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PREFACE 

This book is the outgrowth of our teaching advanced undergraduate and gradu
ate courses over the past 20 years. These courses have been taught to different 
audiences, including students in electrical and electronics engineering, computer 
engineering, computer science and informatics, as well as to an interdisciplinary 
audience of a graduate course on automation. This experience led us to make the 
book as self-contained as possible and to address students with different back
grounds. As prerequisitive knowledge the reader requires only basic calculus. 
elementary linear algebra, and some probability theory basics. A number of mathe
matical tools, such as probability and statistics as well as constrained optimization. 
needed by various chapters, are treated in four Appendices. The book is designed 
to serve as a text for advanced undergraduate and graduate students, and it can 
be used for either a one- or a two-semester course. Furthermore, it is intended 
to be used as a self-study and reference book for research and for the practicing 
scientist/engineer. This latter audience was also our second incentive for writing 
this book, due to the involvement of our group in a number of projects related to 
pattern recognition. 

The philosophy of the book is to present various pattern recognition tasks in 
a unified way, including image analysis, speech processing, and communication 
applications. Despite their differences, these areas do share common features and 
their study can only benefit from a unified approach. Each chapterofthe book starts 
with the basics and moves progressively to more advanced topics and reviews up
to-date techniques. A number of problems and computer exercises are given at 
the end of each chapter and a solutions manual is available from the publisher. 
Furthermore, a number of demonstrations based on MATLAB are available via 
the web at the book's site, http://www.di.uoa.gr/~stpatrec. 

Our intention is to update the site regularly with more and/or improved versions 
of these demonstrations. Suggestions are always welcome. Also at this web site, a 
page will be available for typos, which are unavoidable, despite frequent careful 
reading. The authors would appreciate readers notifying them about any typos 
found. 

xiii 
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CHAPTER l _____________ _ 

INTRODUCTION 

I. I IS PATIERN RECOGNITION IMPORTANT? 

Patrern recognition is the scientific discipline whose goal is the classification of 
objecrs into a number of categories or classes. Depending on the application, these 
objects can be images or signal waveforms or any type of measurements that need 
to be classified. We will refer to these objects using the generic term parrerns. 
Pattern recognition has a long history, but before the 1960s it was mostly the 
output of theoretical research in the area of statistics. As with everything else, the 
advent of computers increased the demand for practical applications of pattern 
recognition, which in turn set new demands for further theoretical developments. 
As our society evolves from the industrial to its postindustrial phase, automation 
in industrial production and the need for information handling and retrieval are 
becoming increasingly important. This trend has pushed pattern recognition to the 
high edge of today's engineering applications and research. Pattern recognition is 
an integral part in most machine intelligence systems built for decision making. 

Machine vision is an area in which pattern recognition is of importance. 
A machine vision system captures images via a camera and analyzes them to 
produce descriptions of what is imaged. A typical application of a machine vision 
system is in the manufacturing industry, either for automated visual inspection or 
for automation in the assembly line. For example, in inspection, manufactured 
objects on a moving conveyor may pass the inspection station, where the camera 
stands, and it has to be ascertained whether there is a defect. Thus, images have 
to be analyzed on line. and a pattern recognition system has to classify the objects 
into the "defect" or "non-defect" class. After that, an action has to be taken, such as 
to reject the offending parts. In an assembly line, different objects must be located 
and "recognized," that is, classified in one of a number of classes known a priori. 
Examples are the "screwdriver class," the "German key class," and so forth in a 
tools' manufacturing unit. Then a robot arm can place the objects in the right place. 

Character (letter or number) recognition is another important area of paltem 
recognition, with major implications in automation and infomiation handling. 
Optical character recognition (OCR) systems are already commercially available 
and more or less familiar to all of us. An OCR system has a "front end" device 
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consisting of a light source, a scan lens, a document transport, and a detector. 
At the output of the light-sensitive detector, light intensity variation is translated 
into "numbers" and an image array is fom1ed. In the sequel, a series of image 
processing techniques are applied leading to line and character segmentation. The 
pattern recognition software then takes over to recognize the characters-that is, 
to classify each character in the correct "letter, number, punctuation" class. Storing 
the recognized document has a twofold advantage over storing its scanned image. 
First, further electronic processing, if needed, is easy via a word processor, and 
second, it is much more efficient to store ASCII characters than a document image. 
Besides the printed character recognition systems, there is a great deal of interest 
invested in systems that recognize handwriting. A typical commercial application 
of such a system is in the machine reading of bank checks. The machine must be 
able to recognize the amounts in figures and digits and match them. Furthermore, 
it could check whether the payee corresponds to the account to be credited. Even 
if only half of the checks are manipulated correctly by such a machine, much 
labor can be saved from a tedious job. Another application is in automatic mail
sorting machines for postal code identification in post offices. On-line handwriting 
recognition systems are another area of great commercial interest. Such systems 
will accompany pen computers, with which the entry of data will be done not 
via the keyboard but by writing. This complies with today's tendency to develop 
machines and computers with interfaces acquiring human-like skills. 

Computer-aided diagnosis is another important application of pattern recogni
tion, aiming at assisting doctors in making diagnostic decisions. The final diagnosis 
is, of course, made by the doctor. Computer-assisted diagnosis has been applied 
to and is of interest for a variety of medical data, such as X-rays, computed 
tomographic images, ultrasound images, electrocardiograms (ECGs), and elec
troencephalograms (EEGs). The need for a computer-aided diagnosis stems from 
the fact that medical data are often not easily interpretable, and the interpretation 
can depend very much on the skill of the doctor. Let us take for example X-ray 
mammography for the detection of breast cancer. Although mammography is cur
rently the best method for detecting breast cancer, 10%-30% of women who have 
the disease and undergo mammography have negative mammograms. In approxi
mately two thirds of these cases with false results the radiologist failed to detect the 
cancer, which was evident retrospectively. This may be due to poor image quality, 
eye fatigue of the radiologist, or the subtle nature of the findings. The percentage of 
correct classifications improves at a second reading by another radiologist. Thus, 
one can aim to develop a pattern recognition system in order to assist radiologists 
with a "second" opinion. Increasing confidence in the diagnosis based on mammo
grams would, in turn, decrease the number of patients with suspected breast cancer 
who have to undergo surgical breast biopsy, with its associated complications. 

Speech recognition is another area in which a great deal of research and develop
ment effort has been invested. Speech is the most natural means by which humans 
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communicate and exchange information. Thus, the goal of building intelligent 
machines that recognize spoken information has been a long-standing one for 
scientists and engineers as well as science fiction writers. Potential applications of 
such machines are numerous. They can be used, for example, to improve efficiency 
in a manufacturing environment, to control machines in hazardous environments 
remotely, and to help handicapped people to control machines by talking to them. 
A major effort, which has already had considerable success, is to enter data into 
a computer via a microphone. Software, built around a pattern (spoken sounds 
in this case) recognition system, recognizes the spoken text and translates it into 
ASCII characters, which are shown on the screen and can be stored in the memory. 
Entering information by "talking" to a computer is twice as fast as entry by a skilled 
typist. Furthermore, this can enhance our ability to communicate with deaf and 
dumb people. 

The foregoing are only four examples from a much larger number of possible 
applications. Typically, we refer to fingerprint identification, signature authenti
cation, text retrieval, and face and gesture recognition. The last applications have 
recently attracted much research interest and investment in an attempt to facilitate 
human-machine interaction and further enhance the role of computers in office 
automation, automatic personalization of environments, and so forth. Just to pro
voke imagination, it is worth pointing out that the MPEG-7 standard includes 
provision for content-based video information retrieval from digital libraries of 
the type: search and find all video scenes in a digital library showing person 
"X" laughing. Of course, to achieve the final goals in all of these applications, 
pattern recognition is closely linked with other scientific disciplines, such as 
linguistics, computer graphics, and vision. 

Having aroused the reader's curiosity about pattern recognition, we will next 
sketch the basic philosophy and methodological directions in which the various 
pattern recognition approaches have evolved and developed. 

1.2 FEATURES, FEATURE VECTORS, AND CLASSIFIERS 

Let us first simulate a simplified case "mimicking" a medical image classification 
task. Figure I. I shows two images, each having a distinct region inside it. The 
two regions are also themselves visually different. We could say that the region of 
Figure I. I a results from a benign lesion, class A, and that of Figure I. I b from a 
malignant one (cancer), class B. We will further assume that these are not the only 
patterns (images) that are available to us, but we have access to an image database 
with a number of patterns, some of which are known to originate from class A and 
some from class B. 

The first step is to identify the measurable quantities that make these two regions 
distinct from each other. Figure 1.2 shows a plot of the mean value of the intensity 
in each region of interest versus the corresponding standard deviation around 
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(a) (b) 

FIGURE I.I: Examples of image regions corresponding to (a) class A and 
(b) class B. 

this mean. Each point corresponds to a different image from the available database. 
It turns out that class A patterns tend to spread in a different area from class B 
patterns. The straight line seems to be a good candidate for separating the two 
classes. Let us now assume that we are given a new image with a region in it 
and that we do not know to which class it belongs. It is reasonable to say that we 

µ 

0 0 
0 

0 0 0 

0 0 

* 
+++ + 
+ ++ + 

(J 

FIGURE 1.2: Plot of the mean value versus the standard deviation for a number 
of different images originating from class A (o) and class B (+).In this case, a 
straight line separates the two classes. 
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measure the mean intensity and standard deviation in the region of interest and we 
plot the corresponding point. This is shown by the asterisk ( *) in Figure 1.2. Then 
it is sensible to assume that the unknown pattern is more likely to belong to class A 
than class B. 

The preceding artificial classification task has outlined the rationale behind 
a large class of pattern recognition problems. The measurements used for the 
classification, the mean value and the standard deviation in this case, are known 
as features. In the more general case I features x;. i = I, 2, ... , I. are used and 
they form the feature vector 

where T denotes transposition. Each of the feature vectors identifies uniquely a 
single pattern (object). Throughout this book features and feature vectors will 
be treated as random variable.1· and vectors, respectively. This is natural, as the 
measurements resulting from different patterns exhibit a random variation. This 
is due partly to the measurement noise of the measuring devices and partly to 
the distinct characteristics of each pattern. For example, in X-ray imaging large 
variations are expected because of the differences in physiology among indivi
duals. This is the reason for the scattering of the points in each class shown in 
Figure I. I. 

The straight line in Figure 1.2 is known as the decision line, and it constitutes 
the classifier whose role is to divide the feature space into regions that correspond 
to either class A or class B. If a feature vector x, corresponding to an unknown 
pattern, falls in the class A region, it is classified as class A, otherwise as class B. 
This does not necessarily mean that the decision is correct. If it is not correct. 
a misclassification has occurred. In order to draw the straight line in Figure 1.2 
we exploited the fact that we knew the labels (class A or B) for each point of 
the figure. The patterns (feature vectors) whose true class is known and which 
are used for the design of the classifier are known as training patterns (training 
feature vectors). 

Having outlined the definitions and the rationale, let us point out the basic 
questions arising in a classification task. 

• How are the features generated? In the preceding example, we used the 
mean and the standard deviation, because we knew how the images had 
been generated. In practice. this is far from obvious. It is problem dependent. 
and it concerns the feature generation stage of the design of a classification 
system that performs a given pattern recognition task. 

• What is the best number I of features to use? This is also a very important 
task and it concerns the feature selection stage of the classification system. 
In practice. a larger than necessary number of feature candidates is generated 
and then the "best" of them is adopted. 
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patterns feature 
generation 

feature 
selection 

classifier 
design 

system 
evaluation 

sensor 

FIGURE 1.3: The basic stages involved in the design of a classification system. 

• Having adopted the appropriate, for the specific task, features, how does 
one design the classifier? In the preceding example the straight line was 
drawn empirically, just to please the eye. In practice, this cannot be the 
case, and the line should be drawn optimally, with respect to an optimality 
criterion. Furthermore, problems for which a linear classifier (straight line or 
hyperplane in the /-dimensional space) can result in acceptable performance 
are not the rule. In general, the surfaces dividing the space in the various 
class regions arc nonlinear. What type of nonlinearity must one adopt and 
what type of optimizing criterion must be used in order to locate a surface in 
the right place in the I-dimensional feature space? These questions concern 
the classifier design stage. 

• Finally, once the classifier has been designed, how can one assess the per
formance of the designed classifier? That is, what is the classification error 
rate? This is the task of the system evaluation stage. 

Figure l .3 shows the various stages followed for the design of a classification 
system. As is apparent from the feedback arrows, these stages are not independent. 
On the contrary, they are interrelated and, depending on the results, one may 
go back to redesign earlier stages in order to improve the overall performance. 
Furthermore, there are some methods that combine stages, for example, the feature 
selection and the classifier design stage, in a common optimization task. 

Although the reader has already been exposed to a number of basic problems at 
the heart of the design of a classification system, there are still a few things to be 
said. 

1.3 SUPERVISED VERSUS UNSUPERVISED 
PATTERN RECOGNITION 

In the example of Figure 1.1, we assumed that a set of training data were available, 
and the classifier was designed by exploiting this a priori known information. This 
is known as supervised pattern recognition. However, this is not always the case, 
and there is another type of pattern recognition tasks for which training data, of 
known class labels, are not available. In this type of problem, we are given a set 
of feature vectors x and the goal is to unravel the underlying similarities, and 
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cluster (group) "similar" vectors together. This is known as unsupervised pattern 
recognition or clustering. Such tasks arise in many applications in social sciences 
and engineering, such as remote sensing, image segmentation, and image and 
speech coding. Let us pick two such problems. 

In multispectral remote sensing, the electromagnetic energy emanating from 
the earth's surface is measured by sensitive scanners located aboard a satellite, an 
aircraft, or a space station. This energy may be reflected solar energy (passive) 
or the reflected part of the energy transmitted from the vehicle (active) in order 
to "interrogate" the earth's surface. The scanners are sensitive to a number of 
wavelength bands of the electromagnetic radiation. Different properties of the 
earth's surface contribute to the reflection of the energy in the different bands. For 
example, in the visible-infrared range properties such as the mineral and moisture 
contents of soils. the sedimentation of water, and the moisture content of vegetation 
are the main contributors to the reflected energy. In contrast, at the thermal end 
of the infrared, it is the thermal capacity and thermal properties of the surface 
and near subsurface that contribute to the reflection. Thus, each band measures 
different properties of the same patch of the earth's surface. In this way, images of 
the earth's surface corresponding to the spatial distribution of the reflected energy 
in each band can be created. The task now is to exploit this information in order 
to identify the various ground cover types, that is, built-up land, agricultural land, 
forest, fire burn, water, and diseased crop. To this end, one feature vector x for each 
cell from the "sensed" earth's surface is formed. The elements x;, i = 1, 2, .... I, 
of the vector are the corresponding image pixel intensities in the various spectral 
bands. In practice, the number of spectral bands varies. 

A clustering algorithm can be employed to reveal the groups in which feature 
vectors are clustered in the /-dimensional feature space. Points that correspond to 
the same ground cover type, such as water, are expected to cluster together and 
form groups. Once this is done, the analyst can identify the type of each cluster 
by associating a sample of points in each group with available reference ground 
data, that is, maps or visits. Figure 1.4 demonstrates the procedure. 

Clustering is also widely used in the social sciences in order to study and corre
late survey and statistical data and draw useful conclusions, which will then lead 
to the right actions. Let us again resort to a simplified example and assume that 
we are interested in studying whether there is any relation between a country's 
gross national product (GNP) and the level of people's illiteracy, on the one hand. 
and children's mortality rate on the other. In this case, each country is represented 
by a three-dimensional feature vector whose coordinates are indices measuring 
the quantities of interest. A clustering algorithm will then reveal a rather compact 
cluster corresponding to countries that exhibit low GNPs, high illiteracy levels. 
and high children's mortality expressed as a population percentage. 

A major issue in unsupervised pattern recognition is that of defining the 
"similarity" between two feature vectors and choosing an appropriate measure 
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FIGURE 1.4: (a) An illustration of various types of ground cover and 
(b) clustering of the respective features for multispectral imaging using two bands. 

for it. Another issue of importance is choosing an algorithmic scheme that will 
cluster (group) the vectors on the basis of the adopted similarity measure. In 
general, different algorithmic schemes may lead to different results, which the 
expert has to interpret. 

1.4 OUTLINE OF THE BOOK 

Chapters 2-10 deal with supervised pattern recognition and Chapters 11-16 deal 
with the unsupervised case. The goal of each chapter is to start with the basics, 
definitions and approaches, and move progressively to more advanced issues and 
recent techniques. To what extent the various topics covered in the book will be 
presented in a first course on pattern recognition depends very much on the course's 
focus, on the students' background, and, of course, on the lecturer. In the following 
outline of the chapters, we give our view and the topics that we cover in a first 
course on pattern recognition. No doubt, other views do exist and may be better 
suited to different audiences. At the end of each chapter, a number of problems 
and computer exercises are provided. 

Chapter 2 is focused on Bayesian classification and techniques for estimating 
unknown probability density functions. In a first course on pattern recognition, the 
sections related to Bayesian inference, the maximum entropy, and the expectation 
maximization (EM) algorithm are omitted. Special focus is put on the Bayesian 
classification, the minimum distance (Euclidean and Mahalanobis), and the nearest 
neighbor classifiers. 
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Chapter 3 deals with the design of linear classifiers. The sections dealing with 
the probability estimation property of the mean square solution as well as the 
bias variance dilemma are only briefly mentioned in our first course. The basic 
philosophy underlying the support vector machines can also be explained, although 
a deeper treatment requires mathematical tools (summarized in Appendix C) that 
most of the students are not familiar during a first course class. On the contrary. 
emphasis is put on the linear separability issue, the perceptron algorithm, and 
the mean square and least squares solutions. After all, these topics have a much 
broader horizon and applicability. 

Chapter 4 deals with the design of nonlinear classifiers. The section dealing with 
exact classification is bypassed in a first course. The proof of the backpropagation 
algorithm is usually very boring for most of the students and we bypass its details. 
A description of its rationale is given and the students experiment with it using 
MATLAB. The issues related to cost functions are bypassed. Pruning is discussed 
with an emphasis on generalization issues. Emphasis is also given to Cover's 
theorem and radial basis function (RBF) networks. The nonlinear support vector 
machines and decision trees are only briefly touched via a discussion on the basic 
philosophy behind their rationale. 

Chapter 5 deals with the feature selection stage, and we have made an effort 
to present most of the well-known techniques. Jn a first course we put emphasis 
on the /-test. This is because hypothesis testing also has a broad horizon, and at 
the same time it is easy for the students to apply it in computer exercises. Then, 
depending on time constraints, divergence. Bhattacharrya distance. and scattered 
matrices are presented and commented on, although their more detailed treatment 
is for a more advanced course. 

Chapter 6 deals with the feature generation stage using orthogonal transforms. 
The Karhunen-Loeve transform and singular value decomposition are introduced. 
ICA is bypassed in a first course. Then the OFT. DCT, DST, Hadamard, and Haar 
transforms are defined. The rest of the chapter focuses on the discrete time wavelet 
transform. The incentive is to give all the necessary information so that a newcomer 
in the wavelet field can grasp the basics and be able to develop software, based on 
filter banks. in order to generate features. This chapter is bypassed in a first course. 

Chapter 7 deals with feature generation focused on image classification. The 
sections concerning local linear transforms, moments, parametric models, and 
fractals are not covered in a first course. Emphasis is placed on first- and second
order statistics features as well as the run length method. The chain code for shape 
description is also taught. Computer exercises are then offered to generate these 
features and use them for classification for some case studies. In a one-semester 
course there is no time to cover more topics. 

Chapter 8 deals with template matching. Dynamic programming (DP) and the 
Viterbi algorithm are presented and then applied to speech recognition. In a 
two-semester course, emphasis is given to the DP and the Viterbi algorithm. 
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The edit distance seems to be a good case for the students to grasp the basics. 
Correlation matching is taught and the basic philosophy behind deformable 
template matching can also be presented. 

Chapter 9 deals with context-dependent classification. Hidden Markov models 
are introduced and applied to communications and speech recognition. This chapter 
is bypassed in a first course. 

Chapter 10 deals with system evaluation. The various error rate estimation 
techniques are discussed and a case study with real data is treated. The leave-one
out method and the resubstitution methods are emphasized in the second semester 
and students practice with computer exercises. 

Chapter 11 deals with the basic concepts of clustering. It focuses on definitions 
as well as on the major stages involved in a clustering task. The various types of 
data encountered in clustering applications are reviewed and the most commonly 
used proximity measures are provided. In a first course, only the most widely 
used proximity measures are covered (e.g., Ip norms, inner product, Hamming 
distance). 

Chapter 12 deals with sequential clustering algorithms. These include some 
of the simplest clustering schemes and they are well suited for a first course to 
introduce students to the basics of clustering and allow them to experiment with 
the computer. The sections related to estimation of the number of clusters and 
neural network implementations are bypassed. 

Chapter 13 deals with hierarchical clustering algorithms. In a first course, only 
the general agglomerative scheme is considered with an emphasis on single link 
and complete link algorithms, based on matrix theory. Agglomerative algorithms 
based on graph theory concepts as well as the divisive schemes are bypassed. 

Chapter 14 deals with clustering algorithms based on cost function optimization, 
using tools from differential calculus. Hard clustering and fuzzy and possibil
istic schemes are considered, based on various types of cluster representatives, 
including point representatives, hyperplane representatives, and shell-shaped 
representatives. In a first course, most of these algorithms are bypassed, and 
emphasis is given to the isodata algorithm. 

Chapter 15 features a high degree of modularity. It deals with clustering algo
rithms based on different ideas, which cannot be grouped under a single philosophy. 
Competitive learning, branch and bound, simulated annealing, and genetic algo
rithms are some of the schemes treated in this chapter. These are bypassed in a 
first course. 

Chapter 16 deals with the clustering validity stage of a clustering procedure. 
It contains rather advanced concepts and is omitted in a first course. Emphasis is 
given to the definitions of internal, external, and relative criteria and the random 
hypotheses used in each case. Indices, adopted in the framework of external and 
internal criteria, are presented, and examples are provided showing the use of these 
indices. 
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Syntactic pattern recognition methods are not treated in this book. Syntactic 
pattern recognition methods differ in philosophy from the methods discussed in 
this book and, in general, are applicable to different types of problems. In syntactic 
pattern recognition, the structure of the patterns is of paramount importance and 
pattern recognition is performed on the basis of a set of pattern primitives, a set 
of rules in the form of a grammar, and a recognizer called automaton. Thus, we 
were faced with a dilemma: either to increase the size of the book substantially, or 
to provide a short overview (which, however, exists in a number of other books) , 
or to omit it. The last option seemed to be the most sensible choice. 





CH A PT ER 2 _____________ _ 

CLASSIFIERS BASED ON 
BAYES DECISION THEORY 

2.1 INTRODUCTION 

This is the first chapter, out of three, dealing with the design of the classifier in a 
pattern recognition system. The approach to be followed builds upon probabilistic 
arguments stemming from the statistical nature of the generated features. As has 
already been pointed out in the previous introductory chapter, this is due to the 
statistical variation of the patterns as well as to the noise in the measuring sensors. 
Adopting this rea-;oning as our kickoff point, we will design classifiers that classify 
an unknown pattern in the most probable of the classes. Thus, our task now becomes 
to define what "most probable" means. 

Given a classification task of M classes, w1. w2, .... WM, and an unknown 
pattern, which is represented by a feature vector x, we form the M conditional 
probabilities P(w;lx), i = I, 2, ... , M. Sometimes, these are also referred to as 
a pos/eriori probabili1ies. In words, each of them represents the probability that the 
unknown pattern belongs to the respective class w;, given that the corresponding 
feature vector takes the value x. Who could then argue that these conditional proba
bilities are not sensible choices to quantify the term "most probable"? Indeed, the 
classifiers to be considered in this chapter compute either the maximum of these M 
values or, equivalently, the maximum of an appropriately defined function of them. 
The unknown pattern is then assigned to the class corresponding to this maximum. 

The first task we are faced with is the computation of the conditional proba
bilities. The Bayes rule will once more prove its usefulness! In the following a 
major effort in this chapter will be devoted to techniques for estimating probability 
density functions (pdf's), based on the available experimental evidence, that is. 
the feature vectors corresponding to the patterns of the training set. 

2.2 BAYES DECISION THEORY 

We will initially focus on the two-class case. Let w1. w2 be the two classes in 
which our patterns belong. In the sequel, we assume that the a priori probahili1ies 
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P(w1), P(wz) are known. This is a very reasonable assumption, because even 
if they are not known, they can easily be estimated from the available training 
feature vectors. Indeed, if N is the total number of available training patterns, 
and N1, N2 of them belong to w1 and wz , respectively, then P(w1) ~ Nif N and 
P(w2) ~ N2/ N. 

The other statistical quantities assumed to be known are the class-conditional 
probability density functions p(x \wi ), i = I, 2, describing the distribution of 
the feature vectors in each of the classes. If these are not known, they can also 
be estimated from the available training data, as we will discuss later on in this 
chapter. The pdf p(x \w;) is sometimes referred to as the likelihood function of 
w; with respect to x. Here we should stress the fact that an implicit assump
tion has been made. That is, the feature vectors can take any value in the 
I-dimensional feature space. In the case that feature vectors can take only dis
crete values, density functions p(x\w;) become probabilities and will be denoted 
by P(xlw;). 

We now have all the ingredients to compute our conditional probabilities, as 
stated in the introduction. To this end, let us recall from our probability course 
basics the Bayes rule (Appendix A) 

P(w;\x) = p(x\w;)P(wi) 
p(x) 

where p(x) is the pdf of x and for which we have (Appendix A) 

2 

p(x) = L p(x\w;)P(w;) 
i=I 

The Bayes classification rule can now be stated as 

If P(w1 \x) > P(wz \x), 
If P(w1 \x) < P(wz\x), 

x is classified to w1 
x is classified to wz 

(2.1) 

(2.2) 

(2.3) 

The case of equality is detrimental and the pattern can be assigned to either 
of the two classes. Using (2.1 ), the decision can equivalently be based on the 
inequalities 

(2.4) 

p(x) is not taken into account, because it is the same for all classes and it does 
not affect the decision. Furthermore, if the a priori probabilities are equal, that is, 
P(wi) = P(wz) = 1/2, Eq. (2.4) becomes 

(2.5) 
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p(a:jw) 

Xo .r 
---- R1 ---- ----R2 ----

FIGURE 2.1: Example of the two regions R1 and R1 formed by the Bayesian 
classifier for the case of two equiprobable classes. 

Thus, the search for the maximum now rests on the values of the conditional pdf's 
evaluated at x. Figure 2.1 presents an example of two equiprobable classes and 
shows the variations of p(xlw;), i = l, 2, as functions of x for the simple case 
of a single feature (I = I). The dotted line at xo is a threshold partitioning the 
feature space into two regions, R1 and R1. According to the Bayes decision rule. 
for all values of x in R 1 the classifier decides w1 and for all values in Rz it decides 
w2. However, it is obvious from the figure that decision errors are unavoidable. 
Indeed, there is a finite probability for an x to lie in the R1 region and at the same 
time to belong in class w1. Then our decision is in error. The same is true for 
points originating from class wi. It does not take much thought to see that the total 
probability, Pe, of committing a decision error is given by 

f xn j+oc 
2Pe = -oc p(xlwi)dx + xo p(xlw1)dx (2.6) 

which is equal to the total shaded area under the curves in Figure 2.1. We have now 
touched on a very important issue. Our starting point to arrive at the Bayes classifi
cation rule was rather empirical, via our interpretation of the term "most probable." 
We will now see that this classification test, though simple in its formulation, has 
a much more sound mathematical interpretation. 
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Minimizing the Classification Error Probability 

We will show that the Bayesian classifier is optimal with respect to minimizing 
the classification error probabiliLy. Indeed, the reader can easily verify, as an 
exercise, that moving the threshold away from xo, in Figure 2.1, always increases 
the corresponding shaded area under the curves. Let us now proceed with a more 
formal proof. 

Proof. Let R1 be the region of the feature space in which we decide in 
favor of w1 and R1 be the corresponding region for wi. Then an error is made 
if x E R1 although it belongs to Wz or if x E R1 although it belongs to w 1. 

That is, 

(2.7) 

where P(-, ·) is the joint probability of two events. Recalling, once more, our 
probability basics (Appendix A), this becomes 

Pe= P(x E R1lw1)P(w1) + P(x E R1 lw2)P(w2) 

= P(w1) { p(xlw1) dx + P(w2) { p(xlw2) dx (2.8) 
lR2 jR1 

or using the Bayes rule 

Pe= { P(w1 lx)p(x) dx + { P(w2lx)p(x) dx (2.9) 
jR2 jR1 

It is now easy to see that the error is minimized if the partitioning regions R1 and 
Rz of the feature space are chosen so that 

R1: P(wilx)> P(w2lx) 

Rz: P(wilx)> P(w1 Ix) (2.10) 

Indeed, since the union of the regions R1, R1 covers all the space, from the 
definition of a probability density function we have that 

f P(w1 lx)p(x) dx + f P(w1 lx)p(x) dx = P(w1) 
R1 R2 

Combining Eqs. (2.9) and (2.11 ), we get 

Pe= P(w1) -f (P(w1 Ix) - P(w2lx)) p(x) dx 
R1 

(2.11) 

(2.12) 
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This suggesrs that the probability of error b minimized if R1 is the region of space 
in which P(wtlx l > P(w2lx ). Then, R2 becomes the region where 1he reverse 

is true. • 

So for, wt: have dealt with the simple case of two classes. General izations 10 
the mullidass case are straightforward. In a classifil:ation task with M classes. 
<vi. w2 . ... , <1.1.11 , an unknown pattern. represented by lhc feature vector x. is 
assigned to class wi if 

P(u>;lx) > Pfo>Jlx) Vj ~ i (2. 13) 

11 1urns out that such a choice also minimizes the classification error probability 
(Problem 2.1 ). 

'.\-1inimi2ing the Average Risk 

The classification error probability is not always the best criterion to be adopted 
fo r minimization . This is because it assigns the same importanct: to all t:rrors. 
However, there are cases in which some errors may have more serious implications 
than others. Thus. in such cases it is more appropriate to assign a penalty Lerm to 
weigh each error. Lel us consider an M-class problem and let Rj . j = I. 2 . ... . M . 
he the regions of the feature space assigned to classes w J, respectively. Assume 
now that a feature vector x that helongs to class u.JJ.: lies in R1• i ~ k. Then we 
misd assify this vector in llJ; and an error is committed. A penal ty term J..1,;, known 
as loss. is associated with this wrong decision. The matrix L. which has at its (k. i l 
location the corresponding penalty term, is known as the loss matrix .1 The risk or 
loss associated with Wk is defined as 

(2. 14) 

Observe that the integral is the overall probahiliry of a feature vector from class 
Wk be ing classified in C•>;. This probability is weighted by Aki . Our goal now is to 
choose the partitioning regions Rj so thar rhc average risk 

.14 

r = L>k P(«>k) 
k=L 

(2. 15} 

1 Tht 1.:rminology '"'mes fmm 1he g<m.:ral Jc«ision theory. 
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is minimized. This is achieved if each of the integrals is minimized, which is 
equivalent to selecting partitioning regions so that 

M M 

x ER; if l; = :~:) .. k;p(xlwk)P(wk) < lj = l)•kJP(xlwk)P(wk) Vj # i 
k=l k=l 

(2.16) 

It is obvious that if Aki = 1 - 8k;, where 8k; is Kronecker's delta (0 if k # i and 
l if k = i), then minimizing the average risk becomes equivalent to minimizing 
the classification error probability. 

The two-class case. For this specific case we obtain 

l1 =All p(xlw1 )P(wi) + A11 p(xlwi)P(wi) 

Ii= A12p(xlw1)P(w1) + A12p(xlwi)P(wi) 

We assign x to w1 if /1 < /i, that is, 

(A21 - A12)p(xlwi)P(wi) < (A12 - A11)p(xjwi)P(w1) 

(2.17) 

(2.18) 

It is natural to assume that Aij > A;i (correct decisions are penalized much less than 
wrong ones). Adopting this assumption, the decision rule (2.16) for the two-class 
case now becomes 

( ) 'f l p(xlw1) ( ) P(wi) A11 - A12 
XE WI W2 I 12 := > < -----

p(xjwi) P(wi) A12 - A11 
(2.19) 

The ratio l12 is known as the likelihood ratio and the preceding test as the likeli
hood ratio test. Let us now investigate Eq. (2.19) a little further and consider the 
case of Figure 2.1. Assume that the loss matrix is of the form 

L _ ( 0 A
0
12) 

- A21 

If misclassification of patterns that come from wi is considered to have serious 
consequences, then we must choose A2t > A12. Thus, patterns are assigned to 
class w2 if 

where P(w1) = P(wi) = 1/2 has been assumed. That is, p(xlwi) is multiplied 
by a factor less than 1 and the effect of this is to move the threshold in Figure 2.1 
to the left of xo. In other words, region R1 is increased while R1 is decreased. The 
opposite would be true if A2t < A12-
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Example 2.1. In a two-class problem with a single feature x the pdf's are Gaussians with 
variance u 2 = I /2 for both classes and mean values 0 and I, respectively, that is, 

ff P(w1) = P(w2) = 1/2,computethethresholdvaluexo(a)forminimumerrorprobability 
and (b) for minimum risk if the loss matrix is 

Taking into account the shape of the Gaussian function graph (Appendix A), the threshold 
for the minimum probability case will be 

Taking the logarithm of both sides. we end up with xo = I /2. In the minimum risk case 
we get 

xo: exp(-x 2) = 2exp(-(x - 1)2) 

or xo = (l - In 2)/2 < I /2; that is, the threshold moves to the left of I /2. If the two 
classes are not equiprobable, then it is easily verified that if P(w1) > (<) P(w2) the thresh
old moves to the right (left). That is, we expand the region in which we decide in favor 
of the most probable class, since it is better to make less errors for the most probable 
class. 

2.3 DISCRIMINANT FUNCTIONS AND DECISION SURFACES 

It is by now clear that minimizing either the risk or the error probability (and 
also some other costs; see, for example, Problem 2.6) is equivalent to partitioning 
the feature space into M regions, for a task with M classes. If regions R;, R j 
happen to be contiguous, then they are separated by a decision surface in the 
multidimensional feature space. For the minimum error probability case, this is 
described by the equation 

P(w;lx) - P(wjlx) = 0 (2.20) 

From the one side of the surface this difference is positive and from the other 
it is negative. Sometimes, instead of working directly with probabilities (or risk 
functions), it may be more convenient, from a mathematical point of view, to 
work with an equivalent function of them, for example, g;(x) = f(P(w;lx)), 
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where f (.) is a monotonically increasing function. g; (x) is known as a discrimi
nant function. The decision test (2.13) is now stated as 

classify x in w; if g; (x) > g1 (x) '<I j i=- i (2.21) 

The decision surfaces, separating contiguous regions, are described by 

g;1(x) = g;(x) - g1(x) = 0, i, j =I, 2,. . ., M, ii=- j (2.22) 

So far, we have approached the classification problem via Bayesian probabilis
tic arguments and the goal was to minimize the classification error probability 
or the risk. However, as we will soon see, not all problems are well suited to 
such approaches. For example, in many cases the involved pdf's are complicated 
and their estimation is not an easy task. In such cases it may be preferable to 
compute decision surfaces directly by means of alternative costs, and this will 
be our focus in Chapters 3 and 4. Such approaches give rise to discriminant 
functions and decision surfaces, which are entities with no (necessary) relation 
to Bayesian classification, and they are, in general, suboptimal with respect Lo 

Bayesian classifiers. 
In the following we will focus on a particular family of decision surfaces asso

ciated with the Bayesian classification for the specific case of Gaussian density 
functions. 

2.4 BAYESIAN CLASSIFICATION FOR NORMAL DISTRIBUTIONS 

One of the most commonly encountered probability density functions in practice 
is the Gaussian or normal density function. The major reasons for its popularity 
are its computational tractability and the fact that it models adequately a large 
number of cases. Assume now that the likelihood functions of w; with respect to 
x in the /-dimensional feature space follow the general multivariate normal density 
(Appendix A) 

p(xlw;) = (2rr)l/2; L; 1112 exp(-~(x - µ;/ L;I (x - µ;)), 

i = 1, .. ., M (2.23) 

whereµ; = E[x] is the mean value of thew; class and E; the l x l covariance 
matrix (Appendix A) detined as 

(2.24) 

I I:; I denotes the determinant of I:; and E [ ·] the mean (or average or expected) 
value of a random variable. Sometimes, the symbol N(µ, I:) is used to denote a 
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Gaussian pdf with mean value µ, and covariance :E. Our goal, now, is to design 
the Bayesian classifier. Because of the exponential form of the involved densities. 
it is preferable to work with the following discriminant functions, which involve 
the (monotonic) logarithmic function In(-): 

(2.25) 

or 

(2.26) 

where c; is a constant equal to -(//2) In 2rr - (I /2) In I :E; I. Expanding, we obtain 

I T -1 l T -1 I T -1 I r -1 o,·(x) = - -x I:. x + -x L· µ,· - -µ,. :E /L· + -µ,. I: x 
'~ 2 l 2 I I 2 11 1 2 11 

(2.27) 

In general, this is a nonlinear quadratic form. Take, for example, the case of I = 2 
and assume that 

Then (2.27) becomes 

and obviously the associated decision curves g;(x) - gj(X) = 0 are quadrics 
(i.e .. ellipsoids, parabolas, hyperbolas, pairs of lines). That is, in such cases, the 
Bayesian classifier is a quadric class{fier, in the sense that the partition of the 
feature space is performed via quadric decision surfaces. For I > 2 the decision 
surfaces are hyperquadrics. Figure 2.2a and 2.2b show the decision curves corre
sponding to P(w1) = P(w2), µ, 1 = [O,Of and µ, 2 =[I.Of. The covariance 
matrices for the two classes are 

I: -[0.1 0.0] 
I - 0.0 0.15 ' 

for the case of Figure 2.2a and 

I: _ [0.1 0.0] 
I - 0.0 0.15 . 

for the case of Figure 2.2b. 

1:2 = [0.2 0.0 J 
0.0 0.25 

:E~ = [0.15 0.0] 
- 0.0 0.1 
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FIGURE 2.2: Quadric decision curves. 

Decision Hyperplanes 

The only quadratic contribution in (2.27) comes from the term x T I:;-l x. If we 
now assume that the covariance matrix is the same in all classes, that is, I:; = I:, 
the quadratic term will be the same in all discriminant functions. Hence, it does 
not enter into the comparisons for computing the maximum and it cancels out in 
the decision surface equations. The same is true for the constants c;. Thus, they 
can be omitted and we may redefine g; (x) as 

g;(x) = wT x + w;o (2.29) 

where 

(2.30) 

and 

(2.3 l) 

Hence g;(x) is a linear function of x and the respective decision surfaces are 
hyperplanes. Let us investigate this a bit more. 

• Diagonal covariance matrix with equal elements: Assume that the individual 
features, constituting the feature vector, are mutually uncorrelated and of 
the same variance (E[(x; - µ;)(xi - µ i )] = a 28;j ). Then, as discussed in 
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Appendix A, :E = a 2 ! , where I is the /-dimensional identity matrix, and 
(2.29) becomes 

I T 
g;(x) = 2 µ; x + w;o 

a 
(2.32) 

Thus. the corresponding decision hyperplanes can now be written as 
(verify it) 

(2.33) 

where 

w = µ; - µj (2.34) 

and 

(2.35) 

where llx II == J Xf + xi + · · · + xf is the Euclidean norm of x. Thus, the 

decision surface is a hyperplane passing through the point xo. Obviously, if 
P(w;) = P(wJ ). then xo = ! (µ; + µ J ), and the hyperplane passes through 
the mean ofµ;,µ J· 

The geometry is illustrated in Figure 2.3 for the two-dimensional case. We 
observe that the decision hyperplane (straight line) is orthogonal toµ; - µ J. 

Indeed, for any point x lying on the decision hyperplane, the vector x - x 0 

also lies on the hyperplane and 

g;J(x) = 0::::} wT(x -xo) = (µ; -µ1)T(x -xo) = 0 

That is, µ; - µ j is orthogonal to the decision hyperplane. Another point to 
be stressed is that the hyperplane is located closer to µ; (µ J) if P (w;) < 

P(w;)(P(w;) > P(wj)). Furthermore, if a 2 is small with respect to 
IIµ; - µ J II. the location of the hyperplane is rather insensitive to the values 
of P(w; ), P(w J ). This is expected, because small variance indicates that 
the random vectors are clustered within a small radius around their mean 
values. Thus a small shift of the decision hyperplane has a small effect on 
the result. 

Figure 2.4 illustrates this. For each class, the circles around the means 
indicate regions where samples have a high probability, say 98%, of being 
found. The case of Figure 2.4a corresponds to small variance and that 
of Figure 2.4b to large variance. No doubt the location of the decision 
hyperplane in Figure 2.4b is much more critical than that in Figure 2.4a. 
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FIGURE 2.3: Decision line for two classes and normally distrjbuted vectors 
with l: = u 2 1. 

• Nondiagonal covariance matrix: Following algebraic arguments similar to 
those used before, we end up with hyperplanes described by 

(2.36) 

(a) (b) 

FIGURE 2.4: Decision line (a) for compact and (b) for noncompact classes. 
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where 

(2.37) 

and 

I ( P(w;)) JL; - ILJ 
xo=-(µ, 1 +µ,1)-ln --

2 2 P(wj) llJL; - JLj llE-1 
(2.38) 

where llxllE-1 = (x7 .E- 1x) 112 is the so-called I:- 1 norm of x. The com
ments made before for the case of the diagonal covariance matrix are still 
valid, with one exception. The decision hyperplane is no longer orthogonal 
to the vector JL; - JLj but to its linear trall.lformativn .E- 1 (µ, 1 - µ, J ). 

Minimum Distance Classifiers 

We will now view this from a slightly different angle. Assuming equiprobable 
classes with the same covariance matrix, g; (x) in (2.26) is simplified to 

I T -I 
gi(X) = - 2(x - JL;) I: (x - JL;) (2.39) 

where constants have been neglected. 

• I: = a 2 J: ln this case maximum gi (x) implies minimum 

Euclidean distance: de = llx - JLi II (2.40) 

Thus, feature vectors are assigned to classes according to their Euclidean 
distance from the respective mean points. Can you verify that this result ties 
in with the geometry of the hyperplanes discussed before? 

Figure 2.5a shows curves of equal distance de = c from the mean points 
of each class. They are obviously circles of radius c (hyperspheres in the 
general case). 

• Nondiagonal .E: For this case maximizing g; (x) is equivalent to minimizing 
the I:- 1 norm, known as the 

Mahalanobis distance: d,,, = ( (x - JL;) T i::-1 (x _ JL;)) 
112 

(2.41) 

In this case the constant distanced,,, = c curves are ellipses (hyperellipses). 
Indeed, the covariance matrix is symmetric and, as discussed in Appendix B. 
it can always be diagonalized by a unitary transform 

(2.42) 

where <t>T =<t>- 1 and A is the diagonal matrix whose elements are the 
eigenvalues of .E.<t> has as its columns the corresponding (orthonormal) 
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(a) 
x I 

(b) 

J<'IGURE 2.5: Curves of(a) equal Euclidean distance and (b) equal Mahalanobis 
distance from the mean points of each class. 

eigenvectors of :E 

<l> = [v1, v2, ... , vi] 

Combining (2.41) and (2.42), we obtain 

(x - Jl;) T ¢A -I¢ T (x - P,;) = c2 

(2.43) 

(2.44) 

Define x' = <J>T x. The coordinates of x' are equal to v[ x, k = 1, 2, ... , l, 
that is, the projections of x onto the eigenvectors. In other words, they are 
the coordinates of x with respect to a new coordinate system whose axes are 
determined by Vk. k = 1, 2, ... , l. Equation (2.44) can now be written as 

( I I )2 ( I I )2 
XI - Jl;1 + ... + X 1- Jlil = C2 

),1 A/ 
(2.45) 

This is the equation of a hyperellipsoid in the new coordinate system. 
Figure 2.5b shows the l = 2 case. The center of mass of the ellipse is at 
Jl;, and the principal axes are aligned with the corresponding eigenvectors 
and have lengths 2,JY:kc, respectively. Thus, all points having the same 
Mahalanobis distance from a specific point are located on an ellipse. 

Example 2.2. In a two-class. two-dimensional classification task the feature vectors are 
generated by two normal distributions sharing the same covariance matrix 

I: = [I. I 0.3] 
0.3 1.9 

and the mean vectors areµ, 1 = [0, Of. P,2 = [3, 3f, respectively. 
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(a) Classify the vector [ 1.0. 2.21T according to the Bayesian classifier. 

It suffices to compute the Mahalanobis distance of [ 1.0. 2.2] T from the two mean vectors. 
Thus. 

d;1(µ.1 . x) = (x - µ.I lI:- 1 (x - µ. 1) 

= [ 1.0. 2.2] [ ~0~~5 ~~~~5] [~:~] = 2.952 

Similarly. 

d;1(µ.z.x) = [-2.0. -0.8) [ ~0~~5 -0.15] [-2.0] = 3.672 
0.55 -0.8 

{2.46) 

Thus, the vector is assigned to the class with mean vector [O. OIT Notice that the xiven 
vector [ 1.0. 2.2]T is closer to [3, 3]T with respect to the Euclidean distance. 

{b) Compute the principal axes of the ellipse centered at (0, Of that corresponds to a 
constant Mahalanobis distance d111 = ../2.952 from the center. 

To this end, we first calculate the eigenvalues of I:. 

d ([
1.1-J.. 

ct 0.3 0.3 ]) = J..2 - 1J.. + 2 = 0 
1.9 - J.. . 

or J..1 = I and J..2 = 2. To compute the eigenvectors we substitute these values into the 

equation 

(I: - J..l)v = 0 

and we obtain the unit norm eigenvectors 

It can easily be seen that they are mutually orthogonal. The principal axes of the ellipse are 
parallel to v 1 and vz and have lengths 3.436 and 4.859, respectively. 

2.5 ESTIMATION OF UNKNOWN PROBABILITY 
DENSITY FUNCTIONS 

So far. we have assumed that the probability density functions are known . 
However, this is not the most common case. In many problems. the underlying pdf 

has to be estimated from the available data. There are various ways to approach the 
problem. Sometimes we may know the type of the pdf (e.g ., Gaussian, Rayleigh) 
but we do not know certain parameters, such as the mean value or the variance. 
In contrast. in other cases we may not have information about the type of the 
pdf but we may know certain statistical parameters. such as the mean value and 
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the variance. Depending on the available information, different approaches can be 
adopted. This will be our focus in the next subsections. 

2.5.1 Maximum Likelihood Parameter Estimation 

Let us consider an M-class problem with feature vectors distributed according to 
p(xlw;), i = 1, 2, ... , M. We assume that these likelihood functions are given 
in a parametric form and that the corresponding parameters form the vectors 8; 
which are unknown. To show the dependence on 8; we write p(xlw;; 8; ). Our goal 
is to estimate the unknown parameters using a set of known feature vectors in each 
class. If we further assume that data from one class do not affect the parameter 
estimation of the others, we can formulate the problem independent of classes and 
simplify our notation. At the end, one has to solve one such problem for each class 
independently. 

Let x1. x2 •... , XN be random samples drawn from pdf p(x; 8). We form the 
joint pdf p(X; 8), where X = (x 1, ... , x N} is the set of the samples. Assuming 
statistical independence between the different samples we have 

N 

p(X; 8) = p(x1, x2 •... , xN; 8) =fl p(xk; 8) (2.47) 
k=l 

This is a function of 8 and it is also known as the likelihood function of 
8 with respect to X. The maximum likelihood (ML) method estimates 8 so 
that the likelihood function takes its maximum value, that is, 

N 

0 ML = arg m;x fl p(xk; 8) (2.48) 
k=l 

A necessary condition that 8 ML must satisfy in order to be a maximum is the 
gradient of the likelihood function with respect to 8 to be zero, that is 

() nf=l p(Xk; 8) = 0 
a8 

(2.49) 

Because of the monotonicity of the logarithmic function we define the /oglikeli
hood function as 

and (2.49) is equivalent to 

N 

L(8) =Inn p(xk; 8) 
k=I 

aL(8) =ta Jn p(xk; 8) = t 1 op(xk; 8) = 0 
a8 k=I a8 k=l p(xk; 8) a8 

(2.50) 

(2.5 l) 



Section 2.5: ESTIMATION OF UNKNOWN PROBABILITY DENSITY FUNCTIONS 29 

FIGURE 2.6: Maximum likelihood estimator. 

Figure 2.6 illustrates the method for the single unknown parameter case. The ML 
estimate corresponds to the peak of the (log) likelihood function . 

Maximum likelihood estimation has some very desirable properties. If Oo is 
the true value of the unknown parameter in p(x; 0). it can be shown that under 
generally valid conditions the following are true [Papo 91] 

• The ML estimate is asymptotically unbiased, which by definition means that 

Jim EfOi11iJ = 80 
N--+OC 

(2.52) 

Alternatively, we say that the estimate converges in the mean to the true 

value. The meaning of this is as follows. The estimate 0 ML is itself a random 
vector, because for different sample sets X different estimates will result. 
An estimate is called unbiased if its mean is the true value uf the unknown 
parameter. In the ML case this is true only asymptotically (N ~ oc ). 

• The ML estimate is asymptotically consistent, that is, it satisfies 

lim prob{llO ML - Boll .::; E} = 1 
N-> x 

(2.53) 

where E is arbitrarily small. Alternatively, we say that the estimate con
verges in probability. In other words, for large N it is highly probable that 
the resulting estimate will be arbitrarily close to the true value. A stronger 
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condition for consistency is also true: 

~ 2 
Jim E[llOML - Boll ] = 0 

N-">oo 
(2.54) 

In such cases we say that the estimate converges in the mean square. In 
words, for large N, the variance of the ML estimates tends to zero. 

Consistency is very important for an estimator, because it may be unbiased 
but the resulting estimates exhibit large variations around the mean. In such 
cases we have little confidence in the result from a single set X. 

• The ML estimate is asymptotically efficient; that is, it achieves the Cramer
Rao lower bound (Appendix A). This is the lowest value of variance, which 
any estimate can achieve. 

• The pdf of the ML estimate as N ~ oo approaches the Gaussian distribution 
with mean 80 [Cram 46]. This property is an offspring of (a) the central 
limit theorem (Appendix A) and (b) the fact that the ML estimate is related 
to the sum of random variables, that is, a ln(p(Xk; 8))/aO (Problem 2.16). 

In summary, the ML estimator is unbiased, is normally distributed, and has the 
minimum possible variance. However, all these nice properties are valid only for 
large values of N. 

Example 2.3. Let x l • x2, ... , x N be vectors stemmed from a normal distribution with 
known covariance matrix and unknown mean, that is, 

For N available samples we have 

N N 1 N 
L(µ) =Inn p(xk; µ) = -2 ln((2rr)1JEJ)- z L(xk - µlE- 1(xk - µ) (2.55) 

k=l k=l 

Taking the gradient with respect to µ, we obtain 

or 

ilL 
Fi7I 
aL 

aL(µ) iJii2 
aµ 

N 

= L E- 1(xk - µ) = 0 
k=l 

(2.56) 

(2.57) 
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That is, the ML estimate of the mean, for Gaussian densities, is the sample mean. However. 
this very "natural approximation" is not necessarily ML optimal for non-Gaussian density 
functions. 

2.5.2 Maximum A Posteriori Probability Estimation 

Fur the derivation of the maximum likelihood estimate we considered fJ as an 
unknown parameter. In this subsection we will consider it as a random vector. 
and we will estimate its value on the condition that samples x 1, ••• , x N have 
occurred. Let X = !x1, ... , XN ). Our starting point is p(fJIX). From our familiar 
Bayes theorem we have 

p(fJ)p(XlfJ) = p(X)p(fJIX) (2.58) 

or 

(fJIX) = p(fJ)p(XlfJ) 
p p(X) 

(2.59) 

The maximum a posteriori probability (MAP) estimate iJ MAP is defined at the point 
where p(fJIX) becomes maximum, 

or 
a 

fifJ (p(fJ)p(XlfJ)) = 0 (2.60) 

The difference between the ML and the MAP estimates lies in the involvement 
of p(fJ) in the latter case. If we assume that this obeys the uniform distribution, 
that is, is constant for all (}, both estimates yield identical results. This is also 
approximately true if p(fJ) exhibits small variation. However, in the general case, 
the two methods yield different results. Figures 2.7a and 2.7b illustrate the two 
cases. 

Example 2.4. Let us assume that in the previous example 2.3 the unknown mean vector 
µ is known to be normally distributed as 

I ( I IIµ - µ011
2

) p(µ) = exp ------
(2n )lf2a/, 2 a3 

The MAP estimate is given by the solution of 
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(} (} 
(a) (b) 

FIGURE 2.7: ML and MAP estimates of e will be approximately the same in 
(a) and different in (b). 

or, for :E = a 2 I, 

2 
We observe that if ;;ir » 1, that is, the variance a1~ is very large and the corresponding 
Gaussian is very wide with little variation over the range of interest, then 

1 N 
µMAP"" µML= N I>k 

k=l 

Furthermore, observe that this is also the case for N ~ oo, irrespective of the values of the 
variances. Thus, the MAP estimate tends asymptotically to the ML one. This is a more 
general result. For large values of N, the likelihood term nf=I p(Xk\µ,) becomes sharply 
peaked around the true value (of the unknown parameter) and is the term that basically 
determines where the maximum occurs. This can be better understood by mobilizing the 
properties of the ML estimate given before. 

2.5.3 Bayesian Inference 

Both methods considered in the preceding subsections compute a specific estimate 
of the unknown parameter vector (}. In the current method a different path is 
adopted. Given the set X of the N training vectors and the a priori information 
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about the pdf p(()), the goal is to compute the conditional pdf p(xlX). After all. 
this is what we actually need to know. To this end, and making use of known 
identities from our statistics basics, we have the following set of relations at our 
disposal: 

p(xJX) = J p(xJO)p(OjX) d6 (2.61) 

with 

(
OJ X) = p(XilJ) p(IJ) _ p(XllJ) p(IJ) 

p p(X) - J p(XifJ)p(O) dlJ 
(2.62) 

N 

p(XJIJ) = n p(xkJO) (2.63) 
k=l 

Once more, Eq. (2.63) presupposes statistical independence among the training 
samples. No doubt, a major drawback of this procedure is its complexity. Analytical 
solutions are feasible only in special cases. 

Remarks 

• If p(O j X) in Eq. (2.62) is sharply peaked at a iJ and we treat it as a delta func
tion, Eq. (2.61) becomes p(xjX) ~ p(xjO); that is, the parameter estimate 
is approximately equal to the MAP estimate. This happens, for example. 
if p(X Ill) is concentrated around a sharp peak and p(IJ) is broad enough 
around this peak. Then the resulting estimate approximates the ML one. 

• Further insight into the method can be gained by focusing on the follow
ing simple example. Let p(xjµ) be a univariate Gaussian N(µ., cr 2 ) with 
unknown parameter the mean, which is also assumed to follow a Gaussian 
N(110, crJ). lt is a matter of simple algebra (Problem 2.22) to show that. 
given a number N of samples, p(µIX) turns out to be also Gaussian. with 
mean 

(2.64) 

and variance 

(2.65) 

where i = ~ L,~= 1 Xk . Letting N vary from 1 to oo, we generate a sequence 
of Gaussians N(µ,v, er~), whose mean values move away from µo and 
tend, in the limit, to the sample mean x. Furthermore. their variance 
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keeps decreasing at the rate a 2 / N for large N. Hence, for large values 
of N, p(µJX) becomes sharply peaked around i. Thus, recalling what we 
have said before, the Bayesian inference estimator tends to the ML one 
(Problem 2.22). This is a more general property valid for most of the pdf's 
used in practice and it is a consequence of the convergence of the like
lihood term nf=l p(xkJO) to a delta function as N tends to +oo. Thus, 
all three methods considered so far result, asymptotically, in the same 
estimate. However, the results are differenrfor small numbers N of rraining 
samples. 

2.5.4 Maximum Entropy Estimation 

The concept of entropy is known from Shannon's information theory. It is a mea
sure of the uncertainty concerning an event am.I, from another viewpoint, a measure 
of randomness of the messages (feature vectors in our case) occurring at the out
put of a system. If p(x) is the density function, the associated entropy H is 
given by 

H=-lp(x)lnp(x)dx (2.66) 

Assume now that p(x) is unknown but we know a number of related constraints 
(mean value, variance, etc.). The maximum entropy estimate of the unknown pdf 
is the one that maximizes the entropy, subject to the given constraints. According 
to the principle of maximum entropy, stated by Jaynes [Jayn 82], such an esti
mate corresponds to the distribution that exhibits the highest possible randomness, 
subject to the available constraints. 

Example 2.5. The random variable x is nonzero for x 1 :5 x :5 xz and zero otherwise. 
Compute the maximum entropy estimate of its pdf. 

We have to maximize (2.66) subject to the constraint 

1
X? 

p(x)dx = 1 
.(! 

Using Langrange multipliers (Appendix C), this is equivalent to maximizing 

1
Xz 

HL = - p(x)(ln p(x) - >..) dx 
XJ 

Taking the derivative with respect to p(x), we obtain 

[JHL fxz -- = - ((In p(x) - >..)+I} dx 
op(X) XJ 

(2.67) 

(2.68) 

(2.69) 
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Equating to zero, we obtain 

p(x) = exp(A - 1) (2.70) 

To compute>... we substitute this into the constraint equation ( 2.67) and we get exp(>..- I) = 

r-1--1 . . Thus 
· 2- . I 

ifx1~x~x2 
(2.71) 

otherwise 

That is , the maximum entropy estimate of the unknown pdf is the uniform distribution. 
This is within the maximum entropy spirit. Since we have imposed no other constraint 

but the obvious one. the resulting estimate is the one that maximizes randomness and all 
points are equally probable. It turns out that if the mean value and the variance are given 

as the second and third constraints. the resulting maximum entropy estimate of the pdf. for 

- x < x < +oc. is the Gaussian (Problem 2.25). 

2.5.S Mixture Models 

An alternative way to model an unknown p(x) is via a linear combination of 
density functions in the form of 

where 

J 

p(x) = L p(xl))Pj 

.i=l 

i p(xl)) dx = I 

(2.72) 

(2.73) 

In other words. it is assumed that there are J distributions contributing to 
the formation of p(x). Thus, this modeling implicitly assumes that each point 
x may be "drawn" from any of the J model distributions with probability 
Pj , j = 1. 2, .. . , J . It can be shown that this modeling can approximate arbitrarily 
closely any continuous density function for a sufficient number of mixtures J and 
appropriate model parameters. The first step of the procedure involves the choice 
of the set of density components p(xlJ) in parametric form, that is, p(xlj: 9). 

and then the computation of the unknown parameters,(} and Pj. j = I, 2, .... J. 
based on the set of the available training samples Xk. There are various ways to 
achieve this. A typical maximum likelihood formulation, maximizing the likeli
hood function nk p(Xk; IJ , P1 , Pi, . .. , P1) with respect to(} and the P/s, is a first 
thought. The difficulty here arises from the fact that the unknown parameters enter 
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the maximization task in a nonlinear fashion; thus, nonlinear optimization itera
tive techniques have to be adopted (Appendix C). A review of related techniques 
is given in [Redn 84). The source of this complication is the lack of information 
concerning the labels of the available training samples, that is, the specific mixture 
from which each sample is contributed. This is the issue that makes the current 
problem different from the ML case treated in Section 2.5.1. There, the class labels 
were known and this led to a separate ML problem for each of the classes. In the 
same way, if the mixture labels were known, we could collect all data from the 
same mixture and carry out J separate ML tasks. The missing label information 
makes our current problem a typical task with an incomplete data set. 

In the sequel, we will focus on the so-called EM algorithm, which has attracted 
a great deal of interest over the past few years in a wide range of applications 
involving tasks with incomplete data sets. 

The Expectation Maximization (EM) Algorithm 

This algorithm is ideally suited for cases in which the available data set is incom
plete. Let us first state the problem in more general terms and then apply it to our 
specific task. Let us denote by y the complete data samples, with y E Y s; Rm, 
and let the corresponding pdf be py(y; 0), where 0 is an unknown parameter 
vector. The samples y however cannot be directly observed. What we observe 
instead are samples x = g(y) E Xob s; R 1, l < m. We denote the corresponding 
pdf px(x; 0). This is a many-to-one mapping. Let Y(x) s; Y be the subset of 
all the y's corresponding to a specific x. Then the pdf of the incomplete data is 
given by 

Px(x; 0) = [ py(y; 0) dy 
JY(X) 

As we already know, the maximum likelihood estimate of 0 is given by 

• '°"'a ln(py(yk; 0)) 
(JML:~ =0 

k ao 

(2.74) 

(2.75) 

However, the y's are not available. So, the EM algorithm maximizes the expec
tation of the loglikelihood function, conditioned on the observed samples and the 
current iteration estimate of fJ. The two steps of the algorithm are: 

• E-step: At the (t + 1 )th step of the iteration, where fJ(t) is available, compute 
the expected value of 

Q(fJ; O(t)) = E [ ~ ln(py(yk; fJJX; fJ(t))] (2.76) 

This is the so-called expectation step of the algorithm. 
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• M-step: Compute the next (t +I )th estimate of (J by maximizing Q(fJ; fJ(t) ). 
that is, 

fJ(t +I): BQ(fJ; fJ(t)) = 0 
afJ 

(2.77) 

This is the maximization step. where, obviously, differentiability has been 
assumed. 

To apply the EM algorithm, we stru1 from an initial estimate 9(0) and iterations 
are terminated if llfJ(t + I) - fJ(t) II ::::; E for an appropriately chosen vector norm 
and E . 

Remarks 

• It can he shown that the successive estimates 9(t) never decrease the 
likelihood function. The likelihood function keeps increasing until a max
imum (local or global) is reached and the EM algorithm converges. 
The convergence proof can be found in the seminal paper [Demp 77] and fur
ther discussions in [Wu 83. Boyl 83]. Theoretical results as well as practical 
experimentation confirm that the convergence is slower than the quadratic 
convergence of Newton-type searching algorithms (Appendix C). although 
near the optimum a speedup may be possible. However, the great advantage 
of the algorithm is that its convergence is smooth and is not vulnerable 
to instabilities. Furthermore, it is computationally more attractive than 
Newton-like methods, which require the computation of the Hessian matrix. 
The keen reader may obtain more information on the EM algorithm and 
some of its applications from [Mela 88, Titt 85, Moon 96]. 

Application to the Mixture Modeling Problem 

In this case, the complete data set consists of the joint events (xk. jk). k = 
I , 2, . .. . N. and .ik takes integer values in the interval r I, J], and it denotes the 
mixture from which Xk is generated. Employing our familiar rule, we obtain 

(2.78) 

Assuming mutual independence among samples of the data set. the loglikelihood 
function becomes 

N 

L(9) = L ln(p(xklA; fJ)Pj,) 
k=I 

(2 .79) 

Let P = [ P1 . P2, .... P 1 ] T. In the current framework, the unknown parameter 
vector is 0 7 = [ (J T, PT] T. Taking the expectation over the unobserved data. con
ditioned on the training samples and the current estimates, 0(t), of the unknown 
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parameters, we have 

E-step: Q(0; 0(t)) = E[tln(p(xkl}k; fJ)PA)] 
k=I 

N 

= L E[ln(p(xkl}k; fJ)PA)] 
k=I 

N J 

=LL P(Jklxk; 0(t)) ln(p(xkl}k; fJ)PA) 
k=I j,=I 

(2.80) 

(2.81) 

The notation can now be simplified by dropping the index k from }k. This is 
because, for each k, we sum up over all possible J values of }k and these are the 
same for all k. We will demonstrate the algorithm for the case of Gaussian mixtures 
with diagonal covariance matrices of the form :E j = a JI, that is, 

(2.82) 

Assume that besides the prior probabilities, Pj, the respective mean values µ j 

as well as the variances a J. j = I , 2, .... J, of the Gaussians are also unknown. 
Thus, (} is a J (l + I )-dimensional vector. Combining Eqs. (2.81) and (2.82) and 
omitting constants, we get 

E-step: 

Q(0; 0(t)) =LL P(Jlxk; 0(1)) -- Ina]- - 2 llxk - µjll 2 +In Pj N 
1 

( [ I ) 

k=I j=I 2 2aj 

(2.83) 

M-step: Maximizing the above with respect to µ J• 
(Problem 2.26) 

and P1 results in 

·( +I)_ L:f= 1 P(Jlxk; 0(t))xk 
µJI - N 

Lk=I P(Jlxk; 0(1)) 
(2.84) 

2 L:f= 1 P(Jlxk; 0(t))llxk - µ1(t + 1)11 2 

a. (t + I)= -------------
1 l °Lf= 1 P(Jlxk; 0(t)) 

(2.85) 
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l N 
P1(t +I)= NL P(jlxk; 0(t)) 

k=I 

(2.86) 

For the iterations to be complete we need only to compute P(j Jxk; 0(1)). This is 
easily obtained from 

J 

p(xk: 0(1)) = L p(xklJ ; fJ(t))Pj(l) 

j=l 

(2.87) 

(2.88) 

Equations (2 .84 )-(2.88) constitute the EM algorithm for the estimation of the 
unknown parameters of the Gaussian mixtures in (2 . 72). 

2.5.6 Nonparametric Estimation 

So far in our discussion a pdf parametric modeling was incorporated, in one way 
or another, and the associated unknown parameters were estimated. In the current 
subsection we wiJI deal with nonparametric techniques. These are basically vari
ations of the histogram approximation of an unknown pdf, which is familiar to 
us from our statistics basics. Let us take for example the simple one-dimensional 
case. Figure 2.8 shows two examples of a pdf and its approximation by the his
togram method. That is, the x-axis (one-dimensional space) is first divided into 
successive bins of length h. Then the probability of a sample x being located in a 
bin is estimated for each of the bins. If N is the total number of samples and k,v 

x x 
(a) (b) 

FIGURE 2.8: Probability density function approximation by the histogram 
method with (a) small and (b) large size intervals . 
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of these are located inside a bin, the corresponding probability is approximated by 
the frequency ratio 

(2.89) 

This approximation converges to the true Pas N ~ oo (Problem 2.27). The corre
sponding pdf value is assumed constant throughout the bin and is approximated by 

A A A I kN 
p(x) = p(x) ~ hN' 

A h 
Ix - xi S 2 (2.90) 

where x is the midpoint of the bin. This determines the amplitude of the histogram 
curve over the bin. This is a reasonable approximation for continuous p(x) and 
small enough h so that the assumption of constant p(x) in the bin is sensible. It 
can be shown that p(x) converges to the true value p(x) as N ~ oo provided: 

• 
• 
• 

hN ~ 0 

kN __,. oo 
kN ~ Q 
N 

where h N is used to show the dependence on N. These conditions can be under
stood from simple reasoning, without having to resort to mathematical details. The 
first has already been discussed. The other two show the way that kN must grow to 
guarantee convergence. Indeed, at all points where p(x) # 0 fixing the size h N, 

however small, the probability P of points occurring in this bin is finite. Hence, 
kN ~ P N and kN tends to infinity as N grows to infinity. On the other hand, as the 
size hN of the bin tends to zero, the corresponding probability also goes to zero, 
justifying the last condition. In practice, the number N of data points is finite. The 
preceding conditions indicate the way that the various parameters must be chosen. 
N must be "large enough," hN "small enough," and the number of points falling in 
each bin "large enough" too. How small and how large depend on the type of the 
pdf function and the degree of approximation one is satisfied with. Two popular 
approaches used in practice are described next. 

Parzen Windows. In the multidimensional case, instead of bins of size h, the 
/-dimensional space is divided into hypercubes with length of side h and volume 
h1• Let x;, i = I, 2, ... , N, be the available feature vectors. Define the function 
¢(x) so that 

¢(x;) = 11 for lxijl 5 1/2 
0 otherwise 

(2.91) 

where X;j. j = I, ... , L, are the components of x;. In words, the function is 
equal to I for all points inside the unit side hypercube centered at the origin and 0 
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outside it. Then (2.90) can be "rephrased" as 

J(lN (x·-x)) p(x) = h1 N ~1> -'-h- (2.92) 

The interpretation of this is straightforward. We consider a hypercube with length 
of side h centered at x, the point where the pdf is to be estimated. The summation 
equals k,v, that is, the number of points falling inside this hypercube. Then the 
pdf estimate results from dividing k,v by N and the respective hypercube volume 
h1. However, viewing Eq. (2.92) from a slightly different perspective, we see that 
we try to approximate a continuous function p(x) via an expansion in terms of 
discontinuous step functions</> (·).Thus, the resulting estimate will suffer from this 
"ancestor's sin." This led Parzen [Parz 62] to generalize (2.92) by using smooth 
functions in the place of</>(·). It can be shown that, provided 

</>(x) :'.". 0 and 

L </>(x)dx =I 

(2.93) 

(2.94) 

the resulting estimate is a legitimate pdf. Such smooth functions are known as 
kernels or potential functions or Parzen windows. Typical examples are exponen
tials. Gaussians JV(O, /),and so forth. In the sequel, we will examine the limiting 
behavior of the approximation. To this end, let us take the mean value of (2.92) 

== -<P --- p(x ) dx 1 I (x' -x) I I 

X' h1 Ji 
(2.95) 

Thus. the mean value is a smoothed version of the true pdf p(x). However as 

h--'>0 the function f,r<P(x'hx) tends to the delta function 8(x' - x). Indeed. its 
amplitude goes to infinity, its width tends to zero, and its integral from (2.94) 
remains equal to one. Thus, in this limiting case and for well-behaved continuous 
pdf's, p(x) is an unbiased estimate of p(x). Note that this is independent of the siz.e 
N of the data sel. Concerning the variance of the estimate, the following remarks 
are valid: 

• For fixed N, the smaller the h the higher the variance, and this is indi
cated by the noisy appearance of the resulting pdf estimate. for example. 
Figures 2.9a and 2. IOa. This is because p(x) is approximated by a finite sum 
of 8-like spiky functions, centered at the training sample points. Thus. as one 
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p(x) p(x) 

0.12 0.12 

o .......... ...._~~~~-~~~L-"-_....._. 0'--""-~~~~-~~~~~ 

0 10 20 x 0 10 

(a) (b) 

FIGURE 2.9: Approximation of a pdf (dotted line) via Parzen windows, using 
Gaussian kernels with (a) h = 0.1 and 1,000 training samples and (b) h = 0.1 and 
20,000 samples. Observe the influence of the number of samples on the smoothness 
of the resulting estimate. 

moves x in space the response of p(x) will be very high near the training 
points and it will decrease very rapidly as one moves away, leading to this 
noiselike appearance. 

• For a fixed h, the variance decreases as the number of sample points N tends 
to infinity. This is because the space becomes dense in points, and the spiky 
functions are closely located, Figure 2.9(b). Furthermore, for a large enough 
number of samples, the smaller the h the better the accuracy of the resulting 
estimate, for example, Figures 2.9(b) and 2. IO(b). 

• It can be shown, for example, [Parz 62, Fuku 90] that, under some mild 
conditions imposed on¢(-), which are valid for most density functions, if 
h tends to zero but in such a way that hN ~ oo, the resulting estimate is 
both unbiased and asymptotically consistent. 

Remarks 

• In practice, where only a finite number of samples is possible, a compro
mise between h and N must be made. The choice of suitable values for 
h is crucial and several approaches have been proposed in the literature, 
for example, [Wand 95] . A straightforward way is to start with an ini
tial estimate of h and then modify it iteratively to minimize the resulting 
misclassification error. The latter can be estimated by appropriate manip
ulation of the training set. For example, the set can be split into two 
subsets. one for training and one for testing. We will say more on this in 
Chapter 10. 
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p(;r) 

0.12 

(a) 

p(x) 

0.12 

0.06 

0 '--""'----~~~~-~~~~~ 
0 10 20 .r 

(b) 

FIGURE 2.10: Approximation of a pdf (dotted line) via Parzen windows, using 
Gaussian kernels with (a) h = 0.8 and 1,000 training samples and (b) h = 0.8 and 
20,000 samples. Observe that in this case, increasing the number of samples has 
little influence on the smoothness as well as the approximation accuracy of the 
resulting estimate. 

• Usually. a large N is necessary for acceptable perfonnance. This number 
grows exponentially with the dimensionality I. If a one-dimensional interval 
needs to be densely filled with, say, N equidistant points, the corresponding 
two-dimensional square will need N 2, the three-dimensional cube N\ and 
so on. We usually refer to this as the curse lJf dimensionality. The large 
number of data points puts a high burden on complexity requirements. 

Application to classification: On the reception of a feature vector x the likelihood 
test in (2.19) becomes 

assign x to w 1 (lV2) 
( 

I "'N1 ,h(X;-X)) .. I N1h' L..i=I 'I' -h-
it 12 ~ l N1 X;-X 

N-;hf Li=I ¢(-11-) 

P(w2) A.21 - i,22 
> (<)------

P(w1) A.12 -A.11 

(2.96) 

where Ni. N2 are the training vectors in class w 1, w2. respectively. For large Ni. N1 

this computation is a very demanding job, in both processing time and memory 
requirements. 

k Nearest Neighbor Density Estimation. In the Parzen estimation of the pdf in 
(2.92). the volume around the points x was considered fixed (h1) and the number 
of points k,v, falling inside the volume, was left to vary randomly from point to 
point. Here we will reverse the roles. The number of points k,v = k will be fixed 
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and the size of the volume around x will be adjusted each time, to include k points. 
Thus, in low-density areas the volume will be large and in high-density areas it 
will be small. We can also consider more general types of regions, besides the 
hypercube. The estimator can now be written as 

~ k 
p(x) = NV(x) (2.97) 

where the dependence of the volume V (x) on x is explicitly shown. Again 
it can be shown [Fuku 90) that asymptotically (Jim k = + oo, Jim N = + oo, 
Jim(k/ N) = 0) this is an unbiased and consistent estimate of the true pdf and it 
is known as the k Nearest Neighbor (kNN) density estimate. Results concerning 
the finite k, N case have also been derived; see [Fuku 90, Butu 93). A selection of 
seminal papers concerning NN classification techniques can be found in [Dasa 91 ]. 

From a practical point of view, at the reception of an unknown feature vector x, 
we compute its distanced, for example, Euclidean, from all the training vectors of 
the various classes, for example, w1, w2. Let ri be the radius of the hypersphere, 
centered at x, that contains k points from w 1 and r2 the corresponding radius of 
the hypersphere containing k points from class w2 (k may not necessarily be the 
same for all classes). If we denote by V1, V2 the respective hypersphere volumes, 
the likelihood ratio test becomes 

assign x to w1 (w2) 
. l kN2 V2 P(w2) A.21 - A.22 
1f 12 ~ -- > (<) ------

kN1 Vi P(w1) A.12 - A.11 

V2 Ni P(wi) A.21 - A.22 
- > (<) ------
Vi N2P(w1)A.12-A.11 

(2.98) 

If the Mahalanobis distance is alternatively adopted, we will have hyperellipsoids 
in the place of the hyperspheres . 

2.6 THE NEAREST NEIGHBOR RULE 

A variation of the kNN density estimation technique results in a suboptimal, yet 
popular in practice, nonlinear classifier. Although this does not fall in the Bayesian 
framework, it fits nicely at this point. In a way, this section could be considered 
as a bridge with Chapter 4. The algorithm for the so-called nearest neighbor rule 
is summarized as follows. Given an unknown feature vector x and a distance 
measure, then: 

• Out of the N training vectors, identify the k nearest neighbors, irrespective 
of class label. k is chosen to be odd for a two class problem, and in general 
not to be a multiple of the number of classes M. 
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• Out of these k samples, identify the number of vectors, k;. that belong to 
class w;. i = I. 2, ... , M. Obviously, L; k; = k. 

• Assign x to the class w; with the maximum number k; of samples. 

Various distance measures can be used, including the Euclidean and Mahalanobis 
distance. In [Hast 96] an effective metric is suggested exploiting the local infor
mation at each point. The simplest version of the algorithm is for k = 1. 
known as the Nearest Neighbor (NN) rule. In other words, a feature vector x 
is assigned to the class of its nearest neighbor! Provided that the number of train
ing samples is large enough, this simple rule exhibits good performance. This 
is also substantiated by theoretical findings. II can be shown [Duda 73, Devr 96) 
that, as N~oc. the classification error probability, for the NN rule, PNN· is 
bounded by 

Po < PNN < Po (2 - ____!!___Po) < 2Po - - M-1 - (2.99) 

where Po is the optimal Bayesian error. Thus, the error committed by the NN clas
sifier is (asymptotically) at most twice that of the optimal classifier. The asymptotic 
performance of the k NN is better than that of the NN, and a number of interesting 
bounds have been derived. For example, for the two-class case it can be shown, 
for example, [Devr 96] that 

1 
Po .:S PkNN .:S Po + rr

v ke 
or (2.100) 

Both of these suggest that ask ~ oo the performance of the kNN tends to the 
optimal one. Furthermore, for small values of Bayesian errors, the following 
approximations are valid [Devr 96]: 

P,\'N ~ 2Po (2.101) 

(2.102) 

Thus, for large N and small Bayesian errors, we expect the 3NN classifier to give 
performance almost identical to that of the Bayesian classifier. As an example. let 
us say that the error probability of the Bayesian classifier is of the order of 1 %; then 
the error resulting from a 3NN classifier will be of the order of 1.03%! The approxi
mation improves for higher values of k. A little thought can provide justification for 
this without too much mathematics. Under the assumption of large N, the radius 
of the hypersphere (Euclidean distance) centered at x and containing its k nearest 
neighbors tends to zero [Devr 96]. This is natural, because for very large N we 
expect the space to be densely filled wi1h samples. Thus, the k (a very small p011ion 
of N) neighbors of x will be located very close to it, and the conditional class prob
abilities. at all points inside 1he hypersphere around x. will be approximately equal 
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to P(w; Jx) (assuming continuity). Furthermore, for large k (yet an infinitesimally 
small fraction of N), the majority of the points in the region will belong to the 
class corresponding to the maximum conditional probability. Thus, the kNN rule 
tends to the Bayesian classifier. Of course, all these are true asymptotically. In the 
finite sample case there are even counterexamples (Problem 2.29) where the kNN 
results in higher error probabilities than the NN. However, in conclusion, it can be 
stated that the nearest neighbor techniques are among the serious candidates to be 
adopted as classifiers in a number of applications. A comparative study of the vari
ous statistical classifiers considered in this chapter as well as others, can be found in 
[Aebe 94]. 

Remarks 

• A serious drawback associated with (k)NN techniques is the complexity in 
search of the nearest neighbor(s) among the N available training samples. 
Brute-force searching amounts to operations proportional to kN ( O(kN)).2 

The problem becomes particularly severe in high-dimensional feature 
spaces. To reduce the computational burden a number of efficient searching 
schemes have been suggested; see, for example, [Fuku 75, Dasa 91, Brod 90, 
Djou 97, Nene 97, Hatt 00, Kris 00]. Attempts to reduce the number N of 
feature vectors, in an optimal way, have also appeared in the literature (e.g., 
[Yan 93, Huan 02] and the references therein). 

• When the k = I nearest neighbor rule is used, the training feature vectors 
x;, i = I, 2, .. . , N, define a partition of the /-dimensional space into N 
regions, R; . Each of these regions is defined by 

R; = (x:d(x,x;) < d(x,xj). if. j) (2.103) 

that is, R; contains all points in space that are closer to x; than any other 
point of the training set, with respect to the distanced. This partition of the 
feature space is known as Voronoi tessellation . Figure 2.11 is an example 
of the resulting Voronoi tessellation for the case of I = 2 and the Euclidean 
distance. 

Problems 

2.1 Show that in a multiclass classification task, the Bayes decision rule minimizes the 
error probability. 
Hint: It is easier to work with the probability of correct decision. 

2 O(n) deno1es order of n calcula1ions. 
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• 

• 
• 

• 

FIGURE 2.11: An example ofVoronoi tessellation in the two-dimensional space 
and for Euclidean distance. 

2.2 In a two-class one-dimensional problem the pdf's are the Gaussians ;V(O. a 2) and 
/V( I. a 2 ) for the two classes, respectively. Show that the threshold xo minimizing 
the average risk is equal to 

where A 11 = J..22 = 0 has been assumed. 
2.3 Consider a two equiprobable classes problem with a loss matrix L. Show that if€ 1 

is the probability of error corresponding to feature vectors from class (ti! and q for 
those from class (v2, then the average risk r is given by 

2.4 Show that in a multiclass problem with M classes the probability of classitication 
error for the optimum classifier is bounded by 

M-1 
Pe< --- M 

Hint: Show first that for each x the maximum of P(w; Ix). i = I. 2 ..... M. is greater 
than or equal to I/ M. Equality holds if all P(w; Ix) are equal. 

2.5 Consider a two (equiprobable) class one-dimensional problem with samples dis
rrihuled according to the Rayleigh pdf in each class, that is, 

4 exp -x
2 l . ( 2) 

p(xJw;) = er,- 0 2cr, 
x ::'.. 0 

Compute the decision boundary point g(x) = 0. 
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2.6 In a two-class classification task we constrain the error probability for one of the 
classes to be fixed, that is, E\ = E. Then show that minimizing the error probability 
of the other class results in the likelihood test 

P(w1 Ix) 
decide x in w1 if > () 

P(~ix) 

where () is chosen so that thi: constraint is fulfilled. This is known as the Neyman
Pearson test and it is similar to the Bayesian minimum risk rule. 

Hint: Use a Langrange multiplier to show that this problem is equivalent to 
minimizing the quantity 

q=()(E1-E)+E2 

2.7 In a three-class two-dimensional problem the feature vectors in each class are 
normally distributed with covariance matrix 

~ = [1.2 0.4] 
0.4 1.8 

Themeanvectorsforeachclassare[O.l, O.l]r, [2.1, 1.9]r. [-1.5, 2.0f.Assuming 
that the classes are equiprobable, (a) classify the feature vector [ 1.6, 1.5] T according 
to the Bayes minimum error probability classifier; (b) draw the curves of equal 
Mahalanobis distance from [2.1, l .9Jr. 

2.8 In a two-class three-dimensional classification problem, the feature vectors in each 
class are normally distributed with covariance matrix 

[

0.3 0.1 
~ = 0.1 0.3 

0.1 -0.1 

0.1] 
-0.1 

0.3 

The respective mean vectors are (0, 0, of and (0.5, 0.5, 0.5)T. Derive the cor
responding linear discriminant functions and the equation describing the decision 
surface. 

2.9 In a two equiprobable class classification problem the feature vectors in each class are 
normally distributed with covariance matrix ~ and the corresponding mean vectors 
areµ I , µ2. Show that for the Bayesian minimum error classifier, the error probability 
is given by 

i +oo 1 
Pn = re exp(-z2 /2) dz 

( l/2)d., v 2rr 

where dm is the Mahalanobis distanci: between the mean vectors. Observe that this 
is a decreasing function of dm. 

Hint: Compute the loglikelihood ratio u =In p(xlcu1) - In p(xl11.>i). Observe that u 
is also a random variable normally distributed as JV((l/2)d;,, d;,) if x E w1 and as 
N(-( l/2)d,2;,, d;,) if x E w2. Use this information to compute the error probability. 
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2.10 Show that in the case in which the feature vectors follow Gaussian pdf's, the 
likelihood ratio test in (2.19) 

is equivalent to 

P(x /w1) 
if /12 = ---> ( <)IJ 

p(x/w2) 

where d111 (µ;. x I I:;) is the Mahalanobis distance between µ; and x with respect to 

the I:;- I norm. 

2.11 If I: 1 = I:2 = I: , show that the criterion of the previous problem becomes 

where 

2.12 Consider a two-class two-dimensional classification task. where the feature vectors 
in each of the classes w 1. W2 are distributed according to 

with 

2 2 . a 1 = a2 = 0.2 

Assume that P(w1) = P(w2) and design a Bayesian classifier 

(a) that minimizes the error probability 

(b) that minimizes the average risk with loss matrix 

[ () A = 0.5 ~] 
Using a pseudorandom number generator. produce I 00 feature vectors from each 
class. according to the preceding pdf's. Use the classifiers designed to classify the 
generated vectors. What is the percentage error for each case? Repeat the experiments 
for µ2 = [3.0. 3.0{. 
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2.13 Repeat the preceding experiment if the feature vectors are distributed according to 

with 

1 ( I T l ) 
P(xlw·)= exp --(x-µ·) 'E- (x-µ·) 

I 21l'l'Eil/2 2 I I 

'E = [1.01 0.2] 
0.2 1.01 

and µl = [l, If, µz = [1.5, I.Sf . 
Hint: To generate the vectors, recall from [Papo 91, page 144] that a linear trans
formation of Gaussian random vectors also results in Gaussian vectors. Note also 
that 

2.14 Consider a two-class problem with normally distributed vectors with the same 'E in 
both classes. Show that the decision hyperplane at the point xo. Eq. (2 .38), is tangent 
to the constant Mahalanobis distance hyperellipsoids. 

Hint: (a) Compute the gradient of Mahalanobis distance with respect to x . (b) Recall 

from vector analysis that 0 ~~x) is normal to the tangent of the surface f (x) = 
constant. 

2.15 Consider a two-class one-dimensional problem with p(xlw1) being JV(11. a 2) and 
p(x lw2) a uniform distribution between a and b. Show that the Bayesian error 

probability is bounded by G(t:;f) - G(''~µ ), where G(x) = P(y :'.". x) and 
y isN(O, I). 

2.16 Show that the mean value of the random vector J ln($~: 9 lJ is zero. 
2.17 In a heads or tails coin-tossing experiment the probability of occurrence of a head (I) 

is q and that of a tail (0) is 1 -q . Let x; . i = 1, 2, .... N, be the resulting experimental 
outcomes, x; E {O. 1} . Show that the ML estimate of q is 

Hint: The likelihood function is 

N 

P(X; q) = n qx; (I - q)(l-x;) 

i=l 

Then show that the ML results from the solution of the equation 

qL1xi(l -q)(N-I:,x1J (L;x; - N- L;x;) =0 
q I -q 
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2.18 The random variable x is normally distributed N(µ. a- 2 ), where µ is considered 

unknown. Given N measurements of the variable, compute the Cramer-Rao bound 

-£[ ;i~1~;1y J (Appendix A). Compare the bound with the variance of the resulting 

ML estimate ofµ. Repeat this if the unknown parameter is the variance a 2. Comment 
on the results. 

2.19 Show that if the likelihood function is Gaussian with unknowns the meanµ as well 
a.s the covaiiam:e matrix E, then the ML estimates are given by 

2.20 The random variable x follows the Erlang pdf 

p(x;()) =li2xexp(-()x)u(x) 

where u(x) is the unit step function. 

{

I ilx>O 
u(x) = 

() if x < () 

Show that the maximum likelihood estimate of H. given N measurements. 

I I' ... 'x N' of x' is 

2.21 In the ML estimation, the zero of the derivative of the log pdf derivative was com
puted. Using a multivariate Gaussian pdf, show that this corresponds to a maximum 

and not to a minimum. 
2.22 Show relations (2.64) and (2.65). Then show that p(xlX) is also normal with mean 

µ N and variance a 2 + o-1~. Comment on the resull. 

2.23 The random variable x is normally distributed as ;V(tt. u 2), with fl being the 
unknown parameter described by the Rayleigh pdf 

Show that the maximum a posteriori probability estimate of ft is given by 

z( ~) ii.MAP= 2.R I+ y I+ Z2 
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where 

I N 
Z= 2 LXk, 

a k=I 

N I 
R=-+

a2 ai 

2.24 Show that for the lognonnal distribution 

l ( (lnx-1:1)
2

) 
p(x) = ax,./iii exp - 2a2 . x > 0 

the ML estimate is given by 

2.25 Show that if the mean value and the variance of a random variable are known, that is, 

J
+oo 

µ. = xp(x) dx, J
+oo 

a
2 

= -oo (x - µ)
2 

p(x) dx 
-oo 

the maximum entropy estimate of the pdf is the Gaussian N(µ, a 2). 

2.26 Show Eqs. (2.84), (2.85), and (2.86). 

Hint: For the latter, note that the probabilities add to one; thus a Langrangian 
multiplier must be used. 

2.27 Let P be the probability of a random point x being located in a certain interval h. 
Given N of these points, the probability of having k of them inside h is given by the 
binomial distribution 

prob{k) = N! pk(I - P)N-k 
k!(N - k)! 

Show that E[k/ N] = P and that the variance around the mean is a 2 = £[ (k/ N -
P) 2] = P(I - P)/N. That is, the probability estimator P = k/N is unbiased and 
asymptotically consistent. 

2.28 Consider three Gaussian pdf's, N( 1.0, 0 .1 ). N(3.0. 0.1 ) , N(2 .0. 0.2). Generate 500 
samples according to the following rule. The first two samples are generated from 
the second Gaussian, the third sample from the first one, and the fourth sample from 
the last Gaussian. This rule repeats until all 500 samples have been generated. The 
pdf underlying the random samples is modeled as a mixture 

3 

LN(µ; . a;2)P; 
i=l 

Use the EM algorithm and the generated samples to estimate the unknown parameters 
µ;.a;2. P;. 
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2.29 Consider two classes wi, wz in the two-dimensional space. The data from class w1 
are uniformly distributed inside a circle of radius r. The data of class wz are also 
uniformly distributed inside another circle of radius r. The distance between the 
centers of the circles is greater than 4r. Let N be the number of the available training 
samples. Show that the probability of error of the NN classifier is always smaller 
than that of the kNN. for any k '.:". 3. 

2.30 Generate 50 feature vectors for each of the two classes of Problem 2.12. and use 
them as training points. In the sequel. generate 100 vectors from each class and 
classify them according to the NN and 3NN rules. Compute the classification e1Tor 
percentages. 

2.31 The pdf of a random variable is given by 

p(x) = {~ forO < x < 2 

otherwise 

Use the Parzen window method to approximate it using as the kernel function 
the Gaussian ./V(O. I). Choose the smoothing parameter to be (a) h = 0.05 and 
(b) h = 0.2. For each case. plot the approximation based on N = 32. N = 256, and 
N = 5000 points. which are generated from a pseudorandom generator according 
to p(x). 

2.32 Repeat the preceding problem by generating N = 5000 points and using k nearest 
neighbor estimation with k = 32. 64 and 256, respectively. 
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CHAPTER 3 _____________ _ 

LINEAR CLASSIFIERS 

3.1 INTRODUCTION 

Our major concern in Chapter 2 was to design classifiers based on probability 
density or probability functions. In some cases, we saw that the resulting classifiers 
were equivalent to a set of linear discriminant functions. In this chapter we will 
focus on the design of linear classifiers, irrespective of the underlying distributions 
describing the training data. The major advantage of linear classifiers is their 
simplicity and computational attractiveness. The chapter starts with the assumption 
that all feature vectors from the available classes can be classified correctly using 
a linear classifier. and we will develop techniques for the computation of the 
corresponding linear functions. In the sequel we will focus on a more general 
problem, in which a linear classifier cannot classify correctly all vectors, yet we 
will seek ways to design an optimal linear classifier by adopting an appropriate 
optimality criterion. 

3.2 LINEAR DISCRIMINANT FUNCTIONS 
AND DECISION HYPERPLANES 

Let us once more focus on the two-class case and consider linear discriminant 
functions. Then the respective decision hypersurface in the /-dimensional feature 
space is a hyperplane, that is 

g(x) =WT X + W() = 0 CUl 

where W = [ W 1, U12, ... , W/ f is known as the weight vector and WO as the thresft
o/d. If x 1 • x 2 are two points on the decision hyperplane. then the following is 
valid 

0 =WT X] + W() =WT X2 +WO :=:::} 

w T (x 1 - x2) = 0 (3.2) 

55 
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FIGURE 3.1: Geometry for the decision line. On one side of the line it is 
g(x) > 0(+) and on the other g(x) <0 (-). 

Since the difference vector x 1 - x2 obviously lies on the decision hyperplane (for 
any x 1, x2), it is apparent from Eq. (3.2) that the vector w is orthogonal to the 
decision hyperplane. 

Figure 3.1 shows the corresponding geometry (for w1 > 0, w2 > 0, wo < 0). 
Recalling our high school math, it is easy to see that the quantities entering in the 
figure are given by 

(33) 

and 

ig(x)I 
z = --;::=== 

jw~ + w~ 
(3.4) 

In other words, lg(x)I is a measure of the Euclidean distance of the point x from 
the decision hyperplane. On one side of the plane g(x) takes positive values and 
on the other negative. In the special case that wo = 0 the hyperplane passes through 
the origin . 
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3.3 THE PERCEPTRON ALGORITHM 

Our major concern now is to compute the unknown parameters w;, i = 0, .... I, 
defining the decision hyperplane. In this section we assume that the two classes 
w1. w2 are linearly separable. In other words we assume that there exists a 
hyperplane, defined by w*T x = 0, such that 

w*T x > 0 Vx E w1 

w*T x < 0 Vx E w2 
(3 .5) 

The formulation above also covers the case of a hyperplane not crossing the origin, 
that is, w*T x + w0 = 0, since this can be brought into the previous formula

tion by defining the extended (I + 1 )-dimensional vectors x' = [ x 1'. 1 f. w' = 
[w*r. w0f. Then w*T x + w0 = w'T x' . 

We will approach the problem as a typical optimization task (Appendix C). Thus 
we need to adopt (a) an appropriate cost function and (b) an algorithmic scheme 
to optimize it. To this end, we choose the perceptmn cost defined as 

J(w) = L(8xwT x) (3.6) 

.rEY 

where Y is the subset of the training vectors, which are misclassified by the hyper
plane defined by the weight vector w. The variable 8x is chosen so that 8.r = -1 
if x E u>1 and ~.1 = +I if x E u>2. Obviously, the sum in (3.6) is always positive 
and iL becomes zero when Y becomes the empty set, that is, if there are not mis
classified vectors x . Indeed, if x E w 1 and it is misclassified, then w T x < 0 and 
8.1 < 0, and the product is positive. The result is the same for vectors originating 
from class wz . When the cost function takes its minimum value, 0, a solution has 
been obtained, since all training feature vectors are correctly classified. 

The perceptron cost function in (3.6) is continuous and piecewise linear. Indeed. 
if we change the weight vector smoothly, the cost .I ( w) changes linearly until 
the point at which there is a change in the number of misclassified vectors 
(Problem 3.1 ). At these points the gradient is not defined and the gradient function 
is discontinuous. 

To derive the algorithm for the iterative minimization of the cost function. 
we will adopt an iterative scheme in the spirit of the gradient descent method 
(Appendix C). that is. 

8J(w) I w(t +I)= w(t)- p1--aw w=w{f) 

(3 .7) 

where w(I) is the weight vector estimate at the 1th iteration step, and p1 is a 
sequence of positive real numbers. However, we must be careful here . This is not 



58 Chapter 3: LINEAR CLASSIFIERS 

defined at the points of discontinuity. From the definition in (3.6), and at the points 
where this is valid, we get 

Substituting (3 .8) into (3 .7) we obtain 

w(I +I)= w(t) - p1 Loxx 
x E Y 

(3.8) 

(3.9) 

The algorithm is known as the perceptron algorithm and is quite simple in its struc
ture. Note that Eq. (3.9) is defined at all points. The algorithm is initialized from 
an arbitrary weight vector w(O), and the correction vector LxEY 8xx is formed 
using the misclassified features . The weight vector is then corrected according to 
the preceding rule . This is repeated until the algorithm converges to a solution, 
that is, all features are correctly classified. 

Figure 3.2 provides a geometric interpretation of the algorithm. It has been 
assumed that at step t there is only one misclassified sample, x. and p1 = I. The 
perceptron algorithm corrects the weight vector in the direction of x. Its effect is 
to tum the corresponding hyperplane so that x is classified in the correct class w1 . 

x 2 

, , 

FIGURE 3.2: Geometric interpretation of the perceptron algorithm. 
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Note that in order to achieve this, it may take more than one iteration step, depend
ing on the value(s) of p1 • No doubt, this sequence is critical for the convergence. 
We will now show that the perceptron algorithm converges to a solution in a finite 
numher of iteration steps, provided that the sequence p1 is properly chosen. The 
solution is not unique, because there are more than one hyperplanes separating 
two linearly separable classes. The convergence proof is necessary because the 
algorithm is not a tme grauient descent algorithm and the general tools for the 
convergence of gradient descent schemes cannot be applied . 

Proof of the Perceptron Algorithm Convergence 

Let a be a positive real number and w* a solution. Then from (3.9) we have 

w(t + I) - aw* = w(t) - aw* - p, L DxX 

xEY 

Squaring the Euclidean norm of both sides results in 

llw(t +I) -aw'll 2 = llw(t) - aw*ll 2 + p,2 11 L8,xll 2 

xEY 

""" T - 2p1 L..,8,(w(I) -aw*) x 
xEY 

But - LXEY 8, w7 (t) x < 0. Hence 

Deline 

llw(t +I) - aw*f.:::: llw(I) - aw"f + P(ll I>,xil 2 

+ 2p1a L 8, w*7 x 
XE Y 

xEY 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

That is . f{2 is the maximum value that the involved vector norm can take by con
sidering a// possible (nonempty) subsets of the available training feature vectors. 
Similarly. let 

(3.14) 

Recall that the summation in this equation is negative; thus, its maximum value 
over all possible subsets of x ' s will also be a negative number. Hence, (3 .12) can 
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now be written as 

llw(t +I) -aw*ll 2
::: llw(t) - aw*ll 2 + p~{32 - 2ptalyl (3.15) 

ll 2 . 
Choose a = 1frT and apply (3.15) successively for steps t , t - I, ... , 0. Then 

If the sequence Pt is chosen to satisfy the following two conditions: 

I 

lim "'"""'Pk= oo t-....oo L..,, 
k=O 

t 

lim "'"""'Pt< oo l---+00~ 
k=O 

(3. 16) 

(3.17) 

(3.18) 

then there will be a constant to such that the right-hand side of (3.16) becomes 
nonpositive. Thus 

0::: llw(to +I) - aw*ll ~ 0 (3.19) 

or 

w(to +I)= aw* (3.20) 

That is, the algorithm converges to a solution in a finite number of steps. An 
example of a sequence satisfying conditions (3.17), (3 .18) is Pt = c / t, where c is 
a constant. In other words, the corrections become increasingly small. What these 
conditions basically state is that Pt should vanish as t ~ oo [Eq. (3.18)] but on 
the other hand should not go to zero very fa st [Eq. (3 .17)]. Following arguments 
similar to those used before, it is easy to show that the algorithm also converges 
for constant Pt = p, provided p is properly bounded (Problem 3.2) . In practice. 
the proper choice of the sequence Pt is vital for the convergence speed of the 
algorithm. 

Variants of the Perceptron Algorithm 

The algorithm we have presented is just one form of a number of variants that have 
been proposed for the training of a linear classifier in the case of linearly separable 
classes. We will now state another simpler and also popular form. The N training 
vectors enter the algorithm cyclically, one after the other. If the algorithm has 
not converged after the presentation of all the samples once, then the procedure 
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keeps repeating until convergence is achieved, that is, when all training samples 
have been classified correctly. Let w(t) be the weight vector estimate and x (I) the 
corresponding feature vector, presented at the Ith iteration step. The algorithm is 
stated as follows: 

w(l +I)= w(I) + PXcn if X(I) E WI and WT (l)X(I).::: 0 

w(t +I)= w(I) - PX(! ) if X(I) E W2 and WT (l)X(t):::: 0 

w(l + I)= w(t) otherwise (3.21) 

In other words, if the current training sample is classified correctly, no action is 
taken. Otherwise, if the sample is misclassified, the weight vector is corrected by 
adding (subtracting) an amount proportional to xu>- The algorithm belongs to a 
more general algorithmic family known as reward and punishment schemes. If the 
classification is correct, the reward is that no action is taken. If the current vector 
is misclassified, the punishment is the cost of correction. It can be shown that this 
form of the perceptron algorithm also converges in a finite number of iteration 
steps (Problem 3.3). 

The perceptron algorithm was originally proposed by Rosenblatt in the late 
1950s. The algorithm was developed for training the perceplron, the basic unit 
used for modeling neurons of the brain. This was considered central in developing 
powerful models for machine learning [Rose 58, Min 88]. 

The Perceptron 

Once the perceptron algorithm has converged to a weight vector w and a threshold 
wo. our next goal is the classification of an unknown feature vector to either of the 
two classes. Classification is achieved via the simple rule 

If wT x + wo > 0 assign x to WI 

If w T x + wo < 0 assign x to w2 (3.22) 

A basic network unit that implements the operation is shown in Figure 3.3(a). 
The elements of the feature vector XI, x2 •... , x1 are applied to the input 

nodes of the network. Then each one is multiplied by the corresponding weights 
w;. i = I, 2 .... , I. These are known as synaptic weights or simply synapses. The 
products are summed up together with the threshold value wo. The result then goes 
through a nonlinear device, which implements the so-called activation function . 
A common choice is a hard limiter; that is, f (.) is the step function If (x) = - I if 
x < Oandf(x) =I ifx > O].Thecorrespondingfeaturevectorisclassifiedinone 
of the classes depending on the sign of the output. Besides+ I and -1 . other values 
(class labels) for the hard limiter are also possible. Another popular choice is I and 
0 and it is achieved by choosing the two levels of the step function appropriately. 
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(a) (b) 

FIGURE 3.3: The basic perceptron model. 

This basic network is known as a perceptron or neuron. Perceptrons are simple 
examples of the so-called learning machines, that is, structures whose free param
eters are updated by a learning algorithm, such as the perceptron algorithm, in 
order to "learn" a specific task, based on a set of training data. Later on we will use 
the perceptron as the basic building element for more complex learning networks. 
Figure 3.3b is a simplified graph of the neuron where the summer and nonlinear 
device have been merged for notational simplification. Sometimes a neuron with 
a hard limiter device is referred to as a McCulloch-Pitts neuron. Other types of 
neurons will be considered in Chapter 4. 

Example 3.1. Figure 3.4 shows the dashed line 

X[ + Xz - 0.5 = 0 

corresponding to the weight vector [I, I, -0.5] T, which has been computed from the latest 
iteration step of the perceptron algorithm (3.9), with p1 = p = 0.7. The line classifies 
correctly all the vectors except [0.4. 0.05f and [-0.20, 0.75f. According to the algorithm, 
the next weight vector will be 

[ 
I ] [ 0.4] [-0.2] w(1+l)= -~.5 -0.7(-1) o.~5 -0.7(+1) o.~5 

or 

[ 
1.42] 

W(l +I)= 0.51 
-0.5 

The resulling new (solid) line I .42x1 + 0.5 lxz - 0.5 = 0 classifies all vectors correctly 
and the algorithm is terminated. 
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FIGURE 3.4: An example of the perceptron algorithm. 

The Pocket Algorithm 

63 

/\basic requirement for the convergence of the perceptron algorithm is the linear 
separability of the classes. If this is not true. as is usually the case in practice, the 
perceptron algorithm does not converge. A variant of the perceptron algorithm was 
suggested in (Gal 90] that converges to an optimal solution even if the linear sep
arability condition is not fulfilled. The algorithm is known as the podet algorithm 
and consists of the following two steps 

• Initialize the weight vector w(O) randomly. Define a stored (in the pocket!) 
vector Ws. Set a history counter hs of the w_, to zero. 

• At the tth iteration step compute the update w(I + l ). according to the 
perceptron rule. Use the updated weight vector to test the number h of train
ing vectors that are classitic<.I correctly. If h > h,. replace w_, with w(1 + I) 
and h. with h. Continue the iterations. 

It can be shown that this algorithm converges with probability one to the optimal 
solution, that is, the one that produces the minimum number of misclassifications 
[Gal 90. Muse 97]. Other related algorithms that find reasonably good solutions 
when the classes arc not linearly separable are the rhermal pen:eptron algorithm 
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[Frea 92], the loss minimization algorithm [Hryc 92) and the barycentric correction 
procedure [Poul 95]. 

Kesler's Construction 

So far we have dealt with the two-class case. The generalization to an M-class task 
is straightforward. A linear discriminant function w;, i = I, 2, ... , M, is defined 
for each of the classes. A feature vector x (in the (l + I )-dimensional space to 
account for the threshold) is classified in class w; if 

(3.23) 

This condition leads to the so-called Kesler's construction. For each of the 
training vectors from class w;, i = 1, 2, ... , M, we construct M - I vectors 

. _ T T T T TT · · . ·. x,j - [O , 0 ,. . ., x , .. ., -x ,. .. , 0 ] of d11nens1on (l+ l)M x l. That ts, 
they are block vectors having zeros everywhere except at the ith and jth block 
positions, where they have x and -x respectively, for j i= i. We also construct the 
block vector W = ( W r, ... , W It J7. If X E lV;, this imposes the requirement that 

w7 x;1 >0, V j = l, 2, ... , M, j i= i. The task now is to design a linear classifier, 
in the extended (l + l)M-dimensional space, so that each of the (M - l)N training 
vectors lies in its positive side. The perceptron algorithm will have no difficulty 
in solving this problem for us, provided that such a solution is possible, that is, if 
all the training vectors can be correctly classified using a set of linear discriminant 
functions. 

Example 3.2. Let us consider a three class problem in the two dimensional space. The 
training vectors for each of the classes are the following 

T T T w1:[1,I] ,[2,2] ,)2.1] 

. T T T wz. [I, -I] . [I. -2] , [2. -2] 

w3: (-1, i{. J-1. 2{. (-2. l]T 

This is obviously a linearly separable problem, since the vectors of different classes lie in 
different quadrants. 

To compute the linear discriminant functions we first extend the vectors to the 
3-dimensional space and then we use Kesler's construction. For example 

For (1, if we get [I, 1, I, -1, -1, -1, 0, 0, Of and 

[I, I, 1,0,0,0, -1, -1, --l]T 

For [L -2f we get [-1, 2, -1, I. -2, I, 0, 0, Of and 

[0,0.0.1,-2.1.-1,2,-lf 

For [-2, 1)7 we get [2, -1, -1, 0, 0. 0, -2. I, l]T and 

[O, 0, 0, 2, - I, -1, -2, I, If 
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Similarly we obtain the other twelve vectors. To obtain the corresponding weight vectors 

WJ = [w1 I· w12. wio]T 

w2 = [w21. w22, w20]T 

w3 = [w31. w32. w:IOIT 

we can run the perceptron algorithm by requiring wTx > 0, w = [wf, wr, wf]T. for 
each of the eighteen 9-dimensional vectors. That is, we require all the vectors to lie on the 
same side of the decision hyperplane. The initial vector of the algorithm w(O) is computed 
using the uniform pseudorandom sequence generator in [O, I]. The learning sequence p1 

was chosen to be constant and equal to 0.5. The algorithm converges after four iterations 
and gives 

WJ = (5.13, 3.60. l.OO]T 

w2 = [-0.05, -3.16. -0.41{ 

T W3 = [-3.84, 1.28, 0.69] 

3.4 LEAST SQUARES METHODS 

As we have already pointed out, the attractiveness of linear classifiers lies in 
their simplicity. Thus. in many cases, although we know that the classes are not 
linearly separable, we still wish to adopt a linear classifier, despite the fact that 
this will lead to suboptimal performance from the classification error probabi
lity point of view. The goal now is to compute the corresponding weight vector 
under a suitable optimality criterion. The least squares methods arc familiar to 
us, in one way or another, from our early college courses. Let us then build upon 
them. 

3.4.1 Mean Square Error Estimation 

Let us once more focus on the two-class problem. In the previous section we saw 
that the perceptron output was ±1, depending on the class ownership of x. Since 
the classes were linearly separable, these outputs were correct for all the training 
feature vectors, after, of course, the perceptron algorithm's convergence. In this 
section we will attempt to design a linear classifier so that its desired output is 
again ±1, depending on the class ownership of the input vector. However, we will 
have to live with errors; that is, the true output will not always be equal to the 
desired one. Given a vector x. the output of the classifier will be wT x (thresholds 
can be accommodated by vector extensions). The desired output will be denoted 
as v(x) = y = ±I. The weight vector will be computed so as to minimize the 
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mean square error (MSE) between the desired and true outputs, that is, 

J(w) = E[ly - XT wi2] 

w =argminJ(w) 
w 

The reader can easily check that J ( w) is equal to 

(3.24) 

(3.25) 

J (w) = P(wi) f (I - x T w)2 p(x lw1) dx + P(w2) f (I + xT w) 2 p(xlwi) dx 

Minimizing (3.24) easily results in 

Then 

where 

aJ(w) 
-- = 2E[x(y - XT w)] = 0 

aw 

w = R; 1 E[xy] 

l
E[x1x1] 
E[x2x1] 

Rx= E[xxT] = : 

E[x1x1] 

E[x1x1]] 
E[7x1] 

E[x1x1] 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

is known as the correlation or autocorrelation matrix and is equal to the covariance 
matrix, introduced in the previous chapter, if the respective mean values are zero. 
The vector 

(3.30) 

is known as the cross-correlation between the desired output and the (input) fea
ture vectors. Thus, the mean square optimal weight vector results as the solution 
of a linear set of equations, provided, of course, that the correlation matrix is 
invertible. 

