All the heavens, seem to twinkie
In a crystalline delight; . ..

and

"Through the balmy air of night
How they ring out their delight!
From the molten-golden notes,

And all in tune,

What a liquid ditty floats . ..

So_metirpes, the picture may be harmonious, congruous, and
moving without even the trivial literal meaning of this verse of
Poe’s, as in Blake’s two lines:

Tyger, Tyger, burning bright
In the forests of the night . ..

In instances other than poetry, words may be chosen for euphony
but they are perhaps more often chosen for their associations Wltli
and ability to excite passions such as those listed by Berkeley: fear
love, hatred, admiration, disdain. Particular words or expression;
move each of us to such feelings. In a given culture, certain words
and phrases will have a strong and common effect on the majority
of hearers, just as the sights, sounds or events with which they are
ass_o‘j:iated do. The words of a hymn or psalm can induce a strong
religious emotion; political or racial epithets, a sense of alarm or
conternpt, and the words and phrases of dirty jokes, sexual
excitement.

One emotion which Berkeley does not mention is a sense of
understanding. By mouthing commonplace and familiar patterns
o‘f words in connection with ill-understood matters, we can asso-
ciate some of our emotions of familiarity and insight with our per-
plexity about history, life, the nature of knowledge, consciousness
death, and Providence. Perhaps such philosophy as makes use of"
common words should be comsidered in terms of assertion of a

Ieassurance concerning the importance of man’s feelings rather
than in terms of meaning.
~ One could spend days on end examining examples of motivation
in the ch_oice of words, but we do continually get back to the matter
of meaning. Whatever meaning may be, all else seems lost without
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it. A Chinese poem, hymn, deprecation, or joke will have little effect
on me unless I understand Chinese in whatever sense those who
know a language understand it. ‘ . ‘

Though Colin Cherry, a well-known 1nformat1c_m theorist, ap-
pears to object, I think that it is fair to regar.d me.amngﬁ.ll language
as a sort of code of communication. It certainly isn’t a s1mp’le code
in which one mechanically substitutes a word for a deed. It’s more
like those elaborate codes of early cryptography, in which many
alternative code words were listed for cach common letter or word
(in order to suppress frequencies). But in language, the listings may
overlap. And one person’s code book may have different entries
from another’s, which is sure to cause confusion. o

If we regard language as an imperfect code of communication,
we must ultimately refer meaning back to the intent of the user.
It is for this reason that I ask, “What do you mean?” even when I
have heard your words. Scholars seek the intent ot'" authors long
dead, and the Supreme Court seeks to establish the intent of Con-
gress in applying the letter of the law. o .

Further, if I become convinced that a man is lymg,'I interpret
his words as meaning that he intends to flatter or deccwq me, If ]
find that a sentence has been produced by a computer, I interpret
it to mean that the computer is functioning very cleverly.

I don’t think that such matiers are quibbles; it seems that we
are driven to such considerations in connection with meaning if
we do regard language as an imperfect code of communication,
and as one which is sometimes exploited in devious ways. We are
certainly far from any adequate treatment of such pr_oblems.

Grammatical sentences do, however, have what might !Je called
a formal meaning, regardless of intent. If we had a saus?factory
grammar, a machine should be able to esta.b.hsh the relat_lons be-
tween the words of a sentence, indicating subject, verb, object, and
what modifying phrases or clauses apply to what other vfrorclls. The
next problem beyond this in seeking such forlmal meaning in sen-
tences is the problem of associating words ‘_mth opjects, qualities,
actions, or relations in the world about us, including the world of
man’s society and of his organized knowledge. . ’

In the simple communications of everyday life, we don’t have
much trouble in associating the words that are used with the proper
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objects, qualities, actions, and relations. No one has trouble with
“close the east window” or “Henry is dead,” when he hears such
a simple sentence in simple, unambiguous surroundings. In a
familiar American room, anyone can point out the window; we
have closed windows repeatedly, and we know what direction east
is. Also, we know Henry (if we don’t get Henry Smith mixed up
with Henry Jones), and we have seen dead people. If the sentence
is misheard or misunderstood, a second try is almost sure to
succeed.

Think, however, how puzzling the sentence about the window
would be, even in translation, to a shelterless savage. And we can
get pretty puzzled ourselves concerning such a question as, is a
virus living or dead?

It appears that much of the confusion and puzzlement about the
associations of words with things of the world arose through an
effort by philosophers from Plato to Locke to give meaning to such
ideas as window, cat, or dead by associating them with general ideas
or ideal examples. Thus, we are presumed to identify a window by
its resemblance to a general idea of a window, to an ideal window,
in fact, and a cat by its resemblance to an ideal cat which embodies
all the attributes of cattiness. As Berkeley points out, the abstract
idea of a (or the ideal) triangle must at once be “neither oblique,
rectangle, equilateral, equicrural nor scaleron, but all and none of
these at once.”

Actually, when a doctor pronounces a man dead he does so on,
the basis of certain observed signs which he would be at 2 loss to
identify in a virus. Further, when a doctor makes a diagnosis, he
does not start out by making an over-all comparison of the patient’s
condition with an ideal picture of a disease. He first looks for such
signs as appearance, temperature, pulse, lesions of the skin, inflam-
mation of the throat, and so on, and he also notes such symptoms
as the patient can describe to him. Particular combinations of signs
and symptoms indicate certain diseases, and in differential diag-
Doses further tests may be used to distinguish among diseases pro-
ducing similar signs and symptoms.

In a similar manner, a botanist identifies a plant, familiar or
unfamiliar, by the presence or absence of certain qualities of size,
color, leaf shape and disposition, and so on. Some of these quali-



120 Symbols, Signals and Noise

ties, such as the distinction between the leaves of monocotyledon-
ous and dicotyledonous plants, can be decisive; others, such as size,
can be merely indicative. In the end, one is either sure he is right
or perhaps willing to believe that he is right; or the plant may be
a new species.

Thus, in the workaday worlds of medicine and botany, the ideal
disease or plant is conspicuous by its absence as any actual useful
criterion. Instead, we have lists of qualities, some decisive and some
merely indicative.

The value of this observation has been confirmed strongly in
recent work toward enabling machines to carry out tasks of recog-
nition or classification. Early workers, perhaps misled by early
philosophers, conceived the idea of matching a letter to an ideal
pattern of a letter or the spectrogram of a sound to an ideal spec-
trogram of the sound. The results were terrible. Audrey, a pattern-
matching machine with the bulk of a hippo and brains beneath
contempt, could recognize digits spoken by one voice or a selected
group of voices, but Audrey was sadly fallible. We should, I thiok,
conclude that human recognition works this way in very simple
cases only, if at all.

Later and more sophisticated workers in the field of recognition
look for significant features. Thus, as a very simple example, rather
than having an ideal pattern of a capital Q, one might describe Q
as a closed curve without corners or reversals of curvature and with
something attached between four and six o’clock.

In 1959, L. D. Harmon built at the Bell Laboratories a simple
device weighing a few pounds which almost infallibly recognizes
the digits from one to zero written out as words in longhand. Does
this gadget match the handwriting against patterns? You bet it
doesn’t! Insteads it asks such questions as, how many times did

the stylus go above or below certain lines? Were I's dotted or T's @

crossed?
Certainly, no one doubts that words refer to classes of objects,

actions, and so on. We are surrounded by and involved with a large

number of classes and subclasses of objects and actions which we’

can usefully associate with words. These include such objects as

plants (peas, sunflowers . . .), animals (cats, dogs .. }), machines B
(autos, radios . . .), buildings (houses, towers . . .), clothing (skirts, B
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socks . .), and so on. They include such very complicated sequences
gf actions as dressing and undressing (the absent-minded, includ-
ing myself, .repeatedly demonstrate that they can do thi; uncon-
sciously); tying one’s shoes (an act which children have considerable
difficulty in learning), eating, driving a car, reading, writing, addin
ﬁg;)lr.e;‘, playu}g gol{? or tennis (activities involving a host of, djstincgt
21111 ;111 (;a;g: skills), listening to music, making love, and so on and
It seems to me that what delimits a particular class of objects
quaht1e§, actions, or relations is not some sort of ideal exam le.
Rather, it is a list of qualities. Further, the list of qualities canflot'
be expected to enable us to divide experience up into a set of logi-
cal, sharply delimited, and all-embracing categories. The language
of science may approach this in dealing with a narrow range of
experience, but the language of everyday life makes arbitra
overlapping, and less than all-inclusive divisions of experience Y?;’
Ilbeheve that it is by means of such lists of qualities that we i.denj
tify dpors:, windows, cats, dogs, men, monkeys, and other objects
of daily life. I feel also that this is the way in which we identif
common actions such as running, skipping, jumping, and tyin, )
and sw_.lch symbols as words, written and spoken, as well. ®
I think that it is only through such an approach that we can hope
to make a machine classify objects and experience in terms }())f
language, or recognize and interpret language in terms of other
language or of action. Further, I believe that when a word cannot
:Jﬁ'er atable of qualiti.es or signs whose elements can be traced back
0(; fﬁ;nmm(;g.and familiar experiences, we have a right to be wary
If we are to understand language in such a way that we can hope
some day to make a machine which will use language successfull
we must have a grammar and we must have a way of relating worc{;
to thedWorld about us, but this is of course not enough. If we are to
{ggh'flfre ;Sezf';eﬂszsi Es meaningful, they must in some way correspond
Our lives do not present fresh objects and fresh actions each day
They are made up of familiar objects and familiar though com li-.
cated sequences of actions presented in different groupings ali1d
orders. Sometimes we learn by adding new objects, or actions, or



122 Symbols, Signals and Noise

combinations of objects or sequences of actions to our stock, and
so we enrich or change our lives. Sometimes we forget objects and
actions.

