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extend beyond anything that we can establish with mathematical 
certainty. 

As I have indicated earlier in this chapter, communication 
theory as Shannon has given it to us deals in a very broad and 
abstract way with certain important problems of communication 
and information, but it cannot be applied to all problems which 
we can phrase using the words communication and information 
in their many popular senses. Communication theory deals with 
certain aspects of communication which can be associated and 
organized in a useful and fruitful way, just as Newton's laws of 
motion deal with mechanical motion only, rather than with all the 
named and indeed different phenomena which Aristotle had in 
mind when he used the word motion. 

To succeed, science must attempt the possible. We have no 
reason to believe that we can unify all the things and concepts for 
which we use a common word. Rather we must seek that part of 
experience which can be related. When we have succeeded in 
relating certain aspects of experience we have a theory. Newton's 
laws of motion are a theory which we can use in dealing with 
mechanical phenomena. Maxwell's equations are a theory which 
we can use in connection with electrical phenomena. Network 
theory we can use in connection with certain simple sorts of elec
trical or mechanical devices. We can use arithmetic very generally 
in connection with numbers of men, stones, or stars, and geometry 
in measuring land, sea, or galaxies. 

Unlike Newton's laws of motion and Maxwell's equations, which 
are strongly physical in that they deal with certain classes of 
physical phenomena, communication theory is abstract in that it 
applies to many sorts of communication, written, acoustical, or 
electrical. Communication theory deals with certain important but 
abstract aspects of communication. Communication theory pro
ceeds from clear and definite assumptions to theorems concerning 
information sources and communication channels. In this it is 
essentially mathematical, and in order to understand it we must 
understand the idea of a theorem as a statement which must be 
proved, that is, which must be shown to be the necessary conse
quence of a set of initial assumptions. This is an idea which is the 
very heart of mathematics as mathematicians understand it. 

CHAPTER II The Origins of 
Information Theory 
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especially in the work of Carnot.1 Our knowledge of aerodynamics 
and hydrodynamics exists chiefly be_cause aJrplanes and ships 
exist no because of the existence of bJrds and fishes. O~ knowl
edge' of electricity came mainly not from the study of hghtnmg, 
but from the study of man's artifacts. 

Similarly, we shall find the roots of Shann_on's broad and ele
gant theory of communication in the s1mphfied and seerrnngly 
easily intelligible phenomena of telegraphy. . . . 

The second thing that history can teach us 1s with what_ difficulty 
understanding is won. Today, Newton's laws of motion seem 
simple and almost inevitable, yet there was a day when they were 
undreamed of, a day when brilliant men had the oddest notions 
about motion. Even discoverers themselves sometimes seem in

credibly dense i.s well as inexplicably wonderful. One might expect 
of Maxwell's treatise on electnc1ty and magnetism a bold and 
sim le pronouncement concerning the great step he had taken. 
lnsfead, it is cluttered with all sorts of such lesser matters as once 
seemed important, so that a naive reader might search lo_ng to find 
the novel step and to restate it in the simple manner familiar to us. 
It is true however, that Maxwell stated his case clearly elsewhere. 

Thus, ~ study of the origins of scientific ideas can help us to value 
understanding more highly for its having been so dearly won. We 
can often see men of an earlier day stumblmg along the edge of 
discovery but unable to take the final step. Sometimes we are 
tempted to take it for them and to _say, because they stated many 
of the required concepts in juxtapos11Ion, that.they must really have 
reached the general conclusion. This, ala_s, 1s the same trap mto 
which many an ungrateful fellow falls in his own hfe. When some
one actually solves a problem that he merely has had ideas about, 
he believes that he understood the matt~r all alo°:g. 

Properly understood, then, the origms of an idea can help_ to 
show what its real content is; what the degree of unders_tanding 
was before the idea came along and how unity and clarity have 
been attained. But to attain such understanding we must trace the 
actual course of discovery, not some course which we feel discovery 

i N. L. s. Carnot (1796-1832) first propo~ed an ideal ~xpansion of g~ ;~!et~:~~~ 
cycle) which will extract the maximum possible mechanical energy fro 
energy of the steam. 
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should or could have taken, and we must see problems (if we can) 
as the men of the past saw them, not as we see them today. 

In looking for the origin of communication theory one is apt to 
fall into an almost trackless morass. I would gladly avoid this 
entirely but cannot, for others continually urge their readers to 
enter it. I only hope that they will emerge unharmed with the help 
of the following grudgingly given guidance. 

A particular quantity called entropy is used in thermodynamics 
and in statistical mechanics. A quantity called entropy is used in 
communication theory. After all, thermodynamics and statistical 
mechanics are older than communication theory. Further, in a 
paper published in 1929, L. Szilard, a physicist, used an idea of 
information in resolving a particular physical paradox. From these 
facts we might conclude that communication theory somehow grew 
out of statistical mechanics. 

This easy but misleading idea has caused a great deal of confu
sion even among technical men. Actually, communication theory 
evolved from an effort to solve certain problems in the field of 
electrical communication. I ts entropy was called entropy by mathe
matical analogy with the entropy of statistical _mechanics. The 
chief relevance of this entropy is to problems quite different from 
those which statistical mechanics attacks. 

In thermodynamics, the entropy ofa body of gas depends on its 
temperature, v9lume, and mass-and on what gas it is-just as the 
energy of the body of gas does. If the gas is allowed to expand in 
a cylinder, pushing on a slowly moving piston, with no flow of heat 
to or from the gas, the gas will become cooler, losing some of its 
thermal energy. This energy appears as work done on the piston. 
The work may, for instance, lift a weight, which thus stores the 
energy lost by the gas. 

This is a reversible process. By this we mean that if work is done 
in pushing the piston slowly back against the gas and so recom
pressing it to its original volume, the exact original energy, pres
sure, and temperature will be restored to the gas. In such a 
reversible process, the entropy of the gas remains constant, while 
its energy changes. 

Thus, entropy is an indicator of reversibility; when there is no 
change of entropy, the process is reversible. In the example dis-
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cussed above energy can be transferred repeatedly back and forth 
between the;mal energy of the compressed gas and mechanical 
energy of a lifted weight. . . 

Most physical phenomena are not reversible. Irreversible phe-
nomena always involve an increase of entropy. 

Imagine, for instance, that a cylinder which allows no heat flow 
in or out is divided into two parts by a parlit10n, and suppose that 
there is gas on one side of the partition and none on the other. 
Imagine that the partition suddenly vanishes, so that the gas 
expands and fills the whole container. In this case, the thermal 
energy remains the same, but the entropy mcreases.. . 

Before the partition vanished we could have obtamed mecham
cal energy from the gas by letting it flow into the empty part of 
the cylinder through a little engine. After the removal of the p~r
tition and the subsequent increase in entropy, we cannot do this. 
The entropy can increase while the energy remains constant in 
other similar circumstances. For instance, this happens when heat 
flows from a hot object to a cold object. Before the temperatures 
were equalized, mechanical work could have been done by making 
use of the temperature. difference. After the temperature difference 
has disappeared, we can no longer use it in changing part of the 
thermal energy into mechanical energy. . .. 

Thus, an increase in entropy means a decrease m our ability to 
change thermal energy, the energy of heat, into ~echanical energy. 
An increase of entropy means a decrease of available energy. 

While thermodynamics gave us the concept of entropy, n does 
not give a detailed physical picture of entropy, in terms of pos1lions 
and velocities of molecules, for instance. Statistical mechanics does 
give a detailed mechanical meaning to entropy in particular cases. 
In general, the meaning is that an increase m entropy means a 
decrease in order. But, when we ask what order means, we must 
in some way equate it with knowledge. Even a very complex 
arrangement of molecules can scarcely be .disordered if we kno_w 
the position and velocity of every on_e. Disorder m the. sense. m 
which it is used in statistical mechamcs mvolves unpredictability 
based on a lack of knowledge of the positions and velocities of 
molecules. Ordinarily we lack such knowledge when the arrange
ment of positions and velocities is "complicated." 
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Let us return to the example discussed above in which all the 
molecules of a gas are initially on one side of a partition in a 
cylinder. If the molecules are all on one side of the partition, and 
if we know this, the entropy is less than if they are distributed on 
both sides of the partition. Certainly, we know more about the 
positions of the molecules when we know that they are all on one 
side of the partition than if we merely know that they are some
where within the whole container. The more detailed our knowl
edge is concerning a physical system, the less uncertainty we have 
concerning it (concerning the location of the molecules, for 
instance) and the less the entropy is. Conversely, more uncertainty 
means more entropy. 

Thus, in physics, entropy is associated with the possibility of 
converting thermal energy into mechanical energy. If the entropy 
does not change during a process, the process is reversible. If the 
entropy increases, the available energy decreases. Statistical me
chanics interprets an increase of entropy as a decrease in order or, 
if we wish, as a decrease in our knowledge. 

The applications and details of entropy in physics are of course 
much broader than the examples I have given can illustrate, but I 
believe that I have indicated its nature and something of its impor
tance. Let us now consider the quite different purpose and use of 
the entropy of communication theory. 

In communication theory we consider a message source, such 
as a writer or a speaker, which may produce on a given occasion 
any one of many possible messages. The amount of information 
conveyed by the message increases as the amount of uncertainty 
as to what message actually will be produced becomes greater. A 
message which is one out of ten possible messages conveys a 
smaller amount of information than a message which is one out 
of a million possible messages. The entropy of communication 
theory is a measure of this uncertainty and the uncertainty, or 
entropy, is taken as the measure of the amount of information 
conveyed by a message from a source. The more we know about 
what message the source will produce, the less uncertainty, the 
less the entropy, and the less the information. 

We see that the ideas which gave rise to the entropy of physics 
and the entropy of communication theory are quite different. One 



24 Symbols, Signals and Noise 

can be fully useful without any reference at all to the other. None
theless, both the entropy of statistical mechanics and that of 
communication theory can be described in terms of uncertainty, 
in similar mathematical terms. Can some significant and useful 
relation be established between the two different entropies and, 
indeed, between physics and the mathematical theory of com
munication? 

Several physicists and mathematicians have been anxious to 
show that communication theory and its entropy are extremely 
important in connection with statistical mechanics. This is still a 
confused and confusing matter. The confusion is sometimes aggra
vated when more than one meaning of information creeps into a 
discussion. Thus, information is sometimes associated with the idea 

· of knowledge through its popular use rather than with uncertainty 
and the resolution of uncertainty, as it is in communication theory. 

We will consider the relation between communication theory 
and physics in Chapter X, after arriving at some understanding of 
communication theory. Here I will merely say that the efforts to 
marry communication theory and physics have been more interest
ing than fruitful. Certainly, such attempts have not produced 
important new results or understanding, as communication theory 
has in its own right. 

Communication theory has its origins in the study of electrical 
communication, not in statistical mechanics, and some. of the 
ideas important to communication theory go back to the very 
origins of electrical communication. 

During a transatlantic voyage in 1832, Samuel F. B. Morse set 
to work on the first widely successful form of electrical telegraph. 
As Morse first worked it out, his telegraph was much more com
plicated than the one we know. It actually drew short and long 
lines on a strip of paper, and sequences of these represented, not 
the letters of a word, but numbers assigne_d to words in a diction
ary or code book which Morse completed in 1837. This is (as we 
shall see) an efficient form of coding, but it is clumsy. 

While Morse was working with Alfred Vail, the old coding was 
given up, and what we now know as the Morse code had been 
devised by 1838. In this code, letters of the alphabet are represented 
by spaces, dots, and dashes. The space is the absence of an electric 
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current, the dot is an electric current of short duration and the 
dash is an electric current of longer duration. ' 

Various combinations of dots and dashes were cleverly assigned 
to the letters of the alphabet. E, the letter occurring most frequently 
m English _text, was represented by the shortest possible code 
symbol, a smgle dot, and, m general, short combinations of dots 
and dashes were used for frequently used letters and long combi
nations for rarely used letters. Strangely enough, the choice was 
not gmded by tables of the relative frequencies of various letters 
m En_ghsh text nor were letters in text counted to get such data. 
Relal!ve frequencies of occurrence of various letters were estimated 
by counting the number of types in the various compartments of 
a printer's type box! 

We can ask, would some other assignment of dots, dashes, and 
spaces to letters than that used by Morse enable us to send English 
text faster by telegraph? Our modern theory tells us that we could 
only gam about 15 per cent in speed. Morse was very successful 
mdeed in achieving his end, and he had the end clearly in mind. 
The lesson provided by Morse's code is that it matters profoundly 
how one translates a message mto electncal signals. This matter 
1s at the very heart of communication theory. 

In 1843, Congress passed a bill appropriating money for the 
construct10n of a telegraph circuit between Washington and Balti
n;ore. Morse started to lay the wire underground, but ran into 
difficulties which later plagued submarine cables even more 
severely. He solved his immediate problem by stringing the wire 
on poles. 

. The difficulty which Morse encountered with his underground 
wrre remamed an important problem. Different circuits which 
conduct a. steady electric current e~ually well are not necessarily 
equally smted to electncal commumcation. If one sends dots and 
dashes too fast over an underground or undersea circuit, they are 
run together at the rece1vmg end. As indicated in Figure II-I, 
when we send a short burst of current which turns abruptly on and 
o_ff, we receive at the far end of the circuit a longer, smoothed-out 
nse and fall of current. This longer flow of current may overlap 
the current of another. symbol sent, for instance, as an absence of 
current. Thus, as shown in Figure II-2, when a clear and distinct 
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signal is transmitted it may be received as a vaguely wandering 
rise and fall of current which is difficult to interpret. 

Of course, if we make our dots, spaces, and dashes long enough, 
the current at the far end will follow the current at the sending end 
better but this slows the rate of transmission. It is clear that there 
is son:ehow associated with a given transmission circuit a limiting 
speed of transmission for dots and spaces. For submarine cables 
this speed is so slow as to trouble telegraphers; for W!Tes on poles 
it is so fast as not to bother telegraphers. Early telegraphists were 
aware of this limitation, and it, too, lies at the heart of communi
cation theory. 

SENT 

RECEIVED 

Fig. II-2 
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Even in the face of this limitation on speed, various things can 
be done to increase the number of letters which can be sent over 
a given circuit in a given period of time. A dash takes three times 
as long to send as a dot. It was soon appreciated that one could 
gain by means of double-current telegraphy. We can understand 
this by imagining that at the receiving end a galvanometer, a 
device which detects and indicates the direction of flow of small 
currents, is connected between the telegraph wire and the ground. 
To indicate a dot, the sender connects the positive terminal of his 
battery to the wire and the negative terminal to ground, and the 
needle of the galvanometer moves to the right. To send a dash, the 
sender connects the negative terminal of his battery to the wire and 
the positive terminal to the ground, and the needle of the galva
nometer moves to the left. We say that an electric current in one 
direction (into the wire) represents a dot and an electric current 
in the other direction (out of the wire) represents a dash. No 
current at all (battery disconnected) represents a space. In actual 
double-current telegraphy, a different sort of receiving instrument 
is used. 

In single-current telegraphy we have two elements out of which 
to construct our code: current and no current, which we might call 
1 and 0. In double-current telegraphy we really have three elements, 
which we might characterize as forward current, or current into 
the wire; no current; backward current, or current out of the wire; 
or as + 1, 0, - I. Here the + or - sign indicates the direction of 
current flow and the number 1 gives the magnitude or strength of 
the current, which in this case is equal for current flow in either 
direction. 

In 1874, Thomas Edison went further; in his quadruplex tele
graph system he used two intensities of current as well as two 
directions of current. He used changes in intensity, regardless of 
changes in direction of current flow to send one message, and 
changes of direction of current flow regardless of changes in 
intensity, to send another message. If we assume the currents to 
differ equally one from the next, we might represent the four 
different conditions of current flow by means of which the two 
messages are conveyed over the one circuit simultaneously as +3, 
+ 1, -1, -3. The interpretation of these at the receiving end is 
shown in Table I. 
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TABLE I 

Current Transmitted 
Meaning 

Message 1 Message 2 

+3 on on 
+I off on 
-1 off off 
-3 on off 

Figure II-3 shows how the dots, dashes, and spaces of two 
simultaneous, independent messages can be represented by a suc
cession of the four different current values. 

Cle,;,ly, how much information it is possible to send over a 
circuit depends not only on how fast one can send successive 
symbols (successive current values) over the circuit but also on how 
many different symbols (different current values) one has available 
to choose among. Ifwe have as symbols only the two currents+ 1 
or O or, which is just as effective, the two currents + 1 and -1, 
we can convey to the receiver only one of two possibilities at a 
time. We have seen above, however, that if we can choose among 
any one of four current values (any one of four symbols) at a 
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ON ~---. 
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Fig. Il-3 
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time, such as +3 or + 1 or -1 or -3, we can convey by means 
of these current values (symbols) two independent pieces of infor
mation: whether we mean a 0 or 1 in message 1 and whether we 
mean a 0 or 1 in message 2. Thus, for a given rate of sending succes
sive symbols, the use of four current values allows us to send two 
independent messages, each as fast as two current values allow us 
to send one message. We can send twice as many letters per minute 
by usmg four current values as we could using two curreot values. 

The use of multiplicity of symbols can lead to difficulties. We 
have noted that dots and dashes sent over a long submarine cable 
tend to spread out and overlap. Thus, when we look for one symbol 
at the far end we see, as Figure II-2 illustrates, a little of several 
pthers.. Under these circumstances, a simple ideotification, as 1 or 
0 or else + 1 or -1, is easier and more certain than a more com
plicated indentification, as among +3, + 1, -1, -3. 

. Further, other _matters limit our ability to make complicated 
d1stmctions. Dunng magnetic storms, extraneous signals appear 
on telegraph lines and submarine cables. 2 And if we look closely 
enough, as we can today with sensitive electronic amplifiers we 
see that minute, undesired currents are always present. Thes; are 
akin to th~ erratic Brownian motion of tiny particles observed 
under a microscope and to the agitation of air molecules and of 
all other matter which we associate with the idea of heat and 
temperatu~e. Extraneous currents, which we call noise, are always 
present to mterfere with the signals sent. 
. Thus, even if we avoid the overlapping of dots and spaces which 
1s called zntersymbol interference, noise tends to distort the received 
signal and to make difficult a distinction among many alternative 
symbols. Of course, increasing the current transmitted which 
means increasing the power of the transmitted signal, helps to 
overcome the effect of noise. There are limits on the power that 
can be used, however. Driving a large current through a submarine 
cabl_e takes. a large voltage, and a large enough voltage can destroy 
the msula!Jon of the cable-can in fact cause a short circuit. It is 
likely that the large transmitting voltage used caused the failure 
of the first transatlantic telegraph cable in 1858. 

2 
The changing magnetic field of the earth induces currents in the cables. The 

cha~ges in the earth's magnetic field are presumably caused by streams of charged 
particles due to solar storms. 
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Even the early telegraphists understood intuitively a good deal 
about the limitations associated with speed of signaling, interfer
ence, or noise, the difficulty in distinguishing among many alter
native values of current, and the limitation on the power that one 
could use. More .than an intuitive understanding was required, 
however. An exact mathematical analysis of such problems was 
needed. 

Mathematics was early applied to such problems, though their 
complete elucidation has come only in recent years. In 1855, 
William Thomson, later Lord Kelvin, calculated precisely what 
the received current will be when a dot or space is transmitted over 
a submarine cable. A more powerful attack on such problems 
followed the invention of the telephone by Alexander Graham 
Bell in 1875. Telephony makes use, not of the slowly sent off-on 
signals of telegraphy, but rather of currents whose strength varies 
smoothly and subtly over a wide range of amplitudes with a 
rapidity several hundred times as great as encountered in manual 
telegraphy. . 

Many men helped to establish an adequate mathematical treat
ment of the phenomena of telephony: Henri Poincare, the great 
French mathematician; Oliver Heaviside, an eccentric, English, 
minor genius; Michael Pupin, of From Immigrant to Inventor fame; 
and G. A. Campbell, of the American Telephone and Telegraph 
Company, are prominent among these. 

The mathematical methods which these men used were an 
extension of work which the French mathematician and physicist, 
Joseph Fourier, had done early in the nineteenth century in connec
tion with the flow of heat. This work had been applied to the study 
of vibration and was a natural tool for the analysis of the behavior 
of electric currents which change with time in a complicated fash
ion-as the electric currents of telephony and telegraphy do. 

It is impossible to proceed further on our way without under
standing something of Fourier's contribution, a contribution which 
is absolutely essential to all communication and communication 
theory. Fortunately, the basic ideas are simple; it is their proof and 
the intricacies of their application which we shall have to omit here. 

Fourier based his mathematical attack on some of the problems 
of heat flow on a very particular mathematical function called a 
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sine wave. Part of a sine wave is shown at the right of Figure 11-4. 
The height of the wave h varies smoothly up and down as time 
p~sses, fluctuating so forever and ever. A sine wave has no begin
nmg or end. A sine wave is not just any smoothly wiggling curve. 
The height of the wave (it may represent the strength of a current 
or voltage) varies in a particular way with time. We can describe 
this variation in terms of the motion of a crank connected to a shaft 
which revolves at a constant speed, as shown at the left of Figure 
11-4. The height h of the crank above the axle varies exactly 
sinusoidally with time. 

A sine wave is a rather simple sort of variation with time. It can 
be characterized, or described, or differentiated completely from 
any other sine wave by means of just three quantities. One of these 
is the maximum height above zero, called the amplitude. Another 
is the time at which the maximum is reached, which is specified 
as the phase. The third is the time T between maxima, called the 
period Usually, we use instead of the period the reciprocal of the 
period called the_frequency, denoted by the letter f If the period 
T of a sme wave 1s 1/100 second, the frequency fis 100 cycles per 
second, abbreviated cps. A cycle is a complete variation from 
crest, through trough, and back to crest again. The sine wave is 
periodic in that one variation from crest through trough to crest 
again is just like any other. 

Fourier succeeded in proving a theorem concerning sine waves 
which astonished his, at first, incredulous contemporaries. He 
showed that any variation ofa quantity with time can be accurately 
represented as the sum of a number of sinusoidal variations of 

j_ 
h 

T 

~---T---+j 

Fig. 11-4 
-TIME 
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different amplitudes, phases, and frequencies. The quantity con
cerned might be the displacement of a vibrating string, the height 
of the surface of a rough ocean, the temperature of an electric iron, 
or the current or voltage in a telephone or telegraph wire. All are 
amenable to Fourier's analysis. Figure II-5 illustrates this in a 
simple case. The height of the periodic curve a above the centerline 
is the sum of the heights of the sinusoidal curves b and c. 

The mere representation of a complicated variation of some 
physical quantity with time as a sum of a number of simple sinus
oidal variations might seem a mere mathematician's trick. Its 
utility depends on two important physical facts. The circuits used 
in the transmission of electrical signals do not change with time, 
and they behave in what is called a linear fashion. Suppose, for 
instance, we send one signal, which we will call an input signal, 
over the line and .draw a curve showing how the amplitude of the 
received signal varies with time. Suppose we send a second input 
signal and draw a curve showing how the corresponding received 
signal varies with time. Suppose we now send the sum of the two 
input signals, that is, a signal whose current is at every moment 
the simple sum of the currents of the two separate input signals. 
Then, the received output signal will be merely the sum of the two 
output signals corresponding to the input signals sent separately. 

We· can easily appreciate the fact that communication circuits 
don't change significantly with time. Linearity means simply that 

(a) 

(b) 
v~ \::: 

(c) .'=7 
Fig. 11-5 
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if we know the output signals corresponding to any number of 
mput signals sent separatdy, we can calculate the output signal 
when several_ of the mput signals are sent together merely by adding 
the output_ signals corresponding to the input signals. In a linear 
electncal crrcmt or transmission system, signals act as if they were 
present mdependently of one another; they do not interact. This is, 
mdeed, the very criterion for a circuit being called a linear circuit. 

While linearity is a truly_ astonishing property of nature, it is by 
no means a rare one. All circmts made up of the resistors, capaci
tors, and mductors discussed m Chapter I in connection with 
network theory are linear, and so are telegraph lines and cables. 
Indeed, usually electrical circuits are linear, except when they 
include vacuum tubes, or transistors, or diodes, and sometimes 
even such circuits are substantially linear. 

Because telegraph wires are linear, which is just to say because 
telegraph wires are such that electrical signals on them behave 
independently without interacting with one another, two telegraph 
signals can travel m opposite directions on the same wire at the 
same time without interfering with one another. However while 
linearity is a fairly common phenomenon in electrical cir;uits, it 
1s by no means a universal natural phenomenon. Two trains can't 
travel in opposite directions on the same track without interference. 
Presumably they could, though, if all the physical phenomena 
compnsed m trams were linear. The reader might speculate on the 
unh~ppy lot of a truly linear race of beings. 

With the very surprising property of linearity in mind, let us 
return to the transmission of signals over electrical circuits. We 
h_ave noted that the output signal corresponding to most input 
s~gnals h~s a different shape or variation with time from the input 
signal. Figures II-I and II-2 illustrate this. However it can be 
shown mathematically (but not here) that, if we use ; sinusoidal 
signal, _su~h as that of Figure II-4, as an input signal to a linear 
tra~snnss1on path, we always get out a sine wave of the same 
penod, or frequency. The amplitude of the output sine wave may 
be less than that of the mput sme wave; we call this attenuation of 
the sinusoidal signal. The output sine wave may rise to a peak later 
than the mput sme wave; we call this phase shift, or delay of the 
smus01dal signal. 
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The amounts of the attenuation and delay depend on the fre
quency of the sine wave. In fact, the circuit may fail entirely to 
transmit sine waves of some frequencies. Thus, corresponding to 
an input signal made up of several sinusoidal components, there 
will be an output signal having components of the same frequencies 
but of different relative phases or delays and of different ampli
tudes. Thus, in general the shape of the output signal will be 
different from the shape of the input signal. However, the difference 
can be thought of as caused by the changes in the relative delays 
and amplitudes of the various components, differences associated 
with their different frequencies. If the attenuation and delay of a 
circuit is the same for all frequencies, the shape of the output wave 
will be the same as that of the input wave; such a circuit is 
distortionless. 

Because this is a very important matter, I have illustrated it in 
Figure II-6. In a we have an input signal which can be expressed 
as the sum of the two sinusoidal components, b and c. In trans
mission, bis neither attenuated nor delayed, so the output b' of 
the same frequency as b is the same as b. However, the output c' 
due to the input c is attenuated and delayed. The total output a', 
the sum of b' and c', clearly has a different shape from the input 
a. Yet, the output is made up of two components having the same 
frequencies that are present in the input. The frequency compo
nents merely have different relative phases or delays and different 
relative amplitudes in the output than in the input. 

The Fourier analysis of signals into components of various fre
quencies makes it possible to study the transmission properties of 
a linear circuit for all signals in terms of the attenuation and delay 
it imposes on sine waves of various frequencies as they pass 
through it. 

Fourier analysis is a powerful tool for the analysis of transmis
sion problems. It provided mathematicians and engineers with a 
bewildering variety of results which they did not at first clearly 
understand. Thus, early telegraphists invented all sorts of shapes 
and combinations of signals which were alleged to have desirable 
properties, but they were often inept in their mathematics and 
wrong in their arguments. There was much dispute concerning the 
efficacy of various signals in ameliorating the limitations imposed 
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by circuit speed, intersymbol interference, noise, and limitations 
on transmitted power. 

In 1917, Harry Nyquist came to the American Telephone and 
Telegraph Company immediately after receiving his Ph.D. at Yale 
(Ph.D.'s were considerably rarer in those days). Nyquist was a 
much better mathematician than most men who tackled the prob
lems of telegraphy, and he always was a clear, original, and 
philosophical thinker concerning communication. He tackled the 
problems of telegraphy with powerful methods and with clear 
insight. In 1924, he published his results in an important paper, 
"Certain Factors Affecting Telegraph Speed." 

(a) 
(\ (\ 

(b) 

(c) 

( b) 

( c') 

(a') 

Fig. II-6 
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This paper deals with a number of problems of telegraphy. 
Among other things, it clarifies the relation between the speed of 
telegraphy and the number of current values such as + 1, -1 
(two current values) or +3, + l, -1, -3 (four current values). 
Nyquist says that if we send symbols (successive current values) 
at a constant rate, the speed of transmission, W, is related tom, 
the number of different symbols or current values available, by 

W= Klogm 

Here K is a constant whose value depends on how many successive 
current values are sent each second. The quantity log m means 
logarithm of m. There are different bases for taking logarithms. If 
we choose 2 as a base, then the values of log m for various values 
of m are given in Table II. 

TABLE II 

m logm 

I 0 

2 I 
3 1.6 

4 2 
8 3 

16 4 

To sum up the matter by means of an equation, log x is such a 
number that 

2log x = x 

We may see by taking the logarithm of each side that the following 
relation must be true: 

log 2Iog • = log x 

If we write M in place of log x, we see that 

log 2.M = M 

All of this is consistent with Table IL 
We can easily see by means of an example why the logarithm is 

the appropriate function in Nyquist's relation. Suppose that we 
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wish to specify two independent choices of off-or-on, O-or-1, simul
taneously. There are four possible combinations of two independ
ent 0-or-l choices, as shown in Table III. 

Number of Combination 

2 
3 
4 

TABLE III 

First 0-0R-I 
Choice 

0 
0 
l 
I 

Second 0-oR-I 
Choice 

0 
I 
0 

Further, if we wish to specify three independent choices of 0-or-1 
at the same time, we find eight combinations, as shown in Table IV. 

TABLE IV 

Number of Combination 
First 0-0R-l Second 0-0R-1 Third 0-0R- I 

Choice Choice Choice 

I 0 0 0 
2 0 0 I 
3 0 I 0 
4 0 I I 
5 I 0 0 
6 0 I 
7 0 
8 

Similarly, if we wish to specify four independent O-or-1 choices, 
we find sixteen different combinations, and, if we wish to specify 
M different independent 0-or-l choices, we find 2M different 
combinations. 