It is interesting to point out that there is a geometrical interpretation of this 
solution. Random variables can be considered as points in a vector space. It is 
straightforward to see that the expectation operation E[x y] between two random 
variables satisfies the properties of the inner product. Indeed, E[x 2] ~ 0, E[xy] = 
E[yx], E[x(c1y + c2z)] = ci E[xy] + c2E[xz]. In such a vector space wT x = 
w1 xi+···+ w1x1 is a linear combination of vectors and thus it lies in the subspace 
defined by the x; 's. 
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FIGURE 3.5: Interpretation of the MSE estimate as an orthogonal projection 
on the input vector elements' subspace. 

This is illustrated by an example in Figure 3.5. Then, if we want to approximate y 
by this linear combination, the resulting error is y-w T x. Equation (3.27) states that 
the minimum mean square error solution results if the error is orthogonal to each 
Xi, thus it is orthogonal to the vector subspace spanned by Xi, i = l, 2, .... /-in 
other words, if y is approximated by its orthogonal projection on the subspace 
(Figure 3.5). Equation (3.27) is also known as the orthogonality condition. 

Multiclass Generalization 

Jn the multiclass case the task is to design the M linear discriminant functions 
g; (x) = wrx according to the MSE criterion. The corresponding desired output 
responses (i.e., class labels) are chosen so that y; = 1 if x E Wiand Yi = Ootherwise. 
This is in agreement with the two-class case. Indeed, for such a choice and if M = 2. 
the design of the decision hyperplane w T x == ( w 1 - w 2) T x corresponds to ±I 
desired responses. depending on the respective class ownership. 

Let us now define yT = f y1 ....• YM], for a given vector x, and W = [w 1 •...• 

w M ]. That is, matrix W has as columns the weight vectors w;. The MSE criterion 
in (3.25) can now be generalized to minimize the norm of the error vector y- wT x. 
that is. 

CUI) 
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This is equivalent to M MSE independent minimization problems of the (3.25) 
type, with scalar desired responses. In other words, in order to design the MSE 
optimal linear discriminant functions, it suffices to design each one of them so that 
its desired output is I for vectors belonging to the corresponding class and Ofor 
all the others. 

3.4.2 Stochastic Approximation and the LMS Algorithm 

The solution of (3.28) requires the computation of the correlation matrix and 
cross-correlation vector. This presupposes knowledge of the underlying distrihu
tions, which in general are not known. After all, if they were known, why not 
then use Bayesian classifiers? Thus, our major goal now becomes to see if it 
is possible to solve (3.27) without having this statistical information available. 
The answer has been provided by Robbins and Monro [Robb 51] in the more 
general context of stochastic approximation theory. Consider an equation of the 
form E [ F (x k. w)] = 0, where x k, k = I, 2, ... , is a sequence of random vectors 
from the same distribution, F(.,-) a function, and w the vector of the unknown 
parameters. Then adopt the iterative scheme 

w(k) = w(k - I)+ PkF(Xk, w(k - I)) (3.32) 

In other words, the place of the mean value (which cannot be computed due to 
lack of information) is taken by the samples of the random variables resulting 
from the experiments. It turns out that under mild conditions the iterative scheme 
converges in probability to the solution w of the original equation, provided that 
the sequence Pk satisfies the two conditions 

and which implies that 

That is, 

00 

LPk--+ 00 

k=I 

Pk--+ 0 

Jim prob\w(k) = w) = I 
k->OO 

The stronger, in the mean square sense, convergence is also true 

Jim Elllw(k) - w1J 2
] = O 

k->OO 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 



Section 3.4: LEAST SQUARES METHODS 69 

Conditions (3.33), (3.34) have already been met before and guarantee that the 
corrections of the estimates in the iterations tend to zero. Thus, for large values 
of k (in theory at infinity) iterations freeze. However, this must not happen too 
early (first condition) to make sure that the iterations do not stop away from the 
solution. The second condition guarantees that the accumulated noise, due to the 
stochastic nature of the variables, remains finite and the algorithm can cope with 
it [Fuku 90]. The proof is beyond the scope of the present text. However, we will 
demonstrate its validity via an example. 

Let us consider the simple equation E[xk - w] = 0. For Pk = I/ k the iteration 
becomes 

A A I A (k - l) A I 
w(k) = w(k - 1) + -[Xk - w(k - I)]= --w(k - I)+ -Xk 

k k k 

For large values of k it is easy to see that 

k 
A IL w(k) = - x,. 

k 
r=l 

That is. the solution is the sample mean of the measurements. Most natural! 
Let us now return to our original problem and apply the iteration to solve (3.27). 

Then (3.32) becomes 

w(k) = w(k - 1) + Pkxk(Yk - x[ w(k - I)) (3.38) 

where CH, Xk) are the desired output (± 1 )-input training sample pairs , succes
sively presented to the algorithm. The algorithm is known as the least mean squares 
(LMS) or Widrow-Hoff algorithm, after those who suggested it in the early 1960s 
[Widr 60. Widr 90] . The algorithm converges asymptotically to the MSE solution. 

A number of variants of the LMS algorithm have been suggested and used. 
The interested reader may consult, for example, [Hayk 96, Kalou 931. A common 
variant is to use a constant p in the place of Pk . However, in this case the algorithm 
does not converge to the MSE solution. lt can be shown. for example, [Hayk 96] 
that if 0 < f! < 2/trace{ Rx} then 

E[w(k)]-+ WMS£ and E[llw(k) - WMs£11
2 ]-+ constant (3.39) 

where WMS£ denotes the MSE optimal estimate and trace{·} the trace of the matrix. 
That is, the mean value of the LMS estimate is equal to the MSE solution and 
also the corresponding variance remains fini1e. It turns out that rhe smaller the p. 
the smaller the variance around the desired MSE solution. However, the smaller 
the p, the slower the convergence of the LMS algorithm. The reason for using 
constant p in place of a vanishing sequence is to keep the algorithm "alert" to 

track variations when the statistics is not stationary but is slowly varying, that is. 
when the underlying distributions are time dependent. 
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Remarks 

• Observe that in the case of the LMS, the parameters' update iteration step, 
k, coincides with the index of the current input sample Xk. In case k is a 
time index, LMS is a time-adaptive scheme, which adapts to the solution 
as successive samples become available to the system. 

• Observe that equation (3.38) can be seen as the training algorithm of a 
linear neuron, that is, a neuron without the nonlinear activation function. 
This type of training, which neglects the nonlinearity during training and 
applies the desired response just after the adder of the linear combiner part 
of the neuron (Figure 3.3a), was used by Widrow and Hoff. The resulting 
neuron architecture is known as adaline (adaptive linear element). After 
training and once the weights have been fixed, the model is the same as in 
Figure 3.3, with the hard limiter following the linear combiner. In other 
words, the adaline is a neuron which is trained according to the LMS instead 
of the perceptron algorithm. 

3.4.3 Sum of Error Squares Estimation 

A criterion closely related to the MSE is the sum of error squares criterion defi
ned as 

N N 

J(w) = L (y; - xf w) 2 = L::ef (3.40) 
i=l i=l 

In other words, the errors between the desired output of the classifier (±I in the 
two class case) and the true output are summed up over all the available training 
feature vectors, instead of averaging them out. In this way we overcome the need 
for explicit knowledge of the underlying pdf's. Minimizing (3.40) with respect to 
w results in 

tx;(y; - xf w) = 0:::} (tx;xf) w = t(x;y;) (3.41) 

For the sake of mathematical formulation let us define 

(3.42) 

That is, X is an N x l matrix whose rows are the available training feature vec
tors, and y is a vector consisting of the corresponding desired responses. Then 
I:f=I x;xf = xT x and also I:f=I x;y; = xT y. Hence, (3.41) can now be 
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written as 

(3.43) 

Thus, the optimal weight vector is again provided as the solution of a linear set 
of equations. Matrix xT X is known as the sample correlation matrix. Matrix 
x+ = ( xT X)- 1 xT is known as the pseudoinverse of x, and it is meaningful 
only if XT X is invertible, that is, X is of rank I. x+ is a generalization of the 
inverse of an invertible square matrix. Indeed, if Xis an Ix I square and invertible 
matrix, then it is straightforward to see that x+ = x- 1. In such a case the estimated 
weight vector is the solution of the linear system X w = y. If, however, there are 
more equations than unknowns, N > l, as is the usual case in pattern recognition. 
there is not, in general, a solution. The solution obtained by the pseudoinverse is 
the vector that minimizes the sum of error squares. It is easy to show that (under 
mild assumptions) the sum of error squares tends to the MSE solution for large 
values of N (Problem 3.8). 

Remarks 

• So far we have restricted the desired output values to be ± 1. Of course. 
this is not necessary. All we actually need is a desired response positive for 
1v1 and negative for uJ2. Thus, in the place of± 1 in the y vector we could 
have any positive (negative) values. Obviously, all we have said so far is 
still applicable. However, the interesting aspect of this generalization would 
be to compute these desired values in an optimal way, to obtain a better 
solution. The Ho--Kashyap algorithm is such a scheme solving for both the 
optimal w and optimal desired values y;. The interested reader may consult 
[Ho 65, Tou 74]. 

• Generalization to the multiclass case follows the same concept as that intro
duced for the MSE cost, and it is easily shown that it reduces to M equivalent 
problems of scalar desired responses, one for each discriminant function 
(Problem 3.10). 

Example 3.3. Class w 1 consists of the two-dimensional vectors f0.2. 0. 7f. [0.3. 0.3] T. 

f0.4. 0.5f. f0.6, 0.5f, (0.1. 0.4f and class w2 of (0.4. 0.6f, f0.6, 0.2f, f0.7. 0.4]T. 
l0.8. 0.6]T. [0.7. 0.5 f Design the sum of error squares optimal linear classifier w Ix 1 + 
w2x2 + wo = 0. 

We first extend the given vectors hy using I as their third dimension and form the I 0 >< 3 
matrix X, which has as rows the transposes of these vectors. The resulting sample correlation 
3 x 3 matrix xT Xis equal to 

[ 

2.8 
T x x = 2.24 

4.8 

2.24 
2.41 
4.7 

4.8] 
4.7 
IO 
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FIGURE 3.6: Least sum of error squares linear classifier. 

The corresponding y consists of five l's and then five -1 's and 

XTy = 0.1 [-1.6] 
0.0 

Solving the corresponding set of equations results in [w1. w2, wo] 
1.431 ]. Figure 3.6 shows the resulting geometry. 

3.5 MEAN SQUARE ESTIMATION REVISITED 

3.5.1 Mean Square Error Regression 

[-3.218, 0.241. 

In this subsection we will approach the MSE task from a slightly different 
perspective and in a more general framework. 

Let y. x be two random vectors of dimensions M x 1 and L x 1, respectively, 
and assume that they are described by the joint pdf p(y, x). The task of interest 
is to estimate the value of y, given the value of x, obtained from an experiment. 
No doubt the classification task falls under this more general formulation. For 
example, when we are given a feature vector x, our goal is to estimate the value 
of the class label y, which is ± 1 in the two-class case. 
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The mean square estimate y of the random vector y, given the value x. is 
defined as 

y = arg mjn E[ llY - .Yll 2 l (3.44) 
.v 

Note that the mean value here is with respect to the conditional pdf p(y lx). We 
will show that the optimal estimate is the mean value of y , that is, 

y = E[yjx] = 1: yp(yjx) dy (3 .45) 

Proof. Let j be another estimate. It will be shown that it results in higher mean 
square error. Indeed, 

E[lly - j!l 2J = E[lly - y + Y - 5' 1121 = E[lly - Yll 2
] 

+ E[lly - Yll2] + 2£r(y - y)T (y - y)] (3.46) 

where the dependence on x has been omitted for notational convenience. Note 
now that y - y is a constant. Thus, 

(3.47> 

and from the definition of y = E[y l it follows that 

(3.48) 

• 
Remark 

• This is a very elegant result. Gi ven a measured value of x , the best (in 
the MSE sense) estimate of y is given by the function y(x) = E[y lxl. 

In general this is a nonlinear vector-valued function of x (i.e .. g(-) = 
lg1 (-) . ... . gM(.)f), and it is known as the regression of y conditioned 
on x. It can be shown (Problem 3.11) that if (y. x) are jointly Gaussian. then 
the MSE optimal regressor is a linear function. 

3.5.2 MSE Estimates Posterior Class Probabilities 

In the beginning of the chapter we promised to "emancipate" ourselves from the 
Bayesian classification. However. the nice surprise is that a Bayesian flavor still 
remains, although in a disguised form . Let us n"!veal it-it can only be beneficial. 
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We will consider the multiclass case. Given x, we want to estimate its class 
label. Let g; (x) be the discriminant functions to be designed. The cost function in 
Equation (3.31) now becomes 

(3.49) 

where the vector y consists of zeros and a single I at the appropriate place. Note 
that each g; (x) depends only on x, whereas the y; 's depend on the class w J to 
whichx belongs. Let p(x, w;) be the joint probability density of the feature vector 
belonging to the ith class. Then (3.49) is written as 

f +oo M I M I J = -oo f; ~(g;(x) - y;)
2 

p(x, w1) dx 

Taking into account that p(x, w1) = P(w1lx)p(x), (3.50) becomes 

Joo I M M l 1= _
00 

f;~(g;(x)-y;)2 P(lvJlx) p(x)dx 

[ 

M M ] 
= E E~(g;(x)-y;)2 

P(w1Jx) 

where the mean is taken with respect to x. Expanding this, we get 

Exploiting the fact that g;(x) is a function of x only and z=r=t P(w1Jx) 
(3.52) becomes 

J ~ E[t. (if(x)- 2g;(x) ~y;P(u>;lx) + t.Y;'P(w;lx))] 

= E[t. (gr(x) - 2g; (x)E[y; JxJ + E[llx])] 

(3.50) 

(3.51) 

(3.52) 

I, 

(3.53) 
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where E[y;lx] and E[yflxl are the respective mean values conditioned on x. 

Adding and subtracting (£[y;lx])2. Eq. (3.53) becomes 

J = E [t (g; (x)-E[y;lxJ)
2

] +£ [t ( E[.v;21x ]-(E[y; lxD
2
)] (3.54) 

Thesecondtermin(3.54)doesnotdependonthefunctionsg;(x), i =I, 2, .. . . M. 
Thus, minimization of J with respect to (the parameters of) g; (-) affects only the 
first of the two terms. Let us concentrate and look at it more carefully. Each of 
the M summands involves two terms: the unknown discriminant function g; ( ·) 
and the conditional mean of the corresponding desired response. Let us now write 
g; (-) = g; (-; w ; ). to state explicitly that the functions are defined in terms of 
a set of parameters, to be determined optimally during training. Minimizing J 

with respect to w;. i = I, 2 ..... M, results in the mean square estimates of the 
unknown parameters, w;' so that the discriminant.functions approximate optima/Iv 
the corresponding conditional means - that is, the regressions of)'; conditioned 
on x . Moreover, for the M-class problem and the preceding definitions we have 

M 

E[y;/x] = LY;P(wjlx) 
j=I 

However v; = 1(0) ifx E w;(x E (tJj, j =Fi). Hence 

g;(x, w;) is the MSE estimate of P(w; Ix) 

(3.55) 

(3 .56) 

This is an important result. Training the discriminant functions g; with desired 
outputs I or 0 in the MSE sense, Eq. ( 3.49) is equivalent to obtaining the MSE 
estimates of the class posterior probabilities, without using any statistical informa
tion orpdfmodeling! It suffices to say that these estimates may in tum be used for 
Bayesian classification. An important issue here is to assess how good the resulting 
estimates are. It all depends on how well the adopted functions g; ( ·; w;) can model 
the desired (in general) nonlinear junctions P(w;/x). If. for example, we adopt 
linear models, as was the case in Eq. (3.31 ), and P(w;lx) is highly nonlinear, the 
resulting MSE optimal approximation will be a bad one. Our focus in the next 
chapter will be on developing modeling techniques for nonlinear functions . 

Finally. it must be emphasized that the conclusion above is an implication <~f 
the cost jimction itself and not of the specific mode/function used. The latter plays 
its part when the approximation accuracy issue comes into the scene. MSE cost is 
just one of the costs that have this important property. Other cost functions share 
this property too, see for example, [Rich 91, Bish 95, Pear 90, Cid 991. 
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3.5.3 The Bias-Variance Dilemma 

So far we have touched on some very important issues concerning the interpretation 
of the output of an optimally designed classifier. We saw that a classifier can be 
viewed as a learning machine realizing a set of functions g(x), which attempt 
to estimate the corresponding class label y and make a decision based on these 
estimates. In practice, the functions g(.) are estimated using a finite training data 
set V = ( (y;, x;), i = 1, 2, ... , N} and a suitable methodology (e.g., sum of error 
squares, LMS, maximum likelihood). To emphasize the explicit dependence on 
V we write g(x; 'D). This subsection is focused on the capabilities of g(x; 'D) to 
approximate the MSE optimal regressor E[ylxJ and on how this is affected by the 
data size N. 

The key factor here is the dependence of the approximation on 'D. The approx
imation may be very good for a specific training data set but very bad for another. 
The effectiveness of an estimator can be evaluated by computing its mean square 
deviation from the desired optimal value. This is achieved by averaging over all 
possible sets V of size N, that is, 

Ev [(g(x; 'D) - E[ylxD2
] (3.57) 

If we add and subtract Ev[g(x; 'D)] and follow a procedure similar to that in the 
proof of (3.45), we easily obtain 

Ev [(g(x; 'D) - E[ylxD2
] = (Ev[g(x; 'D)]- E[ylx])2 

+Ev [(g(x; 'D) - Ev[g(x; 'D)])2
] (3.58) 

The first term is the contribution of the bias and the second that of the variance. 
In other words, even if the estimator is unbiased, it can still result in a large mean 
square error due to a large variance term. For a finite data set, it turns out that there 
is a trade-off between these two terms. Increasing the bias decreases the variance 
and vice versa. This is known as the bias-variance dilemma. This behavior is 
reasonable. The problem at hand is similar to that of a curve fitting through a 
given data set. If, for example, the adopted model is complex (many parameters 
involved) with respect to the number N, the model will fit the idiosyncrasies of the 
specific data set. Thus, it will result in low bias but will yield high variance, as we 
change from one data set to another. The major issue now is to seek ways to make 
both bias and variance low at the same time. It turns out that this may be possible 
only asymptotically, as the number N grows to infinity. Moreover, N has to grow 
in such a way as to allow more complex models, g, to be fitted (which reduces 
bias) and at the same time to ensure low variance. However, in practice N is finite 
and one should aim at the best compromise. If, on the other hand, some a priori 
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knowledge is available, this must be exploited in the form of constraints that the 
classifier has to satisfy. This can lead to lower values of both the variance and the 
bias, compared with a more general type of classifier. This is natural, because one 
takes advantage of the available information and helps the optimization process. 
A simple and excellent treatment of the topic can be found in [Gema 92]. As for 
ourselves, this was only the beginning. We will come to the finite data set issue 
and its implications many times throughout this book and from different points of 
view. 

3.6 SUPPORT VECTOR MACHINES 

3.6. l Separable Classes 

In this section an alternative rationale for designing linear classifiers will be 
adopted. We will start with the two-class linearly separable task and then we 
will extend the method to more general cases where data are not separable. 

Let x;. i = L 2 ..... N. be the feature vectors of the training set, X. These 
belong to either of two classes. w1, w:z, which are assumed to be linearly separable. 
The goal, once more, is to design a hyperplane 

g(x) =WT X +WO= 0 (3.59) 

that classifies correctly all the training vectors. As we have already discussed 
in Section 3.3, such a hyperplane is not unique. The perceptron algorithm may 
converge to any one of the possible solutions. Having gained in experience, this 
time we will be more demanding. Figure 3.7 illustrates the classification task with 
two possible hyperp]ane 1 solutions. Both hyperplanes do the job for the training 
set. However, which one of the two would any sensible engineer choose as the 
classifier for operation in practice, where data outside the training set will be fed 
to it? No doubt the answer is: the full-line one. The reason is that this hyperplane 
leaves more "room" on either side, so that data in both classes can move a bit more 
freely, with less risk of causing an error. Thus such a hyperplane can be trusted 
more, when it is faced with the challenge of operating with unknown data. Here 
we have touched a very important issue in the classifier design stage. It is known 
as the generalization performance of the classifier. This refers to the capability of 
the classifier, designed using the training data set, to operate satisfactorily with 
data outside this set. We will come to this issue over and over again. 

After the above brief discussion, we are ready to accept that a very sensible 
choice for the hyperplane classifier would be the one that leaves the maximum 
margin from both classes. Later on, at the end of Chapter 5, we will see that this 

1 We will refer to lines as hyperplanes to cover the general case. 



78 Chapter 3: LINEAR CLASSIFIERS 

x 
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• • • • • • • • 

x 

x x x 

FIGURE 3.7: An example of a linearly separable two class problem with two 
possible linear classifiers. 

sensible choice has a deeper justification, springing from the elegant mathematical 
formulation that Vapnik and Chernovenkis have offered to us. 

Let us now quantify the term "margin" that a hyperplane leaves from both 
classes. Every hyperplane is characterized by its direction (determined by w) 
and its exact position in space (determined by wo). Since we want to give no 
preference to either of the classes, then it is reasonable for each direction to select 
that hyperplane which has the same distance from the respective nearest points in 
w1 and wi. This is illustrated in Figure 3.8. The hyperplanes shown with dark lines 
are the selected ones from the infinite set in the respective direction. The margin 
for direction "I" is 2z 1 and the margin for direction "2" is 222. Our goal is to 
search for the direction that gives the maximum possible margin. However, each 
hyperplane is determined within a scaling factor. We will free ourselves from it, 
by appropriate scaling of all the candidate hyperplanes. Recall from Section 3.2 
that the distance of a point from a hyperplane is given by 

lg(x)I 
z=~ 

We can now scale w, wo so that the value of g(x), at the nearest points in w 1, w2 

(circled in Figure 3.8), is equal to 1 for w1 and, thus, equal to - I for wi. This is 
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direction 2 

• 
z , 

~~--~~~~~~~~~~~~~~~~~~~------
.l' 1 

FIGURE 3.8: The margin for direction 2 is hirger than the margin for direc
tion I. 

equivalent with 

I. Having a margin of 11 ~ 11 + 11 ~ 11 = 11 ~ 11 
2. Requiring that 

WT x + wo ~ I . Vx E w1 

WT X + Wo _::: - I. V X E W2 

We have now reached the point where mathematics will talce over. For each x;. we 
denote the corresponding class indicator by y; (+I for w 1, - I for w2.) Our task 
can now be summarized as: Compute the parameters w, woof the hyperplane so 
that to: 

I 
minimize J(w) = 211wll 2 

subject to y;(wT x; + wo)::: I. i =I , 2, .. .. N 

(3.60) 

(3.61) 

Obviously, minimizing the norm makes the margin maximum . This is a nonlin
ear (quadratic) optimization task subject to a set of linear inequality constraints. 
The Karush-Kuhn-Tucker (KKT) conditions (Appendix C) that the minimizer of 
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(3 .60), (3 .61) has to satisfy are 

a 
-.C(w, wo. l.) = 0 
aw 
a 

-.C(w, wo. l.) = 0 
awo 

A; 2:. 0, i = l, 2, ... , N 

A.;[y;(wTx;+wo)-1]=0, i=l,2, ... ,N 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

where l. is the vector of the Langrange multipliers, A;, and .C(w, wo, l.) is the 
Langrangian function defined as 

N 

l T " T .C(w, wo, l.) = 2w w - ~A;[y;(w x; + wo) - l] 
i=I 

Combining (3.66) with (3.62) and (3.63) results in 

Remarks 

N 

w = LA.;y;x; 
i=I 

N 

LA;y; =0 
i=I 

(3.66) 

(3.67) 

(3.68) 

• The Langrange multipliers can be either zero or positive (Appendix C.) 
Thus, the vector parameter w of the optimal solution is a linear combination 
of N, .:::; N feature vectors which are associated with A; f=. 0. That is, 

N,. 

w = LA;y;x; 
i=I 

(3.69) 

These are known as support vectors and the optimum hyperplane classifier 
as a support vector machine (SVM). As it is pointed out in Appendix C, a 
nonzero Langrange multiplier corresponds to a so called active constraint. 
Hence, as the set of constraints in (3.65) suggest for A; f=. 0, the support 
vectors lie on either of the two hyperplanes, i.e., 

WT X +WO= ±1 (3 .70) 

that is, they are the training vectors that are closest to the linear classifier, 
and they constitute the critical elements of the training set. Feature vectors 
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corresponding to A; = 0 can either lie outside the "class separation band," 
defined as the region between the two hyperplanes given in (3.70), or they 
can also lie on one of these hyperplanes (degenerate case, Appendix C.) The 
resulting hyperplane classifier is insensitive to the number and position of 
such feature vectors, provided they do not cross the class separation band. 

• Although w is explicitly given, wo can be implicitly obtained by any of the 
(complementmy slackness) conditions (3.65), satisfying strict complemen
tarity (i.e., A; ¥:- 0, Appendix C.) In practice, wo is computed as an average 
value obtained using all conditions of this type. 

• The cost function in (3.60) is a strict convex one (Appendix C), a property that 
is guaranteed by the fact that the corresponding Hessian matrix is positive 
definite [Flet 87]. Furthermore, the inequality constraints consist of linear 
functions. As discussed in Appendix C, these two conditions guarantee that 
any local minimum is also global and unique. This is most welcome. The 
optimal hyperplane classifier of a support vector machine is unique. 

Having stated all these very interesting properties of the optimal hyperplane of a 
support vector machine, the next step is the computation of the involved param
eters. From a computational point of view this is not always an easy task and 
a number of algorithms exist. e.g., [Baza 79). We will move to a path which is 
suggested to us by the special nature of our optimization task, given in (3.60) and 
(3.61 ). It belongs to the convex programming family of problems, since the cost 
function is convex and the set of constraints are linear and define a convex set 
of feasible solutions. As we discuss in Appendix C, such problems can be solved 
by considering the so called Langrangian duality and the problem can be stated 
equivalently by its Wolfe dual representation form, i.e .. 

maximize L(w, wo. A.) (3.71) 

N 

subject to w = LA;y;x; (3.72) 

i"" I 

N 

LAiYi =0 (3.73) 

i=I 

A.:::_ 0 (3.74) 

The two equality constraints are the result of equating to zero the gradient of the 
Langrangian, with respect tow. w0 . We have already gained something. The train
ing feature vectors enter into the problem via equality constraints and not inequality 
ones, which can be easier to handle. Substituting (3. 72) and (3.73) into (3.71) and 
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after a bit of algebra we end up with the equivalent optimization task 

max(~ A· - ~ '°"' ). ·).y·y ·xT x·) L..,,• 2L..,,•J•J1J 
l i=l i . j 

N 

subject to LA; y; = 0 
i=I 

(3.75) 

(3 .76) 

(3.77) 

Once the optimal Langrangian multipliers have been computed, by maximiz
ing (3.75), the optimal hyperplane is obtained via (3 .72), and wo via the 
complementary slackness conditions, as before. 

Remarks 

• Besides the more attractive setting of the involved constraints in (3 .75), 
(3.76), there is another important reason that makes this fonnulation popular. 
The training vectors enter into the game in pairs, in the form of inner products. 
This is most interesting. The cost function does not depend explicitly on 
the dimensionality of the input space! This property allows for efficient 
generalizations in the case of nonlinearly separable classes. We will return 
to this at the end of Chapter 4. 

• Although the resulting optimal hyperplane is unique, there is no guarantee 
about the uniqueness of the associated Langrange multipliers A; . In words, 
the expansion of w in tenns of support vectors in (3.72) may not be unique, 
although the final result is unique (Example 3.4). 

3.6.2 Nonseparable Classes 

In the case where the classes are not separable, the above setup is not valid any 
more . Figure 3.9 illustrates the case. The two classes are not separable. Any attempt 
to draw a hyperplane will never end up with a class separation band with no data 
points inside it, as was the case in the linearly separable task. Recall that the margin 
is defined as the distance between the pair of parallel hyperplanes described by 

WT X + wo = ±1 

The training feature vectors now belong to one of the following three categories: 

• Vectors that fall outside the band and are correctly classified. These vectors 
comply with the constraints in (3.61). 
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FIGURE 3.9: In the nonseparable class case, points fall inside the class 
separation band. 

• Vectors falling inside the band and which are correctly classified. These are 
the points placed in squares in Figure 3.9 and they satisfy the inequality 

• Vectors that are misclassified. They are enclosed by circles and obey the 
inequality 

All three cases can be treated under a single type of constraints by introducing 
a new set of variables, namely 

(3.78) 

The first category of data correspond to l;; = 0, the second to 0 < l;i ::; I. and the 
third to l;; > I. The variables l;; are known as slack variables. The optimizing task 
becomes more involved, yet it falls under the same rationale as before. The goal 
now is to make the margin as large as possible but at the same time to keep the 
number of points with l; > 0 as small as possible. In mathematical terms, this is 
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equivalent to adopting to minimize the cost function 

1 N 
J(w, wo, ~) = 211wll 2 +CL/(~;) 

where ~ is the vector of the parameters ~; and 

I(~;) = { 1 ~; > 0 
0 ~i =0 

i=I 

(3.79) 

(3.80) 

The parameter C is a positive constant that controls the relative influence of the two 
competing terms. However, optimization of the above is difficult since it involves a 
discontinuous function I(·). As it is common in such cases, we choose to optimize 
a closely related cost function, and the goal becomes 

minimize 
1 N 

J(w, wo, ~) = 211wll 2 + C L~i 
i=l 

subject to y;[wT x; + wo]:;:: 1 - ~;. i = 1, 2 .... , N 

t :::. 0, i = 1, 2, .... N 

(3.81) 

(3.82) 

(3.83) 

The problem is again a convex programming one, and the corresponding 
Langrangian is given by 

I N N 

.C(w, wo. ~. l.., µ) = 211wll 2 + C L~i - Lfli~i 
i=l i=I 

N 

- LA.;[y;(wT x; + wo) -1 +~;] 
i=l 

The corresponding Karush-Kuhn-Tucker conditions are 

a£ 

N 
a£ 
-=0 aw or w = LA.;y;x; 

i=I 

J£ 
-- = 0 or 
Jwo 

N 

LA;)'; =0 
i=I 

- = 0 or C - µ; - A.; = 0, i = 1, 2, ... , N 
a~; 

A.;[y;(wTx;+wo)-1+~;]=0, i=1,2, ... ,N 

(3.84) 

(3.85) 

(3.86) 

(3.87) 

(3.88) 
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111~; = 0, i = I, 2, .... N 

µ, :;:: 0. >..; :;:: 0. i = I. 2, .. . , N 

The associated Wolfe dual representation now becomes 

maximize .C(w. wo. A..~.µ) 

N 

subject to w = L >..; y1x; 

i=I 

N 

LAiYi =0 
i=I 

C - 11; - A.1 = 0. i = I. 2, .... N 

>..; :;:: 0, 11; ~ 0, i = I, 2, . ... N 
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(3.89) 

(3.90) 

Substituting the above equality constraints into the Langrangian we end up with 

Remarks 

max (t>..; - ~ L,>..1AJYiYJXT x 1 ) 
A . I .. 

I= 1.j 

subject to 0 .::=: >..; .::=: C, i = I, 2 ..... N 

N 

'°">..v=O ~1.-1 

i=I 

(3.91) 

(3 .92) 

(3.93) 

• The only difference with the previously considered case of linearly separable 
classes is in the first of the two constraints. where the Langrange multipliers 
need to be bounded above by C. The linearly separable case corresponds to 
C --" oo. The slack variables,~;, and their associated Langrange multipliers. 
µ 1, do not enter into the problem explicitly. Their presence is indirectly 
reflected through C. 

• In all our discussions. so far, we have been involved with the two-class 
classification task. In an M-class problem. a straightforward extension can 
be tu look at it as a set of M two-class problems. For each one of the classes, 
we seek to design an optimal discriminant function, g; (x), i = I , 2 .... , M. 
so that g1 (x) > g1 (x). Vj f=. i, if x E w1. Adopting the SVM methodology, 
we can design the discriminant functions so that g; (x) = 0 to be the optimal 
hyperplane separating class w; from all the others, assuming of course that 
this is possible. Thus, the resulting linear function will give g; (x) > 0 for 
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x E £0; and g; (x) < 0 otherwise. Classification is then achieved according 
to the following rule: 

assign x in w; if i = arg max {gk(x)) 
k 

This technique, however, may lead to indeterminate regions, where more 
than one g;(x) is positive (Problem 3.15). 
Another approach is to extent the two class SVM mathematical formulation 
to the M-class problem, see, for example, [Vapn 98). 

Example 3.4. Consider the two-class classification task that consists of the following 
points: 

w1: [l, l{. [l, -l]T 

wz: [-1, l]T, [-1, -1] 

Using the SVM approach, we will demonstrate that the optimal separating hyperplane (line) 
is x 1 = 0 and that this is obtained via different sets of Langrange multipliers. 

The points lie on the corners of a square, as shown in Figure 3.10. The simple geometry of 
the problem allows for a straightforward computation of the SVM linear classifier. Indeed, 
a careful observation of Figure 3.10 suggests that the optimal line 

g(x) = w1x1 + w2x2 + wo = 0 

is obtained for w2 = wo = 0 and w1 = 1, i.e., 

g(x) = XJ = 0 

Hence for this case, all four points become support vectors and the margin of the separating 
line from both classes is equal to 1. For any other direction, e.g., g 1 (x) = 0, the margin is 
smaller. It must be pointed out that, the same solution is obtained if one solves the associated 
KKT conditions (Problem 3.16.) 

Let us now consider the mathematical formulation of our problem. The linear inequality 
constraints are 

w I + w2 + wo - I 2: 0 

wi - w2 + wo - 1 2: 0 

w I - w2 - wo - 1 :'.". 0 

w 1 + w2 - wo - 1 :'.". 0 
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- I 
.'1:1 

- I 

g(.x.·) =O 

FIGURE 3.10: In this example all four points are support vectors. The margin 
associated with g 1 (x) = 0 is smaller compared to the margin defined by the 
optimal g(x) = 0. 

and the associated Langrnngian function becomes 

w2 +w2 
C(u•z,w1.wo.A)= 1 

2 
2 -A1(w1 +w2+wo- I) 

- A.2(w1 - w2 + wo - I) 

- A. 3 ( w J - w2 - wo - I) 

- A4(w1 + w2 - wo - I) 

The KKT conditions arc given by 

ac 
- = 0 =} w1 = AJ + A2 + A3 + A4 aw, 
a.c 

- = 0 ::::} w2 =At + )..4 - A2 - A3 
ilw2 

iJC . - = 0 =} At + ).. 2 - ).. 3 - A4 = 0 
awo 

At (wt + w2 + WQ - I) = 0 

A2(w1 - w2 + wo - I) = 0 

(3.94) 

(3.95) 

(3.96) 

(3.97) 

(3.98) 
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A3(w1 - wz - wo - 1) = 0 

A4 ( w l + wz - wo - 1) = 0 

A1,Az,A3,A4 ~ O 

(3.99) 

(3.100) 

(3.101) 

Since we know that the solution for w, wo is unique, we can substitute the solution 
w 1 = 1, wz = wo = 0 into the above equations. Then we are left with a linear system of 
three equations with four unknowns, i.e., 

Al +Az+A3+A4= 1 

A1 + A4 - AZ - A3 = o 
Al+ Az - A3 - A4 = 0 

(3.102) 

(3.103) 

(3.104) 

which has, obviously, more than one solution. However, all of them lead to the unique 
optimal separating line. 

Problems 

3.1 Explain why the perceptron cost function is a continuous piecewise linear function. 
3.2 Show that if Pk = p in the perceptron algorithm, the algorithm converges after 

ko = llw(O)-aw*ll steps where a= /3
2 

and p < 2 
fl2p(2-p) ' TYT · 

3.3 Show that the reward and punishment form of the perceptron algorithm converges 
in a finite number of iteration steps. 

3.4 Consider a case in which class w1 consists of the two feature vectors (0, Of and 
[ 0, I] T and class wz of[ I , OJ T and [ I, I] T. U sc the pcrccptron algorithm in its reward 
and punishment form, with p = l and w(O) = (0, O)T, to design the line separating 
the two classes. 

3.5 Consider the two-class task of Problem 2.12 of the previous chapter with 

µ.f = (1, 1), µ.f = [0,0), 

Produce 50 vectors from each class. To guarantee linear separability of the classes, 
disregard vectors with x 1 + xz < 1 for the [ 1, 1) class and vectors with x t + xz > 1 
for the [0, 0] class. In the sequel use these vectors to design a linear classifier using the 
perceptron algorithm of (3.21 ). After convergence, draw the corresponding decision 
line. 

3.6 Consider once more the classification task of Problem 2.12. Produce 100 samples for 
each of the classes. Use these data to design a linear classifier via the LMS algorithm. 
Once all samples have been presented to the algorithm, draw the corresponding 
hyperplane to which the algorithm has converged. Use Pk = p = 0.01. 
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3.7 Show. using Kesler's constrnction, that the Ith iteration step of the reward and 

punishement form of the perceptron algorithm (3.21 ), for an x (t) E Wi. becomes 

wi(l +I)= w;(t) + px(t) ifwT(/)X(I) S wj(l)x(I)· j f= i 

WjU +I)= w;(l)-px(I) ifwT(t)x(I) S wj(l)x(I)· j f= i 

wk (t + I) = wk(!). Vk f= j and k f= i 

3.8 Show that the sum of error squares optimal weight vector tends asymptotically to 
the MSE solution. 

3.9 Repeat Problem 3.6 and design the classifier using the sum of error squares criterion. 
3.10 Show that the design of an M class linear, sum of error squares optimal. classifier 

reduces to M equivalent ones, with scalar desired responses. 
3.11 Show that, if x. y are jointly Gaussian, the regression of yon xis given by 

. aavx aayµi 
E[yjx] = -·- +J.lr - ----. 

a-.r · ax [ ~ 
a-: 

where L = ·' 
aaxa_v 

(3.105) 

3.12 Let an M class classifier be given in the fonn of parameterized functions g(x; Wk). 

The goal is to estimate the parameters Wk so that the outputs of the classifier give 
desired response values, depending on the class of x. Assume that as x varies ran
domly in each class, the classifier outputs vary around the corresponding desired 
response values. according to a Gaussian distribution of known variance, assumed 
to be the same for all outputs. Show that in this case the sum of error squares criterion 
and the ML estimation result in identical estimates. 

Hint: Take N training data samples of known class labels. For each of them form 
Yi = g(xi: wk) - df. where d£ is the desired response for the kth class of the ith 

sample. The Yi 's are normally distributed with zero mean and variance a 2. Form the 
likelihood function using the Yi 's. 

3.13 In a two-class problem the Bayes optimal decision surface is given by g(x) = 

P(<v 1 jx) - P(wiix) = 0. Show that if we train a decision surface f(x; w) in the 
MSE so as to give + 1 ( - I) for the two classes, respectively, this is equivalent to 
approximating g(-) in terms off(-: w). in the MSE optimal sense. 

3.14 Consider a two-class classification task with jointly Gaussian distributed feature 
vectors and with the same variance L in both classes. Design the linear MSE classifier 
and show that in this case the Bayesian classifier (Problem 2.11) and the resulting 
MSE one differ only in the threshold value. For simplicity, consider equiprobable 
classes. 
Hint: To compute the MSE hyperplane wT x + wo = 0. increase the dimension of x 
by one and show that the solution is provided by 

[£,:]T £11xJ] [:o] = [!<JL1 0-1L2)] 

Then relate R with L and show that the MSE classifier takes the form 



90 Chapter 3: LINEAR CLASSIFIERS 

3.15 In an M class classification task the classes can be linearly separated. Design M 
hyperplanes, so that hyperplane g;(x) = 0 leaves class w; on its positive side and 
the rest of the classes on its negative side. Demonstrate via an example, e.g., M == 3, 
that the partition of the space using this rule creates indetenninate regions (where 
no training data exist) for which more than one g;(x) is positive or all of them are 
negative. 

3.16 Obtain the optimal line for the task of Example 3.4, via the KKT conditions. Restrict 
the search for the optimum among the lines crossing the origin. 
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CH A PT ER 4 _____________ _ 

NONLINEAR CLASSIFIERS 

4.1 INTRODUCTION 

In the previous chapter we dealt with the design of linear classifiers described by 
linear discriminant functions (hyperplanes) g(x) . In the simple two-class case we 
saw that the perceptron algorithm computes the weights of the linear function g (x). 

provided that the classes are linearly separable. For non-linearly separable classes 
linear classifiers were optimally designed , for example, by minimizing the squared 
error. fn this chapter we will deal with problems that are not linearly separable and 
for which the design of a linear classifier, even in an optimal way, does not lead to 
satisfactory pert'ormance. The design of nonlinear classifiers emerges now as an 
unescapable necessity. 

~2 THEXORPROBLEM 

To seek nonlinearly separable problems one does not need to go into compli
cated situations. The well-known Exclusive OR (XOR) Boolean function is a 
typical example of such a problem. Boolean functions can be interpreted as 
classification tasks. Indeed, depending on the values of the input binary data 
x = [x1, x2, ... , x1 f, the output is either 0 or I, and x is classified into one of the 
two classes A (I) or B(O) . The corresponding truth table fur the XOR operation is 
shown in Table 4. 1. 

Figure 4 . I shows the position of the classes in space. It is apparent from this 
figure that no single straight line exists that separates the two classes. In con
trast, the other two Boolean functions, AND and OR, are linearly separable. 
The corresponding truth tables for the AND and OR operations are given in 
Table 4.2 and the respective class positions in the two-dimensional space are 
shown in Figure 4.2a and 4.2b. Figure 4.3 shows a perceplron, introduced in 
the previous chapter, with synaptic weights computed so as to realize an OR gate 
(verify). 

Our major concern now is first to tackle the XOR problem and then to extend 
the procedure to more general cases of nonlinearly separable classes. Our kickoff 
point will be geometry. 

93 
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Table 4.1: Truth table for the XOR problem 

Xj 

0 
0 

I A 

B 
0 

xz 

0 

0 
I 

XOR 

XOR 

A 

0 

I 
0 

Class 

B 
A 
A 
B 

FIGURE 4.1: Classes A and B for the XOR problem. 

4.3 THE TWO-LAYER PERCEPTRON 

To separate the two classes A and B in Figure 4.1, a first thought that comes into 
mind is to draw two, instead of one, straight lines. 

Figure 4.4 shows two such possible lines, g1(x) = g2(X) = 0, as well as 
the regions in space for which g1 (x) ~ 0, gz(x) ~ 0. The classes can now be 
separated. Class A is to the right ( +) of g 1 (x) and to the left (-) of gz (x). The 
region corresponding to class B lies either to the left or to the right of both lines. 
What we have really done is to attack the problem in two successive phases. During 
the first phase we calculate the position of a feature vector x with respect to each of 
the two decision lines. In the second phase we combine the results of the previous 
phase and we find the position of x with respect to both lines, that is, outside or 
inside the shaded area. We will now view this from a slightly different perspective, 
which will subsequently lead us easily to generalizations. 
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Table 4.2: Truth table for AND and OR 
problems 

XJ x2 AND Class OR 

0 0 0 B 0 
0 I 0 B 

0 0 B 
A 

AND 

.A IA 

B B 
.-i: , 0 

(a) 

Class 

B 
A 
A 
A 

OR 

A 

(b) 

FIGURE 4.2: Classes A and B for the AND and OR problems. 

x I 

FIGURE4.3: 

_J_ 
2 

A perceptron realizing an OR gate. 
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B 
• (1,1) 

B A 
(0,0) (1,0) 

FIGURE 4.4: Decision lines realized hy a two-layer perceptron for the XOR 
prohlem. 

Tahle 4.3: Truth tahle for the two computation phases 
of the XOR prohlem 

0 
0 
I 
I 

0 
I 
0 
I 

1st Phase 

YI 

0(-) 
I(+) 
I(+) 
I(+) 

.\'2 

0(-) 
0(-) 
0(-) 
1 (+) 

2nd Phase 

B (0) 
A (I) 
A (I) 
B (0) 

Realization of the two decision lines (hyperplanes), g1 (.)and g20, during the 
first phase of computations is achieved with the adoption of two perceptrons with 
inputs x1, x2 and appropriate synaptic weights. The corresponding outputs are 
Yi = f (g; (x)), i = I, 2, where the activation function f O is the step function 
with levels 0 and 1. Table 4.3 summarizes the y; values for all possible combina
tions of the inputs. These are nothing else than the relative positions of the input 
vector x with respect to each of the two lines. From another point of view, the 
computations during the first phase pe1jorm a mapping of the input vector x to 
a new one y = [y1. y2J1 . The decision during the second phase is now based on 
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B 
.(I.I) - + 

B A 
(0,0) ( 1.0) !/1 

FIGURE 4.5: Decision line fonned by the neuron of the second layer for the 
XOR problem. 

FIGURE 4.6: A two-layer perceptron solving the XOR problem. 

the transfonned data; that is, our goal is now to separate [y1, y2J = [O, 0] and 
[y1, y2] = [ 1, 1 ]. which correspond to class B vectors, from the [ )'1. yd = [ 1. O], 
which corresponds to class A vectors. As is apparent from Figure 4.5 this is easily 
achieved by drawing a third line g(y), which can be realized via a third neuron. In 
other words. the mapping of the first phase transforms the nonlinearly separable 
problem to a linearly separable one. We will return to this important issue later 
on. Figure 4.6 gives a possible realization of these steps. Each of the three lines 
is realized via a neuron with appropriate synaptic weights. The resulting multi
layer architecture can be considered as a generalization of the perceptron, and it is 
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known as a two-layer perceptron or a two-layer feedforwardI neural network. The 
two neurons (nodes) of the first layer perfonn computations of the first phase and 
they constitute the so-called hidden layer. The single neuron of the second layer 
performs the computations of the final phase and constitutes the output layer. In 
Figure 4.6 the input layer corresponds to the (non-processing) nodes where input 
data are applied. Thus, the number of input layer nodes equals the dimension of 
the input space. Note that at the input layer nodes no processing takes place. The 
lines that are realized by the two-layer perceptron of the figure are 

l 
g1 (x) =XI + x2 - Z = 0 

3 
gz(x) =XI + x2 - 2 = 0 

I 
g(y) =YI - Y2 - z = 0 

The multilayer perceptron architecture of Figure 4.6 can be generalized to 
/-dimensional input vectors and to more than two (one) neurons in the hidden 
(output) layer. We will now turn our attention to the investigation of the class 
discriminatory capabilities of such networks for more complicated nonlinear 
classification tasks. 

4.3.1 Classification Capabilities of the Tuo-Layer Perceptron 

A careful look at the two-layer perceptron of Figure 4.6 reveals that the action of 
the neurons of the hidden layer is actually a mapping of the input space x onto the 
vertices of a square of unit side length in the two-dimensional space (Figure 4.5). 

For the more general case, we will consider input vectors in the /-dimensional 
space, that is, x E R 1, and p neurons in the hidden layer (Figure 4.7). For the time 
being we will keep one output neuron, although this can also be easily generalized 
to many. Again employing the step activation function, the mapping of the input 
space, performed by the hidden layer, is now onto the vertices of the hypercube 
of unit side length in the p-dimensional space, denoted by Hp· This is defined as 

Hp ={(YI, ... , Ypf ERP ,y; E (0, l]. l ::'. i ::'. p} 

The vertices of the hypercube are all the points [YI, . . . , Ypf of Hp with y; E 
{ 0, I}, l ::; i ::; p. 

1 To distinguish it from other related structures where feedback paths from the output back to the 
input exist. 
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FIGURE 4.7: A two-layer perceptron. 

FIGURE 4.8: Polyhedra formed by the neurons of the first hidden layer of a 
multilayer perceptron. 

The mapping of the input space onto the vertices of the hypercuhe is achieved 
via the creation of p hyperplanes. Each of the hyperplanes is created hy a neuron 
in the hidden layer, and the output of each neuron is 0 or I, depending on the 
relevant position of the input vector with respect to the corresponding hyperplane. 
Figure 4.8 is an example of three intersecting hyperplanes (three neurons) in the 
two-dimensional space. Each region defined by the intersections of these hyper
planes corresponds to a vertex of the unit three-dimensional hypercube. depending 
on its position with respect to each of these hyperplanes. The ith dimension of the 
vertex shows the position of the region with respect to the g; hyperplane. For 
example, the 001 vertex corresponds to the region that is in the(-) side of g1. in 
the(-) side of gi. and in the (+)side of g3. Thus, the conclusion we reach is that 
the first layer of neurons divides the input I-dimensional space into polyhedra, 2 

2 A polyhedron or polyhedral set is the finite intersection of closed half-spaces of 'R.1• which are 
defined by a number of hyperplanes. 



,., 

uul .. 

" ' 
'' 

110 

1 • I 
/" 

' ' ' ' ' ' i 10 1 
J / 

; ,/ 
!/' . // 

v 
!ll•1 

FI V l l'R F. 4 .'i! Tl11• rw 1111111:.. of rt1l'l 1i 1~r h illdru layl'lr 111~t(' "'" 111;>111 ~·,.cl11r unlu • 1110: 
~I' 1hc- 'ltttk·ci. ul' ii unil (hyperX·ulx-. 'fbc: outpu1 ncul'01l ccalitcs ll (h)'f,'Cr)l'!lono en 
M:1llh~,.~ \'C1tiC\~11 ll~C<1r.ti1lP, IO rt.cir<: l:l«'< IJthl'lL 

.... ~N·.:i °"' .t.,,..,,..J h.1 i.tJPn,~ ~dilru. J.i! ,.,.:11n:1 AA:M.11.JJ "'4J;W ~ 
"''ht~ roJ11wt'tul -~ '1tr /f/IQflPf'd ~ " ~~'k ft'T'<;t "'llW' rm/: 11,. 
~J'ltr.IJr. Tho WIJNI ncor'OO ~~·d) teali7« anochct' h!JX'l .. aac. which 
~titn 11~ l11p:<"al~ iillu 1a.v pa:n-s.. ha"V&g .l('t•ie u1 llY V'fJli~ <'It~ UM.I 
~ on I.he ~r side. This ncia.ro. pJO\''dr!. I.be maltile)'ff pct~UOI' w'.1h 
11.ci J°'lll' "'';,il cu tiai.:~dr ~$ intu rl'""'I:'< r~MJ' ,!I tmkwor <f dut r<t/.t'IM'· 
t:rt:I r~~f'r.s. l....'"1: 11.1- ~om.idcr, f~J ex.umple. ih<lt dl&li,; ,, cv1111.ii;.1' 01· \h: un!M 01· 
ti"' 1f"(.i4'l1111 111.tpp.'ll.I "n10 ~·c nicr:-: OCCJ, 001, <l 11 :ln1I <: l:"Jo;t ff ~1~11~ii..1i- 11f lli,. 1-ei>t 
(J•i!JuR" 4.t<i). J·l~utc< 4.9 sh~·s the' H~ uni1 (hyperl,·ub< <1nd u (h,)'pctlphu1e< 1hi1t 
'~P,.-l'~ICf. lht: f-l':'ICC 17} into 1.,,,0 (,~l?.iOnt >.t•irh lb,~ f~):'ltt .4 l VC':11iCCf. ()(',01 0()1, (l I ( 
un uno .Jde< 1tntJ (<:IUM. lf> \·('ni<·es 010. IOU. J JO. 11 J 1.>n tlx' Cllhrr. IAI. Ii> ch< 
- >'• - :12 + Y.' + <>.S = ()plane: • .,,,hicb i~ (,~:lli1crt by 1hc "1u111u1 lll~urnn . \ \'hh 
• 11(;h" l'u11ll11ur11ou11 i1Jl ''el'l<.•n Jcvn1 •:k1so; ..'1 n:o;ult JU ;111 <.'l'lp11t vi I( ) ''"J ,,11 
\o'CClnB hntn el t.'l.1. R in ili-). (Jn che ocher hand. if el.:i~!' .J. ton~i i.ti. nf tho: union 
l)O(l •• 111 lJ 11(l ;11111 ;: l;,o;o; it u( 11~ 11~-;t, 1( i~ uuc yuo;o;il1lt'\ lu (;1)11 ~1 11.1..:1 a o; 111. le 
r,h,nc 1h1tt scparitcli eh,ss .4 fro1n el:t..'ii> lJ venice!>. ·r'hus. y,·c e1tn. conclude ch.:it 
11 t.WJ !11'Jtfr /1('11 1('/1:111•1 ~:lln .\('/l(Jl'rJf(• (:/<J.\S(') 1t1t.<:h r·(1•1.v(vt i•1$ 11/ 1t•1ll111) ()/ pfll,\'· 
li~tlra: rc',('°411:i' lxAt r.tJ111ny ll11ion a_,; Sile.it 1·(~i<?n.t. ll :di depcnl.ls on lh.: rthUi\'C 
~icin 11f. of 111,~ \'t:• riC\~!> of kt:• \•111ht:1 c 11-..~ el.:i!>!>C~ 111c t11n11f:<:rl~ A11.l "-'he 111,~' 1l1"'l(r. 
llJ'C' Unr11rJ11 M'p!ll'dblie UC nut. ll<1ore W< p!VIA'<!J fur1fk'r tu )ce' "''1.)'S IU Q\-'t'C~ 
ffil'IC rr.lit ~'>trcnn'lin,.. ir t.MoM t'ot! t'IOinlC':rl oor 1h.lr ~o:t~ tOI nr rht. ct:lht.: 
~ •ut. Nrrn-,ood to an,- o( lM polybnkal ie,:ionl. Mb 1'fl1ke. lU'b nid 
co corrc:~1 ~c \irt.'lltN ,->ol,iocdm. 8M dwy ~ M>t inrlucncc chc clai.df\.:a1i.la ....._ 



Section 4.4: THREE-LAYER PERCEPTRONS 101 

4.4 THREE-LAYER PERCEPTRONS 

The inability of the two-layer perceptrons to separate classes resulting from any 
union of polyhedral regions springs from the fact that the output neuron can realize 
only a single hyperplane. This is the same situation the basic perceptron was 
confronted with when dealing with the XOR problem. The difficulty was overcome 
by constructing two lines instead of one. A similar escape path will be adopted here. 

Figure 4.10 shows a three-layer perceptron architecture with two layers of hid
den neurons and one output layer. We will show, constructively, that such an 
architecture can separate classes resulting from any union of polyhedral regions. 
Indeed, let us assume that all regions of interest are formed by intersections of p 

/-dimensional half-spaces defined by the p hyperplanes. These are realized by the 
p neurons of the first hidden layer, which also perform the mapping of the input 
space onto the vertices of the Hp hypercube of unit side length. In the sequel let us 
assume that class A consists of the union of J of the resulting polyhedra and class 
B of the rest. We then use J neurons in the second hidden layer. Each of these 
neurons realizes a hyperplane in the p-dimensional space. The synaptic weights 
for each of the second-layer neurons are chosen so that the realized hyperplane 
leaves only one of the Hp vertices on one side and all the rest on the other. For each 
neuron a different vertex is isolated, that is, one of the J A class vertices . In other 
words, each time an input vector from class A enters the network, one of the J neu
rons of the second layer results in a 1 and the remaining J - I give 0. In contrast. 
for class B vectors all neurons in the second layer output a 0. Classification is now 
a straightforward task. Choose the output layer neuron to realize an OR gate. Its 
output will be I for class A and 0 for class B vectors. The proof is now complete. 

The number of neurons in the second hidden layer can be reduced by exploiting 
the geometry that results from each specific problem-for example, whenever two 
of the J vertices are located in a way that makes them separable from the rest, using 

FIGURE 4.10: Architecture of a multilayer perceptron with two hidden layers 
of neurons and a single output neuron. 
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a single hyperplane. Finally, the multilayer structure can be generalized to more 
than two classes. To this end, the output layer neurons are increased in number, 
realizing one OR gate for each class. Thus, one of them results in I every time a 
vector from the respective class enters the network, and all the others give 0. The 
number of second-layer neurons is also affected (why?). 

In summary, we can say that the neurons of the first layer form the hyperplanes, 
those of the second layer fomz the regions, and finally the neurons uf the output 
layer form the classes. 

So far, we have focused on the potential capabilities of a three-layer perceptron 
to separate any union of polyhedral regions. To assume that in practice we know the 
regions where the data are located and we can compute the respective hyperplane 
equations analytically is no doubt wishful thinking, for this is as yet an unrealizable 
goal. All we know in practice are points within these regions. As was the case with 
the perceptron, one has to resort to learning algorithms that learn the synaptic 
weights from the available training data vectors. There are two major directions 
in which we will focus on our attention. In one of them the network is constructed 
in a way that classifies correctly all the available training data, by building it as 
a succession of linear classifiers. The other direction relieves itself of the correct 
classification constraint and computes the synaptic weights so as to minimize a 
preselected cost function. 

4.5 ALGORITHMS BASED ON EXACT CLASSIFICATION 
OF THE TRAINING SET 

The starting point of these techniques is a small architecture (usually unable to solve 
the problem at hand), which is successively augmented until the correct classifica
tion of all N feature vectors of the training set X is achieved. Different algorithms 
follow different ways to augment their architectures. Thus, some algorithms 
expand their architectures in terms of the number of layers [Meza 89, Frea 90), 
whereas others use one or two hidden layers and expand them in terms of the 
number of their nodes (neurons) [Kout 94, Bose 96]. Moreover, some of these 
algorithms [Frea 90] allow connections between nodes of nonsuccessive layers. 
Others allow connections between nodes of the same layer [Refe 91]. A general 
principle adopted by most of these techniques is the decomposition of the prob
lem into smaller problems that are easier to handle. For each smaller problem, 
a single node is employed. Its parameters are determined either iteratively using 
appropriate learning algorithms, such as the pocket algorithm or the LMS algorithm 
(Chapter 3), or directly via analytical computations. From the way these algorithms 
build the network, they are sometimes referred to as constructive techniques. 

The tiling algorithm [Meza 89] constructs architectures with many (usually 
more than three) layers. We describe the algorithm for the two-class (A and B) case. 
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FIGURE 4.11: Decision lines and the corresponding architecture resulting from 
the tiling algorithm. The open (filled) circles correspond to class A (B). 

The algorithm starts with a single node, n(X), in the first layer, which is called the 
master unit of this layer. 

This node is trained using the pocket algorithm (Chapter 3) and, after the com
pletion of the training, it divides the training data set X into two subsets x+ and 
x- (line 1 in Figure 4.11 ). If x+ (X-) contains feature vectors from both classes, 
we introduce an additional node, n(X+) (n(X-)), which is called ancillary 
unit. This node is trained using only the feature vectors in x+ (X-) (line 2). If 
one of the x++, x+- (x-+, x--) produced by neuron n(X+) (n(X-)) contains 
vectors from both classes, additional ancillary nodes are added. This procedure 
stops after a finite number of steps, since the number of vectors a newly added 
(ancillary) unit has to discriminate decreases at each step. Thus, the first layer 
consists of a single master unit and, in general, more than one ancillary units. It 
is easy to show that in this way we succeed so that no two vectors from different 
classes give the same first-layer outputs. 

Let X 1 = {y : y = f 1 (x), x E X}, where !1 is the mapping implemented by the 
first layer. Applying the procedure just described to the set X 1 of the transformed y 
samples, we construct the second layer of the architecture and so on. In [Meza 89] it 
is shown that proper choice of the weights between two adjacent layers ensures that 
each newly added master unit classifies correctly all the vectors that are correctly 
classified by the master unit of the previous layer, plus at least one more vector. 
Thus, the tiling algorithm produces an architecture that classifies correctly all 
patterns of X in a finite number of steps. 

An interesting observation is that all but the first layer treat binary vectors. 
This reminds us of the unit hypercube of the previous section. Mobilizing the 
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same arguments as before, we can show that this algorithm may lead to correct 
classification architectures having three layers of nodes at the most. 

Another family of constructive algorithms builds on the idea of the nearest 
neighbor classification rule, discussed in Chapter 2. The neurons of the first 
layer implement the hyperplanes bisecting the line segments joining the training 
feature vectors [Murp 90]. The second layer fonns the regions, using an appro
priate number of neurons that implement AND gates, and the classes are fonned 
via the neurons of the last layer, which implement OR gates. The major drawback 
of this technique is the large number of neurons involved. Techniques that reduce 
this number have also been proposed ([Kout 94, Bose 96]). 

4.6 THE BACKPROPAGATION ALGORITHM 

The other direction we will follow to design a multilayer perceptron is to fix the 
architecture and compute its synaptic parameters so as to minimize an appropriate 
cost function of its output. This is by far the most popular approach, which not only 
overcomes the drawback of the resulting large networks of the previous section 
but also makes these networks powerful tools for a number of other applications, 
beyond pattern recognition. However, such an approach is soon confronted with 
a serious difficulty. This is the discontinuity of the step (activation) function, pro
hibiting differentiation with respect to the unknown parameters (synaptic weights). 
Differentiation enters into the scene as a result of the cost function minimization 
procedure. In the sequel we will see how this difficulty can be overcome. 

The multilayer perceptron architectures we have considered so far have been 
developed around the McCulloch-Pitts neuron, employing as the activation 
function the step function 

f(x) = [I x > 0 
0 x < 0 

A popular family of continuous differentiable functions, which approximate the 
step function, is the family of sigmoid functions. A typical representative is the 
logistic function 

f(x)=----
1 + exp(-ax) 

where a is a slope parameter. 

(4.1) 

Figure 4.12 shows the sigmoid function for different values of a, along with 
the step function. Sometimes a variation of the logistic function is employed 
that is antisymmetric with respect to the origin, that is, f(-x) = -f(x). It is 
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.f(X) 

0 ;\ ' 

FIGURE 4.12: The logistic function. 

defined as 

2 
f(x) = - I 

l + exp(-ax) 
(4.2) 

It varies between and - l, and it belongs to the family of hyperbolic tangent 
fun ctions , 

l - exp(-ax) (ax) 
f(x) = c = ctanh -
· I + exp( -ax) 2 

(4.3) 

All these functions are also known as squashing functions since their output is 
limited in a finite range of values. In the sequel, we will adopt multilayer neural 
architectures like the one in Figure 4.10, and we will assume that the activation 
functions are of the form given in (4.1)-(4.3). Our goal is to derive an iterative 
training algorithm that computes the synaptic weights of the network so that an 
appropriately chosen cost function is minimized. Before going into the derivation 
of s uch a scheme, an important point must be clarified . From the moment we 

move away from the step function, all we have said before about mapping the 
input vectors onto the vertices of a unit hypercube is no longer valid. It is now the 
cost function that takes on the burden for correct classification. 

For the sake of generalization, let us assume that the network consists of a fixed 
number of L layers of neurons, with ko nodes in the input layer and k, neurons 
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i·-1 r 

FIGURE 4.13: Definition of variables involved in the backpropagation 
algorithm. 

in the rth layer, for r = I. 2, .... L. Obviously, ko equals I. All the neurons employ 
the same sigmoid activation function. As was the case in Section 3.3, we assume 
that there are N training pairs available (y(i), x(i)), i = I, 2, ... , N. 3 Because 
we have now assumed k1, output neurons, the output is no longer a scalar but a 
kL.-dimensional vector, y(i) = [y1(i), ... , YkL(i)f. The input (feature) vectors 
are kn-dimensional vectors, x (i) = [x 1 (i) .... , Xko (i) f. During training, when 
vector x(i) is applied to the input, the output of the network will be y(i), which is 
different from the desired value, y(i). The synaplic weighls are compuled such !hat 
an appropriate (for each problem) coslfunclion 1, which is dependent on the values 
y (i) and y (i), i = I, 2, ... , N, is minimized. It is obvious that 1 depends, through 
j•(i), on the weights and that this is a nonlinear dependence, due to the nature of 
the network itself. Thus, minimization of the cost function can be achieved via 
iterative techniques. In this section we will adopt the gradient descent scheme 
(Appendix C), which is the most widely used approach. Let wj be the weight vector 
(including the threshold) of the jth neuron in the rth layer, which is a vector of 
dimension k,._ 1 +I and is defined as (Figure 4.13) wr. = [ w'(J' u/: 1, •••• 11/,. ]T. 

} } } J•r-1 
The basic iteration step will be of the form 

'In contrast to other chapters. we use i in parentheses and not as an index. This is because. for the 
needs of the chapter, the latter notation can become very cumbersome. 



Section 4.6: THE BACKPROPAGATION ALGORITHM 107 

with 

(4.4) 

where wj (old) is the current estimate of the unknown weights and Ll wj the 
corresponding correction to obtain the next estimate wj (new). 

In Figure 4.13 uj is the weighted summation of the inputs to the }th neuron 
of the rth layer and yj the corresponding output after the activation function. 
In the sequel we will focus our attention on cost functions of the form 

N 

J = Ecu) (4.5) 
i=I 

where E is an appropriately defined function depending on y(i) and y(i), i 
I. 2 ..... N. In other words, J is expressed as a sum of the N values that function 
E takes for each of the training pairs (y(i), x(i)). For example, we can choose 
E (i) as the sum of squared errors in the output neurons 

1 kL l kt 

[(i) = 2 L e~(i) = 2 L(YmU) - ym(i)) 2
, i = 1, 2, ... , N (4.6) 

m=I m=I 

For the computation of the correction term in ( 4.4) the gradient of the cost function 
J with respect to the weights is required and, consequently, the evaluation of 
aE(i)/awj. 

Computation of the Gradients 

Let y{- 1 (i) be the output of the kth neuron, k = 1, 2, ... , kr-1 ·in the (r-1 )th layer 
for the ith training pair and wjk the current estimate of the corresponding weight 
leading to the }th neuron in the rth layer, with j = 1, 2, ... , kr (Figure 4.13). 
Thus, the argument of the activation function f ( ·) of the latter neuron will be 

(4.7) 

where by definition y0 (i) = + l, Vr, i; so as to include the thresholds in the weights. 
For the output layer. we haver= L, y[(i) = .hU), k = I. 2, ... , kL, that is, the 

outputs of the neural network, and for r = 1, y{- 1 (i) = xk(i), k = 1, 2, ... , ko. 
that is, the network inputs. 
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As is apparent from ( 4. 7), the dependence of£ (i) on wj passes through v'j (i). 
By the chain rule in differentiation, we have 

a£(i) av'j(i) 
---- (4.8) 

From (4.7) we obtain 

(4.9) 

where 

(4.lO) 

Let us define 

(4.11) 

Then (4.4) becomes 

N 

t::.wj = -µ L 8j(i)yr-1 (i) (4.12) 
i=I 

Relation ( 4.12) is general for any differentiable cost function of the form ( 4.5). 
ln the sequel we will compute 8) (i) for the special case of least squares (4.6). 
The procedure is similar for alternative cost function choices. 

Computation of <lj (i) for the Cost Function in (4.6) 

The computations start from r = L and propagate backward for r = L - I. 
L - 2, ... , l. This is why the algorithm that will be derived is known as the 
backpropagation algorithm. 
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(i) r = L 

(4.13) 

(4.14) 

Hence 

(4.15) 

where f' is the derivative of f(-). In the last layer, the dependence of £(i) on 
uL (i) is explicit and the computation of the derivative is straightforward. This is 

.I 
not true, however, for the hidden layers, where the computations of the derivatives 
need more elaboration. 

(ii) r < L. Due to the successive dependence among the layers, the value of 
uj- 1 (i) influences all u;; (i ), k = 1, 2, .. , k,, of the next layer. Employing the chain 
rule in differentiation once more, we obtain 

and from the respective definition (4.11) 

But 

with 

Hence. 

k, a '(") 
Or-I (i) = "c'l'(i) Uk I 

J L.., k a r-1 (")' 

au;; (i) 
aur-I (i) 

J 

k=I Uj I 

a["kr-1 r r-1(·)] 
L..m=O wkmYm I 

"j r (.) 
<Uk I - r J'( r-J(.)) - Wk· LJ. I 

aur-l(i) J J 
.I 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 



110 Chapter 4: NONLINEAR CLASSIFIERS 

From (4.20) and (4.17) the following results: 

(4.21) 

and for unifonnity with (4.15) 

(4.22) 

where 

k, 
r-1(') "'""'<'(") r e 1 1 = ~ ok 1 wk) (4.23) 

k=I 

Relations ( 4.15), (4.22), ( 4.23) constitute the iterations leading to the computation 
of 8'j(i), r = I, 2, ... , L, j = I, 2, ... , k, . The only quantity that is not yet 
computed is f'(·). For the function in (4.1) we have 

J'(x) = af(x)(l - f(x)) 

The algorithm has now been derived. The algorithmic scheme was first presented 
in [Werb 74] in a more general fonnulation. 

The Backpropagation Algorithm 

• Initialization: Initialize all the weights with small random values from a 
pseudorandom sequence generator. 

• I. Forward computations: For each of the training feature vectors x(i), i = 
I, 2, ... , N, compute all the vj<i), yj(i) = f(vj(i)), j = I, 2, ... , k,, 
r = 1, 2, ... , L, from (4.7). Compute the cost function for the current 
estimate of weights from (4.5) and (4.14). 

• 2. Backward computations: For each i = 1, 2 .... , N and j = 1, 2, ... , kL 
compute c5J(i) from (4.15) and in the sequel compute c5j- 1(i) from (4.22) 
and ( 4.23) for r = L, L - I, ... , 2, and j = I, 2, ... , k, 

• Update the weights: For r = I, 2, ... , L and j = I, 2, ... , k, 

w'j(new) = w'j(old) + liw'j 

N 

liw'j = -µ, L 8j(i)y'- 1 (i) 
i=l 
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Remarks 

• A number of criteria have been suggested for terminating the iterations. In 
[Kram 89] it is suggested that we terminate the iterations either when the 
cost function 1 becomes smaller than a certain threshold or when its gradient 
with respect to the weights becomes small. Of course, the latter has a direct 
effect on the rate of change of the weights between successive iteration steps. 

• As with all the algorithms that spring from the gradient descent method. 
the convergence speed of the backpropagation scheme depends on the value 
of the learning constant /.l . Its value must be sufficiently small to guarantee 
convergence but not too small , because the convergence speed becomes very 
slow. The best choice ofµ depends very much on the problem and the cost 
function shape in the weight space. Broad minima yield small gradients; thus 
large values of µ lead to faster convergence. On the other hand, for steep 
and narrow minima small values ofµ are required to avoid overshooting the 
minimum. As we will soon see, scenarios with adaptiveµ are also possible. 

• The cost function minimization for a multilayer perceptron is a nonlinear 
minimization task. Thus. the existence of local minima in the corresponding 
cost function suJface is an expected reality. Hence, the backpropagation 
algorithm runs the risk of being trapped in a local minimum. If the local 
minimum is deep enough, this may still be a good solution. However. in cases 
in which this is not true, getting stuck in such a minimum is an undesirable 
situation and the algorithm should be reinitialized from a different set of 
initial conditions. 

• The algorithm described in this section updates the weights once all the 
training (input-desired output) pairs have appeared in the network. This 
mode of operation is known as the hatch mnde. A variation of this approach 
is to update the weights for each of the training pairs. This is known as the 
pattern or on-line mode. This is analogous to the LMS, where, according 
to the Robbins-Monro approach, the instantaneous value of the gradient is 
computed instead of its mean. In the backpropagation case, the sum of ll'j (i) 
over all i is substituted with each of them. The algorithm in its pattern mode 
of operation then becomes 

wj(i +I)= w'j(i) - µll'j(i)yr - l(i) 

Compared with the pattern mode, the batch mode is an inherent averag
ing process. This leads to a better estimate of the gradient, thus to more 
well-behaved convergence. On the other hand, the pattern mode presents a 
higher degree of randomness during training. This may help the algorithm 
to avoid being trapped in a local minimum. In [Siet 91] it is suggested that 
the beneficial effects that randomness may have on training can be further 
emphasized by adding a (small) white noise sequence in the training data. 
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Another commonly used practice focuses on the way the training data are 
presented in the network. During training, the available training vectors are 
used in the update equation more than once until the algorithm converges. 
One complete presentation of all N training pairs constitutes an epoch. As 
successive epochs are applied, it is good practice from the convergence 
point of view to randomize the order of presentation of the training pairs. 
Randomization can again help the pattern mode algorithm to jump out of 
regions around local minima, when this occurs. However, the final choice 
between the batch and pattern modes of operation depends on the specific 
problem [Hert 91, page I 19]. 

• Once training of the network has been achieved, the values to which the 
synapses and thresholds have converged are frozen and the network is ready 
for classification. This is a much easier task than training. An unknown 
feature vector is presented in the input and is classified in the class that is 
indicated by the output of the network. The computations performed by the 
neurons are of the multiply-add type followed by a nonlinearity. This has 
led to various hardware implementations ranging from optical to VLSI chip 
design. Furthermore, neural networks have a natural built-in parallelism 
and computations in each layer can be performed in parallel. These distinct 
characteristics of neural networks have led to the development of special 
neurocompltters, and a number of those are already commercially available; 
see, for example, [Koli 97]. 

4.7 VARIATIONS ON THE BACKPROPAGATION THEME 

Both versions of the backpropagation scheme, the batch and the pattern modes, 
inherit the disadvantage of all methods built upon the gradient descent approach : 
their convergence to the cost function minimum is slow. Appendix C discusses the 
fact that this trait becomes more prominent if the eigenvalues of the corresponding 
Hessian matrix exhibit large spread. In such cases, the change of the cost function 
gradient between successive iteration steps is not smooth but oscillatory, leading 
to slow convergence. One way to overcome this problem is to use a momentum 
term that smoothes out the oscillatory behavior and speeds up the convergence. 
The backpropagation algorithm with momentum term takes the form 

N 

~w;<new) = a~w;<old) - µI: oj(i)y' - ' (i) (4.24) 

wj(new) = wj(old) + ~w'j(new) (4.25) 

Compared with (4.4), we see that the correction vector ~w'j depends not only on 
the gradient term but also on its value in the previous iteration step. The constant 
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a is called the momentum factor and in practice is chosen between 0.1 and 0.8. 
To see the effect of the momentum factor, let us look at the correction term for a 
number of successive iteration steps. At the tth iteration step we have 

(4.26) 

where the last tem1 denotes the gradient. For a total of T successive iteration Meps 
we obtain 

T-1 

t..wj(T) = -µ L a 1 g (T - 1) + a 7 t..wj(O) (4.27) 

t=O 

Since a < I, the last term goes close to zero after a few iteration steps and the 
smoothing (averaging) effect of the momentum term becomes apparent. Let us now 
assume that the algorithm is at a low-curvature point of the cost function surface in 
the weight space. We can then assume that the gradient is approximately constant 
over a number of iteration steps. Applying this, we can write that 

Liw~(T) '.:::'. -tL(I +a +a2 +a3 + ... )g = __ µ _ g 
1 I - a 

In other words. in such cases the effect of the momentum term is to effectively 
increase the learning constant. In practice, improvements in converging speed by 
a factor of 2 or even more have been reported [Si Iv 90]. 

A heuristic variation of this is to use an adaptive value for the learning factor 
µ. depending on the cost function values at successive iteration steps. A possible 
procedure is the following: Let J (1) be the value of the cost at the tth iteration step. 
If J (1) < J (1 - I l. then increase the learning rate by a factor of ri. If, on the ocher 
hand. !he new value of the cost is larger than the old onc by a factor c. then deaease 
the learning rate by a factor of'"· Otherwise use !he same value. ln summary 

J (1) 
--- <I. 
./(1 - I) 

J (1) 
- - -·· > (', 
.!(I - I) 

I < J(l ) < c 
- .I (1 · ·· I) - . 

µ(1) = ru,1,(1 - I) 

/L(l) = l"tffl(/ - I) 

µ.(I) = /l(l - I) 

Typical values of the parameters which are adopted in practice are r ; = 1.05. 
,.,, = 0.7. c = 1.04. For iteration steps where the cost increases. it may be 
advantageous not only to decrease the learning rate but also to set the momentum 
1crm equal tt1 0. Ochers suggest not to perform the update of the weighting at this 
seep. 
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Another strategy for updating the learning factor µ is followed in the so called 
delta-delta rule and in its modification delta-bar-delta rule [Jaco 88]. The idea here 
is to use a different learning factor for each weight and to increase the particular 
learning factor if the gradient of the cost function with respect to the correspond
ing weight has the same sign on two successive iteration steps. Conversely, if the 
sign changes this is an indication of a possible oscillation and the learning factor 
should be reduced. A number of alternative techniques for speeding up conver
gence have also been suggested. In [Cich 93] a more extensive review of such 
techniques is provided. 

The other option for faster convergence is to free ourselves from the gradient 
descent rationale and to adopt alternative searching schemes, usually at the expense 
of increased complexity. A number of such algorithmic techniques have appeared 
in the related literature. For example, [Kram 89, Barn 92, Joha 92] present algo
rithmic schemes based on the conjugate gradient algorithm, [Batt 92, Rico 88, 
Barn 92, Watr 88] provide schemes of the Newton family, [Palm 91, Sing 89] 
propose algorithms based on the Kalman filtering approach, and [Bish 95] a 
scheme based on the Levenberg-Marquardt algorithm. In many of these algo
rithms, elements of the Hessian matrix need to be computed, that is, the second 
derivatives of the cost function with respect to the weights 

The computations of the Hessian matrix are performed by adopting, once more, 
the backpropagation concept (see also Problems 4.12, 4.13). More on these issues 
can be found in [Hayk 99, Zura 92]. 

A popular scheme that is loosely based on Newton's method is the quickprop 
scheme fFahl 90]. It is a heuristic method and treats the weights as if they were 
quasi-independent. It then approximates the error surface, as a function of each 
weight, by a quadratic polynomial. If this has its minimum at a sensible value, the 
latter is used as the new weight for the iterations, otherwise a number of heuristics 
are used. A usual form of the algorithm, for the weights in the various layers, is 

where 

if flW;j(t - l) '/= 0 

if tlw;1(t - l) = 0 

I aJ I a;;;:-: (t) 
fXjj (f) =min aJ I} aJ > <Xmax 

-(t - l) - -(t) 
awiJ awiJ 

(4.28) 

(4.29) 
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with typical values of the involved variables being 0.01 :'.':: µ :'.':: 0.6, a 111(L, ~ 

1.75 [Cich 93]. An algorithm similar in spirit to quickprop has been proposed in 
[Ried 93]. It is reported that it is as fast as quickprop and it requires less adjustment 
of the parameters to be stable. 

4.8 THE COST FUNCTION CHOICE 

It will not come as a surprise that the least squares cost function in ( 4.6) is not 
the unique choice available to the user. Depending on the specific prohlem. other 
cost functions can lead to better results . Let us look, for example, at the least 
squares cost function more carefully. Since all errors in the output nodes are first 
squared and summed up, large error values influence the learning process much 
more than the small errors. Thus, if the dynamic ranges of the desired outputs 
are not all of the same order, the least squares criterion will result in weights that 
have "learned" via a process of unfair provision of information. Furthermore. in 
[Witt 88] it is shown that for a class of problems, the gradient descent algorithm 
with the squared error criterion can be trapped in a local minimum and fail to 
find a solution, although (at least) one exists. In the current context a solution is 
assumed to be a classifier that classifies correctly all training samples. In contrast. 
it is shown that there is an alternative class of functions, satisfying certain criteria. 
which guarantee that the gradient descent algorithm converges to such a solution, 
provided that one exists. This class of cost functions is known as well-formed 
functions. We will now present a cost function of this type, which is well suited 
for pattern recognition tasks. 

The multilayer network performs a nonlinear mapping of the input vectors x 
to the output values 5'k = </Jk(x; w) for each of the output nodes k = I, 2 . ... kL. 
where the dependence of the mapping on the values of the weights is explicitly 
shown. In Chapter 3 we have seen that, if we adopt the least squares cost function 
and the desired outputs Yk are binary (belong to or not in class Wk) , then for the 
optimal values of the weights w* the corresponding output of the network, .\'k· 
is the least squares optimal estimate of the posterior pmbability P(wklx) (the 
question of how good or bad this estimate is will be of interest to us soon) . At this 
point we will adopt this probabilistic interpretation of the real outputs 5'k as the 
basis on which our cost function will be built. Let us assume that the desired output 
values, Yk- are independent binary random variables and that Yk are the respective 
posterior probabilities that these random variables are I [Hint 90, Baum 88] . 

The cross-entropy cost function is then defined by 

N kl 

J = - L L(yk(i) In yk(i) +(I - Yk(i)) In(! - yk(i))) (4.30) 
i = I k=I 



116 Chapter 4: NONLINEAR CLASSIFIERS 

J takes its minimum value when yk(i) = yk(i) and for binary desired response 
values the minimum is zero. There are various interpretations of this cost func
tion [Hint 90, Baum 88, Gish 90, Rich 91]. Let us consider, for example, the 
output vector y(i) when x(i) appears at the input. This consists of a I at the true 
class node and zero elsewhere. If we take into account that the probability of the 
kth node to be 1(0) is h(i)(I - h(i)) and by considering nodes independently, 
then 

kl 

p(y) = TI(h)Yk(l -h)'-.Yk ( 4.31) 
k=I 

where the dependence on i has been suppressed for notational convenience. Then 
it is straightforward to check that J results from the negative loglikelihood of the 
training sample pairs. If yk(i) were true probabilities in (0, l) then subtracting 
the minimum value from J (4.30) becomes 

N kl ( " (") I " (')) Yk I - Yk I 
1 = - LL yk(i)ln--. + (l - Yk(i))ln . 

. yk(1) I - Yk(1) 
1=! k=I 

(4.32) 

For binary valued YkS the above is still valid if we use the limiting value 0 In 0 = 0. 
It is not difficult to show (Problem 4.5) that the cross entropy cost function 

depends on the relative errors and not on the absolute errors, as its least squares 
counterpart, thus it gives the same weight to small and large values. Furthermore, 
it has been shown that it satisfies the conditions of the well-formed functions 
[Adal 97]. Finally, it can be shown that adopting the cross entropy cost function 
and binary values for the desired responses, the outputs h corresponding to the 
optimal weights w* are indeed estimates of P(wk Ix), as in the least squares case 
[Hamp 90]. 

A major advantage of the cross entropy cost function is that it diverges if one 
of the outputs converges to the wrong extreme, hence the gradient descent reacts 
fast. On the other hand, the squared error cost function approaches a constant in 
this case, and the gradient descent on the LS will wander on a plateau, even though 
the error may not be small. This advantage of the cross entropy cost function is 
demonstrated in the channel equalization context in [Adal 97]. 

A different cost function results if we treat yk(i) and YkU) as the true and 
desired probabilities, respectively. Then a measure of their similarity is given by 
the cross-entropy function (Appendix A) 

N kl " ( ") '°' '°' Yk I 1 = - L., L.,Yk(i)ln--. 
i=l k=I Yk(l) 

(4.33) 
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This is also valid for binary target values (using the limiting form). However, 
although we have interpreted the outputs as probabilities, there is no guarantee 
that they sum up to unity. This can be imposed onto the network by adopting 
an alternative activation function for the output nodes. In [Brid 90] the so-called 
softmax activation function was suggested, given by 

exp(v£) 
Yk=----

Lk' exp(vf,) 
(4.34) 

This guarantees that the outputs lie in the interval [O. I] and that they sum up to 
unity (note that in contrast to (4.32) the output probabilities are not considered 
independently). It is easy to show, Problem 4.7, that in this case the quantity f/· 

.I 
required by the backpropagation is equal to .Vk - Yk· 

Besides the cross entropy cost function in (4.33) a number of alternative cost 
functions has been proposed. For example. in [Kara 92] a generalization of the 
quadratic error cost function is utilized with the aim of speeding up convergence. 
Another direction is to minimize the classification error, which after all is the major 
goal in pattern recognition. A number of techniques have been suggested with this 
philosophy [Nede 93, Juan 92, Pado 95], which is known as discriminative /earn
ing. The basic potential advantage of discriminative learning is that essentially it 
tries to move the decision surfaces so as to reduce classification e1Tor. To achieve 
this goal, it puts more emphasis on the largest of the class a posteriori probability 
estimates. In contrast, the squared error cost function, for example, assigns the 
same importance to all posterior probability estimates. In other words, it tries to 
learn more than what is necessary for classification, which may limit its perfor
mance for a fixed size network. Most of the discriminative learning techniques 
use a smoothed version of the classification error, so as to be able to apply dif
ferentiation in association with gradient descent approaches. This, of course, has 
the danger that the minimization procedure will be trapped in a local minimum. In 
[Mill 96] a deterministic annealing procedure is employed to train the networks, 
with an enhanced potential to avoid local minima (see Chapter 15). 

The final choice of the cost function depends on the specific problem under 
consideration. However, as is pointed out in [Rich 91 ], in a number of practical 
situations the use of alternative, to least squares, cost functions did not necessarily 
lead to substantial performance improvements. 

A Bayesian Framework for Network Training 

All the cost functions considered so far aim at computing a single set of optimal 
values for the unknown parameters of the network. An alternative rationale is to 
look at the probability distribution function of the unknown weights, w, in the 
weight space. The idea behind this approach stems from the Bayesian inference 
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technique used for the estimation of an unknown parametric pdf, as we discussed 
in Chapter 2. The basic steps followed for this type of network training, known as 
Bayesian learning, are (e.g., [Mack 92a]): 

• Assume a model for the prior distribution p(w) of the weights. This must 
be rather broad in shape, to provide equal chance to a rather large range of 
values. 

• Let Y = {y(i), i = I, 2, ... , NJ be the set of the desired output training 
vectors for a given input data set X = {x(i), i = l, 2, ... NJ . Assume a 
model for the likelihood function p(Ylw), for example, Gaussian.4 This 
basically models the error distribution between the true and desired output 
values, and it is the stage where the input training data come into the scene. 

• Using Bayes' theorem, we obtain 

(wiY) = p(Ylw)p(w) 
p p(Y) 

(4.35) 

where p(Y) = J p(Ylw)p(w) dw. The resulting posteriorpdfwill be more 
sharply shaped around a value wo, since it has learned from the available 
training data. 

• Interpreting the true outputs of a network, Yk = </>k(x; w), as the respec
tive class probabilities, conditioned on the input x and the weight vector 
w, the conditional class probability is computed by averaging over all w 
[Mack 92b]: 

P(wklx; Y) = f </>k(x; w)p(wlY) dw (4.36) 

The major computational cost associated with this type of technique is due to the 
required integration in the multidimensional space. This is not an easy task, and 
various practical implementations have been suggested in the literature. Further 
discussion of these issues is beyond the scope of this book. A good introduction 
to Bayesian learning, including a discussion of related practical implementations, 
is provided in [Bish 95]. 

4.9 CHOICE OF THE NETWORK SIZE 

In the previous sections, we assumed the number of layers and neurons for each 
layer to be known and fixed. How one determines the appropriate number of layers 
and neurons was not of interest to us. This task will become our major focus now. 

4 Strictly speaking we should write P(Ylw. X). However all probabilities and pdf"s are conditioned 
on X and we omit it for notational convenience. 
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One answer to the problem could be to choose the size of the network large 
enough and leave the training to decide about the weights. A little thought reveals 
that such an approach is rather naive. Besides the associated computational com
plexity problems, there is a major reason why the size of the network should be 
kept as small as possible. This is imposed by the generalization capabilities that 
the network must possess. As has already been pointed out in Section 3.6, the term 
generalization refers to the capability of the multilayer neural network (and of any 
classifier) to classify correctly feature vectors that were not presented to it during 
the training phase-that is, the capability of a network to decide upon data unknown 
to it. based on what it has learned from the training set. Taking for granted the finite 
(and in many cases small) number N of training pairs, the number of free param
eters (synaptic weights) to be estimated should be (a) large enough to learn what 
makes "similar" the feature vecrors within each class and at rhe same time what 
makes one class different from the other and (b) small enough, with respect to N. 
so as not to be able to learn the underlying differences among the data of rhe same 
class. When the numberoffree parameters is large, the network tends to adapt to the 
particular details of the specific training data set. This is known as overfitting and 
leads to poor generalization performance, when the network is called to operate on 
feature vectors unknown to it. In conclusion, the network should have the smallest 
possible size to adjust its weights to the largest regularities in the data and ignore the 
smallerones, which might also be the result of noisy measurements. Some theoret
ical touches concerning the generalization aspects of a classifier will be presented 
in Chapter 5, when we discuss the Vapnik-Chernovenkis dimension. The bias
variance dilemma. discussed in Chapter 3, is another side of the same problem. 

Adaptation of the free parameters to the peculiarities of the specific training set 
may also occur as the result of overtraining (e.g., see [Chau 90)). Let us assume 
that we can afford the luxury of having a large set of training data. We divide this 
set into two subsets, one for training and one for test. The latter is known as the 
validation or test set. Figure 4.14 shows the trend of two curves of the output error 
as a function of iteration steps. One corresponds to the training set, and we observe 
that the error keeps decreasing as the weights converge. The other corresponds to 
the error of the validation set. Initially the error decreases, but at some later stage it 
starts increasing. This is because the weights, computed from the training set, adapt 
to the idiosyncrasies of the specific training set, thus affecting the generalization 
performance of the network. This behavior could be used in practice to determine 
the point where the learning process iterations must terminate. This is the point 
where Lhe Lwo curves start deparling. However, Lhis methodology assumes the 
existence of a large number of data sets, which is not usually the case in practice. 

Besides generalization, other performance factors also demand to keep the size 
of a network as small as possible. Small networks are computationally faster and 
cheaper to build. Furthermore, their performance is easier to understand, which is 
important in some critical applications. 
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epochs 

FIGURE 4.14: Trend of the output error versus the number of epochs illustrating 
overtraining of the training set. 

In this section we focus on methods that select the appropriate number of free 
parameters, under certain criteria and for a given dimension of the input vector 
space. The latter is very important, because the input data dimension is no doubt 
related to the number of free parameters to be used, thus it also affects generaliza
tion properties. We will come to issues related to input space dimension reduction 
in Chapter 5. 

The most widely used approaches to selecting the size of a multilayer network 
come under one of the following categories: 

• Analytical methods. This category employs algebraic or statistical techniques 
to determine the number of its free parameters. 

• Pruning techniques. A large network is initially chosen for training and 
then the number of free parameters is successively reduced, according to a 
preselected rule. 

• Constructive techniques. A small network is originally selected and neurons 
are successively added, based on an appropriately adopted learning rule. 

Algebraic Estimation of the Number of Free Parameters 

We have already discussed in Section 4.3. l the capabilities of a multilayer per
ceptron, with one hidden layer and units of the McCulloch-Pitts type, to divide 
the input /-dimensional space into a number of polyhedral regions. These are the 
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result of intersections of hyperplanes formed by the neurons. In [Mire 89] it is 
shown that in the /-dimensional space a multilayer perceptron of a single hid
den layer with K neurons can form a maximum of M polyhedral regions with M 
given by 

M = ~ (K), where (K) = 0, for K < /11 
~ 111 Ill 

111=0 

(4 .'.17) 

and 

(K) K! 
m = m!(K -111)! 

For example, if I = 2, and K = 2, this results in M = 4; thus, the XOR problem, 
with M = 3( < 4), can be solved with two neurons . The disadvantage of this 
method is that it is static and does not take into consideration the cost function 
used as well as the training procedure. 

Pruning Techniques 

These techniques start training a sufficiently large network and then they remove. 
in a stepwise procedure, the free parameters that have little influence on the cost 
function. There are two major methodological directions: 

Methods based on parameter sensitivity calculations. Let us take for example the 
technique suggested in [Lecu 90). Using a Taylor series expansion, the variation 
imposed on the cost function by parameter perturbations is 

where 

81 = L g;ow; + ~ L h;;ow; + ~ L h;J8w;8w.i 
i i i.j 

+ higher order terms 

al 
g; = ;---· 

u-UJ; 

i t-J 

a2 J 
h;j = --

ow;aWj 

and i . j runs over all the weights. The derivatives can be computed via the back
propagation methodology (Problem 4 .13). In practice, the computation of the 
derivatives is performed after some initial period of training. This allows us to 
adopt the assumption that a point near a minimum has been reached and the first 
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derivatives can be set equal to zero. A further computational simplification is to 
assume that the Hessian matrix is diagonal. Under these assumptions, the cost 
function sensitivity is approximately given by 

1" 2 81 = "2 Lh;;fiw; (4.38) 

and the contribution of each parameter is determined by the saliency value s;, 
given approximately by 

h;;wf 
s;=--

2 
(4.39) 

where we assume that a weight of value w; is changed to zero. Pruning is now 
achieved in an iterative fashion according to the following steps: 

• The network is trained using the backpropagation algorithm for a number of 
iteration steps so that its cost function is reduced to a sufficient percentage. 

• For the current weight estimates, the respective saliency values are computed 
and weights with small salencies are removed. 

• The training process is continued with the remaining weights and the process 
is repeated after some iteration steps. The process is stopped when a chosen 
stopping criterion is met. 

In [Hass 93] the full Hessian matrix has been employed for the pruning procedure. 
It should be stressed that although the backpropagation concept is present in this 
technique, the learning procedure is distinctly different from the backpropagation 
training algorithm of Section 4.6. There, the number of free parameters was fixed 
throughout the training. In contrast, the philosophy here is exactly the opposite. 

Methods based on cost function regularization. These methods achieve the reduc
tion of the originally large size of the network by including penalty tenns in the 
cost function. The cost function now has the form 

N 

J = L £(i) + cx£p(w) (4.40) 
i=I 

The first term is the performance cost function, and it is chosen according to what 
we have already discussed (e.g., least squares, cross entropy). The second depends 
on the weight vector, and it is chosen to favor small values for the weights. The 
constant ex is the so-called regularization parameter, and it controls the relative 
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significance of these two terms. A popular form for the penalty term is 

K 

Eµ(w) = L h(wf) (4.41) 
k=I 

with K being the total number of weights in the network and h(·) an appropri
ately chosen differentiable function. According to such a choice, weights that do 
not contribute significantly in the formation of the network output do not affect 
much the first term of the cost function. Hence, the existence of the penalty term 
drives them to small values. Thus, pruning is achieved. In practice, a threshold is 
preselected and weights are compared against it after a number of iteration steps. 
Weights that become smaller than it are removed, and the process is continued. 
This type of pruning is known as weight elimination. Function h (·)can take various 
forms. For example, in [Wein 90] the following is suggested: 

( 4.42) 

where wo is a preselected parameter close to unity. Closer observation of this 
penalty term reveals that it goes to zero very fast for values wk < wo; thus 
such weights become insignificant. In contrast, the penalty term tends to unity for 
Wk> WO. 

A variation of ( 4.41) is to include in the regularized cost function another penalty 
term that favors small values of y[, that is, small neuron outputs. Such tech
niques lead to removal of insignificant neurons as well as weights. A summary and 
discussion of various pruning techniques can be found in [Refe 91, Russ 93]. 

Constructive Techniques 

In Section 4.5 we have already discussed such techniques for training neural net
works. However, the activation function was the unit step function and also the 
emphasis was put on classifying correctly all input training data and not on the 
generalization properties of the resulting network. In [Fahl 90] an alternative con
structive technique for training neural networks, with a single hidden layer and 
sigmoid activation functions, was proposed, known as cascade correlation. The 
network starts with input and output units only. Hidden neurons are added one by 
one and are connected to the network with two types of weights. The first type 
connects the new unit with the input nodes as well as the outputs of previously 
added hidden neurons. Each time a new hidden neuron is added in the network, 
these weights are trained so as to maximize the correlation between the new unit's 
output and the residual error signal in the network outputs prior to the addition 
of the new unit. Once a neuron is added, these weights are computed once and 
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then they remain fixed. The second type of synaptic weights connect the newly 
added neuron with the output nodes. These weights are not fixed and are trained 
adaptively. each time a new neuron is installed, in order to minimize a sum of 
squares et1'or cost function. The procedure stops when the performance of the net
work meets the prespecified goals. A discussion on constructive techniques with 
an emphasis on pattern recognition can be found in [Pare 00]. 

4.10 A SIMULATION EXAMPLE 

(n this section. the capability of a multilayer perceptron to classify nonlinearly 
separable classes is demonstrated. The classification task consists of two distinct 
classes, each being the union of four regions in the two-dimensional space. Each 
region consists of normally distributed random vectors with statistically indepen
dent components and each with variance o-2 = 0.08. The mean values are different 
for each of the regions. Specifically, the regions of the class denoted by "o" (see 
Figure 4.15) are formed around the mean vectors 

[0.4.0.9]7 ,[2.0, 1.8f,[2.3,2.3{.[2.6, 1.8( 

and those of the class denoted by"+" around the values 

T T T T r 1.5. 1.01 . r 1.9. 1.01 . r 1.5. 3.01 . f3.3, 2.61 

3 
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10: \ \ ~~-
! 0 o~-"''"'"2-o_o_o_·-4~00-0~-6~0'--'oo___, 
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0'--~--'-~~~~~~~~--' 

0 2 3 ;r., 

(a) (h) 

FIGURE 4.15: (a) Em>r convergence curves for the adaptive momentum and 
the momentum algorithms. Note that the adaptive momentum leads to faster 
convergence. (b) The decision curve formed by the multilayer perceptron. 
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A total of 400 training vectors were generated, 50 from each distribution. A mul
tilayer perceptron with three neurons in the first and two neurons in the second 
hidden layer were used, with a single output neuron. The activation function was 
the logistic one with a = I and the desired outputs 1 and 0, respectively, for the two 
classes. Two different algorithms were used for the training, namely the momen
tum and the adaptive momentum. After some experimentation the algorithmic 
parameters employed were (a) for the momentumµ.. = 0.05 , a = 0.85 and (b) for 
the adaptive momentumµ.. = 0.01, a = 0.85, r; = 1.05, c = 1.05, rd = 0.7. 
The weights were initialized by a uniform pseudorandom distribution between 0 
and I . Figure 4. l 5a shows the respective output error convergence curves for the 
two algorithms as a function of the number of epochs (each epoch consisting of 
the 400 training feature vectors). The respective curves can be considered typical 
and the adaptive momentum algorithm leads to faster convergence. Both curves 
correspond to the batch mode of operation. Figure 4. l 5b shows the resulting deci
sion surface using the weights estimated from the adaptive momentum training. 
Once the weights of the network have been estimated, the decision surt'ace can 
easily be drawn. To this end, a two-dimensional grid is constructed over the area 
of interest, and the points of the grid are given as inputs to the network, row by 
row. The decision surface is formed by the points where the output of the network 
changes from 0 to I or vice versa. 

A second experiment was conducted in order to demonstrate the effect of the 
pruning. Figure 4.16 shows the resulting decision surfaces separating the samples 
of the two classes, denoted by"+" and "o" respectively. Figure 4. l 6a corresponds 
to a multilayer perceptron (MLP) with two hidden layers and 20 neurons in each 
of them, amounting to a total of 480 weights. Training was performed via the 

0.5 

0.5 

(a) 

0 00 
0 0 

1.5 

O.S 

0 
1.5 

x, 

f---

0 
0 

0 

0 

0 00 
~ 

0 ' 0 0 

"' u 

0.5 l.S 
x 

(b) 

FIGURE 4.16: Decision curve (a) before pruning and (b) after pruning. 
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backpropagation algorithm. The overfitting nature of the resulting curve is readily 
observed. Figure 4. l 6b corresponds to the same MLP trained with a pruning algo
rithm. Specifically, the method based on parameter sensitivity was used, testing 
the saliency values of the weights every 100 epochs and removing weights with 
saliency value below a chosen threshold. Finally, only 25 of the 480 weights were 
left, and the curve is simplified to a straight line. 

4.11 NETWORKS WITH WEIGHT SHARING 

One major issue encountered in many pattern recognition applications is that of 
transformation invariance. This means that the pattern recognition system should 
classify correctly, independent of transformations performed on the input space, 
such as translation, rotation, and scaling. For example, the character "5" should 
"look the same" to an OCR system, irrespective of its position, orientation, and 
size. There is a number of ways to approach this problem. One is to choose 
appropriate feature vectors, which are invariant under such transformations. This 
will be one of our major goals in Chapter 7. Another way is to make the classi
fier responsible for it in the form of built-in constraints. Weight sharing is such 
a constraint, which forces certain connections in the network to have the same 
weights. 

One type of networks in which the concept of weight sharing has been adopted 
is the so-called higher order network. These are multilayer perceptrons with acti
vation functions acting on nonlinear, instead of linear, combinations of the input 
parameters. The outputs of the neurons are now of the form 

f(v) = f ( wo + L w;x; + Lk WjkXJXk) 

I J 

This can be generalized to include higher order products. Let us now assume 
that the inputs to the network originate from a two-dimensional grid (image). 
Each point of the grid corresponds to a specific x; and each pair (x;, x J) to a 
line segment. Invariance to translation is built in by constraining the weights 
w Jk = Wrs• whenever the respective line segments, defined by the points 
(x1,xk) and (xr,x5 ), are of the same gradient. Invariance to rotation can be 
built in by sharing weights corresponding to segments of equal length. Of 
course, all these are subject to inaccuracies caused by the resolution coarseness 
of the grid. Higher order networks can accommodate more complex trans
formations [Kana 92, Pera 92, Delo 94). Because of the weight sharing, the 
number of free parameters for optimization is substantially reduced. However, 
it must be pointed out that, so far, such networks have not been widely used 
in practice. A special type of network called circular backpropagation model 
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results if 

f(u) = 1( wo + Lw;x; + Ws I.:x?) 
I I 

The increase of the number of parameters is now small, and in [Ride 971 is 
claimed that the involvement of the nonlinear term offers the network increased 
representation power without affecting its generalization capabilities. 

Besides the higher order networks, weight sharing has been used to impose 
invariance on first-order networks used for specific applications [Fuku 82, 
Rume 86, Fuku 92, Lecu 89]. The last, for example, is a system for handwrit
ten zip code recognition. It is a hierarchical structure with three hidden layers 
and inputs the gray levels of the image pixels. Nodes in the first two layers form 
groups of two-dimensional arrays known as feature maps. Each node in a given 
map receives inputs from a specific window area of the previous layer, known 
as the receptive field. Translation invariance is imposed by forcing corresponding 
nodes in the same map, looking at different receptive fields, to share weights. 
Thus, if an object moves from one input receptive field to the other, the network 
responds in the same way. 

4.12 GENERALIZED LINEAR CLASSIFIERS 

In Section 4.3, dealing with the nonlinearly separable XOR problem, we saw that 
the neurons of the hidden layer perfonned a mapping that transfonned the problem 
to a linearly separable one. The actual mapping was 

x ----'.> y 

with 

y = [Yi] = [f (g1 (x))] 
Y2 f (g2(x)) 

(4.43) 

where f (-) is the activation function and g; (x), i = l, 2, the linear combination 
of the inputs performed by each neuron. This will be our kickoff point for this 
section. 

Let us consider our feature vectors to be in the /-dimensional space R.1 and 
assume that they belong to either of the two classes A, B, which are nonlinearly 
separable. Let / 1 (-), /2(·), ... , fd·) be nonlinear (in the general case) functions 

f; : R.1 ---+ R., i = ] ' 2, ... ' k 
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which define the mapping x E R 1 ~ y E Rk 

[

!1 (x)] 
fz(x) 

y = . 

fk(X) 

(4.44) 

Our goal now is to investigate whether there is an appropriate value for k and 
functions f; so that classes A, Bare linearly separable in the k-dimensional space of 
the vectors y. In other words, we investigate whether there exists a k-dimensional 
space where we can construct a hyperplane w E Rk so that 

WO+ wTy > 0, XE A 

wo+wTy<O, XEB 

(4.45) 

(4.46) 

Assuming that in the original space the two classes were separable by a (nonlin
ear) hypersurface g(x) = 0, relations (4.45), (4.46) are basically equivalent to 
approximating the nonlinear g(x) as a linear combination off; (x), that is, 

k 

g(x) = wo+ L:w;f;(x) 
i=l 

(4.47) 

This is a typical problem of function approximation in terms of a preselected 
class of interpolation functions f; ( · ). This is a well-studied task in numerical 
analysis, and a number of different interpolating functions have been proposed 
(exponential, polynomial, Tchebyshev, etc.). In the next sections we will focus on 
two such classes of functions, which have been widely used in pattern recognition. 

Once the functions f; have been selected, the problem becomes a typical design 
of a linear classifier, that is, to estimate the weights w; in the k-dimensional space. 
This justifies the term generalized linear classification. Figure 4.17 shows the cor
responding block diagram. The first layer of computations performs the mapping to 
they space; the second layer performs the computation of the decision hyperplane. 
In other words, (4.47) corresponds to a two-layer network where the nodes of the 
hidden layer have different activation functions, f;(·), i = I, 2, ... , k. For an 
M-class problem we need to design M such weight vectors w,, r =I, 2, ... , M, 
one for each class, and select the rth class according to the maximum output 
w'[' y + w,o. 

In the sequel, we will first try to justify our expectations, that by going to a 
higher dimensional space the classification task may be transformed into a linear 
one and then study popular alternatives for the choice of functions f; (·). 
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FIGURE 4.17: Generalized linear classifier. 

4.13 CAPACITY OF THE /-DIMENSIONAL SPACE IN 
LINEAR DICHOTOMIES 

Let us consider N points in the /-dimensional space. We will say that these 
points are in general position or well distributed if there is no subset of I + I 
of them that lie on an (/ - I )-dimensional hyperplane . Such a definition excludes 
detrimental cases, such as in the two-dimensional space having three points on 
a straight line (a one-dimensional hyperplane). The number O(N, /) of group
ings that can be formed by (/ - 1 )-dimensional hyperplanes to separate the N 
points in two classes, taking all possible combinations, is given by ([Cove 65] and 
Problem 4. 18): 

(4.48) 

where 

(
N - I) (N - 1) 1 

i -(N-1-i)!i! 
(4.49) 

Each of these two class groupings is also known as a (linear) dichotomy. From 
the properties of the binomial coefficients. it turns out that for N ::::: I + 1. 
O(N,/) = zN Figure 4 .18 shows two examples of such hyperplanes result
ing in 0(4, 2) = 14 and 0(3, 2) = 8 two-class groupings, respectively. The 
seven lines of Figure 4. l8a fonn the following groupings. [(ABCD)], [A,{BCD)]. 
[B,(ACD)], [C,(ABD)], [D,{ABC)). [(AB),(CD)], [(AC),{BD)]. Each grouping 
corresponds to two possibilities . For example, (ABCD) can belong to either class 
w 1 or w2 • Thus. the total number of combinations of assigning four points in the 
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A. 

Be 

(a) (b) 

FIGURE 4.18: Number of linear dichotomies (a) for four and (b) for three 
points. 

2-dimensional space in two linearly separable classes is 14. This number is obvi
ously smaller than the total number of combinations of assigning N points in two 
classes, which is known to be 2N. This is because the latter also involves nonlin
early separable combinations. In the case of our example, this is 16, which arises 
from the two extra possibilities of the grouping [(AD), (BC)]. We are now ready 
to write the probability (percentage) of grouping N points in the /-dimensional 
space in two linearly separable classes [Cove 65]. This is given by: 

1
1 I (N - 1) 

P1 = 0~:· I) = 2•~ • ~i"O i 
N >I+ 1 

(4.50) 

N SI+ 1 

A practical way to study the dependence of P~ on N and I is to assume that 
N = r(l + 1) and investigate the probability for various values of r. The curve in 
Figure 4.19 shows the probability of having linearly separable classes for various 
values of l. It is readily observed that there are two regions, one to the left of r = 2, 
i.e., N = 2(1+1) and one to the right. Furthermore, all curves go through the point 
(P~. r) = (1/2, 2), due to the fact that 0(21+2, l) = 221+1 (Problem4.19). The 
transition from one region to the other becomes sharper as l __.,. oo. Thus, for large 
values of l and if N < 2(/ + 1) the probability of any two groups of the N points 
being linearly separable approaches unity. The opposite is true if N > 2(1 + 1). 
In practice, where we cannot afford the luxury of very large values of N and l, 
our findings guarantee that if we are given N points, then mapping into a higher 
dimensional space increases the probability of locating them in linearly separable 
two-class groupings. 
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p 

FIGURE 4.19: Probability of linearly separable groupings of N 
points in the /-dimensional space. 
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r(l + I) 

In this section we will focus on one of the most popular classes of interpolation 
functions .fi (x) in (4.47). Function g(x) is approximated in terms of up to order 
r polynomials of the x components, for large enough r. For the special case of 
r = 2 we have 

I /-l I 

g(x) = wo + L w;x; + L L W;mXiXm + L w;;x;2 (4.51) 
i=l i=l m=i+l i=l 

If x = [xi. x2f, then the general form of y will be 

and 

~(X) = WT y + W() 

WT= [w1' w2. W12. WJI, w22] 

The number of free parameters determines the new dimension k. The generali
zation of (4.51) for rth-order polynomials is straightforward, and it will contain 
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products of the form xf11 xf2 
• • • xf1l where Pt+ P2 + · · ·+Pt s r. For an rth-order 

polynomial and /-dimensional x it can be shown that 

(I+ r)! 
k=-

r!l! 

