
The 
Mathematician's 

Brain 
DAVID RUELLE 



The Mathematician's Brain 

DAVID RUELLE 

PRINCETON UNIVERSITY PRESS 

PRINCETON AND OXFORD 



Copyright © 2007 by Princeton University Press 
Published by Princeton University Press, 41 William Street, 

Princeton, New Jersey 08540 
In the United Kingdom: Princeton University Press, 3 Market Place, 

Woodstock, Oxfordshire OX20 lSY 
All Rights Reserved 

Library of Congress Cataloging-in-Publication Data 

Ruelle, David. 
The mathematician's brain I David Ruelle. 

p. cm. 
Includes bibliographical references and index. 

ISBN-13: 978-0-691-12982-2 (cl : acid-free paper) 
ISBN-10: 0-691-12982-7 (cl: acid-free paper) 

1. Mathematics-Philosophy. 2. Mathematicians-Psychology. I. Title. 
QA8.4.R84 2007 

510-dc22 2006049700 

British Library Cataloging-in-Publication Data is available 

This book has been composed in Palatino 

Printed on acid-free paper. = 

press.princeton.edu 

Printed in the United States of America 

1 3 5 7 9 10 8 6 4 2 



Preface vii 

1. Scientific Thinking 1 

2. What Is Mathematics? 5 

3. The Erlangen Program 11 

4. Mathematics and Ideologies 17 

5. The Unity of Mathematics 23 

6. A Glimpse into Algebraic Geometry and Arithmetic 29 

7. A Trip to Nancy with Alexander Grothendieck 34 

8. Structures 41 

9. The Computer and the Brain 46 

10. Mathematical Texts 52 

11. Honors 57 

12. Infinity: The Smoke Screen of the Gods 63 

13. Foundations 68 

14. Structures and Concept Creation 73 

15. Turing's Apple 78 

16. Mathematical Invention: Psychology and Aesthetics 85 

17. The Circle Theorem and an Infinite-
Dimensional Labyrinth 91 

18. Mistake! 97 

19. The Smile of Mona Lisa 103 

20. Tinkering and the Construction of Mathematical 
Theories 108 

21. The Strategy of Mathematical Invention 113 

v 



CONTENTS 

22. Mathematical Physics and Emergent Behavior 119 

23. The Beauty of Mathematics 127 

Notes 131 

Index 157 

vi 



·:· Pref ace ·:· 

ArEQMETPHTm:: MHLlEIL EILITQ 

AccoRDING TO TRADITION, Plato put a sign at the entrance 
of the Academy in Athens: "Let none enter who is ignorant of 
mathematics." Today mathematics still is, in more ways Th-an 
one, an essential preparation for those who want to understand 
the nature of things. But can one enter the world of mathematics 
without long and arid studies? Yes, one can to some extent, be
cause what interests the curious and cultivated person (in older 
days called a philosopher) is not an extensive technical knowl
edge. Rather, the old-style philosopher (i.e., you and me) would 
like to see how the human mind, or we may say the mathemati
cian's brain, comes to grips with mathematical reality. 

My ambition is to present here a view of mathematics and 
mathematicians that will interest those without training in math
ematics, as well as the many who are mathematically literate. I 
shall not attempt to follow majority views systematically. Rather, 
I shall try to present a coherent set of facts and opinions, each 
of which would be acceptable to a fair proportion of my mathe
matically active colleagues. In no way can I hope to make a com
plete presentation, but I shall exhibit a variety of aspects of the 
relation between mathematics and mathematicians. Some of 
these aspects will turn out to be less than admirable, and per
haps I should have omitted them, but I felt it more important to 
be truthful than politically correct. I may also be faulted for my 
emphasis on the formal and structural aspects of mathematics; 
these aspects, however, are likely to be of most interest to the 
reader of the present book. 

Human communication is based on language. This method of 
communication is acquired and maintained by each of us 
through contact with other language users, against a back
ground of human experiences. Human language is a vehicle of 
truth but also of error, deception, and nonsense. Its use, as in 
the present discussion, thus requires great prudence. One can 
improve the precision of language by explicit definition of the 
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terms used. But this approach has its limitations: the definition 
of one term involves other terms, which should in turn be de
fined, and so on. Mathematics has found a way out of this infi
nite regression: it bypasses the use of definitions by postulating 
some logical relations (called axioms) between otherwise unde
fined mathematical terms. Using the mathematical terms intro
duced with the axioms, one can then define new terms and pro
ceed to build mathematical theories. Mathematics need, not, in 
principle rely on a human language. It can use, instead, a formal 
presentation in which the validity of a deduction can be checked 
mechanically and without risk of error or deception. 

Human language carries some concepts like meaning or beauty. 
These concepts are important to us but difficult to define in 
general. Perhaps one can hope that mathematical meaning 
and mathematical beauty will be more accessible to analysis 
than the general concepts. I shall spend a little bit of time on 
such questions. 

The contrast is striking between the fallibility of the human 
mind and the infallibility of mathematical deduction, the decep
tiveness of human language and the total precision of formal 
mathematics. Certainly this makes the study of mathematics a 
necessity for the philosopher, as was stressed by Plato. But while 
learning mathematics was, in Plato's view, an essential intellec
tual exercise, it was not the final aim. Many of us will concur: 
there are more things of interest to the philosopher (i.e., you and 
me) than the mathematical experience, however valuable that 
experience is. 

This book was written for readers with all kinds of mathemat
ical expertise (including minimal). Most of it is a nontechnical 
discussion of mathematics and mathematicians, but I have also 
inserted some pieces of real mathematics, easy and less easy. I 
urge the reader, whatever his or her mathematical background, 
to make an effort to understand the mathematical paragraphs or 
at least to read through them rather than jumping straight ahead 
to the other chapters. . 

Mathematics has many aspects, and those involving logic, al
gebra, and arithmetic are among the most difficult and technical. 
But some of the results obtained in those directions are very 
striking, are relatively easy to present, and have probably the 
greatest philosophical interest to the reader. I have thus largely 
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emphasized these aspects. I should, however, say that my own 
fields of expertise lie in different areas: smooth dynamics and 
mathematical physics. The reader should thus not be astonished 
to find a chapter on mathematical physics, showing how mathe
matics opens to something else. This something else is what 
Galileo called the "great book of nature," which he spent his life 
studying. Most important, the great book of nature, Galileo said, 
is written in mathematical language. 
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... 1 ... • • 

Scientific Thinking 

MY DAILY WORK consists mostly of research in mathematical 
physics, and I have often wondered about the intellectual pro
cesses that constitute this activity. How does a problem arise? 
How does it get solved? What is the nature of scientific thinking? 
Many people have asked these sorts of questions. Their answers 
fill many books and come under many labels: epistemology, cog
nitive science, neurophysiology, history of science, and so on. I 
have read a number of these books and have been in part grati
fied, in part disappointed. Clearly the questions I was asking are 
very difficult, and it appears that they cannot be fully answered 
at this time. I have, however, come to the notion that my insight 
into the nature of scientific thinking could be usefully comple
mented by analyzing my own way of working and that of my 
professional colleagues. 

The idea is that scientific thinking is best understood by 
studying the good practice of science and in fact by being a sci
entist immersed in research work. This does not mean that pop
ular beliefs of the research community should be accepted un
critically. I have, for example, serious reservations with regard to 
the mathematical Platonism professed by many mathematicians. 
But asking professionals how they work seems a better starting 
point than ideological views of how they should function. 

Of course, asking yourself how you function is introspection, 
and introspection is notoriously unreliable. This is a very serious 
issue, and it will require that we be constantly alert: what are 
good and what are bad questions you may ask yourself? A phys
icist knows that trying to learn about the nature of time by intro
spection is pointless. But the same physicist will be willing to 
explain how he or she tries to solve certain kinds of problems 
(and this is also introspection). The distinction between accept
able and unacceptable questions is in many cases obvious to a 
working scientist and is really at the heart of the so-called scien
tific method, which has required centuries to develop. I would 
thus refrain from saying that the distinction between good and 
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bad questions is always obvious, but I maintain that scientific 
training helps in making the distinction. 

Enough for the moment about introspection. Let me state 
again that I have been led by curiosity about the intellectual pro
cesses of the scientist and in particular about my own work. As 
a result of my quest I have come to a certain number of views 
or ideas that I have first, naturally, discussed with colleagues.1 

Now I am putting these views and ideas in writing for a more 
general audience. Let me say right away that I have no final the
ory to propose. Rather, my main ambition is to give a detailed 
description of scientific thinking: it is a somewhat subtle and 
complex matter, and absolutely fascinating. To repeat: I shall dis
cuss my views and ideas but avoid dogmatic assertions. Such 
assertions might give nonprofessionals the false impression that 
the relations between human intelligence and what we call real
ity have been clearly and finally elucidated. Also, a dogmatic 
attitude might encourage some professional colleagues to state 
as firm and final conclusions their own somewhat uncertain be
liefs. We are in a domain where discussion is necessary and 
under way. But we have at this time informed opinions rather 
than certain knowledge. 

After all these verbal precautions, let me state a conclusion 
that I find hard to escape: the structure of human science is largely 
dependent on the special nature and organization of the human brain. 
I am not at all suggesting here that an alien intelligent species 
might develop science with conclusions opposite to ours. Rather, 
I shall later argue that what our supposed alien intelligent spe
cies would understand (and be interested in) might be hard to 
translate into something that we would understand (and be in
terested in). 

Here is another conclusion: what we call the scientific method is 
a different thing in different disciplines. This will hardly surprise 
those who have worked both in mathematics and in physics or 
in physics and in biology. The subject matter defines to some 
extent the rules of the game, which are different in different 
areas of science. Even different areas of mathematics (say, alge
bra and smooth dynamics) have a very different feel. I shall 
in what follows try to understand the mathematician's brain. 
This is not at all because I find mathematics more interesting 
than physics and biology. The point is that mathematics may be 
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viewed as a production of the human mind limited only by the 
rules of pure logic. (This statement might have to be qualified 
later, but it is good enough for our present purposes.) Physics, 
by contrast, is also constrained by the physical reality of the 
world that surrounds us. (It may be difficult to define what we 
mean by physical reality, but it does very much constrain physi
cal theory.) As for biology, it deals with a group of Earth-bound 
organisms that are all historically related: this is quite a serious 
constraint. 

The two "conclusions" I have just proposed are of limited 
value because they are stated in such general and vague terms. 
What is interesting is to get into the details of how science is 
done and what it captures of the elusive nature of things. What 
I call the nature of things or the structure of reality is what sci
ence is about. That includes the logical structures studied by 
mathematics and the physical or biological structures of the 
world we live in. It would be counterproductive to try to define 
reality or knowledge at this point. But clearly there has been an 
immense progress in our knowledge of the nature of things over 
the past centuries or decades. I would go beyond that and claim 
a third conclusion: what we call knowledge has changed with time. 

To explain what I mean, let me discuss the example of Isaac 
Newton.2 His contributions to the creation of calculus, mechan
ics, and optics make him one of the greatest scientists of all time. 
But he has left many pages of notes telling us that he had other 
interests as well: he spent a lot of time doing alchemical manipu
lations and also trying to correlate history with the prophecies 
of the Old Testament. 

Looking back at Newton's work, we can readily see which 
part of it we want to call science: his calculus, mechanics, and 
optics had tremendous later developments. His alchemy and his 
study of prophecies by contrast did not lead anywhere. The lack 
of success of alchemy can be understood from the way of think
ing of alchemists, which involved relations between the metals 
and the planets and other concepts that we consider to be with
out rational or empirical justification. As to the esoteric use of 
the Scriptures to understand history, it continues to this day, but 
most scientists know that this is nonsense (and this opinion is 
supported by statistical studies).3 
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A modern scientist distinguishes readily between Newton's 
good science and his pseudoscientific endeavo]'s. How is it that 
the same admirable mind that unveiled the secrets of celestial 
mechanics could completely go astray in other domains? The 
question is irritating because we see good science as honest and 
guided by reason while pseudoscience is often dishonest and in
tellectually off the track. But what track? What we see now as 
the well-marked path of science was at Newton's time an ob
scure track among other obscure tracks that probably led no
where. The progress of science is not just that we have learned 
the solution of many problems but, perhaps more important, 
that we have changed the way we approach new problems. 

We have thus gained new insight into what are good and bad 
questions and what are good and bad approaches to them. This 
change in perspective is a change in the nature of what we call 
knowledge. And this change of perspective gives a contemporary 
scientist, or an educated layman, some intellectual superiority 
over giants like Newton. By intellectual superiority I mean not 
just more knowledge and better methods but in fact a deeper 
grasp of the nature of things. 
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What Is Mathematics? 

WHEN SPEAKING of mathematics, it is desirable to give exam
ples. In this chapter the examples will be easy, but the reader 
should be warned against the natural tendency to accelerate 
through what appears to be technical stuff. On the contrary one 
should slow down! So, here we go. 

Look at two triangles ABC and A'B'C', and suppose that 
I AB I = I A'B' I . (This means that the length of the edge AB is the 
same as the length of the edge A'B'.) Suppose also that I BC I = 
I B'C' I and that the angle at Bin the triangle ABC is the same 
as the angle at B' in A'B'C'. 

C' 
A 

A' 
B c 

B' 

Having supposed all these things, it follows that the two trian
gles ABC and A'B'C' are equal or, as one says, congruent. What 
this means is that if the two triangles are drawn on paper 
and you cut them out with scissors, you can move them around 
and superpose them exactly. (You may have to flip one of the 
two triangles recto-verso before putting it on top of the other.) 
Using the pieces of paper you can also make clear what you 
mean by equal edges (they can be superposed exactly) or equal 
angles (same thing). 

If you have reasonable command of the English language and 
a modicum of visual intelligence, you will have understood the 
above considerations and quite likely found them mortally bor
ing. Indeed, by the time you have taken in what is really meant, 
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these considerations will probably appear to you painfully triv
ial and obvious. Why then did people ever get excited about 
"theorems of geometry" such as the one we just discussed? For 
the hell of it let us state it again: if the triangles ABC and A'B'C' 
are such that I AB I= I A'B' I, I BC I= I B'C' I, and the angle at B in 
ABC is equal to the angle at B' in A'B'C', then ABC and A'B'C' are 
congruent. And it is also true that if the triangles ABC and A'B'C' 
are such that I AB I = I A'B' I , I BC I = I B'C' I , and I CA I = I C' A' I, 
then ABC and A'B'C' are congruent. 

The fact is that from fairly obvious statements like this one it 
is possible, with impeccable logic, to derive more interesting re
sults like the Pythagorean theorem1: if the angle at Bin the triangle 
ABC is a right angle,* then I AB 12 + I BC 12 = I AC 12• 

A c2 = ai + b2 

a 

Actually, a proof of this result can be obtained by staring at the 
following figure: 

b a 

b 
c 

a 

a 

b 

a 

*You know what a right angle is, but if you insist on a definition, here is 
one: if the four angles of a quadrangle are equal, then they are right angles 
(and the quadrangle is a rectangle). 
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The big square has an area (a+ b)2 = a2 + 2ab + b2 and consists of 
a small square of area c2 and four triangles with area ab /2 each, 
and hence, a2 + 2ab + b2 = c2 + 2ab, that is, a2 + b2 = c2• 

The Pythagorean theorem is useful knowledge. It allows us, 
for instance, to produce a right angle if we have a piece of string. 
Here is how. We make marks on the string so that it is divided 
into twelve intervals of equal length (we may call this length a 
cubit). Then we use our string to make a triangle with sides 3, 4, 
and 5 cubits: the angle between the sides of length 3 and 4 cubits 
will be a right angle. 

This is not quite obvious, but it follows from the Pythagorean 
theorem if you note that 32 + 42 = 9 + 16 = 25 = 52• The ancient 
Greeks loved arguing, and they loved geometry because it gave 
them a chance to argue and to come to indisputable conclusions. 
Geometry, as Plato noted, is a matter of knowledge, not just of 
opinion. In Book VII of the Republic, he places geometry among 
the required studies for the philosophers who are going to rule 
his ideal city. In a very modern discussion, Plato remarks that 
geometry is practically useful but that the real importance of the 
subject lies elsewhere: "Geometry is knowledge of what always 
is. It draws the soul towards truth, and produces philosophical 
thought." Plato refers here to geometry in the plane and notes 
the lack of development (in his days) of three-dimensional ge
ometry, regretting that "this difficult subject is little researched."2 

Less than a century after Plato's Republic, Euclid's Elements3 

(ca. 300 BC) appears. The Elements gives a firmly logical presenta
tion of geometry: a sequence of statements (called theorems) re
lated by strict rules of deduction. One starts with some choice 
of statements that are assumed to be true (using modern Ian-
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guage, we call them all axioms), and then the rules of deduction 
produce theorems that constitute geometry. MQdern mathemati
cians are somewhat more fussy than Euclid in formulating 
axioms and proving theorems. In particular David Hilbert4 

showed that, to be really rigorous, one has to replace some of 
Euclid's intuitive thinking (based on looking at figures) by fur
ther axioms and more painful arguments. But the remarkable 
thing is that modern mathematics is done precisely in the way 
that Euclid presented geometry. 

Let me say this again. Mathematics consists of statements
like the one about congruent triangles or the Pythagorean theo
rem-related by very strict rules of deduction. If you have the 
rules of deduction and some initial choice of statements as
sumed to be true (called axioms), then you are ready to derive 
many more true statements (called theorems). The rules of deduc
tion constitute the logical machinery of mathematics, and the 
axioms comprise the basic properties of the objects you are inter
ested in (in geometry these may be points, line segments, angles, 
etc.). There is some flexibility in selecting the rules of deduction, 
and many choices of axioms are possible. Once these have been 
decided you have all you need to do mathematics. 

One terrible thing that could happen to you is if you reach a 
contradiction, that is, if you prove that some statement is both 
true and false. This is a serious concern because Kurt Godel5 

has shown that it is not possible (in interesting cases) to prove 
that a system of axioms does not lead to contradictions. It is fair 
to say, however, that Godel's theorem does not prevent mathe
maticians from sleeping. What I am trying to say is that most 
mathematicians are not distracted by Godel from their usual 
routine: they don't expect a contradiction to pop up in their 
work. We may thus for the moment dismiss the issue of noncon
tradiction and look at "real" mathematics as it is usually done 
by mathematicians. 

Mathematics as done by mathematicians is not just heaping 
up statements logically deduced from the axioms. Most such 
statements are rubbish, even if perfectly correct. A good mathe
matician will look for interesting results. These interesting re
sults, or theorems, organize themselves into meaningful and 
natural structures, and one may say that the object of mathemat
ics is to find and study these structures. 
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Here, however, one should be careful. I have followed the 
opinion of most mathematicians in saying that mathematics or
ganizes itself in meaningful and natural structures. But why 
should that be the case? And, in fact, what does it mean? These 
are difficult questions. We shall look at them in the next chapter 
and later. Before that it is desirable to have a look at the role of 
language in mathematics. 

When I say, "Consider the triangles ABC and A'B'C', and as
sume that IAB I = IA'B' I, I BC I = I B'C' I, ... ," I am using the 
English language. Sort of. The point here is not that mathemati
cians use bad English, but that they use English at all. Mathe
matical work is performed using a natural language (ancient 
Greek or English, for example), supplemented by technical sym
bols and jargon. We have said that mathematics consists of state
ments related by very strict rules of deduction, but now we see 
that the statements and deductions are presented in a natural 
language that does not obey very strict rules. Of course, there 
are grammatical rules, but they are so messy and fuzzy that 
translation by computer from one natural language to another 
is a difficult problem. Should the development of mathematics 
depend on a good structural understanding of natural lan
guages? That would be quite disastrous. 

The way out of this difficulty is to show that in principle we 
can dispense with a natural language like English. One can pre
sent mathematics as the manipulation of formal symbolic ex
pressions ("formulas"), where the rules of manipulation are ab
solutely strict, with none of the fuzziness present in the natural 
languages. In other words one can in principle give a completely 
formalized presentation of mathematics. Why only in principle 
and not also in fact? Because formalized mathematics would be 
so cumbersome and untransparent as to be totally unmanage
able in practice. 

We may thus say that mathematics, as it is currently practiced 
by mathematicians, is a discussion (in natural language, plus 
formulas and jargon) about a formalized text, which remains un
written. One argues quite convincingly that the formalized text 
could be written, but this is not done. Indeed, for interesting 
mathematics the formalized text would be excessively long, and 
also it would be quite unintelligible by a human mathematician. 

9 



CHAPTER 2 

There is thus in mathematical texts a perpetual tension: the 
need to be rigorous pushes towards a formaliz~d style, while the 
need to be understandable pushes towards an informal exposi
tion using the expressive possibilities of a natural language. 
There are a few tricks that make life simpler. An important one 
is the use of definitions: one replaces a complicated description 
(like that of a regular dodecahedron) by a simple phrase ("regu
lar dodecahedron") or a complicated symbolic expression by a 
simple symbol. One may also introduce abuses of language: some 
controlled sloppiness that won't lead to trouble. Note that a 
completely formalized text could be checked for correctness me
chanically, say, by a computer. But for an ordinary mathematical 
text, one has to depend on the somewhat fallible intelligence of 
a human mathematician. 

Different mathematicians have different manners of express
ing themselves. In the best cases, the style is clear, elegant, 
beautiful. As modern examples one may cite Jean-Pierre Serre's 
Cours d'arithmetique6 and Steve Smale's review article "Differ
entiable dynamical systems."7 The styles of these two pieces are 
very different, Serre being more formal, Smale less so. Smale 
uses hand-drawn figures to explain his mathematical construc
tions, a thing that Serre would not want to do. Although the 
styles are so different, most mathematicians would probably 
consider that Serre's book and Smale's article are both master
pieces of exposition. 
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IF YOU DEFINE PRECISELY a set of axioms and rules of logical 
deduction, you have all you need to do mathematics. Mathemat
ics, however, is not just a big pile of statements logically de
duced from basic statements called axioms. Most mathematicians 
would say that good mathematics consists of those statements 
that are interesting, that good mathematics has meaning, and 
that it is organized in natural structures. It remains then to ex
plain what are "interesting statements," "meaning," and "natu
ral structures." Those concepts are not easy to define precisely, 
but mathematicians consider them important, and we have to 
try to understand them. There have been various attempts to de
fine natural mathematical structures, and we shall focus on this 
concept. In fact, some mathematicians will insist that interesting 
or meaningful statements are those that relate to natural struc
tures, and others will disagree, but we must postpone a discus
sion of this question until we have an idea of what mathematical 
structures are. 

Felix Klein,1 in his famous inaugural lecture in Erlangen (in 
1872), proposed a concept of natural structures of geometry, now 
known as the Erlangen program. To discuss the views of Felix 
Klein we need to actually do some mathematics, in fact, some 
geometry. And the proper way to proceed would involve 
axioms, theorems, and proofs. But I do not want to assume that 
the reader has professional expertise in mathematics or wants to 
acquire it. I shall therefore use the approach of the Greeks before 
they formalized geometry in the manner of Euclid's Elements. I 
shall ask you to stare at figures and make simple deductions (or 
believe some statements I shall make). Think of yourself as a 
lover of philosophy in ancient Athens. As you come to the Acad
emy to hear the discussions, you see a sign asking "nongeome
ters" (or nonmathematicians) to stay out. But you are not afraid. 
You enter. 

To understand Klein's ideas, let us look first at the example of 
Euclidean geometry in the plane, which we discussed in chapter 
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2. We say that the plane is the space of Euclidean geometry, and 
we also have a notion of congruence. Two fig~res are congruent, 
or equal, if one of them can be moved to fit exactly on top of the 
other. The motion should be rigid, that is, it should not change 
distances between pairs of points. Rigid motions, i.e., congru
ences, are what characterizes Euclidean geometry. In Euclidean 
geometry we can speak of such concepts as (straight) lines, par
allel lines, the middle point of a segment, the square, and so on. 
Euclidean geometry is very natural to us, but we shall see that 
there are other interesting geometries in the plane. 

If we want to keep the concepts of straight lines and parallel 
lines but not those of distances between points or value of 
angles, we obtain affine geometry. Here, besides rigid motions 
we also allow stretching and shortening distances. Instead of 
congruences we have affine transformations. Note that a square, 
by a rigid motion, stays a square of the same size, oriented 
differently: 

but by an affine transformation, a square can become any 
parallelogram: 

D 
Affine geometry (of the plane) is defined by a space-the 
plane-and by the affine transformations. Let us mention in 
passing that the notion of the middle point of a segment makes 
sense in affine geometry, even though the notion of the length 
of a segment does not make sense. This is because we can say 
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that segments of parallel lines are equal if they are intercepted 
by parallel lines: 

A' B' 

Z\Z\ 
A B c 

(if A'A is parallel to B'B, and A'B is parallel to B'C, then Bis the 
midpoint of AC). 

Another kind of geometry is projective geometry, which arises 
naturally from the study of perspective. Indeed, if you have a 
square table (left), its perspective drawing looks like this (right): 

D c image of point 
/ at infinity //I 

I 

/o' ;·c 
A B A' B' 

(the legs of the table have not been drawn). Note that the parallel 
sides of the table are no longer parallel in the picture. A natural 
idea here is to say that parallel lines intersect at a point at infin
ity. In the picture a point at infinity becomes an ordinary point 
of the plane. 

In projective geometry we have a space called the projective 
plane, which consists of the ordinary points of the plane and the 
points at infinity. The rigid motions (or congruences) of Euclid
ean geometry are replaced by projective transformations, which 
move things around in a manner natural from the projective 
point of view: straight lines remain straight lines, but parallelism 
need not be preserved. If a figure is drawn on a table and you 
give a correct perspective rendering of this figure on a screen, 
you establish a projective transformation between the plane of 
the table and the plane of the screen. When a point P of the table 
is represented by a point P' on the screen, we may say that the 
projective transformation sends P to P'. As we have noted, a pro-
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jective transformation may send a point at infinity to an ordi
nary point, and the converse also happens. . 

The midpoint of a segment is not a good concept for projective 
geometry, but the cross-ratio is. Take four points A, B, C, Don a 
line, and let a, b, c, d be their distances from a point 0, with a + 
sign for points on the right of 0 and a - sign for those on the 
left. (The numbers a, b, c, d may thus be positive, negative, or 0.) 

0 A B c D 

The quantity (A, B; C, D) equal to 

c - a c - b (c - a)(d - b) 
=-----

d - a · d - b (d - a)(c - b) 

is called the cross-ratio of A, B, C, D. (It does not depend on the 
choice of 0 or what we called the right of 0 and the left of 0.) 
If a projective transformation changes A, B, C, D to A', B', C', D', 
then (A', B'; C', D') = (A, B; C, D). One can also define the cross
ratio of four lines PA, PB, PC, PD going through a point P: 

c D' 

p 

this is simply the cross-ratio of the points A, B, C, D as in the 
figure. (Using A', B', C', D' would give the same result.) 

While the ideas we have just discussed go beyond Plato, he 
could have understood them. Let me now go briefly to some
thing really different from Greek mathematics and use complex 
numbers. If you are not familiar with complex numbers, look at 
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the note2 before you proceed to the next paragraph. Plato might 
not have been happy with this next paragraph, and perhaps you 
won't be either. Read it anyway, but don't get stuck. 

One may think of complex numbers as points in the complex 
plane. We define the complex projective line to consist of the points 
of the complex plane and a single extra point at infinity. Note that 
the complex projective line, which is really a plane, contains or
dinary straight lines and circles. There are complex projective 
transformations, which move points around in the complex pro
jective line. Specifically, the point (a complex number) z is sent 
(i.e., moved) to the point 

pz +q 
rz + s 

(We assume that p, q, r, s are complex numbers such that 
ps - qr =t= 0.) The complex projective transformations transform 
circles into circles (with the understanding that a straight line 
plus the point at infinity is considered to be a circle). One can 
define the cross-ratio of four points a, b, c, d (which are complex 
numbers) as 

c-a c-b 
(a, b; c, d) = -- : -- . 

d-a d-b 

It is in general a complex number, but when a, b, c, dare on a 
circle the cross-ratio is real (and the converse is true). It turns 
out that if a complex projective transformation maps a, b, c, d to 
a', b', c', d', then (a, b; c, d) = (a', b'; c', d'). In other words, complex 
projective transformations preserve the cross-ratio. (You are wel
come to check this fact. Using the definitions I have just given it 
is a simple calculation.) 

Let us now step back and see what we have. We have intro
duced various geometries, each with a space and a choice of trans
formations. In the cases we discussed, the space is a plane (with 
points at infinity possibly added). But the plane was just for easy 
visualization; other spaces (for example, three-dimensional 
space) could be used. In mathematical parlance, the words space 
and set are more or less equivalent, meaning a collection of 
"points" in the case of a space or "elements" in the case of a set. 
A transformation sends points in a space S to points in a space 
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S' (often S' is the same as S). The idea of Felix Klein is that a 
space and a collection of transformations defjne a geometry. 

Introducing different geometries allows us to put some order 
in theorems. As an example, consider Pappus's theorem: 

Suppose that two triangles ABC and A'B'C' are such that the lines AA', 
BB', CC' intersect in a single point P. Suppose that the lines AB and 
A'B' intersect at the point Q, the lines BC and B'C' at the point R, and 
the lines CA and C'A' at the point S. Then there is a straight line through 
Q,R,S. 

p 

What kind of geometry does this correspond to? There are 
straight lines, no parallels, no circles. So, it is a good guess that 
Pappus's theorem belongs to projective geometry. Now, projec
tive geometry is related to questions of perspective, and indeed 
Pappus's theorem can be understood in terms of perspective. 
Think of ABC and A'B'C' as being in fact triangles in three-di
mensional space. We have assumed the existence of a point P , 
which is the top of a pyramid, of which ABC and A'B'C' are two 
plane sections. The planes containing ABC and A'B'C' must in
tersect in a line containing Q, R, S, and therefore there is a 
straight line through Q, R, S, as asserted by Pappus. 

Perhaps it is at this point that you start feeling there is more 
to geometry than a legalistic certification of theorems. There are 
ideas-ideas that Plato could understand. 
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Mathematics and Ideologies 

Now THAT WE ARE ABLE to distinguish between Euclidean, 
affine, and projective geometries, we may classify our knowledge 
accordingly. So, we have seen that Pappus's theorem belongs to 
projective geometry. But the Pythagorean theorem belongs to Eu
clidean geometry because it involves the concept of length of the 
sides of a triangle. Classification is a great source of satisfaction 
for scientists in general and mathematicians in particular. Classi
fication is also useful: to understand a problem of Euclidean ge
ometry, you will use one bag of tools including congruent trian
gles and the Pythagorean theorem. For a problem of projective 
geometry, you will use another bag of tools containing projective 
transformations and the fact that they preserve cross-ratios. A 
problem may be fairly easy if you use the right bag of tricks and 
become quite hard if you use the wrong one. Working mathema
ticians frequently experience this state of affairs and give due 
credit to Felix Klein for having uncovered this hidden mathemat
ical reality: there are several different geometries, and it is useful 
to know where individual problems belong. 

To convince you that the Erlangen program is a useful piece 
of mathematical ideology, I would like now to discuss a difficult 
problem. Here it is: 

s 
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Butterfly Theorem 
Draw a circle and a chord AB, with midpoint M. T,_hen draw chords PQ 
and RS through M as in the picture. Finally, let the chords PS and RQ 
intersect AB at U and V, respectively. Claim: M is the midpoint of the 
segment UV. 

(Note that the butterfly PSRQ is usually an asymmetric quadran
gle.) If you have some training in elementary geometry, I recom
mend that you give this problem a good try before going on 
(stop reading, take a sheet of paper, and start working). 

Now let me explain that a professional mathematician would 
not call this a very hard problem. With respect to difficulty, it 
has nothing to do with Fermat's last theorem, which we shall dis
cuss later. In fact, it looks like an easy question of elementary 
Euclidean geometry. One immediately notices that the angles at 
S and Q are equal. Then one tries to use standard results about 
congruent triangles (like the one in chapter 2). Perhaps one 
makes some constructions, drawing a perpendicular or a bi
sector, ... and one gets absolutely nowhere. Then one may start 
having doubts. Is it really true that M is the middle of UV? (In 
fact, yes, it is true.) The reasonable thing to do in this sort of 
situation is to sleep on it. (I am a most reasonable person, so that 
is exactly what I did after my colleague Ilan Vardi showed me 
the problem and I could not readily solve it.) If you really want 
to crack the problem, you can now do either of two things. 

(i) Use brute force. In fact, for problems of elementary geome
try one can always (as we shall see) introduce coordinates, write 
equations for the lines that occur, and reduce the problem to 
checking some algebra. This method is due to Descartes.1 It is 
effective but cumbersome. It is often long and inelegant, and 
some mathematicians will say that it teaches you nothing: you 
don't get a real understanding of the problem you have solved. 

(ii) Find a clever idea so that the problem becomes easy. To 
most mathematicians this is the preferred method. 

Here the clever idea is to realize that the butterfly theorem be
longs to projective rather than Euclidean geometry. True, the cir
cle is a Euclidean object, but it also appears naturally in the geom
etry of the complex projective line. True, the notion of a midpoint 
is Euclidean or affine, but this is a red herring: one might start 
with I AM I = a I AB I, where a is not necessarily 1/2. 
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Let me now briefly outline a proof of the butterfly theorem. 
You may work out the details or be satisfied with the general 
idea, as you prefer. Consider the points A, B, P, R, ... to be com
plex numbers. Since A, B, P, Rare on a circle, the cross-ratio (A, 
B; P, R) is real. Taking the origin of the complex plane at S, we 
find that the points A'= l/A, B' = l/B, P' = 1/P, R' = l/R are 
on a straight line and 

(A, B; P, R) = (A', B'; P', R') . 

This is also* the cross-ratio of the lines SA', SB'; SP', SR' or (by 
a reflection) of the lines SA, SB; SP, SR or (intersecting by AB) of 
the points A, B; U, M. Thus, 

(A, B; P, R) = (A, B; U, M) . 

Replacing S by Q we find similarly 

(A, B; P, R) = (A, B; M, V). 

We have shown that 

(A, B; U, M) =(A, B; M, V), 

that is, 

U-A U-B M-A M-B 
=---

M-A M-B V-A V-B 

If Mis the midpoint of AB, that is, M =(A+ B)/2, then the above 
equation simplifies and we have 

(U - A) (V - A) = (U - B) (V - B) I 

or, expanding and regrouping, 

(B -A) (U + V) = B2 - A 2, 

or, dividing by B - A, 

U + V=A + B. 