Our particular actions depend on the objects and events about
us. We dodge a car (a complicated sequence of actions). When
thirsty, we stop at the fountain and drink (another complicated but
recurrent sequence). In a packed crowd we may shoulder someone
out of the way as we have done before. But our information about
the world does not all come from direct observation, and our in-
fluence on others is happily not confined to pushing and shoving.
We have a powerful tool for such purposes: language and words.

We use words to learn about relations among objects and activi-
ties and to remember them, to instruct others or to receive instruc-
tion from them, to influence people in one way or another. For the
words to be useful, the hearer must understand them in the same
sense that the speaker means them, that is, insofar as he associates
them with nearly enough the same objects or skills. It’s no use,
however, to tell a man to read or to add a column of figures if he
has never carried out these actions before, so that he doesn’t have
these skills. It is no use to iell him to shoot the aardvark and not
the gnu if he has never seen either.

Further, for the sequences of words to be useful, they must refer
to real or possible sequences of events. It’s of no use to advise a
man to walk from London to New York in the forenoon immedi-
ately after having eaten a seven o’clock dinner.

Thus, in some way the meaningfulness of language depends not
only on grammatical order and on a workable way of associating
words with collections of objects, qualities, and so on; it also de-
pends on the structure of the world around us. Here we encounter
a real and an extremely serious difficulty with the idea that we can
in some way translate sentences from one language into another
and accurately preserve the “meaning.”

One obvious difficulty in trying to do this arises from differences
in classification. We can refer to either the foot or the lower leg;
the Russians have one word for the foot plus the lower leg. Hun-
garians have twenty fingers (or toes), for the word is the same for
either appendage. To most of us today, a dog is a dog, male or
female, but men of an earlier era distinguished sharply between a
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dog and a bitch. Eskimos make, it is said, many distinctions among
snow which in our langnage would call for descriptions, and for
us even these descriptions would have little real content of impor-
tance or feeling, because in our lives the distinctions have not been
important. Thus, the parts of the world which are common and
meaningful to those speaking different languages are often divided
Into somewhat different classes. It may be impossible to write down
in different languages words or simple sentences that specify exactt

the same range of experience. )

The;e 15 a graver problem than this, however. The range of
eXperience to which various words refer is not common among all
cultures. What is one to do when faced with the probiem of trans-
lating a novel containing the phrase, “tying one’s shoelace,” which
as we have noted describes a complicated action, into the I;nguage
ofa shoeless people? An elaborate description wouldn’t call up the
tight thing at all. Perhaps some cultura) equivalent (?) could be
found. And how should one deal with the fact that “he built a
h01_15_e’_’ means personal tree cutting and adzing in a pioneer novel
while it refers to the employment of an architect and a contracto;
In a contemporary story? ‘

It is possible to make some sort of translation between closely
rela'ted languages on a word-for-word or at least phrase-for-phrase
bals1s,’ though- this is said to have led from “out of sight, out of
mind” to “blind idiot.” When the languages and cultures differ in
major respects, the translator has to think what the words mean
In terms _of objects, actions, or emotions and then express this
meaning in the other language. It may be, of course, that the cul-
ture with which the language is associated has no close equivalents
to the objects or actions described in the passage to be translated
Then the translator is really stuck, ‘

Ho'w, oh how is the man who sets out to build a translating
machine to cope with a problem such as this? He certainly cannot
dg so without in some way enabling the machine to deal effectively
with what we refer to as understanding. In fact, we see understand-
Ing at work even in situations which do not involve translation
from one language into another. A screen writer who can quite
accurately transfer the essentials of a scene involving a dying uncle
in Omsk to one involving a dying father in Dubuque will repeatedly
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make complete nonsense in trying to rephrase a simple technical
statement. This is clearly because he understands grief but not
science.

Having grappled painfully with the word meaning, we are now
faced with the word understanding. This seems to have two sides.
If we understand algebra or calculus, we can use their manipula-
tions to solve problems we haven’t encountered before or to supply
proofs of theorems we haven’t seen proved. In this sense, under-
standing is manifested by a power to do, to create, not merely to
repeat. To some degree, an electronic computer which proves
theorems in mathematical logic which it has not encountered be-
fore (as computers can be programmed to do) could perhaps be
said to understand the subject. But there is an emotional side to
understanding, too. When we can prove a theorem in several ways
and fit it together with other theorems or facts in various manners,
when we can view a field from many aspects and see how it all fits
together, we say that we understand the subject deeply. We attain
a warm and confident feeling about our ability to cope with it. Of
course, at one time or another most of us have felt the warmth
without manifesting the ability. And how disillusioned we were at
the critical test!

In discussing language from the point of view of information
theory, we have drifted along a tide of words, through the imper-
fectly charted channels of grammar and on into the obscurities of
meaning and understanding. This shows us how far ignorance can
take one. It would be absurd to assert that information theory, or
anything else, has enabled us to solve the problems of linguistics,
of meaning, of understanding, of philosophy, of life. At best, we
can perhaps say that we are pushing a little beyond the mechani-

cal constraints of language and getting at the amount of choice |

that language affords. This idea suggests views concerning the use
and function of language, but it does not establish them. The
reader may share my freely offered ignorance concerning these
matters, or he may prefer his own sort of ignorance.

cuapter V11 Efficient Encoding

WE WILL NEVER AGAIN understand nature as well as Greek
philosophers did. A general explanation of common phenomena
In terms of a few all-embracing principles no longer satisfies us.
We know too much. We must explain many things of which the
Greeks were unaware. And, we require that our theories harmonize
in detail with the very wide range of phenomena which they seek
to explain. We insist that they provide us with useful guidance
rather than with rationalizations. The glory of Newtonian me-
chanics is that it has enabled men to predict the positions of planets
and satellites and to understand many other natural phenomena
as well; it is surely not that Newtonian mechanics once inspired
and supported a simple mechanistic view of the universe at large,
including life.

Present-day physicists are gratified by the conviction that al
(non-nuf:lear) physical, chemical, and biological properties of mat-
ter can in principle be completely and precisely explained in all
their detail by known quantum laws, assuming only the existence
of electrons and of atomic ruclei of various masses and charges.
It is somewhat embarrassing, however, that the only physical sys-
tem all of whose properties actually have been calculated exactly
is the isolated hydrogen atom.

Physicists are able to predict and explain some other physical
phenomena quite accurately and many more semiquantitatively.
However, a basic and accurate theoretical treatment, founded on
electrons, nuclei, and quantum laws only, without recourse to
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other experimental data, is lacking for most common thermal,
mechanical, electrical, magnetic, and chemical phenomena. Trac-
ing complicated biclogical phenomena directly back to quantum
first principles seems so difficult as to be scarcely relevant to the
real problems of biology. It is almost as if we knew the axioms of
an important field of mathematics but could prove only a few
simple theorems.

Thus, we are surrounded in our world by a host of intriguing
problems and phenomena which we cannot hope to relate through
one universal theory, however true that theory may be in principle.
Until recently the problems of science which we commonly asso-
ciate with the field of physics have seemed to many to be the most
interesting of all the aspects of nature which still puzzle us. Today,
it is hard to find problems more exciting than those of biochem-
istry and physiology.

I believe, however, that many of the problems raised by recent
advances in our technology are as challenging as any that face us.
What could be more exciting than to explore the potentialities of
electronic computers in proving theorems or in simulating other
behavior we have always thought of as “human”? The problems
raised by electrical communication are just as challenging. Accu-
rate measurements made by electrical means have revolutionized
physical acoustics. Studies carried out in connection with tele-
phone transmission have inaugurated a new era in the study of
speech. and hearing, in which previously accepted ideas of phys-
iology, phonetics, and liguistics have proved to be inadequate.
And, it is this chaotic and intriguing field of much new ignorance
and of a little new knowledge to which communication theory
most directly applies.

If communication theory, like Newton’s laws of motion, is to be
taken seriously, it must give us useful guidance in connection with
problems of communication. It must demonstrate that it has a
real and enduring substance of understanding and power. As the
name implies, this substance should be sought in the efficient and
accurate transmission of information. The substance indeed exists.
As we have seen, it existed in an incompletely understood form
even before Shannon’s work unified it and made it intelligible.
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To deal with the matter of accurate transmission of information
we need new basic understanding, and this matter will be tackled
in the next chapter. The foregoing chapters have, however, put us
In a position to discuss some challenging aspects of the efficient
transmission of information.

We have seen that in the entropy of an information source
measured in bits per symbol or per second we have a measure of
the number of binary digits, of off-or-on pulses, per symbol or per
second which are necessary to transmit a message. Knowing this
number of binary digits required for encoding and transmission, we
naturally want a means of actually encoding messages with, at the
most, not many more binary digits than this minimum number.

Novices in mathematics, science, or engineering are forever de-
manding infallible, universal, mechanical methods for solving
problems. Such methods are valuable in proving that problems
can be solved, but in the case of difficult problems they are sel-
dom practical, and they may sometimes be cormpletely unfeasible.
As an example, we may note that an explicit solution of the gen-
eral cubic equation exists, but no one ever uses it in a practical
problem. Instead, some approximate method suited to the type or
class of cubics actually to be solved is resorted to.

Thf: person who isn’t a novice thinks hard about a specific prob-
lem in order to see if there isn’t some better approach than a
machine-like application of what he has been taught. Let us see
how this applies in the case of information theory. We will first
consider the case of a discrete source which produces a string of
symbols or characters.

In Chapter V, we saw that the entropy of a source can be com-
puted by examining the relative probabilities of occurrence of
various long blocks of characters. As the length of the block is
Increased, the approximation to the entropy gets closer and closer.
In a particular case, perhaps blocks 5, or 10, or 100 characters in
length might be required to give a very good approximation to
the entropy.