For I = IO and r = IO we obtain k = 184, 756 (!!).That is, even for medium-size 
values of the network order and the input space dimensionality the number of free 
parameters gets very high. 

Let us consider, for example, our familiar nonlinearly separable XOR problem. 
Define 

[ 

X[ ] 
y = x2 (4.52) 

X[X2 

The input vectors are mapped onto the vertices of a three-dimensional unit (hyper) 
cube, as shown in Figure 4.20a ((00) ~ (000), (I I) ~ ( 111), (I 0) ~ 
(100), (01) ~ (OIO)). These vertices are separable by the plane 

I 
Yt + Y2 - 2y3 - - = 0 

4 

The plane in the three-dimensional space is equivalent to the decision function 

I >0 xEA 
g(x) = -- +xi +x2 -2x1x2 

0 
B 

4 < XE 

in the original two-dimensional space, which is shown in Figure 4.20b. 

X2 

(0, 1) ~ 
(0,0) ( 1,0) 

000 100 

(a) (b) 

X1 

FIGURE 4.20: The XOR classification task, via the polynomial generalized 
linear classifier. (a) Decision plane in the three-dimensional space and (b) decision 
curves in the original two-dimensional space. 
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4.15 RADIAL BASIS FUNCTION NETWORKS 

The interpolation functions (kernels) that will be considered in this section are of 
the general form 

.f (llx - c; II) 

That is, the argument of the function is the Euclidean distance of the input 
vector x from a center c;, which justifies the name radial basis .function ( RBF). 
Function .f can take various forms, for example, 

f(x) = exp(-~llx - c;l1 2
) 

2a; 

a2 
f(x)=---

a2 + llx - c;ll 2 

(4.53) 

(4.54) 

The Gaussian form is more widely used. For a large enough value of k, it can be 
shown that the function g(x) is sufficiently approximated by [Broo 88, Mood 891 

~ ( (x-c;)T(x-c;)) 
g(x) = wo + L...., w;exp -

2 
i=I 2a; 

(4.55) 

That is, the approximation is achieved via a summation of RBFs, where each is 
located on a different point in the space. One can easily observe the close relation 
that exists between this and the Parzen approximation method for the probability 
density functions of Chapter 2. Note, however, that there the number of the kernels 
was chosen to be equal to the number of training points k = N. In contrast, in 
( 4.55) k « N. Besides the gains in computational complexity, this reduction in the 
number of kernels is beneficial for the generalization capabilities of the resulting 
approximation model. 

Coming back to Figure 4.17, we can interpret (4.55) as the output of a network 
with one hidden layer ofRBF activation functions (e.g., (4.53), (4.54)) and a linear 
output node. As has already been said in Section 4.12, for an M -class problem 
there will be M linear output nodes. At this point, it is important to stress one 
basic difference between RBF networks and multilayer perceptrons. In the latter, 
the inputs to the activation functions, of the first hidden layer, are linear combi
nations of the input feature parameters (LJ w 1x_; ). That is, the output of each 
neuron is the same for all {x: LJ WJXJ = c}, where c is a constant. Hence, the 
output is the same.for all points on a hyperplane. In contrast, in the RBF networks 
the output of each RBF node, .f; (-), is the same for all points having the same 
Euclidean distance.from the respective center c; and decreases exponentially (for 
Gaussians) with the distance. In other words, the activation responses of the nodes 
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are of a local nature in the RBF and of a global nature in the multilayer per
ceptron networks. This intrinsic difference has important repercussions for both 
the convergence speed and the generalization performance. In general, multilayer 
perceptrons learn slower than their RBF counterparts. In contrast, multilayer per
ceptrons exhibit improved generalization properties, especially for regions that 
are not represented sufficiently in the training set [Lane 91]. Simulation results in 
[Hart 90] show that, in order to achieve performance similar to that of multilayer 
perceptrons, an RBF network should be of much higher order. This is due to the 
locality of the RBF activation functions, which makes it necessary to use a large 
number of centers to fill in the space in which g(x) is defined, and this number 
exhibits an exponential dependence on the dimension of the input space (curse of 
dimensionality) [Hart 90]. 

Let us now come back to our XOR problem and adopt an RBF network to per
form the mapping to a linearly separable class problem. Choose k = 2, the centers 
c1 = [l, if, c2 = [O, Of, and f(x) = exp(-llx - c;l! 2). The corresponding y 
resulting from the mapping is 

[
exp(-llx - c111 2

)] 
y = y(x) = 

exp(-llx - c21i 2) 

Hence (0, 0) --+ (0.135, I), (I, 1) --+ (I, 0.135), (I, 0) --+ (0.368, 0.368), 
(0, I) --+ (0.368, 0.368). Figure 4.2la shows the resulting class position after 
the mapping in the y space. Obviously, the two classes are now linearly separable 

XOR 

B 
0 

0 

(a) (b) 

FIGURE 4.21: Decision curves formed by an RBF generalized linear classifier 
for the XOR task (a) in the transformed space and (b) in the original space. 
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and the straight line 

g(y) =YI + Y2 - I = 0 

is a possible solution. Figure 4.21 b shows the equivalent decision curve, 

g(x) = exp(-llx - c111 2
) + exp(-llx - c211 2

) - I = 0 

in the input vector space. In our example we selected the centers c1, c2 as [O, Of 
and [I, I J7. The question now is, why these specific ones? This is an importalll 
issue for RBF networks. Some basic directions on how to tackle this problem are 
given in the following. 

Fixed Centers 

Although there exist some cases in which the nature of the problem suggests a 
specific choice for the centers [Theod 95], in the general case these centers can be 
selected randomly from the training set. Provided that the training set is distributed 
in a representative manner over all the feature vector space, this seems to be a 
reasonable way to choose the centers. Having now selected k centers for the RBF 
functions, the problem has become a typical linear one in the k-dimensional space 
of the vectors y, 

y= 

exp ( ~11~~!' li 2
) 

where the variances are also considered to be known, and 

g(x)=wo+w 7 y 

All methods described in Chapter 3 can now be recalled to estimate wo and w. 

Training of the Centers 

If the centers are not preselected, they have to be estimated during the train
ing phase along with the weights w; and the variances a?, if the latter are 
also considered unknown. Let N be the number of input-desired output train
ing pairs (x(j), y(j), j = l. ... , N). We select an appropriate cost function of 
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the output error 
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N 

J = L:<t>(e(j)) 
J=l 

where</>(·) is a differentiable function (e.g., the square of its argument) of the error 

e(j) = y(j) - g(x(j)) 

The estimation of the weights w;, the centers c;, and the variances a? becomes 
a typical task of a nonlinear optimization process. For example, if we adopt the 
gradient descent approach, the following algorithm results: 

aJ I w;(t +I)= w;(t) - µ1-. - , 
aw; I 

i = 0, I, ... , k (4.56) 

aJ I c;(t +I)= c;(t) - µ2- , 
ac; I 

i =I, 2, ... , k (4.57) 

aJ I a;(t +I)= a;(t) - f.J.,3-a . • 
a, I 

i = 1. 2, .... k (4.58) 

where t is the current iteration step. The computational complexity of such a 
scheme is prohibitive for a number of practical situations. To overcome this 
drawback, alternative techniques have been suggested. 

One way is to choose the centers in a manner representative of the way data are 
distributed in space. This can be achieved by unraveling the clustering properties 
of the data and choosing a representative for each cluster as the corresponding cen
ter [Mood 89]. This is a typical problem of unsupervised learning, and algorithms 
discussed in the relevant chapters later in the book can be employed. The unknown 
weights, w;, are then learned via a supervised scheme (i.e., gradient descent algo
rithm) to minimize the output error. Thus, such schemes use a combination of 
supervised and unsupervised learning procedures. 

An alternative strategy is described in [Chen 91]. A large number of candidate 
centers is initially chosen from the training vector set. Then, a forward linear 
regression technique is employed, such as orthogonal least squares, which leads 
to a parsimonious set of centers. This technique also provides a way to estimate 
the order of the model k. A recursive form of the method, which can lead in 
computational savings, is given in [Gomm 00]. 

Recently, another method has been proposed based on support vector machines. 
The idea behind this methodology is to look at the RBF network as a mapping 
machine, through the kernels, into a high-dimensional space. Then we design a 
hyperplane classifier using the vectors that are closest to the decision boundary. 
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These are the support vectors and correspond to the centers of the input space. 
The training consists of a quadratic programming problem and guarantees a global 
optimum [Scho 97]. The nice feature of this algorithm is that it automatically 
computes all the unknown parameters including the number of centers. We will 
return to it later in this chapter. 

In [Plat 91] an approach similar in spirit to the constructive techniques, dis
cussed for the multilayer perceptrons, has been suggested. The idea is to start 
training the RBF network with few nodes (initially one) and keep growing the 
network by allocating new ones, based on the '"novelty" in the feature vectors 
that arrive sequentially. The novelty of each training input-desired output pair is 
detennined by two conditions: a) the input vector to be very far (according to a 
threshold) from all already existing centers and b) the corresponding output error 
(using the RBF network trained up to this point) greater than another predetermined 
threshold. If both conditions are satisfied then the new input vector is assigned as 
the new center. If not, the input-desired output pair is used to update the parameters 
of the network according to the adopted training algorithm, for example the gra
dient descent scheme. A variant of this scheme that allows removal of previously 
assigned centers has also been suggested in [Ying 98]. This is basically a combi
nation of the constructive and pruning philosophies. The procedure suggested in 
[Kara 971 also moves along the same direction. However, the assignment of the 
new centers is based on a procedure of progressive splitting (according to a split
ting criterion) of the feature space using clustering or learning vector quantization 
techniques (Chapter 14). The representatives of the regions are then assigned as 
the centers of the RBF's. As was the case with the aforementioned techniques. 
network growing and training is performed concurrently. 

A number of other techniques have also been suggested. For a review see, for 
example. [Hush 93]. A comparison ofRBF networks with different center selection 
strategies versus multilayer perceptrons in the context of speech recognition is 
given in [Wett 92 J. Reviews involving RBF networks and related applications are 
given in [Hayk 96, Mulg 96]. 

4.16 UNIVERSAL APPROXIMATORS 

In this section we provide the basic guidelines concerning the approximation prop
e11ies of the nonlinear functions used throughout this chapter. that is, sigmoid. 
polynomial. and radial basis functions. The theorems that are stated justify the 
use of the corresponding networks as decision surface approximators as well as 
probability function approximators, depending on how we look at the classifier. 

In (4.51) the polynomial expansion was used to approximate the nonlinear 
function g (x ). This choice for the approximation functions is justified by the 
Weierstrass theorem. 
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Theorem. Let g (x) be a continuous function defined in a compact (closed) 
subset S CR}, and E > 0. Then there are an integer r = r(E) and a polynomial 
function ¢ (x) of order r so that 

lg(x) - ¢(x)I < E, '<Ix ES 

In other words, function g(x) can be approximated arbitrarily closely for suffi
ciently large r. A major problem associated with polynomial expansions is that 
good approximations are usually achieved for large values of r. That is, the con
vergence to g(x) is slow. In [Barr 93] it is shown that the approximation error 
is reduced according to an 0 ( ;:br) rule, where 0 (-) denotes order of magni
tude. Thus, the error decreases more slowly with increasing dimension l of the 
input space, and large values of r are necessary for a given approximation error. 
However, large values of r, besides the computational complexity and generaliza
tion issues (due to the large number of free parameters required), also lead to poor 
numerical accuracy behavior in the computations, because of the large number 
of products involved. On the other hand, the polynomial expansion can be used 
effectively for piecewise approximation, where smaller r's can be adopted. 

The slow decrease of the approximation error with respect to the system order 
and the input space dimension is common to all expansions of the form (4.47) 
with fixed basis functions f; (-). The scenario becomes different if data adaptive 
functions are chosen, as is the case with the multilayer perceptrons. In the latter, the 
argument in the activation functions is f(wT x), with w computed in an optimal 
fashion from the available data. 

Let us now consider a two-layer perceptron with one hidden layer, having k 
nodes with activation functions f ( ·) and an output node with linear activation. 
The output of the network is then given by 

k 

¢(x) = .L w'Jf<wr x) + w~ 
j=I 

(4 .59) 

where h refers to the weights, including the thresholds, of the hidden layer and 
o to the weights of the output layer. Provided that f (-) is a squashing function, 
the following theorem establishes the universal approximation properties of such 
a network [Cybe 89, Funa 89, Horn 89, Ito 91, Kalo 97). 

Theorem. Let g(x) be a continuous function defined in a compact subset 
S C 'RJ and E > 0. Then there exist k = k(P.) and a two-layer perceptron (4.59) 
so that 

lg(x) - ¢(x)I < E, 'fr ES 

In [Barr 93), it is shown that, in contrast to the polynomial expansion, the approx
imation error decreases according to an 0 ( t) rule. In other words, the input space 
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dimension does not enter explicitly into the scene and the error is inversely pro
portional to the system order, that is, the number of neurons. Obviously, the price 
we pay for it is that the optimization process is now nonlinear, with the associated 
disadvantage of the potential for convergence to local minima. The question that 
now arises is whether we gain anything by using more than one hidden layer, since 
a single one is sufficient for the function approximation. An answer is that using 
more than one layer may lead to a more efficient approximation; that is, the same 
accuracy is achieved with fewer neurons in the network. 

The universal approximation property is also true for the class of RBF func
tions. For sufficiently large values of k in (4.55) the resulting expansion can 
approximate arbitrarily closely any continuous function in a compact subset S 
[Park 91. Park 93]. 

4.17 SUPPORT VECTOR MACHINES: THE NONLINEAR CASE 

In Chapter 3, we discussed the support vector machines (SVM) as an optimal 
design methodology of a linear classifier. Let us now assume that there exists a 
mapping 

from the input feature space into a k-dimensional space, where the classes can 
satisfactorily be separated by a hyperplane. Then, in the framework discussed in 
section 4.12, the SVM method can be mobilized for the design of the hyperplane 
classifier in the new k-dimensional space. However, there is an elegant property in 
the SVM methodology, that can be exploited for the development of a more general 
approach. This will also allow us for (implicit) mappings in infinite dimensional 
spaces, if required. 

Recall from Chapter 3 that, in the computations involved in the Wolfe dual rep
resentation the feature vectors participate in pairs, via the inner product operation. 
Also. once the optimal hyperplane (w, wo) has been computed, classification is 
performed according to whether the sign of 

g(x)=wTx+wo 

N, 

= L_>..;y;x! x + wo 
i=I 

is +or - . where N, is the number of support vectors. Thus, once more, only inner 
products enter into the scene. If the design is to take place in the new k-dimensional 
space, the only difference is that the involved vectors will be the k-dimensional 
mappings of the original input feature vectors. A naive look at it would lead to 
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the conclusion that now the complexity is much higher, since, usually, k is much 
higher than the input space dimensionality/, in order to make the classes linearly 
separable. However, there is a nice surprise just waiting for us. Let us start with a 
simple example. Assume that 

Then, it is a matter of simple algebra to show that 

T ( T )2 Y;Yj= X;Xj 

In words, the inner product of the vectors in the new (higher dimensional) space 
has been expressed as a function of the inner product of the corresponding vectors 
in the original feature space. Most interesting! 

Theorem. Mercer's Theorem. Let x E R 1 and a mapping <P 

x -----+ </J(x) E H 

where H is a Euclidean space. 5 Then the inner product operation has an 
equivalent representation 

L </>,.(x)<J>,(z) = K(x, z) (4.60) 

where ¢,(x) is the r-component of the mapping </J(x) of x, and K(x, z) is a 
symmetric function satisfying the following condition 

j K (x, z)g(x)g(z) dx dz 2: 0 (4.61) 

for any g(x), x E R 1 such that 

f g(x) 2 dx < +oo (4.62) 

The opposite is also true, i.e., for any function K (x, z) satisfying (4.61) and (4.62) 
there exists a space in which K (x, z) defines an inner product! Such functions 
are also known as kernels. What, however, Mercer's theorem does not disclose to 
us is how to find this space. That is, we do not have a general tool to construct 

5 A linear space equipped with an inner product operation 
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the mapping tP( ·) once we know the inner product of the corresponding space. 
Furthermore, we lack the means to know the dimensionality of the space, which 
can even be infinite. For more on these issues, the mathematically inclined reader 
is referred to [Cour 53). 

Typical examples of kernels used in pattern recognition applications are 

Polynomials 

(4.63) 

Radial Basis Functions 

( 
llx - z11 2

) K(x,z)=ex.p - a 2 
(4.64) 

Hyperbolic Tangent 

K(x, z) = tanh (f3xT z + y) (4 .65) 

for appropriate values of f3 and y so that Mercer's conditions are satisfied. One 
possibility is f3 = 2, y = I. 

Once an appropriate kernel has been adopted that implicitly defines a mapping 
into a higher dimensional space, the Wolfe dual optimization task (Eqs. (3 .91 )
(3 .93)) becomes 

max. ('\' )v - ~ '\' A. A. · y · y K (x · x · )) 
A~/ 2~1j.lj I•} 

I l , j 

subject to 0 _::::A.; _:::: C. i = I. 2, .. . , N 

.l:A.;y; =o 

and the resulting linear classifier is 

N~ 

assign x in w1(w2) if g(x) = LA.;y;K(x;.x) + wo > ( < ) 0 
i=I 

(4.66) 

(4 .67) 

(4 .68) 

(4 .69) 

Figure 4.22 shows the corresponding architecture. This is nothing else than a 
special case of the generalized linear classifier of Figure 4.17. The number of 
nodes is determined by the number of support vectors Ns. The nodes perform the 
inner products between the mapping of x and the corresponding mappings of the 
support vectors in the high dimensional space, via the kernel operation . 
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FIGURE 4.22: The SVM architecture employing kernel functions. 

Remarks 

• Notice that if the kernel function is the RBF, then the architecture is the 
same as the RBF network architecture of Figure 4.17. However, the approach 
followed here is different. In Section 4.15, a mapping in a k-dimensional 
space was first performed and the centers of the RBF functions had to be 
estimated. In the SVM approach, the number of nodes as well as the centers 
are the result of the optimization procedure. 

• The hyperbolic tangent function is a sigmoid one. If it is chosen as a kernel, 
the resulting architecture is a special case of a two layer perceptron. Once 
more, the number of nodes is the result of the optimization procedure. This 
is important. Although the SVM architecture is the same as that of a 2-layer 
perceptron, the training procedure is entirely different for the two methods. 
The same is true for the RBF networks. 

• A notable characteristic of the support vector machines is that the computa
tional complexity is independent of the dimensionality of the kernel space, 
where the input feature space is mapped. Thus, the curse of dimensionality 
is bypassed. In other words, one designs in a high dimensional space without 
having to adopt explicit models using a large number of parameters, as this 
would be dictated by the high dimensionality of the space. This has also an 
influence on the generalization properties and indeed, SVM's tend to exhibit 
good generalization performance. We will return to this issue at the end of 
Chapter 5. 

• A major limitation of support vector machines is the high computational bur
den required, both during training and in the test phase. For problems with a 
relatively small number of training data, any general purpose optimization 
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algorithm can be used. However, for a large number of training points (of 
the order of a few thousands), a special treatment is required. Training of 
SVM is usually performed in batch mode. For large problems this sets 
high demands on computer memory requirements. To attack such prob
lems a number of procedures have been devised. Their philosophy relies 
on the decomposition, in one way or another, of the optimization prob
lem into a sequence of smaller ones, e.g., [Bose 92, Osun 97, Chan 00] . 
Recently, an algorithm has been proposed that solves the problem itera
tively, by assuming that at each iteration step only two of the Langrange 
multipliers are unknown and the rest are known (beginning with an initial 
assumption.) The procedure takes advantage of the fact that an analytical 
solution for the dual problem is possible for the case of two Langrange multi
pliers, [Matt 99, Plat 99]. Another sequential algorithm has been proposed in 
[Na vi 0 I], where an iterative reweighted least squares procedure is employed 
and alternates weight optimization with constraint forcing. An advantage 
of the latter technique is that it naturally leads to on-line and adaptive 
implementations. 

For large problems, the test phase can also be quite demanding, if the 
number of support vectors is excessively high. Methods that speed up 
computations have also been suggested. e.g., [Burg 97]. 

• Another major limitation of the support vector machines is that, up to now. 
there is no practical method for the best selection of the kernel function. This 
is still an unsolved, yet challenging. research issue. 

• Support vector machines have been applied to a number of diverse appli
cations, ranging from hand-written digit recognition ([Cort 95]), to object 
recognition ([Blan 96]), person identification ([Ben 99]), spam categoriza
tion ([Drue 99]), and channel equalization ([Seba 00]). The results from 
these applications indicate that SVM classifiers exhibit enhanced gener
alization performance, which seems to be the power of support vector 
machines. 

• Besides support vector machines any other linear classifier that employs 
inner products can implicitly be executed in higher dimension~! spaces 
by using kernels. In this way one can elegantly construct nonlinear ver
sions of a linear algorithm. For a review on this issue see, for example. 
[Mull OJ]. 

4.18 DECISION TREES 

In this section we brieHy review a large class of nonlinear classifiers known as 
decision trees. They are multistage decision systems in which classes are sequen
tially rejected until we reach a finally accepted class. To this end, the feature space 
is split into unique regions, corresponding to the classes, in a sequential manner. 
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Upon the arrival of a feature vector, the searching of the region to which the fea
ture vector will be assigned is achieved via a sequence of decisions along a path of 
nodes of an appropriately constructed tree. Such schemes offer advantages when 
a large number of classes is involved. The most popular among the decision trees 
are those that split the space into hyperrectangles with sides parallel to the axes. 
The sequence of decisions is applied to individual features, and the questions to 
be answered are of the form "is feature x; s a?" where a is a threshold value. 
Such trees are known as ordinary binary classification trees (OBCTs). Other types 
of trees are also possible that split the space into convex polyhedral cells or into 
pieces of spheres. 

The basic idea behind an OBCT is demonstrated via the simplified example 
of Figure 4.23. By a successive sequential splitting of the space we have created 
regions corresponding to the various classes. 

Figure 4.24 shows the respective binary tree with its decision nodes and leaves. 
Note that it is possible to reach a decision without having tested all the available 
features . 

The task illustrated in Figure 4.23 is a simple one in the two-dimensional space. 
The thresholds used for the binary splits at each node of the tree in Figure 4.24 
were dictated by a simple observation of the geometry of the problem. However, 
this is not possible in higher dimensional spaces. Furthermore, we started the 
queries by testing xi against ~.An obvious question is why to consider x 1 first and 
not another feature. In the general case, in order to develop a binary decision tree, 

3 
4 

l 
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FIGURE 4.23: Decision tree partition. 
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FIGURE 4.24: Decision tree classification. 

the following design elements have to be considered by the designer in the training 
phase: 

• At each node, the set of candidate questions to be asked has to be decided. 
Each question corresponds to a specific binary split into two descendant 
nodes. Each node, t, is associated with a specific subset X 1 of the training 
set X. Splitting of a node is equivalent with the split of the subset X1 into 
two disjoint descendant subsets, X 1 y, X 1 N. The first of the two consists of 
the vectors in X1 that correspond to the answer "Yes" of the question and 
those of the second to the "No." The first (root) node of the tree is associated 
with the training set X. For every split, the following is true: 

X,ynXrN =0 

X1rLJX1N=Xr 

• A sp/i11ing criterion must be adopted according to which the best split from 
the set of candidate ones is chosen. 

• A stop-splitting rule is required that controls the growth of the tree and a 
node is declared as a terminal one (leaf.) 

• A rule is required that assigns each leaf to a specific class. 

We are by now experienced enough to expect that there is more than one method 
to approach each of the above design elements. 
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4.18.1 Set of Questions 

For the OBCT type of trees the questions are of the form "Is Xk ::: ex?" For each 
feature, every possible value of the threshold ct defines a specific split of the subset 
X,. Thus in theory, an infinite set of questions has to be asked if ex varies in an 
interval Ya ~ R. In practice, only a finite set of questions can be considered. 
For example, since the number, N, of training points in X is finite, any of the 
features Xk, k = 1, ... , l, can take at most N, ::: N different values, where N1 is 
the cardinality of the subset X, ~ X. Thus, for feature Xk, one can use <Xkn . n = 
l, 2, ... , N,k (Nik ::: N 1 ), where Clkn are taken halfway between consecutive 
distinct values of Xk in the training subset X1 • The same has to be repeated for all 
features. Thus in such a case, the total number of candidate questions is L:i=l Nik · 
However, only one of them has to be chosen to provide the binary split at the 
current node, t, of the tree. This is selected to be the one that leads to the best 
split of the associated subset X r · The best split is decided according to a splitting 
criterion. 

4.18.2 Splitting Criterion 

Every binary split of a node, t, generates two descendant nodes. Let us denote 
them by ty and tN according to the "Yes" or "No" answer to the single question 
adopted for the node t, also referred as the ancestor node. As we have already men
tioned, the descendant nodes are associated with two new subsets, i.e., X1y. X1N , 

respectively. In order for the tree growing methodology, from the root node down 
to the leaves, to make sense, every split must generate subsets that are more "class 
homogeneous" compared to the ancestor's subset X1• This means that the training 
feature vectors in each one of the new subsets show a higher preference for spe
cific class( es), whereas data in X1 are more equally distributed among the classes. 
As an example, let us consider a four-class task and assume that the vectors in 
subset X1 are distributed among the classes with equal probability (percentage). 
If one splits the node so that the points that belong to w1, w2 classes form the 
X1Y subset, and the points from W3, W4 classes form the x,N subset, then the 
new subsets are more homogeneous compared to X1 or "purer" in the decision 
tree terminology. The goal, therefore, is to define a measure that quantifies node 
impurity and split the node so that the overall impurity of the descendant nodes is 
optimally decreased with respect to the ancestor node's impurity. 

Let P(w;lt) denotes the probability that a vector in the subset X1, associated 
with a node t, belongs to class w;, i = l, 2, ... , M. A commonly used definition 
of node impurity, denoted as I (t), is given by 

M 

l(t) = - LP(w;it)1og2 P(w;lt) (4.70) 
i=l 
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where log2 is the logarithm with base 2. This is nothing else than the entropy asso
ciated with the subset X,, known from Shannon's Information Theory. It is not 
difficult to show that I (t) takes its maximum value if all probabilities are equal 
to iJ (highest impurity) and it becomes zero (recall that 0 log 0 = 0) if all data 
belong to a single class, that is, if only one of the P(w; It)= I and all the others 
are zero (least impurity). In practice, probabilities are estimated by the respec-

tive percentages, !ff,, where N/ is the number of points in X, that belong to 
class w;. Assume now that performing a split, N1 y points are sent into the "Yes" 
node (X1 y) and N1 N into the "No" node (X1 N ). The decrease in node impurity is 
defined as 

(4.71) 

where I (ty ), I UN) are the impurities of the ty and tN nodes respectively. The goal 
now becomes to adopt, from the set of candidate questions, the one that performs 
the split leading to the highest decrease of impurity. 

4.18.3 Stop-Splitting Rule 

The natural question that now arises is when one decides to stop splitting a node 
and declares it as a leaf of the tree. A possibility is to adopt a threshold T and stop 
splitting if the maximum value of I)./ (t), over all possible splits, is less than T. 
Other alternatives are to stop splitting either if the cardinality of the subset X, is 
small enough or if X1 is pure, in the sense that all points in it belong to a single 
class. 

4.18.4 Class Assignment Rule 

Once a node is declared to be a leaf, then it has to be given a class label. 
A commonly used rule is the majority rule, i.e., the leaf is labeled as w j 

where 

j = arg max P(w;lt) 
I 

In words, we assign a leaf, t, to that class to which the majority of the vectors in 
X1 belong. 

Having discussed the major elements needed for the growth of a decision tree, 
we are now ready to summarize the basic algorithmic steps for constructing a 
binary decision tree 

• Begin with the root node, i.e., X1 = X 
• For each new node t 
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* For every feature Xk, k = I, 2, ... , l 

For every value Cikn , n = I, 2, ... , Nrk 

• Generate X,y and XrN according to the answer in the question: 
is Xk(i) :S Cik,,. i = I, 2, . .. , Nr 

• Compute the impurity decrease 

• End 
• Choose akno leading to the maximum decrease w.r. to Xk 

* End 
* Choose .x.1:o and associated Cikono leading to the overall maximum 

decrease of impurity 
* If stop-splitting rule is met declare node t as a leaf and designate it with 

a class label 
* If not, generate two descendant nodes ty and t N with associated subsets 

X1 y and X1N, depending on the answer to the question: is Xko :S akono 

• End 

Remarks 

• A variety of node impurity measures can be defined. However, as it is pointed 
out in [Brei 84], the properties of the resulting final tree seem to be rather 
insensitive to the choice of the splitting criterion. Nevertheless, this is very 
much a problem dependent task. 

• A critical factor in designing a decision tree is its size. As it was the case with 
the multilayer perceptrons. the size of a tree must be large enough but not too 
large; otherwise it tends to learn the particular details of the training set and 
exhibits poor generalization performance. Experience has shown that the 
use of a threshold value for the impurity decrease as stop-splitting rule does 
not lead to trees of the right size. Many times it stops tree growing either 
too early or too late. The most commonly used approach is to grow a tree 
up to a large size first and then prune nodes according to a pruning criterion. 
This is similar in philosophy with pruning multilayer perceptrons. A number 
of pruning criteria have been suggested in the literature. A commonly used 
criterion is to combine an estimate of the error probability with a complexity 
measuring term (e.g., number of terminal nodes). For more on this issue the 
interested reader may refer to [Brei 84, Rip! 94]. 

• Our discussion so far was focused on OBCT type of trees. More general 
partition of the feature space, via hyperplanes not parallel to the axis, is 
possible via questions of the type: is L~==l qxk ::::= a? This can lead to 
a better partition of the space. However, the training now becomes more 
involved; see, e.g., [Quin 93]. 
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• Constructions of fuzzy decision trees have also been suggested, by allowing 
the possibility of partial membership of a feature vector in the nodes that 
make up the tree structure. Fuzzification is achieved by imposing a fuzzy 
structure over the basic skeleton of a standard decision tree; see, for example. 
[Suar 99] and the references therein. 

Example 4.1. In a tree classification task, the set X 1 , associated with node t, contains 
N1 = l 0 vectors. Four of these belong to class w1, four to class w2, and two Lo cla~s w3, in 
a three-class classification task. The node splitting results into two new subsets X 1y, with 
three vectors from w1, and one from wi. and X 1 N with one vector from w1, three from wi. 
and two from w3. The goal is to compute the decrease in node impurity after splitting. 

We have that 

4 4 4 4 2 2 
/(I)= -- log2 - - - log2 - - - log2 - = 1.521 

JO JO 10 10 10 10 

3 3 I I 
l(ty) = -- log2 - - - log2 - = 0.815 

4 4 4 4 
I I 3 3 2 2 

/(IN)= -- log2 - - - log2 - - - log2 - = 1.472 
6 6 6 6 6 6 

Hence. the impurity decrease after splitting is 

4 6 
M(t) = 1.521 - -(0.815) - -(1.472) = 0.315 

JO 10 

For further information and a deeper study of decision tree classifiers the inter
ested reader may consult the seminal book [Brei 84]. A nonexhaustive sample of 
later contributions in the area is [Datt 85, Chou 91, Seth 90, Graj 86, Quin 93]. A 
recent comparative guide for a number of well-known techniques is provided in 
[Espo 97]. 

Finally, it must be stated that there are close similarities between the decision 
trees and the neural network classifiers. Both aim at forming complex decision 
boundaries in the feature space. A major difference lies in the way decisions are 
made. Decision trees employ a hierarchically structured decision function in a 
sequential fashion. In contrast, neural networks utilize a set of soft (not final) 
decisions in a parallel fashion. 

Furthermore, their training is performed via different philosophies. However. 
despite their differences. it has been shown that linear tree classifiers (with a linear 
splitting criterion) can be adequately mapped to a multilayer perceptron structure 
[Seth 90, Seth 91, Park 94]. 

So far, from the performance point of view, comparative studies seem to give 
an advantage to the multilayer perceptrons with respect to the classification error. 
and an advantage to the decision trees with respect to the required training time 
[Brow 93]. 
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4.19 DISCUSSION 

The current chapter was the third one concerning the classifier design phase. 
Although we have not exhausted the list (as a matter of fact, a few more cases 
will be discussed in the chapters to follow), we feel that we have presented to the 
reader the most popular directions currently used for the design of a classifier. 

Another trend that offers more possibilities to the designer is to combine dij: 
ferent classifiers together. Thus, one can exploit their individual advantages in 
order to reach an overall better performance than could be achieved by using each 
of them separately. An important observation that justifies such an approach is 
the following. From the difforent (candidate) classifiers that we design in order 
to choose the one that fits our needs, one results in the best performance, that 
is, minimum classification error rate. However, different classifiers may fail (to 
classify correctly) on different patterns. That is, even the "best" classifier can fail 
on patterns that other classifiers succeed on. Combining classifiers aims at exploit
ing this complementary information that seems to reside in the various classifiers. 
Many interesting design issues now come onto the scene. What is the strategy 
one has to adopt for combining the individual outputs in order to reach the final 
conclusion? Should one combine the results following the product rule, the sum 
rule, the min rule, the max rule or the median rule? Should all classifiers be fed 
with the same feature vectors or must different feature vectors be selected for 
the different classifiers? For a review of such techniques the reader may refer to 
[Kitt 98, Tax 00, Mill 99, Jain 00, Witt 88, Kunc 02] and the references therein. 

Boosting refers to a specific type of strategies for combining classifiers. At the 
heart of a boosting method lies a so called "base" classifier. This is a "weak" 
classifier and it suffices to perform slightly better than a random guessing. A series 
of classifiers is then designed iteratively, employing, each time. the base classifier 
but using a different subset of the training set, according to an iteratively computed 
distribution (or weighting over the samples of the training set). At each iteration, 
the computed weighting distribution gives emphasis to the "hardest" (incorrectly 
classified) samples. The final classifier is obtained as an appropriate weighted 
average (voting) of the previously hierarchically designed classifiers. It turns out 
that, given a sufficient number of iterations and training samples the classification 
error of the final combination can be arbitrarily small. This is very impressive 
indeed. Using a very weak classifier as the base, one can achieve an arbitrarily 
small error rate, by appropriate exploitation of the behavior of the training samples 
with respect to the sequence of the designed classifiers [Scha 98]. A deeper look 
at these classifiers reveals that they are basically "margin" classifiers. That is, at 
each iteration step they try to maximize the margin of the training samples from 
the decision surface, and they finally converge to a margin distribution where 
most examples have large margins, see, e.g., [Maso 00, Scha 98]. From this point 
of view there is an affinity with the support vectors machines, which also try to 
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maximize the margin of the training samples from the decision surface, see, for 
example, [Scha 98, Rats 02] . 

It is true that the number of available techniques is large and the user has to 
choose what is more appropriate for the problem at hand. There are no magic 
recipes. A large research effort has been focused on comparative studies of vari
ous classifiers in the context of different applications. One of the most extensive 
efforts was the Statlog project [Mich 94], in which a wide range of classifiers 
was tested using a large number of different data sets. Furthermore, research 
effort has been devoted to unraveling relations and affinities between the differ
ent techniques. Many of these techniques have their origin in different scientific 
disciplines. Therefore, until a few years ago, they were considered independently. 
Recently researchers have started to recognize underlying similarities among var
ious approaches. For readers who want to dig a bit deeper into these questions, the 
discussions and results presented in [Chen 94, Rip! 94, Rip! 96, Spec 90, Holm 97. 
Josh 97, Reyn 99) will be quite enlightening. 

In summary, the only tip that can be given to the designer is that all of the tech
niques presented in this book are still serious players in the classifier design game. 
The final choice depends on the specific task. The proof of the cake is in the eating! 

Problems 

4.1 We are given I 0 feature vectors that originate from two classes w 1 and w2 as follows 

WJ : (0.1, -0.2]T. (0.2 , 0. l]T , (-0.15. 0.2f , (1.1 , 0.8{, ( 1.2, l.l]T 

wi : [I. I. -0.1 iT. [ 1.25 , 0.15JT. [0.9. O. l)T' [0.1. 1.2f' [0.2, 0.9)T 

Check whether these are linearly separable and, if not. design an appropriate mul
tilayer perceptron with nodes having step function activation to classify the vectors 
in the two classes. 

4.2 Using the computer, generate four 2-dimensional Gaussian random sequences with 
covariance matrices 

L = [0.01 0.0 J 
0.0 0.01 

and mean values µI= [O, Of, µz =[I, l]T, µ3 = [O. If , µ4 =[I, Of. The first 
two form class rv 1 and the other two class Wl · Produce JOO vectors from each 
distribution . Use the batch mode backpropagation algorithm of Section 4.6 to train 
a two-layer pcrccptron with two hidden neurons and one in the output. Let the 
activation function be the logistic one with a= I. Plot the error curve as a function 
of iteration steps. Experiment yourselves with various values of the learning para
meter µ. . Once the algorithm has converged, produce 50 more vectors from each 
distribution and try to classify them using the weights you have obtained. What is 
the percentage classification error? 
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4.3 Draw the three lines in the two-dimensional space 

xi +xz = 0 

I 
xz = 4 

XJ -Xz = Q 

For each of the polyhedra that are formed by their intersections, determine the ver
tices of the cube into which they will be mapped by the first layer of a multilayer 
perceptron, realizing the preceding lines. Combine the regions into two classes so 
that (a) a two-layer network is sufficient to classify them and (b) a three-layer net
work is necessary. For both cases compute analytically the corresponding synaptic 
weights. 

4.4 Show that if x 1 and xz are two points in the /-dimensional space, the hyperplane 
bisecting the segment with end points x 1, x2, leaving x 1 at its positive side, is 
given by 

4.5 For the cross-entropy cost function of ( 4.33) 

• Show that its minimum value for binary desired response values is zero and it 

occurs when the true outputs are equal to the desired ones. 

• Show that the cross-entropy cost function depends on the relative output 

errors. 

4.6 Show that if the cost function, optimized by a multilayer perceptron, is the cross
entropy (4.33) and the activation function is the sigmoid (4.1 ), then the gradient 
of (i) of(4.13) becomes 

8J(i) = a(l - )'j(i))yj(i). 

4.7 Repeat Problem 4.6 for the softmax activation function am! show that llJ(i) 

Yj(i) - Yj(i). 
4.8 Show that for the cross-entropy cost function (4.30) the outputs of the network, 

corresponding to the optimal weights, approximate the conditional probabilities 
P(wilx) . 

4.9 Using formula (4.37) show that if I 2'.. K then M = 2K . 
4.10 Develop a program to repeat the simulation example of Section 4. 10. 
4.11 For the same example start with a network consisting of six neurons in the first hidden 

layer and nine neurons in the second. Use a pruning algorithm to reduce the size of 
the network. 
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4.12 Let the sum of error squares 

l N kl 

J = 2 LL <.vmU! - y,,,(i))2 

i=lm=I 

be the minimized function for a multilayer perceptron . Compute the elements of the 
Hessian matrix 

Show that near a minimum, this can be approximated by 

a2 J ~ ~ il.\"m(i) ilym(i) 
a r a r' = L L .-a;{~ 
. ll!kj wk')' i=I m= I kj uWk'j ' 

Thus. the second derivatives can be approximated by products of the first-order ones. 
Following arguments similar to those used for the derivation of the backpropagation 
algorithm, show that 

where 

a 5'111 Ul 
ovj (i) 

Its computation takes place recursively in the backpropagation philosophy. This has 
been used in [Hass 93 ]. 

4.13 In Section 4.4 it was pointed out that an approximation to the Hessian matrix. which 
is often employed in practice, is to assume that it is diagonal. Prove that under this 
assumption 

iJ2£ 

(aw;;) 2 

is propagated via a backpropagation concept according to the fonnulas: 

(I) 

f"(vf}ej + (f'(vf )) 2 
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(3) 
2 k1 2 k, 

_a_£_= (f'(v'-1 ))2 '°" (w' .)2 ~ + !"(v'-1) '°" w' .8' 
(av1~-1)2 1 L k1 (a ')2 1 L k1 k 

k=I vj k=I 

where all off-diagonal terms of the Hessian matrix have been neglected and the 
dependence on i has been suppressed for notational convenience. 

4.14 Derive the full Hessian matrix for a simple two-layer network with two hid
den neurons and an output one. Generalize to the case of more than two hidden 
neurons. 

4.15 Rederive the backpropagation algorithm of Section 4.6 with activation function 

f(x) = ctanh(bx) 

4.16 In [Dark 91] the following scheme for adaptation of the learning parameterµ. has 
been proposed: 

1 
µ. = µ0-1--1 

+ ii) 

Verify that, for large enough values of to (e.g., 300 s to s 500), the learning 
parameter is approximately constant for the early stages of training (small values of 
iteration step t) and decreases in inverse prop01tion tut for large values. The first 
phase is called search phase and the latter converge phase. Comment on the rationale 
of such a procedure. 

4.17 Use a two-layer perceptron with a linear output unit to approximate the function 
y(x) = 0.3 + 0.2 cos(2n x ), x E (0, L]. To this end, generate a sufficient number of 
data points from this function for the training. Use the backpropagation algorithm in 
one of its forms to train the network. In the sequel produce 50 more samples, feed 
them into the trained network, and plot the resulting outputs. How does it compare 
with the original curve? Repeat the procedure for a different number of hidden 
units. 

4.18 Show Eq. (4.48). 
Hint: Show first that the following recursion is true: 

O(N + I./)= O(N, /) + O(N. l - I) 

To this end, start with the N points and add an extra one. Then show that the difference 
in the dichotomies, as we go from N to N + 1 points, is due to the dichotomi
zing hyperplanes (for the N points case) that could have been drawn via this new 
point. 

4.19 Show that if N = 2(1 + 1) the number of dichotomies is given by 2N- l. 

Hint: Use the identity that 
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and recall that 

( 
2n + 1 ) (211 + 1) 

n-i+I - n+i 

4.20 Repeat the experiments of Problem 4.17 using an RBF network. Select the k centers 
regularly spaced within [O, I). Repeat the experiments with different number of 
Gaussian functions and a. Estimate the unknown weights using the least squares 
method. 

4.21 Using your experience from the previous problem, repeat the procedure for the 
two-dimensional function 

4.22 Let the mapping from the input space to a higher dimensional space be 

x ER----;. y = lf>(x) E n2k+I 

where 

lf>(x) = [~.cosx,cos2x, .... coskx,sinx.sin2x ..... sinkx]T 

Then show that the corresponding inner product kernel is 
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CHAPTER 5 _____________ _ 

FEATURE SELECTION 

5.1 INTRODUCTION 

In all previous chapters, we considered the features to be available prior to the 
design of the classifier. The goal of this chapter is to study methodologies related 
to the selection of these variables. As we pointed out very early in the book, a major 
problem associated with pattern recognition is the so-called curse of dimensionality 
(Section 2.5.6). The number of features at the disposal of the designer of a classi
fication system is usually very large. As we will see in Chapter 7, this number can 
easily become of the order of a few dozens or even hundreds. There is more than one 
reason for the necessity to reduce the number of features to a sufficient minimum. 
Computational complexity is the obvious one. A related reason is that although two 
features may carry good classification information when treated separately, there 
is little gain if they are combined together in a feature vector, because of a high 
mutual correlation. Thus, complexity increases without much gain. Another major 
reason is that imposed by the required generalization properties of the classifier, as 
discussed in Section 4.9 of the previous chapter. According to the discussion there 
and as we will state more formally at the end of this chapter, the higher the ratio 
of the number of training patterns N to the number of free classifier parameters, 
the better the generalization properties of the resulting classifier. A large num
ber of features is directly translated into a large number of classifier parameters 
(e.g., synaptic weights in a neural network, weights in a linear classifier). Thus, 
for a finite and usually limited number N of training patterns, keeping the number 
of features as small as possible is in line with our desire to design classifiers with 
good generalization capabilities. Furthermore, the ratio N / l enters the scene from 
another nearby comer. One important step in the design of a classification system 
is the performance evaluation stage, in which the classification error probability 
of the designed dassifier is estimated. We not only need to design a classification 
system, we must also assess its performance. As is pointed out in Chapter 10, the 
classification error estimate improves as this ratio becomes higher. In [Fine 83] it is 
pointed out that in some cases ratios as high as 10 to 20 were considered necessary. 

The major task of this chapter can now be summarized as follows. Given a man
ber o.ffeatures, how can one select the most important of them so as to reduce their 
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number and at the same time retain as much as possible of their class discrimi
natory information? The procedure is known as feature selection or reduction. It 
must be emphasized that this step is very crucial. If we selected features with little 
discrimination power, the subsequent design of a classifier would lead to poor per
formance. On the other hand, if information-rich features are selected, the design 
of the classifier can be greatly simplified. In a more quantitative description, we 
should aim to select features leading to large between-class distance and small 
within-class variance in the feature vector space. This means that features should 
take distant values in the different classes and closely located values in the same 
class. To this end, different scenarios will be adopted. One is to examine the fea
tures individually and discard those with little discriminatory capability. A better 
alternative is to examine them in combinations. Sometimes the application of a 
linear or nonlinear transformation to a feature vector may lead to a new one with 
better discriminatory properties. All these paths will be our touring directions in 
this chapter. 

Finally, it must be pointed out that there is some confusion in the literature 
concerning the terminology of this stage. In some texts the term feature extraction 
is used, but we feel that this may be confused with the feature generation stage 
treated in Chapter 7. Others prefer to call it a preprocessing stage. We have kept 
the latter term to descrihe the processing performed on the features prior to their 
utilization. Such processing involves outlier removal, scaling of the features to 
safeguard comparable dynamic range of their respective values, treating missing 
data, and so forth. 

5.2 PREPROCESSING 

5.2.1 Outlier Removal 

An outlier is defined as a point that lies very far from the mean of the corresponding 
random variable. This distance is measured with respect to a given threshold, usu
ally a number of times the standard deviation. For a normally distributed random 
variable a distance of two times the standard deviation covers 95% of the points, 
and a distance of three times the standard deviation covers 99% of the points. 
Points with values very different from the mean value produce large errors during 
training and may have disastrous effects. These effects are even worse when the 
outliers are the result of noisy measurements. If the number of outliers is very 
small, they are usually discarded. However, if this is not the case and they are the 
result of a distribution with long tails, then the designer may have to adopt cost 
functions that are not very sensitive in the presence of outliers. For example, the 
least squares criterion is very sensitive to outliers, because large errors dominate 
the cost function due to the squaring of the terms. A review of related techniques 
that attempt to address such problems is given in [Hube 81]. 
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5.2.2 Data Normalization 

Jn many practical situations a designer is confronted with features whose values lie 
wiLhin different dynamic ranges. Thus, features with large values may have a larger 
influence in the cost function than features with small values, although this does not 
necessarily reflect their respective significance in the design of the classifier. The 
problem is overcome by normalizing the features so that their values lie within 
similar ranges. A straightforward technique is normalization via the respective 
estimates of the mean and variance. For N available data of the kth feature we have 

Xik - Xk 
x;k = ---

Cfk 

k =I, 2, ... . I 

In words, all the resulting normalized features will now have zero mean and unit 
variance. This is obviously a linear method. Other linear techniques limit the fea
ture values in the range of (0, l] or ( -1 , I] by proper scaling. Besides the linear 
methods, nonlinear methods can also be employed in cases in which the data are 
not evenly distributed around the mean. In such cases transformations based on 
nonlinear (i .e., logarithmic or sigmoid) functions can be used lo map data within 
specified intervals. The so-called softmax scaling is a popular candidate. It consists 
of two steps 

Xik - ."{k 
y= 

, I 
Xik = -----

1 +exp(-y) 
(5.1) 

This is basically a squashing function limiting data in the range of [0. 1]. Using 
a series expansion approximation, it is not difficult to see that for small values of 
y this is an approximately linear function with respect to Xik . The range of val
ues of x;k that correspond to the linear section depends on the standard deviation 
and the factor r, which is user defined. Values away from the mean are squashed 
exponentially. 

5.2.3 Missing Data 

In practice, it may happen that the number of available data is not the same for all 
features . If the number of training data is high enough, we can afford to discard 
some of them and keep a smaller number, the same for all features. in order to form 
the feature vectors . However, in many cases it is a luxury to drop available data. ln 
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these cases missing data have to be predicted heuristically. An obvious thought is to 
replace missing values with the corresponding mean, computed from the available 
values of the respective features. More elaborate techniques, exploiting the statis
tical information about the underlying distribution, have also been proposed and 
used (Ghah 94, Lowe 90]. We will return to the missing data problem in Chapter 11. 

5.3 FEATURE SELECTION BASED ON STATISTICAL 
HYPOTHESIS TESTING 

A first step in feature selection is to look at each of the generated features 
independemly and test their discriminatory capability for the problem at hand. 
Although looking at the features independently is far from optimal, this procedure 
helps us to discard easily recognizable "bad" choices and keeps the more elaborate 
techniques, which we will consider next, from unnecessary computational burden. 

Let x be the random variable representing a specific feature. We will try to 
investigate whether the values it takes for the different classes, say w1, wz, differ 
significantly. To give an answer to this question we will formulate the problem in 
the context of statistical hypothesis testing. That is, we will try to answer which 
of the following hypotheses is correct: 

H1: The values of the feature differ significantly 
Ho: The values of the feature do not differ significantly 

Ho is known as the null hypothesis and H1 as the alternative hypothesis. The 
decision is reached on the basis of experimental evidence supporting the rejection or 
not of Ho. This is accomplished by exploiting statistical information, and obviously 
any decision will be taken subject to an error probability. We will approach the 
problem by considering the differences of the mean values corresponding to a 
specific feature in the various classes, and we will test whether these differences 
are significantly different from zero. Let us first, however, refresh our memory 
with some basics from the statistics related to hypothesis testing. 

S.3.1 Hypothesis Testing Basics 

Let x be a random variable with a probability density function, which is assumed to 
be known within an unknown parameter e. As we have already seen in Chapter 2, 
in the case of a Gaussian this parameter may be the mean value or its variance. 
Our interest here lies in the following hypothesis test: 

H1: e i= eo 
Ho: e =Bo 
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~-- n- ... --o--15---~ q 

FIGURE 5.1: Acceptance and critical regions for hypothesis testing. TI1e area 
of the shaded region is the probability of an erroneous decision. 

The decision on this test is reached in the following context Letx;. i ;;:: I, 2 ..... N. 
be the experimental samples of the random variable x. A function f ( · ..... ·) 
is selected, depending on the specific problem, and let q ;;:: f <x 1, x2, .... x .v). 

The function is selected so that the probability density function of q is easily 
parameterized in terms of the unknown e, that is, Pq (q; e). Let D be the 
interval of q in which it has a high probability of lying under hypothesis Ho. 
Let /) be its complement. that is, the interval of low probability, also under 
hypothesis Ho. Then. if the value of q that results from the available samples. 
-"i. i = 1. 2 ..... N. lies in D we will accept Ho, and if it lies in fJ we will 
reject it D is known as the acceptance inte1val and b as the critical interval. 
The variable q is known as test statistic. The obvious question now refers to 
the probability of reaching a wrong decision. Let Ho be true. Then the prob
ability of an error in our decision is 1-'(q E DI Ho) ~ p. This probability is 
obviously the integral of Pq(qlHo)(pq(q; eo)) over D (Figure 5.1). In practice, 
we preselect this value of p, which is known as the significance level. and we 
sometimes denote the corresponding critical (acceptance) interval as Dp (D fl). Let 
us now apply this procedure in the case in which the unknown parameter is the 
mean of x. 

The Known Variance Case 

f .er x he a random variable and x;. i = 1. 2 ..... N, the resulting experimental 
samples, which we will assume to be mutually independem. Let 

£[xi=µ 

E[(x - /L)2] = cr2 
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A popular estimate ofµ based on the known samples is the sample mean 

I N 

i = N LX; 
r=I 

Using a different set of N samples, a different estimate will result. Thus, i is also 
a random variable and it is described in terms of a probability density function 
p_r(i). The corresponding mean is 

l [N ] l N 
E[i] = NE "{; x; = N ~ E[x;] = µ (5 .2) 

Thus, i is an unbiased estimate of the mean µ of x. The variance o-} of i is 

E[(X - µ)
2

] ~ E [ ( ~ ~ x; - µ )'] 

l N I 
= N2 L E[(x; - µ./] + N2 LL E[(x; - µ)(xi - µ)] 

i=I i j-/=i 

The statistical independence of the samples dictates 

Hence 

E[(x; - /1-)(XJ - µ)] = E[x; - µ]E[Xj - µ] = 0 

I 
()"~ = -()"2 

x N (5.3) 

In words, the larger the number of measurement samples, the smaller the variance 
of i around the true meanµ . 

Having now acquired the necessary ingredients, let us assume that we arc given 
a value fl and we have to decide upon 

H1: E[x]-::/= fl 
Ho : E[x] =fl 

To this end we define the test statistic 

x - fl 
q =a/JN (5.4) 
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Table 5.1: Acceptance intervals [-xp. Xp] corresponding to various probabilities 
for an N (0, 1) normal distribution 

1-p 0.8 
1.282 

0.85 
1.440 

0.9 
1.645 

0.95 
1.967 

0 .98 
2.326 

0.99 
2.576 

0.998 
3.090 

0.999 
3.291 

Recalling the central limit theorem from Appendix A, the probability densi,ty 

function of x under Ho (i.e ., given fl) is (approximately) the Gaussian Jl/(jl, ~;) 

JN" (. N(X - [l)2) 
Pi(x) =--exp - ----

.J2iia a2 

Hence. the probability density function of Cf under Ho is approximately JV(O. 1 ). 
For a significance level p the acceptance interval D = [-xp, xp]. is chosen as 
the interval in which the random variable q lies with probability I - p (p the 
probability of being in D). This is readily provided from available tables. 

An example for normally distributed N(O. 1) variables is given in Table 5. 1. 
The decision on the test hypothesis can now be reached by the following steps. 

• Given the N experimental samples of x, compute x and then q. 
• Choose the significance level p . 
• Compute from the corresponding tables for N (0, 1) the acceptance interval 

D = [-xp. xp], corresponding to probability 1 - p. 
• If q E D decide Ho. if not decide H1. 

Basically, all we say is that we expect the resulting value q to lie in the high
percentage 1-p interval. If it does not, then we decide that this is because the 
assumed mean value is not "correct." Of course, the assumed mean value may be 
correct, but it so happens that the resulting q lies in the least probable area because 
of the specific set of experimental samples available. In such a case our decision 
is erroneous, and the probability of committing such an error is p. 

Example 5.1. Let us consider an experiment with a random variable x of <J = 0.23. and 
assume N to be equal to I 6 and the resulting i equal to 1.35. Adopt the significance level 
fl = 0.05. We will test if the hypothesisµ = 1.4 is true. 

From Table 5. 1 we have 

prob{ - 1.97 < -~-Jl < 1.97} =0.95 
0.23/ 4 

prob \ - 0.113 < i -11. < O.l 13j = 0.95 

Thus. since the value of fl. which we have assumed, i\ in the interval 

1.237 = 1.35 - 0. 113 < µ < 1.35 + 0.113 = 1.463 
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we accepl ii, as there is 110 evidence at the 5% level that the mean value is not equal to 
µ. The interval ( 1.237, 1463] is also known as the confidence i111erva/ at the 1-p = 0.95 
level. 

The Unknown Variance Case 

If the variance of x is not known it must be estimated. The estimate 

is an unbiased estimate of the variance. Indeed, 

1 N 
E[a 2J = -- '°' E[(x; - x)2J 

N-1~ 
i=l 

1 N 
= N - ILE [ccx; - µ) - (x - µ))2] 

i=I 

I N ( 2 ) = N _ 
1 
L a 2 +: -2E[(x; - µ)(x - µ,)] 
r=l 

Due to the independence of the experimental samples 

(5.5) 

I a 2 
E[(x; - µ,)(x - µ,)] = -E[(x; - µ)((x1 - µ,) + · · · + (xN - µ))] = -

N N 

Thus, 

N N-1 2 E[a 2
] =----a = a 2 

N-1 N 

The test statistic is now defined as 

i -µ, 

q = a/./N (5 .6) 

However, this is no longer a Gaussian variable. Following Appendix A, and if we 
assume that x is a Gaussian random variable, then q is described by the so-called 
I-distribution with N - I degrees of freedom. Table 5.2 shows the confidence 
interval D = [-xp, Xp l for various significance levels and degrees of freedom of 
the I-distribution. 
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Table 5.2: Interval values at various significance levels and 
degrees of freedom for at-distribution 

Degrees of 
freedom 1-p 0.9 0.95 0.975 0.99 0.995 

JO 1.81 2.23 2.63 3.17 3.58 
II 1.79 2.20 2.59 3. 10 3.50 
12 1.78 2.18 2.56 3.05 3.43 
13 1.77 2.16 2.53 3.01 3.37 
14 1.76 2.15 2.51 2.98 3.33 
15 1.75 2. 13 2.49 2.95 3.29 
16 1.75 2.12 2.47 2.92 3.25 
17 1.74 2.11 2.46 2.90 3.22 
18 1.73 2.10 2.44 2.88 3.20 
19 1.73 2.09 2.43 2.86 3.17 
20 1.72 2.09 2.42 2.84 3.15 

Example 5.2. For the case of Example 5.1 let us assume that the estimate of the standard 
deviation a is 0.23. Then, according to Table 5.2 for 15 <lt:grt:t:s of freedom (N= 16) and 
significance level p = 0.025 

{ 
i.-fi. } prob -2.49 < -- < 2.49 = 0.975 
0.23/ 4 

and the confidence interval forµ. at the 0.975 level is 

1.207 < µ < 1.493 

5.3.2 Application of the t-Test in Feature Selection 

We will now see how all of this is specialized for the case of feature selection in 
a classification prohlem. Our major concern now will be to test, against zero, the 
difference µ 1 - µ1 between the means of the values taken by a feature in two 
classes. Let x;, i = l, 2, ... , N, be the sample values of the feature in class w 1 

with meanµ l · Correspondingly, for the other class w2 we have y;, i = I, 2, ... , N , 
with mean µ2. Let us now assume that the variance of the feature values is the 
same in both classes, a~ = ai = a 2. To decide about the closeness of the two 
mean values we will test for the hypothesis 

H1: l'":..µ=µ1-µ2"1-0 

Ho: 6.µ = µ1 - µ1 = 0 (5.7) 
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To this end, let 

z=x-y (5.8) 

where x, y denote the random variables corresponding to the values of the feature 
in the two classes (l)I, (l)2, respectively, for which statistical independence has been 
assumed. Obviously, E[z] = µ 1 - µ2. and due to the independence assumption 
a! = 2a 2• Following arguments similar to those used before, we now have 

1 N 
z = N L (x; - y;) = x - y (5.9) 

i=I 

and for the known variance case z follows the normal JV (JL 1 - µ2, 2~2 ) distribution 
for large N. Thus, Table 5.1 can be used to decide about (5.7). If the variance is 
not known, then we choose the test statistic 

q= 
(i-,)i)-(µ1-µ2) 

Sz/lt 
(5.10) 

where 

It can be shown that s~(2~-2) follows a chi-square distribution with 2N-2 degrees 
(J 

of freedom (Appendix A and Problem 5.1 ). As is pointed out in Appendix A, if x, y 
are normally distributed variables of the same variance a 2 , then the random vari
able q turns out to follow the t-distribution with 2N - 2 degrees of freedom. Thus, 
Table 5.2 has to be adopted for the test. When the available number of samples is 
not the same in all classes, a slight modification is required (Problem 5.2). Further
more, in practice the variances may not be the same in the two classes. Sometimes 

,2 

this becomes the object of another hypothesis test, concerning the ratio F = ~, 
u" 2 

to check whether it is close to unity. It can be shown that F, being the ratio of 
two chi-square distributed variables, follows the so-called F -distribution and the 
related tables should be used [Fras 58]. Finally, if the Gaussian assumption about 
x is not a valid one, other criteria can be used to check the equality hypothesis of 
the means, such as the Kruskal-Wallis statistic [Walp 78, Fine 83]. 

Example 5.3. The sample measurements of a feature in two classes are 

class riJ1: 

class w2: 

3.5 3.7 3.9 4.1 3.4 3.5 4.1 3.8 3.6 3.7 
3.2 3.6 3.1 3.4 3.0 3.4 2.8 3.1 3.3 3.6 
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The question is to check whether this feature is infonnative enough. If not, it will 
be discarded during the selection phase. To this end, we will test whether the values 
of the feature in the two classes differ significantly. We choose the significance 
level p = 0.05. 

From the foregoing we have 

For N = 10 we have 

w1: .r=3.73 rr~=0.0601 

w2: y = 3.25 a} = 0.0672 

J I ,2 ,2 s; = 2(a1 +a2) 

u - .v - 0) 
q= 

q = 4.25 

From Table 5.2 and for 20- 2 = 18 degrees of freedom and significance level 0.05 
we obtain D = [-2.10. 2. IO]. Since 4.25 lies outside the interval D, we decide in 
favor of Hi; that is, the mean values differ significantly at the 0.05 level. Hence. 
the feature is selected. 

5.4 THE RECEIVER OPERATING CHARACTERISTICS 
CROCCURVE 

The hypothesis tests we have presented offer statistical evidence about the dif
ference of the mean values of a single feature in the various classes. However. 
although this is useful information for discarding features. if the co1Tesponding 
mean values are closely located, this information may not be sufficient to guaran
tee good discrimination properties of a feature passing the test. The mean values 
may differ significantly yet the spread around the means may be large enough to 
blur the class distinction. We will now focus on techniques providing information 
about the overlap between the classes. 

Figure 5.2a illustrates an example of two overlapping probability density func
tions describing the distribution of a feature in two classes, together with a threshold 
(one pJf has been inverted for illustration purposes). We decide class w 1 for values 
on the left of the threshold and class w2 for the values on the right. This decision 
is associated with an error probability, a, of reaching a wrong decision concerning 
class w 1 (the probability of a correct decision is I - a). This is equal to the shaded 
area under the corresponding curve. Similarly, let ,B(I - /3) be the probability of 
a wrong (correct) decision concerning class w2. By moving the threshold over 
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1-{3 

0"-~~~~~~--

0 " 
(a) (h) 

FIGURE 5.2: Example of (a) overlapping pd f's of the same feature in two classes 
and (b) the resulting ROC curve. 

"all" possible positions, different values of a and f3 result. It takes little thought 
to realize that if the two distributions have complete overlap, then for any posi
tion of the threshold we get a = I - {3. Such a case corresponds to the straight 
line in Figure 5.2b, where the two axes are a and I - {3. As the two distributions 
move apart, the corresponding curve departs from the straight line, as Figure 5.2b 
demonstrates. Once more, a little thought reveals that the less the overlap of the 
classes, the larger the area between the curve and the straight line. At the other 
extreme of two completely separated class distributions, moving the threshold to 
sweep the whole range of values for a in [O, 1 ], I - /J remains equal to unity. 
Thus, the aforementioned area varies between zero, for complete overlap, and 1 /2 
(the area of the upper triangle), for complete separation. and it is a measure of the 
class discrimination capability of the specific feature. In practice, the ROC curve 
can easily be constructed by sweeping the threshold and computing percentages of 
wrong and correct classifications over the available training feature vectors. Other 
related criteria that test the overlap of the classes have also been suggested (see 
Problem 5.5). 

5.5 CLASS SEPARABILITY MEASURES 

The emphasis in the previous section was on techniques referring to the discrim
ination properties of individual features. However, such methods neglect to take 
into account the correlation that unavoidably exists among the various features 
and influences the classification capabilities of the feature vectors that are formed. 
Measuring the discrimination effectiveness of feature vectors will now become 
our major concern. This information will then be used in two ways. The first is 
to allow us to combine features appropriately and end up with the "best" feature 
vector for a given dimension l. The second is to transform the original data on 
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the basis of an optimality criterion in order to come up with features offering high 
classification power. In the sequel we will first state class separability measures, 
which will be used subsequently in feature selection procedures. 

5.5.1 Divergence 

Let us recall our familiar Bayes rule. Given two classes WI and w2 and a feature 
vector x, we select WI if 

P(wI Jx) > P(wzJx) 

As pointed out in Chapter 2. the classification error probability depends on the 
difference between P(wiJx) and P(w2Jx), e.g., equation (2.12). Hence, the ratio 

~~:~ ::; can convey useful infonnation concerning the discriminatory capabilities 
associated with an adopted feature vector x, with respect to the two classes WI , wz . 
Alternatively (for given values of P(wI). P(w2)), the same information resides in 

the ratio In ~i:I~~ = DI2(x) and this can be used as a measure of the underlying 
discriminating information of class WI with respect to w2. Clearly, for completely 
overlapped classes we get DI2(x) = 0. Since x takes different values, it is natural 
to consider the mean value over class WI, that is, 

f +oc p(xJwI) 
DI2 = p(xiwI) In dx 

- oo p(xiwz) 
(5 .11) 

Similar arguments hold for class w 2 and we define 

f +cc p(xJwz) 
D21 = p(xJw2) In dx 

- oo p(xJwI) 
(5 .12) 

The sum 

is known as the divergence and can be used as a separability measure for the classes 
w I, w2, with respect to the adopted feature vector x. For a multiclass problem, the 
divergence is computed for every class pair w;, Wj 

dij = Dij + D1; 

! +cc p(x Jw;) 
= (p(xlw;) - p(xlw;)) In dx 

-oo p(xJwj) 
(5.13) 

and the average class separability can be computed using the average divergence 

M M 

d =LL P(w;)P(w1)dij 
i=I j=l 
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Divergence is basically a form of the Kullback-Leibler distance measure between 
density functions [Kulb 51] (Appendix A) . The divergence has the following easily 
shown properties : 

d· > 0 lj -

dij = 0 

di}= dji 

ifi = j 

If the components of the feature vector are statistically independent, then it can 
be shown (Problem 5.8) that 

I 

dij (x1, x2, ... , xi) = L dij (Xr) 
r== I 

Assuming now that the density functions are GaussiansN(µ;, I:;) andN(µ 1, I: 1) . 
respectively, the computation of the divergence is simplified and it is not difficult 
to show that 

1 1 
dij = 2trace/I:i-J :E1 + L j 1 Li - 21} + 2:(µ; - µ 1)T(I:;-J + I:j')(µ; - µ 1) 

(5.14) 
For the one-dimensional case this becomes 

As already pointed out, a class separability measure cannot depend only on the 
difference of the mean values; it must also be variance dependent. Indeed, diver
gence does depend explicitly on both the difference of the means and the respective 
variances. Furthermore, diJ can be large even for equal mean values, provided the 
variances differ sif?nificantly. Thus, class separation is still possible even if the 
class means coincide. We will come to this later on. 

Let us now investigate (5.14 ). If the covariance matrices of the two Gaussian 
distributions are equal, Li = LJ = :E, then the divergence is further simplified to 

which is nothing other than the Mahalanobis distance between the corresponding 
mean vectors . This has another interesting implication. Recalling Problem 2.9 
of Chapter 2, it turns out that in this case we have a direct relation between the 
divergence dij and the Bayes error, that is, the minimum error we can achieve 
by adopting the specific feature vector. This is a most desirable property for any 
class separability measure. Unfortunately, such a direct relation of the divergence 
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with the Bayes error is not possible for more general distributions. Furthermore, in 
[Swai 73, Rich 95] it is pointed out that the specific dependence of the divergence 
on the difference of the mean vectors may lead to misleading results, in the sense 
that small variations in the difference of the mean values can produce large changes 
in the divergence, which, however, are not reflected in the classification error. To 
overcome this. a variation of the divergence is suggested, called the transfonned 
dil>ergence: 

In the sequel , we will try to define class separability measures with a closer 
relationship to the Bayes error. 

5.5.2 Chernoff Bound and Bhattacharyya Distance 

The minimum attainable classification error of the Bayes classifier for two classes 
w1. w2 can be written as: 

P,, = r: min [P(w;)p(xlw;). P(w;)p(x\wj)]dx (5.15) 

Analytic computation of this integral in the general case is not possible. However. 
an upper bound can be derived . The derivation is based on the inequality 

min[a.b]::;a'b 1-
1 for a.b:=:O. and O::;s::;l (5.16) 

Combining (5.15) and (5 .16). we get 

P,, ::; P(w;)' P(wjl 1
-·' 1_: p(xlw;)1p(xlw1) 1

-s dx = ECB (5.17) 

EcB is known as the Chernoff /Jound. The minimum bound can be computed by 
minimizing Eca with respect to s. A special form of the bound results for s = I /2: 

Pe :':: Ec B = jP(w1)P(w1) r: jp(x\w;)p(xlw1)dx (5. 18) 

For Gaussian distributions /v{µ,1• 'E;), N(µ;. 'E J) and after a bit of algebra. we 
obtain 

where 

l T ( 'E; + 'Ej )- I I I Li~ L I I 
B = -(µ - µ ) (µ - µ ) + - Jn-;;:::======== 

8 I J 2 , J 2 J \L:il\E,;1 
(5 . 19) 
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and / · / denotes the detenninant of the respective matrix. The tenn B is known as 
the Bhattacharyya distance and it is used as a class separability measure. It can 
be shown (Problem 5.9) that it corresponds to the optimum Chernoff bound when 
:E; = :E J. It is readily seen that in this case the Bhattacharyya distance becomes 
proportional to the Mahalanobis distance between the means. 

A comparative study of various distance measures for feature selection in the 
context of multispectral data classification in remote sensing can be found in 
[Maus 90]. A more detailed treatment of the topic is given in [Fuku 90]. 

Example 5.4. Assume lhat P(w1) = P(wz) and that the corresponding distributions are 
Gaussians N(µ, a[ I) and N(µ, aff /).The Bhattacharyya distance becomes 

l (o}+a})I I (a2+a2)1 
B = - In 2 = - In 1 2 

2 ~ 2 2a1a2 
...;aca2 

(5.20) 

For the one-dimensional case l = I and for ar = IOa2, B = 0.8097 and 

Pe :S 0.2225 

If a1 = IOOa2, B = 1.9561 and 

Pe :S 0.0707 

Thus, the greater the difference of the variances, the smaJler the error bound. The 
decrease is bigger for higher dimensions due to the dependence on l. Figure 5.3 

0.8 

0.6 

0.4 

0.2 

O'---~~.-.,=c.~--'-~__,__.__,,__~-L~-='"-'~~____, 

-15 -10 -5 0 5 I 0 15 

FIGURE 5.3: Gaussian pdf's with the same mean and different variances. 
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shows the pdf's for the same mean and a1 = 1, a1 = 0.0 l. The figure is self
explanatory as to how the Bayesian classifier discriminates between two classes of 
the same mean and significantly different variances. Furthermore, as a1/ a 1 ~ 0, 
the probability of error tends to zero (why?). 

5.5.3 Scatter Matrices 

A major disadvantage of the class separability criteria considered so far is that 
they are not easily computed, unless the Gaussian assumption is employed. We 
will now tum our attention on a set of simpler criteria, built upon information 
related to the way feature vector samples are scattered in the /-dimensional space. 
To this end, the following matrices are defined: 

Within-class scatter matrix 

M 

Sw=LP;S; 
i=l 

where S; is the covariance matrix for class w; 

and P; the a priori probability of class w;. That is, P; :::::: 11 ;/ N, where n; is the 
number of samples in class w;, out of a total of N samples. Obviously, trace( Su,) 
is a measure of the average, over all classes, variance of the features . 

Between-class scatter matrix 

M 

Sb= LP;(µ; - µo)(µ; - µo)r 
i=I 

where µ 0 is the global mean vector 

trace( Sh) is a measure of the average (over all classes) distance of the mean of 
each individual class from the respective global value. 



180 Chapter 5: FEATURE SELECTION 

Mixture scatter matrix 

That is, Sm is the covariance matrix of the feature vector with respect to the global 
mean. It is not difficult to show (Problem 5.10) that 

Its trace is the sum of variances of the features around their respective global mean. 
From these definitions it is straightforward to see that the criterion 

trace{Sm} 
11 =---

trace{Sw} 

takes large values when samples in the /-dimensional space are well clustered 
around their mean, within each class, and the clusters of the different classes are 
well separated. Sometimes Sb is used in place of Sm. An alternative criterion 
results if determinants are used in the place of traces. This is justified for scatter 
matrices that are symmetric positive definite and thus their eigenvalues are posi
tive (Appendix B). The trace is equal to the sum of the eigenvalues, while the 
determinant is equal to their product. Hence, large values of 11 also correspond to 
large values of the criterion 

1 = ISml =is-ts 1 2 ISwl w "' 

A variant of }z commonly encountered in practice is 

h = trace{S,~ 1 Sm} 

As we will see later on, criteria }z and 1J have the advantage of being invariant 
under linear transformations, and we will adopt them to derive features in an 
optimal way. In [Fuku 90) a number of different criteria are also defined by using 
various combinations of Sw. Sh. S111 in a "trace" or "determinant" formulation. 
However, whenever a determinant is used, one should be careful with Sb. since 
I Sb I = 0 for M < l. This is because Sh is the sum of Ml x l matrices, of rank one 
each. 

These criteria take a special form in the one-dimensional, two-class problem. 
In this case, it is easy to see that for equiprobable classes I Sw I is proportional to 
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FIGURE 5.4: Classes with (a) small within-class variance and small between
class distances, (b) large within-class variance and small between-class distances 
and (c) small within-class variance and large between-class distances. 

a~ +ai and IS1,I proportional to (J,t1 - µ2) 2. Combining Sb and Sw, the so-called 
Fisher's discriminant ratio results 

FDR= (µ1 - µ2)2 
(J2 + (J2 

I 2 

FDR is sometimes used to quantify the separability capabilities of individual fea
tures. FDR reminds us of the test statistic q appearing in the hypothesis statistical 
tests dealt with before. However, here the use of FDR is suggested in a more 
"primitive" fashion, independent of the underlying statistical distributions. For 
the multiclass case, averaging forms of FDR can be used . One possibility is 

M M 2 
FDR = '°' '°' (µ; - /Lj) 

I L...,, L...,, 2 2 
; d=i a; + aj 

where the subscripts i, j refer to the mean and variance corresponding to the feature 
under investigation for the classes w;, w j, respectively. 

Example 5.5. Figure 5.4 shows three cases of classes at different locations and within
class variances. The resulting values for the 1J criterion involving the Sw and S,,, matrices 
are 164.7, 12.5, and 620.9 for the cases in Figures 5.4a, b, and c, respectively. That is. the 
best is for distant well-clustered classes and the worst for the case of closely located classes 
with large within-class variance. 

5.6 FEATURE SUBSET SELECTION 

Having defined a number of criteria, measuring the classification effectiveness of 
individual features and/or feature vectors, we come to the heart of our problem, 
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that is, to select a subset of l features out of m originally available. There are two 
major directions to follow. 

5.6.1 Scalar Feature Selection 

Features are treated individually. Any of the class separability measuring criteria 
can be adopted, for example, ROC, FDR, one-dimensional divergence, and so 
on. The value of the criterion C(k) is computed for each of the features, k = 
I, 2, .. . , m . Features are then ranked in order of descending values of C(k). The 
l features corresponding to the l best values of C(k) are then selected to form the 
feature vector. 

All the criteria we have dealt with in the previous sections measure the classifi
cation capability with respect to a two-class problem. As we have already pointed 
out in a couple of places, in a multiclass situation a form of average or "total" 
value, over all classes, is used to compute C(k). However, this is not the only 
possibility. In [Su 94] the one-dimensional divergence dij was used and computed 
for every pair of classes. Then, for each of the features, the corresponding C (k) 
was set equal to 

C(k) = mi!l d;j 
l,j 

that is. the minimum divergence value over all class pairs, instead of an average 
value. Thus, selecting the features with the largest C(k) values is equivalent to 
choosing features with the best "worst case" class separability capability, giving a 
"maxmin" flavor to the feature selection task. Such an approach may lead to more 
robust performance in certain cases. 

The major advantage of dealing with features individually is computational 
simplicity. However, such approaches do not take into account existing correlations 
between features. Before we proceed to techniques dealing with vectors, we will 
comment on some "ad hoc" techniques that incorporate correlation information 
combined with criteria tailored for scalar features . 

Let X11 k, n = I, 2, .. . , N and k = 1, 2, ... , m, be the kth feature of the nth 
pattern. The cross-correlation coefficient between any two of them is given by 

(5.21) 

It can be shown that IPiJ I ::::: 1 (Problem 5.11 ). The selection procedure evolves 
along the following steps: 

• Select a class separability criterion C and compute its values for all the 
available features Xk, k = 1, 2, ... , m. Rank them in descending order and 
choose the one with the best C value. Let us say that this is x; 1• 
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• To select the second feature, compute the cross-correlation coefficient 
defined in Eq. (5.21) between the chosen Xii and each of the remaining 
m - 1 features, that is, Pi 1;, j =f. i l · 

• Choose the feature x;2 for which 

i2 = argmax {a1C(j) - a2IP; 1;1). for all j =f. ii 
.I 

where a1, a2 are weighting factors that detennine the relative importance 
we give to the two terms. In words, for the selection of the next feature, 
we take into account not only the class separability measure C but also the 
correlation with the already chosen feature. This is then generalized for the 
kth step 

• Select x;k, k = 3, ... , I, so that 

for j =f. i,, 

r==I,2, ... ,k-I 

That is, the average correlation with all previously selected features is taken 
into account. 

There are variations of this procedure. For example, in [Fine 83] more than one 
criterion is adopted and averaged out. Hence, the best index is found by optimizing 

5.6.2 Feature Vector Selection 

Treating features individually, that is, as scalars, has the advantage of computa
tional simplicity but may not be effective for complex problems and for features 
with high mutual correlation. We will now focus on techniques measuring classi
fication capabilities of feature vectors. It does not require much thought to see that 
computational burden is the major limiting factor of such an approach. Indeed, if 
we want to act according to what "optimality" suggests, we should form all pos
sible vector combinations of I features out of the m originally available. For each 
combination we should use one of the separability criteria introduced previously 
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(e.g., Bhattacharrya distance, 12) and select the best feature vector combination. 
Recalling our combinatorics basics, we obtain the total number of vectors as 

(m) m! 
I =f!(m-1)! 

(5.22) 

This is a large number even for small values of/, m . Indeed, form = 20, I = 5, 
the number equals 15504. Furthennore, in many practical cases the number l is 
not even known a priori. Thus, one has to try feature combinations for different 
values of l and select the "best" value for it (beyond which no gain in perfonnance 
is obtained) and the corresponding "best" I-dimensional feature vector. As we 
will see in Chapter 10, sometimes it is desirable to base our feature selection 
decision not on the values of an adopted class separability criterion but on the 
performance of the classifier itself. That is. for each feature vector combination 
the classification error probability of the classifier has to be estimated and the 
combination resulting in the minimum error probability selected. This approach 
may increase the complexity requirements even more , depending, of course, on 
the classifier type. In order to reduce complexity, a number of efficient searching 
techniques have been suggested. Some of them are suboptimal and some optimal 
(under certain assumptions or constraints). 

Suboptimal Searching Techniques 

Sequential Backward Selection. We will demonstrate the method via an 
example. Let m = 4, and the originally available features are x1, xz, x3 , x4 . We 
wish to select two of them. The selection procedure consists of the following steps: 

• Adopt a class separability criterion. C, and compute its value for the feature 
T vector [x1, x2 , x3, x4] . 

• Eliminate one feature and for each of the possible resulting combinations, 
that is, [xi . x2, x3f , [xi , x2 , x4]T . [xi, X3 , x4f, [x2, x3, x4f , compute the 
corresponding criterion value. Select the combination with the best value, 
say [x1, x 2, x3]T . 

• From the selected three-dimensional feature vector eliminate one feature 
and for each of the resulting combinations, [x 1. xzf, [x1, x3f, [x2. x3]T, 
compute the criterion value and select the one with the best value. 

Thus, starting from m, at each step we drop out one feature from the "best" 
combination until we obtain a vector of l features. Obviously, this is a suboptimal 
searching procedure, since nobody can guarantee that the optimal two-dimensional 
vector has to originate from the optimal three-dimensional one. The num
ber of combinations searched via this method is I + I /2( (m + I )m - I (l + I)) 
(Problem 5.13), which is substantially less than that of the full search 
procedure. 
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Sequential Forward Selection. Here, the reverse to the preceding procedure is 
followed: 

• Compute the criterion value for each of the features. Select the feature with 
the best value, say x 1• 

• Form all possible two-dimensional vectors that contain the winner from the 
previous step, that is, fx1. x2f, [x1, x3f. [x1. x4f. Compute the criterion 
value for each of them and select the best one, say [x1, x3f. 

If I = 3, then the procedure must continue. That is, we form all three-dimensional 
vectors springing from the two-dimensional winner, that is, [x 1, x3, x2 f, [x 1, x,, 
.q)7

, and select the best one. For the general /, m case, it is simple alge
bra to show that the number of combinations searched with this procedure 
is /111 - I(/ - 1 )/2. Thus, from a computational point of view, the back
ward search technique is more efficient than the forward one for I closer to m 
than to l. 

Floating Search Methods. The preceding two methods suffer from the so-called 
nesting effect. That is, once a feature is discarded in the backward method, there 
is no possibility for it to be reconsidered again. The opposite is true for the 
forward procedure; once a feature is chosen, there is no way for it to be dis
carded later on. In [Pudi 94] a technique is suggested that offers the flexibility to 
reconsider features previously discarded and vice versa, to discard features pre
viously selected. The technique is called the floating search method. There are 
two schemes that implement this technique. One springs from the forward selec
tion and the other from the backward selection rationale. We will focus on the 
former. We consider a set of m features. and the idea is to search for the best 
subset of k of them fork == 1, 2, ... , I :::: m so that a cost criterion C is optimized. 
Let Xk = {x1, x2 • ... , Xk) be the set of the best combination of k of the fea
tures and Ym-k the set of the remaining m - k features. We also keep all the lower 
dimension best subsets X2. X 3, ... , Xk-1 of 2. 3, ... , k - I features, respectively. 
The rationale at the heart of the method is summarized as follows: At the 
next step the k + 1 best subset Xk+ 1 is formed by "borrowing" an ele
ment from Ym-k. Then, return to the previously selected lower dimension 
subsets to check whether the inclusion of this new element improves the cri
terion C. If it does, the new element replaces one of the previously selected 
features. The steps of the algorithm, when maximization of C is required 
are: 

• Step /: Inclusion 
Xk+I = arg maxyEYm-k C({Xk, y)); that is, choose that element from Ym-k 

which, combined with Xk, results to the best value of C. 
Xk+I = (Xko Xk+I) 
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• Step II: Test 

I. Xr = arg maxyeXk+i C(Xk+l - {y}); that is, find the feature that has the 
least effect on the cost when it is removed from Xk+l · 

2. If r = k + 1, change k = k + 1 and go to step I. 

3. If r -:fa k + 1 AND C(Xk+l - {xr}) < C(Xk) go to step I; that is, if 
removal of Xr does not improve upon the cost of the previously selected 
best group of k, no further backward search is performed. 

4. If k == 2 put Xk = Xk+l - {xr} and C(Xk) == C(Xk+l - {xr)); go to 
step I. 

• Step Ill: Exclusion 

I. x~ = xk+l - {xr}; that is, removexr· 

2. x5 = arg maxyeX~ C(X~ - {y)); that is, find the least significant feature 
in the new set. 

3. If C(X~ - {x5 }) < C(Xk-1) then Xk = X~ and go to step I; no further 
backward search is performed. 

4. Put x~-1 = x~ - {x.,J and k = k - I. 

5. If k = 2 put Xk = X~ and C(Xk) = C(X~) and go to step I. 

6. Go to step III. 

The algorithm is initialized by running the sequential forward algorithm to 
form X2. The algorithm terminates when I features have been selected. Although 
the algorithm does not guarantee finding all the best feature subsets, it results 
in substantially improved performance compared with its sequential counterpart, 
at the expense of increased complexity. The backward floating search scheme 
operates in the reverse direction but with the same philosophy. 

Optimal Searching Techniques 

These techniques are applicable when the separability criterion is monotonic, 
that is, 

C(x1, ... ,x;) :::;C(x1, ... ,x;,x;+1) 

This property allows identifying the optimal combination but at a considerably 
reduced computational cost with respect to (5.22). Algorithms based on the 
dynamic programming concept (Chapter 8) offer one possibility to approaching 
the problem. A computationally more efficient way is to formulate the prob
lem as a combinatorial optimization task and employ the so-called branch and 
bound methods to obtain the optimal solution [Lawe 66, Yu 93]. These methods 
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compute the optimal value without involving exhaustive enumeration of all 
possible combinations. A more detailed description of the branch and bound meth
ods is given in Chapter 15 and can also be found in [Fuku 90]. However, the 
complexity of these techniques is still higher than that of the previously mentioned 
suboptimal techniques. 

Remarks 

• The separability measures and feature selection techniques presented above, 
although they indicate the major directions followed in practice, do not 
cover the whole range of methods that have been suggested. For example, in 
[Bati 94, Kwak 02] the mutual information between the input features and 
the classifier's outputs is used as a criterion. The features that are selected 
maximize the input-output mutual information. In [Seti 97] a feature selec
tion technique is proposed based on a decision tree by excluding features 
one by one and retraining the classifier. In [Zhan 02] the tabu combinatorial 
optimization technique is employed for feature selection. 

A comparative study of various feature selection searching schemes can be found 
in [Kitt 78, Devi 82, Pudi 94, Jain 97, Brun 00]. 

5.7 OPTIMAL FEATURE GENERATION 

So far, the class separability measuring criteria have been used in a rather "pas
sive" way, that is, to measure the classification effectiveness of features generated 
in some way. In this section we will employ these measuring criteria in an "active" 
way, that is, as an integral part of the feature generation process itself. From 
this point of view, this section can be considered as a bridge between this chap
ter and the following one. Our major task can be summarized as follows: If x 
is an m-dimensional vector of measurement samples, transform it into another 
/-dimensional vector y so that an adopted class separability criterion is optimized. 
We will confine ourselves to linear transformations, 

y = ATx 

where AT is an I x m matrix. Any of the criteria exposed so far can be used. 
Obviously, the degree of complexity of the optimization procedure depends heavily 
on the chosen criterion. We will demonstrate the method via the h scattering matrix 
criterion, involving Sw and Sb matrices. Its optimization is straightforward and 
at the same time it has some interesting implications. Let Sxw. Sxb be the within
class and between-class scatter matrices of x. From the respective definitions, the 
corresponding matrices of y become 
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Thus, the h criterion in they subspace is given by 

h (A) = trace{ (AT SxwA)- 1 (Ar SxbA)} 

Our task is to compute the elements of A so that this is maximized. Then A must 
necessarily satisfy 

It can be shown that (Problem 5.14) 

a}J(A) T -I T T -I T -I 
~ = -2SxwA<A SxwA) (A SxbA)(A SxwA) + 2SxbA(A SxwA) 

=0 

or 

(5.23) 

An experienced eye will easily identify the affinity of this with an eigenvalue 
problem. It suffices to simplify its fonnulation slightly. Recall from Appendix 
B that the matrices Syw. Syb can be diagonalized simultaneously by a linear 
transformation 

T B S_,,wB =I, (5.24) 

which are the within- and between-class scatter matrices of the transformed vector 

B is an I x I matrix and D an l x l diagonal matrix. Note that in going from y to 
y there is no loss in the value of the cost h. This is because h is invariant under 
linear transformations, within the /-dimensional subspace. Indeed, 

iJ(y) = trace{S_~~S_ybl = trace{(Br SywB)- 1 (BT SybB)) 

= trace{B- 1 S_;,~SybB) 

= trace(S_;u'.SvbBB- 11 = i}(y) 

Combining (5 .23) and (5.24), we finally obtain 

(S_;~Sxb)C =CD (5 .25) 

where C = AB is an m x I dimensional matrix . Equation (5 .25) is a typical 
eigenvalue-eigenvector problem, with the diagonal matrix D having the eigen
values of S_~-u~ Sxb on its diagonal and C having the corresponding eigenvectors 
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as its columns. However, s.;~Sxb is an m x m matrix, and the question is which 
l out of a total of m eigenvalues we must choose for the solution of (5.25). From 
its definition, matrix Sxb is of rank M - I, where M is the number of classes 
(Problem 5.15). Thus, s.;~Sxb is also of rank M-1 and there are M-1 nonzero 
eigenvalues. Let us focus on the two possible alternatives separately. 

• l = M - I: We first form matrix C so that its columns are the unit norm 
M - 1 eigenvectors of S_;~Sxb· Then we form the transformed vector 

y =CT X (5.26) 

This guarantees the maximum h value. As a matter of facr. in reducing rhe 
number of data from m to M - I, there is no loss in class separability powe1: 
as this is measured by i}. Indeed, 

h.x = trace{S_;~Sxb) = A1 +···+AM-I+ 0 

and 

h..v = trace{(CT Sxu,C)- 1 (CT SxbC)) 

Rearranging (5.25), we get 

Combining (5.28) and (5.29), we obtain 

hs· =trace( DJ= A1 +···+AM-I = h.x 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

It is most interesting to view this from a slightly different perspective. Let us 
recall the Bayesian classifier for an M class problem. Of the M conditional 
class probabilities, P(w;lx), i = I, 2, ... , M, only M - 1 are independent. 
since they all add up to one. In general, M - 1 is the minimum number of dis
criminant functions needed for an M-class classification task (Problem 5.16 ). 
Hence, the linear operation CT x, which computes the M - I components of 
y, can be seen as the optimal linear classifier, where optimality is with respect 
to J 3. Therefore, this procedure can be viewed as a combination of the feature 
selection and classifier design stages, provided the classifier is a linear one. 
In Chapter 3 the optimal linear classifier was computed so as to minimize the 
mean (least) squares error. In this section it was designed to maximize }]. 
From this point of view, this section can also be seen as a bridge with Chapter 
3. This can be further strengthened by investigating the specific form that 
this classifier takes for the two-class problem. In this case, there is only one 
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nonzero eigenvalue and it is not difficult to show (Problem 5.17) that 

A < )Ts-• Y = #Lt - ILz xwX 

The resulting linear classifier is also known as Fisher's linear discriminant. 
For Gaussian random vectors, with equal covariance matrices in both classes, 
this is nothing other than the optimal Bayesian classifier with the exception 
of a threshold value (Problem 2. ll ). Recall from Problem 3.14 that this is 
also directly related to the linear MSE classifier. 

• l < M - l: In this case C is formed from the eigenvectors corresponding 
to the/ largest eigenvalues of s;~sxb· The fact that h is given as the sum 
of the corresponding eigenvalues guarantees its maximization. Of course, in 
this case there is loss of the available information because now h,y < h.x· 

Remarks 

• If h is used with another combination of matrices, such as Sw and Sm, then, 
in general, the rank of the corresponding matrix product involved in the trace 
is m and there are m nonzero eigenvalues. In such cases the transformation 
matrix C is formed so that its columns are the eigenvectors corresponding to 
the I largest eigenvalues. According to (5.30), this guarantees the maximum 
value of]). 

• A geometric interpretation of (5.26) reveals that y is the projection of the 
original vector x onto the subspace spanned by the eigenvectors v; of S~ 1 Sb. 
It must be pointed out that these are not mutually orthogonal. Indeed, 
although matrices Sw, Sb (Sm) are symmetric, products of the form S~ 1 Sb 
are not; thus, the eigenvectors are not mutually orthogonal (Problem 5.18). 
Furthermore, as we saw during the proof, once we decide on which subspace 
to project (by selecting the appropriate combination of eigenvectors) the 
value of h remains invariant under any linear transformation within this 
subspace. That is, it is independent of the coordinate system and its value 
depends only on the particular subspace. In general, projection of the orig
inal feature vectors onto a lower dimensional subspace is associated with 
some information loss. An extreme example is shown in Figure 5.5, where 
the two classes coincide after projection on the vi axis. The choice of the 
subspace corresponding to the optimal h value guarantees no loss of infor
mation for l = M - I (as this is measured by the h criterion). Thus, this 
is a good choice, provided that h is a good criterion for the problem of 
interest. Of course, this is not always the case; it depends on the specific 
classification task. A more extensive treatment of the topic, also involving 
other optimizing criteria, can be found in [Fuku 90). 

• No doubt, scattering matrix criteria are not the only ones to compute the 
optimal transformation matrix. For example, [Wata 97) suggested using a 



Sedi<m S.8: NEU RAJ. NETWORKS AND FEATURE GENERATION/SEJ.ECTION 191 

x z 

..... _ 

x I 

FIGURE 5.5: Geometry illustrating the loss of information associated with 
projections in lower dimensional subspaces. 

different transformation matrix for each class and optimizing with respect to 
the classification error. This is within the spirit of the recent trend. to optimize 
directly with respect to the quantity of interest, which is the classification 
error probability. For the optimization. smooth versions of the error rate are 
used to guarantee differentiability. Other ways to compute the transformation 
matrix will be discussed in the next chapter. 

• Besides linear ones, nonlinear transformations can also be employed for 
optimal feature selection. For example, in [Samm 69] a nonlinear tech
nique is proposed that attempts to preserve maximally all the distances 
between vectors. Let x;, Y;. i = I. 2, .... N, be the feature vectors in the 
original m-dimensional and the transformed /-dimensional space, respec
tively. The transformation into the lower dimensional space is performed so 
as to maximize 

I N-1 N (dO(i, j) - d(i. j))2 
1 = LN-1 LN doc » L L 

i=l j=i+I l, J i=I J=i+I 
dO(f, j) 

(5.31) 

where d0 (i, j), d(i, j) are the (Euclidean) distances between vectors 
xi, and xi in the original space and Y;, y J in the transformed space, 
respectively. 

5.8 NEURAL NETWORKS AND FEATURE 
GENERATION/SELECTION 

Recently, efforts have been made to use neural networks for feature generation 
and selection. A possible solution is via the so-called auto-associative networks. 
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A network is employed having m input and m output nodes and a single hidden 
layer with I nodes with linear activations. During training, the desired outputs are 
the same as the inputs. That is, 

m 

C(i) = ~)yk(i) - Xk(i)) 2 

k=l 

where the notation of the previous chapter has been adopted. Such a network has 
a unique minimum and the outputs of the hidden layer constitute the projection of 
the input m-dimensional space onto an /-dimensional subspace. In [Bour 88] it is 
shown that this is basically a projection onto the subspace spanned by the I principal 
eigenvectors of the input correlation matrix, a topic on which we will focus in the 
next chapter. An extension of this idea is to use three hidden layers [Kram 91]. 
Such a network performs a nonlinear principal component analysis. The major 
drawback of such an architecture is that nonlinear optimization techniques have to 
be used for the training. Besides the computational load, the risk of being trapped 
in local minima is always present. 

An alternative is to use neural networks, or any other (non)linear structure, to 
exploit properties of the LS cost function. In Chapter 3, we saw that the outputs of a 
network approximate posterior probabilities, provided that the weights have been 
trained so that the outputs match, in the LS sense, the class labels. In [Lowe 91] it 
is pointed out that, besides this property, another very interesting one is also valid. 
A multilayer perceptron was considered with linear output nodes. The network was 
trained to minimize the squared error between the actual and desired responses 
(i.e., class labels I and 0). It was shown that minimizing the squared error is 
equivalent to maximizing the criterion 

(5.32) 

where Sm is the mixture scatter matrix of the vectors formed by the outputs of the 
last hidden layer nodes and Sb the corresponding between-class scatter matrix in a 
weighted fonn (Problem 5.19). If the inverse of Sm does not exist, it is replaced by 
its pseudoinverse. In other words, such a network can be used as a J -optimal non
linear transformer of the input m-dimensional vectors into I-dimensional vectors, 
where I is the number of nodes in the last hidden layer. 

Another approach is to employ neural networks to perform the computations 
associated with the optimization of various class separability criteria discussed in 
this chapter. Although these techniques do not necessarily provide new approaches, 
the incorporation of neural networks offers the capability of adaptation in case the 
statistics of the input data is slowly varying. In [Chat 97, Mao 95] a number of 
such techniques are developed. The idea behind most of these techniques is to use 
a network that iteratively computes eigenvectors of correlation matrices, a step 
which, as we have seen, is at the heart of a number of optimality criteria. 
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An alternative technique has been suggested in [Lee 93, Lee 97]. They have 
shown that the discriminantly informative feature vectors have a component that 
is normal to the decision surface at least at one point on the surface. Furthermore, 
the less informative vectors are orthogonal to a vector normal to the decision 
surface at every point of the surface. This is natural , because vectors that do not 
have a component normal to the decision surface cannot cross it (and hence change 
classes) whatever their value is. Based on this observation, they estimate normal 
vectors to the decision boundary, using gradient approximation techniques, which 
are then used to formulate an appropriate eigenvalue-eigenvector problem leading 
to the computation of the transformation matrix . 

Finally, pruning a neural network is a form of feature selection integrated into 
the classifier design stage. Indeed, the weights of the input nodes corresponding 
to less important features are expected to be small. As discussed in Chapter 4, the 
incorporation of appropriate regularization terms in the cost function encourages 
such weights to converge to zero and ultimately to be eliminated. This approach 
was followed, for example, in fSeti 97). 

5.9 A HINT ON THE VAPNIK-CHERNOVENKIS 
LEARNING THEORY 

So far in this book, two major issues have occupied us: the design of the classifier 
and its generalization capabilities. The former involved two stages: the choice of 
the classifier type and the choice of the optimality criterion. The generalization 
capabilities led us to seek ways to reduce the feature space dimensionality. In this 
section we will point out some important theoretical results that relate the size N of 
the training data set and the generalization performance of the designed classifier. 

To this end, let us summarize a few necessary basic steps and definitions. 

• Let F be the set of all the functions f that can be realized by the adopted 
classifier scheme. For example, if the classifier is a multilayer perceptron 
with a given number of neurons, then F is the set of all the functions that 
can be realized by the specific network structure. Functions f are map
pings from R1 ~ {0, 1 }. Thus, the response is either I or O; that is, the 
two-class problem is considered and the mapping is either f (x) = I or 
f(x) = 0. 

• Let P/' (f) be the empirical classification error probability, based on the 
available input-desired output training pairs (Xi, Yi), i = I, 2 .. . .. N, which 
are considered to be independent and identically distributed (i.i.d .). Thus, 
P,:v (j) is the fraction of training samples for which an error occurs, that is, 
f (x;) f. y;. Obviously, this depends on the specific function f and the size 
N. The optimal function that results from minimizing this empirical cost is 
denoted by f* and belongs to the set F. 
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• Pe<f) is the true classification error probability when a function f is realized. 
The corresponding empirical P;' (f) can be very small, even zero, since a 
classifier can be designed to classify all training feature vectors correctly. 
However, Pe (f) is the important performance measure, because it measures 
error probability based on the statistical nature of the data and not on the spe
cific training set only. For a classifier with good generalization capabilities, 
we expect the empirical and the true error probabilities to be close. 

• Pe denotes the minimum error probability over all the functions of the set, 
that is, Pe = min f EF Pe (f) .1 Again, in practice we would like the optimal 
empirical error P;' (f*) to be close to Pe. 

The Vapnik-Chemovenkis theorem is as follows. 

Theorem. Let F be the class offunctions of the form R 1-+ {O, 1 }. Then the 
empirical and true error probabilities corresponding to a function fin the class, 
satisfy 

(5.33) 

The term S(:F, N) is called the shatter coefficient of the class :F. This is defined 
as the maximum number of dichotomies of N points that can be formed by the 
functions in F. From our combinatorics basics we know that the maximum number 
of dichotomies on a set of N points (separating them into two distinct subsets) 
is 2N. However, not all these combinations can be implemented by a function 
f : R 1 --+ {O, 1 }. For example, we know that the set of functions realized by 
a perceptron (hyperplane) can form only 14 distinct dichotomies on 4 points out 
of the 16 = 24 possibilities. The two XOR combinations cannot be realized. 
However, the class of functions realized by the perceptron can form all possible 
8 = 23 dichotomies for N = 3 points. This leads us to the following definition 

Definition. The largest integer k ~ 1 for which S(:F, k) = 2k is called the 
Vapnik-Chernovenkis or VC dimension of the class F and is denoted by Ve. If 
S(F, N) = zN for every N, then the VC dimension is infinite. 

Thus, in the two dimensional space the VC dimension of a single perceptron is 3. 
In the general /-dimensional space case the VC dimension of a perceptron is I+ l, 
as is easily verified from Section 4.13. It will not come as a surprise to say that the 
VC dimension and the shatter coefficient are related, because they have common 
origins. Indeed, this is true. It turns out that if the VC dimension is finite, then the 

1 Strictly speaking, in this section inf must be used instead of min and sup instead of max. 
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following bound is valid 

S(F, N) :S Nv, + 1 (5.34) 

That is, the shatter coefficient is either 2N or is bounded as given in (5.34). This 
bound has a very important implication for the usefulness of (5.33). Indeed, for 
finite VC dimensions (5.34) guarantees that for large enough N the shatter coef
ficient is bounded by polynomial growth. Then the bound in (5.33) is dominated 
by its exponential decrease and it tends to zero as N-+oo. In words, for large 
N the probability of having large differences between the empirical and the true 
probability errors is very small! Thus, the network guarantees good generalization 
performance for large N. Furthermore, the theory guarantees another strong result 
[Devr 96] 

prob/Pe<f*)- min Pe<f) > E}::; 8S(F, N)exp(-NE2 /128) (5.35) 
fEF 

That is, for large N we expect with high probability the performance of the empir
ical error optimal classifier to be close to the performance of the optimal one, over 
the specific class of functions. 

Let us look at these theoretical results from a more intuitive perspective. 
Consider two different networks with VC dimensions Vc1 «Vci· Then if we fix 
N and E, we expect the first network to have much better generalization perfor
mance, because the bound in (5.33) will be much tighter. Thus, the probability that 
the respective empirical and true errors will differ more than the predetermined 
quantity will be much smaller. We can think of the VC dimension as an intrinsic 
capacity of a network, and only if the number of training vectors exceeds this 
number sufficiently can we expect good generalization performance. 

Another related bound of particular interest to us that holds with a probability 
at least 1 - p is the following: 

(5.36) 

where Ve is the VC dimension of the corresponding class and 

Ve (in(~+ I)) - ln(p/4) 

N 
(5.37) 

The interested reader may obtain more bounds and results concerning the Vapnik
Chemovenkis theory from [Devr 96, Vapn 95]. It will take some effort, but it 
is worth it! In some of the published literature the constants in the bounds are 
different. This depends on the way the bounds are derived. However, this is not of 
major practical importance, since the essence of the theory remains the same. 
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Due to the importance of the VC dimension, efforts have been made to compute 
it for certain classes of networks. In [Bau 89] it has been shown that the VC 
dimension of a multilayer perceptron with hard limiting activation functions in the 
nodes is bounded by 

(5.38) 

where K~' is the total number of hidden layernodes, Kn the total number of nodes, 
Kw the total number of weights, I the input space dimension, e the base of the 
natural logarithm, and [ ·] the floor operator that gives the largest integer less than 
its argument. The lower bound holds only for networks with a single hidden layer 
and full connectivity between the layers. A similar upper bound is true for RBF 
networks too. Looking at this more carefully, one can say that for such networks 
the VC dimension is roughly given by the number of weights of the network, 
that is, the number of its free parameters to be determined! In practice, good 
generalization performance is expected if the number of training samples is a few 
times the VC dimension. A good rule of thumb is to choose N to be of the order 
of 10 times the VC dimension or more [Hush 93]. 

Besides the Vapnik-Chernovenkis theory, the published literature is rich in 
results concerning aspects of designing various classifiers using a finite data set N. 
Although they lack the elegance of the generality of the Vapnik-Chernovenkis the
ory, they provide further insight into this important task. For example, in [Raud 91] 
asymptotic analytic results are derived for a number of classifiers (linear, quadratic, 
etc.) under the Gaussian assumption of the involved densities. The classification 
error probability of a classifier designed using a finite set of N training samples 
is larger, by an amount !1 N, than the error of the same classifier designed using 
an infinite (N ~ oo) set of data. It is shown that the mean of !1N (over different 
design sets) decreases as N tends to infinity. The rate of decrease depends on the 
specific type of classifier, on the dimensionality of the problem, and also on the 
value of the asymptotic ( N ~ oo) error. It turns out that in order to keep the mis
match 11N within certain limits, the number N of design samples must be a number 
of times larger than the dimension I. Depending on the type of classifier, this pro
portionality constant can range from low values (e.g., 1.5) up to a few hundred! 
Furthermore, in [Fuku 90] it is shown that keeping N constant and increasing I, 
beyond a point, results in an increase of the classification error. This is also known 
as the Hughes phenomenon. 

All these theoretical results provide useful guidelines in selecting appropriate 
values for N and l for certain types of classifiers. Moreover, they make crystal 
clear the urge to keep the number of features as small as possible with respect to N 
and the importance of the feature selection stage in the design of a classification 
system. In the fringes of this theoretical "happening," a substantial research effort 
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has also been devoted to experimental comparisons, involving different classifiers, 
with respect to their generalization capabilities; see, for example, lMama 96] and 
the references therein. In practice, however, experience and empirical results retain 
an important part in the final decision. Engineering still has a flavor of art! 

Structural Risk Minimization 

In our discussion so far, we have focused on the effects of the finite size of the train
ing data set, N, for a given class of functions, that is, a given classifier structure. 
Let us now touch on another important issue. If we allow N to grow indefinitely, 
does this luxury provide us with the means not only to have good generaliza
tion properties but also to improve our classification error so as to approach the 
optimal Bayesian perforrnance? Recall that as N grows, we can expect to obtain 
the optimal performance with respect to all allowable sets of classifiers that can 
be implemented by the chosen network structure. However, the error rate of the 
corresponding optimal classifier may still be very far from that of the Bayesian 
classifier. Let us denote by P8 the Bayesian error probability. Then we can write 

(5 .39) 

The right-hand side consists of two conflicting terms. If the class F is too small. 
then the first term is expected to be small but the second terrn is likely to be large. 
If, on the other hand, the class of functions F is large, then the second term is 
expected to be small but the first terrn is probably large. This is natural, because 
the larger the set of functions, the higher the probability of including in the set 
a good approximation of the Bayesian classifier. Moreover, the smaller the class. 
the less the variation between its members. This reminds us of the bias-variance 
dilemma we discussed in Chapter 3. A little thought suffices to reveal that the two 
problems are basically the same, seen from a different viewpoint. Then the natural 
question arises once more, can we make both terrns small and how? The answer 
is that this is possible only asymptotically, provided that at the same time the size 
of the class :F grows appropriately. An elegant strategy to achieve this has been 
suggested by Vapnik and Chemovenkis [Vapn 82]. 

Let F( 1 l, :r<2) •..• be a sequence of nested classes of functions, that is, 

(5.40) 

with an increasing, yet finite, VC dimension, 

(5.41) 

Also let 

lim inf. Pe(f) = Ps 
i->oo fE:F<1) 

(5.42) 
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For each N and class of functions ;:<il, i = l, 2, ... , compute the optimum, f'N.i• 
with respect to the empirical error using the N training pairs of input-output 
samples. Vapnik and Chemovenkis suggest choosing for each N the function 
f 'N according to the structural risk minimization principle (SRM). This consists 
of the following two steps. First we select the classifier f'N.; from every class 

;:<il that minimizes the corresponding empirical error over the class of functions. 
Then, from all these classifiers, we choose the one that minimizes the upper bound 
in (5.36), over all i. More precisely, form the so-called guaranteed error bound, 

Pe Cf* .) = pN (J* .) + </> ( vc,F(i)) 
N.1 e N,1 N (5.43) 

and choose 

f'N = arg min PeU'N) 
I 

(5.44) 

Then, as N ~ oo, Pe(fl,) tends to Ps with probability one. Note that the sec

ond term in the minimized bound, </> ( vc.t"Ci) ). is a complexity penalty term that 

increases as the network complexity increases (i.e., with the size of the class of 
functions and Vc.FliJ ). If the classifier model is too simple, the penalty term is 
small but the empirical error term will be large in (5.43). On the other hand, if 
the model is complex, the empirical error is small but the penalty term large. The 
structural risk minimization criterion aims at achieving the best trade-off between 
these two terms. 