If we can specify M independent O-or-1 combinations at once, 
we can in effect send M independent messages at once, so surely 
the speed should be proportional to M. But, in sending M messages 
at once we have 2M possible combinations of the M independent 
0-or- l choices. Thus, to send M messages at once, we need to be 
able to send 2M different symbols or current values. Suppose that 
we can choose among 2M different symbols. Nyquist tells us that 
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we should take the logarithm of the number of symbols in order 
to get the line speed, and 

log 2M = M 

Thus, the logarithm of the number of symbols is just the number 
of independent 0-or-l choices that can be represented simulta
neously, the number of independent messages we can send at once, 
so to speak. 

Nyquist's relation says that by going from off-on telegraphy to 
three-current ( + 1, 0, -1) telegraphy we can increase the speed of 
sending letters or other symbols by 60 per cent, and if we use four 
current values ( +3, +I, -1, -3) we can double the speed. This 
is, of course, just what Edison did with his quadruplex telegraph, 
for he sent two messages instead of one. Further, Nyquist showed 
that the use of eight current values (0, 1, 2, 3, 4, 5, 6, 7, or + 7, +5, 
+3, +I, -1, -3, -5, - 7) should enable us to send four times 
as fast as with two current values. However, he clearly realized that 
fluctuations in the attenuation of the circuit, interference or noise, 
and limitations on the power which can be used, make the use of 
many current values difficult. 

Turning to the rate at which signal elements can be sent, Nyquist 
defined the line speed as one half of the number of signal elements 
(dots, spaces, current values) which can be transmitted in a second. 
We will find this definition particularly appropriate for reasons 
which Nyquist did not give in this early paper. 

By the time that Nyquist wrote, it was common practice to send 
telegraph and telephone signals on the same wires. Telephony 
makes use of frequencies above 150 cps, while telegraphy can be 
carried out by means oflower frequency signals. Nyquist showed 
how telegraph signals could be so shaped as to have no sinusoidal 
components of high enough frequency to be heard as· interference 
by telephones connected to the same line. He noted that the line 
speed, and hence also the speed of transmission, was proportional 
to the width or extent of the range or band (in the sense of strip) 
of frequencies used in telegraphy; we now call this range of fre
quencies the band width of a circuit or of a signal. 

Finally, in analyzing one proposed sort of telegraph signal, 

The Origins of Information Theory 39 

Nyquist showed that it contained at all times a steady sinusoidal 
component of constant amplitude. While this component formed 
a part of the transmitter power used, it was useless at the receiver, 
for its eternal, regular fluctuations were perfectly predictable and 
could have been supplied at the receiver rather than transmitted 
thence over the circuit. Nyquist referred to this useless component 
of the signal, which, he said, conveyed no intelligence, as redundant, 
a word which we will encounter later. 

Nyquist continued to study the problems of telegraphy, and in 
1928 he published a second important paper, "Certain Topics in 
Telegraph Transmission Theory." In this he demonstrated a num
ber of very important points. He showed that if one sends some 
number 2N of different current values per second, all the sinusoidal 
components of the signal with frequencies greater than N are 
redundant, in the sense that they are not needed in deducing from 
the received signal the succession of current values which were sent. 
If all of these higher frequencies were removed, one could still 
deduce by studying the signal which current values had been 
transmitted. Further, he showed how a signal could be constructed 
which would contain no frequencies about N cps and from which 
it would be very easy to deduce at the receiving point what current 
values had been sent. This second paper was more quantitative and 
exact than the first; together, they embrace much important mate
rial that is now embodied in communication theory. 

R. V. L. Hartley, the inventor of the Hartley oscillator, was 
thinking philosophically about the transmission of information at 
about this time, and he summarized his reflections in a paper, 
"Transmission oflnformation," which he published in 1928. 

Hartley had an interesting way of formulating the problem of 
communication, one of those ways of putting things which may 
seem obvious when stated but which can wait years for the insight 
that enables someone to make the statement. He regarded the 
sender of a message as equipped with a set of symbols (the letters 
of the alphabet for instance) from which he mentally selects symbol 
after symbol, thus generating a sequence of symbols. He observed 
that a chance event, such as the rolling of balls into pockets, might 
equally well generate such a sequence. He then defined H, the 
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information of the message, as the logarithm of the number of 
possible sequences of symbols which might have been selected and 
showed that 

H = n logs 

Here n is the number of symbols selected, and s is the number of 
different symbols in the set from which symbols are selected. 

This is acceptable in the light of our present knowledge of 
information theory only if successive symbols are chosen mdepend
ently and if any of the s symbols is equally likely to be selected. 
In this case, we need merely note, as before, that the logarithm of 
s, the number of symbols, is the numbe~ of independent 0-~r~ 1 
choices that can be represented or sent simultaneously, and it is 
reasonable that the rate of transmission of information should be 
the rate of sending symbols per second n, times the number of 
independent O-or-1 choices that can be conveyed per symbol. 

Hartley goes on to the problem of encoding the primary symbols 
(letters of the alphabet, for instance) in terms of secondary symbols 
(e.g., the sequences of dots, spaces, and dashes of the Morse code). 
He observes that restrictions on the selection of symbols (the fact 
that E is selected more often than Z) should govern the lengths of 
the secondary symbols (Morse code representations) if we are to 
transmit messages most swiftly. As we have seen, Morse himself 
understood this, but Hartley stated the matter m a way which 
encouraged mathematical attack and inspired further _work. Hart
ley also suggested a way of applying such co~siderat10ns to con
tinuous signals, such as telephone signals or picture signals. 

Finally, Hartley stated, in accord with Nyquist, that_ the amount 
of information which can be transmitted is proportional to the 
band width times the time of transmission. But this makes us 
wonder about the number of allowable current values, which is also 
important to speed of transmission. How are we to enumerate 
them? 

After the work of Nyquist and Hartley, communication theory 
appears to have taken a prolonged and comfort~ble rest. Workers 
busily built and studied particular commumcat10n systems. The 
art grew very complicated indeed during World War IL Much new 
understanding of particular new commurucat10n systems and 
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devices was achieved, but uo broad philosophical principles were 
laid down. 

During the war it became important to predict from inaccurate 
or "noisy" radar data the courses of airplanes, so that the planes 
could be shot down. This raised an important question: Suppose 
that one has a varying electric current which represents data con
cerning the present position of an airplane but that there is added 
to it a second meaningless erratic current, that is, a noise. It may 
be that the frequencies most strongly present in the signal are 
different from the frequencies most strongly present in the noise. 
If this is so, it would seem desirable to pass the signal with the noise 
added through an electrical circuit or filter which attenuates the 
frequencies strongly present in the noise but does not attenuate 
very much the frequencies strongly present in the signal. Then, tJ:te 
resulting electric current can be passed through other circmts m 
an effort to estimate or predict what the value of the original signal, 
without noise, will be a few seconds from the present. But what 
sort of combination of electrical circuits will enable one best to 
predict from the present noisy signal the value of the true signal 
a few seconds in the future? 

In essence, the problem is one in which we deal with not one but 
with (l whole ensemble of possible signals (courses of the plane), 
so that we do not know in advance which signal we are dealing 
with. Further, we are troubled with an unpredictable noise. 

This problem was solved in Russia by A. N. Kolmo_goroff. In this 
country it was solved independently by Norbert Wiener. Wiener 
is a mathematician whose background ideally fitted him to deal 
with this sort of problem, and during the war he produced a 
yellow-bound document, affectionately called "the yellow peril" 
(because of the headaches it caused), in which he solved the difii
cul t problem. 

During and after the war another mathematician, Claude E. 
Shann'.ln, interested himself in the general problem of communica
tion. Shannon began by considering the relative advantages of 
many new and fanciful communication systems, and he sought 
some basic method of comparing their merits. In the same year 
(1948) that Wiener published his book, Cybernetics, which deals 
with communication and control, Shannon published in two parts 
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a paper which is regarded as the foundation of modem communi
cation theory. 

Wiener and Shannon alike consider, not the problem of a single 
signal, but the problem of dealing adequately with any signal 
selected from a group or ensemble of possible signals. There was 
a free interchange among various workers before the publication 
of either Wiener's book or Shannon's paper, and similar ideas and 
expressions appear in both, although Shannon's interpretation 
appears to be unique. 

Chiefly, Wiener's name has come to be associated with the field 
of extracting signals of a given ensemble from noise of a known 
type. An example of this has been given above. The enemy pilot 
follows a course which he choses, and our radar adds noise of 
natural origin to the signals which represent the position of the 
plane. We have a set of possible signals (possible courses of the 
airplane), not of our own choosing, mixed with noise, not of our 
own choosing, and we try to make the best estimate of the present 
or future value of the signal (the present or future position of the 
airplane) despite the noise. 

Shannon's name has come to be associated with matters of so 
encoding messages chosen from a known ensemble that they can 
be transmitted accurately and swiftly in the presence of noise. As 
an example, we may have as a message source English text, not 
of our own choosing, and an electrical circuit, say, a noisy telegraph 
cable, not of our own choosing. But in the problem treated by 
Shannon, we are allowed to choose how we shall represent the 
message as an electrical signal-how many current values we shall 
allow, for instance, and how many we shall transmit per second. 
The problem, then, is not how to treat a signal plus noise so as to 
get a best estimate of the signal, but what sort of signal to send 
so as best to convey messages of a given type over a particular sort 
of noisy circuit. 

This matter of efficient encoding and its consequences form the 
chief substance of information theory. In that an ensemble of 
messages is considered, the work reflects the spirit of the work of 
Kolmogoroff and Wiener and of the work of Morse and Hartley 
as well. 

It would be useless to review here the content of Shannon's 
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work, for that is what this book is about. We shall see, however, 
that it sheds further light on all the problems raised by Nyquist 
and Hartley and goes far beyond those problems. 

In looking back on the origins of communication theory, two 
other names should perhaps be mentioned. In 1946, Dennis Gabor 
published an ingenious paper, "Theory of Communication." This, 
suggestive as it is, missed the inclusion of noise, which is at the 
heart of modem communication theory. Further, in 1949, W. G. 
Tuller published an interesting paper, "Theoretical Limits on the 
Rate of Transmission of Information," which in part parallels 
Shannon's work. 

The gist of this chapter has been that the very general theory of 
communication which Shannon has given us grew out of the study 
of particular problems of electrical communication. Morse was 
faced with the problem of representing the letters of the alphabet 
by short or long pulses of current with intervening spaces of no 
current-that is, by the dots, dashes, and spaces of telegraphy. He 
wisely chose to represent common letters by short combinations 
of dots and dashes and uncommon letters by long combinations; 
this was a first step in efficient encoding of messages, a vital part 
of communication theory. 

Ingenious inventors who followed Morse made use of different 
intensities and directions of current flow in order to give the sender 
a greater choice of signals than merely off-or-on. This made it 
possible to send more letters per unit time, but it made the signal 
more susceptible to disturbance by unwanted electrical disturb
ances called noise as well as by' inability of circuits to transmit 
accurately rapid changes of current. 

An evaluation of the relative advantages of many different sorts 
of telegraph signals was desirable. Mathematical tools were needed 
for such a study. One of the most important of these is Fourier 
analysis,. which makes it possible to represent any signal as a sum 
of sine waves of various frequencies. 

Most communication circuits are linear. This means that several 
signals present in the circuit do not interact or interfere. It can be 
shown that while even linear circuits change the shape of most 
signals, the effect of a linear circuit on a sine wave is merely to 
make it weaker and to delay its time of arrival. Hence, when a 
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complicated signal is represented as a sum of sine waves of various 
frequencies, it is easy to calculate the effect of a linear circuit on 
each sinusoidal component separately and then to add up the 
weakened or attenuated sinusoidal components in order to obtain 
the over-all received signal. 

Nyquist showed that the number of distinct, different current 
values which can be sent over a circuit per second is twice the total 
range or band width of frequencies used. Thus, the rate at which 
letters of text can be transmitted is proportional to band width. 
Nyquist and Hartley also showed that the rate at which letters of 
text can be transmitted is proportional to the logarithm of the 
number of current values used. 

A complete theory of communication required other mathe
matical tools and new ideas. These are related to work done by 
Kolmogoroff and. Wiener, who considered the problem of an 
unknown signal of a given type disturbed by the addition of noise. 
How does one best estimate what the signal is despite the presence 
of the interfering noise? Kolmogoroff and Wiener solved this 
problem. 

The problem Shannon set himself is somewhat different. Suppose 
we have a message source which produces messages of a given t)pe, 
such as English text. Suppose we have a noisy communication 
channel of specified characteristics. How can we represent or 
encode messages from the message source by means of electrical 
signals so as to attain the fastest possible transmission over the 
noisy channel? Indeed, how fast can we transmit a given type of 
message over a given channel without error? In a rough and general 
way, this is the problem that Shannon set himself and solved. 

CHAPTER III A Mathematical 
Model 

A MATHEMATICAL THEORY which seeks to explain and to predict 
the events m the world about us always deals with a simplified 
model of the world, a_ mathematical model in which only things 
pertment to the behav10r under consideration enter. 

Thus, planets are composed of various substances, solid, liquid, 
and gaseous, at various pressures and temperatures. The parts of 
therr substances exposed to the rays of the sun reflect various 
fractions of the different colors of the light which falls upon them, 
so that when we observe planets we see on them various colored 
features. However, the mathematical astronomer in predicting the 
orbit of a planet about the sun need take into account only the total 
mass of the sun, the distance of the planet from the sun and the 
speed and direction of the planet's motion at some initial instant. 
For a more refined calculation, the astronomer must also take into 
account the total mass of the planet and the motions and masses 
of other planets which exert gravitational forces on it. 

This does not mean that astronomers are not concerned with 
?ther aspects of planets, and of stars and nebulae as well. The 
!IDportant point is that they need not take these other matters into 
consideration in computing planetary orbits. The great beauty and 
power of a mathematical theory or model lies in the separation of 
the relevant from the irrelevant, so that certain observable behavior 
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can be related and understood without the need of comprehending 
the whole nature and behavior of the universe. 

Mathematical models can have various degrees of accuracy or 
applicability. Thus, we can accurately predict the orbits of planets 
by regarding them as rigid bodies, despite the fact that no truly 
rigid body exists. On the other hand, the long-term motions of our 
moon can only be understood by taking into account the motion 
of the waters over the face of the earth, that is, the tides. Thus, in 
dealing very precisely with lunar motion we cannot regard the 
earth as a rigid body. 

In a similar way, in network theory we study the electrical 
properties of interconnections of ideal inductors, capacitors, and 
resistors, which are assigned certain simple mathematical proper
ties. The components of which the actual useful circuits in radio, 
TV, and telephone equipment are made only approximate the 
properties of the ideal inductors, capacitors, and resistors of net
work theory. Sometimes, the difference is trivial and can be disre
garded. Sometimes it must be taken into account by more refined 
calculations. 

Of course, a. mathematical model may be a very crude or even 
an invalid representation of events in the real world. Thus, the 
self-interested, gain-motivated "economic man" of early economic 
theory has fallen into disfavor because the behavior of the eco
nomic man does not appear to correspond to or to usefully explain 
the actual behavior of our economic world and of the people in it. 

ln. the orbits of the planets and the behavior of networks, we 
have, examples of idealized deterministic systems which have the 
sgrt of predictable behavior we ordinarily expect of machines. 
Astronomers can compute the positions which the planets will 
occupy millennia in the future. Network theory tells us all the 
subsequent behavior of an electrical network when it is excited by 
a particular electrical signal. 

Even the individual economic man is deterministic, for he will 
always act for his economic gain. But, if he at some time gambles 
on the honest throw of a die because the odds favor him, his 
economic fate becomes to a degree unpredictable, for he may lose 
even though the odds do favor him. 

We can, however, make a mathematical model for purely chance 
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events, such as the drawin of 
or black balls from a cont!ners~~~ _number, say three, of white 
and black balls. This model tell 

0 
_mg equal numbers of white 

we will have drawn all h' bs us, m fact, that after many trials 
w Hea outY, ofth · 

a black about 'h of the tim bl 8 e time, two whites and 
the time, and all black aboui' ~:~th a~~s and a white about ¥s of 
much of a deviation from these e ime. It can also tell us how 
expect after a given number oft palroportions we may reasonably 

0 . n s. 
ur expenence indicates that th b . 

beings is neither as determ. d : ehav10r of actual human 
as simply random as the th~~~ o~s t <lat of the economic man nor 
from a mixture of black and white a ie or ~s the drawing of balls 
a deterministic model will not balls. I~ is clear, however, that 
human behavior, such as huma;et us farm the consideration of 
or statistical model might. commumcat10n, while a random 

We all know that the actuarial t bl . 
panies make fair predictions of th fia es used by msurance com-
. · e raction of a Iar 
ma given age group who will die in ge group of men 
we cannot predict when a particular one year, despite the fact that 
model may enable us to und t dman will die. Thus a statistical 
of predictions concerning hun':,~ ~eh a~d even to make some sort 
how often, on the average we will dr av1;; even as we can predict 
from ";' equal mixture of white and ~~a~k ~a:;~ack balls by chance 

It _might be objected that actuarial t bl · . . 
cermng groups of people not pr d. fa es make l'red1ctions con
However, experience te;ches use : :ons concermng individuals. 
concerning the behavior of indivi a we can i;nake predictions 
groups of individuals. For instan:ua! human_ bemgs as well as of 
usage of the letter E in all Englishe, m countmg the frequency of 
stitutes about 0.13 of all the 1 tt prose we will find that E con• 

. e ers appearmg whil W c . constitutes only about 0_02 f 
11 1 

, _e , 1or mstance, 
find almost the same propo~ti~ns e~~e~, appearm~. ~ut, we also 
wntten by any one erson Thu s and W .s m the prose 
dence that if you oiI or J. D s, ;e can predict with some confi
letter, or an article o; a boo~ ~a es, or anyone else writes a long 
be E's. ' 0 'a out 0.13 of the letters he uses will 

This predictability of behavior limit 
does any other habit. We do 't h s our_ freedom no more than 

n ave to use m our writing the same 



48 Symbols, Signals and Noise 

fraction of E's, or of any other letter, that everyone else does. In 
fact, several untrammeled individuals have broken away from the 
common pattern. William F. Friedman, the emment cryptanalyst 
and author of The Shakesperian Cipher Examined, has supphed 
me with the following examples. 

Gottlob Burmann, a German poet who lived from 1737 to 1805, 
wrote 130 poems, including a total of 20,000 words, without on~e 
using the Jetter R. Further, during the last seventeen years of his 
life, Burmann even omitted the letter from his daily conversation. 

In each of five stories published by Alonso Alcala Y. Herrera m 
Lisbon in 1641 a different vowel was suppressed. Francisco Navar
rete y Ribera (1659), Fernando Jacinto de Zurita y Haro (1654), 
and Manuel Lorenzo de Lizarazu y Berbmzana (1654) proV1ded 
other examples. 

In 1939, Ernest Vincent Wright published a 267-page novel, 
Gadsby, in which no use is made of the letter E. I quote a paragraph 
below: 

Upon this basis I am going to show you how a bunch of bright youn! 
folks did find a champion; a man with boys and girls .of his own; a. ma 
of so dominating and happy individuality that Youth is d~awn to him as 
is a fly to ·a ~ugar bowl. It is a story about a small town. It is not ~,gos~p~ 
yarn; 'nor .is it a dry, monoton?us account, full of such customary fi_ll-: 
as "romantic moonlight castmg murky shadows down a lon.g, ~ g 

try road" Nor will it say anything about !inklings lullmg distant 
coµn · gl fl light" from folds; robins carolling at twilight, nor any "warm o~ o a~p- .. 
· · b' · · d w No It i's an account of up-and-doing actJ.v1ty; a vtv1d ·aCaID.WlilO.. . .. 

oi"irayal of Youth as it is today; and a practical discarding of that worn
. ~ut E.otlon that "a child don't know anything." 

While such exercises of free will show that it is not impossible 
to break the chains of habit, we ordinarily write in a more conven
tional manner. When we are not going out of our way to demon
strate that we can do otherwise, we customanly use our due 
fraction of0.13 E's with almost the consistency of a machine or a 
mathematical rule. . . 

We cannot argue from this to the converse idea that a ~achine 
into which the same habits were built could wnte English text. 
However, Shannon has demonstrated how English words and text 
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can be approximated by a mathematical process which could be 
carried out by a machine. 

Suppose, for instance, that we merely produce a sequence of 
Jette.rs and spaces with equal probabilities. We might do this by 
puttmg equal numbers of cards marked with each letter and with 
the space into a h~t, mixing .them up, drawing a card, recording 
its symbol, returnmg 1t, rem1xmg, drawing another card, and so 
on. This gives what Shannon calls the zero-order approximation 
to English text. His example, obtained by an equivalent process, 
goes: 

1. Zero-order approximation (symbols independent and equi
probable) 

XFOML RXKHRJFFWJ ZLPWCFWKCYJ FFJEYVKCQSGHYD 

QP AAMKBZAACIBZLHJQD. 

, Here there are far too many Zs and Ws, and not nearly enough 
E s and spaces. We can approach more nearly to English text by 
choosmg letters mdependently of one another, but choosing E 
more often than W or Z. We could do this by putting many E's 
and few W's and Z's into the hat, mixing, and drawing out the 
letters. As the probability that a given letter is an E should be .13, 
out of every hundred letters we put into the hat, 13 should be E's. 
As the probability that a letter will be W should be .02, out of each 
hundred letters we put into the hat, 2 should be W's, and so on. 
Here is the result of an equivalent procedure, which gives what 
Shannon calls a first-order approximation of English text: 

2. First-order approximation (symbols independent but with 
frequencies of English text). 

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH 

EEI ALHENHTTPA OOBTTVA NAH BRL 

In English text we almost never encounter any pair of letters 
beginning with.Q except QU: The probability of encountering QX 
or QZ1s essentially zero. While the probability ofQU is not O, it is 
so small as not to be listed in the tables I consulted. On the other 
hand, the probability of TH is .037, the probability of OR is .010 
and the probability of WE is .006. These probabilities have the 
following meaning. In a stretch of text containing, say, 10,001 
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letters, there are 10,000 successive pairs of letters, i.e., the first and 
second, the second and third, and so on to the next to last and the 
last. Of the pairs a certain number are the letter.s TH. This might 
be 370 pairs. If we divide the total number of times we find TH, 
which we have assumed to be 370 times, by the total number of 
pairs ofletters, which we have assumed to be 10,000, we get the 
probability that a randomly selected pair ofletters in the text will 
be TH, that is, 370/10,000, or .037. 

Diligent cryptanalysts have made tables.of such digran:z prob
abilities for English text. To see how we might use these m con
structing sequences of letters with the same digram proba?ilities 
as English text, let us assume that we use 27 hats, 26 for di.grams 
beginning with each of the letters and one for dig~ams beg=ng 
with a space. We will then put a large number of digrams mto the 
hats according to the probabilities of the digrams. Out of 1,000 
digrams we would put in 37 TH's, 10 WE's, and so on. 

Let us consider for a moment the meaning of these hats full of 
digrams in terms of the original counts which led to the evaluations 
of digram probabilities. 

In going through the text letter by letter we will encounter every 
T in the text. Thus, the number of digrams beginning with T, all 
of which we put in one hat, will be the same as the number of T's. 
The fraction these represent of the total number of digrams counted 
is the probability of encountering T in the text; that is, .10. We 
might call this probability p(T) 

p(T) = .10 

We may note that this is also the fraction of digrams, distributed 
among the hats, which end in T as well as the fraction that begzn 

with T. 
Again, basing our total numbers on 1,001 lett~rs of text, or 

1,000 digrams, the number of times the digram TH is encountered 
is 37, and so the probability of encountering the digram TH, which 
we might call p ( T, H) is 

p(T, H) = .037 

Now we see that 0.10, or 100, of the digrams will begin"with T 
and hence will be in the T hat and of these 37 will be TH. Thus, 
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the fraction.ofthe T digrams which are TH will be 37 /100, or0.37. 
<=_orres]'.'ondi~gly, we say that the probability that a digram begin
nmg with Tis TH, which we might callpT(H), is 

PT(H) = .37 

This is called the conditional probability that the letter following a 
T will be an H. 

One can use these probabilities, .which are adequately repre
sented by the numbers of var10us digrams m the various hats in 
the construction of text which has both the same letter frequenctes 
and dzgra':" frequencies as does English text. To do this one draws 
the first digram at random from any hat and writes down its letters. 
He then draws a second. digram from the hat indicated by the 
second letter of .the first digram and writes down the second letter 
of this second digram. Then he draws a third digram from the hat 
mdicated by the second letter of the second digram and writes 
down the second letter of this third digram, and so on. The space 
is treat~ JUSt like a letter: There is a particular probability that a 
spa~e will follow. ~ particular letter (ending a "word") and a 
partlcular probability that a particular letter will follow a space 
(starting a new "word"). 

By an equivalent process, Shannon constructed what he calls a 
second-order approximation to English; it is:. 

3. Second-order approximation (digram structure as in English). 

ON IE ANTSOUTINYS ARE T INCTORE ST BE S 

DEAMY ACIIlN D ILONASrvE TUCOOWE AT TEASONARE 

FUSO TIZIN ANDY TOBE SEACE CTISBE 

Cryptanalysts have even produced tables giving the probabilities 
of groups of three letters, called trigram probabilities. These can 
be used to c?nstruct what Shannon calls a third-order approxima
tlon to English. His example goes: 

4. Third-order approximation (trigram structure as in English). 

IN NO IST LAT WHEY CRATICT FROURE B!RS 

GROCID PONDENOME OF DEMONSTURES OF THE 

REPTAGIN IS REGOACTIONA OF CRE 

. When we examine Shannon's examples 1 through 4 we see an 
mcreasmg resemblance to English text. Example I, the zero-order 
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dlike combinations. In example 2, which 
approximation, has no w~r ccount OCRO and NAH somewhat 
takes Jetter frequencies mto a 1 3 , h' ch takes digram frequen-

bl English words. In examp e , w 1 d 
resem e 11 h " rds" are pronounceable, an ON, ARE, 
cies into account, a t e wo E lish In example 4, which takes 
BE, AT, and ANDY occur m ng . ave eight English words and 
trigram fre<;i.uenciesdiinto acc~sn~:.;~ ~s GROCID, PONDENOME, and 
many Enghsh-soun ng wo ' 

DEMONSTURES. . d out a similar process using the 
G. T. Guilbaud has came d d a third-order approximation 

statistics of Latin and has so pro uc:requencies) resembling Latin, 
(one taking into account trigram . 
which I quote below: 

IPSE CUM VIVIVS 
!BUS CENT !PITIA VETIS -- --

SE ACET!Tl DEDENTUR 

. d d genuine Latin words. . 
. The underbne wor s are th t b giving a machine certam . 

It is clear from such examples b ~ilities of finding a particular 
statistics of a language, the pr~ a letters and by giving the 
letter _or group .of 1, ~r ~· ~\o p:ki:g a ball from a hat, flipping 
maclnne an ability equiv en b we could make the machine 

. h . garandomnum er, . a com, or c oosm . . E glish text or to text in some 
1 approXlmation to n th produce a c ose 1 te information we gave e 

other language. The m~re c~~pit: product resemble English or . 
machine, the mm:e close Y. wo al structure and to the human eye. . 
other text, both m its statistic hoose groups of three letters on the 

If we allow the machine to c three-letter combination which 
basis of their probability, then any d part of an English word 

t b an Enghsh wor or a . 
it ptoduces mus ~' ,, t be an English word. The mach!°e 
and any two letter w~rd d n::!n a person who ordinarily wntes . 
is, however, less mh1 ite which d~ spell words. Thus, he 
down only sequences of letter~us PONDENOME, suspect ILONASIVE, 

misses ever wntmg down pomp d MONSTURES and wacky but 
h vul GROCID learne DE ' . d . somew at gar ' . principle could wnte own 

delightful DEAMY. Of c~::r:· ~:~~d:arily he doesn't. . 
such combmat1ons of I . f this ability to produce un-English 

We could C\lfe the machme o s o' letters as long as the 
words by making it choose a.mon;r~o:~ m~ch simpler merely to 
longest English word. But, it wo 
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supply the machine with words rather than letters and to let it 
produce these words according to certain probabilities. 

Shannon has given an example in which words were selected 
independently, but with the probabilities of their occurring in 
English text, so that the, and, man, etc., occur in the same propor
tion as in English. This could be achieved by cutting text into 
words, scrambling the words in a hat, and then drawing out a 
succession of words. He calls this a first-order word approximation. 
It runs as follows: 

5. First-order word approximation. Here words are chosen inde-
pendently but with their appropriate frequencies. 

REPRESENTING AND SPEEDILY IS AN GOOD APT 

OR COME CAN DIFFERENT NATURAL HERE HE THE 

A IN CAME THE TO OF TO EXPERT GRAY COME 

TO FURNISHES THE LINE MESSAGE HAD BE THESE 

There are no tables which give the probability of different pairs 
of words. However, Shannon constructed a random passage in 
which the probabilities of pairs of words were the same as in 
English text by the following expedient. He chose a first pair of 
words at random in a novel. He then looked through the novel for 
the next occurrence of the second word of the first pair and added 
the word which followed it in this new occurrence, and so on. 

This process gave him the following second-order word approxi
mation to English. 

6. Second-order word approximation. The word transition prob-
abilities are correct, but no further structure is included. 

THE HEAD AND IN FRONTAL ATTACK ON AN 

ENGLISH WRffER THAT THE CHARACTER OF THIS 

POINT IS THEREFORE ANOTHER METHOD FOR THE 

LETTERS THAT THE TIME OF WHO EVER TOLD THE 

PROBLEM FOR AN UNEXPECTED. 

We see that there are stretches of several words in this final 
passage which resemble and, indeed, might occur in English text. 

Let us consider what we have found. In actual English text, in 
that text which we send by teletypewriter, for instance, particular 
letters occur with very nearly constant frequencies. Pairs of letters 
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and triplets and quadruplets of letters occur with almost constant 
frequencies over long stretches of the text Words and pairs of 
words occur with almost constant frequencies. Further, we can by 
means of a random mathematical process, carried out by a machine 
if you like, produce sequences of English words or letters exhibiting 
these same statistics. 