We also saw that by dividing the message into successive blocks
of characters, to each of which a probability of cccurrence can be
attached, and by encoding these blocks into binary digits by means
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of the Huffman code, the number of digits used per character
approaches the entropy as the blocks of characters are made longer
and longer. .

Here indeed is our foolproof mechanical scheme. Why don’t we
simply use it in all cases?

To see one reason, let us examine a very simple case. Suppose
that an information source produces a binary digit, a 1 or a 0,
randomly and with equal probability and then follows it with the
same digit twice again before producing independently another
digit. The message produced by such a source might be:

000111000111111000000111

Would anyone be foolish enough to divide such a message
successively into blocks of 1, 2, 3, 4, 5, etc., characters, compute
the probabilities of the blocks, encode them with a Huffman code,
and note the improvement in the number of binary digits required
for transmission? I don’t know; it sometimes seeras to me that there
are no limits to human folly.

Clearly, a much simpler procedure is not only adequate but
absolutely perfect. Because of the repetition, the entropy is clearly
the same as for a succession of a third as many binary digits chosen
randomly and independently with equal probability of 1 or 0. That
is, it is % binary digit per character of the repetitious message. And,
we can transmit the message perfectly efficiently simply by sending
every third character and telling the recipient to write down each
received character three times.

This example is simple but important. It illustrates the fact that
we should look for natural structure in a message source, for salient
features of which we can take advantage.

The discussion of English text in Chapter I'V illustrates this. We
might, for instance, transmit text merely as a picture by television
or facsimile. This would take many binary digits per character. We
would be providing a transmission system capable of sending not
only English text, but Cyrillic, Greek, Sanskrit, Chinese, and other
text, and pictures of landscapes, storms, earthquakes, and Marilyn
Monroe as well. We would not be taking advantage of the elemen-
tary and all-important fact that English text is made up of letters.

If we encode English text letter by letter, taking no account of

Efficient Encoding 129

the different probabilities of various letters (and excluding the
space), we need 4.7 binary digits per letter. If we take into account
the relative probabilities of letters, as Morse did, we need 4.14
binary digits per letter.

If we proceeded mechanically to encode English text more
efficiently, we might go on to encoding pairs of letters, sequences
of three letters, and so on. This, however, would provide for
encoding many sequences of letters which aren’t English words. It
seems much more sensible to go on to the next larger unit of
English text, the word. We have seen in Chapter IV that we would
expect to use only about ¢ binary digits per word or 1.7 binary
digits per character in so encoding English text.

If we want to proceed further, the next logical step would be to
consider the structure of phrases or sentences; that is, to take
advantage of the rules of grammar. The trouble is that we don’t
know the rules of grammar completely enough to help us, and if
we did, a communication system which made use of these rules
would probably be impracticaily complicated. Indeed, in practical
cases it still seems best to encode the letters of English text inde-
pendently, using at least 5 binary digits per character.

It is, however, important to get some idea of what could be
accomplished in transmitting English text. To this end, Shannon
considered the following communication situation. Suppose we ask
a man, using all his knowledge of English, to guess what the next
character in some English text is. If he is right we tell him so, and
he writes the character down. If he is wrong, we may either tell
him what the character actually is or let him make further guesses
until he guesses the right character.

Now, suppose that we regard this process as taking place at the
transmitter, and say that we have an absolutely identical twin to
guess for us at the receiver, a twin who makes just the same mis-
takes that the man at the transmitter does. Then, to transmit the
text, we let the man at the receiver guess. When the man at the
transmitter guesses right, so will the man at the receiver. Thus, we
need send information to the man at the receiver only when the
man at the transmitter guesses wrong and then only enough infoz-
mation to enable the men at the transmitter and the receiver to
write down the right character.
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Shannon has drawn a diagram of such a communication system,
which is shown in Figure VII-1. A predictor acts on the original
text. The prediction of the next letter is compared with the actual
letter. If an error is noted, some information is transmitted. At the
receiver, a prediction of the next character is made from the alread.y
reconstructed text. A comparison involving the received signal is
carried out. If no error has been made, the predicted character is
used; if an error has been made, the “reduced text” information
coming in will make it possible to correct the error.

Of course, we don’t have such identical twins or any other highly
effective identical predictors. Nonetheless, a much simpler bll.l'[
purely mechanical system based on this diagram has been used in
transmitting pictures. Shannon’s purpose was different, however.
By uvsing just one person, and not twins, he was able to find what
transmission rate would be required in such a system merely by
examining the errors made by the one man in the transmitter
situation. The results are summed up in Figure V-4 of Chapter V.
A better prediction is made on the basis of the 100 preceding
Jetters than on the basis of the preceding 10 or 15. To correct the
errors in prediction, something between 0.6 and 1.3 binal:y digits
per character is required. This tells us that, insofar as this result
is correct, the entropy of English text must lie between .6 and 1.3
bits per letter.

A discrete source of information provides a good example for
discussion but not an example of much practical importance in
communication. The reason is that, by modern standards of elec-
irical communication, it takes very few binary digits or off-or-on
pulses to send English text. We have to hurry to speak a few
hundred words a minute, yet it is easy to send over a thousand
words of text over a telephone connection in a mirute or to send

10 million words a minute over a TV channel, and, in principle if
not in practice, we could transmit some 50,000 words a minute over

COMPARISON COMPARISON ORIGINAL
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a telephone channel and some 50 million words a minute over a
TV channel. As a matter of fact, in practical cases we have even
retreated from Morse’s ingenious code which sends an E faster than
a Z. A teletype system uses the same length of signal for any letter.

Efficient encoding is thus potentially more important for voice
transmission than for transmission of text, for voice takes more
binary digits per word than does text. Further, efficient encoding
is potentially more important for TV than for voice.

Now, a voice or a TV signal is inherently continuous as opposed
to English text, numbers, or binary digits, which are discrete.
Disregarding capitalization and punctuation, an English character
may be any one of the letters or the space. At a given moment, the
sound wave or the human voice may have any pressure at all lying
within some range of pressures. We have noted in Chapter IV that
if the {requencies of such a continuous signal are limited to some
bandwidth B, the signal can be accurately represented by 2B
samples or measurements of amplitude per second.

We remember, however, that the entropy per character depends
on how many values the character can assume. Since a continuous
signal can assume an infinite number of different values at a sample
point, we are led to assume that a continuous signal must have an
entropy of an infinite number of bits per sample.

This would be true if we required an absolutely accurate repro-
duction of the continuous signal. However, signals are transmitted
to be heard or seen. Only a certain degree of fidelity of reproduc-
tion is required. Thus, in dealing with the samples which specify
continuous signals, Shannon introduces a fidelity criterion. To
reproduce the signal in a way meeting the fidelity criterion requires
only a finite number of binary digits per sample or per second, and
hence we can say that, within the accuracy imposed by a particular
fidelity criterion, the entropy of a continuous source has a particu-
lar value in bits per sample or bits per second.

It is extremely important to realize that the fidelity criterion
should be associated with long stretches of the signal, not with
individual samples. For instance, in transmitting a sound, if we
make each sample 10 per cent larger, we will merely make the
sound louder, and no damage will be done to its quality. If we make
arandom error of 10 per cent in each sample, the recovered signal
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will be very noisy. Similarly, in picture transmission an error in
brightness or contrast which changes smoothly and gradually
across the picture will pass unnoticed, but an equal but random
error differing from point to point will be intolerable.

We have seen that we can send a continuous signal by quantizing
each sample, that is, by allowing it to assume only certain pre-
assigned values. It appears that 128 values are sufficient for the
transmission of telephone-quality speech or of pictures. We must
realize, however, that, in quantizing a speech signal or a picture
signal sample by sample, we are proceeding in a very unsophisti-
cated manner, just as we are if we encode text letter by letter rather
than word by word.

The name Ayperquantization has been given to the quantization
of continuous signals of more than one sample at a time. This is
undoubtedly the true road to efficient encoding of continuous
signals. One can easily ruin his chances of efficient encoding com-
pletely by quantizing the samples at the start. Yet, to hyperquantize
a continuous signal is not easy. Samples are quantized independ-
ently in present pulse code modulation systems that carry telephone
conversations from telephone office to telephone office and from
town to town, and in the digital switching systems that provide
much long distance switching, Samples are quantized independ-
ently in sending pictures back from Mars, Jupiter and farther
planets.

In pulse code modulation, the nearest of one of a number of
standard levels or amplitudes is assigned to each sample. As an
example, if eight levels were used, they might be equally spaced
as in a of Figure VII-2. The level representing the sample is then
transmitted by sending the binary number written to the right of it.

Some subtlety of encoding can be used even in such a system.
Instead of the equally spaced amplitudes of Figure VII-2a, we can
use quantization levels which are close together for small signals
and farther apart for large signals, as shown in Figure VII-2b. The
reason for doing this is, of course, that our ears are sensitive to a
fractional error in signal amplitude rather than to an error of so
many dynes below or above average pressure or so many volts
positive or negative, in the signal. By such companding (compressing
the high amplitudes at the transmitter and expanding them again
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at the receiver), 7 binary digits per sample can give a signal almost
as good as 11 binary digits would if the signal levels transmitted
were separated by equal differences in amplitude.

To send speech more efficiently than this, we need to examine
the characteristics both of speech and of hearing. After all, we
require only enough accuracy of transmission to convince the
hearer that transmission is good enough.

Efficiency is not everything. A vocoder can transmit only one
voice, mot two or more at a time. Also, vocoders behave badly
when one speaks in the presence of loud noise. Trying to transmit
the actual speech waveform more efficiently, or waveform decoding,
avoids these problems, but 15,000-20,000 binary digits per second
are required for acceptable speech.