From this point of view, the structural risk minimization principle belongs to 
a more general class of approaches that try to estimate the order of a system, 
by considering simultaneously the model complexity and a performance index. 
Depending on the function used to measure the model complexity and the corre
sponding performance index, different criteria result. For example, in [Akai 74] 
the place of the empirical error is taken by the value of the loglikelihood function, 
corresponding to the maximum likelihood estimates of the unknown parameters 
and the complexity term is proportional to the number of the free parameters to be 
estimated. A number of alternatives have also been suggested, see, for example, 
[Riss 83, Mood 92, Leth 96, Wang 98]. 

Remarks 

• The SRM procedure provides a theoretical guideline for constructing a clas
sifier that converges asymptotically to the optimal Bayesian one. However, 
the bound in (5.36) which is exploited in order to reach this limit, must not 
be misinterpreted. For any bound to be useful in practice, one needs an extra 
piece of information. Is this bound loose or tight? In general, until now, 
there has been no result that provides this information. We can construct 
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classifiers whose VC dimension is large, yet their performance can be good. 
A typical example is the nearest neighbor (N N) classifier. Its VC dimen
sion is infinite. Indeed, since we know the class label of all the N training 
points, the N N classifier classifies correctly all training points and the cor
responding shatter coefficient is 2N. Yet, it is generally accepted that the 
generalization performance of this classifier can be quite good in practice. 
In contrast, one can build a classifier with finite VC dimension, yet whose 
performance is always bad ([Burg 98)). Concluding this remark, we have to 
keep in mind that if two classifiers have the same empirical error, it does 
not, necessarily, mean that the one with rhe smaller VC dimension Leads to 
better performance. 

Support Vector Machines: A Last Touch 

We have already discussed that the VC dimension of a linear classifier in the 
/-dimensional space is I + I. However, the VC dimension of hyperplanes that are 
constrained to leave the maximum margin between the classes may have a smaller 
V C dimension . 

Let us assume that r is the radius of the smallest (hyper)sphere that encloses all 
the data (Problem 5.20), i.e., 

llx; II :5 r, i = I, 2, ... , N 

Then if a hyperplane satisfies the conditions in Equation (3 .61) and 

where c is a constant, then its VC dimension, Ve, is bounded by ([Vapn 98)) 

Ve :5 min(r2c, I) + I (5.45) 

That is, the capacity of the classifier can be controlled independently uf the dimen
sionality of the feature space. This is very interesting indeed. It basically states 
that the capacity of a classifier may not, necessarily, be related to the number 
of unknown parameters! This is a more general result. To emphasize it further. 
note that it is possible to construct a classifier with only one free parameter, yet 
with infinite VC dimension; see, for example, [Burg 98]. Let us now consider a 
sequence of bounds 

CJ < Cz < C) < ... 

This defines the following sequence of classifiers: 

(5.46) 
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where 

;:i CFi+I 

If the classes are separable, then the empirical error is zero. Thus minimizing the 
norm Hwll is equivalent with minimizing the VC dimension (to be fair, the upper 
bound of the VC dimension). Thus, we can conclude that, the design of an SVM 
classifier senses the spirit of the SRM principle. Hence, keeping the VC dimension 
minimum suggests that we can expect support vector machines to exhibit good gen
eralization performance. More on these issues can be found in [Vapn 98, Burg 98]. 

Problems 

5.1 If x;, Yi, i = 1, 2 . . . . N are independent samples of two Gaussian distributions of 

the same variance u 2, show that the random variable (ZN-;>Ji, where 
a 

2 1 - 2 - 2 
( 

N N ) 
sz = 2N - 2 ~(x; - x) + E(y; - y) 

where .X, y are the respective sample mean values, is chi-square distributed with 
2N - 2 degrees of freedom. 

5.2 Let N1, Ni be the available values of a feature in two classes, respectively. The 
feature is assumed to follow a Gaussian distribution wiLh Lhe same variance in each 
class. Define the test statistic 

(i - y) - (µ1 - µz) 
q = ---;====--

s,j-Jri + -k 
(5.47) 

where 

l (N1 N2 ) s; = N + N - 2 l:)x; - .X)2 + L(Y; - ji)2 
I 2 i=l i = I 

and JJ.J, JJ.2 are the respective true mean values. Show thatq follows the I-distribution 
with N1 + N2 - 2 degrees of freedom. 

5.3 Show that the matrix 

I I I I 
,/ii ,/ii ,/ii ,/ii 
-I I 0 0 
.Ji ,,/2 

A= 
-l -I 2 () 
./6 ./6 76 

-I - l -I n - 1 
../n(n-1) .jn(n- 1) J11(n - l) ../n(n-1) 

is orthogonal, that is, AA T = I. 
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5.4 Show that if x;. i = l. 2 ..... I. are jointly Gaussian. then the I variables y;. i = 
I. 2 ..... I, resulting from a linear transformation of them are also jointly Gaussian . 
Furthermore, if x; are mutually independent and the transformation is orthogonal. 
then Yi are also mutually independent and Gaussian. 

5.5 Let w;. i = I. 2, ... , M, be the classes for a classification task. Divide the interval 
of the possible values of a feature into subintervals /',. j, j = I, 2, .... K. If P( /',. j) 
is the probability of having values in the respective subinterval and P(w; I/',. j) the 
probability of occurrence of w; in this interval, show that the so-called ambiguity 
jimction 

A= - LLP(/',.j)P(w;l!',.j)logM(P(w;l!',.j)) 

j 

is equal to I for completely overlapped distributions and is equal to 0 for perfectly 
separated ones. For all other cases it takes intermediate values. Thus, it can be used 
as a distribution overlap criterion [Fine 83]. 

5.6 Show that if d;j (x 1. x2 ..... x111 ) is the class divergence based on m features. 
adding a new one Xm+ 1 cannot decrease the divergence, that is. 

5.7 Show that if the density functions are Gaussians in both classes with the same covari
ance matrix L. then on adding a new feature x,,,+ 1 to the feature vector the new 
divergence is recursively computed by 

where µ;. µ j are the mean values of x111+ 1 for the two classes. a 2 is its variance, 
r is its cross-covariance vector with the other elements of x, and µ;, µ j are the 
mean vectors of x prior to x111+ 1. If x111+ 1 is now uncorrelated with the previously 
selected features x 1 , •••• x 111 , then this becomes 

5.8 Show that if the features are statistically independent . then the divergence is 
given by 

I 

dij(XJ. x2 ..... x1) = Ldii(x;) 
i=I 
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5.9 Show that in the case of Gaussian distributions the Chernoff bound becomes 

"CB= exp(-b(s)) 

where 

s(I - s) T 1 
b(s)=--

2
-(µ;-µj) [s:Ej+(l-s):E;]- (µ;-µj) 

+ ~ In I s :E j + (I - s) :E; I 
2 I :E j 1s I :E; 1 I-s 

Then take the derivative with respect to sand show that for equal covariance matrices 
the optimum is achieved for s = I /2. Thus, in this case b(s) equals the Bhattacharyya 
distance. 

5.10 Show that the mixture scatter matrix is the sum of the within-class and between-class 
scatter matrices. 

5.11 Show that the cross-correlation coefficient in (5.21) lies in the interval [ -1, I]. 
Hint: Use Schwartz's inequality lxT YI ::S llx 1111 y II. 

5.12 Show that for a two-class problem and Gaussian distributed feature vectors, with 
the same covariance matrix in the two classes, which are assumed equiprobable, the 
divergence is equal to 

5.13 Show that the number of combinations to be searched using the backward search 
technique is given by 

I+ l/2((m + l)m - I(/+ I)) 

5.14 Show that 

0~ trace((AT S1 A)- 1 (AT S2A)} = -2S1 A(AT S1A)-t (AT S2A)(AT St A)-I 

+2S2A(AT S1A)-t 

5.15 Show that for an M-class problem the matrix Sb is of rank M - I. 
Hint: Recall that µo =Li P;µ;. 

5.16 Show that if f;(x), i = I, ... , M, are the discriminant functions of an M-class 
problem, we can construct from them M - I new functions that are, in principle, 
sufficient for the classification. 
Hint: Consider the differences f; (x) - fj (x). 

5.17 Show that fora two-class problem the nonzero eigenvalue of matrix s;;; 1 Sb is equal to 

.l..1 =Pi P2(µ1 - µ2)T s;J(µ1 - µ2) 

and the corresponding eigenvector 

V[ = s.-;~(µt - µ2) 

where Pi , P2 are the respective class probabilities. 



Section 5.9: A HINT ON THE VAPNIK-CHERNOVENKIS LEARNING THEORY 203 

5.18 Show that if matrices S1. Sz are two covariance matrices, then the eigenvectors 

of S) 1 Sz are orthogonal with respect to S1, that is, 

vTs1vj = o;j 

Hint: Use the fact that S1, S2 can be simultaneously diagonalized (Appendix B). 
5.19 Show that in a multilayer perceptron with a linear output node, minimizing the 

squared error is equivalent with maximizing (5.32). 

Hint: Assume the weights of the nonlinear nodes fixed and compute first the LS 
optimal weights driving the linear output nodes. Then substitute these values into 
the sum of error squares cost function. 

5.20 Compute the minimal enclosure (hyper)sphere, i.e., radius as well as its center, of a 
set of points x;. i = I, 2, ... , N. 
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CHAPTER 6 ____________ _ 

FEATURE GENERATION I: 
LINEAR TRANSFORMS 

6.1 INTRODUCTION 

The goal of this chapter is the generation of features via linear transforms of 
the input (measurement) samples. A number of transforms will be presented and 
reviewed. The basic concept is to transform a given set of measurements to a 
new set of features. If the transform is suitably chosen, transform domain features 
can exhibit high "information packing" properties compared with the original 
input samples. This means that most of the classification-related information is 
"squeezed" in a relatively small number of features, leading to a reduction of the 
necessary feature space dimension. 

The basic reasoning behind transform-based features is that an appropriately 
chosen transform can exploit and remove information redundancies, which usually 
exist in the set of samples obtained by the measuring devices. Let us take for 
example an image resulting from a measuring device, for example, X-rays or a 
camera. The pixels (i.e., the input samples) at the various positions in the image 
have a large degree of correlation, due to the internal morphological consistencies 
of real-world images that distinguish them from noise. Thus, if one uses the pixels 
as features, there will be a large degree of redundant information. Alternatively, 
if one obtains the Fourier transform, for example, of a typical real-world image, 
it turns out that most of the energy lies in the low-frequency components, due 
to the high correlation between the pixels' gray levels. Hence, using the Fourier 
coefficients as features seems a reasonable choice, because the low-energy, high
frequency coefficients can be neglected, with little loss of information. In this 
chapter we will see that the Fourier transform is just one of the tools from a palette 
of possible transforms. 

207 
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6.2 BASIS VECTORS AND IMAGES 

Let x(O), x(I), ... , x(N - l) be a set of input samples and x be the N x l 
corresponding vector, 

xT = [x(O), ... , x(N - l)] 

Given a unitary N x N matrix A 1 we define the transformed vector y of x as 

y=AHx=[ 7 ]x 
aN-l 

(6. l) 

where "H" denotes the Hermitian operation, that is, complex conjugation and 
transposition. From (6. l) and the definition of unitary matrices we have 

N-l 

x = Ay = L y(i)a; (6.2) 

i=O 

The columns of A, a;, i = 0, l, ... , N - l, are called the basis vectors of the 
transform. The elements y(i) of y are nothing but the projections of x onto these 
basis vectors. Indeed, taking the inner product of x with a j we have 

N-l N-l 

(aj.X) =aJx = LY(i)(aj.a;) = LY(i)o;j =y(j) (6.3) 

i=O 

This is due to the unitary property of A, that is, AH A = I or (a;, a j) = 
afaj=Oij· 

In many problems, such as in image analysis, the input set of samples is a two
dimensional sequence X (i, j), i, j = 0, l, ... , N - I, defining an N x N matrix 
X instead of a vector. In such cases, one can define an equivalent N2 vector x, 
for example, by ordering the rows of the matrix one after the other (lexicographic 
ordering) 

xT = [X(O, 0), ... , X(O, N - I), ... , X(N - I, 0), ... , X(N - I, N - I)] 

and then transform this equivalent vector. However, this is not the most efficient 
way to work. The number of operations required to multiply an N2 x N2 square 
matrix (A) with an N 2 x I vector xis of the order of O(N4 ), which is prohibitive 
for many applications. An alternative possibility is to transform matrix X via a 
set of basis matrices or basis images. Let U and V be unitary N x N matrices. 

1 A complex matrix is called unitary if A - I = AH. Real matrices are equivalently called orthogonal 
if A- 1 =AT. 
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Define the transformed matrix Y of X as 

r = uHxv (6.4) 

or 

x = urvH (6.5) 

The number of operations is now reduced to 0(N3) . Equation (6.5) can 
alternatively be written (Problem 6.1) as 

N-l N - l 

X = L L Y(i, j)u;vf (6.6) 
i=O j=O 

where u; are the column vectors of U and v j the column vectors of V. Each of 
the outer products 11; vH is an N x N matrix 

.I 

* UiN-l VjN-I 

and (6.6) is an expansion of matrix X in terms of these N 2 basis images (matrices). 
The * denotes complex conjugation. Furthermore, if Y turns out to be diagonal, 
then (6.6) becomes 

N-1 

x = L Y(i, i)U;V;H 

i = O 

and the number of basis images is reduced to N. An interpretation similar to (6.3) 
is also possible. To this end, let us define the inner product between two matrices as 

N - l N-l 

(A , B) =LL A*(m, n)B(m. 11) 

m=O 11=0 

Then it is not difficult to show that (Problem 6.1) 

Y(i , j) =(A;_;, X) 

(6.7) 

(6.8) 

In words. the (i, j) element of the transformed matrix results from multiplying 
each element of X by the conjugate of the corresponding element of Aij and 
summing up all products. 

Transfonnations of the type (6.4) are also known as separable (Problem 6.2). 
The reason is that one can look at them as a succession of one-dimensional trans
forms . first applied on column vectors and then on row vectors. For example. the 



210 Chapter 6: FEATURE GENERATION I: LINEAR TRANSFORMS 

intermediate result in (6.4), Z = uH X, is equivalent to N transforms applied to 
the column vectors of X, and (UH X)V = (VH zH)H is equivalent to a second 
sequence of N transforms acting upon the rows of Z. All the two-dimensional 
transforms that we will deal with in this chapter are separable ones. 

Example 6.1. Given the image X and the orthogonal transform matrix U 

x = [~ i]' u = Jz [: -~J 
the transformed image Y = UT XU is 

1 [l l] [I 2] [I I] [ 4 -IJ 
y = 2 I -I 2 3 I -I = -I 0 

The corresponding basis images are 

I [I] I [I Aoo = 2 I [l,l] = 2 I 

and similarly 

T I [I -IJ Ao1 = A10 = 2 I -I 

Now verify that the elements of Y are obtained via the matrix inner products ( X, Aij) . 

6.3 THE KARHUNEN-LOEVE TRANSFORM 

Let x be the vector of input samples. In the case of an image array, x may be formed 
by lexicographic ordering of the array elements. We have already mentioned in a 
number of places in this book that a desirable property of the generated features 
is to be mutually uncorrelated in order to avoid information redundancies. The 
goal of this section is to generate features that are optimally uncorrelated, that is, 
E[y(i)y(j)] = 0, ii= j. Let2 

y = ATx (6.9) 

From the definition of the correlation matrix we have 

Ry= E[yyT] = E[AT xxT A]= AT RxA (6.10) 

However, Rx is a symmetric matrix, and hence its eigenvectors are mutually 
orthogonal (Appendix B). Thus, if matrix A is chosen so that its columns are the 

2We deal with real data. The complex. case is a straightforward ex.tension. 
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orthonormal eigenvectors a;, i 
(Appendix B) 

0, I, ... , N - I, of Rx, then Ry is diagonal 

Ry= AT RxA =A (6.11) 

where A is the diagonal matrix having as elements on its diagonal the respective 
eigenvalues A.;, i = 0, 1, ... , N - 1, of Rx. Furthermore, assuming R_, to be 
positive definite (Appendix B) the eigenvalues are positive. The resulting transform 
is known as the Karhunen-Loeve (KL) transform, and it achieves our original goal 
of generating mutually uncorrelated features. The KL transform is of fundamental 
significance in pattern recognition and in a number of signal and image processing 
applications. Let us look at some of its important properties. 
Mean square error approximation. From Eqs. (6.2) and (6.3) we have 

N-1 

x = L y(i)a; and y(i) = aT x 
i=O 

Let us now define a new vector in them-dimensional subspace 

m-1 

x = LY(i)a; 
i=O 

(6.12) 

(6.13) 

where only m of the basis vectors are involved. Obviously, this is nothing but the 
projection of x onto the subspace spanned by them (orthonormal) eigenvectors 
involved in the summation. If we try to approximate x by its projection x, the 
resulting mean square error is given hy 

E [llx -ill']~ E [II~ yU)•f] (6.14) 

Our goal now is to choose the eigenvectors that result in the minimum MSE. From 
(6.14) and taking into account the orthonormality property of the eigenvectors, 
we have 

(6.15) 

N-l N-l 

= L E[y2 (i)] = L aj E[xxT]a; (6.16) 
i=m i=m 
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Combining this with (6.14) and the eigenvector definition, we finally get 

N-1 N-1 

E [11x -i11 2
] = L af>..;a; = L >..; (6.17) 

i=.m i=m 

Thus, if we choose in (6.13) the eigenvectors corresponding to them largest eigen
values of the correlation matrix, then the error in (6.17) is minimized, being the sum 
of the N - m smallest eigenvalues. Furthermore, it can be shown (Problem 6.3) 
that this is also the minimum MSE, compared with any other approximation of 
x by an m-dimensional vector. This is the reason that the KL transform is also 
known as Principal Component Analysis (PCA). 

A different form of the KL transform results if we compute A in terms of the 
eigenvectors of the covariance matrix. This transform diagonalizes the covariance 
matrix Ey. 

(6.18) 

In general, the two are different and coincide for zero mean random vectors. In 
practice this is usually the case, because if it is not true one can replace each 
vector by x - E[x ]. Despite that, it is still interesting to point out a difference 
between the two variants of the KL transform. It can be shown (Problem 6.4) that 
in this case, the resulting orthonormal basis CEx eigenvectors li;) guarantees that 
the mean square error between x and its approximation given by 

m-1 N-1 

x = L y(i)a; + L E[y(i)]a;, y(i) = aT x (6.19) 
i=O i=m 

is minimum. In words, the last N - m components are not random but are frozen 
to their respective mean values. 

The optimality of the KL transform, with respect to the MSE approximation, 
leads to excellent information packing properties and offers us a tool to select 
the m dominant features out of N measurement samples. However, although this 
may be a good criterion, in many cases it does not necessarily lead to maximum 
class separability in the lower dimensional subspace. This is reasonable, since the 
dimensionality reduction is not optimized with respect to class separability, as was, 
for example, the case with the scattering matrix criteria of the previous chapter. 
This is demonstrated via the example of Figure 6.1. The feature vectors in the 
two classes follow the Gaussian distribution with the same covariance matrix. The 
ellipses show the curves of constant pdf values. We have computed the eigenvectors 
of the overall correlation matrix, and the resulting eigenvectors are shown in the 
figure. Eigenvector a 1 is the one that corresponds to the largest eigenvalue. It does 
not take time for someone to realize that projection on a 1 makes the two classes 
almost coincide. However, projecting on a2 keeps the two class separable. 
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X2 

a U1 

0 
X1 

FIGURE 6.1: The KL transform is not always best for pattern recognition. In 
this example, projection on the eigenvector with the larger eigenvalue makes the 
two classes coincide. On the other hand, projection on the other eigenvector keeps 
the classes separated. 

Total variance. Let E[x] be zero. If this is not the case, the mean can always 
be subtracted. Let y be the KL transformed vector of x. From the respective 
definitions we have that a;(i) = E[y2 (i)] = A.;. That is, the eigenvalues of the 
input correlation matrix are equal to the variances of the transformed features. 
Thus, selecting those features, y(i) = aT x, corresponding to them largest eigen
values makes their sum variance L; A.; maximum. In other words, the selected 
m features retain most of the total variance associated with the original ran
dom variables x(i). Indeed, the latter is equal to the trace of Rx. which we 
know from linear algebra to be equal to the sum of the eigenvalues I::01 A.; 
[Stra 80]. It can be shown that this is a more general property. That is, from all 
possible sets of m features, obtained via any orthogonal linear transformation 
on x, the ones resulting from the KL transform have the largest sum variance 
(Problem 6.3). 

Entropy. We know from Chapter 2 that the entropy of a process is defined as 

Hy =-£[In Py(y)] 
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and it is a measure of the randomness of the process. For a zero mean Gaussian 
multivariable m-dimensional process the entropy becomes 

1 T 1 1 1n 
Hy= 2E[y R; y] + 21n JRyJ + 2 1n(2n) (6.20) 

However, 

E[y TR; 1 y] = E[trace{y TR; 1 y )] = £[trace{ R; 1 y y T}] = trace(/) = m 

and using the known property from linear algebra the determinant is 

lnJRyJ = ln(AOAI . . . Am-d 

In words, selection of the m features that correspond to the m largest eigenvalues 
maximizes the entropy of the process. This is expected, because variance and 
randomness are directly related. 

Remarks 

• The concept of principal eigenvectors subspace has also been exploited as 
a classifier. First, the sample mean of the whole training set is subtracted 
from the feature vectors. For each class, w;, the correlation matrix R; is 
estimated and the principal m eigenvectors (corresponding to them largest 
eigenvalues) are computed. A matrix A; is then formed using the respective 
eigenvectors as columns. An unknown feature vector x is then classified in 
the class w j for which 

llA)xll > IJA!xlJ, Vi-::/=} (6.21) 

that is, the class corresponding to the maximum norm subspace projection 
of x [Wata 73]. From Pythagoras' theorem this is equivalent to classifying a 
vector in its nearest class subspace. The decision surfaces are hyperplanes 
if all the subspaces have the same dimension or quadric surfaces in the 
more general case. Subspace classification integrates the stages of feature 
generation/selection and classifier design. 

If this approach results in a relatively high classification error, the per
formance may be improved by suitable modifications known as Leaming 
subspace methods. For example, one can iteratively rotate the subspaces to 
adjust the lengths of the projections of the training vectors. The basic idea is 
to increase the length of a projection in the subspace of the correct class and 
decrease it for the rest. Such techniques have been applied successfully in 
a number of applications, such as speech recognition, texture classification, 
and character recognition. The interested reader may consult, for example, 
[Oja 83, Koho 89, Prak 97]. 
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• For the computation of the correlation matrix eigenvectors, a number of 
iterative schemes have been developed. The computation is performed work
ing directly with the vectors, without having to estimate the corresponding 
correlation matrix, using neural network concepts [Oja 83, Diam 96]. 

Example 6.2. The correlation matrix of a vector x is given by 

[

0.3 0.1 
Rx= 0.1 0.3 

0.1 -0.1 

0.1] 
-0.1 

0.3 

Compute the KL transform of the input vector. 
The eigenvalues of Rx are AQ = 0.1, A I = Az = 0.4. Since the matrix Rx is symmetric. 

we can always construct orthonormal eigenvectors. For this case we have 

The KL transform is then given by 

[
y(O)] [2/ ../6 
y(I) = 0 

y(2) l/J3 

1/../6 1/../6] [x(O)] 
1/../2 -1/../2 x(I) 

-1/J3 -l/J3 x(2) 

where y(O). y( I) correspond to the two largest eigenvalues. 

6.4 THE SINGULAR VALUE DECOMPOSITION 

Given a matrix X of rank r, we will show that there exist N x N unitary matrices 
U and V so that 

(6.22) 

I 
where A 2 is the r x r diagonal matrix with elements .j>:;, and A.; are the r nonzero 
eigenvalues of the associated matrix X H X. 0 denotes a zero element matrix. In 
other words. there exist unitary matrices U and V so that the transformed matrix 
Y is diagonal. From (6.22) it is readily shown that 

r-1 

X=:Lfi:u;vf (6.23) 
i=O 
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where u;, v; are the first r columns of U and V, respectively. More precisely, 
Uj, Vj are the eigenvectors of xxH and xH X, respectively. The eigenvalues Aj 
are known as singular values of X and the expansion in (6.23) as the singular 
value decomposition (SYD) of X or the spectral representation of X . 

Proof. Given a matrix X of rank r, it is known from linear algebra [Stra 80] 
that the two square matrices X H X and XX H ace also of rank r. Furthermore, the 
two matrices X H X and XX H have the same eigenvalues but different (yet related) 
eigenvectors (Problem 6.5), 

xxHum = AmUm 

xH Xvm = AmVm 

(6.24) 

(6.25) 

Since both matrices are Hermitian and nonnegative (i.e., (X XH)H = X XH), they 
have nonnegative real eigenvalues and orthogonal eigenvectors (Appendix B). In 
(6.24) and (6.25) we have also chosen them to be orthonormal, that is, u{t Um = I 
and v{t Vm = I. It is straightforward to see from (6.24) and (6.25) that 

1 
Um= ~Xvm, for Am :/=- 0 

vAm 

Indeed, prcmultiplying (6.25) by X results in 

(6.26) 

That is, Um = cxXvm, where (without loss of generality) the scaling factor ex can 
be taken as positive and it is found from 

Let us now assume that u;, v;, i = 0, I, ... , r - I, are the eigenvectors corre
sponding to the nonzero eigenvalues and u;, v;, i = r, ... , N - l, to the zero 
eigenvalues. Then, for the latter ones we have 

XHXv; =0=? vfXHXv; =0=? i1Xv;ll 2 =0 

Hence 

Xv; = 0, i = r, ... , N - 1 (6.27) 

In a similar way one can show that 

xH U; = 0, i = r, ... ' N - 1 (6.28) 
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Combining (6.26) and (6.27), we show that the right-hand side of (6.23) is 

r-l r-l N-l 

L /i:u;vf! =XL A )r;v;vf =XL v;vf1 

i=O i=O A; i=O 

(6.29) 

Let us now define a matrix V that has as columns the orthonormal eigenvectors v;, 

V = [vo, ... , VN-i1 

Orthonormality of the columns results in V H V = l, that is, V is unitary and 
vvH =!.Hence 

1 ~ vv" ~ l•o .... .VN-d [ 

From (6.29) and (6.30) we have that 

r-l 

X = LAu;vf 
i=O 

and X can be written as 

~ J v" 

N-l 

= L v;vf (6.30) 
i=O 

(6.31) 

(6.32) 

where U is the unitary matrix with columns the orthonormal eigenvectors u;. • 

Remarks 

• If X is approximated by 

k-l 

X = L /i:u;vf, k::; r -1 
i=O 

then X, being the sum of k N x N rank-one independent matrices, is of rank 
k. If the k largest eigenvalues are involved, it can be shown that the squared 
error 

N-1 N-l 

E
2 = L L IX(m, n) - X(m, n)l 2 

m=O 11=0 

is the minimum one with respect to all rank-k N x N matrices. The square 
root of this is also known as the Frobenius norm II X - XII F of the difference 
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matrix X - X. The error in the approximation turns out to be (Problem 6.6) 

r-1 

E2 = I:>-i (6.33) 
i=k 

Hence, if we order the eigenvalues in descending order, Ao '.:: A 1 '.:: · • • '.:: 

Ar-J, then for a given number of k terms in the expansion, the SYD leads 
to the minimum square error. Thus, X is the best rank-k approximation of 
X in the Frobenius norm sense. This reminds us of the Karhunen-Loeve 
expansion. However, in the latter case the optimality was with respect to the 
mean square error. This is a major difference in philosophy between SYD 
and KL. The former is related to a single set of samples and the latter to an 
ensemble of them. 

• Due to its optimal approximation properties, the SYD transform also has 
excellent "information packing" properties, and the image array can be rep
resented efficiently by a few of its singular values. Thus, SYD is a natural 
candidate as a tool for feature generation or selection in classification. 

Example 6.3. Consider the matrix 

The goal is to compute its singular value decomposition. 

• Step I: Find the eigenvalues and eigenvectors of 

XT X = [52 36] 
36 73 

These are Ao = 100, A1 = 25 and the corresponding eigenvectors v0 = 
[0.6, 0.8] T, VJ = [0.8, -0.6] T. 

• Step 2: Compute the eigenvectors of XX T. This is a 4 x 4 matrix of rank 2. The 
eigenvectors wrresponding to the nonzero eigenvalues Ao, AJ are computed via (6.26), 
that is, uo = O.IXvo. u1 = 0.2Xv 1 or [0.84, 0.08, 0.24, 0.48]T and [0.24, -0.12, 
0.64, -0.72]T respectively. 

• Step 3: Compute the SYD of X 

X = 10(0.84, 0.08, 0.24, 0.48)T[0.6, 0.8) 

+ 5[0.24, -0.12, o.64, -o.nf 10.8, -0.6J 

If we keep the first of the two terms, then the resulting approximation is the best, in the 
Frobenius sense, rank-I approximation of X. 
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6.5 INDEPENDENT COMPONENT ANALYSIS 

As we have already seen, the Principal Component Analysis (PCA) performed by 
the Karhunen-Loeve transform produces features y(i), i = 0, I . .. . , N - I, that 
are mutually uncorrelated. The obtained by the KL transform solution is optimal 
when dimensionality reduction is the goal and one wishes to minimize the approx
imation mean square error. However, for certain applications, such as the one 
illustrated in Figure 6.1, the obtained solution falls short of the expectations. In 
contrast, the more recently developed Independent Component Analysis (ICA) 
theory, e.g., [Hyva 01, Como 94, Jutt 91, Hayk 00, Lee 98] , tries to achieve much 
more than simple decorrelation of the data. The ICA task is casted as follows: 
Given the set of input samples x, determine an N x N invertible matrix W such 
that the entries y (i), i = 0, 1, . .. , N - I, of the transformed vector 

y= Wx (6.34) 

are mutually independent. The goal of statistical independence is a stronger con
dition than the uncorrelatedness required by the PCA. The two conditions are 
equivalent only for Gaussian random variables. 

Searching for independent rather than uncorrelated features gives us the means 
of exploiting a lot more of information, hidden in the higher order statistics of the 
data. As the example of Figure 6.1 suggests, constraining the search by digging 
information in the second-order statistics only results in the least interesting, for our 
problem, projection direction, i.e., that of a1. However, a2 is, no doubt, the most 
interesting direction from the class separation point of view. In contrast, employing 
ICA can unveil from the higher order statistics of the data the piece of information 
that points a2 as the most interesting one. Furthermore, searching for statistically 
independent features is in line with the way nature builds up the "cognitive" maps 
of the outside world in the brain, by processing the (input) sensory data. Barlow 
[Bari 89], in the so-called Barlow's hypothesis, suggests that the outcome of the 
early processing performed in our visual cortical feature detectors might be the 
result of a redundancy reduction process. In other words, the neural outputs are 
mutually as statistically independent as possible, conditioned, of course, on the 
received sensory messages . The interested reader can find more on issues related 
to redundancy reduction and also to a number of methodologies inspired by it in 
[Atti 92, Fiel 94, Deco 95, Bell 00] . 

Before we proceed to develop techniques for performing ICA, we need to be sure 
that such a problem is well defined and has a solution and under what conditions. 
To this end, let us assume that our input random data vector x is indeed generated 
by a linear combination of statistically independent and stationary in the strict 
sense components (sources) , i.e., 

x =Ay (6.35) 
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The task now is under what conditions a matrix. W, can be computed so as to 
recover the components of y from eq. (6.34), by exploiting infonnation hidden in x. 
Usually A is known as the mixing and W as the de-mixing matrix, respectively. 
The following condition is proved in [Como 94). 

Identifiability condition of the /CA model. All independent components y(i), 
i = I, 2, ... , N, with the possible exception of one, must be non-Gaussian. 
A second condition is that matrix A must be invertible. In the more general case 
where A is a nonsquare l x N matrix, then l must be greater than N and A must 
be of full column rank. 

In other words, in contrast to PCA that can always be perfonned, ICA is mean
ingful only if the involved random variables are non-Gaussian. Indeed, as has 
already been stated, for Gaussian random variables independence is equivalent 
to uncorrelatedness and PCA suffices. From a mathematical point of view, the 
ICA problem is ill-posed for Gaussian processes. Indeed, if we assume that the 
independent components y(i), i = 0, 1, ... , N - I, are all Gaussian. then a lin
ear transformation of them by any unitary matrix will also be a solution (see 
Problem 5.4). PCA achieves a unique solution by imposing a specific orthogonal 
structure onto the transfonnation matrix. 

Under the above stated conditions. it can be shown that each one of the result
ing independent components is uniquely estimated up to a multiplicative constant, 
which is a rather insignificant indetenninacy associated with the method. This 
is the reason that many times the components are considered of unit variance. 
Finally, it is interesting to state that the independent components result in no spe
cific ordering, in contrast to the PCA, where a specific ordering is associated with 
the values of the corresponding eigenvalues. However. in practice, some form of 
ordering can be adopted. For example, the components can be ordered accord
ing to the degree of "non-Gaussianity," measured by an appropriate index, e.g., 
the fourth-order cumulant (see Appendix A). Although such an index may seem 
a bit strange to a newcomer, its physical interpretation will become clearer as 
we go on. After all, from a common sense point of view, a Gaussian pdf must 
be the least interesting one. Recall from Chapter 2 that maximizing the entropy, 
constraining the solution to be within the family of random variables with given 
mean and variance, the result is a Gaussian pdf. That is, the Gaussian is the most 
"random" of all the pdfs describing this family of random variables and from 
this point of view the least infonnative one with respect to the underlying struc
ture of the data. In contrast. distributions that have the "least resemblance" to the 
Gaussian are more interesting since they display some structure associated with 
the data. This observation is at the heart of a closely related to ICA family of 
techniques known as projection pursuit. The essence behind such techniques is 
to search for directions (subspaces) in the feature space so that the corresponding 
data vector projections are described by "interesting" non-Gaussian distributions. 
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For a more rigorous discussion on such issues the reader may refer to, e.g .. 
[Hube 85, Jone 87]. 

6.5.l ICA Based on Second- and Fourth-Order Cumulants 

This approach in perfonning ICA is a direct generalization of the PCA tech
nique. The Karhunen-Loeve transform focuses on the second-order statistics and 
demands the cross-correlations E[y(i)y(j)] to be zero. Since in ICA we demand 
the components of y to be statistically independent, this is equivalent to demanding 
all the higher order cross-cumulants to be zero (see Appendix A). In [Como 94] it 
is suggested that restricting ourselves up to the fourth-order cumulants is sufficient 
for many applications. Recall from Appendix A that the first three cumulants are 
equal to the first three moments, i.e ., 

KJ (y(i)) = E[y(i)] = 0 

Kz(y(i)y(j)) = E[y(i)y(j)] 

K3(y(i)y(j)y(k)) = E[y(i)y(j)y(k)] 

and the fourth-order cumulants are given by 

K4(y(i)y(j)y(k)y(r)) = E[y(i)y(j)y(k)y(r)] - E[y(i)y(j)]E[y(k)y(r)] 

- E[y(i)y(k)]E[y(j)y(r)] 

- E[y(i)y(r)]E[y(j)y(k)] 

where zero mean processes have been assumed. Another assumption which is 
usually encountered in practice, and will be adopted here, is that the associated 
pdfs are symmetric. This makes all odd order cumulants zero. Thus the problem 
has now been reduced to finding a matrix, W, so that the second-order (cross
correlations) and fourth-order cross-cumulants of the transfonned variables are 
zero. In [Como 94] this is achieved by the following steps: 

Step I. Perform a PCA on the input data, i.e., 

(6.36) 

A is our familiar unitary transformation matrix of the Karhunen-Loeve 
transform. The components of the transformed random vector y are, thus, 
uncorrelated. 
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Step 2. Compute another unitary matrix, A, so that the fourth-order cross
cumulants of the components of the transformed random vector 

(6.37) 

are zero. This is equivalent to searching for a matrix A that makes the sum 
of the squares of the fourth-order auto-cumulants maximum, i.e., 

N-1 

,ll}:X Ill (A) = L K4(y(i))
2 

AA =I i=O 

(6.38) 

Step 2 is justified as follows. It can be shown [Como 94) that the sum of the 
squares of the fourth-order cumulants is invariant under a linear transformation by a 
unitary matrix. Therefore, since the sum of squares of the fourth-order cumulants 
is fixed for y, maximizing the sum of squares of the auto-cumulants of y will 
force the corresponding cross-cumulants to zero. Observe that this is basically a 
diagonalization problem of the fourth-order cumulant multidimensional array. In 
practice, this is achieved by generalizing the method of Givens rotations, used for 
matrix diagonalization [Como 94). Note that the right hand side in Eq. (6.38) is 
a function of (a) the elements of the unknown matrix A, (b) the elements of the 
known (for this step) matrix A, and (c) the cumulants of the random components 
of the input data vector x, which have to be estimated prior to the application 
of the method. In practice, it may turn out that nulling of the cross-cumulants is 
only approximately achieved. This is because (a) the input data may not obey the 
linear model of Eq. (6.35), (b) the input data are corrupted by noise, which has not 
been taken into account, and (c) the cumulants of the input are only approximately 
known, since they are estimated by the available input data set. 

Once the two steps have been completed, the final feature vector with 
(approximately) independent components is given by the combined transform 

y =(AA/ x = Wx (6.39) 

Notice that since A is unitary the uncorrelatedness achieved in the first step is 
inherited by the elements of y, which now has its second- and fourth-order cross
cumulants (at least approximately) zero. 

6.5.2 ICA Based on Mutual Information 

The approach based on nulling the second- and fourth-order cross-cumulants, 
although one of the most widely used in practice, somehow lacks in generality and 
also imposes, externally, a structure in the transformation matrix. An alternative, 
theoretically more pleasing approach is estimating W by minimizing the mutual 
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information between the transformed random variables. The mutual information, 
l(y), between the components of y is defined as 

N-l 

l(y) = -H(y) + L H(y(i)) (6.40) 
i=O 

where H(y(i)) is the associated entropy of y(i), defined as ([Papo 91]) 

H (y(i)) = - f p; (y(i)) In p; (y(i)) dy(i) (6.41) 

where p; (y(i)) is the marginal pdf of y(i). In Appendix A, it is shown that l (y) 
is equal to the Kullback-Leibler probability distance between the joint pdf p(y) 
and the product of the respective marginal probability densities n~~l p; (y(i)). 
This distance (and hence the associated mutual information l (y)) is zero if the 
components y(i) are statistically independent. This is because only in this case 
is the joint pdf equal to the product of the corresponding marginal pdfs and the 
Kullback-Leibler distance becomes zero. Hence, what is more natural than trying 
to compute W so as to force l (y) to be minimum, since this will make the compo
nents of y as independent as possible? Combining Eqs. (6.34), (6.40), and (6.41) 
and taking into account the formula that relates the two pdfs associated with x and 
y (y is a function of x), e.g., [Papo 91 ], we end up with 

N-1 

l(y) = -H(x) - In ldet(W)I - L f p;(y(i)) In p;(y(i)) dy(i) 

i=O 

(6.42) 

where det(W) denotes the determinant of W. The elements of the unknown matrix 
W are hidden in the marginal pdfs of the transformed variables, y(i). However, 
it is not easy to express this dependence explicitly. An approach currently used 
is to expand each of the marginal probabilities around the Gaussian pdf, g(y), 
following Edgeworth's expansion (Appendix A), and truncate the series to area
sonable approximation. For example, keeping the first two terms in the Edgeworth 
expansion we have 

(6.41) 

where Hk(y) is the Hermite polynomial of order k (Appendix A). To obtain an 
approximate expression for I (y) in terms of cumulants of y(i) and W, we can (a) 
insert in Eq. (6.42) the pdf approximation in Eq. (6.43), (b) adopt the approximation 
ln(I + y) ::e:: y - y 2 , and (c) perform the integrations. This is no doubt a rather 
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painful task! For the case of Eq. (6.43) and constraining W to be unitary, the 
following is obtained ([Hyva 01 ]): 

N-l ( I 1 7 
f(y) ~ C - t; UKj(y(i)) + 48Kl(y(i)) + 48KJ(y(i)) 

- ~Kj(y(i))K4(y(i))) (6.44) 

where Cina variable independent of W. Under the assumption that the pdfs are 
symmetric (thus, third order cumulants are zero,) it can be shown that minimizing 
the approximate expression of the mutual information in Eq. (6.44) is equivalent 
to maximizing the sum of the squares of the fourth-order cumulants. Of course, 
the unitary W constraint is not necessary, and in this case other approximate 
expressions for I (y) result, e.g., [Hayk 99). 

Minimization of I (y) in Eq. (6.44) can be carried out by a gradient descent 
technique (Appendix C), where the involved expectations (associated with the 
cumulants) are replaced by the respective instantaneous values. Although a detailed 
treatment of the optimization procedure is beyond the scope of this book, it is worth 
pointing out some of its aspects. 

Let us go back to Eq. (6.42), before we apply the approximations. Since H(x) 
does not depend on W, minimizing I (y) is equivalent with the maximization of 

[

N-1 ] 
J(W) =In ldet(W)I + E t; In p;(y(i)) (6.45) 

Taking the gradient of the cost function with respect to W results in 

(6.46) 

where 

q, ) _ [ p0(y(O)) P'tv_ 1(y(N - l))JT 
(y = - po(y(O))' .. . ' - PN - 1 (y(N - 1)) 

(6.47) 

and 

'.( (i)) = dp;(y(i)) 
p, y dy(i) (6.48) 

Obviously the derivatives of the marginal probability densities depend on the 
type of approximation adopted in each case. The general gradient ascent scheme 
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at the tth iteration step can now be written as 

W(t) = W(t - 1) + µ(t) ( w-T (t - 1) - E[</)(y)xT1) 

W(t) = W(t - 1) + µ(t) (I - E[</)(y)yT]) w-T (t - 1) 

225 

(6.49) 

In practice, the expectation operator is neglected, in the spirit of the stochastic 
approximation rationale (Section 3.4.2) . 

Remarks 

• From the gradient in Eq. (6.46) it is easy to see that at a stationary point the 
following is true: 

aJ(W) 
--wr = E[I - </)(y)yrl = o aw (6.50) 

In other words, what we achieve with ICA is a nonlinear generalization 
of PCA. Recall that for the latter, the uncorrelatedness condition can be 
written as 

(6.51) 

The presence of the nonlinear function </)( ·) takes us beyond simple uncor
relatedness, and brings the cumulants into the scene. As a matter of fact 
Eq. (6.50) was the one that inspired the early pioneering work on ICA, as a 
direct nonlinear generalization of PCA [Jutt 91]. 

• The update equation in Eq. (6.49) involves the inversion of the transpose 
of the current estimate of W. Besides the computational complexity issues. 
there is no guarantee of the invertibility in the process of adaptation. The 
use of the so called natural gradient [Doug 00], instead of the gradient in 
Eq. (6.46), results in 

W(t) = W(t - 1) + µ(t) (1 - E[</)(y)yTJ) W(t - 1) (6.52) 

which does not involve matrix inversion and at the same time improves 
convergence. A more detailed treatment of this issue is beyond the scope of 
the present book. Just to give an incentive to the mathematically inclined 
reader for indulging more deeply this field, it suffices to say that our familiar 
gradient, i.c, Eq. (6.46), points to the steepest ascent direction if the space 
is Euclidean. However, in our case the.parameter space consists of all the 
nonsingular N x N matrices, which is a multiplicative group. The space is 
Riemannian and it turns out that the natural gradient, pointing to the steepest 
ascent direction, results if we multiply the gradient in Eq. (6.46) by wr w. 
which is the corresponding Riemannian metric tensor [Doug 00]. 
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6.5.3 An ICA Simulation Example 

The example is a realization of the case shown in Figure 6.1. A number of I 024 
samples of a two-dimensional normal distribution was generated. 

The mean and covariance matrix of the normal pdf were 

/L = [-2.6042, 2.5(' I: = [10.5246 
9.6313 

9.6313] 
11.3203 

Similarly, I 024 samples from a second normal pdf were generated with the 
same covariance and mean -µ. For the ICA the method based on the second
and fourth-order cumulants, presented in this section, was used. The resulting 
transformation matrix W is 

W = [-0.7088 0.7054] ;::; [a~] 
0.7054 0.7088 a I 

The vectors a 1 and a2 point in the principal and minor axis directions, respec
tively, obtained from the PCA analysis. However, the most interesting direction 
for projection, according to the ICA analysis, is that of az and not of a 1 • Indeed, 
the kurtosis of the obtained transformed variables [y1, Y2]T = W x is 

K4(Y1) = -1.7 

K4(Y2) = 0.1 

Thus, projection in the principal axis direction results in a variable with a pdf close 
to a Gaussian. The projection to the minor axis direction results in a variable with 
a pdf that deviates from the Gaussian (Figures 6.1, 6.2) and is more appropriate 
from the classification point of view. 

6.6 THE DISCRETE FOURIER TRANSFORM (DFT) 

We have already seen that the basis vectors/images for the KL and SYD expansions 
are not fixed but are "problem dependent" and they are the result of an optimization 
process. This is the reason for their optimality with respect to the decorrela
tion and information packing properlies, but at the same time this accounts for 
their major disadvantage, that is, their high computational complexity. For the 
rest of the chapter we will be concerned with transforms that use fixed basis 
vectors/images. Their suboptimality with respect to decorrelation and informa
tion packing properties is most often compensated by their low computational 
requirements. 
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FIGURE 6.2: The setup for the ICA simulation example. The two vectors point 
to the projection directions resulting from the analysis. 

6.6.1 One-Dimensional DFT 

Given N input samples x(O), x(I), ... , x(N - I). their OFT is defined as 

1 N-I ( 2ir ) 
y(k) = .JN _?; x(11) exp - j Nk11 , k = 0.1 .... , N - I (6.53) 

and the inverse OFT as 

x(11) = ;.. 'f y(k) exp(j 
2

ir k11) • 
vN k=O N 

11=0.1, ... ,N - 1 (6.54) 

where j !!! v'-T. Collecting all x(n) and y(k) together into two N x I vectors 
and defining 

WN = exp(-j~) 
(6.53) , (6.54) are written in a matrix fonn as 

y=WHx , x=Wy 

(6.55) 

(6.56) 
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where 

w"= ~[ WN wz wN-1 
N N 

wN-l W2(N-I) W(N-l)(N-1) 
N N N 

It is not difficult to see that W is a unitary and symmetric matrix 

w- 1 = wH = w* 

The basis vectors are the columns of W. For example, for N = 4 

and the basis vectors are 

and 

j -I 
-I I 
-j -1 

-~ J -I 
j 

I T 
wo = 2 [I, I , I , I] 

I 
W( = 2(1,j,-l,-jf 

w2 =~[1 -I I -l]r 
2 ' ' ' 

1 
W3 = 2(1, -j, -), jf 

3 

x = LY(i)w; 
i=O 

] (6.57) 

The direct computation of (6.56) requires 0(N2 ) computations. However, tak
ing advantage of the specific structure of the matrix W, a substantial saving in 
computations is possible via the celebrated FFf algorithm, which computes each 
equation of (6.56) in O(N log2 N) operations [Proa 92). 

So far, the OFT has been introduced as a special type of a linear unitary transform 
of one vector to another. Another point of view, which will be useful later on in 
this chapter, is to see the DFT as a means of expanding a sequence x (n) into a set 
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of N basis sequences hk(n) 

where 

N - 1 

x(n) = L y(k)hk(n) 

k=O 

I ~exp(j2;kn) , n=0, 1, . . . , N-1 
hk(n) = vN 

0, otherwise 
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and y (k) are the coefficients of the expansion. The DFf basis sequences belong 
to a more general class of sequences known as orthonormal, that is, 

(h1(n) , hk(n)} = L hk(n)hi(n) = 8kt (6.58) 
n 

where (. , .) is known as the inner product of the sequences hk(n), h1(n) . For the 
DFT expansion we have 

l N - l ( 2n ) ( 2n ) 
(hk(n), h1(n)) = N ?; exp j Nkn exp -- j Nin 

However, it can easily be shown (Problem 6.8) that 

I N -
1 

( 2rr ) { I , I = k + r N. 
N L exp j N (k - l)n = 0, otherwise 

11=0 

r = 0, ±1. ±2, . .. 

(6.59) 

Hence 

6.6.2 Two-Dimensional DFT 

Given an N x N matrix/image, its two-dimensional OFT is defined as 

I N-1 N-1 

Y(k,l)= NL LX(m,n)W~mw~· 
m=O n=O 

(6.60) 
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and the inverse OFT as 

l N-1 N-1 

X(m, n) = N L L Y(k, ow;kmw;'n 
k=O 1=0 

(6.61) 

It is readily seen that this can be written in a compact fonn as 

y = wHxwH. x = WYW (6.62) 

Thus, the 2-0 OFT is a separable transform with basis images Wiw). i, j = 
0, l, ... , N - 1. It is apparent from (6.62) that the number of operations required 
for the respective computations is O(N2 log2 N), that is, the number of additions 
and multiplications needed for 2N one-dimensional OFfs, via the FFf algorithm. 

6.7 THE DISCRETE COSINE AND SINE TRANSFORMS 

Given N input samples x(O), x(l), ... , x(N - I) their discrete cosine transform 
(OCT) is defined as 

~ (rr(2n + l)k) y(k) = a(k) L., x(n) cos 
2

N , k = 0, l, ... , N - l 
n=O 

and the inverse OCT is given by 

~ (rr(2n + l)k) x(n) = L.. a(k)y(k)cos 
2

N , n = 0, I, ... , N - l 
k=O 

where 

a(k) = {~· 
~· 

k=O 

k#O 

In vector fonn the transform is written as 

y = CTx 

where the elements of the matrix C are given by 

l 
C(n, k) = .JN' k = 0, 0:::: n:::: N - l 

(6.63) 

(6.64) 

C( k) _ {2 (rr(2n + l)k) 
n, -yy;:;cos 2N , l:::k:::;N-1,0:::;n:::N-l 
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Matrix C has real elements, and it is easy to see that it is orthogonal, 

The 2-D OCT is the separable transform defined as 

r = c7 xc, x = crc7 (6.65) 

The discrete sine transfonn (DST) is defined via the transform matrix 

and it is also an orthogonal transform. The OCT and DST belong to the family 
of transforms that can be computed via a fast method in 0 (N log2 N) operations 
[Jain 89. Lim 901. 

Remark 

• The OCT and DST have very good information packing properties for most 
of the images, in the sense that they concentrate most of the energy in a 
few coefficients. An explanation for this property is that both offer a close 
approximation to the (KL) transform for a class of random signals, known 
as first-order Markov processes, which can approximately model a number 
of real-world images [Jain 89]. Figure 6.3 shows an image and the resulting 
OFT (magnitude), DST, and OCT transforms. It is apparent from the figure 
that the high-intensity coefficients of the transforms (dark) are concentrated 
in a small area, whose size depends on the energy compaction properties 
of the respective transform. This area is smaller for OCT and DST than 
for OFT. 

6.8 THE HADAMARD TRANSFORM 

The Hadamard transform and the Haar transform, to be considered in the next sec
tion, share a serious computational advantage over the previously considered OFT, 
OCT, and DST transforms. Their unitary matrices consist of± I and the transforms 
are computed via additions and subtractions only, with no multiplications being 
involved. Hence, for processors for which multiplication is a time-consuming 
operation a substantial saving is obtained. 
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~~· -r;-· 

~! 
r,· 

FIGURE 6.3: Example of an image and its magnitude DFT, DST, and OCT 
transforms, shown from top left to bottom left in the clockwise sense. 

The Hadamard unitary matrix of order n is the N x N matrix, N = 2". generated 
by the following iteration rule: 

H11 = H1 ® H11-1 (6.66) 

where 

l [ l I J H1 = ,,,;'2 I -1 (6.67) 

and ® denotes the Kronecker product of two matrices 

[ 

A ( I •. 1 ) B A ( I '_ 2) B 

A®B= : : 
A(N. l)B A(N, 2)B 
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where A (i, j) is the (i, j) element of A, i, j = 1, 2, ... , N. Thus, according to 
(6.66), (6.67), it is 

and for 11 = 3 

1 
-1 

-1 

1 
-1 
-1 

_:] 
-1 

1 

H2] 
-H2 

It is not difficult to show the orthogonality of H11 , n = I, 2, ... , that is, 

H,~ 1 = H,; = H,, 

For a vector x of N samples and N = 2" the transform pair is 

The 2-D Hadamard transform is given by 

(6.68) 

(6.69) 

The Hadamard transform has good to very good energy packing properties. Fast 
algorithms for its computation in O(N log2 N) subtractions and/or additions are 
also available [Jain 89]. 

Remark 

• Experimental results using the OCT, DST, and Hadamard transforms for 
texture discrimination have shown that the performance obtained was close 
to that of the optimal KL transform [Unse 86, Unse 89]. At the same time, this 
near-optimal performance is obtained at substantially reduced complexity, 
due to the availability of fast computational schemes as reported before. 

6.9 THE HAAR TRANSFORM 

The starting point for the definition of the Haar transform is the Haar functions 
hk (z). which are defined in the closed interval [O, I]. The order k of the function 
is uniquely decomposed into two integers p, q 

k = 2P + q - 1, k = 0. 1, ... , L - 1, and L = 2" 
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Table 6.1: Parameters for the Haar functions 

k 0 I 2 3 4 5 6 7 
p 0 0 I 2 2 2 2 
q 0 I 2 2 3 4 

where 

0 S p S n - I , 0 S q S 2 P for p =/= 0 and q = 0 or I for p = 0 

Table 6.1 summarizes the respective values for L = 8. The Haar functions are 

I 
ho(z) = hoo(z) = ,JI, z E [O, I] (6.70) 

q_-=l_ cl 
2P _'.S z < 2P 

cl !L 2P _'.S Z < 2P 
(6.71) 

otherwise in [O, I] 

The Haar transform matrix of order L consists of rows resulting from the preceding 
functions computed at the points z = 'f, m = 0, I, 2, ... , L - I. For example, 
the 8 x 8 transform matrix is 

I I I I -I -I -I -I 

h h -h -h 0 0 0 0 

I 0 0 0 0 h h -h -h 
H=- (6.72) 

vf8 2 -2 0 0 0 0 0 0 

0 0 2 -2 0 0 0 0 

0 0 0 0 2 -2 0 0 

0 0 0 0 0 0 2 -2 

It is not difficult to see that 

H-l =HT 

that is, H is orthogonal. The energy packing properties of the Haar transform 
are not very good. However, its importance for us lies beyond that. We will 
use it as the vehicle to take us from the world of unitary transforms to that of 
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multiresolution analysis. To this end, let us look carefully at the Haar transform 
matrix. We readily observe its sparse nature with a number of zeros, whose location 
reveals an underlying cyclic shift mechanism. To satisfy our curiosity as to why 
this happens, let us look at the Haar transform from a different perspective. 

6.10 THE HAAR EXPANSION REVISITED 

Let us split ouroriginal set of N input samples (N even) x (0), x ( 1), ... , x (N - I) 
into successive blocks of two, that is, (x(2k), x(2k + 1)), k = 0. I, ... , q- - 1, 
and apply the Haar transform of order L = 2. For each pair of input samples, a 
pair of transformed samples is obtained, 

[y1(k)] I [I 
yo(k) = .j2 I 

I] [ x(2k) ] 
-I x(2k +I) ' 

N 
k = 0, I, ... , °"2 - I (6.73) 

That is. 

I 
YI (k) = .j2(x(2k) + x(2k + I)) (6.74) 

I 
yo(k) = ./2(x(2k) - x(2k +I)). 

N 
k = 0, I ..... "2 - 1 (6.75) 

This can be interpreted as the action-on the sequence of N input samples
of two (noncausal) filters with impulse responses (h 1 (0) = Jz, h 1 (-1) = Jz) 
and (ho(O) = Jz. ho(-!) = - Jz), respectively. The corresponding transfer 

functions (Appendix D) are 

(6.76) 

(6.77) 

In other words, the order L = 2 Haar transform computes the output samples of the 
two filters when they are fed with the input sequence x (n ), n = 0, l, 2, ... , N - I. 
Furthermore, the output sequence samples are computed for every other sample 
of the input sequence, at even time instants 0,2,4, .. . , as (6.74) and (6.75) suggest. 
This operation is portrayed in Figure 6.4b. The operation at the output of the two 
filters is known as subsampling by M, in this case M = 2, and it is defined in 
Figure 6.4a. In other words, from the samples generated at the filter output we 
keep one every M(= 2). In the time domain and for an input sequence consisting 
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fj ·8 y 
• 

y(k) = y(kM) 

(a) 

Yo 

... x(2),x(l),x(O) 

(b) 

FIGURE 6.4: (a) Subsampling operation and (b) filtering interpretation of the 
Haar transform. 

of eight samples, the output, yo(k), of the Ho branch of Figure 6.4b will consist 
of four samples given by 

[

Yo(O)] [}i- }ii 0 01 0 01 0 0 l 
y0 (1) = 0 01 }i- }ii ~ 

1
01 0 0 

yo(2) 0 01 0 Oj ./2- ./21 0 0 

Yo(3) 0 01 0 01 0 Oj }i- }i 

x(O) 
x(I) 

x(2) 
x(3) 

x(4) 
x(5) 

x(6) 

x(7) 

(6.78) 

Well, this is nothing other than the action of the last four rows of the 8 x 8 Haar 
transform in (6.72)! What about the rest? Let us carry on the splitting of Figure 6.4b 
one step further, as shown in Figure 6.5. Using the easily shown Noble identity 
illustrated in Figure 6.6a (Problem 6.17), I.he structure of Figure 6.5 turns out to be 
equivalent to that of Figure 6.6b. Taking into account the subsampling operation 
of the lower branch after the filters Ho and H1, the Noble identity leads to 

(6.79) 
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Yo 

... :c(2),x(l),x(O) 

FIGURE 6.5: Two-stage filtering followed by subsampling operation. 

(6.80) 

From the transfer function Fi (z) and taking into account the subsampling by 4 
(2 x 2) operation, the first two samples of the YI (k) sequence are given by 

[
YI (0)] [! ! 
YI (l) = 0 0 

0 0 

0 ! I 
2 

(6.81) 

This is nothing but the action of the third and fourth rows of the 8 x 8 Haar 
transform on the input vector. If we now carry on the splitting one step further, as 

(a) 

Yo 

... x(2),x(l),x(O) y 

(b) 

FIGURE 6.6: (a) Noble identity I and (b) equivalent filter bank of Figure 6.5. 
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... x(2),x( I ),;r(O) 

FIGURE 6.7: Tree-structured filter bank. 

in Figure 6.7, it is straightforward to show by repeating the preceding arguments 
that 

and 

1 
Y2(0) = - (1 .J8 

1 
y3(0) = - (1 

y'8 

-1 -1 -1 -1] [;~~~] 
x(7) 

(6.82) 

[

x(O)] 
x( 1) 

1] : 

x(7) 

(6.83) 

These equations are the actions of the second and first rows of the Haar transform 
on the input vector. The structure of Figure 6.7 is known as a (three-level) tree
structuredfilter bank generated by the filters Ho(z) and H1 (z) . Figure 6.8 shows 
the frequency responses of these two filters. One (Ho(z)) is a high-pass and the 
other a low-pass filter. Herein lies the importance of the filter bank interpretation of 
the Haar transform. The input sequence x(n) is first split into two versions of lower 
resolution with respect to the original one: a low-pass (average) coarser resolution 
version and a high-pass (difference) detailed resolution one. In the sequel the 
coarser resolution version is further split into two versions, and so on. This leads 
to a number of versions with an hierarchy of resolutions. This decomposition is 
known as multiresolution decomposition. 

The idea of multiresolution decomposition has been around for some time 
[Burt 83, Akan 93] and has been exploited in various applications and for a num
ber of reasons. Its popularity as a tool in pattern recognition is mainly due to 
the information compaction capabilities associated with such a decomposition, 
provided.filters Ho, Hi are properly designed. For many types of signals, such as, 
speech and images, most of the information is localized in certain resolution levels. 
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FIGURE 6.8: Magnitude of the frequency response for the two Haar tilters. 
Hi is lowpass and Ho a highpass one. 

Thus, most of the energy is concentrated in a (relatively) small number of samples, 
which carry most of the necessary information [Este 77, Mall 89]. Some funda
mental issues related to the multiresolution decomposition and the design of filter 
banks will be highlighted next. 

6.11 DISCRETE TIME WAVELET TRANSFORM (DTWT) 

The goal of this section is twofold. We first free ourselves from the Haar functions, 
and we seek the possibility of using other filters in place of Ho, H 1• There is more 
than one reason for this generalization. An obvious reason is that the frequency 
responses of the Haar filters are far from ideal. If our aim is to split the original 
sequence into a hierarchy of "coarse" and "detailed" versions, we should require 
the filters that perform the splitting to be as close as possible to the ideal low/high
pass ones (Figure 6.9). Our next concern in this section is the inversion problem. 
That is, if we know the lower resolution versions, can we obtain the original 
sequence, x(n), as was the case with the unitary transforms? We will show that 
under certain constraints in the design of Ho and H 1 this is indeed possible. 

The Two-Band Case 

Let us start with the simple two-band case of Figure 6.4b, where we now assume 
that the filters are not the Haar ones. If ho(k), h 1(k) are the respective impulse 
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IH(w)I 

271: w 
(a) 

IH(w)I 

271: w 
(b) 

FIGURE 6.9: Ideal frequency responses for (a) low-pass and (b) high-pass 
filters. 

responses, then we can write 

yo(k) = L:x(l)ho(n - Oln=2k 
I 

)'I (k) = L x(l)h 1 (n - L)ln=2k 
I 

where YI (k) is the output of the lower branch of Figure 6.4b. Collecting all 
yo(k), YI (k), k = 0, l, 2, ... , together in a vector we have 

yo(O) ho(2) ho(l) ho(O) ho(-l) ho(-2) 

y1(0) hi (2) h1 (l) hi (0) h1(-l) ht (-2) 
x(O) 

yo(l) ho(2) ho(l) ho(O) 
= x(l) 

YI (l) hi (2) h I ( l) 1z I (0) 
x(2) 

yo(2) lzo(2) 

YI (2) /z I (2) 



or 
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y(k) = y(l) , k=IM 

y(k) = O otherwise 

(a) 

(b) " x 

FIGURE 6.10: Tree-structured synthesis filter bank. 

y = T;x (6.84) 

Here, we have assumed that the filters can be noncausal but they are of finite impulse 
response (FIR) (the impulse response has a finite nonzero number of terms). The 
latter assumption is imposed here in order to avoid issues of convergence of infinite 
series. Observe the structure of T;. It basically consists of two rows, one with the 
impulse response of Ho and the other with that of Hi, which are then shifted each 
time by two to the right, to form the rest of the rows. This is the result of the 
subsampling, by two, operation. Figure 6. !0b shows a structure that combines 
Yo(k), y 1 (k), through the filters Go. G 1. to form a sequence x. The symbol at the 
input of the filters denotes the upsampling by M operation, which is defined in 
Figure 6.1 Oa. In this case M = 2. In other words, this is equivalent to stuffing 
M - I zeros between every two samples. That is, the input sequences of the filters 
Go, G 1 will be 

... 0 Yo(O) 0 yo( I) 0 yo(2) 0 .. . 

.. . 0 yi(O) 0 yi(I) 0 y1(2) 0 .. . 

respectively. Thus, every other sample of the impulse response hits a zero and 

xo(n) = LYo(k)go(n - 2k) 
k 
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x1(n) = LY1(k)g1(n - 2k) 
k 

x(n) = xo(n) + x, (n) 

Filters G; are known as the synthesis filters and the corresponding H;, of Figure 
6.4b, as the analysis filters. Collecting all x(n) together, it is not difficult to see 
that 

or 

x(O) 

x(l) 

x(2) 

go(O) g1(0) go(-2) gi(-2) 

go(l) g1(1) go(-l) g1(-l) 

go(2) g1 (2) go(O) g1 (0) 

go(3) g1 (3) go(I) g1 (I) 

In order that x = x we require that [Yett 92] 

T0 T; =I= T;T0 

yo(O) 
YI (0) 

yo(l) 
YI (I) 

Multiplying rows of T; with columns of T0 , (6.86) becomes equivalent to 

(6.85) 

(6.86) 

Lh;(2k - n)gj(n - 21) = Dk/Dij. i, j = 0, I (6.87) 
n 

or according to the definition of the inner product in (6.58), 

(h;(2k - n),gj(n - 21)) = Dk/Dij 

If (6.87) is satisfied, we say that the two-band filter bank is a perfect reconstruction 
one and x(n) = x(n). Thus, 

x(n) = LYo(k)go(n - 2k) + LYI (k)g1 (n - 2k) (6.88) 
k k 
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Equation (6.88) can also be seen from a different perspective. It is an expansion 
of x (n) into a set of basis sequences 

{go(n - 2k),g 1 (n - 2k)), k E Z 

where Z is the set of the integer numbers. From such a point of view yo(k), y 1 (k) 
are the respective coefficients of the expansion. This is known as the discrete time 
wavelet transform ( D1WT) and the coefficients Yo(k), YI (k) as the discrete time 
wavelet coefficients. Thus, given a perfect reconstruction two-band filter bank (i.e .. 
condition (6.87) is satisfied) the following transform pair is defined 

Remarks 

y;(k) = L:x(n)hi(2k - n) (a) 
11 

I 

x(n) =LL Yi(k)g;(n - 2k) (b) 
i=O k 

• Two sets of basis functions are involved, namely 

(6.89) 

h;(2k - 11) = ¢idn), gj(n - 21) = i/111(n) i, j = 0, I and k. 1 E Z 

Equation (6.87) is an orthogonality condition between ¢;k (n) and ijJ 1/(11 ). 

that is. 

and it is known as the biorthogonality condition. The discrete time wavelet 
transform pair in (6.89) is a biorthogonal expansion. 

• The basis sequences ¢ik (n) and if! JI (n) of the expansion are shifts by an even 
number of samples of four basic mother sequences go(n), gi (n), ho(-11). 

h 1 (-n), which are the impulse responses of the synthesis and the time
reversed analysis filters. For the recovery of x(11) from its discrete time 
wavelet coefficients, each coefficient y; (k) weighs and adds a copy of the 
mother sequences g; (n) shifted by 2k. 

• When the sequences ¢;k (n) = hi (2k - n) are themselves orthogonal, that is. 

L h;(2k - n)h1(21 - n) = 8k18iJ· i, j = 0, 1 and k. l E Z 
II 

then 

gi(n) = hi(-n) 
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Table 6.2: Daubechies' low-pass filters of length 4, 6, 8, and 10 

hi (0) 0.4829629 0.33267 0.2303778 0.1601024 
h I (I) 0.8365163 0.806891 0.7148466 0.6038293 
hi (2) 0.2241439 0.459877 0.6308808 0.7243085 
h I (3) -0.1294095 - 0.135011 -0.0279838 0.1384281 
hi (4) - 0.08544 -0.1870348 -0.2422949 
hi (5) 0.03522 0.0308414 -0.0322449 
hi (6) 0.0328830 0.0775715 
h1 (7) -0.0105974 -0.0062415 
h I (8) -0.0125807 
hi (9) 0.0033357 

That is, the synthesis filters are the time reverse of the analysis ones. Such 
a filter bank is known as orthogonal or paraunitary, and we have the same 
set of mother sequences (hi only) involved in both equations of the discrete 
time wavelet transform (6.89). 

• A number of orthogonal and biorthogonal perfect reconstruction filter pairs 
have been proposed in the literature, [Daub 90, Vett 95]. Table 6.2 gives the 
coefficients for the first four of Daubechies' maximally flat orthogonal filters . 
The low-pass version h 1 (n) is shown. The high-pass versions are obtained 
as ho(n) = (-I)" h 1 (-n + 2L - I), where L is the length of the filters. 

• Besides the case of wavelet basis sequences with predefined values, a large 
research effort has been devoted to constructing such sequences that are opti
mized to the specific problem of interest. This has also been used in pattern 
recognition applications. For example, in [Mall 97) it is proposed to design 
the filters of the bank to optimize a class discriminant criterion. A different 
approach is followed in [Szu 92], where an optimal linear combination of 
predefined bases is sought for classification of speech signals. 

• When implementing filter banks in practice, noncausal filters have to be 
appropriately delayed to make them realizable (Appendix D). This makes it 
necessary to involve certain delay elements at different points, in order to 
safeguard the perfect reconstruction property of the analysis-synthesis bank 
(Problem 6.19). 

• In practice, the number of input samples x(n) is finite, that is, n = 0, I, .. . , 
N - I. Thus, for the computation of (6.89) some initial conditions are 
required. Zero, periodic, or symmetric extensions of the data are popular 
alternatives. Such implementation issues as well as algorithms for the 
efficient computation of the DTWT coefficients are discussed in [Yett 95. 
Chapter 6] . 



Section 6.11: DISCRETE TIME WAVELET TRANSFORM (DTWT) 245 
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x 

FIGURE 6.11: Tree-structured synthesis tilter bank. 

Many Bands Case 

Figure 6.11 shows the synthesis part corresponding to the analysis bank of 
Figure 6.7, and it is a generalization of the two-band synthesis concept. Using 
the easily shown Noble identity given in Figure 6.12 (Problem 6.17), we end up 
with the equivalent structure of the synthesis part, shown in Figure 6.13. Let f; (n) 
be the impulse responses of the F; filters. It is easy to see that the respective 
contribution of each y; (k) sequence to the output x (n) is 

x;(n) = LY;(k)f;(n -i+1k) i = 0, 1, ... , J - 2 
k 

x1-1(n) = LY1-1(k)f1-1(n -21- 1k) 
k 

J-1 

x(n) = L x;(n) 
i=O 

where J is the number of bands, with J = 4 in the case of Figures 6.11 and 
6.13. It can be shown [Vaid 93] that if the mother filters G0 , G 1, which generate 
the synthesis part, and the mother filters Ho, H1 of the analysis part satisfy the 
biorthogonality condition (6.87), then the 1-level analysis-synthesis bank is also 

FIGURE 6.12: Noble identity II. 
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A 

x 

FIGURE 6.13: Equivalent of the tree-structured filter bank of Figure 6.11. 

a perfect reconstruction filter bank, that is, 

1-2 

x(n) = x(n) = L LY;(k)f;(n -i+1k) + LYJ-1(k)/J-1(n - 21- 1k) 
i=O k k 

(6.90) 

where 

y;(k) = .L:x(n)/;(i+ 1k - n). i = 0, I, ... , J - 2 (6.91) 
n 

"""' A 1 I Y1-1(k) = L..,,x(n)fl-1(2 - k - n) (6.92) 
n 

with f; (k) being the impulse responses of the corresponding analysis band, in 
analogy with Figure 6.6b. To summarize our findings, let us define 

1/J;k(n) = f;(n - i+ 1k), i = 0, I, ... , J - 2 

1/J(J-IJk(ll) = /J-1(11- 21
-

1k) 

¢;k(n) = f;ci+ 1k -11) i = o, 1, .... J - 2 

A 1 I 
</J(l-t)dn)=/1 - 1(2 - k-n) 

Then from (6.90), (6.91 ). and (6.92) we obtain Table 6.3. 
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Table 6.3: The discrete time wavelet transform 

v;(k) = Ln x(n)</>ik(n) 

x(n) =Li Lk Y;(k)i/l;k(n) 

Ln </>;k{n)i/ljJ(n) = Ok/Oij 

1/l;k{n) = </>;k(n) 

Ln </>;k(n)</>j1(n) = Ok/Oij 

Remarks 

DTWT 

Inverse DTWT 

Biorthogonal expansion 

Orthonormal expansion 

• A notable characteristic of the DlWT is that the basis sequences for each 
level i are power of 2 shifts of a corresponding mother sequence 

1/lik(n) = 1/l;o(n - 2'k), r = i +I for i =fa J - I 

or r = J - 1 for i = J - 1 

</>;k(n) = </>;o(n - 2'k), r = i + 1 for i =fa J - I 

or r = J - I for i = J - I 

In the more elegant theory of continuous wavelet transform all analysis 
(synthesis) basis functions are produced from a single analysis (synthesis) 
mother function by dilations (time scaling) and shifts [Meye 93, Daub 90, 
Yett 95]. 

• The magic number 2, whose powers determine the shifts in the mother basis 
sequences, results from the successive splitting by two in the tree-structured 
filter banks, which we have adopted to introduce the DlWT. Filter banks of 
this type are known as octave-band filter banks. Their characteristic is that 
the bandwidth of each of the filters in the bank is the same in a logarithmic 
scale. Sometimes they are also called constant-Q filter banks to stress the 
fact that the ratio of the filters' bandwidth to the respective central frequency 
is constant. Generalizations of DlWT with another integer M in place of 2 
can also be defined and used [Stef93]. 

Example 6.4. The Haar Transform-The Epilogue 

We have already seen that the Haar transform is equivalent to a tree-structured analysis 
filter bank. Let us now look at the synthesis problem. For the 8 x 8 Haar transfom1 and 
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after a row reshuffling of the corresponding Haar matrix, we have 

Yo(O) 2 -2 0 0 0 0 0 0 

Yo(l) 0 0 2 -2 0 0 0 0 

Yo(2) 0 0 0 0 2 -2 0 0 r(O)] 
Yo(3) 1 0 0 0 0 0 0 2 -2 x(l) 

YI (0) J8 ../2 ../2 -../2 - ../2 0 0 0 0 

YI (I) 0 0 0 0 .Ji .Ji -.Ji - .Ji x(7) 
yz(O) 1 -1 -1 -1 -1 
y3(0) I I I I 

or 

y =fix 

Thus the 8 x 8 Haar transform gives four coefficients at the finest resolution level 0, two 
at level 1, and one for each of the coarsest resolution levels 2 and 3. We will now design the 
corresponding synthesis bank to obtain x(n) from these coefficients. The impulse responses 
of the Haar analysis tilters are 

It is readily seen that 

./2 
ho(n) = _ _l 

./2 l 
l 

0 

n = Oorn =-I 

otherwise 

n=O 

n = -1 

otherwise 

2>i(2k - n)hj(2l - n) = 8;j8kf, i, j = 0, 1 
n 

That is, the Haar filter bank is paraunitary. Thus, the synthesis filters can be defined as 

g;(n)=h;(-n), i==O,I 

Hence 

From the equivalent structure of the synthesis bank of Figure 6.13 we have 
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and the respective impulse response is 

Fo!Jowing similar arguments, we have 

J8 

1

1 

h(n) = _ __!___ 
J8 

0 

n = O, l 

n = 2, 3 

otherwise 

n = 0, I. 2, 3 

n = 4, 5, 6, 7 

otherwise 

11=0.1 . ... , 7 

otherwise 

If we now insert these values in (6.90) and collect the values of x(n) together, we get 

2 0 0 0 J2 0 Yo(O) 
--2 0 0 0 J2 0 YoO l 

[x(0)1 0 2 0 0 -J2 0 Yo(2) 
x(I) 1 0 -2 0 0 -J2 0 Yo(3) 

: = J8 0 0 2 0 0 J2 -1 Y1(0) 

x(7) 0 0 -2 0 0 J2 -1 YI (1) 
0 0 0 2 0 -J2 -1 Y2(0) 

0 0 0 -2 0 -J2 -1 y3(0) 

or 

x = fIT y 

249 

Thal is, we reobtain the inverse (within a permutation) Haar transform. Hence. we can now 
state that the Haar transform and its inverse form a D1WT pair; using the orthogonal Haar 
.l'equences as the basis for the wavelet expansion. 

6.12 THE MULTIRESOLUTION INTERPRETATION 

The goal of this section is to highlight, without resorting to mathematical details, 
an important aspect of the wavelet transform that accounts for its success as a tool 
in pattern recognition as well as in numerous other applications. Let us assume 
for simplicity that the two filters in the analysis-synthesis bank of a paraunitary 
filter bank are ideal low/high pass. Figure 6.14 shows the magnitude responses 
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FIGURE 6.14: Filter bandwidths in an octave band filter bank. 

of the respective filters in the equivalent of the tree-structured octave band filter 
bank of Figure 6.13. The width of the frequency response (bandwidth) is halved 
for each level of the tree (Figure 6. I 4d). That is, the "detail" resolution (high-pass) 
filters have a wide bandwidth and the "coarse" resolution (low-pass) filters are of 
narrow bandwidth. Filters F3 and Fz, the two coarser resolution ones, are of the 
same bandwidth. These observations are true for any octave band filter bank of 
any number of levels J. That is, the width of F; (z) is half of the width of F; -1 (z) 
and the widths of F1-2 and F1 -1 are equal. This multiresolution viewpoint of the 
DTWT is a source of its power as a tool, and it is worth spending some time on it. 

It is known (uncertainty principle) that filters with narrow bandwidth have long 
impulse responses and filters with wide bandwidth have short impulse responses. 
Let us take for example the Haar filter bank. The filter impulse response at level 
zero, ho(n) = fo(n), is (Jz. - jz) and at level three (i.e., corresponding to 
Eq.(6.83)),j3(n).is )so, l~ 1.1.l, I, I, l).Sincetheoutputofeachfilterofthe 
analysis bank, that is, \he DTWT coefficients, is the convolution of the input 
sequence with the respective impulse response, the filter tends to spread out the 
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input activity. For example, a single impulse in the input of the F3(z) filter pro
duces a sequence of eight samples at the output. Thus, if our goal is to identify 
sudden (short in time) changes in an input signal, it is apparent that one should use 
filters of short impulse response to be able to obtain good time locality. Otherwise, 
the sudden activity will spread in time. Hence, for sudden changes in time (rich 
in high-frequency components) one needs a "detailed" analysis filter, that is, a 
short impulse response. For slowly time-varying activities, rich in low frequen
cies, one needs a "less detailed" analysis filter, so as to be able to "see" the longer 
scale variations. Thus, detail is not of interest here and long impulse responses 
are required . In other words, the resolution should match the scale of the activity 
under investigation. 

The wavelet transform provides the means of analyzing the input signal into a 
number of different resolution levels in a hierarchical fashion. This is also known 
as multiresolution analysis. Thus, signal components corresponding to different 
physical activities can be best represented at different resolution levels: short 
high-frequency activities at the finer resolution and long low-frequency ones at 
the coarser resolution levels . It turns out that this coarse-to-fine analysis strategy 
is appropriate for a number of pattern recognition tasks. 

On the synthesis part, the signal can be reconstructed from its multiresolution 
components. See, for example, Figure 6.13 . The sequence x (n) is synthesized first 
by its coarser component x3(n) and then higher frequency (detailed) components 
are added, resulting in a successively finer approximation. When the component 
of the finest detail , xo(n) , is added, the original signal is obtained. This philosophy 
is at the heart of a number of signal compression schemes. 

Remarks 

• The analysis of a signal in a number of components via a filter bank is not 
new and goes back to the work of Gabor in the 1940s. It is directly related 
to the short-time Fourier transfom1 defined as [Gabo 46, Yett 951 

00 

X 5 (lv,m)= L x(n)e(n-m)exp(-jlvn) (6.93) 
n = - 00 

where {)(n) is a window sequence, whose center is successively moved to 
the different points 111 . Thus, each time, the part of the sequence x(n) around 
m (depending on the window's effective width) is selected and Fourier trans
formed . It can be shown that this is equivalent to filtering the signal x(n) by 

a bank of filters, each centered at a different frequency but all of them having 
the same bandwidth (Problem 6.20). This is its drawback, because low- and 
high-frequency signal components are "looked" at through the same window 
in time, resulting in poor overall localization of the events. What is really 
needed is a long window to analyze slowly time-varying low-frequency 
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components and a narrow window to detect high-frequency short-time activ
ities. As we saw, this is offered by a tree-structured octave-band filter bank, 
associated with the D1WT. 

• All we have said about wavelet transforms and multiresolution analysis is 
just a glimpse of the whole story, a story that is really worth further effort 
see, for example, [Daub 90]. 

6.13 WAVELET PACKETS 

The DlWT has been introduced via an octave-band filter bank, and the wavelet 
coefficients result at the outputs of the bank, when its input is fed with the signal 
of interest. The octave-band filter bank is constructed by successively splitting 
by two the lowest frequency band (leaf) of the tree-structured bank (Figure 6. 7). 
However, there are many cases in which most of the activity is not in the low
frequency band but in the middle or high-frequency parts of the spectrum. In such 
cases, it may be useful to be able to allocate finer frequency bandwidths in the 
bands where the activity occurs. As we will see later on in the chapter, this can boost 
the discriminatory power of our system from a classification point of view, which 
is always our main interest. Figure 6. l 5a shows an example of a tree-structured 
filter bank but with the finer frequency splitting occurring at a midfrequency band. 
Figure 6. I 5b shows the resulting bandwidths for each of the (ideal) filters in the 
bank (f-axis) and the respective window length of the impulse responses in the 
time domain (n-axis). In other words, filters 2 and 3 have half the bandwidth 
and twice the impulse response of 4. Furthermore, they have one fourth of the 
bandwidth and a four times longer impulse response than that of I. For comparison, 
Figure 6.16 shows the frequency-time resolution plots for an octave-band filter 
bank (a) and for a bank with equal bandwidths (b), associated with the DlWT and 
the short-time Fourier transform, respectively. Having freed ourselves from the 
octave-band tree structure, filter banks can be constructed by various tree growth 
strategies, with that of Figure 6.15 being just one possibility. As was the case with 
the octave-band philosophy, these arbitrary tree structures also lead to a set of 
basis sequences for discrete signal expansions [Coif 92] called wavelet packets. 
Following arguments similar to those in Section 6.11 and using filters with the 
perfect reconstruction property, the basis sequences for the wavelet packets result 
from the respective impulse responses of the synthesis bank, after the appropriate, 
for each level, power of two time shifts . 

6.14 A LOOK AT TWO-DIMENSIONAL GENERALIZATIONS 

All the concepts discussed so far can be carried over in the two-dimensional 
case. No doubt, the task is even more challenging now. How can one define 
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FIGURE 6.15: Wavelet packet tree structure. 

subsampling here? The straightforward way is via the "separable" philosophy. 
That is, we first transform (filter) the columns of the two-dimensional sequence 
and then the resulting rows. This leads to the subsampling shown in Figure 6. 17. 
In other words, we leave out every other row and every other column (for sub
sampling by 2). Figure 6.18 shows the filter bank structure that complies with this 
philosophy. The image sequence I (m, n) appears in the filters of stage l column 
after column and the respective outputs are subsampled by 2. The resulting sub
sampled images are in tum filtered at stage two, but now they are fed into the filters 
row after row. 

Assuming Ho to be the (ideal) high-pass and H1 the low-pass filter, the four 
frequency bands that are formed by the previous procedure are illustrated in 
Figure 6.l 9a. The area Hi Hi corresponds to low-pass columns and rows, Hi Ho 
to low-pass columns and high-pass rows, and so forth. Figure 6. l 9b shows the 
resulting segmentation of the frequency domain when the low-pass area H1 H1 is 
successively split by repeating the procedure. 
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FIGURE 6.16: Frequency versus time resolution for (a) octave band and 
(b) equal bandwidth filter banks. 
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FIGURE 6.17: Separable subsampling by 2 for images. 

Example 6.5. Figure 6.20 shows a 64 x 64 image of a triangle. The three "line" images 
are the 32 x 32 images resulting when passing the triangle image through the structure of 
Figure 6. 18. In the columnwise filtering of the first stage the vertical line goes through the 
low-pass H1 filter (no variation across it) and the horizontal and diagonal lines go through 
the high-pass Ho. This is because in a columnwise filtering these appear as impulses in each 
column, thus rich in high frequencies. In the row scanning of the second stage it will be 
the horizontal line that will go through the low-pass filter. Similar reasoning explains the 
position of the various parts of the triangle in the different bands. 

Although this is obviously a very simplified example, it is quite instructive. It demon
strates how the original image can be obtained from its multiresolution components and 
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FIGURE 6.18: Basic element for a two-dimensional filter bank, leading to 
separable subsampling by 2. 
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FIGURE 6.19: (a) Frequency domain division corresponding to the filter bank 
of Figure 6.18 and (b) the result of a successive division of the low-pass part of 
the spectrum. 

also how different characteristics (directional in this case) of the whole may be isolated at 
different bands. 

6.15 APPLICATIONS 

All the transforms we have studied in this chapter are good candidates for feature 
generation, and they have been used extensively in various pattern recognition 
tasks. However, the wavelet transform offers an extra advantage, which in some 
cases can be beneficially exploited. Its mu/ti resolution properties conform to the 
way perception is achieved by humans, through their hearing and visual systems. 



256 Chapter 6: FEATURE GENERATION I: LINEAR TRANSFORMS 
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FIGURE 6.20: A triangle image and its filtered versions through the filter bank 
of Figure 6.18. 

The human ear exhibits decreasing resolution at higher frequencies, in a way 
that is uniform on a logarithmic scale (octave bands) [Flan 72]. Experiments in 
psychophysics and physiology show that the human visual cortex perceives by 
decomposing the stimuli in a number of frequency bands [Camp 68, Levi 85], 
which are also dependent on the spatial orientation [Camp 66]. Experimental 
results in [Nach 75] indicate that these frequency bands have the approximate band
width of an oclave. The similarities between the mechanism with which human 
perception systems treat the respective stimuli and the processing techniques that 
split the signal into various (spatial) frequency bands, in a way similar to the 
wavelet transfonn,justify the use of the latter in pattern recognition tasks [Mall 89). 

The following examples come from two of the most important areas of interest 
in today's pattern recognition applications. 

Recognition of Handwritten Characters 

The development of OCR systems is of particular importance in various application 
areas. One of the most challenging among them is the recognition of handwritten 
characters. Figure 6.21 shows the character "3" as well as its boundary contour 
after the application of a contour tracing algorithm [Pita 92). The task now becomes 
one of shape recognition. As discussed in more detail in Chapter 7, the boundary 
can be represented as a closed parametric curve in the complex plane 

u(n) = x(n) + jy(n), 0 S n S N - l (6.94) 

with N being the number of samples (pixels) found tracing the contour and 
x(n), y(n) the corresponding coordinates. The first point (x(O), y(O)) of the 
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FIGURE 6.21: Wavelet coefficients corresponding to the curvature of the 
boundary of number "3." 

sequence is considered as the origin. Fourier methods have been used extensively 
in such classification tasks, by obtaining the DFT of u (n) and keeping a sufficienl 
number, from the total of N, of Fourier components as features. An alternative way 
is to extract the features from the wavelet domain. In other words, x (n) and y (n) are 
independently filtered through a tree-structured filter bank of appropriate resolution 
depth and the resulting wavelet coefficients are used as features. The low-frequency 
components account for the basic shape of the character and are less sensitive to 
varying writing styles. The high-frequency ones account for the details and are 
more sensitive to the specific handwriting style. In [Wuns 95] a comparative study 
was carried out using the same number of DlWf coefficients and Fourier-based 
features. with a neural network classifier. The experiments showed that classifica
tion based on wavelet coefficients resulted in reduced error rates. Furthermore, it 
was pointed out that Fourier-based features exhibited larger within class variance 
and weaker between class separation than the wavelet-based ones. A major disad
vantage associated with the wavelet coefficients is that they are not shift invariant. 
That is, if we rotate/translate a character, the resulting coefficients will not be the 
same. This is a consequence of the subsampling process [Mall 89] (Problem 6.21 ). 
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In other words, if 

x'(n) = x(n - no) 

and y'(n), y(n) are the sequences of wavelet coefficients of x'(n) and x(n), 

respectively, then, in general 

y'(n) =!= y(n - no) 

This has led to research in designing filter banks that aim to overcome this property 
[Marco 95, Hui 96). The shift dependence obviously makes the wavelet coeffi
cients also sensitive to the choice of the initial point from which the contour is 
traced, as already described. As we will see in more detail in Chapter?, the Fourier 
coefficients are also dependent on shifts but in a deterministic way. Thus, vari
ous normalizing techniques exist that result in shift-invariant feature parameters 
[Crim 82, Arbt 90]. To overcome the problems associated with the choice of the 
initial point within the contour, in order to minimize its effects on the wavelet 
coefficients, a number of techniques have been suggested and used in practice. 
A simple method is to select a specific point resulting during the scanning process, 
for example, the first pixel when scanning the character from left to right. Other 
more "intelligent" ways have also been suggested [Wuns 95, Chua 96] . 

An alternative approach to that of Eq. (6.94) is to describe a contour in terms 
of the arc length between a given point and the origin, within the contour. As arc 
length tat a given point, we define the number of consecutive pixels between the 
given point and the point considered as the origin. The contour description can 
now be achieved via a one-parameter real-valued function, the arc tangent angle 
O(t) or the corresponding curvature K(/), defined as 

O(t) =tan-I [dy(t)] 
dx(t) 

K(I) = d(}(t) 
dt 

where x (t), y(t) arc the coordinates of the respective point as a function of length 
t from the origin and dt = J dy2 + dx2. A further discussion of this is provided in 
Chapter 7. [Kapo 96] suggests wavelet transforming the curvature of the contour 
and using the corresponding wavelet coefficients as features. Figure 6.21 shows 
the coefficients resulting from the wavelet analysis of the curvature (bottom left) 
of the boundary contour of number 3. The wavelet basis used for the analysis was 
Daubechies' biorthogonal pairs (3,9) [Yett 95). Six successive resolution levels 
are shown, the finest being on top and the coarsest at the bottom. Extensive exper
imentation with a number of different characters shows that the use of wavelet 
coefficients from more than six resolution levels adds no further discriminatory 
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information lo the system. Thus, each of the resulting feature vectors has 32 com
ponents. A different philosophy is followed in [Geze 00, Geze 02J, in the context 
of an OCR system for the Greek Orthodox Byzantine music notation. The wavelet 
transform is applied to the vector combining the four projections (horizontal, ver
tical. left-diagonal, right-diagonal) of the characters. ll turns out that such an 
approach leads to an efficient coding of the directional properties of the characters. 

Texture Classification 

Texturecharacterization in image analysis tasks is another area where the wavelet 
transform, as well as the other transforms discussed in this chapter, has been heav
ily utilized. The basic approach is similar to that in the OCR example. However, 
because texture is a property of the image region and not of its boundary, the 
2-D variants of the transforms are used. The 2-D wavelet transform offers the 
advantages of spatial frequency and orientation selectivity, provided the appropri
ate bases are chosen. The information compaction properties result from the fact 
that most of the energy activity is concentrated in certain resolution levels, as was 
the case with the OCR example considered earlier. The wavelet coefficients of 
these levels are then selected as features to form the feature vectors. Sometimes 
a function of the features is employed, such as the energy, L; yf, or the entropy, 

L; .·rl log .vl, where y; are the respective wavelet coefficients at each resolution 
level fLain 931. 

In many cases, the underlying image texture exhibits a great deal of activjty in 
middle or high-frequency bands. 

Fjgure 6.22a is an example of a textured image taken from [Brod 66]. In such 
cases, one must pay attention in the bands of high energy, instead of looking with 
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FIGURE 6.22: An example of (a) a textured image and (b) its corresponding 
wavelet packet transform. 
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fine frequency bandwidths at low-frequency bands of low energy. This leads to 
the adoption of wavelet packets, discussed in Section 6.13. There, we saw that 
there is a number of choices for splitting the frequency bands, leading to differ
ent wavelet packets. In [Chan 93] a dynamic procedure is suggested, depending 
on the particular texture image. A threshold C is selected prior to the analysis. 
If the output energy in a band is less than C, no splitting of the band is carried 
out. If it is higher than C, the band is further split. Splitting terminates if sub
images, after filtering and subsampling, become small, for example, 16 x 16. 
It is then suggested that the energy values at the J (a preselected number) most 
dominant (energywise) bands be used as features. In [Mojs 00] the effects on tex
ture characterization of the properties of the analysis band are considered. It is 
demonstrated that the choice of the analysis filters may have a significant influ
ence on the classification performance. In [Unse 95, Lain 96] another variation 
of the D1WT is adopted, called the discrete wavelet frame. The difference from 
D1WT is that the filter outputs in the bank are not subsampled. Although this 
leads to a redundant representation, it leads to a texture description tolerant to 
translations. 

A procedure similar in concept to the D1WT one is to employ a bank of 2-D 
Gabor filters to perform the splitting of the image into a number of frequency bands. 
The impulse response (point spread function, Appendix D) of the complex 2-D 
Gabor filter is given as the product of a Gaussian low-pass filter with a complex 
exponential, that is [Bovi 91 ], 

h(x, y) = g'(x, y) exp(j(wxx + wyy)) 

where 

I ( x' 
g'(x, y) = A.a2 g A.a, 

y') l ( x2+y2) ;; ,g(x,y)=
2

JZ"exp -
2 

and 

x' = x cos 8 + y sin 8 

y' = - x sin 8 + y cos 8 

(6.95) 

(6.96) 

(6.97) 

That is, g' (x, y) is a version of the Gaussian g (x, y) that is spatially scaled and 
rotated by 8. The parameter a is the spatial scaling, which controls the width 
of the filter impulse response, and A. defines the aspect ratio of the filter, which 
determines the directionality of the filter, that is no longer circularly symmetric. 
The orientation angle 8 is usually chosen to be equal to the direction of the filter's 
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FIGURE 6.23: Plot of (a) the magnitude of point spread function of a Gabor 
filter and (b) the magnitude of its Fourier transform. 

center circular frequency 

w = jwi + w2 x y (6.98) 

That is. 

(6.99) 

By varying the free parameters a,>.., w, and 9, filters of arbitrary orientation and 
bandwidth characteristics are obtained (Problem 6.22). Figure 6.23a shows the 
magnitude of the complex Gabor filter for a = I .0. >.. = 0.3. Figure 6.23b shows 
the magnitude of the corresponding spatial frequency response. The choice of 
the Gabor filters is justified by the fact that these filters offer the optimal trade-off 
between spectral band width and spatial localization. In Section 6.12 we saw that the 
shorter the filter's impulse response (spatial localization), the wider its frequency 
bandwidth and vice versa, according to the uncertainty principle [Papo 91 ], that is. 

1 
AXAWx ~ l 

I 
Ay!:iwy ~ 2' (6.100) 

In [Daug 85] it has been shown that the 2-D Gabor filters attain the minimum 
uncertainty bound. For digital images, a sampling of the above functions has to be 
perfonned, which introduces aliasing errors regardless of the sampling interval. 
This happens because Gabor filters are not bandlimited, but have a Gaussian
shaped frequency response (Problem 6.23). The topic is treated in [Bovi 90). 
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Gabor filter banks for analyzing the image in a number of bands, in the con
text of texture classification, have been successfully employed in a number of 
cases, [Jain 91 , Tum 86, Bovi 90, Hale 95, Hale 99, Weld 96). A set of Gabor fil
ters centered at different frequencies and having different orientations are used 
to cover the frequency range of interest, using various frequency and orientation 
bandwidths. Images are then filtered through this set of filters and the features are 
generated from the resulting output samples. For example, the output energies of 
the Gabor filters may be chosen to be the respective features. Thus, using this strat
egy, the generated features encode classification information related to the spatial 
frequency as well as the orientation activity of the various textures. In order to 
grasp most of the textural information, techniques have been proposed to place the 
centers of the Gabor filters in the most "important" image frequencies [Pich 96). A 
comparative study of various transform-based features is provided, in the context 
of texture classification, in [Chan 93). 

Problems 

6.1 Show the equivalence (a) between (6.5) and (6.6) and (b) between (6.7) and (6.8). 
6.2 Consider the separable transform Y = U XV T . Then show that if Y, X are turned into 

the row-ordered vectors y. x, respectively, then y = ( U ® V)x, where ® denotes 
the Kronecker product of two matrices. 

6.3 Let e;, i = 0, 1, ... , N - 1, be any orthonormal basis in the N-dimensional space. 
Show that the MSE between an N -dimensional vector and an m-dimensional pro
jection of it is minimized if (a) the basis consists of the eigenvectors of Rx and (b) 
the m-dimensional subspace is the one spanned by the eigenvectors corresponding 
to them largest eigenvalues. Furthermore, the projection onto the latter subspace is 
the one that maximizes the sum of the variances of its components. 
Hint: Minimize the mean square error E[llE fl subject to the constraint eT e; = I. 

I 

6.4 Consider an N -dimensional random vector x, which is approximated by 

m-1 N-l 

x = L y;e; + L c;e; 
i=O i=m 

where c; are nonrandom constants and e;, i = 0, I, 2, ... , N - I, constitute an 
orthononnal basis. Show that the minimum mean square error Eilx -xl12 is achieved 
if (a) c; = E[y; ), i = m, ...• N - I ; (b) the orthononnaJ basis consists of the 
eigenvectors of I:x; and (c) e;, i = m , ... , N - I, correspond to the N -m smallest 
eigenvalues. 

6.S If Xis a rank r matrix, show that the two square matrices X xH and xH X have the 
same nonzero eigenvalues. 

6.6 Show Eq . (6.33). 
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6.7 Given the matrix 

[i l] 
compute its SYD representation. 

6.8 Show the orthogonality of the OFT matrix W and also identity (6.59). 
6.9 Given the image array 

[~ 2 i] 
compute its two-dimensional OFT transform. 

6.10 For one of the images available at the web site of the book, w1ite a program to 
compute its OFT transform. Use a routine to implement the fast Fourier transform 
and plot the magnitude of the resulting Fourier transform. 

6.11 Show the orthogonality of the OCT transform. 
6.12 Compute the OCT of the image array of Problem 6.9. 
6.13 Develop a program to compute the OCT for one of the images available from the 

web site of the book. 
6.14 Show the orthogonality of the Hadamard transform. 
6.15 Compute the Hadamard transform for a 2 x 2 submatrix of the matrix of 

Problem 6.9. 
6.16 Show the onhogonality of the Haar transform. 
6.17 Show the two Noble identities of Figures 6.6a and 6.13. 
6.18 Show the equivalence between the tree structure of Figure 6.5 and that of Figure 6.6b. 
6.19 Consider the perfect reconstruction two-band Haar bank. Show that 

(a) Jfwe make the analysis filters causal by delaying each of them by one sample, then 
the reconstructed sequence .i(11) is delayed by one sample, that is, x(11) = x(n - I). 
In the more general case, if both the analysis filters have to be delayed by L. then 
the output of the band is also delayed by L. 

(b) If this is repeated with the more general N-band case, show that the output is 
delayed as i (11) = x (11 - (2 N - 1 - 1) L) and a delay must be inserted in each band 
to safeguard perfect reconstruction. Figure 6.24 shows the three-band case. In the 

general case, the delay element in each band is z-<2N-i-l _ l)L, i = O, 1, ... , N - I. 

6.20 Show that the short-time Fourier transform defined in (6.97) is equal to 

oc 

Xs (lv. m) =exp(- jwm) L x(n)e(11 - m) exp(jw(m - n)} 
n=-oo 

Verify that this is equivalent to filtering the sequence x(n) with different filters of 
the same bandwidth but centered at different frequencies. 
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ANALYSIS SYNTHESIS 

f(n) 

FIGURE 6.24: A three-band perfect reconstruction filter bank with causal 
analysis and synthesis filters. 

6.21 Show that the process of filtering and then subsampling is equivalent to the action of 
a linear but time-varying system. As a matter of fact, it is a periodically time-varying 
linear system. The same is true for the process of upsampling followed by linear 
filtering. 

6.22 Show that the frequency (octave) and orientation (radians) half-peak bandwidths for 
Gabor filters are given by Bf, Be, respectively, where 

r11A.rr + J2Trl2 
Bf = log2 wJ...a - v'2Tri2 

I J2lil2 
Be= 2tan- ---

wa 

Compute these for different values of A., a. 
6.23 Show that the Fourier transform of the 2-D Gabor filter response h(x, y) is given by 

where 

u' = u cos B + v sin B 

v' = -u sinB + vcos() 

and w~, w;. the corresponding versions of w..,, wy rotated by(). Draw its magnitude 
versus frequency (u, v) for different values of .A. and(). 
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CHAPTER 7 _____________ _ 

FEATURE GENERATION II 

7.1 INTRODUCTION 

In the previous chapter we dealt with the task of feature generation via linear 
transformation techniques. This is just one of the possibilities available to the 
designer. There is a number of alternatives which, however, are very much appli
cation dependent. Although similarities among various applications do exist, there 
are also big differences. We will approach the problem by focusing on one major 
application area, that of image analysis. Clearly, we cannot review all the tech
niques that have been suggested and used. The number is really large. Instead, we 
will focus on basic directions, with a wide range of applications in mind, such as 
medical imaging, remote sensing, robot vision, and character recognition. Finally, 
some of these techniques are also suitable to other applications of major interest 
to us, such as speech recognition. 

Our major goal in this chapter may be summarized as follows: given an 
image, or a region within an image, generate the features that will subse
quently be fed to a classifier in order to classify the image in one of the possible 
classes. 

A digital image is usually the result of a discretization process (sampling) of a 
continuous image function I (x, y) and it is stored in the computer as a two
dimensional array l(m. n) withm = 0, 1, ... , Nx-1andn=0, l, .... Nv - !
that is, it is stored as an N., x Ny array. 1 Every (m, n) element of the array 
corresponds to a pixel (picture element or image element) of the image, whose 
brightness or intensity is equal to /(m, n). Furthermore, when the intensity 
l(m, n) is quantized in N8 discrete (gray) levels, Ng is known as the depth of 
the image. Then, the gray level sequence I (m, n) can take one of the integer 
values 0, 1, ... , N8 - I. The depth Ng is usually a power of 2 and can take large 
values (e.g., 64, 256) when the image is stored in the computer. However, for the 
human eye it is difficult to discern detailed intensity differences, and in practice 
Ng = 32 or 16 is a sufficient choice for image representation. 

1 Only monochrome images will be considered. 

269 
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The need for feature generation stems from our inability to use the raw data. 
Even for a small 64 x 64 image the number of pixels is 4096. For most classification 
tasks this number is too large, raising computational as well as generalization 
problems, as discussed in earlier chapters. Feature generation is a procedure that 
computes new variables that in one way or another originate from the stored 
values of the image array /(m, n). The goal is to generate features that exhibit 
high information packing properties, from the class separability point of view. 
Because we cannot use the raw data I (m, n) directly, the features should encode 
efficiently the relevant information residing in the original data. 

7.2 REGIONAL FEATURES 

7.2.1 Features for Texture Characterization 

The texture of an image region is determined by the way the gray levels are 
distributed over the pixels in this region. Although there is no clear definition of 
"texture," we are all in a position to describe an image by the look of it asfme or 
coarse, smooth or irregular; homogeneous or inhomogeneous, and so forth. Our 
goal in this subsection is to generate appropriate features that, somehow, quantify 
these properties of an image region. These features will emerge by exploiting space 
relations underlying the gray level distribution. 

First-Order Statistics Features 

Let I be the random variable representing the gray levels in the region of interest. 
The first-order histogram P(I) is defined as 

P(I) = number of pixels with gray level I 
total number of pixels in the region 

(7.1) 

That is, P (/) is the fraction of pixels with gray level /. Let Ng be the 
number of possible gray levels. Based on (7. I), the following quantities are 
defined. 

Moments: 

N.~-1 

m; = E[li] = L I; P(I), i = I, 2, ... (7.2) 
1=0 

Obviously mo= I and m 1 = E[/], the mean value of I. 
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Original Normal - Skewed + Skewed Platykurtic Leptokurtic 

FIGURE 7.1: Examples of images and corresponding histograms. 

Central moments: 

N~-1 

µ; = £[(/ - £[/J)1
) = L (/ - md P(I) (7.3) 

/=0 

The most frequently used central moments are µ2. µ3, and µ4. µ2 = a 2 is the 
variance, and µ:i is known as the skewness (sometimes is normalized by a'.\) 
and µ 4 as the kurtosis (sometimes is normalized by a 4 ) of the histogram. The 
variance is a measure of lhe histogram width, that is, a measure of how much 
the gray levels differ from the mean. Skewness is a measure of the degree of 
histogram asymmetry around the mean, and µ4 is a measure of the histogram 
sharpness. Depending on the value of µ4, the resulting histogram is called pla
tykurtic, for large values, leptokurtic, for small values, and mesokurtic otherwise. 
The normal distribution is a mesokurtic one. Figure 7.1 shows six variations of 
the same image (with 16 gray levels) with their corresponding histograms. We 
can observe the difference between the platykurtic and the leptokurtic one. In 
the latter, only the middle gray levels are present (with no I= 0 or I= 15). in 
contrast to the platykurtic one. where all gray levels are present. For the two 
asymmetric cases. one corresponds to a majority of low gray levels and the other 
to a majority of high levels. The resulting values of µ3 and µ4 from left to 
right are 

587 0 
16609 7365 

-169 
7450 

169 0 
7450 9774 

0 
1007 
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Other quantities that result from the first-order histogram are: 

Absolute moments: 

N8 -I 

fl,; = E[I I - £[/] Ii]= L I I - E[l] Ii P(l) (7.4) 

1=0 

Entropy: 

N8 -I 

H = -E[log2 P(l)J = - L P(l) Jog2 P(l) (7.5) 

1=0 

Entropy is a measure of histogram uniformity. The closer to the uniform distri
bution (P(l) =constant), the higher the H. For the six images of Figure 7.1 the 
corresponding values are 

H: 4.61 4.89 4.81 4.81 4.96 4.12 

Second-Order Statistics Features-Co-occurrence Matrices 

The features resulting from the first-order statistics provide information related 
to the gray level distribution of the image, but they do not give any information 
about the relative positions of the various gray levels within the image. Are all 
low-value gray levels positioned together, or are they interchanged with the high
value ones? This type of information can be extracted from the second-order 
histograms, where the pixels are considered in pairs. Two more parameters now 
enter into the scene. These are the relative distance among the pixels and their 
relative orientation. Let d be the relative distance measured in pixel numbers (d = l 
for neighboring pixels, etc.). The orientation ¢ is quantized in four directions: 
horizontal, diagonal, vertical, and antidiagonal (0°. 45°, 90°, 135°), as shown in 
Figure 7 .2. For each combination of d and ¢ a two-dimensional histogram is 
defined 

0°: P(l(m, n) = /i, l(m ± d, n) =Ii) (7.6) 

number of pairs of pixels at distanced with values (/1, /i) 
= 

total number of possible pairs 

In a similar way 

45° P(l(m,n) =ft, /(m ±d,n ~d) =Ii) 
90° P(l(m,n) = /i, l(m,n -=[-d) =Ii) 
135° P(I(m,n) =ft, l(m ±d,n ±d) =Ii) 
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90° m 

I---------~ 00 

n 

FIGURE 7.2: The four orientations used to construct co-occurrence matrices. 

For each of these histograms an array is defined, known as the co-occurrence or 
spatial dependence matrix. Let, for example, an image array I (m, n) be 

[

o o 2 2] 
I= 1 1 0 0 

3 2 3 3 
3 2 2 2 

(7.7) 

which corresponds to a 4 x 4 image. We have also assumed that Ng = 4 (I (m,n) E 

(0, I. 2, 3}). The co-occurrence matrix for a pair (d, </>)is defined as the Ng x Ng 
matrix 

[ry(O, OJ 1](0, 1) I] (0, 2) ry(0,3)] 
A~_I_ ry(l,0) 1](1,1) 1](1, 2) 1](1, 3) 

R 1](2,0) 1](2, I) 17(2, 2) 1](2. 3) 
1](3, 0) 1](3, 1) 1](3,2) 1](3, 3) 

where IJ (/1, /2) is the number of pixel pairs, at relative position (d, </>).which have 
gray-level values / 1, /2, respectively. R is the total number of possible pixel pairs. 
Hence ·k1JU1. /2) = P(/1. /2). For the image of (7.7) and relative pixel position 
(1,0°) we have 

[

4 I 

Ao(d=I)=_!_ 1 2 
24 1 0 

0 0 

1 OJ 0 0 
6 3 
3 2 
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In words, for each of the intensity pairs, such as (0, 0), we count the number 
of pixel pairs at relative distance d = 1 and orientation ¢ = 0° that take these 
values. For our example this is 4. Two of them result from searching in the positive 
direction and two in the negative. According to the definition (7.6), these pixel 
pairs have coordinates (m, n) and (m ± 1, n) and gray levels /1 = 0, Ii= 0. The 
total number of pixel pairs for this case is 24. Indeed, for each row there are Nx - I 
pairs and there are Ny rows. Thus, the total number for both positive and negative 
directions is 2(Nx - 1 )Ny = 2(3 x 4) = 24. For the diagonal direction 45° and 
d = I for each row we have 2(Nx -1) pairs, except the first (or last) one, for which 
no pairs exist. Thus, the total number is 2(Nx - l)(Ny - 1) = 2(3 x 3) = 18. 
Ford = I and 90° we have 2(Ny - 1 )Nx pairs, and finally ford = I and 135° 
2(Nx - I)(Ny - I). For our example image and (d = 1, ¢ = 45°) we obtain 

[ 

0 1 2 I ] 
A45(d = I)=_..!._ I 0 1 1 

18 2 1 0 3 
1 1 3 0 

From the definition of the co-occurrence matrix, it is apparent that it is a symmetric 
one, something that can be used to reduce subsequent computations. 