This shows that the midpoint of the segment UV is 

* At this point we pass briefly from one-dimensional complex projective ge
ometry to two-dimensional real geometry. By the way, instead of one-dimen
sional complex projective geometry, some mathematicians will prefer to use 
two-dimensional confotmal geometry, but it is nearly the same thing. 
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U+V 
2 

A+B = --- = M, 
2 

So, we find that a difficult problem of geometry has a natural 
and elegant proof once we understand that the problem natu
rally belongs to projective rather than Euclidean geometry. This 
example, with many others, shows that there are natural struc
tures in mathematics. These natural structures need not be easy 
to see. They are like the pure ideas or forms that Plato had imag
ined. The mathematician thus has access to the elegant world of 
natural structures, just as, in Plato's view, the philosopher can 
reach the luminous world of pure ideas. For Plato, in fact, a phi
losopher must also be a geometer. Today's mathematicians are 
thus the rightful descendants of the philosopher-geometers of 
ancient Athens. They have access to the same world of pure 
forms, eternal and serene, and share its beauty with the Gods. 
This sort of view of mathematics has come to be called mathemat
ical Platonism. And in some form or other it remains popular 
with many mathematicians. Among other things it puts them 
above the level of common mortals. Mathematical Platonism can 
not be accepted uncritically, however, and we shall later dwell 
at length on this problem. 

But at this point a shocking question should be discussed: 
how did our butterfly theorem find itself included in a list of 
"anti-Semitic problems"? The setting of the story is the Soviet 
Union, and the time is the 1970s and 1980s. As you may know, 
the Soviet Union was brilliant in many fields of science, in par
ticular mathematics and theoretical physics. Scientific excellence 
was rewarded, and following the meanderings of the party line 
played a less dominant role in science than in other areas of So
viet life. Scientists then were to some extent sheltered from the 
prejudices of the ruling caste. But eventually the Soviet authori
ties, via the party committees of the universities, took steps to 
change this situation. In particular they limited the admission of 
Jews and certain other national minorities to major universities 
(in particular, Moscow University). This policy was not open 
and official but was implemented by selectively failing undesir
able candidates at entrance examinations. Some details are given 
in papers by Anatoly Vershik and Alexander Shen,2 where they 
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provide a list of "murderous" problems used to flunk those who 
were not considered ethnically or politically correct. Proving the 
butterfly theorem is on the list of the "murderous problems," 
and you can see why: the natural way to attack the problem will 
probably lead you nowhere. Of course there is a relatively simple 
solution, and a seasoned mathematician will eventually find it. 
But think of a young person who takes an examination to enter 
the university and has to crack such a problem in limited time. 

I have discussed Soviet politics with a number of Russian col
leagues (now mostly in the West). One of them, explaining to 
me how he was selectively failed at the entrance examination to 
Moscow University in spite of giving the correct answers, ap
peared sad rather than angry. He is now a very successful re
search mathematician in the United States, but many others 
have had their lives distorted and ruined by the system. And, as 
one colleague remarked, "However tragic this problem of ethnic 
discrimination may have been in individual cases, it is only a 
marginal tragedy next to a much greater tragedy." Indeed think 
of the "excess mortality" of 16 million people in the camps of 
the Gulag, as officially recognized by the Soviet authorities. But 
even if you want to consider it as a marginal issue, the use of 
mathematics to implement ethnic and political discrimination is 
very disturbing to mathematicians. We thought of mathematics 
as living in a serene world of forms, beauty, pure ideas, and here 
it sits among other tools of repression. 

Of course things have changed in Russia, and in the above
referenced article, Vershik mentions several university officials, 
formerly very active in the discrimination programs, who have 
suddenly turned into ardent democrats, organizing evenings of 
Jewish culture and the like. And some colleagues in the West 
seem eager to believe in this sudden mutation. 

How did I drift from mathematics to this particular political 
discussion? I am not Russian, I am not Jewish, and the Soviet 
Union no longer exists. The plight of other groups is currently 
a more pressing question than that of Soviet Jews. So, should I 
not leave political ugliness aside and concern myself rather with 
the beauty of the Platonist world of forms? The fact is that while 
the political and moral aspects of science are not our main con
cern here, they cannot be totally ignored. I find scientists in gen
eral to be rather geiod company, but there is no question that 
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some of them are bastards and some of them are frauds.3 Now 
and then I am impressed by the moral streIJ.gth of a colleague 
and now and then depressed by the moral weakness of one. 
Moral issues, one may say, are not part of science. But the exclu
sion and silencing of some scientists for extrascientific reasons 
may have far-reaching consequences. We shall later meet other 
examples of this unfortunate situation. 
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The Unity of Mathematics 

STARTING FROM A LIST of axioms and rules of deduction, we 
have seen how geometry can be developed, proving one theo
rem after another. But there are more things in mathematics, 
than just geometry. For example, arithmetic: we start with the 
numbers l, 2, 3, 4, ... called the (positive) integers. With integers 
one can make sums, 7 + 7 + 7 = 21, and products, 7 x 3 = 21. 
One can define primes, 2, 3, 5, 7, ... , 137, ... (those are the inte
gers that cannot be written as a product of two factors different 
from l); we have just seen that 21 is not a prime. There are infi
nitely many primes, as Euclid already knew, but present-day 
mathematicians still have many questions about them.1 

Some numbers that occur in geometry are not integers, for in
stance, the fractions, 1/2, 2/3, .... There are also real numbers 
that are not fractions, such as [2 = 1.41421 ... or 7t = 3.14159 .... 
The number [2 is the diagonal of the square of side 1; it was 
known to Euclid (perhaps to Pythagoras) that [2 is not a frac
tion. The number 7t is the circumference of a circle of diameter 
1; it is a modern result (from the eighteenth century) that 7t is 
not a fraction. 

I might easily be carried away and start telling the saga of 
mathematics. How one proves a miraculous formula like2 

1 1 1 1t 2 

1 +-+-+-+ ... = -
4 9 16 6 

and so on. But this is not my purpose here. What I have just said 
indicates two fundamental tendencies in the development of 
mathematics: diversification and unification. 

It is clear how diversification arises: everyone can set up a 
new system of axioms and start deriving theorems, creating a 
new branch of mathematics. Of course one has to avoid systems 
of axioms that lead to contradictions, and to mathematicians, 
some systems of axioms will appear more interesting than oth
ers. But there are many branches of mathematics: geometry, 

23 



CHAPTER 5 

which we discussed first; arithmetic, which deals with integers 
and related questions; and analysis, which is l).eir to the infinites
imal calculus of Newton and Leibniz.3 And then there are more 
abstract topics called set theory, topology, algebra, and so on. So it 
would seem that mathematics disintegrates in front of our eyes 
into a dust of unrelated subjects. 

But the subjects are not unrelated. For instance we have just 
seen how real numbers such as f2 or 1t appear in questions of 
geometry. In fact, there is a deep relation between Euclidean 
geometry and real numbers. Between Euclid and the nineteenth 
century the proper way to handle real numbers was through 
geometry: a real number was represented as the ratio of the 
length of two line segments. (This way of proceeding now ap
pears clumsy to us, and this explains in part why we find New
ton's mathematics rather painful to read). In the opposite direc
tion, Descartes showed us how to do Euclidean geometry using 
real numbers. We choose rectangular axes Ox, Oy, and represent 
a point P1 of the plane by its coordinates x1, y1 (which are real 
numbers), and similarly for P2: 

1 y 

P, 

~P2 
Y1 

0 x, x 

The length of the segment P1P2 is then J (x2 - X1)2 + (y2 - Y1)2 by 
the Pythagorean theorem, and questions of geometry can be 
solved by formal manipulations of numbers (i.e., algebra). 

In the above picture the point 0 has coordinates 0,0, and we 
can write 0 = (0,0). Similarly, P = (x, y) means that the point P 
has coordinates x, y. The circle of radius 1 with center 0 consists 
of those points P = (x, y) such that 
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x2 + y2 -1=0. 

One says that x2 + y2 = 1 is the equation of the circle in question 
(drawn in the left of the following figure). 

y 

x x 

The slanted straight line through 0 in the right of the figure has 
the equation 

x -y = 0. 

The idea to represent curves by equations has been a very fruit
ful one, leading to what is called algebraic geometry. 

Descartes' idea showed how to translate problems of geome
try into problems about numbers. This was at a time when the 
modern theory of real numbers had not yet been developed. At 
present, however, we have simple and efficient axiomatic ap
proaches to the real numbers. By contrast, the axiomatic descrip
tion of Euclidean geometry (inherited from Euclid and made 
more rigorous by Hilbert) is a complicated mess. Currently, the 
efficient way to handle Euclidean geometry is to start from the 
axioms of real numbers, use the language of Descartes 
(Cartesian coordinates) to pass to geometry, establish as theo
rems a number of geometric facts (including the Euclid-Hilbert 
axioms), and then use these facts to derive theorems of geometry 
in the manner of Euclid. 

Let me at this point digress on the role of axioms in the prac
tice of mathematics: they are rather unimportant. This may come 
as a surprise after all the fuss we have made about defining 
mathematics in terms of axioms. What happens in mathematical 
practice is that one starts from a number of known facts: these 
may be axioms, or more often they are already proved theorems 

25 



CHAPTER 5 

(like the Pythagorean theorem in Euclidean geometry). From 
these facts one then proceeds to derive new results. 

The idea, then, is that one can construct one branch of mathe
matics using the axioms of another branch, supplemented by ap
propriate definitions. Doing this repeatedly, one can hope to 
present the whole of mathematics as a unified construction 
based on only a small number of axioms. This hope has been a 
central driving force for mathematics through the ninteenth and 
twentieth centuries. One can say that the hope has been fulfilled 
but not without crises and surprises. Names associated with 
the story are Georg Cantor,4 David Hilbert, Kurt Godel, Alan 
Turing,5 Nicolas Bourbaki, and many more. We shall have the 
occasion to come back to parts of the story later but will now 
pause to look at the curious case of the French mathematician 
Nicolas Bourbaki. 

For historical reasons France is a strongly centralized country. 
As a consequence, scientific research and teaching have often 
been under the control of a few powerful old people. And this 
control has been painful for the young bright scientists. After a 
while, however, the old tyrants die. The power is seized by the 
young bright scientists, who, in the mean time, have aged. After 
a while then they became old tyrants, and we are back to the 
old situation. One may lament this course of events, and its re
sults are sometimes catastrophic for science. But sometimes the 
results are excellent. Why excellent? Because it frees the bright 
young people from time-consuming responsibilities and allows 
them to be scientifically productive. We have seen that for 
similar reasons Soviet science was of high quality in certain 
areas of research. 

So, at the end of 1934, a few former students of the Ecole Nor
male Superieure, the French mathematicians Henri Cartan 
(1904-), Claude Chevalley (1909-1984), Jean Delsarte (1903-
1968), Jean Dieudonne (1906-1992), and Andre Weil (1906-1998), 
decided to fight the antiquated mathematics that surrounded 
them and write a treatise of analysis. Analysis contains things 
like multiple integrals and Stokes formula, which are of everyday 
use in theoretical physics. So the idea was to develop analysis 
in a fully rigorous manner, all the way to Stokes formula. This 
was going to be a collective effort, and the young revolutionaries 
decided to hide themselves under the pseudonym of Nicolas 
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Bourbaki (in jest after the somewhat forgotten nineteenth-cen
tury French general Charles Bourbaki). 

Constructing analysis on a rigorous basis means we start from 
axioms. But not axioms of analysis! As we have seen, we want 
to build all of mathematics, including analysis, in a unified way 
from just a few axioms. And one century of mathematical mind 
searching has shown that a good idea is to start with the axioms 
of set theory. Set theory deals with collections of objects called 
sets (like the set {a, b, c} consisting of letters a, b, c). One can count 
the number of objects in a set and put together different sets 
(starting from {a, b, c} and {A, B, C} you get {a, b, c, A, B, C}). This 
looks tremendously uninteresting and unpromising. But be
cause it is so simple, it is a good starting point for the whole of 
mathematics. In set theory you can analyze axioms and logical 
rules of deduction with the greatest clarity. How do you obtain 
the rest of mathematics from set theory? By counting the objects 
in a set, you get the integers 0, l, 2, 3, .... From the integers you 
can define fractions and real numbers (using ideas of Richard 
Dedekind or Cantor). From the real numbers you obtain geome
try (as we have seen). And so on .... 

The outline of the work awaiting the young members of Bour
baki seemed rather clear, and they could hope that the job would 
not take too long. In fact many volumes on set theory, algebra, 
topology, and so on were written over the years by several gen
erations of mathematicians (retirement age from Bourbaki was 
fixed at fifty). This work had considerable normative impact: no
tation and terminology were carefully discussed, and structural 
aspects of mathematics were investigated in great detail. In ret
rospect, it is clear that the rigorous, unifying, systematic ideol
ogy of Bourbaki has been an important component of twentieth
century mathematics. Even though not everybody liked it! 

Of course the mathematicians who launched Bourbaki in the 
mid-'30s did not know where their enterprise would lead. But 
they were enthusiastic. And very sharp. Take for instance Andre 
Weil. To someone who said, "May I ask a stupid question?" he 
answered, "You just did." On the eve of World War II, Andre 
Weil decided that these nationalistic fights were not his problem, 
and he tried to escape the conflagration by taking refuge in Fin
land. There he was caught, barely escaped being executed as a 
spy, and was deported to England and then to France, where 
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once again he barely escaped being executed but this time for 
trying to evade his military duties. Eventually he went to the 
United States, where he pursued a brilliant mathematical career, 
which eventually led to the Weil conjectures. The later proof of 
these conjectures by Grothendiek6 and Pierre Deligne7 was an 
important moment in twentieth century mathematics. Of course 
the political judgment of Andre Weil with respect to World War 
II may be questioned, but one must recognize the independence 
of mind that it shows. And this independence of mind served 
him well in his creative mathematical work, which shows a 
healthy disrespect for the achievements of his predecessors in 
the field of algebraic geometry. 

Speaking of Andre Weil, we must mention his sister, Simone, 
who was the better known member of the Weil family in the 
European intellectual community. She was a philosopher and 
mystic, whose personal evolution took her from a Judaic back
ground to Christianity. She wrote a number of influential books 
on her social and religious experiences. The prewar problems 
and wartime horrors hurt her deeply, and she died in 1943 (in 
England) from self-inflicted starvation. 

And what about Bourbaki? He went from young and revolu
tionary to important and established to tyrannical and senile. 
The last two publications date from 1983 and 1998, and there 
will probably be no more. Bourbaki is dead.8 The surviving 
members of Bourbaki (from the creative period) are now old 
mathematicians, for the most part covered with honors. Mathe
matics has integrated the ideas of Bourbaki, and then gone on. 
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A Glimpse into Algebraic Geometry 

and Arithmetic 

IF ONE WANTED to make a list of the ten greatest mathemati
cians of the twentieth century, the name of David Hilbert would 
be unavoidable. And one might want to add Kurt Godel (al
though he was a logician more than a mathematician) and Henri 
Poincare1 (although he has been said to belong to the nineteenth 
century more than the twentieth). To go beyond these two or 
three names would be difficult, and different mathematicians 
might end up with rather different lists. We are still too close to 
the twentieth century to have a satisfactory perspective. Some
times it will happen that a mathematician receives an important 
prize for the proof of a difficult theorem but that his reputation 
later fades. In other cases the work of a mathematician turns out 
in retrospect to have changed the course of mathematics, and his 
name will emerge as one of the very great names of science. One 
name that is certainly not fading at this time is that of Alexander 
Grothendieck. He was my colleague in France at the Institut des 
Hautes Etudes Scientifiques (IHES), and while I was not close to 
him, we were involved together in a series of events that led to 
his departure from the IHES and his exclusion from the mathe
matical community. He excluded himself. Or one might say that 
he rejected his former friends in the French mathematical com
munity, and they rejected him. How this mutual rejection took 
place I shall later relate. 

Before that, however, I want to say something of Grothen
dieck' s mathematics, the last grand mathematical reuvre in the 
French language, the thousands of pages of the Elements de 
Geometrie Algebrique and of the Seminaire de Geometrie Algebrique. 
Grothendieck started his career with problems in analysis, 
where he made contributions of lasting significance. But the 
great labor of his life was in algebraic geometry. This was highly 
technical work, but because of its magnitude, it has some vis
ibility to nonspecialists, like the summit of a very high moun-
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tain that can be seen from afar even by those quite unable to 
climb it. 

Algebraic geometry, as we saw, started with the description 
of curves in the plane by equations that we may write symboli
cally as 

p (x, y) = 0. 

A point P = (x, y) of the curve has coordinates x, y, and in the 
examples that we considered earlier, the coordinates satisfied 
an equation x2 + y2 - 1 = 0 (circle) or x - y = 0 (straight line). 
Instead of x2 + y2 - 1 or x - y, we are now considering more 
generally a polynomial p (x, y), that is, a sum of terms axV where 
xk is the kth power of x, y~ is the .fth power of y, and the coeffi
cient a is a real number. If k + .f can be only 0 or 1, we have a 
polynomial of the form 

p (x, y) = a + bx + cy, 

said to be of degree 1, and the curve described by p (x, y) = 0 is 
a straight line. If k + .f can be 0, l, or 2, then we have a polynomial 
of degree 2, 

p (x, y) = a + bx + cy + dx2 + exy + fy2, 

and it corresponds to a conic. The curves called conics (or conic 
sections) were studied by later Greek geometers and include 
ellipses, hyperbolas, and parabolas. 

Describing curves with the help of equations has the advan
tage that you can go back and forth between geometry and com
putation using polynomials. Take the following geometric fact: 
through five given points in the plane, there passes in general 
just one conic. The more precise theorem is the following: if 
two conics have five points in common, then they have infinitely 
many points in common. This geometric theorem is somewhat 
subtle but translates into a property of solutions of polynomial 
equations that makes more natural sense to a modern mathema
tician.2 In general one may say that combining geometric lan
guage and intuition with the algebraic manipulation of equa
tions has proved very rewarding. 

The way a branch of mathematics develops is often guided by 
the subject studied, as if mathematicians were told, look at this, 
make that definition, and you will obtain a more beautiful, natu-
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ral theory. This is what has happened in algebraic geometry: the 
way to develop the subject has been told to mathematicians, so 
to say, by the subject itself. For example, we have used points P = 
(x, y), where the coordinates x, y were real numbers, but some 
theorems have a simpler formulation if you allow x, y to be com
plex numbers. For that reason, classical algebraic geometry 
largely uses complex rather than real numbers. This means that 
besides the real points of a curve one also considers complex 
points, and it is natural to introduce also points at infinity. Of 
course you will want to study not just curves in the plane but 
also curves (and surfaces) in three-dimensional space, and go to 
spaces of dimension greater than three. This forces you to con
sider a set of several equations, defining an algebraic variety, 
rather than just one equation. The way we just introduced them, 
algebraic varieties are defined by equations in the plane or some 
space of higher dimension. But it is possible to forget about the 
ambient space and to study varieties without reference to what 
is around them. This line of thinking was started by Riemann in 
the nineteenth century, and it led him to an intrinsic theory of 
complex algebraic curves. 

The study of algebraic varieties is what algebraic geometry is 
about. It is a difficult and technical subject, yet it is possible to 
sketch in a general way how this subject has developed. 

Let me come back to the remark that it is interesting to de
velop algebraic geometry with complex numbers rather than 
just real numbers. One can add, subtract, multiply, and divide 
real numbers in the usual way (dividing by 0 is not allowed), 
and this is expressed by saying that the real numbers form a field: 
the real field. Similarly the complex numbers form the complex 
field. And there are many other fields, some of which (called 
finite fields) have only finitely many elements. Andre Weil sys
tematically developed algebraic geometry starting from an arbi
trary field. 

But why go from real or complex numbers to an arbitrary 
field? Why this compulsion to generalize? Let me answer by giv
ing an example: instead of saying that 2 + 3 = 3 + 2, or 11 + 2 = 
2 + 11, mathematicians like to state that a + b = b + a. It is just as 
simple, and being more general, it is also more useful. Stating 
things at the proper level of generality is an art. It is rewarded 
by obtaining a more natural and general theory and also, very 
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importantly, by bringing answers to questions that could be 
stated but not answered in the less general tb.eory. 

At this point I would like to jump from algebraic geometry 
to something apparently quite different: arithmetic. Arithmetic 
asks, for instance, to find integers x, y, z such that 

xz + y2 = 2 2. 

One solution is x = 3, y = 4, z = 5, and the other solutions have 
been known since the Greeks. What if we replace the squares 
x2, y2, z2 by nth powers with integer n > 2? Fermat's last theorem 
is the assertion that 

has no solution with (positive) integers x, y, z if n > 2. In 1637, 
Pierre Fermat3 thought that he had a proof of this assertion (later 
called Fermat's last theorem), but he was probably mistaken. A 
true proof was finally published in 1995 by Andrew Wiles.4 This 
proof is extremely long and difficult, and one may well ask if it 
is worth spending so much effort to prove a result with zero 
practical interest. Actually, the main interest of Fermat's last the
orem is that it is so hard to prove and yet can be stated so simply. 
Otherwise, it is just one consequence of the monumental devel
opment of arithmetic in the second half of the twentieth century. 

Arithmetic is basically the study of integers, and a central 
problem of arithmetic is to solve polynomial equations (for in
stance, p (x, y, z) = 0, where we might have p (x, y, z) = xn + yn -
zn) in terms of integers (i.e., x, y, z are integers). Presented like 
this, arithmetic appears very similar to algebraic geometry: one 
tries to solve polynomial equations in terms of integers instead 
of complex numbers. Can one then unify algebraic geometry 
and arithmetic? Actually there are deep differences between the 
two subjects because the properties of integers are very different 
from those of complex numbers. In fact, if p (z) is a polynomial 
in one variable z, there is always a complex value of z such that 
p (z) = 0. (This fact is known as the fundamental theorem of algebra.) 
But nothing like that is true for integers. To make a (very) long 
story short, it is possible to unify algebraic geometry and arith
metic, but it is at the cost of extensive foundational work. Alge
braic geometry must be rebuilt on a (much) more general basis, 
and this was the great undertaking of Alexander Grothendieck. 
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At the time Grothendieck stepped into the game, a powerful 
idea had been introduced into algebraic geometry: instead of 
thinking of an algebraic variety as a set of points, one focussed 
on "nice" functions on the variety or parts of the variety. Spe
cifically these functions are quotients of polynomials and make 
sense on parts of the variety where the denominators do not 
vanish. The nice functions just mentioned can be added, sub
tracted, or multiplied, but division is usually not possible (it 
does not give a nice function). The nice functions do not form a 
field but rather something called a ring. The integers (positive, 
negative, and zero) also form a ring. Grothendieck' s idea was to 
start with arbitrary rings and see to what extent they might be
have like the rings of nice functions in algebraic geometry and 
what conditions one should introduce so that the usual results 
of algebraic geometry continue to hold, at least in part. 

Grothendieck' s program was of daunting generality, magni
tude, and difficulty. In hindsight we know how successful the 
enterprise has been, but it is humbling to think of the intellectual 
courage and force needed to get the project started and moving. 
We know that some of the greatest mathematical achievements 
of the late twentieth century are based on Grothendieck's vision: 
the proof of the Weil conjectures and the new understanding of 
arithmetic, which would make it possible to attack Fermat's last 
theorem. These applications of Grothendieck's ideas were, how
ever, largely the work of other people and made after he had 
taken his leave from mathematics. In the next chapter I shall try 
to describe what had happened. But part of the story is certainly 
this: Grothendieck' s passion was to develop new general ideas, 
to reveal grandiose mathematical landscapes. To accomplish this 
he needed to be forceful and clever. But cleverness was not an 
aim in itself. One may regret that he left behind him an unfin
ished construction, but adding detail carefully would not have 
interested him very much. Our great loss is not there but is that 
we don't know what other new avenues of knowledge he might 
have opened if he had not abandoned mathematics, or been 
abandoned by it. 
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A Trip to Nancy with 

Alexander Grothendieck 

THE IHES, where I came into contact with Grothendieck, is a 
small research institute for mathematics and theoretical physics 
located near Paris. It was created in the late 1950s by Leon Mot
chane as a privately funded institution to allow a few scientists 
to pursue their scientific work without other preoccupation. 
Motchane, an eccentric former businessman, had been born with 
the century and came originally from Saint Petersburg (he 
would never use the name Leningrad). When I met Motchane 
in 1964 he was a distinguished elderly gentleman who had done 
many things during his life. Before going into business, he had 
studied mathematics (with Paul Montel1). During World War II 
he was in the French Resistance against the Nazis.2 He also spent 
part of his life in Africa. Asked what he had been doing there, I 
remember him answering, "Permit an old man to forget certain 
things .... " Part of the story behind the creation of the IHES was 
a carefully occulted romance between Leon Motchane and 
Annie Rolland: he was the first director and she was the secre
tary-general. Both retired in 1971, and then they got married, 
surprising many. Their dedication and the good advice that Mot
chane received from such people as the French mathematician 
Henri Cartan and the American physicist Robert Oppenheimer3 

ensured the original success of the Institut and the golden period 
of the 1960s and 1970s. 

Just think that in the 1960s mathematics at IHES was repre
sented by young Rene Thom4 and young Alexander Grothen
dieck! While the scientific quality was stunning, the place 
appeared to me at the time totally unprestigious and unpreten
tious: nobody was an academician, and none of the scientists 
had gray hair. (Motchane had very distinguished white hair.) It 
may seem strange that I call the IHES unprestigious when Rene 
Thom had a Fields Medal (the most prestigious mathematical 
distinction at the time). The Fields Medal, however, played a less 
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important role then than it does now, particularly in France. 
Also, while Thom and Grothendieck had considerable intellec
tual ambitions, they were not pursuing prestige as such. Among 
memories I have of this period, let me record that once Grothen
dieck attended a seminar talk given by Thom (this was unusual). 
Grothendieck asked a question, to which Thom gave a some
what fuzzy answer in his ordinary fashion. Grothendieck then 
retorted that this answer was the mistake made by all beginners! 
It would be too much to say that Thom enjoyed the criticism, 
but he could take it. All the scientists around were young and 
rather relaxed. The Institut at that time was new, outside of the 
French system, and there was no sense that we had to maintain 
any traditions. There was a great opportunity for everyone to 
follow his own intellectual path to the limit, and in different 
ways, that was what everyone did. 

Alexander Grothendieck was born in Berlin in 1928.5 His fa
ther had been a Russian revolutionary, who, not being a Bolshe
vik, left Russia after the triumph of Lenin. Grothendieck's father 
then fought in various European conflicts. He was with the 
Spanish Republicans when they were defeated by Franco, after 
which he took refuge in France. But as the war drew near, the 
French authorities put him in a camp. Later he would be handed 
over to the Germans and sent to his death in Auschwitz. In the 
1960s an oil portrait of Grothendieck's father hung in the little 
office that Alexander Grothendieck occupied over the kitchen of 
the IHES. Alexander Grothendieck never saw much of his father 
and took the name of his mother (Hanka) Grothendieck. He 
spent his youth partly in Germany, partly in France, partly in 
freedom, partly in hiding, partly in camp. 

At the end of the war, Grothendieck started studying mathe
matics at the University of Montpellier, where he stayed from 
1945to1948. He was not satisfied with the level of rigor of what 
he was taught, and unaware of the concept of the Lebesgue inte
gral (dating from 1902), he redeveloped measure theory on his 
own. In 1948 he went to Paris and was exposed to the modern 
mathematical world. He attended the lectures and seminaire of 
Henri Cartan and also met Jean-Pierre Serre, Claude Chevalley, 
and Jean Leray (1906-1998). These mathematicians were all to 
have a strong influence on the young Grothendieck. From 1949 
to 1953, he was in Nancy (a much better place at the time than 
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Montpellier) and was recognized as a brilliant young mathema
tician for his work in functional analysis. After Nancy he spent 
a couple of years traveling (Sao Paulo, Kansas), and by the time 
he came to the IHES in 1958 his interests had shifted from func
tional analysis to algebraic geometry and arithmetic. For more 
than a decade he then worked like a titan on his Elements de 
Geometrie Algebrique, and ran his Tuesday Seminaire de Geometrie 
Algebrique at the IHES, attended by a significant fraction of the 
French mathematical elite. Apart from Tuesdays when he came 
to the Institut, he worked at home. He worked a lot. His excep
tional working capacity was combined with the two key quali
ties needed to be a creative mathematician: technical reliability 
and imagination. Besides that, the subject on which he was now 
working, combining algebraic geometry and arithmetic, was of 
proper size for his genius. But other circumstances also were fa
vorable. He had no teaching or administrative duties. He spent 
little time studying the papers of other mathematicians: he had 
the ideas explained to him by colleagues. And a massive final 
asset was Jean Dieudonne.6 Dieudonne, a high-class mathemati
cian and a member of Bourbaki, also had enormous working ca
pacity. He decided to act as Grothendieck' s scientific secretary: 
he was able to understand his ideas and to write them neatly as 
mathematical text. These were the circumstances under which 
the miracle that was Grothendieck's contribution to mathemat
ics took place. 

Grothendieck' s daily language was French and he used 
French for his mathematics, but his native tongue was German. 
Grothendieck had his father's portrait in his office, but he did 
not attach importance to his half-Jewish ancestry and he used 
his mother's name. The father fought in revolutionary wars, but 
the son was a firm antimilitarist. Alexander Grothendieck lived 
in France, but he chose to remain stateless (until 1980). He was 
a central figure of the French mathematical community, but he 
had the wrong pedigree: he was not a former student of the 
Ecole Normale. These discrepancies may have subtle explana
tions, but they point to a very plain fact: Grothendieck made de
liberate choices about who he was. He could also change his 
mind after due reflection. Being a mathematician was his choice. 
But being a member of an exclusive elite of Paris mathematicians 
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is something that happened to him, and he would later be quite 
upset that he had been trapped in this situation. 

My scientific interests were rather different from Grothen
dieck' s interests, but I knew him reasonably well as a colleague 
between 1964 and 1970. He was a rather handsome man, with a 
completely shaven head. He had obvious personal courage: he 
didn't cop out of difficult si.tuations. Of this there would be 
ample evidence in confrontations with Motchane. He was actu
ally less aggressive than many and always ready to discuss, but 
he would not accept arguments that he found unconvincing. He 
had charm, certainly, and moral questions like antimilitarism 
were important to him. At times, however, he could be insensi
tive and even brutal. If I were to compare him with other mathe
maticians, I would say he had a richer personality than most,7 
and also some of the intellectual rigidity that is frequent with 
them. It suited me that I was not close to him. But I must admit 
sympathy for the man, not just admiration for the mathemati
cian. People with moral preoccupations, and courage, are un
common. And scientists do not rate better than average in this 
respect. 

Intellectually the IHES was a fantastic place when I arrived 
there in 1964. But there were also difficulties. One of the first 
things I heard (from Rene Thom) was that the paychecks of the 
professors did not always arrive on time. Later the IHES had to 
sell its assets to survive. (So I had to borrow money to buy the 
apartment I rented or get out.) The professors at the time (Rene 
Thom, Louis Michel,8 Alexander Grothendieck, and myself) 
fully acknowledged the enormous dedication of Motchane, but 
we became concerned about his increasingly erratic behavior 
and about the problem of his successor. In 1969 we had a num
ber of private meetings, and finally (in Louis Michel's dining 
room) we wrote a letter to Motchane asking him formally for a 
meeting of the scientific committee of the IHES to discuss the 
situation. This was not taken well, and things quickly turned 
sour. Motchane counterattacked, manipulating facts without 
much regard for the truth, threatening to close the Institut, and 
so on. On one occasion he presented us with an excerpt of the 
report of a recent committee meeting in which we supposedly 
had reappointed him as director for four years. Nobody remem
bered the decision, and we never saw the report from which 
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this had been "excerpted." Motchane also tried to arrange his 
own succession without referring to the sci~ntific committee 
(this was against the statutes of the IHES). Colleagues from out
side wrote to us that they had been approached by Motchane, 
who had asked them not to tell us. They told us anyway but 
asked that we not mention this to Motchane. Looking more care
fully at the statutes of the IHES, due to Motchane and at first 
sight very generous to the professors, we came to realize that 
they included no provision to force the director to do anything 
he didn't want to do. At one point during this confused period, 
Grothendieck found that the IHES had received military money 
and said that he would have to resign if this continued. But ap
parently the military money was coming to an end, and this 
closed the incident. 

After discussion with Michel and Thom, Grothendieck and I 
went on February 20, 1970, to Nancy to meet with the president 
of the board of trustees. This was a largely meaningless trip, but 
it gave me a chance to spend a few hours on the train with Gro
thendieck. We talked about theoretical physics. He asked careful 
questions and discussed what I had to say with great attention. 
Around that time he also informed himself about biology with 
the help of his friend Mircea Dumitrescu. As do many people 
reaching the age of forty and with the destabilizing influence of 
the events of May 1968 in France, it is clear that Grothendieck 
was reconsidering the orientation of his life. He would not sim
ply continue working as before on the foundations of algebraic 
geometry. He even claimed that he was leaving mathematics. 
This did not prevent him from doing excellent work after that, 
in spite of unfavorable conditions. 

Let us go back to the IHES at the beginning of 1970. The atmo
sphere was deteriorating progressively, but we thought that 
things would improve in the end. I remember coming across 
Grothendieck in the Metro (in Massy-Palaiseau), and he told me, 
"We are all upset now with Motchane, but you will see that 
in a couple of years we shall laugh about the whole affair" (on 
en rigolera). This was, however, not to be. In discussions with 
Motchane, Grothendieck tended to be more outspoken than 
the rest of us. As a consequence Motchane obviously thought 
that he was our "leader" and taunted him. At some point 
Grothendieck seems to have decided that the farce had lasted 
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long enough, and at one of our meetings with Motchane, he 
called him a bloody liar.9 (I do not remember the precise reason 
for the accusation.) Following this incident, Motchane declared 
that the IHES again received military money, and Grothendieck 
resigned. 

After that I no longer saw Grothendieck. He was involved 
with a small antinuclear group, he traveled, and he made a num
ber of attempts to get a reasonable academic position in France. 
These attempts were largely unsuccessful: he had to be content 
with a teaching position in the provincial university at Montpel
lier, where he had been a student in 1945. In 1981 he speaks of 
a "bash in the face" (un coup de poing en pleine gueule) when his 
candidacy for a professor position was rejected by a committee 
comprising three of his former students. While mostly cut out 
from the research community, he had bouts of frantic mathemat
ical activity, writing hundreds of pages that have been privately 
circulated, but only partly published. 

Between 1983and1986, Grothendieck worked on the long text 
of Recoltes et semailles (Harvests and Sowings), more than 1,500 
pages of reflections on life and mathematics. This is a very di
verse text, parts of which read like Oscar Wilde's De profundis, 
while other parts contain paranoid attacks against former stu
dents and friends accused of having betrayed his scientific 
reuvre and message. These attacks are often too personal and 
private for comfort. They are no doubt partly unjust, partly true. 
Recoltes et semailles was privately circulated, but Grothendieck 
was unsuccessful at getting the text published as a book.10 Parts 
of the text have strange beauty and depth. And it will remain a 
basic document for the understanding of an important period in 
the history of mathematics. 

In 1988 Grothendieck turned sixty and took early retirement 
from Montpellier. This same year he "won" half of an important 
mathematical prize,11 which he refused. He also was presented 
with a three-volume Festschrift, 12 about which he said that he 
thanked those who did not contribute to it. 