Figure VII-3 shows the wave forms of several speech sounds,
that is, how the pressure of the sound wave or the voltage repre-
senting it in a communication system varies with time. We see that
many of the wave forms, and especially those for the vowels (a
through 4), repeat over and over almost exactly. Couldn't we
perhaps transmit just one complete period of variation and use it
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to replace several succeeding periods? This is very difficult, for it
is hard for a machine to determine just how long a period is in
actual speech. It has been tried. The speech reproduced is intelli-
gible but seriously distorted.

If speech is to be encoded efficiently, a much more fundamental
approach is required. We must know how great a variety of speech
sounds must be transmitted and how effective our sense of hearing
is in distinguishing among speech sounds.

The fluctuations of air pressure which constitute the sounds of
speech are very rapid indeed, of the order of thousands per second.
Our voluntary control over our vocal tracts is exercised at a much
lower rate. At the most, we change the manner of production of
sounds a few tens of times a second. Thus, speech may well be
(and is) simpler than we might conclude by examining the rapidly
fluctuating sound waves of speech.

What control do we exercise over our vocal organs? First of alfl,
we control the production of voiced sounds by our control over our
vocal cords. These are two lips or folds of muscular tissue attached
to a cartilaginous box called the larynx, which is prominent in man
as the Adam’s apple. When we are not giving voice to sound, these
are wide open. They can be drawn together more or less tightly,
so that when air from the lungs is forced through them they emit
a sound something like a Bronx cheer. If they are held very tight,
the sound has a high pitch; if they are more relaxed, the sound has
a lower pitch.

The pulses of air passing the vocal cords contain many frequen-
cies. The mouth and lips act as a complex resonator which empha-
sizes certain frequencies more than others. What frequencies are

. emphasized depends on how much and at what position the tongue
. israised or humped in the mouth, on whether the soft palate opens

the nasal cavities to the mouth and throat, and on the opening of

. the jaws and the position of the lips.

Particular sounds of voiced speech, which includes vowels and

[ other continuants, such as m and r, are formed by exciting the vocal
t cords and giving particular characteristic shapes to the mouth.

Stop consonants, or plosives, such as p, b, g, t, are formed by

| stopping off the vocal passage at various points with the tongue
| orlips, creating an air pressure, and suddenly releasing it. The vocal
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cords are used in producing some of these sounds (b, for instance)
and not in producing others (p, for instance).

Fricatives, such as s and sh, are produced by the passage of air
through various constrictions. Sometimes the vocal cords are used
as well (in a zh sound, as in azure).

A specification of the movements of the vocal organs would be
much more slowly changing than a description of the sound pro-
duced. May this not be a clue to efficient encoding of speech?

In the early thirties, long before Shannon’s work on information
theory, Homer Dudley of the Bell Laboratories invented such a
form of speech transmission, which he called the vocoder (from
voice coder). The transmitting (analyzer) and receiving (synthe-
sizer) units of a vocoder are illustrated in Figure VII-4,

In the analyzer, an electrical replica of the speech is fed to 16
filters, each of which determines the strength of the speech signal
in a particular band of frequencies and transmits a signal to the
synthesizer which gives this information. In addition, an analysis
is made to determine whether the sound is voiceless (s, ') or voiced
(0, u) and, if voiced, what the pitch is.

At the synthesizer, if the sound is voiceless, a hissing noise is
produced; if the sound is voiced a sequence of electrical pulses is
produced at the proper rate, corresponding to the puffs of air
passing the vocal cords of the speaker.

The hiss or pulses are fed to an array of filters, each passing a
band of frequencies corresponding to a particular filter in the
analyzer. The amount of sound passing through a particular filter
in the synthesizer is controlled by the output of the corresponding
analyzer filter so as to be the same as that which the analyzer filter
indicates to be present in the voice in that frequency range.

This process results in the reproduction of intelligible speech.
In effect, the analyzer listens to and analyzes speech, and then
instructs the synthesizer, which is an artificial speaking machine,
how to say the words all over again with the very pitch and accent
of the speaker.

Most vocoders have a strong and unpleasant electrical accent.
The study of this has led to new and important ideas concerning
what determines and influences speech quality; we cannot afford
time to go into this matter here. Even imperfect vocoders can be
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ful. For instance, it is sometimes necessary to resort to
Zggp;zed speech transmission. If one mer.ely directly reduocg(s)
speech to binary digits by pulse code modula'tlon, 30,000 to 60, D
binary digits per second must be sent. By using a vocoder, speec
can be sent with about 2,400 binary digits per second.

The channel vocoder of Figure VII-4 is only one e:sample -of a
large class of devices (we may call them all \iocode.rs, if we W1s_h)
that analyze speech and transmit signals which drfve a speaklrllg
machine. In linear predictive encoding the analysis finds slowly
varying coefficients that predict the next sPeec.:h sample as e;
weighted sum of several past samples. An error mgnal_ can be sen
as well, which is used to correct the output of the spt?akmg mac_hme.
Linear predictive coding gives very gf)(?d speech if 9,60% Emary
digits per second are transmitted, 1nte1}1g1b1e speech at 2,40 b}nary
digits per second, and barely intelligible speech at 600 binary
digits per second. o

gVarI;ous other parameters of speech can b'e derived from_t?tt}e
linear predictive coefficients. The channel signals _charactens ﬁc
of the channel vocoder of Figure VII-4 can be derived fror_n t :
linear predictive coefficients. So can the resonant frequencies o
the vocal tract characteristic of various speech sounds.. These
resonant frequencies are called formants. When we transmit these
resonant frequencies and use them to reconstruct speech we say
we have a formant tracking vocoder. It has been p1'01:>oseecc11 :0
derive parameters describing the shape of the v<_;ca1 tract and to
transmit these. If, only if, we could use the c0eﬂic-1ents _to recognize
speech sounds, or phonemes, and merely transmit their labels, we

would have a phoneme vocoder that would transmit speech with -

the efficiency of text. \ o
Let us consider the vocoder for a moment before leaving it.

We note that transmission of voice using even .the most economi-
cal of vocoders takes many more binary digits per word thali
transmission of English text. Partly, this is because of the techm_ce: :
difficulties of analyzing and encoding speech as opposed ;;o prm: ;
Partly, it is because, in the case of speefsh, we are actually trar:;i |
mitting information about speech quality, plt-Ch-, and stress, fh ]
accent as well as such information as there is in text. In other i
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words, the eritropy of speech is somewhat greater per word than
the entropy of text.

That the vocoder does encode speech more efficiently than other
methods depends on the fact that the configuration of the vocal
tract changes less rapidly than the fluctuations of the sound waves
which the vocal tract produces. Its effectiveness also depends on
limitations of the human sense of hearing,

From an electrical point of view, the most complicated speech
sounds are the hissing fricatives, such as sh (f of Figure VII-3) and
s (g of Figure VII-3). Furthermore, the wave forms of two s’s
utiered successively may have quite a different sequence of ups and
downs. It would take many binary digits per second to transmit
each in full detail. But, to the ear, one s sounds Just like another
if it has in a broad way the same frequency content. Thus, the
vocoder doesn’t have to reproduce the s sound the speaker uttered;
it has merely to reproduce an s sound that has roughly the same
frequency content and hence sounds the same.

We see that, in transmitting speech, the royal road to efficient
encoding appears to be the detection of certain simple and impor-
tant patterns and their recreation at the receiving end. Because of
the greater channel capacity required, efficient encoding is even
more important in TV transmission than in speech transmission.
Can we perhaps apply a similar principle in TV?

The TV problem is much more difficult than the speech trans-
mission problem. Partly, this is because the sense of sight is inher-
ently more detajled and discriminating than the sense of hearing.
Partly, though, it is because many sorts of pictures from many
sources are transmitted by TV, while speech is all produced by the
same sort of vocal apparatus,

In the face of these facts, is some vocoder-like way of trans-
mitting pictures possible if we confine ourselves to one sort of
picture source, for instance, the human face?

One can conceive of such a thing. Imagine that we had at the
Teceiver a sort of rubbery model of a human face. Or we might have
a description of such a model stored in the memory of a huge
electronic computer. First, the transmitter would have to look at
the face to be transmitted and “make up” the model at the receiver
in shape and tint. The transmitter would also have to note the
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sources of light and reproduce these in intensity and direction at
the receiver. Then, as the person before the transmitter talked, the
transmitter would have to follow the movements of his eyes, lips
and jaws, and other muscular movements and transmit these so
that the model at the receiver could do likewise. Such a scheme
might be very effective, and 1t could become an important inven-
tion if anyone could specify a useful way of carrying out the
operations I have described. Alas, how much easier it is to say what
one would like to do (whether it be making such an invention,
composing Beethoven’s tenth symphony, or painting a masterpiece
on an assigned subject) than it is to do it.

In our day of unlimited science and technology, people’s unful-
filled aspirations have become so impertant to them that a special
word, popular in the press, has been coined to denote such dreams.
That word is breakthrough. More rarely, it may also be used to
describe something, usually trivial, which has actually been
accomplished.

If we turn from such dreams of the future, we find that all actual
picture-transmission Systems follow a commeon pattern. The picture
or image to be transmitted is scanned 1o discover the brightness at
successive points. The scanning is carried out along a sequence of
closely spaced lines. In color TV, three images of different colors
are scanned simultaneously. Then, at the receiver, a point of light
whose intensity varies in accord with the signal from the transmitter
paints out the picture in light and shade, following the same line
pattern. So far all practical attempts at efficient encoding have
started out with the signal generated by such a scanning process.

The outstanding efficient encoding scheme is that used in color
TV. The brightness of a color TV picture has very fine detail; the
pattern of color has very much less detail. Thus, color TV of almost
the same detail as monochrome LV can be sent over the same
channel as is used for monochrome. Of course, color TV uses an
analog signal; the picture is not reduced to discrete on-or-off pulses.