Such a scheme, even if refined greatly, would not, however, 
produce all sequences of words that a person might utter. Carried 
to an extreme, it would be confined to combinations of words 
which had occurred; otherwise, there would be no statistical data 
available on them. Yet I may say, "The magenta typhoon whirled 
the larded bishop away,'' and this may well never have been said 
before. 

The real rules of English text deal not with letters or words alone 
but with classes of words and their'rules of association, that is, with 
grammar. Linguists and engineers who try to make machines for 
translating one language into another must find these rules, so that 
their machines can combine words to form grammatical utterances 
even when these exact combinations have not occurred before 
(and also so that the meaning of words in the text to be translated 
can be deduced from the context). This is a big problem. It is easy, 
however, to describe a "machine" which randomly produces end
less, grammatical utterances of a limited sort. 

Figure lll-1 is a diagram of such a "machine." Each numbered 
box represents a state of the machine. Because there is only a finite 
number of boxes or states, this is called a finite-state machine. 

From each box a number of arrows go to other boxes. In this 
particular machine, only two arrows go from each box to each of 
two other boxes. Also, in this case, each arrow is labeled ¥... This 
indicates that the probability of the machine passing from, for· 
instance, state 2 to state 3 is ¥.. and the probability of the machine 
passing from state 2 to state 4 is 1h. 

To make the machine run, we need a sequence of random 
choices, which we can obtain by flipping a coin repeatedly. We can 
let heads (H) mean follow the top arrow and tails (T),follow the 
bottom arrow. This will tell us to pass to a new state. When we do 
this we print out the word, words, or symbol written in that state 
box and flip again to get a new state. 
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A;; an example, if we started in state 7 and flipped the following 
sequence of heads and tails: T H H H T T H T T T H H H 
H, the "machine would print out" 

'.IHE COMMUNIST PARTY INV1lSTIGATED '.IHE CONGRESS. 

'.IHE CQMMUNIST PARTY PURGED '.IHE CONGRESS AND 

DESTROYED '.IHE COMMUNIST PARTY AND FOUND 

EVIDENCE OF THE CONGRESS. 

This can go on and on, never retracing its whole course and 
producing "sentences" of unlimited length. 

Random choice according to a table of probabilities of sequences 
of symbols (letters and space) or words can produce matericl 
resembling English text. A finite-state machine with a random 
choice among allowed transitions from state to state can produce 
material resembling English text. Either process is called a stochas
tic process, because of the random element involved in it. 

We have examined a number of properties of English text. We 
have seen that the average frequency of E's is commonly constant 
for both the English text produced by one writer and, also, for the 
text produced by all writers. Other more complicated statistics, 
such as the frequency of digrams (TH, WE, and other letter pairs), 
are also essentially constant. Further, we have shown that English
Jike text can be produced by a sequence of random choices, such 
as drawings of slips of paper from hats, or flips of a coin, if the 
proper li?robabilities are in some way built into the process. One 
way of producing such text is through the use of a finite-state 
machine, such as that of Figure III-I. 

We have been seeking a mathematical model of a source of 
English text. Such a model should be capable of producing text 
which corresponds closely to actual English text, closely enough 
so that the problem of encoding and transmitting such text is 
essentially equivalent to the problem of encoding and transmitting 
actual English text. The mathematical properties of the model must 
be mathematically defined so that useful theorems can be proved 
concerning the encoding and transmission of the text is produces, 
theorems which are applicable to a high degree of approximation 
to the encoding of actual English text. It would, however, be asking 
too much to insist that the production of actual English text con
form with mathematical exactitude to the operation of the model. 
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The mathematical model which Shannon ado ted t 
the production of text (and of spoken and visual ::essa 

0 

:se~;~:~t 
is the ergodic source. To understand what an ergodic s.!urce is w~ 
:st first understand what a stationary source is and to explain 

s IS our next order of business. ' 
The general idea _of a stationary source is well conveyed by the 

name. Imagme, for mstance, a process, i.e., an imaginar machine 
that produces forever after it is started the sequences olcharacter~ 

A E A E A E A E A E, etc. 

Clearly, what comes later is like what has gone before and 
~tzo~a? seems an apt designation of such a source of char~cters 

e i_mg t contrast this with a source of characters which aft.; 
startmg, produced ' 