In 1990 Grothendieck sent a letter announcing a prophetic 
book that he would write and publish in the same year. He said 
the 250 people who received the letter should prepare for a great 
mission ordered by God. But the announced book never ap
peared, and Grothendieck is now silent. 
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Since his retirement, Grothendieck has lived more and more 
as a recluse. He has been attracted to Buddhist jdeas and follows 
an extreme vegetarian diet. His current whereabouts are not 
publicly known. I asked one of the last friends with whom Gro
thendieck had contact (in 2000) about how he was doing, and 
the answer was simply, "He meditates." 

It may be hard to believe that a mathematician of Grothen
dieck' s caliber could not find an adequate academic position in 
France after he left the IHES. I am convinced that if Grothen
dieck had been a former student of the Ecole Normale and if he 
had been part of the system, a position commensurate with his 
mathematical achievements would have been found for him. Let 
me digress on this a minute. When Pierre-Gilles de Gennes13 got 
his physics Nobel Prize in 1991, there was an official ceremony 
in his honor at the Sorbonne, with speeches by de Gennes him
self and the minister (Lionel Jospin). On this occasion de Gennes 
branded corporatism as the plague of French science. Certainly 
this applies to physics, and even more to mathematics. What this 
means is that it is all important whether you are from the Ecole 
Normale or the Ecole Polytechnique, in whose lab you were ac
cepted, whether you are at the CNRS, the academy, a suitable 
political party, and so on. If you are in one of these groups, they 
will help you and you have to help them. In the case of Grothen
dieck, he was nothing (not even having at the time French or 
any other citizenship). He was nobody's responsibility; he was 
just an embarrassment. 

Understandably, some people would like to blame Grothen
dieck' s exclusion entirely on Grothendieck himself: he went 
crazy and left mathematics. But this does not fit with the known 
facts and their chronology. Something shameful has taken place. 
And the disposal of Grothendieck will remain a disgrace in the 
history of twentieth-century mathematics. 
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Structures 

FROM WHAT WE have seen, mathematics appears to have a 
dual nature. On the one hand, it can be developed using a formal 
language, strict rules of deduction, and a system of axioms. All 
the theorems can then be obtained and checked mechanically. 
We may call this the formal aspect of mathematics. On the other 
hand, the practice of mathematics is based on ideas, like Klein's 
idea of different geometries. This may be called the conceptual 
(or structural) aspect. 

An example of structural considerations arose in chapter 4 
when we discussed the butterfly theorem. There we saw how 
important it is to know in what kind of geometry a theorem be
longs when you want to prove it. But the concept of projective 
geometry is not explicit in the axioms that are currently used 
for the foundation of mathematics. In what sense is projective 
geometry present in the axioms of set theory? What are the 
structures that give a sense to mathematics? In what sense is the 
statue present in a block of stone before the chisel of the sculptor 
brings it out? 

Before we discuss structures, it is a good idea to look a bit 
more at sets, which play such a fundamental role in modern 
mathematics. Let me review here some basic intuition, notation, 
and terminology. The set S = { a, b, c } is a collection of objects a, 
b, c, called elements of S. The order in which the elements are 
listed does not matter. One writes a E S to express that a is an 
element of S. The sets {a} and { b, c} are subsets of {a, b, c }. The 
set {a, b, c} is finite (it contains three elements), but sets may 
also be infinite. For instance, the set { 0, 1, 2, 3, ... } of natural 
integers or the set of points on a circle are infinite sets. Given 
sets S and T, suppose that for each element x of S, a (unique) 
element f (x) of Tis given. We then say that f is a map from S to 
T. One also says that/ is a function defined on Sand with values 
in T. For instance, one can define a map f from the set { 0, 1, 2, 
3, ... } of naturaL integers to itself such that f (x) = 2x. Other 
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maps (or functions) on the natural integers with values in the 
natural integers are given by 

f (x) = xx = x2 or f (x) = x · · · x = xn. 

The general concept of a function (or map) emerged slowly in 
the history of mathematics, but it is central to our current under
standing of mathematical structures.1 

Repeatedly, mathematicians have tried to define with preci
sion and generality the structures that they use. Klein's Erlangen 
program is a step in that direction. The structures considered 
by Klein were geometries, each associated with a family of 
maps: congruences (for Euclidean geometry), affine transforma
tions (for affine geometry), projective transformations, and so 
on. The very ideological Bourbaki has a definition of structures 
based on sets. 

Let me try to give an informal view of Bourbaki's idea. Sup
pose that we want to compare objects with different sizes. We 
write a ~ b to mean that the object a is less than or equal to b. 
(Some conditions should be satisfied; for example, if a ~ b and 
b ~ c, then a ~ c.) We want thus to define an order structure (~is 
called an order). For this we need a set S of objects a, b, ... that 
we shall compare. Then we can also introduce another set T con
sisting of pairs of elements a, b of S: those pairs for which a~ b. 
(We may have to consider other sets as well, to impose the con
dition that if a~ band b ~ c, then a~ c, ... ) In brief we consider 
several sets S, T, . .. in a certain relation (T consists of pairs of 
elements of S), and this defines an order structure on the set S. 
Other structures are similarly defined on a set S by giving each 
time various sets standing in a particular relation to S. Suppose, 
for instance, that the set S has a structure that allows its elements 
to be added; that is, for any two elements a, b, there is a third 
element c for which we can write a + b = c. Defining the structure 
of interest on S will thus involve consideration of a new set T of 
triplets of elements of S: those triplets (a, b, c) for which a + b = 
c. Mathematics textbooks contain the definitions of many struc
tures with names like group structure, Hausdorff topology, and so 
on. These structures are the conceptual building blocks of alge
bra, topology, and modern mathematics in general. 

Let the set S have an order relation, and let the set S' also have 
an order relation. Suppose that we have a way to associate with 
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each element a, b, ... of S an element a', b', ... of S'. In mathe
matical language we have a map from S to S' sending a, b, ... to 
a', b', .... Suppose that if a ::;; b, then a ' ::;; b'; that is, the map 
preserves the order. Let us use an arrow to denote the order
preserving map from S to S': 

S -7 S'. 

More generally one likes to write S -7 S' to denote passing from 
a set with a certain structure to a set with similar structure, while 
preserving the structure. In technical jargon the arrow is said to 
represent a morphism. (So, if S and S' have a structure where ele
ments can be added and the morphism S -7 S' sends elements 
a, b, c, ... of S to elements a', b', c', ... of S', then a + b = c should 
imply a' + b' = c'.) If we consider sets with no added structure, 
the morphisms S -7 S are just all maps from S to S'. 

A new development is to consider sets with a certain type of 
structure, together with the corresponding morphisms: this is 
called a category. (So there is a category of sets, where the morph
isms are maps; a category of ordered sets, where the morphisms 
are order-preserving maps; a category of groups, and so on.) In 
this way of looking at things, it is useful to be able to map the 
objects of one category to those of another category while pre
serving the morphisms. When this is the case, one says that one 
has a functor from one category to another. Categories and func
tors were introduced around 1950 (by Samuel Eilenberg and 
Saunders Mac Lane2) and quickly developed into important con
ceptual tools in topology and algebra. Categories and functors 
may be viewed as the ideological backbone of an important part 
of late-twentieth-century mathematics, constantly used by some 
mathematicians like Grothendieck. 

To summarize, one might say that in the ideological back
ground of important areas of mathematics at the end of the 
twentieth century, there is a constant preoccupation with struc
tures and their relations. Some questions will automatically be 
asked, and some constructions will automatically be attempted. 
To some extent, then, an answer has been given to the question 
of finding the conceptual building blocks of mathematics. The 
answer is in terms of structures, morphisms, and perhaps cate
gories, functors, and related concepts. And the quality of this 
answer can be gauged by the wealth of the results obtained. 
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I must at this point correct a false impression that I may have 
given above: that current mathematical thinl<ing is dominated 
by categories, functors, and the like. In fact, large and important 
parts of mathematics have little use for these concepts. One may 
just say that there is a general striving to clarify conceptual as
pects and not just do brutish calculations. But structural consid
erations may be rather minimal. To give an example of a differ
ent style of mathematics, I want to mention the work of Paul 
Erdos3 (the name is Hungarian, and the s at the end is pro
nounced "sh"). Erdos was a very unusual mathematician who 
kept traveling from place to place, without being attached to a 
fixed institution. His legacy to mathematics is diverse and im
portant. He had the beautiful idea of The Book "in which God 
maintains the perfect proofs for mathematical theorems." (Inci
dentally, Erdos did not believe in God, whom he called the Su
preme Fascist). Under the direct influence of Erdos, a fascinating 
approximation to The Book has been written, called Proofs from 
The Book.4 This is reasonably easy and quite delightful to read, 
and gives a decidedly non-Bourbakist view of mathematics. It is 
not that structural considerations are absent, but they stay in the 
background. Paul Erdos was the type of mathematician called a 
problem solver, quite different from a theory builder like Andre 
Weil or Alexander Grothendieck. A good problem solver must 
also be a conceptual mathematician, with a good intuitive grasp 
of structures. But structures remain tools for the problem solver, 
instead of the main object of study. 

The current conceptualization of mathematics continues the 
efforts of earlier periods and will no doubt be extended in the 
future. One might say that the philosophical quest for the funda
mental structures of mathematics has been successful, in the 
sense that it has produced concepts that are uncannily efficient 
at producing new results and solving old problems. The fact that 
we have an efficient conceptualization of mathematics shows 
that this reflects a certain mathematical reality, even if this reality 
is quite invisible in the formal listing of the axioms of set theory. 

The view that I have just presented comes close to what is 
called mathematical Platonism. In the Republic,5 Plato speaks of a 
world of pure ideas to which the philosopher has access, while 
his less fortunate contemporaries, chained in an obscure cave, 
can only see fleeting shadows. The structures of mathematics 
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(taking structure in a wide sense) are like the pure ideas of 
Plato, and the mathematician-philosopher has access to them, 
while his less fortunate contemporaries remain chained in non
mathematical obscurity. If we think of the structures of mathe
matics as statues, the mathematician does not chisel them out 
of a block of stone according to some random fantasy. Nay! 
The statues belong to the world of the Gods, and it is the mathe
matician's noble task to unveil them and reveal them in their 
eternal beauty. 

You can probably see why the Platonist view appeals to many 
mathematicians, as different as Bourbaki and Erdos. I think, 
however, that it is partly misleading in that it ignores one essen
tial fact: what we call mathematics is mathematics studied by 
the human mind or brain. The consideration of the mind may 
be irrelevant when we discuss the formal aspects of mathematics 
but not when we discuss conceptual aspects. Mathematical con
cepts indeed are a production of the human mind and may re
flect its idiosyncrasies.6 

Starting in the next chapter, I shall be concerned with the rela
tion between the human mind (or brain) and this extraordinarily 
nonhuman thing that we call reality, in particular, mathematical 
reality. Having learned something about how our brain works, 
we shall be in a better position to address the big question: how 
natural are the concepts and structures of mathematics? 
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The Computer and the Brain 

ONE OF THE MOST powerful and versatile scientific minds of 
the twentieth century was that of John von Neumann,1 who 
made fundamental contributions in pure mathematics, physics, 
economics, and the development of the digital computer. The 
Computer and the Brain2 was von Neumann's last book, and he 
wrote it while cancer was destroying his body. Published in 1958 
after von Neumann's death, the book contains a fascinating 
comparison of the structure and functioning of the digital com
puter and the human brain. 

But is such a comparison allowed? Is it not sacrilegious to 
compare the human mind, this noblest of all things, and the 
computer, a mere machine? Scientists are notoriously careless 
about sacrilege. Here we may note that the computer and the 
brain are both information-processing devices. This entails some 
similarities, like the need for a memory to store information. A 
comparison between the two devices is thus in order. And the 
comparison shows, as one might have expected, that the com
puter and the brain are very different, in many respects. Signifi
cantly, it appears that the functioning of the human brain has a 
number of peculiarities that are not shared with the computer 
and have thus no logical necessity. These peculiarities, and in
deed shortcomings, can be expected to influence the way hu
mans do mathematics, as I shall argue later. 

But first let me make a point-by-point comparison between the 
computer and the brain, in the spirit of von Neumann (with some 
updating and different intentions). I shall start with a point "zero," 
as mathematicians often do, to set this point apart from the rest. 

0. THE PRINCIPLES OF CONSTRUCTION OF THE COMPUTER 

AND THE BRAIN ARE DIFFERENT 

The computer is a human invention. It processes and stores in
formation in digital form (bits), and the way the information 
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should be processed and stored is defined in programs. Very 
different programs (software) can be put on the same machine 
(hardware), and this makes the computer extremely flexible 
and versatile. 

The brain is a result of biological evolution. The genes in the 
egg cell of an animal contain some kind of blueprint for its ner
vous system (among other things). By trial and error (i.e., muta
tion and selection) the blueprint has been improved over eons. 
Improvement here means that, progressively, a nervous system 
is produced that gives a better chance of survival and reproduc
tion to its possessor, under prevailing circumstances. The ner
vous system gets you to move away from harmful stuff, catch 
edible stuff, and decide action on the basis of sensory inputs. 
Over the last million years or two there was an explosive devel
opment of the central nervous system of our hominid ancestors. 
Finally, our species developed complex language, symbolic 
thinking, and a written tradition. And as a result, the human 
brain has become a flexible and versatile device, capable of solv
ing relatively difficult questions (like "what are the prime factors 
of 169?") that a computer program could also solve but not an 
ape. (Of course there are also problems, like climbing up a tree, 
that an ape can solve better than a computer or a human!) 

Speaking of evolution, let me stress that we have much better 
mathematical techniques than Euclid or Archimedes3 had in 
their times. But we cannot claim that we are more intelligent 
than they were. This reflects the fact that our cultural evolution 
is much faster than biological evolution. As to the evolution of 
computers, it is extremely fast, both in terms of hardware (speed 
and memory size) and software (complexity and power of the 
programs they support). As a consequence, computers are pro
gressively mastering difficult tasks such as playing chess or 
translating from one natural language to another. Let me make 
here a personal remark. I must admit that I am somewhat fright
ened by the rapid, apparently limitless evolution of computers. 
I see no reason why they could not overtake our cultural evolu
tion and become, in particular, better mathematicians than we 
are. When this happens, I feel that life will have become for us 
somewhat less interesting and somewhat less worth living. Our 
world has seen the era of great Gothic cathedrals come to an 
end. And the era of great human mathematics may also come to 
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its end. For the time being, however, mathematics goes on, and 
life goes on, and so we may proceed with our comparison of the 
computer and the brain. 

1. THE BRAIN Is SLOW, AND ITS ARCHITECTURE 

Is HIGHLY PARALLEL 

A computer operates by discrete units of time, or cycles, mea
sured by a clock. Some new operation is effected at each cycle. 
Currently, the clock of your PC may work at a frequency of 1 
Gigaherz; that is, a cycle is one nanosecond ( = one billionth of a 
second). By contrast a characteristic time for a change in the ner
vous system would be at least one millisecond ( = one thou
sandth of a second). But times of the order of 100 milliseconds 
can easily occur because the speed of propagation of the nervous 
influx is from 1 to 100 meters per second. So, what is instanta
neous for the human brain is many millions of times slower than 
what your PC would call quick. 

The high speed of computers is well suited to repetitive tasks, 
where each stage provides an updated input for the next stage. 
By contrast, the brain typically processes information in one 
sweep, using its massively parallel structure. This means, for in
stance, that the optic nerve carries information from different 
areas of the retina, in parallel, to different areas of the brain. In 
fact, a distorted image of the retina (and thus of the world in 
front of you) is projected on the visual cortex at the back of the 
brain, and different aspects of the image (color, orientation, etc.) 
are processed simultaneously. Parallelism has also been intro
duced in the structure of some computers, so-called special pur
pose machines, but this is not comparable with what is present 
in the more than 1010 neurons of our brain. 

There is thus a striking contrast between a slow, massively 
parallel brain and a fast, highly repetitive computer. But there 
are other differences in the ways the two function. 

2. WE HAVE POOR MEMORIES 

It is possible for some people to learn by heart long literary or 
religious texts, like Homer's Iliad and Odyssey or the Bible. But 
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computers typically can do much better: the text of the Encyclo
paedia Britannica fits easily on a CD-ROM or on a modern hard 
disk. Of course one should beware of concluding too rapidly 
that computers are superior to us. Learning long texts by heart 
is after all not the main use of our memory, and it is hard to 
quantify what our memory is really good at. We want neverthe
less to argue that human memory is not very good for doing 
mathematics. Humans (like computers) have several types of 
memory, but it seems sufficient for our purposes to distinguish 
between long-term and short-term memory. It takes time to 
enter things in our long-term memory (this apparently requires 
protein synthesis): you won't remember a long string of random 
words or digits after you read them once. Short-term memory is 
what lets you remember a list of items that has just been pre
sented to you, and it is limited to about seven items. This means 
that it may be a difficult task to read the digits of a telephone 
number and then dial without looking again at the directory. Di
aling telephone numbers efficiently did not have significant sur
vival value until recently, otherwise natural selection might have 
made us more adept at this task. 

Things being as they are, mathematicians put a lot of facts in 
their long-term memory through long days of study. After 
which, they remember the definition of the cross-ratio, the fact 
that it is preserved by projective transformations, and many 
other things. As for short-term memory, it is supplemented by 
the use of the blackboard, or a sheet of paper, or a computer 
screen. These serve as external memories, readily consulted by 
looking at them. Long-term memory can also be complemented 
by books and other visual media. This brings us to the next 
point. 

3. THE HUMAN BRAIN HAS WELL-DEVELOPED VISUAL 

AND LINGUISTIC ABILITIES 

Our visual system has evolved over many millions of years to a 
remarkably efficient instrument. In a fraction of a second we 
spot and recognize an animal or object hidden in a complex 
background. Clearly, this ability has been important for the sur
vival of our ancestors. But now we can use it to stare at geomet
rical figures, diagrams, formulas, and mathematical text. If we 
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had to build a computer with mathematical ability, we would 
probably not start with a very complex vis!-1-al system. But we 
humans have this wonderful instrument at our disposal, and we 
naturally use it in doing mathematics. In other words, the way 
we do mathematics is strongly influenced by the use of our com
plex and efficient visual system. 

The human ability to communicate complicated abstract in
formation through language is recent from an evolutionary 
point of view (dating from perhaps 50,000 years ago). Its sur
vival value is evident and explains the huge number of humans 
currently crowding our planet. The use of a human natural lan
guage is central to human mathematics.4 The language may be 
ancient Greek, modern English, or something else, spoken or 
written. But basically, all that we call mathematics uses a natural 
language, even if mathematicians insist that mathematical texts 
could in principle be written in a formal language. In practice, 
formal languages are not used and cannot be used. Our natural 
languages are powerful and versatile indeed. The fact that we 
have to rely on them is a peculiarity of human mathematics and, 
in fact, a shortcoming, as it makes impossible any mechanical 
checking of the correctness of mathematical texts. This is con
nected with the last point that we want to discuss in this chapter. 

4. HUMAN THINKING LACKS FORMAL PRECISION 

One task that a computer performs with the utmost ease is com
paring two long files and deciding if they are identical or not. 
The files may contain the text of a novel in Irish or Icelandic, 
and in a fraction of a second the computer will tell you if a word 
has been spelled differently in one of the two files. For a human, 
the task would be long and arduous, and would depend on irrel
evant details like whether you understand Irish or Icelandic. If 
the text of a novel is replaced by that of the Encyclopaedia Britan
nica or a full current set of U.S. telephone directories, the task 
now borders on the impossible for a human, while remaining 
easy for a computer. 

The above example shows how a logically easy task, if it is 
very long and has to be performed without any error,5 is difficult 
for humans and easy for a computer. This is certainly a short-
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coming for us in doing mathematics. Of course when it comes 
to recognizing a spade or a cat when we see one, we do much 
better than current computers. And our superiority is crushing 
in the domain of mathematical creativity. But you will agree, I 
think, that our way of attacking mathematical problems is some
what idiosyncratic, and if a colleague from outer space came to 
visit us, she might be somewhat perplexed by how we proceed.6 
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WE SPEAK OF mathematical reality as we speak of physical 
reality. They are different but both quite real. Mathematical 
reality is of logical nature, while physical reality is tied to the 
universe in which we live and which we perceive through our 
senses. This is not to say that we can readily define mathematical 
or physical reality, but we can relate to them by making mathe
matical proofs or physical experiments. We can also make 
guesses, and reality can confirm or falsify these guesses. The 
relations of the human mind with mathematical or physical 
reality are complex. The comparison that we have made in 
Chapter 9 of the computer and the brain revealed some of the 
subtleties that underlie the application of human thought to 
mathematics. We want to take now a different point of view and 
examine the end product of mathematical activity: the mathe
matical text. 

Before I discuss written mathematical texts, let me mention 
an important variation: the oral presentation, which may be a 
lecture, seminar, colloquium, or the like. In an oral presentation 
the mathematician stands and writes on the blackboard while 
speaking for about an hour. These days the blackboard is often 
replaced or supplemented by an overhead projector, used to 
display on a screen some transparencies prepared in advance. 
Note that there are important differences between mathematics 
and other disciplines with respect to oral presentation. A philos
opher might sit at a table and read a carefully prepared text. A 
physicist might use a computer to project on the screen some 
colorful pictures and text, possibly animated. But mathemati
cians like the traditional use of chalk and blackboard (or inno
cent variations like a whiteboard). This setup has the advantage 
of limiting the amount of information received by the audience 
per unit time. The fact is that there is only so much information 
that can be transmitted in one lecture. Flashing complicated for
mulas at great speed on a screen or speaking for two hours in-

52 



MATHEMATICAL TEXTS 

stead of one is rather useless and makes everyone dizzy. (This 
is again a difference between the computer and the brain: a 
properly plugged in and programmed computer can "think" for 
days in a row without need for a nap or a cup of coffee.) 

Written mathematical texts may be books or articles (also 
called papers) of various lengths. The articles are published 
in specialized journals and/ or, these days, posted on the Inter
net. A written mathematical article is the basic end product 
of human mathematical activity. It can permanently be con
sulted and checked for correctness. A new mathematical idea 
acquires legitimacy only when you have written it down and 
published it. 

For the purposes of the present discussion, we can see a math
ematical text as composed of three kinds of components: figures, 
sentences, and formulas. 

FIGURES 

In the geometry of Euclid an important role is played by figures,1 

and constructions made on the figures (such as draw the perpen
dicular to AB through the point C ... ). Figures put the human 
visual system to good use and constitute a valuable external 
memory as soon as the geometric situation considered is a bit 
complicated.2 Reasoning on figures is formidably effective, and 
this explains how geometry was historically the first branch of 
mathematics in which really profound and difficult results were 
obtained. 

Nevertheless, you will often find no figure at all in a modern 
mathematical paper, even if the subject is a question of geome
try. The main reason for this disaffection is that one can make 
mistakes by relying too much on a specific figure when trying 
to prove a general result. Reasoning on a figure is thus discour
aged as nonrigorous. Figures remain useful, however, to fix at
tention and as external memories, and they are used a lot in oral 
presentations. 

Suppose that a seminar speaker utters the sentence, "We con
sider a geodesic arc joining the points A and B of the Riemann 
manifold M." At the same time he or she would draw this on 
the blackboard: 
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M 

In a mathematical paper the sentence would be written without 
a picture, but many readers would have a picture in their mind. 

The absence of figures, therefore, does not mean that geomet
ric intuition is shunned. On the contrary, geometrization is wel
comed by mathematicians: this consists in giving a geometric 
interpretation of mathematical objects (in algebra or number the
ory) that are a priori nongeometric. 

While visual intuition is important, we must admit that it has 
no logical necessity in mathematics. Some people do not use it, 
and the French mathematician Laurent Schwartz (1915-2002) 
claimed to have so little ability in this respect that it was very 
hard for him to use a road map. This raises the fascinating ques
tion of the variety of internal representations of mathematical 
objects by various mathematicians. Too little is known on this 
topic, and I shall not dwell on it here. 

SENTENCES 

We stated above a typical mathematical sentence, "We consider 
a geodesic arc joining the points A and B of the Riemann mani
fold M." This sentence is in English, with some symbols (A, B, 
M) and some jargon (geodesic arc, Riemann manifold). It would 
be easy to translate the sentence into French, German, or other 
natural languages. But, as said earlier, some natural language is 
necessary to do mathematics in practice, even if not in principle. 
One can do mathematics without figures and without formulas, 
but one needs to use a natural language. 

Language plays a central (although not exclusive) role in 
human thinking. But language is a rather diverse thing, and its 
use in mathematics is very different from its use in poetry. How 
is that? Instead of the mathematical sentence discussed above, 
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let me write, "Let N be a Riemann manifold, and take a geodesic 
arc AB in N." We have given a new name N to the Riemann man
ifold and otherwise said the same thing with other words. In 
poetry, if you change names and use other words you are NOT 
saying the same thing. Think of Edgar Allan Poe's poem "The 
Raven." Replace the name Lenore (which rhymes with never
more) by some other name, like Madison, and modify some 
words and grammatical forms without altering the meaning. 
Soon enough you will have changed a powerful poem into inane 
rambling. Obviously reading poetry and reading mathematics 
are rather different activities of the brain. For poetry the regular
ities and irregularities in the form are an essential part of the 
message.3 For mathematics, by contrast, the form is of limited 
importance. If you are bilingual and discuss an idea with a col
league of the same persuasion, you may remember afterwards 
which was the mathematical topic of your conversation but not 
which language you used. 

FORMULAS 

Mathematical texts are usually interspersed with formulas, like 

U-A U-B M-A M-B 
~~- . - . ~~-
M - A . M-B - V-A . V-B I 

(*) 

which we met in chapter 4. There is no fundamental difference 
between a formula and a sentence. In fact you can pronounce the 
formula that we have labeled(*) as, "U minus A over M minus A 
divided by ... is equal to .... "4 To most mathematicians the for
mula is highly preferable to the sentence. For this I see two es
sential reasons. First, we can apply our visual skill to the for
mula, as we could to a geometric figure, and treat it as visual 
memory. Second, there are rules by which we can mechanically 
obtain one formula from another with relatively little effort and 
little risk of mistakes. In the case of formula (*) we used the extra 
information that M is the midpoint of AB, which can be ex
pressed as 

(M - A) : (M - B) = -1. (**) 

Inserting (**) in (*) one finds 
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(U - A) (V - A) = (U - B) (V - B). 

(To a trained mathematician this is immediately visible.) Then 
easy manipulations give 

U+V = A+B =M 
2 2 ' 

and that was our proof of the butterfly theorem. 
Systematic and easy manipulation of formulas is an essential 

addition of modern mathematics over the intellectual tools 
available to the ancient Greeks. Formulas, as was the case for 
figures, are often in the mind of mathematicians even when not 
explicitly written out. Note also that formulas do not always re
late numbers (complex numbers in the case of(*)). The formula 
A C B says that the set A is contained in the set B, and there 
are formulas to express any other logical relation. Whatever its 
meaning, a written formula has in principle the value of an ex
ternal memory and of an object that can be usefully manipulated 
according to well-defined rules. 

We have said and repeated that mathematics can in principle 
be presented without the use of a natural language. Such a pre
sentation of mathematics would be "formulas only" and could 
be checked mechanically for correctness. In fact, some mathema
ticians (in particular, beginners) like to write formulas rather 
than sentences because they think it is more "rigorous." But this 
practice rapidly produces an incomprehensible mess. Efficient 
transmission of mathematics to humans depends on lucky 
choices for what to express with formulas and what to express 
with words (which refer to unwritten formulas). Making these 
lucky choices is a different ability from pure technical power. It 
is an art, and some mathematicians are very much better at it 
than others. 
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IN EARLIER CHAPTERS we have been asking about the nature of 
human mathematics. Let us now pause and ask why humans 
get involved in mathematical research or scientific research in 
general. (Mathematics is more of a pure intellectual game and 
of a solitary enterprise than research in other fields, but these 
are differences of degree rather than of nature.) Of course people 
go into research for the challenge, the interest of the subject, for 
the money, for fame .... Looking more deeply into these motiva
tions may not teach us much about the structure of mathemati
cal reality, but it can tell us something about human nature and 
society. In this chapter we shall be modest and ask only about 
the more visible part of the emotional relation between scientists 
and science. 

My colleague the theoretical physicist Louis Michel liked to 
say that people choose an academic career from lack of imagina
tion. How is that? Suppose you do well in school. Then a natural 
idea is to try to go to college. Then if you have no particular urge 
to jump into "real life" (whatever that is), you will proceed to a 
PhD. And when you are through with that, academic life will 
probably be real life for you. It will be hard to imagine some
thing else. Through lack of imagination you will try to stay in 
academia and "do research," among other things. Now, good re
search requires finding new solutions to new problems, and this 
is a definition of imagination or of intelligence. But good re
search also requires a large amount of routine work, often deli
cate and complex, that has to be done with care, with precision, 
and without undue imagination. Lack of imagination is thus 
needed for research, even if some imagination is also needed to 
do good research. 

At the root of science and scientific research is the urge, the 
compulsion, to understand the nature of things. We shall want 
later to look into this compulsive behavior and try to make sense 
of it. But science has other motivations (like lack of imagination 
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as we just saw). And an important motivational aspect of human 
science is its reward system, which we now want to discuss. 

Human beings, like other animals, have an inborn system of 
instincts or drives (later modified by experience) that govern 
their unconscious and conscious activities with respect to 
breathing, food, sex, and so on. These drives have in part been 
analyzed at the physiological level. They are often associated 
with what we consider pleasant or unpleasant stimuli. For in
stance, it appears that a substance called histamine, released from 
cells by one or another form of injury, plays a role in the initia
tion of sensory impulses evoking pain or itch. One should, how
ever, beware of an overly simplistic and mechanical explanation 
of drives as responses to remembered pleasant or unpleasant 
stimuli. If the antelope runs away from the lion, it is not because 
it remembers being eaten by the lion as an unpleasant experi
ence! Keeping away from dangerous beasts is hard wired, at 
least in part, in the brains of animals and humans. And this is 
presumably why many of us stay away from snakes, spiders, 
and angry dogs. Besides that, man is a social animal, and we 
conform, more or less, to the rules of the group in which we live. 

Among the incentives to behave one way or the other is what 
we were taught by our parents. Instead of our parents it may be 
some mother or father image or indeed God who tells us what 
to do. God is the father image par excellence. The father image 
typically is benevolent, as long as we comply with his wishes, 
otherwise his wrath is terrible. The mother or father image will 
try to enforce her or his dominant role, which we just have to 
accept. Rejecting it is a sin, a crime, and a very dangerous thing. 
Remember Giordano Bruno1 being burned at the stake in Rome 
for his philosophical opposition to the doctrines of his holy 
mother, the Catholic Church. And remember the countless mil
lions of victims of fatherly totalitarian regimes, right wing or left 
wing, religious or antireligious. 

Free discussion as it occurs in science is not the common right 
of women and men. Free thinking about philosophical issues 
and questioning religion or social structures has always been the 
exception rather than the rule. The rule is to respect the sur
rounding power structure and ideology. Power and ideology 
change with place and time, and we can help change them, but 
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they are always present. This presence may be upsetting, but 
mostly we take it for granted. If we live in a democratic country, 
with a reasonably liberal regime, we may find it easy to accept 
the power structure and ideology of our community. But mov
ing from one place to another, we see that the rules are different: 
where the president of the United States feels obliged to make 
frequent references to God, the French president is not allowed 
to do so. 

At the risk of belaboring the obvious, let me repeat the argu
ment. Power structure and pressure to conform may take the 
most detestable forms. But detestable or not, they are part of the 
fabric of human society. Power structure and pressure to con
form may be enforced by brutal methods, but they are also 
grounded in basic human psychology and our acceptance of 
dominant mother and father images. As we can expect, this also 
applies to science. There is more freedom of discussion in sci
ence than in other domains, but there is a power structure and 
there is a pressure to conform. The power structure is expressed 
in hiring and salaries, the pressure to conform in acceptance of 
papers for publication in scientific journals. Overall the system 
works in a reasonably efficient and satisfactory manner. It can 
certainly be improved, but I am not advocating its destruction. 
One must also mention here the admiration that some scientists 
earn by the results they have obtained and the honors that, in 
some cases, some father image bestows upon them. Scientific 
honors are often a matter of deep emotion and of pronounced 
irrationality. Examples abound of truly great scientists whose 
life is made miserable because they did not get some desired 
honor, even when a rational analysis would reveal this honor to 
be more of a nuisance than a blessing. 

What I call an honor is being elected to an academy, winning 
some prize or medal, being chosen to give some special lecture, 
or simply being offered a prestigious professional position. Hon
ors provide rewards in various proportions: ego satisfaction, 
money, political power, professional assistance, and obligations 
that may be time-consuming. There are thus material and psy
chological, rational and irrational aspects to receiving honors. 
But there is also politics above the level of the individual being 
honored. For example, fund raising is facilitated when a univer-
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sity can boast several Nobel Prize winners on its faculty: they 
play the same role as (in the United States) a good football team. 

There is no Nobel Prize in mathematics, and I can remember 
a time, in the 1960s and 70s, when mathematicians were quite 
happy about that. Mathematical quality was not measured in 
millions of dollars, and mathematicians were not rated with 
football players. There is in mathematics a fairly prestigious 
Fields Medal, but it is given only to mathematicians below the 
age of forty and has negligible financial value (unlike the phys
ics Nobel Prize, worth about $1 million). As I remember it, the 
attribution of the Fields Medal to Rene Thom and Alexander 
Grothendieck was not a very big deal. (At one point Rene Thom 
was mildly annoyed because his wife, Suzanne, had misplaced 
his Fields Medal, and it could not be found). 

But things have changed. The Fields Medal is now commonly 
referred to as the Nobel Prize of mathematics. And several other 
prizes are now given to mathematicians, worth about $1 million 
and which claim to be the Nobel Prize of mathematics. Million
dollar prizes have also been promised for the solution of some 
outstanding mathematical problems. Many mathematicians are 
happy to mention a "million-dollar problem" when the occasion 
arises. Others feel that putting a price tag of $1 million on the 
Riemann Hypothesis is sort of tasteless. Certainly if the unit of 
mathematical excellence is one million dollars, this is far below 
the unit of excellence for golf, tennis, or car racing.2 But let's not 
lose too much time on this million-dollar issue. 

My opinion is that honors currently play an excessive role in 
mathematics. (Perhaps this will change again.) The reason for 
the big role is probably the difficulty of evaluating contempo
rary work, which is often very technical and hard to understand. 
Instead of explaining the theorem proved by X, it is easier to say 
that X has received the Alpha Prize. But one must admit that 
intellectually this is less interesting, whether or not the Alpha 
Prize has been fairly attributed. In fact, the Alpha Prize is not 
attributed by God Almighty, but by a committee that has re
ceived nominations, solicited and read reports, and does not al
ways make a good choice. The selection of a scientist for some 
honor may officially be restricted by citizenship, age, and other 
such categories, but it should not depend on ethnicity, gender, 
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political views, and so on. It is, however, a fact that the latter 
often also play a decisive role. 