Increasingly, pulse code modulation will be used to transmit all
sorts of signals, including television signals. The picture to be trans-
mitted will be scanned in a conventional way, but its brightness
will be encoded as a succession of binary numbers that specify
the brightnesses of a succession of discrete picture elements O
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pixels that lie along each scanning line. This is how pictures were

§ent back from Mars by the Mariner lander, and from Jupiter and

its moons by the Voyager spacecraft.

All recent work aimed at encoding television efficiently is digijtal.
It d'eals with successions of binary numbers that represent suc-
cessive pixel brightnesses.

In large parts of a TV picture the brightness changes gradually
and smoothly from pixel to pixel, In such areas of the picture, a
good prediction can be made of the brightness of the next pi:::el
from the brightness of preceding pixels in the same line, and
perhaps ir_1 the preceding line. At the receiver we need know only
tI-xe error in such a prediction, so we need transmit only the small
dlffel_'ence between the true brightness and a brightness which we
Eredlct at the receiver as well as at the transmitter. Of course, in
b'usy” portions of the picture, prediction will be poor, and ,the
brightness difference that must be sent will be great.

We can transmit brightness differences most efficiently by using
a. Huffman code, with short code words for more frequently occur-
ring small brightness differences and long code words for less
frequtenﬂy occurring, large brightness differences. If we do this
the binary digits of the coded differences will be generated at an’
uneven rate, at a slow rate when smooth portions of the picture are
scanned and at a faster rate when busy portions of the picture are
scann.ec?. In order to transmit the binary digits at a constant rate
t}.le. digits must be fed into a buffer, which stores the incoming:
digits and feeds them out at a constant rate equal to the average
rate.a:: which they come in. A similar buffer must be vsed at the
receiving end.

-]:’:y means of such intraframe encoding, the number of binary
digits per second needed to transmit a good TV picture can be
reduced to %2 to ¥5 of the number of binary digits used in initially
encoding the pixel brightnesses.

Much greater gains can be made through interframe encoding, in
which the pixel brightnesses of the whole previous TV picture are
stored and used in predicting the brightness of the next pixel to
be sent. This is particularly effective in transmitting pictures of
people against a fixed background, for the brightnesses of pixels in
the background don’t change from frame to frame.
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Even more elaborate experimental schemes make use of the fact
that when a figure in front of a background moves, it moves as a
whole. Thus, the brightnesses of the pixels in the moving figure can
be predicted from the brightnesses of pixels which are a constant
distance away in the previous frame.

If each pixel of a TV picture is represented by 8 binary digits (a
very good picture), the picture can be transmitted by sending
around 100 million binary digits per second. By intraframe en-
coding this can be reduced to perhaps 32 million. With interframe
coding this has been reduced to as little as 6 million. A reduction
to 1.5 million seems conceivable for such pictures as the head of a
person against a fixed background.

The zransform method is another approach to the efficient trans-
mission of TV pictures. In the transform method, the pattern of
pixel brightnesses that make up the TV picture, or some portion of
it, is represented as the sum of a chosen set of standardized pat-
terns whose amplitudes are transmitted with chosen accuracies.

Reviewing what has been said, we seec that there are three im-
portant principles in encoding signals efficiently: (1) Don’t encode
the signal one sample or one character at a time; encode a con-
siderable stretch of a signal at a time (hyperquantization); (2) take
into account the limitations on the source of the signal; (3) take
into account any inabilities of the eye or the ear to detect errors
in a reconstruction of the signal.

The vocoder illustrates these principles excellently. The fine
temporal structure of the speech wave is not examined in detail.
Instead, a description specifying the average intensities over certain
ranges of frequencies is transmitted, together with a signal which
tells whether the speech is voiced or unvoiced and, if it is voiced,
what its pitch is. This description of a signal is efficient because the
vocal organs don’t change position rapidly in producing speech.
At the receiver, the vocoder generates a speech signal which doesn’t
resemble the original speech signal in fine detail but sounds like
the original speech signal, because of the natural limitations of
our hearing. ‘

The vocoder is a sort of paragon of efficient transmission
devices. Next perhaps comes color TV, in which the variations of
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color over the picture are defined much less sharply than variations
of intensity are. This takes advantage of the eyes’ inability to see
fine detail in color patterns.

Beyond this, the present art of communication has had to make
use of means which, because they do not encode long stretches of
signal at a time, must, according to communication theory, be
rather inefficient.

Still, efficient encoding is potentially important. This is especially
so in the case of the transmission of relatively broad-band signals
{TV or even voice signals) over very expensive circuits, such as
transoceanic telephone cables.

No doubt much ingenuity will be spent in efficient encoding in
the future, and many startling results will be attained. But we
should perhaps beware of going too far.

Imagine, for instance, that we send English text letter by letter.
If we make an error in sending a few letters we can still make some
sense out of the text:

Hore I hove reploced a few vowols by o.

We can even replace the vowels by x’s and read with some
facility:

Hxrx X hxvx rxplxexd thx vxwxls bx x.

It is more efficient to encode English text word by word. In this
Case, if an error is made in transmission, we are not tipped off by
finding a misspelled word. Instead, one word is replaced by
another. This might have embarrassing results. Suppose it changed
“The President is a good Republican” to “The President is a good
Communist” (or donkey, or poltroon, or many other nouns).
~ We might still detect an error by the fact that the word was
Inappropriate. But suppose we used a more refined encoding
scheme that could reproduce grammatical ntterances only. Then
we would have little chance of detecting an error in transmission..
_ English text, and most other information sources are redundant
in that the messages they produce give many clues to the recipient.
A few errors caused by replacing one letter by another don’t
destroy the message because we can infer it from other letters
which are transmitted correctly. Indeed, it is only because of this
redundancy that anyone can read my handwriting. When a con-
tinuous signal is sent a sample at a time, a few errors in sample
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amplitude result in a few clicks in sound transmission or in a few
specks in picture transmission. '

Our ideal so far has been to remove this redundancy, so that we
transmit the absolutely minimum number of clues by means of
which the message can be reconstructed. But we see that if we do
this with perfect success, any error in transmission will send, not
a distorted message, but a false and misleading message. If we fall
a little short of the ideal, an error may produce merely a terrible
garble. _ o

We all know that there is some noise in electrical commurucation
—a hiss in the background on radio and a little snow at least in
TV. That such noise is an inevitable fact of nature we must accept.
Is this going to vitiate in principle our grand plap to echde the
messages from a signal source into scarcely more binary digits than
the entropy of the source? .

This is the subject that we will consider in the next chapter.

cuapter VIII  7e Noisy
Channel

IT 1s HARD TO PUT ONESELF in the place of another, and,
especially, it is hard to put oneself in the place of a person of an
garlier day. What would a Victorian have thought of present-day
dress? Were Newton’s laws of motion and of gravitation as aston-
ishing and disturbing to his contemporaries as Einstein’s theory
of relativity appears to have been to his? And what is disturbing
about relativity? Present-day students accept it, not only without
a murmur, but with a feeling of inevitability, as if any other idea
must be very odd, surprising, and inexplicable.

Partly, this is because our attitudes are bred of our times and
surroundings. Partly, in the case of science at least, it is because
ideas come into being as a response to new or better-phrased
questions. We remember that according to Plato, Socrates drew a
geometrical proof from a slave simply by means of an ingenious
sequence of questions. Those who have not seriously asked them-
selves a particular question are not likely to have come upon the

3 proper answer, and, sometimes, when the question is phrased with

the answer in mind, the answer appears to be obvious.
Those interested in communication have been aware from the

! ﬂl_ very beginning that communication circuits or channels are im-
B periect. In telephony and radio, we hear the desired signal against
- a background of noise, which may be strong or faint and which

may vary in quality from the crackiing of static to a steady hiss.

145
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In TV, the picture is overlaid faintly or strongly with an ever- ;
changing granular “snow.” In teletypewriter transmission, the 3
received character may occasionally differ from that transmitted.

Suppose that one had questioned a communication engineer §
about this general problem of “noise” in 1945. One might have |
asked, “What can one do about noise?” The engineer might have §
answered, “You can increase the transmitter power or make the 1
receiver less noisy. And be sure that the receiver is insensitive to 3
disturbances with frequencies other than the signal frequencies.” #8

One might have persisted, “Can’t one do anything else?” The #&
engineer might have answered, “Well, by using frequency modu- S

lation, which takes a very large band width, one can reduce the
effect of noise.”

Suppose, however, that one had asked, “In teletypewriter sys- §&
tems, noise may cause some received characters to be wrong; how
can one guard against this?” The engineer could and might perhaps &
have answered, “I know that if I use five off-or-on pulses to repre- 3

sent a decimal digit and assign to the decimal digits only such
sequences as all have two ons and three offs, I can often tell when

an error has been made in transmission, for when errors are made #&

the received sequence may have other than 2 ons.”

One might have pursued the matter further with, “If the teletype-
writer circuit does cause errors is there any way that one can get
the correct message to the destination?” The engineer might have

answered, “I suppose you can if you repeat it enough times, but |

that’s very wasteful. You'd better fix the circuat,”

Here we are getting pretty close to questions that just hadn't
been asked before Shannon asked them. Nonetheless, let us go on
and imagine that one had said, “Suppose that I told you that by

properly encoding my message, I can send it over even a noisy I

channel with a completely negligible fraction of errors, a fraction

smaller than any assignable value. Suppose that I told you that, if ¥

the sort of noise in the channel is known and if its magnitude is

known, I can calculate just how many characters I can send over |
the channel per second and that, if I send any number fewer than &

this, I can do so virtually without error, while if I try to send more,
I will be bound to make errors.”
The engineer might well have answered, “You’d sure have to
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show me. I never thought of things in quite that way before, but
what you say seems extremely improbable. Why, every time the
noise mcreases, the error rate increases. Of course, repeating a
message several times does work better when there aren’t too many
errors. But, it is always very costly. Maybe there’s something in
what you say, but I'd be awfully surprised if there was. Still, the
way you put it...”