Having defined probabilities of occurrence of gray levels with respect to relative 
spatial pixel position, we will go ahead to define the corresponding features. Some 
of them have a direct physical interpretation with respect to texture, for example, 
to quantify coarseness, smoothness, and so on. On the other hand, others do not 
possess such a property, but they still encode texture-related information with high 
discriminatory power. 

• Angular second moment 

N~-1 N~-1 

ASM = L L(P(i, j)) 2 (7.8) 
i=O j=O 

This feature is a measure of the smoothness of the image. Indeed, if all pixels 
are of the same gray level I = k, then P(k, k) = 1 and P(i, j) = 0, i =I= k 
or j =f. k, and AS M = I. At the other extreme, if we could have all possible 
pairs of gray levels with equal probability ~.then ASM = ; 2 = ~·The 
less smooth the region is, the more uniformly distributed P(i, j) and the 
lower the ASM (Problem 7.5). 

• Contrast 

(7.9) 
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This is a measure of the image contrast-that is, a measure of local gray 
level variations. Indeed, L; Lj P(i, j) is the percentage of pixel pairs 

whose intensity differs by n. The n2 dependence weighs the big differences 
more; thus, CON takes high values for images of high contrast. 

• Inverse difference moment 

N8 -I N.~- 1 '°" '°" P(i, j) 
IDF = ~ ~ I + (i - j)2 

i=O )=0 

(7.10) 

This feature takes high values for low-contrast images due to the inverse 
(i - })2 dependence. 

• Entropy 

N8 -I N8 -I 

Hxy = - L L P(i , j) Iog2 P(i, j) 
i=<J )=0 

(7.11) 

Entropy is a measure of randomness and takes low values for smooth images. 

These features are only a few from a larger set that can be derived. In the classical 
lHara 73] paper fourteen of those are summarized. They are repeated in Table 7. I. 
Px (Py) (and related quantities) refer to the statistics with respect to the x (y) axis. 
All features in the table are functions of the distanced and the orientation¢. Thus, 
if an image is rotated, the values of the features will be different. In practice, for 
each d the resulting values for the four directions are averaged out. In this way, 
we make these textural features rotation tolerant. 

Besides the previous list of features, a number of other statistics-related features 
have been proposed. For example, in [Tamu 78] textural features are generated 
with an emphasis on the human visual perception. A set of features is suggested 
corresponding to texture coarseness, contrast, regularity, etc. In [Davi 79] features 
based on a generalized definition of co-occurrence matrices are suggested, that is 
more appropriate for textures with long scale variations (macrotextures). 

Example 7.1. Figure 7.3 shows two texture images, one coarse, known as grass [Brod 66]. 
and the other smooth one. Table 7.2 summarizes the values of some of the features for both 
of them. 

Features Using Gray Level Run Lengths 

A gray level run is a set of consecutive pixels having the same gray level value. 
The length of the run is the number of pixels in the run [Gall 75, Tang 98]. Run 
length features encode textural information related lo the number of times each 
gray level, for example, "I," appears in the image by itself, the number of times it 
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Table 7. l: Features for texture characterization 

Angular Second Moment: 

Ji= Li Lj (P(i, j))2 

Contrast: 

h= L~!~I n2 It ~ P(i . j)l 
li-jl=n 

Correlation: 

IL; L/ij)P(i, j)) - J.lxJ.ly 
h=---"------

axay 

Variarn;e: 

Inverse Difference Moment: 

!: - "°'. "°'. P(i,j) 
5 - L...1 L...j l+(i-})2 

Sum (Difference) Average: 

• "°'2N8 -2 (N8 -I ). . 
/6( /6) = L...i=O I Px+(-)y(1) 

Sum Variance: 

h = L~~r2 u - 16>
2 

Px+yU> 

D fi . . Q( . ') "°' P(i,k)P(j,k) e mt10ns : 1, J = L...k P,(i)Py(k) 

H}y= - Li Lj P(i, j) 

log(Px(i)Py(j)) 

l\(i) = Lj P(i, j) 

Px±y(k) =Li Lj.li±Jl=k P(i, j) 

Sum Entropy: 

fs= - L;~~-2 
Px+y(i) log Px+y(i) 

Entropy: 

19= - Li Lj P(i , j) log P(i, j) =; Hx y 

Difference Variance: 

Difference Entropy: 

f "°'N8 -I . . 
II =-Li=O Px-y(1)logPx-y(1) 

Information Measure I: 

H,y-Hli: 
/12 = max{H, ,H, ) 

Information Measure TI : 

/13 =Ji - exp(-2(H}y - Hxy)) 

Maximal Correlation Coefficient: 
I 

/14 = (2nd largest eigenvalue ofQP 

H}y= - Lj Li Px(i)Py(j) 

log(Px (i)Py(j)) 

Py(j) =Li P(i, j) 

J.l, J.lx , J.ly , ax. ay; Hx , Hy 
means, st. deviations and entropies. 

appears in pairs, and so on. Take for example the image 

I~ [i ~ ~ ~] 
with four possible levels of gray (N g=4.) For each of the four directions (0°, 45°, 
90°, 135°) we define the corresponding run length matrix QRL· Its (i, j) 
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(a) (b) 

FIGURE 7.3: Examples of (a) coarse and (b) smooth images. 

Table 7.2: Second-order histogram features for the two 
images of Figure 7.3 

Coarse Smooth 

ASM 0.0066 0.0272 
CON 989.5 0.613 
IDF O.ll7 0.783 
H.<y 8.352 5.884 
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element gives the number of times a gray level i - I, i = I, ... , Ng. appears 
in the image with rnn length j, j = 1, 2, ... , Nr. This is an NK x Nr 
array, where N,. is the largest possible run length in the image. For 0° we 
obtain 

[
02001 

o 0 I 0 0 
QRL(O ) = I I I 0 

2 I 0 0 

(7.12) 

The first element of the first row of the matrix is the number of times gray level 
"O" appears by itself (0 for our example), the second element is the number of 
times it appears in pairs (2 in the example), and so on. The second row pro
vides the same infonnation for gray level "I" and so on. For the 45° direction 
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we have 

[
4 0 0 OJ 

0 2 0 0 0 
QRL(45 ) = 6 0 0 0 

4 0 0 0 

(7.13) 

Based on the preceding definition of the run length matrix, the following features 
are defined. 

• Short run emphasis 

(7.14) 

The denominator is the total number of run lengths in the matrix, 9 for 
(7.12) and 16 for (7.13). This feature emphasizes small run lengths, due to 
the division by j 2 . 

• Long run emphasis 

.._.N8 .._.N, (Q (' ') ·2) 
lRE = Li=I Lj=I RL I,} } 

.._.N8 .._.N, Q (' ') 
Li=I Lj=I RL I,} 

(7.15) 

This gives emphasis to long run lengths. Thus, we expect SRE to be large 
for coarser and LRE to be large for smoother images. 

• Gray level nonunifonnity 

(7.16) 

The term in the brackets is the total number of run lengths for each gray 
level. Large run length values contribute a great deal because of the square. 
When runs are uniformly distributed among the gray levels, GNW takes 
small values. 

• Run length nonunifonnity 

(7.17) 

In a similar way, RI.N is a measure of run length nonuniforrnity. 
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Table 7.3: Run length features for the images of Figure 7 .3 

Coarse Smooth 

SRE 0.932 0.563 
LRE 1.349 16.929 
GI.NU 255.6 71.6 
RLN 3108 507 
RP 0.906 0.4 

Run percentage 

L,Ng LN, Q c ") 
RP= 

i=l j=l RL 1, j 
(7.18) 

L 

where L is the total possible number of runs in the image, if all runs had 
length equal to one, that is, the total number of pixels. RP takes low values 
for smooth images. 

Example 7 .2. For the two images of Figure 7 .3 the values of Table 7 .3 have resulted. 

7.2.2 Local Linear Transforms for Texture Feature Extraction 

Second-order statistics features were introduced in order to exploit the spatial 
dependencies that characterize the texture of an image region. We will now focus 
on an alternative possibility, which has been used extensively in practice. Let 
us consider a neighborhood of size N x N centered at pixel location (m, n). 

Let Xmn be the vector with elements the N 2 points within the area, arranged 
in a row-by-row mode. A local linear transfonn or local feature extractor is 
defined as 

Ymn =AT Xmn = Xmn (7.19) 

The respective correlation matrices are related via the N 2 x N 2 nonsingular 
transformation matrix A as 

(7.20) 
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From these definitions it is readily seen that each element of y contains informa
tion about all the elements of x. This becomes clearer if we look more closely at 
the way the two correlation matrices are related. Indeed, the diagonal elements 
of Ry are the respective variances of the elements of y. These are first-order 
statistics quantities, yet their values contain information about the spatial depen
dencies (second-order statistics) of the original image. Here lies the essence of 
the technique. Texture-related spatial dependencies of an image can be accommo
dated in the first-order statistics of the transformed image. Using appropriately 
defined local transform matrices, various aspects of texture properties can be 
extracted. Of course, the philosophy does not change if instead of transform
ing vectors we use 2-D (separable) transforms of the corresponding subimage 
region. 

One way to look at (7.19) is to interpret it as a series of N2 filtering oper
ations (convolutions, Appendix D), with a common input vector, Xmn . that is, 
the N x N subimage centered at (m, n). The elements of y 11111 are the respec
tive filter output samples. This is illustrated in Figure 7.4, where the N x N 
subimage (N = 3) is filtered through 9 equivalent 2-D filters, each characterized 
by a different coefficient matrix, known as mask. In [Laws 801 it is suggested 
that the corresponding masks be constructed from three basic vectors, namely 
[I, 2, If, [-1, 0, l]r. [-1, 2, -If, for N = 3. The first corresponds to a local 
averaging operator, the second to an edge detection operator, and the third to a spot 
detector. These form a complete (nonorthogonal) set of vectors in the n3 space. 

n 

s;l .........,.........,........., 
<I> e ~~--..i 

2 
Y,,w 

~ 1--1--t--i 

"' e ,___,___ .......... 

FIGURE 7.4: Filtering the image with each of the masks results in new 
transformed images/channels. 
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The respective nine masks are formed by their cross-products, that is, 

[~ ~ ~] [=~ ~ ~] [=~ ~ =~] 
1 2 1 -1 0 1 -1 2 -1 

[-~ -~ -~] [ ~ ~ -~] [ ~ -~ ~] 
1 2 1 -1 0 1 -I 2 -1 

[-~ -~ -~] [-~ ~ -;l] [-~ -~ -~] 
-I -2 -1 1 0 -1 1 -2 1 

Each element of the vector Ymn is the result of filtering the local image neigh
borhood centered at (m, n) with each of the masks. By moving the masks around 
at the various (m, n) positions, nine different images, channels, will be obtained, 
each encoding different aspects of the texture of the original image. First-order
statistics quantities, such as variance and kurtosis, computed from each of these 
images, can then be used as features for texture classification. Masks larger 
than 3 x 3 have also been used. In some cases, an attempt to optimize the 
masks has been made, so that the resulting variances of the channels for the 
different classes are as different as possible [Unse 86]. This turns out to be an 
eigenvalue-eigenvector task, similar to the ones we have already met in Chapter 5. 
A comparative study of a number of optimal or suboptimal local linear trans
forms, including orthogonal ones, such as OCT, DST and Karhunen-Locve, is 
given in [Unse 86], [Unse 89], [Rand 99]. Finally, it must be pointed out that all 
these techniques are closely related to the Gabor filtering approach of the previous 
chapter. 

7.2.3 Moments 

Geometric Moments 

Let I (x, y) be a continuous image function. Its geometric moment of order p + q 
is defined as 

(7.21) 

Geometric moments provide rich information about the image and are popular 
features for pattern recognition. Their information content stems from the fact that 
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moments provide an equivalent representation of an image, in the sense that an 
image can be reconstructed from its moments (of all orders) [Pa po 91, page 115]. 
Thus, each moment coefficient conveys a certain amount of the information 
residing in an image. 

It is by now commonplace to state that a desirable property in pattern recognition 
is invariance in geometric transformations. Moments, as defined in (7.21 ), depend 
on the coordinates of the object of interest within an image; thus, they lack the 
invariance property. This problem can be circumvented by defining appropriate 
combinations of normalized versions of the moments. Specifically, our goal will 
be to define moments that are invariant to: 

Translations: 

Scaling: 

Rotations: 

To this end, let us define 

Central moments: 

where 

x' = x + a, y' = y + b 

I I 
x =ax, y =ay 

[x'] = [ co~e 
y' -sme 

- mw 
x=--, 

moo 

sine] [.x] 
cose y 

- mo1 
y=

moo 

Central moments are invariant to translations. 

Nonnalized central moments: 

µpq 
T/pq = -y-· 

µ00 

p+q+2 
y= 

2 

(7.22) 

(7.23) 

These are easily shown to be invariant to both translation and scaling 
(Problem 7.6) 
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The seven moments of Hu: Hu [Hu 62] has defined a set of seven moments that 
are invariant under the actions of translation, scaling, and rotation. These are 

p+q=2 

¢1 = 1720 + 1')02 

¢2 = <TJ20 - 7/02)
2 

+ 47JI1 

p+q=3 

</J3 = (l'J3o - 3TJ12)
2 

+ (1')03 - 31']21 )2 

</J4=(1')30+1')12)
2

+(1')03+1')21)
2 

</Js = (1')30 - 31')12)(1')30 + l'J12)[(1')30 + l'J12)
2 

- 3(1')21+1')03)2] 

+ (1')03 - 31')21)(1')03+1')21)((7/03+1')21)2 - 3(7/12 + 7}30) 2] 

¢6 = (T/20-1')02)((7/30+1')12)2 - (1')21+1')03)2] 

+ 47}11(T/30+1')12)(1')03 + 1')21) 

¢1 = (37/21 - T/03HT/3o + l'J12)[(1'J30 + l'J12)
2 

- 3(1')21+1')03)2] 

+ (1')30 - 37}12)(1')21+1')03)((7/03 + l'J21)2 - 3(7/30+1')12)2] 

The first six of these are also invariant under the action of reflection, while <"7 
changes sign. The values of these quantities can be quite different. In practice, in 
order to avoid precision problems, the logarithms of their absolute values are usu
ally used as features. A number of other moment-based features that are invariant to 
more general transformations have also been proposed [Reis 91, Flus 93, Flus 94]. 
The case of moment invariants in the general /-dimensional space is treated in 
[Marni 98]. 

Fora digital image I (i, j), with i = 0, l, . . . , Nx - I, j = 0, 1, ... , Ny - l, the 
preceding moments can be approximated by replacing integrals by summations, 

~~/( ' ') 'P ·q mpq = L..., L..., I, J I ) 

j 

(7.24) 

In order to keep the dynamic range of the moment values consistent for different
sized images, a normalization of the x - y axis can be performed, prior to the 
computation of the moments. The moments are then approximated by 

(7.25) 

where the sum is over all image pixels. Then Xi. Yi are the coordinates of the center 
point of the ith pixel and are no longer integers but real numbers in the interval 
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(a) (b) (c) 

(d) (e) (f) 

FIGURE 7.5: The Byzantine symbol "petasti" in various scaled and rotated 
versions, from (a) to (t). 

x; E [-1. +I). y; E [-I, +I]. For digital images, the invariance propenies of the 
moments we have defined are only approximately true. An analysis in [Liao 96) 
reveals that the approximation error increases with the coarseness of the sampling 
grid as well as with the order of the moments. 

Example 7.3. Figure 7.5 shows the Byzantine music symbol known as ''petasti," resulling 
from a scanner, in scaled and various rotated versions. From left to right in the clockwise 
sense we have the original version, the scaled, the mirrored, and the rotated by 15°, 90°, 
and 180° versions, respectively. 

Table 7.4 shows the resulting Hu moments for each of the versions. The (approx
imate) invariance of the moments is apparent. Note the minus sign in </>1 for the 
reflected (mirror) version. 

Zernike Moments 

The geometric moments defined in (7.21) can also be viewed as projections 
(Chapter 6)of I (x. y) on the basis functions formed by the monomialsxP yq. These 
monomials are not orthogonal; thus, the resulting geometric moment features are 
not optimal from an information redundancy point of view. ln this subsection we 
will derive moments based on alternative complex polynomial functions, known 
as Zernike poly11omials. These form a complete orthogonal set over the interior of 
the unit cirde x 2 + y2 S I (Problem 7.7) and are defined as 
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Table 7.4: The invariant moments of Hu for the versions of the "petasti" symbol 

Moments oo Scaled 180° 15° 

</>1 93 .13 91.76 93.13 94.28 

<1>2 58.13 56.60 58.13 58 .59 

</>3 26.70 25.06 26.70 27.00 

</>4 15.92 14.78 15.92 15.83 

</>5 3.24 2.80 3.24 3.22 

<1>6 10.70 9.71 10.70 I0.57 

<l>7 0.53 0.46 0.53 0.56 

where: 
p is a nonnegative integer 
q is an integer subject to the constraint p - lq I even, lq I ::: p 

p = Jx2 + y2 
() = tan - 1 r 

x 

R ( ) = L(p-lql)/2 (-1)5[(p - s)!]pp-2s 

pq P s=O s! ( p ~ lql - s} ( p ~ lql - s} 
The Zemi.ke moments of a function I (x, y) are given by 

Mirror 

93.13 
58.13 
26.70 
15.92 
3.24 

10.70 
-0.53 

p+IJJ Apq = -- l(x,y)V*(p , ())dxdy 
rr x2+y2:o 1 

90° 

93.13 
58.13 
26.70 
15.92 
3.24 

10.70 
0.53 

where the * denoLes complex rnnjugalion. For a digiLal image, Lhe respective 
Zemike moments are computed as 

p+1"" * 2 2 Apq = --L.,l(x;,y;)V (p;,();),x; +Y; :S 1 
rr . 

l 

where i runs over aJI the image pixels. The computaLion of the corresponding 
moments of an image considers the center of the image as the origin and pixels 
are mapped into the uniL circle, that is, xf + yf ::: l. The pixels falling outside 
the unit circle are not taken into consideration. The magnitude of the Zemike 
moments is invariant to rotations [Teag 80](Problem 7 .8). Translation and scal
ing invariance is treated in [Khot 90a] . Computational aspects of the Zemike 
moments are examined in [Muku 95] . Comparative studies of the performance 
of the Zemike moments against the moments of Hu, in the context of character 
recognition, have demonstrated that the former behave better, especially in noisy 
environments [Khot 90b]. In [Wang 98], Zemike moments are used to cope both 
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with geometry as well as illumination invariance, in the context of multispectral 
texture classification. Variants of the Zernike moments, called pseudo-Zernike 
moments, have also been proposed and used. Comparative studies can be found in 
[Teh 88, Heyw 95]. 

7 .2.4 Parametric Models 

So far, in various parts of the book, we have treated the gray levels as random 
variables and looked at aspects of their first- and second-order statistics. In this 
subsection, their randomness will be approached from a different perspective. We 
will assume that I (m, n) is a real nondiscrete random variable, and we will try to 
model its underlying generation mechanism by adopting an appropriate parametric 
model. The parameters of the resulting models encode useful information and lend 
themselves as powerful feature candidates for a number of pattern recognition 
tasks. 

We will move in two directions. One is to treat an image as a successive sequence 
of rows or columns. That is, our random variables will be considered as successive 
realization samples from a one-dimensional random process I (n). The alternative 
looks at the image as a two-dimensional random process I (m, n ), also known as 
random field. 

One-Dimensional Parametric Models 

Let I (n) denote the random sequence. We will assume that it is stationary in the 
wide sense. This means that its autocorrelation sequence r(k) exists and is of the 
form 

r(k) = E[l (n)l (n - k)] 

and the Fourier transform of r(k) also exists and is a positive function (power 
spectral density) 

+oo 
/(w) = L r(k)exp(-jwk) 

k=-00 

Under certain assumptions, which are met in practice most of the time [Papo 91, 
Theo 93), it can be shown that such a random sequence can be generated at the 
output of a linear, causal, stable, time-invariant system with impulse response 
h(n), whose input is excited by a white noise sequence, as shown in Figure 7.6. 
In simple terms, this means that we can write 

00 

I (n) = L h(k)17(n - k) 
k=O 
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_T/_(n_) __ • I h(n) I(n) 

FIGURE 7.6: Generation model of a stationary random process at the output of 
a stable, linear, time-invariant system excited by a white noise sequence. 

where h (n) satisfies the stability condition Ln lh (n) I < oo. The sequence T/ (n) is a 
white noise sequence, that is, E[T/(n)] = 0 and E[T/(n)T/(n -l)] = a 28(1)(8 (l) = I 
for l = 0 and zero otherwise). Such processes of a special type are the so-called 
autoregressive processes (AR), which are generated by systems of the form 

p 

l(n) = La(k)l(n - k) + T/(n) (7.26) 
k=l 

In words, the random sequence I (n) is given as a linear combination of previous 
samples I (n -k) and the current input sample T/ (n) (Figure 7. 7). Here pis the order 
of the AR model, and we write AR(p). The coefficients a(k), k = I, 2, ... , pare 
the AR model parameters. AR models are a special case of a more general class 
of models, known as autoregressive-moving average (ARMA(p,m)), for which 

I' 111 

I (11) = L a(k)l (n - k) + L b(l)T/(n - l) (7.27) 
k=l 1=0 

That is, the model is regressive with respect to both input and output sequences. 
The major advantage of the AR models, compared with their ARMA relatives, is 
that the former lead to linear systems of equations for the estimation of the model 
parameters. 

Estimation of the AR Parameters 

Another way to look at (7 .26) is to interpret the coefficients a(k), k = 1, . .. , p. 
as the predictor parameters of the sequence I (n). That is, the parameters weigh 

•M,T~I 
y l.11(k)/(11-k) 1--1 

I(n) 

FIGURE 7.7: Generation model of an AR stationary random process. 
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previous samples, I ( n - 1), .. . , I (n - p), in order to predict the value of the 
current sample I (n), and T)(n) is the prediction error, 

p 

In= L:a(k)l(n - k) ~a~/ p(n - 1) (7.28) 
k=I 

where l~(n - 1) = [/(n - 1), ... , l(n - p)]. The unknown parameter vector 

· a~ = [a(l), a(2), .. . , a(p)] is optimally estimated, for example, by minimizing 
the mean square prediction error, 

(7.29) 

The problem is exactly the same as that of the mean square linear classifier 
estimation of Chapter 3, and the unknown parameters result from the solution of 

E[lp(n -1)/~(n - l)]ap = E[l(n)lp(n - l)] (7.30) 

or 

r(O) r(-1) r(-p + 1) a(I) r(I) 
r(l) r(O) r(-p+2) a(2) r(2) 

r(p - 2) r(p - 3) r(-1) a(p - 1) r(p - 1) 
r(p - 1) r(p - 2) r(O) a(p) r(p) 

or 

Rap= rp (7.31) 

with rp = [r(l), ... , r(p)f. The relation of the optimal parameters a(k) with 
the mean square error (variance of generating noise) is obtained from (7.29) and 
(7.31) and is given by 

p 

o} = £[7)2(n)] = r(O) - La(k)r(k) (7.32) 
k=I 

The autocorrelation matrix has a computationally rich structure. It is symmetric 
(r(k) = r(-k)) and Toeplitz; that is, all the elements across any of its diago
nals are the same. Exploitation of these properties leads to the development of 
a computationally efficient scheme for the solution of (7.31 ). This is Levinson 's 
algorithm, which solves the linear system of equations in O(p2) multiplications 
and additions, as opposed to O(p3) required by more classical algorithmic schemes 
[Theo 93, Hayk 96]. In Chapter 3, we saw that when the autocorrelation sequence 
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is not known, it is often preferable to adopt the least sum of squares instead of 
the mean square criterion. Then the AR parameters are still provided by a linear 
system of equations, but the associated matrix is no longer Toeplitz. However, it 
is still computationally rich, and Levinson-type 0 (p2) algorithms for the efficient 
solution of such systems have also been derived [Theo 93]. 

Besides images, AR (ARMA) models have been used extensively to model 
other type of random sequences, such as those resulting from digitizing speech 
signals and electroencephalographic signals. For all these cases the resulting 
AR parameters can be used as features to classify one type of signal from 
another. 

Example 7.4. Let the AR random sequence of order p = 2 be 

2 

I (n) = L a(k)I (n - k) + T}(k) 

k=I 

with r(O) = I, r( I) = 0.5, r(2) = 0.85. Computing the mean square estimates of 
a(k). k = I. 2, we obtain 

0.5] [a(I )] = [ 0.5] 
I a(2) 0.85 

and its solution gives a( I) = 0.1. a(2) = 0.8. 

Two-Dimensional AR Models 

A two-dimensional AR random sequence I (m, n) is defined as 

f(m, n) = L La(k, l)l(m - k, n -1), (k, l) E W 
k I 

l(m, n) = f (m, n) + IJ(m, n) 

(7 .33) 

(7.34) 

Figure 7 .8 shows the region W of the pixels that contribute to the prediction of 
f (m, n), for a number of possible choices. The case in Figure 7.8a corresponds 
to what is known as a strongly causal predictor model. This is because all pixels 
in the contributing area have coordinates smaller than the coordinates m, n of the 
predicted pixel, which is represented by the unshaded node in the figure. The 
corresponding window is Wt = (0 _:::: k _:::: p, 0 _:::: l _:::: q, (k, l) -::j=. (0, 0)}. 
However, the notions of past and present have no real meaning for an image, and 
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n 

(c) (d) 

FIGURE 7.8: Different types of 2-D prediction models . The predicted pixel is 
represented by the unshaded node. The pixels that take part in the prediction are 
lightly shaded and the corresponding window W is the area enclosed by the dotted 
line. (a) Strictly causal, (b) causal, (c) semicausal, and (d) noncausal. 

alternative windows can also be used. A noncausal predictor is defined as 

p q 

l(m , n)= L La(k,l)l(m-k,n-l)+T](m,n) 
k=-pi= - q 

In Figure 7.8d the corresponding window is shown for the case of p = q = 2. 
Figure 7.8c shows a third possibility, which is known as a semicausal predictor, 
and Figure 7.8b shows the case of a causal predictor. Next we summarize the last 
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three cases, which are the most common in practice: 

Causal : W2 = {(-p S k Sp, IS l Sq) U (IS k Sp, l = 0)} 
Semicausal: W3 = {-p S k Sp, 0 S l Sq, (k, I) =I= (0, O)} 
Noncausal : W4 = {-p 5 k Sp, -q S l Sq, (k, I) =I= (0, 0)} 

AR Parameter Estimation 

We have 

I(m , n) = LLa(k, l)l(m -k,n -/) 
k I 

Recalling the orthogonality condition from Chapter 3, in its 2-D generalization, 
we obtain that the minimum mean square error solution satisfies 

E[l(m-i,n-j)(l(m,n)- ~~a(k,l)I(m-k,n-1))] =0, (i , j)E W 

(7 .35) 

or 

r(i, j) = L La(k, l)r(i - k, j - I), (i, j) E W (7.36) 
k 

where r(i, j) = E[l(m, n)/(m - i, n - .i)] is the 2-D autocorrelation sequence 
of the random field I (m, n). The set of equations in (7.36) constitute a linear 
system of equations leading to the estimates of a(k, /).The associated matrix also 
has a computationally rich structure, which can be exploited to develop efficient 
schemes to compute the solution. Let us take for example the noncausal window 
for p = q. This is a symmetric window, in the sense that for each index pair (i , j), 
the (-i, - j) is also present. Combining (7.36) with the equation of the variance 
of the minimum error, which is given by (Problem 7 .11) 

a; = r(O, 0) - LL a(k, l)r(k, l) (7 .37) 
k I 

the following system results: 

(7.38) 

where 0 is the zero vector of appropriate dimension and 

aT = [a(p, p) , .. . . a(p, -p), . .. , a(O. 0) , . .. , a(-p, p) , ... , a(-p , -p)] 
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where a(O, 0) =I and R is the corresponding autocorrelation matrix. The dimen
sion ofa is (2p+l)2. Thecorrelationofahomogeneous(i.e., E[J(m, n)l(m - k, 
n - l)] = r(k, l)) and isotropic (no direction dependence) image depends only on 
the relative distance between pixels, 

r(k, l) = r ( Jk 2 +12 ) 

and the resulting autocorrelation matrix is easily shown to be symmetric and block 
Toeplitz with each block being itself a Toeplitz matrix, 

[Ro Ri R,, ] 
Ri Ro Ri~-1 R= (7.39) 

R~p Rip-I Ro 

where 

[ ,c;,01 ... '(Up)] 
R; = r(i,'.2p) 

(7.40) 

... r(i, 0) 

For homogeneous images and symmetric windows it is easy to show that the AR 
parameters are symmetric a(k, l) = a(-k, -l) and the system can be solved 
efficiently by a Levinson-type algorithm [Kalo 89]. If the image is homoge
neous but anisotropic, the resulting system's associated matrix is block Toeplitz, 
but the elements are no longer Toeplitz. Furthermore, more general windows 
than the ones introduced in this section have also been suggested and used. 
Efficient Levinson-type algorithms for such cases have also been developed 
(e.g., [Glen 941). Finally, besides the squared error criteria, maximum likelihood 
techniques can be employed for the estimation of the unknown parameters, which 
can lead to more accurate estimates. Of course, in such cases assumptions about 
the underlying statistics have to be adopted (e.g., [Kash 82]). 

Remarks 

• The AR modeling of images has been used in the classification context in a 
number of cases [Chel 85, Cros 83, Kash 82, Sark 97]. In [Kash 86, Mao 92] 
extensions have been proposed for rotation-invariant models. 

• The AR random field models are related to a class of models known as 
Markov random.fields. The essence of these fields is that for each pixel (m, n) 
the image is divided into three areas: n+ ("future"), Q ("present"), and n
("past"). It is then assumed that the random variable I (m, n), (m, n) En+, 
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is independent of its values in n- and depends only on the values in Q; thus, 
the conditional density function satisfies 

p (!(m, n) , (m, n) E Q+l/(m, n), (m, n) En- U Q) 

= p (!(m, n), (m, n) E Q+l/(m, n) , (m, n) E Q) 

In words, the "future" depends only on the "present" and not on the "past"; 
that is, the value of the random variable at a pixel depends on the values that 
the random variable takes in a specific (neighboring) area only, and it does 
not depend on the values in the remaining regions of the image. 

• It can be shown that every Gaussian AR model is a Markov random field . 
[Wood 72, Che! 85). 

Example 7.5. For an image whose autocorrelation sequence obeys 

r(k. l) = 0.8JkZ+/Z 

estimate the AR parameters for a noncausal p = q = I window. 

From the definition we have 

i(m, n) = a(I, l)I(m - I, n - I)+ a(I, O)l(m - I, n) 

+ a(I, -1)/(m - I, n +I)+ a(O, l)l(m, n - I) 

+a(O. -1)/(m,n + 1) +a(-1, l)/(m + 1.n - I) 

+a(-1,0)l(m + 1,n) +a(-1, -l)l(m + l,n +I) 

The resulting matrix R is a block (2 p + l) x (2 p + 1) = 3 x 3 matrix with elements 
the 3 x 3 matrices 

where 

[

r(O, 0) 
Ro= r(O, I) 

r(O, 2) 

[

r(l,0) 

R1 = r(l. I) 
r(I, 2) 

r(O, 1) r(O, 2)] 
r(O, 0) r(O, I) 

r(O, I) r(O, 0) 

r(l, 1) r(l, 2)] 
r(l , 0) r(l,l) 
r (I , I) r (I , 0) 
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[

r (2, 0) r(2, I) r(2, 2)] 
R1 = r(2, I) r(2, 0) r(2, I) 

r(2, 2) r(2, l) r(2, 0) 

For this specific model the linear system in (7.38) has nine unknowns and the 
solution gives 

a(I, I) =a(-1. -1) = -0.011, 
a(I, -1) =a(-1, I)= -0.011, 

a;= 0.17 

a(l,O}=a(-1,0}= -0.25 
a(O, I}= a(O, -I}= -0.25 

7.3 FEATURES FOR SHAPE AND SIZE CHARACTERIZATION 

1.n a number of image analysis applications, an important piece of information 
is the shape and size of an object of interest within the image. For example, in 
medical applications the shape and size of nodules are crucial in classifying them 
as malignant or benign. Nodules with an irregular boundary have a high probability 
of being malignant and those with a more regular boundary are usually benign. 
Also, it has been observed that in certain cases nodules with a perimeter of more 
than 3 cm are usually malignant [Cavo 92). [Vinci 02). 

Another example in which the shape of the object is of major impor
tance is the automatic character recognition in an optical character recogni
tion (OCR) system [Mori 92), [Plam 00). Although there are OCR systems 
employing our already familiar regional features, there is a large class of tech
niques that use the shape information residing in the boundary curve of the 
characters. 

Figure 7.9a shows the character "5" seen from the scanner of an OCR system. An 
appropriate image segmentation algorithm (e.g., [Pita 94)) has first been applied 
to separate the character from the rest of the image. The character in Figure 7.9b is 
in binary form. This is the result of the binarization phase, in which all gray levels 

(a) (b) (c) 

FIGURE 7.9: The character "5" after (a} the segmentation of the scanned image 
and then (b} the application of a binarization algorithm and (c} its boundary after 
the application of a boundary extraction algorithm in the binarized version. 
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of the character region below a certain threshold become 0 and all above it become 
1 [Trie 95]. Figure 7.9c shows the resulting boundary, after the application of a 
boundary extraction algorithm (e.g., [Pita 94)) on the binary version. Thus, in the 
last version there is no texture of interest inside the character. What is of paramount 
importance in such systems is feature invariance in geometric transformations. The 
recognition of the character must be insensitive to its position, size, and orientation. 
A review of various methodologies for invariant pattern recognition techniques can 
be found in [Wood 96]. 

The shape characterization of a region or an object can be achieved in various 
ways. Two are the major directions along which we will proceed. One is to develop 
techniques that provide a full description of the boundary of the object in a regen
erative manner. In words, the boundary can be reobtained from the description 
coefficients, such as by using a Fourier expansion of the boundary, which in tum 
can be reconstructed from its Fourier coefficients. The other direction is to use 
features that are descriptive of the characteristics of the shape of the region but 
are not regenerative. Examples of such features are the number of comers in the 
boundary and the perimeter. They provide useful information about the boundary, 
but they are not sufficient to reproduce it. In the following we will focus on some 
basic techniques, which have in tum given birth to a large number of variants 
shaped to fit specific application requirements (for example, see [Trie 96) for a 
review). 

7.3.1 Fourier Features 

Let (xk, Yk), k = 0, I, ... , N - I, be the coordinates of N samples on the boundary 
of an image region, Figure 7.lOa. For each pair (xk. Yk) we define the complex 
variable 

y 

:·--A 
•. O ....•. l-/i . . :x :x 

(a) 

y 

x x 
(b) 

FIGURE 7.10: Boundary of an image region and associated parameters. 
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For the N Uk points we obtain the DFf fl 

f1 =~Uk exp(-/; lk). 
k=O 

l = 0, l, ... , N - l 

The coefficients fr are also known as the Fourier descriptors of the boundary. Once 
the fl are available, the Uk can be recovered and the boundary can be reconstructed. 
However, our goal in pattern recognition is not to reconstruct the boundary. Thus, 
a smaller number of coefficients (or descriptors) is usually used, enough to include 
sufficient discriminatory information. In the sequel, we will investigate how the 
Fourier descriptors are affected by the actions of translation, rotation, and scaling. 
For translation we have 

Then 

xk = Xk +tu 

Yk = Yk + /),.y 

Uk= Uk+ (/),.x + j/),.y) =Uk+ /),.u' 

For rotation, it is not difficult to verify that in rotating all points of the region by 
(),with respect to the origin, the rotated coordinates correspond to (Problem 7.13) 

uk = uk exp(j()) 

If Ji, f/ are the DFfs of Uk> uk, respectively, then from the DFf definition 
we get 

Translation : uk = Uk + /),.u
1 
==} f( = Ji + J).u' 8 (l) 

Rotation : uk = Uk exp(j()) ==} f/ = fl exp(j()) 

Scaling : uk =auk==} f/ = afi 

Translation of the sampling origin: uk = Uk-ko ==} 

f/ = f1exp (-j2rcko ~) 

In words, translation affects only the f6 coefficient. Rotation affects the phase 
of all the coefficients by the same factor and it has no effect on their magnitude. 
Scaling affects all coefficients in the same way, and thus it has no effect on the 
ratios £. The sampling point origin, within the boundary, affects the phase but 

leaves invariant the magnitude lfrl. 
This deterministic manner, in which the three geometric transformations 

affect the Fourier coefficients, allows the development of appropriate normalized 
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versions that are invariant to these actions [Crim 82, Arbt 90, Gran 72]. Let us 
demonstrate the rationale of such approaches via an example, by considering the 
boundary of an object. The first decision to be taken, prior to the computation of the 
Fourier coefficients, is to define the first sampling point (xo, yo) on the boundary. 
In practice, the choice of this point for each character has a degree of randomness. 
The choice of a different sampling origin corresponds to a relative translation of, 
say, ko < N samples (since the boundary is a closed curve, the relative translation 
will always be (k - ko) modulo N < N). As we have seen earlier, this affects the 
Fourier descriptors 

1 1 ( f ) uk = Uk-ko ==> f 1 = f1 exp - j2rrko N (7.41) 

hence 

f{ = ft exp ( - j2rr ~) ==> f{ = lftl exp(- j</>t) exp (- j2rr ~) 

where I ft I, <Pt are the magnitude and phase of ft, respectively. Hence, the phase 
off{ is <P; = ¢ 1 + 2rr ~. In the sequel we define the following normalized Fourier 
coefficients: 

(7.42) 

The corresponding normalized coefficient with shifted origin will be 

.ft'= f/ exp(j/¢;) = f/ exp (j/¢1 + j2rrko ~) (7.43) 

Taking into account (7.41 ), we obtain 

f/ =ii 
Thus, the preceding normalization generates features that are invariant to the 
choice of the sampling origin (xo. yo). 

This method of exploiting the power of the Fourier transform as a tool for 
boundary description is not the only possibility. An alternative is to express the 
coordinates of the boundary contour points as functions of the boundary length t. 
measured from an origin within the boundary, that is, (x(t), y(t)). Since the bound
ary is a closed curve, these are periodic functions and they can be expanded 
in their Fourier series. Invariant versions of the Fourier coefficients can then 
be computed and used as features for pattern recognition [Kuhl 82, Lin 87]. 
Comparative performance studies of a number of invariant Fourier-based fea
tures, in the context of handwritten character recognition, can be found in 
[Pers 77, Taxi 90]. 
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Another way is to generate Fourier descriptors from the curvature k(t) function 
of the boundary, defined as 

dO(t) 
k(t) = dt 

where e(t) is the tangent angle (Figure 7.lOb) at a point a distance t from the 
origin, which is marked "o" in the figure. Such a description is justified by Gauss's 
theorem, stating that every curvature function corresponds to one and only one 
curve in space (with the exception of its position in space). The advantage of such 
a description stems from its obvious scale invariance property. If we measure the 
length of the boundary at a point by the number of pixels n between this point and 
the origin of the curve, the curvature of the boundary is approximated by 

e _ta -I Yn+I - Yn 
n- n ' n = 0, 1, ... N - 1 

Xn+I -Xn (7.44) 

k11 = On+I - On, n = 0, 1, ... N - 1 

In the previous chapter we have seen that an alternative to Fourier descriptors 
is to use wavelet coefficients. However, as we pointed out there, the definition 
of invariant wavelet descriptors is not a straightforward task, and invariance is 
attempted via indirect methods. 

7 .3.2 Chain Codes 

Chain coding is among the most widely used techniques for boundary shape 
description. In [Free 61], the boundary curve is approximated via a sequence 
of connected straight line segments of preselected direction and length. Every 
line segment is coded with a specific coding number depending on its 
direction. 

In Figure 7.11 two possible choices, usually encountered in practice, are shown. 
In this way a chain code [ d;] is created, where d; is the coding number of the direc
tion of the line segment that connects boundary pixel (x;, y;) with the next one 
(x;+1. y;+1), sweeping the boundary in, say, the clockwise sense. A disadvantage 
of this description is that the resulting chain codes are usually long and at the same 
time are very sensitive in the presence of noise. This leads to chain codes with 
variations due to noise and not necessarily to the boundary curve. A way out is to 
resample the boundary curve by selecting a grid of larger dimensions. For each of 
the boxes of the grid all points inside a box are assigned the value of the respective 
box center. In Figure 7. l 2a the original samples are shown alongside the larger 
sampling grid. Figure 7. l 2b is the resulting resampled version. The chain code is 
formed from the sequential connection of these pixels, Figure 7. l 2c. If we con
sider the length of the grid side as the basic measurement unit, then for even-coded 
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3 2 

2 0 4 

3 5 6 7 

(a) (b) 

f<'IGURE 7.11: Directions for a (a) 4-directional chain code and (b) an 
8-directional chain code. 

~-+--li[.+.-+-.+-.~.-+-.+-+--1 
.. 1--+;+-i • 

• I• ·; ·; • • • 
:+!.11~-f~ - - t-+-+--1 

f-? .. +· ·-+-·+-·-+-•-1--1~-1 • • 
• • • • • • ~-I-+- • • - . . 1-r;+-1 . . . . . . ~ 

BH-- -- ·:t-;+-"1-~!I. 
,• e e • e L. -

(a) (b) (c) 

FIGURE 7.12: The character "5" and (a) its original sampled image, (b) its 
resampled version on a coarser grid, and (c) the resulting chain code. 

directions. 0, 2, 4, 6, the length of the corresponding straight line segment is I, and 
for the odd-coded directions, I, 3, 5, 7, it is ./2 (from Pythagoras' theorem). For 
the case of Figure 7. I 2b and for a coding with eight possible directions, the result
ing chain code is shown in the Figure 7. t2c. This sequence of numbers constitutes 
the spine on which a number of shap~-related foalure!i are built Two possibilities, 
for example, are the following [Lai 81, Mahm 94). 

Direction and direction length features. For each direction we count the num
ber of times a specific chain code number appears in the chain. Theo this number 
is divided by the total number of chain codes that appear in the chain description of 
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__/ _j ~ r r ~ 
01 02 03 45 46 47 

~ { 7 L ( ~ 14 50 

J r /j L v ~ 24 25 60 61 

~ ~ ~ "x_ v "4 
34 35 36 70 71 72 

(a) Concave features 

7 -i ~ L L "--_Qi 06 _fil_ 41 42 43 r /l ~ v v __/ 
10 16 17 52 53 54 

r ( ~ 'J _J 2 20 27 63 64 

~ ~ ~ ~ ~5 ) 
30 74 

(b) Convex. features 

FIGURE 7.13: Curvature features characterizing the boundary polygon that 
results from an eight-directional chain code description of the boundary. 

the boundary. For an eight-code scheme this procedure gives rise to eight features 
(one for each direction). Another way that also provides eight features is to divide 
the total length of the line segments in each direction by the total length of the 
boundary line. 

Curvature features. These features quantify concave (smaller than 180°) and 
convex (larger than 180°) external angles between adjacent edges at the comers 
of the polygon that is formed by the line segments when the boundary curve is 
scanned in the clockwise sense. Figure 7.13 shows the possible cases. For exam
ple, successive directions 01, 02, 23, 71 correspond to concave external angles, 
and the pairs 06, 41, 64, 75 to convex angles. The occurrence percentage of each 
of these cases in the chain code defines a respective feature. Sometimes chain 
code pairs are grouped according to whether the first chain code is even or odd. 
Thus, a total of 16 features are generated, 8 for the convex and 8 for the concave 
case. 
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7.3.3 Moment-Based Features 

In (7 .21 ) and (7 .25) the geometric moments and central moments were defined. If 
in the place of I (i, j) we consider the sequence 

l(i,j)=g 
(i,j) EC 

(i, j) otherwise 

where C is the set of points (i, j) inside the object of interest, then we obtain a 
way to describe the shape of the object through the moments. Indeed, in such a 
case only the limits in the summations (hence the object's shape) are taken into 
account, whereas the details inside the object (i.e., texture) do not participate. 
Hence 

mpq = L LiP jq, 
j 

(i,j) EC 

with moo = N, the total number of pixels inside the region. The features 

- m10 
x=-

moo 
and 

_ mo1 
y=

moo 

define the center of mass (x, .Y). The respective central moments become 

µpq = L L:u - x)P(j - Y)q, 
j 

(i,j) EC 

The invariant moments can in tum be computed and used, whenever appropriate. 
Two useful quantities that are related to these moments and provide useful 
discriminatory information are: 

1. Orientation 

l -I [ 2µ11 J e =-tan 
2 µ10 - µ02 

which is the angle between the axis with the least moment of inertia and the 
x-coordinate axis (Problem 7 .18) 

2. Eccentricity 

E= 
(µ20 - µ02) 2 + 4µu 

area 

Another representation of the eccentricity is via the ratio RR'"'" of the maxi-
m1n 

mum to the minimum distance of the center of mass (x, y) from the object's 
boundary (Figure 7. !Ob) 



302 Chapter 7: FEATURE GENERATION II 

7.3.4 Geometric Features 

The features of this subsection are derived directly from the geometry of the 
object's shape. The perimeter P of the object and its area A are two widely 
used features. If x;, i = 1, 2, ... , N, are the samples of the boundary, then the 
perimeter is given by 

N-1 

P = L llx;+1 -xiii+ llxN -xiii 
i=l 

If we consider the area of a pixel as the measuring unit, a straightforward way 
to compute the area enclosed by a boundary is by counting the number of pixels 
inside the region of the object. The roundness ratio is a third quantity, defined as 

p2 
y = 4rrA 

A useful feature that is related to the curvature of the boundary, as defined in (7.44), 
is the so-called bending energy at a point n, given by 

l n-1 

E(n) = p L lk;l2 

i=O 

Another popular feature is the number of comers in the boundary contour. These 
correspond to points where the curvature k; takes large values (infinity in theory). 
In [Ohos 97] comers as well as other topological features are detected via the 
use of Zemike moments and appropriate parametric modeling of the respective 
topological image intensity profile. 

The number of holes inside the region of an object is another useful quantity. 
For example, a large error percentage in handwriting character recognition tasks 
is related to the difficulty of the classifiers in distinguishing "8" from "O," because 
their boundaries look alike. The detection of the presence of holes inside the object, 
using appropriate algorithms, is extra information that can be beneficially used for 
recognition [Lai 81, Mahm 94). 

In our study so far, we have demonstrated how to derive geometric features 
from the boundary curve. However, this is not the only possibility. For example in 
[Wang 98) geometric features are extracted directly from the gray level variation 
within the image region. In this way, the binarization phase is avoided, which in 
some cases can become tricky. Another direction that has been used extensively 
in OCR is to work on the thinned version of the binarized character. 

Figure 7 .14 illustrates the procedure via an example. Figure 7. l 4b is the result 
of the application of a thinning algorithm (e.g., [Pita 94)) on the binary ver
sion of the character "5" of Figure 7. l 4a. Also in Figure 7. l 4b the so-called 
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(a) (b) (c) 

FIGURE 7.14: (a) Binarized version of 5 (b) the thinned version with the key 
points and (c) version with edges connecting key points_ 

key points are denoted. These can be node points where one or more lines (strokes) 
of the character are crossed or comer points or end points. These can be com
puted by processing neighboring pixels. For example, in order to identify an end 
point, we look at its eight neighboring pixels_ An end point has only one neigh
bor at gray level 1 and the rest are 0. Jn the sequel, the thinned version of the 
character is simplified as a set of line segments (edges) connecting the key points, 
Figure 7. I 4c. Each edge can then be characterized by its direction, for example, 
using the chain code; its length, for example, long or short; and its relation to its 
neighboring edges. In the sequel each character is described by an array providing 
this infonnation in a coded fonn. Classification is then based on these coded matri
ces by defining appropriate costs. The interested reader may consult, for example, 
[Lu 91, Alem 90J for more details. 

7.4 A GLIMPSE AT FRACTALS 

We have already seen that the 1980s was the decade in which two major tools 
were introduced into the realm of pattern recognition applications (among others): 
neural networks and wavelets. TI1e same decade was also the time when another 
tool was adopted in many application areas to offer its potential power. Fractals 
and fractal dimension have become the focus of considerable research effort. This 
section aims at giving the basic definitions and outlining the basic concepts behind 
the use of fractals in pattern recognition. A deeper study of the area is beyond the 
goals of a short section, and the interested reader may refer to a number of books 
and articles available [Mand 77, Tson 92. Falc 90]. 

7 .4. l Self-Similarity and Fractal Dimension 

Let us consider the straight line segment of length L in Figure 7. l 5a. Divide L 
into N (two for the example of the figure) equal parts of length /. Each of the 
resulting parts is still a straight line segment and its length has been scaled down 
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L/2 EE 
L L/2 L 

(a) (b) 

(c) 

(d) 

(e) 

FIGURE 7.15: Self similar structures (a) line segment (b) square (c)-(e) three 
stages in the generation of Koch's curve. 

by a factor m = t = it. Magnification of any of these parts by the same factor 
will reproduce the original line segment. We refer to such types of structures 
as self-similar. If instead of a straight line segment we had a square of side L 
(Figure 7. l5b), then scaling down the side by m = N: 12 would result into N 
square parts. Each part looks like the original square, which can be reobtained 
from the parts after magnification. The same is true for all dimensions, where N 
similar parts result after scaling the sides of the D-dimensional (hyper)cube by 
m = N,110 , D = 1, 2, .... That is, the Euclidean dimension Dis directly related 
to the scaling and the number N of the resulting self-similar parts. We can write 

(7.45) 

If we now want to measure the length (area, volume) of the original segment 
(hypercube) using as a measurement unit a scaled element of length l (12, / 3 , etc.), 
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then the result is independent of the size l of the measuring unit. Indeed, the 
resulting metric property (length, area, etc.) is given by 

M = N(l)lD (7.46) 

where N (I) is the number of parts that cover the curve (area, etc.) to be measured 
and I is the size of the measuring unit. Combination of (7.45) and (7.46) leads to a 
metric M that is always constant (L D) for the same structure and it is independent 
of the size I of the chosen unit, as expected. 

Let us now tum our attention to some more interesting structures, such as the one 
in Figure 7. l 5d. The curve in Figure 7. l 5d resulls from the straight line segment 
of Figure 7. 15c, known as the initiator, by the following strategy: a) divide the 
segment into three equal parts and (b) replace the central one by the two sides of 
an equilateral triangle, with sides of size equal to the size of the scaled parts. The 
procedure is then repeated for each of the line segments in Figure 7.15d and this 
results in the structure of Figure 7. l 5e. This process can go on indefinitely and the 
limit curve is the so-called Koch curve [Mand 77]. Such a curve is everywhere 
continuous but nowhere differentiable. It is readily observed that at each step of the 
iteration, the resulting structure is part of the structure that will result in the next 
iteration, after a scaling by 3. The curve therefore has a self-similar structure. In the 
sequel we will try to measure the length of the curve. Using as a (measuring) unit 
a segment of length I = j- (i.e., Figure 7.15d), the resulting length is 4. For a unit 

segment I = ft (i.e., Figure 7. l5e ). the measured length is 42 . It is not difficult to 
see that the length keeps increasing with decreasing unit size and tends to infinity as 
the size of the measuring unit tends to zero! That is, the length of the curve depends 
not only on the curve itself but also on the adopted measurement unit! This strange 
result is the outcome of an "unfair" measurement process. Indeed, in the case of 
the Koch curve. scaling by 3 results in four similar parts. ln contrast, in the case of 
a straight line segment scaling by m = j:; results in the same number N of similar 

parts. In higher dimensional Euclidean space, scaling by m = N- 1 ID results in N 
parts. The measurement process involves this number N, the scaled side length/, 
and the Euclidean dimension D, as (7.46) suggests. From this discussion, the 
Euclidean dimension can also be seen as the ratio ~~"~" = D. Starting from this 
observation, let us now define the similarity dimension of a general self-similar 
structure as 

lnN 
D=-

-lnm 
(7.47) 

where N is the number of the resulting similar parts, when scaling by a factor m . 
For hypercube structures the similarity dimension is the respective Euclidean 
dimension. which is an integer. ln contrast the corresponding similarity dimen
sion of the Koch curve D = ~ is a fraction and not an integer. Such structures 

- ln( 3) 
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are called fractals, and the corresponding similarity dimension is called afractal 
dimension. Measuring a fractal structure, we can adopt (7.46) with the correspond
ing fractal dimension in the place of D. The result of the measurement process 
now becomes independent of the measuring tool l. Indeed, it is easy to see that 
using the definition in (7.47), (7.46) results in a constant M = L 0 form = t · 
The use of similarity dimension, therefore, results in a consistent description of the 
metric properties of such self-similar structures. For a deeper treatment and other 
definitions of the dimension the interested reader may consult more specialized 
texts (e.g., [Falc 90]). 

7.4.2 Fractional Brownian Motion 

A major part of our effort in this chapter was dedicated to the description of 
statistical properties of signals and images and to the ways these can be exploited 
to extract information-rich features for classification (e.g., co-occurrence matrices, 
AR models). In this section we will focus our attention on whether the notion of 
self-similarity is extendable to stochastic processes and, if it is, how useful it 
can be for our interests. In the previous section "similarity" referred to the shape 
of a curve. For statistics such a view would be of no interest. From a statistical 
point of view it would be more reasonable and justifiable to interpret similarity 
from the perspective of "similar statistical properties," that is, mean, standard 
deviation, and so forth. Indeed, it can be shown that stochastic processes that 
are self-similar under scaling do exist. Furthermore, such processes can model 
adequately a number of processes met in practice. 

Let 11(n) bea white (Gaussian) noise sequence with variance a;= I. The process 
defined as 

n 

x(n) = L 71(i) 
i=l 

is known as a random walk sequence, and it belongs to a more general class of 
stochastic processes known as Brownian motion processes [Papo 91, page 350]. 
It is straightforward to see that 

and that its variance is given by 

E[x(n)] = 0 

E[x2(n)] = na 2 
1} 

Thus, the process is a nonstationary one, because its variance is time dependent. 
A direct generalization of this is that 

E[Li2x(n)] = E[(x(n +no) - x(no)) 2
] = na; (7.48) 
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where by definition t.x(n) is the sequence of increments. Scaling the time axis by 
m results in 

E[t. 2x(mn)] = E[(x(mn +no) - x(no))2
] = mna,~ (7.49) 

Hence, if the sequence of increments is to retain the same variance after scaling. 
it should be scaled by ,Jiii. Furthermore, it is easy to see that the sequence of 
increments, as well as the scaled versions, follow a Gaussian distribution (e.g. , 
[Falc 90]). Recalling that Gaussian processes are completely specified by their 
mean and variance, we conclude that the increments t.x (n) of x(n) are statistically 
self-similar in the sense that 

~x(n) and (7.50) 

are described by the same probability density functions, for any no and m . 
Figure 7.16 shows three curves of the scaled random walk increments for 
m = 1, 3, 6. It is readily observed that they indeed "look" alike. Such curves, 
for which different scaling has been used for the coordinates (!ix, n ), are also 
known as statistically self-affine. 

The random walk Brownian motion is a special case of a more general class 
of processes known as fractional Brownian motion sequences (fBm), introduced 

FIGURE 7.16: Time evolution of the random walk (m = I) sequence am.I two 
of its self-affine versions. They all do look alike. 
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in [Mand 68] . The increments of this type of processes have variance of the general 
form 

(7.51) 

with 0 < H < 1, ll.n = n - no and ex denoting proportionality. The parameter 
H is also known as the Hurst parameter. As in the case of Brownian motion, 
the increments of such processes are statistically self-affine in the sense that the 
processes 

I 
ll.x(n) and Hll.x(mn) 

m 

are described by the same probability density functions. The parameter H relates 
to the visual smoothness or coarseness of the respective graph of the increments 
versus time. This is an implication of (7 .51 ). Let us start from a maximum interval 
ll.n, corresponding to an incremental variance CJ'

2 . In the sequel we halve the 
interval to ll.n /2. The respective variance will be reduced by the factor (I /2)2H . 

This process can go on. Each time we reduce the interval ll.n by half, we look 
at increments between points located closer in time. The higher the value of H, 
the greater the reduction of the variance of the increments between these points, 
indicating smoother curves. For H = 0, the variance of the increments remains 
constant and independent of ll.n. This process is not an fBm and it corresponds 
to a white noise stationary process, with no dependence between adjacent time 
instants. Hence, it exhibits the most erratic behavior, and its graph has the most 
coarse appearance. This observation indicates that the parameter H could be used 
as a measure of the "smoothness" of such curves. By varying H one can get 
curves of varying degree of smoothness [Saup 91 ]. Figure 7.17 indeed verifies 
that the curve for H = 0.8 is smoother than the one for H = 0.2 and both are 
smoother than the top one, which corresponds to a white noise sequence. As was 
the case with the fractal curves of the previous subsection, a dimension can also 
be defined for curves resulting from fBm processes. It can be shown [Falc 90, 
page 246] that an fBm process with parameter H corresponds to a curve with 
fractal dimension 2 - H. In general, if I is the number of free parameters of 
the graph, the corresponding fractal dimension is I + I - H. For a graph as in 
Figure 7.17, I = I and for an image l = 2. 

The question now is how all these no doubt mind-stimulating points can be 
of use to us in the context of pattern recognition. The terms smoothness and 
coarseness have been used in association with the parameter H and equivalently 
with the dimension D of an fBm process. On the other hand, the terms "smooth
ness," "roughness," were in a central position when dealing with feature generation 
for texture classification. We have now reached our crucial point . Provided that 
we can describe the sequence of gray levels of an image as an fBm process, 



Section 7.4: A GLIMPSE AT FRACTALS 309 
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FIGURE 7.17: Time evolution of a white noise sequence (top) and two fBm 
processes of different Hurst parameters H. The lower the value of H, the coarser 
the appearance of the graph. 

the corresponding fractal dimension can be used as a potential feature for texture 
classification. In [Pent 84] it is reported that this is indeed true for a number of 
cases. Using a number of textured images from [Brod 66], as well as images from 
natural scenes, it was found that a large percentage of them exhibited fBm behavior. 
This was easily verified by constructing the histogram of differences (increments) 
of the gray level intensities for various relative pixel distances ~n . It turned out 
that for each value of ~n the corresponding histogram was close to a Gaussian pdf 
centered at zero. Furthermore, the widths of the Gaussian-like histograms were 
different for the different relative pixel distances ~n. The larger the ~n, the wider 
the resulting histogram. However, we know that the width of a Gaussian is directly 
related to its variance. The plot of the variance as a function of relative pixel dis
tance revealed an underlying fBm nature of the intensity processes, at least over 
a IO: l range of relative distances measured. The parameter H, or equivalently 
the fractal dimension D, was then used successfully to distinguish a number of 
different textured regions in an image. The estimation of the H can take place via 
its definition in (7.51 ). Taking the logarithm, we get 

In £[~ 2x] =Inc+ 2H In ~n 

where c is the proportionality constant and ~x is now the difference in the 
gray level intensities between pixels at relative distance ~n. that is. ~n = I, 2. 
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and so on. Obviously, c = E[t:i.2x] for 6.n = l. For each pixel distance t:i.n the 
corresponding average t:i.2x is computed over the image window of interest. The 
resulting points (£[t:i.2x], t:i.n) are plotted in a two-dimensional logarithmic plot. 
A straight line is then fitted through the points using a least squares linear regres
sion technique. The parameter H is provided by the slope of the line. This is also a 
test of the fractal nature of the underlying process. If the resulting points do not lie 
approximately on a straight line, the fractal model assumption will not be valid. 
Figure 7 .18 demonstrates the procedure for two images. The one on the right is 

an artificially produced fractal image with H = 0. 76. The least squares fit in the 
logarithmic plot of the standard deviation against 6.n results in a straight line of 
slope 0.76. The image on the left is from [Brod 66]. We observe that the resulting 
least squares fit is reasonable, suggesting that the image is approximately fractal 
in nature. The slope is now H = 0.27. The lower value of H reflects the fact that 
the latter image is coarser than the former. 

4.7~-~---~-~-~ 

.. 
4.5 

2.2 

4.3 

1.8 

4.J 
1.4 

0.5 1.5 2 2.5 J 0 0.5 1.5 2 2.5 

FIGURE 7.18: Examples of images with corresponding logarithmic plots of the 
standard deviation of increments (vertical axis) versus relative distance (horizontal 
axis). 



Section 7.4: A GLIMPSE AT FRACTALS 311 

Fractional modeling and the use of fractal dimension D as a feature for classi
fication have been demonstrated in a number of applications [Chen 89, Lund 86, 
Rich 95). However, the method is not beyond drawbacks. Indeed, it may happen 
that different textures result in the same fractal dimension, thus limiting the classi
fication potential of the method. Another shortcoming is that, in practice, physical 
processes retain their fractal characteristics over a range of distances but not over 
all ranges. Thus, the fractal dimension may change as we pass from one range of 
scales to another [Pent 84, Pele 84], and the use of a single Hurst parameter may 
not lead to sufficient modeling. To overcome these drawbacks a number of possi
ble solutions have been suggested [Flan 92, Bass 92, Ardu 92, Kara 95, Kapl 95. 
Deri 93, Kapl 00). 

A comparative study of various textural features, including fractal modeling 
techniques, can be found in [Ohan 92, Ojai 96). 

Problems 

7.1 Consider the image array 

2 
0 
2 
0 

2 
0 
3 
2 

2 
2 
2 
2 

Compute the co-occurrence matrix ford= I and the four directions. Then compute 
the ASM and CON features. 

7.2 For the image array of the previous problem compute the run length matrix for the 
four directions and then the features SRE, LRE. 

7.3 Construct a 4 x 4 array that will have a high contrast (CON) value in the 0° direction 
and low CON value in the 45° direction. 

7.4 For two of the test images provided in the web site of the book, develop a program 
that computes the co-occurrence and run length matrices for the four directions and 
d = l. Then compute the ASM, CON, IDF. Hx)" SRE. LRE, GLNU, RLN features 
and average their respective values over the four directions. Justify your findings. 

7.5 Show that if 

then 

becomes minimum if P; = fr· i = I. 2, .... N. 
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7.6 Show that the central moments defined in (7.22) are invariant to translations and the 
normalized central moments in (7.23) are invariant to both translation and scaling. 

7.7 Show that the Zemike polynomials are orthogonal on the unit circle disk, that is, 

f 1 v,:,,,(x, y)Vpq(x, y) dx dy = _rr_OnpOmq 
x2+y2:0:I n +I 

7.8 Show that if a region in an image is rotated by an angle{} with respect to the origin, 
the Zernike moments of the rotated region are related to the unrotated ones by 

A~q = Apq exp(-jq{}) 

7.9 Write a program to compute the moments of Hu. Then apply it to two of the test images 
involving objects, available from the web, and compute the respective moments. 

7.10 Repeat Problem 7.9 for the Zemike moments of order A 11 • A20. Ao2· 
7.ll Show Eq. (7.37). 
7.12 Write a program that computes the AR parameters for a noncausal prediction model. 

Apply it to a homogeneous and isotropic image whose autocorrelation sequence is 
given by 

r(k, I) = exp(-J k2 + t2) 

for a window W of order p = q = 1. 

7.13 Let Uk = Xk + jyb where (xk. Yk) are the coordinates of the points on the boundary 
of an object in an image. Show that if the object is rotated by an angle{} with respect 
to the origin of the axis, the new complex sequence is 

7.14 Lett denote the length along a closed boundary curve measured from an origin within 
the curve, and x(t), y(r) the coordinates as functions oft. If T is the total length of 
the curve, then the following Fourier series expansion holds. 

00 

[ 2rrnr 2rrnt] 
x(r) = ao + L an cos T + bn sin ---:;-

n=I 

00 

[ 2rrnr 2rrnt] )'(/) =co+ L Cn cos T + dn sin T 
11=1 

Prove that if x(r), y(r) are piecewise linear functions between the sampled points 
(x(r), y(r)), r = 0, I, ... , m - I, the Fourier coefficients an, b,1 , c11 , dn are given by 

T m Ll.x· 
an = ~I:--' [cos¢; - cos.P;-il 

2rr n i=l Ll.t; 



where 
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T m ~x· 
bn = ~ L-' [sin<Pi -sin<Pi-il 

2n n i=I ~Ii 

T m ~v· 
en=~ L _._,[cos¢; - cos<Pi-1 l 

2JT 11 i=l ~Ii 

T m ~Yi . . 
d,, = ~ L-[sm<Pi - sm<Pi-il 

2n 11 i=I ~Ii 

~Xi =X; -Xi-I• 

~Ii= J ~xf +~YT· 

T =Im. 

~Yi= Yi -- Yi-I 

i 

Ii= L~11 
j=I 

211n I; 
c/i; = -

T 
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7 .15 For the Fourier coefficients in Problem 7 .14 prove that the following parameters are 
rotation invariant: 

2 b2 2 2 111 = a11 + 11 + c11 + d11 

111 = a,,d11 - b11 c11 

K l.r• = (llf + bf)(a~ + b~) + (cT + df )(c~ + d;) 

+2(a1c1 +b1d1)(a11 c,, +b11 d,,) 

7.16 If (x(t), y(r)) are defined as in Problem 7.14 and 

z(t) = x(I) + jy(I) 

the respective complex exponential Fourier series is given as 

00 

z(I)= L a11 exp(j2n111/T) 
n=-oo 

T 
an=~ lo z(l)exp(-j2nn1/T)d1 

Prove that the following parameters are scale and rotation invariant [Gran 72]: 

an am 
bn = a1+nal-11 d _ !+111 1-n 

2 ' mn - (m+n) 
a 1 a

1 

where n i= l. 
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7.17 Prove that if x(t). y(t) of the previous problem are piecewise linear functions 
between the points (x(t), y(t)), t = 0, 1, ... , m - l, then the Fourier coefficients 
an are given by [Lai 81] 

where 

T m 
a11 = ---2 ~)b;-1 -b;)exp(-jn2m;/T) 

(2JTn) i=l 

V+1-V b· _ I I 

I - IVi+I -V;I' 

i 

t;=LIVk-vk-il. i>O,to=O 
k=I 

and V;, i = 1, 2, ... , m, the phasors at the respective points. 
7.18 Show that the orientation(} in section 7.3.3 results from minimizing 

I (8) = L 2)u - x) cose - (j - ji) sinBJ2 

j 

7.19 Show that the power spectrum of an fdm process with Hurst parameter H is 
given by 

I 
S(/) <X j<2H+I) 

7.20 Show that the definition of M in (7.46) results in a consistent metric for the Koch 
curve. 

7.21 Assuming that x(O) = 0, show that 

E[x(n)(x(n +no) - x(n))] = ~ { (n + n0)2H - n2H - n6H} 

For the case of a Brownian motion ( H = ~) this suggests that x (n) is uncorrelated 

to the increment. This is not true for H =f. -!. where a nonzero correlation exists. 
positive for H > 1/2 and negative for H < 1/2. To prove this use the definition in 
(7.51). This can be generalized. That is, if n1 5 n1 5 n3 5 n4 and the process is 
Brownian then 
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CHAPTER 8 ____________ _ 

TEMPLATE MATCHING 

8.1 INTRODUCTION 

In all previous chapters, the task of major concern was to appoint an unknown pat
tern to one of the possible classes. The problem that will accompany us throughout 
this chapter is of a slightly different nature . We will assume that a set of reference 
patterns (templates) are available to us and we have to decide which one of these 
reference patterns an unknown one (the test pattern) matches best. ll1ese templates 
may be certain objects in a scene or can be strings of patterns, such as letters form
ing words in a written text or words or phrases in a spoken text. Typically, such 
problems arise in speech recognition, in automation using robot vision, in motion 
estimation for video coding, and in image database retrieval systems, to name but 
a few. A reasonable first step to approaching such a task is to define a measure or 
a cost measuring the "distance" or the "similarity" between the (known) reference 
patterns and the (unknown) test pattern, in order to perform the matching opera
tion known as template matching. We know by now that each pattern is expressed 
in terms of a vector or a matrix with elements the set of the selected features . 
Then why not use one of the already known distance measures, that is, Euclidean 
or Frobenius norms, and perform the matching operation based on the minimum 
distance? A little more thinking reveals that such a straightforward approach is 
not enough and something more is needed. This is the crucial point that makes 
template matching different and at the same time interesting. 

To understand this better, let us consider a written text matching problem, that 
is, to identify which one from a set of written words is the word, say. "beauty." 
However. because of errors in the reading sensors the specific test pattern may 
appear, for example, as "beety" or "beaut." In a speech recognition task, if a 
specific word is spoken by the same speaker a number of times, it will be spoken 
differently every time. Sometimes it will be spoken quickly and the resulting 
pattern will be of short duration in time, sometimes slowly and the pattern will be 
longer. Yet in all cases it is the "same" word spoken by the same person. In a scene 
analysis application the object to be identified may be present in an image but its 
location within the image is not known. In content-based image database retrieval 
systems, queries often include the shape of an object. However, the shape provided 
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by the user, most often, does not match exactly the shape of the object residing 
in the database images. The major goal of this chapter is to define measures that 
accommodate the distinct characteristics for each category of these problems. As 
is always the case with a textbook, only general directions and typical cases will 
be treated. 

We will begin with the problem of string pattern matching and will come to 
the scene analysis and shape recognition problems later on. The tasks, although 
they share the same goal, require different tools because of their different 
nature. 

8.2 MEASURES BASED ON OPTIMAL PATH 
SEARCHING TECHNIQUES 

We will first focus on a category of template matching, where the involved patterns 
consist of strings of identified symbols or feature vectors (string patterns). That 
is, each of the reference and test patterns is represented as a sequence (string) of 
measured parameters and one has to decide which reference sequence the test one 
matches best. 

Let r(i), i = 1, 2, ... , I, and t(j), j = 1, 2, ... , J, be the respective feature 
vector sequences for a specific pair of reference and test patterns, where in general 
I =I= J. The objective is to develop an appropriate distance measure between the 
two sequences. To this end, we form a two-dimensional grid with the elements 
of the two sequences as points on the respective axes, that is, the reference string 
at the abscissa (i-axis) and the test one at the ordinate (j-axis). Figure 8.1 is an 
example for I = 6, J = 5. Each point of the grid (node) marks a correspondence 
between the respective elements of the two sequences. For example node (3, 2) 
maps the element r(3) to t(2). Each node (i, j) of the grid is associated with a 
cost, which is an appropriately defined function d(i, j) measuring the "distance" 
between the respective elements of the strings, t(j) and r(i). A path through the 
grid from an initial node (io, jo) to a final one (i I, j I) is an ordered set of nodes 
of the form 

Uo. jo), (i1, j1), (iz, jz), · · ·, (i1, h) 

Each path is associated with an overall cost D defined as 

K-1 

D=Ld(h,jk) 
k=O 

where K is the number of nodes along the path. For the example of Figure 8.1, 
K = 8. The overall cost up to node (h, A) will be denoted by D(ik. jk) and by 
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FIGURE 8.1: Each point along the path marks a correspondence between the 
respective elements of the test and reference patterns. 

convention we assume D(O, 0) = 0 and also d(O, 0) = 0. The path is said to be 
complete if 

(io,jo)=(0,0), UJ.iJ)=(l,J) 

The distance1 between the two sequences is defined as the minimum D over all 
possible paths. At the same time the minimum cost path unravels the optimal 
pairwise correspondence between the elements of the two sequences, which is the 
crucial part, since the two sequences are of different lengths. In other words, the 
optimal path procedure makes the alignment or warping of the elements of the test 
string to the elements of the reference string, corresponding to the best matching 
score. Before we talk about the optimization procedure, we must point out that 
there are a number of variations of this scheme. For example, one may not impose 
the constraint of having necessarily a complete path but may adopt more relaxed 
constraints known as end point constraints. Furthermore, one could associate a 
cost not only with each node but also with each transition between nodes, making 
certain transitions more costly than others. In such cases, the cost at a node Uk, ik) 
also depends on the specific transition, that is, from which node Uk-t. ik-1) the 

1 The term distance here must not be interpreted with its strict mathematical definition. 



324 Chapter 8: TEMPLATE MATCHING 

(h, jk) node was reached. Thus, the cost d is now of the form d (it, A lik-1, A- t) 
and the overall path cost is 

D = Ld(h, Alh-1, A-1) 
k 

In some cases the overall path cost is defined as the product 

D= nd(h,jkih-1.jk-1) 
k 

Finally, there are cases where dis chosen so that maximization instead of minimiza
tion is required. Obviously, in all these variations appropriate initial conditions 
have to be adopted. Let us now come back to the optimization problem itself. To 
obtain the best path, one has to search all possible combinations of paths. However, 
this is a computationally costly procedure. Dynamic programming algorithms 
based on Bellman's principle are powerful tools that we will adopt to reduce the 
computational complexity. 

8.2.1 Bellman's Optimality Principle and Dynamic Programming 

Let the optimal path between an initial node (io. jo) and a final one (if, j f) be 
denoted as 

If (i, j) is an intermediate node between (io, jo) and (if, j f ), we will denote the 
optimal path constrained to pass through (i, j) as 

(
. . ) opt (. . ) 
IQ, )0 ~(. ') If, )f 

/,) 

Bellman's principle states that [Bell 57] 

( . . ) opt (' . ) (' . ) opt (' ') ffi (' .) opt (' . ) IQ,10 ~('' IJ.)f = I0,10 ~ I,) <DI,) ~ IJ.lf 
l.}J 

where Ee denotes concatenation of paths. In other words, Bellman's principle 
states that the overall optimal path from (io, jo) to (if, J°J) through (i, j) is the 
concatenation of the optimal path from (io, jo) to (i, j) and the optimal path from 
(i, j) to (if, J°J). The consequence of this principle is that once we are at (i, j) 
through the optimal path, then to reach (if, j f) optimally we need to search only 
for the optimal path from (i, j) to (if, J°J). 

Let us now express this in a way that will be useful to us later on. Assume that 
we have departed from (io. jo) and let the kth node of the path be Uk. jk). The goal 
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is to compute the minimum cost required to reach the latter node. The transition 
to Uk, )k) has to take place from one of the possible nodes that are allowed to be 
in the (k - I )th position of the path (i.e., the Uk- I, lk-1) node). This is important. 
For each node of the grid we assume that there is a set of allowed predecessors, 
defining the so-called local constraints. Bellman's principle readily leads to 

D111111Uk.)k)= min [Dm;11Uk-1.Jk-1)+d(ik.)klik-1.)k-1)] (8.1) 
ik-1 ·ik-I 

Indeed. the overall minimum cost to reach node Uk. )k) is the minimum cost 
up to node (h-1, )k-1) plus the extra cost of the transition from (h-1, )k-1) to 
(h, )k ). Furthermore, the search for the minimum is constrained only within the 
set of allowable predecessors for the (h, )k) node. This procedure is carried out 
for all the nodes of the grid. However, in many cases not all nodes of the grid 
are involved, and the optimal path searching takes place among a subset of them, 
which are defined via the so-called global constraints. The resulting algorithm is 
known as dynamic programming. Equation (8.1) has to be modified accordingly 
if the cost D is given in its multiplicative form and/or if maximization is required. 

Let us now focus on our string pattern matching task and see how the recursive 
equation (8.1) is used to construct the optimal complete path. 

Figure 8.2 illustrates the procedure. The set of nodes involved in the optimization 
(global constraints) are denoted as dark dots, and the local constraints, defining 
the allowable transitions among these nodes are shown in the figure by the thin 
lines. Having decided to search for the complete path and assuming D(O, 0) = 0, 
the respective costs D(i 1, )1) for all the allowed nodes involved in step k = I 
are computed via (8.1) (in our case there are only two allowable nodes, ( 1, I) and 
( 1. 2)). Subsequently, the costs of the (three) nodes at step k = 2 are computed and 
the procedure is repeated until we arrive at the final node(/, J). The sequence of 
transitions leading to the minimum D(I, J) of the final node define the minimum 
cost path, denoted by the thick line. The optimal node correspondence, between 
the test and reference patterns, can then be unravelled by backtracking the optimal 
path. In the example of Figure 8.2 each step k of the recursion involves only nodes 
with the same abscissa coordinate, which reflects the local constraints adopted. In 
general, this is not necessary and more involved topologies may be used. However, 
the philosophy of the search for the minimum remains the same. In the sequel, we 
will apply the procedure in two different popular application areas. 

8.2.2 The Edit Distance 

In this section we will be concerned with patterns that consist of sets of ordered 
symbols. For example, if these symbols are letters, then the patterns are words from 
a written text. Such problems arise in automatic editing and text retrieval appli
cations. Other examples of symbol strings occur in structural pattern recognition. 
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j 
2 3 4 5 stepk 

FIGURE 8.2: The optimal path is constructed by searching among all allowable 
paths, as defined by the global and local constraints. 

Once the symbols of a (test) pattern have been identified, for example, via a read
ing device, the task is to recognize the pattern, searching for the best match of it 
against a set of reference patterns. The measure to be adopted for the matching 
procedure should take into account the following errors, which may occur during 
the symbol identification phase. 

• Wrongly identified symbol (e.g., "befuty" instead of "beauty") 
• Insertion error (e.g., "bearuty") 
• Deletion error (e.g., "beuty") 

Obviously, a combination of these errors may also occur. For the matching proce
dure we will adopt the philosophy behind the so-called variational similarity. In 
other words, the similarity between two patterns is based on the "cost" associated 
with converting one pattern to the other. If the patterns are of the same length, 
then the cost is directly related to the number of symbols that have to be changed 
in one of them so that the other pattern results. More interest arises when the two 
patterns are not of equal length. In such cases symbols have to be either deleted 
or inserted at certain places of the test string. The location where deletions or 
insertions are to be done presupposes an optimal alignment (warping) among the 
symbols of the two patterns. The Edit distance [Dome 64, Leven 66] between two 
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string patterns A and B, denoted D(A, B), is defined as the minimum total num
ber of changes C. insertions I, and deletions R required to change pattern A into 
pattern B, 

D(A , B) = min[C(j) + /()) + R(j)] 
j 

(8 .2) 

where j runs over all possible combinations of symbol variations in order to obtain 
B from A. To elaborate a bit, note that there is more than one way to change, say, 
"beuty" to "beauty." For example, one can either insert "a" after "e" or change "u" 
to "a" and then insert "'u." 

We will employ the dynamic programming methodology to compute the 
required minimum in (8.2). To this end, we form the grid by placing the sym
bols of the reference pattern in the abscissa axis and the test pattern in the ordinate 
one. Figure 8.3 demonstrates the procedure via four examples. As already pointed 
out, the first step in an optimal path searching procedure via dynamic programming 
techniques is to state the node transition constraints imposed by the problem. For 
our case of interest the following constraints are adopted. 

• The cost D(O, 0) of the (0, 0) node is zero. 
• A complete path is searched. 
• Each node (i, j) can be reached only through three allowable predecessors. 

that is. 

(i - I.)) , (i - I, j - I) . (i, j - I) 

as indicated at the bottom of Figure 8.3. 

The costs associated with the above three transitions are: 

I . Diagonal transitions: 

lo ifr(i)=t(.i) 
d(i,Jli-1,j-I)= I 

if r(i) =I= t ()) 

That is, the cost of a transition is zero if the symbols corresponding to the (i. j) 
node are the same and unity if they are different, hence a symbol change has 
to take place. 

2. Horizontal and vertical transitions: 

d(i , Jli - I, j) = d(i, )ii , j - I)= 1 

The meaning of horizontal transitions is that they attempt alignment of the two 
strings by insertion of a symbol; see Figure 8.3a. Thus, they add to the cost. 
because they imply local mismatch. Similarly, vertical transitions add to the 
cost because they imply deletions, Figure 8.3c. 
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i-1,j 7li,j 
i-1,j-/ i,j-1 

FIGURE 8.3: Computation of the Edit distance with (a) an insertion, (b) a 
change, (c) a deletion, and (d) an equality. The local constraints are shown at 
the bottom right comer. 

Incorporating these constraints and the distance (8.2) in a dynamic programming 
procedure, the following algorithm results. 

Algorithm for Computing rhe Edit Distance 

• D(O, 0) = 0 
• For i = I to I 

-D(i,0) = D(i-1,0) +I 
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• End {For} 
• For j = I to J 

-D(O, j) = D(O, j - I)+ I 

• End {For} 
• For i = I to I 

-For j =I to J 

H' i = D (i - I , j - I) + d (i, j Ii - I , j - I ) 
*c2= D(i- l,j)+ I 
*c3=D(i,j-l)+I 
* D(i, j) = min(cl, c2, c3) 

-End {For} 

• End {For} 
• D(A, B) = D(I. 1) 
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In other words, we first compute the minimum cost for reaching each node 
of the grid, starting at (0.0), and the optimal (complete) path is subsequently 
constructed. Figure 8.3 shows the respective minimum cost paths and the resulting 
Edit distances for each of the cases. Verify that any other path for the examples of 
Figure 8.3 results in higher costs. A generalization of the Edit distance to allow for 
merges, splits and two-letter substitutions in the context of handwriting recognition 
is given in [Seni 96]. 

8.2.3 Dynamic Time Warping in Speech Recognition 

In this section, we highlight the application of dynamic programming techniques 
in speech recognition. We will focus on the simpler form of the task, known us 
discrete or isolated word recognition (IWR). That is, we will assume that the 
spoken text consists of discrete words, well isolated with sufficient silent periods 
between them. In tasks of this type, it is fairly straightforward to decide where, 
in time, one word finishes and where another one starts. This is not, however, the 
case in the more complex continuous speech recognition (CSR) systems, where 
the speaker speaks in a natural way and temporal boundaries between words are 
not well defined. In the latter case, more elaborate schemes are required (e.g., 
[Silv 90, Desh 99. Neg 99]). When words are spoken by a single speaker and the 
purpose of the recognition system is to recognize words spoken by this person, then 
the recognition task is known as speaker-dependent recognition. A more complex 
task is speaker-independent recognition. In the latter case, the system must be 
trained using a number of speakers and the system must be able to generalize and 
recognize words spoken by people outside the training population. 

At the heart of any IWR system are a set of known reference patterns and a 
distance measure (recall the footnote in Section 8.2). Recognition of an unknown 
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FIGURE 8.4: Plots of (a) the time sequence corresponding to the word "love" 
and (b) the magnitude of the DFf, in dB, for one of its frames. 

test pattern is achieved by searching for the best match between the test and each 
of the reference patterns, on the basis of the adopted measure. 

Figures 8.4a and 8.5a show the plots of two time sequences resulting from the 
sampling of the word "love," spoken twice by the same speaker. The samples were 
taken at the output of a microphone at a sampling rate of 22050 Hz. Although it 
is difficult to describe the differences, these are readily noticeable. Moreover, the 
two spoken words are of different duration. The arrows indicate (approximately) 
the intervals in which the spoken segments lie. The intervals outside the arrows 
correspond to silent periods. Specifically, the sequence in Figure 8.5a is 0.4 seconds 
long, and the sequence in Figure 8.4a is 0.45 seconds long. Furthermore, it is 
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FIGURE 8.5: Plots of the time sequences resulting from the words (a) "love" 
and (b) "kiss," spoken by the same speaker. 

important to say chat this is not the result of a simple linear time scaling. On the 
contrary. a highly nonlinear mapping is required co obtain a match between these 
cwo "same" words spoken by the same person. For comparison, Figure 8.5b shows 
the plot of the time sequence corresponding to another word. "kiss," spoken by 
the same speaker. 

We will resort co dynamic programming techniques to unravel the nonlinear 
mapping (warping) required co achieve the optimal match between a test and a ref
erence patcern. To chis end. we must first express the spoken words as sequences 
(strings) of appropriate feature vectors, r(i), i = l, ...• I, for the reference pat
tern and t(j), j = l, ... , J. for the test one. Obviously, there is more than one 
way to choose the feature vectors. We will focus on Fourier transform features. 
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-
frame 3 ______________ J 

tf 

FIGURE 8.6: Successive overlapping frames for the computation of the OFT 
feature vectors. 

Each of the time sequences involved is divided into successive overlapped time 
frames. In our case each frame is chosen to be t I = 5 12 samples long and the 
overlap between successive frames is to = 100 samples, as shown in Figure 8.6. 
The resulting number of frames for the speech segment shown in Figure 8.4a 
is I = 24, and for the other two they are J = 21 (Figure 8.5a) and J = 23 
(Figure 8.5b), respectively. We assume that the former is the reference pattern and 
the latter two the test patterns. Let x; (n), n = 0, ... , 511, be the samples for the 
ith frame of the reference pattern. with i = I , ... , / . The corresponding DFT is 
given as 

I 11=:111 ( 2rr ) 
X;(m) = ~ L x;(n)exp - j -mn , 

v512 
11

=-0 512 
m = 0, ... , 5 11 

Figure 8.4b shows the magnitude of the OFT coefficients for one of the I frames of 
the reference pattern. The plot is a typical one for speech segments. The magnitude 
of the higher OFT coefficients is very small with little contribution to the signal. 
This justifies the use of the first l DFT coefficients as features, where usually 
I « t I. In our case l = 50 was considered to be sufficient. Thus, the vector 
sequence becomes 

r(i) = 
[ 

X,(0) ] 
X,(l) 

X;(/- 1) , 

i = l, .. ., I (8.3) 

The fea ture vectors I (j), for each of the test patterns, are formed in a similar way. 
The choice of the DFT coefficients as features is just one of various possibilities that 
have been suggested and used over the years. Other popular alternatives include the 
parameters from an AR modeling of the speech segment, the ceptral coefficients 
(inverse DFT of the logarithm of the magnitude of the OFT coefficients), and 
so on (e.g., [Davi 80, Dell 931). Having completed the preprocessing and feature 
selection, the reference and test patterns are expressed as (ordered) sequences 
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of feature vectors r(i) and t(j). Our goal becomes to compute the best match 
among the frames of the test and reference patterns. That is, the test pattern will 
be stretched in time (one test frame corresponds to more than one frame of the 
reference patterns) or compressed in time (more than one test frame corresponds 
to one frame of the reference pattern). This optimal alignment of the vectors in 
the two string patterns will take place via the dynamic programming procedure. 
To this end, we first locate the vectors of the reference string along the abscissa 
and those of the test pattern along the ordinate. Then, the following need to be 
determined: 

• Global constraints 
• Local constraints 
• End point constraints 
• The cost d for the transitions. 

Various assumptions can be adopted for each of these, leading to different results 
with relative merits. In the sequel, we will focus on some widely used cases. 

End Point Constraints. In our example we will look for the optimal complete 
path that starts at (0. 0) and ends at (/, J) and whose first transition is to the node 
(I. I). Thus, it is implicitly assumed that the end points of the speech segments 
(i.e., r(l). t(I) and r(/), t(J)) match to a fair degree. These can be the vectors 
resulting from the silent periods just before and just after the speech segments. 
respectively. A simple variation of the complete path constraints results if the end 
points of the path are not specified a priori and are assumed to be located within a 
distance € from points (I, I) and (I, J), and it is left to the optimizing algorithm 
to locate them . 

Global Constraints. The global constraints define the region of nodes that are 
searched for the optimal path. Nodes outside this region are not searched. Basically, 
the global constraints define the overall stretching or compression allowed for 
the matching procedure. An example is shown in Figure 8.7 . They are known 
as ltakura constraints and impose a maximum factor of 2 for any expansion or 
compression of the test with respect to the reference pattern. The allowable nodes 
are then located within the parallelogram shown in Figure 8.7 by the solid line. The 
dashed line corresponds to the same global constraints when the relaxed end point 
constraints, mentioned before, are adopted. Observe from the figure that paths 
across the sides of Lhe parallelogram compress or expand corresponding frame 
intervals by a factor of 2, and this is the maximum possible factor attained. This is 
usually a reasonable constraint, and at the same time it reduces the number of nodes 
to be searched for the optimal path substantially. If I :::::: J, then it is not difficult 
to show that the number of grid points to be searched is reduced by approximately 
one third . 
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FIGURE 8.7: ltakura global constraints. The maximum compression/expans
ion factor is 2, and it determines the slope of the boundary line segments. 

Local Constraints. These constraints define the set of predecessors and the allow
able transitions to a given node of the grid. Basically, they impose limits for the 
maximum expansion/compression rates that successive transitions can achieve. 
A property that any local constraint must satisfy is monotonicity. That is, 

In other words, all predecessors of a node are located to its left and south. This 
guarantees that the matching operation follows the natural time evolution and 
avoids confusing, for example, the word "from" with the word "form." 

Two examples of nonmonotonic paths are shown in Figure 8.8. A popular set of 
local constraints, known as the Itakura constraints [Itak 75], is shown in Figure 8.9. 
The maximum achievable expansion (compression) rate over a local path is mea
sured by the associated slope, which is defined as the maximum ratio of the total 
change !li, in the ith direction, to the total change !lj, in the }th direction, over 
the local path. The slope for the Itakura constraints is 2, and it is the result of a 
(repetitive) transition of the type (i - l, j - 2) to (i, }). Another notable char
acteristic of the Itakura constraints is that horizontal transitions are allowed, but 
not successively, and this is indicated by the cross over the arrow. Thus, ltakura 
constraints do not allow long horizontal paths, corresponding to oo slopes. Finally, 
these constraints allow the path to skip at most one feature vector in the test pattern 
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FIGURE 8.8: Examples of nonmonotonic paths. Such paths are not allowed and 
are not considered in the search for the optimum. 

string, that is, the one at the j - 1 position of the ordinate ax.is, and the path jumps 
from (i - I, j - 2) to (i, j). In contrast, feature vectors in the reference string are 
not skipped and all take part in the optimal path. Such constraints are known as 
asymmetrical. 

A number of alternative local constraints have also been suggested and used in 
practice. Figure 8.10 shows four different types of constraints considered by Sakoe 
and Chiba [Sako 78]. For the type in Figure 8. lOa there is no limit in the rate of 
expansion/compression, since successive horizontal or vertical transitions can take 

i-2,.i O-------)f----0-----.. i , .i 

i-l ,j-1 

i-1,.i-2 

FIGURE 8.9: The Itakura local constraints. Two successive horizontal transi
tions are not allowed. 
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(a) (b) 

0 0 

0 

0 0 0 

0 0 0 0 0 

( c) (d) 

FIGURE 8.10: The Sakoe and Chiba local constraints. 

place, until of course one falls outside the region defined by the global constraints. 
In contrast, in Figure 8. IOb horizontal (vertical) transitions are allowed only after 
a diagonal transition and in Figure 8.1 Od after two successive diagonal transitions. 
In Figure 8.1 Oc, at most two successive horizontal (vertical) transitions are allowed 
only after a diagonal one. The slopes for each of the constraints in Figure 8.1 Oa, 
b, c and d are oo, 2, 3, and 3/2, respectively (Problem 8.2). For a more detailed 
treatment of the topic the interested reader may consult [Dell 93, Silv 90, Myer 80]. 

The Cost A commonly used cost, which we will also adopt here, is the Euclidean 
distance between r(ik) and t(jk), corresponding to node (ik. }k). that is, 

In this, we assume that no cost is associated with the transitions to a specific node, 
and the cost depends entirely on the feature vectors corresponding to the respective 
node. Other costs have also been suggested and used [Gray 76, Gray 80]. More 
recently ([Pike 02], [Pike 03]) used a cost that accounts for the most commonly 
encountered errors (e .g., different player's style) in the context of music recog
nition. Finally, it must be stated that often a normalization of the overall cost D is 
carried out. This is to compensate for the difference in the path lengths, offering 
"equal" opportunities to all of them. A logical choice is to divide the overall cost 
D by the length of each path [Myer 80]. 
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The resulting overall costs for the two test patterns of Figure 8.5, against the ref
erence pattern of Figure 8.4, using the Itakura constraints, were D = 11.473, D = 
25.155, respectively. Thus, the overall cost for the word "love" is lower than the 
overall cost for the word "kiss," and our procedure has recognized the spoken word 
correctly. The resulting normalized overall costs after dividing by the number of 
nodes along each path were 0.221 and 0.559, respectively. 

8.3 MEASURES BASED ON CORRELATIONS 

The major task to be addressed in this section can be summarized as follows: 
"Given a block of recorded data, find whether a specific known (reference) pattern 
is contained within the block and where it is located." A typical application of this 
is found in scene analysis, when we want to search for specific objects within the 
image. Such problems arise in many applications, such as target detection, robot 
vision, and video coding. For example, in video coding a major step is that of 
motion estimation, that is, the process of locating corresponding pixels (i.e., the 
same moved object) among successive image frames at different time instants. 
This step is then followed by the motion compensation stage, which compensates 
for the displacement of moving objects from one frame to another. One then codes 
the frame difference 

e(i. j, t) = r(i, j, 1) - r(i - m. j - n, t - 1) 

where r(i, j, I) are the pixel gray levels of the image frame at time t and 
r(i - m, j - n, t - 1) the corresponding pixel values at spatial locations i - m. 
j - n of the previous frame at time t - 1. In this way, we code only the new 
information contained at the latest frame, avoiding redundancies. 

Let us assume that we are given a reference pattern expressed as an M x N 
image array r(i, j), i = 0, ... , M - 1, j = 0, .... N - I. and an I x J image 
aITay t (i, j), i = 0 .... , I - I, j = 0, ... , J - I, where M :S I. N :S J. The 
goal is to develop a measure for detecting an M x N subimage within t (i, j) that 
matches best the reference pattern r(i, j). To this end, the reference image r(i, j) 
is superimposed on the test image and it is translated to all possible positions 
(111.11) within it. For each of the points (m. 11), the mismatch between r(i. j) and 
the M x N subimage oft (i. j) is computed according to 

111+M-l 11+N-I 

D(m.n)= L L lt(i,j)-r(i-m.j-n)l2 (8.4) 

i=m j=n 

Template matching is conducted by searching for the location (m. n) for which 
D (111, 11) is minimum. Let us now give this a computationally more attractive form. 
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Equation (8.4) is equivalent to 

D(m, n) =LL lt(i, })1 2 +LL lr(i, j)l2 

i j i j 

-2LLt(i,j)r(i-m,j-n) 
j 

(8.5) 

The second summand is constant for a given reference pattern. Assuming that the 
first one does not change much across the image, that is, there is not much variation 
of the pixel gray levels over the test image, the minimum of D(m, n) is achieved 
when 

c(m, n) =LL t(i, j)r(i - m, j - n) 
j 

(8.6) 

is maximum for all possible locations (m, n). The quantity c(m, n) is nothing other 
than a cross-correlation sequence between t (i, j) and r(i, j) computed at the point 
(m, n). In cases for which the assumption of little gray level variation is not valid, 
this measure is very sensitive to gray level variations within t (i, j). In such cases 
the cross-correlation coefficient, defined as 

c(m,n) 
CN(m,n)= -;:====================== jL.; L,1 ltU, n12 L,; L,1 lrU, n12 

(8.7) 

is a more appropriate measure. Here CN(m, n) is a normalized version of c(m, n) 
and variations in t (i, j) tend to cancel out. Recall now the Cauchy-Schwarz 
inequality 

IL Lt(i, j)r(i - m, j - n)I::: 
l J 

I: I: itu. n12 I:I:1ru, n12 

j j 

Equality holds if and only if 

t (i, J) = a r (i - m, j - n), i = m, ... , m + M - I and 

j = n, ... , n + N - I 

with a being an arbitrary constant. Hence, CN (m, n) is always less than unity and 
achieves its maximum value of one only if the (test) subimage is the same (within 
a scaling factor) as the reference pattern. 

In our discussion so far, we have assumed that the reference pattern has only 
been translated within t (i, }) and no rotation or scaling has been involved. In appli
cations such as video coding, this is a valid assumption and it has been adopted in 
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the video coding standards [Bhas 95]. However, this is not always the case and the 
technique has to be modified. One way is to describe the reference and test subim
ages in terms of invariant moments and measure the similarity using correlations 
involving these moments [Hall 79) (Problem 8.4). Another rotation- and scale
invariant technique, using a combination of the Fourier and Mellin transforms, is 
described in [Scha 89). This technique tries to exploit the translation invariance of 
the magnitude of the Fourier transform (already discussed in Chapter 7) and the 
scale invariance of the Mellin transform ([Ravi 95), Prohlem 8.5). Another path, 
which of course demands high computational resources, is to have a set of distorted 
(e.g., rotated and scaled) reference templates to cover all possibilities. Correlation 
matching will then reveal the hest match between a test pattern and one of the 
reference templates. A computationally more attractive technique is to employ the 
Karhunen-Loeve transform [Ueno 97). The main idea is that rotated templates are 
highly correlated, and each of them can he approximated by its projection onto 
a lower dimension eigenspace, using the most significant eigenvectors of their 
correlation matrix. Matching of an unknown pattern with the template of the right 
orientation is performed in the lower dimensional space, leading to substantial 
computational savings. 

Example 8.l. The image 1 (i, j) in Figure 8.1 la contains two objecls, a screwdriver and a 
hammer. The latter is the object that we want to search for in the image. The reference image 
is shown at the top right comer of Figure H. I la. The dolled area represenls the general (m. n) 
position of the reference image when it is superimposed on the test one. Figure 8. I lb shows 
the cross-correlation c(m, 11) between lhe two images. We readily ob.~erve that the maximum 
(black) occurs at the position (13, 66). that is, where the hammer is located in t(i, j). 

m I ~M--'> I 

~~ -------,iffilA. 
111····································· tW 

J '----'--------------' 
13 

(a) (b) 

FIGURE 8.11: Example of(a) reference and test images and (b) their respective 
correlation. 
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Computational Considerations 

• In some cases, it is more efficient to compute the cross-correlation via its 
Fourier transform. Recall that in the frequency domain (8.6) is written as 

C(k, I)= T(k, l)R*(k, l) (8.8) 

where T(k, l), R (k, I) are the OFT transforms oft (i, j) and r (i, j), respec
tively, with"*" denoting complex conjugation. Of course, in order to write 
(8.8) both images must be of the same size. If they are not, which is usu
ally the case, a number of zeros must be appended to extend the smaller 
sized image. c(m, n) is obtained via the inverse OFT of C(k, I). Taking into 
account the computational efficiency of the FFT, this procedure may lead to 
savings depending, of course, on the relative size of M. N and /, J. 

• A major computational load in correlation-based template matching is 
searching over the pixels oft (i. j) in order to locate the maximum correla
tion. Usually, the search is restricted within a rectangle [ - p, p] x [ - p, p] 
centered at a point (x , y) in t(i, j). For example, in video coding, if the 
M x N block is centered at a position (x, y) in the frame at time t - I, 
then the current frame is searched within (x ± p, y ± p). The value of p 
depends on the application. For broadcast TV p == 15 is sufficient. For sport
ing events (high motion) p = 63 is more appropriate. Thus, an exhaustive 
search for the maximum of c(m, 11), defined in (8.6), will require a number 
proportional to (2p + I )2 MN additions and multiplications. This leads to 
a huge number of operations indeed (Problem 8.6). Thus, in practice, sub
optimal heuristic searching techniques are usually adopted, which, although 
they do not guarantee locating the maximum, reduce the required number 
of operations substantially. There are two major directions. One is to reduce 
the search points and the other is to reduce the size of the involved images. 

Two-Dimensional Logarithmic Search 

Logarithmic Search Figure 8.12 shows the rectangular [ - p. p] x [ - p, p] search
ing area for the case of p = 7. The center of the rectangle is assumed to be the point 
(0, 0) . The cross-correlation computation is first performed at the center as well as 
the eight points located on the perimeter of the inner [- p/2. p/2] x [-p/2, p/2] 
area (p /2 rounded to an integer). These points are denoted by a square. The spacing 
between these points is di = 4 pixels, that is, d 1 = 2k-l and k = flog2 pl, where 
l·l denotes rounding to the first larger integer. For p = 7, k = 3 and di = 4. 
We will demonstrate the procedure via an example. Let us assume that the largest 
cross-correlation value resulted at the position (-4, 0) (shaded square). Then we 
consider this point as the center of a rectangle of size [-p/4, p/4] x [-p/4, p/4] 
([-2, 2] x [-2, 2) in our case) and compute the correlation at the eight points 



Section 8.J: MEASURES BASED ON CORRELATIONS 341 

(-7, 7) (0,7) (7, 7) 

(-7, 0) 1--<)--1---!!11-+-_.oH-+v,,,._-+--+--+-D-+-+--i (7, 0) 

-

(-7,-7) (0,-7) (7,-7) 

FIGURE 8.12: Logarithmic search to find the point of maximum cross
correlation. 

of its perimeter. These points are denoted by a circle and the spacing between 
them is now d2 = d1 /2 (2). The process is repeated and finally the computation is 
performed on the eight (diamond) points on the perimeter of the rectangle of size 
[-1, I] x [ -1, l ], which is centered at the optimum (of the previous step) shaded 
circle point. The spacing between the diamond points is d3 = I. The shaded dia
mond corresponds to the point with the maximum cross-correlation and the process 
is terminated. The number of computations has now been reduced to MN (8k + I) 
operations, which is a substantial saving compared with the exhaustive search. 

A variant of the two-dimensional logarithmic search is to search the i and j 
directions independently. The point whose coordinatt:s art: the resulting best values 
of i and j becomes the new origin of the coordinate system, and the search is 
repeated in the new i ,j directions, with smaller spacing d. The process is repeated 
until the spacing becomes unity. 

Hierarchical Search 

This technique springs from the multiresolution concept considered in Chapter 6. 
Let us again consider an example. 

• Step I: A reference block of, say, 16 x 16 is given and the search area is 
assumed to be the rectangle [-p, p] x [-p, p], centered at the point (x, y) in 
the test image. We refer to level 0 versions of the images. Both the reference 
block and the test image are low-pass filtered and subsampled by 2, resulting 
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in their level l versions. The total number of pixels in the level l versions 
has been reduced by 4. Level l versions are in turn low-pass filtered and sub
sampled, resulting in level 2 versions. In general, this process can continue. 

• Step 2: At level 2 the search for the maximum takes place with the 4 x 4 
low-pass version of the reference block. The search area in the level 2 low
pass version of the test image is the rectangle [- p/4, p/4] x [- p/4, p /4] 
centered at (x/4, y /4). Either a full or a logarithmic search can be employed. 
Let (x1, YI) be the coordinates of the optimum, with respect to (x/4. y /4) . 

• Step 3: At level l, the search for the maximum is performed using the cor
responding 8 x 8 version of the reference block. The search area, within the 
level l version of the test image, is the rectangle of size [ - I, l] x [ -1, l] 
centered at (x /2+2x 1, y /2+2y 1 ), that is, nine pixels in total. This is because 
the eight pixels at the perimeter of this area were not involved at level 2. due 
to the subsampling (see Figure 6.16 of Chapter 6). The center point must also 
be included in order to have a fair comparison at this level for the search for 
the maximum. Let the maximum occur at (x2, y2) with respect (x/2, y/2). 

• Step 4 : At level 0 the search is performed using the original reference tem
plate, within the area of size [-1, l] x [-1, l] centered at (x+2x2, y+2Y2) in 
the test image. The location of the maximum is the final one and the process 
terminates. 

The computational saving with this method depends on the number of levels, as 
well as the type of search adopted at the highest level (Problem 8.5). In general, 
hierarchical methods are very efficient from a computational point of view. This is 
gained at the expense of increased memory requirements, due to the various image 
versions that must be kept. A drawback of the method is that if small objects are 
present in the templates, they may disappear at the lowest resolution images due 
to the subsampling. Furthermore, the method cannot guarantee to find the global 
best match. In [Alkh 01] an alternative philosophy is suggested that results in the 
global best match. Computational savings are achieved by pruning the number of 
candidates for the best match in a level, using the results in a higher level and an 
appropriately chosen threshold value. 

Sequential Method 

A number of other techniques have also been suggested. For example, the 
sequential search method computes a variant of (8.4) directly. Specifically, define 

p-lq-1 

Dpq(m, n) =LL lt(i + m, j + n) - r(i, j)I 
i=O J=O 

(8.9) 

Thus, the error is computed in a smaller and sequentially increasing window area, 
for p, q = l, 2, ... and p .:S: M, q .:S: N. The computations stop when Dpq(m, n) 
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becomes larger than a predetermined threshold. Then computations start in a dif
ferent direction (m, n). Hence, saving is achieved, because for bad positions only 
a small number of computations need to be performed. 

8.4 DEFOR1'1ABLE TEMPLATE MODELS 

In the previous section we considered the problem of searching for a known ref
erence pattern (template) within a test image. We assumed that the template and 
the object, residing in the image, were identical. The only differences that were 
allowed to enter into our discussion were those imposed by a different orientation 
and/or scaling. However, there are many problems where we know a priori that 
the available template and the object we search for in the image may not look 
exactly the same. This may be due to varying imaging conditions, occlusion, and 
imperfect image segmentation. Furthermore, in a content-based image data-base 
retrieval system, the user may provide the system with a sketch of the shape of 
the object to be retrieved. Obviously, the sketch will not match exactly the cor
responding object in the database images. Our goal in this section is to allow 
the template matching procedure to account for deviations between the reference 
template and the corresponding test pattern in the image. In our discussion, we 
will assume that the reference template is available in the form of an image array 
containing the object's boundary information (contour). That is, we will focus on 
shape information only. Extensions incorporating more information, e .g., texture. 
are also possible. 

Let us denote the reference template image array as r(i, j). This is also known 
as prototype. The basic idea behind the deformable template mntching procedure 
is simple: Deform the prototype and produce deformed variants of it. From a math
ematical point of view a deformation consists on the application of a parametric 
transform T~ on r(i, j) to produce a deformed version T~ [r(i, j)]. Different values 

of the vector parameter~ lead to different versions. From the set of the deformed 
prototype variants that can be generated, there will be one that "best" matches the 
test pattern. The goodness of fit is measured via a cost, which we will call the 
matching energy Em(~). Obviously, the goal is to choose~ so that E,,, (~) is min
imum. However. this is not enough. If, for example. the optimal set of parameters 
is such that the corresponding deformed template has been defom1ed to such an 
extent that it bears little resemblance to the original prototype, the method would 
be meaningless. Thus, one more term has to be taken into account in the optimiza
tion process. This is the cost measuring the "deformation" which the prototype 
needs to undergo in order to fit the test pattern. We will call this term of the cost as 
deformation energy Ed(~). Then the optimal vector parameter is computed so that 

(8. IO) 
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In words, one could think of the boundary curve of the prototype as made by 
rubber. Then with the help of a pencil we deform the shape of the rubber curve to 
match the test pattern. The more we deform the shape of the prototype, the higher 
the energy we have to spend for it. This energy, quantified by Ed(~), depends on 
the shape of the prototype. That is, it is an intrinsic property of the prototype and 
this is the reason that it is also known as internal energy. The other energy term, 
£ 111 (~). depends on the input data (test image) and we usually refer to it as the 
external energy. The optimal vector parameter,~, is chosen so that the best trade
off between these two energy terms is achieved. Sometimes, a weighting factor C 
is used to give preference to one of the two terms and ~ is computed so that 

(8.11) 

Hence, in order to apply the above procedure in practice one must have at his/her 
disposal the following ingredients: 

• A prototype 
• A transformation procedure to deform the prototype 
• The two energy function terms 

Choice of the Prototype 

This should be carefully chosen so that it is a (typical) representative of the various 
instances in which this object is expected to appear in practice. In a way, the 
prototype should encode the "mean shape" characteristics of the corresponding 
"shape class." 

Deformation Transformation 

This consists of a set of parametric operations. Let (x, y) be the (continuous) 
coordinates of a point in a 2D image. Without loss of generality, assume that the 
image is defined in a square [0, l] x [O, l]. Then each point (x, y) is mapped using 
a continuous mapping function, as 

(x, y) ~ (x, y) + (Dx(x, y), DY(x, y)) (8.12) 

For discrete image arrays a quantization step is necessary after the transformation. 
Different functions can be used to perform the above mapping. A set which has 
successfully been used in practice is ([Amit 91]) 

M N 

Dx(x, y) = LL ~,-:;ne~in(x, Y) (8.13) 
m=ln=l 

M N 

y "'""'"'""' )' )' D (x,y)= ~~~11111 e111n(x,y) (8.14) 
m=ln=I 
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(a) (b) (c) 

(d) (e) 

FIGURE 8.13: (a) A reference pattern, (b) its contour used as prototype, and 
(c), (d), (e) three of its deformed variants. 

e:,111 (x, y) = <Xm11 sin rrnx cosnmy 

T . 
e;1111 (x, y) = <Xm11 cos nmx sm rrny 

(8.15) 

(8.16) 

for appropriately chosen values of M, N. The normalizing constants <Xmn can be 
taken as 

Other basis functions can also be used, such as splines or wavelets. Figure 8.13 
shows a prototype for an object and three deformed versions obtained for the 
simplest case of the transformation model in (8.13)-(8.16), i.e., M = N = I. 