Let us look at one example of evaluation. A good math depart
ment (say, Princeton University) wants to hire a new faculty 
member. The choice here is made by competent mathematicians, 
able to find and rate the talented young people. The department 
wants to hire colleagues of high mathematical ability and will 
probably make a good choice. Consider by contrast a committee 
that does not feel very competent but wants to defend its own 
respectability. The committee may play it safe, look for a candi
date who has already received various honors, and give him or 
her one more. Or it may follow rumors that a candidate has al
most proved some important result, and make a bad choice. 

I have tried to show that evaluation of scientists, and honors, 
may work out well or not so well, but they are a necessary part 
of human science. They may be a nuisance, but they are a serious 
problem that cannot be dismissed or ignored. Serious problems, 
however, should often not be taken too seriously. And relief 
sometimes comes from unexpected quarters, as the following 
story shows. 

I had been attending a solemn meeting of the Academie des 
Sciences de Paris, under the cupola of the Institut de France. The 
audience was distinguished, and many of those present wore 
the green costume of academician, with cocked hat in hand and 
sword at the side. There were elegant speeches about aspects of 
the life of the Academie. Then other addresses were delivered 
about such weighty questions as the future of mankind and our 
planet, the responsibility of the scientist, and so on. The meeting 
came to an end after a couple of hours, and as there were other 
things that I still wanted to do, I prepared for a discrete and 
speedy exit. I was the first outside. But, as I rushed, I sensed that 
something was wrong: I was between two rows of brilliantly 
adorned soldiers with drawn sabers. This was la garde republi
caine, and they were supposed to salute the green costumes of 
academicians at the beat of the drums. (No trumpets, that's for 
the day of judgement.) My timing and my attire were wrong. I 
should have gone out the side rather than between the fierce
looking soldiers. I tried to look inconspicuous, but how do you 
look inconspicuous while zigzagging between two rows of 
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gardes republicains with drawn sabers? I kept glancing left and 
right to keep my bearings. And then I caught- sight of the chief 
of the gardes: a giant. He was formidable, noble looking, and had 
an impassible face from which I could not detach my gaze. He 
looked at me too, unsmiling. Then I saw him close one eye, and 
slowly open it again: an unmistakable wink that saved my day. 
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LET us RETURN NOW to the essential activity of mathemati
cians: proving theorems by applying rules of logic to other 
theorems and to the basic axioms. All of mathematics can be de
veloped from set theory, so that all we need are the axioms of 
set theory. What are they? Most of the mathematics done today 
is based on a system of axioms called ZFC (or Zermelo-Fraenkel
Choice, for Ernst Zermelo,1 Adolf Fraenkel,2 and Axiom of 
Choice). In fact, mathematicians rarely use the ZFC axioms as 
such: they invoke well-known theorems that can be derived 
from ZFC. So, if you want to prove that there are infinitely many 
primes, you will not usually try to derive this fact from ZFC. 
You will instead rely on the notion that someone has already 
established a connection between integers and set theory, and 
derived for you a certain number of well-known facts about in
tegers (see below). 

You can look up the ZFC axioms in various places. Using the 
Encyclopedic Dictionary of Mathematics3 I found a list of ten 
axioms formulated in formal language. Axiom 5 is 

::J X \f y (--, y E X). 

Remember that you have to know "rules of logic" that allow you 
to manipulate the symbols that constitute axioms and theorems. 
There is also an intuitive meaning to the formal expressions that 
you write. You can in principle do mathematics without the in
tuitive meaning, but the intuitive meaning is usually considered 
essential by human mathematicians. As to Axiom 5, it says that 
there exists a set x such that for all y it is false that y belongs to 
x. In other words there is a set x that contains no element. The 
set xis called the empty set and is usually denoted by 0. Axiom 
5 thus says that there exists an empty set 0. Once you have the 
set 0, you can also consider the (different) set {0}, which has 
just one element (namely, the empty set 0), and the set {{0}} 
with one element {0}. You may also consider the set {0, {0}} 
containing the twc5 elements 0, {0}, the set {0, {0}, {{0}}}, con-
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taining three elements, and so on. If this makes you slightly 
dizzy, don't worry: it is a perfectly normal reaction. But notice 
in passing that we have discovered a way of introducing the nat
ural integers 0, 1, 2, 3, ... by associating them with the sets 0, 
{0}, {0, {0}}, {0, {0}, {{0}}}, .... 

This is not the place for a detailed discussion of the ZFC 
axioms. But let me mention Axiom 6, which, in ordinary lan
guage, says that there is a set with infinitely many elements or 
as the mathematicians like to say, there exists an infinite set. Why 
should one insist on such an axiom, when it is clear that the nat
ural integers 0, 1, 2, 3, ... form an infinite set? The point is that 
the axioms come first and the integers later, and what appears 
intuitively clear is a minor consideration when you want to pro
vide solid foundations to mathematics. The grandiose construc
tion of abstract set theory initiated by Georg Cantor at the end 
of the ninteenth century was plagued with paradoxes that led 
to a crisis of the foundations of mathematics.4 We must be thank
ful to the logicians, who, at the beginning of the twentieth cen
tury, did a good job of giving us an axiomatic basis for set theory. 

But I forgot to say what an infinite set is. An informal defini
tion is that a set is infinite if it contains as many elements as a 
strictly smaller subset. For instance, the set {0, l, 2, 3, ... } formed 
by the natural integers contains as many elements as the subset 
{O, 2, 4, ... } formed by the even natural integers. (To see this, 
associate the integer n and its double 2n.) But the set of the even 
natural integers is strictly smaller than the set of all natural inte
gers because it is missing 1, 3, 5, .... In conclusion, the set {O, l, 
2, 3, ... } of the natural integers is infinite. And now that we have 
defined what infinite means, it also makes sense to say that there 
are infinitely many primes. 

If two primes differ by 2, they are called twin primes (3 and 
5 are twin primes, and similarly 5 and 7, 11 and 13, 17 and 19, 
... ). It is believed, but not proved, that there are infinitely many 
pairs of twin primes. So, while the ZFC axioms give a satisfac
tory foundation to our mathematics, that does not mean that all 
apparently reasonable questions are easily answered. In fact, 
Godel's incompleteness theorem says that there is no way to 
give systematically an answer to all mathematical questions. 

But let us forget Godel for the moment and try to solve the 
problem of twin primes by brute force. We compute all the 
primes less than some value N (this can be done quite explicitly), 
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then we pick out the pairs of twins (this can also be done quite 
explicitly), and then we are stuck: we would have to do the cal
culation for arbitrarily large N, and this would take an infinite 
time. The solution of the problem of twin primes is hidden at in
finity in arbitrarily large values of N. 

How is it then that we know that there are infinitely many 
primes? The answer is that we do not try to compute all primes 
but use instead a clever mathematical argument. The argument 
was known to Euclid: write n! = 1.2 ..... n for the product of 
all consecutive integers from 1 ton. Clearly, n! is an exact multi
ple of each integer k from 2 to n. Or, as one says, k divides n! (i.e., 
the remainder of the division of n! by k is 0). But k does not di
vide n! + 1 (because here the remainder of the division is 1). 
Therefore, any number k (greater than 1) that divides n! + 1 must 
be greater than n. In particular any prime factor of n! + 1 is 
greater than n. For arbitrarily large n we can thus find a prime 
k larger than n: there are arbitrarily large primes. Note that in 
the argument just given we did not go back to the ZFC axioms. 
We used instead informally a certain number of well-known 
concepts and facts about integers (like the fact that an integer 
can be written as a product of primes in a unique way, apart 
from the order of the factors). This is the usual way mathemati
cians proceed. But in principle it is possible to go back all the 
way to ZFC, to relate integers to set theory, and proceed with 
absolute rigor. 

The beauty of mathematics is that clever arguments give an
swers to problems for which brute force is hopeless, but there is 
no guarantee that a dever argument always exists! We just saw 
a clever argument to prove that there are infinitely many primes, 
but we don't know any argument to prove that there are infi
nitely many pairs of twin primes. 

Let us now try another idea. Starting from your favorite 
axioms (say, ZFC), you can write systematically and mechani
cally a list of all correct proofs. You can thus also write a list of 
all statements that have a proof from your axioms, checking at 
each step if you have obtained a proof of your favorite statement 
(like there are infinitely many pairs of twin primes). You will use 
formal language (like that in Axiom 5) for your list of statements 
that have a proof, and you will have an algorithm to produce the 
list systematically ,and mechanically. (An algorithm leads you 
through a sequence of steps, telling you exactly what to do at 
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each step. You can implement an algorithm with a suitably pro
grammed computer.) Note that in the list _of statements pro
duced by your algorithm, statements may be repeated, and 
some short statements may appear quite late and unexpectedly. 

So, there is an algorithm that produces a list of statements 
provable from your axioms. Here is, however, a remarkable (and 
nonobvious) fact: there is no algorithm that produces a list of all 
statements that cannot be proved from the axioms.5 In the jargon of 
mathematical logic, one says that the set of provable statements 
is recursively enumerable, while the set of statements that have no 
proof is not recursively enumerable. Note now that the set of 
statements that have a provable negation is again recursively 
enumerable and therefore cannot coincide with the set of state
ments that cannot be proved. This is Godel's incompleteness 
theorem: if a theory is consistent (i.e., one cannot prove a statement 
and its negation), then there are statements that can neither be proved 
nor disproved.6 

From what we have just seen, there is a relation between algo
rithms and Godel's incompleteness theorem: some collections of 
statements (or of natural integers) can be produced by an algo
rithm and some cannot. This has to do with the fact that there 
are infinitely many statements (or integers). When dealing with 
infinite sets, there are limitations as to what tasks can be effec
tively performed. 

What are the tasks that can be effectively performed? Different 
answers have been given by Godel, Church,7 Turing, and these 
answers turn out, fortunately, to be equivalent. In brief, a task 
can be effectively performed if there is a computer that can per
form it. This computer is a finite automaton (Turing showed that 
it could be quite simple) with unlimited memory and unlimited 
time at its disposal. 

Before we leave Godel, let me mention a consequence of his 
work that is relevant to the actual practice of mathematics: short 
statements can have arbitrarily long proofs. What does this 
mean? Specifically that, as the length L varies, the maximum, for 
a given L, of 

length of the shortest proof of a provable statement of length L 

is not an effectively computable function of the length L.8 Since 
the functions you know (polynomials, exponentials, exponen-
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tials of exponentials, etc.) are effectively computable, this means 
that the length of the proof grows faster with the length of the 
statement L than anything you can lay your hands on. 

To repeat: some short statements have a proof that is very long 
and thus is hard to find, and you don't know if there is a proof 
at all until you find one. Such proofs are therefore highly valued 
by mathematicians. 

You may at this point wonder what kind of game the mathe
maticians are up to, introducing counterintuitive notions like 
sets that cannot be constructed by an algorithm or functions that 
are not effectively calculable. Is this really necessary? That de
pends on what you want to do. Thousands of years ago, it be
came important for our ancestors to count heads of cattle, slaves, 
or bushels of grain. And bartering one kind of commodity for 
another led to questions of elementary arithmetic that were, at 
the time, not very easy to solve. But noncalculable functions did 
not pop up then. Some of our ancestors, however, went beyond 
counting sheep and exchanging them for jugs of oil or wine: they 
started thinking about numbers in general, about all possible tri
angles or other geometric shapes. When that happened at some 
time in antiquity, mathematics was born. To discuss general 
properties of numbers or triangles, one cannot use the brute 
force methods of looking at each of them one after the other: 
there are too many. By discussing all the elements of the infinite 
set of numbers or geometric figures, man is stepping into the 
domain of the Gods (as Plato would see it). And in the domain 
of the Gods, many wonderful mathematical facts have been 
found: hidden properties of integers, unexpected theorems of 
geometry, and so on. But not all mysteries have been unveiled: 
there remain questions that will perhaps be solved in the future. 
Or perhaps they cannot be solved, and because of Godel' s in
completeness theorem we shall never know. Mathematicians 
want to talk about properties of all elements of infinite sets. But 
in an infinite set, things can be hidden far away. And Plato might 
have been pleased to see that, while the Gods have allowed us 
in their domain, they have found a way to keep some of their 
mysteries inaccessible to us. 
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THE MATHEMATICS of antiquity dealt with objects that ap
peared natural, namely, geometric figures and numbers, and had 
a natural method, namely, logical deduction from a few accepted 
axioms and definitions. The principle of the axiomatic method 
has remained basically unchanged even today, but the wealth of 
objects considered has increased enormously, as language and 
techniques have become more diverse. 

A modern description of mathematics, a la Bourbaki, would 
put weight on structures: simple ones like the structure of 
groups,1 or more complex ones like the structure of algebraic varie
ties mentioned earlier. The simple structures would be studied 
under the heading of set theory, algebra, topology, and so 
on, while more complex structures would come under the head
ing of algebraic geometry or smooth dynamics, for example. 
(Groups are part of algebra, while algebraic varieties are part of 
algebraic geometry.) This classification of mathematical topics is 
certainly convenient but a bit bureaucratic, and its naturalness 
remains to be assessed. In fact, interesting mathematics develops 
along lines that may or may not respect the structural views of 
the Bourbakists. 

The diversification of topics discussed in modern mathemat
ics has been balanced by unifying tendencies. One unifying fac
tor is the unexpected appearance of connections between appar
ently unrelated questions. For instance, a topic known as the 
theory of functions of a complex variable2 has turned out to be an 
essential tool in a completely different area of mathematics: 
arithmetic (the study of integers). In fact, the most famous open 
question in mathematics today is the Riemann Hypothesis, a 
conjecture about properties of a particular function of a complex 
variable that would have important consequences for our 
knowledge of prime numbers.3 

Another unifying factor of mathematics is that all of it can be 
based on an axiomatic treatment of set theory, as we have seen 
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in chapter 12. Here again the basic axioms (say, ZFC) have an 
intuitive meaning that make them acceptable to modern mathe
maticians, just as Euclid's axioms were acceptable to the Greeks. 

But while mathematics of antiquity was appealingly natural, 
one cannot say the same of our current mathematics. While the 
ancient mathematicians were looking for truth, we seem to be 
looking for consequences of axioms that could be replaced by 
other axioms with different consequences. While the ancients 
played with straight lines, circles, and integers, we have intro
duced a plethora of esoteric structures. And if one looks at the 
technical journals where modern mathematicians record their 
studies, one may well wonder what they are up to: why choose 
this problem? why make those assumptions? what is the point 
of it all? 

What we would like to understand is how natural our current 
mathematics is. I see two aspects to this question: first, the prob
lem of arbitrariness of the foundations (why ZFC?), then the 
problem of the arbitrariness of the questions studied (why Fer
mat's last theorem?) 

Let me start in this chapter with the problem of foundations 
and accept the view that all of mathematics is based on set the
ory.4 This is a widely accepted view in today's practice, even if 
mathematicians of a later period will perhaps see things quite 
differently. But what about the specific choice of the ZFC 
axioms? 

It is instructive to discuss the case of the Axiom of Choice (the 
C of ZFC). What the Axiom of Choice says is not essential for 
the present discussion and is therefore left to a note.5 A strange 
consequence of the Axiom of Choice, the Banach-Tarski paradox, 
is left for another note.6 Let us call ZF the axioms of Zermelo
Fraenkel without the Axiom of Choice. It was proved by Godel 
that if ZF is consistent (i.e., no contradiction arises from these 
axioms), then ZFC is also consistent.7 Consistency is thus not an 
issue in using the Axiom of Choice, but there are other consider
ations. Some mathematicians frankly dislike the Axiom of 
Choice, and others make a mental note whether it is used in a 
given theory. But at this time most mathematicians consider that 
they obtain richer, more interesting mathematics with this axiom , 
than without.8 This makes ZFC currently the standard basis for 
mathematics. 
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Does this mean that the axiomatic basis of mathematics will 
no longer be changed in the future? I personally think that there 
will be changes, but they will happen slowly. 

Among the problems that mathematicians have tackled in the 
last hundred years, some have been brought to a satisfactory so
lution, like the proof of Fermat's last theorem or the classifica
tion of finite simple groups.9 These successes were achieved at 
the cost of very long proofs. (This is not too astonishing in view 
of Godel' s results on the length of proofs mentioned in the last 
chapter.) Some problems have'been proved to be logically unde
cidable: this is the case of Hilbert's tenth problem, on Diophan
tine equations.10 Finally, some problems are still wide open, like 
the Riemann Hypothesis. 

The Riemann Hypothesis (RH) is a technical conjecture that, 
for several reasons, has captured the attention or even passion 
of mathematicians. The conjecture is about a certain function 
called the Riemann zeta function, and it is relatively easy to for
mulate precisely. We give the standard formulation of RH in a 
note,11 but this does not begin to show why RH is interesting. 
The first reason why one would like to know if RH is true was 
given by Riemann himself: RH entails detailed results on prime 
numbers, which appear inaccessible otherwise but are believed 
to be true. A second reason for our interest in RH is that it ap
pears extraordinarily difficult to prove. A last and most im
portant reason is that RH is tied to deep structural questions. In 
particular the Weil conjectures (which were mentioned earlier 
and which have been proved by Grothendieck and Deligne) con
tain an idea related to RH but in an apparently unrelated setting. 
While a technical discussion is beyond the scope of this chapter, 
we will now have a look at some logical issues involved in RH, 
which will give us an idea of the way of thinking of logicians. 

Technically, RH says that the Riemann zeta function is never 
zero in a certain "forbidden region" of the complex plane where 
it is defined. In particular, if RH is false, one can prove that it 
is false by exhibiting a zero in the forbidden region. (This can 
be done by a numerical computation.) Suppose now that RH is 
undecidable. Because of undecidability one cannot exhibit a zero 
in the forbidden region. (Indeed, this would show that RH is 
false and thus not undecidable.) But if one cannot exhibit a zero, 
this means that there is no zero in the forbidden region; that is, 
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RH is true! More precisely, if RH is undecidable on the basis of 
ZFC and ZFC is consistent (does not lead to contradictions), then 
RH is true. 

We have said that RH is testable by numerical computations. 
Indeed, a lot of work has been done already, leading to consider
able numerical evidence in favor of RH. But while a numerical 
computation could firmly demonstrate that RH is false, the sort 
of evidence we have cannot prove that RH is true. One may view 
the numerical computations just discussed as a lot of effort to 
disprove RH, unsuccessful so far. There has also been a lot of 
(nonnumerical) effort to prove RH, also unsuccessful. It seems 
safe to say that no clever hypergenius will come up tomorrow 
with a short proof, or disproof, or RH. If there is a proof, or dis
proof, it is likely to be long and difficult. A sobering thought: 
RH might have a proof, but it may be so long that the physical 
limitations of the universe in which we live would prevent any 
implementation of the proof. (It would require too much paper, 
or too much computer time .... ) 

But let us come back to the possibility that RH is undecidable; 
that is, no proof or disproof exists. Apparently this possibility is 
the end of the road; there is nothing more we can do. But actu
ally there is: one can try to prove that RH is undecidable. It is not 
inconceivable that this can be done, and the logician Saharan 
Shelah has in fact put forward what he prudently calls a dream: 
prove that the Riemann Hypothesis is unprovable in PA but provable 
in some higher theory.12 The initials PA here stand for Peano Arith
metic (see note 4), a weaker system of axioms than ZFC. Shelah's 
idea is to use the techniques of mathematical logics to prove the 
undecidability of RH over PA. It then follows that RH is true if 
PA is consistent. 

Mathematical logicians, looking at axiom systems from out
side (i.e., doing metamathematics), can thus achieve an un
derstanding that escapes the standard mathematician working 
inside an axiom system like ZFC or PA. It is, however, a socio
logical fact that, at this time, most mathematicians view meta
mathematics with a certain lack of enthusiasm. They pay due 
respect to Godel and his incompleteness theorem, hail the proof 
that Hilbert's tenth problem is unsolvable, but prefer to do the 
sort of real mathematics for which they have developed a refined 
set of techniques, intuition, and taste. 
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Things are changing, however. Today we might almost say 
that mathematics consists of studying the COlJ.sequences of ZFC. 
But one can doubt that this will still be the case one century from 
now. And whether we like it or not, it seems that mathematical 
logic (metamathematics) will play an important role in the fu
ture of our mathematics. 
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Structures and Concept Crea ti on 

WE HAVE SEEN in chapter 3 that the idea of mathematical 
structure is present in Klein's Erlangen program. In a different 
form, structures dominate Bourbaki's Elements de Mathematique. 
One might say that structures permeate modern mathematics, 
sometimes explicitly, sometimes not. Yet the jump from the 
axioms of set theory to the definition of various structures (like 
groups, geometries, etc.) may seem a bit contrived: we would 
like to understand if the choices that are made are inevitable and 
natural. 

But before discussing the origin of structures, let me clarify a 
point of terminology concerning axioms. When we introduce the 
concept of a group, we do this by imposing certain properties 
that should hold1: these properties are called axioms. The axioms 
defining a group are, however, of a somewhat different nature 
from the ZFC axioms of set theory. Basically, whenever we do 
mathematics, we accept ZFC: a current mathematical paper sys
tematically uses well-known consequences of ZFC (and nor
mally does not mention ZFC). The axioms of a group by contrast 
are used only when appropriate. Suppose we have, for the pur
poses of the problem on which we are working, introduced a 
product a · b between elements a, b of some set G. If this product 
satisfies the properties appropriate for a group (i.e., associa
tivity, existence of unit element, and existence of inverses), we 
say that the set G with the product · is a group. Or it may happen 
that some axiom (e.g., associativity: a · (b · c) =(a· b)· c) is not sat
isfied, and then G is not a group. 

Euclid's axioms played for the Greeks a role similar to that of 
ZFC for us. But nowadays Euclidean geometry is approached 
differently. Starting from ZFC, one defines real numbers, then 
the Euclidean plane (or the Euclidean three-space). And then 
one can verify that points, lines, and so on verify the axioms 
introduced by Euclid or the reworking of these axioms by Hil
bert.2 In this approach, Euclidean geometry is thus a derived 
concept. 
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Let us go back to structures. To discuss their significance in 
mathematics, we have to remember the dua~ nature of the sub
ject. On the one hand, mathematics is a logical construct that can 
be identified with the output of a Turing machine working for
ever at listing all consequences of the ZFC axioms. This is the 
mechanical, completely nonhuman aspect of our subject. On the 
other hand, mathematics is a human activity among many oth
ers. Suppose that you are a rock climber. Climbing involves you, 
a human, and the rock on which you are progressing, which is 
mineral and completely nonhuman. The ledge on which you 
hoist yourself was not waiting for you: it is a result of erosion 
acting on compacted sediments originally deposited on a sea 
bottom many million years ago. Yet this ledge, on which you 
now precariously stand, and the handhold, fortunately excel
lent, that you just found have a lot of meaning for your human 
nature: your life depends on them. 

It thus stands to reason that mathematical structures have a 
dual origin: in part human, in part purely logical. Human math
ematics requires short formulations (because of our poor mem
ory, etc.). But mathematical logic dictates that theorems with a 
short formulation may have very long proofs, as shown by 
Godel.3 Clearly you don't want to go through the same long 
proof again and again. You will try instead to use repeatedly the 
short theorem that you have obtained. And an important tool to 
obtain short formulations is to give short names to mathematical 
objects that occur repeatedly. These short names describe new 
concepts. So we see how concept creation arises in the practice 
of mathematics as a consequence of the inherent logic of the sub
ject and of the nature of human mathematicians. 

Examples? All of successful mathematics! In the geometry of 
Euclid a concept that deserved a name is that of the right angle, 
and a theorem used again and again is that of Pythagoras (which 
uses the concept of the right angle). A more modern example is 
the concept of analytic function.4 A theorem used repeatedly is 
that a function analytic in a domain reaches its maximum on the 
boundary. Professionals may frown at the sloppy statement that 
I just gave,5 of the sort used in verbal discussion rather than in 
writing. In fact, sloppy statements are useful as short formula
tions of longer theorems "known to everybody." And the prac
tice of mathematics uses a lot of short formulations like the con-
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tinuous image of a compact set is compact.6 Sometimes a theorem is 
only alluded to, and a mathematician will write, "By compact
ness it is clear that .... " 

The discussion I have just presented is intended to give some 
idea of the how and why in the practice of mathematics: un
avoidably long proofs, focus on short formulations, and use of 
appropriate definitions to keep things short. What we get at the 
end is a mathematical theory: a human construct that, unavoid
ably, uses concepts introduced by definitions. And the concepts 
evolve in time because mathematical theories have a life of 
their own. Not only are theorems proved and new concepts 
named, but at the same time old concepts are reworked and 
redefined. For the reader who has studied topology, let me 
mention the emergence of a remarkably useful and natural con
cept: that of compact sets.7 These occurred first among other 
classes of sets with somewhat different definitions. Eventually 
the modern concept of a compact set was singled out as being 
the "right" one. 

I find it very satisfying that we can make sense of concept cre
ation in mathematics as an inevitable consequence of the logical 
structure of mathematics and of basic features of the human 
mind. The approach we have taken seems to me preferable to 
one that would try to understand concept creation in general, ig
noring the specific features of the substrate (provided here by 
mathematical logic) and of the human mind (with its deficient 
memory, etc.). 

We must admit, however, that our knowledge of the logical 
structure of mathematics and of the workings of the human 
mind remain quite limited, so that we have only partial answers 
to some questions, while others remain quite open. 

One thing we would like to know is to what extent mathemat
ics could have been developed with other concepts than those 
we are familiar with. In the rock climbing analogy, the question 
is whether there are several natural routes to the top of a cliff, 
and the answer is often yes. In mathematics, too, the conceptual 
structure of a subject can often be developed in different ways. 
So the reader familiar with measure theory will know that ab
stract measure theory is favored by some colleagues, while oth
ers prefer to deal with Radon measures.8 And the probabilists 
(who are a bit isolated in the community of mathematicians) 
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study measures with their own terminology (marginals, martin
gales, etc.) and their own concepts and intuip.on. Sometimes, a 
new branch of mathematics is created for extramathematical rea
sons and turns out to be of remarkable intrinsic interest, or it 
may illuminate older parts of mathematics. So it was that the 
emergence of electronic computers led to the development of a 
theory of algorithms with important new concepts like that of 
NP completeness,9 which would have had little chance of being 
encountered otherwise. I was personally involved in a story that 
I shall tell in a later chapter. There a concept of a Gibbs state 
was developed in the mathematical study of a branch of physics 
called equilibrium statistical mechanics. Later Gibbs states turned 
out to be a remarkable tool in the study of the so-called Anosov 
diffeomorphisms, although the latter have a priori nothing to do 
with statistical mechanics. These examples contradict the notion 
that good mathematical concepts only arise from internal mathe
matical necessity. Sometimes this is the case, but sometimes con
cepts coming from outside turn out to be powerful and are even
tually considered as natural. 

I hesitate to ask the next question: what structure could non
human mathematics have? In the rock climbing analogy, it is 
clear that the problems encountered by a lizard or a fly in going 
up a cliff are vastly different from those met by a human climber. 
While it is difficult to imagine nonhuman mathematicians, 10 we 
have seen from the example of computers that perhaps they 
could handle some questions better than we can (because of 
having better memory, working faster, and making fewer mis
takes). Also, if you think of it, biology (i.e., natural evolution) 
gives an example of some kind of nonhuman intelligence: it has 
solved many difficult engineering problems and, besides that, 
has created a brain that can do mathematics! Yet evolution 
works by trial and error in what appears to be a totally noncon
ceptual fashion.11 

Returning to human mathematics, we have seen why it is 
necessarily based on concepts or, if you like, structures. But the 
explicit introduction of structures in the modem sense (as you 
find them in Bourbaki) is relatively late. For example, the ab
stract group structure appears only in the late eighteenth and 
nineteenth centuries. Once introduced, these structures turned 
out to be extraordinarily useful, and they are now essential for 
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many parts of mathematics. But to what extent are these struc
tures inevitable? Are they the natural backbone of mathematics 
finally revealed in the nineteenth and twentieth centuries? Or 
are they some kind of scaffolding that is certainly very efficient 
but basically artificial? (In the rock climbing analogy, think of a 
metallic ladder allowing you to get to the top of a cliff with mini
mal effort.) 

This question of naturality of mathematical structures, to the 
extent that it makes sense, probably does not have a simple and 
clear answer. Look at the subtitle of Bourbaki's treatise: the fun
damental structures of analysis.12 Many mathematicians would 
agree that the structures considered by Bourbaki are natural and 
may be unavoidable. But a more dynamical view of structures 
is possible, such as that provided by Grothendieck, which has 
been described as follows: one does not make a frontal attack of a 
problem; one envelops it and dissolves it in a rising tide of very general 
theories.13 While Grothendieck's way of doing mathematics is ex
tremely structural, "hyper-Bourbakist," it does not forget the 
problems that it wants to solve or dissolve. If Bourbaki's treatise 
may be viewed as a museum of structures, Grothendieck's effort 
was the imaginative development of general ideas to under
stand new and old areas of mathematics. As said before, Gro
thendieck's program was extraordinarily successful and led to 
the solution of important problems, generally by other people. 

To summarize, we may say that general structures are a re
markable tool for the study of certain parts of mathematics. They 
are useful and appear natural and even unavoidable to modern 
human mathematicians, but how deeply natural and unavoid
able they really are remains an open question. 

We shall later discuss in more detail how we, humans, create 
new mathematics. In this dynamical view, a good choice of 
mathematical concepts or structures plays an essential role. 
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THE JOY OF MATHEMATICAL understanding and discovery is 
not easy to describe, but it is extraordinary. May I repeat the old 
story of {2? We know that the diagonal d of a square of side 1 
is {2 (i.e., d2 = 12 + 12 = 2 by the Pythagorean theorem). Can we 
write d as the quotient min of two integers; that is, can we have 
[2 =min? No, because this would imply 2n2 = m2• We know 
that an integer can be written in a unique manner as a product 
of primes. But the prime 2 occurs an even number of times in 
the product representing m2 and an odd number of times in 2n2• 

Therefore, 2n2 cannot be equal to m2• 

Clearly, the fact that [2 is irrational (i.e., cannot be written as 
min) will leave many people deeply indifferent: perhaps the 
statement and its proof are beyond their intellectual capabilities, 
or perhaps they simply do not care. But since you have reached 
the present chapter of this book, you are probably a different 
kind of person. You see that we cannot restrict ourselves to using 
numbers that are quotients of integers, and you understand that 
this is a momentous discovery. This discovery is two and a half 
thousand years old, and has the beauty of Greek statues but not 
their fragility. The beauty of mathematics is outside of time. Its 
multiple treasures are constantly open to the visitor: that not 
only [2 but also the number 7t is irrational, 1 that finite simple 
groups can be listed, and that some questions cannot be an
swered in the conceptual framework of the ZFC axioms. Con
cerning this last point (Godel's theorem), one might say that 
some of the deepest answers to philosophical problems have 
been obtained in mathematical logic. 

You can enjoy some of the beauties of mathematics without 
being a professional, just as you can enjoy music without play
ing an instrument or being a composer. But active research in 
mathematics gives intellectual rewards different from those en
joyed by a spectator. To become a successful research mathema
tician, you have to be gifted in the first place (as for many other 
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activities), and you also need proper training, luck, and hard 
work. Specific to mathematics, among other sciences, is that it is 
a discipline with great freedom, where there are no restricted 
areas or secret doctrines. You will rarely be asked to show your 
diplomas, and it is not important that you look intelligent. 
(There are those who try to look intelligent by frowning, squint
ing, looking down their nose or up at the ceiling as if to consult 
with God Almighty; all this is unimportant, just forget it.) 
Knowing the work of colleagues is important, but it is not team 
research. (Scientific research outside of mathematics and theoret
ical physics is essentially done by teams.) So you have a chance 
to escape the master-slave relations and their ambiguities, which 
often come with a hierarchical organization. Of course some 
mathematicians want to be masters, some want to be slaves, and 
some will try to involve you somehow in their particular neuro
ses. But you can stay away from them if you are lucky and if 
you so wish. Mathematical research is a highly individual enter
prise. It requires mental agility and the patience to pace around 
an infinite and dreary logical labyrinth until you find something 
that has not been understood before you: a new point of view, 
a new proof, a new theorem. 

Rene Thom once remarked to me that only in mathematics 
(and perhaps, he added, in theoretical physics) does one find re
ally nontrivial logical thinking. Of course there is very subtle 
logical thinking involved elsewhere, but not the very long con
catenation of rigid logical arguments leading to a statement that 
can, afterwards, no longer be put in doubt. With mathematics 
and particularly mathematical logic, we come to grips with the 
most remote, the most nonhuman objects that the human mind 
has encountered. And this icy remoteness exerts on some people 
an irresistible fascination. On what kind of people? 

Mathematicians are a very diverse bunch of individuals: men 
and women of all kinds of ethnic origins, talented or not outside 
of mathematics, pleasant or unpleasant, with a fine sense of 
humor or apparently none at all. Their way of doing mathemati
cal research is also diverse (and I leave out of consideration 
those people connected somehow with math but who say they 
have, unfortunately, no time left for research). Yet, in spite of all 
this diversity, there are some features that recur among mathe
maticians in a statistically significant manner. Indeed, while 
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some abilities are needed or desirable to do mathematics, others 
are optional, and so it makes sense that mathematicians are sta
tistically different from soccer players, for instance. But one can 
be both an excellent mathematician an an excellent soccer player, 
as shown by the example of Harald Bohr.2 Another reason why 
mathematicians may be different from other people is that their 
intense and very abstract activity may eventually have an effect 
on their health and personality. 

The brain is a mathematician's main professional tool, and it 
has to be kept in reasonably good shape. This excludes the sort 
of heavy drinking and drug use in which some artists indulge. 
Of course, many mathematicians drink coffee or tea to stay alert. 
Tobacco may also help intellectual concentration, although some 
of its other effects are quite catastrophic. At a time, in the 1960s, 
marijuana was very widely used in American academia, includ
ing among mathematicians, but I heard no claim that it helped 
their mathematics. A curious remark is that some mathemati
cians will drink wine to slow themselves down. Indeed some 
fast-thinking individuals tend to accelerate uncontrollably dur
ing complicated arguments or calculations, when one should ac
tually slow down to avoid mistakes. A moderate amount of 
wine might thus be helpful to some people. In the same vein, I 
was told by a colleague that, after he had taken codeine for some 
medical reason, he went with great patience through a long and 
complicated mathematical argument: he had all the time in the 
world. In general it is accepted that drugs don't make you more 
intelligent. Therefore, there is not the sort of drug problem 
among mathematicians that exists among athletes or some art
ists. Certainly, there is hedonistic use of wine and other drugs 
(legal or sometimes illegal), and there is occasional abuse. I 
think, however, that the main problem worth mentioning with 
respect to drugs and mathematics is the very painful period 
which many colleagues went through when they decided to stop 
smoking, and could not properly concentrate on their work. 