Whatever we may imagine concerning an engineer benighted in
the days of error, mathematicians and engineers who have survived
th; transition all feel that Shannon’s results concerning the trans-
mission of information over a noisy channel were and still are Very
surprising. Yet I have known an intelligent layman to see nothing
remarkable in Shannon’s results. What is one to think of this?

Perhaps the best course is merely to describe and explain the
problexp of the noisy channel as we now understand it, raising and
answering questions that, however natural and inevitable they now
seem, belong in their trend and content to the post-Shannon era.
The reader can be surprised or not as he chooses.

So far we have discussed both simple and complex means for
encoding text and numbers for efficient transmission. We have
noted further that any electrical signal of limited band width W
can be represented by 2W amplitudes or samples per second,

| measured or taken at intervals 1/2W seconds apart. We have seen

that, by means of pulse code modulation, we can use some num-

. ber, around 7, of binary digits to represent adequately the ampli-

tude of any sample. Thus, by using pulse code modulation or some
more complicated and more efficient scheme, we can transmit

j speech or picture signals by means of a sequence of binary digits
- or off-or-on or positive-or-negative pulses of current.

All of th?s works perfectly if the recipient of the message receives
the same mgngl that the sender transmits. The actual facts are dif-
ferent. Sometimes he receives a 0 when a 1 is transmitted, and

| sometimes he receives a 1 when a ( is transmitted. This can hap-
i pen through the malfunction of electrical relays in a slow-speed

telegraph circuit or through the malfunction of vacuum tubes or

transistors in a higher speed circuit. It can also happen because of

interfering signals or noise, either noise from man-made apparatus,

¢ or noise from magnetic storms.
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We can easily see in a simple case how errors can occur becavse
of the admixture of noise with a signal. Imagine that we wantto |
send a large number of binary digits, 0 or 1, per second overawire |
by means of an electrical signal. We may represent thta signal cop-
veying these digits by the succession of samples s of Figure VIILL, |
each of which will be +1 or —1. Here we have a succession of |
positive and negative voltages which represent the digits 1 0 1 1 ]

10010

Now suppose a random noise voltage, which may be either ‘_
positive or negative, is added to the signal. We can Tepresent this
also by a number of noise samples » of Figure VIII-1 taken simul- |

taneously with the signal samples. The signal plus the noise is

obtained by adding the signal and the noise samples and is shown |

as s + n in Figure VIII-1.

If we interpret a positive signal-plus-noise in the received mes- |
sage as a 1 and a negative signal-plus-noise as a 0, then the received 3

l l l | ] .

S+n I I

r 1 1 0 1 1 0 1 i o
ERRORS X X X

POSITION 1 2 2 4 5 6 7 8 9

Fig. VIII-I
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message will be represented by the digits » of Figure VIII-1. Thus,
€Trors in transmission, as indicated, occur in positions 2, 3, and 7.

The effect of such errors in transmission can range from annoy-
ing to dangerous. In speech or picture transmission by means of
simple coding schemes, they result in clicks, hissing noises, or
“snow.” If more efficient, block encoding schemes are used (hyper-
quantization) the effects of errors will be more pronounced. In
general, however, we may expect the most dangerous effects of
errors in the transmission of text.

In the transmission of English text by conventional means, errors
merely put a wrong letter in here and there, The text is so redun-
dant that we catch such errors by eye. However, when type is set
remotely by teletypewriter signals, as it is, for instance, in the
simultaneous printing of news magazines in several parts of the
country, even errors of this sort can be costly.

When numbers are sent errors are much more serious. An error
might change $1,000 into $9,000. If the error oceurred in a pro-
gram intended to make an electronic computer carry out a com-
plicated calculation, the error could easily cause the whole calcu-
lation to be meaningless.

Further, we have seen that, if we encode English text or any other
signal very efficiently, so as largely to remove the redundancy, an
eIror can cause a gross change in the meaning of the received
signal. :

When errors are very important to us, how indeed may we guard
against them? One way would be to send every letter twice or to
send every binary digit used in transmitting a letter or a number
twice. Thus, in transmitting the binary sequence 1 0 100110 1,
we might send and receive as follows:

Sent 110011000011110011
received 11001100011111001 1
X
error

For a given rate of sending binary digits, this will cut our rate of
transmitting information in half, for we have to pause and retrans-
mit every digit. However, we can now see from the received signal
than an error has occurred at the marked point, because instead
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of a pair of like digits, 0 Oor1 1, we have received a pair of unlike
digits, 0 1. We don’t know whether the correct, transmitted pair
was 0 0 or 1 1. We have detected the error, but we have not
corrected it.

If exrors aren’t too frequent, that is, if the chance of two errors
occurring in the transmission of three successive digits is negligible,
we can correct as well as detect an error by transmitting each digit
three times, as follows:

sent 111000111000000111111

received 111000101000000111111
A

error

We have now cut our rate of transmission to one-third, because we
have to pause and retransmit each digit twice. However, we can
now correct the error indicated by the fact that the digits in the
indicated group 1 0 1 are not all the same. If we assume that there
was only one error in the transmission of this group of digits, then
the transmitted group must have been1 1 1, representing 1, rather
than 0 O 0, representing 0.

We see that a very simple scheme of repeating transmitted digits
can detect or even correct infrequent errors of transmission. But
how costly it is! If we use this means of error correction or detec-
tion, even when almost all of the transmitted digits are correct we
have to cut our rate of transmission in half by repeating digits in
order just to detect errors, and we have to cut our rate of trans-
mission to one-third by transmitting each digit three times in order
to get error correction. Moreover, these schemes won’t work if
errors are frequent enough so that more than one will sometimes
occur in the transmission of two or three digits.

Clearly, this simple approach will never lead to a sound under-
standing of the possibility of error correction. What is required is
a deep and powerful mathematical attack. This is just what Shan-
non provided in discovering and proving his fundamental theorem
for the noisy channel. It is the course of his reasoning that we are
about to follow.

In formulating an abstract and general model of noise or errors,
we will deal with the case of a discrete communication system
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which transmits some group of characters, such as the digits from
0109 or the letters of the alphabet. For convenience, let us consider
2 system for transmitting the digits 0 through 9. This is illustrated
in Figure VIII-2. At the left we have a number of little circles
labeled with the digits; we may regard these little circles as push-
buttons. To *he right we have a number of little circles, again
labeled with the digits. We may regard these as lights. When we
p_ush a digit button at the transmitter to the left, some digit light
lights up at the receiver to the right.

If our communication system were noiseless, pushing the 0
button would always light the 0 light, pushing the 1 button would
alvyays light the 1 light, and so on. However, in an imperfect or
nmsy_communication system, pushing the 4 button, for instance
may light the 0 light, or the 1 light, or the 2 light, or any other light,
as sho_wn by the lines radiating from the 4 button in Figure VIII-Zj
In a simple, noisy communication system, we can say that when
we press a button the light which lights is a matter of chance,

0
! 1

2 2

3 3

4 4

X y

5 5

6 6

7 7

8 8

9 8

Fig. VIII-2



152 Symbols, Signals and Noise

independent of what has gone before and that, if the 4 button is
pressed, there is some probability pa(6) that the 6 light will Light,
and so on.

If the sender can’t be sure which light will light when he presses
a particular button, then the recipient of the message can’t be sure
which button was pressed when a particular light lights. This is
indicated by the arrows from light 6 to various buttons on the left.
If, for instance, light 6 lights, there is some probability pe (4) that
button 4 was pressed, and so on. Only for a noiseless system will
pe(6) be unity and pe(4), pe(9), etc., be zero.

The diagram of Figure VIII-2 would be too complicated if all
possible arrows were put in, and the number of probabilities is too

great to list, but I believe that the general idea of the degree and '5

nature of uncertainty of the character received when the sender
tries to send a particular character and the uncertainty of the
character sent when the recipient receives a particular character,
have been illustrated. Let us now consider this noisy communica-
tion channel in a rather general way. In doing so we will represent

by x all of the characters sent and by y all of the characters received. K

The characters x are just the characters generated by the message
source from which the message comes. If there are m of these
characters and if they occur independently with probabilities p(x),
then we know from Chapter V that the entropy H{x) of the message
source, the rate at which the message source generates information,
must be -

H(x) = > — p(x) log p(x) (8.1)

x~_—l

We can regard the output of the device, which we designate by |

y, as another message source. The number of lights need not be

equal to the number of buttons, but we will assume that it is, 50

that there are m lights. The entropy of the output will be
m

H(y) = > —p(») log p(») (82) |

y= 1
We note that while H(x) depends only on the input to the com-

munication channel, H(y) depends both on the input to the channel g%
and on the errors made in transmission. Thus, the probability of #&
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receiving a 4 if nothing but a 4 is ever sent is different from the
probability of receiving a 4 if transmitting buttons are pressed
at random.

If. we imagine that we can see both the transmitter and the
receiver, we can observe how often certain combinations of x and
J occur; say, how often 4 is sent and 6 is received. Or, knowing
the statistics of the message source and the statistics of the noisy
channel, we can compute such probabilities. From these we can
compute another entropy.

1 m
Hey)= > > —p(xy) logp(xy)  (83)
o x=1x=1
This is the uncertainty of the combination of x and y.
Further, we can say, suppose that we know x (that is, we know
what key was pressed). What are the probabilities of various lights

ligl.lting (as llustrated by the arrows to the right in Figure VIII-2)?
This leads to an entropy, .

m 23
H.(y) = 2 2 — (X} p(y) log p2(y) (384)
x=1ly=1
This is a conditional entropy of uncertainty. Its form is reminis-
cent of the entropy of a finite-state machine. As in that case, we
multiply the uncertainty for a given condition (state, value (;f x)
by the probability that that condition (state, value of x) will occur
and sum over all conditions (states, values of x).
F 1na1_1)./, suppose we know what light lights. We can say what the
probabilities are that various buttons were pressed. This leads to
another conditional entropy

i m
Hyx) = > D —pp0) logp(x)  (85)
) y= lx=1
This is the sum over y of the probability that y is received times
the unf:ertainty that x is sent when y is received.
These conditional entropies depend on the statistics of the
message source, because they depend on how often x is transmitted

or hov\f qften ¥ is received, as well as on the errors made in
[TANSIMISS101.
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The entropies listed above are best interpreted as uncertainties
involving the characters generated by the message source and the
characters received by the recipient. Thus:

H(x) is the uncertainty as to x, thatis, as to which character will
be transmitted.