Internal Energy 

This should be minimum for no deformation, i.e., for~ = 0. A reasonable choice, 
associated with the transformation functions considered above, is 

Ed(~)= L L((;~n)2 + (;~,,)2) (8.17) 
m 11 
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External Energy 

Here again a number of choices are possible, measuring the goodness of fit between 
the test pattern and each one of the deformed template variants. For example, for 
a specific position, orientation, and scale of a deformed template, this energy 
term can be measured in terms of the distance of each point in the contour of the 
deformed template from the nearest point in the contour of the test image, I. One 
way to achieve this is via the following energy function: 

I 
Em(~. 8, I)= -I)I + <l>(i, J)) 

Nd .. 
1,) 

(8.18) 

where 8 is the vector of the parameters defining the position, orientation, and 
scaling and Nd the number of contour pixels of the corresponding deformed tem
plate and 

<l>(i, j) = - exp(-p(8f + 8]) 112
) (8.19) 

where p a constant and (8;, 81) is the displacement of the (i, j) pixel of the 
deformed template from the nearest point in the test image. In [Jain 96] directional 
infomlation is also incorporated into the cost. 

Remarks 

• One can arrive at (8.10) in a more systematic way via probabilistic arguments, 
that is, by seeking to maximize the aposteriori probability density of(~, 8) 
given the test image array, i.e., 

(" 81/) = p(t 8)p(ll~. 8) 
p ... p(I) (8.20) 

where the Bayes rule has been employed. In this framework, (8.17) results 
if one assumes that the various parameters ~:,n, ~~n are statistically inde
pendent and are normally distributed, e.g., p(~) = N(O, a 2). The higher the 
variance a 2 the wider the range of the values that occur with high probability. 
To obtain (8.18)-(8.19) the model 

p(J I~, 8) =a exp (-Em(~, 8, /)) (8.21) 

is adopted, where a is a normalizing constant [Jain 96]. 
• The cost in (8.10) is a nonlinear function and its minimization can be achieved 

via any nonlinear optimization scheme. Besides complexity, the major draw
back is the omnipresent danger that the algorithm will be trapped in a local 
minimum. In [Jain 96] a procedure has been suggested that builds around 



Section 8.4: DEFORMABLE TEMPLATE MODELS 347 

the gradient descent methodology (Appendix C.) The idea is to adopt a mul
ti resolution iterative approach and use larger values of p in (8. 19) for the 
coarser levels and smaller values for the finer ones. This procedure seems to 
help the algorithm to avoid local minima, at an affordable computing cost 

• The methodology we described in this section belongs to a more general 
class of defonnable template matching techniques, which builds around 
an available prototype. This is not the only available path. Another class 
of deformable models stems from an analytic description of the prototype 
shape, using a set of parameterized geometrical shapes. e.g., ellipses or 
parabolic curves. To delve deeper into these issues the reader may refer to 
the review articles [Jain 98. Mein 96, Cheu 02] and the references therein. 
IWidr 73, rise 73) seem to he the first attempts to introduce the concept of 
deformable models in computer vision. 

• In the pattern recognition context. given an unknown test pattern. we seek 
to see to which one from a known set of different prototypes this matches 
best for each prototype, the best deformed variant is selected, based on 
the minimum energy cost. The prototype that wins is the one whose best 
defonned variant results in the overall minimum energy cost. 

Problems 

8.1 Find the Edit distance hetween the word "poem" and its misspelled version " p0<en." 
Draw the optimal path. 

8.2 Derive the slopes for the Sakoe-Chiba constraints and draw paths that achieve the 
maximum expansion/compression rates a~ well as paths corresponding to intermediate 
rate.~. 

8.3 Develop a computer program for dynamic time warping. for a complete optimum path 
and the ltakura eonstr.iints. Verify the algorithm. using speech segments availahle from 
the hook's weh site. 

8.4 Let the seven Hu moments of the reference M x N image block be <I>;. i = I. 2 ..... 7. 
Also. denore by 1/t; (m. n ). i = I. 2 ..... 7. the respective moments re$ulting from lht! 
test suhimage located at (m. n ). Explain why 

Lf=I t/>;ift;(m.n) 
J\lf (111. It) = --·· · ·-·----

( 
7 2 7 2 ) I 12 

Li= I <Pi Li=I t/t; (m. n) 

is a reasonable measure of similarity. 
8.5 Show that the Mellin transform M(u. v} of a function f(x. y). defined as 

M(11.v)= ff f (x.y)x -ju-ly-jt" -td.rdy 

is scale invariant. 
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8.6 For the motion compensation step in a video coding application the image frame 
of size I x J is divided into subblocks of size M x N. For each of the subblocks 
the search for its corresponding one, in the current frame, is restricted in an area of 
size [-p, p] x [-p, p]. Find the required number of operations per second for the 
computation of the maximum cross-correlation for a full search, a two-dimensional 
and a one-dimensional (independent i, j) logarithmic search, and a hierarchical search 
of three levels. Typical values for broadcast TV are M = N = 16. I = 720, J = 480, 
and p = 15. The number of frames transmitted per second is f = 30. 
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CHAPTER 9 _____________ _ 

CONTEXT-DEPENDENT 
CLASSIFICATION 

9.1 INTRODUCTION 

The classification tasks considered so far assumed that no relation exists among 
the various classes . In other words, having obtained a feature vector x from a class 
w;, the next feature vector could belong to any other class. In this chapter we will 
remove this assumption and we will assume that the various classes are closely 
related . That is, successive feature vectors are not independent. Under such an 
assumption. classifying each feature vector separately from the others obviously 
has no meaning. The class to which a feature vector is assigned depends (a) on its 
own value, (b) on the values of the other feature vectors, and (c) on the existing 
relation among the various classes. Such problems appear in various applications 
such as communications, speech recognition, and image processing. 

In the context-free classification. our starting point was the Bayesian classifier. 
In other words, a feature vector was classified to a class w; if 

P(w; Jx) > P(wj Jx). V j 1= i 

The Bayesian point of view will also be adopted here. However, the dependence 
among the various classes sets demands for a more general formulation of the 
problem. The mutual information that resides within the feature vectors requires 
the classification to be performed using all feature vectors simultaneously and also 
to be arranged in the same sequence in which they occurred from the experiments. 
For this reason, in this chapter we will refer to the feature vectors as observations 
occurring in sequence, one after the other, with x 1 being the first and x N the last 
from a set of N observations. 

9.2 THE BAYES CLASSIFIER 

Let X:x 1,x2 •... , XN be a sequence of N (feature vectors) observations and 
Wj , i = 1. 2 . . ..• M. the classes in which these vectors must be classified. Let n; : 
w; 1 • w; 2 , • • • , w;N be one of the possible sequences of these classes corresponding to 
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the observation sequence, with ik E { 1, 2, ... , M} fork = I, 2, ... , N. The total 
number of these class sequences Q; is MN, that is, the number of possible ordered 
combinations of M distinct objects taken in groups of N. Our classification task is 
to decide to which class sequence Q; a sequence of observations X corresponds. 
This is equivalent to appending x1 to class w;I' x2 to w;2 , and so on. A way to 
approach the problem is to view each specific sequence X as an (extended) feature 
vector and Q;, i = I, 2, ... , MN, as the available classes. Having observed a 
specific X, the Bayes rule assigns it to Q; for which 

P(Q;IX) > P(QjlX), Vi i: j (9. 1) 

and following our already familiar arguments, this is equivalent to 

(9.2) 

In the following we will investigate the specific form that Eq. (9.2) takes for some 
typical class dependence models. 

9.3 MARKOV CHAIN MODELS 

One of the most widely used models describing the underlying class dependence 
is the Markov chain rule. If w; 1, w;2 , .•• is a sequence of classes, then the Markov 
model assumes that 

(9.3) 

The meaning of this is that the class dependence is limited only within two succes
sive classes. This type of model is also called a first-order Markov model, to dis
tinguish it from obvious generalizations (second, third. etc.). In other words, given 
that the observations Xk-1 • Xk-2 • ... , x 1 belong to classes w;._1, wh_ 2 , •• • , w; 1, 

respectively, the probability of the observation Xb at stage k, belonging to 
class u);, depends only on the class from which observation x k-1 • at stage k-1, 
has occurred. Now combining (9.3) with the probability chain rule [Papo 91, 
page 192), 

P(Q;) =: P(w; 1 , w;2 • •• • ,w;,v) 

we obtain 

= P(w;N lw;N _1 , • •• , w; 1)P(w;N_ 1 lw;N_ 2 , • •• , w; 1) • •• P(w; 1 ) 

N 

P(Q;) = P(u); 1) n P(w;,lw;k-1) 

k=2 

(9.4) 

where P(w; 1 ) is the prior probability for class w; 1 , i1 E { 1, 2, . . . , M}, to occur. 
Furthermore, two commonly adopted assumptions are that (a) given the sequence 
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of classes, the observations are statistically independent, and (b) the probabil
ity density function in one class does not depend on the other classes. That 
is. dependence exists only on the sequence in which classes occur, but within 
a class observations "obey" the class' own rules. This assumption implies 

that 

N 

p(XIQ;) = Ilp(xklw;k) 
k=I 

(9.5) 

Combining Eqs. (9.4) and (9.5), the Bayes rule for Markovian models becomes 
equivalent to the statement: 

Statement. Having observed the sequence of feature vectors X : x 1 .... , x N. 

classify them in the respective sequence of classes Q;:w; 1 , w;2 •...• w;N, so that 
the quantity 

N 

p(XJQ;)P(Q;) = P(w; 1)p(x!lw; 1) Il P(w;klw;k_ 1)p(xklw;;) (9.6) 
k=2 

becomes maximum. 
As we have already stated, searching for this maximum requires the com

putation of Eq. (9.6) for each of the Q;, i =I, 2, ... , MN. This amounts to 
a total of O(NMN) multiplications, which is usually a large number indeed. 
However, this direct computation is a brute-force task. Let us take for exam
ple two sequences Q; and Q j, which we assume differ only in the last class, that 
is, w;k = w A, k = I, 2, ... , N - 1 and w; N =I- w j,v. It does not take much "scientific 
thought" to realize that the computation of (9.6) for these two sequences shares all 
multiplications (which need not be repeated) but one. Furthermore, closer obser
vation of (9.6) reveals that it has a rich computational structure, which can be 
exploited in order to maximize it in a much more efficient way. This now becomes 
our next concern. 

9.4 THE VITERBI ALGORITHM 

Figure 9.1 shows a diagram with N dot columns, where each dot in a column 
represents one of the M possible classes, w1, wi . ... , WM. Successive columns 
correspond to successive observations Xk. k =I, 2, ... , N. The arrows deter
mine transitions from one class to another. as observation vectors are obtained 
in sequence. Thus, each of the class sequences Q; corresponds to a specific 
path of successive transitions. Each transition from one class w; to another 
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• 
k = 1 2 N-1 N 

;,(,'1 

FIGURE 9.1: Trellis diagram for the Viterbi algorithm. 

Wj is characterized by a fixed probability P(wjlw;), which is assumed to be 
known for the adopted model of class dependence. Furthermore, we assume that 
these probabilities are the same for all successive stages k. That is, the prob
abilities depend only on the respective class transitions and not on the stage 
at which they occur. We will further assume that the conditional probability 
densities p(xlw;), i =I, 2, .... M, are also known to the model. The task of 
maximizing (9.6) can now be stated as follows. Given a sequence of observations 
x 1. x2, ... , x N, find the path of successive (class) transitions that maximizes (9.6) 
(e.g., thick line in the figure) . The classes along this optimal path will be the ones 
in which the respective observations are classified. To search for the optimal path 
we have to associate a cost with each of the transitions, in agreement with the cost 
function given in (9.6). A careful look at (9.6) suggests adopting 

(9.7) 

as the cost associated with a transition of a path i from node (class) w;,_ 1 , at stage 
k - I, to node w;k, at stage k and at the same time observation x k occurring. The 
initial condition fork = I is given by 
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Using this notation, the overall cost to be optimized becomes 

N 

b = n J ( w;, ' w;, _,) 
k=l 

355 

(9.8) 

It will not come as a surprise to us if instead of (9.8) one chooses to maximize 

N 

ln(D) = L In d(w;k, w;k-i) 
k=l 

N 

= Ld(w;k,w;k-1) = D 
k=l 

(9.9) 

Looking carefully at (9.9) or (9.8), it will not take us long to realize that Bellman's 
principle can again offer us the means for efficient optimization. Indeed, let us 
define, in accordance with D, the cost for reaching class wh at stage k via a 
path i as 

k 

D(w;k) = Ld(w;,, w;r_ 1 ) 

r=I 

Then. Bellman's principle states that 

Dma.«lu;k) = f'!laX[Dmax(w;k-I) +d(w;k,w;;_ 1)l, 
'k-1 

with 

ik. ik-l =I, 2,. . ., M 

(9.IO) 

(9.11) 

It is now straightforward to see that the optimal path, which leads to the maximum 
Din (9.9), is the one that ends at the final stage Nin the class w~ for which 

IN 

w,* = arg max Dmax(w;v) 
N w ' 

'N 

(9.12) 

Going back to Figure 9. I, we see that at each stage k. k = I, 2, .... N, there 
are M possible transitions to each of the nodes w;k. The recursive relation in 
(9. IO) suggests that in searching for the maximum we need only keep one of 
these transitions for every node, the one that leads to the maximum respective 
cost Dmax(w;1 ) (thick lines in the figure). Hence, at each stage there are only M 
surviving paths. Therefore, the number of operations is M for each node, thus 
M2 for all the nodes at each stage and NM2 in total. The latter number compares 
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very favorably with the NMN of the "brute-force task." The resulting algorithm 
is known as the Viterbi algorithm. This dynamic programming algorithm was 
first suggested for optimal decoding in convolutional codes in communications 
[Vite 67]. 

In previous chapters, we stated that for a number of reasons an altemati ve to the 
optimal Bayes classifier can be used. No doubt context-dependent classification 
can also be emancipated from its Bayesian root. This can easily be achieved by 
adopting different transition costs d(w;*, w;*_ 1 ), which are not necessarily related 
to probability densities. In the sequel we will present two typical application areas 
of the Viterbi algorithm. 

9.5 CHANNEL EQUALIZATION 

Channel equalization is the task of recovering a transmitted sequence of infonna
tion bits h (e.g., 1 or 0) after they have been conupted by the transmission channel 
and noise sources. The samples received at the receiver end are, thus, given by 

Xk = f(h, h-1, · · ·, h-n+I) + r/k (9.13) 

where the function f O represents the action of the channel and r/k the noise 
sequence. The channel contribution to the overall corruption is called the intersym
bol interference (IS/) and it spans n successive infonnation bits. The equalizer is 
the inverse system whose task is to provide decisions ik about the transmitted infor
mation bits h, based on I successively received samples [xk, Xk-I, ... , Xk-I+d = 
x[. Usually, a delay r must be used in order to accommodate the (possible) non
causal nature of the inverse system. In such cases the decisions made at time k 
correspond to the h-r transmitted infonnation bit (Figure 9.2). A simple exam
ple will reveal to us how the equalization problem comes under the umbrella 
of a Markovian context-dependent classification task. Assume a simple linear 
channel 

Xk = 0.5h + h-1 + r/k (9.14) 

For I= 2, successively received samples are combined in vectors in the two
dimensional space, that is, 

FIGURE 9.2: Block diagram of an equalizer. 
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Table 9.1: Received samples and respective infonnation bits for the 
channel ofEq. (9. 14) 

ik h - 1 lk-2 Xk Xk - 1 Cluster 

0 0 0 0 0 WI 

0 0 1 0 l W2 
0 I 0 I 0.5 w3 
0 I I I 1.5 W4 

0 0 0.5 0 w5 
0 I 0.5 I W6 

0 1.5 0.5 W7 
1.5 1.5 ws 

Ws w, 
xk 

W7 W1 

1.5 • w6 w6 

0 
w~ w~ 

0.5 + + W4 w, 

0 0 W3 W 3 

-0.5 W2 W2 

-0.5 0 0.5 1.5 xk-1 
w, w, 

(a) (b) 

FIGURE9.3: Plot (a) of the eight possible clusters associated with the channel 
of Eq. (9.14) and (b) the allowable transitions among them. 

Let us further assume that there are N such observation vectors available. From 
(9 .14) it is readily seen that each x k. k = 1, 2, ... , N, depends on the values of 
three successive information bits, namely h. h-1 , h-2· Neglecting the effects 
of noise, the possible values of the received samples Xk are given in Table 9.1, 
together with the respective information bits. Figure 9.3a shows the geometry 
in the two-dimensional space with (xk. Xk-1) on its axis. When the effect of 
noise is taken into account, the received vectors are clustered around these points 
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(for example, shaded area). For the specific channel of (9.14) there are eight 
possible clusters, w;, i = 1, 2, ... , 8 (Table 9.1 ). Clusters around "+"correspond 
to h = 1 and those around "o" to h = 0. In general, the total number of clus
ters for a binary information sequence is m = 2n+l- l. On the reception of each 
Xk = [Xk , Xk-1 ]T, the equalizer has to decide whether the corresponding transmit· 
ted information bit h was either a "l" (i.e., class "A") or a "O" (class "B"). In 
other words, this is nothing other than a two-class classification problem (M class 
for the M -ary case), and each class consists of a union of clusters. Thus, various 
techniques, from those we have already studied in previous chapters, can be used. 
A simple way, which was followed in [Theo 95]. consists of two steps. During 
the training period a sequence of known information bits is transmitted and the 
representative center JL; for each of the clusters is computed by a simple averaging 
of all the vectors Xk belonging to the respective cluster. This is possible during 
the training period, since the transmitted information bits are known and thus we 
know to which of the clusters each received x k belongs. For example, in the case 
of Table 9.1 ifthe sequence of transmitted bits is (h = 1, h-1 = 0, h-2 =I), then 
the received Xk belongs to w6 . At the same time the clusters are labeled as "I " or 
"O" depending on the value of the h bit. At the so-called decision directed mode 
the transmitted information bits are unknown, and the decision about the transmit
ted h is based on which cluster(" l" or "O" label) the received vector x k is closest 
to. For this purpose a metric is adopted to define distance. The Euclidean distance 
of the received vector Xk from the representatives JL; of the clusters is an obvi
ous candidate. Although such an equalizer can result in reasonable performance, 
measured in bit error rate (BER) (the percentage of information bits wrongly iden
tified), there is still a great deal of information that has not been exploited. Let us 
search for it! 

From the definition of ISi in (9.13) we know that the channel spans a number 
of successive information bits. Thus, only certain transitions among clusters are 
possible. Indeed, let us assume for example that at time k the transmitted infor
mation bits (h, h-1, h-2) were (0, 0, l); hence, the corresponding observation 
vector Xk belongs to cluster wi. The next received observation vector Xk+l will 
depend on the triple ( h+ 1, h, h-1) bits, which can be either (I, 0, 0) or (0, 0, 0). 
Thus, Xk+I will belong either to w5 or to w 1. That is, there are only two possible 
transitions from wi . Figure 9.3b shows the possible transitions among the various 
clusters. Assuming equiprobable information bits, then from Figure 9.3b we can 
easily conclude that all allowable transitions have probability 0.5, that is, 

P(w1Jw1) = 0.5 = P(w5Jw1) 

and the rest are zero (not allowable). We now have all the ingredients to define the 
equalization problem as a context-dependent classification task. 

Given N observation vectors Xk, k = I, 2, . . . , N, classify them in a sequence 
of clusters w; 1 , w;2 , ••• , w;N. This automatically classifies each Xk in one of the two 
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classes "A" and "B," which is equivalent to deciding that h is 1 or 0. For this goal 
a cost function has to be adopted. In [Theo 95, Geor 97] the cost d(w;k' w;k-i) 
in (9.9) used in the Viterbi algorithm, for the allowable transitions, was taken 
to be 

(9.15) 

where dw;k (xk) is the distance of Xk from the representative of the w;1 cluster. 
This can be either the Euclidean 

(9.16) 

or the Mahalanobis distance 
112 

du,;k (Xk) = ( (Xk - JL;1 )TL;~ 
1 
(xk - JL;k)) (9.17) 

The covariance matrices 'L.;;, describing the distribution of the observation vectors 
around the respective cluster representatives, are learned during the training period 
together with the cluster representatives /L;. The Viterbi algorithm is then used to 
obtain the optimal overall minimum distance sequence and recursion (9. IO) is 
modified for the search of the minimum. 

An alternative way to define the cost function is to consider observations 
as scalars Xk. that is, the received samples (I= 1 ), and make the following 
assumptions: 

• Successive noise samples are statistically independent and Gaussian. 
• The channel impulse response is known or can be estimated. In practice, 

a specific channel model is assumed, that is, J (-), and its parameters 
are estimated via an optimization method, for example, least squares 
[Proa 89]. 

Under the preceding assumptions the cost for the allowable state transitions 
in (9.9) becomes 

d(w;,, w;1_ 1) =In p(xk Jw;k) = ln(p(T)k)) 

' 2 
= -(Xk - f (h, · · ·, h-11+1)) (9.18) 

where 1Jk is the respective Gaussian distributed noise sample. Obviously. in 
(9 .18) the constants in the Gaussian density function have been omitted. If the 
Gaussian and independence assumptions are valid, this is obviously a Bayesian 
optimal classification to the clusters (from which the "O" and "I" classes result). 
However. if this is not true, the cost in (9.18) is no longer the optimal choice. 
This is, for example, the case when the so-called cochannel (nonwhite) inter
ference is present. In such cases, the cluster-based approach is justifiable and 
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indeed it leads to equalizers with more robust performance [Geor 97]. Furthermore, 
the fact that in the clustering approach no channel estimation is required can 
be very attractive in a number of cases, where nonlinear channels are involved 
and their estimation is not a straightforward task [Theo 95]. In [Kops 02] equali
zation is performed in the one-dimensional space, i.e., I= I . Although this 
increases the probability of having clusters with different labels to overlap, this 
is not crucial to the performance, since the Viterbi algorithm has the power to 
detect the correct label, by exploiting the history in the path. Furthermore, it is 
pointed out that one needs not determine directly all the 2n cluster representa
tives; it suffices to learn, during the training phase, only n of the clusters, and 
the rest can be obtained by simple arithmetic operations. This is achieved by 
exploiting the mechanism underlying the cluster formation and the associated 
symmetries. Both of these observations have a substantial impact on reduc
ing the computational complexity as well as the required length of the training 
sequence. 

The discussion so far was based on the development of a trellis diagram associ
ated with the transitions among clusters, and the goal was to unravel the optimal 
path, using the Viterbi algorithm. However, although this came as a natural con
sequence of the context dependent Bayesian classifier, it turns out this it is not 
the most efficient way from a computational point of view. From Figure 9.3b one 
can easily observe that pairs of clusters jump to the same clusters after transi
tion. For example, the allowable transitions from w1 and wi are the same and 
lead to either w1 or u.>5. The same is true for w3 and u.>4, etc. This is because the 
allowable transitions are determined by the n + I - 2 most recent bits. For the 
example of Figure 9.3, transitions are determined by the pair (h. /k_i), which, 
however, is shared by two clusters, i.e., (h, h-1. h-2), depending on the value 
of h-2 if it is 0 or I. The pair (h. h-1) is known as the state at time k. This is 
because, knowing the state at time k and the transmitted bit h+1 at time k + I we 
can determine the next state ( h+ 1, h) at time k + I, as is the case in the finite 
state machines. Since transitions are determined by the states, one can construct 
a trellis diagram based on the states instead of on clusters. For the example of 
Figure 9.3, where eight clusters are present, there is a total of four states. i.e., 
s 1 : (0, 0), s2 : (0, I), s3 : (l, 0), s4 : (I, I). Figure 9.4 shows these states and 
the allowable transitions among them. Each transition is associated with one bit, 
which is the current transmitted bit. Obviously there is a close relationship between 
states and clusters. If we know the state transition, i.e., (h, /k _ i) '""' (h+I • lk), 
then the current cluster at time k + I will be determined by the corresponding 
values of (h+1. h, h-1), and this automatically determines the cost of the respec
tive transition, e.g., (9.16, 9. I 7). Hence the estimates of the transmitted bits are 
obtained from the sequence of bits along the optimal path, that is, the one with the 
minimum total cost, in the state trellis diagram instead of the larger cluster trellis 
diagram. 
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FIGURE 9.4: Plot of the four states associated with the channel of Eq. (9.14) 
and a two-dimensional equalizer showing the allowable transitions among them. 

9.6 HIDDEN MARKOV MODELS 

In the channel equalization application of the previous section, the states (clusters) 
of the Markov chain were observable. That is, given the l + n - 1 most recent 
information bits (i.e., h, h-1, h--2. in the given example), the state to which the 
corresponding observation vector Xk belongs is readily known. Thus, during the 
training period these states can be "labeled" and we can estimate their associated 
parameters. In this section we will be concerned with systems where the states are 
not directly observable and can only be inferred from the sequence of the obser
vations via some optimizing technique. These types of Markov models are known 
as hidden Markov models (HMMs). An HMM is a type of stochastic modeling 
appropriate for nonstationary stochastic sequences, with statistical properties that 
undergo distinct random transitions among a set of different stationary processes. In 
other words, an HMM models a sequence of observations as a piecewise stationary 
process. Such models have been used extensively in speech recognition to model 
speech utterances [Bake 75, Jeli 76]. An utterance may be a spoken word, part of 
a word, or even a complete sentence or a paragraph. The statistical properties of 
the speech signal within an utterance undergo a series of transitions. For example. 
a word consists of subword portions of voiced (vowels) and unvoiced (conso
nants) sounds. These are characterized by distinctly different statistical properties. 
which are in turn reflected in transitions of the speech signal from one statistic to 
another. Handwriting recognition [Chen 95, Vlon 92, Agaz 93, El Ya 99], texture 
classification [Chen 95a, Wu 96], blind equalization [Anto 97, Kale 94, Geor 981 
and musical pattern recognition [Pikr 02] are some other example applications in 
which the power of HMM modeling has been successfully exploited. 

An HMM model is basically a stochastic.finite state automaton, which generates 
an observation string, that is, the sequence of observation vectors, x 1, x 2, .... x N. 

Thus. an HMM model consists of a number, say K, states and the observation string 
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FIGURE 9.5: Model parameters describing a three-state hidden Markov model. 

is produced as a result of successive transitions from one state i to another j . We 
will adopt the so-called Moore machine model, according to which observations 
are produced as emissions from the states upon arrival (of the transition) at each 
state. 

Figure 9.5 shows a typical diagram of an HMM of three states, where arrows 
indicate transitions. Such a model could correspond to a short word with three 
different stationary parts . The model provides information about the succes
sive transitions between the states (P(i Jj), i, j = 1, 2, 3-temporal modeling of 
the spoken word) and also about the stationary statistics underlying each state 
(p(xJi), i = 1, 2, 3). This type of HMM model is also known as left to right, 
because transitions to states with a smaller index are not allowed. Other models 
also do exist [Rabi 89]. In practice, the states correspond to certain physical char
acteristics, such as distinct sounds. In speech recognition the number of states 
depends on the expected number of such sound phenomena (phonemes 1) within 
one word. Actually, a number of states (typically three or four) are used for each 
phoneme. The average number of observations, resulting from various versions 
of a spoken word, can also be used as an indication of the number of required 
states. However, the exact number of states is often the result of experimentation 
and cannot be determined accurately a priori. In blind equalization, the states are 
associated with the number of clusters formed by the received data [Geor 98]. 
In character recognition tasks the states may correspond to line or arc segments in 
the character [Vlon 92]. 

In the sequel we will assume that we are given a set of M known reference pat
terns, and our goal is to recognize which one of them an unknown test pattern 

1 A phoneme is a ba-;ic sound unit corresponding 10 a unique ser of articulatory gestures. characterizing 
rhe vocal 1rac1 articularors for speech sound producrion [Dell 93] . 
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matches best. This problem was studied in the previous chapter from a tem
plate matching (deterministic) perspective. A different (stochastic) path will be 
taken here. Specifically. we will assume that each known (reference) pattern is 
described via an HMM model. That is, each of the M patterns is characterized by 
the following set of parameters: 

• The number K_, of the states, s = 1. 2, ... , M. 
• The probability densities p(xij). j = I, 2, ... , K,, describing the distribu

tion of the observations emitted from state j. 
• The transition probabilities P(iij), i, j = 1, 2, ... , Ks, among the various 

states. Some of them can be zero. 
• The probabilities P(i), i = 1, 2, ... , Ks, of the initial state. 

Although this is quite a general description of an HMM model, it is worth pointing 
out that variations are also possible. For example, sometimes the place of the self
transition probability ( P (i Ii)) is taken by the state duration probability distribution, 
which describes the number of successive stages for which the model stays in 
state i ([Rabi 89], Problem 9.2). In some other cases, a model for the generation 
mechanism of the observations is adopted, for example, an autoregressive model 
[Pori 82] or even a time-varying one that models nonstationary state statistics 
[Deng 94]. In the sequel we will adhere to the foregoing model. Our problem now 
consists of two major tasks. One is the training for each of the HMM models, that 
is, the computation of the parameters just listed. The other is the task of recognition. 
That is. once the HMM parameters of the reference models are known, how do we 
decide which reference model the unknown pattern matches best? We will start 
with the latter task. 

Recognition 

Any path method: To start with, we will treat each of the M reference HMM 
models as a distinct class. The sequence of observations X is the result of emis
sions, due to transitions among the different states of the respective model. The 
problem then becomes a typical classification task. Given the sequence of N 
observations X :x 1, x2, ... , x N, resulting from the unknown pattern, decide to 
which class it belongs. The Bayesian classifier decides in favor of pattern S* for 
which 

S* = arg max P(SIX), that is, over all the models 
s 

and for equiprobable reference models (classes) this is equivalent to 

S* = arg max p(XIS) 
s 

(9.19) 

(9.20) 
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where for convenience we have used S to denote the set of parameters describing 
each HMM model, that is, 

S = {P(ilj), p(xii), P(i), K.d 

For each model S there is more than one possible set of successive state transitions 
Q;, each having probability of occurrence P(Q;IS). Thus, recalling the known 
rule for probabilities we can write [Papo 91] 

p(XIS) = L p(X, Q;IS) = L p(XIQ;, S)P(Q;/S) (9.21) 

In order to find the maximum p(XIS) over all possible models, the quantity in 
(9.21) has to be computed for each of the M reference models. Its efficient com
putation can be achieved via an approach similar to the Viterbi algorithm. Indeed, 
the only difference between (9.21) and (9.6) is that, instead of simply searching 
for the maximum over all possible state sequences Q;, (9.21) requires summing 
up the respective values for each of them. To this end, let us define as a(h) the 
probability density of the joint event: (a) a path is at state h Uk E { l, 2, ... , K,.}) 
at stage k and (b) observations x1, x2, ... , Xk-1 have been emitted at the previous 
stages and (c) observation Xk is emitted from the state ik at stage k. From the 
definition of a(h) the following recursive relation is easily understood: 

a(h+1):: p(x1, ... , Xk+I, h+iiS) 

with 

= L a(ik)PUk+1 lh)p(xk+1 lik+d, k = l, 2, ... , N - l (9.22) 
ik 

The product P(h+ilh)p(Xk+ilh+i) in (9.22) provides the local information for 
the last transition and a(ik) is the information accumulated from the path history 
up to stage k. As is apparent from its definition, a(h) does not depend on the 
subsequent observations x k+ J, ... , x N. The definition of a joint probability den
sity function, which depends on all available observations, is also possible and 
will be used later on. To this end, let us define f3(h) as the probability density 
function of the event: observations x k+ 1, ... , x N occur at stages k + l, ... , N, 
given that at stage k the path is at state ik. Then after a little thought we conclude 
that f3(h) obeys the following recursion: 

f3(h) = p(Xk+l. Xk+2· ... 'XNlh. S) 

= Lf3Uk+1)P(h+ilik)p(Xk+1lik+i). k = N - l, ... ' l (9.23) 
h+1 
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where by definition 

{3(iN) = 1, iN E (1, 2, ... , K,.} (9.24) 

Thus, the probability density of the joint event: (a) a path is at state ik at stage k 
and (b) x 1, ... , x N have been observed, is given by 

y(ik) = p(x1, ... , XN, ikiS) 

= p(xi •... , Xk. ik!S)p(Xk + l · . . . , XNlh. S) 

= a(ik)f3(ik) (9.25) 

where the assumption about the observations ' independence has been employed. 
Equation (9 .25) also justifies the choice f3(iN) = l , i N E { l , 2 . .. . , Ks} . 

Let us now return to our original goal of computing the maximum p(XIS) . 
Equation (9.22) suggests that we can write Equation (9.21) as 

K., 

p(X[S) = L et(iN) (9.26) 
i,v=l 

For the computation of (9.26). we need to compute all cx(h), fork = I, 2, .... N. 
This is efficiently achieved using the diagram of Figure 9.6. Each node corres
ponds to a stage k and a state h. h = l, 2, .. . , Ks. For each of the nodes the 
density cx(ik) from Eq. (9.22) is computed. Thus, the number of computations is 
of the order of N K}. The resulting algorithm is known as the any path method, 
since all paths participate in the final cost. The computation of (9.26) is performed 
for each of the M models and the unknown string pattern of the observations 
x 1, x2 . ... , x N is classified to the reference model S for which p(X IS) becomes 
maximum. 

Best path method: An alternative, suboptimal , approach is the so-called best path 
method. According to this method, for a given observation sequence X we compute 
the most probable (best) path of states sequence for each of the reference models. 
The task now becomes that of (9.1) and the search for each of the optima can be 
achieved efficiently via the Viterbi algorithm, with the cost D given as in (9.9). 

N 

D = Ld(ik. h - 1) 
k=I 

d(ik. ik-t) =In P(iklik-1) +In p(xklik) (9.27) 

In other words, for each of the models we compute the maximum of 
P(Q;)p(XIQ;) = p(Q;, X). Hence, the summation in (9.21) is replaced by a 
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FIGURE 9.6: Diagram showing the computational flow for the any path method. 

maximum operation. The unknown pattern is classified to that reference model 
S for which the resulting optimal cost D is maximum. 

Training 

This is a more difficult task. The states now are not observable and a direct training 
approach, such as the one used in Section 9.5, cannot be adopted. The param
eters that define each HMM model S can only be inferred from the available 
observations. 

One way to achieve this goal is to estimate the unknown parameters, so that 
the output for each model, (9.27) or (9.26), becomes maximum for a train
ing set of observations known to belong to the model. This is an optimization 
task with a nonlinear cost function and it is carried out iteratively. To this end, 
assumptions about the probability density functions p(x Ji) are required. The 
procedure can be simplified if one assumes that the observations Xk can take 
only discrete values. In such cases probability density functions p(xji) become 
probabilities, P(xji). 

Discrete Observation HMM Models 

We will assume that the training observation string x k, k = 1, 2, ... , N, consists of 
quantized vectors. In practice, this is achieved via vector quantization techniques, 
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to be discussed later on in Chapter 14. Hence, each observation vector can take 
one only out of L possible distinct values in the /-dimensional space. Thus, obser
vations can be described as integers r, r =I, 2 . . .. L . The steps for each of the two 
methods, that is, any path and best path, are as following : 

Baum-Welch reestimation: The "output" quantity in the any path procedure is 
p(X JS). Thus, estimating the parameters of the model S so that p(XJS) is a maxi 
mum is nothing but a maximum likelihood parameter estimation procedure. Before 
going into the discussion of the iteration steps some definitions are needed. 

Definitions: 

• ~k (i. j. X JS)= the probability of the joint event: (a) a path passes through 
state i at stage k and (b) through state j at the next stage k + I and 
(c) the model generates the available sequence of observations X, given 
the parameters of the model S. 

• Yk (i. X JS) == the probability of the joint event: (a) a path passes through state 
i at stage k and (b) the model generates the available observation sequence. 
given the parameters of the model S. 

From these definitions it is not difficult to show that 

1: .(i ") = 1: (i "IX S) = ~k(i, j, XJS) 
"k 'J -;k 'J ' P(XJS) (9.28) 

Mobilizing the definitions in Eqs. (9.22) and (9.23), Eq. (9 .28) becomes 

1: • • a(h = i)P(jJi)P(xk+1 JJ),8(ik+I = j) 
,,k(t, J) == P(XJS) (9.29) 

where cx(ik = i) accounts for the path history terminating at stage k and state i. 
f3 ( ik + 1 = j) accounts for the future of the path, which at stage k + I is at sta1e j and 
then evolves unconstrained until the end. The product P(j Ji) P(Xk+ 1 JJ) accounts 
for the local activity at stage k. The other quantity of interest is the probability of 
being at stage k at state i, given the model and the observation sequence, that is 

.(i) = (i i X S) = a(ik = i)/3(ik = i) 
Yk Yk I • P(X!S) (9 .30) 

From the foregoing it is not difficult to see that 

• "L~=l Yk(i) can be regarded as the expected (over the number of stages) 
number of times state i occurs, given the model S and the observation 
sequence X. When the upper index in the summation is N - I, this quantity 
is the expected number of transitions from state i . 
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• 'Lt'~! 1 ~k(i, j) can be regarded as the expected number of transitions from 
state i to state j, given the model and the observation sequence. 

The preceding definitions lead us to adopt the following (re)estimation formulas 
as reasonable estimates of the unknown model parameters. 

°"N-1 /:: (' ') P< ' Ii)::::: Lk=J 5k I , J 
J °"N- 1 (') 

Lk=l Yk l 

- . L~= I and x-->r) Yk (i) 
Px(rl1) = ---N----

l:k=I Yk(i) 

P(i) = Yl (i) 

(9.31) 

(9.32) 

(9.33) 

The numerator in (9.32) sums only those of Yk(i) for which the corresponding 
observation Xk takes the rth discrete value. The iterative algorithm can now be 
expressed in terms of the following steps: 

Iterations: 

• Initial conditions: Assume initial conditions for the unknown quantities. 
Compute P(XJS) . 

• Step 1: From the current estimates of the model parameters reestimate the 
new model S via Eqs. (9.31) to (9.33). 

• Step 2: Compute P(X I S). If P(X I S) - P(X IS) > f set S =Sand go 
to step 1. Otherwise stop. 

Remarks 

• Each iteration improves the model S; that is, it is true that P(XJS) 2: 
P(XIS) . 

• The algorithm may lead to local maxima; sec for example [Baum 67, 
Baum 68, Baum 70). This is why the algorithm in practice runs a number 
of times, starting from different initial conditions, in order to find a favor
able local maximum for P(XIS). Other computational issues, including 
parallelism and memory requirements, are treated in [Turi 98). 

• The Baum-Welch algorithm is basically an implementation of the EM algo
rithm, which was introduced in Chapter 2. Indeed, a little thought reveals that 
the ML estimation of the HMM parameters is a typical ML problem with an 
incomplete data set, that is, the unobserved states (e.g., [Moon 96, Diga 99)). 
A generalization of the method that allows multiple observation training 
sequences is given in [Li 00). Other, gradient-based, optimizing techniques 
for the estimation of the unknown parameters have also been suggested and 
used [Levi 83). 
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• Practical implementation issues: 

I. Scaling: The probabilities a(ik). f3(h) are obviously less than one, and 
their values tend to zero very fast as the number of tenns in the products 
(9.22) and (9.23) increases. In practice, the dynamic range of their 
computed values may exceed the precision range of the computer, so 
appropriate scaling is required. A basic procedure is to scale a(ik) in 
proportion to the number of stages. If the same scaling factor is used for 
the f3 ( h), then on taking their product in the recursions the effect of the 
scaling cancels out [Levi 83, Rabi 89] (Problem 9.4). 

2. Initial conditions: This is an omnipresent problem in all iterative opti
mization algorithms. Usually, the unknown parameters are initialized 
randomly, subject, of course, to the constraints of the problem. That is, 
if some transitions are not allowed, the corresponding probabilities are 
set to zero, and also probabilities must add to one. 

3. Insufficient training data: Generally a large amount of training data is 
necessary to learn the HMM parameters. The observation sequence must 
be sufficiently long with respect to the number of states of the HMM 
model. This will guarantee that all state transitions will appear a suf
ficient number of times, so that the reestimation algorithm learns their 
respective parameters. If this not the case, a number of techniques have 
been devised to cope with the issue. For a more detailed treatment the 
reader may consult [Rabi 89, Dell 93] and the references therein. 

Viterbi reestimation: ln the speech literature the algorithm is also known as the seg
mental k-means training algorithm [Rabi 89). It is related to the best path method. 

Definitions: 

• n;u = number of transitions from state j to state i. 
• n lj = number of transitions originated from state j. 
• n; 1 = number of transitions terminated at stale i. 
• n (r Ii) = number of times observation r E { 1. 2 .... , L} occurs jointly with 

state i. 

Iterations: 

• Initial conditions: Assume the initial estimates of the unknown parameters. 
Obtain the best path and compute D. 

• Step I: From the available best path. reestimate the new model parameters as : 

PUIJ) = n;u 
" IJ 

- n(rli) 
Px(rli) = --

11; I 
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• Step 2: For the new model parameters obtain the best path and compute the 
corresponding overall cost fJ. Compare it with the cost D of the previous 
iteration. If fJ - D > E set D = fJ and go to step I . Otherwise stop. 

Symbol Px(r/i) is the current iteration estimate of the probability of emitting 
from state i the rth value from the available palette of the L possible vectors. The 
preceding algorithm has assumed that the initial state is known; thus no estimation 
of the respective probabilities is needed. This is, for example, true for left-to-right 
models, such as the one shown in Figure 9.5. The Viterbi reestimation algorithm can 
be shown to converge to a proper characterization of the underlying observations 
[Fu 82, Lee 72]. 

Continuous Observation HMM 

The discrete observation modeling of originally continuous variables suffers from 
a serious drawback. During the (vector) quantization stage of the signal (e.g., 
speech segment), a severe loss of infonnation about the original waveform may 
occur, which can seriously degrade the performance of the recognizer. The alter
native is to work with continuous observation modeling, albeit at the expense 
of higher complexity. This approach requires modeling of the probability densi
ties p(x/i), prior to estimation. Once these have been estimated, the recognition 
problem evolves along the same lines as with the discrete observation case. The 
difference exists only in the training task. One way to approach the problem is 
to assume a parametric model for the probability density function and then use 
reestimation procedures to compute the unknown model parameters. As we have 
already discussed in Chapter 2, a very general parameterization of the probability 
density function is via mixture modeling, that is, 

L 

p(x/i) = L C;mF(x, JLim• :E;m) (9.34) 

m= l 

where F(., ., -) is a density function and µ 1111 , :E;m are the mean vector and the 
covariance matrix of them th mixture. We will adhere to Gaussian functions, which 
are usually employed in practice. The mixture coefficients c;m have to satisfy the 
constraint 

L 

L Cim =I, I Si S Ks 
m = l 

so that 

f
+ oo 

- oo p(x/i) dx = I. I Si S Ks 
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Following arguments similar to those used to reestimate the parameters in the 
discrete observation HMM case, the following reestimation formulas are obtained 
[Lipo 82, Juan 85, Juan 86]. 

Lkv=I Yk(i. m) 
Cim = -~~~----

L~=I L~=I Yk(i, r) 
(9.35) 

(9.36) 

(9.37) 

The term Yk (i, m) is the probability density of being at state i and stage k with the 
mth mixture component accounting for Xk, that is, 

(9.38) 

where c;,,, is the ratio of the expected number of times the system is at state i using 
the mth mixture component to the overall expected number of times the system is 
at state i. Similar interpretations can be made for the other formulas too. 

When the Viterbi method is employed, reestimation of the parameters is based 
on averages computed across the best path. For example, for mixture modeling 
using a single Gaussian (L = I) we get 

where 8;k = l for the stages where the path goes through state i and is zero otherwise, 
and N; is the respective number of times the path passes through state i. 

Remarks 

• The algorithms just described estimate the unknown parameters using all the 
available observations simultaneously. An alternative path, of major practi
cal importance, is to employ adaptive techniques in which new information 
can be incorporated to adapt an already trained model, without it being nec
essary to retrain it with all previously used data. It is generally accepted that 
speaker-dependent recognizers outperform speaker-independent systems, as 
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long as sufficient training data are available. Thus, a long-standing idea is 
to use speaker-independent recognizers, trained with enough data on a mul
tispeaker platform, and then adapt the model parameters to fit a specific 
speaker (and/or acoustic environment). This can be achieved by using the 
minimum number of data from the new speaker. Both batch and sequential 
schemes have been suggested. Some examples of such learning procedures 
are given in [Lee 91, Diga 95, Legg 95, Huo 95, Huo 97, Diga 99, Wang 01). 

• A drawback of the modeling in (9.34) is that a mixture model is adopted 
for each of the states. This makes the number of parameters to be estimated 
rather high. Thus, for a given size of training data it affects the robustness 
of the parameter estimation. To alleviate such problems and decrease the 
number of unknown parameters, so-called tied-mixture densities modeling 
has been suggested, where the same Gaussian densities are shared across 
the mixtures of all the states [Bell 90) or groups of states [Diga 96, Kim 95, 
Gale 99, Gu 02]. 

• The Baum-Welch algorithm is an iterative procedure to maximize the like
lihood function with respect to the unknown parameters. MAP procedures 
incorporating prior statistical information have also been proposed and 
enhanced performance has been reported [Gauv 94]. An alternative is to 
optimize with respect to all the unknown parameters, instead of optimizing 
each HMM model separately, as was the case with ML earlier. The goal 
of such an optimization approach is to enhance the discrimination capa
bilities of the models. Maximizing the mutual information [Bahl 86) or 
minimizing the cross-entropy [Ephr 89 j and, more recently, the classifica
tion error rate [Juan 97], or controlling the influence of the outliers [Arsl 99) 
are examples of approaches that enhance performance at the expense of 
complexity. 

Segment Modeling 

Although HMM modeling is one of the most powerful and widely used techniques 
in recognition, it is not without shortcomings. One of its principal limitations is the 
required assumption of independence among the observations (conditioned on the 
state sequence). In fact, this is nut true for most of the cases. Another limitation is 
the rather weak state duration modeling achieved by standard HMM modeling. To 
overcome these limitations, a number of schemes have been suggested. Recently, 
an effort was made to present a variety of such schemes in a unified framework, 
under the notion of segment modeling. Here only the basic definitions will be 
reviewed. In HMM modeling, on the arrival of a transition at a state, a single 
observation (corresponding to a single frame of the original speech samples) is 
assumed to be emitted and the fundamental observation distribution is on the frame 
level, that is, p(xJi). In contrast, in segment modeling a segment X':' consisting 
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••f----·· ./ ,,,, 
HMM SM 

FIGURE 9.7: HMM and segment modeling (SM) for the emission of observa
tions upon arrival of a transition at a state. 

of m frames , X';' = [x,, .. . , Xr+m-tl . is assumed to be emitted upon the arrival 
at a state. Here m is a random variable itself. The fundamental distribution is now 
at the segment level, that is, p(X:r' Ii, m ). A schematic representation is given in 
Figure 9.7. The parameters describing a segment model are (a) the number of 
states, (b) their transition modeling parameters, (c) the joint probability density 
function for the segment distribution, given the duration m, and (d) the duration 
probability P(m Ii). Training of these parameters follows generalizations of the 
Baum-Welch and Viterbi schemes. A more detailed treatment of the topic is beyond 
our scope and the interested reader may consult, for example, [Oste 96. Russ 97, 
Gold 991 and the references therein. 

9.7 TRAINING MARKOV MODELS VIA NEURAL NETWORKS 

The training phase of an HMM-based recognition system is entirely dedicated 
to the learning of probabilities (and densities). In Chapter 3 we have seen that 
a supervised classifier optimized via certain criteria, such as least squares, can 
approximate posterior class probabilities. This is the kickoff point for our current 
concern. States can be treated as classes and a multilayer perceptron can be used 
as a nonlinear classifier. The observations feed the input nodes and the network 
has as many outputs as the states. Training can be done via the backpropagation 
algorithm, and the desired responses will be 1 at the true state output and 0 at the 
others (see Chapter 3). It is now straightforward to see that the outputs of the NN 
will sufficiently approximate the posterior probabilities P(ilx) . These can then be 
changed to p(x Ii), as required in the recognition phase of a Markov model-based 
recognizer, via the Bayes rule 

(xii)= P(ilx)p(x) 
P P(i) 

where the state priors P(i) are determined from their relative occurrence fre
quencies and p(x) is constant for all states during recognition. 

In following this procedure we have made a crucial assumption. That is, the 
states are treated here as being observable, and during training we know the specific 
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state from which each observation originates. For example, in speech recognition 
this is possible by associating each phoneme in a spoken word with a state. Here 
lies a disadvantage of this approach, since accurate segmentation of the speech 
signal is required and the boundaries are not always well defined. This is not the 
case in the HMM approach, where it is left to the algorithm to decide optimally 
about the state boundaries. A scheme for unified training of HMM/MLPthat avoids 
the segmentation problem has been suggested [Koni 96). Let us now turn to the 
benefits of bringing neural networks into the scene. 

We have already commented that a major disadvantage of the standard HMM 
is the assumption of independence among the observations. Using a multilayer 
perceptron, the underlying statistical dependence can easily be accommodated. 
Figure 9.8 shows a possible way. Together with the "current" observation vector 
Xk. p "past" as well asp "future" ones appear simultaneously at the input nodes. 
Thus, the input nodes amount to (2p + 1)/, with J being the dimension of the 
observation vectors. During training, the desired response will be I at the output 
node corresponding to the state that "gives birth" to the "current" vector. We 
say that the network is trained with l'Ontextua/ input information. Further data 
dependence can also be accommodated by providing the input with information 
about the previous state in the sequence. During recognition this is provided via 
an output feedback, shown in the figure by the dotted lines [Bour! 90J. Obviously. 
in such a configuration the output nodes of the network compute the conditional 

state probabilities P(iklX~~;. h-1 ), where X~~; denotes the contextual input 
information ranging fromXk-p toxk+p· Having these probabilities at ourdisposaJ, 
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FIGURE 9.8: A multilayer perceptron architecture for training the parameters 
of a Markov model. 
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a number of new "opportunities" open to us. Let us, for example, return to our 
original goal in (9. l) and treat states as classes. By the chain rule we have 

P(Q;\X) = P(i1. iz, .... i,v\X) 

= P(i,v\i,v-1 .... , i1. X) ... P(i,v-1 \i,v-2 ..... i1, X)P(i1 \X) 
(9.39) 

Taking into account the Markovian property of the state dependence and relaxing 
a bit the conditional constraint on the observations, this can be written as 

P(Q;\X) = n P(ikiX~~~. ik-1) (9.40) 
k 

with some appropriate initial conditions. Computing its maximum can easily be 
done via dynamic programming arguments. A number of other alternatives are 
also possible; see for example [Bour! 90, Bour! 94, Morg 95] for a more detailed 
discussion of the topic. 

Finally, it must be emphasized that in order to obtain good probability estimates 
the size of the multilayer perceptron must be large enough to have good approxi
mating capabilities. This, of course, requires increased computational resources for 
the training. Furthermore, the incorporation of the contextual information imposes 
its own demands on large networks. Another point is that the approximation of 
probabilities by the network is valid at the global minimum of the minimized 
cost function, at least in theory. All these practical issues affecting the overall 
performance of such an approach are still ongoing research topics fSpec 941. 

9.8 A DISCUSSION OF MARKOV RANDOM FIELDS 

So far, our concern with context-dependent classification was limited to the one
dimensional case. The current subsection is focused on the related two-dimensional 
generalizations. That is, observations will be treated as two-dimensional sequences 
X (i. j). Such problems result in image processing and observations can be, for 
example, the gray levels of the image array pixels. No doubt, complications arise, 
and our aim here is to provide the basic definitions and directions and not a detailed 
treatment of the topic. 

LetusassumethatwearegivenanarrayofobservationsX:X(i, j), i =0, I, .... 
N_, - l, .i = 0, I, ... , Ny - l, and a corresponding array of classes/states Q: wiJ. 

where each Wij can take one of M values. Once more our objective is, given the 
array of the observations, to estimate the corresponding values of the state array 
n so that 

p(X\Q)P(Q) is maximum (9.41) 
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Within the scope of context-dependent classification the values of the elements 
of Q will be assumed to be mutually dependent. Furthermore, we will assume 
that the range of this dependence is limited within a neighborhood. This brings 
us to the notion of Markov random fields (MRFs) defined in Chapter 7. Thus, 
for each (i, j) element of the array Q a respective neighborhood Nij is defined 
so that 

• Wij ¢ M1 
• Wij E N°k/ ¢::::::} Wk/ E M1 

In words, the (i, j) element does not belong to its own set of neighbors, and if w;J 
is a neighbor of Wk/ then Wk/ is also a neighbor of w;1. The Markov property is 
then defined as 

P(w· ·IQ··) - P(w· ·1 •r. ·) I) I} - I} JVij (9.42) 

where Qij includes all the elements of Q except the (i, j) one. Figure 9.9 gives a 
typical example of a neighborhood with eight neighbor pixels. Equation (9.42) is 
a generalization of (9.3). In the one-dimensional case the ordering of the sequence 
led to the relation (9.4). Unfortunately, this sequence ordering does not generalize 
in a natural way to the two-dimensional case and imposes limitations on the 
involvement of the computationally elegant dynamic programming techniques 
[Hans 82]. 

A seminal paper that had an impact on the use of MRF modeling in image 
processing and analysis was that ofGeman and Geman [Gema 84]. They built upon 

j ............... . 

i 

FIGURE 9.9: Example of a neighborhood involving eight neighbors of the (i, j) 
element. 
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the important Hammersley-Clifford theorem, which establishes the equivalence 
between Markov random fields and Gibbs distributions [Besa 74]. Thus, we can 
talk of Gibbs random.fields (GRFs). A Gibbs conditional probability is of the fonn 

(9.43) 

where Z is a normalizing constant so that probabilities sum up to I, Tis a parameter, 
and Fk (·) are functions of the states of the pixels in the cliques Ck (i, j). A clique 
consists of either a single pixel or a set of pixels, which are neighbors of each 
other, with respect to the type of the chosen neighborhood. Figure 9. I 0 shows two 
cases of neighborhoods and the corresponding sets of cliques. A typical example 
of the exponent function in (9.43) for the four neighbors case is 

where the a; 's are constants. 
It turns out that the joint probability P(Q) for the Gibbsian model is 
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FIGURE 9.10: Two examples of neighborhoods with the corresponding cliques. 
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where 
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U(Q) =LL Fk(Ck(i, j)) 
i,j k 

(9.45) 

that is, the sum of the functions over all possible cliques associated with the 
neighborhood. In many cases, the posterior probability P(QJX), which is to be 
maximized (i.e., 9.41) also turns out to be Gibbsian. Such cases result, for example, 
if the regions in the image are themselves generated by Markov (e.g., Gaussian 
2-D AR) processes [Deri 86, Che! 85]. Simulating annealing techniques can then 
be employed to obtain the required maximum [Gema 84]. 

Hidden Markov generalizations to the two-dimensional plane have also been 
considered [Pov! 95). The idea here is to build apseudolikelihoodfunction starting 
from the local state transition probabilities, using Besag's method for coding the 
image in mutually independent pixel sets [Besa 74). An alternative EM formulation 
of the problem was given in [Zhan 94]. Finally, another direction, which is gaining 
in popularity, is the combination of Markov random fields and multiresolution 
analysis. At the subsampling stage the Markov property is lost and suitable models 
are derived for the coarser resolutions. For more details the reader may consult, 
for example, [Laks 93, Bell 94, Kris 97] and the references therein. 

Problems 

9.1 Assume an HMM model with K states and an observation string X of N continuous 
observations. Assume that the pdf in each state is described by a Gaussian with known 
diagonal covariance matrix and unknown mean values. Using the EM algorithm, 
derive the reestimation recursions. 
Hint: Form the complete data set as Y = (X, Q), where Q is the set of the states. 

9.2 Show that if the self-transition probability of a state is P(i Ii), then the probabil
ity of the model being at state i for d successive stages is given by P; (d) = 
(P(i/i))d- 1(1 - P(ili)). Show also that the average duration for staying in state 
i is equal to d = l-Pl(i\i)). In practice, this may be inappropriate, thus the need for a 
duration distribution HMM modeling. 

9.3 In practice, a number Q of different versions of the spoken word are used for training, 
each resulting in a sequence of observations X m of length Nm, m = I, 2, .... Q. 
Then comment on the following reestimation formulas: 

'°'Q I '°'Nm-11:: (" . X jS) 
P(Jli) = Lm=I ~ L..k=I 'ik 

1
• J, m 

'°'Q I '°'Nm-I m(· "){Jm(· ') 
L..m=l P(Xnr\S) L..ko:J Ci 1k =I lk =I 

'°'Q I '°'N"' m(· '){3m(· ") 
- . L..m=I P(X;;;-(S) L..(k=I andx-->r) Ci 1k = 1 lk =I 

Px(rj1) = "Q I "Nm m(· "){3m(· ") 
L..m=I P(XmiS) L..k=I a 1k = 1 1k =I 
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where superscript m refers to the mth observation sequence. and~(i. j . XIS) is defined 
in (9.28). 

9.4 Rederive recursions (9.31) and (9 .32) in terms of the scaled versions of O!. f3 

where ck= LK'.... 1 O!(ik) . 
lk-

9.5 Assume that the HMM models are not equiprobable and let /\ be the set of all the 
unknown parameters for the M available models. Assume now that a training string 
X is known to correspond to the model Sr. However, during training, maximization 
of P(S,\X. /\)is done with respect to all the parameters and not only those of the 
specific model. Show that this optimization leads to a maximum ratio between the 
contribution p(XI S,. /\)P(Sr) of the correct model and Ls,.er p(X !Ss. /\) P(S,) of 
the incorrect models. That is, optimization with respect to all the parameters offers 
maximum discrimination power. 
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SYSTEM EVALUATION 

10.l INTRODUCTION 

This chapter is focused on the last stage of the design procedure of a classification 
system. In other words, we assume that an optimal classifier has been designed, 
based on a selected set of training feature vectors. Our goal now is to evaluate 
its performance with respect to the probability of classification error associated 
with the designed system. Once the estimated error is considered satisfactory, full 
evaluation of the system performance is carried out in the real environment for 
which the system has been designed, such as a hospital for a medical diagnosis 
system or a factory for an industrial production-oriented system. 

lt is important to note that the evaluation stage is not cut off from the previous 
stages of the design procedure. On the contrary, it is an integral part of the pro
cedure. The evaluation of the system's performance will determine whether the 
designed system complies with the requirements imposed by the specific applica
tion and intended use of the system. If this is not the case, the designer may have 
to reconsider and redesign parts of the system. Furthermore, the misclassification 
probability can also be used as a performance index, in the feature selection stage. 
to choose the best features associated with a specific classifier. 

This chapter will evolve in two directions. First, methodologies will be devel
oped for the estimation of the classification error probability, using the available. 
hence finite, set of data. Then we will adopt a case study and we will design a 
classification system, following the steps and techniques that have accompanied 
us up to now. 

10.2 ERROR COUNTING APPROACH 

Let us consider an M-class classification task. Our objective is to estimate the 
classification error probability, by testing the "correct/false" response of an inde
pendently designed classifier using a finite set of N test feature vectors. Let 
N; be the vectors in each class, with L~I N; = N and P; the corresponding 
error probability for class w;. Assuming independence among the feature vectors, 
the probability of k; vectors from class w; being misclassified is given by the 

385 
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binomial distribution 

prob{k; misclassified) = ( ~i ) P/; (I - P; )N;-k; (10.1) 

In our case the probabilities P; are not known. An estimate P; results if we max
imize (IO. I) with respect to P;. Differentiating and equating to zero result in our 
familiar estimate 

A k; 
P;=

N; 

Thus, the total error probability estimate is given by 

M k· 
A L I P = P(w;)-

N 
i=I 

1 

( I0.2) 

(I0.3) 

where P(w;) is the occurrence probability of class w;. We will now show that 
P is an unbiased estimate of the true error probability. Indeed, from the properties 
of the binomial distribution (Problem IO. I) we have 

E[k;] = N;P; ( I0.4) 

which leads to 

M 

E[P] = L P(w;)P; = P (I0.5) 

i=l 

that is, the true error probability. To compute the respective variance of the 
estimator, we recall from Problem I 0.1 that 

al = N; P;(l - P;) (10.6) 

leading to 

M 
2 -I:P2( ·)P;(l - P;) 

CJ'- - w, 
P N 

i=I I 

(10.7) 

Thus, the error probability estimator in (I 0.3), which results from simply counting 
the errors, is unbiased but only asymptotically consistent as N; ~oo. Thus, if small 
data sets are used for testing the peiformance of a classifier, the resulting estimate 
may not be reliable. 

In [Gu yo 98] the minimum size of the test data set, N , is derived in tenns of the 
true error probability P of the already designed classifier. The goal is to estimate 
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N so that to guarantee, with probability I - a, 0 S a s I, that P does not exceed 
the estimated from the test set, P, by an amount larger than E(N, a), that is 

prob{P ~ P + E(N, a)) s a ( 10.8) 

Let E(N, a) be expressed as a function of P, that is. E(N. a) = f3 P. An analytical 
solution for Eq. ( 10.8) with respect to N is not possible. However, after some 
approximations certain bounds can be derived. For our purposes, it suffices to 
consider a simplified fonnula, which is valid for typical values of a and f3 (a = 
0.05, f3 = 0.2) , 

100 
N~

p (10.9) 

In words, if we want to guarantee, with a risk a of being wrong, that the error 

probability P will not exceed 1 ~fJ , then N must be of the order given in Eq . 

( 10.9) . For P = 0 .0 I. N = I 0000 and for P = 0.03. N = 3000. Note that 
this result is independent of the number of classes. Furthermore, if the samples 
in the test data set are not independent this number must be further increased. 
Such bounds are also of particular importance, if the objective is to determine 
the size N of the test data set that provides good confidence in the results, when 
comparing different classification systems with relatively small differences in their 
error probabilities . 

Although the error counting approach is by far the most popular one, other 
techniques have also been suggested in the literature. These techniques estimate 
the error probability by using smoother versions of the discriminant function(s) 
realized by the classifier. The error counting approach can be thought of as an 
extreme case of a hard limiter, where a I or 0 is produced and counted, depending on 
the discriminant function's response, that is, whether it is false or true, respectively; 
see, for example, [Raud 91 ]. 

10.3 EXPLOITING THE FINITE SIZE OF THE DATA SET 

The estimation of the classification e1rnr probability presupposes that one has 
decided upon the data set to which the error counting will be applied. This is not a 
straightforward task. The set of samples that we have at our disposal is finite and 
it has to be utilized for both training and testing. Can we use the same samples for 
training and testing? If not, what are the alternatives? Depending on the answer to 
the question, the following methods have been suggested: 

• Resubstitution Method: The same data set is used, first for training and 
then for testing. One need not go into mathematical details in order to 
see that such a procedure is not very fair. Indeed, this is justified by the 
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mathematical analysis. In [Fole 72] the performance of this method was ana
lyzed using normal distributions. The analysis results show that this method 
provides an optimistic estimate of the true error probability. The amount 
of bias of the resubstitution estimate is a function of the ratio N / l, that is, 
the data set size and the dimension of the feature space. Furthermore, the 
variance of the estimate is inversely proportional to the data set size N. In 
words, in order to obtain a reasonably good estimate, N as well as the ratio 
N / l must be large enough. The results from the analysis and the related 
simulations show that N / l should be at least three and that an upper bound 
of the variance is 1 /8N. Of course, if this technique is to be used in practice, 
where the assumptions of the analysis are not valid, experience suggests that 
the suggested ratio must be even larger [Kana 74]. Once more, the larger the 
ratio N / l, the more comfortable one feels. 

• Holdout Method: The available data set is divided into two subsets, one 
for training and one for testing. The major drawback of this technique is 
that it reduces the size for both the training and the testing data. Another 
problem is to decide how many of the N available data will be allocated 
to the training set and how many to the test set. This is an important issue. 
In Section 3.5.3 of Chapter 3, we saw that designing a classifier using a 
finite data set introduces an excess mean error and a variance around it, as 
different data sets, of the same size, are used for the design. Both these 
quantities depend on the size of the training set. In [Raud 91], it is shown 
that the classification error probability of a classifier, designed using a finite 
training data set, N, is always higher than the corresponding asymptotic 
error probability (N~oo). This excess error decreases as N increases. 
On the other hand, in our discussion in the previous section we saw that 
the variance of the error counting depends on the size of the test set, and 
for small test data sets the estimates can be unreliable. Efforts made to 
optimize the respective sizes of the two sets have not yet led to practical 
results. 

• Leave-One-Out Method: This method [Lach 68] alleviates the lack of inde
pendence between the training and test sets in the resubstitution method and 
at the same time frees itself from the dilemma associated with the holdout 
method. The training is performed using N - l samples, and the test is 
carried out using the excluded sample. If this is misclassified an error is 
counted. This is repeated N times, each time excluding a different sample. 
The total number of errors leads to the estimation of the classification error 
probability. Thus, training is achieved using, basically, all samples, and at 
the same time independence between training and test sets is maintained. 
The major drawback of the technique is its high computational complex
ity. For certain types of classifiers (i.e., linear or quadratic) it turns out that 
a simple relation exists between the leave-one-out and the resubstitution 
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method ([Fuku 90], Problem 10.2). Thus, in such cases the fonner esti
mate is obtained using the latter method with some computationally simple 
modifications. 

The estimates resulting from the holdout and leave-one-out methods turn out 
to be very similar, for comparable sizes of the test and training sets. Furthermore, 
it can be shown (Problem 10.3, [Fuku 90]) that the holdout error estimate, for a 
Bayesian classifier, is an upper bound of the true Bayesian error. In contrast, the 
resubstitution error estimate is a lower bound of the Bayesian error, confirming 
our previous comment that it is an optimistic estimate. To gain further insight into 
these estimates and their relation, let us make the following definitions: 

• P;' denotes the classification error probability for a classifier designed using 
a finite set of N training samples. 

• f>;' denotes the average E[P/'] over all possible training sets of size N. 
• Pe is the average asymptotic error as N--+ oo. 

It turns out that the holdout and leave-one-out methods (for statistically indepen
dent samples) provide an unbiased estimate off>;'. In contrast, the resubstitution 
method provides a biased (underestimated) estimate of f>eN. Figure 10.1 shows 
the trend of a typical plot of f>eN and the average (over all possible sets of 
size N ) resubstitution error as functions of N [Fole 72, Raud 91]. It is readily 
observed that as the data size N increases both curves tend to approach the 
asymptotic Pe. 

A number of variations and combinations of these basic schemes have also been 
suggested in the literature. For example, a variation of the leave-one-out method is 

p 

Leave-one-out 

N 

Resubstitution 

FIGURE 10.1: Plots indicating the general trend of the average resubstitution 
and leave-one-out error probabilities as functions of the number of training points. 
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to leave k > 1, instead of one, samples out. The design and test process is repeated 
for all distinct choices of k samples. References [Kana 74, Raud 91] are two good 
examples of works discussing various aspects of the topic. 

In [Leis 98] a method called cross-validation with active pattern selection is 
proposed, with the goal to reduce the high computational burden required by 
the leave-one-out method. It is suggested not to leave out (one at a time) all N 
feature vectors, but only k < N. To this end the "good" points of the data set 
(expected to contribute a 0 to the error) are not tested. Only the k "worst" points 
are considered. The choice between "good" and "bad" is based on the respective 
values of the cost function after an initial training. This method exploits the fact 
that the outputs of the classifier, trained according to the least squares cost function, 
approximate posterior probabilities, as discussed in Chapter 3. Thus, those feature 
vectors whose outputs have a large deviation from the desired value of 1 (for 
the true class) are expected to be the ones that contribute to the classification 
error. 

Another set of techniques have been developed around the bootstrap method 
[Efro 79, Hand 86, Jain 87]. A major incentive for the development of these tech
niques is the variance of the leave-one-out method estimate for small data sets 
[Efro 83]. According to the "bootstrap" philosophy, new data sets are artificially 
generated. This is a way to overcome the limited number of available data and cre
ate more data in order to better assess the statistical properties of an estimator. Let 
X be the set of the available data of size N. A bootstrap design sample set of size 
N, X*, is formed by random sampling with replacement of the set X. Replacement 
means that when a sample, say x;, is "copied" to the set X*, it is not removed from 
X but is reconsidered in the next sampling. A number of variants have been built 
upon the bootstrap method. A straightforward one is to design the classifier using 
a bootstrap sample set and count the errors using the samples from X that do not 
appear in this bootstrap sample set. This is repeated for different bootstrap sample 
sets. The error rate estimate is computed by counting all the errors and dividing the 
sum by the total number of test samples used. However, in [Raud 91] it is pointed 
out that the bootstrap techniques improve on the leave-one-out method only when 
the classification error is large. 

10.4 A CASE STUDY FROM MEDICAL IMAGING 

Our goal in this section is to demonstrate the various design stages, discussed in 
the previous chapters, via a case study borrowed from a real application. It will 
not come as a surprise to say that focusing on a single example cannot cover all 
possible design approaches that are followed in practice. However, our aim is 
to provide a flavor for the newcomer. After all, "perfection is the enemy of the 
good." 
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(a) (b) (c) 

FIGURE 10.2: Ultrasound images corresponding to (a) normal liver, (b) liver 
with fatty infiltration. and (c) liver with cirrhosis. The square shows the image 
area on which the analysis was carried out. 

Our chosen application comes from the medical imaging discipline. Our task is 
to develop a pattern recognition system for the diagnosis of certain liver diseases. 
Specifically. the system will be presented with ultrasound images of the liver aod 
it must be able to recognize normal from abnom1al cases. Abnormal cases corre
spond to two types of liver diseases, namely cirrhosis and fatry liver infiltration. 
For each case, two different gratings must be recognized, depending on the degree 
of the disease development [ Cavo 97]. Figure l 0.2 shows three examples of ultra
sound images corresponding to (a) a normal liver, (b) an abnormal liver with fatty 
infiltration, and (c) an abnormal liver with cirrhosis. It is readily realized that the 
visual differences between the images are not great. This makes the clinical diag
nosis and the diagnostic accuracy very much dependent on the skill of the doctor. 
Thus, the development of a pattern recognition system can assist the doctor in 
assessing the case and, together with other clinical findings, reduce the need for 
invasive techniques (biopsy). 

The first stage in the design process involves the close cooperation of the system 
designer with the specialist, that is. the doctor, in order to establish a "common lan
guage" and have the designer understand the task and define, in common with the 
doctor, the goals and requirements of the pattern recognition system. Besides the 
acceptable error rate, other performance issues come into play, such as complex
ity, computational time, and cost of the system. The next stage involves various 
image processing steps, such as image enhancement, in order to assist the system 
by presenting it only useful information as much as possible. Then things are ripe 
to begin with the design of the pattern recognition system. 

Figure 10.3 outlines the task. There are five possible classes. The pattern recog
nition system can be designed either around a single classifier, which assigns 
an unknown image directly to one of the five classes, or around a number of 
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fatty liver 
infiltration 

FIGURE 10.3: The classification task. 

liver 

gratingB 

FIGURE 10.4: A tree-structured hierarchy of classifiers. 

classifiers built upon a tree structure philosophy. The latter approach was adopted 
here. Figure 10.4 illustrates the procedure. A separate classifier was used at each 
node, and each of them performs a two-class decision. At the first node the respec
tive classifier decides between normal and abnormal cases. At the second node, 
images, classified as abnormal, are tested and classified in either the cirrhosis or 
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the fatty liver infiltration class, and so on. The advantage of such a procedure is 
that we break the problem into a number of simpler ones. It must be stressed, 
however, that in other applications such a procedure may not be applicable. For 
the design of the classification system, 150 ultrasound liver images were obtained 
from a medical center. Fifty of them correspond to normal cases, 55 of them to 
patients suffering from cirrhosis, and 45 of them to patients suffering from fatty 
liver infiltration. Three classifiers were adopted for comparison, namely the least 
squares linear classifier, the minimum Euclidean distance classifier, and the kNN 
for different values of k. Each time, the same type of classifier was used for all 
nodes. From the discussions with the specialists, we concluded that what was of 
interest here was the texture of the respective images. The methods described in 
Section 7 .2.1 of Chapter 7 were used and a total of 38 features were generated 
for each of the images. This is a large number, and a feature selection procedure 
was "mobilized" to reduce this number. Let us first concentrate on the first node 
classification task and the LS linear classifier. 

• For each of the 38 features the t test was applied and only 19 of them passed 
the test at a significance level of 0.00 I. The latter is chosen so that "enough" 
features pass the test. Taking into account the size of the problem, enough 
was considered to be around 15 for our problem. However, 19 is still a large 
number, and a further reduction was considered necessary. For example. 19 
is of the same order as 50 (the number of normal patterns), which would 
lead to poor generalization. 

• The 19 features were considered in pairs, in triples, up to groups of seven, in 
all possible combinations. For each combination, the optimal LS classifier 
was designed and each time the corresponding classification error rate was 
estimated, using the leave-one-out method. It turned out that taking the fea
tures in groups larger than two did not improve the error rate significantly. 
Thus, it was decided that I= 2 was satisfactory and the best combination con
sisted of the kurtosis and the ASM. The percentage of correct classification 
with this combination was 92.5%. 

For the design of the linear classifier of "node 2" the same procedure was 
followed , using, of course, only the images originated from abnormal cases. Of the 
38 originally produced features, only 15 passed the t test. The optimal combination 
of features turned out to be the mean, the variance, and the correlation. It may be 
worth pointing out that the variance was rejected from the t test during the design 
of the "node I" classifier. The percentage of com~ct classification for node 2 was 
90.1 %. The optimal combination for the "node 3" LS classifier was the variance. 
entropy, the sum entropy. and the difference entropy corresponding to a correct 
classification rate of 92.2%. Finally, the optimization procedure for the "node 4" 
classifier resulted in the mean value, the ASM, and the contrast with a correct 
classification rate estimate of 83.8%. 
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Having completed the design with the LS linear classifiers, the same procedure 
was followed for the Euclidean minimum distance classifier and the kNN classifier. 
However, in both of these cases the resulting error rate estimates were always 
higher than the ones obtained with the LS classifier. Thus, the latter one was 
finally adopted. 

Once more, it must be stated that this case study does not and cannot represent 
the wealth of classification tasks encountered in practice, each with its own spe
cific requirements. We could state, with a touch of exaggeration, of course, that 
each classification task is like a human being. Each one has its own personality! 
For example, the dimension of our problem was such that it was computationally 
feasible, with today's technology to follow the procedure described. The feature 
selection, classifier design, and classification error stages were combined to com
pute the best combination. This was also a motivation for choosing the specific case 
study, that is, to demonstrate that the various stages in the design of a classification 
system are not independent but they can be closely interdependent. However, this 
may not be possible for a large number of tasks, as, for example, the case of a large 
multilayer neural network in a high-dimensional feature space. Then the feature 
selection stage cannot be easily integrated with that of classifier design, and tech
niques such as those presented in Chapter 5 must be employed. Ideally, what one 
should aim at is to have a procedure to design the classifiers by minimizing the 
error probability directly (not the LS, etc .), and at the same time this procedure 
should be computationally simple (!) to allow also for a search for the optimal 
feature combination. However, this "utopia" is still quite distant. 

Problems 

10.1 Let P be the probability that event A occurs. The probability thal even! A occurs 
k times in a sequence of N independenl experimenls is given by 1he binomial 
distribution 

(~)Pk(I - P)N-k 

Show that E[k] = NP and af = NP(I - P) . 
10.2 In a two-class problem the classifier to be used is the minimum Euclidean dis

tance one. Assume N1 samples from class w1 and Nz from class wz . Show 
that the leave-one-out method estimate can be obtained from the resubstitution 
method, if the distance of x from the class means d; (x), i = I. 2, are modified as 
d; (x) = ( J/!_ 1 )

2d; (x), if x belongs to class i. Furthermore, show that in this case the 
leave-one-out method always results in larger error estimates than the resubstitution 
method. 

10.3 Show that for the Bayesian classifier, the estimate provided by the resubstitution 
method is a lower bound of the true error and that computed from the holdout method 
is an upper bound. 
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CLUSTERING: BASIC CONCEPTS 

11.1 INTRODUCTION 

All the previous chapters were concerned with supervised classification. In the cur
rent and following chapters the focus of interest is turned to the unsupervised case, 
where class labelling of the training patterns is not available. Thus, our major con
cern now becomes to "reveal" the organization of patterns into "sensible" clusters 
(groups), which will allow us to discover similarities and differences among pat
terns and to derive useful conclusions about them. This idea is met in many fields , 
such as life sciences (biology, zoology), medical sciences (psychiatry, pathology), 
social sciences (sociology, archeology), earth sciences (geography, geology), and 
engineering [Ande 73]. Clustering may be found under different names in different 
contexts, such as unsupervised learning and learning without a teacher (in pat
tern recognition), numerical taxonomy (in biology, ecology), typology (in social 
sciences), and partition (in graph theory). The following example is inspired by 
biology and gives us a flavor of the problem. 

Consider the following animals: sheep, dog, cat (mammals), sparrow, seagull 
(birds), viper, lizard (reptiles), goldfish, red mullet, blue shark (fish), and frog 
(amphibians) . In order to organize these animals into clusters, we need to define a 
clustering criterion. Thus, if we employ the way these animals bear their progeny 
as a clustering criterion, the sheep, the dog, the cat, and the blue shark will be 
assigned to the same cluster, while all the rest will form a second cluster (Figure 
11 . la) . If the clustering criterion is the existence of lungs, the goldfish, the red 
mullet, and the blue shark are assigned to the same cluster, while all the other 
animals are assigned to a second cluster (Figure 11. I b ). On the other hand, if the 
clustering criterion is the environment where the animals live, the sheep, the dog, 
the cat, the sparrow, the seagull, the viper, and the lizard will form one cluster 
(animals living outside water), the goldfish, the red mullet and the blue shark will 
form a second cluster (animals living only in water), and the frog will form a third 
cluster by itself, since it may live in the water or out of it (Figure 11.1 c ). It is worth 
pointing out that if the existence of a vertebral column is the clustering criterion, all 
the animals will lie in the same cluster. Finally, we may use composite clustering 
criteria as well. For example, if the clustering criterion is the way these animals 
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lizard 
sparrow 
viper seagull 

goldfish 
frog 

red mullet 

(a) 

(c) 

(b) 

(d) 

FIGURE 11.1: Resulting clusters if the clustering criterion is (a) the way the 
animals bear their progeny, (b) the existence of lungs, (c) the environment where 
the animals live, and ( d) the way these animals bear their progeny and the existence 
of lungs. 

bear their progeny and the existence of lungs, we end up with four clusters as 
shown in Figure 11.1 d. 

This example shows that the process of assigning objects to clusters may lead 
to very different results, depending on the specific criterion used for clustering. 

Clustering is one of the most primitive mental activities of humans, used to 
handle the huge amount of information they receive every day. Processing every 
piece of information as a single entity would be impossible. Thus, humans tend to 
categorize entities (i.e., objects, persons, events) into clusters. Each cluster is then 
characterized by the common attributes of the entities it contains. For example, 
most humans "possess" a cluster "dog." If someone sees a dog sleeping on the 
grass, he or she will identify it as an entity of the cluster "dog." Thus, the individual 
will infer that this entity barks even though he or she has never heard this specific 
entity bark before. 

As was the case with supervised learning, we will assume that all patterns are 
represented in terms of features, which form [-dimensional feature vectors. 

The basic steps that an expert must follow in order to develop a clustering task 
are the following: 

• Feature selection. Features must be properly selected so as to encode as 
much information as possible concerning the task of interest. Once more, 
parsimony and, thus, minimum information redundancy among the features 
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is a major goal. As in supervised classification, preprocessing of features may 
be necessary prior to their utilization in subsequent stages. The techniques 
discussed there are applicable here, too. 

• Proximity measure. This is a measure that quantifies how "similar" or "dis
similar" two feature vectors are. It is natural to ensure that all selected 
features contribute equally to the computation of the proximity measure and 
there are nu features that dominate others . This must be taken care of during 
preprocessing. 

• Clustering criterion. This depends on the interpretation the expert gives 
to the term "sensible." based on the type of clusters that are expected to 
underlie the data set. For example, a compact cluster of feature vectors in 
the /-dimensional space, may be sensible according to one criterion, whereas 
an elongated cluster may be sensible according to another. The clustering 
criterion may be expressed via a cost function or some other types of rules. 

• Clustering algorithms. Having adopted a proximity measure and a cluster
ing criterion, this step refers to the choice of a specific algorithmic scheme 
that unravels the clustering structure of the data sel. 

• Validation of the results. Once the results of the clustering algorithm have 
been obtained, we have to verify their correctness. This is usually carried 
out using appropriate tests. 

• Interpretation of the results. In many cases, the expert in the application field 
must integrate the results of clustering with other experimental evidence and 
analysis in order to draw the right conclusions. 

In a number of cases, a step known as clustering tendency should be involved. 
This includes various tests that indicate whether or not the available data possess 
a clustering structure. For example, the data set may be of completely random 
nature, thus, trying to unravel clusters would be meaningless . 

As one may have already suspected, different choices of features, proximity 
measures, clustering criteria and clustering algorithms may lead to totally differ
ent clustering results. Subjectivity is a reality we have to live with from now on. 
To demonstrate this, let us consider the following example. Consider Figure 11.2. 
How many "sensible" ways of clustering can we obtain for these points? The most 
"logical" answer seems to be two. The first clustering contains four clusters (sur
rounded by solid circles). The second clustering contains two clusters (surrounded 
by dashed lines). Which clustering is "correct"? It seems that there is no definite 
answer. Both clusterings are valid. The best thing to do is give the results to an 
expert and let the expert decide about the most sensible one. Thus, the final answer 
to these questions will be influenced by the knowledge of the expert. 

The rest of the chapter is devoted to presenting some basic concepts and defini
tions related to clustering, and it discusses proximity measures that are commonly 
encountered in various applications. 
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FIGURE 11.2: A coarse clustering of the data results in two clusters. whereas a 
finer one results in four clusters. 

11.1.1 Applications of Cluster Analysis 

Clustering is a major tool used in a number of applications. To enrich the list of 
examples already presented in the introductory chapter of the book, we sununarize 
here four basic directions in which clustering is of use [Ball 71, Ever 81] : 

• Data reduction. Many times, the amount of the available data, N, is very 
large and, as a consequence, its processing becomes very demanding. Cluster 
analysis can be used in order to group the data into a number of "sensible" 
clusters, m ( «N), and to process each cluster as a single entity. For exam
ple, in data transmission, a representative for each cluster is defined. Then, 
instead of transmitting the data samples, we transmit a code number corre
sponding to the representative of the cluster in which each specific sample 
lies. Thus, data compression is achieved. 

• Hypothesis generation. In this case we apply cluster analysis to a data set 
in order to infer some hypotheses concerning the nature of the data. Thus, 
clustering is used here as a vehicle to suggest hypotheses. These hypotheses 
must then be verified using other data sets. 

• Hypothesis testing. In this context, cluster analysis is used for the verifi
cation of the validity of a specific hypothesis. Consider, for example, the 
following hypothesis: "Big companies invest abroad." One way to verify 
whether this is true is to apply cluster analysis to a large and representative 
set of companies. Suppose that each company is represented by its size, its 
activities abroad, and its ability to complete successfully projects on applied 
research. If, after applying cluster analysis, a cluster is formed that corre
sponds to companies that are large and have investments abroad (regardless 
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of their ability to complete successfully projects on applied research), then 
the hypothesis is supported by the cluster analysis. 

• Prediction based on groups. In this case we apply cluster analysis to the 
available data set, and the resulting clusters are characterized based on the 
characteristics of the patterns by which they are formed. In the sequel, if we 
are given an unknown pattern, we can determine the cluster to which it is 
more likely to belong and we characterize it based on the characterization of 
the respective cluster. Suppose, for example, that cluster analysis is applied 
to a data set concerning patients infected by the same disease. This results 
in a number of clusters of patients, according to their reaction to specific 
drugs. Then for a new patient, we identify the most appropriate cluster for 
the patient and, based on it, we decide on his or her medication (e.g., see 
[Payk 72]). 

11.1.2 Types of Features 

A feature may take values from a continuous range (subset of R) or from a finite 
discrete set. If the finite discrete set has only two elements. then the feature is 
called binary or dichotomous. 

A different categorization of the features is based on the relative significance of 
the values they take [Jain 88, Spat 80]. We have four categories of features, the 
nominal, the ordinal, the interval-scaled, and the ratio-scaled. 

The first category includes features whose possible values code states. Consider 
for example a feature that corresponds to the sex of an individual. Its possible val
ues may be I for a male and 0 for a female. Clearly, any quantitative comparison 
between these values is meaningless. The next category includes features whose 
values can be meaningfully ordered. Consider for example a feature that character
izes the performance of a student in the pattern recognition course. Suppose that its 
possible values are 4, 3. 2, I and these correspond to the ratings "excellent," "'very 
good," "good," "not good." Obviously, these values are arranged in a meaningful 
order. However, the difference between two successive values is of no meaningful 
quantitative importance. 

If, for a specific feature, the difference between two values is meaningful while 
their ratio is meaningless, then it is an interval-scaled feature. A typical example 
is the measure of temperature in degrees Celsius. If the temperatures in London 
and Paris are 5 and I 0 degrees Celsius, respectively, then it is meaningful to say 
that the temperature in Paris is 5 degrees higher than that in London. However. it 
is meaningless to say that Paris is twice as hot as London. 

Finally. if the ratio between two values of a specific feature is meaningful. then 
this is a ratio-scaled feature. An example of such a feature is the weight, since it 
is meaningful to say that a person who weighs 100 kg is twice as fat as a person 
whose weight is 50 kg. 
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By ordering the types of features as nominal, ordinal, interval-scaled, and ratio 
scaled, one can easily notice that each type of feature possesses all the properties 
of the types that are before it. For example, an interval-scaled feature has all 
the properties of the ordinal and nominal types. This will be of use later on in 
Section 11.2.2. 

Example 11.1. Suppose that we want to group companies according to their prospects 
of progress. To this end, we may take into account whether a company is private or public, 
whether or not the company has activities abroad, its annual budgets for the last, say, 3 years, 
its investments, and its rates of change of the budgets and investments. Therefore, each 
company is represented by a 10 x 1 vector. The first component of the vector corresponds 
to a nominal feature, which codes the state "public" or "private." The second component 
indicates whether or not there are activities abroad. Its possible values are 0, 1, and 2 
(discrete range of values), which correspond to "no investments," "poor investments," and 
"large investments." Clearly, this component corresponds to an ordinal feature. All the 
remaining features are ratio scaled. 

11.1.3 Definitions of Clustering 

The definition of clustering leads directly to the definition of a single "cluster." 
Many definitions have been proposed over the years (e.g., [John 67, Wall 68, 
Ever 81 ]). However, most of these definitions are based on loosely defined terms, 
such as "similar", "alike", etc., or they are oriented to a specific kind of clusters. 
As it is pointed out in [Ever 81], most of these definitions are of vague and of 
circular nature. This fact reveals the difficulty of having a universally acceptable 
definition for the term cluster. 

In [Ever 81], the vectors are viewed as points in the /-dimensional space and the 
clusters are described as "continuous regions of this space containing a relatively 
high density of points, separated from other high density regions by regions of 
relatively low density of points." Clusters described in this way are sometimes 
referred to as natural clusters. This definition is closer to our visual perception of 
clusters in the two- and three-dimensional spaces. 

Let us now try to give some definitions for "clustering," which, although they 
may not be universal, give us an idea of what clustering is. Let X be our data set, 
that is, 

(I I.I) 

We define as an m-clustering of X, m, the partition of X into m sets (clusters), 

C1, . .. , Cm, so that the following three conditions are met: 

• C; =I- 0, i = I , ... , m 
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FIGURE 11.3: (a) Compact clusters. (b) Elongated clusters. (c) Spherical and 
ellipsoidal clusters. 

• u7~ 1 C; = X 

• C;nC1=Vl,i#j.i,j=l, . . .,m 

In addition, the vectors contained in a cluster C; are "more similar" to each other 
and "less similar" to the feature vectors of the other clusters. Quantifying the terms 
"similar" and "dissimilar" depends very much on the types of clusters involved. 
For example, other measures (measuring similarity) are required for compact 
clusters (e.g., Figure l l.3a), others for elongated clusters (e.g., Figure l l.3b), 
and different ones for shell-shaped clusters (e.g., Figure I 1.3c). 

Note that, under the preceding definitions of clustering, each vector belongs to 
a single cluster. For reasons that will become clear later on, this type of clustering 
is sometimes called hard or crisp. An alternative definition is in terms of thefazzy 
sets, introduced by Zadeh [Zade 65]. A fuzzy clustering of X into m clusters is 
characterized by m functions u1 where 

111 : X--+ [O, l], j = l, .. ., m ( 11 .2) 

and 

m 

2:111(x;) = 1, i =I , 2, ... , N . 
j=I 

N 

O<Lu1(x;)<N , j=l , 2, . .. , m 
i=I 

(11.3) 

These are called membership functions. The value of a fuzzy membership function 
is a mathematical characterization of a set, that is, a cluster in our case, which may 
not be precisely defined. That is, each vector x belongs to more than one cluster 
simultaneously "up to some degree," which is quantified by the corresponding 
value of "J in the interval [0, I]. Values close to unity show a high "grade of 
membership" in the corresponding cluster and values close to zero a low grade 
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of membership. The values of these membership functions are indicative of the 
structure of the data set, in the sense that if a membership function has close to 
unity values for two vectors of X, that is, x k. x n, they are considered similar to 
each other [Wind 82]. 

The right condition in (l l.3) guarantees that there are not trivial cases where 
clusters exist that do not share any vectors. This is analogous to the condition 
C; =I= 0 of the aforementioned definition. 

The definition of clustering into m distinct sets C;, given before, can be recovered 
as a special case of the fuzzy clustering if we define the fuzzy membership functions 
u J to take values in {0, 1), that is, to be either I or 0. In this sense, each data vector 
belongs exclusively to one cluster and the membership functions are now called 
characteristic functions ([Klir 951). 

11.2 PROXIMITY MEASURES 

11.2.1 Definitions 

We begin with definitions concerning measures between vectors, and we will 
extend them later on to include measures between subsets of the data set X. 

A dissimilarity measure (OM) d on X is a function. 

d:XxX-;.R 

where R is the set of real numbers, such that 

3do ER: -oo <do_::: d(x, y) < +oo, Tix, y EX (l l.4) 

d(x,x) =do, Tix EX (11.5) 

and 

d(x, y) = d(y, x), Tix, y EX (l l.6) 

If in addition 

d(x, y) =do if and only if x = y ( 11.7) 

and 

d(x, z) _::: d(x, y) + d(y, z), Tix, y, zEX (11.8) 

d is called a metric DM. Inequality (l l.8) is also known as the triangular 
inequality. Finally, equivalence (l l.7) indicates that the minimum possible 
dissimilarity level value do between any two vectors in X is achieved when they 
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are identical. Sometimes we will refer to the dissimilarity level as distance, where 
the term is not used in its strict mathematical sense. 

A similarity measure (SM) s on X is defined as 

s:XxX--'>R 

such that 

:lso E R: -oo < s(x, y) .:S so < +oo. Vx, y E X 

s(x,x)=so, VxEX 

and 

s(x. y) = s(y, x), Vx,y EX 

If in addition 

s(x, y) =so if and only if x = y 

and 

s(x, y)s(y. z) :S [s(x, y) + s(y, z)]s(x, z). Vx, y, z EX 

s is called a metric SM. 

Example 11.2. Let us consider the well-known Euclidean distance, d2 

I 

d2(x. y) = L(x; - y;)2 

i=l 

( 11. 9) 

(I I. I 0) 

(II.II) 

( 11.12) 

(11.13) 

where x. y E X and x;. Yi are the ith coordinates of x and y, respectively. This is a 
dissimilarity measure on X, with do = 0; that is, the minimum possible distance between 
two vectors of X is 0. Moreover, the distance of a vector from itself is equal to 0. Also, it 
is easy to observe that d(x, y) = d(y. x). 

The preceding arguments show that the Euclidean distance is a dissimilarity measure. 
In addition, the Euclidean distance between two vectors takes its minimum value do = 0, 
when the vectors coincide. Finally, it is not difficult to show that the triangular inequality 
holds for the Euclidean distance (see Problem 11.2). Therefore, the Euclidean distance is a 
metric dissimilarity measure. 

It is worth pointing out that for other measures the values do (so) may be positive or 
negative. 
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However, not all clustering algorithms are based on proximity measures between 
vectors. For example, in the hierarchical clustering algorithms 1 one has to compute 
distances between pairs of sets of vectors of X. In the sequel, we extend the 
preceding definitions in order to measure "proximity" between subsets of X. Let 
U be a set containing subsets of X. That is, D; c X, i = l, ... , k, and U = 
{D1, ... , Dkl· A proximity measure p on U is a function 

p:UxU-+R 

Equations (11.4)-(11.8) for dissimilarity measures and Eqs. ( 11.9)-(11.13) for 
similarity measures can now be repeated with Di, Di in the place of x and y and 
U in the place of X. 

Usually, the proximity measures between two sets D; and Di are defined in 
terms of proximity measures between elements of D; and Di. 

Example 11.3. Let X = {x1,x2,x3,x4,x5,x6) and U = {{x1.x2}.{x1 . x4} , 
{x3, x4, x5), {x I· xz , x3, x4, x5 }}. Let us define the following dissimilarity function: 

where dz is the Euclidean distance between two vectors and D;, Di E U. 

The minimum possible value of d::in is d::in,O = 0. Also, d~:in(D;, D;) = 0, since 
the Euclidean distance between a vector in D; and itself is 0. In addition, it is easy to see 
that the commutative property holds. Thus, this dissimilarity function is a measure. It is not 
difficult to see that d:,:in is not a metric. Indeed, Eq. (11.7) for subsets of X does not hold 
in general, since the two sets D; and Di may have an element in common. Consider for 
example the two sets {x l • xz} and {x l • x4) of U. Although they are different their distance 
d:,:in is 0, since they both contain x l · 

Intuitively speaking, the preceding definitions show that the DMs are "opposite" 
to SMs. For example, it is easy to show that if dis a(metric) DM, with d(x, y) > 0, 
Vx,y e X,thens =a/dwitha > Oisa(metric)SM(seeProblem 11.l).Also, 
dmax - dis a (metric) SM, where dmax denotes the maximum value of d among 
all pairs of elements of X . It is also easy to show that if d is a (metric) DM on a 
finite set X, such that d(x, y) > 0, Vx, y E X, then so are - ln(dmax + k - d) and 
kd/(l + d), where k is an arbitrary positive constant. On the other hand, ifs is a 
(metric) SM with so= 1- c, where c is a small positive constant, then 1/(1-s) is 
also a (metric) SM. Similar comments are valid for the similarity and dissimilarity 
measures between sets D;, Di E U. 

1These algorithms are treated in detail in Chapter 13. 
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In the sequel, we will review the most commonly used proximity measures 
between two points. For each measure of similarity we give a corresponding mea
sure of dissimilarity. We will denote by bmin and bmax the corresponding minimum 
and maximum values that they take for a finite data set X. 

11.2.2 Proximity Measures between Two Points 

Real-Valued Vectors 

A. Dissimilarity Measures 

The most common DMs between real-valued vectors used in practice are: 

• The weighted l P metric DMs, that is, 

( 

I )l/p 
dp(x,y)= ~w;lx;-y;IP (11.14) 

where x;, y; are the ith coordinates of x and y, i = 1, ... , l, and w; 2: 0 
is the ith weight coefficient. They are used mainly on real-valued vectors. 
If w; = 1, i = I, ... , l, we obtain the unweighted l P metric DMs. A well
known representative of the latter category of measures is the Euclidean 
distance, which was introduced in Example 11.2 and is obtained by setting 
p =2. 

The weighted 12 metric DM can be further generalized as follows: 

d(x, y) =Jex - y)T B(x - y) (11.15) 

where B is a symmetric, positive definite matrix. (Appendix B). 
This includes the Mahalanobis distance as a special case and it is also a 

metric DM. 
Special l P metric DMs that are also encountered in practice are the 

(weighted) 11 or Manhattan norm, 

I 

di (x, y) = L w;lx; - y;I 
i=I 

and the (weighted) 100 norm, 

d00 (x, y) = max w;lx; - y;I 
l::;i::;/ 

(11.16) 

(l l.l 7) 

The l 1 and 100 norms may be viewed as overestimation and underestima
tion of the Li norm, respectively. Indeed, it can be shown that d00 (x, y) S 
d1(x, y) S di (x, y) (see Problem l l.6). When l =I all lp norms coincide. 
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Based on these OMs, we can define corresponding SMs as Sp (x, y) 

bmax - dp(X, y). 
• Some additional OMs are the following [Spat 80): 

( 
1 ~ lxj - Yjl) 

de(x, y) = -log 10 1 - 1 ~ -b-· ---a-· 
.i=l J J 

(11.18) 

where b .i and a .i are the maximum and the minimum values among the jth 
features of the N vectors of X, respectively. It can easily be shown that 
de (x, y) is a metric OM. Notice that the value of de (x, y) depends not only 
on x and y but also on the whole of X. Thus, if dc(x, y) is the distance 
between two vectors x and y that belong to a set X and d~ (x, y) is the 
distance between the same two vectors when they belong to a different set 
X', then, in general, dc(x, y) I= d~ (x, y). Another OM is [Spat 80] 

dQ(X, y) = ~ ~ (Xj - Y.i)2 
l~ x·+y· 

j=l 1 1 

(11.19) 

Example 11.4. Consider the three-dimensional vectors x = [0, 1, 2]T, y = (4, 3, 2]T. 
Then, assuming that all w; 's are equal to 1, di (x, y) = 6, d2(x, y) = 2J5, and 
d00 (x. y) = 4. Notice that doo(x, y) < d2(x. y) <di (x, y). 

Assume now that these vectors belong to a data set X that contains N vectors with max
imum values per feature 10, 12, 13 and minimum values per feature 0, 0.5, 1, respectively. 
Then de(x, y) = 0.0922. If, on the other hand, x and y belong to an X' with the maxi
mum (minimum) values per feature being 20, 22, 23 (-10, -9.5, -9), respectively, then 
de (x, y) = 0.0295. 

Finally, dQ(x, y) = 0.6455. 

B. Similarity Measures 

The most common similarity measures for real-valued vectors used in practice are: 

• The inrzerproduct. It is defined as Sinner(X, y) = xTy = L::=I x;y;. In most 
cases, the inner product is used when the vectors x and y are normalized, 
so that they have the same length a. In these cases, the upper and the lower 
bounds of Sinner are +a2 and -a2 , respectively, and Sinner(X, y) depends 
exclusively on the angle between x and y. 

A corresponding dissimilarity measure for the inner product is 
d;nner(X, Y) = bmax - Si11ner(X, y). 

• Another commonly used SM is the Tanimoto measure, which is also known 
as Tanimoto distance [Tani 58]. It may be used for real- as well as for 
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discrete-valued vectors. It is defined as 

( 11.20) 

By adding and subtracting the term x Ty in the denominator of ( 11.20) and 
after some algebraic manipulations, we obtain 

I 
ST(X, y) = (X-y)T(X-Y) 

I+ T xy 

That is, the Tanimoto measure between x and y is inversely proportional 
to the squared Euclidean distance between x and y divided by their inner 
product. Intuitively speaking, since the inner product may be considered as 
a measure of the correlation between x and y, sr(x, y) is inversely propor
tional to the squared Euclidean distance between x and y, divided by their 
correlation. 

In the case in which the vectors of X have been normalized to the same 
length a, the last equation leads to 

In this case, ST is inversely proportional to a 2 / x Ty. Thus, the more correlated 
x and y are, the larger the value of ST. 

• Finally, another similarity measure that has been proved useful in certain 
applications [Fu 93] is the following: 

d2(x, y) 
Sc(X, y) = I - ----

llxll + llYll 
(11.21) 

s, (x, y) takes its maximum value (I) when x = y and its minimum (0) 

when x = -y. 

Discrete-Valued Vectors 

We will now consider vectors x whose coordinates belong to the finite set F = 
{O, I, ... , k - I}, where k is a positive integer. It is clear that there are exactly 
k1 vectors x E F1. One can imagine these vectors as vertices in an I-dimensional 
grid as depicted in Figure 11.4. When k = 2, the grid collapses to the H1 (unit) 
hypercube. 



410 Chapter 11: CLUSTERING: BASIC CONCEPTS 

(a) (b) 

FIGURE 11.4: (a) The I = 2 dimensional grid fork = 4. (b) The H2 hypercube 
(square). 

Consider x, y E F1 and let 

A(x,y) = [aij] i, j = 0, 1, . .. ,k - 1 (11.22) 

be a k x k matrix, where the element aij is the number of places where the first 
vector has the i symbol and the corresponding element of the second vector has the 
j symbol, i, j E F. Titis matrix is also known as a comir1gency table. For example, 
if l = 6, k = 3 and x = [O, l, 2, l, 2, lf, y = [l, 0 , 2, l , 0, lf, then matrix 
A (x , y) is equal to 

A(x, y) = [: ~ ~] 
It is easy to verify that 

Most of the proximity measures between two discrete-valued vectors may be 
expressed as combinations of elements of matrix A (x, y ). 

A. Dissimilarity Measures 

• The Hammingdisrance (e.g., (Lipp 87, Gers 92]). It is defined as the number 
of places where two vectors differ. Using the matrix A, we can define the 
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Hamming distance d H (x, y) as 

k-1 k-1 

dH(X, y) = L L aij 
i=O j=O,Jt=i 

411 

(l 1.23) 

that is, the summation of all the off-diagonal elements of A, which indicate 
the positions where x and y differ. 

In the special case in which k = 2, the vectors x E F1 are binary valued 
and the Hamming distance becomes 

I I 

dH(X, y) = 2)x; + y; - 2x;y;) = 2)x; - y;)2 (l l.24) 
i=I i=I 

In the case where x E Fi, where F1 = {-1, 1}, x is known as bipolar vector 
and the Hamming distance is given as 

dH(X, y) = 0.5 ([ - tx;y;) 
I=' I 

(l l.25) 

Obviously, a corresponding similarity measure of dH is s H (x, y) = bmax -

dH(X, y). 
• The !1 distance. It is defined as in the case of the continuous-valued vectors. 

that is, 

I 

d1(x. y) = L [x; - yd (I 1.26) 

i=I 

The /1 distance and the Hamming distance coincide when binary-valued 
vectors are considered. 

B. Similarity Measures 

A widely used similarity measure for discrete-valued vectors is the Tanimoto 
measure. It is inspired by the comparison of sets. If X and Y are two sets and 
nx, ny, nxnY are the cardinalities (number of elements) of X, Y, and X n Y. 
respectively, the Tanimoto measure between two sets X and Y is defined as 

nxrw nxrw 

nx + ny - nxnY nxuY 

In other words, the Tanimoto measure between two sets is the ratio of the number 
of elements they have in common to the number of all different elements. 
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(0,0) (0,1) (0,2) 

r-·······················································1, 

(1,0) (1,1) (1,2) 

(2,0) (2,1) (2,2) 

FIGURE 11.5: The elements of a contingency table taken into account for the 
computation of the Tanimoto measure. 

We tum now to the Tanimoto measure between two discrete-valued vectors x 
and y. The measure takes into account all pairs of corresponding coordinates of x 
and y, except those whose corresponding coordinates (xi, Yi) are both 0. This is 
justified if we have ordinal features and interpret the value of the ith coordinate of, 
say, y as the degree to which the vector y possesses the ith feature. According to this 
interpretation, the pairs (xi, Yi) = (0, 0) are less important than the others. We now 
d fi "k-1 "k-1 d "k-1 "k-1 h l e ne nx = L..i=I L..J=OaiJ an ny = L..i=O L..J=I a;1, w ere a;1 are e ements 
of the A (x, y) matrix (see Figure 11.5). In words, nx (n y) denotes the number of 
the nonzero coordinates of x (y). Then, the Tanimoto measure is defined as 

"k-1 
L..i=I a;; 

ST(X, y) = k-1 k-1 
nx + n Y - Li=I LJ=l a;1 

In the special case k = 2, this equation results in [Tani 58, Spat 80] 

a11 
ST(X, y) = -----

a11 + ao1 +aw 

(11.27) 

(l 1.28) 

Other similarity functions between x, y E F 1 can be defined using elements 
of A(x, y). Some of them consider only the number of places where the two 
vectors agree and the corresponding value is not 0, whereas others consider all the 
places where the two vectors agree. Similarity functions that belong to the first 
category are 

"k-1 
L..i=l a;i and 

A representative of the second category is 

"k-1 
L..i=O au 

"k-1 
L..i=l a;; 

I - aoo 
(11.29) 

(l l.30) 
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When dealing with binary-valued vectors (i.e .• k = 2), probabilistic similarity 
measures have also been proposed [Good 66, Li 85. Broe 81]. For two binary
valued vectors x and y, a measure of this kind, s. is based on the number of 
positions where .r and y agree. The value of s(.r, y) is then compared with the 
distances of pairs of randomly chosen vectors, in order 10 conclude whether x and 
y are "close" to each other. This task is carried out using statistical tests (see also 
Chapter J 6). 

Dynamic Similarity Measures 

The proximity measures discussed so far apply to vectors with the same dimension, 
I. However, in cer1ain applications, such as the comparison of two strings st1 and 
st2 stemming from two different texts, this is not the case. For example, one of the 
two strings may be shifted with respect to the other. In these cases the preceding 
proximity measures fail. In such cases, dynamic similarity measures. such as the 
Edit d istance, discussed in Chapter 8, can be used. 

Mixed Valued Vectors 

An interesting case, which often arises in practice, is when the features of the 
feature vectors are not all real or all discrete valued. In terms of Example 11 . 1, the 
third to the tenth features are real valued and the second feature is discrete valued. 
A naive way to attack this problem is to adopt proximity measures (PMs) suitable 
for real-valued vectors. The reason is that discrete-valued vectors can be accurately 
compared in terms of PMs for real-valued vectors, whereas the opposite does not 
lead, in general, to reasonable results. A good PM candidate for such cases is the 
/ 1 distance. 

Example 11 .S. Consider the vectors x= [4. l.0.8]r and y = [l,0.0.4f. Their 
(unweighted) / 1 and /2 distances are 

d1 (x . y) = 14 - 11 + 11 - 0 + 10.8 - 0.41 = 3 + I + 0.4 = 4.4 

and 

d2(.x. y) = Vl4 - 112 + II - 012 +10.8- 0.412 = J9 + l + 0. 16 = 3. 187 

respectively. Notice that in the second case, the difference between the first coordinates of 
x and y speci fic~ almost exclusively the difference between the two vecwrs. This is nu t 
the case with/ 1 distance (sec also related comments in Chapter 5, Section 5.2). 

Another method that may be employed is to convert the real-valued features 
to discrete-valued ones, that is, to discretize the real-valued data. To this end, 
if a feature Xi takes values in the interval [a , bl. we may divide this interval 
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into k subintervals. If the value of x; lies in the rth subinterval, the value r - 1 
will be assigned to it. This strategy leads to discrete-valued vectors and, as a 
consequence, we may use any of the measures discussed in the previous section. 

In [Ande 73] the types "nominal," "ordinal," and "interval scaled" are consid
ered and methods for converting features from one type to another are discussed. 
This is achieved keeping in mind (see Section 11.1.2) that as we move from "nom
inal" to "interval scaled" we have to impose information on the specific feature, 
and when we move along the opposite direction, we have to give up information. 

A similarity function that deals with mixed valued vectors, without making any 
conversions to the type of features, is proposed in [Gowe 71]. Let us consider 
two /-dimensional mixed valued vectors x; and x j. Then, the similarity function 
between x; and x j is defined as 

L~=l Sq(X;, Xj) 
s(x;,Xj) = -~..,.1----

Lq=I Wq 
(11.31) 

where sq(Xi, Xj) is the similarity between the qth coordinates of x; and Xj and 
wq is a weight factor corresponding to the qth coordinate. Specifically, if at least 
one of the qth coordinates of x; and x j is undefined, then wq = 0. Also, if the 
qth coordinate is a binary variable and it is 0 for both vectors, then wq = 0. In all 
other cases, wq is set equal to I. Finally, if all wq 's are equal to 0 thens (x;, Xj) is 
undefined. If the qth coordinates of the two vectors are binary then 

Sq(X;, Xj) = 
[ 

1, 

0, 

ifx;q =Xjq = 1 

otherwise 
(11.32) 

If the qth coordinates of the two vectors correspond to nominal or ordinal vari
ables, then sq(x;, x j) = 1 if x;q and x jq have the same values. Otherwise, 
sq (x;, x j) = 0. Finally, if the q th coordinates correspond to interval or ratio scaled 
variables, then 

( 11.33) 

where rq is the length of the interval where the values of the qth coordinates lie. 
One can easily observe that for the case of interval or ratio scaled variables, when 
x;k and Xjk coincide, sq(x;,xj) takes its maximum value, which equals I. On 
the other hand, if the absolute difference between x;q and x jq equals r q, then 
sq (x;, Xj) = 0. For any other value of lx;q - x jq I, sq (x;, Xj) lies between 0 and I. 