AE A A EE A A A EE E,etc. 

~~~=·~e tshit~ngs of A's an.d E's get longer and longer without end· 
1 Y s 1s not a stationary source ' 

Simi! I . . ar y, a sequence of characters chosen at random .th 
assigned b bili · ( WI some am le pro a ties . the first-order letter approximation of ex-
di ~ 1 abo~e) constitutes a stationary source and so do the 

g am ~nd tngram sources of examples 2 and 3. The general idea 
~f ;_~ttat10?arylisource is clear enough. An adequate mathematical 
ewu 10n IS a ttle more difficult. 

ti T:e idea of ~tationarity of a source demands no change with 
thm · Yet, consider a digram source, in which the probability of 
If e sec~nd character depends on what the previous character is 

we s art such a source out on the letter A several differen~ 
letters can follow, while if we start such a sourc~ out on the Jetter 
Q, the second Jetter must be u. In general the f . the s ill inf! , manner o startmg 

P 
d our~e w 

1 
uence the statistics of the sequence of characters 

ro uce , at east for some distance from the start. 
. To get around this, the mathematician says, let us not consider 
~: ;ne sequen~e of characters produced by the source. After all, 
th t ·~:Ce~s an rmagmary machine, and we can quite well inlagine 
aua ~ as een started an infinite number of times, so as to produce 

finite number of sequences of characters. Such an infinite 
number of sequences is called an ensemble of sequences 

These sequences could be started in any specified m~er. Thus, 
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in the case of a digram source, we can if we wish start a fraction, 
0.13, of the sequences with E (this is just the probability of E in 
English text), a fraction, 0.02, with W (the probability ofW), and 
so on. If we do this, we will find that the fraction of E's is the same, 
averaging over all the first letters of the ensemble of sequences, as 
it is averaging over all the second letters of the ensemble, as. it is 
averaging over all the third letters of the ensemble, and so on. No 
matter what position from the beginning we choose, the fraction 
of E's or of any other letter occurring in that position, taken over 
all the sequences in the ensemble, is the same. This independence 
with respect to position will be true also for the probability with 
which TH or WE occurs among the first, second, third, and sub
sequent pairs ofletters in the sequences of the ensemble. 

This is what we mean by stationarity. If we can find a way of 
assigning probabilities to the various starting conditions used in 
forming the ensemble of sequences of characters which we allow 
the source to produce, probabilities such that any statistic obtained 
by averaging over the ensemble doesn't depend on the distance 
from the start at which we take an average, then the source is said 
to be stationary. This may seem difficult or obscure to the reader, 
but the difficulty arises in giving a useful and exact mathematical 
form to an idea which would otherwise be mathematically useless. 

In the argument above we have, in discussing the infinite en
semble of sequences produced by a source, considered averaging 
over-all first characters or over-all second or third characters (or 
pairs, or triples of characters, as other examples). Such an average 
is called an ensemble average. It is different from a sort of average 
we talked about earlier in this chapter, in which we lumped 
together all the characters in one sequence and took the average 
over them. Such an average is called a time average. 

The time average and the ensemble average can be different. 
For instance, consider a source which starts a third of the time with 
A and produces alternately A and B, a third of the time with Band 
produces alternately B and A, and a third of the time with E and 
produces a string of E's. The possible sequences are 

l. A B A B A B A B, etc. 
2. B A B A B A B A, etc. 
3. E E E E E E E E, etc. 
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We ~an_ see that this is a stationary source, yet we have the 
probabilities shown in Table V. 

TABLE v 
Probability Time Average Time Average Time Average Ensemble 

of Sequence (I) Sequence (2) Sequence (3) Average 

A 12 12 0 \I 
B. 12 12 0 \I 
E 0 0 I \I 

When a source is stationary, and when every possible ensemble 
average (of letters, digrams, trigrams, etc.) is equal to the corre
spondmg trme average, the source is said to be ergodic The 
theorems of mformation theory which are discussed in subs . uent 
chapters_ apply to ergodic sources, and their proofs rest : the 
assumption that the message source is ergodic.' 

While we have here discussed discrete sources which produce 
s~quences of characters, mformation theory also deals with con
t.muons sources, which generate smoothly varying signals, such as 
the_ acoustic waves of speech or the fluctuating electric currents 
which correspond to these in telephony. The sources of such signals 
are also assumed to be ergodic. 

Why is an ergodic message source an appropriate and profitable 
~athemaucal model for study? For one thing, we see by examining 
he definit10n of an ergodic source as given above that for an 

ergodic source the statistics of a message, for instance, the fre
quency of occurrence of a letter, such as E, or of a digram, such 
:s TH, do not vary along the length of the message. As we analyze 

longer and longer stretch of a message, we get a better and better 
estrmate of the probabilities of occurrence of various letters and 
letter groups. In other words, by examining a longer and longer 
stretch of a mes.sage we are able to arrive at and refine a mathe
matical descnphon of the source. 

Further, the probabilities, the description of the source arrived 
at through such an examination of one message, apply e uall 
well to all messages generated by the source and not just 'fo th~ 

1 Some work has been done on th d. . not discussed in this book. e enco ing of nonstationary sources, but it is 
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particular message examined. This is assured by the fact that the 
time and ensemble averages are the same. . . 

Thus, an ergodic source is a particularly s1~ple kmd of prob
abilistic or stochastic source of messages, and srmfle processes are 
easier to deal with mathematically than are complicated ~rocesses. 
However, simplicity in itself is not :no~gh. The e~g~dic source 
would not be of interest in commumcat10n theory 1f 1t were not 

reasonably realistic as well as simple. . 
Communication theory has two sides. It has a mathemallc~y 

exact side, which deals rigorously with hypothetical, exa~tly ergodic 
sources, sources which we can imagine to produc':' mfimte en
sembles of infinite sequences of symbols. Mathemat1~ally, we are 
free to investigate rigorously either such a source Itself or the 
infinite ensemble of messages which it can produce.. . 

We use the theorems of communication theory m conne.ction 
with the transmission of actual English text. A human bemg is not 
a hypothetical, mathematically defined machine. He cann?t pro
duce even one infinite sequence of characters, let alone an infinite 

ensemble of sequences. 
A man does, however, produce many long seque.nces of charac-

ters, and all the writers of English together collecllvely produce .a 
great many such long sequences of characters. In fact, pi;rt of this 
huge output of very long sequences.of characters constitutes the 
messages actually sent by teletypewnter. . . 

We will, thus, think of all the different Amencans who wnte o~t 
telegrams in English as being, approximately .at least, an. ergodic 
source pf telegraph messages and of all Amencans speakmg over 
telephones as being, approximately at least, an e~godic source of 
telephone signals. Clearly, however, all men wnting French plus 
all men writing English could not constitute an ergodic so~ce. The 
output of each would have certain time-average probab1hti~s. for 
letters, digrams, trigrams, words, and so on, but the prob~bilities 
for the English text would be different from the probab1ht1es for 
the French text, and the ensemble average would resemble neither. 

We will not assert that all writers of English (and all speak~rs 
of English) constitute a strictly ergodic message source. The statis
tics of the English we produce change somewhat as we change 
subject or purpose, and different people write somewhat differently. 
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Too, in producing telephone signals by speaking, some people 
speak softly, some bellow, and some bellow only when they are 
angry. What we do assert is that we find a remarkable uniformity 
in many statistics of messages, as in the case of the probability of 
E for different samples of English text. Speech and writing as 
ergodic sources are not quite true to the real world, but they are 
far truer than is the economic man. They are true enough to be 
useful. 

This difference between the exactly ergodic source of the mathe
matical theory of communication and the approximately ergodic 
message sources of the real world should be kept in mind. We must 
exercise a reasonable caution in applying the conclusions of the 
mathematical theory of communication to actual problems. We are 
used to this in other fields. For instance, mathematics tells us that 
we can deduce the diameter of a circle from the coordinates or 
locations of any three points on the circle, and this is true for 
absolutely exact coordinates. Yet no sensible man would try to 
determine the diameter of a somewhat fuzzy real circle drawn on 
a sheet of paper by trying to measure very exactly the positions of 
three points a thousandth of an inch apart on its circumference. 
Rather, he would draw a line through the center and measure the 
diameter directly as the distance between diametrically opposite 
points. This is just the sort of judgment and caution one must 
always use in applying an exact mathematical theory to an inexact 
practical case. 

Whatever caution we invoke, the fact that we have used a ran
dom, probabilistic, stochastic process as a model of man in his role 
of a message source raises philosophical questions. Does this mean 
that we imply that man acts at random? There is no such impli
cation. Perhaps if we knew enough about a man, his environment, 
and his history, we could always predict just what word he would 
write or speak next. 

In communication theory, however, we assume that our only 
knowledge of the message source is obtained either from the 
messages that the source produces or perhaps from some less-than
complete study of man himself. On the basis of information so 
obtained, we can derive certain statistical data which, as we have 
seen, help to nanow the probability as to what the next word or 
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letter of a message will be. There remains an element of uncer
tainty. For us who have incomplete knowledge of it, the message 
source behaves as if certain choices were made at random, msofar 
as we cannot predict what the choices will be. If we could predict 
them, we should incorporate the knowledge which enables us to 
make the predictions into our statistics of the sour~e. If w_e had 
more knowledge, however, we might see that the choices which "'.e 
cannot predict are not really random, in that they are (on the basis 
of knowledge that we do not have) predictable. 

We can see that the view we have taken of finite-state machines, 
such as that of Figure III-I, has been limited. Finite-state machines 
can have inputs as well as outputs. The transition from a particular 
state to one among several others need not be chosen randomly; 
it could be determined or influenced by various inputs to the 
machine. For instance, the operation of an electronic digital com
puter, which is a finite-state machine, is determined by the program 
and data fed to it by the programmer. 

It is, in fact, natural to think that man may be a finite-state 
machine, not only in his function as a message source which_ pr~
duces words, but in all his other behavior as well. We can think if 
we like of all possible conditions and configurations of the cells of 
the nervous system as constituting states (states ofm~d, pe~haps). 
We can think of one state passing to another, sometrmes with the 
production of a letter, word, sound, or a part thereof, and some
times with the production of some other action or of some part of 
an action. We can think of sight, hearing, touch, and other senses 
as supplying inputs which determine or influence what state the 
machine passes into next. If man is a finite-state machine, the 
number of states must be fantastic and beyond any detailed mathe
matical treatment. But, so are the configurations of the molecules 
in a gas, and yet we can explain much of the significant behavior 
of a gas in terms of pressure and temperature merely. . 

Can we someday say valid, simple, and important things about 
the working of the mind in producing writteR text and other things 
as well? As we have seen, we can already predict a good deal 
concerning the statistical nature of what a man will write down on 
paper, unless he is deliberately trying to behave eccentrically, and, 
even then, he cannot help conforming to habits of his own. 

Such broad considerations are not, of course, the real purpose 
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or meat of this chapter. We set out to find a mathematical model 
adequate to represent some aspects of the human being in his role 
as a source of messages and adequate to represent some aspects 
of the messages he produces. Taking English text as an example, 
we noted that the frequencies of occurrence of various letters are 
remarkably constant, unless the writer deliberately avoids certain 
letters. Likewise, frequencies of occurrence of particular pairs, 
triplets, and so on, of letters are very nearly constant, as are 
frequencies of various words. 

We also saw that we could generate sequences of letters with 
frequencies corresponding to those of English text by various ran
dom or stochastic processes, such as, cutting a lot of text into letters 
(or words), scrambling the bits of paper in a hat, and drawing them 
out one at a time. More elaborate stochastic processes, including 
finite-state machines, can produce an even closer approximation 
to English text. 

Thus, we take a generalized stochastic process as a model of a 
message source, such as, a source producing English text. But, how 
must we mathematically define or limit the stochastic sources we 
deal with so that we can prove theorems concerning the encoding 
of messages generated by the sources? Of course, we must choose 
a definition consistent with the character of real English text. 

The sort of stochastic source chosen as a model of actual message 
sources is the ergodic source. An ergodic source can be regarded 
as a hypothetical machine which produces an infinite number of 
or ensemble of infinite sequences of characters. Roughly, the nature 
or statistics of the sequences of characters or messages produced 
by an ergodic source do not change with time; that is, the source 
is stationary. Further, for an ergodic source the statistics based on 
one message apply equally well to all messages that the source 
generates. 

The theorems of communication theory are proved exactly for 
truly ergodic sources. All writers writing English text together 
constitute an approximately ergodic source of text. The mathe
matical model-the truly ergodic source-is close enough to the 
actual situation so that the mathematics we base on it is very 
useful. But we must be wise and careful in applying the theorems 
and results of communication theory, which are exact for a mathe
matical ergodic ~ource, to actual communication problems. 



CHAPTER IV Encoding and 
Binary Digits 

A SOURCE OF INFORMATION may be English text, a man speaking, 
the sound of an orchestra, photographs, motion picture films, or 
scenes at which a television camera may be pointed. We have seen 
that in information theory such sources are regarded as having the 
properties of ergodic sources of letters, numbers, characters, or 
electrical signals. A chief aim of information theory is to study how 
such sequences of characters and such signals can be most effec
tively encoded for transmission, commonly by electrical means. 

Everyone has heard of codes and the encoding of messages. 
Romantic spies use secret codes. Edgar Allan Poe popularized 
cryptography in The Gold Bug. The country is full of amateur 
cryptanalysts who delight in trying to read encoded messages that 
others have devised. 

In this historical sense of cryptography or secret writing, codes 
are used to conceal the content of an important message from these 
for whom it is not intended. This may be done by substituting for 
the words of the message other words which are listed in a code 
book. Or, in a type of code called a cipher, letters or numbers may 
be substituted for the letters in the message according to some 
previously agreed upon secret scheme. 

The idea of encoding, of the accurate representation of one 
thing by another, occurs in other contexts as well. Geneticists 
believe that the whole plan for a human body is written out in the 

64 

Encoding and Binary Digits 65 

chromosomes of the germ cell. Some assert that the "text" consists 
of an orderly linear arrangement of four different units or "bases" 
in the DNA (desoxyribonucleic acid) forming the chromosom~. 
This text in tum produces an equivalent text in RNA (ribonucleic 
acid), and by means of this RNA text proteins made up of 
sequences of twenty amino. acids are synthesized. Some cryptana
lylic effort has been spent m an effort to determine how the four
character message of RNA is reencoded into the twenty-character 
code of the protein. 

;'-ctually, geneticists have been led to such considerations by the 
existence of mformalion theory. The study of the transmission of 
information has brought about a new general understanding of the 
problems of encoding, an ~derstanding which is important to any 
sort of encoding, whether 1t be the encoding of cryptography or the 
encoding of genetic information. 

We have already noted in Chapter II that English te~t can be 
encoded into the symbols of Morse code and represented by short 
and long pulses of current separated by short and long spaces. This 
is one simple form of encoding. From the point of view of infor
mation theory, the electromagnetic waves which travel from an FM 
transmitter to. the receiver in your home are an encoding of the 
music which 1s transmitted. The electric currents in telephone 
circuits are an encoding of speech. And the sound waves of speech 
are themselves an encoding of the motions of the vocal tract which 
produce them. 

Nature has specified the encoding of the motions of the vocal 
tract into the sounds of speech. The communication engineer, 
however, can choose the form of encoding by means of which he 
will represent the sounds of speech by electric currents, just as he 
can choose the code of dots, dashes, and spaces by means of which 
he represents the letters of English text in telegraphy. He wants to 
perform this encoding well, not poorly. To do this he must have 
some standard which distinguishes good encoding from bad encod
mg, and he must have some insight into means for achieving good 
encoding. We learned something of these matters in Chapter IL 

It 1s the study of this problem, a study that might in itself seem 
limited, which has provided through information theory new ideas 
important to all encoding, whether cryptographic or genetic. These 
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new ideas include a measure of amount of information, called 
entropy, and a unit of measurement, called the bit. 

I would like to believe that at this point the reader is clamoring 
to know the meaning of "amount of information" as measured in 
bits, and if so I hope that this enthusiasm will carry him over a 
considerable amount of intervening material about the encoding 
of messages. 

It seems to me that one can't understand and appreciate the 
solution to a problem unless he has some idea of what the problem 
is. You can't explain music meaningfully \o a man who has never 
heard any. A story about your neighbor may be full of insight, but 
it would be wasted on a Hottentot. I think it is only by considering 
in some detail how a message can be encoded for transmission that 
we can come to appreciate the need for and the meaning of a 
measure of amount of information. 

It is easiest to gain some understanding of the important prob
lems of coding by considering simple and concrete examples. Of 
course, in doing this we want to learn something of broad value, 
and here we may foresee a difficulty. 

Some important messages consist of sequences of discrete char
acters, such as the successive letters of English text or the successive 
digits of the output of an electronic computer. We have seen, 
however, that other messages seem inherently different. 

Speech and music are variations with time of the pressure of air 
at the ear. This pressure we can accurately represent in telephony 
by the voltage of a signal traveling along a wire or by some other 
quantity. Such a variation of a signal with time is illustrated in a 
of Figure IV-I. Here we assume the signal to be a voltage which 
varies with time, as shown by the wavy line. 

Information theory would be of limited value if it were not 
applicable to such continuous signals or messages as well as to 
discrete messages, such as English text. 

In dealing with continuous signals, information theory first 
invokes a mathematical theorem called the sampling theorem, 
which we will use but not prove. This theorem states that a con
tinuous signal can be represented completely by and reconstructed 
perfectly from a set of measurements or samples of its amplitude 
which are made at equally spaced times. The interval between such 
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(a} 

(b) 

samples must be equal to or less than one-half of the period of the 
highest frequency present in the signal. A set of such measurements 
or samples of the amplitude of the signal a, Figure IV-I, is repre
sented by a sequence of vertical lines of various heights in b of 
Figure IV-I. 

We should particularly note that for such samples of the signal 
to represent a signal perfectly they must be taken frequently 
enough. For a voice signal including frequencies from O to 4,000 
cycles per second we must u~e 8,000 samples per second. For a 
television signal including frequencies from 0 to 4 million cycles 
per second we must use 8 million samples per second. In general, 
if the frequency range of the signal is f cycles per second we must 
use at least 2/ samples per second in order to describe it perfectly. 

Thus, the sampling theorem enables us to represent a smoothly 
varying signal by a sequence of samples which have different 
amplitudes one from another. This sequence of samples is, how
ever, still inherently different from a sequence of letters or digits. 
There are only ten digits and there are only twenty-six letters, but 
a sample can have any of an infinite number of amplitudes. The 
amplitude of a sample can lie anywhere in a continuous range of 
values, while a character or a digit has only a limited number of 
discrete values. 

The manner in which information theory copes with samples 
having a continuous range of amplitudes is a topic all in itself, to 
which we will return later. Here we will merely note that a signal 
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need not be described or reproduced perfectly. Indeed, with real 
physical apparatus a signal cannot be reproduced perfectly. In the 
transmission of speech, for instance, it is sufficient to represent the 
amplitude of a sample to an accuracy of about 1 per cent. Thus, 
we can, if we wish, restrict ourselves to the numbers 0 to 99 in 
describing the amplitudes of successive speech samples and repre
sent the amplitude of a given sample by that one of these hundred 
integers which is closest to the actual amplitude. By so quantizing 
the signal samples, we achieve a representation comparable to the 
discrete case of English text. 

We can, then, by sampling and quantizing, convert the problem 
of coding a continuous signal, such as speech, into the seemingly 
simpler problem of coding a sequence of discrete characters, such 
as the letters of English text. 

We noted in Chapter II that English text can be sent, letter by 
letter, by means of the Morse code. In a similar manner, such 
messages can be sent by teletypewriter. Pressing a particular key 
on the transmitting machine sends a particular sequence of elec
trical pulses and spaces out on the circuit. When these pulses and 
spaces reach the receiving machine, they activate the corresponding 
type bar, and the machine prints out the character that was trans
mitted. 

Patterns of pulses and spaces indeed form a particularly useful 
and general way of describing or encoding messages. Although 
Morse code and teletypewriter codes make use of pulses and spaces 
of different lengths, it is possible to transmit messages by means 
of a sequence of pulses and spaces of equal length, transmitted· at 
perfectly regular intervals. Figure IV-2 shows how the electric 
current sent out on the line varies with time for two different 
patterns, each six intervals long, of such equal pulses and spaces. 
Sequence a is a pulse-space-space-pulse-space-pulse. Sequence b 
is pulse-pulse-pulse-space-pulse-pulse. 

The presence of a pulse or a space in a given interval specifies 
one of two different possibilities. We could use any pair of symbols 
to represent such patterns of pulses or spaces as those of Figure 
IV-2: yes, no; +, -; 1, 0. Thus we could represent pattern a as 
follows: 

pulse 
Yes 

+ 
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space space 
No No 

pulse 
Yes 

space 
No 

pulse 
Yes 

+ + 
I 0 0 I 0 I 
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The representation by 1 or 0 is . 
important. It can be used to rel t particularly convenient and 
expressed in the binary smst fa e patterns of pulses to numbers 

. "' em o notat10n. 
When we wnte 315 we mean 

3x102 +1x101+ 5 x 1 
= 3 X IOO + I X 10 + 5 X 1 
= 315 

In this ordinary decim I 
use of the ten differe:t ~~:~~ ~~ ~:p;e~n~n~ n

6
umbers we make 

bmary system we use only tw di . t 0 ' ' • ' 7, 8, 9. In the 
0 I O 1 we mean ° gi s, and I. When we write I O 

1 X 25 + 0 X 2< + 0 X 2• + I X 22 + 0 X 2 + 1 I 
: 317~ 3d2 + 0 x 16 -t: 0 x 8 + 1 x 4 + 0 x 2 + 1 x ~ 
- m eclillal notation 

It is often convenient to let zero 
not change its value. Thus . d . s pl recede a number; this does 

' in ec1ma notation we can say, 

0016 = 16 

I I I 2 3 I 4 I s I s I 

i 0 ri rl rl I 

f- I I I z I I I I w 

I 
I I a: 

I I i I 
a: 

I 
I 

::> I u 
0 I I 

I 

(a) 

(b) 

TIME~ 

Fig. IV-2 



70 Symbols, Signals and Noise 

Or in binary notation 

001010 = 1010 

In binary numbers, each 0 or I is a binary digit. To describe the 
pulses or spaces occurring in six successive interv~s, we can use 
a sequence of six binary digits. As a pulse or space m one mterval 
is equivalent to a binary digit, we can also refer to a pulse gr~up 
of six binary digits, or we can refer to the pulse or space occurrmg 
in one interval as one binary digit. 

Let us consider how many patterns of pulses and spaces there 
are which are three intervals long. In other words, how many 
three-digit binary numbers are there? These are all shown in 
Table VI. 

TABLE V1 

000 (0) 
001 (I) 
010 (2) 
Oil (3) 
JOO (4) 
IOI (5) 
llO (6) 
ll l (7) 

The decimal numbers corresponding to these sequences of l's 
and O's regarded as binary numbers are shown in parentheses to 
the right. 

We see that there are 8 (0 and I through 7) three-digit binary 
numbers. We may note that 8 is 23. We can, in fa~t, regard. an 
orderly listing of binary digits n intervals long as simply settmg 
down 2n successive binary numbers, starting with 0. As examples, 
in Table VII the numbers of different patterns correspondmg to 
different numbers n of binary digits are tabulated. 

We see that the number of different patterns increases very 
rapidly with the number of binary digi~s. This is because ~e double 
the number of possible patterns each time we add one d1gtt. When 
we add one digit, we get all the old sequences preceded by a 0 plus 
all the old sequences preceded by a I. . 

The binary system of notation is not the only alternative to the 
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TABLE VII 

n {Number of Binary Digits) Number of Patterns (2n) 

I 
2 
3 
4 
5 

IO 
20 

2 
4 
8 

16 
32 

1,024 
1,048,576 
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decintal system. The octal system is very important to people who 
use computers. We can regard the octal system as made up of the 
eight digits 0, I, 2, 3, 4, 5, 6, 7. 

When we write 356 in the octal system we mean 

3X82 +5x8+6Xl 
=3x64+5x8+6xl 
= 23£ in decintal notation 

We can convert back and forth between the octal and the binary 
systems very simply. We need merely replace each successive block 
of three binary digits by the appropriate octal digit, as, for instance, 

binary 010 Ill Oil 110 
octal 2 7 3 6 

People who work with binary notation in connection with com
puters find h easier to remember and transcribe a short sequence 
of octal d1gtts than a long group of binary digits. They learn to 
regard.patt~rns of three successive binary digits as an entity, so that 
they will think of a sequence of twelve binary digits as a succession 
of fo~ryatte~s of three, that is, as a sequence of four octal digits. 

It is mterestmg to note, too, that, just as a pattern of pulses and 
spaces can correspond to.a sequence of binary digits, so a sequence 
of pulses ofvanous amplitudes (0, ~, 2, 3, 4, 5, 6, 7) can correspond 
to a sequence of octal d1gtts. This 1s illustrated in Figure IV-3. In 
a,. we have the sequence of off-on, 0-1 pulses corresponding to the 
bmary number 010! 11011110. The corresponding octal number is 
2736, and in b this is represented by a sequence of four pulses of 
current having amplitudes 2, 7, 3, 6. 
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Io , o 1, , , , 0 1 1 11 1 o\ 
I D ~ I I I I I 

81 2 I 7 I 3 I 6 I 

11 I ! 
I I 

l I 
I 

I I I I I 

(a) 

(b) 

Fig. JV-3 

Conversion from binary to decimal numbers is not so easy. On 
the average, it takes about 3.32 binary digits to re.present one 
decimal digit. Of course we can assign four b;nary digits to each 
decimal digit, as shown in Table VIII, but this means that some 
patterns are wasted; there are more patterns than we use. 

It is convenient to think of sequences of O's and l's or sequences 
of pulses and spaces as binary numbers. This helps us to under-

TABLE VIII 

Binary Number Decimal Digit 

0000 0 

0001 l 
0010 2 

OOll 3 
0100 4 
0101 5 
OllO 6 
Oil! 7 

1000 8 

1001 9 
1010 not used 
!Oil not used 

1100 not used 
llOl not used 
ll!O not used 
1111 not used 
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stand how many sequences of a different length there are and how 
numbers written in the binary system correspond to numbers 
written in the octal or in the decimal system. In the transmission 
of information, however, the particular number assigned to a 
sequence of binary digits is irrelevent. For instance, if we wish 
merely to transmit representations of octal digits, we could make 
the assigiiments shown in Table IX rather than those in Table VI. 

TABLE IX 

Sequence of Binary Digits 

000 
001 
010 
011 
100 
101 
llO 
l ll 

Octal Digit Represented 

5 
7 
1 
6 
0 
4 
2 
3 

Here the "binary numbers" in the left column designate octal 
numbers of different numerical value. 

In fact, there is another way oflooking at such a correspondence 
between binary digits and other symbols, such as octal digits, a way 
in which we do not regard the sequence of binary digits as part of 
a binary number but rather as means of choosing or designating 
a particular symbol. 

We can regard each 0 or 1 as expressing an elementary choice 
between two possibilities. Consider, for instance, the "tree of 
choice" shown in Figure IV-4. As we proceed upward from the root 
to the twigs, let 0 signify that we take the left branch and let 1 
signify that we take the right branch. Then 0 1 1 means left, 
right, right and takes us to the octal digit 6, just as in Table IX. 

Just as three binary digits give us enough information to deter
mine one among eight alternatives, four binary digits can deterntine 
one among sixteen alternatives, and twenty binary digits can deter
mine one among 1,048,576 alternatives. We can do this by assigii
ing the required binary numbers to the alternatives in any order 
we wish. 
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Fig. IV-4 

The alternatives which we wish to specify by successions of 
binary digits need not of course be numbers at all. In fact, we bega~ 
by considering how we might encode English text so a~ohtrans~e 
it electrically by sequences of puls: -~d spaces, w c can 

re~e~::e~s~~n~~;~~:~;:~{~:i~Z E~glish text letter by l~t~s 
twenty-six letters plus a space, or twenty-seven sbY!11bols mb a . s 

t ti n and no Ara ic num ers. 
of course allows us no punc ua o(thr t 3) if we wish and use 

We can write out the numbers ee, no 
words for punctuation, (stop, comma, colon, etc.). nds 

Mathematics says that a choice among 27 symbols corred .th 
to about 4. 75 binary digits_. If we ar~ _not_ too ~=~:':eto :ch 
efficiency we can assign a different 5-digit bmary b ed 

' . h will l five 5 digit binary nurn ers unus . 
character, wh1c eave . - 1 di hift and shift lock. We 

My typewriter has 48 keys, me u ng s . d 
" bols" representing carnage return an might add two more sym · · 

. d king a total of 50. I could encode my actions Ill 
line a vance, ma. ctuation and all (but not insertion of the 
tY;'~!' :p~t:!~!~~~J';:: choices ~mong 50 symbols, each choice 
P P ) y di t bout 5 62 binary digits. We could use 6 bmary 
correspon ng o a · · di ·t 
di ·ts r character and waste some sequences of bmary_ . gI _s. 
~hirwaste arises because there are only thirty-two 5~~git ~mary 

numbers, which is too few, while there are sixty~dfo: 6- '~!? ~~ 
hi h . too many How can we avo1 s was . 

~;~:~~s~~";:~~::~_w;h~~;ea!;5i~~~o~~s!~;r~!e;~:bfn:~f;n~f ;f 
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17 binary digits. Thus, if we divide our text into blocks of 3 succes
sive characters, we can specify any possible block by a 17-digit 
binary number and have a few left over. If we had represented each 
separate character by 6 binary digits, we would have needed 18 
binary digits to represent 3 successive characters. Thus, by this 
block coding, we have cut down the number of binary digits we use 
in encoding a given length of text by a factor l 7I18. 

Of course, we might encode English text in quite a different way. 
We can say a good deal with 16,384 English words. That's quite a 
large vocabulary. There are just 16,384 fourteen-digit binary num
bers. We might assign 16,357 of these to different useful words and 
27 to the letters of the alphabet and the space, so that we could 
spell out any word or sequence of words we failed to include in 
our word vocabulary. We won't need to put a space between words 
to which numbers have been assigned; it can be assumed that a 
space goes with each word. 

Ifwe have to spell out words very infrequently, we will use about 
14 binary digits per word in this sort of encoding. In ordinary 
English text there are on the average about 4.5 letters per word. 
As we must separate words by a space, when we send the message 
character by character, even if we disregard capitalization and 
punctuation, we will require on the average 5.5 characters per 
word. If we encode these using 5 binary digits per character, we 
will use on the average 27.5 binary digits per word, while in encod
ing the message word by word we need only 14 binary digits 
per word. 

How can this be so? It is because, in spelling out the message 
letter by letter, we have provided means for sending with equal 
facility all sequences of English letters, while, in sending word by 
word, we restrict ourselves to English words. 

Clearly, the average number of binary digits per word required to 
represent English text depends strongly on how we encode the text. 

Now, English text is just one sort of message we might want to 
transmit. Other messages might be strings of numbers, the human 
voice, a motion pictllre, or a photograph. If there are efficient and 
inefficient ways of encoding English text, we may expect that there 
will be efficient and inefficient ways of encoding other signals 
as well. 
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Indeed, we may be led to believe that there exists in principle 
some best way of encoding the signals from a given message source, 
a way which will on the average require fewer binary digits per 
character or per unit time than any other way. 

If there is such a best way of encoding a signal, then we might 
use the average number of binary digits required to encode the 
signal as a measure of the amount of information per character or 
the amount of information per second of the message source which 
produced the signal. 

This is just what is done in information theory. How it is done 
and further reasons for so doing will be considered in the next 
chapter. 

Let us first, however, review very briefly what we have covered 
in this chapter. In communication theory, we regard coding very 
broadly, as representing one signal by another. Thus a radio wave 
can represent the sounds of speech and so form an encoding of 
these sounds. Encoding is, however, most simply explained and 
explored in the case of discrete message sources, which produce 
messages consisting of sequences of characters or numbers. For
tunately, we can represent a continuous signal, such as the current 
in a telephone line, by a number of samples of its amplitude, using, 
each second, twice as many samples as the highest frequency 
present in the signal. Further we can if we wish represent the ampli
tude of each of these samples approximately by a whole number. 

The representation ofletters or numbers by sequences of off-or
on signals, which can in tum be represented directly by sequences 
of the binary digits 0 and 1, is of particular interest in communi
cation theory. For instance, by using sequences of 4 binary digits 
we can form 16 binary numbers, and we can use 10 of these to 
represent the 10 decimal digits. Or, by using sequences of 5 binary 
digits we can form 32 binary numbers, and we can use 27 of these 
to represent the letters of the English alphabet plus the space. Thus, 
we can transmit decimal numbers or English text by sending 
sequences of off-or-on signals. 

We should note that while it may be convenient to regard the 
sequences of binary digits so used as binary numbers, the numerical 
value of the binary number has no particular significance; we can 
choose any binary number to represent a particular decimal digit. 
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Ifwe use 10 of the 16 possible 5-digit binary numbers to encode 
~e 10 decimal digits, we never use (we waste) 6 binary numbers. 

e could, but never do, transmit these sequences as sequences of 
off-or-o~ signals. We can avoid such waste by means of block 
coding, m which we encode sequences of 2, 3, or more decimal 
digits or other characters by means of binary digits. For instance 
a~l ~equen.ces. of 3 decimal digits can be represented by 10 bina,; 
d1g1ts, while 1t takes a total of 12 bmary digits to represent sepa
rately each of 3 decimal digits. 

Any sequence ~f decimal digits may occur, but only certain 
sequ~nces of English letters ever occur, that is, the words of the 
English language. Thus, it is more efficient to encode English words 
as sequen~es of binary digits rather than to encode the letters of 
the word~ md1V1dually. This again emphasizes the gain to be made 
by encodmg sequences of characters, rather than encoding each 
character separately. 

All of this leads us to the idea that there may be a best way of 
encoding the messages from a message source, a way which calls 
for the least number of binary digits. 



CHAPTER V Entropy 

IN THE LAST CHAPTER, we have considered various ways in which 
messages can be encoded for transmission. Indeed, all communica
tion involves some sort of encoding of messages. In the electrical 
case, letters may be encoded in terms of dots or dashes of electric 
current or in terms of several different strengths of current and 
directions of current flow, as in Edison's quadruplex telegraph. Or 
we can encode a message in the binary language of zeros and ones 
and transmit it electrically as a sequence of pulses or absences 
of pulses. 

Indeed, we have shown that by periodically sampling a continu
ous signal such as a speech wave and by representing the ampli
tudes of each sample approximately by the nearest of a set ·Of 
discrete values, we can represent or encode even such a continuous 
wave as a sequence of binary digits. 

We have also seen that the number of digits required in encoding 
a given message depends on how it is encoded. Thus, it takes fewer 
binary digits per character when we encode a group or block of 
English letters than when we encode the letters one at a time. 
More important, because only a few combinations of letters form 
words, it takes considerably fewer digits to encode English text 
word by word than it does to encode the same text letter by letter. 

Surely, there are still other ways of encoding the messages p~o
duced by a particular ergodic source, such as a source of English 
text. How many binary digits per letter or per word are really 
needed? Must we try all possible sorts of encoding in order to find 
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out? But, if we did try all forms of encoding we could think of we 
would still not be sure we had found the best form of encoctlng, 
for the best form IIllght be one which had not occurred to us 

Is there not, in principle at least, some statistical measure~ent 
we .can make on the messages produced by the source, a measure 
which will tell us the minimum average number of binary digits 
per symbol which will serve to encode the messages produced by 
the source? 

In considering this matter, let us return to the model of a mes
sage source which we discussed in Chapter III. There we regarded 
the message source as an ergodic source of symbols, such as letters 
or wor~. Such an ~rgodic source has certain unvarying statistical 
properties: the relative frequencies of symbols; the probability that 
one symbol will follow a particular other symbol, or pair of sym
bols, or triplet of symbols; and so on. 

In the. case of English text, we can speak in the same tenns of 
the relative frequencie~ of words and of the probability that one 
word will folio"." a particular word or a particular pair, triplet, or 
other combmation of words. 