H(y) is the uncertainty as to which character will be received
in the case of a given message source and a given communication
channel.

H(x, ) is the uncertainty as to when x will be transmitted and
y received.

HA{y) is the uncertainty of receiving y when x is transmitted. Tt
is the average uncertainty of the sender as to what will be received.

H,(x) 1s the uncertainty that x was transmitted when y is
received. It is the average uncertainty of the message recipient as
to what was actually sent.

There are relations among these quantities:

H(x, y)y = H(x) + H:(y) (8.6)

That is, the uncertainty of sending x and receiving y is the
uncertainty of sending x plus the uncertainty of receiving y when
X is sent.

H(x, y) = H(») + Hy(x) (3.7

That is, the uncertainty of receiving y and sending x is the
uncertainty of receiving y plus the uncertainty that x was sent when
y was received.

We see that when H,(y) is zero, H,(x) must be zero, and H(y)
is then just H(x). This is the case of the noiseless channel, for
which the entropy of the received signal is just the same as the
entropy of the transmitted signal. The sender knows just what will
be received, and the recipient of the message knows just what
was sent.

The uncertainty as to which symbol was transmitted when a
given symbol is received, that is, H,(x) seems a natural measure
of the information lost in transmission. Indeed, this proves to be
the case, and the quantity H,(x) has been given a special name;
it is called the equivocation of the communication channel. If we
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take H@x). and f{y(x) as entropies in bits per second, the rate R of
fran_smlssmn of information over the channel can be shown to be
in bits per second, ,

R = H(x) — Hy(x) (88)

That is, the rate of transmission of information is the source rate
or entropy less the equivocation. It is the entropy of the message

as sent less the uncertainty of the recipient as to what message
was sent.

The rate is also given by

R = H(y) — H,(y) (89)

That 15, the rate is the entropy of the received signal y less the
uncertainty that y was received when x was sent. It is the entropy
ot: the message as received less the sender’s uncertainty as to what
will be received.

The rate is also given by

R=H(x) + H(y) — H(x y) (8.10)

The rate is the entropy of x plus the entropy of y less the uncer-
tainty of occurrence of the combination x and y. We will note from
8.3 that for a noiseless channel, since p(x, )) is zero except when
* =y, and H(x, y) = H(x) = H( »). The information rate is just
the entropy of the information source, H(x).

Shannon makes expression 8.8 for the rate plausible by means
of ﬂie sketch shown in Figure VIII-3. Here we assume a system in
which an observer compares transmitted and received signals and
then_ send.s correction data by means of which the erroneous
recetved signal is corrected. Shannon is able to show that in order
to correct the message, the entropy of the correction signal must
be equal to the equivocation.

We see that the rate R of relation 8.8 depends both on the
chanqel and on the message source. How can we describe the
¢apacity of a noisy or imperfect channel for transmitting informa-
tion? We can choose the message source so as to make the rate R
as large as possible for a given channel. This maximum possible
rate of transmission for the channel is called the channel capacity
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C. Shannon’s fundamental theorem for a noisy channel involves
the channel capacity C. It says:

Let a discrete channel have a capacity C and a discrete source the
entropy per second H. If H < C there exists a coding system such t%lat t?le
output of the source can be transmitted over the channel with an arbitrarily
small frequency of errors (or an arbitrarily small equivocation). If H > C
it is possible to encode the source so that the equivocation is less tl}an
H — C + & where ¢ is arbitrarily small. There is no method of encoding
which gives an equivocation less than H — C.

This is a precise statement of the result which so astonished
engineers and mathematicians. As errors in transmission become
more probable, that is, as they occur more frequently, the' channel
capacity as defined by Shannon gradually goes down. For instance,
if our system transmits binary digits and if some are in error, the
channel capacity C, that is, number of bits of information we can
send per binary digit transmitted, decreases. But the chapgel
capacity decreases gradually as the errors in transmission of digits
become more frequent. To achieve transmission with as few errors
as we may care to specify, we have to reduce our rate of trans-
mission so that it is equal to or less than the channel capacity.

How are we to achieve this resuit? We remember that in effi-
ciently encoding an information source, it is necessary to lump
many characters together and so to encode the message a lo_ng
block of characters at a time. In making very efficient use of a noisy
channel, it is also necessary to deal with sequences of received
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characters, each many characters long. Among such blocks, only
certain transmitted and received sequences of characters will occur
with other than a vanishing probability.

In proving the fundamental theorem for a noisy channel, Shan-
non finds the average frequency of error for all possible codes (for
all associations of particular input blocks of characters with partic-
ular output blocks of characters), when the codes are chosen at
random, and he then shows that when the channel capacity is
greater than the entropy of the source, the error rate averaged over
all of these encoding schemes goes to zero as the block length is
made very long. If we get this good a result by averaging over all
codes chosen at random, then there must be some one of the codes
which gives this good a result. One information theorist has char-
acterized this mode of proof as weird. It is certainly not the sort
of attack that would occur to an uninspired mathematician. The
problem isn’t one which would have occurred to an uninspired
mathematician, either.

The foregoing work is entirely general, and hence it applies to
all problems. I think it is illuminating, however, to return to the
example of the binary channel with errors, which we discussed
early in this chapter and which is illustrated in Figure VIII-1, and
see what Shannon’s theorem has to say about this simple and
common case. ‘

Suppose that the probability that over this noisy channel a 0 will
be received as a 0 is equal to the probability p that a 1 will be
received as a 1. Then the probability that a | will be received as a
Oora0asalmustbe (l — p). Suppose further that these prob-
abilities do mot depend on past history and do not change with
time. Then, the proper abstract representation of this situation is
a symmetric binary channel (in the manner of Figure VIII-2) as
shown in Figure VIII-4.

Because of the symmetry of this channel, the maximum infor-
mation rate, that is, the channel capacity, will be attained for a
message source such that the probability of sending a 1 is equal
to the probability of sending a zero. Thus, in the case of x (and,
because the channel is symmetrical, in the case of y also)

p(1) =p0) =%
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We already know that under these circumstances
H(x) = H(y)
= — (Ylog ¥ + % log )
= 1 bit per symbol
What about the conditional probabilities? What about the
equivocation, for instance, as given by 8.57 Four terms will con-

tribute to this conditional entropy. The sources and contributions

are:
The probability that 1 is received is . When 1 is received, the

probability that 1 was sent is p and the probability that 0 was
sent is (1 — p). The contribution to the equivocation from these
events 1s:

“h(—plogp — (1 —p)log (1 —p))

There is a probability of 5 that 0is received. When 0 is received,
the probability that 0 was sent is p and the probability that 1 was
sent is (1 — p). The contribution to the equivocation from these
events 18:

“(—plogp — (1 —p) log (1 — p))
Accordingly, we see that, for the symmetrical binary channel, the
equivocation, the sum of these terms, is

Hy(x) = —plogp — (1 — p) log (1 — p)

Thus the channel capacity C of the symmetrical binary channel
is, from 8.8,

C=1+plogp+ (1 —-p)log(1-p)

P .

G‘D)

P

P
Fig. VIII-4
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We should note that this channel capacity C is just unity less the
function plotted against p in Figure V-1. We see that if pis Y%, the
channel capacity is 0. This is natural, for in this case, if we receive
a 1, it is equally likely that a 1 or a 0 was transmitted, and the
received message does nothing to resolve our uncertainty as to
what digit the sender sent. We should also note that the channel
capacity is the same for p = 0 as for p = 1. If we consistently
receive a 0 when we transmit a 1 and a 1 when we transmit a 0,
we are just as sure of the sender’s intentions as if we always geta
lforalandaOforad0.

If, on the average, 1 digit in 10 is in error, the channel capacity
is reduced to .53 of its value for errorless transmission, and for one
error in 100 digits, the channel capacity is reduced to .92 merely.

The writer would like to testify at this point that the simplicity
of the result we have obtained for the symmetrical binary channel
s in a sense misleading (it was misleading to the writer at least).
The expression for the optimum rate (channel capacity) of an
unsymmetrical binary channel in which the probability that a 1 is
teceived as a 1is p and the probability that a 0 is received as a 0
is a different number g is a mess, and more complicated channels
must offer almost intractable problems.

Perhaps for this reason as well as for its practical importance,
much consideration has been given to transmission over the sym-
metrical binary channel. What sort of codes are we to use in order
to attain errorless transmission over such a channel? Examples
devised by R. W. Hamming were mentioned by Shannon in his
original paper. Later, Marcel J. E. Golay published concerning
error-correcting codes in 1949, and Hamming published his work
in 1950. We should note that these codes were devised subsequent
to Shannon’s work. They might, I suppose, have been devised
before, but it was only when Shannon showed error-free trans-
missjon to be possible that people asked, “How can we achieve it?”