Civilized nations strive, in principle, to make humans legally 
equal. Natural talent, however, and intellectual environment are 
very unevenly attributed to us. So some people are not good at 
math, while others move around mathematical problems with 
the apparent ease and lightness of a dancer on stage. For this, 
certain gifts (in particular, a good short-term memory) are of 
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course helpful. One may also mention the ability to concentrate 
or an aptitude for abstract thinking, but these are somewhat 
fuzzy psychological notions and of limited interest to us as we 
try to understand mathematical thinking. 

When I mentioned earlier escaping a master-slave relation or 
avoiding involvement in other peoples' neuroses, you may have 
felt that you handled such problems all the time, and no big 
deal. This probably means that you are socially well adapted: 
you communicate easily, your "sexual preferences" are accepted 
in your community, and so on. Many mathematicians are so
cially well adapted, but it is interesting that many are not. Why 
is that? The notion is that if you are intelligent but communica
tionally deficient, you will turn your interest to activities with 
limited social demands, These include mathematics, computer 
programming, and some forms of artistic creation. As an exam
ple we may think of the great Kurt Godel, a person obsessively 
preoccupied with his health, and with limited social gifts. He 
had, one may suppose, a very rich inner life, but his relations 
with the outside world seem to have been mediated largely 
through his wife, Adele. When Adele was incapacitated with 
disease, he was left to face his problems alone, in particular the 
obsession that people were trying to poison his food. Self-in
flicted starvation eventually caused his death, sitting on a hospi
tal chair in Princeton, New Jersey. 

There is a cluster of conditions known as autism, where com
munication, social relations, and imagination are impaired. The 
nature of autism is not understood, but genetic factors are 
known to be important. It has been argued that "mild autistic 
traits can provide the single-mindedness and determination 
which enable people to excel, especially when combined with a 
high level of intelligence."3 In fact, Newton, Dirac, and Einstein 
would be examples of people with Asperger's syndrome, a form 
of autism. This is an interesting assertion but to be taken with a 
grain of salt since Newton, Dirac, and Einstein were not medi
cally tested for the syndrome in question. In any case I think 
there is something peculiar about many (not all) mathemati
cians: a somewhat rigid way of thinking and behaving, The evi
dence on which I base this opinion is anecdotal, not clinical. To 
be specific, my experience is that many mathematicians will give 
excessive detail when answering a casual question (on the rules 
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of the game of checkers, say, or genealogy in feudal Japan), or 
they will find logical difficulty with an assertion that causes no 
problem for most people. Or perhaps they may ask you to repeat 
a joke and then ask you to explain why it is funny. Let me repeat 
that not all mathematicians-thank God-are like that. One 
finds among them a great variety of psychological types and 
even psychiatric disorders, provided the latter do not impair in
telligence. Paranoid, manic-depressive, or obsessive tendencies 
are not rare among scientists in general, but there are also many 
who are depressingly normal and dull. 

Specific to mathematicians is that, in a professional situation, 
they have to react in a way that is different from that of most 
people. If you participate in a public debate or perform delicate 
surgery, you may have to make quick decisions: some decisions 
are better and others not so good, but wavering and failing to 
decide is the worst choice. If you work on a mathematical proof 
by contrast and you are suddenly not sure that what you say is 
correct, you should freeze, take your time, and make absolutely 
certain that your argument is watertight. With one type of per
sonality, you will do wonderfully well as the host of a television 
talk show, but you would fail miserably as a mathematician. Or 
you could be a truly great mathematician and look pathetic in a 
television program. 

We have just argued that having a certain type of personality 
may help one to become a good mathematician. But logically 
we must also admit that mathematical work may affect one's 
personality. I think that this is indeed the case, simply because 
high-level mathematical research is very hard work. The evi
dence for high-level mathematicians having nervous break
downs is impressive, if anecdotal. In her biography of David 
Hilbert, 4 Constance Reid devotes just a few lines to the disap
pearance of Hilbert for several months in a sanatorium because 
of a nervous breakdown. She mentions on this occasion the ear
lier and more severe breakdown of Felix Klein and relates the 
opinion of Courant that "almost every great scientist I have 
known has been subject to such deep depressions."5 One might 
compare doing great mathematical work with climbing high 
mountains: they are admirable feats, but dangerous. The mind 
in one case and the body in the other are pushed to their limits, 
and there is a price to be paid. Apart from a nervous breakdown, 

82 



TURING'S APPLE 

the way mathematicians overuse their brain often results in ab
sentmindedness and lack of practical sense (poets have a similar 
reputation). And perhaps another result of brain overactivity is 
baldness, commonly seen among intellectuals (eggheads). 

Research mathematicians, then, are doing very hard work but 
live to some extent in a separate universe and are spared some of 
the relational problems of "real life." These unresolved problems 
may, however, come back brutally to the surface and demand 
attention. The story of the British mathematician Alan Turing6 is 
an example of this. 

Born in 1912, Turing made his best remembered scientific 
contribution in the 1930s with the concept of a universal com
puter, now known as the Turing machine. He gave a precise de
scription of a finite automaton, with infinite memory, which 
could do any computation that any other such automaton could 
perform. The idea is that, if you have a suitable digital computer, 
you can program it to do any calculation that any other com
puter can perform. Programmable computers did not exist at the 
time. It was a new idea, which clinched the concept of comput
ability and clarified Godel' s work. Of momentous historical im
portance was Turing's breaking of the Enigma cipher used by 
German submarines at the beginning of World War II. This en
sured the control of the Atlantic by Allied forces. He also 
worked on the development of electronic computers and con
tributed to the debate of whether computers can "think" (the 
Turing tesf). Finally, he made a seminal contribution to the un
derstanding of how spatial structures are created (morphogenesis) 
in terms of chemical reactions and diffusion. In a sense, Turing 
was one of many "original" characters doing dangerous chemi
cal experiments over the kitchen sink (he used potassium cya
nide8) and pursuing various crazy ideas. But Turing's ideas 
worked. His contributions to science and our understanding of 
the world stand out, and there is no way they can now be dis
missed and forgotten. 

Turing was unpretentious in the way he dressed and inter
acted with colleagues. Frank Olver9 remembers him working 
with a team that made very long numerical computations (on 
desk calculators) to test an algorithm. Turing had to be fired be
cause he made too many mistakes! To those who met him, he 
may not have appeared as a very striking person. 
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Turing, however, was gay, and in England in 1952, this was 
against the law. He was found out. Having pleaded guilty to an 
"act of gross indecency," he was given the choice between a 
prison term or medical treatment. The latter, which he chose, 
consisted of injections of female hormones for a period of one 
year. This cure of male homosexuality (according to medical no
tions of the time) was in effect a chemical castration, reversible, 
in principle, unlike the compulsory surgical castration practiced 
at the time in some parts of the United States.10 

Because the accepted ideas on homosexuality have changed, 
the hormonal treatment given to Turing may now seem absurd 
and barbaric. Still, it should be clear that the United Kingdom 
in the 1950s had nothing to do with Nazi Germany or Soviet 
Russia. It was a highly civilized nation, where male homosexual
ity was culturally important in the social upper crust. Turing, 
unfortunately, had too much of the intellectual rigidity fre
quently seen among mathematicians and not enough of the hy
pocrisy frequently seen in the social upper crust. He went 
through social shame and hormonal treatment better than one 
might expect. But then one day in June 1954, he was found dead 
in his bed, poisoned by cyanide, with an apple next to him, from 
which he had taken several bites. Apparently, he had used the 
poisoned apple to commit suicide. We would like to understand 
how he came to this decision. But he left no explanation. He did 
not answer your questions or mine. The apple was an answer, 
very final, to his own questions. 
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and Aesthetics 

MANY MATHEMATICIANS have pondered on the psychology 
of mathematical invention. What does introspection tell us? 
Henri Poincare1 and Jacques Hadamard2 discuss a remarkable 
phenomenon that they observed about themselves and that a 
number of other mathematicians have observed as well. After 
working for some time on a problem (the preparation period) and 
having failed to crack it, they abandoned it. Then, a day, a week, 
or several months later (the incubation period), suddenly, upon 
waking up or in the course of a trivial conversation, the solution 
occurred to them. This illumination (as Hadamard calls it) comes 
without warning and may be along lines that are different from 
the research done before. The illumination is immediately con
vincing, although serious checking needs to be performed later. 
This last stage of verification (verifying the solution and making 
it precise) may show that the illumination was wrong, and then 
one forgets it. But often enough the solution provided by the 
Gods turns out to be correct. Instead of the Gods one now prefers 
to speak of the unconscious. But you may, like many people, be 
equally unhappy with the unconscious and the Gods. Let me 
thus proceed with some care. 

Consciousness is an introspective concept. When you ride a 
bicycle or drive a car, you may consciously decide to turn right. 
But many things that required an effort when you learned riding 
or driving (like keeping your balance or putting your foot on the 
brake) you now do automatically: unconscious mental processes 
are at work. We can thus introspectively recognize conscious 
mental processes and infer that many other processes take 
place that are not conscious. Those many unconscious processes 
appear to be of a very disparate nature, and it is probably 
misleading to lump them together as the unconscious. Also, 
since consciousness is introspective, it is difficult to define. 
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How do you know if your spouse, your cat, or your PC has 
consciousness? 

I do not wish at this point to get mired in the general problems 
of consciousness, the unconscious, the nature of thinking, of 
understanding, of meaning, the immortality of the soul, and so 
on. Of course these are interesting problems, but their study en
tails formidable methodological difficulties. My attitude here 
will be to ask what one can say about some of these problems 
in a special but methodologically favorable case: that of mathe
matical work. 

I shall assume that mathematicians (and probably many other 
people) have, like myself, an introspective notion of conscious
ness. There is then the interesting claim, by some prominent 
mathematicians, that an important part of their mathematical 
work is done unconsciously. We have just seen that Hadamard, 
following Poincare, distinguishes in mathematical work a con
scious stage of preparation, an unconscious stage of elaboration 
or incubation, an illumination that reverts to conscious thinking, 
and a conscious stage of verification. The incubation stage is de
scribed as combinatorial in nature: ideas are put together in vari
ous ways until the right combination is chosen. And it is claimed 
that this choice is made on an aesthetic basis. Hadamard sees a 
mathematical argument as generally consisting of several parts, 
each of which has a preparation, incubation, illumination, and 
verification structure. The verification of one part leads to the 
precise formulation of a relay result, which can then be used as 
a basis for the preparation stage of the next part of the argument. 
According to many accounts, mathematical thinking is not nec
essarily based on language. The concepts used can be nonverbal, 
associated with vague visual, audio, or muscular elements. Ha
damard says that he himself thinks in terms of nonverbal con
cepts and that afterwards he has a hard time converting his 
thinking into words. Einstein, in a letter to Hadamard, indicates 
that his own scientific thinking is of a combinatorial nonverbal 
nature. As for consciousness, he says: "It seems to me that what 
you call full consciousness is a limiting case which can never be 
fully accomplished. This seems to me connected to the fact 
called the narrowness of consciousness (Enge des Bewusstseins)."3 

Where does this leave us? Can one add anything to what great 
masters like Poincare, Hadamard, and Einstein have said? I 

86 



MATHEMATICAL INVENTION 

think one can and one should. First, because none of these great 
scientists defended the magister dixit philosophy (i.e., the master 
has spoken, and this closes the discussion). Second, because the 
intellectual landscape has changed since Hadamard wrote his 
wonderful little book. One point that I have raised earlier con
cerns what we have learned about short- and long-term mem
ory: part of the incubation period probably involves putting into 
long-term memory the work of the preparation period. This ex
plains why, after some work on a problem (that Hadamard 
called preparation) it is often good to lay it to rest for a while. 

An important change in our intellectual landscape came with 
the advent of powerful digital computers. We now want to com
pare the performances of the human mind and those of comput
ers, and we naturally ask how we could program a computer to 
emulate the work of the human mind. From this point of view 
we have noted that long numerical calculations are carried out 
easily and without error by a computer, but that translation from 
one language to another remains difficult. Indeed, a language 
does not just consist of a dictionary and rules of grammar; it also 
has many hidden rules and a vast corpus of references that we 
use to produce a flexible, reasonably unambiguous, and idiom
atic output. It is probably significant that the rules of language 
are difficult to program into a computer but are (in part) needed 
to do mathematics. 

A mathematician who has finally understood a question may 
say that it was after all very simple. But this is usually an errone
ous feeling. In fact, when our mathematician starts writing 
things down, their complexity unfolds and may end up looking 
formidable. A simple mathematical argument, like a simple En
glish sentence, often makes sense only against a huge contextual 
background. 

Returning to computers, I like to play with the idea that they 
could be programmed to invent good new mathematics. And 
this raises an obvious question: how do we program ourselves 
to do mathematics? Following professional usage, what I mean 
by "doing mathematics" is an active, constructive process. Imag
ining the properties of a mathematical object and trying to prove 
them is "doing mathematics." For instance, the mathematical 
object may be a class of dynamical systems, or a theorem about 
such systems, or a· paper you are writing on this topic. Reading 
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a mathematical paper may or may not be "doing mathematics" 
depending on whether it corresponds to constJucting something 
in your mind. "Doing mathematics" is thus working on the con
struction of some mathematical object and resembles other cre
ative enterprises of the mind in a scientific or artistic domain. 
But while the mental exercise of creating mathematics is some
how related to that of creating art, it should remain clear that 
mathematical objects are very different from the artistic objects 
that occur in literature, music, or the visual arts. 

The idea that artistic creation and creative work in mathemat
ics are somehow related brings us back to Hadamard's state
ment that good mathematical ideas are selected on an aesthetic 
basis. In fact Einstein made a similar statement about his own 
work in mathematical physics. Do we then have to believe that 
good mathematicians are aesthetically talented in other domains 
like literature, painting, or music? The answer is negative. Many 
scientists try their literary talent on an autobiography, others 
paint or play an instrument. The results are often not bad, but 
rarely great. And in many cases really good scientists achieve 
truly mediocre artistic results.4 

The aesthetic competence for mathematics is thus distinct 
from artistic competence. Can we analyze aesthetic competence? 
Are we not reaching here the domain of the unknowable? Actu
ally, I think that aesthetic competence for mathematics is easier 
to analyze than artistic competence. But let me first point out a 
change in the intellectual landscape since the days of Poincare, 
Hadamard, and Einstein: we have become much more aware 
that art depends on cultural tradition and that cultural tradition 
is diverse. 

Taste for Bach or Beethoven is an acquired taste, as is taste for 
good wine or taste for good mathematics. This does not mean 
that one has to be a professional musician to feel that Bach and 
Beethoven mastered compositions of impressive size and com
plexity. But we have this feeling because we are familiar with a 
certain musical tradition. Exposed to unfamiliar music, we may 
like it or not, but we cannot say if it is joyful or sad or if it is 
good or mediocre. Tradition changes, of course, and both Bach 
and Beethoven changed the course of Western musical tradition. 

Much that was just said about music (or art) can also be said 
about mathematics (or science): one can distinguish different 
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mathematical cultures depending on time and place, and sub
cultures corresponding to different schools, approaches, and 
areas of mathematics. One can thus distinguish French and Rus
sian traditions, algebraic and geometric styles of doing mathe
matics. Within a culture or subculture some concepts (like that 
of the group structure) and some facts (like the implicit function 
theorem5) are well known. But where is aesthetics? Where are bad 
and good taste? Since I cannot give the relevant definitions and 
details, the examples that I shall sketch below may remain a bit 
vague for nonmathematicians. As for mathematicians they will 
see what I mean and construct their own detailed examples. 

Suppose that you are writing a mathematical paper and that, 
from some mathematical object a, you are constructing an object 
b. It may be that there is a group G naturally occurring in your 
problem, such that b is the inverse a-1 of a in G and that this fact 
is of great help in the construction of b = a-1• Not seeing that the 
group G is, so to say, staring you in the face would be an exam
ple of bad taste. An example of good taste would be to prove 
some difficult theorem by a clever application of the implicit 
function theorem in a Banach space. The implicit function theo
rem is fundamental and well known, but you may have to be 
clever in choosing the Banach space and the function to which 
you want to apply the theorem. If you succeed, you may get a 
short proof of what would otherwise be a hard result.6 

Mathematical good taste, then, consists of using intelligently 
the concepts and results available in the ambient mathematical 
culture for the solution of new problems. And the culture 
evolves because its key concepts and results change, slowly or 
brutally, to be replaced by new mathematical beacons. 

Mathematical aesthetics, while culture dependent, is not 
meaningless fashion. Remember that short mathematical state
ments may have very long proofs, but that in normal mathemati
cal practice one tries to use shortcuts, making simple applica
tions of well-known theorems and forgetting about the hard 
proofs of these theorems. A given mathematical culture at a 
given time refers to standard theorems, procedures, and ways 
of thinking that define the culture. So, a contemporary mathe
matician should know the implicit function theorem and the er
godic theorem and be able to apply them. But note in passing 
that the ergodic theorem, for example, was not part of the cul-
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tural landscape of Henri Poincare: he died in 1912 while the er-
godic theorem dates from 1932.7 _ 

The intellectual landscape of a given mathematical culture has 
its standard theorems, terminology, and ideas about which peo
ple agree. Instead of an arbitrary fashion, they are an efficient 
way of doing mathematics. But one must admit that historical 
accidents play some role in the choice of the standard theorems, 
of the terminology, and of what is considered interesting re
search. In this sense fashion does play a role in mathematics. 

And let me repeat that, in mathematics as in art, the landscape 
changes. There are golden periods but also long stretches of dull 
mediocrity. Some innovations are dead ends, blind alleys. Some 
innovators shine briefly and then are forgotten. Others change 
the intellectual landscape in a lasting manner. 
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The Circle Theorem and an Infinite

Dimensional Labyrinth 

As A TEENAGER I was exposed to a popular Polish way of 
singing, which I really liked, with extremely shrill women's 
voices. Unfortunately, I have not heard this way of singing for 
many years. Since I do not know Polish, I did not understand 
the meaning of the songs, but that was not too important: what 
counted was the distinctive shrill style. 

Let me now confront you with a piece of mathematics, in fact, 
a rather loosely presented mathematical text, chosen because the 
concepts involved are standard and will be readily understood 
by mathematicians. As for my nonmathematical readers, they 
will be (for the length of the next paragraph) in the same posi
tion where I am with respect to songs in Polish: able to appreci
ate, if not the detailed meaning, at least the tune and style of 
singing. 

The beginning of the story is that the physicists T. D. Lee and C. N. 
Yang, encountered a particular class P of polynomials 

m 

P(z) =I a1 zl 

J=O 

while studying a problem of statistical mechanics. The polynomials P in 
P that they could analyze had all their roots on the complex unit circle 
{z: I z I = l}. They conjectured that this was true in general. If they 
could find a unitary matrix U such that P (z) is the characteristic polyno
mial of U, that is, P (z) = det (zl - U), then the conjecture would be 
proved. This is the idea that will occur to any mathematically educated 
person, but here it does not help. Lee and Yang were good enough mathe
maticians that they found a proof of their conjecture, but their proof is 
not easy. Less difficult proofs exist now, due in particular to the work of 
Taro Asano. To prove the Lee-Yang circle theorem (which will be formu
lated below) one replaces the polynomial P of degree min the variable z 
by a polynomial Q (z11 ••• , Zm) in m variables, separately of degree 1 in 
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each variable Z1t ... , Zm· One is interested in the class Qof such polyno
mials for which Q (zit ... , Zm) =t 0 whenever I z1 I . < 1, ... , I Zm I < 1. 
Therefore, if P (z) = Q (z, ... ,z) and Q is in Q, the roots ~ of P satisfy 
I ~ I ;::: 1. (In the case of interest, there is a symmetry z ~ z-1, so that 
also 11/~ I ;::: 1, and hence I~ I = 1.) Clearly, if Q (z1t ... , Zm) and Q (zm 
+ 11 ••• I Zm + n) are in the class Q then also 

Q (z11 ... , Zm) Q (Zm + 11 ••• , Zm + n) 

is in Q We describe now a less obvious operation, called Asano contrac
tion, that preserves Q Write 

Q (z11 ••• , Zm) = Az1zk + Bz1 + Czk + D, 

where A, B, C, D are polynomials in the variables z11 ... , Zm except z1 

and zk· Then Asano contraction replaces the two variables z1, zk by a sin
gle variable z1k so that 

Az1zk + Bz1 + Czk + D ~ Az1k + D. 

Starting with a polynomial Q in m variables, we end up with a polyno
mial in m - l variables, which is again in Qif Q was in Q (This is an 
easy exercise: the root of Az1k + D is minus the product of the two roots 
of Az2 + (B + C) z + D.) One can check that polynomials in two variables 
of the form 

z1zk + a1k (z1 + zk) + 1 

are in Qif a1k is real and -l ::;; a1k ::;; 1. (Putting the polynomial equal to 
zero yields a map z1 ~ zkt which is an involution sending the inside of 
the unit circle to the outside.) Taking a product of polynomials as above, 
making Asano contractions, and putting all variables equal to z, we 
obtain the Lee-Yang circle theorem: For real a1k = akv - l ::;; a1k ::;; 1, the 
polynomial 

P (z) = ~ z 1x 1 II II a1k 
X c { l, ... , m } J e X k e X 

has all its roots on the unit circle. 1 

The above presentation is not very difficult mathematics, but 
for a professional mathematician it will probably be a refreshing 
and welcome change from. considerations about mathematics: 
this is mathematics. Note that I have only sketched the details 
of the proof, because the reader is assumed to have enough 
technical background to complete them. (or just say, "Yes, of 
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course"). The assumed technical background (or cultural tradi
tion) contains, in particular, a theorem about the characteristic 
polynomial of a unitary matrix (mentioned but not needed) and 
the fundamental theorem of algebra2 (needed but not men
tioned). We are far from a formal deduction based on the ZFC 
axioms. It would, however, be easy (for a professional mathema
tician) to give a much more formal presentation. And the idea 
is that any detail of this more formal presentation could, in prin
ciple, be expanded to a fully formal text. Therefore, in principle, 
the above statement and proof of the Lee-Yang circle theorem 
could be written as a fully formal text that could be checked me
chanically. I believe that such texts will eventually be written 
and checked by computer. This seems to me the only way to 
fight errors in proofs, which are becoming a daunting problem 
for the future of mathematics. But let us leave this question for 
a later chapter. 

A fully formal proof of the Lee-Yang circle theorem would be 
very long and quite unreadable and uncheckable by a human 
mathematician. One could say that human mathematics is a sort 
of dance around such a formal text: one gives a convincing argu
ment that it could be written, but one does not write it. What, 
then, is the status of the text that I have presented above? It is a 
piece of human mathematics, allowing a human reader to be 
quickly and efficiently convinced of the correctness (i.e., formali
zability) of a certain deduction; it deals with ideas rather than 
with formal statements. 

What is an idea? Or, more specifically, what is a mathematical 
idea? Trying to be pragmatic rather than profound, I would say 
that an idea is a short statement in human mathematical lan
guage that can be used in a human mathematical proof. (The 
statement may be a conjecture or a comment.) As an example I 
want to identify the main ideas in the above mathematical para
graph on Lee-Yang; I see three of them. The first is the conjecture 
of a theorem (polynomials of a certain form have their zeros on 
the unit circle). The second is to replace a statement about the 
polynomial P (z) by a statement about the polynomial Q (z11 ••• , 

Zn)· These first two ideas are due to Lee and Yang. The third idea 
is that of Asano contraction (due to Asano). All three ideas are 
unobvious. (The second one replaces the obvious idea of ex
pressing P (z) as a characteristic polynomial.) All three ideas can 
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be expressed succinctly. Indeed, after a few minutes of explana
tions, a working mathematician can start wr~ting down a proof 
of the Lee-Yang circle theorem. By contrast, guessing the theo
rem or finding a proof from scratch is definitely hard work. I 
have stated three main ideas. Secondary ideas can be automati
cally interpolated by a professional mathematician. 

I shall come back in a moment to the question of how a theo
rem can have a proof that, although simple, is difficult to find. 
First, however, I want to ask how it is that the Lee-Yang theorem 
has a simple proof. We have seen, following Godel, how certain 
theorems with a short formulation can have a long proof. We are 
thus not astonished that the Lee-Yang theorem should be diffi
cult to prove, but we may wonder how a simple proof is ever 
found. Here is the reason: we have at our disposal a number of 
results with long proofs that we do not have to prove again. (An 
example is the fundamental theorem of algebra mentioned ear
lier.) The cultural background of present-day mathematics con
tains technical tools that allow us to handle efficiently a great 
variety of problems. (Our panoply of technical tools results from 
the selection of efficient tools by our cultural evolution.) A sim
ple proof of the Lee-Yang theorem is thus not a short proof start
ing from the ZFC axioms; it is a short proof starting from stan
dard (in this case, "elementary") tools of algebra. 

The set of tools available to a mathematician may be com
pared to the system of highways available to a traveler: both 
provide the means to go efficiently from A to B. But there is an 
important difference: the choice of an efficient itinerary using 
highways is usually an easy matter; this is not so for the choice 
of an efficient mathematical itinerary to prove a theorem. Let me 
pursue for a minute the analogy between highway system and 
mathematical panoply. The highway system reflects the geogra
phy of a country, which we also know by other methods, so that 
building another road will not significantly change our knowl
edge of the geography. The panoply of technical tools of mathe
matics reflects the inside structure of mathematics and is basi
cally all we know about this inside structure, so that building a 
new theory may change the way we understand the structural 
relations of different parts of mathematics. 

Let me now go back to asking why it may be hard to find the 
proof of a theorem even if, in the end, the proof is relatively sim-
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ple. What it boils down to is that discovering something may 
be hard, but verifying the discovery may be easy. For instance, 
discovering your boss's computer password may be hard, but it 
is easy to use once you know it. 

I want to digress on passwords for a minute. Assume that the 
password of your boss has length 7 (i.e., it is a sequence of 7 
symbols), and let us say that there is a choice of 62 values for 
each symbol, a, ... , z, A, ... , Z, 0, ... , 9. Then, the number of 
possible passwords is 62 x · · · x 62 = (62)7. It has 7 as an expo
nent; that is, it grows exponentially fast with the size of the pass
word (the size, or length, is here taken to be 7). Instead of search
ing for a password, let us search for an intersection in an 
American city (where streets are perpendicular to avenues). If 
we consider a rectangle of size 7 (seven streets and seven ave
nues) there are only 7 x 7 = 72 intersections. The number of inter
sections grows like the square of the size of the region searched, 
which is much less fast than the exponential growth found for 
passwords. This is because our search for intersections is two
dimensional. A search for windows would be three-dimen
sional. (Say there are 40 windows for each floor in a block. Then 
for 15-floor buildings in a 15 x 15 block area, there are 40 x (15)3 

windows.) A search for a needle in a haystack is also three
dimensional. Searching for an address along a street (say, 10 
Downing Street) is one-dimensional. What is the dimensionality 
of the search for passwords? It is larger than 1, 2, 3, ... , and we 
may say that it is infinite. 

It is time to return to the task of a human working mathemati
cian. This task is an approximation to the task of writing a fully 
formalized mathematical text, but it is not a close approxima
tion. A human mathematician works with "ideas," of which we 
have given some examples above. A suitable sequence of ideas 
will give a proof of an interesting theorem. This is the combina
torial task described by Poincare and Hadamard: putting ideas 
together until the right combination is found. How hard is this 
task? It is not a search in one, two, or three dimensions. It is 
more like trying to guess a password; it is an infinite-dimen
sional search. But there is a difference. Unlike symbols for a 
password, mathematical ideas cannot be put together arbi
trarily; they have to fit. (An example is provided by the idea of 
using the Pythagorean theorem. This is a fine mathematical idea, 
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but it works only in a geometric situation, with a triangle that 
has a right angle. If you don't have that situ9tion, you can't use 
the idea. Unless, of course, you introduce geometry and the tri
angle in your problem. Achieving this, however, will require 
some new ideas.) Putting together a sequence of mathematical 
ideas is like taking a walk in infinite dimension, going from one 
idea to the next. And the fact that the ideas have to fit together 
means that each stage in your walk presents you with a new 
variety of possibilities, among which you have to choose. You 
are in a labyrinth, an infinite-dimensional labyrinth. 

I have just described human mathematics as a labyrinth of 
ideas, through which the mathematician wanders, in search of 
the proof of a theorem. The ideas are human, and they belong 
to a human mathematical culture, but they are also very much 
constrained by the logical structure of the subject. The infinite 
labyrinth of mathematics has thus the dual character of human 
construction and logical necessity. And this endows the laby
rinth with a strange beauty. It reflects the internal structure of 
mathematics and is, in fact, the only thing we know about this 
internal structure. But only through a long search of the laby
rinth do we come to appreciate its beauty; only through long 
study do we come to taste fully the subtle and powerful aes
thetic appeal of mathematical theories. 
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THE LANDSCAPE OF mathematics has a historical dimension. 
New theorems are proved, and better tools are devised for han
dling all kinds of questions. At the same time, the problems that 
remain unsolved become progressively more difficult. I once 
had a chance to chat about this changing world with Shiing-shen 
Chem, 1 one of the great figures of twentieth-century geometry. 
And he explained to me how, when he started his mathematical 
career, he read the work of Heinz Hopf on fibrations of spheres2 

and found himself at the frontier of the mathematics of the time; 
he could start doing his own original work. Now, Hopf's ideas 
are wonderful but relatively easy to study. At the beginning of 
the twenty-first century, it is typically much harder to get to the 
frontier of mathematics. Think of having to master Grothen
dieck' s ideas, among others, if you want to work in algebraic 
geometry and arithmetic! 

Mathematics does not always become more difficult as time 
goes by. Sometimes a new technical development provides ac
cess to questions that had hitherto been out of reach. Sometimes 
problems that had not attracted interest become the center of a 
bright new field of mathematics, with important results rela
tively easy to obtain. For instance, the arrival of fast computers 
promoted the study of algorithms and led to basic conceptual 
developments like the notion of NP completeness and the re
markable proof that primality can be tested in polynomial time.3 

In general, however, one must admit that mathematics be
comes more and more difficult with time. This causes changes 
in the practice of research. I remember hearing criticism in the 
1960s addressed to a mathematician who used results by others 
without sometimes checking them personally. Because of the in
flation of the literature, this checking of earlier results is less and 
less possible. I heard Pierre Deligne, in the 1970s, stating that 
the mathematics that interested him was that which he could 
personally understand in complete detail. This excluded, he 
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said, proofs using computers and extremely long proofs that a 
single person could not dominate. In fact, however, computer
aided proofs and extremely long proofs have become a normal 
feature of contemporary mathematics. 

Perhaps we are witnessing a decay of the "moral values" of 
mathematics; Grothendieck said so explicitly. At the same time, 
however, we see extraordinary successes in the solution of old 
problems (Fermat's last theorem, the Poincare conjecture,4 etc.), 
and we must admit that contemporary mathematics is in a sense 
remarkably healthy. Simply, we observe that the nature of 
human mathematics is changing. And different people adapt to 
the change in different ways. An example that has led to some 
controversy arose from William Thurston's work on three-di
mensional manifolds. A natural problem of geometry is to clas
sify manifolds of a certain kind (this means listing them). The 
classification of two-dimensional manifolds is well understood. 
But the study of three-dimensional manifolds is much harder. 
After considerable work, Thurston came to a good understand
ing of the subject, of which he gave a broad description, with 
outlines of proofs. Thurston's program thus laid claim to a big 
mathematical area but without providing proofs that colleagues 
could check. In effect, he made it difficult for other mathemati
cians to work in this area: you don't get much credit for the 
proof of a theorem that has already been announced, but at the 
same time you can't use this theorem, because a proof doesn't 
quite exist yet. A much-discussed paper by Arthur Jaffe and 
Frank Quinn,5 mentioning Thurston and others, complained 
about this evolution of mathematics. As it turns out, Thurston's 
program has now been largely implemented, but the problem 
raised by Jaffe and Quinn remains significant for some parts of 
mathematics. 

It is now time for us to look into the mathematical use of com
puters. Speaking of computers one thinks of long numerical cal
culations. Are such calculations useful in pure mathematics? 
Sometimes they are. In fact, Riemann did long numerical calcu
lations by hand to test some ideas and would surely have been 
pleased if he had had a fast computer at his disposal. Computers 
have also been of great help in visualizing objects that occur in 
the theory of dynamical systems.6 There is thus no doubt that 
computers can be of use in the heuristics of mathematical prob-
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lems, that is, they make some conjectures plausible and invali
date others. Most mathematicians have no objection to this heu
ristic role of computers. But the normal use of computers gives 
only approximate numerical results; how can they be used to ob
tain rigorous proofs? 

Computers are really rather versatile machines. Let me men
tion some tasks that they can perform exactly, which can be of 
use in proving theorems. Exact calculations with integers is the 
most obvious thing. Computers, however, can also be pro
grammed to do logical operations: checking, for instance, a large 
number of situations and giving in each case a yes or no answer 
to some question. This combinatorial capability of computers is 
what was put to use in the proof of the four-color theorem.7 

Computers can also handle real numbers like 1t or [2 exactly, 
by using interval arithmetic. The idea is that, if you know that 1t 

is in the interval (3.14159, 3.14160) and [2 in the interval 
(1,41421, 1.41422), you also know that 1t + f2. is in the interval 
(4.55580, 4.55582) without any error. Interval arithmetic allows 
one to perform, with strictly controlled accuracy, all kinds of cal
culations involving real numbers. Let me sketch an example of 
how such calculations can be used to prove a theorem. Suppose 
we know that two (explicitly specified) curves A 0 and B0 in the 
plane intersect at a known point X0, and we want to prove that 
the (explicitly specified) curves A and B intersect at a point X 
close to X0• 

' 

/ 
I 

This is known to be true under certain conditions (transversality 
of the intersection of A0 and B0, closeness of A to Ao and B to B0 

in a certain sense) that can be checked numerically. It may be 
convenient to do the numerical checking with the help of a 
computer. I have just outlined a computer-aided proof that, 
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under suitable conditions, two curves A and B have a point of 
intersection X, with an estimate of the distance of X to a known 
point X0• 

As it happens, some theorems of real mathematical interest 
are of the form just described, but with curves A and B replaced 
by manifolds in some infinite-dimensional space. My colleague 
Oscar Lanford reported once on a theorem of that kind.8 The 
contents of the theorem will not concern us here. Rather, we 
shall look into some technical aspects of how Lanford proved it. 
The proof is computer aided, which means that it consists of 
some mathematical preliminaries and then a computer program. 
This program (or code) uses interval arithmetic to check various 
inequalities; if these are found to be correct, the theorem is 
proved. The complications of the problem forced Lanford to 
write a relatively long program, about 200 pages. The pages con
sist of two columns; one has the code (in a variant of the C pro
gramming language), and the other has explanations of what 
one is doing. Indeed, long code without explanations is incom
prehensible, even to the person who wrote it. And in the present 
case, since it is a mathematical proof, other people should be 
able to check it. Oscar Lanford is a very careful person, and he 
took pains to check that, when the code is fed into the computer, 
the computer does exactly what it is supposed to do. In this 
manner-after the computer has agreed with the inequalities in 
the code-the proof of the theorem is complete. 