In illustrating the statistical properties of sequences of letters or 
words, we showed how material resembling English text can be 
produced by a sequence of random choices among letters and 
words, provided that the letters or words are chosen with due 

. regard.for their probabilities or their probabilities of following a 
preceding se.quence of letters or words. In these examples the 
~firow o:, a die or the picking of a letter out of a hat can se~e to 
choose the next symbol. 

In writing or speaking, we exercise a similar choice as to what 
we shall set down or say next. Sometimes we have no choice; Q 
must be follo~ed by U. We have more choice as to the next 
symbol m begmrung a word than in the middle of a word. How
~ver, Ill any message source, living or mechanical, choice is con
tmually exercised. 0.therwise, the messages produced by the source 
would be predetennmed and completely predictable. 
Corr~sponding to the choice exercised by the message source in 

prod~cmg the message, there is an uncertainty on the part of the 
rec~p~ent of fae message. This uncertainty is resolved when the 
rec~p1ent exan;mes the message. It is this resolution of uncertainty 
which is the ann and outcome of communication. 
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If the message source involved no choice, if, for instance: it 
could produce only an endless string of ones ~r an endless stnng 
of zeros the recipient would not need to receive or exanune the 
messag; to know what it was; ~e c?uld pr~dict it in advance. Thus, 
if we are to measure informat10n m a rational way, we must have 
a measure that increases with the amount of choice of the source 
and, thus, with the uncertainty of the recipient as to what message 
the source may produce and transmit. 

Certainly, for any message source there are more long mess~ges 
than there are short messages. For instance, there are 2 po~s1ble 
messages consisting of 1 binary digit, 4 consi~ti~g of 2 b~ary 
digits, 16 consisting of 4 binary digits, 256 cons1stmg of 8 bmary 
digits, and so on. Should we perhaps say that amount ofmforma
tion should be measured by the number of such messages? Let us 
consider the case of four telegraph lines used simultaneously in 
transmitting binary digits between two points, all operating at the 
same speed. Using the four lines, we can send 4 times as many 
digits in a given period of time as we could usmg one line. It also 
seems reasonable that we should be able to send 4 times as much 
information by using four lines. If this is. so, we .should measure 
information in terms of the number of bmary digits rather than 
in terms of the number of different messages that the bmary digits 
can form. This would mean that amount of information should be 
measured, not by the number of possible messages, but by the 
logarithm of this number. . . . . 

The measure of amount of information which commumcation 
theory provides does this and is reasonable in other ways as well. 
This measure of amount of information is called entropy. lfwe want 
to understand this entropy of communication theory, it is best first 
to clear our minds of any ideas associated with the entropy of 
physics. Once we understand entropy as it .is used in comm~ca· 
tion theory thoroughly, there is no. harm m try'.ng to relate it to 
the entropy of physics, but the literature md1cates that some 
workers have never recovered from the confusion engendered by 
an early admixture of ideas concerning the entropies of physics 
and communication theory. 

The entropy of communication theory is measured in bits. We 
may say that the entropy of a message source is so many bits per 
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letter, or per word, or per message. If the source produces symbols 
at a constant rate, we can say that the source has an entropy of 
so many bits per second. 

Entropy increases as the number of messages among which the 
source may choose increases. It also increases as the freedom of 
choice (or the uncertainty to the recipient) increases and decreases 
as the freedom of choice and the uncertainty are restricted. For 
instance, a ·restriction that certain messages must be sent either very 
frequently or very infrequently decreases choice at the source and 
uncertainty for the recipient, and thus such a restriction must 
decrease entropy. 

It is best to illustrate entropy first in a simple case. The mathe
matical theory of communication treats the message source as an 
ergodic process, a process which produces a string of symbols that 
are to a degree unpredictable. We must imagine the message source 
as selecting a given message by some random, i.e., unpredictable 
means, which, however, must be ergodic. Perhaps the simplest case 
we can imagine is that in which there are only two possible sym
bols, say, X and Y, between which the message source chooses 
repeatedly, each choice uninfluenced by any previous choices. In 
this case we can know only that X will be chosen with some 
probability p 0 and Y with some probability p1, as in the outcomes 
of the toss of a biased coin. The recipient can determine these 
probabilities by examining a long string of characters (X's, Y's) 
produced by the source. The probabilities p 0 and p1 must not 
change with time if the source is to be ergodic. 

For this simplest of cases, the entropy Hof the message source 
is defined as 

H = - (po log po +Pi log p1) bits per symbol 

Thus, the entropy is the negative of the sum of the probability po 
that X will be chosen (or will be received) times the logarithm of 
po and the probability p1 that Y will be chosen (or will be received) 
times the logarithm of this probability. 

Whatever plausible arguments one may give for the use of 
entropy as defined in this and in more complicated cases, the real 
and true reason is one that will become apparent only as we 
proceed, and the justification of this formula for entropy will 
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therefore be deferred. It is, however, well to note again that there 
are different kinds of logarithms and that, in informatio~ theory, 
we use logarithms to the base 2. Some facts about loganthms to 
the base 2 are noted in Table X. 

TABLE X 

Another Way of Still A not her Way Logp Fractionp Writing p of Writingp 

3 1 2-.415 -.415 
4 2.415 

1 1 2-1 -1 
2 21 

3 _1_ 2-1.415 -1.415 
8 21.415 

1 1 2-2 -2 
4 2' 

1 J_ 2-a -3 
8 23 

1 1 2-• -4 
T6 2• 

1 J_ 2-• -6 
64 2• 

1 1 2-s -8 
256 2' 

The logarithm to the base 2 of a number is the power to which 
2 must be raised to give the number. . . 

Let us consider, for instance, a "message source" which consists 
of the tossing of an honest coin. We can let X represent_ heads and 
y represent tails. The probability p1 that th~ com will turn ~P 
heads is \6 and the probability po that the com will turn up tails 
is also Y.i. Accordingly, from our expression for entropy and from 
Table X we find that 

H = - (Y.i log \6 + Y.i log Y.i) 
H= -[(Y.i)(-1) + (Y.i)(-1)] 
H = I bit per toss 
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If the message source is the sequence of heads and tails obtained 
by tossing a coin, it takes one bit of information to convey whether 
heads or tails has turned up. 

Let us notice, now, that we can represent the outcome of succes
sively tossing a coin by a number of binary digits equal to the 
number of tosses, letting I stand for heads and 0 stand for tails. 
Hence, in this case at least, the entropy, one bit per toss, and the 
number of binary digits which can represent the outcome, one 
binary digit per toss, are equal. In this case at ]east, the number 
of binary digits necessary to transmit the message generated by 
the source (the succession of heads and tails) is equal to the entropy 
of the source. 

Suppose the message source produces a string of l's and O's by 
tossing a coin so weighted that it turns up heads 'A of the time and 
tails only 1/4 of the time. Then 

P1 ='A 
Po= 114 
H = - (\4 log \4 + % log 3/4) 
H = -[(114)(-2) + ('/4)(-.415)] 
H = .811 bit per toss 

We feel that, in the case of a coin which turns up heads more 
often than tails, we know more about the outcome than if heads 
or tails were equally likely. Further, if we were constrained to 
choose heads more often than tails we would have less choice than 
if we could choose either with equal probability. We feel that this 
must be so, for if the probability for heads were I and for tails 0, 
we would have no choice at all. And, we see that the entropy for 
the case above is only .811 bit per toss. We feel somehow that we 
ought to be able to represent the outcome of a sequence of such 
biased tosses by fewer than one binary digit per toss, but it is not 
immediately clear how many binary digits we must use. 

Ifwe choose heads over tails with probability pi, the probability 
po of choosing tails must of course be I - p 1. Thus, if we know p 1 

we know p 0 as well. We can compute H for various values of p 1 

and plot a graph of H vs. p 1. Such a curve is shown in Figure V-1. 
H has a maximum value of I when p1 is 0.5 and is 0 when p1 is 0 
or I, that is, when it is certain that the message source always 
produces either one symbol or the other. 
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Really, whether we call heads X and tails Y or heads Y and tails 
X is immaterial, so the curve of H vs. p1 must be the same as H 
vs. p0 . Thus, the curve of Figure V-1 is symmetrical about the 
dashed center line at p1 and po equal to 0.5. 

A message source may produce successive choices among the 
ten decimal digits, or among the twenty-six letters of the alphabet, 
or among the many thousands of words of the English language. 
Let us consider the case in which the message source produces one 
among n symbols or words, with probabilites which are independ
ent of previous choices. In this case the entropy is defined as 

n 

H = - 2.; P< logp, bits per symbol (5.1) 
i= 1 

Here the sign~ (sigma) means to sum or to add up various terms. 
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p;is the probability of the ith symbol being chosen. The t = 1 below 
~nd n above the~ mean to let i be 1,.2, 3, etc. up ton, so the equa
tion says that the e.ntropy will be given by adding p 1 log p1 and 

P2 logp2 and so on, including all symbols. We see that when n = 2 
we have the simple case which we considered earlier. 

Let us take an example. Suppose, for instance that we toss two 
coins simultaneously. Then there are four possibl~ outcomes which 
we can label with the numbers 1 through 4: ' 

H Hor 1 
H Tor2 
T Hor3 
T Tor4 

If the coins are honest, the probability of each outcome is 1;., and 
the entropy is 

H = - (1/.i log 1/.i + 1/.i log l'4 + l'4 log i;., + 1;., log 1;.,) 
H = -(-\6 -\6 -\6 -\6) 
H = 2 bits per pair tossed 

It t"-!<es 2 bhs of information to describe or convey the outcome 
of tossing a pair of honest coins simultaneously. As in the case of 
to~smg one c~in which has equal probabilities of landing heads or 
tads, we can m this case see that we can use 2 binary digits to 
de~cribe th~ outcome of a toss: we can use 1 binary digit for each 
com. Thus, in this case. too, we can transmit the message generated 
bl the process (of tossmg two coins) by using a number of binary 
d1g1ts equal to the entropy. 

If we have some n~i:nber n of symbols all of which are equally 
probable, the probability of any particular one turning up is l!n, 
so.we haven terms, each of which is l!n log l!n. Thus, the entropy 
1s m this case 

H = -log l!n bits per symbol 

For instance, an honest die when rolled has equal probabilities of 
tunung up any number from 1 to 6. Hence, the entropy of the 
sequence of numbers so produced must be - log Yo, or 2.58 bits 
per throw. 

More generally, suppose that we choose each time with equal 
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likelihood among all binary numbers with N digits. There are ZN 
such numbers, so 

From Table X we easily see that 

log l!n = log 2-N = -N 

Thus, for a source which produces at each choice with equal likeli
hood some N-digit binary number, the entropy is N bits per num
ber. Here the message produced by the source is a binary number 
which can certainly be represented by binary digits. And, again, 
the message can be represented by a number of binary digits equal 
to the entropy of the message, measured in bits. This example 
illustrates graphically how the logarithm must be the correct 
mathematical function in the entropy. 

Ordinarily the probability that the message source will produce 
a particular symbol is different for different symbols. Let us take 
as an example a message source which produces English words 
independently of what has gone before but with the probabilities 
characteristic of English prose. This corresponds to the first-order 
word approximation given in Chapter III. 

In the case of English prose, we find as an empirical fact that if 
we order the words according to frequency of usage, so that the 
most frequently used, the most probable word (the, in fact) is word 
number 1, the next most probable word (of) is number 2, and so 
on, then the probability for the rth word is very nearly (if r is not 
too large) 

p, = .l!r (5.2) 

If equation 5.2 were strictly true, the points in Figure V-2, in which 
word probability or frequency p, is plotted against word order or 
rank r, would fall on the solid line which extends from upper left 
to lower right. We see that this is very nearly so. This empirical 
inverse relation between word probability and word rank is known 
as Zipf's law. We will discuss Zipf's law in Chapter XII; here, we 
propose merely to use it. 

We can show that this equation (5.2) cannot hold for all words. 
To see this, let us consider tossing a coin. If the probability of heads 
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~~:~g up isth\2 and t~e probability of tails turning up is \2 then 
s no o er possible outcome· \2 y, _ 1 ' 

addiltdiohnal probability of Yio that th~ coi:: w~;tld ~t~n~~~ e~eg~e an 
wou ave to conclude that . h dr , we 
110 outcomes: heads 50 times~~ls ~~ u:1e:o::~ ~e :mid expect 
10 times. This is patent! b 'd ' s an ng on edge 
must add u t . Ya sur · T~ probabilities of all outcomes 
sivel p o uruty. Now, let us note that if we add u succes-

t. y P1 plus p2, etc., as given by equation 5.2 we find th~t b th 
•me we came top th ' Y e 

b 8727 e sum of the successive probabili'ti' h ecome unity If k . . es as 
additional wo~d we l~o this literally, we would conclude that no 
error. con ever occur. Equation 5.1 must be a little in 

Nonetheless, the error is not great and Sh d . 
' annon use equation 
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5 .2 in computing the entropy of a message source which produces 
words independently but with the probability of their occurring in 
English text. In order to make the sum of the probabilities of all 
words unity, he included only the 8, 727 most frequently used words. 
He found the entropy to be 9.14 bits per word. 

In Chapter IV, we saw that English text can be encoded letter 
by letter by using 5 binary digits per character or 27 .5 binary digits 
per word. We also saw that by providing different sequences of 
binary digits for each of 16,357 words and 27 characters, we could 
encode English text by using about 14 binary digits per word. We 
are now beginning to suspect that the number of binary digits 

·actually required is given by the entropy, and, as we have seen, 
Shannon's estimate, based on the relative probabilities of English 
words, would be 9.14 binary digits per word. 

As a next step in exploring this matter of the number of binary 
digits required to encode the message produced by a message 
source, we will consider a startling theorem which Shannon proved 
concerning the "messages" produced by an ergodic source which 
selects a sequence of letters or words independently with certain 
probabilities. 

Let us consider all of the messages the source can produce which 
consist of some particular large number of characters. For exam
ple, we might consider all messages which are 100,000 symbols 
(letters, words, characters) long. More generally, let us consider 
messages having a number M of characters. Some of these messages 
are more probable than others. In the probable messages, symbol 
1 occurs about Mp1 times, symbol 2 occurs about Mp2 times, etc. 
Thus, in these probable messages each symbol occurs with about 
the frequency characteristic of the source. The source might pro
duce other sorts of messages, for instance, a message consisting of 
one symbol endlessly repeated or merely a message in which the 
numbers of tlie various symbols differed markedly from M times 
their probabilities, but it seldom does. 

The remarkable fact is that, if His the entropy of the source per 
symbol, there are just about 2MH probable messages, and the rest 
of the messages all have vanishingly small probabilities of ever · 
occurring. In other words, if we ranked the messages from most 
probable to least probable, and assigned binary numbers of MH 

Entropy 89 

digits to the 2MH most probable messages, we would be almost 
certain to have a number corresponding to any M-symbol message 
that the source actually produced. 

Let us illustrate this in particular simple cases. Suppose that tlie 
symbols produced are 1 or 0. If these are produced with equal 
probabilities, a probability ~ that for 1 and a probability ~ tliat 
for 0 the entropy His, as we have seen, 1 bit per symbol. Let us 
let the source produce messages M digits long. Then MH = 1,000, 
and, according to Shannon's tlieorem, there must be 21000 different 
probable messages. 

Now, by using 1,000 binary digits we can write just 21000 different 
binary numbers. Thus, in order to assign a different binary num
ber to each probable message, we must use binary numbers 1,000 
digits long. This is just what we would expect. In order to desig
nate to the message destination which 1,000 digit binary number 
the message source produces, we must send a message 1,000 binary 
digits long. 

But, suppose that the digits constituting tlie messages produced 
by the message source are obtained by tossing a coin which turns 
up heads, designating 1, 3A of the time and tails, designating 0, V.. 
of the time. The typical messages so produced will contain more 
l's than O's, but that is not all. We have seen that in this case the 
entropy His only .811 bit per toss. If M, the lengtli of the message, 
is again taken as 1,000 binary digits, MH is only 811. Thus, while 
as before tliere are 210oo possible messages, there are only 2•11 
probable messages. 

Now, by using 811 binary digits we can write 2s11 different 
binary numbers, and we can assign one of these to each of the 
1,000-digit probable messages, leaving tlie other improbable 1,000-
digit messages uuuumbered. Thus, we can send word to a message 

· destination which probable 1,000-digit message our message source 
produces by sending only 811 binary digits. And the chance tliat 
the message source will produce an improbable 1,000-digit mes

, sage, to which we have assigned no number, is negligible. Of 
course, the scheme is not quite foolproof. The message source may 

' still very occasionally turn up a message for which we have no label 
' among all 2s11 of our 811-digit binary labels. In this case we can
not transmit the message-at least, not by using 811 binary digits. 
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We see that again we have a strong indication that the nwnber 
of binary digits required to transmit a message is just the entropy 
in bits per symbol times the number of symbols. And, we might 
note that in this last illustration we achieved such an economical 
transmission by block encoding-that is, by lwnping 1,000 (or some 
other large nwnber) message digits together and representing each 
probable combination of digits by its individual code (of 811 binary 
digits). 

How firmly and generally can this supposition be established? 
So far we have considered only cases in which the message 

source produces each symbol (number, letter, word) independently 
of the symbols it has produced before. We know this is not true 
for English text. Besides the constraints of word frequency, there 
are constraints of word order, so that the writer has less choice as 
to what the next word will be than he would if he could choose it 
independently of what has gone before. 

How are we to handle this situation? We have a clue in the 
block coding which we discussed in Chapter IV, and which has been 
brought to our mind again in the last example. In an ergodic 
process the probability of the next letter may depend only on the 
preceding I, 2, 3, 4, 5, or more letters but not on earlier letters. The 
second and third order approximations to English given in Chapter 
III illustrate text produced by such a process. Indeed, in any 
ergodic process of which we are to make mathematical sense the 
effect of the past on what symbol will be produced next must 
decrease as the remoteness of that past is greater. This is reasonably 
valid in the case of real English as well. While we can imagine 
examples to the contrary (the consistent use of the same name for 
a character in a novel), in general the word I write next does not 
depend on just what word I wrote 10,000 words back. 

Now, suppose that before we encode a message we divide it up 
into very long blocks of symbols. If the blocks are long enough, 
only the symbols near the beginning will depend on symbols in the 
previous block, and, if we make the block long enough, these 
symbols that do depend on symbols in the previous block will 
form a negligible part of all the symbols in the block. This makes 
it possible for us to compute the entropy per block of symbols by 
means of equation 5.1. To keep matters straight, let us call the 
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probability of a particular one of the multitudinous long blocks of 
symbols, which we will call the ith block, P(B;). Then the entropy 
per block will be 

H = - 2:;P(B;) log P(B;) bits per block 
i 

Any mathematician would object to calling this the entropy. He 
would say, the quantity H given by the above equation approaches 
the entropy as we make the block longer and longer, so that it 
mcludes more and more symbols. Thus, we must assume that we 
~ake the blocks very long indeed and get a very close approxima
tron to the entropy. With this proviso, we can obtain the entropy 
per symbol by dividing the entropy per block by the nwnber N of 
symbols per block 

H = -(1/N) 2:;P(B;) log P(B;) bits per symbol (5.3) 
i 

. In general, an estimate of entropy is always high if it fails to take 
mto account some relations between symbols. Thus, as we make 
N, the number of symbols per block, greater and greater, H as 
given by 5.3 will decrease and approach the true entropy. 

We have ms1sted from the start that amount of information must 
be so defined that if separate messages are sent over several tele
graph wires, the total amount of information must be the sum of 
the amounts of information sent over the separate wires. Thus, to 
get the entropy of several message sources operating simultane
ously, we add the en.tropies of the separate sources. We can go 
further and.say that if a source operates intermittently we must 
multiply its mformation rate or entropy by the fraction of the time 
that it operates in order to get its average information rate. 
. Now, let us say that we have one message source when we have 
JUSt sent a particular sequence of letters such as TH. In this case 
the probabili.ty that the next"letter will be E is very high. We have 
another particular message source when we have just sent NQ. In 
this case the probability that the next symbol will be U is unity. 
We calculate the entropy for each of these message sources. We 
n:uit1ply the entropy of a som:ce which we label B, by the proba
bility p(B,) that this source will occur (that is, by the fraction of 
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instances in which this source is in operation). We multiply the 
entropy of each other source by the probability that that ~ource 
will occur, and so on. Then we add all the numbers we get m this 
way in order to get the average entropy or rate of the over-all 
source, which is a combination of the many different sources, each 
of which operates only part time. As an example, consider a source 
involving digram probabilities only, so that the whole effect o_f the 
past is summed up in the letter last produced. One source will be 
the source we have when this letter is E; this will occur m .13 of 
the total instances. Another source will be the source we have when 
the letter just produced is W; this will occur in .02 of the total 
instances. 

Putting this in formal mathematical terms, we say that if a 
particular biock of N symbols, which we designate by Bo has JUSt 
occurred, the probability that the next symbol will be symbol S; is 

PB,(S;) 

The entropy of this "source" which operates only when a particu
lar block of N symbols designated by B, has just been produced is 

- :Spn,(S;) logpn,(S;) 

j 
But, in what fraction of instances does this particular message 
source operate? The fraction of instances in which this source 
operates is the fraction of instances in which we encounter block 
B, rather than some other block of symbols; we call this fraction 

p(B,) 

Thus, taking into account all blocks of N symbols, we write the 
sum of the entropies of all the separate sources (each separate 
source defined by what particular block B, of N symbols has 
preceded the choice of the symbol S;) as 

HN = -=sp(B,)pn,(S;) logpB;(S;) (5.4) 

i,j 
The i,j under the summation sign mean to let i and j assume all 
possible values and to add all the numbers we get in this way. 

As we let the number N of symbols preceding symbol S; become 
very large, HN approaches the entropy of the source. If there are 
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n~ statistical influences extending over more than N symbols (this 
will be true for a digram source for N = 1 and for a trigram 
source for N = 2), then HN is the entropy. 

Shannon writes equation 5.4 a little differently. The probability 
p(B• S;) of en~untering the block B, followed by the symbol S; 
is the ~robab1lity p(B;) of encountering the block B, times the 
probability PB,(S;) that symbol S; will follow block B,. Hence, we 
can write 5.4 as follows: 

HN = -:Sp(B,, S;) logp8 ,(S;) 
i,j 

In Chapter III we consider a finite-state machine, such as that 
shown in Figure III-3, as a source of text. We can, if we wish, base 
our computation of entropy on such a machine. In this case, we 
regard each state of the machine as a message source and compute 
the entropy for that state. Then we multiply the entropy for that 
state by the probability that the machine will be in that state and 
sum (add up) all states in order to get the entropy. 

Putting the matter symbolically, suppose that when the machine 
is in a particular state i it has a probability p,(j) of producing a 
particular symbol which we designate by j. For instance, in a state 
la?eled i = 10 it might have a probability of0.03 of producing the 
third letter of the alphabet, which we label j = 3. Then 

p10(3) = .03 

The entropy H, of state i is computed in accord with 5.1: 

H, = - =sp,(j) log p,(j) 

j 
Now, we say that the machine has a probability P, of being in the 
'" state. The entropy per symbol for the machine as a source of 
symbols is then 

H = ::S P,H, bits per symbol 

We can write this as 

H = -=sP,p,(j) logp;(}) bits per symbol 
l~j 

(5.5) 
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P, is the probability that the finite-state machine is in the ith state, 
and p;IJ) is the probability that it produces the jth symbol when 
it is in the ith state. The i and j under the :t: mean to allow both i 
and j to assume all possible values and to add all the numbers so 
obtained. 

Thus, we have gone easily and reasonably from the entropy of 
a source which produces symbols independently and to which 
equation 5.1 applies to the more difficult case in which the proba
bility of a symbol occurring depends on what has gone before. And, 
we have three alternative methods for computing or defining the 
entropy of the message source. These three methods are equivalent 
and rigorously correct for true ergodic sources. We should remem
ber, of course, that the source of English text is only approximately 
ergodic. 

Once having defined entropy per symbol in a perfectly general 
way, the problem is to relate it unequivocally to the average 
number ofbiuary digits per symbol necessary to encode a message. 

We have seen that if we divide the message into a block ofletters 
or words and treat each possible block as a symbol, we can com
pute the entropy per block by the same formula we used per 
independent symbol and get as close as we like to the source 
entropy merely by making the blocks very long. 

Thus, the problem is to find out how to encode efficiently in 
binary digits a sequence of symbols chosen from a very large group 
of symbols, each of which has a certain probability of being chosen. 
Shannon and Pano both showed ways of doing this, and Huffman 
found an even better way, which we shall consider here. 

Let us for convenience list all the symbols vertically in order of 
decreasing probability. Suppose the symbols are the eight words 
the, man, to, runs, house, likes, horse, sells, which occur independ
ently with probabilities of their being chosen, or appearing, as 
listed in Table XL 

We can compute the entropy per word by means of 5.1; it is 2.21 
bits per word. However, if we merely assigned one of the eight 
3-digit binary numbers to each word, we would ueed 3 d1g1ts to 
transmit each word. How can we encode the words more efficiently? 

Figure V-3 shows how to construct the most efficient code for 
encoding such a message word by word. The words are listed to the 
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Word Probability 

the .50 
man .15 
to .12 
runs .IO 
house .04 
likes .04 
horse .03 
sells .02 

left, and the probabilities are shown in parentheses. In construct
mg the code, we first find the two lowest probabilities, .02 (sells) 
and .. 03 (ho~se), and draw lines to the point marked .05, the prob
ability ?f either horse or sells. We then disregard the individual 
probabilities connected by the lines and look for the two lowest 
probabilities, which are .04 (like) and .04 (house). We draw lines 
to the right to a point marked .08, which is the sum of .04 and .04. 
The two lowest remaining probabilities are now .05 and .08, so we 
draw a line to the right connecting them, to give a point marked 

THE ( .50) 

MAN ( .t 5) 

TO ( .12) 

RUNS ( .f 0) 

HOUSE ( .04) 

LIKE ( .04) 

HORSE ( .03) 

SELLS ( .02) 

Fig. V-3 
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.13. We proceed thus until paths run from each word to a common 
point to the right, the point marked 1.00. We then label each upper 
path going to the left from a point 1 and each lower path 0. The 
code for a given word is then the sequence of digits encountered 
going left from the common point 1.00 to the word in question. 
The codes are listed in Table XII. 

TABLE XII 

Word Probability p Code 
Number of Digits 

Np in Code, N 

the .50 1 I .50 
man .15 001 3 .45 
to .12 011 3 .36 
runs .IO 010 3 .30 
house .04 00011 5 .20 
likes .04 OOOIO 5 .20 
horse .03 00001 5 .15 
sells .02 00000 5 .IO 

2.26 

In Table XII we have shown not only each word and its code 
but also the probability of each code and the number of digits in 
each code. The probability of a word times the number of digits 
in the code gives the average number of digits per word in a long 
message due to the use of that particular word. If we add the 
products of the probabilities and the numbers of digits for all the 
words, we get the average number of digits per word, which is 2.26. 
This is a little larger than the entropy per word, which we found 
to be 2.21 bits per word, but it is a smaller number of digits than 
the 3 digits per word we would have used if we had merely assigned 
a different 3-digit code to each word. 

Not only can it be proved that this Huffman code is the most 
efficient code for encoding a set of symbols having different prob

. abilities, it can be proved that it always calls for less than one 
binary digit per symbol more than the entropy (in the above 
example, it calls for only 0.05 extra binary digits per symbol). 

Now suppose that we combine our symbols into blocks of 1, 2, 
3, or more symbols before encoding. Each of these blocks will have 
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a prob~bility (in the case of symbols chosen independently, the 
probability of a sequence of symbols will be the product of the 
probabilities of the symbols). We can find a Huffman code for these 
blocks of symbols. As_ w~ make the blocks longer and longer, the 
number of bmary digits m the code for each block will increase. 
Yet, our Huffman code will take less than one extra digit per block 
above the entropy in bits per block! Thus, as the blocks and their 
codes become very long, the less-than-one extra digit of the Huit
man code will become a negligible fraction of the total number of 
digits, and, a~ closely as we like (by making the blocks longer), the 
number of bmary d1g1ts per block will equal the entropy in bits 
per block . 

Suppose we have a communication channel which can transmit 
a number C of off-or-on pulses per second. Such a channel can 
transmit C binary digits per second. Each binary digit is capable 
of transmitting one bit of information. Hence we can say that the 
mformat10n capacity of this communication channel is C bits per 
second. If the entropy Hof a message source, measured in bits per 
second, 1s less than C, then, by encoding with a Huffman code, the 
signals from the source can be transmitted over the charmel. 

_Not all charmels transmit binary digits. A charmel, for instance, 
nught allow three amplitudes of pulses, or it might transmit differ
ent pulses of different lengths, as in Morse code. We can imagine 
connecting various different message sources to such a charmel. 
Each source will have some entropy or information rate. Some 
source will give the highest entropy that can be transmitted over 
the charmel, and this highest possible entropy is called the channel 
capacity C of the channel and is measured in bits per second. 
. By means_ of the Huffman code, the output of the charmel when 
it 1s transnntting a message of this greatest possible entropy can 
be coded mto some least number of binary digits per second, and, 
when lo~g. stretches of message are encoded into long stretches of 
bmary digits, it must take very close to C binary digits per second 
to represent the signals passing over the charmel. 

This encoding can, of course, be used in the reverse sense and 
C independent binary digits per second can be so encoded '.is to 
be transmitted over the channel. Thus, a source of entropy H can 
be encoded mto Hbinary digits per second, and a general discrete 
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channel of capacity C can be used to transmit C bits per second. 
We are now in a position to appreciate one of the fundamental 

theorems of information theory. Shannon calls this the funda
mental theorem of the noiseless channel. He states it as follows: 

Let a source have entropy H (bits per symbol) and a channel have a 
capacity [to transmit] C bits per second. Then it is possible to encode the 
ousput of the source in such a way as to transmit at the average rate 
(C/H) - e symbols per second over the channel, where ' is arbitrarily 
small. It is not possible to transmit at an average rate greater than C/H. 

Let us restate this without mathematical niceties. Any discrete 
channel that we may specify, whether it transmits binary digits, 
letters and numbers, or dots, dashes, and spaces of certain distinct 
lengths has some particular unique channel capacity C. Any 
ergodic message source has some particular entropy H. If His less 
than or equal to C, we can transmit the messages generated by the 
source over the channel. If H is greater than C, we had better not 
try to do so, because we just plain can't. 

We have indicated above how the first part of this theorem can 
be proved. We have not shown that a source of entropy H cannot 
be encoded in less than H binary digits per symbol, but this also 
can be proved. 

We have now firmly arrived at the fact that the entropy of a 
message source measured in bits tells us how many binary digits 
(or off-or-on pulses, or yeses-or-noes) are required, per character, 
or per letter, or per word, or per second in order to transmit 
messages produced by the source. This identification goes right 
back to Shannon's original paper. In fact, the word bit is merely 
a contraction of binary digit and is generally used in place of 
binary digit. 

Here I have used bit in a particular sense, as a measure of 
amount of information, and in other contexts I have used a differ
ent expression, binary digit. I have done this in order to avoid a 
confusion which might easily have arisen had I started out by using 
bit to mean two different things. 

After all, in practical situations the entropy in bits is usually 
different from the number of binary digits involved. Suppose, for 
instance, that a message source randomly produces the symbol 1 
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with _a probability '!. and the symbol 0 with the probability'!. and 
that it produces 10 symbols per second. Certainly such a source 
produces binary digits at a rate of 10 per second, but the informa
tion r~te or entropy of the source is .811 bit per binary digit and 
8.11 bits per second. We could encode the sequence of binary digits 
pro_duced by this source by using on the average only 8.11 binary 
digits per second. 

Similarly, suppose we have a communication channel which is 
capable of transmitting 10,000 arbitrarily chosen off-or-on pulses 
per second. Certamly, such a channel has a channel capacity of 
10,000 bits per second. However, ifthe channel is used to transmit 
a completely repetitive pattern of pulses, we must say that the 
actual rate of transmission of information is 0 bits per second, 
despite ~h~ fact that the channel is certainly transmitting 10,000 
bmary digits per second. 

Here we.have us~d bit only in the sense of a binary measure of 
amount ofmformat10n, as a measure of the entropy or information 
rate of a message source in bits per symbol or in bits per second 
or as a measure of the information transmission capabilities of a 
channel m bits per symbol or bits per second. We can describe it 
as an elementary binary ch.oice or decision among two possibilities 
which have equal probabilities. At the message source a bit repre
sents a cert.am alllount of choice as to the message which will be 
generated; m wnting gra~nniatical English we have on the average 
a choice. of about one bit per letter. At the destination a bit of 
infor_mation resolves a certain amount of uncertainty; in receiving 
English text there is on the average, about one bit of uncertainty 
as to what the next letter will be. 

When we are transmitting messages generated by an information 
so~rce by means of_off-or-on pulses, we know how many binary 
digits we are transnntting per second even when (as in most cases) 
we don't know the entropy of the source. (If we know the entropy 
of the source in bits per second to be less than the binary digits 
u~ed p~r second, we would know that we could get along in prin
ciple with fewer binary digits per second.) We know how to use the 
Mnary digits to specify or deterniine one out of several possibilities, 
either by means of a tree such as that of Figure IV-4 or by means 
of a Huffman code such as that of Figure V-3. It is common in such 
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a case to speak of the rate of transmission of binary digits as a bit 
rate, but there is a certain danger that the inexperienced may 
muddy their thinking if they do this. 

All that I really ask of the reader is to remember that we have 
used bit in one sense only, as a measure of information and have 
called O or 1 a binary digit. If we can transmit 1,000 freely chosen 
binary digits per second, we can transmit 1,000 bits of information 
a second. It may be convenient to use bit to mean binary digit, but 
when we do so we should be sure that we understand what we 
are doing. 

Let us now return for a moment to an entirely different matter, 
the Huffman code given in Table XII and Figure V-3. When we 
encode a message by using this code and get an uninterrupted 
string of symbols, how do we tell whether we should take a particu
lar 1 in the string of symbols as indicating the word the or as part 
of the code for some other word? 

We should note that of the codes in Table XII, none forms the 
first part of another. This is called the prefix property. It has 
important and, indeed, astonishing consequences, which are easily 
illustrated. Suppose, for instance, that we encode the message: the 
man sells the house to the man the horse runs to the man. The 
encoded message is as follows: 

lthel man sells I the I house 

1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 
I I 

likes man 1the1 
I I 

to I the I man I the 1 horse 

0 1 1 1 0 0 1 1 0 0 0 0 1 
I I I I 

horse to I thel man I the I 
I I I I 

runs to I the I man 

0 1 0 0 I 1 0 0 
I I 

runs to I the I man 
I I 

Here the message words are written above the code groups. 
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Now suppose we receive only the digits following the first vertical 
dashed line below the digits. We start to decode by looking for the 
shortest sequence of digits which constitutes a word in our code. 
This is 00010, which corresponds to likes. We go on in this fashion. 
The "decoded" words are written under the code, separated by 
dashed lines. 

We see that after a few errors the dashed lines correspond to the 
solid lines, and from that point on the deciphered message is 
correct. We don't need to know where the message starts in order 
to decode it as correctly as possible (unless all code words are of 
equal length). 

When we look back we can see that we have fulfilled the purpose 
of this chapter. We have arrived at a measure of the amount of 
information per symbol or per unit time of an ergodic source, and 
we have shown how this is equal to the average number of binary 
digits per symbol necessary to transmit the messages produced by 
the source. We have noted that to attain transmission with neg
ligibly more bits than the entropy, we must encode the messages 
produced by the source in long blocks, not symbol by symbol. 

We might ask, however, how long do the blocks have to be? Here 
we come back to another consideration. There are two reasons for 
encoding in long blocks. One is, in order to make the average 
number of binary digits per symbol used in the Huffman code 