Example 11.6. Let us consider the following four 5-dimensional feature vectors, each 
representing a specific company. More specifically, the first three coordinates (features) 
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correspond to their annual budget for the last 3 years (in millions of dollars), the fourth 
indicates whether or not there is any activity abroad, and the fifth coordinate corresponds 
to the number of employees of each company. The last feature is ordinal scaled and takes 
the values 0 (small number of employees), I (medium number of employees), and 2 (large 
number of employees). The four vectors are 

Company lst bud. 2nd bud. 3rd bud. Act. abr. Empl. 

I (x1) 1.2 1.5 1.9 0 I 

2 (x2) 0.3 0.4 0.6 0 0 (I 1.34) 

3 (x3) IO 13 15 2 
4 (x4) 6 6 7 I 

For the first three coordinates, which are ratio scaled, we have r1 = 9.7, r2 = 12.6. and 
r3 = 14.4. Let us first compute the similarity between the first two vectors. It is 

and 

s1(x1. xz) = I - 11.2 - 0.31/9.7 = 0.9072 

s2(x1.x2) =I -11.5 -0.41/12.6 = 0.9127 

s3(x 1. xz) = 1 - I I .9 - 0.61/ 14.4 = 0.9097 

Also. w4 = 0, while all the other weight factors are equal to I. Using Eq. ( 11.31 ), we 
finally obtain s(x I• x2) = 0.6824. 

Working in the same way, we find that s(x 1. x3) = 0.0541, s(x 1, x4) = 0.5588. 
s(xz, x3) = 0, s(xz, x4) = 0.3047, s(x3, x4) = 0.4953. 

Fuzzy Measures 

In this section, we consider real-valued vectors x, y whose components x; and y; 
belong to the interval [O, 1 ), i = 1, .... l. In contrast to what we have said so far, 
the values of x; are not the outcome of a measuring device. The closer the x; to I 
(0), the more likely x possesses (does not possess) the ith feature (characteristic).2 

As x; approaches 1 /2, we become less certain about the possession or not of the 
ith feature from x. When x; = 1/2 we have absolutely no clue whether x possesses 
the ith feature or not. It is easy to observe that this situation is a generalization of 
binary logic, where x; can take only the value 0 or 1 (x possesses a feature or not). 

2The ideas of this section follow [Zade 73]. 
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In binary logic, there is a certainty about the occurrence of a fact (for example, it 
will rain or it will not rain). The idea of fuzzy logic is that nothing is happening or 
not happening with absolute certainty. This is reflected in the values that Xi takes. 
The binary logic can be viewed as a special case of fuzzy logic where Xi takes only 
the value 0 or 1. 

Next, we will define the similarity between two real-valued variables in [0, 1). 
We will approach it as a generalization of the equivalence between two binary 
variables. The equivalence of two binary variables a and bis given by the following 
relation: 

(a = b) = ((NOT a) AND (NOT b)) OR (a AND b) ( 11.35) 

Indeed, if a = b = 0 (I), the first (second) argument of the OR operator is I. On 
the other hand if a = 0 (1) and b = 1 (0), then none of the arguments of the OR 
operator becomes 1. 

An interesting observation is that the AND (OR) operator between two binary 
variables may be seen as the min (max) operator on them. Also, the NOT operation 
of a binary variable a may be written as 1 - a. In the fuzzy logic context and 
based on this observation, the logical AND is replaced by the operator min, while 
the logical OR is replaced by the operator max. Also, the logical NOT on x; is 
replaced by 1 - x; [Klir 95]. This suggests that the degree of similarity between 
two real-valued variables x; and Yi in [O, I] may be defined as 

s(x;, y;) = max(min(l - x;, I - y;), min(x;, y;)) (11.36) 

Note that this definition includes the special case where x; and y; take binary 
values and results in (11.35). 

When we now deal with vectors in the /-dimensional space (/ > I), the vector 
space is the H1 hypercube. In this context, the closer a vector x lies to the center 
of H1 (l /2, ... , 1 /2), the greater the amount of uncertainty. That is, in this case 
we have almost no clue whether x possesses any of the I features . On the other 
hand, the closer x lies to a vertex of H1, the less the uncertainty. 

Based on similarity s between two variables in [0, I] given in (11.36), we are 
now able to define a similarity measure between two vectors. A common similarity 
measure between two vectors x and y is defined as 

( 

/ ) l/q 

si(x, y) = Ls(x;, y;)q 

1=1 

( 11.37) 

It is easy to verify that the maximum and minimum values of SF are t1/q and 
0.5/ 1/q, respectively. As q ~ +oo, we getsF(x, y) = max1<i <1s(x;, y;). Also, 
when q = I, SF(X, y) = L:~=I s(x;, y;) (Problem 11.7). - -
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Example 11.7. In this example we consider the case where / = 3 and q = 1. Under 
these circumstances, the maximum possible value of s F is 3. Let us consider the vectors 
x 1 = [I. I. l]T, x2 = [0, 0, I ]T, x3 = [ 1/2, I /3. I /4]T, and x4 =[I /2. I /2. 1 /2]T. If we 
compute the similarities of these vectors with themselves, we obtain 

s}(x1.x1) = 3max(min(l - I, 1- l).min(l. l)) = 3 

and similarly, s}(x2, x2) = 3, s}(x3, x3) = 1.92, ands }(x4, x4) = 1.5. This is WT\' 

interesting. The similarity measure of a vector with itself depends not only on the vector 
but also on its position in the Ht hypercube. Furthermore, we observe that the greatest 
similarity value is obtained at the vertices of Ht. As we move toward the center of Ht. the 
similarity measure between a vector and itself decreases. attaining its minimum value at 
the center of H1. 

Let us now consider the vectors Yt = [3/4, 3/4, 3/4]T. y2 = [I, I. If. y3 = 

[1/4. 1/4, l/4f. y4 = (1/2, 1/2, l/2]T. Notice that in terms of the Euclidean distance 
d1(Y1.Y2) = d1(y3.y4). However. s}(Y1.Y2) = 2.25 and s}(y3,y4) = 1.5. These 
results suggest that the closer the two vectors to the center of H1 the less their similarity. 
On the other hand, the closer the two vectors to a vertex of Ht. the greater their similarity. 
That is, the value of s'J:. (x, y) depends not only on the relative position of x and y in Ht but 
also on their closeness to the center of H1. 

Missing Data 

A problem that is commonly met in real-life applications is that of missing data. 

This means that for some feature vectors we do not know all of their components. 

This may be a consequence of a failure of the measuring device. Also, in cases 
such as the one mentioned in Example 11.1, missing data may be the result of a 
recording error. The following are some commonly used techniques that handle 

this situation [Snea 73, Dixo 79, Jain 88]. 

I. Discard all feature vectors that have missing features. This approach may be 
used when the number of vectors with missing features is small compared 

with the total number of available feature vectors. If this is not the case, the 
nature of the problem may be affected. 

2. For the ith feature, find its mean value based on the corresponding available 
values of all feature vectors of X. Then, substitute this value for the vectors 

where their ith coordinate is not available. 
3. Por all the pairs of components x; and y; of the vectors x and y define 

b; as 

b; = {O, 
I, 

if both x; and y; are available 

otherwise 
(11.38) 
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Then, the proximity between x and y is defined as 

l 
p(x, y) = - LI . L </J(x;, y;) 

[ i=I b, all i:b;=O 

(11.39) 

where </J(xi, Yi) denotes the proximity between the two scalars x; and 
y;. A common choice of ¢ when a dissimilarity measure is involved, is 
<P (x;, y;) = Ix; - y;I. The rationale behind this approach is simple. Let 
[a, b] be the interval of the allowable values of IP (x, y). The preceding 
definition ensures that the proximity measure between x and y spans all 
[a, b ], regardless of the number of unavailable features in both vectors. 

4. Find the average proximities <Pavg(i) between all feature vectors in X along 
all components i = 1, ... , l. It is clear that for some vectors x the i th 
component is not available. In that case, the proximities that include Xi 
are excluded from the computation of <Pavg(i). We define the proximity 
if!(x;, y;) between the ith components of x and y as <PavgU) if at least one 
of the Xi and Yi is not available, and as </J(xi, Yi) if both Xi and Yi are 
available (¢(xi, Yi) may be defined as in the previous case). Then, 

I 

p(x, y) = L if!(xi, y;) (11.40) 
i=l 

Example 11.8. Consider the set X = {x1.x2. x3, x4,x5), where x1 = [0, O]T, x2 = 
[I,* f, x3 = [0, * f, x4 = [2, 2f, x5 = [3, If. The"*" means that the corresponding 
value is not available. 

According to the second technique, we find the average value of the second feature, which 
is I, and we substitute it for the "*"'s. Then, we may use any of the proximity measures 
defined in the previous sections. 

Assume now that we wish to find the distance between x I and x2 using the third technique. 
We use the absolute difference as the distance between two scalars. Then d(x I• xz) = 

it I = 2. Similarly, d(x2. x3) = it I = 2. 
Finally, if we choose the fourth of the techniques we must first find the average of the 

distances between any two values of the second feature. We again use the absolute difference 
as the distance between two scalars. The distances between any two available values of the 
second feature are 10 - 21 = 2, 10 - 11 = I, and 12 - 11 = I, and the average is 4/3. Thus, 
the distance between x 1 and x2 is d(x I· x2) = l + 4/3 = 7 /3. 

11.2.3 Proximity Functions between a Point and a Set 

In many clustering schemes, a vector x is assigned to a cluster C taldng into 
account the proximity between x and C, p (x, C). There are two general directions 
for the definition of IP (x, C). According to the first one, all points of C contribute 
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top (x, C). Typical examples of this case include: 

• The max proximity function: 

p~~x(x, C) =max p (x, y) . 
yEC 

• The min proximity.function: 

ps ( C) . ( ) Pmin x, =mmp x,y. 
yEC 

• The average proximity function: 

ps 1 " }f>avg(X, C) = - L..,tJ(X, y) 
nc ,ec 

where nc is the cardinality of C. 

419 

(11.41) 

( 11.42) 

(11.43) 

In these definitions, p (x, y) may be any proximity measure between two 
points. 

Example 11.9. Let C= {x1.x2 . x3. x4 , x5 . X6 , x7. xg}, where x1 =[1.5 , I.Sf , x 2 = 
[2, J]T, X3 = [2.5 , l.75]T, X4 = [J.5,2f, X5 = [3,2f, X6 = (l,3 .5f. 
x7 = (2 , 3f·. xg = (3 .5, 3f, and let x = [6, 4f (see Figure 11.6). Assume that 

...... · ..... :.6 

FIGURE 11.6: The setup of Example ll.9. 

x ·• 
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(a) (b) (c) 

FIGURE 11.7: (a) Compact cluster. (b) Hyperplanar (linear) cluster. (c) Hyper
spherical cluster. 

the Euclidean distance is used to measure the dissimilarity between two points. 
Then d!:,~x(x,C)=maxyEcd(x,y)=d(x, x1)=5.l5. For the other two distances 

wehaved:,~n(x,C) = minyEcd(x.y) =d(x,xs) = 2.69anctdf:i8(x,C) = 
nlc Lyecd(x, y) = k L~=I d(x, x;) = 4.33. 

According to the second direction, C is equipped with a representative anc..l 
the proximity between x and C is measured as the proximity be1ween x and the 
representative of C. Many types of representatives have been used in the literature. 
Among them, the point, the hyperplane. and the hypersphere are most commonly 
used.3 Point representatives are suitable for compact clusters (Figure l l .7a) and 
hyperplane (hyperspherical) representatives for clusters of linear shape (Figure 
l l.7b) (hyperspherical shape, Figure 1L7c). 

Point Representatins 

Typical choices for a point representative of a cluster are: 

• The mean vector (or mean point) 

1 
mp=- LY nc 

yEC 

(J 1.44) 

where nc is the cardinality of C. This is the most common choice when 
point representatives are employed and we deal with data of a continuous 
space. However, it may not work well when we deal with points of a discrete 
space F1• This is because it is possible form P to lie outside F1. To cope with 
this problem, we may use the mean center me: of C. which is defined next. 

3tn Chapter 14 we discuss the more general family of hyperquadric reprcsentati\'es, which include 
hyperellipsoids, hypcrparabolas, and pairs of hyperplanes. 
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• The mean center me EC is defined as 

L d(mc. y) :'.:'. L d(z. y), Vz E C (11.45) 
yEC 

where d is a dissimilarity measure between two points. When similarity 
measures are involved, the inequality is reversed. 

Another commonly used point representative is the median center. It is 
usually employed when the proximity measure between two points is not a 
metric. 

• The median center mmed E C is defined as 

med(d(mme<f, y)ly EC) :'.:'. med(d(z , y)IY EC), Vz EC (11.46) 

where d is a dissimilarity measure between two points . Here med(T), with 
T being a set of q scalars, is the minimum number in T that is greater 
than or equal to exactly [(q + 1)/2] numbers of T. An algorithmic way to 
detennine med(T) is to list the elements of Tin increasing order and to pick 
the [(q + 1)/2] element of that list. 

Example 11.10. Let C={x1.x2.x3.x4.x5}, wherex1 =[I. l]T. x2=[3. l)T. x~ = 
[I. 2] T, x 4 = [I, 3]T, and xs = [3, 3f (see Figure 11.8). All points lie in the discrete 
space (0. I. 2 ..... 6)2. We use the Euclidean distance to measure the dissimilarity between 

... ' .. ... .... •··· 
:X1 

·· • x 5 

FIGURE 11.8: The setup of Example 11.10. 

·· • · X 
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two vectors in C. The mean point of C is mp = ( 1.8, 2f. It is clear that mp lies outside 
the space where the elements of C belong. 

To find the mean center me. we compute, for each point x; E C, i = I, ... , 5, the sum A; 
of its distances from all other points of C. The resulting values are A 1 = 7 .83, A1 = 9 .06, 
AJ=6.47, A4=7.83, As=9.06. The minimum of these values is AJ. Thus, x3 is the 
mean center of C. 

Finally, for the computation of the median center mmed we work as follows. For each 
vector x; E C we form the nc x I dimensional vector T; of the distances between x; 
and each of the vectors of C. Working as indicated, we identify med(T; ), i = I, ... , 5. 
Thus, med(T1) =med(T2) = 2, med(T3) =I, med(T4) = med(T5) = 2. Then we choose 
med(Tj) = min;=l, .. .,nc {med(T; )) = med(T3) and we identify x3 as the median vector 
of C. In our example, the mean center and the median center coincide. In general, however, 
this is not the case. 

The distances between x = [6, 4]T and C when the mean point. the mean center, and 
the median center are used as representatives of Care 4.65, 5.39, and 5.39, respectively. 

Hyperplane Representatives 

Linear shaped clusters (or hyperplanar in the general case) are often encountered in 
computer vision applications. This type of cluster cannot be accurately represented 
by a single point. In such cases we use lines (hyperplanes) as representatives of 
the clusters (e.g., [Duda 73]). 

The general equation of a hyperplane H is 

I 

LajXj +ao = aT x +ao = 0 
j=I 

(11.47) 

where x = [x1, ... , x1 f and a = [a1, ... , a1 ]T is the weight vector of H. The 
distance of a point x from H is defined as 

d(x, H) = mind(x, z) 
zEH 

(11.48) 

In the case of Euclidean distance between two points and using simple geometric 
arguments (see Figure l 1.9a), we obtain 

d(x H) = laT x + aol 
' llall 

( 11.49) 
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(a) (b) 

FIGURE 11.9: (a) Distance between a point and a hyperplane. (b) Distance 
between a point and hypersphere. 

Hyperspherical Representatives 

Clusters of another type are those that are circular (hyperspherical in higher dimen
sions). These are also frequently encountered in computer vision applications. For 
such clusters, the ideal representative is a circle (hypersphere). 

The general equation of a hypersphere Q is 

(x - cl (x - c) = r2 (11.50) 

where c is the center of the hypersphere and r its radius. The distance from a point 
x to Q is defined as 

d(x, Q) = mind(x, z) 
zEQ 

(11.51) 

In most of the cases of interest, the Euclidean distance between two points is 
used in this definition. Figure I l .9b provides geometric insight into this definition. 
However, other nongeometric distances d (x, Q) have been used in the literature 
(e.g., [Dave 92, Kris 95, Frig 96)). 

11.2.4 Proximity Functions between Two Sets 

So far, we have been concerned with proximity measures between points in 
/-dimensional spaces and proximity functions between points and sets. Our major 
focus now is to define proximity functions between sets of points. As we will soon 
see, some of the clustering algorithms are built upon such information. Most of the 
proximity functions pss used for the comparison of sets are based on proximity 
measures, KJ, between vectors (see [Duda 73)). If D;, D j are two sets of vectors, 
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the most common proximity functions are: 

• The max proximity function: 

(11.52) 

It is easy to see that if p is a dissimilarity measure, p;",;ax is not a measure, 
since it does not satisfy the conditions in Section 11.2.1. p:,;ax is fully deter
mined by the pair (x, y) of the most dissimilar (distant) vectors, withx E D; 
and y E DJ . On the other hand, if p is a similarity measure, p:,;ax is a 
measure but it is not a metric (see Problem 11 .12). In that case p:,:ax is fully 
determined by the pair (x, y) of the most similar (closest) vectors, with 
x E D; and y E D j . 

• The min proximity function: 

(11.53) 

When p is a similarity measure, P'/:;n is not a measure. In this case P'/:;n is 
fully determined by the pair (x, y) of the most dissimilar (distant) vectors, 
with x E D; and y E DJ. On the other hand, if p is a dissimilarity measure, 
p::in is a measure but it is not a metric (see Problem 11.12). In this case P'/:;n 
is fully detennincd by the pair (x, y) of the most similar (closest) vectors, 
withx ED; and y E DJ . 

• The average proximity function: 

S.< I ~ ~ 
Pavg (D;, Dj) = --- L, L, p(x, y) 

no.no. 
' 1 xED; yEDj 

(11.54) 

where no; and no1 are the cardinalities of D; and DJ, respectively. It is 
easily shown that p~~g is not a measure even though pis a measure. In this 
case, all vectors of both D; and DJ contribute to the computation of p~~g . 

• The mean proximity function: 

(11.55) 

where mo; is the representative of D;, i = I, 2. For example, mo; may be 
the mean point, the mean center, or the median of D;. Obviously, this is the 
proximity function between the representatives of D; and DJ. It is clear that 
the mean proximity function is a measure provided that pis a measure. 



Section 11.2: PROXIMITY MEASURES 425 

• Another proximity function that will be used later on is based on the mean 
proximity function and is defined as4 

p~s(D;, Dj) = (l 1.56) 

where mo; is defined as in the previous case . 

In the last two alternatives we consider only the cases in which D; 's are repre
sented by points. The need for a definition of a proximity function between two 
sets via their representatives, when the latter are not points, is of limited practical 
interest. 

Example 11.11. (a) Consider the set Di = (x1 , x2 . x3. x4} and D1 = {Y1. Y2· y3. y4} . 
with x1 = [0. OJT . x2 = [0, 2JT. x3 = [2, Of , X4 = [2. 2JT. Yt = [-3. Of , Y2 = 
[ -5. O]T , y3 = [-3, -2f, Y4 = [-5 , -2]T. The Euclidean distance is employed as the 
distance between two vectors. The distances between D1 and D2 according to the proximity 

functions just defined are d;;;';
11

(D1, D2) = 3, d~1~x(D1. D2) = 8.06, d~~8 W1. Dz)= 
5.57. d;,'ean<Di. Dz)= 5.39. d;s W1. D2) = 7.62. 

(b) Consider now the set D; = {z J, z2. Z3, Z4), with ZJ = [I, l.5]T. z2 = f I, 0.5JT. 

Z3 = [0.5, if, Z4 = [1.5, If. Notice that the points of Di and D; lie in two concentric 

circles centered at [I, If. The radius corresponding to D 1 (D;) is ,/2 (0.5). The dis

ta:~ces betwe;n ~I and D~saccordin~ to~he proxi!1:ity functio?s ~e d~i,'.l; (D1, D3) :_ 1.19. 
dmax (Di. D2 ) - 1.80, davg<Di. Dz) - 1.46, dm ean<Di , Dz) - 0, de (Di, Dz) - 0. 

Notice that in the last case, in which one of the sets lies in the convex hull of the other. 
some proximity measures may not be appropriate. For example, the measure based on lhe 
distances between the two means of the clusters gives meaningless results. However. rhis 
distance is well suited for cases in which the two sels are compact and well separated. 
especially because of its low computational requirements . 

Notice that the proximities between two sets are built upon proximities between 
two points . Intuitively, one can understand that different choices of proximitr 
functions between sets may lead to totally different clustering results. Moreover. 
if we use different proximity measures between points, the same proximity 
function between sets will lead, in general, to different clustering results . The 
only way to achieve proper clustering of the data is by trial and error and. 
ti}' course. by taking into account the opinion of an expert in the field o( 
application. 

Finally. proximity functions between a vector x and a set D; may also be derived 
from the functions defined here, if we set DJ = {x}. 

4This dctinition is a generalization of that given in [Ward 63] (see Chapter 13 ). 
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Problems 

11.1 Let s be a metric similarity measure on X with s(x , y) > 0. 't/x, y EX and 
d (x , y) = a/ s (x, y ) , with a > 0. Prove that d is a metric dissimilarity measure. 

11.2 Prove that the Euclidean distance satisfies the triangular inequality. 
Hint: Use the Minkowski inequality, which states that for two vectorsx =[xi, ... , 
x1f and y = [y, . . . , yi]T it holds that 

(
/ )l/p (' )l /p (' )l/p 

{;Ix;+ Yilp :S {; lx;IP + {; IY;IP 

11.3 Show that: (a) ifs is a metric similarity measure on a set X with s(x, y) ;:: 0, 
Vx, y e X, then s(x, y) +a is also a metric similarity measure on X, Va ;:: 0. 

(b) If dis a metric dissimilarity measure on X then d +a is also a metric dissimi
larity measure on X, Va ;:: 0. 

11.4 Let f : n+ ~ n+ be a continuous monotonically increasing function such that 

f(x) + f(y) '.'.: f(x + y), Vx ,y En+ 

and d a metric dissimilarity measure on a set X with do;:: 0. Show that f (d) is also 
a metric dissimilarity measure on X. 

11.5 Lets be a metric similarity measure on a set X, with s(x, y) > 0, Vx, y EX and 
f : n+ ~ n+ be a continuous monotonically decreasing function such that 

f(x) + f(y) '.'.: f ( l I l.), Vx.y En+ 
x + )' 

Show that f (s) is a metric dissimilarity measure on X. 
11.6 Prove that 

for any two vectors x and yin X. 
11.7 (a) Prove that the maximum and the minimum values of SF(X , y) given in (11.37) 

are / lfq and 0.5/ l/q, respectively. 

(b) Prove thatasq ~ +oo, Eq. (I l.37)results insF(x, y) =maxi < i < I s(x;, y;) 
11.8 Examine whether the similarity functions defined by Eqs. (11.29), (11-:-30) are metric 

SMs. 
11.9 Let d be a dissimilarity measure on X ands = dmax -d a corresponding similarity 

measure. Prove that 

sfig(X, C) = dmax - d/:~~(x, C), Vx EX, CCX 

where sf:ig and df:ig are defined in terms of sand d, respectively. The definition of 
1Pf:ig may be obtained from ( 11.54), where the first set consists of a single vector. 

11.10 Let x, y E (0, 1 J'. Prove that d1(x, y) = JdHamming(x, y). 
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11.11 Consider two points in an I-dimensional space, x = [x 1, ... , xi)T and y = 
lY1, ... , yJ]T, and let /xi - yj/ = max j=l. .... Jl/x j - Yj /}.We define the distance 
dn(x,y)as 

1 I 
d,.(x, y) = lxi -yil +I - [(I -Z)/Z] . ~ . /Xj - Yjl 

1=l.1f=1 

This distance has been proposed in [Chau 92) as an approximation of the d2 
(Euclidean) distance. 

(a) Prove that dn is a metric. 

(b) Compare d11 wilh d2 in terms of computational complexity. 
11.12 Let d and s be a similarity and a dissimilarity measure, respectively. Let d:,:i,, 

(s:,:in). d!:ax (s!:ax>• d~tg (s~·~g), d!:ean (s!:ean> be defined in terms of d(s). 

(a) Prove that d:,:in, d!:eall are measures and d!:ax, d~tg are not. 

(b) Prove that .1#ax• s!:ean are measures while s:,:ill' sg8 are not. 
11.13 Based on Eqs. ( 11.52), ( 11 .53), ( 11.54), (11.55), derive the corresponding proximity 

functions between a point and a set. Are these proximity functions measures? 
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CLUSTERING ALGORITHMS I: 
SEQUENTIAL ALGORITHMS 

12.1 INTRODUCTION 

In the previous chapter, our major focus was on introducing a number of proximity 
measures . Each of them gives a different interpretation to the terms similar and 
dissimilar, associated with the types of clusters that our clustering procedure has 
to reveal. In the current and the following three chapters, the emphasis is on the 
various clustering algorithmic schemes and criteria that are available to the analyst. 
As has already been stated, different combinations of a proximity measure and a 
clustering scheme will lead to different results, which the expert has to interpret. 

This chapter begins with a general overview of the various clustering algorithmic 
schemes and then focuses on one category, known as sequential algorithms. 

12.l.l Number of Possible Clusterings 

Given the time and resources, the best way to assign the feature vectors x;. i 
I .. . . . N , of a set X to clusters would be to identify all possible partitions and to 
select the most sensible one according to a preselected criterion. However, this 
is not possible even for moderate values of N. Indeed, let S(N, m) denote the 
number of all possible clusterings of N vectors into m groups. Remember that. 
by definition, no cluster is empty. It is clear that the following conditions hold 
[Spat 80, Jain 88) : 

• S(N , l) = I 
• S(N , N) = I 
• S(N , m)=O, form > N 

Let Lt_ 1 be the list containing all possible clusterings of the N - I vectors into 
k clusters, fork = m , m - I. The Nth vector 

• Either will be added to one of the clusters of any member of L N- I 

• Or will form a new cluster to each member of L~=\ 

429 
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Thus, we may write 

S(N, m) = mS(N - 1, m) + S(N - 1, m - l) (12.1) 

The solutions of (12.1) are the so-called Stirling numbers of the second kind 
(e.g., see [Liu 68]) 1: 

1 m ( ) S(N,m) = m! I)-l)m-i 7 ;N 
1=0 

(12.2) 

Example 12.1. Assume that X = {x 1, x2, x3}. We seek to find all possible clusterings of 
the elements of X in two clusters. It is easy to deduce that 

and 

Taking into account ( 12. 1 ), we easily find that 5(3, 2) = 2 x I + 1 = 3. Indeed, the L~ 
list is 

Especially for m = 2, (12.2) becomes 

S(N, 2) = 2N-l - 1 (12.3) 

(see Problem 12.1). Some numerical values of (12.2) are [Spat 80) 

• S(l5, 3) = 2375101 
• S(20, 4) = 45232115901 
• S(25, 8) = 690223721118368580 
• S(lOO, 5):::: 1068 

It is clear that these calculations are valid for the case in which the number of clus
ters is fixed. If this is not the case, one has to enumerate all possible clusterings 
for all possible values of m. From the preceding analysis it is obvious that evalu
ating all of them to identify the most sensible one is impractical even for moderate 
values of N . Indeed, if, for example, one has to evaluate all possible clusterings 
of 100 objects into five clusters with a computer that evaluates each single clus
tering in 10- 12 seconds, the most "sensible" clustering would be available after 
approximately 1048 years! 

1 Compare it with the number of dichotomies in Cover's theorem. 
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12.2 CATEGORIES OF CLUSTERING ALGORITHMS 

Clustering algorithms may be viewed as schemes that provide us with sensible 
clusterings by considering only a small fraction of the set containing all possible 
partitions of X. The result depends on the specific algorithm and the criteria used. 
Thus a clustering algorithm is a learning procedure that tries to identify the specific 
characteristics of the clusters underlying the data set. Clustering algorithms may 
be divided into the following major categories. 

• Sequential algorithms. These algorithms produce a single clustering. They 
are quite straightforward and fast methods. In most of them, all the feature 
vectors are presented to the algorithm once or a few times (typically no more 
than five or six times). The final result is, usually, dependent on the order 
in which the vectors are presented to the algorithm. These schemes tend to 
produce compact and hyperspherically or hyperellipsoidally shaped clusters, 
depending on the distance metric used. This category will be studied at the 
end of this chapter. 

• Hierarchical clustering algorithms. These schemes are further divided 
into 

-Agglomerative algorithms. These algorithms produce a sequence of 
clusterings of decreasing number of clusters, m, at each step. The 
clustering produced at each step results from the previous one by 
merging two clusters into one. The main representatives of the agglom
erative algorithms are the single and complete link algorithms. The 
agglomerative algorithms may be further divided into the following 
subcategories: 

* Algorithms that stem from the matrix theory 
* Algorithms that stem from graph theory 

These algorithms are appropriate for the recovery of elongated clusters 
(as is the case with the single link algorithm) and compact clusters (as 
is the case with the complete link algorithm). 

-Divisive algorithms. These algorithms act in the opposite direction; 
that is, they produce a sequence of clusterings of increasing m at each 
step. The clustering produced at each step results from the previous 
one by splitting a single cluster into two. 

• Clustering algorithms based on cost function optimization. This category 
contains algorithms in which "sensible" is quantified by a cost function, 1, 
in terms of which a clustering is evaluated. Usually, the number of clusters 
m is kept fixed. These algorithms use differential calculus concepts and 
produce successive clusterings while trying to optimize 1. They terminate 
when a local optimum of 1 is determined. Algorithms of this category are 
also called iterative function optimization schemes. This category includes 
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the following subcategories: 

-Hard or crisp clustering algorithms, where a vector belongs exclu
sively to a specific cluster. The assignment of the vectors to individual 
clusters is canied out optimally, according to the adopted optimality 
criterion. The most famous algorithm of this category is the lsodata or 
Lloyd algorithm [Lloy 82, Duda 73]. 

-Probabilistic clustering algorithms are a special type of hard cluster
ing algorithms that follow Bayesian classification arguments and each 
vector x is assigned to the cluster C; for which P(C;lx) (i.e., the a 
posteriori probability) is maximum. These probabilities are estimated 
via an appropriately defined optimization task. 

-Fuzz.y clustering algorithms, where a vector belongs to a specific cluster 
up to a certain degree. 

-Possibilistic clustering algorithms. In this case we measure the 
possibility for a feature vector x to belong to a cluster C;. 

-Boundary detection algorithms. Instead of determining the clusters 
by the feature vectors themselves, these algorithms adjust iteratively 
the boundaries of the regions where clusters lie. These algorithms, 
although they evolve around a cost function optimization philoso
phy, they are of different nature from the above algorithms. All 
the aforementioned schemes use cluster representatives and the goal 
is to locate them in space in an optimal way. In contrast, bound
ary detection algorithms seek ways of placing optimally boundaries 
between clusters. This has led us to the decision to treat these algo
rithms in a separate chapter, together with algorithms to be discussed 
next. 

• Other: This last category contains some special clustering techniques that 
cannot be assigned to any of the previous categories. These include: 

-Branch and bound clustering algorithms. These algorithms provide us 
with the globally optimal clustering without hnving to consider all pos
sible clusterings, for fixed number m of clusters, and for a prespecified 
criterion. However, their computational burden is excessive. 

-Genetic clustering algorithmv. These algorithms use an initial popula
tion of possible clusterings and iteratively generate new populations, 
which, in general, contain better clusterings than those of the previous 
generations, according to a prespecified criterion. 

-Stochastic relaxation methods. These are methods that guarantee, under 
certain conditions, convergence in probability to the globally optimum 
clustering, with respect to a prespecified criterion, at the expense of 
intensive computations. 
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-Valley-seeking clustering algorithms. These algorithms treat the fea
ture vectors as instances of a (multidimensional) random variable x. 
They are based on the commonly accepted assumption that regions of 
x where many vectors reside correspond to regions of increased values 
of the respective probability density function (pdt) of x. Therefore. 
the estimation of the pdf may highlight the regions where clusters are 
formed. 

-Competitive learning algorithms. These are iterative schemes that do 
not employ cost functions. They produce several clusterings and they 
converge to the most "sensible" one. according to a distance met
ric. Typical representatives of this category are the basic competitive 
learning scheme and the leaky learning algorithm. 

-Algorithms based on morphological transformation techniques. These 
algorithms use morphological transformations in order to achieve better 
separation of the involved clusters. 

12.3 SEQUENTIAL CLUSTERING ALGORITHMS 

In this section we describe a basic sequential algorithmic scheme (BSAS) (which 
is a generalization of that discussed in [Hall 67]) and we also give some variants of 
it. First, we consider the case where all the vectors are presented to the algorithm 
only once. The number of clusters is not known a priori in this case. In fact, new 
clusters are created as the algorithm evolves. 

Let d(x. C) denote the distance (or dissimilarity) between a feature vector x and 
a cluster C. This may be defined by taking into account either all vectors of C or a 
representative vector of it (see Chapter 11 ). The user-defined parameters required 
by the algorithmic scheme are the threshold of dissimilariry (.j and the maximum 
allowable number of clusters, q. The basic idea of the algorithm is the following: 
As each new vector is considered. it is either assigned to an existing cluster or 
assigned to a newly created cluster, depending on its distance from the already 
formed ones. Let m be the number of clusters that the algorithm has created up to 
now. Then the algorithmic scheme may be stated as: 

Basic Sequential Algorithmic Scheme (BSAS) 

• m=l 
• C111 = {x1) 
• For i = 2 to N 

-Find Ck: d(x;. Ck)= minl<:j<:m d(x;, Cj) 
-If (d(x;, Ck) > \-))AND (m < q) then 

* m=m+I 
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* Cm = {x;} 
-Else 

* ck = ck u {x;} 
* Where necessary, update representatives.2 

-End {if} 
• End {For} 

Different choices of d (x, C) lead to different algorithms and any of the measures 
introduced in Chapter 11 can be employed. When C is represented by a single 
vector, d (x, C) becomes 

d(x, C) = d(x, me) (12.4) 

where me is the representative of C. In the case in which the mean vector is used 
as a representative, the updating may take place in an iterative fashion, that is, 

(nenew - l )m0eld + x 
k k (12.5) 

where nenew is the cardinality of ck after the assignment of x to it and 
m(;:w <mt:) is the representative of ck after (before) the assignment of x to it 
(Problem 12.2). 

It is not difficult to realize that the order in which the vectors are presented to 
the BSAS plays an important role in the clustering results. Different presentation 
ordering may lead to totally different clustering results, in terms of the number of 
clusters as well as the clusters themselves (see Problem 12.3). 

Another important factor affecting the result of the clustering algorithm is the 
choice of the threshold e. This value directly affects the number of clusters 
formed by BSAS. If E> is too small, unnecessary clusters will be created. On 
the other hand, if E> is too large a smaller than appropriate number of clusters 
will be created. In both cases, the number of clusters that best fits the data set is 
missed. 

If the number q of the maximum allowable number of clusters is not con
strained, we leave to the algorithm to "decide" about the appropriate number 
of clusters. Consider for example Figure 12.1, where three compact and well
separated clusters are formed by the points of X. If the maximum allowable 
number of clusters is set equal to two, the BSAS algorithm will be unable 
to discover three clusters. Probably, in this case the two rightmost groups of 

2This statement is activated in the cases where each cluster is represented by a single vector. For 
example, if each cluster is represented by its mean vector, this must be updated each time a new vector 
becomes a member of the cluster. 
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FIGURE 12.1: Three clusters are formed by the feature vectors. When q is 
constrained to a value less than 3, the BSAS algorithm will not be able to reveal 
them. 

points will form a single cluster. On the other hand, if q is unconstrained 
the BSAS algorithm will probably form three clusters (with an appropriate 
choice of E)), at least for the case in which the mean vector is used as a rep
resentative. However, constraining q becomes necessary when dealing with 
implementations where the available computational resources are limited. In 
the next subsection a simple technique is given for determining the number of 
clusters. 3 

Remarks 

• The BSAS scheme may be used with similarity instead of dissimilarity 
measures with appropriate modification; that is, the min operator is replaced 
by max. 

• It turns out that BSAS, with point cluster representatives, favors compact 
clusters. Thus, it is not recommended if there is strong evidence that other 
types of clusters are present. 

• The preceding algorithm is closely related to the algorithm implemented 
by the ART2 (adaptive resonance theory) neural architecture [Carp 87. 
Burk 91]. 

12.3.l Estimation of the Number of Clusters 

In this subsection, a simple method is described for determining the number of 
clusters (see also Chapter 16). The method is suitable for BSAS as well as other 
algorithms, for which the number of clusters is not required as an input parameter. 
In what follows, BSAS(G) denotes the BSAS algorithm with a specific threshold 
of dissimilarity E>. 

-------· 
3This problem is also treated in Chapter 16. 
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• For e = a to b step c 
-Runs times the algorithm BSAS(8), each time presenting the data in 

a different order. 
-Estimate the number of clusters, me, as the most frequent number 

resulting from the s runs of BSAS(8). 
• Next e 

The values a and bare the minimum and maximum dissimilarity levels among all 
pairs of vectors in X, that is, a= min;,j=l ..... N d(x;, Xj) and b = max;,j=l,. ... N 

d (x;, x j ). The choice of c is directly influenced by the choice of d (x, C). As 
far as the value of s is concerned, the greater the s, the larger the statistical 
sample and, thus, the higher the accuracy of the results. In the sequel, we plot 
the number of clusters me versus e. This plot has a number of flat regions. 
We estimate the number of clusters as the number that corresponds to the widest 
flat region. It is expected that at least for the case in which the vectors form well
separated compact clusters, this is the desired number. Let us explain this argument 
intuitively. Suppose that the data form two compact and well-separated clusters 
C 1 and C2. Let the maximum distance between two vectors in C1 (C2) be r1 (r2) 
and suppose that r1 < r2. Also let r (> r2) be the minimum among all distances 
d(x;' x j ), with X; E C1 andx j E C2. It is clearthat fore E [r2. r-r2], the number 
of clusters created by BSAS is 2. In addition, if r » r2, the interval has a wide 
range, and thus it corresponds to a wide flat region in the plot of me versus e. 
Example 12.2 illustrates the idea. 

Example 12.2. Consider two 2-dimensional Gaussian distributions with means (0, Of 
and (20. 20f, respectively. The covariance matrices are I:= 0.51 for both distribu
tions, where I is the 2 x 2 identity matrix. Generate 50 points from each distribution 
(Figure 12.2a). The number of underlying clusters is 2. The plot resulting from the 
application of the previously described procedure is shown in Figure 12.2b. with a = 

minx;.x1Exdz(x;,Xj). b = maxx;.x1Exd2(x; , Xj). and c::: 0.3. It can be seen that 
the widest flat region corresponds to the number 2, which is the number of underlying 
clusters. 

In the foregoing procedure, we have implicitly assumed that the feature vectors 
do form clusters. If this is not the case, the method is useless. Methods that deal with 
the problem of discovering whether any clusters exist are discussed in Chapter 16. 
Moreover, if the vectors form compact clusters, which are not well separated, the 
procedure may give unreliable results, since it is unlikely for the plot of m<c) versus 
8 to contain wide flat regions. 

In some cases, it may be advisable to consider all the numbers of clusters, me, 
that correspond to all flat regions of considerable size in the plot of me versus 8. 
If, for example, we have three clusters and the first two of them lie close to each 
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FIGURE 12.2: (a) The data set. (b) The plot of the number of clusters versus 
C-1. It can be seen that for a wide range of values of 8, the number of clusters, 
m, is 2. 

other and away from the third, the flattest region may occur for me = 2 and the 
second flattest for ln0J = 3. If we discard the second flattest region, we will miss 
the three-cluster solution (Problem 12.6). 

12.4 A MODIFICATION OF BSAS 

As has already been stated, the basic idea behind BSAS is that each input vector 
x is assigned to an already created cluster or a new one is formed. Therefore, a 
decision for the vector x is reached prior to the final cluster formation, which 
is determined after all vectors have been presented. The following refinement of 
BSAS, which will be called modified BSAS (MBSAS), overcomes this drawback. 
The cost we pay for it is that the vectors of X have to be presented twice to the 
algorithm. The algorithmic scheme consists of two phases. The first phase involves 
the determination of the clusters, via the assignment of some of the vectors of X to 
them. During the second phase, the unassigned vectors are presented for a second 
time to the algorithm and are assigned to the appropriate cluster. The MBSAS may 
be written as follows: 

Modified Basic Sequential Algorithmic Scheme (MBSAS) 

Cluster Determination 
• m =I 
• Cm= {xi} 
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• For i = 2 to N 
-Find Ck: d(x;, Ck)= min1:'.Sj:'.Sm d(x;, Cj) 
-If(d(x;,Ck) > 8)AND(m < q)then 

* m=m+I 
* Cm= {x;} 

-End (if} 
• End {For} 

Pattern Classification 

• For i = I to N 
-If x; has not been assigned to a cluster, then 

* Find Ck : d(x;, Ck)= min1:'.Sj:'.Sm d(x; , Cj) 
* ck = ck u {x;} 
* Where necessary, update representatives. 

-End {if} 
• End {For} 

The number of clusters is determined in the first phase and then it is frozen. Thus, 
the decision taken during the second phase for each vector takes into account all 
clusters. 

When the mean vector of a cluster is used as its representative, the appropriate 
cluster representative has to be adjusted using Eq. (12.5), after the assignment of 
each vector in a cluster. 

Also, as it was the case with BSAS, MBSAS is sensitive to the order in which 
the vectors are presented. 

Finally, it must be stated that, after minor modifications, MBSAS may be used 
when a similarity measure is employed (see Problem 12.7). 

12.5 A TWO-THRESHOLD SEQUENTIAL SCHEME 

As already has been pointed out, the results of BSAS and MBSAS are strongly 
dependent on the order in which the vectors are presented to the algorithm, as well 
as on the value of 8 . Improper choice of 8 may lead to meaningless clustering 
results. One way to overcome these difficulties is to define a "gray" region (see 
[Trah 89)). This is achieved by employing two thresholds, 81 and 82(>81). 
If the dissimilarity level d (x, C) of a vector x from its closest cluster C is less 
than 81, xis assigned to C. If d(x, C) > 82. a new cluster is formed and x 
is placed in it. Otherwise, if 81 ,:::: d(x, C) ,:::: 82. there exists uncertainty and 
the assignment of x to a cluster will take place at a later stage. Let clas(x) be a 
flag that indicates whether x has been classified (I) or not (0). Again, we denote 
by rn the number of clusters that have been formed up to now. In the following, 
we assume no bounds to the number of clusters (i.e., q = N). The algorithmic 
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scheme is: 

The Two-Threshold Sequential Algorithmic Scheme (TTSAS) 

m =0 
clas(x) = 0, 'fr E X 
prev_change = 0 
cur _change = 0 
exists_change = 0 

While (there exists at least one feature vector x with clas(x) = 0) do 

• For i =I to N 
-if clas(x;) = 0 AND it is the first in the new while loop AND 

exists_change = 0 then 
* m=m+I 
* Cm= (x;) 
* clas(x;)=I 
* cur _change = cur _change+ I 

-Else if clas(x;) = 0 then 
* Find d(x;. Ck)= min1~j:s:m d(x;, CJ) 
* ifd(x;,Ck) < 81 then 

ck= ck u (x;J 
• clas(x;) = I 
• cur_change =cur _change+ I 

* else if d(x;, Ck)> 82 then 

• m=m+I 
C,n = {x;} 

• clas(x;) = I 
• cur _change= cur _change+ I 

* End {Jf} 
-Else if clas(x;) = I then 

* cur _change = cur _change+ I 
-End (If} 

• End {For} 
• exists_change = Jcur _change - prev_changel 
• prev_chanxe = cur _change 
• cur_change = 0 

End {While} 
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The exi sts_change checks whether there exists at least one vector that has been 
classified at the current pass on X (i.e., the current iteration of the while loop) . 
This is achieved by comparing the number of vectors that have been classified up 
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to the current pass on X, cur _change, with the number of vectors that have been 
classified up to the previous pass on X, prev_change. If exists_change = 0, 
that is, no vector has been assigned to a cluster during the last pass on X, the first 
unclassified vector is used for the formation of a new cluster. 

The first if condition in the For loop ensures that the algorithm tenninates after 
N passes on X (N executions of the while loop) at the most. Indeed, this condition 
forces the first unassigned vector to a new cluster when no vector has been assigned 
during the last pass on X. This gives a way out to the case in which no vector has 
been assigned at a given circle. 

However, in practice, the number of required passes is much less than N . It 
should be pointed out that this scheme is almost always at least as expensive as 
the previous two schemes, because in general it requires at least two passes on X. 
Moreover, since the assignment of a vector is postponed until enough infonnation 
becomes available, it turns out that this algorithm is less sensitive to the order of 
data presentation. 

As in the previous case, different choices of the dissimilarity between a vector 
and a cluster lead to Jifferent results. This algorithm also favors compact clusters, 
when used with point cluster representatives. 

Remark 

• Note that for all these algorithms no deadlock state occurs. That is, none of 
the algorithms enters into a state where there exist unassigned vectors that 
cannot be assigned either to existing clusters or to new ones, regardless of 
the number of passes of the data to the algorithm. The BSAS and MBSAS 
algorithms are guaranteed to terminate after a single and after two passes on 
X, respectively. In TTSAS the deadlock situation is avoided, as we arbitrarily 
assign the first unassigned vector at the current pass to a new cluster if no 
assignment of vectors occurred in the previous pass. 

Example 12.3. Consider the vectors x1=[2,5]T, x2=[6,4]T, x3=[5,3]T. 
x4=[2,2f, x5=[l.4f', X6=[5,2f', x7=[3,3f, and xg=[2,3]T. The distance 
from a vector x to a cluster C is taken to be the Euclidean distance between x and the 
mean vector of C. If we present the vectors in the above order to the MB SAS algorithm and 
we set El= 2.5, we obtain three clusters, C1 =(xi. x5, x7. xx}. C2 = (x2. x3, X6l. and 
C3 = (x 4} (see Figure l 2.3a). 

On the other hand, if we present the vectors in the above order to the TTSAS algorithm, 
with E->1 =2.2 and E->2=4, we obtain C1 =(x1,x5,x7,xg,x4} and C2 = (x2,x3.x6} 
(see Figure I 2.3b). In this case. all vectors were assigned to clusters during the first pass on 
X, except x4. This was assigned to cluster C1 during the second pass on X . At each pass 
on X, we had at least one vector assignment to a cluster. Thus, no vector is forced to a new 
cluster arbitrarily. 

It is clear that the last algorithm leads to mun: reasonable results than MBSAS. However, 
it should be noted that MB SAS also leads to the same clustering if, for example. the vectors 
are presented with the following order: x1, x2. x5, x3, xg, X6, x7. x4. 



0 - . 
7 

® 

(a) 

Section 12.6: REFINEMENT STAGES 

() J . 
6 

(b) 

~ v 

441 

FIGURE 12.3: (a) The clustering produced by the MBSAS. (b) The clustering 
produced by the TTSAS . 

12.6 REFINEMENT STAGES 

In all the preceding algorithms, it may happen that two of the formed clusters are 
very closely located, and it may be desirable to merge them into a single one. Such 
cases cannot be handled by these algorithms. One way out of this problem is to 
run the following simple merging procedure, after the termination of the precedi11g 
schemes (see fFu 93 )). 

Merging procedure 

• (A) Find C;, Cj (i < j) such that d(C;, C;) = mink.r=l. ... . m. kf'r d(Ck. C,.) 
• Ifd(C;,Cj) ::S M1 then 

-Merge C;, Cj to C; and eliminate Cj 
-Update the cluster representative of C; (if cluster representatives are 

used) 
-Rename the clusters Cj + l • .. . , C,,, to Cj .... , C111 _1. respectively. 
-m =m- l 
-Go to (A) 

• Else 
-Stop 

• End {If} 

M 1 is a user-defined parameter that quantifies the closeness of two clusters, C,. 
and Cj. The dissimilarity d( C;, C j) between the clusters can be defined using the 
definitions given in Chapter 11. 

The other drawback of the sequential algorithms is their sensitivity to the order of 
presentation of vectors. Suppose, for example, that in using BSAS, x2 is assigned 
to the first cluster, C 1, and after the termination of the algorithm four clusters 
are formed. Then it is possible for x2 to be closer to a cluster different from C 1• 
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However, there is no way for x2 to move to its closest cluster once assigned to 
another one. A simple way to face this problem is to use the following reassignment 
procedure: 

Reassignment procedure 

• For i = 1 to N 
-Find Cj such that d(x;, Cj) =mink= I. .. ,m d(x;, Ck) 
-Set b(i) = j 

• End {For} 
• For j = 1 tom 

-Set Cj = {x; E X: b(i) = j} 
-Update the representatives (if used) 

• End {For} 

In this procedure, b(i) denotes the closest to x; cluster. This procedure may be 
used after the termination of the algorithms or, if the merging procedure is also 
used, after the termination of the merging procedure. 

A variant of the BSAS algorithm combining the two refinement procedures has 
been proposed in [MacQ 67]. Only the case in which point representatives are 
used is considered. According to this algorithm. instead of starting with a single 
cluster, we start with m > 1 clusters, each containing one of the first m of the 
vectors in X. We apply the merging procedure and then we present each of the 
remaining vectors to the algorithm. After assigning the current vector to a cluster 
and updating its representative, we run the merging procedure again. If the distance 
between a vector x; and its closest cluster is greater than a prespecified threshold, 
we form a new cluster which contains only x;. Finally, after all vectors have been 
presented to the algorithm, we run the reassignment procedure once. The merging 
procedure is applied N - m + 1 times. Finally, a variant of the algorithm is given 
in [Ande 73). 

A different sequential clustering algorithm that requires a single pass on X 
is discussed in [Mant 85]. More specifically, it is assumed that the vectors are 
produced by a mixture of k Gaussian probability densities, p(xlC; ). that is, 

k 

p(x) = L P(Cj)p(xlCj; /Lj• :Ej) 
j=I 

(12.6) 

where /Lj and :Ej are the mean and the covariance matrix of the jth Gaussian 
distribution, respectively. Also, P ( C j) is the a priori probability for C j. For con
venience, let us assume that all P(Cj)'s are equal to each other. The clusters 
formed by the algorithm are assumed to follow the Gaussian distribution. At the 
beginning, a single cluster is formed using the first vector. Then, for each newly 
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arrived vector, x;, the mean vector and covariance matrix of each of them clus
ters, formed up to now, are appropriately updated and the conditional probabilities 
P(Cj\X;) are estimated. If P(Cq\X;) = maxJ=l.. .m P(C1\x;) is greater than a 
prespecifed threshold a. then x; is assigned to Cq. Otherwise, a new cluster is 
formed where x; is assigned. 

12.7 NEURAL NETWORK IMPLEMENTATION 

In this section. a neural network architecture is introduced and is then used to 
implement BSAS. 

12. 7 .1 Description of the Architecture 

The architecture is shown in Figure l 2.4a. It consists of two modules, the matching 
score generator (MSG) and the MaxNet network (MN).4 

The first module stores q parameter vectors5 w 1, w2, ... , Wq of dimension I x 1 
and implements a function f (x , w), which indicates the similarity between x and 
w . The higher the value off (x , w), the more similar x and ware. 

When a vector x is presented to the network, the MSG module outputs a q x I 
vector v. with its ith coordinate being equal to f(x. w;) , i = 1, ... , q. 

The second module takes as input the vector v and identifies its maximum 
coordinate. Its output is a q x I vectors with all its components equal to 0 except 
one that corresponds to the maximum coordinate of v. This is set equal to I . Most 
of the modules of this type require at least one coordinate of v to be positive. 

Different implementations of the MSG can be used, depending on the proximity 
measure adopted. For example, if the function f is the inner product. the MSG 
module consists of q linear nodes with their threshold being equal to 0. Each of 
these nodes is associated with a parameter vector w;, and its output is the inner 
product of the input vector x with w;. 

If the Euclidean distance is used, the MSG module consists also of q linear 
nodes . However, a different setup is required. The weight vector associated with 
the ith node is w; and its threshold is set equal to T; = ~(Q-1\w; 11

2), where Q is 
a positive constant that ensures that at least one of the first layer nodes will output 
a positive matching score, and II w; II is the Euclidean norm of w;. Thus, the output 
of the node is 

T I 2 f(x,w;)=x w;+ 2(Q-l\w;I\) 

4This is a generalization of the Hamming network proposed in [Lipp 87 J. 
5Tuese are also called exemplar patterns. 

( 12 .7) 



444 Chapter 12: CLUSTERING ALGORITHMS I: SEQUENTIAL ALGORITHMS 

Max Net 
(MN) 

Matching Score 
Generator (MSG) 

(a) 

Clustering 
Algorithm 

........ s(x) . 

(b) 

Max Net 
(MN) 

FIGURE 12.4: (a) The neural architecture. (b) Implementation of the BSAS 
algorithm when each cluster is represented by its mean vector and the Euclidean 
distance between two vectors is used. 

It is easy to show that dz(x, w;) < dz(x, w j) is equivalent to f (x, w;) > f (x, w J) 
and thus the output of MSG corresponds to the w; with the minimum Euclidean 
distance from x (see Problem 12.8). 

The MN module can be implemented via a number of alternatives. One can use 
either neural network comparators such as the Hamming MaxNet and other feed
forward architectures [Lipp 87, Kout 95, Kout 98) or conventional comparators 
[Mano 79) . 

12.7.2 Implementation of the BSAS Algorithm 

In this section, we demonstrate how the BSAS algorithm can be mapped to the 
neural network architecture when (a) each cluster is represented by its mean vector 
and (b) the Euclidean distance between two vectors is used (see Figure 12.4b). The 
structure of the Hamming network must also be slighlly modified, so that each node 
in the first layer to have as an extra input the term - ~ llx 112. Let w; and T; be the 
weight vector and the threshold of the ith node in the MSG module, respectively. 
Also let a be a q x 1 vector whose ith component indicates the number of vectors 
contained in the ith cluster. Also, let s(x) be the output of the MN module when 
the input to the network is x. In addition, let t; be the connection between the 
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ith node of the MSG and its corresponding node in the MN module. Finally, let 
sgn(z) be the step function that returns I if z > 0 and 0 otherwise. 

The first m of the q w; 's correspond to the representatives of the clusters defined 
so far by the algorithm. At each iteration step either one of the first m w; 'sis updated 
or a new parameter vector Wm+l is employed, whenever a new cluster is created 
(if m < q). The algorithm may be stated as follows. 

• Initialization 
-a=O 
-w;=O,i=l, .. .,q 
-t; = 0. i =I, .... q 
-m= 1 
- For the first vector x 1 set 

* W1 =XJ 

* 01=1 

* t1 =I 
• Main Phase 

-Repeat 
* Present the next vector x to the network. 
* Compute the output vector s(x). 
* GATE(x) = AND((i - LJ=1(.\'j(X))),sgn(q -m)). 

* m=m+GATE(x) 
* Om=am+GATE(x) 
* w,,, =Wm +GATE(x)x 

* Tm=E>-!llwmll 2 

* tm =I 
* For j = I tom 

• OJ= a1 +(I - GAT E(x))Sj(X) 

w · = w · - (I - GATE (x) )s (x) ( _l ( w · - x)) J J J a; J 

TJ = 8 - !llw111 2 . 

* Next j 
- Until all vectors have been presented once to the network. 

Note that only the outputs of them first nodes of the MSG module are taken into 
account, because only these correspond to clusters. The outputs of the remaining 
nodes are not taken into account, since lk = 0, k = m + I , ... , q. Assume that 
a new vector is presented to the network such that min 1 :::: J ::= m d (x, w J) > (:<) and 
m < q. Then GATE (x) = I. Therefore, a new cluster is created and the next node 
is activated in order to represent it. Since 1-G ATE (x) = 0, the execution of the 
instructions in the For loop does not affect any of the parameters of the network. 

Suppose next that CATE (x) = 0. This is equivalent to the fact that either 
min 1 ::::J :::nr d (x, w J) ::=: 8 or there are no more nodes available to represent 
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additional clusters. Then the execution of the instructions in the For loop results 
in updating the weight vector and the threshold of the node, k, for which 
min1::::j::::m d(x. w j). This happens because Sk(x) =land Sj (x) =0, j = l, . ... q, 
j i= k. 

Problems 

12.1 Prove Eq. (12.3) using induction. 
12.2 Prove Eq. (12.S). 
12.3 This problem aims at the investigation of the effects of the ordering of pre

sentation of the vectors in the BSAS and MBSAS algorithms. Consider the 
following two-dimensional vectors: x 1 = [I, If, xz = [I, 2f, x3 = [2, 2f, 
X4= (2, 3f ,X5 =[3, 3f , X6 =(3, 4f ,X7 =(4, 4f ,Xg = (4 , Sf ,X9 =(S, Sf, 
XJO=(S, 6f, Xll =(-4, Sf, XJ2 =(-3, Sf , X13 =(-4, 4)T, X14 =(-3, 4]T. 
Also consider the case that each cluster is represented by its mean vector. 

(a) Run the BSAS and the MBSAS algorithms when the vectors are presented in 
the given order. Use the Euclidean distance between two vectors and take e = ,,/2. 
(b) Change the order of presentation to x I• XJO• xz, x3, x4 , x Ii. x 12· x5, X6, x7, 
x13, xg, x 14, x9 and rerun the algorithms. 

(c) Run the algorithms for the following order of presentation: x1. x 10. x5, xz, x3, 

XJ J. x12. X4, X(j, X7, xn. x 14· X8. x9. 

( d) Plot the given vectors and discuss the results of these runs. 

(e) Perform a visual clustering of the data. How many clusters do you claim are 
formed by the given vectors? 

12.4 Consider the setup of Example 12.2. Run BSAS and MBSAS algorithms, with 
e = S, using the mean vector as representative for each cluster. Discuss the 
results. 

12.5 Consider Figure 12.S. The inner square has side S1 =0.3, and the sides of the 
inner and outer square of the outer frame are Sz = I and S3 = 1.3, respectively. The 
inner square contains SO points that stem from a uniform distribution in the square. 
Similarly, the outer frame contains SO points that stem from a uniform distribution 
in the frame. 

(a) Perform a visual clustering of the data. How many clusters do you claim are 
formed by the given points? 

(b) Consider the case in which each cluster is represented by its mean vector and 
the Euclidean distance between two vectors is employed. Run BSAS and MBSAS 
algorithms, with 

8= .. min d(x;.xj). to .. max d(x;.xj)withstep0.2 
1,;=l, .... 100 1.;=l, .... 100 

and with random ordering of the data. Give a quantitative explanation forthe results. 
Compare them with the results obtained from the previous problem. 

(c) Repeat (b) for the case in which d!~n is chosen as the dissimilarity between a 
vector and a cluster (see Chapter 11). 
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• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • 
• • 
• • • • • • • • • • • • • • • •• • 

• • • • 
• •• 

• • • 
• • 

• • • 
• • • • 
• • • 
• • • 

• • • 
• • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • 
FIGURE 12.5: The setup of Problem 12.5. 

12.6 Consider three two-dimensional Gaussian distributions with means [O. Of. [6. O]T 
and [ 12, 6f, respectively. The covariance matrices for all distributions are equal 
to the identity matrix I. Generate 30 points from each distribution and let X be the 
resulting data set. Employ the Euclidean distance and apply the procedure discussed 
in section 12.3. l for the estimation of the number of clusters underlying in X, with 
a= mini,j=I ... ., 100 d(x;, Xj), b = maxi,j=l. .... 100 d(x;, Xj) and c = 0.3. Plot m 
versus E> and draw your conclusions. 

12.7 Let s be a similarity measure between a vector and a cluster. Express the BSAS. 
MBSAS, and ITSAS algorithms in terms of s . 

12.8 Show that when the Euclidean distance between two vectors is in use and 
the output function of the MSG module is given by Eq. (12.7), the relations 
d2(x. w 1) < d2(x , w2) and f (x , WJ) > f (x , w2) are equivalent. 

12.9 Describe a neural network implementation similar to the one given in Section 12.7 
for the BSAS algorithm when each cluster is represented by the first vector assigned 
to it. 

12.10 The neural network architecture that implements the MBSAS algorithm, if the 
mean vector is in use, is similar to the one given in Figure l 2.4b for the Euclidean 
distance case. Write the algorithm in a form similar to the one given in Section 
12. 7 for the MB SAS when the mean vector is in use, and highlight the differences 
between the two implementations. 
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CLUSTERING ALGORITHMS II: 
HIERARCHICAL ALGORITHMS 

13.1 INTRODUCTION 

Hierarchical clustering algorithms are of a different philosophy from the algo
rithms described in the previous chapter. Specifically, instead of producing a 
single clustering they produce a hierarchy of clusterings. This kind of algo
rithms is usually met in the social sciences and biological taxonomy (e.g .. 
[El-G 68, Prit 71, Shea 65, McQu 62]). In addition, they have been used in many 
other fields, including modem biology, medicine, and archaeology (e.g., [Stri 67. 
Bobe 93, Solo 71, Hods 71 ]). Also, applications of the hierarchical algorithms may 
be found in computer science and engineering (e.g., [Murt 95, Kank 96]). 

Before we describe their basic idea, let us recall that 

X = lxi. i = l, ... ,N} 

is a set of /-dimensional vectors that are to be clustered. Also, recall from 
Chapter 11 the definition of a clustering 

~)l = IC_; , j = I , .... ml 

where c1 c; X. 
A clustering~ 1 containing k clusters is said to be nested in the clustering ~)lz. 

which contains r( <k) clusters, if each cluster in ~)l 1 is a subset of a set in ~)lz. 

Note that at least one cluster of :Jl 1 is a proper subset of ~Jl2. In this case we 
write ~Ht cm2. For example, the clustering :)l1 = {{x1,x3), lx4). lx2,x5)} i~ 

nested in ~)l2 = (lx 1,x>.x4 }. lx2,x5)}. On the other hand, :)l1 is nested neither 
in ~)l3 = l{x 1. x4), {x3}, {x2, xs 11 nor in ~l4 = I Ix 1. x2, x4), Ix» x5) ). It is clear 
that a clustering is not nested to itself. 

Hierarchical clustering algorithms produce a hierarchy of nested clusterings. 
More specifically. these algorithms involve N steps, as many as the number of 

44'1 
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data vectors. At each step t, a new clustering is obtained based on the cluster
ing produced at the previous step t-1. There are two main categories of these 
algorithms, the agglomerative and the divisive hierarchical algorithms. 

The initial clustering mo for the agglomerative algorithms consists of N clusters 
each containing a single element of X. At the first step, the clustering m 1 is 
produced. It contains N - 1 sets, such that mo C: m1. This procedure continues 
until the final clustering, mN-J, is obtained, which contains a single set, that is, 
the set of data, X. Notice that for the hierarchy of the resulting clusterings we have 

The divisive algorithms follow the inverse path. In this case, the initial clustering 
mo consists of a single set, X. At the first step the clustering m 1 is produced. It 
consists of two sets, such that m 1 C: mo. This procedure continues until the final 
clustering mN-1 is obtained, which contains N sets, each consisting of a single 
element of X. In this case we have 

mN-1 c: ffiN-2 c: ... , c: mo 

The next section is devoted to the agglomerative algorithms. The divisive 
algorithms are briefly discussed in Section 13 .4. 

13.2 AGGLOMERATIVE ALGORITHMS 

Let g ( C;, CJ) be a function defined for all possible pairs of clusters of X. This 
function measures the proximity between C; and CJ. Lett denote the current level 
of hierarchy. Then, the general agglomerative scheme may be stated as follows: 

Generalized Agglomerative Scheme (GAS) 

• 1. Initialization: 

-1. I. Choose mo = { C; = {x;}, i = l, ... , N} as the initial clustering. 
-1.2. t = 0. 

• 2. Repeat: 

-2.l.t=t+l 
-2.2. Among all possible pairs of clusters (C,, Cs) in ffi,_ 1 find the one, 

say (C;, CJ). such that 

g(C;, Cj) = lmin,,s g(C,, Cs). 
max,,s g(C,, Cs). 

if g is a dissimilarity function 

if g is a similarity function 

(13.1) 
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-2.3. Define Cq = C;U Cj and produce the new clustering ffi 1 =(ffi1_1 -

{C;, Cj)) U (Cq}. 

• Until all vectors lie in a single cluster. 

It is clear that this scheme creates a hierarchy of N clusterings, so that each one is 
nested in all successive clusterings, that is, m,I c: m,2' for t1 < t2, t2 = 1, ... ' N -1. 
Alternatively, we can say that if two vectors come together into a single cluster 
at level t of the hierarchy, they will remain in the same cluster for all subsequent 
clusterings. This is another way of viewing the nesting property. 

A disadvantage of the nesting property is that there is no way to recover from a 
"poor" clustering that may have occurred in an earlier level of the hierarchy (see 
[Gowe 67]). 1 

At each level t, there are N - t clusters. Thus, in order to determine the pair of 
clusters that is going to be merged at the t + 1 level, (N;') = (N-t)(~-t-I) pairs 
of clusters have to be considered. Thus, the total number of pairs that have to be 
examined throughout the whole clustering process is 

that is, the total number of operations required by an agglomerative scheme is 
proportional to N 3 . Moreover, the exact complexity of the algorithm depends on 
the definition of g. 

13.2.l Definition of Some Useful Quantities 

There are two main categories of agglomerative algorithms. Algorithms of the first 
category are based on matrix theory concepts, while algorithms of the second one 
are based on graph theory concepts. Before we enter into their discussion, some 
definitions are required. The pattern matrix D(X) is the N x I matrix, whose 
ith row is the (transposed) ith vector of X. The similarity (dissimilarity) matrix, 
P(X), is an N x N matrix whose (i, j) element equals the similarity s(x;, x j) 

(dissimilarity d(x;,Xj)) between vectors x; and Xj. It is also referred to as the 
proximity matrix to include both cases. P is a symmetric matrix.2 Moreover, if 
P is a similarity matrix, its diagonal elements are equal to the maximum value 
of s. On the other hand, if P is a dissimilarity matrix, its diagonal elements are 
equal to the minimum value of d. Notice that for a single pattern matrix there 

1 Recently. a method that produces hierarchies which do not. necessarily, possess the nesting property 
has been proposed ([Frig 97]). 

2 Note. however. that in [Ozaw 83) a hierarchical clustering algorithm. called RANCOR, is discussed. 
which is based on asymmetric proximity matrices. 
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exists more than one proximity matrix depending on the choice of the proximity 
measure p(x;,x1). However, fixing p(x;,x1), one can easily observe that for 
a given pattern matrix there exists an associated single proximity matrix. On the 
other hand, a proximity matrix may correspond to more than one pattern matrices 
(see Problem 13.1). 

Example 13.1. Let X = {x;. i = I, ... , 5), with XJ = [I, If, x2 = [2, If, x3 = 
[5, 4f, x4 = [6, 5f, and x5 = (6.5, 6f. The pattern matrix of X is 

and its corresponding dissimilarity matrix, when the Euclidean distance is in use, is 

P(X) ~ l ! I 5 6.4 74] 0 4.2 5.7 6.7 
4.2 0 1.4 2.5 

6.4 5.7 1.4 0 1.1 
7.4 6.7 2.5 I. I 0 

When the Tanimoto measure is used, the similarity matrix of X becomes 

l I 0.75 0.26 0.21 

0 "] 
0.75 I 0.44 0.35 0.20 

P'(X) = 0.26 0.44 0.96 0.90 
0.21 0.35 0.96 I 0.98 
0.18 0.20 0.90 0.98 I 

Note that in P(X) all diagonal elements are 0, since d2(x, x) = 0, while in P'(X) all 
diagonal elements are equal to I, since sT (x, x) = I . 

A threshold dendrogram, or simply a dendrogram, is an effective means of 
representing the sequence of clusterings produced by an agglomerative algorithm. 
To clarify this idea, let us consider again the data set given in Example 13.1. Let us 
define g(C;, CJ) as g(C;, CJ) = d~';n (C;, C1) (see Section 11.2). One may easily 
see that, in this case, the clustering sequence for X produced by the generalized 
agglomerative scheme, when the Euclidean distance between two vectors is used, 
is the one shown in Figure 13.1. At the first step x 1 and x2 form a new cluster. 
At the second step X4 and xs stick together, forming a single cluster. At the 
third step X3 joins the cluster {x4, xs) and, finally, at the fourth step the clusters 
{x1. x2) and {x3, X4, xs) are merged into a single set, X. The right-hand side of 
Figure 13.1 shows the corresponding dendrogram. Each step of GAS corresponds 



Section 13.2: AGGLOMERATIVE ALGORITHMS 

{ {:C1,X2},{X3},{x_,,X5}} 

x 2 
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FIGURE 13.1: The clustering hierarchy for X of Example 13.1 and its corres
ponding dendrogram. 

to a level of the dendrogram. Cutting the dendrogram at a specific level results in 
a clustering. 

A proximity dendrogram is a dendrogram that takes into account the level of 
proximity where two clusters are merged for the first time. When a dissimilarity 
(similarity) measure is in use, the proximity dendrogram is called a dissimilaritv 
(similarity) dendrogram. This tool may be used as an indicator of the natu
ral or forced formation of clusters at any level. That is, it may provide a clue 
about the clustering that best fits the data, as will be explained in Section 13.5. 
Figure 13.2 shows the similarity and dissimilarity dendrograms for X of Example 
13.1 when P'(X) and P(X) are in use, respectively. 

Before we proceed to a more detailed discussion of the hierarchical algorithms. 
an important note is in order. As explained earlier, this kind of algorithm determines 
a whole hierarchy of clusterings, rather than a single clustering. The determina
tion of the whole dendrogram may be very useful in some applications, such as 
biological taxonomy (e.g., see [Prit 71 ]). However, in other applications we are 
interested only in the specific clustering that best fits the data. If one is willing 
to use hierarchical algorithms for applications of the latter type, he or she has to 
decide which clustering of the produced hierarchy is most suitable for the data. 
Equivalently, one must determine the appropriate level to cut the dendrogram that 
corresponds to the resulting hierarchy. Similar comments also hold for the divi
sive algorithms to be discussed later. Methods for determining the cutting level 
are discussed in the last section of the chapter. 

In the sequel, unless otherwise stated, we consider only dissimilarity matrices. 
Similar arguments hold for similarity matrices. 

13.2.2 Agglomerative Algorithms Based on Matrix Theory 

These algorithms may be viewed as special cases of GAS. The input in these 
schemes is the N x N dissimilarity matrix, Po= P(X), derived from X. At each 
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FIGURE 13.2: (a) The proximity (similarity) dendrogram for X using P'(X) 
from Example 13.1. (b) The proximity (dissimilarity) dendrogram for X using 
P(X) from Example 13.1. 

level, t, when two clusters are merged into one, the size of the dissimilarity matrix 
Pr becomes (N - t) x (N - t). Pr follows from Pr-I by (a) deleting the two rows 
and columns that correspond to the merged clusters and (b) adcting a new row and 
a new column that contain the distances between the newly formed cluster and 
the old (unaffected at this level) clusters. The distance between the newly formed 
cluster Cq (the result of merging C; and C j) and an old cluster, Cs, is a function 
of the form 

(13.2) 

The procedure justifies the name matrix updating algorithms, often used in 
the literature. In the sequel, we give an algorithmic scheme, the matrix updating 
algorithmic scheme (MUAS), that includes most of the algorithms of this kind. 
Again, t denotes the current level of the hierarchy. 

Matrix Updating Algorithmic Scheme (MUAS) 

• 1. Initialization: 

-I.I. mo= ((x; }. i = 1, .... N}. 
-1.2. Po= P(X). 
-1.3.t=O 
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• 2. Repeat: 

-2.1.t=t+I 
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-2.2. Find C;, C1 such that d(C;, C1) = minr,s=l, ... ,N . rt:s d(Cr, C.1 ). 

- 2.3. Merge C;, CJ into a single cluster Cq and form !H1 = (ffi 1_ 1 -

{C;, C1}) U {Cq}. 
- 2.4. Define the proximity matrix P1 from Pi - I as explained in the text. 

• Until ffi N-1 clustering is formed, that is, all vectors lie in the same cluster. 

Notice that this scheme is in the spirit of the GAS. In [Lane 67] it is pointed out 
that a number of distance functions comply with the following update equation: 

d(C,-1, C) = a;d(C; , Cs)+ a1d(C1 , Cs)+ bd(C;, C1) 

+ cld(C; , Cs) - d(Cj, Cs)I (13.3) 

Different values of a;, a 1, b, and c correspond to different choices of the dis
similarity measure d(C;, c1). Equation (13.3) is also a recursive definition of a 
distance between two clusters, initialized from the distance between the initial 
point clusters. Another formula, not involving the last term and allowing a;, a1, 
and b to be functions of C;, Cj, and Cs. is discussed in [Bobe 93] . In the sequel 
we present algorithms stemming from MUAS and following from Eq. (13.3) for 
different values of the parameters a;, a 1, b, c. 

The simpler algorithms included in this scheme are: 

• The single link algorithm. This is obtained from Eq. (13.3) if we set a; = I /2, 
a1 = 1/2, b = 0, c = -1/2. In this case, 

( 13.4) 

The d;::in measure, defined in Section 11 .2, falls under this umbrella. 

• The complete link algorithm. This follows from Eq. ( 13.3) if we set a; = ~. 
OJ=!. b = 0 and c =! · Then we may write3 -

( 13.5) 

Note that the distance between the merged clusters C; and CJ does not enter into the 
above formulae. In the case where a similarity, instead of a dissimilarity, measure 
is used then (a) for the single link algorithm the operator min should be replaced 
by max in Eq. (13.4) and (b) for the complete link algorithm the operator max 
should be replaced by the operator min in Eq. ( 13.5). To gain a further insight into 
the behavior of the above algorithms, let us consider the following example. 

3Equations ( 13.4) and ( 13.5) suggest that merging clusters is a minimax problem for the complete 
link and a min/min problem for the single link. 
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FIGURE 13.3: (a) The data set X. (b) The dissimilarity dendrogram produced 
by the single link aJgorithm. (c) The dissimilarity dendrogram produced by the 
complete linJ< algorithm (the level of the final clustering is not shown). 

Example 13.2. Consider the data set shown in Figure l 3.3a. The first seven points fonn 
an elongated cluster while 1he remaining four torm a rather compact cluster. The numhers 
on top of the edges connecting the points correspond to the respective (Euclidean) dis
tances between vectors. These distances are also taken to measure the distance between 
two initial point clusters. Distances that are not shown are as!;umed to have very large 
values. Figure l 3.3b shows the dendrogram produced by the application of the single 
link algorithm to this data set. As one can easily observe, the algorithm first recov
en; the elongated cluster, and the second cluster is recovered at a higher dis!'imilarity 
level. 

Figure 13.3c shows 1he dendrogram pro<luce<l by the complete link algorithm. It is easily 
noticed that this algori thm proceeds by recovering compact clusters. 
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Remark 

• The preceding algorithms are lhe two extremes of the family described by 
Eq. ( 13.3). Indeed, the clusters produced by the single link algorithm are 
formed at low dissimilarities in the dissimilarity dcndrogram. On the other 
hand, the clusters produced by lhe complete link algorithm are formed at 
high dissimilarities in the dissimilarity dendrogram. This happens because 
in the single link (complete link) algorithm lhe minimum (maximum) of the 
distancesd(C;. Cs) andd(Cj. C.f) is used as the distance between d(Cq. Cs). 
This implies that the single link algorithm has a tendency to favour elongated 
clusters. This characlerislic is also known as chaininf? effect. On the other 
hand. the complete link algorithm proceeds by recovering small compact 
clusters. and it should be preferred if there is evidence that compact clusters 
underlie X. 

The rest of the algorithms, to be discussed next, are compromises between these 
two extremes.4 

• The weighted pair group method averaf?e (WPGMA) algorithm is obtained 
from Eq . ( 13.3) if we set a; = a j = ~, b = 0, and c = 0, that is. 

(13.6) 

Thus, in this case lhe distance between the newly formed cluster C,1 and 
an old one C., is defined as lhe average of distances between C;. Cs and 
C1.C· 

• The 11nweif?hted pair group method average (UPGMA) algorithm is denned 
if we choose a· = _!!.i_ a · = _!!j_ b = 0 c = 0 where /1 · and /1 · are the 

• I 11; + 11j • } 11; + 11,1 • " ' I ) 

cardinalities of C; and C j, respectively. In lhis case the distance between 
c'f and c .. is defined as 

12 · II . 
d(C,1, C) = --

1
-d(C;. C,) + - - 1 -d(Cf, Cs) 

n; + nj n; +n,; 
( 13.7) 

• The unweighted pair group method centroid ( UPGMC) algorithm results on 
. _!!,L_ " 1 b 11;n; ·- 0 h . settmg: a;= ·+ .. a1· = ~,,. .... . = - -< - . ->, ." - . t at ts. 

1J 1 II; / . n) n 1 -rn 1 -

( 13.8) 

•1The terminology usc<l ht:rt: follows that given in (Jain 88). 
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This algorithm has an interesting interpretation. Let the representatives of 
the clusters be chosen as the respective means (centroids), that is, 

1 
mq =- L::x 

n 
q :rECq 

(13.9) 

and the dissimilarity to be the squared Euclidean distance between cluster 
representatives. Then it turns out that this recursive definition of dqs is noth
ing but the square Euclidean distance between the respective representatives 
(see Problem 13.2), that is, 

(13.10) 

• The weighted pair group method centroid (WPGMC) algorithm is obtained 
if we choose a;= aj = !. b =-!.and c = 0. That is, 

1 1 1 
dqs = -d;s + -djs - -dij 

2 2 4 
(13.11) 

Note thatEq. ( 13.11) results from ( 13.8) ifthe merging clusters have the same 
number of vectors. Of course, this is not true in general, and the algorithm 
basically computes the distance between weighted versions of the respective 
centroids. A notable feature of the WPGMC algorithm is that there are cases 
where dqs ~ min(d;s. djs) (Problem 13.3). 

• The Ward or minimum variance algorithm. Here, the distance between two 
clusters C; and Cj, d;j' is defined as a weighted version of the squared 
Euclidean distance of their mean vectors, that is, 

, n;nj 
d;· = ---d;j 

1 n; + nj 
(13.12) 

where dij = llm; - m j 11 2 . Thus, in step 2.2 of MUAS we seek the pair of 
clusters C;, C j so that the quantity d;j is minimum. Furthermore, it can be 
shown (Problem 13.4) that this distance belongs to the family of Eq. (13.3) 
and we can write 

n · +n . n · +n n 
d~S = I .! d'. + } S d'. - S d 1 

· (13 13) 
n; + n j + ns rs n; + n j + ns JS n; + n j + ns •J • 

The preceding distance can also be viewed from a different perspective. Let us 
define 

e~ = L llx - mrll 2 

:rEC, 
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as the variance of the rth cluster around its mean and 

( 13.14) 

as the total variance of the clusters at the tth level (where N - t clusters are 
present). We will now show that Ward's algorithm forms ITT1+1 by merging the rwo 
clusters that lead to the smallest possible increase of the total variance. Suppose 

that clusters Ci and Cj are chosen to be merged into one, say Cq . Let £;~ 1 be the 
total variance after the clusters C; and Cj are merged in Cq at the t +I level. Then, 

since all other clusters remain unaffected, the difference 6.£;~ 1 = £;~ 1 - E1 is 
equal to 

Taking into account that 

Eq. (13.15) is written as 

"Eij 2 2 2 
u t+I =eq-ei -e; 

6.£;~ 1 = n;llm; 11 2 +n;llmJ11 2 
- nq llmq 11 2 

Using the fact that 

Eq. (13.17) becomes 

ij n;flj 2 I 

6.£1+1 = ---llm; -m;I/ =d; · 
n; + n; 1 

( 13 .15) 

(13 .16) 

(13.17) 

(13.18) 

(13.19) 

which is the distance minimized by Ward's algorithm. This justifies the name 
minimum variance. 

Example 13.3. Consider the following dissimilarity matrix: 

Po~[! 
2 26 

371 0 3 25 36 
3 0 16 25 

26 25 16 0 105 
37 36 25 1.5 

where the corresponding squared Euclidean distance is adopted. As one can easily observe, 
the first three vectors, x 1. x2. and x3, are very close to each other and far away from 
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the others. Likewise, x 4 and x 5 lie very close to each other and far away from the first 
three vectors. For this problem all seven algorithms discussed before result in the same 
dendrogram. The only difference is that each clustering is formed at a different dissimilarity 
level. 

Let us first consider the single link algorithm. Since Po is symmetric, we consider 
only the upper diagonal elements. The smallest of these elements equals 1 and occurs 
at position ( 1, 2) of P0 . Thus, x 1 and x2 come into the same cluster and ~l 1 = 
I {x 1. x2J. {x3}, {x 4}, {x5}} is produced. In the sequel, the dissimilarities among the newly 
formed cluster and the remaining ones have to be computed. This can be achieved via Eq. 
(13.4). The resulting proximity matrix, Pi, is 

2 
0 
16 
25 

25 
16 
0 

1.5 

Its first row and column correspond to the cluster {x 1, x2 ). The smallest of the upper 
diagonal elements of P1 equals 1.5. This means that at the next stage, the clusters {x4 } 

and {x5} will get together into a single cluster, producing ~!2 = { {x 1. x2), {x3}, {x4, x5) ). 
Employing Eq. (13.4), we obtain 

2 
0 
16 

25] 16 
0 

where the first row (column) corresponds to {x 1. x2J. and the second and third rows 
(columns) correspond to {x3} and {x4, x5}, respectively. Proceeding as before, at the next 
stage {x1,x2} and {x3} will get together in a single cluster and m3 = {{x1.x2.x3}, 
{x4, x5)} is produced. The new proximity matrix, P3, becomes 

where the first and the second row (column) correspond to {x1, xz, x3) and {x4, x5) clus
ters, respectively. Finally, m4 = { {x I· x2, x3, x4, x5)} will be formed at dissimilarity level 
equal to 16. 

Working in a similar fashion, we can apply the remaining six algorithms to Po. Note that 
in the case of Ward's algorithm, the initial dissimilarity matrix should be ! Po. due to the 
definition in Eq. (13.12). However, care must be taken when we apply UPGMA, UPGMC, 
and Ward's method. In these cases, when a merging takes place the parameters a;, a j, b, 
and c must be properly adjusted. The proximity levels at which each clustering is formed 
for each algorithm are shown in Table 13.1. 

It is worth noting that the considered task is a nice problem with two well-defined 
compact clusters lying away from each other. The preceding example demonstrates that in 
such "easy" cases all algorithms work satisfactorily (as happens with most of the clustering 
algorithms proposed in the literature). The particular characteristics of each algorithm are 
revealed when more demanding situations are faced. Thus, in Example 13.2, we saw the 
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Table13.I: The results obtained with the seven algorithms discussed when they 
are applied to the proximity matrix of Example 13.3 

SL CL WPGMA UPGMA WPGMC UPGMC Ward's Algorithm 

~Ho 0 0 0 0 0 0 0 
~11 , I I 0.5 
~H1 1.5 1.5 1.5 1.5 1.5 1.5 0.75 
~HJ 2 3 2.5 2.5 2.25 2.25 1.5 
~l!4 16 37 25.75 27.5 24.69 26.46 31.75 

different behaviors of the single link and complete link algorithms. Characteristics of other 
algorithms. such as the WPGMC and the UPGMC, are discussed next. 

13.2.3 Monotonicity and Crossover 

Let us consider the following dissimilarity matrix: 

p = [1~8 
2.4 
2.3 

1.8 
0 

2.5 
2.7 

2.4 
2.5 
0 
l.2 

2.3] 2.7 
1.2 
0 

Application of the single and complete link algorithms to P gives rise to the dissim
ilarity dendrograms depicted in Figure I 3.4a and I 3.4b, respectively. Application 
of the UPGMC and WPGMC algorithms to P results in the same dissimilarity 
dendrogram. which is shown in Figure 13.4c. In this dendrogram something inter
esting occurs. The cluster !x 1, x2, x3, x4) is formed at a lower dissimilarity level 
than cluster {x 1, x2) . This phenomenon is called crossover. More specifically. 
crossover occurs when a cluster is formed at a lower dissimilarity level than any of 
its components. The opposite of the crossover is monotoniciry. Satisfaction of the 
latter condition implies thal each cluster is formed at a higher dissimilarity level 
than any one of its components. More formally, the monotonicity condition may 
be stated as follows: 

" If clusters C; and C j are selected to be merged in cluster C,1• at the tth level 
of the hierarchy, then the following condition must hold: 

for all Cb k =f. i, j, q ." 
Monotonicity is a property that is exclusively related to the clustering algorithm 

and not to the (initial) proximity matrix. Recall Eq. ( 13.3) defined in terms of the 
parameters a;. a j, b, and c. 
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FIGURE 13.4: Dissimilarity dendrograms derived from (a) single link, (b) com
plete link, and (c) UPGMC and WPGMC when they apply to P. The third 
dendrogram exhibits the crossover phenomenon. 

In the sequel, a proposition is stated and proved that allows us to decide whether 
an algorithm satisfies the monotonicity condition. 

Proposition 1. If a; and a j are nonnegative, a; + a j + b '.:: 1, and either (a) 
c '.:: 0 or (b) max {-a;, -a j} ::: c ::: 0, then the corresponding clustering method 
satisfies the monotonicity condition. 

Proof. (a) From the hypothesis we have that 

b '.:: 1 - a; - Gj 

Substituting this result in Eq. (13.3) and after some rearrangements, we obtain 

d(Cq. Cs)'.:: d(C;, Cj) + a;(d(C;, Cs) -d(C;, Cj)) 

+aj(d(Cj, Cs) -d(C;, Cj)) + cld(C;, Cs) - d(Cj, C., )I 

Since, from step 2.2 of the MUAS in Section 13.2.2, 

d(C;, Cj) = mind(Cr, Cu) 
r.u 

the second and third terms of the last inequality are nonnegative. Moreover, the 
fourth term of the same inequality is also nonnegative. Therefore, we obtain 

Thus, the monotonicity condition is satisfied. 
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(b) Let d(C;, C5 ) ~ d(CJ. C5 ) (the case where d(C;, C,) < d(C1. C,) may be 
treated similarly). As in the previous case, 

b ~ 1 - a; - a1 

Taking into account this inequality, Eq. ( 13.3) gives 

d(Cq. C.,) ~ d(C;, C1) + a;(d(C;, Cs) - d(C;. C1)) 

+a1(d(C1, Cs) - d(C;, C1)) + c(d(C;, C~) -d(CJ. Cs)) 

By adding and subtracting on the right-hand side of this inequality the term 
cd ( C;. C 1) and after some manipulations, we obtain 

d(Cq. C,) ~ (a1 - c)(d(CJ. Cs) - d(C;. C1)) + d(C;, C1) 

+(a;+ c)(d(C;. C,,) - d(C;, C1)) 

Since, from the hypothesis, a1 - c ~ 0 and 

d(C;, C1) = mind(C,., C,,) 
r,u 

from step 2.2 of the MUAS we obtain that 

Note that the conditions of Proposition l are sufficient but not necessary. This 
means that algorithms that do not satisfy the premises of this proposition may still 
satisfy the monotonicity condition. It is easy to note that the single link, the com
plete link, the UPGMA, the WPGMA, and Ward's algorithm satisfy the premises 
of Proposition I. Thus, all these algorithms satisfy the monotonicity condition. 
The other two algorithms, the UPGMC and the WPGMC, do not satisfy the mono
tonicity condition. Moreover, we can construct examples that demonstrate that 
these two algorithms violate the monotonicity property, as follows from Figure 
l 3.4c. However, it is important to note that this does not mean that they always 
lead to dendrograms with crossovers. 

Finally, we note that there have been several criticisms concerning the 
usefulness uf algorithms that do not satisfy the monotonicity condition (e.g .. 
[Will 77. Snea 73]). However, these algorithms may give satisfactory results in 
the frame of certain applications. Moreover, there is no theoretical guideline sug
gesting that the algorithms satisfying the monotonicity condition always lead to 
acceptable results. After all, this ought to be the ultimate criterion for the usefulness 
of an algorithm (unfortunately, such a criterion does not exist in general). 
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13.2.4 Implementational Issues 

As stated earlier, the computational time of GAS is O(N3). However, many effi
cient implementations of these schemes have been proposed in the literature, that 
reduce the computational time by an order of N. For example, in [Kuri 91] an 
implementation is discussed, for which the required computational time is reduced 
to O(N2 log N) . Also, in [Murt 83, Murt 84, Murt 85], implementations for widely 
used agglomerative algorithms are discussed that require 0(N2 ) computational 
time and either O(N2) or O(N) storage. Finally, parallel implementations on 
Single Instruction Multiple Data (SIMD) machines are discussed in [Will 89] and 
[Li 90]. 

13.2.S Agglomerative Algorithms Based on Graph Theory 

Before we describe the algorithms of this family, let us first recall some basic 
definitions from graph theory. 

Basic Definitions from Graph Theory 

A graph G is defined as an ordered pair G = ( V, £),where V = { v;, i = I, ... , N} 
is a set of vertices and E is a set of edges connecting some pairs of vertices. 
An edge, connecting the vertices Vi and v j, will be denoted either by eij or by 
( v;, v j ) . When the ordering of Vi and v j is of no importance, then we deal with 
undirected graphs. Otherwise, we deal with directed graphs. In addition, if no 
cost is associated with the edges of the graph, we deal with unweighted graphs. 
Otherwise, we deal with weighted graphs. In the sequel, we consider graphs 
where a pair of vertices may be connected by at most one edge. In the frame
work of clustering, we deal with undirected graphs where each vertex corresponds 
to a feature vector (or, equivalently, to the pattern represented by the feature 
vector). 

A path in G, between vertices Vi 1 and v;.,, is a sequence of vertices and edges of 
the form v; 1e; 1 ;2 v;2 ... v;.,_ 1e;._1 ;

11 
v;., (Figure 13.Sa). Of course, it is not guaranteed 

that there always exists a path from v; 1 to v;.,. If in this path, v; 1 coincides with 
v;., the path is called a loop or circle (Figure I 3.5b). In the special case in which 
an edge connects a vertex to itself, we have a self-loop. 

A subgraph G' = ( V', E') of G is a graph with V' ~ V and E' ~ E 1. where 
E 1 is a subset of E, whose edges connect vertices that lie in V'. Clearly, G is a 
subgraph of itself. 

A subgraph G' = (V', £') is connected if there exists at least one path con
necting any pair of vertices in V' (Figure 13.Sc). For example, in Figure 13.5c 
the subgraph with vertices v1, v2, v4, and vs is not connected. The subgraph G' 
is complete if every vertex v; E V' is connected with every vertex in V' - { v;} 
(Figure 13.Sd). 
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FIGURE 13.5: (a) A path connecting the vertices v1 and v4. (b) A loop. (c) 
A connected graph. (d) A complete graph. (e) Maximally connected subgraph. 
(f) Maximally complete subgraph. 

A maximally connected subgraph of G is a connected subgraph G' of G that 
contains as many vertices of G as possible (Figure l 3.5e ). A maximally complete 
subgraph is a complete subgraph G' of G that contains as many vertices of G as 
possible (Figure 13.Sf). 

A concept that is closely related to the algorithms based on graph theory is that 
of the threshold graph. A threshold graph is an undirected, unweighted graph with 
N nodes, each corresponding to a vector of the data set X. In this graph there are 
no self-loops or multiple edges between any two nodes. Let a be a dissimilarity 
level. A threshold graph G(a) with N nodes contains an edge between two nodes 
i and j if the dissimilarity between the corresponding vectors x; and x j is less 
than or equal to a, i, j = 1, ... , N. Alternatively, we may write 

(v;, Vj) E G(a), if d(x;, Xj) ~a, i, j = 1, ... , N (13.20) 
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FIGURE 13.6: (a) The threshold graph G(3), (b) the proximity (dissimilarity) 
graph G p(3), (c) the threshold graph G (5), (d) the proximity (dissimilarity) graph 
G p(S), obtained from the dissimilarity matrix P(X) of Example 13.1. 

If similarity measures are used, this definition is altered to 

(vi. Vj) E G(a), if s(Xi , Xj) ~a, i, j = 1, ... , N 

A proximity graph G p(a) is a threshold graph G(a), all of whose edges (vi, v j) 

are weighted with the proximity measure between x; and x j. If a dissimilarity 
(similarity) measure is used as proximity between two vectors, then the proximity 
graph is called a dissimilariry (similarity) graph. Figure 13.6 shows the thresh
old and proximity graphs G(3) and G p(3), G(S) and G p(S) obtained from the 
dissimilarity matrix P(X) given in Example 13.1. 

The Algorithms 

In this section, we discuss agglomerative algorithms based on graph theory con
cepts. More specifically, we consider graphs, G, of N nodes with each node 
corresponding to a vector of X. Clusters are formed by connecting nodes together, 
and this leads to connected subgraphs. Usually, an additional graph property, h (k ) , 
must be satisfied by the subgraphs in order to define valid clusters. In this con
text, the function g involved in GAS is replaced by gh(k)• where h(k) is the graph 
property. Some typical properties that can be adopted are [Jain 88, Ling 72] 

• Node connectivity. The node connectivity of a connected subgraph is the 
largest integer k such that all pairs of nodes are joined by at least k paths 
having no nodes in common. 
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• Edge connectivity. The edge connectivity of a connected subgraph is the 
largest integer k such that all pairs of nodes are joined by at least k paths 
having no edges in common. 

• Node degree. The degree of a connected subgraph is the largest integer k 
such that each node has at least k incident edges. 

The general agglomerative scheme in the context of graph theory is known as the 
graph theory-based algorithmic scheme (GTAS). The algorithm follows exactly 
the same iteration steps as the generalized agglomerative scheme (GAS), with the 
exception of step 2.2. This is expressed as 

for dissimilarity functions 

for similarity functions 
(13.21 ) 

The proximity function 8h<kl ( C,., C_,) between two clusters is defined in terms of 
(a) a proximity measure between vectors (i.e., nodes in the graph) and (b) certain 
constraints imposed by the property h (k) on the subgraphs that are formed . In a 

more formal way, t:h<kJ is defined as 

= min {d(xu, x,,) =a: the G(a) subgraph 
X11ECr.X1,E(, 

defined by C,. U C is (a) connected and either 

(b 1) has the property h (k) or (b2) is complete) 5 ( 13 .22) 

In words. clusters (i.e ., connected subgraphs) are merged (a) based on the prox
imity measure between their nodes and (b) provided that their merging leads to 
a connected subgraph that either has property h(k) or is complete. Let us now 
consider a few examples. 

Single link algorithm: Here connectedness is the only prerequisite . That is, no 
property h(k) is imposed and no completeness is required. Thus (bl) and (b2 ) in 
( 13 .22) are ignored and ( 13.22) is simplified to 

t:li<ki(Cr . C) = min (d(x,,. x") =a: the G(a) 
X11 EC,-.x,.EC.,-

subgraph defined by C,. UC is connected) (13 .23) 

Let us demonstrate the algorithm via an example. 

~This means 1ha1 all nodes of C,. Uc., participate in 1he required propcrlies. 
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Example 13.4. Consider the following dissimilarity matrix: 

3 
1.2 0 2.5 

[ 

0 1.2 
3.2 3.9 
3.7 4.2] 

p = 3 2.5 0 1.8 2.0 
l.8 0 1.5 
2.0 l.5 0 

3.7 3.2 
4.2 3.9 

The first clustering, m0 , is the one where each vector of X forms a single cluster (see Figure 
13.7). In order to determine the next clustering, m I· via the single link algorithm, we need 

3 
• • 

• 
4 

• • 
2 5 

G(O) 

I 3 

I >· 2 5 

G(I.8) 

I 3 

Vt>· 
2 5 

G(3.0) 

I 3 

rz1>, 
2 5 

G(3.9) 

I 3 

I • 
• 
4 

• 
2 5 

G( 1.2) 

l 3 

I f>, 
2 5 

G(2.0) 

I 3 

tzt>, 
2 5 

G(3.2) 

I 3 

~4 
2 5 

G(4.2) 

I 

I 
2 

3 • 

G(l.5) 

I 3 

VI>· 
2 5 

G(2.5) 

I 3 

rzt>, 
2 5 

G(3.7) 

FIGURE 13.7: Threshold graphs derived by the dissimilarity matrix P given in 
Example 13.4. 
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to compute 8h(k) ( C,.. Cs) for all pairs of the existing clusters. For {x 1) and {x2 ), the value 
of 8/J(k) is equal to 1.2, since {xi) U {x2) become connected for a first time in G( 1.2). 
Likewise, gh(k) ( {x 1 }, {x3}) = 3. The rest of the gh(k) values are computed in a similar 
fashion. Then, using Eq. (13.21), we find that gh(kj({x1J. {x2}) = 1.2 is the minimum 
value of gh(k) and thus {x 1} and {x2} are merged in order to produce 

Following the same procedure, we find that the minimum 8h(k) among all pairs of clusters 
is g/J(k)({x4}, {x5}) = 1.5. Thus, ~)l2 is given by 

For the formation of ~)l3 we first consider the clusters {x3} and {x4, x5). In this case 
gh(kJ({x3}. {x4, x5}) = 1.8, since {x3} U {x4, x5) becomes connected at G( 1.8) for a first 

time. Similarly, we find that gh(k) ( {x 1, xz}, {x3}) = 2.5, and gh(k) ( {x 1, x2}. {x 4. x5}) = 
3.2. Thus. 

~ll3 = {{x t. xz}, {x3. x4, x5)} 

Finally. we find that gh(kJ({x1, xz), {x3, x4, x5}) = 2.5 and ffi4 is formed at this level. 
Observe that at G(2.0) no clustering is formed. 

Remark 

• In the single link algorithm no property h(k) is required, and Eq. (13.23) is 
basically the same as 

gh<kJ(C,, C,) = min d(x, y) 
xEC,.yEC, 

( 13.24) 

Hence the algorithm is equivalent to its single link counterpart based on 
matrix theory and both produce the same results (see Problem 13.7). 

Complete link algorithm. The only prerequisite here is that of completeness; that 
is, the graph property h(k) is omitted. Since, connectedness is a weaker condition 
than completeness, subgraphs form valid clusters only if they are complete. Let 
us demonstrate the algorithms via the case of Example 13.4. 

Clusterings mo. m I, and m2 are the same as those produced by the single 
link algorithm and are formed by G(O), G(l.2), and G(l.5), respectively. 
Let us derive the m3 clustering. It is 8h(kj({x3}, {X4, X5)) = 2, because at 
G(2.0), {x3} U {x4, x5) becomes complete for the first time. Similarly, gh(k)({x1, 

x2). {x3}) = 3 and g1ickJ({x1, x2), {x4, x5}) = 4.2. Thus, the resulting Bh cluster
ing is the same as the one obtained by the single link algorithm. The only difference 
is that it is formed al graph G (2.0) instead of G(l .8), which was the case with the 
single link algorithm. Finally, the last clustering, ffi4 is defined at G(4.2). 
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Remark 

• A little thought suffices to see that Eq. ( 13.22) for the complete link algorithm 
is equivalent to 

&h(kJ(C,, C 5 ) = max d(x, y) 
xeC,,yeC, 

(13.25) 

and, thus, this algorithm is equivalent to ils matrix-based counterpart (see 
Problem 13.8) 

The single and the complete link algorithms may be seen as the extreme cases of 
the GTAS scheme. This is because the criteria adopted for the formation of a new 
cluster are the weakest possible for the single link and the strongest possible for 
the complete link algorithm. A variety of algorithms between these two extremes 
may be obtained if we make different choices for &ii(k)- From Eq. (13.22) it is clear 
that this may be achieved by changing the property h(k), where k is a parameter 
whose meaning depends on the adopted property h(k). For example, in Figure 
13.8, the value of k for the properties of node connectivity, edge connectivity, and 
node degree is 3. 

Example 13.5. In this example we demonstrate the operation of the property h(k). Let 
us consider the following dissimilarity matrix: 

0 I 9 18 19 20 21 
I 0 8 13 14 15 16 
9 8 0 17 10 ll 12 

P(X) = 18 13 17 0 5 6 7 
19 14 IO 5 0 3 4 
20 15 II 6 3 0 2 
21 16 12 7 4 2 0 

Node connectivity : 3 

Edge connectivity : 3 

Node degree 3 

FIGURE 13.8: A graph with node connectivity, edge connectivity, and node 
degree equal to 3. 
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FIGURE 13.9: The proximity graph G( 13) derived by the dissimilarity matrix 
P given in Example 13.5. 

Figure 13.9 shows the G( 13) proximity graph produced by this dissimilarity matrix. Let 
h(k) be the node degree property with k = 2; that is, it is required that each node has at least 
two incident edges. Then the obtained threshold dendrogram is shown in Figure 13 . lOa. At 
dissimilarity level I. XJ and x2 form a single cluster. This happens because {x1) U {x2} 
is complete at G(l), despite the fact that property h(2) is not satisfied (remember the 
disjunction between conditions (b I) and (b2) in Eq. ( 13.22)). Similarly, {x 6] u {x7) forms a 
cluster at dissimilarity level 2. The next clustering is formed at level 4, since {x5) U {x6. x7) 

becomes complete in G(4) . At level 6. x4, x5, X6, and x7 lie for the first time in the same 
cluster. Although this subgraph is not complete, it does satisfy h(2). Finally, al level 9, x 1. 

xz. and x3 come into the same cluster. Note that, although all nodes in the graph have node 
degree equal to 2. the final clustering will be formed at level I 0 because at level 9 the graph 
is not connected . 

Assume now that h(k) is the node connectivity property, with k = 2; that is, all pairs ot 
nodes in a connected subgraph are joined by at least two paths having no nodes in common. 
The dissimilarity dendrogram produced in this case is shown in Figure 13.1 Ob. 

Finally. the dissimilarity dendrogram produced when the edge connectivity property with 
k = 2 is employed is shown in Figure 13.1 Oc. 

ll is not difficull to see that all these properties fork = I resull in the single link 
algorithm. On the other hand, as k increases, the resulling subgraphs approach 
completeness. 

Example 13.6. Consider again the dissimilarity matrix of the previous example. Assume 
now that h(k) is the node degree property with k = 3. The corresponding dendrogram 
is shown in Figure 13.11. Comparing the dendrograms of Figures 13.1 Oa and 13.11. we 
observe that the same clusters in the second case are formed in larger dissimilarity levels. 
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FIGURE 13.10: Dissimilarity dendrograms related to Example 13.5. (a) Dis
similarity dendrogram produced when h(k) is the node degree property, with 
k = 2. (b) Dissimilarity dendrogram produced when h(k) is the node connec
tivity property, with k = 2. (c) Dissimilarity dendrogram produced when h(k) is 
the edge connectivity property, with k = 2. 

7 '---~----' 
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FIGURE 13.11: Threshold dendrogram related to Example 13.6 for the node 
degree property and k = 3. 
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Clustering Algorithms Based on the Minimum Spanning Tree 

A spanning tree is a connected graph (containing all the ver1ices of the graph) and 
having no loops (i.e .. there exists only one path connecting any two pairs of nodes 
in the graph.). If the edges of the graph are weighted, we define as the weight of the 
spanning tree the sum of the weights of its edges. A minimum spanning tree (MST) 
is a spanning tree with the smallest weight among all spanning trees connecting 
the nodes of the graph. An MST of a graph may be derived with Prim's algorithm 
or Kruskal's algorithm (e.g., see [Horo 78]). Note that there may be more than 
one minimum spanning trees for a given graph. However, when the weights of the 
edges of G are different from each other, then the MST is unique. In our case, the 
weights of a graph are derived from the proximity matrix P(X). 

Searching for the MST can also be seen as a special case of the GTAS scheme, 
if we adopt in place of f.ih(k l (Cr, CJ the following proximity function: 

g(C,., C,) = min{wij: x; E Cr. Xj EC,} 
IJ 

wherewiJ =d(x;.Xj). 

( 13.26) 

In words, this measure identifies the minimum weight of the MST that connects 
the subgraphs corresponding to C,. and Cs. 

Once the MST has been determined (using any suitable algorithm), we may iden
tify a hierarchy of clusterings as follows: the clusters of the clustering at level t are 
identified as the connected components of G if only the edges of its MST with the 
smallest t weights are considered. ll takes a little thought lo see that this hierarchy is 
identical to the one defined by the single link algorithm, at least forthe case in which 
all the distances between any two vectors of X are different from each other. Thus. 
this scheme may also be viewed as an alternative implementation of the single link 
algorithm. The following example demonstrates the operation of this scheme. 

Example 13.7. Let us consider the following proximity mat1ix. 

r 

() 1.2 4.0 4.6 5.1] 
1.2 () 3.5 4.2 4.7 

p = 4.0 3.5 () 2.2 2.8 
4.6 4.2 2.2 () 1.6 
5.1 4.7 2.8 1.6 () 

The MST derived from this proximity matrix is given in Figure l 3. I 2a. The corresponding 

dendrograrn is given in Figure I 3. I 2(b). 

It is easy lo observe that a minimum spanning tree uniquely specifies the den
drogram of the single link algorithm. Thus, MST can be used as an alternative to 
the single link algorithm and can lead to computational savings. 
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FIGURE 13.12: (a) The minimum spanning tree derived with the dissimilarity 
matrix given in Example 13.7. (b) The dissimilarity dendrogram obtained with the 
algorithm based on the MST. 

13.2.6 Ties in the Proximity Matrix 

In cases in which the vectors consist of interval-scaled or ratio-scaled features, the 
probability of a vector of the data set X being equidistant from two other vectors 
of X is very small for most practical problems. However, if we deal with ordinal 
data, this probability is not negligible. The fact that a vector is equidistant from 
two other vectors implies that a proximity matrix P will have at least two equal 
entries in the triangle above its main diagonal (see Example 13.8). It is interesting 
to see how the hierarchical algorithms behave with such proximity matrices. Let us 
consider first the family of algorithms based on the graph theory via the following 
example. 

Example 13.8. Consider the following dissimilarity matrix: 

P~ [~ 
4 9 6 

!J 
0 3 8 
3 0 3 
8 3 0 
7 2 

Note that P(2 , 3) = P(3, 4). The corresponding dissimilarity graph G(9) is shown in 
Figure I 3. I 3a. Figure I 3. I 3b shows the corresponding dissimilarity dendrogram obtained 
by the single link algorithm. No matter which of the two edges is considered first , the 
resulting dendrogram remains the same. Figure I 3. I 3c ( 13. I 3d) depicts the dendrogram 
obtained by the complete link algorithm when the (3, 4) ((2, 3)) edge is considered first. 
Note that the dendrograms of Figure I 3. ! 3c and ! 3. l 3d are different. 

Let us interchange the P (I, 2) and P (I, 3) entries of P5 and let P1 be the new dissim
ilarity matrix. Figure ! 3.14a shows the dendrogram obtained by the single link algorithm 

5Since a dissimilarity matrix is symmetric. P(2, I) and P(3. I) entries are also interchanged. 
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FIGURE 13.13: (a) The dissimilarity graph (G(9)) for the dissimilarity matrix 
given in Example 13.8. (b) The dissimilarity dendrogram obtained by the sin
gle link algorithm. (c) The dissimilarity dendrogram obtained by the complete 
link algorithm when edge (3. 4) is considered first. (d) The dissimilarity dendro
gram obtained by the complete link algorithm when edge (2. 3) is considered 
first. 

and Figure I 3. I 4b depicts the dendrogram obtained by the complete link algorithm. In thi s 
.:ase. the complete link algorithm produces the same de ndrogram regardless the order in 
which edges (I . 2) and (3 . 4) are considered . 

This example indicates that the single link algorithm leads to the same dendro
gram, regardless of how the ties are considered. On the other hand, the complete 
link algorithm may lead to different dendrograrns if it follows differeut ways uf 
considering the ties. The other graph theory- based algorithms, which fall between 
the single and the complete algorithm, exhibit behavior similar to that of the 
complete link algorithm (see Problem 13. 11 ). 

The same trend is true for the matrix-based algorithms. Note. howeve1; that in 
matrix-based schemes ties may appear at a later sWge in the proximity matrix 
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FIGURE 13.14: (a) The dissimilarity dendrogram obtained by the single link 
algorithm for P1 given in Example 13 .8. (b) The dissimilarity dendrogram obtained 
by the complete link algorithm for P1 given in Example 13.8. 