But Lanford added some remarks that you may find rather 
disheartening. "I am sure," he said, "that there are some mis
takes in the code I wrote. But I am also sure that they can be 
fixed and that the result is correct." What this means is that in 
200 pages of text, there are probably some mistakes. In the pres
ent case it might happen that some inequality that needed to be 
proved was, in fact, not proved! But Lanford believes that he has 
a sufficiently detailed understanding of the problem at hand and 
that he could find and prove a similar inequality, sufficient to 
establish his theorem. 

It is good to remember at this point that computer-aided 
proofs are not completely formalized mathematics (that one 
could, in principle, trust completely). Computer-aided proofs 
are part of human mathematics. The problem of avoiding mis
takes when you use a computer is different, however, from what 
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it is in "normal" pencil-and-paper mathematics. You can check 
and flush out some kinds of mistakes present in computer code, 
but you don't have the intuition that good professional mathe
maticians have developed about pencil-and-paper proofs. 

With proofs getting longer and longer, the problem of mis
takes in mathematics is becoming increasingly serious with 
time, whether or not computers are used. Together with mis
takes, I shall here discuss gaps, that is, elements of a proof that 
are supposed to be easy to see, but aren't. To put it bluntly, the 
probability that there is no mistake in a proof goes down with 
its length in an exponential manner (or worse). And a single 
mistake can kill a proof! It is fortunate that many mistakes, like 
misspelling a name or putting a wrong date in a reference, are 
mathematically inconsequential (even if they can make some 
people quite furious). More serious mistakes can often be fixed 
too, and we shall later discuss how that happens. We can see 
how grave the problem of mistakes or gaps can be by looking 
again at the theorem of classification of finite simple groups. The 
proof of this theorem covers many thousands of pages, by many 
authors, and parts of the proof are computer aided. The theorem 
has been considered as "morally" proved since around 1980, 
with some parts yet to be written. This means that there were 
gaps in the proof, but they were not considered serious by spe
cialists. One of those gaps, however, turned out to be serious 
enough to necessitate another 1,200 pages of proof (in 20049). 

There are other areas of mathematics that are in a messy state. 
For instance, speaking of the packing of spheres, Tom Hales 
wrote, "the subject is littered with faulty arguments and aban
doned methods."10 

Does this mean that mathematics has forgotten its old stan
dards of rigor? That mathematical truth has become a matter of 
opinion rather than a matter of knowledge? Interesting views on 
this problem have been expressed by various authors in re
sponse to the article of Quinn and Jaffe mentioned earlier.11 Basi
cally, one may say that good mathematicians working in an area 
know how reliable the published literature is. Some areas have 
been scrutinized repeatedly by high-level mathematicians and 
theorems proved by different methods; such areas can be con
sidered as extremely rigorous. But one must admit that the 
mathematical literature contains lots of junk, because some peo-
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ple need to publish for career reasons even if they have little 
interest in what they are doing. 

In brief, the old ideals of absolute logical rigor have not been 
abandoned. But there are forces at work to change the style of 
mathematics, because highly desirable theorems may require 
very long proofs or computer-aided proofs. Think, for instance, 
that if you want to prove a property of simple finite groups, you 
can do it by checking the property in question on an explicit list 
of groups. This shows how useful the classification theorem is: 
it is a new beacon that changes the landscape of mathematics. 
Of course there are changes also for the human mathematician. 
Being a mathematician today is not what it was a hundred years 
ago. Doing mathematics in a hundred years will again be differ
ent. Perhaps it will be a less satisfying enterprise than it was in 
earlier centuries, and perhaps not. But there will be new results, 
deeper theories. And more of the unknown face of mathematical 
reality will have come to the light of human understanding. 
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IN THE COURSE OF a scientific career, one attends many many 
technical talks. Anyone with experience of this sort of thing 
will know that occasionally one stops listening. Either one is 
not interested, or one lacks some required knowledge, or one 
has missed something important that the speaker said at the be
ginning of the lecture or should have said. And then one sits, 
half dozing, lost in thoughts unrelated to the topic of the talk 
and catching occasionally a technical phrase or a meaningless 
sentence as it flies by. On one such occasion my attention was 
gotten by the word KILL that came back repeatedly and with a 
strong stress. In fact, KILL came in the phrase "KILL that anti
symmetric matrix." Technically, a matrix is a table (a,1) of num
bers, it is antisymmetric if a,1 = -a1" and "killing" the matrix may 
have meant "finding an eigenvector with eigenvalue O," but I 
am not sure. There was, however, something funny in the way 
the speaker pronounced "KILL that antisymmetric matrix." 
What he actually said was, "KILL that anti-Semitic matrix." I 
was wide awake now, my hearing was quite good at the time, 
and I listened carefully. If I had paid attention to the mathemat
ics, I would have missed it, but there was no doubt: he said 
"anti-Semitic," not "antisymmetric." Repeatedly he said, "KILL 
that anti-Semitic matrix."1 

Of course the words kill and matrix may have a mathematical 
meaning, but they also have a meaning in everyday English: kill 
meaning "to kill" and matrix meaning "womb." These profane 
meanings are occulted, repressed, in a mathematical discussion, 
but they are still there at some unconscious level, as the above 
story shows. We have discussed earlier the nice aseptic uncon
scious that provided Poincare and Hadamard with solutions to 
their mathematical problems. But "KILL that anti-Semitic ma
trix" is eruption of another kind of unconscious, loaded with sex 
and unpleasantness: the unconscious of Dr Sigmund Freud. 
Need we really go-into that? Can Freud's ideas bring something 
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useful to our discussion of mathematics? I invite you to hear the 
case and then make your own judgment. 

I am not suggesting here that Freud's ideas are the key to un
derstanding the nature of mathematical thought. My conclusion 
will be that they are not, and Freud in fact makes no claim of 
that sort. This being said, would it not be nice to interview Freud 
and ask him why, in his opinion, some people engage them
selves in mathematical work? While Dr. Freud is no longer with 
us, we can have a look at his Leonardo da Vinci and a Memory 
of His Childhood (1910).2 This study is indeed quite relevant to a 
discussion of the origins of scientific curiosity. 

The Florentine Leonardo da Vinci (1452-1519) is of course the 
painter of the Last Supper, Mona Lisa, and a few other master
pieces. The notebooks that he has left record an insatiable scien
tific curiosity in observing nature and an amazing mechanical 
inventiveness. He was centuries ahead of his time intellectually. 
It is no wonder that such a personality would attract and capti
vate the attention of Freud. 

Leonardo was the illegitimate son of Piero da Vinci, a Floren
tine notary, and Catarina, a young peasant woman. At age five, 
Leonardo was in the household of Ser Piero da Vinci, the latter 
now married to Donna Albiera, who remained childless. 
Around the age of fifteen Leonardo became apprenticed to An
drea del Verrocchio and turned into the extraordinary artist that 
we know. Later he spent more and more time in the studies de
scribed in his notebooks: of nature, engineering and other topics. 

Freud points to remarkable features of Leonardo's personality, 
some of which beg for an explanation. He was a strong and 
handsome man, who liked to dress elegantly and live in good 
company. Probably he had some homosexual tendencies, but no 
real sex life.3 Leonardo left paintings unfinished after years of 
slow work. His appetite for understanding was immense, and 
work on his notebooks progressively displaced his painting ac
tivity. He planned several treatises but was unable to finish any. 
He was apparently a vegetarian, condemned war, and bought 
birds at the market, which he then let fly away. But he also at
tended the execution of criminals and served as chief military 
engineer of Cesare Borgia. 

Perhaps one should add that the "science" of Leonardo was 
turned to the visual description of nature and was thus directly 
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related to his painting. He studied perspective, dissected dead 
bodies, and observed the flight of birds. His modernity is re
vealed by statements such as "Referring to authority in a discussion 
is using one's memory rather than one's intelligence," and also "Na
ture is full of multiple reasons that were never reached by experience."4 

Before we look into Freud's analysis of Leonardo, let me men
tion that Newton shared some of the characteristics discussed 
above: the same immense appetite for understanding and di
verse interests (unified by a desire to discover the nature of the 
universe), and some homosexual tendencies, but an apparent 
lack of sex life.5 

Freud explains Leonardo's personality in terms of sublimation. 
According to Freud, sublimation is a process by which the sex 
drive serves as a motor for some activities apparently unrelated 
to sexuality: artistic activity and intellectual investigation.6 

Young children are naturally faced with the ontological problem 
of their own origin: how are babies born? The standard answer 
in Freud's day involved storks. But an intelligent child might 
guess that the role of its mother was more important than that of 
storks and would face some formidably challenging intellectual 
questions: What was the real role of the mother? Why did the 
parents lie about it? What was the role of the father, if any? What 
is the difference between boys and girls? Why? Seen this way, 
sexual curiosity, motored by sex drive, appears central to the cu
riosity of young children. In the normal course of events this 
curiosity would, in due time, be one of the elements leading to 
"normal" sexual behavior. (In older days one would have writ
ten "normal" without quotation marks.) But part of this curios
ity is sublimated to nonsexual purposes that may have social 
value, in particular, artistic activity or intellectual investigation. 
In some cases, as that of Leonardo according to Freud, the origi
nal sex drive is totally converted to nonsexual purposes. 

While Freud's ideas in general have drawn quite a bit of oppo
sition, the concept of sublimation has been relatively well ac
cepted. For example, the American Heritage Dictionary briefly de
scribes the concept (see sublimate), even if Freud is not 
mentioned. Where we may reproach Freud is for his excessive 
faith in the powers of the "psychoanalytic method" in a situa
tion, like that of Leonardo, where not enough data is known. For 
example, Freud remarks that in notes made by Leonardo con-
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cerning a pupil to whom he seems to have been attached or 
about the deaths of his mother, Catarina, and father, Piero da 
Vinci, numbers are mentioned (like the cost of candles) but no 
emotion expressed. This is a perceptive remark but it is weak
ened by the fact that one is not sure if the Catarina referred to 
here is his mother or just a servant. 

The memory of Leonardo's childhood that Freud wants to in
terpret comes in relation to the study of the flight of a bird 
(called in Italian nibbio). Leonardo points out that it was appar
ently his fate to write in such detail about the nibbio, because 
the first thing he remembers from his childhood appears to be 
that, while he was in his crib, a nibbio came to him and opened 
his mouth with its tail and struck him repeatedly inside the lips 
with its tail. To a modern open-minded educated reader, one 
century after Freud, this "memory" (or fantasy) readily suggests 
a sexual interpretation. According to Freud, it is an oral-sexual 
fantasy related to the breastfeeding of baby Leonardo by his 
mother. Freud read the "childhood memory" in a German trans
lation, where, unfortunately, nibbio was translated as vulture 
(Geier) when it should be kite. As a result he makes a lot of the 
fact that the word mother in ancient Egyptian is represented by 
the picture of a vulture, and he gets lost in meaningless interpre
tations based on a mistaken relation between nibbio and mother. 

Freud also interprets the famous painting Virgin and Child with 
St Anne (Anna Metterza) as representing Leonardo (as child) 
with his two mothers (Catarina and Albiera). In support of this 
interpretation, Freud remarks that the pictural idea of the Anna 
Metterza was unusual when Leonardo did his painting. Unfor
tunately, as pointed out by the art historian Meyer Schapiro, 
Freud's remark is in error: the cult of St. Anne and the theme of 
the Anna Metterza were flourishing at the time when Leonardo 
worked. 

How do you, reader, react to the above discussion? Many of 
my colleagues, who work in "hard" sciences like mathematics 
and physics, react to Freudian psychoanalysis and other "soft" 
bodies of knowledge (like philosophy and economics) in a dis
missive way. They will formulate an utterly devastating (and ab
solutely correct) judgment on how the matter has been handled 
by so-called experts. And then they may explain what should 
really be done to solve, for example, the problems of the econ-
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omy. At that point they will fall into one of the many pitfalls of 
the subject, well known to the experts. 

"Soft" bodies of knowledge are those that are methodologi
cally difficult and insecure. This is certainly the case of Freudian 
psychoanalysis. Emphatically: Freud is not infallible. But he has 
unveiled many important concepts. His ideas have had an enor
mous influence on twentieth-century Western culture, and this 
includes an unrecognized influence on the ways of thinking of 
people who don't want to hear about Freud. Some Freudian con
cepts have become unavoidable. Sublimation is one of them, and 
it does help us to understand the personality of Leonardo da 
Vinci and Newton. But, as Freud explicitly recognizes, psycho
analysis does not explain the secret of the smile of the Mona Lisa. 
And neither does it explain, I think, the secrets of mathematical 
thinking. 

Since our interest is in mathematical thinking, why did I bring 
in Sigmund Freud? Well, so that one does not forget that the 
mathematician's brain contains many objects: theorems, lem
mas, money preoccupations, and also "KILL that anti-Semitic 
matrix." All these things coexist and interact in obscure ways. 
Fortunately, mathematical thinking can be logically separated 
from the rest, and this is what we are doing in the present book. 
This separation has a great methodological advantage: it isolates 
an area that can be analyzed in remarkable depth, much better 
than questions involving psychology. The possibility of analyz
ing mathematical thinking in a deep way makes the subject of 
considerable philosophical interest. But one should not forget 
that, besides beautiful mathematical ideas, there are many more 
obscure things that crawl in the mind of a mathematician. 
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Tinkering and the Construction 

of Mathematical Theories 

DOING MATHEMATICS is often an individual and solitary enter
prise. But mathematics as a whole is a collective achievement. A 
mathematician lives in an intellectual landscape of definitions, 
methods, and results, and has greater or lesser knowledge of this 
landscape. With this knowledge, new mathematics is produced, 
and this invention changes more or less significantly the existing 
landscape of mathematics. How is this done? What is the strat
egy of mathematical invention? 

One thing is clear: you do not try to obtain systematically all 
the valid consequences of the ZFC axioms, using formal lan
guage and allowed rules of deduction. And neither do you try 
to obtain the shortest proof of a theorem starting from ZFC and 
using formal language. You always work in a context, or land
scape, of already proved results. In principle, you should be able 
to translate what you do in formal language, but you prefer to 
use a natural human language like German, French, or English, 
which is better at conveying the meaning of mathematical ideas 
and formulating the aims of your work. Meaning! Aims! Oh 
those dangerous words! Earlier we discussed mathematical 
structures and mathematical ideas. These things are not contained 
in the axioms, but we have been able to relate them to formal 
mathematics. Meaning and aims are another matter. They may be 
important to discuss the strategy of mathematical invention, 
but these concepts are-at this point, at least-totally outside 
mathematics. 

We are not, however, trying to define meaning and aims in 
general but only in the special and reasonably well controlled 
context of mathematical work. Leaving meaning for later, let me 
concentrate on aims. 

One may say that the aim of a mathematician at work is al
ways to develop a mathematical theory. Sometimes this is 
guided work: studying what other mathematicians have done. 
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Sometimes it is original work. Instead of discussing what a 
mathematician's aim is, I shall thus describe what the mathema
tician actually does: constructing a theory. A mathematical the
ory is a piece of mathematical text, as described in an earlier 
chapter. Specifically, it is a collection of statements that are logi
cally connected. We may also say that a theory is a coherent con
struction consisting of mathematical ideas. Perhaps one theorem 
in this construction is considered more important than the rest, 
and it will then be said that the aim of the work was to prove 
this theorem. 

The aim of mathematical work, then, is to perform a construc
tion: the construction of a mathematical theory, that is, a coher
ent collection of mathematical ideas. Of course, one wants the 
theory to be interesting. A theory is interesting if it contains re
sults not known before, preferably with a short formulation and 
a nontrivial proof (i.e., starting from known results, the proof is 
necessarily either long or unobvious). For a theory to be interest
ing, it is also desirable that it can be used to prove further re
sults. Interesting mathematical work is judged against the back
ground of a certain mathematical landscape. What is considered 
interesting is motivated in part by the history and sociology of 
the subject. But it would be a mistake to reduce the question of 
the interest of a mathematical theory to a matter of sociology: 
the logical structure of the theory plays a more basic role. In a 
given area of mathematics there are usually conjectures left un
proved by earlier students of the subject and which may consti
tute a guide to interesting topics. I shall assume that the working 
mathematician whom we are observing has some definite ideas 
as to what is interesting. (And we must admit that some mathe
maticians have, in this respect, better taste than others.) 

After a lot of preliminary considerations we have finally 
reached the central problem of creative mathematics: how do 
you construct an interesting theory? In practice it may mean this: 
how do you write a twenty-page paper that will be published 
in the Annals of Mathematics and ensure that you get tenure at a 
good university? (The Annals is a good journal, rather choosy as 
to which papers it accepts, and it publishes interesting articles 
in general.) The number of interesting twenty-page papers that 
are conceivable is quite enormous, and the number of twenty
page papers thar are uninteresting, wrong, or meaningless is 
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even more enormous. Trying to write an interesting twenty-page 
paper confronts us with a problem that we described earlier as 
finding one's way through an infinite-dimensional labyrinth. 

Let us forget about twenty-page mathematical papers for the 
moment and look more generally at sequences of symbols 
(mathematical or otherwise) of a certain length. We suppose that 
a certain interest is associated with each sequence, and we want 
to address questions like: What is the average interest of a se
quence? How do I find a sequence of large interest? What is a 
sequence with maximum interest? Physics, engineering, and fi
nancial mathematics give rise to such problems, which one tries 
to handle using a computer. How does one proceed? There are 
many methods depending on the specific problem at hand but 
I would say that there are two basic ideas to keep in mind: (1) 
using random choices, (2) tinkering. 

We first discuss the use of random choices. The number of all 
sequences of symbols to be considered is usually so enormous 
that looking at them one by one is hopeless. So, in order to esti
mate the average interest of a sequence, one does not look at all 
of them, but one takes a sample. This means that one takes at 
random 1,000 or 1 million sequences, and computes the average 
interest of those. This is the principle of what physicists call the 
Monte Carlo method (an allusion to the randomness involved in 
the casino games in Monte Carlo). One may sometimes improve 
on purely random sampling, but sampling in any regular way 
is usually a mistake. 

The problem of finding a sequence with strictly maximum in
terest is normally hopeless, but one can search for a sequence of 
high interest: look at a number of randomly chosen sequences, 
and then select the best. One can improve on this method by 
taking advantage of a feature of many problems: sequences close 
to one of high interest have higher than average interest. This 
leads to new strategies, where one makes a random walk among 
sequences of symbols, with small consecutive steps, and a bias 
towards more interesting sequences.1 

The idea of a random walk with a bias towards increasing in
terest leads to the concept of tinkering, put forward by the biolo
gist Frarn~ois Jacob2 in connection with biological evolution. 
Jacob considers among other things the evolution of proteins, 
and we shall now briefly digress on this question. (Note that, 
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like many other things in biology, the study of protein evolution 
has exploded since Jacob's 1977 paper.) A medium-size protein 
is coded by a sequence of about 1,000 symbols, each of which 
can take four values (the four bases represented by A, T, G, C). 
There are more than 10600 such sequences! An interesting se
quence is one that codes for a useful protein (in a given species). 
Does one find a new interesting sequence by reviewing 10600 pos
sibilities? No, it is done by tinkering with already existing se
quences. For many protein sequences, an evolutionary history 
can be traced back 1 or 2 billion years (before that there were 
chemical evolution and early self-replicating systems, currently 
beyond reach). A number of protein families have been studied, 
having a common ancestor sequence, from which they have 
evolved by local mutations. This is an example of the strategy 
described above, of making a random walk (one mutation at a 
time) among sequences of symbols, with a bias towards se
quences of increasing interest. The proteins in a given family 
have the same general shape and may occur in different species, 
or several different proteins of the same family may occur in the 
same species. Two proteins of the same family may or may not 
serve related purposes. What happens is that a sequence coding 
for some protein may (as a consequence of gene duplication) be
come available for other purposes. The pressure of evolution 
may remove the duplicated gene because it is useless, or by mu
tation, this gene may start a new life and code for a protein with 
a new use. This means that a new useful protein has been ob
tained by tinkering with an old one. Tinkering in protein evolu
tion may go beyond local changes in existing sequences. Some
times pieces of two genes coding for different proteins get joined 
and code for a new protein. If the mosaic protein thus obtained 
finds some use, it is the first member of a new family, with a 
shape different from that of the parent proteins. 

Franc;ois Jacob describes biological evolution as a general tin
kering process. This process may produce new useful proteins 
from proteins that already exist, or it may make a wing with a 
leg or a part of an ear with a piece of jaw and so on. The process 
of tinkering in biological evolution may be called unintelligent, 
but it is extraordinarily successful. A human inventor would not 
be able to design such marvelous products of evolution as a 
mosquito or a human brain. Note, however, that a human inven-
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tor might avoid certain things done by evolution and that ap
pear stupid (like crossing the passage of our.food from mouth 
to stomach with the passage of air from nose to lungs).3 

It is a natural idea (developed by Aharon Kantorovich4) that 
tinkering, apart from biological evolution, also plays a role in 
scientific discovery. This is, in particular, the case for the con
struction of mathematical theories, where one may try random 
changes of existing concepts in the hope of finding something 
of interest. Or one may put together in various ways the facts 
that one knows until one gets a valuable result. This is the hook
ing up of ideas, which may occur unconsciously, and was de
scribed for us by Henri Poincare and Jacques Hadamard. 

But, of course, combining ideas at random is only part of the 
story. A mathematician working in a certain area of mathematics 
has definite ideas as to the structures that play a role in this area 
and will, in part, proceed quite systematically on the basis of 
these structural ideas. In other words, to a working mathemati
cian, mathematics is a meaningful subject. The meaning has to 
be discovered. It is not evident but it is there. And now we have 
to face a serious problem: what sense can we give to the word 
meaning in mathematics? 
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IF YOU ARE SOMEHOW connected with a university, you may 
have been in the library of the math department. If not, I suggest 
that you pay it a visit. What you will see there are tables with 
students or faculty at work, some computer terminals, stacks of 
books, more stacks of past issues of mathematical journals in 
bound volumes, and also display cases with unbound recent is
sues of the same journals. Pick one of the recent issues of the 
Annals of Mathematics, Inventiones Mathematicae, or any of dozens 
of other journals. As you leaf through the issue, you will find 
longer and shorter articles on various esoteric questions. Each 
article starts with title, name and affiliation of the author, ab
stract (a short summary), then comes the main text with theo
rems, proofs, and so on, and at the end of the article are listed 
references to other articles by various authors. The journal issue 
in your hands will often have shorter articles with titles con
taining a Latin word like errata, addenda, or corrigenda. These er
rata are by authors of papers published earlier, acknowledging 
that there was something not quite right in their paper and try
ing to fix it. It may just be that some references had to be added, 
as "kindly" pointed out by a colleague. But more commonly, the 
colleague kindly pointed out a real mistake in the proof. Some
times, then, authors have to admit that their "main theorem" re
mains unproved, and they propose perhaps a weaker, less inter
esting result. This honorable defeat is, however, not the typical 
situation. Mostly, the authors thank the colleague who kindly 
provided a counterexample to a lemma in their paper, but then 
point out that the main result of the paper follows from a weaker 
lemma, which is unquestionably correct. 

How is it that, so commonly, an error is found in a paper, but 
the error can be fixed more or less easily? The answer is that the 
way the results of a paper are presented is not the way these 
results were obtained. A paper is a description of a mathematical 
theory (or piece of theory) constructed by the author. The con-
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struction involves guessing various mathematical ideas and 
their relations. The ideas are often problematic (something ap
pears obvious but should be checked later, or something might 
be true-by analogy with some known result-but it definitely 
needs a proof). Constructing a mathematical theory is thus 
guessing a web of ideas, and then progressively strengthening 
and modifying the web until it is logically unassailable. Before 
that point you don't have a theory. In fact, it is usually not as
sured at the beginning that you will be able to complete your 
construction as originally planned (otherwise, the theory would 
be uninteresting). Clearly, during your construction work, you 
should concentrate your efforts on the more uncertain links in 
your arguments. This is where your theory is most likely to fail, 
and you save time by knowing this early on. The easy and safe 
steps are left for later and are often handled in the final write
up by a dismissive sentence: "it is obvious that ... ," "it is well
known that .... " Having secured the web of ideas that consti
tutes your theory, you still have to write things up, choosing an 
order of presentation, terminology, and notation, and hope that 
there will be no bad surprise in fixing the final details. Second
ary considerations may play a big role in writing the final ver
sion of your article: relate your work to work by other mathema
ticians or state some intermediate result with more generality 
than strictly needed, so that it acquires independent interest. A 
good mathematician, who has spent a considerable amount of 
time in the primary work of elaborating a theory, may be more 
casual in the secondary elaboration that constitutes the final 
write-up. It is this casual attitude (I want to get this damn paper 
written and published, and forget about it) that will lead to mis
takes, and typically those mistakes can be fixed without damag
ing the main results of the paper. We may say that our good 
mathematician, after spending a lot of time exploring a certain 
piece of mathematical landscape, writes a paper describing just 
one route in this landscape. If this route contains a forbidden 
shortcut, it is likely that another path can be found. 

We have agreed that constructing a mathematical theory is the 
essence of mathematical work. Let me now try to outline some 
principles of strategy for such a construction. My approach will, 
by necessity, be informal. Keep in mind that the principles we 
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know do not amount to a program that could be typed into a 
computer. 

A first principle is that of planning. The construction of a math
ematical theory starts with a plan, a web of more or less prob
lematic ideas, which may well have to be profoundly modified 
later. Remember that when we discussed protein evolution by 
local mutations in chapter 20, we called this an effective but 
unintelligent tinkering process. Planning the construction of a 
mathematical theory, by contrast, may be called an intelligent 
process. Saying this just recognizes a difference between 
planned construction and tinkering, and gives the difference a 
name in agreement with common usage. (One can use the word 
intelligent without having first resolved the general metaphysical 
problem of defining intelligence. But beware that this use of the 
word has then no explanatory value). 

Of course we now have to explain how to plan the construc
tion of a mathematical theory, that is, how to set up a logically 
coherent web of mathematical ideas. Here I shall discuss some 
general principles-use of known facts and structural ideas, 
use of analogy-and finally I shall make some remarks about 
intuition. 

Use of known mathematical facts includes application of known 
theorems in a way that may be easy and obvious. For instance, 
if you want to know the complex numbers z such that z2 - 3z + 
1 = 0, the fundamental theorem of algebra tells you that there 
are two such complex numbers, and a well-known formula 
gives them as (3-{5)/2 and (3 + [5)/2 (which are real). Some
times the application of the known theorems and formulas may 
be difficult and devious, and sometimes the use of a computer 
may be needed.1 For some problems (like the simplification of 
algebraic expressions) obstinate tinkering is required and can be 
done by a computer program, with quite nontrivial results. Let 
me quote here some remarks pertaining to the computer soft
ware package Mathematica: 

The notion of transformation rules is a very general one. In fact, 
you can think of the whole of Mathematica as simply a system for 
applying a collection of transformation rules to many different 
kinds of expressions. 
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The general principle that Mathematica follows is simple to state. 
It takes any expression you input, and gets results by applying a 
succession of transformation rules, stopping when it knows no 
more transformation rules that can be applied.2 

Use of structural ideas permeates contemporary mathematics. 
To take a simple example, suppose you encounter a set S such 
that, to elements a, b E S, an element ax b E Sis associated. Then 
you must ask if the operation x is associative (i.e., if (a x b) x c = 
a x (b x c)) and if S with this operation is a group. If S is not a 
group, can one somehow extend Stoa group? (Let me mention, 
without going into detail, that the obstinate will to introduce a 
group structure has led to an important area of study called K
theory, developed by a number of mathematicians after an origi
nal idea of Grothendieck.) To go back to an earlier discussion let 
me repeat that mathematical structures are a human invention. 
And in some cases (like measure theory) mathematicians do not 
agree on what is the natural structure to use. But structural con
siderations (including the use of categories and functors) are an 
essential feature in several branches of contemporary mathemat
ics. In other branches, structural considerations do not seem to 
play such a prominent role. Yet, structural preoccupations of 
some kind are often present in the minds of mathematicians, 
even when not explicitly displayed. The structural approach to 
mathematics may be viewed as an ideological prejudice, but this 
prejudice has been remarkably fruitful, and one may say that it 
captures an important part of the obscure object of mathematical 
investigation, mathematical reality. 

Analogy is a powerful tool for mathematical work, in particu
lar during the planning stage of a theory. But unlike the use of 
known facts and structural ideas, analogy is not a safe guide. 
Here, from the fact that something is true in a certain situation, 
you want to guess that something related will be true in another 
situation that you think to be similar in some respect. For in
stance, knowing that there is an algorithm (Euclid) to divide an 
integer by another one (with a remainder), you can guess that 
something similar can be done with polynomials instead of inte
gers. This sort of guesswork necessitates a good knowledge of 
mathematics, to have a good feel for what is similar and what 
isn't. The great virtue of analogy is that it can get you started in 
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constructing a theory. But there is no guarantee that an analogy 
can be successfully pursued. Use of analogy is not a completely 
logical process, and this will delight some mathematicians, 
while irritating others. The latter will want to understand why 
two theories are similar, perhaps by finding a more general the
ory that contains both as special cases. 

What about mathematical intuition? When we study a mathe
matical topic, we develop an intuition for it. We put in our mem
ory a large number of facts that we can access readily and even 
unconsciously. Since part of our mathematical thinking is un
conscious and part nonverbal, it is convenient to say that we 
proceed intuitively. This means that processes of mathematical 
thought are difficult to analyze. But it does not mean in my 
opinion that there is anything supranormal about mathematical 
intuition. 

Speaking of supranormal leads me to mention a curious fact: 
mathematicians are more religious than most scientists. In fact 
the percentage of mathematicians who believe in God and after
life is twice that of physicists.3 I think this says that the relation 
of mathematicians to reality is-statistically-different from that 
of physicists. (Perhaps I should give my own view of the ques
tion: I am nonreligious, in a liberal sort of way. I fear equally the 
religious fanatics and the antireligious fanatics.) 

Perhaps it is time to say a few words about meaning in mathe
matics. We have seen that the presentation of a mathematical 
theory in a technical article is somewhat removed from what the 
author had originally in mind. Intuitive ideas and nonverbal 
concepts have to be dressed up and couched in professional 
jargon. This may suggest that, hidden behind the formulas and 
jargon printed in professional journals, somewhere lies the true 
meaning of mathematics and that this is not of formal nature. 
In fact, during lectures (which are less formal than articles), the 
speaker will often explain what a theorem "really means." Why 
then not abandon the stilted formal language used for printed 
mathematics and explain the real meaning of what one is doing? 
To understand what is going on, remember that mathematics is 
a matter of knowledge, not of opinion. This is so because, since 
the Greeks, mathematics has had a solid basis of axioms and 
rules of deduction. From this basis, theories are developed. And 
from the theories, an intuition that goes ahead of the theories, 
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recognizes analogies, and formulates conjectures. New results 
lead to new intuition that may in turn lead .to a change in the 
logical structure of theories, with their axioms and definitions. 
But the intuitive meaning of mathematics is rooted in formalism. 
If one were to abandon the formalism and keep only the intu
itive meaning, mathematics would soon be a matter of opinion 
rather than of knowledge. Its progress would then rapidly grind 
to a stop. 

118 



Mathematical Physics and 

Emergent Behavior 

THE GREAT BOOK OF NATURE, according to Galileo, is written in 
mathematical language.1 At least, one may say that students of 
the physical world, starting with Galileo, have taken up the task 
of transcribing the book into mathematics. And physicists are, 
in a sense, also mathematicians. But some physicists use very 
little math. Others, who call themselves mathematical physicists, 
use nontrivial mathematics in their studies of the great book. 
Newton, unquestionably, was a mathematical physicist. Ein
stein,2 too, described himself as a mathematical physicist. Then 
there was a period in the mid-twentieth century when many 
physicists, Richard Feynman3 among them, wanted to have 
nothing to do with mathematics. In fact, Feynman had a good 
knowledge of classical mathematics, and the Feynman integral 
that he introduced is a fundamental contribution to conceptual 
mathematics. The acquaintance of other physicists with mathe
matics was, however, often reduced to "a rudimentary knowl
edge of the Latin and Greek alphabets."4 At the end of the twen
tieth century, mathematics came back in force in physics, with 
the popular string theory, which has led to important develop
ments in pure mathematics but has so far made limited connec
tion with the great book of nature. Currently, a number of papers 
that go under the heading of mathematical physics are made by 
people without much education in physics, and these contribu
tions often have a somewhat doubtful scientific status. At the 
risk of belaboring the obvious, let me stress that the purpose of 
physics is not to prove "nontrivial physical theorems," it is to 
understand the great book of nature, using whatever method is 
found to work, and this may include the development of new 
mathematical theories. 

The above remarks have no polemic intent: scientific col
leagues who may read this chapter will know the complexity of 
the situation and nave their own opinions on the subject. Other 
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readers are simply warned that "mathematical physics" may 
mean different things to different people. To me, mathematical 
physics has a unique character: Nature herself takes you by the 
hand and shows you the outline of mathematical theories that 
an unaided pure mathematician would not have seen. But many 
details remain hidden, and it is our task to bring them to light. 
I have found one aspect of this task particularly fascinating: 
making mathematical sense of emergent behavior of physical 
systems, as I shall explain in a moment. 

Prominent in the history of physics is the discovery of the fun
damental laws-those of classical mechanics and gravitation by 
Newton and Einstein, those of quantum mechanics by Heisen
berg and Schrodinger.5 From those fundamental laws one can 
now, in principle, understand almost all observed physical phe
nomena. Considerable efforts are currently under way to obtain 
a "theory of everything," allowing, in principle, to understand 
all observed physical phenomena. When such a theory has been 
obtained, it will be possible to compute every physical quantity, 
although perhaps with great difficulty and limited accuracy. It 
would then seem that the most interesting part of physics will 
be over, the rest being "just calculations." But this is not the case, 
because there are important conceptual problems in physics that 
go far beyond the discovery of the fundamental laws. The situa
tion is, in fact, the same in various branches of mathematics. For 
instance, beyond the fundamental laws of arithmetic, there are 
important conceptual problems. Are there infinitely many 
primes? Are they distributed according to the prime number 
theorem? And so on. 

Think now of understanding the properties of water, given 
that you know the fundamental laws of the mechanics of water 
molecules. You would, for instance, like to understand pftase 
transitions: why, when you change its temperature, does water 
suddenly freeze to ice or boil to vapor? You would like to com
pute the viscosity of water (its resistance to deformation), and 
you would like to understand turbulence. (The fact that you can 
easily produce turbulence in your bathtub is no great help in 
understanding what it is.) The properties just mentioned are 
emergent properties. They are not properties of one water mole
cule or ten water molecules-they appear in the limit of infi-
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nitely many molecules. It is true that in the lab you always work 
with a finite amount of water, but the number of molecules in a 
liter of liquid is huge, and the properties of interest are (in first 
approximation) those of an infinite system. 