negligibly larger than the entropy per symbol. The other is, that 
to encode such material as English text efficiently we must take 
into account the influence of preceding symbols on the probability 
that a given symbol will appear next. We have seen that we can 
do this using equation 5.3 and taking very long blocks. 

We return, then, to the question: how many symbols N must the 
block of characters have so that (I) the Huffman code is very 
efficient, (2) the entropy per block, disregarding interrelations 
outside of the block, is very close to N times the entropy per 
symbol? In the case of English text, condition 2 is governing. 

Shannon has estimated the entropy per letter for English text 
by measuring a person's ability to guess the next letter of a message 
after seeing 1, 2, 3, etc., preceding letters. In these texts the 
"alphabet" used consisted of 26 letters plus the space. 

Figure V-4 shows the upper and lower bounds on the entropy 
of English plotted vs. the number of letters the person saw in 
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making his prediction. While the curve seems to drop slowly as 
the number of letters is increased from 10 to 15, it drops substan
tially between 15 and 100. This would appear to indicate that we 
might have to encode in blocks as large as 100 letters long in order 
to encode English really efficiently. 

From Figure V-4 it appears that the entropy of English text lies 
somewhere between 0.6 and 1.3 bits per letter. Let us assume a 
value of I bit per letter. Then it will take on the average JOO binary 
digits to encode a block of 100 letters. This means that there are 
2100 probable English sequences of I 00 letters. In our usual decinlal 
notation, 2100 can be written as I followed by 30 zeroes, a fantas
tically large number. 

In endeavoring to find the probability in English text of all 
meaningful blocks of letters I 00 letters long, we would have to 
count the relative frequency of occurrence of each such block. 
Since there are J03o highly likely blocks, this would be physically 
impossible. 

Further, this is impossible iu principle. Most of these J030 
sequences ofletters and spaces (which do not include all meaning
ful sequences) have never been written down! Thus, it is impossible 
to speak of their relative frequencies or probabilities of such long 
blocks ofletters as derived from English text. 

Here we are really confronted with two questions: the accuracy 
of the description of English text as the product of an ergodic 
source and the most appropriate statistical description of that 
source. One may beli,ve that appropriate probabilities do exist in 
some form in the human being even if they cannot be evaluated 
by the examination of existing text. Or one may believe that the 
probabilities exist and that they can be derived from data taken 
in some way more appropriate than a naive computation of the 
probabilities of sequences of letters. We may note, for instance, 
that equations 5.4 and 5.5 also give the entropy of an ergodic 
source. Equation 5.5 applies to a finite-state machine. We have 
noted at the close of Chapter III that the idea of a human being 
being in some particular state and in that state producing some 
particular symbol or word is an appealing one. 

Some linguists hold, however, that English grammar is incon
sistent with the output of a finite-state machine. Clearly, in trying 
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to understand the structure and the entropy of actual English text 
we would have to consider such text much more deeply than we 

have up to this point. . 
It is safe if not subtle to apply an exact mathematical theory 

blindly and mechanically to the ideal abstraction for which it holds. 
We must be clever and wise in using even a good and appropnate 
mathematical theory in connection with actual, nonideal problems. 
We should seek a simple and realistic description of the laws gov
erning English text if we are to relate it with ~ommunication theory 
as successfully as possible. Such a descnpt10n must certainly 
involve the grammar of the language, which we will discuss m the 

next chapter. 
In any event, we know that there are some valid statistics. of 

English text, such as letter and word frequencies, and th~ ~oding 
theorems enable us to take advantage of such known statistics. 

If we encode English letter by letter, disregarding the relative 
frequencies of the letters, we require 4.76 binary digits per character 
(including space). Ifwe encode letter by letter, takin.g into ac~ount 
the relative probabilities of various letters, we require 4.03 bmary 
digits per character. If we encode word hr word, ~aking ~.to 
account relative frequencies of words, we require 1.66 b~nary d1g1ts 
per character. And, by using an ingenious and appropnate means, 
Shannon has estimated the entropy of Enghsh text to be between 
.6 and 1.3 bits per letter, so that we may hope for even more 
efficient encoding. 

If, however, we mechanically push some particular procedure 
for finding the entropy of English text to the limit, we can ea~1ly 
engender not only difficulties but nonsense. Perhaps we can ascnbe 
this nonsense partly to differences between man as a source of 
English text and our model of an ide'.11 ergodksource, but partly 
we should ascribe it to the use of an mappropnate approach. We 
can surely say that the model of man as an ergodic source of text 
is good and useful if not perfect, and we should regard it highly 
for these qualities. 

This chapter has been long and heavy going, .and a summary 
seems in order. Clearly, it is impossible to recapitulate bnefiy all 
those matters which took so many pages to expound. We can only 
re-emphasize the most vital points. 
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In communication theory the entropy of a signal source in bits 
per symbol or per second gives the average number of binary 
digits, per symbol or per second, necessary to encode the messages 
produced by the source. 

We think of the message source as randomly, that is, unpre
dictably, choosing one among many possible messages for trans
mission. Thus, in connection with the message source we think of 
entropy as a measure of choice, the amount of choice the source 
excercises in selecting the one particular message that is actually 
transmitted. 

We think of the recipient of the message, prior to the receipt of 
the message, as being uncertain as to which among the many 
possible messages the message source will actually generate and 
transmit to him. Thus, we think of the entropy of the message 
source as measuring the uncertainty of the recipient as to which 
message will be received, an uncertainty which is resolved on 
receipt of the message. 

If the message is one among n equally probable symbols or 
messages, the entropy is log n. This is perfectly natural, for if we 
have log n binary digits, we can use them to write out 

2logn = n 

different binary numbers, and one of these numbers can be used 
as a label for each of the n messages. 

More generally, if the symbols are not equally probable, the 
entropy is given by equation 5.1. By regarding a very long block 
of symbols, whose content is little dependent on preceding symbols, 
as a sort of super symbol, equation 5.1 can be modified to give the 
entropy per symbol for information sources in which the proba
bility that a symbol is chosen depends on what symbols have been 
chosen previously. This gives us equation 5.3. Other general 
expressions for entrop) are given by equations 5.4 and 5.5. 

By assuming that the symbols or blocks of symbols which a 
source produces are encoded by a most efficient binary code called 
a Huffman code, it is possible to prove that the entropy of an 
ergodic source measured in bits is equal to the average number of 
binary digits necessary to encode it. 

An error-free communication channel may not transmit binary 
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digits; it may transmit letters or other symbols. We can imagine 
attaching different message sources to such a channel and seeking 
(usually mathematically) the message source that causes the en
tropy of the message transmitted over the channel to be as l_arge 
as possible. This largest possible entropy of a message transrrntted 
over an error-free channel is called the channel capacity. It can be 
proved that, if the entropy of a source is less than the channel 
capacity of the channel, messages from the source can be encoded 
so that they can be transmitted over the channel. This is Shannon's 
fundamental theorem for the noiseless channel. 

In principle, expressions such as equations 5.1, 5.3, 5.4, and 5.5 
enable us to compute the entropy of a message source by statistical 
analysis of messages produced by the source. Even for an ideal 
ergodic source, this would often call for impractically long compu
tations. In the case of an actual source, such as English text, some 
naive prescriptions for computing entropy can be meaningless. 

An approximation to the entropy can be obtamed by disregard
ing the effect of some past symbols on the probability of the source 
producing a particular symbol next. Such an approximation to the 
entropy is always too large and calls for encodmg by means of more 
binary digits than are absolutely necessary. Thus, if we encode 
English text letter by letter, disregarding even. the rela!ive pr?b~
bilities of letters, we require 4.76 binary digits per letter, while 1f 
we encode word by word, taking into account the relative proba-
bility of words, we require 1.66 binary digits per letter. . 

If we wanted to do even better we would have to take mto 
account other features of English such as. the effect of the con
straints imposed by grammar on the probability that a message 
source will produce a particular word. 

While we do not know how to encode English text in a highly 
efficient way, Shannon made an ingenious experiment which sho~s 
that the entropy of English text must lie between .6 and 1.3 bits 
per character. In this experiment a person guessed what letter 
would follow the letters of a passage of text many letters long. 

CHAPTER VI Language and 
Meaning 

THE TWO GREAT TRIUMPHS of information theory are establishing 
the channel capacity and, in particular, the number of binary digits 
required to transmit information from a particular . source and 
showing that a noisy communication channel has an mformat10n 
rate in bits per character or bits per second up to which errorless 
transmission is possible despite the noise. In each case, the results 
must be demonstrated for discrete and for continuous sources and 
channels. 

After four chapters of by no means easy preparation, we were 
finally ready to essay in the previous chapter the problem of the 
number of binary digits required to transmit the information gen
erated by a truly ergodic discrete source. Were this book a text on 
information theory, we would proceed to the next logical step, the 
noisy discrete channel, and then on to the ergodic continuous 
channel. 

At the end of such a logical progress, however, our thoughts 
would necessarily be drawn back to a consideration of the message 
sources of the real world, which are only approximately ergodic, 
and to the estimation of their entropy and the efficient encoding 
of the messages they produce. 

Rather than proceeding further with the strictly mathematical 
aspects of communication theory at this point, is it not more 
attractive to pause and consider that chief form of communication, 
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language, in the light of communication theory? And, in doing so, 
why should we not let our thoughts stray a little in viewing an im· 
portant part of our world from the small eminence we have 
attained? Why should we not see whether even the broad problems 
of language and meaning seem different to us in the light of what 
we have learned? 

In following such a course the reader should heed a word of 
caution. So far the main emphasis has been on what we know. What 
we know is the hard core of science. However, scientists find it very 
difficult to share the things that they know with laymen. To under
stand the sure and the reasonably sure knowledge of science takes 
the sort of hard thought which I am afraid was required of the 
reader in the last few chapters. 

There is, however, another and easier though not entirely frivo
lous side to science. This is a peculiar type of informed ignorance. 
The scientist's ignorance is rather different from the layman's 
ignorance, because the background of established fact and theory 
on which the scientist bases his peculiar brand of ignorance ex
cludes a wide range of nonsense from his speculations. In the higher 
and hazier reaches of the scientist's ignorance, we have scientifically 
informed ignorance about the origin of the universe, the ultimate 
basis of knowledge, and the relation of our present scientific knowl
edge to politics, free will, and morality. In this particular chapter 
we will dabble in what I hope to be scientifically informed ignor· 
ance about language. 

The warning is, of course, that much of what will be put forward 
here about language is no more than informed ignorance. The 
warning seems necessary because it is very hard for laymen to tell 
scientific ignorance from scientific fact. Because the ignorance is 
necessarily expressed in broader, sketchier, and less qualified terms 
than is the fact, it is easier to assimilate. Because it deals with grand 
and unsolved problems, it is more romantic. Generally, it has a 
wider currency and is held in higher esteem than is scientific fact. 

However hazardous such ignorance may be to the layman, it is 
valuable to the scientist. It is this vision of unattained lands, of 
unscaled heights, which rescues him from complacency and spurs 
him beyond mere plodding. But when the scientist is airing his 
ignorance he usually knows what he is doing, while the unwarned 
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layman apparently often does not and is left scrambling about on 
cloud mountains without ever having set foot on the continents of 
knowledge. 

With this caution in mind, let us return to what we have already 
encountered concerning language and proceed thence. 

In what follows we will confine ourselves to a discussion of 
grammatical English. We all know (and especially those who have 
had th~ misfortune of listening to a transcription of a seemingly 
l~telligible conversation or technical talk) that much spoken Eng
lish appears to be agrarnmatical, as, indeed, much of Gertrude 
Stein is. So are many conventions and cliches. "Me heap big 
chief." is perfectly intelligible anywhere in the country, yet it is 
certamly not grammatical. Purists do not consider the inverted 
word ord.er which is so characteristic of second-rate poetry as being 
grammatical. 

Thus, a discussion of grammatical English by no means covers 
the field of spoken and written communication, but it charts a 
course which we can follow with some sense of order and interest. 

We have noted before that, if we are to write what will be 
accepted as English text, certain constraints must be obeyed. We 
cannot srmply set down any word following any other. A complete 
grammar of a language would have to express all of these con
stramts fully. It should allow within its rules the constrnction of 
any _sequence of English words which will be accepted, at some 
particular time and according to some particular standard, as 
grammatical. 
. The matter of acceptance of constructions as grammatical is a 

difficult _and hazy one. The translators who produced the King 
James Bible were free to say "fear not," "sin not," and "speak not:' 
as well as "think not," "do not," or "have not," and we frequently 
repeat the aphorism "want not, waste not." Yet in our everyday 
speech or wntmg we would be constrained to say "do not fear," 
"do not sin,"·or "do not speak," and we might perhaps say, "If 
you are not to want, you should not waste." What is granrmatical 
certainly changes with time. Here we can merely notice this and 
pass on to other matters. 

Certainly, a satisfactory grammar must prescribe certain rules 
which allow the construction of all possible grammatical utterances 
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and of grammatical utterances only. Besides doing this, satisfactory 
rules of grammar should allow us to analyze a sentence so as to 
distinguish the features which were determined merely by the rules 
of grammar from any other features. . 

If we once had such rules, we would be able to make a new esti
mate of the entropy of English text, for we could see what part of 
sentence structure is a mere mechanical following of rules and what 
part involves choice or uncertainty an~ hence _contributes to e~
tropy. Further, we could transmit English efficiently by tr":1'5nn.t
ting as a message only data concerning the ch01ces exercised m 
constructing sentences; at the receiver, we could let a _grammar 
machine build grammatical sentences embodymg the ch01ces speci
fied by the received message. 

Even grammar, of course, is not the whole of language, for a 
sentence can be very odd even if it is grammatical. We can 1magme 
that, if a machine capable of producing only grammatical sentences 
made its choices at random, it might perhaps produce such a sen
tence as "The chartreuse semiquaver skinned the feelings of the 
manifold." A man presumably makes his choices in some other 
way if he says, "The blue note flayed the emotions of the multi
tude." The difference lies in what choices one makes while follow
ing grammatical rules, not in the rules themselves. An understand
ing of grammar would not unlock to us all of the secrets of 
language, but it would take us a long step forward. . 

What sort of rules will result in the production of grammal!cal 
sentences only and of all grammatical sentences, even when ~hoices 
are made at random? In Chapter III we saw that English-like 
sequences of words can be produced by choosing a word ~t ran
dom according to its probability of succeeding a preceding se
quence of words some M words long. An example of a second-ord_er 
word approximation, in which a word 1s chosen on the basis of its 
succeeding the previous word, was given. . . . 

One can construct higher-order word appro=at10ns by usmg 
the knowledge of English which is stored in our heads. One can, 
for instance, obtain a fourth-order word approX1mal!on by srmply 
showing a sequence of three connected words to a person and ask
ing him to think up a sentence in which the sequence of words 
occurs and to add the next word. By going from person to person 
a long string of words can be constructed, for instance: 
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I. When morning broke after an orgy of wild abandon he said 
here head shook vertically aligned in a sequence of words signify
ing what. 

2. It happened one frosty look of trees waving gracefully against 
the wall. 

3. When cooked asparagus has a delicious flavor suggesting 
apples. 

4. The last time I saw him when he lived. 
These "sentences" are as sensible as they are because selections 

of words were not made at random but by thinking beings. The 
point to be noted is how astonishingly grammatical the sentences 
are, despite the fact that rules of grammar (and sense) were ap
plied to only four words at a time (the three shown to each person 
and the one he added). Still, example 4 is perhaps dubiously 
grammatical. 

If Shannon is right and there is in English text a choice of about 
1 bit per symbol, then choosing among a group of 4 words could 
involve about 22 binary choices, or a choice among some 10 mil
lion 4-word combinations. In principle, a computer could be made 
to add words by using such a list of combinations, but the result 
would not be assuredly grammatical, nor could we be sure that 
this cumbersome procedure would produce all possible granrmati
cal sequences of words. There probably are sequences of words 
which could form a part of a grammatical sentence in one case 
and could not in another case. If we included such a sequence, we 
would produce some nongrammatical sentences, and, if we ex
cluded it, we would fail to produce all grammatical sentences. 

If we go to combinations of more than four words, we will favor 
grammar over completeness. If we go to fewer than four words, 
we will favor completeness over grammar. We can't have both. 

The ide~ of_ a finite-state machine recurs at this point. Perhaps 
at each pomt m a sentence a sentence-producing machine should 
be in a particular state, which allows it certain choices as to what 
state it will go to next. Moreover, perhaps such a machine can deal 
with ce~tain classes or subclasses of words, such as singular nouns, 
plural nouns, adjectives, adverbs, verbs of various tense and num
ber, and so on, so as to produce grammatical structures into which 
words can he fitted rather than sequences of particular words. 

The idea of granrmar as a finite-state machine is particularly 
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appealing because a mechanist would assert that man must be a 
finite-state machine, because he consists of only a finite number 
of cells or of atoms if we push the matter further. 
No~ Chomsky, a brilliant and highly regarded modem linguist, 

rejects the finite-state machine as either a possible or a proper 
model of grammatical structure. Chomsky pomts out th~t there 
are many rules for constructing sequences of characters which can
not be embodied in a finite-state machme. For mstance, the rule 
might be, choose letters at random and write them down until the 
letter z shows up, then repeat all the letters since the preceding Z 
in reverse order, and then go on with a new set of letters, and so 
on. This process will produce a sequence of letters showiug clear 
evidence oflong-range order. Further, there is no limit to the P?s
sible length of the sequence between Z's. No finite-state machine 
can simulate this process and this result. . 

Chomsky points out that there is no limit to the possible length 
of grammatical sentences in English and ar~ues that English sen
tences are organized in such a way that this is sufficient to rule 
out a finite-state machine as a source of all possible English text. 
But can we really regard a sentence miles long as grammatical 
wh~n we know darned well that no one ever has or will produce 
such a sentence and that no one could understand it if it existed? 

To decide such a question, we must have a standard of being 
grammatical. While Chomsky seems to refer. being or not .being 
grammatical, and some questions of punctuation and meanmg as 
well, to spoken English, I think that his real cntenon is: a sen
tence is grammatical if, in reading or saying it aloud with a natural 
expression and thoughtfully but ingenuously, it is deemed gram
matical by a person who speaks it, or perhaps by a person who 
hears it. Some problems which might plague others may not bother 
Chomsky because he speaks remarkably well-connected and gram
matical English. 

Whether or not the rules of grammar can be embodied in a 
finite-state machine, Chomsky offers persuasive evidence that it is 
wrong and cumbersome to try to generate a sentence by basing 
the choice of the next word entirely and solely on words already 
written down. Rather, Chomsky considers the course of sentence 
generation to be something of this sort: 
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We start with one or another of several general forms the sen
tence might take; for example, a noun phrase followed by a verb 
phrase. Chomsky calls such a particular form of sentence a kernel 
sentence. We then invoke rules for expanding each of the parts of 
the kernel sentence. In the case of a noun phrase we may first de
scribe it as an article plus a noun and finally as "the man." In the 
case of a verb phrase we may describe it as a verb plus an object, 
the object.as an article plus a noun, and, in choosing particular 
words, as "hit the ball." Proceeding in this way from the kernel 
sentence, noun phrase plus verb phrase, we arrive at the sentence, 
"The man hit the ball." At any stage we could have made other 
choices. By making other choices at the final stages we might have 
arrived at "A girl caught a cat." 
. Here we see that the element of choice is not exercised sequen

tially along the sentence from beginning to end. Rather, we choose 
an over-all skeletal plan or scheme for the whole final sentence at 
the start. That scheme or plan is the kernel sentence. Once the 
kernel sentence has been chosen, we pass on to parts of the kernel 
sentence. From each part we proceed to the constituent elements 
of that part and from the constituent elements to the choice of 
particular words. At each branch of this treelike structure grow
mg from the kernel sentence, we exercise choice in arriving at the 
particular final sentence, and, of course, we chose the kernel sen
tence to start with. 

Here I have indicated Chomsky's ideas very incompletely and 
very sketchily. For instance, in dealing with irregular forms of 
words Chomsky will first indicate the root word and its particular 
granimatical form, and then he will apply certain obligatory rules 
in arriving at the correct English form. Thus, in the branching con
struction of a sentence, use is made both of optional rules, which 
allow choice, and of purely mechanical, deterministic obligatory 
rules, which do not. 

To understand this approach further and to judge its merit, one 
must refer to Chomsky's book,' and to the references he gives. 

Chomsky must, of course, deal with the problem of ambiguous 
sentences, such as, "The lady scientist made the robot fast while 
she ate." The author of this sentence, a learned information theo-

1 Noam Chomsky, Syntactic Structures, Mouton and Co., 's-Gravenhage, 1957. 
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rist, tells me that, allowing for the vernacular, it has at least four 
different meanings. It is perhaps too complicated to serve as an 
example for detailed analysis. 

We might think that ambiguity arises only when one or more 
words can assume different meanings in what is essentially the same 
grammatical structure. This is the case in "he was mad" (either 
angry or insane) or "the pilot was high" (in the sky or in his cups). 
Chomsky, however, gives a simple example of a phrase m which 
the confusion is clearly grammatical. In "the shooting of the 
hunters," the noun hunters may be either the subject, as in "the 
growling of lions" or the object, as in "the growmg of flowers." 

Chomsky points out that different rules of transformation applied 
to different kernel sentences can lead to the same sequence of 
grammatical elements. Thus, "the picture was painted ,?Y a real 
artist" and "the picture was painted by a new techmque seem to 
correspond grammatically word for word, yet the first sentence 
could have arisen as a transformation of "a real artist pamted the 
picture" while the second could not have arisen as a transforma
tion of a sentence having this form. When the final words as well 
as the final grammatical elements are the same, the sentence is 
ambiguous. 

Chomsky also faces the problem that the distinction between 
the provinces of grammar and meaning is not clear. Shall we say 
that grammar allows adjectives but not adverbs to modify nouns? 
This allows "colorless green." Or should grammar forbid the as~o
ciation of some adjectives with some nouns, of some nouns wtth 
some verbs, and so on? With one choice, certain constructions are 
grammatical but meaningless; with the other they are ungram
matical. 

We see that Chomsky has laid out a plan for a grammar of 
English which involves at each point in the synthesis of a sentence 
certain steps which are either obligatory or optional. The p~ocesses 
allowed in this grammar cannot be earned out by a fimte-state 
machine, but they can be carried out by a more general machm~ 
called a Turing machine, which is a finite-state machme plus an 
infinitely long tape on which symbols can be ;rotten and from 
which symbols can be read or erased. The relation of Chomsky's 
grammar to such machines is a proper study for those mterested 
in automata. 
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We should note, however, that if we arbitrarily impose some 
bound on the length of a sentence, even if we limit the length to 
1,000 or 1 million words, then Chomsky's grammar does correspond 
to a fimte-state machine. The imposition of such a limit on sen
tence length seems very reasonable in a practical way. 

Once a general specification or model of a grammar of the sort 
Chomsky proposes is set up, we may ask under what circumstances 
and how can an entropy be derived which will measure the choice 
or uncertainty of a message source that produces text according 
to the rules of the grammar? This is a question for the mathema
tically skilled information theorist. 

Much more important is the production of a plausible and 
workable grammar. This might be a phrase-structure granunar, as 
Chomsky proposes, or it might take some other form. Such a 
grammar might be incomplete in that it failed to produce or ana
lyze some constructions to be found in grammatical English. It 
seems more important that its operation should correspond to what 
we know of the production of English by human beings. Further, 
it should be simple enough to allow the generation and analysis 
of text by means of an electronic computer. I believe that com
puters must be used in attacking problems of the structure and 
statistics of English text. 

While a great many people are convinced that Chomsky's 
phrase-structure approach is a very important aspect of granunar, 
some feel that his picture of the generation of sentences should be 
modified or narrowed if it is to be used to describe the actual gen
erat10n of sentences by human beings. Subjectively, in speaking 
or listemng to a speaker one has a strong impression that sentences 
are generated largely from beginning to end. One also gets the 
1mpress10n that the person generating a sentence doesn't have a 
very elaborate pattern in his head at any one time but that he 
elaborates the pattern as he goes along. · 

I suspect that studies of the form of grammars and of the statis
tics of their use as revealed by language will in the not distant 
future tell us many new things about the nature of language and 
about the nature of men as well. But, to say something more par
ticular than this, I would have to outreach present knowledge
mine and others. 

A granunar must specify not only rules for putting different types 
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of words together to make grammatical structures;. it must divide 
the actual words of English into classes on the basis. of the places 
in which they can appear in grammatical structures. Lmgmsts make 
such a division purely on the basis of grammatical funcllon with
out invoking any idea of meaning. Th.us, all we can expect. of a 
grammar is the generation of grammallcal sentences, and .this m
cludes the example given earlier: "The chartreuse se!":'quaver 
skinned the feelings of the manifold." Certainly the. dlVlsion of 
words into grammatical categories such as nouns, adiecllves, and 
verbs is not our sole guide concerning the use of words m produc
ing English text. 

What does influence the choice among words when the words 
used in constructing grammatical sentences are chosen, not at 
random by a machine, but rather by a live. hU!llan being who, 
through long training, speaks or writes English accordmg to the 
rules of the grammar? This question is n.ot to be answe~ed by a 
vague appeal to the word meaning. Our cntena m producmg Eng
lish sentences can be very complicated indeed. Philooophers and 
psychologists have speculated abo~t .and studied the use of word~ 
and language for generat10ns, and it is as hard to. say anything en 
tirely new about this as it is to say anythmg entirely true. In par
ticular, what Bishop Berkeley wrote m the eighteenth century 
concerning the use oflanguage is so sensible that one .can scarcely 
make a reasonable comment without owmg him credit. 

Let us suppose that a poet of the scanning, rhyming school sets 
out to write a grammatical poem. Much of his choice will be exer
cised in selecting words which fit into the chosen rhythilllc pattern, 
which rhyme, and which have alliteration and certam consiste~t 
or agreeable sound values. This is particularly notable m Poe s 
"The Bells," "Ulalume," and "The Raven." . 

Further, the poet will wish to bring together words which thro~gh 
their sound as well as their sense arouse related emot10ns or 1fll· 

pressions in the reader or hearer. The differ~nt sections of Poe's 
"The Bells" illustrate this admirably. There is a marked contrast 

between: 
How they tinkle, tinkle, tinkle, 
In the icy air of night! 
While the stars that oversprinkle 

and 
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All the heavens, seem to twinkle 
In a crystalline delight; ... 

Through the balmy air of night 
How they ring out their delight! 
From the molten-golden notes, 
And all in tune, 
What a liquid ditty floats ... 
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Sometimes, the picture may be harmonious, congruous, and 
moving without even the trivial literal meaning of this verse of 
Poe's, as in Blake's two lines: 

Tyger, Tyger, burning bright 
In the forests of the night ... 

In instances other than poetry, words may be chosen for euphony, 
but they are perhaps more often chosen for their associations wi.th 
and ability to excite passions such as those listed by Berkeley: fear, 
love, hatred, admiration, disdain. Particular words or expressions 
move each of us to such feelings. In a given culture, certain words 
and phrases will have a strong and common effect on the majority 
of hearers, just as the sights, sounds or events with which they are 
associated do. The words of a hymn or psalm can induce a strong 
religious emotion; political or racial epithets, a sense of alarm or 
contempt, and the words and phrases of dirty jokes, sexual 
excitement. 

One emotion which Berkeley does not mention is a sense of 
understanding. By mouthing commonplace and familiar patterns 
of words in connection with ill-understood matters, we can asso
ciate some of our emotions of fantiliarity and insight with our per
plexity about history, life, the nature of knowledge, consciousness, 
death, and Providence. Perhaps such philosophy as makes use of 
common words should be considered in terms of assertion of a 
reassurance concerning the importance of man's feelings rather 
than in terms of meaning. 

One could spend days on end examining examples of motivation 
in the choice of words, but we do continually get back to the matter 
of meaning. Whatever meaning may be, all else seems lost without 
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it. A Chinese poem, hymn, deprecation, or joke will have little effect 
on me unless I understand Chinese in whatever sense those who 
know a language understand it. 

Though Colin Cherry, a well-known information theorist, ap· 
pears to object, I think that it is fair to regard meaningful language 
as a sort of code of communication. It certainly isn't a simple code 
in which one mechanically substitutes a word for a deed. It's more 
like those elaborate codes of early cryptography, in which many 
alternative code words were listed for each common letter or word 
(in order to suppress frequencies). But in language, the listings may 
overlap. And one person's code book may have different entries 
from another's, which is sure to cause confusion. 

If we regard language as an imperfect code of communication, 
we must ultimately refer meaning back to the intent of the user. 
It is for this reason that I ask, "What do you mean?" even when I 
have heard your words. Scholars seek the intent of authors long 
dead, and the Supreme Court seeks to establish the intent of Con· 
gress in applying the letter of the law. 

Further, if I become convinced that a man is lying, I interpret 
his words as meaning that he intends to flatter or deceive me. If I 
find that a sentence has been produced by a computer, I interpret 
it to mean that the computer is functioning very cleverly. 

I don't think that such matters are quibbles; it seems that we 
are driven to such considerations in connection with meaning if 
we do regard language as an imperfect code of communication, 
and as one which is sometimes exploited in devious ways. We are 
certainly far from any adequate treatment of such problems. 

Grammatical sentences do, however, have what might be called 
a formal meaning, regardless of intent. If we had a satisfactory 
grammar, a machine should be able to establish the relations be
tween the words of a sentence, indicating subject, verb, object, and 
what modifying phrases or clauses apply to what other words. The 
next problem beyond this in seeking such formal meaning in sen
tences is the problem of associating words with objects, qualities, 
actions, or relations in the world about us, including the world of 
man's society and of his organized knowledge. 

In the simple communications of everyday life, we don't have 
much trouble in associating the words that are used with the proper 
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objects, qualities, actions, and relations. No one has trouble with 
"close the east window" or "Henry is dead," when he hears such 
a si~ple sentence in simple, unambiguous surroundings. In a 
familiar Amencan room, anyone can point out the window; we 
have closed wmdows repeatedly, and we know what direction east 
is. Also, we know Henry (if we don't get Henry Smith mixed up 
with Henry Jones), and we have seen dead people. If the sentence 
is misheard. or misunderstood, a second try is almost sure to 
succeed. 

Think, however, how puzzling the sentence about the window 
would be, even in translation, to a shelterless savage. And we can 
get pretty puzzled ourselves concerning such a question as is a 
virus living or dead? ' 

It appears that much of the confusion and puzzlement about the 
associations of words with things of the world arose through an 
~ffort by philosophers from Plato to Locke to give meaning to such 
ideas as wmdow, cat, or dead by associating them with general ideas 
?r ideal examples. Thus, we are presumed to identify a window by 
its resemblance to a general idea of a window to an ideal window 
in fact, and a cat by its resemblance to an ideal cat which embodie~ 
~ll the attributes of cattiness. As Berkeley points out, the abstract 
idea of a (or the ideal) triangle must at once be "neither oblique, 
rectangle, equilateral, equicrural nor scaleron, but all and none of 
these at once." 

Actually, when a doctor pronounces a man dead he does so on 
the basis of certain observed signs which h~ would be at a loss to 
identify in a virus. Further, when a doctor makes a diagnosis, he 
does ~?t start out by making an over-all comparison of the patient's 
cond1t10n with an ideal picture of a disease. He first looks for such 
signs as appearance, temperature, pulse, lesions of the skin, inflam
mation of the throat, and so on, and he also notes such symptoms 
as the patient can describe to him. Particular combinations of signs 
and symptoms indicate certain diseases, and in differential diag
noses further tests may be used to distinguish among diseases pro
ducing similar signs and symptoms. 

In a. similar manner, a botanist identifies a plant, familiar or 
unfamiliar, by the presence or absence of certain qualities of size, 
color, leaf shape and disposition, and so on. Some of these quaii-
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ties such as the distinction between the leaves of monocotyledon
ous' and dicotyledonous plants, can be decisive; others, such as size, 
can be merely indicative. In the end, one is either sure he is nght 
or perhaps willing to believe that he_is right; or the plant may be 
a new species. . . . 

Thus, in the workaday worlds of medicme and botany, the ideal 
disease or plant is conspicuous by its ~bsence as any actual useful 
criterion. Instead, we have lists of qualities, some decisive and some 
merely indicative. . 

The value of this observation has been confirmed strongly m 
recent work toward enabling machines to carry out tasks of recog
nition or classification. Early workers, perhaps misled by early 
philosophers, conceived the idea of matching a letter to an ideal 
pattern of a letter or the spectrogram of a sound to an ideal spec
trogram of the sound. The results were terrible. Audrey, a pattern
matching machine with the bulk of a hippo and _brams beneath 
contempt, could recognize digits spoken by one vmce or a sele~ted 
group of voices, but Audrey was sadly fallible. We should, I think, 
conclude that human recognition works this way m very simple 
cases only, if at all. . . 

Later and more sophisticated workers in the field of recogmtJ.on 
look for significant features. Thus, as a very simple example, rather 
than having an ideal pattern of a capital Q, one nnght describe_ Q 
as a closed curve without corners or reversals of curvature and with 
something attached between four and six o'clock. . . 

In 1959, L. D. Harmon built at the Bell Laboratories a snnple 
device weighing a few pounds which ahnost infallibly recognizes 
the digits from one to zero written out as words m longhand. Do~s 
this gadget match the handwriting against patterns? You bet _it 
doesn't! Instead; it asks such questions as, how many tJ.mes did 
the stylus go above or below certain lines? Were I's dotted or T's 

crossed? 
Certainly, no one doubts that words refer to classes ~f objects, 

actions, and so on. We are surrounded by and mvolved with a large 
number of classes and subclasses of objects and actions which we· 
can usefully associate with words. These include such objects as 
plants (peas, sunflowers ... ), animals (cats, dogs .. :)'. mac~es 
(autos, radios ... ), buildings (houses, towers ... ), clothmg (skirts, 
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socks ... ), and so on. They include such very complicated sequences 
?factions as dressing and undressing (the absent-minded, includ
mg myself, repeatedly demonstrate that they can do this uncon
sciously); tying one's shoes (an act which children have considerable 
difficulty in learning), eating, driving a car, reading, writing, adding 
figures, playmg golf or tennis (activities involving a host of distinct 
subsidiary skills), listening to music, making love, and so on and 
on and on .. 

It _seems to me that wh~t delimits a particular class of objects, 
qualilles, act10~s, or relations is not some sort of ideal example. 
Rather, it is a list of qualities. Further, the list of qualities cannot 
be expected to enable us to divide experience up into a set oflogi
cal, sharply delimited, and all-embracing categories. The language 
of sci~nce may approach this in dealing with a narrow range of 
experience, but the language of everyday life makes arbitrary, 