We have noted that to get an efficient correction of errors, the
encoder must deal with a long sequence of message digits. As a
simple example, suppose we encode our message digits in blocks of
16 and add after each block a sequence of check digits which enable
us to detect a single error in any one of the digits, message digits
or check digits. As a particular example, consider the sequence of
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messagedigits1 1010011010110¢0 O.Toﬁpdthe
appropriate check digits, we write the 0’s and 1’s constituting the
message digits in the 4 by 4 grid shown in Figure VIII-5. Associ-
ated with each row and each column is a circle. In each circle is
a 0 or a 1 chosen 50 as to make the total number of 1’s in the
column or row (including the circle as well as the squares) even.
Such added digits are called check digits. For the particular assort-
ment of message digits used as an example, together with the
appropriately chosen check digits, the numbers of 1I’s in successive
columns (left to right) and 2, 2, 2, 4, all being even numbers, and
the numbers of 1's in successive rows (top to bottom} are 4, 2,2, 2,
which are again all even.

What happens if a single error is made in the transmission of a
message digit among the 167 There will be an odd number of ones
in a row and in a column. This tells us to change the message digit
where the row and column intersect.

What happens if a single error is made in a check digit? In this
case there will be an odd number of ones in a row or in a column.
We have detected an error, but we see that it was not among the
message digits.

The total number of digits transmitted for 16 message digits is
16 + 8, or 24; we have increased the number of digits needed in
the ratio 24/16, or 1.5. If we had started out with 400 message
digits, we would have needed 40 check digits and we would have
increased the number of digits needed only in the ratio of 440/400,

OXORONO

o o 1 1

0 i

OECNONGC,

1 o o 0

Fig. VIII-S

The Noisy Channel 161

or 1.1. Of course, we would have been able to correct only one
error in 440 rather than one error in 24,

Codes can be devised which can be used to correct larger num-
bers of errors in a block-of transmitted characters. Of course, more
check digits are needed to correct more errors. A final code, how-
ever we may devise it, will consist of some set of 2 blocks of s
and I’s representing all of the blocks of digits A/ digits long which
we wish to transmit. If the code were not error correcting, we
could use a block just M digits long to represent each block of M
digits which we wish to transmit. We will need more digits per
block because of the error-correcting feature.

When we receive a given block of digits, we must be able to
deduce from it which block was sent despite some number n of
errors in transmission {changes of 0 to 1 or 1 to 0). A mathema-
tician would say that this is possible if the distance between any
two blocks of the code is at least 2n + 1.

Here distance is used in a queer sense indeed, as defined by the
mathematician for his particular purpose. In this sense, the dis-
tance between two sequences of binary digits is the number of 0's
or I’s that must be changed in order to convert one sequence into
the other. For instance, the distance between0 0 1 Qand1 1 1 1
is 3, because we can convert one sequence into the other only by
changing three digits in one sequence or in the other.

When we make # etrors in transmission, the block of digits we
receive is a distance n from the code word we sent. It may be a
distance n digits closer to some other code word. If we want to be
sure that the received block will always be nearer to the correct
code word, the one that was sent, than to any other code word,
then the distance from any code word to any other code word must
be at least 2n + 1.

Thus, one problem of block coding is to find 2 equal length
code words (longer than M binary digits) that are all at least a
distance 2n + 1 from one another. The code words must be as
short as possible. The codes of Hamming and Golay are efficient,
and other efficient codes have been found.

Another problem of block coding is to provide a feasible scheme
for encoding and, especially, for decoding. Simply listing code
words won’t do. The list would be too long. Encoding blocks of 20
binary digits (M = 20) requires around a million code words. And,
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finding the code word nearest to some received block of digits
would take far too long.

Algebraic coding theory provides means for coding and decoding
with the correction of many errors. Slepian was a pioneer in this field
and important contributors can be identified by the names of types
of algebraic codes: Reed-Solomon codes and Bose-Chaudhuri-
Hocquenghem codes provide examples. Elwin Berlekamp con-
tributed greatly to mathematical techniques for calculating the
nearest code word more simply.

Convolutional codes are another means of error correction. In
convolution coding, the latest M digits of the binary stream to be
sent are stored in what is called a shift register. Every time a new
binary digit comes in, 2 (or 3, or 4) are sent out by the coder. The
digits sent out are produced by what is called modulo 2 addition of
various digits stored in the shift register. (In modulo 2 addition
of binary numbers one doesn’t “carry.”)

Convolutional encoding has been traced to early ideas of Elias,
but the earliest coding and decoding scheme published is that in a
patent of D. W. Hagelbarger, filed in 1958. Convolutional decoding
really took off in 1967 when Andrew J. Viterbi invented an
optimuom and simple decoding scheme called maximum likelihood
decoding.

Today, convolutional decoding is used in such valuable, noisy
communication channels as in sending pictures of Jupiter and its
satellites back from the Voyager spacecraft. Convolutional coding
is particularly valuable in such applications because Viterbi’s
maximum likelihood decoding can take advantage of the strength
as well as the sign of a received pulse.

If we receive a very small positive pulse, it is almost as likely
to be a negative pulse plus noise as it is to be a positive pulse plus
noise. But, if we receive a large positive pulse, it is much likelier
to be a positive pulse plus noise than a negative pulse plus noise.
Viterbi decoding can take advantage of this.

Block coding is used in protecting the computer storage of vital
information. It can also be used in the transmission of binary in-
formation over inherently low-noise data circuits.

Many existing circuits that are used to transmit data are subject
to long bursts of noise. When this is so, the most effective form of
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SIror cortection is to divide the message up into long blocks of

digits and to provide foolproof error detection. If an error is de-

tected in a received block, retransmission of the block is requested.

Mathematicians are fascinated by the intricacies and challenges
of block coding. In the eyes of some, information theory has be-
come essentially algebraic coding theory. Coding theory is im-
portant to information theory. But, in its inception, in Shannon’s
work, information theory was, as we have seen, much broader. And
even in coding itself, we must consider source coding as well as
channel coding.

In Chapter VII, we discussed ways of removing redundancy
fr.om a message so that it could be transmitted by means of fewer
binary digits. In this chapter, we have considered the matter of
adding redundancy to a nonredundant message in order to attain
virtually error-free transmission over a noisy channel. The fact that
such error-free transmission can be attained using a noisy channel
was and is surprising to communication engineers and mathe-
maticians, but Shannon has proved that it is necessarily so.

l?nor to receiving a message over an error-free channel, the
rec1Pient is uncertain as to what particular message out of many
possible messages the sender will actnally transmit. The amount
of the recipient’s uncertainty is the entropy or information rate of
the message source, measured in bits per symbol or per second.
The recipient’s uncertainty as to what message the message source
will send is completely resolved if he receives an exact replica of
the message transmitted.

. A message may be transmitted by means of positive and nega-
tive pulses of current. If a strong enough noise consisting of ran-
d'om positive and negative pulses is added to the. signal, a positive
signal pulse may be changed into a negative pulses or a negative
signal pulse may be changed into a positive pulse. When such a
noisy channel is used to transmit the message, if the sender sends
any particular symbol there is some uncertainty as to what symbol
will be received by the recipient of the message.

When the recipient receives a message over a noisy channel, he
knows what message he has received, but he cannot ordinarily be
sure what message was transmitted. Thus, his uncertainty as to
what message the sender chose is not completely resolved even on
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the receipt of a message. The remaining uncertainty depends on
the probability that a received symbol will be other than the
symbol transmitted.

From the sender’s point of view, the uncertainty of the recipient
as to the true message is the uncertainty, or entropy, of the message
source plus the uncertainty of the recipient as to what message was
transmitted when he knows what message was received. The measure
which Shannon provides of this latter uncertainty is the equivoca-
tion, and he defines the rate of transmission of information as the
entropy of the message source less the equivocation.

The rate of transmission of information depends both on the
amount of noise or uncertainty in the channel and on what message
source is connected to the channel at the transmitting end. Let us
suppose that we choose a message source such that this rate of
transmission which we have defined is as great as it is possible to
make it. This greatest possible rate of transmission is called the
channel capacity for a noisy channel. The channel capacity is
measured in bits per symbol or per second.

So far, the channel capacity is merely a mathematically defined
quantity which we can compute if we know the probabilities of
various sorts of errors in the transmission of symbols. The channel
capacity is important, because Shannon proves, as his fundamental
theorem for the noisy channel, that when the entropy or informa-
tion rate of a message source is less than this channel capacity, the
messages produced by the source can be so encoded that they can
be transmitted over the noisy channel with an error less than any
specified amount.

In order to encode messages for error-free transmission over
noisy channels, long sequences of symbols must be lumped together
and encoded as one supersymbol. This is the sort of block encoding
that we have encountered earlier. Here we are using it for a new
purpose. We are not using it to remove the redundancy of the
messages produced by a message source. Instead, we are using it
to add redundancy to nonredundant messages so that they can be
transmitted without error over a noisy channel. Indeed, the whole
probiem of efficient and error-free communication turns out to be
that of removing from messages the somewhat inefficient redun-
dancy which they have and then adding redundancy of the right

The Noisy Channel 165

sort in order to allow correction of errors made in transmission.

The redundant digits we must use in encoding messages for
error-free transmission, of course, slow the speed of transmission.
We have seen that in using a binary symmetric channel in which
| transmitted digit in 100 is erroneously received, we can send only
92 correct nonredundant message digits for each 100 digits we feed
into the noisy channel. This means that on the average, we must
use a redundant code in which, for each 92 nonredundant message
digits, we must include in some way 8 extra check digits thus
making the over-all stream of digits redundant.

Shannon’s very general work tells us in principle how to proceed.
But, the mathematical difficulties of treating complicated channels
are great. Even in the case of the simple, symmetric, off-on binary
channel, the problem of finding efficient codes is formidable,
although mathematicians have found a large number of best codes.
Alas, even these seem to be too complicated to use!

Is this a discouraging picture? How much wiser we are than in
the days before information theory! We know what the problem
is. We know in principle how well we can do, and the result has
astonished engineers and mathematicians. Further, we do have
effective error-correcting codes that are used in a variety of appli-
cations, including the transmission back to earth of glamorous
pictures of far planets.