I might be tempted to go into some details about phase transi
tions (equilibrium statistical mechanics), viscosity (nonequilib
rium statistical mechanics), or turbulence. These, indeed, have 
been my professional fields of interest. But the technicalities in
volved are forbidding and would distract us from the purpose of 
this chapter: to discuss the relations between mathematics and 
mathematical physics in the study of emergent properties of 
many-particle systems. I would like to proceed with what I see 
as three important remarks on mathematical physics. 

A first important remark is that nature gives us mathematical 
hints. In the case of water, the hint is to consider infinitely many 
water molecules in order to be able to discuss things like phase 
transitions or viscosity. But nature does not tell us everything, 
and it has taken the genius of Boltzmann and Gibbs, 6 and much 
further work, to understand how some problems, including 
phase transitions, can be analyzed in the framework of equilib
rium statistical mechanics. This is a much simpler theory than 
the nonequilibrium statistical mechanics needed to study, for 
instance, viscosity. Nonequilibrium statistical mechanics re
quires that you consider the time evolution of an infinite system 
of molecules. This dynamical aspect, as we shall see in a mo
ment, disappears in equilibrium statistical mechanics, from 
which time is absent. 

A second important remark is that mathematical physics deals 
with idealized systems. We know that a water molecule is com
posed of oxygen and hydrogen nuclei surrounded by electrons 
and that the nuclei also have a composite structure. There is 
good reason to believe that these complications are not essential 
to understanding the freezing and boiling referred to above. A 
reasonable approach (in fact, the only feasible approach) is to 
study a variety of idealized systems. The simpler models can 
be analyzed more easily and in greater detail, and they may be 
mathematically more interesting. More elaborate models may 
be closer to physical reality and thus closer to the heart of 
physicists. 
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The third important remark is that nature may hint at a theorem 
but does not state clearly under which condition )t is true. This is a 
complement to the first remark, and in a minute we shall see an 
example in the discussion of equilibrium statistical mechanics. 

Equilibrium statistical mechanics is an emergent theory. It uses 
some concepts like energy that are already present in mechanics 
(classical or quantum) and other concepts that are new, like equi
librium state and temperature. I have to say that some states of 
matter are recognized by physicists as special and are called 
equilibrium states;7 an example would be 1 kg of water at rest 
in a given volume V and at a given absolute temperature T > 0. 
The water consists of N molecules (corresponding to 1 kg), 
which can have various positions and velocities. (We choose 
here a classical rather than quantum description.) Classical equi
librium statistical mechanics describes the probability that the N 
particles occupy given positions and have given velocities. The 
water molecule H 20 may be variously oriented in space, and 
since this is an unwanted complication in the present discussion, 
we shall replace water by argon. The argon molecule is a single 
atom, which we may take to be spherically symmetric, and its 
position is thus given by the coordinates x = (x1, x2, x3) of its cen
ter. (I shall now proceed with a couple of formulas that will clar
ify the subject for some readers; if they don't make sense to you, 
just read through rapidly.) Instead of the velocity v, it is usual to 
consider the momentum p = mv = (p1, p2, p3) where mis the mass 
of an atom of argon. The energy of the N interacting argon atoms 
in the volume Vis a function 

E (x1, ... , xN, Pi, ... , PN) 

of the N positions (in the volume V) of the atoms and their N 
momenta. Classical equilibrium statistical mechanics gives the 
probability that each coordinate of the position is in an (infini
tesimal) interval (x/, x/ + dx/) and each component of the mo
mentum is in an interval (p1', p1' + dp/); this probability is 

3 N 
= ce-E(xl, ,xN'pl, . ,pN)/kT I1 I1 dx; dp;, 

I= 1 I= 1 

where T is the absolute temperature, k is a universal constant 
(Boltzmann's constant), and the constant C is adjusted so that 
the integral over x11 ••• , xN in the volume V and p1, ... , PN in 
R3 is 1. 
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For simplicity I have been discussing classical rather than 
quantum systems, and following Boltzmann and Gibbs, I have 
presented a certain probability measure that describes the equi
librium state of a system consisting of a large number N of parti
cles. (This probability measure is known technically under the 
strange name of canonical ensemble.) Observe that the time evolu
tion of our N particles has been forgotten. The idea (of Boltz
mann, Gibbs, and others) is that there is an emergent behavior 
of a class of states of large systems (so-called equilibrium states) 
for which time evolution is irrelevant. The problem of justifying 
the emergent behavior of equilibrium states is most interesting 
but can be ignored if one so wishes; it is outside the scope of 
equilibrium statistical mechanics. 

The founding fathers of equilibrium statistical mechanics 
were interested in the limit of large systems, and those systems 
have a very characteristic extensive behavior. Indeed, nature tells 
you that if, at a given temperature, you double the number of 
molecules and double the volume of the container (its shape 
doesn't matter too much), then also the energy of the equilib
rium state should double. (More precisely, one should speak of 
the average energy in the equilibrium state and say that it dou
bles up to small corrections.) Nature thus tells you that, for a 
large system in equilibrium, there are intensive variables (tem
perature, pressure, ... ) and extensive variables (number of parti
cles, volume, total energy, ... ) such that you can double the val
ues of all extensive variables while keeping the values of the 
intensive variables fixed (up to small corrections). Clearly, there 
should be a theorem to justify this extensive or thermodynamic 
behavior, but nature does not tell us under what conditions the 
theorem holds. (This vagueness of nature's hints was our third 
important remark.) Does for instance a gas of stars show ther
modynamic behavior? No! The globular star clusters observed 
by astronomers are not equilibrium states: they slowly shrink 
and evaporate. In fact, the attractive gravitational interaction be
tween stars does not lead to thermodynamic behavior. 

I have just sketched an example of emergent behavior (here, 
thermodynamic behavior) by which nature hints at a mathemat
ical theory but leaves the details to be filled in by mathematical 
physicists. The study of other types of emergent behavior, as 
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seen in nonequilibrium statistical mechanics or in hydrody
namic turbulence, is not less challenging. 

The new mathematical structures uncovered by studies in 
mathematical physics may have considerable interest from a 
purely mathematical viewpoint and applications unrelated to 
physics. I shall now give an instance of this, with a brief techni
cal description that some readers may find a bit tough. Just go 
through it rapidly. You may be able, as in an earlier chapter, to 
appreciate the tune and way of singing, if not the detailed mean
ing of the song. I want to discuss the equilibrium statistical me
chanics of a system of spins on a lattice. Let us consider a finite 
box (drawn here as a piece of two-dimensional lattice) con
taining N spins 0'1, ... , crN: 

+ + - + -
+ - - + -
- + + + + 
- + - - + 
--+--

Each spin in the box can take the value +1 or -1 (noted+ or-), 
and a certain energy function E (cr1, ... , aN) is given. At temper
ature T, a spin configuration has then a probability 

where the number C is adjusted so that the sum of all 2N proba
bilities p01 aN is 1. To observe thermodynamic behavior, we 
have to introduce so-called interactions, which allow the energy 
function for arbitrary large boxes to be computed (in a way that 
is invariant under lattice translations) and then take the limit of 
an infinite box: 

+ + - + -
+--+
- + + + + 
-+--+ 
--+--
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One can, in the limit, define a probability distribution for the 
system of infinitely many spins on the lattice, and this is called 
a Gibbs state. Gibbs states for spin systems on a lattice have a 
rich mathematical theory developed first by Dobrushin, 8 Lan
ford, myself, and then by many others, Sinai9 among them. I 
looked in particular at one-dimensional systems: 

··+-+++--·· 

and showed that for such systems there is only one Gibbs state 
and that it depends very nicely on the interaction (real-analytic 
dependence in some sense). This was not too astonishing: one
dimensional systems are physically expected to have no phase 
transitions (all this under suitable technical assumptions). 

At this point the story of Gibbs states changes suddenly from 
mathematical physics to something else: Yasha Sinai proved the 
existence of symbolic dynamics for Anosov diffeomorphisms. This 
means that points of a suitable differentiable manifold M could 
be coded by sequences 

··+-+++--· 

corresponding to a one-dimensional spin system, in such a way 
that the action on M of a kind of differentiable map called an 
Anosov diffeomorphism corresponds to shifting all the symbols ± 
by one step to the left in the above sequence, that is, on a one
dimensional lattice. Sinai (and others, notably Bowen10) could 
then start the study of Gibbs states on manifolds. This idea had 
considerable mathematical developments11 and returned from 
pure mathematics to physics in the study of chaos.12 It has the 
great value of introducing an analytic tool (Gibbs states) into a 
geometric problem (diffeomorphisms). Note that one could, 
in principle, have proved the existence of symbolic dynamics 
without knowing equilibrium statistical mechanics, but Sinai 
had worked in statistical mechanics and was guided by his 
knowledge. 

The above dry summary cannot convey the extraordinary ex
perience that it was for me to be one of those involved in the 
development of a great mathematical idea, which started in a 
mathematical physics background and later returned to physics 
with chaos theory. It was also my great luck that those with 
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whom I interacted directly were not only brilliant mathemati
cians but also unusually nice people. Indeeg, there was a great 
period (a few years around 1970) when the Russians Dobrushin 
and Sinai, the Americans Lanford and Bowen, and myself ex
changed ideas liberally, while new areas at the borderline of 
physics and mathematics were being opened. 
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MANY OF us find beauty in physical or biological artifacts of 
nature: a crystal of quartz, a flower, or a butterfly. And we find 
beauty in artifacts of man, like a perfectly shaped piece of pot
tery. And some of us also find beauty in mathematics. 

Our sense of beauty belongs to human nature, and this is why 
we find beauty in a perfect human body, or human voice, or 
man-made pottery. But the sense of perfection, purity, and sim
plicity that we often associate with beauty also takes us away 
from the miseries of mankind: to flowers, crystals, the Gods, or 
God. We search for something beyond our ordinary human, bio
logical, or physical world. Is there something beyond this world 
of uncertainties? There is: mathematics, which yields knowl
edge, not just opinions. 

If I am going to speak of the beauty of mathematics, where 
logic rules, why mention the uncertainties of physics, biology, 
or theology? Simply because our human sense of beauty is not 
ruled by strict logic. Our sense of beauty may well guide us to 
a desire for inhuman logic. But this same sense of beauty re
mains very human and not particularly logical. Let me briefly 
mention in this respect that musical beauty is based on intervals 
that correspond to simple rational ratios between sound fre
quencies. But these rational ratios are messed up in our tem
pered scale system in a way that is acceptable to us humans 
mostly because we have a limited ability to distinguish between 
different sound frequencies. From an arithmetic point of view, 
the tempered scale system is a monstrosity: in our quest for mu
sical beauty we have put convenience before logic. 

We must be prepared to find that the perfection, purity, and 
simplicity that we love in mathematics is metaphorically related 
to a yearning for human perfection, purity, and simplicity. And 
this may explain why mathematicians often have a religious 
inclination. But we must also be prepared to find that our 
love of mathematics is not exempt from the usual human contra-
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dictions. What attracts many of us, frail humans, to mathematics 
is that it confronts the uncertainty and relativeness of human 
thought with the absolute certitude of mathematical truth. Only 
in mathematics can we check that a statement is correct by 
verifying each detail of its proof and then be absolutely sure of 
the conclusion, even if the proof is extremely long. Mathe
matics is the unique human endeavor where the use of a human 
natural language is, in principle, not necessary. Only here is no 
reference needed to our physical, biological, or psychological 
environment. 

Among the various incentives that exist to do mathematics, 
one should mention the desire to be the best, the first, to become 
an important academician, and to win a million-dollar prize. I 
shall not dwell on these aspects, which are not really special to 
mathematics. What is important for many mathematicians is 
that they feel part of a select group of people sharing a common 
intellectual treasure. Something like this is also true for other 
human groups. But the mathematical community is special in 
agreeing on who belongs to it, being very international, inter
active, relatively small (a few thousand creative mathemati
cians), and above all in consisting of a special group of people 
who have pushed intellectual achievement to its limit. 

Mathematics is useful. It is the language of physics, and some 
aspects of mathematics are important in all the sciences and their 
applications and also in finance. But my personal experience is 
that good mathematicians are rarely pushed by a high sense of 
duty and achievement that would urge them to do something 
useful. In fact, some mathematicians prefer to think that their 
work is absolutely useless. (They may be wrong: number theory, 
traditionally viewed as beautiful and useless, has found applica
tions in cryptography, with important financial and military as
pects.) As to the applications of mathematics to physics and 
other sciences, I prefer in many cases to think of symbiosis. This 
symbiosis is a topic of great philosophical interest but is outside 
of mathematics proper, and I have limited myself to a brief dis
cussion of the case of mathematical physics in the previous 
chapter. 

Among useful things connected with mathematics, teaching 
is essential and is close to the heart of many mathematicians. 
Indeed, you may want to share your love for the beauty of math-

128 



THE BEAUTY OF MATHEMATICS 

ematics, even if it is important for you that mathematics should 
remain useless! Teaching may be in the form of classes to stu
dents, seminar talks, or unorganized discussions. Mathematics 
has lived and flourished in a succession of places where it was 
taught and discussed: from Alexandria in antiquity, to Gottingen 
and Heidelberg during the nineteenth and twentieth centuries, 
and at many other places and times. It was my personal luck 
to be present in several places during the great periods where 
mathematics lived and was created, 1 and it is an unforgettable 
experience. But, in mathematics as in art, great periods do not 
last forever. And while the decline and fall of good places may 
occur in many different ways, politics often plays a decisive role: 
dictatorship at the country level or power games at the level of 
an individual institution. 

I hope I have convinced you that the love of mathematical 
beauty is an essential reason why mathematicians do and teach 
mathematics. But can one say what makes mathematics beauti
ful? Let me propose one answer to this question: I think that the 
beauty of mathematics lies in uncovering the hidden simplicity and 
complexity that coexist in the rigid logical framework that the subject 
imposes. 

Of course, the interplay and tension between simplicity and 
complexity are an element of art and beauty also outside of 
mathematics. Indeed, the beauty that we find in mathematics 
must be related to the beauty that our human nature sees else
where. And the fact that we are attracted by both simplicity and 
complexity, two contradictory concepts, befits our illogical 
human nature. But the remarkable thing here is that the shock 
of simplicity and complexity is intrinsic to mathematics; it is not 
a human construction. One may say that this is why mathemat
ics is beautiful: it naturally embodies the simple and the com
plex that we are yearning for. 

It is now time to be more concrete. Let me start with the re
minder of two beautiful facts, historically old and important, 
both connected with the Pythagorean theorem. The first fact re
veals unexpected simplicity: a triangle with sides of lengths 3, 
4, 5 has a right angle opposite to the side of length 5. This pre
mathematical observation strikingly points to hidden simplicity 
in the nature of things. The second fact is that the diagonal of a 
square with side 1 ·is irrational: [2 = 1.41421356 ... cannot be 
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written as the quotient of two integers. The proof of this fact 
shows that things are more complicated than one might have 
thought, and it forced the Greek mathematicians to accept the 
logical necessity of numbers that are not rational. 

A general example of the interplay between simplicity and 
complexity is the fact that a short mathematical statement may 
need a very long proof. As a technical result this is a theorem of 
Godel' s that we have discussed in chapter 12. As a matter of fact, 
mathematicians know many theorems with a short statement 
(like Fermat's last theorem) and a very long proof. 

There is an element of fashion in our judgment of mathemati
cal beauty, as there is for artistic beauty. Bourbaki stressed a 
structural aspect of mathematics that constitutes an element of 
beauty for many modern mathematicians. But the aesthetic 
ideas of the ancient Greek were different and included a definite 
dislike of hubris. What would they think of mathematical proofs 
covering hundreds or thousands of pages? Clearly our intellec
tual landscape and our sense of beauty have changed over the 
centuries. Plato, Leonardo da Vinci, and Newton had different 
visions of the world, but each vision was unified, and man 
played a central role in it. Current science also strives to a uni
fied view of the universe, but in this view, we humans appear 
as an insignificant accident. At the same time mathematical truth 
has acquired an even more fundamental role than physical real
ity. While the respective statuses of man and mathematics have 
been radically revised, the relations between the two partners 
have changed remarkably little since the Greeks. To get some 
understanding of this relation (one might say this beautiful rela
tion) has been the object of this book. 

And as we come to the end of our journey, let me say one 
more thing: it is while doing mathematical research that one 
truly comes to see the beauty of mathematics. It faces you in 
those moments when the underlying simplicity of a question ap
pears and its meaningless complications can be forgotten. In 
those moments a piece of a colossal logical structure is illumi
nated, and some of the meaning hidden in the nature of things 
is finally revealed.2 

130 



·:· N ates ·:· 

CHAPTER 1: SCIENTIFIC THINKING 

1. D. Ruelle, "The obsessions of time," Comm. Math. Phys. 85 (1982), 
3-5; "Is our mathematics natural? The case of equilibrium statistical 
mechanics," Bull. Amer. Math. Soc. (N.S.) 19 (1988), 259-268; "Henri 
Poincare's 'Science et Methode'" Nature 391, (1998), 760; "Conversa
tions on mathematics with a visitor from outer space" in Mathematics: 
Frontiers and Perspectives, ed. V. Arnold, M. Atiyah, P. Lax, and 
B. Mazur, Amer. Math. Soc., Providence, RI, 2000, 251-259; "Mathemat
ical Platonism reconsidered," Nieuw Arch. Wiskd. (5) (2000), 30-33. 

2. Isaac Newton (1643-1727) may be described as an English scholar 
or philosopher who is best remembered as a mathematician and theo
retical physicist but also had quite different interests. His best biogra
phy remains that by R. S. Westfall (Never at Rest: A Biography of Isaac 
Newton, Cambridge University Press, Cambridge, 1980). 

3. There was renewed public interest in the esoteric use of the Scrip
tures following the publication of Michael Drosnin's book The Bible 
Code (Simon and Shuster, New York, 1997). Drosnin's idea (unrelated 
to Newton's ideas) is that some sequences of equally spaced letters in 
the text of the Torah contain hidden meaningful information. This no
tion appeared to get support from some excellent mathematicians, but 
the reaction of scientists in general has been largely negative. See, for 
example, "The case against the codes" by Barry Simon (posted on the 
Internet). 

CHAPTER 2: WHAT Is MATHEMATICS? 

1. The Greek philosopher Pythagoras lived around 500 BC and re
mains a rather mysterious figure. Little is known of his mathematics 
and of his relation to the Pythagorean theorem. 

2. The writings of the Greek philosopher Plato (427 BC-347 BC) re
main surprisingly readable and exist in a nice compact English edition 
(Plato: Complete Works, ed. J.M. Cooper and D.S. Hutchinson, Hackett 
Publishing, Indianopolis, 1997). Of course, when you read Plato you 
should allow yourself to disagree with him: his logic is sometimes 
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questionable by modem standards, and his political ideas may seem 
to us occasionally close to Fascism. But mostly ope has the delightful 
impression of conversing with a very intelligent, open-minded, and 
pleasant man. 

3. Euclid lived around 300 BC in Alexandria, Egypt. The thirteen 
books of his Elements constitute the most important monument of 
Greek mathematics that is left to us. 

4. The German mathematician David Hilbert (1862-1943) was a 
towering figure of mathematics. His version of Euclidean geometry 
was presented in the book Grundlagen der Geometrie in 1899. Among 
other things, Hilbert is famous for twenty-three problems (unsolved 
at the time) that he proposed to the mathematical community at the 
International Congress of Mathematicians in Paris in 1900. In 1930 he 
expressed his optimism on the power of mathematics in the statement, 

Wir mussen wissen, wir werden wissen. 
(We must know, we shall know.) 

Godel's paper of 1931 showed, however, that there are limitations to 
what one can know. 

5. The Austrian-born mathematician and logician Kurt Godel (1906-
1998) proved some stunning results on the logical structure of mathe
matics. His incompleteness theorems published in 1931 show that in 
any (not too simple) axiomatic mathematical system there are proposi
tions that cannot be proved or disproved in the system. In particular, 
the consistency of the axioms cannot be proved. 

6. J. P. Serre, Cours d'arithmetique, Presses Universitaires de France, 
Paris, 1970; English trans.: A course in Arithmetic, Springer, Berlin, 1973. 
Jean-Pierre Serre (1926-) is a French mathematician. 

7. S. Smale, "Differentiable dynamical systems," Bull. Amer. 
Math. Soc. 73 (1967), 747-817. Stephen Smale (1930-) is an American 
mathematician. 

CHAPTER 3: THE ERLANGEN PROGRAM 

1. The German mathematician Felix Klein (1849-1925) made funda
mental contributions to geometry. 

2. Real and Complex Numbers 
The distance (in some unit) between points 0 and X on a line is a posi
tive number d (or 0 if X coincides with 0). Having fixed 0, the position 
of X is determined if we give d a sign: + or - according to whether X 
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is to the right or to the left of 0. We say that + d or - dis a real number. 
Call it x: it may be positive, negative, or zero. So, a real number x deter
mines exactly the position of a point on the line (once you have chosen 
0, a unit of length, and which are the right and the left side of 0). 

0 x 
left --------+------+-------- right 

A complex number is an expression like x + iy, where x and y are real 
numbers and i is a new symbol. It is assumed that i multiplied by itself 
(i.e. i2) is -1. Saying that x + iy, = 0 means that both x and y are 0. You 
can add, subtract, and multiply complex numbers (for multiplication, 
use i2 = -1). If x + iy =t 0, you can also divide by x + iy, in fact 

---=---
iy 1 x 

x + iy x 2 + y 2 x2 + y2 · 

Now draw two lines in the plane, meeting perpendicularly at 0. We 
call these lines the x-axis Ox and the y-axis Oy, as below. 

y 
y - - - - - - - - - - - - - - - - - -, z 

I 

0 x x 

From a point Z draw perpendiculars ZX to Ox and ZY to Oy. Call x 
the distance from X to 0 with a + or - sign depending on whether X 
is right or left of 0, and call y the distance from Y to 0 with a + or -
sign depending on whether Y is above or below 0. In this way we 
have a correspondence between the point Z of the plane and the com
plex number z = x + iy. In other words we can think of complex num
bers as points in the plane (one then speaks of the complex plane). 

CHAPTER 4: MATHEMATICS AND IDEOLOGIES 

1. We have seen in note 2 of chapter 3 how the position of a point 
Z in the plane can be coded by two real numbers x, y. Similarly, a point 
in three dimensions-can be described by three numbers. The systematic 
use of this idea is due to the French philosopher and mathematician 
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Rene Descartes (1596-1650). This has permitted mathematicians to 
apply algebra to geometry, a development that h;is been fundamental 
for geometry and mathematics in general. 

2. A. Vershik, "Admission to the mathematics faculty in Russia in 
the 1970s and 1980s," Mathematical Intelligencer 16 (1994), 4-5; A. Shen, 
"Entrance examinations to the Mekh-mat," (Math. Intelligencer) 16 
(1994), 6-10. These articles are reprinted with a mathematical study of 
entrance examination problems by I. Vardi and other contributions 
in a volume entitled You Failed Your Math Test, Comrade Einstein (ed. 
M. Shifman, World Scientific, Singapore, 2005). 

3. As my wife puts it, there are fewer bastards and fewer frauds 
among mathematicians than in the general population, but maybe also 
fewer amusing people! 

CHAPTER 5: THE UNITY OF MATHEMATICS 

1. An example of this is the Riemann Hypothesis, a famous conjecture 
on the distribution of large primes formulated by the German mathe
matician Bernhard Riemann (1826-1866). By the diversity and depth 
of his work, Riemann was perhaps the greatest mathematician of all 
time, though he died before reaching the age of forty. Proving the Rie
mann Hypothesis is the eighth of the twenty-three problems proposed 
by Hilbert in 1900. 

2. The Swiss-born mathematician Leonhard Euler (1707-1783) 
proved this formula in 1734. At that time Euler lived in Saint Peters
burg, where he died. 

3. The German philosopher and mathematician Gottfried Wilhelm 
Leibniz (1646-1716) developed a version of the infinitesimal calculus. 
It is questionable how independent his results were with respect to 
those of Newton, but his notation is still used today. 

4. The German mathematician Georg Cantor (1845-1918) did foun
dational work in set theory. 

5. The English mathematician and logician Alan Turing (1912-1954) 
also left deep conceptual contributions in other fields. He will appear 
again in chapter 15. 

6. The French mathematician Alexander Grothendieck (1928-) will 
appear again in Chapters 6 and 7. 

7. The Belgian-born mathematician Pierre Deligne (1944-) worked 
in France and now works in the United States. 
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8. The Seminaire Bourbaki survives and is still very active. Three 
times per year there is a meeting in Paris, where five lectures are given, 
carefully presenting some topics of current interest. The text of the lec
tures, written in advance, is distributed to the audience. The Seminaire 
Bourbaki plays a significant role in the dissemination of (some) new 
mathematical ideas. 

CHAPTER 6: A GLIMPSE INTO ALGEBRAIC GEOMETRY 

AND ARITHMETIC 

1. The work of the French mathematician Henri Poincare (1854-
1912) covers many topics, and his books on the philosophy of science 
remain very current and readable. 

2. This is a special case of Bezout's theorem. 
3. While remembered mostly for his work in number theory, the 

French mathematician Pierre Fermat (1601-1665) was also a lawyer 
and counselor at the parliament of Toulouse. 

4. The proof of Fermat's last theorem results from contributions by 
a number of mathematicians, but the decisive final (and most difficult) 
step was taken by the British mathematician Andrew Wiles (1953-), 
who currently works in the United States. 

CHAPTER 7: A TRIP TO NANCY 

WITH ALEXANDER GROTHENDIECK 

1. Paul Mantel (1876-1975) belongs to a French tradition that associ
ates excellent mathematics and a long life. Jacques Hadamard (1865-
1963) and Henri Cartan (1904-) are in the same tradition. 

2. Motchane appears in Vercors' La bataille du silence (Les Editions 
de Minuit, Paris, 1992). This beautiful book tells about some men and 
women who defied the French authorities and their Nazi masters dur
ing World War II by publishing books illegally, at a time when it could 
have cost them their lives. 

3. The American theoretical physicist J. Robert Oppenheimer (1904-
1967) played an essential role in the development of the atomic bomb. 

4. The French mathematician Rene Thom (1923-2002) was an inde
pendent mind. He was not a member of Bourbaki, and he spent quite 
a bit of time on his- catastrophe theory and questions of philosophy. 
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But he may in the end be remembered mostly for important contribu-
tions to geometry. , 

5. Some information on Grothendieck's background is contained in 
two related papers by P. Cartier, one in French ("Grothendieck et les 
motifs," IHES preprint, 2000) and one in English ("A mad day's 
work, ... ," trans: Roger Cook, Bull. Amer. Math. Soc. 38 (2001), 389-
408). Cartier has made a considerable and fairly successful effort to 
save Grothendieck from premature burial, but I am skeptical about his 
"psychoanalytic" interpretations of Grothendieck. Another source of 
interest is A. Herreman ("Decouvrir et transmettre," IHES preprint, 
2000), which discusses the "coup de poing en pleine gueule"; see 
below. There is also an excellent article by Allyn Jackson, ''Comme ap
pele du neant-as if summoned from the void: The life of Alexandre 
Grothendiek" (Notices Amer. Math. Soc., 51 (2004), I, 1038-1056; II, 
1196-1212). And I have used my own memories, supported by per
sonal archives, on the period discussed. 

For a mathematical discussion of Grothendieck's work, see J. Dieu
donne ("De l'analyse fonctionnelle aux fondements de la geometrie al
gebrique," in The Grothendieck Festschrift, I, Prag. Math. 86, Birkhauser, 
Boston, 1990, 1-14). Let me quote Dieudonne's concluding lines on the 
work of Grothendieck in algebraic geometry: "It is out of the question 
to summarize these six thousand pages. There are few examples in 
mathematics of such a monumental and fertile theory, built in such a 
short time and due essentially to a single man." 

6. The French mathematician Jean Dieudonne (1906-1992) was one 
of the main figures of Bourbaki. He was an early member of the IHES. 

7. Or at least very different. Let me try to justify this statement. 
Many successful scientists leave us a story of their life. These autobiog
raphies typically contain interesting personal and historical informa
tion, amusing anecdotes, and suggestions that the author had interests 
in life other than just science (like music, sex, administration, ... ). The 
story culminates with a handshake between the great man of science 
and some other great man, president, king, or perhaps pope. If you 
read Grothendieck's Recoltes et semailles, you may not like it, but you 
sense a very different personality. 

8. The French theoretical physicist Louis Michel (1923-1999) was 
one of the early members of the IHES. 

9. "Yous etes un fieffe menteur, Monsieur Motchane." This is quite 
strong language and upset a number of people who had sympathies 
for Grothendieck. 
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10. A. Grothendieck's Recoltes et semailles (1985-86) is available on 
the Internet in various forms and translations, together with further 
material. What is available changes with time, and the reader is invited 
to check for herself or himself. 

11. The Crafoord Prize, to be shared with Pierre Deligne. The Cra
foord Prize is given by the Swedish Academy of Sciences for work in 
various non-Nobel disciplines. 

12. See note 5. 
13. Pierre-Gilles de Gennes (1932-) is a French theoretical physicist. 

CHAPTER 8: STRUCTURES 

1. We have just introduced two set-theoretical concepts: subsets and 
maps (or functions). Here are two more definitions. The intersection of 
two sets S and T is the set, denoted by S n T, consisting of those ele
ments that belong to both S and T. The union of S and T is the set, 
denoted by Su T, consisting of all those elements that belong to S, T, 
or both. So {a,b} n {a,c} = {a}, {a,b} n {c} = 0 (the empty set), and 
{a,b} u {a,c} = {a,b,c}. One can also define the intersection and union of 
more than two sets (general families of sets, possibly infinite). 

2. The Polish-born American mathematician Samuel Eilenberg 
(1913-1998) and the American Saunders Mac Lane (1909-2005) collabo
rated in the 1940s and 50s. 

3. The Hungarian-born mathematician Paul Erdos (1913-1996), with 
his lasting attachment to his mother, his addiction to amphetamines, 
and other unusual traits of character, may appear as a somewhat ex
treme personality. It is remarkable that the very special environment 
provided by mathematics allowed this personality to flourish. 

4. M. Aigner and G. M. Ziegler, Proofs from The Book, Springer, Berlin, 
1998 (3rd ed. in 2004). Incidentally, if you look at theorem 1 of chapter 
8, "In any configuration of n points in the plane, not all on a line, there 
is a line which contains exactly two of the points," you are tempted to 
use the methods of projective geometry to get a proof. You will find in 
Proofs from The Book an explanation of why this doesn't work! 

5. See chapter 2, note 2. 
6. Lest I be misunderstood, let me stress that I do not adhere to a 

literary view of science that has been popular in certain circles (namely, 
that a scientific text, like any other piece of literature, is just a reflection 
of the socioeconomic conditions under which it was produced and has 
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to be studied as such). I believe that the literary approach misjudges 
the scientific content of scientific texts and that Jiterary criticism is a 
limited way to explore the relations of the human mind with the sci
ence it produces. 

CHAPTER 9: THE COMPUTER AND THE BRAIN 

l. The Hungarian-born American scientist John (earlier Johann) von 
Neumann (1903-1957) has been thought by some to have been Stanley 
Kubrick's model for Dr. Strangelove. (The Hungarian-born American 
physicist Edward Teller (1908-2003) has also been proposed.) 

2. J. von Neumann, The Computer and the Brain, Silliman Memorial 
Lectures Vol. 36, Yale University Press, New Haven, CT, 1958. 

3. The Greek scientist Archimedes of Syracuse (287-212 BC) is re
membered for his engineering and physical ideas but mostly for his 
contributions to mathematics. His calculations of surfaces and volumes 
anticipate the infinitesimal calculus of Newton and Leibniz, and he is 
considered one of the greatest mathematicians of all time. 

4. There is a common view that thinking is equivalent to speaking. 
For example, Plato writes (in Sophist): "Aren't thought and speech 
the same, except that what we call thought is speech that occurs with
out the voice, inside the soul in conversation with itself?" (see Plato's 
Complete Works, ed. J. M. Cooper and D. S. Hutchinson, Hackett 
Publishing, Indianapolis, 1997, p. 287). The practice of mathematical 
thinking shows the importance of nonverbal elements, in particular, 
visual elements. 

5. Computers can make random errors, so-called glitches. The re
moval of such errors (by repetition, checks) has been studied. But with 
current technology, the error level is so low that it is not relevant to 
the present discussion. 

6. See "Conversations on mathematics with a visitor from outer 
space," Mathematics: Frontiers and Perspectives, ed. V. Arnold, M. Atiyah, 
P. Lax, and B. Mazur, Amer. Math. Soc., Providence, RI, 2000, 251-259. 

CHAPTER 10: MATHEMATICAL TEXTS 

l. A detailed analysis is given by Reviel Netz (The Shaping of Deduc
tion in Greek Mathematics: A Study in Cognitive History, Ideas in Context, 
51, Cambridge University Press, Cambridge, 1999). 
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2. You may want to exercise your skills on the following problem. 
Take three mutually perpendicular axes Ox, Oy, Oz in space. Consider 
the solid circular cylinder Cx with axis Ox and radius R, and similarly 
for Cy C,. These three cylinders (with equal radii) intersect in a solid S 
limited by curved faces. Question: what does S look like? How many 
faces does it have, what are their shapes, and how are they put to
gether? Combining visual intuition and reasoning, you can get the cor
rect answer, but this is somewhat painful. A drawing on a sheet of 
paper makes things much easier. (Draw the intersections of two cylin
ders at a time.) 

3. Different languages offer different poetical possibilities because 
rhythm, grammar, vocabulary, word similarities, and clusters of mean
ing are different. For instance, German is strongly accented, and this 
is powerfully used in Goethe's verses: 

Wer reitet so spat durch Nacht und Wind? 
Es ist der Vater mit seinem Kind. 

But the weak accent in French can be used with great subtlety, as when 
Apollinaire writes: 

Le cokhique couleur de cerne et de lilas 
Y fleurit tes yeux sont comme cette fleur-la. 

The different factors of form, meaning, and word associations some
times conspire to yield the miraculous thing that is a great poem. I am 
not convinced by the attempts I have seen at translating poetry in 
verses: it is too much to expect the same miracle to happen twice in 
different languages. I treasure, however, the help provided by honest 
translations in prose for poems (like those of Saint John of the Cross 
in Spanish) that would otherwise elude me because my knowledge of 
the original language is limited or nonexistent. 