overlappmg, and less than all-inclusive divisions of experience. Yet, 
I believe that it is by means of such lists of qualities that we iden
tify doors, windows, cats, dogs, men, monkeys, and other objects 
of daily hfe. I feel also that this is the way in which we identify 
common actions such as running, skipping, jumping, and tying, 
and such symbols as words, written and spoken, as well. 

I think that it is only through such an approach that we can hope 
to make a machine classify objects and experience in terms of 
language, or recognize and interpret language in terms of other 
language or of action. Further, I believe that when a word cannot 
offer a table of qualities or signs whose elements can be traced back 
to common and familiar experiences, we have a right to be wary 
of the word. 

Ifwe are to understand language in such a way that we can hope 
some day to make a machine which will use language successfully, 
we must have a grammar and we must have a way of relating words 
to the world about us, but this is of course not enough. Ifwe are to 
regard sentences as meaningful, they must in some way correspond 
to life as we live it. 

Our lives do not present fresh objects and fresh actions each day. 
They are made up of familiar objects and faniiliar though compli
cated sequences of actions presented in different groupings and 
orders. Sometimes we learn by adding new objects, or actions, or 
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combinations of objects or sequences of actions to our stock, and 
so we enrich or change our lives. Sometimes we forget objects and 
actions. 

Our particular actions depend on the objects and events about 
us. We dodge a car (a complicated sequence of actions). When 
thirsty, we stop at the fountain and drink (another complicated but 
recurrent sequence). In a packed crowd we may shoulder someone 
out of the way as we have done before. But our information about 
the world does not all come from direct observation, and our in
fluence on otbers is happily not confined to pushing and shoving. 
We have a powerful tool for such purposes: language and words. 

We use words to learn about relations among objects and activi
ties and to remember them, to instruct others or to receive instruc
tion from them, to influence people in one way or another. For the 
words to be useful, the hearer must understand them in tbe same 
sense that the speaker means them, that is, insofar as he associates 
them with nearly enough the same objects or skills. It's no use, 
however, to tell a man to read or to add a column of figures if he 
has never carried out these actions before, so that he doesn't have 
these skills. It is no use to tell him to shoot tbe aardvark and not 
the gnu if he has never seen either. 

Further, for the sequences of words to be useful, they must refer 
to real or possible sequences of events. It's of no use to advise a 
man to walk from London to New York in the forenoon inunedi
ately after having eaten a seven o'clock dinner. 

Thus, in some way the meaningfulness of language depends not 
only on grammatical order and on a workable way of associating 
words with collections of objects, qualities, and so on; it also de
pends on tbe structure of tbe world around us. Here we encounter 
a real and an extremely serious difficulty with the idea that we can 
in some way translate sentences from one language into another 
and accurately preserve the "meaning." 

One obvious difficulty in trying to do this arises from differences 
in classification. We can refer to either the foot or the lower leg; 
the Russians have one word for the foot plus the lower leg. Hun
garians have twenty fingers (or toes), for the word is the same for 
either appendage. To most of us today, a dog is a dog, male or 
female, but men of an earlier era distinguished sharply between a 
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dog and~ bitch. Eskimos make, it is said, many distinctions among 
snow which m our language would call for descriptions, and for 
us even these description~ woul~ have little real content of impor
tance or feeling, because m our lives the distinctions have not been 
important. Thus, the parts of the world which are common and 
~eaningful to those speaking different languages are often divided 
~nto. somewhat different classes. It may be impossible to write down 
m different languages words or simple sentences that specify exactly 
the same range of experience. 

There is a graver problem tban this, however. The range of 
experience to w_hich various words refer is not common among all 
cultures. What 1s one to do when faced with tbe problem of trans
latmg a novel containing the phrase, "tying one's shoelace," which 
as we have noted describes a complicated action, into the language 
of a shoeless people? An elaborate description wouldn't call up tbe 
nght thing at all. Perhaps some cultural equivalent (?) could be 
found. And how should one deal witb the fact tbat "he built a 
house'~ means personal tree cutting and adzing in a pioneer novel, 
while 1t refers to tbe employment of an architeci and a contractor 
in a contemporary story? 

It is possible to make some sort of translation between closely 
related language~ o~ a word-for-word or at least phrase-for-phrase 
b~s1s',, tho~~ tbi_s ~s ~:"d to have led from "out of sight, out of 
mmd to blind idiot. When tbe languages and cultures differ in 
maior respects, tbe translator has to think what the words mean 
in terms of objects, actions, or emotions and tben express tbis 
meaning in the other language. It may be, of course, that the cul
ture with.which the language is associated has no close equivalents 
to the objects or actions described in the passage to be translated. 
Then the translator is really stuck. 

How, oh how is. the man who sets out to build a translating 
machm~ to cope w:tth a problem such as this? He certainly carmot 
d~ so without m some way enabling the machine to deal effectively 
with what we refer to as understanding. In fact, we see understand
mg at work even in situations which do not involve translation 
from one language into another. A screen writer who can quite 
accurately transfer the essentials of a scene involving a dying uncle 
m Omsk to one involving a dying father in Dubuque will repeatedly 
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make complete nonsense in trying to rephrase a simple technical 
statement. This is clearly because he understands grief but not 
science. 

Having grappled painfully with the word meaning, we are now 
faced with the word understanding. This seems to have two sides. 
If we understand algebra or calculus, we can use their manipula
tions to solve problems we haven't encountered before or to supply 
proofs of theorems we haven't seen proved. In this sense, under
standing is manifested by a power to do, to create, not merely to 
repeat. To some degree, an electronic computer which proves 
theorems in mathematical logic which it has not encountered be
fore (as computers can be programmed to do) could perhaps be 
said to understand the subject. But there is an emotional side to 
understanding, too. When we can prove a theorem in several ways 
and fit it together with other theorems or facts in various manners, 
when we can view a field from many aspects and see how it all fits 
together, we say that we understand the subject deeply. We attain 
a warm and confident feeling about our ability to cope with it. Of 
course at one time or another most of us have felt the warmth 
withou't manifesting the ability. And how disillusioned we were at 
the critical test! 

In discussing language from the point of view of information 
theory, we have drifted along a tide of words, through the imper
fectly charted channels of grammar and on into the obscurities of 
meaning and understanding. This shows us how far ignorance can 
take one. It would be absurd to assert that information theory, or 
anything else, has enabled us to solve the problems of linguistics, 
of meaning, of understanding, of philosophy, of life. At best, we 
can perhaps say that we are pushing a little beyond the mechani
cal constraints of language and getting at the amount of choice 
that language affords. This idea suggests views concerning the use 
and function of language, but it does not establish them. The 
reader may share my freely offered ignorance concerning these 
matters, or he may prefer his own sort of ignorance. 

CHAPTER VII Efficient Encoding 

WE WILL NEVER AGAIN understand nature as well as Greek 
philosophers did. A general explanation of common phenomena 
in terms of a few all-embracing principles no longer satisfies us. 
We know too much. We must explain many things of which the 
Greeks were unaware. And, we require that our theories harmonize 
in detail with the very wide range of phenomena which they seek 
to explain. We insist that they provide us with useful guidance 
rather than with rationalizations. The glory of Newtonian me
chanics is that it has enabled men to predict the positions of planets 
and satellites and to understand many other natural phenomena 
as well; it is surely not that Newtonian mechanics once inspired 
and supported a simple mechanistic view of the universe at large, 
including life. 

Present-day physicists are gratified by the conviction that all 
(non-nuclear) physical, chemical, and biological properties of mat
ter can in principle be completely and precisely explained in all 
their detail by known quantum la,ws, assuming only the existence 
of electrons and of atomic nuclei of various masses and charges. 
It is somewhat embarrassing, however, that the only physical sys
tem all of whose properties actually have been calculated exactly 
is the isolated hydrogen atom. 

Physicists are able to predict and explain some other physical 
phenomena quite accurately and many more semiquantitatively. 
However, a basic and accurate theoretical treatment, founded on 
electrons, nuclei, and quantum laws only, without recourse to 
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other experimental data, is lacking for most common thermal, 
mechanical, electrical, magnetic, and chemical phenomena. Trac
ing complicated biological phenomena directly back to quantum 
first principles seems so difficult as to be scarcely relevant to the 
real problems of biology. It is almost as if we knew the axioms of 
an important field of mathematics but could prove only a few 
simple theorems. 

Thus, we are surrounded in our world by a host of intriguing 
problems and phenomena which we cannot hope to relate through 
one universal theory, however true that theory may be in principle. 
Until recently the problems of science which we commonly asso
ciate with the field of physics have seemed to many to be the most 
interesting of all the aspects of nature which still puzzle us. Today, 
it is hard to find problems more exciting than those of biochem
istry and physiology. 

I believe, however, that many of the problems raised by recent 
advances in our technology are as challenging as any that face us. 
What could be more exciting than to explore the potentialities of 
electronic computers in proving theorems or in simulating other 
behavior we have always thought of as "human"? The problems 
raised by electrical communication are just as challenging. Accu
rate measurements made by electrical means have revolutionized 
physical acoustics. Studies carried out in connection with tele
phone transmission have inaugurated a new era in the study of 
speech and hearing, in which previously accepted ideas of phys
iology, phonetics, and liguistics have proved to be inadequate. 
And, it is this chaotic and intriguing field of much new ignorance 
and of a little new knowledge to which communication theory 
most directly applies. 

If communication theory, like Newton's laws of motion, is to be 
taken seriously, it must give us useful guidance in connection with 
problems of communication. It must demonstrate that it has a 
real and enduring substance of understanding and power. As the 
name implies, this substance should be sought in the efficient and 
accurate transmission of information. The substance indeed exists. 
As we have seen, it existed in an incompletely understood form 
even before Shannon's work unified it and made it intelligible. 
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To deal with the matter of accurate transmission of information 
~e need new basic understanding, and this matter will be tackled 
m the nex_t chapter. The foregoing chapters have, however, put us 
m a pos1t10n to discuss some challenging aspects of the efficient 
transffilss10n of information. 

We have seen that in the entropy of an information source 
measured in bits per symbol or per second we have a measure of 
the number of binary digits, of off-or-on pulses, per symbol or per 
second which are necessary to transmit a message. Knowing this 
number ofbmary digits required for encoding and transmission, we 
naturally want a means of actually encoding messages with, at the 
most, not many more binary digits than this minimum number. 

Novices_ in mathematics, science, or engineering are forever de
manding mfalhble, umversal, mechanical methods for solving 
problems. Such methods are valuable in proving that problems 
can be solved, but in the case of difficult problems they are sel
dom practical, and they may sometimes be completely unfeasible. 
As an e~ample, we may note that an explicit solution of the gen
eral cubic equation exists, but no one ever uses it in a practical 
problem. Instead, some approximate method suited to the type or 
class of cubics actually to be solved is resorted to. 

The person who isn't a novice thinks hard about a specific prob
lem m order to see if there isn't some better approach than a 
machme-like ~pplication of what he has been taught. Let us see 
how _this applies m the case of information theory. We will first 
consider the case of a discrete source which produces a string of 
symbols or characters. 

In Chapter V, we saw that the entropy of a source can be com
puted by examining the relative probabilities of occurrence of 
various long blocks of characters. As the length of the block is 
mcreased, the approximation to the entropy gets closer and closer. 
In a particular case, perhaps blocks 5, or 10, or 100 characters in 
length might be required to give a very good approximation to 
the entropy. 

We also saw that by dividing the message into successive blocks 
of characters, to each of which a probability of occurrence can be 
attached, and by encoding these blocks into binary digits by means 
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of the Huffman code, the number of digits used per character 
approaches the entropy as the blocks of characters are made longer 
and longer. 

Here indeed is our foolproof mechanical scheme. Why don't we 
simply use it in all cases? 

To see one reason, let us examine a very simple case. Suppose 
that an information source produces a binary digit, a 1 or a 0, 
randomly and with equal probability and then follows it with the 
same digit twice again before producing independently another 
digit. The message produced by such a source might be: 

0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 I 

Would anyone be foolish enough to divide such a message 
successively into blocks of I, 2, 3, 4, 5, etc., characters, compute 
the probabilities of the blocks, encode them with a Huffman code, 
and note the improvement in the number of binary digits required 
for transmission? I don't know; it sometirues seems to me that there 
are no limits to human folly. 

Clearly, a much simpler procedure is not only adequate but 
absolutely perfect. Because of the repetition, the entropy is clearly 
the same as for a succession of a third as many binary digits chosen 
randomly and independently with equal probability of I or 0. That 
is, it is Y, binary digit per character of the repetitious message. And, 
we can transmit the message perfectly efficiently simply by sending 
every third character and telling the recipient to write down each 
received character three times. 

This example is siruple but important. It illustrates the fact that 
we should look for natural structure in a message source, for salient 
features of which we can take advantage. 

The discussion of English text in Chapter IV illustrates this. We 
might, for instance, transmit text merely as a picture by television 
or facsiruile. This would take many binary digits per character. We 
would be providing a transmission system capable of sending not 
only English text, but Cyrillic, Greek, Sanskrit, Chinese, and other 
text, and pictures oflandscapes, storms, earthquakes, and Marilyn 
Monroe as well. We would not be taking advantage of the elemen
tary and all-iruportant fact that English text is made up ofletters. 

If we encode English text letter by letter, taking no account of 
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the different probabilities of various letters (and excluding the 
space), we need 4.7 binary digits per letter. Ifwe take into account 
the relative probabilities of letters, as Morse did, we need 4.14 
binary digits per letter. 

If we proceeded mechanically to encode English text more 
efficiently, we might go on to encoding pairs of letters, sequences 
of three letters, and so on. This, however, would provide for 
encoding many sequences of letters which aren't English words. It 
seems much more sensible to go on to the next larger unit of 
English text, the word. We have seen in Chapter IV that we would 
expect to use only about 9 binary digits per word or l. 7 binary 
digits per character in so encoding English text. 

If we want to proceed further, the next logical step would be to 
consider the structure of phrases or sentences; that is, to take 
advantage of the rules of grammar. The trouble is that we don't 
know the rules of grammar completely enough to help us, and if 
we did, a communication system which made use of these rules 
would probably be irupractically complicated. Indeed, in practical 
cases it still seems best to encode the letters of English text inde
pendently, using at least 5 binary digits per character. 

It is, however, iruportant to get some idea of what could be 
accomplished in transmitting English text. To this end, Shannon 
considered the following communication situation. Suppose we ask 
a man, using all his knowledge of English, to guess what the next 
character in some English text is. If he is right we tell him so, and 
he writes the character down. If he is wrong, we may either tell 
him what the character actually is or let him make further guesses 
until he guesses the right character. 

Now, suppose that we regard this process as taking place at the 
transmitter, and say that we have an absolutely identical twin to 
guess for us at the receiver, a twin who makes just the same mis
takes that the man at the transmitter does. Then, to transmit the 
text, we let the man at the receiver guess. When the man at the 
transmitter guesses right, so will the man at the receiver. Thus, we 
need send information to the man at the receiver only when the 
man at the transmitter guesses wrong and then only enough infor
mation to enable the men at the transmitter and the receiver to 
write down the right character. 
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Shannon has drawn a diagram of such a communication system, 
which is shown in Figure VII-I. A predictor acts on the original 
text. The prediction of the next letter is compared with the actual 
letter. If an error is noted, some information is transmitted. At the 
receiver, a prediction of the next character is made from the already 
reconstructed text. A comparison involving the received signal is 
carried out. If no error has been made, the predicted character is 
used; if an error has been made, the "reduced text" information 
coming in will make it possible to correct the error. 

Of course, we don't have such identical twins or any other highly 
effective identical predictors. Nonetheless, a much simpler but 
purely mechanical system based on this diagram has been used in 
transmitting pictures. Shannon's purpose was different, however. 
By using just one person, and not twins, he was able to find what 
transmission rate would be required in such a system merely by 
examining the errors made by the one man in the transmitter 
situation. The results are summed up in Figure V-4 of Chapter V. 
A better prediction is made on the basis of the 100 preceding 
letters than on the basis of the preceding 10 or 15. To correct the 
errors in prediction, something between 0.6 and 1.3 binary digits 
per character is required. This tells us that, insofar as this result 
is correct, the entropy of English text must lie between .6 and 1.3 
bits per letter. 

A discrete source of information provides a good example for 
discussion but not an example of much practical importance in 
communication. The reason is that, by modern standards of elec
trical communication, it takes very few binary digits or off-or-on 
pulses to send English text. We have to hurry to speak a few 
hundred words a minute, yet it is easy to send over a thousand 
words of text over a telephone connection in a mir.ute or to send 
10 million words a minute over a TV channel, and, in principle if 
not in practice, we could transmit some 50,000 words a minute over 
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a telephone channel and some 50 million words a minute over a 
TV channel. As a matter of fact, in practical cases we have even 
retreated from Morse's ingenious code which sends an E faster than 
a Z. A teletype system uses the same length of signal for any letter. 

Efficient encoding is thus potentially more important for voice 
transmission than for transmission of text, for voice takes more 
binary digits per w?rd than does text. Further, efficient encoding 
1s potentially more nnportant for TV than for voice. 

Now,.a voice or a TV signal is inherently continuous as opposed 
to English text, numbers, or binary digits, which are discrete. 
Disregarding capitalization and punctuation, an English character 
may be any one of the letters or the space. At a given moment, the 
wund wave or the human voice may have any pressure at all lying 
within some range of pressures. We have noted in Chapter IV that 
if the frequencies of such a continuous signal are limited to some 
bandwidth B, the signal can be accurately represented by 2B 
samples or measurements of amplitude per second. 

We remember, however, that the entropy per character depends 
on how many values the character can assume. Since a continuous 
sig~al can assume an infinite number of different values at a sample 
pomt, we are led to assume that a continuous signal must have an 
entropy of an infinite number of bits per sample. 

This would be true if we required an absolutely accurate repro
duct10n of the continuous signal. However, signals are transmitted 
to be. heard _or seen. Only a certain degree of fidelity of reproduc
t10n rn reqmred. Thus, in dealing with the samples which specify 
contmuous signals, Shannon introduces a fidelity criterion. To 
reproduce the signal in a way meeting the fidelity criterion requires 
only a finite number of binary digits per sample or per second, and 
hence we can say that, within the accuracy imposed by a particular 
fidelity criterion, the entropy of a continuous source has a particu
lar value m bits per sample or bits per second. 

It is extremely important to realize that the fidelity criterion 
sho~ld be associated with long stretches of the signal, not with 
md1V1dual samples. For instance, in transmitting a sound, if we 
make each sample 10 per cent larger, we will merely make the 
sound louder, and no damage will be done to its quality. Ifwe make 
a random error of 10 per cent in each sample, the recovered signal 
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will be very noisy. Similarly, in picture transmission an error in 
brightness or contrast which changes smoothly and gradually 
across the picture will pass unnoticed, but an equal but random 
error diJfering from point to point will be intolerable. 

We have seen that we can send a continuous signal by quantizing 
each sample, that is, by allowing it to assume only certain pre
assigned values. It appears that 128 values are sufficient for the 
transmission of telephone-quality speech or of pictures. We must 
realize, however, that, in quantizing a speech signal or a picture 
signal sample by sample, we are proceeding in a very unsophisti
cated manner, just as we are if we encode text letter by letter rather 
than word by word. 

The name hyperquantization has been given to the quantization 
of continuous signals of more than one sample at a time. This is 
undoubtedly the true road to efficient encoding of continuous 
signals. One can easily ruin his chances of efficient encoding com
pletely by quantizing the samples at the start. Yet, to hyperquantize 
a continuous signal is not easy. Samples are quantized independ
ently in present pulse code modulation systems that carry telephone 
conversations from telephone office to telephone office and from 
town to town, and in the digital switching systems that provide 
much long distance switching. Samples are quantized independ
ently in sending pictures back from Mars, Jupiter and farther 
planets. 

In pulse code modnlation, the nearest of one of a number of 
standard levels or amplitudes is assigned to each sample. As an 
example, if eight levels were used, they might be equally spaced 
as in a of Figure VII-2. The level representing the sample is then 
transmitted by sending the binary number written to the right ofit. 

Some subtlety of encoding can be used even in such a system. 
Instead of the equally spaced amplitudes of Figure VII-2a, we can 
use quantization levels which are close together for small signals 
and farther apart for large signals, as shown in Figure VII-2b. The 
reason for doing this is, of course, that our ears are sensitive to a 
fractional error in signal amplitude rather than to an error of so 
many dynes below or above average pressure or so many volts 
positive or negative, in the signal. By such companding (compressing 
the high amplitudes at the transmitter and expanding them again 
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at the receiver), 7 binary digits per sample can give a signal almost 
as good as 11 binary digits would if the signal levels transmitted 
were separated by equal differences in amplitude. 

To send speech more efficiently than this, we need to examine 
the characteristics both of speech and of hearing. After all, we 
require only enough accuracy of transmission to convince the 
hearer that transmission is good enough. 

Efficiency is not everything. A vocoder can transmit only one 
voice, not two or more at a time. Also, vocoders behave badly 
when one speaks in the presence of loud noise. Trying to transmit 
the actual speech waveform more efficiently, or waveform decoding, 
avoids these problems, but 15,000-20,000 binary digits per second 
are required for acceptable speech. 

Figure VII-3 shows the wave forms of several speech sounds, 
that is, how the pressure of the sound wave or the voltage repre
senting it in a communication system varies with time. We see that 
many of the wave forms, and especially those for the vowels (a 
through d), repeat over and over almost exactly. Couldn't we 
perhaps transmit just one complete period of variation and use it 
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to replace several succeeding periods? This is very difficult, for it 
is hard for a machine to determine just how long a period is in 
actual speech. It has been tried. The speech reproduced is intelli
gible but seriously distorted. 

If speech is to be encoded efficiently, a much more fundamental 
approach is required. We must know how great a variety of speech 
sounds must be transmitted and how effective our sense of hearing 
is in distinguishing among speech sounds. 

The fluctuations of air pressure which constitute the sounds of 
speech are very rapid indeed, of the order of thousands per second. 
Our voluntary control over our vocal tracts is exercised at a much 
lower rate. At the most, we change the manner of production of 
sounds a few tens of times a second. Thus, speech may well be 
(and is) simpler than we might conclude by examining the rapidly 
fluctuating sound waves of speech. 

What control do we exercise over our vocal organs? First of all, 
we control the production of voiced sounds by our control over our 
vocal cords. These are two lips or folds of muscular tissue attached 
to a cartilaginous box called the larynx, which is prominent in man 
as the Adam's apple. When we are not giving voice to sound, these 
are wide open. They can be drawn together more or less tightly, 
so that when air from the lungs is forced through them they emit 
a sound something like a Bronx cheer. If they are held very tight, 
the sound has a high pitch; if they are more relaxed, the sound has 
a lower pitch. 

The pulses of air passing the vocal cords contain many frequen
cies. The mouth and lips act as a complex resonator which empha
sizes certain frequencies more than others. What frequencies are 
emphasized depends on how much and at what position the tongue 
is raised or humped in the mouth, on whether the soft palate opens 
the nasal cavities to the mouth and throat, and on the opening of 
the jaws and the position of the lips. 

Particular sounds of voiced speech, which includes vowels and 
other continuants, such as m and r, are formed by exciting the vocal 
cords and giving particular characteristic shapes to the mouth. 

Stop consonants, or plosives, such as p, b, g, t, are formed by 
stopping off the vocal passage at various points with the tongue 
or lips, creating an air pressure, and suddenly releasing it. The vocal 
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cords are used in producing some of these sounds (b, for instance) 
and not in producing others (p, for instance). 

Fricatives, such as s and sh, are produced by the passage of air 
through various constrictions. Sometimes the vocal cords are used 
as well (in a zh sound, as in azure). 

A specification of the movements of the vocal organs would be 
much more slowly changing than a description of the sound pro
duced. May this not be a clue to efficient encoding of speech? 

In the early thfrties, long before Shannon's work on information 
theory, Homer Dudley of the Bell Laboratories invented such a 
form of speech transmission, which he called the vocoder (from 
voice coder). The transmitting (analyzer) and receiving (synthe
sizer) units of a vocoder are illustrated in Figure VII-4. 

In the analyzer, an electrical replica of the speech is fed to 16 
filters, each of which determines the strength of the speech signal 
in a particular band of frequencies and transmits a signal to the 
synthesizer which gives this information. In addition, an analysis 
is made to determine whether the sound is voiceless (s, f) or voiced 
(o, u) and, if voiced, what the pitch is. 

At the synthesizer, if the sound is voiceless, a hissing noise is 
produced; if the sound is voiced a sequence of electrical pulses is 
produced at the proper rate, corresponding to the puffs of air 
passing the vocal cords of the speaker. 

The hiss or pulses are fed to an array of filters, each passing a 
band of frequencies corresponding to a particular filter in the 
analyzer. The amount of sound passing through a particular filter 
in the synthesizer is controlled by the output of the corresponding 
analyzer filter so as to be the same as that which the analyzer filter 
indicates to be present in the voice in that frequency range. 

This process results in the reproduction of intelligible speech. 
In effect, the analyzer listens to and analyzes speech, and then 
instructs the synthesizer, which is an artificial speaking machine, 
how to say the words all over again with the very pitch and accent 
of the speaker. 

Most vocoders have a strong and unpleasant electrical accent. 
The study of this has led to new and important ideas concerning 
what determines and influences speech quality; we cannot afford 
time to go into this matter here. Even imperfect vocoders can be 
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words, the entropy of speech is somewhat greater per word than 
the entropy of text. 

That the vocoder does encode speech more efficiently than other 
methods depends on the fact that the configuration of the vocal 
tra~t changes less rapidly than the fluctuations of the sound waves 
"."h1ch _the vocal tract produces. Its effectiveness also depends on 
l11rutat10ns of the human sense of hearing. 

From an electrical point of view, the most complicated speech 
sounds are the hissing fricatives, such as sh (f of Figure VJl-3) and 
s (g of Figure VII-3). Furthermore, the wave forms of two s's 
uttered successively may have quite a different sequence of ups and 
down_s. It would_ take many binary digits per second to transmit 
ea~h m f~ll detail. But, to the ear, one s sounds just like another 
if it has m a broad way the same frequency content. Thus, the 
vocoder doesn't have to reproduce the s sound the speaker uttered; 
it has merely to reproduce an s sound that has roughly the same 
frequency content and hence sounds the same. 

We _see that, in transmitting speech, the royal road to efficient 
encodmg appears to be the detection of certain simple and impor
tant patterns and their recreat10n at the receiving end. Because of 
the gr~ater channel capacity required, efficient encoding is even 
more important m TV transmission than in speech transmission. 
Can we perhaps apply a similar principle in TV? 

_The TV problem is much more difficult than the speech trans
nnss10n proble~. Partly, this 1s because the sense of sight is inher
ently more detailed and discriminating than the sense of hearing. 
Partly, though, 1t 1s because many sorts of pictures from many 
sources are transmitted by TV, while speech is all produced by the 
same sort of vocal apparatus. 

_fo the face of these facts, is some vocoder-like way of trans
nnttmg pictures possible if we confine ourselves to one sort of 
picture source, for instance, the human face? 

One can conceive of such a thing. Imagine that we had at the 
receive~ a sort of rubbery model of a human face. Or we might have 
a descnpt10n of such a model stored in the memory of a huge 
electroruc computer. First, the transmitter would have to look at 
the face to be tr.ansmitted and "make up" the model at the receiver 
1Il shape and lint. The transmitter would also have to note the 
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sources of light and reproduce these in intensity and direction at 
the receiver. Then, as the person before the transmitter talked, the 
transmitter would have to follow the movements of his eyes, lips 
and jaws, and other muscular movements and transmit these so 
that the model at the receiver could do likewise. Such a scheme 
might be very effective, and it could become an important inven
tion if anyone could specify a useful way of carrymg out the 
operations I have described. Alas, how much easier it is t~ say ~hat 
one would like to do (whether it be making such an mvenllon, 
composing Beethoven's tenth symphony, or painting a masterpiece 
on an assigned subject) than it is to do it. 

In our day of unlimited science and technology, people's unful
filled aspirations have become so important to them that a special 
word, popular in the press, has been coined to denote such dreams. 
That word is breakthrough. More rarely, it may also be used to 
describe something, usually trivial, which has actually been 
accomplished. 

Ifwe turn from such dreams of the future, we find that all actual 
picture-transmission systems follow a common pattern. The picture 
or image to be transmitted is scanned to discover the bnghll}ess at 
successive points. The scanning is carried out along _a sequence of 
closely spaced lines. In color TV, three image_s of different colors 
are scanned simultaneously. Then, at the receiver, a pomt of light 
whose intensity varies in accord with the signal fro'." the transrniUer 
paints out the picture in light and shade, followmg the s~me line 
pattern. So far all practical attempts at efficient encodmg have 
started out with the signal generated by such a scannmg process. 

The outstanding efficient encoding scheme is that used in_ color 
TV. The brightness of a color TV picture has very fine detail; the 
pattern of color has very much less detail. Thus, color TV of almost 
the same detail as monochrome '.L'V can be sent over the same 
channel as is used for monochrome. Of course, color TV uses an 
analog signal; the picture is not reduced to discrete on-or-offp~lses. 

Increasingly, pulse code modulation will be used to transmit all 
sorts of signals; including television signals. The picture to be trans
mitted will be scanned in a conventional way, but its brightness 
will be encoded as a succession of binary numbers that specify 
the brightnesses of a succession of discrete picture elements or 
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pixels that lie along each scanning line. This is how pictures were 
sent back from Mars by the Mariner lander, and from Jupiter and 
its moons by the Voyager spacecraft. 

All recent work aimed at encoding television efficiently is digital. 
It deals with successions of binary numbers that represent suc
cessive pixel brightnesses. 

In large parts of a TV picture the brightness changes gradually 
and smoothly from pixel to pixel. In such areas of the picture, a 
good prediction can be made of the brightness of the next pixel 
from the brightness of preceding pixels in the same line, and 
perhaps in the preceding line. At the receiver we need know only 
the error in such a prediction, so we need transmit only the small 
difference between the true brightness and a brightness which we 
predict at the receiver as well as at the transmitter. Of course, in 
"busy" portions of the picture, prediction will be poor, and the 
brightness difference that must be sent will be great. 

We can transmit brightness differences most efficiently by using 
a Huffman code, with short code words for more frequently occur
ring small brightness differences and long code words for less 
frequently occurring, large brightness differences. If we do this, 
the binary digits of the coded differences will be generated at an 
uneven rate, at a slow rate when smooth portions of the picture are 
scanned and at a faster rate when busy portions of the picture are 
scanned. In order to transmit the binary digits at a constant rate, 
the digits must be fed into a buffer, which stores the incoming 
digits and feeds them out at a constant rate equal to the average 
rate at which they come in. A similar buffer must be used at the 
receiving end. 

By means of such intraframe encoding, the number of binary 
digits per second needed to transmit a good TV picture can be 
reduced to Y2 to % of the number of binary digits used h initially 
encoding the pixel brightnesses. 

Much greater gains can be made through interframe encoding, in 
which the pixel brightnesses of the whole previous TV picture are 
stored and used in predicting the brightness of the next pixel to 
be sent. This is particularly effective in transmitting pictures of 
people against a fixed background, for the brightnesses of pixels in 
the background don't change from frame to frame. 
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Even more elaborate experimental schemes make use of the fact 
that when a figure in front of a background moves, it moves as a 
whole. Thus, the brightnesses of the pixels in the moving figure can 
be predicted from the brightnesses of pixels which are a constant 
distance away in the previous frame. 

If each pixel of a TV picture is represented by 8 binary digits (a 
very good picture) , the picture can be transmitted by sending 
around 100 million binary digits per second. By intraframe en
coding this can be reduced to perhaps 32 million. With interframe 
coding this has been reduced to as little as 6 million. A reduction 
to 1.5 million seems conceivable for such pictures as the head of a 
person against a fixed background. 

The transform method is another approach to the efficient trans
mission of TV pictures. In the transform method, the pattern of 
pixel brightnesses that make up the TV picture, or some portion of 
it, is represented as the sum of a chosen set of standardized pat
terns whose amplitudes are transmitted with chosen accuracies. 

Reviewing what has been said, we see that there are three im
portant principles in encoding signals efficiently: (1) Don't encode 
the signal one sample or one character at a time; encode a con
siderable stretch of a signal at a time (hyperquantization); (2) take 
into account the limitations on the source of the signal; (3) take 
into account any inabilities of the eye or the ear to detect errors 
in a reconstruction of the signal. 

The vocoder illustrates these principles excellently. The fine 
temporal structure of the speech wave is not examined in detail 
Instead, a description specifying the average intensities over certain 
ranges of frequencies is transmitted, together with a signal which 
tells whether the speech is voiced or unvoiced and, if it is voiced, 
what its pitch is. This description of a signal is efficient because the 
vocal organs don't change position rapidly in producing speech. 
At the receiver, the vocoder generates a speech signal which doesn't 
resemble the original speech signal in fine detail but sounds like 
the original speech signal, because of the natural limitations of 
our hearing. 

The vocoder is a sort of paragon of efficient transmission 
devices. Next perhaps comes color TV, in which the variations of 
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color over the picture are defined much less sharply than variations 
ofmtenS1ty are. This takes advantage of the eyes' inability to see 
fine detail in color patterns. 

Beyond this, the present art of communication has had to make 
~se of means which, because they do not encode long stretches of 
signal _at a time, must, according to communication theory, be 
rather mefficient. 

Still, efficient encoding is potentially important. This is especially 
so m the case of the transmission of relatively broad-band signals 
(TV or even voice signals) over very expensive circuits, such as 
transoceanic telephone cables. 

No doubt much ingenuity will be spent in efficient encoding in 
the future, and many startling results will be attained. But we 
should perhaps beware of going too far. 

Imagine, for instance, that we send English text letter by letter. 
lfwe make an error in sending a few letters we can still make some 
sense out of the text: 

Hore I hove replaced a few vowols by o. 
We can even replace the vowels by x's and read with some 

facility: 
Hxrx X bxvx rxplxcxd tbx vxwxls bx x. 
It is more efficient to encode English text word by word. In this 

case: if an error is made in transmission, we are not tipped off by 
finding a misspelled word. Instead, one word is replaced by 
~nether. This might have embarrassing results. Suppose it changed 
The President 1s a good Republican" to "The President is a good 

Communist" (or donkey, or poltroon, or many other nouns). 
We might still detect an error by the fact that the word was 

inappropriate. But suppose we used a more refined encoding 
scheme that could reproduce grammatical utterances only. Then 
we would have little chance of detecting an error in transmission. 

English text, and most other information sources are redundant 
in that the messages they produce give many clues to the recipient. 
A few errors caused by replacing one letter by another don't 
destroy the message because we can infer it from other letters 
which are transmitted correctly. Indeed, it is only because of this 
redundancy th~t anyone can read my handwriting. When a con
tmuous signal 1s sent a sample at a time, a few errors in sample 
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amplitude result in a few clicks in sound transmission or in a few 
specks in picture transmission. . 

Our ideal so far has been to remove this redundancy, so that we 
transmit the absolutely minimum number of clues by means of 
which the message can be reconstructed. But we see that if we do 
this with perfect success, any error in transmission will send, not 
a distorted message, but a false and misleading message. If we fall 
a little short of the ideal, an error may produce merely a temble 
garble. . . 

We all know that there is some noise in electrical commurucat1on 
-a hiss in the background on radio and a little snow at least in 
TV. That such noise is an inevitable fact of nature we must accept. 
Is this going to vitiate in principle our grand plan to encode the 
messages from a signal source into scarcely more bmary digits than 
the entropy of the source? 

This is the subject that we will consider in the next chapter. 

' CHAPTER VIII The Noisy 
Channel 

IT IS HARD TO PUT ONESELF in the place of another, and, 
especially, it is hard to put oneself in the place of a person of an 
earlier day. What would a Victorian have thought of present-day 
dress? Were Newton's laws of motion and of gravitation as aston
ishing and disturbing to his contemporaries as Einstein's theory 
of relativity appears to have been to his? And what is disturbing 
about relativity? Present-day students accept it, not only without 
a murmur, but with a feeling of inevitability, as if any other idea 
must be very odd, surprising, and inexplicable. 

Partly, this is because our attitudes are bred of our times and 
surroundings. Partly, in the case of science at least, it is because 
ideas come into being as a response to new or better-phrased 
questions. We remember that according to Plato, Socrates drew a 
geometrical proof from a slave simply by means of an ingenious 
sequence of questions. Those who have not seriously asked them
selves a particular question are not likely to have come upon the 
proper answer, and, sometimes, when the question is phrased with 
tlie answer in mind, the answer appears to be obvious. 

Those interested in communication have been aware from the 
very beginning that communication circuits or channels are im
perfect. In telephony and radio, we hear the desired signal against 
a background of noise, which may be strong or faint and which 
may vary in quality from the crackling of static to a steady hiss. 

145 
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In TV, the picture is overlaid faintly or strongly with an ever· 
changing granular "snow." In teletypewriter transmission, the 
received character may occasionally differ from that transmitted. 

Suppose that one had questioned a communication engineer 
about this general problem of "noise" in 1945. One might have 
asked, "What can one do about noise?" The engineer might have 
answered, "You can increase the transmitter power or make the 
receiver less noisy. And be sure that the receiver is insensitive to 
disturbances with frequencies other than the signal frequencies." 

One might have persisted, "Can't one do anything else?" The 
engineer might have answered, "Well, by using frequency modu
lation, which takes a very large band width, one can reduce the 
effect of noise." 

Suppose, however, that one had asked, "In teletypewriter sys
tems, noise may cause some received characters to be wrong; how 
can one guard against this?" The engineer could and might perhaps 
have answered, "I know that if I use five off-or-on pulses to repre· 
sent a decimal digit and assign to the decimal digits only such 
sequences as all have two ons and three offs, I can often tell when 
an error has been made in transmission, for when errors are made 
the received sequence may have other than 2 ons." 

One might have pursued the matter further with, "If the teletype· 
writer circuit does cause errors is there any way that one can get 
the correct message to the destination?" The engineer might have 
answered, "I suppose you can if you repeat it enough times, but 
that's very wasteful. You'd better fix the circuit." 

Here we are getting pretty close to questions that just hadn't 
been asked before. Shanoon asked them. Nonetheless, let us go on 
and imagine that one had said, "Suppose that I told you that by 
properly encoding my message, I can send it over even a noisy 
channel with a completely negligible fraction of errors, a fract10n 
smaller than any assignable value. Suppose that I told you that, if 
the sort of noise in the channel is known and if its magnitude is 
known, I can calculate just how many characters I can send over 
the channel per second and that, if I send any number fewer than 
this, I can do so virtually without error, while if! try to send more, 
I will be bound to make errors." 

The engineer might well have answered, "You'd sure have to 
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show me. I never thought of things in quite that way before, but 
what you say seems extremely improbable. Why, every time the 
noISe mcreases, the error rate increases. Of course, repeating a 
message sev~ral times does work better when there aren't too many 
errors. But, 1t 1s always very costly. Maybe there's something in 
what you say, but I'd be awfully surprised if there was. Still, the 
way you put it ... " 

Whatever we may imagine concerning an engineer benighted in 
' the days of error, mathematicians and engineers who have survived 

the transition all feel that Shannon's results concerning the trans
missi?n of information over a noisy channel were and still are very 
surpnsmg. Yet I have known an intelligent layman to see nothing 
remarkable m Shannon's results. What is one to think of this? 

Perhaps the best course is merely to describe and explain the 
problem of the noisy channel as we now understand it, raising and 
answenng quest10ns that, however natural and inevitable they now 
seem, belong in their trend and content to the post-Shannon era. 
The reader can be surprised or not as he chooses. 

So far we have discussed both simple and complex means for 
encodmg text and numbers for efficient transmission. We have 
noted further that any electrical signal of limited band width W 
can be represented by 2 W amplitudes or samples per second, 
measured or taken at intervals 1/2 W seconds apart. We have seen 
that, by means of pulse code modulation, we can use some num
ber, around 7, of binary digits to represent adequately the ampli
tude of any sample. Thus, by using pulse code modulation or some 
more complicated and more efficient scheme, we can transmit 
speech or picture signals by means of a sequence of binary digits 
or off-or-on or positive-or-negative pulses of current. 

All of this works perfectly if the recipient of the message receives 
the same signal that the sender transmits. The actual facts are dif
ferent. Sometimes he receives a o' when a I is transmitted, and 
sometimes he receives a 1 when a 0 is transmitted. This can hap
pen throug)l th.e malfunction of electrical relays in a slow-speed 
telegraph crrcmt or through the malfunction of vacuum tubes or 
transistors in a higher speed circuit. It can also happen because of 
interfering signals or noise, either noise from man-made apparatus, 
or noise from magnetic storms. 
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We can easily see in a simple case how errors can occur because 
of the admixture of noise with a signal. Imagme that we want.to 
send a large number of binary digits, 0 or I, per second o.ver a wue 
by means of an electrical signal. We may represent th~ signal con
veying these digits by the succession of samples s of Figure VIII-I, 
each of which will be + I or - 1. Here we have a succession of 
positive and negative voltages which represent the digits I 0 I I 

I 0 0 I 0. ·th 
Now suppose a random noise voltage, which may be e1 ~r 

positive or negative, is added to the signal. We can represent this 
also by a number of noise samples n of Figure VIII-! taken smrnl
taneously with the signal samples. The. signal plus the. n01se IS 

obtained by adding the signal and the noise samples and is shown 
ass+ n in Figure VIII-!. . . . 

If we interpret a positive signal-plus-noise m the received mes
sage as a 1 and a negative signal-plus-noise as a 0, then the received 

0 0 0 0 

s 

n 

s+n 

r 0 0 0 

ERRORS x x x 

POSITION 2 3 4 5 6 7 8 9 

Fig. VIII-I 
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message will be represented by the digits r of Figure VIII-I. Thus, 
errors in transmission, as indicated, occur in positions 2, 3, and 7. 

The effect of such errors in transmission can range from annoy
ing to dangerous. In speech or picture transmission by means of 
simple coding schemes, they result in clicks, hissing noises, or 
"snow." If more efficient, block encoding schemes are used (hyper
quantization) the effects of errors will be more pronounced. In 
general, however, we may expect the most dangerous effects of 
errors in the ·transmission of text. 

In the transmission of English text by conventional means, errors 
merely put a wrong letter in here and there. The text is so redun
dant that we catch such errors by eye. However, when type is set 
remotely by teletypewriter signals, as it is, for instance, in the 
simultaneous printing of news magazines in several parts of the 
country, even errors of this sort can be costly. 

When numbers are sent errors are much more serious. An error 
might change $1,000 into $9,000. If the error occurred in a pro
gram intended to make an electronic computer carry out a com
plicated calculation, the error could easily cause the whole calcu
lation to be meaningless. 

Further, we have seen that, if we encode English text or any other 
signal very efficiently, so as largely to remove the redundancy, an 
error can cause a gross change in the meaning of the received 
signal. 

When errors are very important to us, how indeed may we guard 
against them? One way would be to send every letter twice or to 
send every binary digit used in transmitting a letter or a number 
twice. Thus, in transmitting the binary sequence 1 0 I 0 0 I I 0 I, 
we mig!It send and receive as follows: 

sent 110011000011110011 
received I 1001100011II10011 

x 
error 

For a given rate of sending binary digits, this will cut our rate of 
transmitting information in half, for we have to pause and retrans
mit every digit. However, we can now see from the received signal 
than an error has occurred at the marked point, because instead 
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of a pair of like digits, O 0 or 1 1, we have received a pair of unlike 
digits, O 1. We don't know whether the correct, transmitted pair 
was O O or 1 ]. We have detected the error, but we have not 
corrected it. 

If errors aren't too frequent, that is, if the chance of two errors 
occurring in the transmission of three successive digits is negligible, 
we c;m correct as well as detect an error by transmitting each digit 
three times, as follows: 

sent 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 
received 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 I 1 1 1 1 

A 

error 

We have now cut our rate of transmission to one-third, because we 
have to pause and retransmit each digit twice. However, we can 
now correct the error indicated by the fact that the d1g1ts m the 
indicated group 1 0 1 are not all the same. Ifwe assume th_at there 
was only one error in the transmission of this group of digits, then 
the transmitted group must have been 1 1 1, representing 1, rather 
than 0 0 0, representing 0. . . . . 

We see that a very simple scheme of repeatmg transmitted digits 
can detect or even correct infrequent errors of transmission. But 
how costly it is! If we use this means of error correction or detec
tion even when almost all of the transmitted digits are correct we 
hav~ to cut our rate of transmission in half by repeating digits in 
order just to detect errors, and we have to cut our rate of trans
mission to one-third by transmitting each digit three times in order 
to get error correction. Moreover, these schemes won't work if 
errors are frequent enough so that more than one will sometimes 
occur in the transmission of two or three digits. 

Clearly, this simple approach will never lead to a sound under
standing of the possibility of error correction. What is required 1s 
a deep and powerful mathematical attack. This is just what Shan
non provided in discovering and proving his fundamental theorem 
for the noisy channel. It is the course of his reasoning that we are 
about to follow. 

In formulating an abstract and general model of noise or errors, 
we will deal with the case of a discrete communication system 
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which transmits some group of characters, such as the digits from 
0 to 9 or the letters of the alphabet. For convenience, let us consider 
a system for transmitting the digits 0 through 9. This is illustrated 
in Figure VIII-2. At the left we have a number of little circles 
labeled with the digits; we may regard these little circles as push
buttons. To •he right we have a number of little circles, again 
labeled with the digits. We may regard these as lights. When we 
push a digit button at the transmitter to the left, some digit light 
lights up at the receiver to the right. 

If our communication system were noiseless, pushing the O 
button would always light the 0 light, pushing the 1 button would 
always light the 1 light, and so on. However, in an imperfect or 
noisy communication system, pushing the 4 button, for instance, 
may light the 0 light, or the ! light, or the 2 light, or any other light, 
as shown by the lines radiating from the 4 button in Figure VIII-2. 
In a simple, noisy communication system, we can say that when 
we press a button the light which lights is a matter of chance, 

0 0 

2 2 

3 3 

4 4 
x y 

5 5 

6 6 

7 7 

8 8 

9 9 
Fig. Vlll-2 
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independent of what has gone before and that, if t?e 4 button is 
pressed, there is some probability p.(6) that the 6 hght will light, 
and so on. 

If the sender can't be sure which light will light when he presses 
a particular button, then the recipient of the message can't be sure 
which button was pressed when a particular light lights. This is 
indicated by the arrows from light 6 to various buttons on the left. 
If for instance, light 6 lights, there is some probability ps (4) that 
b~tton 4 was pressed, and so on. Only for a noiseless system will 
p

6
(6) be unity andp6(4),ps(9), etc., be zero. . . 
The diagram of Figure VIII-2 would be too comphcated_if all 

possible arrows were put in, and the number ofprobabilitJ.es 1s too 
great to list, but I believe that the general idea of the degree and 
nature of uncertainty of the character received when the sender 
tries to send a particular character and the uncertainty of the 
character sent when the recipient receives a particular character, 
have been illustrated. Let us now consider this noisy communica
tion channel in a rather general way. In doing so we will represent 
by x all of the characters sent and by y all of the characters received. 

The characters x are just the characters generated by the message 
source from which the message comes. If there are m of these 
characters and if they occur independently with probabilities p(x), 
then we know from Chapter V that the entropy H(x) of the message 
source, the rate at which the message source generates information, 

must be m 
H(x) = 2 - p(x) logp(x) 

x=l 

(8.1) 

We can regard the output of the device, which we designate by 
y, as another message source. The number of lights need_ not be 
equal to the number of buttons, but we will assume that 1t 1s, so 
that there are m lights. The entropy of the output will be 

m 
(8.2) H(y) = 2 - p(y) logp(y) 

y=l 
We note that while H(x) depends only on the input to the com· 

munication chamiel, H(y) depends both on the input to the ch'.1"11el 
and on the errors made in transmission. Thus, the probability of 
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receiving a 4 if nothing but a 4 is ever sent is different from the 
probability of receiving a 4 if transmitting buttons are pressed 
at random. 

If we imagine that we can see both the transmitter and the 
receiver, we can observe how often certain combinations of x and 
y occur; say, how often 4 is sent and 6 is received. Or, knowing 
the statistics of the message source and the statistics of the noisy 
channel, we can compute such probabilities. From these we can 
compute another entropy. 

m m 

H(x,y) = 2 2 - p(x,y) 1ogp(x,y) (8.3) 

x=lx=l 
This is the uncertainty of the combination of x and y. 

Further, we can say, suppose that we know x (that is, we know 
what key was pressed). What are the probabilities of various lights 
lighting (as illustrated by the arrows to the right in Figure VIII-2)? 
This leads to an entropy, 

m m 

H.(y) = 2 2- p(x)p.(y) 1ogp,(y) (8.4) 

x=ly=l 
This is a conditional entropy of uncertainty. Its form is reminis

cent of the entropy of a finite-state machine. As in that case, we 
multiply the uncertainty for a given condition (state, value of x) 
by the probability that that condition (state, value of x) will occur 
and sum over all conditions (states, values of x). 

Finally, suppose we know what light lights. We can say what the 
probabilities are that various buttons were pressed. This leads to 
another conditional entropy 

m m 
Hy(x) = 2 2 - p(y)py(x) logp.(x) (8.5) 

y=lx=l 
This is the sum over y of the probability that y is received times 
the uncertainty that xis sent wheny is received. 

These conditional entropies depend on the statistics of the 
message source, because they depend on how often xis transmitted 
or how often y is received, as well as on the errors made in 
transmission. 
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The entropies listed above are best interpreted as uncertainties 
involving the characters generated by the message source and the 
characters received by the recipient. Thus: 

H(x) is the uncertainty as to x, that is, as to which character will 
be transmitted. 

H(y) is the uncertainty as to which character will be received 
in the case of a given message source and a given communication 
channel. 

H(x, y) is the uncertainty as to when x will be transmitted and 
y received. 

H,(y) is the uncertainty of receivingy when x is transmitted. It 
is the average uncertainty of the sender as to what will be received. 

H.(x) is the uncertainty that x was transmitted when y is 
received. It is the average uncertainty of the message recipient as 
to what was actually sent. 

There are relations among these quantities: 

H(x,y) = H(x) + H,(y) (8.6) 

That is, the uncertainty of sending x and receiving y is the 
uncertainty of sending x plus the uncertainty ofreceivingy when 
xis sent. 

H(x,y) = H(y) + Hy(x) (8.7) 

That is, the uncertainty of receiving y and sending x is the 
uncertainty ofreceivingy plus the uncertainty that x was sent when 
y was received. 

We see that when H,(y) is zero, Hy(x) must be zero, and H(y) 
is then just H(x). This is the case of the noiseless channel, for 
which the entropy of the received signal is just the same as the 
entropy of the transmitted signal. The sender knows just .what will 
be received, and the recipient of the message knows JUSt what 
was sent. 

The uncertainty as to which symbol was transmitted when a 
given symbol is received, that is, H.(x) seems a natural measure 
of the information lost in transmission. Indeed, this proves to be 
the case, and the quantity H.(x) has been given a special name; 
it is called the equivocation of the communication channel. If we 

The Noisy Channel 155 

take H(x) and H.(x) as entropies in bits per second, the rate R of 
transmission of information over the channel can be shown to be 
in bits per second, ' 

R = H(x) - Hy(x) (8.8) 

That is, the rate of transmission of information is the source rate 
or entropy less the equivocation. It is the entropy of the message 
as sent less the uncertainty of the recipient as to what message 
was sent. 

The rate is also given by 

R = H(y) - H,(y) (8.9) 

That is: the rate is the entropy of the received signal y less the 
uncertamty that y was. received when x was sent. It is the entropy 
of the message as received less the sender's uncertainty as to what 
will be received. 

The rate is also given by 

R = H(x) + H(y) - H(x,y) (8.10) 

The rate is the entropy of x plus the entropy of y less the uncer
tainty of occurrence of the combination x and y. We will note from 
8.3 that for a noiseless channel, since p (x, y) is zero except when 
x = y, and H(x, y) = H(x) = H(y). The information rate is just 
the entropy of the information source, H(x). 

Shannon makes expression 8.8 for the rate plausible by means 
of the sketch shown m Figure VIII-3. Here we assume a system in 
which an observer compares transmitted and received signals and 
then sends correcuon data by means of which the erroneous 
received signal is corrected. Shannon is able to show that in order 
to correct the message, the entropy of the correction signal must 
be equal to the equivocation. 

We see that the rate R of relation 8.8 depends both on the 
channel and on the message source. How can we describe the 
capacity of a noisy or imperfect channel for transmitting informa
tion? We can choose the message source so as to make the rate R 
as large as possible for a given channel. This maximum possible 
rate of transm1ss10n for the channel is called the channel capacity 
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CORRECTION DATA 

,_ ____ _,OBSERVER 1------, 

SOURCE CORRECTING M 
DEVICE 

Fig. VIII-3 

C. Shannon's fundamental theorem for a noisy channel involves 
the channel capacity C. It says: 

Let a discrete channel have a capacity C and a discrete source the 
entropy per second H. IfH < C there exists a coding system such that the 
output of the source can be transmitted over the channel with an arbitrarily 
small frequency of errors (or an arbitrarily small equivocation). If H > C 
it is possible to encode the source so that the equivocation is less than 
H - C + e, where e is arbitrarily small. There is no method of encoding 
which gives an equivocation less than H - C. 

This is a precise statement of the result which so astonished 
engineers and mathematicians. As errors in transmission become 
more probable, that is, as they occur more frequently, the channel 
capacity as defined by Shannon gradually goes down. For instance, 
if our system transmits binary digits and if some are in error, the 
channel capacity C, that is, number of bits of information we can 
send per binary digit transmitted, decreases. But the channel 
capacity decreases gradually as the errors in transmission of digits 
become more frequent. To achieve transmission with as few errors 
as we may care to specify, we have to reduce our rate of trans
mission so that it is equal to or less than the channel capacity. 

How are we to achieve this result? We remember that in effi
ciently encoding an information source, it is necessary to lump 
many characters together and so to encode the message a long 
block of characters at a time. In making very efficient use of a noisy 
channel, it is also necessary to deal with sequences of received 
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char~cters, ea~h many characters long. Among such blocks, only 
certam transmitted and received sequences of characters will occur 
with other than a vanishing probability. 

In proving the fundamental theorem for a noisy channel, Shan
non finds the average frequency of error for all possible codes (for 
all associations of particular input blocks of characters with partic
ular output blocks of characters), when the codes are chosen at 
random, and he then shows that when the channel capacity is 
greater than the entropy of the source, the error rate averaged over 
all of these encoding schemes goes to zero as the block length is 
made very long. If we get this good a result by averaging over all 
codes chosen at random, then there must be some one of the codes 
which gives this good a result. One information theorist has char
acterized this mode of proof as weird. It is certainly not the sort 
of attack that would occur to an uninspired mathematician. The 
problem isn't one which would have occurred to an uninspired 
mathematician, either. 

The foregoing work is entirely general, and hence it applies to 
all problems. I think it is illuminating, however, to return to the 
example of the binary channel with errors, which we discussed 
early in this chapter and which is illustrated in Figure VIII-I, and 
see what Shannon's theorem has to say about this simple and 
common case. 

Suppose that the probability that over this noisy channel a O will 
be received as a 0 is equal to the probability p that a 1 will be 
received as a 1. Then the probability that a 1 will be received as a 
0 ~r a 0 as a 1 must be (I - p). Suppose further that these prob
ab1ht1es do not depend on past history and do not change with 
time. Then, the proper abstract representation of this situation is 
a symmetric binary channel (in the manner of Figure VIII-2) as 
shown in Figure VIII-4. 

Because of the symmetry of this channel, the maximum infor
mation rate, that is, the channel capacity, will be attained for a 
message source such that the probability of sending a 1 is equal 
to the probability of sending a zero. Thus, in the case of x (and, 
because the channel is symmetrical, in the case of y also) 

p(l) = p(O) = \12 
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We already know that under these circumstances 

H(x) = H(y) 
= - (Yz log \6 + \6 log 1/z) 
= 1 bit per symbol 

What about the conditional probabilities? What about the 
equivocation, for instance, as given by 8.5? Four terms ~ill ~on
tribute to this conditional entropy. The sources and contnbutions 
are: 

The probability that 1 is received is \6. When 1 is received, the 
probability that 1 was sent is p and the probability that 0 was 
sent is (I - p). The contribution to the equivocation from these 
events is: 

\6(-p logp - (1 - p) log (1 - p)) 

There is a probability ofV2 that 0 is received. When 0 is received, 
the probability that 0 was sent is p and the probability that 1 was 
sent is (I - p). The contribution to the equivocation from these 
events is: 

Yz(-p logp - (1 - p) log (1 - p)) 

Accordingly, we see that, for the symmetrical binary channel, the 
equivocation, the sum of these terms, is 

Hy(x) = -p 1ogp - (1 - p) log (1 - p) 

Thus the channel capacity C of the symmetrical binary channel 
is, from 8.8, 

C = 1 + p 1ogp + (I - p) log (1 - p) 

Fig. VIII-4 
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We should note that this channel capacity C is just unity less the 
function plotted against p in Figure V-1. We see that if p is Y,, the 
channel capacity is 0. This is natural, for in this case, if we receive 
a 1, it is equally likely that a 1 or a 0 was transmitted, and the 
received message does nothing to resolve our uncertainty as to 
what digit the sender sent. We should also note that the channel 
capacity is the same for p = 0 as for p = 1. If we consistently 
receive a 0 .when we transmit a 1 and a 1 when we transmit a 0, 
we are just as sure of the sender's intentions as if we always get a 
1 for a 1 and a 0 for a 0. 

If, on the average, 1 digit in 10 is in error, the channel capacity 
is reduced to .53 of its value for errorless transmission, and for one 
error in 100 digits, the channel capacity is reduced to .92 merely. 

The writer would like to testify at this point that the simplicity 
of the result we have obtained for the symmetrical binary channel 
is in a sense misleading (it was misleading to the writer at least). 
The expression for the optimum rate (channel capacity) of an 
unsymmetrical binary channel in which the probability that a 1 is 
received as a 1 is p and the probability that a O is received as a O 
is a different number q is a mess, and more complicated channels 
must offer almost intractable problems. 

Perhaps for this reason as well as for its practical importance, 
much consideration has been given to transmission over the sym
metrical binary channel. What sort of codes are we to use in order 
to attain errorless transmission over such a channel? Examples 
devised by R. W. Hamming were mentioned by Shannon in his 
original paper. Later, Marcel J. E. Golay published concerning 
error-correcting codes in 1949, and Hamming published his work 
in 1950. We should note that these codes were devised subsequent 
to Shannon's work. They might, I suppose, have been devised 
before, but it was only when Shannon showed error-free trans
mission to be possible that people asked, "How can we achieve it?" 

We have noted that to get an efficient correction of errors, the 
encoder must deal with a long sequence of message digits. As a 
simple example, suppose we encode our message digits in blocks of 
16 and add after each block a sequence of check digits which enable 
us to detect a single error in any one of the digits, message digits 
or check digits. As a particular example, consider the sequence of 
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message digits 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0. To find the 
appropriate check digits, we write the O's and l's constituting the 
message digits in the 4 by 4 grid shown in Figure VIII-5. Associ
ated with each row and each column is a circle. In each circle is 
a 0 or a 1 chosen so as to make the total number of l's in the 
column or row (including the circle as well as the squares) even. 
Such added digits are called check digits. For the particular assort
ment of message digits used as an example, together with the 
appropriately chosen check digits, the numbers of l's in successive 
columns (left to right) and 2, 2, 2, 4, all being even numbers, and 
the numbers of l's in successive rows (top to bottom) are 4, 2, 2, 2, 
which are again all even. 

What happens if a single error is made in the transmission of a 
message digit among the 16? There will be an odd number ofones 
in a row and in a column. This tells us to change the message digit 
where the row and column intersect. 

What happens if a single error is made in a check digit? In this 
case there will be an odd number of ones in a row or in a column. 
We have detected an error, but we see that it was not among the 
message digits. 

The total number of digits transmitted for 16 message digits is 
16 + 8, or 24; we have increased the number of digits needed in 
the ratio 24/ 16, or 1.5. If we had started out with 400 message 
digits, we would have needed 40 check digits and we would have 
increased the number of digits needed only in the ratio of440/400, 

0 0 

0 

0 0 

0 0 

0 0 0 

Fig. VIII-5 
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or LL Of course, we would have been able to correct only one 
error in 440 rather than one error in 24. 

Codes can be devised which can be used to correct larger num
bers of errors in a block·of transmitted characters. Of course, more 
check digits are needed to correct more errors. A final code, .how
ever we may devise it, will consist of some set of 2M blocks of O's 
and l's representing all of the blocks of digits M digits long which 
we wish to. transmit. If the code were not error correcting, we 
could use a block just M digits long to represent each block of M 
digits which we wish to transmit. We will need more digits per 
block because of the error-correcting feature. 

When we receive a given block of digits, we must be able to 
deduce from it which block was sent despite some number n of 
errors in transmission (changes of 0 to 1 or 1 to 0). A mathema
tician wonld say that this is possible if the distance between any 
two blocks of the code is at least 2n + !. 

Here distance is used in a queer sense indeed, as defined by the 
mathematician for his particular purpose. In this sense, the dis
tance between two sequences of binary digits is the number of O's 
or l's that must be changed in order to convert one sequence into 
the other. For instance, the distance between O O 1 O and 1 1 1 1 
is 3, because we can convert one sequence into the other only by 
changing three digits in one sequence or in the other. 

When we make n errors in transmission, the block of digits we 
receive is a distance n from the code word we sent. It may be a 
distance n digits closer to some other code word. If we want to be 
sure that the received block will always be nearer to the correct 
code word, the one that was sent, than to any other code word, 
then the distance from any code word to any other code word must 
be at least 2n + I. 

Thus, one problem of block coding is to find 2M equal length 
code words (longer than M binary digits) that are all at least a 
distance 2n + 1 from one another. The code words must be as 
short as possible. The codes of Hamming and Golay are efficient, 
and other efficient codes have been found. 

Another problem of block coding is to provide a feasible scheme 
for encoding and, especially, for decoding. Simply listing code 
words won't do. The list would be too long. Encoding blocks of 20 
binary digits (M = 20) requires around a million code words. And, 
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finding the code word nearest to some received block of digits 
would take far too long. 

Algebraic coding theory provides means for coding and decoding 
with the correction of many errors. Slepian was a pioneer in this field 
and important contributors can be identified by the names of types 
of algebraic codes: Reed-Solomon codes and Bose-Chaudhuri· 
Hocquenghem codes provide examples. Elwin Berlekamp con
tributed greatly to mathematical techniques for calculating the 
nearest code word more simply. 

Convolutional codes are another means of error correction. In 
convolution coding, the latest M digits of the binary stream to be 
sent are stored in what is called a shift register. Every time a new 
binary digit comes in, 2 (or 3, or 4) are sent out by the coder. The 
digits sent out are produced by what is called modulo 2 addition of 
various digits stored in the shift register. (In modulo 2 addition 
of binary numbers one doesn't "carry.") 

Convolutional encoding has been traced to early ideas of Elias, 
but the earliest coding and decoding scheme published is that in a 
patent of D. W. Hagelbarger, filed in 1958. Convolutional decoding 
really took off in 1967 when Andrew J. Viterbi invented an 
optimum and simple decoding scheme called maximum likelihood 
decoding. 

Today, convolutional decoding is used in such valuable, noisy 
communication channels as in sending pictures of Jupiter and its 
satellites back from the Voyager spacecraft. Convolutional coding 
is particularly valuable in such applications because Viterbi's 
maximum likelihood decoding can take advantage of the strength 
as well as the sign of a received pulse. 

If we receive a very small positive pulse, it is almost as likely 
to be a negative pulse plus noise as it is to be a positive pulse plus 
noise. But, if we receive a large positive pulse, it is much likelier 
to be a positive pulse plus noise than a negative pulse plus noise. 
Viterbi. decoding can take advantage of this. 

Block coding is used in protecting the computer storage of vital 
information. It can also be used in the transmission of binary in
formation over inherently low-noise data circuits. 

Many existing circuits that are used to transmit data are subject 
to long bursts of noise. When this is so, the most effective form of 
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e:r?r correction i~ to divide the message up into long blocks of 
digits and to provide foolproof error detection. If an error is de
tected in a r~c~ived block, retransmission of the block is requested. 
Mathema!J~ians are fascmated by the intricacies and challenges 

of block co~mg. In the ~yes of some, information theory has be
come esse~tially al.gebra1c coding theory. Coding theory is im
portant to mformat1on theory. But, in its inception in Shannon's 
work, information theory was, as we have seen, much broader. And 
even in coding itself, we must consider source coding as well as 
channel coding. 

In Chapter VII, we discussed ways of removing redundancy 
f~om a ~e~sage so !_hat it could be transmitted by means of fewer 
bmary digits. In this chapter, we have considered the matter of 
adding redundancy to a nonredundant message in order to attain 
vrrtually error-free transmission over a noisy charmel. The fact that 
such erro~-free tran~mission can be attained using a noisy charmel 
was. and 1s surpnsmg to communication engineers and mathe
maticians, but Sharmon has proved that it is necessarily so. 

Prior to receiving a message over an error-free channel the 
reci~ient is uncertain as to what particular message out of ~any 
possible ~essa~es the sender. will actually transmit. The amount 
of the rec1p1ent s uncertamty 1s the entropy or information rate of 
the me~s~ge ~ource, measured in bits per symbol or per second. 
The recrp1.ent s uncertainty as to what message the message source 
will send 1s completely resolved if he receives an exact replica of 
the message transmitted. 
. A message may be transmitted by means of positive and nega

!Jve pols~~ of current. If a strong enough noise consisting of ran
dom positive and negative pulses is added to the signal, a positive 
s~gnal pulse may be changed into a negative pulses or a negative 
s1g.nal pulse m.ay be changed into a positive pulse. When such a 
nmsy channel 1s used to transmit the message, if the sender sends 
any partic~ar symbol there is some uncertainty as to what symbol 
will be received by the recipient of the message. 

When the recipient receives a message over a noisy charmel, he 
knows what message he has received, but he cannot ordinarily be 
sure what message was transmitted. Thus, his uncertainty as to 
what message the sender chose is not completely resolved even on 
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the receipt of a, message. The remaining uncertainty depends on 
the probability that a received symbol will be other than the 
symbol transmitted. 

From the sender's point of view, the uncertainty of the recipient 
as to the true message is the uncertainty, or entropy, of the message 
source plus the uncertainty of the recipient as to what message was 
transmitted when he knows what message was received. The measure 
which Shannon provides of this latter uncertainty is the equivoca
tion, and he defines the rate of .transmission of information as the 
entropy of the message source less the equivocation. 

The rate of transmission of information depends both on the 
amount of noise or uncertainty in the channel and on what message 
source is connected to the channel at the transmitting end. Let us 
suppose that we choose a message source such that this rate of 
transmission which we have defined is as great as it is possible to 
make it. This greatest possible rate of transmission is called the 
channel capacity for a noisy channel. The channel capacity is 
measured in bits per symbol or per second. 

So far, the channel capacity is merely a mathematically defined 
quantity which we can compute if we know the probabilities of 
various sorts of errors in the transmission of symbols. The channel 
capacity is important, because Shannon proves, as his fundamental 
theorem for the noisy channel, that when the entropy or informa
tion rate of a message source is less than this channel capacity, the 
messages produced by the source can be so encoded that they can 
be transmitted over the noisy channel with an error less than any 
specified amount. 

In order to encode messages for error-free transmission over 
noisy channels, long sequences of symbols must be lumped together 
and encoded as one supersymbol. This is the sort of block encoding 
that we have encountered earlier. Here we are using it for a new 
purpose. We are not using it to remove the redundancy of the 
messages produced by a message source. Instead, we are using it 
to add redundancy to nouredundant messages so that they can be 
transmitted without error over a noisy channel. Indeed, the whole 
problem of efficient and error-free communication turns out to be 
that of removing from messages the somewhat inefficient redun
dancy which they have and then adding redundancy of the right 
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sort in order to allow correction of errors made in transmission. 
The redundant digits we must use in encoding messages for 

error-free transmission, of course, slow the speed of transmission. 
We have seen that in using a binary symmetric channel in which 
1 transmitted digit in 100 is erroneously received, we can send only 
92 correct nonredundant message digits for each 100 digits we feed 
into the noisy channel. This means that on the average, we must 
use a redundant code in which, for each 92 nonredundant message 
digits, we must include in some way 8 extra check digits thus 
making the over-all stream of digits redundant. 

Shannon's very general work tells us in principle how to proceed. 
But, the mathematical difficulties of treating complicated channels 
are great. Even in the case of the simple, symmetric, off-on binary 
channel, the problem of finding efficient codes is formidable, 
although mathematicians have found a large number of best codes. 
Alas, even these seem to be too complicated to use! 

Is this a discouraging picture? How much wiser we are than in 
the days before information theory! We know what the problem 
is. We know in principle how well we can do, and the result has 
astonished engineers and mathematicians. Further, we do have 
effective error-correcting codes that are used in a variety of appli
cations, including the transmission back to earth of glamorous 
pictures of far planets. 