4. Most mathematicians now type their own manuscripts on a lap
top or a computer terminal, using some appropriate software like TeX. 
A formula written in TeX is tolerably close to a sentence in English; in 
fact, (*) is typed in as 

$${U - A\over M - A} : {u - B\over M - B} = 

{M - A\over V - A} : {M - B\over V - B}$$ 

Incidentally, TeX has been a great invention for blind mathematicians, 
who can read the above formula (a linear arrangement of a limited 
variety of symbols) more easily than the original(*). 
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CHAPTER 11: HONORS 

1. Giordano Bruno (1548-1600) was an Italian philosopher and here
tic. To him and to countless others who have suffered and are suffering 
for speaking when the authorities of the time wanted them to be silent, 
we owe what freedom of speech we enjoy. 

2. Some people provide supremely great performance and show in 
sports and are richly rewarded by the public for their act. There is noth
ing wrong with that. What is wrong is that money domination encour
ages the use of drugs and cheating, and defeats the justification of 
sports as health activities. There is also nothing wrong with generously 
rewarding great scientific achievements. In fact, I am all in favor of 
that. But giving money an excessive role has its dangers, and caution 
is needed. Cheating (presentation of fabricated results, among other 
things) has become a problem in medicine, biology, and physics and 
there are signs that the corrupting effects of money may not forever 
spare mathematics. 

CHAPTER 12: INFINITY: THE SMOKE SCREEN OF THE Goos 

1. The German mathematician and theoretical physicist Ernst Zer
melo (1871-1953) made fundamental contributions to set theory. 

2. The German-born mathematician Adolf Fraenkel (1891-1965) 
moved to Jerusalem in 1929. 

3. Encyclopedic Dictionary of Mathematics (2nd ed., 4 vol., MIT Press, 
Cambridge, Mass., 1987) is a translation from the Japanese (3rd ed., 
K. Ito, Mathematical Society of Japan, Tokyo, 1985. It is remarkable 
how much of significant twentieth-century mathematics could be pre
sented in this compendium. 

4. As an example of paradox arising in naive set theory, let me men
tion Russell's paradox, which goes as follows. Say that xis a set of the 
first kind if it does not contain itself as an element(-, x E x) and of the 
second kind if it contains itself as an element (x Ex). A set must be of 
the first or the second kind and cannot be both. Call X the set of all 
sets of the first kind. If X is of the first kind, X does not belong to X, 
that is, does not belong to the set of sets of the first kind. This is a 
contradiction because X is of the first kind. If X is of the second kind, 
X belongs to X, that is, belongs to the set of sets of the first kind. This 
is a contradiction because X is of the second kind. What this means is 
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that introducing notions like "the set of all sets" is inviting trouble and 
is not allowed in serious axiomatic set theory. 

The English logician and philosopher Bertrand Russell (1872-1970) 
is also remembered for his pacifist political positions. 

5. This has been proved under the assumption that the set of axioms 
one starts with is sufficiently rich to develop the theory of natural 
integers. 

6. At the same time, Godel also proved the following result. Starting 
with a set of axioms sufficiently rich to develop the theory of natural 
integers, it is not possible to prove the consistency of this system of 
axioms by utilizing arguments formalizable in the theory developed 
from these axioms. There are consistency proofs for some mathemati
cal theories, but such proofs use stronger theories. 

7. The American logician Alonzo Church (1903-1995) proposed in 
1936 a precise definition of effectively calculable functions. This proposal 
is known as Church's thesis, and one version of it (the Church-Turing 
thesis) is that an effectively calculable function is one that can be calcu
lated by a Turing machine, which is a simple computer (finite automa
ton) with an unlimited memory as described by Turing. One may re
quire that upon each input the machine gives an answer in finite 
time (this corresponds to computing a general recursive function) or 
allow the machine to not always give an answer (this corresponds to 
computing a partial recursive function). Most mathematicians want to 
be allowed to work with more general functions than those that are 
effectively calculable. 

8. To be precise: the maximum length of a proof of a statement of 
length L is not a general recursive function of L. This statement is not 
sensitive to the precise definition of length of statement or length of 
proof. For some details, see, for instance, Yu. I. Manin, A Course in 
Mathematical Logic, trans. Neal Koblitz, Grad. Texts in Math. 53, 
Springer, New York, 1977, Section VII.8. 

CHAPTER 13: FOUNDATIONS 

l. Let me describe a group in typical mathematical jargon: neither 
the formal language of logicians nor the baby talk of popular science 
writers. 

Let G be a nonempty set, and when a,b E G, let c E G be given, called 
the product of a and b, and write c =ab. We call G, equipped with this 
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product, a group (or we say that the product defines a group structure 
on the set G) if the following properties (called axioms of a group) hold: 

(i) associativity: a(bc) = (ab)c; 
(ii) existence of unit element: there exists e E G such that for every 

a E G, ea = ae = a; 
(iii) existence of inverses: for every a E G there exists x E G such that 

ax= xa = e. 

Note that the unit element e is unique. If ab= ba, the group is said to 
be commutative. If G,G' are groups with unit elements e,e' and f is a 
function from G to G' such that/ (ab)= f (a)f (b), then/is called a morph
ism G ~ G', and the subset H of elements x E G such that f (x) = e' is 
called a normal subgroup Hof G. If the only normal subgroups Hof G 
are {e} and G, then G is called a simple group. 

My reason for going into all these technical details is that I can now 
make a statement: group structure is important. Specifically, if you find 
a group structure in the problem you are studying, it will help you. 
And it should be automatic for you to ask if the group is commutative 
or not and to look for its normal subgroups. As an example, the trans
formations associated with various geometries in chapter 3 form groups 
of transformations (Euclidean, affine, or projective). Groups appear in 
a useful way in the practice of mathematics; this is why they are natu
ral objects, not because the definition of group structure is relatively 
simple. 

2. We have prudently introduced the complex numbers in chapter 
3 (see note 2) and pictured them as points in a plane (the complex 
plane). We now denote the complex plane by C and recall that C is a 
field (from chapter 6, we know that complex numbers can be added, 
multiplied, and divided). Analytic (or holomorphic) functions of a com
plex variable are functions f defined on a subset D of C, with values 
in C and such that, for z in D and I z - z0 I sufficiently small, one can 
express f (z) as an infinite sum 

f(z) =I an (z-zo)n, 
n=O 

where the an are complex numbers. Analytic functions have remarkable 
properties. In particular, if f is analytic in D, there are usually large~ 
subsets I5 of C such that/ extends (uniquely) to an analytic function/ 
on I5 (this extension is called analytic continuation). 
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3. Riemann saw that the distribution of prime numbers could be re
lated to properties of a function now known as the Riemann zeta func
tion. Following Riemann's idea, Hadamard and de la Vallee-Poussin 
proved a result known as the prime number theorem. This says that the 
number of primes~ n tends to infinity like n/ln n, where Inn is the 
logarithm of n. The Riemann Hypothesis is a conjectured property of 
the zeta function that would lead to a refinement of the prime number 
theorem. 

Jacques Hadamard (1865-1963) was a French mathematician, and 
Charles de la Vallee-Poussin (1866-1962) was a Belgian mathematician. 

4. There are other important axiom systems than those for set the
ory, notably Peano arithmetic (PA), which axiomatizes the theory of 
integers. But PA is much weaker than ZFC. So, while PA is interesting 
for logicians, it is not much used by "normal" mathematicians. 

5. The Axiom of Choice (C) says the following: 

If a set X contains subsets Av indexed by A E A, and no AA is the empty 
set 0, then we can choose xA in AAfor each A E A (i.e., there is a function 
f: A~ X such that f ('A) E AAfor each A E A). 

Once you understand what it means, you will probably find (C) 
intuitively acceptable, but note that xA = f ('A) is in no way explicitly 
constructed. 

6. Stefan Banach (1892-1945) was a Polish mathematician, and Al
fred Tarski (1902-1983) was a Polish-born logician. The Banach-Tarski 
"paradox" is the following fact that can be proved using the Axiom of 
Choice: 

It is possible to cut a solid sphere (in three-dimensional space) into 
finitely many pieces and, after moving these pieces around (by three-di
mensional rotations and translations), to reassemble them into two solid 
spheres of the same size as the original one. 

The number of pieces can be taken to be five. This may seem absurd 
because the volume of the pieces adds up to the volume of one sphere 
at the beginning and to twice this volume at the end. There is, however, 
no real paradox because one cannot speak of the volume of the pieces 
that are moved around: these pieces are nonmeasurable. When the 
Axiom of Choice is used to produce sets, these sets are usually non
measurable. Nonmeasurability is a nuisance, but the current consensus 
of mathematicians is that they like to have the Axiom of Choice at their 

143 



NOTES TO CHAPTER 13 

disposal, even at the cost of having to be a bit careful about measurabil
ity of the sets that they manipulate. 

7. Not only is (C) consistent with ZF, it is independent of ZF as 
shown by P. Cohen: if ZF is consistent, there is a consistent axiom sys
tem including ZF but such that the Axiom of Choice does not hold. 

The American mathematician Paul Cohen (1934-) is especially 
known for his work on the axiomatic foundations of set theory, using 
a technique called forcing. 

8. A case in point is the theory of Banach spaces, where an im
portant result, the Hahn-Banach theorem, requires the Axiom of 
Choice for its proof. Use of Hahn-Banach permits a nicer general the
ory of Banach spaces, and since the theory of Banach spaces is fairly 
useful in applications, a puritanical attitude prohibiting use of the 
Axiom of Choice is not very welcome here. 

9. Finite simple groups are simple groups (see note 1) that are finite 
sets. These algebraic objects can be classified, that is, listed: the list is 
infinite but quite explicit. While the experts consider that the classifi
cation work is now complete, the publication of the proofs needed to 
support the classification is still going on and is remarkable by its 
length, many thousands of pages of hard technical mathematics. (See, 
for instance, R. Solomon, "On finite simple groups and their classifica
tions," Notices Amer. Math. Soc. 42 (1995), 231-239; M. Aschbacher, "The 
status of the classification of the finite simple groups" Notices Amer. 
Math. Soc. 51 (2004), 736-740.) 

10. We have already met polynomials on several occasions, in par
ticular in chapter 6. Consider finitely many variables z1, .•• , zVI a mono
mial in these variables is a product 

where c is a coefficient and n11 • •• , nv are natural integers. So, a mono
mial is obtained by raising the variables z1, ••• , Zv to some powers 
n1, ••• , nv, multiplying the z/1, and multiplying the product by the coef
ficient c. A polynomial p(z11 ••• , zv) is a finite sum of monomials as 
above. For instance, 

p (x, y) = c + c' x + c'y 

is a polynomial in the two variables x, y (with coefficients c, c', c'), and 

p (x, y, z) = x" + y" - z" 
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is a polynomial in three variables. In classical algebraic geometry, the 
coefficients are complex numbers and so are the variables. 

Consider now a polynomial P (x1, ••• , x"' y1, ••• , Yv) in the µ + v vari
ables x1, ••• , x"' y1, ••• , Yw where the coefficients are integers (positive, 
negative, or zero). We shall associate with this polynomial P a set S of 
points ( a1, ... , aµ ) where a1, ... , aµ are natural integers, that is, ele
ments of N = {O, 1, 2, 3, ... }. In other words, the points of S will be 
sequences ( a1, ... , aµ ) E Nµ. The set S is defined to consist of those 
( a1, ... , aµ ) for which there exist natural integers b1, ... , bv such that 

P (a1, ... , a"' bi, ... , bv) = 0. 

Whenever there is a polynomial P (x1, ... , x"' Y11 ... , Yv) such that 
the subset S of Nµ can be defined as just indicated, we say that S is a 
Diophantine set. 

Theorem. A subset S of Nµ is Diophantine if and only if it is recursively 
enumerable. 

This results from the work of a number of mathematical logicians, the 
proof being completed in 1970 by Yuri Matijasevic. Remember from 
chapter 12 that a set S is recursively enumerable if there is an algorithm 
that systematically lists all its elements. But it may not be possible to 
list the elements not in S. In this case we have very little control on S, 
and we may not know whether S is empty or not. So, the above theo
rem gives a negative solution to Hilbert's tenth problem, which asked 
for an algorithm to tell, for any polynomial P (x1, ••• , Xµ) with integer 
coefficients, if there are integers ai, ... , aµ such that P (a1, ... , aµ) = 0. 
In fact, there can be no such algorithm. Nevertheless, the unsolvability 
of Hilbert's tenth also has positive consequences. For instance, we 
know, by the above theorem, that the set of all primes (which is a sub
set of N) is Diophantine. 

See M. Davis, "Hilbert's tenth problem is unsolvable," Amer. Math. 
Monthly 80 (1973), 233-269; M. Davis, Yu. Matijasevic, and J. Robinson, 
"Hilbert's tenth problem: Diophantine equations: Positive aspects of 
a negative solution" in Mathematical Developments Arising from Hilbert 
Problems (Northern Illinois Univ., De Kalb, Ill., 1994), Proc. Sympos. in 
Pure Math. 28 (1974), 323-378.] 

The Greek mathematician Diophantus of Alexandria probably lived 
in the third century AD and left a collection of problems known as 
Arithmetica (algebra and number theory). 
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11. Let the region Din the complex plane C consist of the complex 
numbers z = x + iy (x and y real) such that x > 1· The Riemann zeta 
function is defined on D by the infinite sum 

t; (z) = "'\:""' _2_. L nz 
n=I 

One can show that I; is an analytic function in D and that it has a 
unique analytic continuation (again called I;) to the complex plane C, 
minus the point 1. Consider the subset R of C consisting of the complex 
numbers z = x + iy such that 1/2 < x < 1. One formulation of the Rie
mann Hypothesis is that I; does not vanish in the "forbidden" region 
R (that is, I; (z) :/. 0 if z E R). It is known that I; (z) vanishes at z = -2, 
-4, - 6, ... , and also at an infinity of points z = 1/2 + iy; the usual 
formulation of the Riemann Hypothesis is that there are no other zeros. 

12. S. Shelah, "Logical dreams," Bull. Amer. Math. Soc. (N.S.) 40 
(2003), 203-228. 

CHAPTER 14: STRUCTURES AND CONCEPT CREATION 

1. See chapter 13, note 1. 
2. See chapter 2, note 4. 
3. See chapter 12, in particular note 8. 
4. See chapter 13, note 2. 
5. The statement is the maximum modulus principle for analytic func

tions. Let me give a precise statement without speaking of boundary. 
If f (z) is analytic in the domain D = {z: I z - z0 I < R) (disk of radius R 
centered at z0) and if there exists a E D with f (a) :/. f (z0), then there ex
ists b E D with If (b) I > If (z0) I, that is, the modulus off (z) cannot be 
maximum at the center of a disk in which/ (z) is analytic. 

6. The concept of a compact set belongs to topology, and I cannot 
pretend to give you a good idea of topology in this note if you have 
never studied the subject before. But it is easy enough to give the basic 
definitions, just to show how absurdly simple they are. (We shall use 
the concepts of subset, map, intersection, and union, for which you 
may see chapter 8, note 1; the words family, and subfamily (of sets) may 
here be understood as set of sets and subset of a set of sets.) 

A topology on a set X is a family of subsets of X, called open sets, such 
that the following axioms are satisfied: 
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(1) X and the empty set 0 are open sets; 
(2) the intersection of two open sets is an open set; 
(3) the union of any family of open sets is an open set. 

Suppose we have topologies on both the set X and the set Y, and let 
fbe a map from X to Y. For a subset V of Y we denote by f-1v the set 
of points x E X such that fx E V. With this notation, the map f is said 
to be continuous if, whenever Vis open in Y, thenf1V is open in X. 

One says that subsets 0, of X (a possibly infinite family) form a cov
ering of X if the union of all 0, is X. A space X with a topology is said 
to be compact if, for any covering of X by open subsets 0 11 there is a 
finite subfamily of sets 0, that already form a covering of X. 

Suppose that X and Y have topologies and that f is a continuous map 
from X to Y such that fX = Y (for every point y E Y there is some x E X 
such that fx = y). Then, if Xis compact, it follows that Y is also compact. 

Having read this concise description of topology, you might say, "I, 
too, am a mathematician," and start writing your own axioms, defini
tions, and theorems. What is not assured is that they will be as signifi
cant for mathematics as the conceptual skeleton of topology that I have 
just described. 

7. See note 6. 
8. Abstract measure theory starts by giving a measure (or mass) 

m (X) to certain subsets of a space M. The theory of Radon measures 
assumes M to be a compact topological space and starts by defining 
an integral (or average value) m (A) for continuous functions A on M. 
Abstract measure theory is more general. The theory of Radon mea
sures is a special case and has, therefore, more theorems: it is a richer 
theory. 

9. See M. R. Garey and D. S. Johnson, Computers and Intractability, 
Freeman, New York, 1979. 

10. This is what I did in the paper "Conversations on mathematics 
with a visitor from outer space" in Mathematics: Frontiers and Perspec
tives, ed. V. Arnold, M. Atiyah, P. Lax, and B. Mazur, Amer. Math. Soc., 
Providence, RI, 2000, 251-259. 

11. This statement has, in fact, to be corrected. The slow, blind work 
of evolution has generated mechanisms (in the immune system and, of 
course, the nervous system) that produce relatively fast and intelligent 
responses. 

12. This is actually the title of the /1 first part" of the treatise, but 
Bourbaki didn't go much beyond that. 
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13. This is actually J.-P. Serre quoting A. Grothendieck, in a letter 
of February 8, 1986. The letter is in response tp Grothendieck after 
the latter had sent Recoltes et semailles to Serre. In this very interesting 
letter, Serre acknowledges the power of Grothendieck's approach 
but expresses the opinion that it does not work in all parts of mathe
matics. See Correspondance Grothendieck-Serre, ed. P. Colmez and 
J.-P. Serre, Documents Mathematiques 2, Societe Mathematique de 
France, Paris, 2001. 

CHAPTER 15: TURING'S APPLE 

1. Not only is the number 7t irrational, but it is, in fact, transcendental; 
that is, it cannot satisfy the equation 

when a0, a1, ••• , an_ 1, an are integers (positive, negative, or zero). This 
was proved in 1882 by the German mathematician Ferdinand von Lin
demann (1852-1939). 

2. The Danish mathematician Harald Bohr (1887-1951) is remem
bered for his theory of almost periodic functions. He was also the 
brother of the physicist Niels Bohr (1885-1962) and a member of the 
1908 Danish Olympic soccer team. 

3. loan James, "Autism in mathematicians," Math. Intelligencer 25 
(2003), 62--{)5. 

4. Constance Reid, Hilbert, Springer, Berlin, 1970. 
5. The German-born American mathematician Richard Courant 

(1888-1972) was a student and later a collaborator of Hilberts. 
6. Andrew Hodges, Alan Turing: The Enigma, Simon & Schuster, 

New York, 1983. 
7. "Can machines think?" To test this, Turing proposed that an inter

rogator would ask questions of a person and a machine locked in a 
different room. The person and the machine would type answers that 
might be lies (the machine pretending that it is a person). Could the 
interrogator find out which was the person and which was the ma
chine? That is the Turing test: an imitation game in which the machine 
must pass as a person. If person and machine cannot be told apart, it 
is hard to say that the machine cannot think. Interestingly, in pre
senting the imitation game, Turing used a woman and a man instead 
of person and a machine. 
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8. Playing at home with dangerous chemicals was probably more 
common and less discouraged in the early 1950s than it is now. At the 
time that Turing did his experiments with cyanide, I was a teenager 
and had a little lab in the basement where I experimented with arsenic 
(A~03), phosphorous, and other poisonous, inflammable, explosive, 
corrosive, or foul-smelling substances. 

9. Frank Olver is now professor emeritus in the Math Department 
of the University of Maryland. I am indebted to him for telling me of 
the time when he knew Turing at the National Physical Laboratory, in 
England in the late 1940s. 

10. A few of the mathematicians that I have known were openly gay, 
but I would not say that being gay is common in the profession. And, 
if you must know, I am not gay, and I did not have a nervous break
down. As for being bald, I shall admit to having a receding hairline. 
Well, to be quite honest, a permanently receded hairline. 

CHAPTER 16: MATHEMATICAL INVENTION: 

PSYCHOLOGY AND AESTHETICS 

1. H. Poincare, "L'invention mathematique" (Mathematical cre
ation), Science et methode, Ernest Flammarion, Paris, 1908, chapter 3; En
glish trans. in Science and Method, Dover, New York, 1952. 

2. J. Hadamard, The Psychology of Invention in the Mathematical Field, 
Princeton University Press, Princeton, NJ, 1945; enlarged 1949 edition 
reprinted by Dover, New York, 1954. 

3. Einstein's letter is reproduced as Appendix II in Hadamard's 
book; see note 2. 

4. There are exceptions. Poincare's philosophical writings (see, for 
instance, note 1) are good literature. Interestingly, young Henri Poin
care had started to write a novel. From what we know of the novel, it is 
no great loss to us that he abandoned this project. But his early literary 
preoccupations were clearly an asset when Poincare later started writ
ing on the philosophy of science. 

5. The implicit function theorem plays a foundational role in differ
ential geometry (the study of differential manifolds). See, for instance, 
S. Lang, Differential Manifolds, Addison-Wesley, Reading, MA, 1972. 

6. An example is the proof of persistence of hyperbolic sets; see 
M. W. Hirsch and C C. Pugh, "Stable manifolds and hyperbolic sets" 
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in Global Analysis (Berkeley, Calif.; 1968), Proc. Sympos. in Pure Math. 14, 
Amer. Math. Soc., Providence, RI, 1970, 132-163. , 

7. There are actually several ergodic theorems: a pointwise ergodic 
theorem (Birkhoff) and a mean ergodic theorem (van Neumann) ap
peared in 1932; other ergodic theorems have followed. These theorems 
permit the definition of "time averages" and play a foundational role 
in ergodic theory. (See, for instance, P. Billingsley, Ergodic Theory and 
Information, John Wiley & Sons, New York, 1965.) 

CHAPTER 17: THE CIRCLE THEOREM AND AN 

INFINITE-DIMENSIONAL LABYRINTH 

1. See T. D. Lee and C. N. Yang, "Statistical theory of equations of 
state and phase transitions, II: Lattice gas and Ising model," Physical 
Rev. (2) 87 (1952), 410-419, and also T. Asano, "Theorems on the parti
tion functions of the Heisenberg ferromagnets," J. Phys. Soc. Japan 29 
(1970), 350-359. I have long been fascinated with the Lee-Yang circle 
theorem (see D. Ruelle, "Extension of the Lee-Yang circle theorem," 
Phys. Rev. Lett. 26 (1971), 303-304), and I think that there are still mys
teries to be unveiled in this area. 

2. The fundamental theorem of algebra is a theorem of analysis 
more than of algebra. It says that for a polynomial P (z) = "L;=oa1zl, 

where the a1 are complex numbers and am = 1, there exist complex num
bers C1, ... , Cm such that P (z) = I1f=1 (z - c1). 

CHAPTER 18: MISTAKE! 

1. The Chinese mathematician Shiing-shen Chern (1911-2004) spent 
a good part of his career in the United States. 

2. The references are H. Hopf, "Uber die Abbildungen der dreidi
mensionalen-Sphare auf die Kugel-flache," Math. Ann. 104, (1931) 637-
665; "Uber die Abbildungen van Spharen auf Spharen niedrigerer Di
mension," Fund. Math. 25 (1935), 427-440. 

3. An algorithm solves a certain type of problem upon presentation 
of suitable data. For instance, the problem can be is this integer a prime? 
and the integer for which the question is asked is the data. The data 
have a certain length, which is here the number of digits of the integer. 
It is of obvious interest to know how fast an algorithm is, that is, how 
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long it will take to solve a given problem. For instance, for a polyno
mial-time algorithm, the execution time is bounded by a polynomial 
in the length of the data. A problem is considered tractable if it has 
a polynomial-time algorithm. Remarkably, there is a polynomial-time 
algorithm for primality testing (i.e., to find out if an integer is a 
prime or not), but no polynomial-time algorithm is known to find the 
prime factors of an integer that is not a prime. (The tractability of 
primality testing was proved in 2002 by M. Agrawal, N. Kayal, and 
N. Saxena.) For some problems, if one can guess an answer, this answer 
can be checked in polynomial time, and there is a class of such prob
lems that are in some sense equivalent (NP-complete class; see note 9 
of chapter 14). A big open question is whether NP-complete problems 
can actually be solved in polynomial time. It is generally assumed that 
this is not the case, but there is no proof. 

4. The Poincare conjecture (1904) characterizes the three-dimen
sional sphere among three-dimensional manifolds. After many other 
attempts, it seems that Grigori Perelman finally proved the Poincare 
conjecture in 2002. 

5. A. Jaffe and F. Quinn, "Theoretical mathematics' toward a cul
tural synthesis of mathematics and theoretical physics," Bull. Amer. 
Math. Soc. N.S. 29 (1993), 1-13; M. Atiyah et al., "Responses," Bull. 
Amer. Math. Soc. N.S. 30 (1994), 178-207. 

6. So-called strange attractors; see, for instance, J.-P. Eckmann and 
D. Ruelle, "Ergodic theory of chaos and strange attractors," Rev. Mod
ern Phys. 57 (1985), 617-656. 

7. Suppose that the surface of the sphere is cut into /1 countries" 
(there are no seas), that each country is connected (not composed of 
disjoint pieces), and we want to color the countries so that countries 
with a common boundary have different colors (we allow same-color 
countries that have only a finite number of boundary points in 
common). How many colors do we need? K. Appel and W. Haken in 
1977 published a computer-aided proof finding that four colors are 
sufficient. 

8. The American mathematical physicist Oscar E. Lanford (1940-) 
made several important contributions to statistical mechanics. His 
computer-aided proof is unpublished. I discussed it earlier in "Mathe
matical Platonism reconsidered"; see chapter 1, note 1. 

9. See M. Aschbacher, "The status of the classification of the finite 
simple groups," Notices Amer. Math. Soc. 51 (2004), 736-740. 
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10. If you put spherical marbles in a cubic container, the maximum 
density that can be achieved in the limit of a large container is known 
as the close-packing density (for spheres). This density is reasonably easy 
to guess, but to prove the guess seems extremely hard. See T. Hales 
"The status of the Kepler conjecture," Math. Intelligencer 16 (1994), 47-
58, and B. Casselman, "The difficulties of kissing in three dimensions," 
Notices Amer. Math. Soc. 51 (2004), 884-885. 

11. See note 5 above. 

CHAPTER 19: THE SMILE OF MONA LISA 

l. An obvious remark is that, perhaps, in spite of what I think and 
claim, the unnamed seminar speaker actually said antisymmetric. The 
anti-Semitic that I heard would then be a production of my uncon
scious, not his. I shall not argue the reasons I think as I do but note that, 
clearly, somebody's unconscious was at work. And, for the purposes of 
the present discussion, it is not essential to know whose it was. 

2. The original German title is Eine Kindheitserinnerung des Leonardo 
da Vinci. To the art historian Meyer Schapiro we owe a fundamental 
and extremely readable study of Freud's book ("Leonardo and Freud," 
Journal of the History of Ideas 17 (1956), 147-179). I have read the Kind
heitserinnerung in a bilingual French-German version (Un souvenir 
d'enfance de Leonard de Vinci, Gallimard, Paris, 1995), with a long pref
ace by the psychoanalyst J.-B. Pontalis, who uses M. Schapiro's study. 
Freud's Leonardo gives a possible and very interesting interpretation of 
the personality of the great artist and is excellent reading. Just keep an 
alert and critical mind! And, by the way, another book that I found 
great reading is Freud's Moses and Monotheism (Der Mann Moses und 
die monotheistische Religion, Verlag Allert de Lange, Amsterdam, 1939). 

3. Some people believe that Leonardo was homosexual. Perhaps 
you would prefer to think that he had an incredibly romantic love af
fair with a stunningly beautiful Florentine noblewoman, breathless 
and tragic, but you can't accept the notion that he had no sex life at 
all! Still, Freud could guess better than most people what was going 
on in a person's mind, and he may well have been right here. 

4. These are Leonardo's quotations in Freud's book. 
5. See chapter l, note 2. 
6. I am here following in part J. Laplanche and J.-B. Pontalis, Vocabu

laire de la psychanalyse, Presses Universitaires de France, Paris, 1981. 
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CHAPTER 20: TINKERING AND THE CONSTRUCTION 

OF MATHEMATICAL THEORIES 

1. How strong the bias is may be described by a temperature: strong 
bias = low temperature. The standard picture here is to find an energy 
minimum rather than a maximum of interest. High temperature cor
responds to a random walk that jumps around a lot, paying only minor 
attention to lowering the energy. When using a computer, a good strat
egy, called simulated annealing, is to start at high temperature (visiting 
a lot of ground without getting stuck and settling in a wide region of 
low energy). Then the temperature is progressively lowered (to refine 
the selection of a low-energy value). 

2. F. Jacob "Evolution and tinkering," Science 196 (1977), 1161-1166. 
The French biologist Fran<;ois Jacob (1920-) is known for his 
groundbreaking work on regulatory activities in bacteria. 

3. Evolution could, of course, have done all kinds of different things. 
I like to think that it might have produced vertebrates with six legs 
instead of four, so that one pair of legs could have more easily been 
freed to obtain wings or arms. Well-known imaginary creatures could 
then have become real: dragons (with four legs and two wings), cen
taurs (with four legs and two arms), and angels (with two legs, two 
arms, and two wings). (See D. Ruelle, "Here be no dragons," Nature 
411 (2001), 27]. 

4. Aharon Kantorovich, Scientific Discovery, Logic and Tinkering, State 
Unversity of New York Press, Albany, 1993. 

CHAPTER 21: THE STRATEGY OF MATHEMATICAL INVENTION 

1. For instance, D. Zeilberger has given a (Maple) computer pro
gram to prove identities involving hypergeometric functions ("A fast 
algorithm for proving terminating hypergeometric identities" Discrete 
Math. 80 (1990), 207-211). 

2. See Section 1.4.1. in S. Wolfram, The Mathematica Book, Cambridge 
University Press, Cambridge, 1996. 

3. See the correspondence by E. J. Larson and L. Witham in "Lead
ing scientists still reject God," Nature 394 (1998), 313. This shows low 
figures (14.3 percent for mathematicians, 7.5 percent for physicists) for 
religious belief among members of the National Academy of Science 
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(USA). Higher percentages available on the Internet for other samples 
show the same factor of 2 for religious inclination of mathematicians 
over physicists. 

CHAPTER 22: MATHEMATICAL PHYSICS AND EMERGENT BEHAVIOR 

1. The Italian mathematician, astronomer, and physicist Galileo Ga
lilei (1564-1642) is one of the founders of modern science. His freedom 
of thinking got him in trouble with the Catholic Church of the time. It 
is interesting to speculate with which authorities he would have gotten 
in trouble if he had lived in the present period. Galileo insisted that 
philosophy should be studied in the great book of the world, written 
by nature, not in the texts of the Greek philosopher Aristotle (384-322 
BC). In the Saggiatore (1623) is a famous quotation: "La filosofia e scritta 
in questo grandissimo libro che continuamente ci sta aperto innanzi a 
gli occhi (io dico l'universo) .... Egli e scritto in lingua matematica." 
(Philosophy is written in this very great book that is there constantly 
open to our eyes (I mean the universe) .... It is written in mathematical 
language.) 

2. The German-American Albert Einstein (1879-1955) was probably 
the greatest physicist of the twentieth century. 

3. The American theoretical physicist Richard Feynman (1918-1988) 
reworked in depth several aspects of quantum mechanics. 

4. Here is what the Swiss mathematical physicist Res Jost (1918-
1990) wrote: "In the thirties, under the demoralizing influence of quan
tum-theoretic perturbation theory, the mathematics required of a theo
retical physicist was reduced to a rudimentary knowledge of the Latin 
and Greek alphabets" (quoted by R. F. Streater and A. S. Wightman, 
PCT, spin and statistics, and all that, W. A. Benjamin, New York, 1964). 

5. Modern quantum mechanics dates from its mathematical formu
lation in 1925 by the German Werner Heisenberg (1901-1976) and, in a 
different form, in 1926 by the Austrian Erwin Schrodinger (1887-1961). 

6. An essential role in the conceptual foundation of statistical me
chanics was played by the Austrian Ludwig Boltzmann (1844-1906) 
and the American J. Willard Gibbs (1839-1903). 

7. Note that physics always involves an essential nonmathematical 
element: the operational identification of "things" in nature for which 
one will try to find a mathematical description. To have an equilibrium 
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state of water, one has to let water rest for a suitable time, check that 
the water does not move, build a thermometer and check that the tem
perature does not depend on place or time, and so on. 

8. The Russian Roland L. Dobrushin (1929-1995) was an outstand
ing probabilist who took interest in equilibrium statistical mechanics 
and obtained deep results in that area. 

9. The Russian mathematician Yakov G. Sinai (1935-) made funda
mental contributions to the ergodic theory of dynamical systems and 
to statistical mechanics. 

10. The American mathematician Robert E. Bowen (1947-1978), 
known as Rufus Bowen, made essential contributions to the theory 
of smooth dynamical systems. (He told me that he chose the name 
Rufus because he disliked being called Bob.) He was the opposite 
of an agitated genius: when he explained some mathematical problem 
in his slow, quiet voice, you forgot everything except the question 
that he was describing, with absolute clarity. He was one of the very 
best mathematicians of his age when he unexpectedly died of brain 
hemorrhage. 

11. Some of the ideas mentioned here are discussed in the following 
technical books: R. Bowen, Equilibrium States and the Ergodic Theory of 
Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, Berlin, 
1975; D. Ruelle, Thermodynamic Formalism: The Mathematical Structures 
of Classical Equilibrium Statistical Mechanics, Addison-Wesley, Reading, 
MA, 1978; and W. Parry and M. Pollicott, Zeta Functions and the Periodic 
Orbit Structure of Hyperbolic Dynamics, Asterisque 187-188, Soc. Math. 
de France, Paris, 1990. 

12. See, for instance, my nontechnical book Chance and Chaos, Prince
ton University Press, Princeton, 1991. 

CHAPTER 23: THE BEAUTY OF MATHEMATICS 

l. As far as dynamical systems are concerned, I made several visits 
to Berkeley in the 1960s and '70s during Steve Smale's great "hyper
bolic" period, then to the Instituto Nacional de Matematica Pura e 
Aplicada in Rio de Janeiro when Jacob Palis and Ricardo Mane flour
ished. As to mathematical physics, I was in Zurich (Eidgenossische 
Technische Hochschule Zurich) with Res Jost in the early '60s, then at 
the Institute for Advanced Study in Princeton at the time of C.-N. Yang 
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and Freeman Dyson. I also benefitted from the statistical mechanics 
activity around Joel Lebowitz at Yeshiva Univerf?ity and later Rutgers. 
And of course I was immersed in the constant mathematics and mathe
matical physics activity at the IHES in Bures sur Yvette for several de
cades in the second half of the twentieth century. 

2. And this is the end of your toil, 0 you, the patient reader of notes! 
We are leaving the academy and its disputes behind us. We can now 
breathe some fresh air and allow ourselves to be again, for a while, 
ayewµe-cprJ7:ot, that is, geometrically inept, or nonmathematicians. 
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ideology, 17, 58, 116 
imagination, 57 
implicit function theorem, 89 
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