(see Problem 13.12). Thus, as is showed in [Jard 71 ], the single link algorithm 
treats the ties in the proximity mat1ix in the most reliable way; it always leads 
to the same proximity dendrogram. It seems that every requirement additional 
to the connectivity property (for graph theory based algorithms) or to Eq. (13.4) 
(for matrix theory based algorithms) produces ambiguity and the results become 
sensitive to the order in which ties are processed. From this point of view, the 
single link algorithm seems to outperform its competitors. This does not mean that 
all the other algorithms are inferior. The algorithm that gives the best results is 
problem dependent. However, if one decides to use any other algorithm. different 
from the single link, he or she must treat the possible ties in the proximity matrix 
very carefully. 

13.3 THE COPHENETIC MATRIX 

Another quantity associated with the hierarchical algorithms is the cophenetic 
matrix. This will be used as a tool for the validation of clustering hierarchies in 
Chapter 16. 

Let ffi1;1 be the clustering at which x; and x j are merged in the same cluster for 
the first time (of course, they will remain in the same cluster for all subsequent 
clusterings). Also let L(tij) be the proximity level at which clustering m,iJ is 
defined. We define the cophenetic distance between two vectors as 
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In words. the cophenetic distance between two vectors xi and x j is defined as the 
proximity level at which the two vectors are found in the same cluster for the first 
time. 

The cophenetic distance is a metric. under the assumption of monotonicity. 
To prove this, we need to show that the five conditions stated in Chapter 11 are 
satisfied. Indeed, the first condition holds; that is, 0 ,::: dc(x, y) < +oo. Note 
that the minimum value of de is zero, since L(O) = 0. Also, dc(x, x) = O. 
since a vector x lies in the same cluster with itself at the zero level clustering. 
where dissimilarity is 0. Furthermore, it is obvious that de (x, y) = de (y. x). 
Also, it is easy to see that dc(x. y) = 0 {::} x = y. since at L(O) each cluster 
consists of a single vector. Finally, the triangular inequality is also valid. Indeed, 
for a triple (Xi, x 1 , x, ), let t1 = maxffiJ, tjr} and L1 = max{L(tij), L(tjr) }. It is 
clear, from the property of hierarchy, that in the clustering formed at the t1 level. 
xi, x j, and x, fall into the same cluster. Furthermore, assuming monotonicity. 
dc(x;, x,),::: L1. or 

dc(x;,x,.):::: max(dc(x; , Xj).dc(xj , Xr)) (1 3.27) 

Note that two of these three distances are always equal, depending on which pair 
of vectors came first under a single cluster. This condition is stronger than the 
triangular inequality and is called ultrametric inequality. Notice the close relation 
of ultrametricity and monotonicity. Monotonicity ensures ultrametricity and, as a 
consequence, the triangular inequality. 

The cophenetic matrix is defined as 

Dc(X) = [dc(x;, x j)] = [L(tij)], i, j = I. . . . , N 

It is clear that the cophenetic matrix is symmetric. Moreover, apart from its diag
onal elements, it has only N - l distinct entries, i.e., it has many ties (duplicate 
entries). De (X) is a special case of dissimilarity matrix. since de (x; . x J) satisfy 
the ultrametric inequality. 

A hierarchical algorithm can, thus, be viewed as a mapping of the data proximity 
matrix into a cophenetic matrix. 

Example 13.9. Let us consider the dissimilarity dendrogram of Figure J 3.2b. The 
corresponding cophenetic matrix is 

Dc(X) ~ l4~2 
4.2 4.2 ''] 0 4.2 4.2 4.2 

4.2 0 1.4 1.4 
4.2 4.2 1.4 0 I. I 
4.2 4.2 1.4 I. I 0 
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13.4 DIVISIVE ALGORITHMS 

The divisive algorithms follow the reverse strategy from that of the agglomerative 
schemes. The first clustering contains a single set, X. At the first step, we search 
for the best possible partition of X into two clusters. The straightforward method 
is to consider all possible 2N-I - 1 partitions of X into two sets and to select the 
optimum, according to a prespecified criterion. This procedure is then applied iter
atively to each of the two sets produced in the previous stage. The final clustering 
consists of N clusters, each containing a single vector of X. 

Let us state the general divisive scheme more formally. Here, the tth clustering 
contains r + I clusters. In the sequel, C1j will denote the jth cluster of the tth 
clustering ffi,, t = 0, ... , N - I, j = 1, ... , t + I. Let g ( C; , C j) be a dissimilarity 
function defined for all possible pairs of clusters. The initial clustering ffio contains 
only the set X , that is, Co1 = X . To determine the next clustering, we consider 
all possible pairs of clusters that form a partition of X . Among them we choose 
the pair, denoted by (Cll, C12), that maximizes g .6 These clusters form the next 
clustering !Hi, that is, m1 = (Cll, C12}. At the next time step we consider all 
possible pairs of clusters produced by C 11 and we choose the one that maximizes 
g. The same procedure is repeated for C 12. Assume now that from the two resulting 
pairs of clusters, the one originating from C 11 gives the larger value of g. Let this 
pair be denoted by (C/1, Cf1). Then the new clustering, Hl2, consists of C/I' 

Cf I' and C12. Relabelling these clusters as C21, C22, C23, respectively, we have 
m2 = ( C 21, C 22, C 23}. Carrying on in the same way, we form all subsequent 
clusterings. The general divisive scheme may be stated as follows: 

Generalized Divisive Scheme (CDS) 

• 1. Initialization 

- I. I. Choose ffio = (X} as the initial clustering. 
-1.2. f = 0 

• 2. Repeat 

-2.1. t =I+ I 
- 2.2. For i = 1 to t 

* 2.2.1 Among all possible pairs of clusters (Cr, C5 ) that form a 
partition of C1-u, find the pair (C/_ 1 i' C~_ 1 ;) that gives the 
maximum value for g. · ' 

-Nexti 

6We can also use a similarity function. In that case we should choose the pair of clusters that 
minimizes g. 
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- 2.3. From the t pairs defined in the previous step choose the one that 
maximizes g. Suppose that this is (C/_t.J' c;_ 1). 

- 2.4. The new clustering is 

- 2.5. Relabel the clusters of ~1l 1 . 

• Until each vector lies in a single distinct cluster. 

Different choices of g give rise to different algorithms. One can easily observe 
that this divisive scheme is computationally very demanding, even for moderate 
values of N. This is its main drawback, compared with the agglomerative scheme. 
Thus. if these schemes are to be of any use in practice, some further computational 
simplifications are required. One possibility is to make compromises and not search 
for all possible partitions of a cluster. This can be done by ruling out many partitions 
as not "reasonable," under a prespecified criterion. Examples of such algo
rithms are discussed in [Gowd 95] and [MacN 64]. The latter scheme is discussed 
next. 

Let C; be an already formed cluster. Our goal is to split it further. so that the 
two resulting clusters, C/ and C;2, are as "dissimilar" as possible. Initially, we 

have C/ = 0 and Cr = C;. Then, we identify the vector in Cr whose average dis

similarity from the remaining vectors is maximum and we move it to C/. In the 

sequel. for each of the remaining x E c;2. we compute its average dissimilarity 

with the vectors of C,1. g (x. C/ ), as well as its average dissimilarity with the rest of 

the vectors in Cf. g(x, C;2 -{x )). lfforeve1yx E Cf, g(x, Cr-(x}) < g(x, C/). 
then we stop. Otherwise, we select the vector x E Cf for which the difference 

D(x) = g(x, Cf - {x}) - g(x, C/) is maximum (among the vectors of cf, x 

exhibits the maximum dissimilarity with Cf - (x} and the maximum similarity to 

C,1) and we move it to C/. The procedure is repeated until the termination criterion 
is met. This iterative procedure accounts for step 2.2.1 of the GOS. 

In the preceding algorithm the splitting of the clusters is based on all the fea
tures (coordinates) of the feature vectors. Algorithms of this kind are also called 
polythetic algorithms. In fact, all the algorithms that have been or will be con
sidered in this book arc polythetic. In contrast, there are divisive algorithms that 
achieve the division of a cluster based on a single feature at each step. These are 
the so-called morwthetic algorithms. Such algorithms arc discussed in [Ever 81 ]. 

For more details see [Lamb 62, Lamb 66, MacN 65]. 
A large research effort has been devoted to comparing the performance of a 

number of the various agglomerative algorithms in the context of different applica
tions. The interested reader may consult, for example, [Bake 74, Hube 74, Kuip 75, 
Dube 76, Mill 80, Mill 83]. 
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13.5 CHOICE OF THE BEST NUMBER OF CLUSTERS 

So far, we have focused on various hierarchical algorithms. In the sequel we tum 
our attention to the important task of determining the best clustering within a 
given hierarchy. Clearly, this is equivalent to the identification of the number of 
clusters that best fits the data. An intuitive approach is to search in the proximity 
dendrogram for clusters that have a large lifetime. The lifetime of a cluster is defined 
as the absolute value of the difference between the proximity level at which it is 
created and the proximity level at which it is absorbed into a larger cluster. For 
example, the dendrogram of Figure 13.15a suggests that two major clusters are 
present and that of Figure 13.15b suggests only one. In [Ever 81], experiments 
are conducted to assess the behavior of various agglomerative algorithms when 
(a) a single compact cluster and (b) two compact clusters are formed by the vectors 
of X. 

However, this method involves human subjectivity. Many formal methods that 
may be used in cooperation with both hierarchical and nonhierarchical algorithms 
for identifying the best number of clusters for the data at hand have been proposed 
(e.g., [Cali 74, Duda 73, Hube 76]). 

A comparison of many such methods is given in [Mill 85]. In the sequel, we dis
cuss two methods, proposed in [Bobe 93] for the identification of the clustering that 
best fits the data that are appropriate for agglomerative algorithms. The clustering 
algorithm does not necessarily produce the whole hierarchy of N clusterings, but it 
terminates when the clustering that best fits the data has been achieved, according 
to a criterion. 

(a) (b) 

FIGURE 13.15: (a) A dendrogram that suggests that there are two major clusters 
in the data set. (b) A dendrogram indicating that there is a single major cluster in 
the data set. 
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(a) (b) 

FIGURE 13.16: (a) Examples of "self-similarity" measures. (b) Illustration of 
the termination condition for method II. 

Method I. This is an extrinsic method, in the sense that it requires the determi
nation of the value of a specific parameter by the user. It involves the definition of 
a function h(C) that measures the dissimilarity between the vectors of the same 
cluster C. That is, we can view it as a "self-similarity" measure. For example. 
h ( C) may be defined as 

h1(C) = max{d(x. y), x, y EC} (13.28) 

or 

h2(C) = med{d(x. y), x, y EC} (13.29) 

(see Figure I 3. I 6a). 
When dis a metric distance, h(C) may be defined as 

( 13.30) 

where nc is the cardinality of C. Other definitions of h(C) are also possible for 
the last case. 

Let e be an appropriate threshold for the adopted lz(C) . Then, the algorithm 
terminates at the ~l, clustering if 

( 13 .31) 

In words, m, is the final clustering if there exists a cluster c in ~H, +I with 
dissimilarity between its vectors (h ( C)) greater thane. 
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Sometimes the threshold () is defined as 

() = J.l +ACT ( 13.32) 

whereµ is the average distance between any two vectors in X and a is its variance. 
The parameter A is a user-defined parameter. Thus, the need for specifying an 
appropriate value for () is transferred to the choice of A. However, A may be 
estimated more reasonably than (). 

Method II. This is an intrinsic method; that is, in this case only the structure of 
the data set X is taken into account. According to this method, the final clustering 
mr must satisfy the following relation: 

(13.33) 

where d~;'ili is defined in Chapter 11. In words, in the final clustering, the dissimi
larity between every pair of clusters is larger than the "self-similarity" of each of 
them (see Figure 13.16b). Note that this is only a necessary condition. 

Finally, it must be stated that all these methods are based on heuristic arguments 
and they are indicative only of the best clustering. 

Problems 

13.1 Consider the Euclidean distance as the proximity measure between two vectors. 
Consider only ratio-scaled vectors. Prove that: 

(a) A pattern matrix uniquely identifies the corresponding proximity matrix. 

(b) A proximity matrix does not identify a pattern matrix uniquely. Furthermore, 
there are proximity matrices which do not correspond to any pattern matrix. 

Hint: (b) Consider, for example, the translations of the points of the data set X. 
13.2 Derive Eq. (13.10) from Eq. (13.8). 

Hint: Make use of the following identities: 

(13.34) 

and 

(13.35) 

where C1 and C2 are any two clusters and C3 =Ct U C2. 
13.3 Show that for the WPGMC algorithm there are cases where dqs :'O min(d;s. djs). 
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13.4 Prove 

Hinr: Multiply both sides of 

d' _ nqns d 
qs - nq + n.

1
· qs 

ninj 
---~7dij 
(Iii +n;)-

by (ni + llj )ns /(ni + n j + ns) (This equation holds from Problem 13.2). 

( 13.36) 

13.5 (a) Prove Eq. ( 13.16). 

(b) Complete the proof of Eq. ( 13.19). 

Hint: Take the squares of both sides of Eq. ( 13.18). 
13.6 Consider the proximity matrix given in Example 13.5. Find the proximity den

drograms derived by the GTAS algorithm when h(k) is (a) the node connectivity 
property and (b) the edge connectivity property, with k = 3. 

13.7 Prove that the distance between two clusters Cr and Cs. d(C,., Cs). which are at 
the same level of the hierarchy produced by the single link algorithm, given by 
Eq. (13.4), may be wrillen as 

d(C,. C,) = min d(x. y). 
xEC,.yEC,.. 

(13.37) 

That is, the single link algorithms based on matrix and graph theory are equivalent. 

Hint: Proceed by induction on the level of hierarchy r. Take into account that the 
clusterings ~Hr and ~)! 1 +1 have N - t - 2 common clusters. 

13.8 Prove that the distance between two clusters Cr and C,, d(C,., C5 ), which are at 
the same level of the hierarchy produced by the complete link algorithm, given by 
Eq. ( 13.5), may be wriuen as 

d(C,. Cd= max d(x. y). 
xEC, .yEC,. 

( 13.38) 

That is, the complete link algorithms based on matrix and graph theory are 
equivalent. 

Hint: Take into account the hints of the previous problem. 
13.9 State and prove the propositions of the previous two problems when similarity 

13.10 
measures between two vectors are used. 
Consider the following proximity matrix: 

P~ [~ 
4 9 6 

!] 
0 I 8 
1 0 3 
8 3 0 
7 2 

Apply the single and complete link algorithms to P and comment on the resulling 
dendrograms. 
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13.11 Consider the dissimilarity matrix P given in Example 13.5. Let us change P(3, 4) 
to 6 (P(4, 6) is also equal to 6). Also let h(k) be the node degree property with 
k = 2. Run the corresponding graph theory algorithm when (a) the edge (3, 4) is 
considered first and (b) the edge (4, 6) is considered first. Comment on the resulting 
dendrograms. 

13.12 Consider the following dissimilarity matrix: 

4 
0 
3 
8 
7 

9 
3 
0 
3 
2 

6 
8 
3 
0 

(a) Detem1ine all possible dendrograms resulting from the application of the 
single and the complete link algorithms to P and comment on the results. 

(b) Set P(3, 4) = 4, P(l, 2) = 10, and let Pi be the new proximity matrix. 
Note that Pi contains no ties. Determine all possible dendrograms resulting from 
the application of the UPGMA algorithm to P1 . 

13.13 Consider the general divisive scheme. Assume that at step 2.2.1 of the algorithm the 
cluster c,1_ 1,i consists of a single vector, for i = 1, ... , t, t = 1, ... , N. Compute 
the number of pairs of clusters that have to be examined during the whole clustering 
process. Discuss the merits and the disadvantages of this scheme. 

13.14 Does the alternative divisive algorithm discussed in Section 13.4 guarantee the 
determination of the optimum possible clustering at each level? Is it reasonable to 
extend the answer to this question to other such divisive algorithms? 

13.15 Explain the physical meaning of Eq. ( 13.32). 
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CLUSTERING ALGORITHMS III: 
SCHEMES BASED ON FUNCTION 
OPTIMIZATION 

14.1 INTRODUCTION 

One of the most commonly used families of clustering schemes relies on the 
optimization of a cost function J using differential calculus techniques (e.g .. see 
[Duda 73], [Bezd 80], [Bobr 911. [Kris 95a], [Kris 95b]). The cost J is a function 
of the vectors of the data set X and it is parameterized in terms of an unknown 
parameter vector, (J. For most of the schemes of the family, the number of clusters. 
m, is assumed to be known. 

Our goal is the estimation of (J that characterizes best the clusters underlying X. 
The parameter vector (J is strongly dependent on the shape of the clusters. For exam
ple, for compact clusters (see Figure 14. la), it is reasonable to adopt as parameters a 
set of m points, m;, in the /-dimensional space, each corresponding to a cluster
thus, (J = [m 1 T, m2 T • .... mm T ]T. On the other hand, if ring-shaped cluster~ 
are expected (see Figure 14.1 b), it is reasonable to use m hyperspheres C(c;. r; ). 
i = I. ... , m, as representatives, where c; and r; are the center and the radius of the 
ith hypersphere. respectively. In this case. (J = [c 1

7 . r1, c2T. r2 •... , c,,,T. r,,, IT. 
Spherical or, in general, shell-shaped clusters 1 are encountered in many robot 

vision applications. The basic problem here is the identification of objects (pat
terns) lying in a scene (which is a region in the three-dimensional space), and 
the estimation of their relative positions, using a single or several images (two
dimensional projections of the scene). An important task of this problem is the 
identification of the boundaries of the objects in the image. Given an image 
(see, e.g .. Figure 14.2a), we may identify the pixels that constitute the bound
ary of the objects using appropriate operators (see, e.g .. [Hom 86J, [Kare 94)) 
(see Figure 14.2b). Then, the boundaries of the objects may be considered as 
shell-shaped or linear-shaped clusters and clustering algorithms may be mobilized 

1 These may be hyperellipsoid.~. hyperparaholas. etc. 

489 
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• • • •• • ••• • ••• •• • • • . , • • • 
• • • • •• •• • • • • • • • • • • 

(a) (b) 

FIGURE 14.1: (a) Compact clusters. (b) Spherical clusters. 

in order to recover their exact shape and location in the image. In fact, clustering 
techniques have exhibited satisfactory results at least for the case in which the 
boundaries are known to be shell shaped (e.g., [Kris 95a]). 

A distinct characteristic of most of the algorithms of this chapter, compared 
with the algorithms of the previous chapter, is that the cluster representatives are 
computed using all the available vectors of X and not only the vectors which 
have been assigned to the respective cluster. We will focus on three major cate
gories of algorithms: the mixture decomposition, the fuzzy, and the possibilistic 
approaches. In the first, the cost function is constructed on the basis of random 
vectors, and assignment to clusters follows probabilistic arguments, in the spirit 
of the Bayesian classification. The conditional probabilities here result from the 
optimization process. In the fuzzy approach a proximity function between a vector 
and a cluster is defined and the "grade of membership" of a vector in a cluster is 
provided by the set of membership functions. As is always the case with fuzzy 
approaches, the values of the membership functions of a vector in the various 

(a) 

. -··--1 

I 

(b) 

FIGURE 14.2: (a) The original image of a scene. (b) The image after the 
application of appropriate operators. 
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clusters are interrelated. This constraint is removed in the case or the possibilistic 
approach. Finally, hard clustering may be viewed as a special case of the fun.y 
clustering approach. where each vector belongs exclusively to a cluster. 

14.2 MIXTURE DECOMPOSITION SCHEMES 

The basic reasoning behind this algorithmic family springs from our familiar 
Bayesian philosophy. We assume that there are m clusters, Cj, j = I ..... m. 
underlying the data set.2 Each vector Xj, i == I, ... , N, belongs to a cluster Cj 
with probability P(Cj I Xi) . A vector x; is appointed to the cluster Cj if 

The differences from the classification task of Chapter 2 are that (a) no training 
data with known cluster labelling are available and (b) the a priori probabilities 
P(Ci) = P; are not known either. Thus, although the goal is the same, the 
tool; have to be different. Basically, this is a typical task with an incomplete 
training data set. We are missing the corresponding cluster labelling information 
for each data point x;. Thus. the task fits nicely in the framework introduced in 
Section 2.5.5. 

From equation (2.81) and adopting the notation for the needs of the current 
chapter we have 

N 111 

Q(0; 0 (t)) =LL P (C;lx;; 0 (t)) ln(p(x; ICJ; 8)Pj ). 
i =I j = l 

( 14.1) 

where (J = ref, . .. . e~f. with 8 j being the parameter vector corresponding to 
the j-th cluster, P = ( P1 , .... P111 ] T, with Pj being the a priori probability for the 

j-th cluster and 0 = [8 r , P 7 ]7. The above equation results from the application 
of the E-step of the EM algorithm. The M-step of the algorithm is 

0(t + 1) = arg max Q(0; 0(t)). 
e 

( 14.2) 

Assuming that all pairs of 8 k, (} /s are functionally independent. that is, no 8 .1: 

gives any information about 8 j{j t=- i), we estimate 8 j from eq. ( 14.2) as follows: 

(14.3) 

2Rccall 1h;11 1hc numher 111 is assumed 10 be known. 
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Maximization with respect to P is a constraint optimization problem since 

Ill 

Pk~O. k=l , ... ,m, and LPk=I. 
k=I 

The corresponding Lagrangian function is 

Q(P, A.)= Q(0; 0(t)) -A. (t Pk - l) 
k=I 

(14.4) 

(14.5) 

Taking the partial derivative of Q(P, A.) with respect to P1 and setting it equal to 
0, and after some algebra we obtain 

l N 

Pj = "i L P(Cj Ix;; 0(t)) , j = l , ... , m 
i=l 

Substituting the above equations into Eq. (14.4) we obtain 

Thus, Eq. (14.6) gives 

N m 

A.= LL P(C1lx;; 0(1)) = N 
i=l }=I 

l N 

P1= NLP(C1lx;;0(t)) j=l, ... ,m 
i=l 

(14.6) 

(14.7) 

(14.8) 

Taking into account Eqs. (14.3), (14.8) and (2.87), the EM algorithm for this case 
may be stated as 

Generalized Mixture Decomposition Algorithmic Scheme (GMDAS) 

• Choose initial estimates, 0 = 0(0) and P = P(0).3 

• t = 0 
• Repeat 

--Compute 

P(CJlx;; 0 (1)) = :(x;ICJ; 91(t))P1(t) 
Lk=I p(xdCk. Ok(t))Pk(t) 

i=l,. .. ,N, j=l, ... ,m. 

3 Initial conditions must satisfy the constraints. 

(14.9) 
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-Set (} j (t + l) equal to the solution of the equation 

with respect to(} j• for j = I, ... , m . 

-Set 

I N 
Pj(t +I)= NL P(Cjlx; ; 0(1)). j = I , .. . , m 

i=I 

-I= I+ I 

• Until convergence, with respect to 0. is achieved. 

An appropriate termination criterion for the algorithm is the following: 

110(/ +I) - 0(t)il < c 

493 

(14.IO) 

(14. 11) 

where II · II is an appropriate vector norm and £ is a "small" user-defined constant. 
This scheme is guaranteed to converge to a global or a local maximum of the 
loglikelihood function. However, even if a local maximum solution is reached, it 
may still capture satisfactorily the underlying clustering structure of X. 

Once the algorithm has converged, vectors are assigned to clusters according to 
the final estimates P (C j Ix;) of Eq. ( 14.9) . Hence, the task now becomes a typical 
Bayesian classification problem, if we treat each cluster as a separate class. 

14.2.1 Compact and Hyperellipsoidal Clusters 

In this section. we focus our attention on the case in which the vectors of X form 
compact clusters. A distribution that is suitable for clusters of this scheme is the 
normal distribution, that is, 

j=l , ... , 111 

(14.12) 

or 

(14.13) 

In this case, each vector() j consists of the I parameters of the mean µ j and the 
I (I + I) /2 independent parameters of I: j. A parameter reduction may be obtained 
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by assuming that the covariance matrices are diagonal. If this assumption is too 
strict, another commonly used assumption is that all covariance matrices are equal. 
In the former case fJ consists of 2ml parameters, while in the latter it consists of 
ml + I(/ + I) /2 parameters. 

Combining Eq. (14.12) and Eq. (14.9) results in 

P(Cjlx; 0(1)) 

l:Ej(1)1-l/2 exp(-!<x - JLj(l))TL.j 1(1)(x - JLj(l)))Pj(I) 

I:T= 1 l:Ek(l)l- 112 exp(-!<x - µk(1))T:Ek 1(1)(x - 1Lk(1)))Pk(1) 

(14.14) 

In the sequel, we consider the problem in its most general form; that is, we 
assume that all the means µ, j and the covariance matrices :E j are unknown. We 
also assume that, in general, all :E j's are different from each other. Following an 
approach similar to the one described in Chapter 2, the updating equations forµ j's 
and :E j's from the M-step are 

·( +I)_ L~=l P(Cjlxk; 0(1))Xk 
Jl-1 I - N 

Lk=I P(CjlXk; 0(1)) 
(14.15) 

and 

(14.16) 

j = 1, ... ,m. 
Thus, in the Gaussian case these two iterations replace Eq. (14.10), and Eq. 

(14.14) replaces Eq. (14.9) in the corresponding steps of the GMDAS algorithm. 

Remark 

• Notice that this scheme is computationally very demanding, because at each 
iteration step the inverses of m covariance matrices are required for the 
computation of P(Cjlx;; 0(1)) . As stated earlier, one way to relax this 
demand is to assume that all covariance matrices are diagonal or that all are 
equal to each other. In the latter case, only one inversion is required at each 
iteration step. 

Example 14.1. (a) Consider 3 1wo-dimensional normal distributions with means µ. 1 == 
[!, l]r, l'-2 = [3.5, 3.5]r, µ.3 = (6, If and covariance matrices 

LI= [-~.3 -0.3] 
I . 

:E [ I 0.3] 2 = 0.3 I ' 
:E = [ I 0.7] 1 0.7 I 

respectively. 
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(a) (b) 

FIGURE 14.3: (a) A data set that consists of three groups of points. (b) The 
results from the application of GMDAS when normal mixtures are used. 

A group of 100 vectors is generated from each distribution. These groups constitute the 
data set X. Figure 14.3a is a plot of the data generated. 

We initialize Pj = 1/3, j = I, 2, 3. Also, we set IL;(O) = µ; + y;, where Yi is 

an 2 x I vector with random coordinates, uniformly distributed in the interval [-1, if. 
Similarly, we define I:; (0), i = I, 2, 3. We set s = 0.01. Using these initial conditions, the 
GMDAS for Gaussian pdf's terminates after 38 iterations. The final parameter estimates 
obtained are P' = (0.35. 0.31, 0.34]r, µ 1' = (1.28, 1.16]r, 1L2' = [3.49, 3.68f, µ 31 = 
(5.96, 0.84f. and 

I:' = [l.45 0.01] 
I 0.01 0.57 ' 

I:' - [0.62 0.09] 
2 - 0.09 0.74 ' 

I:3 = [ 0.30 0.0024] 
0. 0024 I. 94 

For comparison, the sample mean values are ,£1 = (1.16, l.1 3)r, /£2 = (3.54, 3.56f, 
,£3 = (5.97, 0.76f, respectively. Also, the sample covariance matrices are 

i; = [ 1.27 
I -0.03 

respectively. 

-0.03] 
0.52 ' 

i; = [0.70 0.07] 2 0.07 0.98 ' 
A [0,32 
'E3 = 0.05 

0.05] 
1.81 

As we can see, the final estimates of the algorithm are close enough to the means and 
the covariance matrices of the three groups of vectors. 

Once the unknown parameters of the model have been estimated. the data vectors are 
assigned to clusters according to the estimated values of P(Cjlx;). Figure 14.3b shows 
the assignment of points to the three clusters, which is in close agreement with the original 
structure. A way to assess the performance of the resulting model estimates is via the 
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(a) (b) 

FIGURE 14.4: (a) The data set, which consists of three overlapping groups of 
points. (b) The results of the GMDAS when Gaussian mixtures are used. 

so-called confusion matrix. This is a matrix A whose (i, j) element is the number of vectors 
I hat originate from the i th distribution and are assigned to the jth cluster.4 For our example 
this is 

0 
100 
4 

This example indicates that 99% of the data from the first distribution are assigned to the 
same cluster (the first one). Similarly, all the data from the second distribution arc assigned 
to the same cluster (the second one) and, finally, 93% of the data from the third distribution 
are assigned to the same cluster (the third one). 

(b) Let us now consider the case in which the three normal distributions are located closer. 
for example, µ 1 = [I, If, M = (2, 2) T. µ3 = [3, If, and with the same covariance 
matrices as before (Figure 14.4). We initialize µ; and l:; , i = I , 2, 3, as in the previous 
case and run the GMDAS for Gaussian pdf's. The confusion matrix for th~~ case is 

[

85 
A2 = 35 

26 
s~ ~] 
0 74 

As expected, each one of the obtained clusters contains a significant percentage of points 
from more than one dis1ribu1ion. 

4 11 should be n0ted here tha1 in real clus1ering applications the confusion matrix cannot he defined. 
since we do not know a priori 1he duster where each feature vector belongs. However, we may use it in 
artificial experiments such as lhis one, in order 10 evaluaie the performance of theclus1ering algorilhms. 
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FIGURE 14.5: (a) A data set that consists of ring-shaped intersecting clusters. 
(b) The results from the application of GMDAS when Gaussian mixtures are used. 

Example 14.2. The data set X, which is depicted in Figure 14.Sa, consists of two inter
secting ring-shaped clusters. Each cluster consists of 500 points. We run the GMDAS with 
Gaussians and m = 2 and e = 0.01. The algorithm terminates after 72 iterations and the 
results are shown in Figure 14.Sb. As expected, the algorithm fails to recover the underlying 
clustering structure of X, because it seeks compact clusters. Generally speaking, GM DAS 
using Gaussians reveals clusters that are as compact as possible, even though the clusters 
underlying X 11wy have a different shape. Even worse, it will identify clusters in X even 
though there is no clustering structure in it. 5 

In [Zhua 96], the case of Gaussian pdf's, contaminated by unknown outlier 
distributions, h(xilCj), is considered. In this case, we can write p(xlCj) = 
(l-e1 )G(xlCj)+e jh(xlCJ), where e J is the level of contamination and G(xjCj) 
is the jth Gaussian distribution. Under the assumption that all h(x;ICj) are 
constant, that is, h(x;ICj) = Cj, i = l, ... , N, p(xlCj) may be written as 
p(xlCj) = (l - e1)G(xlCj) + EjCJ· Then we may use the preceding method
ology in order to identify the mean and the covariance matrices of the normal 
distributions G(xlC1) as well as the values of Ej and CJ. 

14.2.2 A Geometrical Interpretation 

As mentioned earlier, the conditional probability, P(C1lx;), indicates how 
likely it is that x; E X belongs to Cj. i = 1,. _ .. N, subject, of course, to 

5 Jn general, before we apply any clustering algorilhm to identify clusters contained in X, we should 
fin;t check whether there exists any clustering structure in X. This procedure refers to clustering 
tendency and is considered in Chapter t 6. 
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the constraint 

m 

L P(C;lx;) =I ( 14.17) 
j=I 

This may be viewed as the equation of an (m - I )-dimensional hyperplane. For 
notational purposes, let P(C;l.t;) = YJ· j = I, ... , m. Then Eq. (14.17) may be 
wriuen as 

(14.18) 

where yr = [y1, ... , y111 ] and aT = (I, I, ... , IJ. That is, y is allowed to move 
on the hyperplane <lefine<l by the previous equation. In addition, since 0 ~ y j ::; I, 
j = 1, .... m, y lies also inside the unit hypercube (see Figure 14.6). 

This interpretation allows us to derive some useful conclusions for the so-called 
noisy feature vectors or outliers. Let .t; be such a vector. Since Eq. ( 14.17) holds 
for x;, at least one of the y /s. j = I, ... , m, is significant (it lies in the interval 
[I/ m, I J). Thus, x; will affect, at least, the estimates for the corresponding cluster 
Cj, through Eqs. (14.9), (14.IO). and (14.11), and this makes GMDAS sensitive 
to outliers. The following example clarifies this idea further. 

Oil 

y, .... 

001 

000 

101 

p 

l100~ 
/ y, 

// 
oto,o--------~110 
/ 
Y2 

FIGURE 14.6: The hypercube form= 3. The pointy is allowed to move only 
on the shaded region of P. 
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FIGURE 14.7: The data set for Example 14.3. 

Example 14.3. Consider the data se t X shown in Figure 14. 7. It consists of 22 vectors. 
The tirst (next) 10 vectors are drawn from the normal distribution with mean µ, 1 = [0. OJT 
(µ,2 = [4.5. 4.51T) and covariance matrix E1 =I (E2 =/),where I is the 2 x 2 identity 
matrix. The last two points are x 21 = [-6, 5f and x 22 = [ 11 , OIT, respectively. We run 
the GMDAS for Gaussian pd f's o n X. The estimates of P. P. j. and E 1 . j = I . 2. obtained 
arter five iterations , are 

P' = [0.5.0.5)T. µ, '1 = [-0.58.0.35f , µ,; = [4.98.4.00l 

I: ' = [ 4.96 
I -2 .01 

-2.0 1] 
2.63 . 

I:' = [ J.40 
2 -2.53 

2.53] 
3.27 

Tbc resu lting values or P(C)x;). j = 1. 2. i = 1. .... 22. are shown in Tahlc 
14. l . Although x21 aml x22 may be considered as o utliers. since they lie away from 
the two clusters. we get that P (C r /x21) = I and P(C2/x22) = l. due to the constraint 
LJ=I P( C; /x; ) = l. This implies that these points have a nonnegligible impact onµ, 1, IL2· 
Lr . and E2. Indeed. if we run GM DAS for Gaussian pelf's on X 1 = {x ; : i = I .... , :Wl 
(i.e .. we exclude the last two points), using the same initial conditions. we obtain after tivc 
iterations: 

P " = /0.5.0.5 JT . µ '
1
' = 1- 0.03. - 0. 12IT. µ,~ = l4 .:17.4.40IT 

E" = [ 050 
I - 0.01 

-0.0 1] 
1.22 . 

E" = [1.47 
2 0.44 

0.44] 
1.13 

Comparing the results of the two experiments, it is easily observed that the last setup 
gives more accurate estimates of the unknown parameters. 
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Table 14.1: The Resulting A Posteriori Probabilities for the Data Set 
of Example 14.3 

feat. vec. P(C1lx) P(Czlx) feat. vec. P(C1lx) P(Czlx) 

XJ 0 x12 0 
x2 0 x13 0 
x3 0 XJ4 0 
X4 0 x15 0 
X5 0 XJ6 0 
X6 0 XJ7 0 
X7 0 XJS 0 
xs 0 x19 0.99 0.01 
x9 0 xw I 0 
xio 0 I x21 0 I 

XJ! 0 x22 0 

Another interesting observation can be derived by examining the following 
situation. Let l = I. Consider two clusters described by normal distributions 
p(xlCj). j = l, 2, with the same variance and means /Lt and JL2, respectively 
(/11 < /12). Also let P1 = P2. It is not difficult to prove that for x < (>) µ' i1t 2 , 

P(C1 Ix)>( <)P(C2\x). Now consider the points x 1 = 3µ,;:µ 2 and x 2 = 5
tti4µ2

• 

Although these points have the same distance from /11 (i.e., they are symmetric 
with respect to /11 ), it is not hard lo show that P ( C 1 Ix 1) > P ( C 1 lx2). This hap
pens because P(Ci!x) and P(C2ix) are related through Eq. (14.17). Thus, the 
probability of having x in one cluster is affected by the probability of belong
ing to the other. We will soon see that we can free ourselves from such an 
interrelation. 

14.3 FUZZY CLUSTERING ALGORITHMS 

One of the diffo:ulties associakd with the previously disrnssed probabilistic algo
rithms is the involvement of the pd f's, for which a suitable model has to be assumed. 
In addition, it is not easy to handle cases where the clusters are not compact but 
are shell shaped. A family of clustering algorithms that emancipates itself from 
such constraints is that of fuzzy clustering algorithms. These schemes have been 
the subject of intensive research during the past two decades. The major point that 
differentiates the two approaches is that in the fuzzy schemes a vector belongs 
simultaneously to more than one cluster, whereas in the probabilistic schemes, 
each vector belongs exclusively to a single cluster. 
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As already discussed in Chapter 11, afuzzy m-clustering of X is defined by a 
set of functions u j : X ---+ A, j = I, ... , m, where A = (0, I]. 

In the case where A = {O, I), a hard m-clustering of X is defined. In this case, 
each vector belongs exclusively to a single cluster. 

As in the previous section, it is assumed that the number of clusters as well 
as their shape is known a priori. The shape of the clusters is characterized by 
the adopted set of parameters. For example, if we deal with compact clusters, 
a point representative is used to represent each cluster; that is, each cluster is 
represented by I parameters. On the other hand, if we deal with noncompact but. 
say, hyperspherical clusters, a hypersphere is used as a representative of each 
cluster. In this case, each cluster is represented by I+ 1 parameters (I for the center 
of the hypersphere and 1 for its radius). 

In the sequel we use the following notation: 0 j is the parameterized represen
tative of the jth cluster, 0 = [0 1

7 •... , OmTf, U is an N x m matrix whose 
(i, j) element equals u j (x; ), d (x;, 0 j) is the dissimilarity between x; and 0 j, and 
q(> I) is a parameter called afuzzifier. The role of the latter will be clarified 
shortly. Most of the well-known fuzzy clustering algorithms are those <lerive<l by 
minimizing a cost function of the fonn 

N 111 

lq(O, U) =LL ujjd(x;, Oj) 
i=l j=I 

with respect to 0 and U, subject to the constraints 

where 

Ill 

L Uij = 1, i = I. ... , N 
j=I 

U 1j E (0, l]. i = I,. ... N, j = 1,. . ., m, 

N 

O<l:,uu<N. j=l,2,. . .,m 
i=l 

(14.19) 

( 14.20) 

( 14.21) 

In other words, the grade of membership of x; in the j-th cluster is related to 
the grade of membership of x; to the rest m - 1 clusters through Eq. (14.20). 
Different values of q in Eq. ( 14.19) bias lq (0, U) toward either the fuzzy or the 
hard clusterings. More specifically, for fixed 0, if q = 1, no fuzzy clustering is 
better than the best hard clustering in terms of lq (0, U). Howeve1; if q > 1, there 
are cases in which fuzzy clusterings lead to lower values of lq (0, U) than the best 
hard clustering. Let us clarify these ideas further using the following example. 
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Examplel4.4. LetX = {x1.x2,x3,x4},wherex1 = (0,0] 7 ,xz = [2.0J 7 .x3 = 
[O, 3f, x 4 = [2, 3f. Let 91 = [I, Of, 92 = [I. 3] T be the cluster representatives . 
Suppose also that the Euclidean distance between a vector and a representative is in use. 
The hard two-duster clustering that minimizes lq (6, U), fur the above choke of (JI • 6z, 
can be represented by 

The value of lq(6, U) in this case (Eq. 14.19) is l;ard(fJ, U) = 4. Obviously, hard 
clusterings do not depend on q . 

Assume now that q = I and u;j 's are between 0 and I. Then the value of the cost function 
becomes 

2 4 

4uzzy ({}, U) = z::.)u; J + u;zv'IO) + z)u; I v'iQ + u;z) 

i=I i=3 

Since for each x; both u;1 and u;2 are positive and u;1 + u;2 = I, it easily follows 

that 1 (u zzy ({}, U) > 4. Thus. the hard clustering always results in better values of 

l/uzzy (6, U), compared with their fuzzy counterparts, when q = I. 

Assume now that q = 2. The reader should easily verify that when u;2 E [O, 0.48] for 
i = I, 2 and u;1 E [O, 0.48] for i = 3, 4, and, of course, u;1 = l - u;z, for each x;, 

then the value of l{uzzy ({}, U) is less than 4 (see Problem 14.7). Thus, in this case fuzzy 
clusterings are favored over hard ones. 

Finally, let q = 3. In this case, it is easily verified that when u;2 E (0, 0.67] for i = I, 2 
and u;1 E [0,0.67] for i = 3,4 and u;1 = 1 - u;z, for each x;, then the value of 

fuzzy · 13 ({}, U) 1s also less than 4. 

Minimization of Jq(6, U) 

We first assume that no x; coincides with any of the representatives. More formally, 
for an x; let Z; be the set that contains the indices of the representatives (J j for 
which d(x;, (J j) = 0. According to our assumption, Z; = 0, for all i. In the sequel, 
for ease of notation, we drop the index q from lq (6, U). Let us consider first U. 
Minimization of lq(6, U) with respect to U, subject to the constraint (14.20), 
leads to the following Lagrangian function: 

i = I j=I 
(tUij -l) 

1=1 

(14.22) 
N m N 

:1(6,U)= LLu'fjd(x;,6j)- LA.; 
i=I 
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The partial derivative of J(fJ, U) with respect to Urs is 

aJ(fJ, U) q-1 ---- = qurs d(x,.. fJ 5 ) - Ar 
ours 

503 

(14.23) 

Setting ilJ(fJ, U)/Bur 1 equal lo 0 and solving with respect to ur.i. we obtain 

( 
Ar ) / 1 

Llr.i = qd(Xr, (}
5

) 
s=l ..... 111 (14.24) 

Substituting u rs from the previous equation in the constraint equation 
"--..

111 1 b . L..j=I u,.; = . we o lam 

t (. Ar )0 
j=I qd(Xr,fJj) 

or 

q 
) .... r == ----------

( L:'j'=I (d(x,1.eJ0 )"- I 

( 14 .25) 

Combining Eq. ( 14.25) with (14.24) and using a bit of algebra, we obtain 

r= l .... . N.s= l ..... m . 

I 

L:"'- (d(x,.11,))q::T 
J-1 d(x,.8;) 

(14.26) 

Now consider the parameter vector fJ J. Taking the gradient of J (fJ, U) with 
n::spect tu (J J and setting it equal to zero, we obtain 

oJ(fJ, U) = ~ 11 ,111. 8d(:
8
; .. fJJ) = O. 

~ u j=l, .... m 
(J(Jj i=I J 

(14.27) 

Equations ( 14.26) and ( 14.27) are coupled and, in general, cannot give closed 
form solutions. One way to proceed is to employ the following iterative algorithmic 
scheme, in order to obtain estimates for U and fJ. 
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Generalized Fuzzy Algorithmic Scheme (GFAS) 

• Choose (} 1 (0) as initial estimates for fJ J, j = 1, ... , m . 
• t = 0 
• Repeat 

-Fori = 1 toN 

* For j =I tom 

Uij(t)= I 

* End (For-j} 

-End (For-i} 

-t=t+I 
-For j =I tom 

"m (d(x;.IJj(l)))q-l 
L.....k=I d(x;,IJ<(t)) 

* Parameter updating: Solve 

with respect to(} j and set(} ;(t) equal to this solution. 

-End (For- j I 

• Until a termination criterion is met. 

(14.28) 

As the termination criterion we may employ llfJ(t) - fJ(t - 1)11 < e, where 11-11 
is any vector norm and e is a "small" user-defined constant. 

Remarks 

• If, for a given x;, Z; f. 0, we arbitrarily choose u;/s, with j E Z;, such 
that LjEZ; u;; = 1 and u;; = 0, for j r/. Z;. That is, x; is shared arbi
trarily among the clusters whose representatives coincide with x;, subject 
to the constraint (14.20). In the case in which x; coincides with a single 
representative, say(} J, the condition becomes u;; = 1, and u;k = 0, k f. j. 

• The algorithmic scheme may also be initialized from U (0) instead of(} J (0), 
j = 1, ... , m, and start iterations with computing(} J first. 

• The above iterative algorithmic scheme is also known as the alternating 
optimization (AO) scheme, since at each iteration step U is updated for fixed 
(}, and then (} is updated for fixed U ([Bezd 95]. [Hopp 99]). 

In the sequel the algorithm is specialized to three commonly encountered cases. 
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14.3.1 Point Representatives 

In the case of compact clusters, a point representative is used for each cluster; that 
is, (} J consists of I parameters. In this case, the dissimilarity d (x;, (} J) may be any 
distance measure between two points. Two common choices for d(x;, (} J) are (see 
also Chapter 11) 

(14.29) 

where A is a symmetric. positive definite matrix, and the Minkowski distance, 

( 14.30) 

where p is a positive integer and X;k, elk are the klh coordinates of x; and 91 • 

respectively. Let us now see the specific form of GFAS under these choices. 

• When the distance given in Eq. (14.29) is in use, we have 

ad(x· (} ·) 
I' J = 2A ((} - - x .) 

afJ. J I 
J 

(14.31) 

Substituting Eq. (14.31) into Eq. (14.28), we obtain 

N 

L"fJ(t-1)2A(9j -X;) =0 
i=l 

Since A is positive definite, it is invertible. Premultiplying both sides of 
this equation with A - I and after some simple algebra, we obtain 

( 14.32) 

The resulting algorithm is also known as Fuzzy c-Means (FCM) or Fuuy 
k-means algorithm and has been discussed extensively in the literature (e.g. 
[Bezd 80], [Cann 86], [Hath 86], [Hath 89], [lsma 86]). 

• Let us now examine the case in which Minkowski distances are in use . In 
the sequel, we consider only the case where p is even and p < +oo. In this 
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case, we can guarantee the differentiability of d (x;, 9 j) with respect to 9 j. 
Equation ( 14.30) then gives 

ad(x;, (J j) 

aejr 

(8jr - X;r)p-I = ~~~~~~~~~-
( 2=~=1 lx;k - OjklP) I-~' 

r=l, .. .,l 

Substituting Eq. (14.33) into Eq. (14.28), we obtain 

=0, r=l,. . .,l 

(14.33) 

(14.34) 

Hence, we end up with a system of l nonlinear equations and l unknowns, 
that is, the coordinates of 9 j. This can be solved by an iterative technique, 
such as the Gauss-Newton or the Leven berg-Marquardt (L-M) method (e.g., 
[Luen 84]). 

The resulting algorithms are also known as pFCM, where p indicates the 
employed Minkowski distance ([Bobr 91 ]). 

In the iterative technique, the initial estimates at step 1 can be the estimates 
obtained from the previous iteration step t - l. 

Example 14.5. (a) Consider the setup of Example 14.l(a). We run the GFAS first for 
the distance defined in Eq. (14.29), when (i) A is the identity 2 x 2 matrix, and (ii) A = 
[ 1~5 125], and (iii)theMinkowski distance with p = 4 is used. The algorithm is initialized 

as in the example 14.1, with 0 j in the place ofµ, j. The fuzzifier q was set equal to 2. 

The estimates for01. Oz, and 03 are 01=[l.37,0.71f, 02 = [3.14, 3.12f, and 03 = 
[5.08, l.21f forcase(i),01=[l.47,0.56f ,Oz= [3.54, 1.97f,and03 = [5.21, 2.97f 
for case (ii), and 01 = [ 1.13, 0.74f, Oz = (2.99, 3. I 6f, and 03 = [5.21. 3.16f for case 
(iii). The corresponding confusion matrices (see Example 14. I) are 

A;=[~! 8~ 
II 0 

~]. 
89 [

63 11 
A;; = 5 95 

39 23 

26] 0 . 
38 

A;;;=[~~ 
13 

0 
89 
2 

,~,] 
Notice that in the cases of A; and A;;;, almost all vectors from the same distribution are 

assigned to the same cluster. Note that for the construction of the confusion matrices we 
took the liberty to assign each point x; to the cluster. for which the respective u;j has the 
maximum value. 

(b) Let us now consider the setup of Example 14. l(b). We run the GFAS algorithm for the 
three cases described in (a). The estimates for 01. 02, and 03are01 = [ 1.60, 0.12f, 02 = 
[1.15, l.67f, and 03 = [3.37, 2. IOf for case (i), 01 = [l.01, 0.38f, 02 = (2.25, l.49f, 
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83 = [3.75. 2.68f. for case (ii). and 81 = (1.50. -0.13f, 82 = [1.25. I.77]r. 83 
[3.54. l .74f for case (iii). The corresponding confusion matrices are 

[

51 
A;= 14 

43 

46 
47 
0 

3] 39 . 
57 

A;;= [~~ 
28 

21 
58 
41 

2~] · 
31 [

51 

A;;;= ~~ 
3 

62 
36 

Let us now comment on these results. First. as expected. the closer the clusters 
are. the worse the perfonnance of all the algorithms. Also, when the distance given in 
Eq. ( 14.29) is employed, the choice of the matrix A is critical. For the case of our exam
ple. when A = I, the GFAS identities almost perfectly the clusters underlying X. when 
they are not too close to each other. The same holds true for the Minkowski distance with 
fJ = 4. 

14.3.2 Quadric Surfaces as Representatives 

In this section we consider the case of clusters of quadric shape, such as hyper
ellipsoids and hyperparaboloids. In the sequel, we present four algorithms of this 

type, out of a large number that have appeared in the literature. 

Our first concern is to define the distance between a point and a quadric surface. 
as Eq. (14.19) demands. The next section is devoted lo the definition and the 

physical explanation of some commonly used distances of this kind. 

Distances between a Point and a Quadric Surface 

In this section we introduce definitions in addition to those discussed in Chapter 

11 concerning the distance between a point and a quadric surface. 

We recall that the general equation of a quadric surface. Q. is 

( 14.35) 

where A is an I x I symmetric matrix, b is an I x I vector, c is a scalar. and 

x = [.1 1 •••• , x1] r. The A. b and c quantities are the parameters defining Q. 

For various choices of these quantities we obtain hyperellipses, hypcrparabolas. 
and so on. An alternative to the Eq. ( 14.35) form is easily verified to be (see 

Problem 14.8) 

( 14.36) 

where 

_,._ /(/-1)/2 l+I 

[ 
2 .2 2 T q= X1·-'2·····x,. X1.x2 •... ,X/-1X1.x1.x2 ..... X/.l] (14.37) 
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and 
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T 
P =[pi. P2· ···,Pl· Pl+I· · · · , p,., Pr+I· · · ·, p,l (14.38) 

with r = l(l + 1)/2 ands= r + l +I. Vector pis easily derived from A, b, and 
c so that Eq. (14.36) is satisfied. 

Algebraic Distance 

The squared algebraic distance between a point x and a quadric surface Q is 
defined as 

(14.39) 

Using the alternative formulation in Eq. (14.36), d;(x, Q) can be written as 

(14.40) 

where M = qq T. The algebraic distance could be seen as a generalization of the 
distance of a point from a hyperplane (see Chapter 11). Its physical meaning will 
become clear later on. For the derivation of the GFAS algorithm, based on the 
squared algebraic distance, it is more convenient to use the last formulation in 
( 14.40). 

Perpendicular Distance 

Another distance between a point x and a quadric surface Q is the squared 
perpendicular distance defined as 

d~(x, Q) =min llx - zll 2 

z 

subject to the constraint that 

(14.41) 

( 14.42) 

In words, this definition states that the distance between x and Q is defined 
as the squared Euclidean distance between x and the point z of Q closest 
to x. dp(X, Q) is the length of the perpendicular line segment from x to Q. 
Although this definition seems to be the most reasonable one from an intuitive 
point of view, its computation is not straightforward. More precisely. it involves 
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Lagrangian formalization. Specifically, we define 

D(x, Q) = llx - zll 2 - A.(zT Az + bTz + c) (14.43) 

Taking into account that A is symmetric, the gradient of D(x, Q) with respect 
to z is 

aD(x, Q) 
az = 2(x - Z) - 2A.Az - A.b 

Setting aD(x, Q)/az equal to 0 and after some algebra, we obtain 

I 
z = -(/ + /..A)- 1 (2x - /..b) 

2 
(14.44) 

To compute/.., we substitute z in Eq. (14.42) and we obtain a polynomial of).. 
of degree 21. For each of the real roots, Ak, of this polynomial, we determine the 
corresponding Zk· Then, dp(x, Q) is defined as 

Radial Distance 

d~(x, Q) =min llx - Zk 11 2 

Zi 

This distance is suitable when Q is a hyperellipsoidal. Then Eq. (14.35) can be 
brought into the form 

(x - c)T A(x - c) = 1 (14.45) 

where c is the center of the ellipse and A is a synunetric positive definite matrix,6 

which determines the major and the minor axis of the ellipse as well as its 
orientation. 

The squared radial distance [Frig 96] between a point x and Q is defined as 

ij:(x, Q) = llx - zf (14.46) 

subject to the constraints 

(Z - c)T A(z - c) = I (14.47) 

and 

(z - c) = a(x - c) (14.48) 

In words, we first determine the intersection point, z, between the line segment 
x - c and Q and then we compute dr (x, Q) as the squared Euclidean distance 
between x and z (see Figure 14.8). 

60bviously, this matrix is in general different (yet related) from the A matrix used in Eq. ( 14.35). 
We use the same symbol for notational convenience. 



SIO Chapter 14: CLUSTERING ALGORITHMS Ill 

Q 

d,. d, 
B 

Q 

FIGURE 14.8: Graphical representation of the perpendicular and radial 
distances. 

Normalized Radial Distance 

The squared normalized radial distance between x and Q is also appropriate for 
hyperellipsoids and is defined as 

( 
1/2 )2 d~,(x, Q) = ((x - c)T A(x - c)) - I (14.49) 

It can be shown (Problem 14.10) that 

2 2 2 d, (x, Q) = d,.,.(x, Q)llz - ell (14.50) 

where z is the intersection of the line segment x - c with Q. This justifies the term 
"normalized." 

The following examples give some insight into the distances that have been 
defined. 

Example 14.6. Consider an ellipse Q centered at c = [O. O] T, with 

and an ellipse Q 1 centered at c = [O, Of, with 

() J 
1/4 
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3.5 

3 
dll 

2.5 

2 

1.5 

d,,,. 

0.5 

0 
-4 -2 0 2 4 

FIGURE 14.9: Variation of the distances dp, d", dnr• and d, as P moves from 

A(4. 0) to B(-4. 0), with its x2 coordinate being positive. The horizontal axis 

corresponds to the x1 coordinate of the various points considered. 

Let P(x1, x2) be a point in Q1 moving from A(4. 0) to B(-4, 0) and always having its 
x2 coordinate positive (Figure 14.8). Figure 14.9 illustrates how the four distances vary as 
P moves from A to B. One can easily observe that d0 and dnr do not vary as P moves. 
This means that all points lying on an ellipse sharing the same center as Q and, having the 
same orientation as it, have the same da and d11 r distances from Q. However, this is not the 
case with the other two distances. Figure 14.8 shows graphically the dp and d,- distances 
for various inslanci:s of P. As expected, the closer P is to the point C (2, 0), the smaller the 
rip and d, distances. Also, Figure 14.8 indicates that d, can be used as an approximation 
of dp. since, as we saw earlier, it is hard to compute dp. However, it should be recalled 
that dp is applicable when general quadric surfaces are considered, whereas dr is used only 
when hyperellipsoids are considered. 

Example 14.7. Consider the two ellipses Q1 and Q1 shown in Figure 14.IO, with 
equations 

T (x - c j) A j (x - c j) = l, j = 1 . 2 

where c, = [O. O]T. c2 = [8, of and 

A 1 = [1/
0
16 0 J 

1/4 ' 

Also consider the points A (5, 0). 8(3, 0), C(O. 2), and D(5.25, 1.45). The distances d0 , 

d ,,. d11 ,. d, between each of these points and Q 1 and Q1 are shown in Table 14.2. From this 
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:i: 2 

c 

B 

D . 
A 

FIGURE 14.10: The setup of Example 14.7. 

Comparison of the Various Distances between Points and 

:i: 

Hyperellipsoids 

da dp dnr dr 

Q, Q2 Q, Q2 Q, Qz Q1 

A 0.32 1.56 0.06 0.25 

B 0.19 27.56 9 0.06 2.25 

c 1.56 576 44 .32 0.25 16 

D 1.56 9.00 2.78 1.93 0.25 3.30 

I 

Q2 

9 

46.72 

2.42 

table we observe that the dp distances from A, B, and C to Q1 are equal. Moreover, as 
expected, the dr distance is always greater than or equal to dp (when the equality holds?). 
Also, dp is unbiased toward the size of the ellipses (dp(A , Qt) = dµ(A . Q2)). Finally, 
da and d11 r are biased toward larger ellipses (da (A . Q 1) < da (A. Q1) and dnr (A . Q 1) < 
dnr(A, Qz)). 

In the sequel, we derive some well-known algorithms suitable for shell-shaped 
clusters. These algorithms are usually called fuzzy shell clustering algorithms, and 
the representatives of the clusters are (in most cases) hyperquadrics. 

Fuzzy Shell Clustering Algorithms 

The first two algorithms that are examined are suitable for hyperellipsoid-shaped 
clusters. The first of them [Dave 92a], [Dave 92b] is called the adaptive fuzzy 
C-shells (AFCS) clustering algorithm and the second one is known as the fuzzy 
C ellipsoidal shells ( FCES) algorithm [Kris 95a]. 
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The Adaptive Fuz:y C-Shel/s (AFCS) a/gorirhm 

The AFCS uses the squared distance dnr between a point and a hyperellipsoidal 
(Eq. 14.49). Thus, E4. (14.19) becomes 

N m 

lnr(O, U) = LLu[A;,(x;, Qj) (14.51) 

i=I j=I 

It is clear that in this case the parameters used to identify a representative (an 
ellipse) are its center, c j, and the symmetric, positive definite matrix., A j. Thus. 
the parameter vector(} J of the j-th cluster contains the I parameters of c j plus the 
I (I + I) /2 independent parameters of A j. j = I, .. . , m . In the sequel, we write 
d,,r (x;. (} j) instead of dnr (x;. Q j). in order to show explicitly the dependence on 
the parameter vector. 

As in the case of point representatives, our first step is the computation of the 
gradient of d,7, (xi. (} j) with respect to c j and A .i. The gradient ad,7r (xi' (} j) I ac j 
after some algebra becomes 

(14.52) 

where 

2 T <P (x;. (} j) = (x; - Cj) Aj(X; - Cj) ( 14.53) 

Let a), be the (r. s) element of A J and x;, , CJr the rth coordinates of x; and c i. 

respectively. Then, the partial derivative of d'!;,. (x; , (} J) with respect to a/,. after 
some elementary manipulations. becomes 

Thus. 

ad'!,,(x;.OJ) 

aal~ 

(14.54) 
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Substituting Eqs. (14.52) and (14.54) in (14.28), and after some minor 
manipulations, the parameter updating part of GFAS becomes 

• Parameter updating: 

-Solve with respect to c J and A J the following equations. 

N 
" q dnr(X;, (} j) 
L.,, U;/t - 1) </>(x· (} ·) (x; - Cj) = 0 
i=I 1

' 1 

and 

N 

L q d11r(X;,0j) T 
u .. (t - 1) (x · - c )(x · - c ) = 0 

I) </> (X . (} . ) I } I j 
i=I ,, 1 

where 

and 

-Set Cj(t) and Aj(t), j = I, ... , m, equal to the resulting solutions. 

• End parameter updating. 

Once more, the above system of equations can be solved by employing iterative 
techniques. 

Variants of the algorithm, imposing certain constraints on A J• j = I, ... , m, 
have also been proposed in [Dave 92a) and [Dave 92b]. 

Example 14.8. Consider the three ellipses in Figure 14.11 a, with centers c 1 = [0. Of, 
c2 = [8. Of, and c3 = [ 1, 1 f, respectively. The corresponding matrices that specify 
their major and minor axes, as well as their orientation, are 

A2 = [i OJ I ' 

respectively. We generate I 00 points, xi, from each ellipse and we add to each of these 
points a random vector whose coordinates stem from the uniform distribution in [-0.5. 0.5] . 
The initial values for the c; 'sand the A; 's, i = I, 2. 3, are c; (0) = c; + z. i = I, 2. 3. with 
z taken to be z = [0.3 , 0.3]T and A; (0) =A;+ Z, i = I. 2. 3, where all the elements of Z 
are equal to 0.2. The fuzzifier q was also set equal to 2. Application of the AFCS algorithm 
to this data set gives, after four iterations, the results shown in Figure 14.llb. Thus, the 
algorithm has identified the ellipses to a good approximation. 
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(b) 

FIGURE 14.11: The setup of Example 14.8. Thick dots represent the points of 
the data set. Thin dots represent (a) the initial estimates and (b) the final estimates 
of the ellipses. 

The Fuz.z.y C Ellipsoidal Shells ( FCES) Algorithm 

This algorithm uses the squared radial distance between a point and a hyperellip
soidal. Equation ( 14.19) now becomes 

N m 

1,(8, U) = L,'L,u(;d3(x;, Bj) ( 14.55) 
i=I )=I 

Defining the 8 J's as in the previous case and carrying out the steps followed for 
the derivation of the AFCS, we end up with the following equations for c; and A J 
(see Problem 14.11 ): 

tu[.(t-l)[llx;-cJll2(1-¢(x;,81)) Aj-(1- I )21J(x;-c;)=O 
i =I I </>4 (xi, 8 j) <P (x I, 8 j) 

(14.56) 

and 

(14.57) 

where </> (x;, 8 J) is defined as in the case of the AFCS algorithm. 
The following two algorithms are proposed in [Kris 95a] and [Frig 96]. In con

trast to the previous algorithms, they may fit quadrics of any shape to the data set. 
They are called the fuzzy C quadric shells ( FCQS) algorithm and modified fuzzy 
C quadric shells (MFCQS) algorithm, respectively. 
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Fuzzy C Quadric Shells ( FCQS) Algorithm 

The FCQS algorithm is suitable for recovering general hyperquadric shapes. It 
uses the squared algebraic distance. Equation ( 14.19) now becomes 

N m N m 

la(9, U) = LL"fjd~(x;,9j) = L L"fjP/ M;pj ( 14.58) 
i=I j=I i=I j=I 

where Pj is defined inEq. (14.38)and M; = q;q/, withq; defined in Eq. (14.37). 
We recall that p j incorporates all the parameters of the jth quadric surface 

(see Eq. 14.40), that is, (}j = Pj· Direct minimization of la(9, U) with respect 
to Pj would lead to the trivial zero solution for Pj· Thus, constraints on Pj 
must be imposed, and a number of those have been proposed in the literature. 
Different constraints lead to different algorithms. Examples of such constraints 
are [Kris 95a] (i) llPjll 2 =I, (ii) L:~!11 PJk = 1, (iii) Pjl = 1, (iv) PJs = 1, and 

(v) 11 L~=l PJk + 0.5 Lk=H-I PJkll 2 = I. Each of these constraints has its advan
tages and disadvantages. For example, constraints (i) and (ii) [Gnan 77],(Pato 70] 
do not preserve the invariance under translation and rotation of da. However, 
they are able to identify planar clusters. Also, constraint (iii) [Chen 89] precludes 
linear clusters and can lead to poor results if the points in X are approximately 
coplanar. 

In the Appendix at the end of the chapter, the algorithm under constraint (v) is 
derived. 

Modified Fuzzy C Quadric Shells ( MFCQS) Algorithm 

A different C-shells quadric algorithm is obtained if we employ the squared per
pendicular distance dp between a point and a quadric surface. However, because 
of the difficulty of its estimation, the resulting problem is much more difficult than 
those examined before. In this case, due to the complex nature of dp , minimization 
of the lp(9, U) with respect to the parameter vector(} j becomes very complex 
[Kris 95a]. 

One way to simplify things is to use the following alternative scheme. For the 
computation of u;j 's the perpendicular distance dp is used, and for the estimation 
of the parameters (} j, j = I, .... m, the updating scheme of FCQS is employed 
(recall that in FCQS, 9; = P;). In other words, the grade of membership of 
a vector x; in a cluster is determined using the perpendicular distance, and the 
updating of the parameters of the representatives is carried out using the parameter 
updating part of the FCQS algorithm. However, this simplification implies that the 
algebraic and the perpendicular distances should be close to each other (see also 
Problem 14.13). This modification leads to the so called modified FCQS (MFCQS) 
algorithm. 
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Another algorithm, discussed in [Kris 95a] and [Frig 96], is the fuzzy C plano
quadric shells (FCPQS) algorithm. This algorithm uses a first-order approximation 
of the algebraic distance and it is derived, as are all the others. by taking derivatives 
of the resulting cost function with respect to the parameter vector, (J J. and setting 
them equal to zero. 

Finally, fuzzy clustering algorithms that are able to detect spherical clusters are 
discussed in [Dave 92a]. [Kris 92a], [Kris 92b] ,[Man 94]. However, most of these 
may be viewed as special cases of the algorithms developed to fit ellipses. 

14.3.3 Hyperplane Representatives 

In this section, we discuss algorithms that are suitable for the recovery of hyperpla
nar clusters [Kris 92a]. Algorithms of this kind can be applied to the surface-fitting 
problem, which is one of the most important tasks in computer vision. In this 
problem, the surfaces of an object depicted in the image are approximated by 
planar surfaces. Successful identification of the surfaces is a prerequisite for the 
identification of the objects depicted in an image. 

Some of these algorithms, such as the fuzzy c-varieties (FCV) algorithm 
[Ande 85], are based on the minimization of the distances of the vectors in X 
from hyperplanes (see Chapter 11 ). However, FCV tends to recover very long 
clusters and, thus, collinear distinct clusters may be merged into a single cluster. 

In this section we describe an algorithm, known as the Gustafson-Kessel (G-K) 
algorithm (see, e.g., [Kris 92a]). According to this algorithm, planar clusters are 
represented by centers c; and covariance matrices :E;. Defining() 1 as in previous 
cases, we define the squared distance between a vector x and the jth cluster as the 
scaled Mahalanobis distance 

2 () l / I T -l d0 K(x , 1) = l:E;I (x - c;) :E1 (x - c;) ( 14.59) 

Let us now gain some insight into the behavior of this distance. A well-known 
property that characterizes the distance dH of a point from a hyperplane, as defined 
in Chapter 11, is that all points lying on a hyperplane H 1 parallel to a given 
hyperplane H. have the same dH distance from H. This will be our starting point 
for the investigation of d~ K . 

Example 14.9. Consider the setup of Figure 14. l 2a, where a single cluster C is present. 
and let (} be its parameter vector. The points of C are of the form Lxi 1, x;2] T where x; 1 = 
-2 + 0. 1 i, i = 0, I. 2 .. . . , 40. and the corresponding x12 's are random numbers following 
the unifonn distribution in [ -0. 1. 0. I]. 

Consider also the points of the line segment u connecting the points (-2, 2) and (2. 2). 
Figure I 4. I 2b shows the djstances dG K (x . 8) of the points x E u from C. As we can se l!. 
all these distances are almost the same. Indeed, the relative difference (dmax - dm; 11 )/dma.r 
between the maximum dmax and the minimum d111 ; 11 values is approximately equal to 0 .02. 
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FIGURE 14.12: (a) The setup of the Example 14.9. {b) The solid line corre
sponds to the distances of the points of u from C. The dashed line corresponds 
to the distances of the points of the line segment vi from C (the solid line is part 
of the dashed line). Also, the dash-dotted line corresponds lo the distances of the 
poinL<; of the line segment v2 from C. 

Now consider the larger line segment v1(1f2) that connects (- 8, 2)((-8. -2)) and 
(8, 2)((8, -2)). The distances dGK(X, 6) of the points xEv1 (v2) from C are shown in 
Figure 14.12b. Note that although we have larger variations compared to the previous 
case, they still remain relatively small (the relative difference (dmax - d,.,; 11 )/dmax is 
approximately 0.12). 

The G-K algorithm can be derived via the minimization of 

N m 

JaK(9, U) = L Lu{jdbK{x;, 9 j) 
;,._J )=I 

Taking the gradient of JaK((J, U) with respect to CJ, we obtain 

aJaK(8,U) = ;..,uq_ad~K(x1,8j) 
ac• W I) ac· 

} i=l } 

The gradient of the distance, after a bit of algebra, becomes 

od2 (x· 9 ·) 
GK , , J = -2i:EJll/li;-:-l(X; - Cj) 

acj } 

(14.60) 

(14.61) 

(14.62) 
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Substituting ad2(x;,0j)/Bcj from Eq. (14.62) into (14.61) and setting 
81GK(0 , U)/oc; equal to zero, we obtain7 

Cj = ( 14.63) 

Now taking the derivative of lcK ({}, U) with respect to the elements of the 
covariance matrix. L. j results (Appendix of this chapter) in 

( 14.64) 

Having derived Eqs. (14.63) and (14.64), the parameter updating part of GFAS 
for the G-K algorithm becomes 

"°' N <J I L...i=I U;/1 - )Xi 
Cj(I) = "°'N lf 

L...i::I uij(t - l) 
• 

• 

Example 14.10. (a) Consider Figure 14. l 3a. It consists of three linear clusters. Each 

cluster contains 41 points . The points of the first cluster lie around the line x2 = x 1 + 1. 

while the points of the second and the third clusters lie around the lines x2 = 0 and 
x 2 = -xi + 1. respectively. The c j's. j = I. 2. 3. are randomly initialized and the 
threshold of the termination criterion. £, is set to 0.01. The G-K algorithm converges 
after 32 iterations. As shown in Figure 14.13b, the G-K identifies correctly the clusters 

underlying X. 
(b) Now consider Figure 14.14a. We also have three clusters, each consisting of 41 

points. The first and the third clusters are the same as in Figure 14. l 3a, while the points of 

the second cluster lie around the line x2 = 0.5. Note that in this case the three intersection 
points between any pair of lines lie very close to each other. The G-K algorithm terminates 
after 42 iterations. The results obtained are shown in Figure l 4. I 4b. In this case. the G-K 

algorithm fails to identify the clusters correctly. 

14.3.4 Combining Quadric and Hyperplane Representatives 

In this section, we assume that I = 2. Consider the case in which X contains 
quadric-shaped clusters as well as linear clusters . How can we accurately identify 

7We also make the mild assumption that the covariance matrix is invertible. 
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-2 -I 0 2 -2 - I 0 2 

(a) (b) 

FIGURE 14.13: (a) The data set X for Example 14. lO(a). (b) The results of the 
G-K algorithm. 

-1--~~~~~~~~~~--"-llE -llll-~~~~~•~~~~-~~ 

-2 - I 0 2 -2 - I 0 2 

(a) (b) 

FIGURE 14.14: (a) The data set X for Example 14. IO(b). (b) The results of the 
G-K algorithm. 

both kinds of clusters? If we run an algorithm that fits quadric curves to the clusters, 
the linear clusters will not be properly represented. On the other hand, if we run an 
algorithm that fits lines to the clusters, the ellipsoidally and hyperbolically shaped 
clusters will be poorly represented. A way out of this problem is discussed in 
[Kris 95a]. The idea is to run the FCQS algorithm first on the whole data set X . 
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This algorithm can be used to detect linear clusters, even though the adopted 
constraints forces all representatives to be of second degree. This happens since. 
in practice, FCQS fits a pair of coincident lines for a single line, a hyperbola for 
two intersecting lines and a very "flat" hyperbola or a very elongated ellipse or 
a pair of lines for two parallel lines [Kris 95a]. The identification of "extreme" 
quadric curves (i.e., extremely elongated ellipses, "flat" hyperbolas. a set of lines) 
after the termination of the algorithm is a strong indication that X contains linear 
clusters. In order to represent these extreme clusters more accurately, we can run 
the G-K algorithm on the set X', which contains only the vectors that belong to 
them (with a high grade of membership) . However. different actions have to be 
carried out depending on the shape of each extreme quadric curve. Let Q j be the 
representative curve of the }th cluster, j = I, ... . m, identified by FCQS and 
Q'. 's the representative curves of the linear clusters that are identified by the G-K 
al~orithm. Specifically. we have 

• 

• 

• 

• 

If Q 1 is a pair of coincident lines, then initialize Q'. using one of the tw1) 
. J 

lines. 
If Q.i is a non flat hyperbola or a pair of intersecting lines OR a pair of parallel 
lines, then initialize two representatives Q'. 1 and Q'.2 using the asymptotes 

} J 
of the hyperbola (for the first case) or using each of the lines (for the last 
two cases). 
If Qi is an ellipse with a very large ratio of major to minor axis. then initialize 
two .representatives Qj 1 and Qj2 using the tangents of the ellipse at the two 
ends of the minor axis. 
If Qj is a hyperbola with a very large ratio of conjugate axis to transverse 
axis. then initialize two representatives Qj 1 and Qj 2 using the two tangents 
of the hyperbola at its two vertices 

Since the initialization of the Qj representatives is very good. it is expected that 
the G-K algorithm will converge in a few iterations to a satisfactory solution. 

14.3.5 A Geometrical Interpretation 

Arguments similar to those given in Section 14.2.2 can also be repeated here . Now 
u;j takes the place of P(Cj lX; ). The constraint equation in this case is 

/II 

L"ij =I . i=l . ... . N . 
j=I 

( 14.65) 

The vector y associated with vector x; becomes y = I u; 1. u n . .... 11 im I and 
it is also restricted on the hyperplane defined by the constraint (14.65) in the 
H111 hypercube . If we carry out the experiments discussed in Section 14.2.2. 
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we will draw similar conclusions with respect to the effect of the outliers on 
the performance of the fuzzy algorithms. 

In [Mena 00] an algorithm called fuzzy c+2 means is introduced. This is an 
extension of GFAS for point representatives, where the outliers as well as the 
points that lie near the cluster boundaries are treated so as to control their effect 
on the estimates of the cluster representatives. 

14.3.6 Convergence Aspects of the Fuzzy Clustering Algorithms 

Although fuzzy clustering algorithms are obtained by minimizing a cost function 
of the form of Eq. ( 14.19), little is known about their convergence behavior. More 
specifically, it has been proved [Bezd 80], [Hath 86], using the global convergence 
theorem of Zangwill [Luen 84], that when a Mahalanobis distance is used (or 
other distances satisfying certain conditions discussed in [Bezd 80]), the iteration 
sequence produced by the fuzzy c-means (FCM) algorithm either converges to a 
stationary point of the cost function in a finite number of iteration steps or it has 
at least one subsequence that converges to a stationary point of the cost function. 
This point may be a local (or global) optimum or a saddle point. Tests for the 
identification of the nature of the convergence point are discussed in [Isma 86], 
[Hath 86], [Kim 88]. Issues concerning numerical convergence aspects of the FCM 
algorithms are discussed in [Bezd 92]. 

14.3.7 Alternating Cluster Estimation 

It is not difficult to notice that the membership functions u J (Xi), associated with 
the u;/s used in GFAS (Eq. ( 14.26)), are neither convex nor monotonous (see, 
for example, Figure 14.15a). However, in fuzzy rule based systems convexity of 
the membership functions is an important requirement. For example, linguistic 
characterizations such as "low," "medium," or "high" require convex membership 
functions of the form shown in Figure 14. l 5b. In such cases it may he preferable to 
adopt a specific membership function and use the alternating updating philosophy 
used in GFAS to estimate u;J 'sand ()j. The resulting algorithmic scheme is known 
as Alternating Cluster Estimation (ACE) ([Runk 99], [Hopp 99]) and GFAS may 
be viewed as a special case of it. Obviously, in this case, the obtained solution is 
not necessarily related to an optimizing criterion. 

14.4 POSSIBILISTIC CLUSTERING 

The algorithms of this section are relaxed from constraints such as in ( 14.17) and 
(14.65) [Kris 93], [Kris 96]. Speaking in the terms of Section 14.3.5, this means 
that the vector y, with coordinates the u;1 's, will be allowed to move anywhere in 
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FIGURE 14.15: (a)The membership function u2 (x) given by Eq. ( 14.26), fort he 
one-dimensional case, withe, = 5. e2 = 3, e_, = 8, q = 2 and d (x, e; > = Ix - O; 1. 
(b) Examples of membership functions characterizing "low,", "medium." and 
"high" for a specific quantity. 

the H,,, hypercube. that is, 

and 

u;j E [0. I] 

maxj=I. ... m 11;1 > 0. i =I. .... N 

N 

0 < L lljj .:::: N. I = 1 . . ... N 
i=I 

(14.66) 

Thb change in the constraints has an important impact on the interpretation 
of the 11;; ' s. In the fuzzy framework, u;j denotes the grade of membership of x; 

in the jth cluster. Here. u;j may be interpreted as the degree of compatibility 
of x; with the jth cluster representative, or, following [Zade 78], the possibility 
that x; belongs to the jth cluster. Note that the possibility that x; belongs to the 
jth cluster depends exclusively on x; and the cluster representative of the jth 
cluster; that is, it is independent of the possibilities that x; belongs to any other 
c/11ste1: 

For convenience, let us recall here that the cost function to be minimized is 

N m 

J(fJ, U) = LLllfjd(x;,fJj) (14.67) 
i=I j=I 

Obviously, direct minimization with respect to U will lead to the trivial zero solu
tion. In order to avoid this situation, we must insert an additional term in J (8, U). 
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This term, f (U), will be a function of u;/s only. Motivated by the discussion in 
Section 14.2.2, it will be chosen in such a way so that to minimize the effects of 
outliers. As will become apparent soon, one such choice off (U) is 

m N 

.r<u) = L 1/j L:o - u;j)q (14.68) 
j=l i=I 

Then, the cost function becomes 

N m m N 

1(0,U) = LLufjd(x;,Oj)+ LIJj L(l -u;j)q (14.69) 
i=I j=I j=I i=l 

where 1/j are suitably chosen positive constants. 
The minimum of J ((J , U), with respect to u;j, is obtained by 

or 

Ujj = I 

1 + (d(x~/i>)IFT 
( 14.70) 

In words, u;j is inversely proportional to the dissimilarity between x;, and the 
representative of the jth cluster. Loosely speaking, u;j denotes the degree to which 
the representative of the }th cluster should be "stretched" in order to match x;. 
Large (small) values of u;j indicate little (large) stretch for the }th representative. 
It is clear that.for a specific vector x;, this "stretching" action can be carried 011t 

independently for each cluster. 
The meaning of the second term in Eq. ( 14.69) is more clear now. Its effect is 

to minimize the influence of outliers in the estimation of the (J j's. Indeed, large 
dissimilarity levels correspond to small u;j 's and they have little effect on the first 
term in the cost function, which controls the estimation of (J j's. 

Since the second term does not involve the representatives of the clusters, one 
may easily conclude that in possibilistic clustering schemes, the updating of the 
parameters of each cluster is carried out exactly the same way as in the case of 
their fuzzy counterparts. 
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Generalized Possibilisric Algorithmic Scheme (GPAS) 

• FiXT)J,j=l,. .. , m . 
• Choose 0 J (0) as the initial estimates of 0 J, j = I, ... . m . 
• t = 0 
• Repeat 

-For i =I to N 

* For j = 1 tom 

* End {For-j I 
-End { For-i } 
-t =t +I 
-For j =I tom 

Uij (t) = --------1 • 

l + ( d(x;~~J(t)}) q=T 

* Parameter updating: Solve 

N 

L " ad(x;.Oj) 
u .. (t - 1) =0 

11 ao . 
i=I J 
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( 14.71) 

with respect to() J and set 0 J (t) equal to the computed solution. 

-End {For-j}. 

• Until a termination criterion is met. 

As usual, we may employ !IO(t) - (}(t - 1)11 < £as a termination criterion. 
Based on the preceding generalized scheme, for each of the fuzzy clustering 
algorithms, defined in the previous section, we can derive a corresponding 
possibilistic one. 

An interesting observation is that, since for each vector x;, u;j 's. j = 1 .. . .. 111. 

are independent of each other. we can write J (0. U) as 

where 

m 

1(8. U) = L lj 
.i=I 

N N 

l; = L u?jd(x;, ()j) + T}j L:o - Ujj)q 

i = I i=I 

(14 .72) 
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Each lj corresponds to a different cluster and the minimization of J (9, U) with 
respect to the u;j 'scan be carried out separately for each lj. 

The value of IJj determines the relative significance of the two terms in (14.72) 
and it is related to the size and the "shape" of the jth cluster, j = l, ... , m. More 
specifically, as can be seen from Figure 14.16, 1J j determines the dissimilarity 
level between a vector x; and the representative 9 j at which u;j becomes equal to 
0.5. Thus, IJj determines the influence of a specific point on the estimation of the 
jth cluster representative. 

In general, the size of IJj is assumed constant during the execution of the algo
rithm. One way to estimate its value, under the assumption that X does not contain 
many outliers, is to run the generalized fuzzy algorithmic scheme (GFAS) and 
after its convergence to estimate IJj as [Kris 96] 

or 

LuiJ>ad(x;,9j) 
IJj = L11;1>a l 

(14.73) 

(14.74) 

where a is an appropriate threshold. In words, IJj is defined as a weighted average 
of the dissimilarities between the vectors x; and 9 j· Once 11/s have been fixed, 
the GPAS algorithm can be applied. 

In Figure 14.16, u ij versus d (x;, 9j)/1J j is plotted for various choices of q (see 
Eq. ( 14.70)). From this diagram, it can be seen thatq determines therate of decrease 
ofuijwithrespecttod(x;,9j).Forq = l,allpointsx;withd(x;,9j) > IJjhave 
u;j = 0. On the other hand, as q~ + oo, u;j tends to a constant and all the vectors 
of X contribute equally to the estimation of the representative of the jth cluster. 

It is worth noting here that q has different meanings in the possibilistic and the 
fuzzy framework. In the first case, high values of q imply almost equal contribu
tions of all feature vectors to all clusters, whereas in the second case, high values of 
q imply increased sharing of the vectors among all clusters [Kris 96]. This implies 
that, in general, different values of q are required to provide satisfactory results 
for the two cases. 

14.4.1 The Mode-Seeking Property 

The generalized mixture decomposition algorithmic scheme (GMDAS) and the 
generalized fuzzy algorithmic scheme (GFAS) are partition algorithmic schemes, 
that is, schemes that always end up with the predetermined number of clusters m, 
no matter how many "naturally formed" clusters underlie X. If, for example, the 
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FIGURE 14.16: Plots o f the membership function for various values of q. 

data set X contains two clusters and we run GMDAS or GFAS with m = 3. these 
algorithms will split at least one natural cluster and will end up with three clusters. 

However, this is not the case with the generalized possibilistic algorithmic 
scheme (GPAS). Algorithms o f this kind are known as mode-seeking algorithms, 
that is. algorithms searching for dense regions of vectors in X.8 In order to see 
this, let us consider again the individual functions Ji. Solving Eq. ( 14.70) with 
respect to d(x;. Oj). we obtain 

(
1 - u .. )"-l 

d(x;, () ·) = 17 · --'-1 
J .I U " 

1.1 

Substituting d(x; , () j) from this equation into Eq. ( 14.72) results in 

N 

lj = 1/j L ( I - U;j )q - I 

i= l 

8such algorilhms are also considered in Chapter 15. 

( 14.75) 



528 Chapter 14: CLUSTERING ALGORITHMS DI 

For fixed T/j. minimization of lj requires maximization of u;/s, which, in tum, 
requires minimization of d(x;, () j ) . The last requirement implies that fJ j should 
be placed in a region dense in vectors of X. 

The mode-seeking property of the GPAS implies that the number of clusters 
in X need not be known a priori. Indeed, if we run a possibilistic algo
rithm for m clusters while X contains k natural clusters, with m>k, then, 
after proper initialization, some of the m clusters will coincide with others 
[Kris 96]. It is hoped that the number of the noncoincident clusters will be 
equal to k. If, on the other hand, m <k, proper initialization of the possibilis
tic algorithm will potentially lead to m different clusters. Of course, these are 
not all the natural clusters formed in X, but at least they are some of them 
[Kris 96]. 

Example 14.11. This example demonstrates the mode seeking property. Consider three 
two-dimensional Gaussian distributions with means µ, 1 = [I. If , 11-2 = [6, If, µ,3 = 
[6, 6] T and covariance matrices L. j = I, j = I, 2, 3. One hundred vectors are generated 
from each distribution. These constitute the data set X. We set q = 1.5 and, finally, we 
employ the squared Euclidean distance. It is not difficult to realize that under the above 
choice, Eq. (14.71) gives 

(14.76) 

(a) Let m = 3. The initial estimates of 8 j's (which, in this case, are vectors in 
the 2-dimensional space) in GPAS are 8 j (0) = µ, j + z j, j = I, 2, 3, where the z j's 

are two-dimensional vectors whose components are drawn from the uniform distribution 
in [-2, 2]. Also, we set T/j = 1.5, j = I, 2, 3. Application of the GPAS causes the 
movement of each one of the 8 j's towards the mean of each distribution (i.e., towards 
dense regions). Indeed, the final estimates for 8 j's obtained after 12 itera1ions, are 8 1 = 
[0.93, 0.60f, 82 = [5.88 , l .12f and 83 = [6.25, 5.86f, which compare very favorably 
toµ, j's. 

(b) Let m = 4. In this case, 8 j's, j = I, 2, 3 are initialized as in the previous example, 
while 84 is initialized as P-1 + Z4. Application of GPAS in this case causes the movement 
of 8 l and 84 towards the dense region that corresponds to the first distribution. Also, 
82 and 83 move towards the dense regions that correspond to the second and the third 
distribution, respectively. The resulting values for 8 j's, obtained after 12 iterations, are 

81 == [0.93, 0.60]T , 82 = [5 .88, 1.12]T, 83 = [6.25, 5.86f and 84 = [0.94, 0.60f . 

(c) Let m = 2. We initialize 91 and 92 as in (a). Application of the GPAS algorithm 
causes the movement of 9 t and 82 towards the dense regions corresponding to first and the 
second distribution, respectively. The resulting values for 9 j's , obtained after 11 iterations, 

are81 = [0.93,0.60f and82 = [5.88 , 1.12f. 
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14.4.2 An Alternative Possibilistic Scheme 

An alternative possibilistic algorithm may be derived from the function [Kris 96] 

N 111 m N 

11(8, U) = L L>iJd(x;, 81) + L 1Jl L(uij In Uij - Uij) (14.77) 
i=l l=I l=I i=I 

Note that q is not involved in the definition of 11 (8. U). Also, in this case the 
second term is negative. Setting the partial derivative of 11 (8, U) with respect to 
u;1 equal to 0 and solving for u;1, we obtain the following necessary condition for 
each u iJ to be a minimum of 11 (8. U): 

u;1 =exp(- d(x;,81)) 
1/j 

(14.78) 

Hence. u;J decreases more rapidly with d(x;, 81) than in the previous case (Eq. 
14.70). Let us consider a point x; and a cluster representative 81. For the same 
distanced, (14.78) leads to smaller values of U;J than those derived from (14.70). 
This means that increased "stretching" is demanded for the former case. This is an 
indication thm this algorithmic scheme may be used when the clusters are expected 
to lie close to each other. 

14.5 HARD CLUSTERING ALGORITHMS 

In this section we return to the world where each vector belongs exclusively to 
a single cluster. This is why such schemes are called hard or crisp clustering 
algorithms. It turns out that some of the most well known and widely used clustering 
algorithms fall into this rntegory. Our starting point is the assumption that the 
membership coefficients u;1 are either I or 0. Moreover, they are I for one cluster. 
C;. and zero for all the others, Ck. k 'f:. j, that is, 

and 

u;l E {0. I}. j =I, .... m 

Ill 

z=llij = 
i=I 

( 14.79) 

( 14.80) 

This situation may be seen as a special case of the fuzzy algorithmic schemes. 
However. the cost function 

N m 

1(8. U) = LLuud(x;.81) 
i=I j=I 

( 14.81) 
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is no longer differentiable with respect to (J j. Despite that, the general framework 
of the generalized fuzzy algorithmic schemes, can be adopted for the special case 
of hard clustering. Such schemes have been used extensively in practice (e.g., 
[Duda 73]). 

Let us fix 8 j, j = 1, ... , m. Since for each vector x; only one Uij is 1 and all the 
others are 0, it is straightforward to see that 1(8, U) in Eq. (14.81) is minimized 
if wc assign each x; to its closest cluster, that is, 

U .. - {l, 
I) - 0, 

If d(x;, 8 j) = mink=l ... . ,m d(x;, (Jk) 
otherwise 

i=l ,. . . ,N (14.82) 

Let us now fix UijS . Working as in the fuzzy algorithms case, the updating 
equations of the parameter vectors, (J j, of the clusters are 

N 

L 
ad(x;,8j) 

Uij = 0, 
a8· 

i=l J 

j=l, . . .,m (14.83) 

Having derived Eqs. (14.82) and (14.83), we are now in a position to write down 
the generalized hard clustering algorithmic scheme 

Generalized Hard Algorithmic Scheme (CHAS) 

• Choose 8 J (0) as initial estimates for 8 J, j = 1, ...• m. 
• t = 0 
• Repeat 

-For i =I to N 

* For j = 1 tom 
Determination of the partition: 9 

Uij (t) = 1
1, 

0, 

ifd(x;,8j(t)) = mink=l ..... md(x;,8k(t)) 

otherwise, 

* End { For-j) 
-End {For-i} 
-t = t + 1 
-For j =I tom 

* Parameter updating: Solve 

N 
'°'u ·· (t- l)<Jd(x;.9J) =0 
L_.; I) afJ . 
i=I l 

(14.84) 

with respect to 8 j and set 8 J (t) equal to the computed solution. 

9In the case in which two or more minima occur, an arbitrary choice is made. 
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-End {For-)). 

• Until a tennination criterion is met. 

Note that in the update of each fJ J, only the vectors x; closest to it (i.e., those 
x; 's for which u;1 (t - I) = I) are used. As usual, the termination criterion 
llfJ(t) - fJ(t - 1)11 < £can be used. Alternatively, GHAS may terminate if U 
remains unchanged for two successive iterations. 

Each hard clustering algorithm has its corresponding fuzzy clustering algorithm. 
As with the fuzzy clustering algorithms, we may obtain hard clustering algorithms 
when (Ji 's represent points, quadric surfaces, or hyperplanes. The updating equa
tions for the parameter vectors fJ 1 in the hard clustering algorithms are obtained 
from their fuzzy counterparts if we set q = I. 

Remarks 

• Hard clustering algorithms are not as robust as the fuzzy clustering algo
rithms when other than point representatives are employed. If, for example, 
hyperplane representatives are used and the G-K algorithm is adopted, we 
must have an adequate number of vectors N from all underlying clusters in 
order to avoid degenerate cases where ~ J is not invertible [Kris 92a]. 

• The determination of the partition part of the algorithms optimizes J (fJ, U) 
with respect to U given a set of representatives fJ J. On the other hand, 
the parameter updating phase optimizes J (fJ, U) with respect to fJ given a 
specific partition. Note that this procedure does not necessarily lead to a 
(local) optimum of J (fJ, U). 

14.5.1 The Isodata or k-Means or c-Means Algorithm 

This is one of the most popular and well-known clustering algorithms [Duda 73], 
[Ball 67], [Uoy 82]. It can be viewed as a special case of the generalized hard 
clustering algorithmic scheme when point representatives are used and the squared 
Euclidean distance is adopted to measure the dissimilarity between vectors x; and 
cluster representatives fJ J. Before we state the algorithm explicitly, some further 
comments may be of interest. For this case Eq. ( 14.81) becomes 

N m 

J(fJ, U) = L L:>;j llX; - (} j 11 2 (14.85) 
i=I J=I 

This is nothing but the trace of the within scatter matrix Sw, defined in Chapter 5. 
That is, 

J(fJ, U) = trace{Swl ( 14.86) 
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For the above choice of distance, Eq. ( 14.82) gives that (J j is the mean vector 
of the j-th cluster. Applying the generalized hard algorithmic scheme for this 
specific choice, it turns out that the algorithm converges to a minimum of the cost 
function. In words, the isodata algorithm recovers clusters that are as compact 
as possible. It must be emphasized however, that this convergence result is not 
valid for other distances, including the Euclidean distance. For example, when 
Minkowski distances are used, the algorithm converges but not necessarily to a 
minimum of the corresponding cost function [Seli 84a]. 

The Jsodata or k-Means or c-Means Algorithm 

• Choose arbitrary initial estimates (J j (0) for the (J j's, j = I, ... , m. 
• Repeat 

-For i =I to N 

* Determine the closest representative, say (J j, for x;. 
* Setb(i)=j. 

-End {For} 
-For j =I tom 

* Parameter updating: Determine (J j as the mean of the vectors 
X; EX with b(i) = j. 

-End {For}. 

• Until no change in (J j's occurs between two successive iterations. 

An advantage of this algorithm is its computational simplicity. Also, as with 
all the algorithms that use point representatives, isodata is suitable for recovering 
compact clusters. A version of the k-means algorithm, where in each cluster C; 
the number of vectors is constrained a priori to be n;, is proposed in [Ng 00]. 

Example 14.12. (a) Consider the setup of example 14.1 (a). In this case (}j's correspond 
to the µj's. We set m = 3 and we initialize randomly (}j's. After convergence, the iso
data algorithm identifies successfully the underlying clusters in X, as indicated by the 
corresponding confusion matrix, 

[

94 

A= ~ 
3 

100 
0 

~]-
91 

TheresultingvaluesofO/sare01 = [1.19,l.16]T,o2 = [3.76,3.63f and03 
[5.93,0.55f. 

(b) Let us now consider two 2-dimensional Gaussian distributions with means µ 1 
[I, lf and µ2 = [8, l]T and covariance matrices 1:1 = 1.5/ and 1:2 =I, respectively. 
We generate 300 points from the first distribution and I 0 points from the second distribution 
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FIGURE 14.17: (a) The data set. (b) The results of the isodata algorithm. 

in order to fomllhe data set X (Figure l 4. l 7a). Also, we set m = 2 and we initialize randomly 
81 and 82. After convergence, we observe that the large group has been split into two parts 
and, in addition, the right part joins the vectors of the second distribution in tne same 
cluster (Figure 14. l 7b). Specifically, the results of the algorithm are 8 1 = [0.54, 0.94f 
and 82 = [3.53, 0.99}7 and 61 vectors from the first distribution are assigned to the same 
cluster with the ten vectors of the second distribution. The above situation reveals a weakness 
of the algorithm to deal accurately with clusters having significantly different sizes. 

In practice, a number of variants of the isodata algorithm have been suggested, 
employing various splitting, merging and discarding operations among the result
ing clusters [Ande 73]. No doubt, such ad-hoc techniques are no more the result 
of an optimization process. 

14.6 VECTOR QUANTIZATION 

An area that has close affinity with clustering is that of vector quantization (VQ), 
and it has been the focus of intensive research effort over the past years (e.g. 
[Gray 841, [Gers 92]). Vector quantization techniques are used mainly for data 
compression, which is a prerequisite in order to achieve better computer storage 
utilization and better bandwidth utilization (in communications). Let T be the set 
of all possible vectors for the problem at hand. The task of VQ may be stated 
in the general case in which T is a continuous subset of R1. The idea is rather 
simple. We separate T into m distinct regions R j that exhaust T, and we represent 
each of them with an I-dimensional vector, the so-called code vector or reproduc
tion vector, (J j, j = 1, ... , m. In the sequel. given an x E T, we determine the 
region where it belongs, say R j, and we adopt the corresponding representative (J j, 
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instead of x, for further use, that is, storage or transmission. This is obviously asso
ciated with some information loss, which is known as distortion. The major goal 
in VQ is to define the regions R j and their representatives() j so that distortion is 
minimized. 

After stating the general idea, let us proceed now to some more formal defini
tions. A vector quantizer Q of dimension l and size m is a mapping of T to a finite 
set C, which is called the reproduction set and contains m output reproduction 
points, the code vectors or code words. Thus 

where C = { () 1, 02, ... , () 111 } with(); E T. Each code vector(); represents a specific 
region R; of the vector space. 

The next question that naturally arises is how one can select the code vectors 
() j in such a way as to achieve the least possible distortion. A usual approach is to 
optimize an appropriate criterion function, which in this framework is also known 
as a distortionftmction, with respect to() j's. Let x be a random vector that models 
T and p(x) its corresponding pdf. 

A commonly used distortion criterion is the average expected quantization error, 
which is defined as 

where 

Ill 

D(Q) = L Dj(Q) 
j=I 

Dj(Q) = l d(x. O;)p(x)dx 
I 

(14.87) 

( 14.88) 

DJ ( Q) is known as the average quantization error for region R J. The quantity 
d is a distance measure, e.g., Euclidean, and it is also referred to as a distortion 
measure. 

When a finite number of samples, x 1, x2 •... , x N, of x is available, the 
distortion criterion becomes 

N 

D(Q) = Ld(x;, Q(x;))P(x;) 
i=I 

(14.89) 

where Q(x; )EC is the code vector that represents x; and P(x; )(>O)i = I, ... , N, 
the respective probabilities. 

ln [Gers 92] it is shown that the following conditions are necessary for a given 
quantizer to be optimal. The first refers to the encoder part of the vector quantizer, 
that is, the optimal way in which T is partitioned in the regions R i, j = I, ... , m, 
given the code vectors () j. It is known as the nearest neighbor condition and it 
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states that 

• For fixed C, 

Q(x)=81 onlyifd(x,81)_:::d(x.8k). k=l, ... ,m,kf.j 

The second condition refers to the decoder part of the VQ, that is, the optimal way 
the code words 8 J are chosen, given the partition regions R j. j = I ... .. m. It is 
known as the centroid condition and it is stated as 

• For a fixed partition R 1 , R2, ... , Rm. each 8_; is chosen such that 

{ . d(x,81)p(x)dx =min f d(x , y)p(x)dx 10 

jR
1 

Y jRJ 

In the case that T is finite, the integrals are replaced with summations. One way 
to compute the code vectors of the set C is to start with an arbitrary initial estimate 
of the code vectors and to iteratively apply the nearest neighbor condition and 
the centroid condition, interchangeably, until a termination criterion is satisfied. 11 

This is the well-known Lloyd 's algorithm [Lloy 82]. 12 Note that if P(x;) = 1/ N , 

'Vx; E T, Lloyd's algorithm coincides with the generalized hard clustering algo
rithmic scheme. This is not surprising. Both algorithms try to place optimally point 
representatives in space. Note, however, that despite algorithmic similarities, the 
two tasks have different goals. The goal ofVQ is to place points in space in a way 
representative of the data distribution. On the other hand, clustering focuses on 
revealing the underlying clusters in X, if they exist. 

Finally. it is wo11h pointing out that many other models for vector quantization 
have been proposed in the literature. For example, hierarchical and fuzzy vector 
quantizers are discussed in [Lutt 89] and [Kara 96], respectively . 

APPENDIX 

Deril'ation ofµ j and}: j for the EM Algorithm (Section 14 2) 

Equations (14.4) and (14.13) for µj lead to 

r=f=I P(CjlXk; 0(t))Xk 
µj = N 

Lk=I P(C1lxk; 0(t)) 

for j = I . .... m. 

(14.90) 

IOAn addilional optimalily condi1ion. given in [Gers 92). is 1ha1 no veclor in Tis equidis1an1 from 
1wo (or more) code vectors. 

I I One such cri1erion is to have lhe same values for all (Ji "s. j = I .... , m. for two successive 
iteralions. 

12For lhe special case in which the squared Euclidean dislance is considered. the cenlroid condition 

becomes () j = (I / n j) LxER J x, where n j is the number of vectors 1ha1 lie in R J. The corresponding 

algorilhm is 1he isodala algori1hm. which in 1his framework is also called lhe LBG algorilhm [Lind 80]. 
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Let us now turn our attention to :E j. Let ars be the (r, s) element of :E j 1
. Then 

Eq. (14.13) gives 

or 

a 1 1 
-- In p(xlC;; 9 j) = -l:EjlUrs - -(Xr - 1-ljr)(Xs - µjs) 
a~s 2 2 

where Urs is the cofactor of Urs 13 and Xr. µJr (x5 , µJs) are the rth (sth) 
coordinates of x andµ J• respectively. Thus, 

(14.91) 

where u is the matrix of the cofactors of :E j 1• Since, in general, I :E- 11 f. 0, 
the following identity holds from linear algebra: 

Premultiplying both sides of this equation by :E J and noting that u is a symmetric 
matrix, we obtain 

(J = l:Ej 11:E; 

Substituting the last result into Eq. (14.3), we obtain 

(14.92) 

Substituting this result into Eq. (14.3) and after some manipulations, we finally 
obtain 

(14.93) 

for j = 1, . . . , m. 

13 Recall lhat the cofactor of the element aij of a matrix A is the detenninant of the matrix that 
results from A if we delete its ith row and its }th column. 
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Derivation of the FCQS Algorithm 

In the sequel we adopt constraint (v) (see Section 14.3.2). Since not all of the 
parameters of p j are involved in (v), it is convenient to split P.i into two smaller 

vectors a J and b J, that is, p j = [a./, b / f. The first vector contains the parame
ters of p J that are involved in the constraint and the second contains the remaining 
parameters. More specifically, let us define 

I
P.it· 

lljt = 
{Jj1 / J2. 

t =I .... . I 

t =I+ l. ... , r 
(14.94) 

and 

hj1 = PJ(r+I). 1=1. .. .,1+1 (14.95) 

Under these two definitions, constraint (v) becomes 

( 14.96) 

Since a j and, as a consequence, p j are subject to constraints, we use once again 
the Lagrange multipliers method. Specifically, we define the function 

N m m 

Ja(8, U) =LL tlfjP/ M;pj - °'L,.Aj(llaj 11
2 

- I) (14 .97) 

i=I j=l i=I 

Let 

and 

t/ = [x;1. x; 2 . . ..• x;1 , I] 

Using these definitions, we may write Eq. ( 14.97) as follows: 

or. after some manipulations, 

N m 

'""' '""' q ( T T T Tb ) ] 11 (8,U)=L.,L.,uij aj R;aj+bj T;bj+2a; S; J 

i = l J=I 

m 

- °'L,.Aj(liajf - I) (14.98) 

j=l 
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where R; = r;r/, S; = l;r/, and T; = l;t/. The gradient of :la with respect 
to b J, after some manipulations, becomes 

N 
a.Ja "\"""' q ( ) 
ah·= ~uiJ 2T;hJ +2S;a1 

1 i=I 

Ifwe define HJ= '2:=f= 1 uj1T; and G1 = L~=I uj1S; and set a.Ja/ah1 equal 
to 0, we finally obtain that 

(14.99) 

The gradient of :la with respect to a J, after some manipulations, becomes 

a.Ja LN q ( T ) - = u .. 2R;a1+2S; h1 - 2A1a1 
aa' I} 

J i=I 

Defining F1 = '2:=f= 1 u j1 R; and setting a :la/ iJa J equal to 0, we obtain 

(FJ -A1l)a1 = -G)b1 

Substituting h1 from Eq. (14.99) into this equation, we finally obtain 

(F1 -G)H1-
1
G1)a1 =A1a1 (14.100) 

Thus AJ is an eigenvalue of (FJ - G) H1-
1G1) and a1 is its corresponding 

eigenvector with length equal to 1 due to the constraint given by Eq. (14.95). 
In fact, we choose the A J to be the smallest eigenvalue of (F1 - G} H1-' G 1) 
(Problem 14.12). 

It should be noted here that the inverse of H1 exists if there are at least l + 1 
noncoplanar vectors in the data set. 

As soon as we have computed a 1 from Eq. (14.100), we can compute b 1 using 
Eq. (14.99). Then, the algorithm may be written as 

• Parameter updating 

-F1(t) = L~=I "f1(t - l)R;. 

-H1(t) = L~=l uj1(t - J)T;. 

-G1(t) = '2:=f= 1 uj1(t - l)S;. 
-Determine a 1 (t) as the eigenvector of unit length that corresponds to 

the smallest eigenvalue of (F1 (t) - G} (t)H1-l (t)G 1 (!)). 

-h1(t) = -H1-
1(t)G1(t)a1(t). 

-Determine p 1(t) from Eqs. (14.94) and (14.95). 

• End parameter updating D 
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Computation of L: j in the G-K Algorithm 

Taking into account that I L.i I = IL. j 11- 1
, db K (x;, (} j) becomes 

dbK(x;,81) = [L.)~ 1 1- 1 11 (x; -Cj)TL.j 1(x; -Cj) 

Let /;.,,. be the (r. s) element of I: j 1
• Also let x;r and c Jr be the rth coordinates 

of x; and Cj, respectively. The partial derivative of db K (x;, (} j) with respect to 
.fn, after some maf!ipulations, becomes 

adbK<x.8Jl 1 _ 1 _1_ 1 ------ = --IL.1 I T cr,.s(x;,. - Cjr)(X;1 - c;,) 
3.frs I 

+ !E/f-t(x;,. - l"jr)(x;, -lf,) 

where an is the cofactor of frs· Taking into account the preceding equation and 
the. fact that the cofactor matrix u of L. j- I can be written as u = I I: j 1 

[ L. i, we can 
wnte 

Taking into account the last equation. and setting the gradient of lc;K(8 . {)) 
with respect to I: J1 equal to zero, we obtain 

The last equation is satisfied if we choose (Problem 14. 19) 

Problems 

"N </ ( T L...i=l uij(X; - Cj) X; - Cj) 
Lj = --- "N q 

L...i = I Iii) 

(14.102) 

14.1 Consider the case in which there exist m clusters in X. which are characterized hy 
normal distributions of unknown rneans and known covariance matrices; that is. 1he 
parameter vector 8 consisls only of the parame1ers ofµ, J, j = 1 . .. .. 111 . State the 
corresponding generalized mixture decomposition algorithmic scheme (GM DAS). 

14.2 Consider the case tha1 there exist m clusters in X which are de~cribt:d by normal 
distribmions of unknown means and unknown diagonal covariance matrices. Derive 
the corresponding GMDAS. 



540 Chapter 14: CLUSTERING ALGORITHMS Ill 

14.3 Consider the case that there exist m clusters in X which are described by normal 
distributions. Derive the Maximum Likelihood estimates of the means µ, j and 
covariance matrices :E j when: 
(a) the means and the covariance matrices are unknown and 
(b) the means and the covariance matrices are unknown but :E j = :E, j = 1, .... m. 

Compare the results of (a) with those of section 14.2.1. 
14.4 Consider the data set X =\xi E R 2,i = 1,. ... 16}, where x1 = [2,0]T, 

x2 = [J2.J2f,x3 = [0,2]r,x4 = [-J2.J2f,x5 = [-2,0f,x6 = 
[-J2, -J2f,x7 = [O, -2f,x8 = [J2, -J2f. Theremainingpointsx;,i = 
9, ... , 16, are obtained from the first eight points as follows. The first coordinate 
of Xj, i = 9, ... , 16, equals the first coordinate of x;-8 plus 6, while the second 
coordinate of xi, i = 9, ... , 16, equals the second coordinate of x; -8. 

(a) Run the GMDAS. with Gaussian pdf's, to obtain estimates of µ, j, and :E j. 
j = 1, 2. 
(b) Does the algorithm determine the clusters that underlie X correctly? Justify 
your answer. 

14.S Consider the setup of Problem 14.4, with the difference that the points x;, i = 
9, ... , 16, are derived as follows. The first coordinate of x;. i = 9, ... , 16, equals 
the first coordinate of x; -8 plus 2, while the second coordinate of x;. i = 9, ... , 16, 
equals to the second coordinate of Xi-8· 
(a) Run the GMDAS, with Gaussian pdf's, to obtain estimates for µ,J· and Lj, 
j = 1,2. 
(b) Does the algorithm determine the clusters that underlie X accurately? Justify 
your answer. 
(c) Compare the results obtained in this and the previous problem. 

14.6 Consider four two-dimensional distributions with means µ, 1 = [O. Of, µ, 2 
[2, 2f, µ,3 = [4, Of. µ,4 = [7. O]T, respectively, and covariance matrices 

:E1=[0'.3 0;3]. :E2 = [~ ~] 

:E3 = [-~.5 -~·5] . :E4 = [ o'.5 °;5] 
respectively. Draw 80 points from each distribution and let X be the set that contains 
these 320 points. Initializeµ,; and :E;, i = 1, ... , 4, as in Example 14.1. Set m = 4, 
1:: = 0.01 and run the GMDAS, with Gaussian pdf's. 
(a) What are the estimates ofµ, j, j = 1, ... , 4, and :E j, j = I, ... , 4? 
(b)Assign each feature vector x E X to a cluster C j according to the Bayes decision 
rule. 
(c) Derive the respective confusion matrix. 
(d) Run the algorithm form = 3 and m = 2 and repeat steps (a) and (b). Discuss 
the results. 

14.7 In the framework of Example 14.4. prove that form = 2, q E {2. 3) and for fixed 
9, there are cases where the fuzzy clusterings are favored against the hard ones. 



Section 14.6: VECTOR QUANTIZATION 541 

14.8 Find the relation between p and A, b. and c so that Eqs. (14.35) and (14.36) are 
equivalent. 
Hint: Consider each coordinate of p separately. 

14.9 Let / = 2. Prove that the substitution of z. as given by Eq. ( 14.44), into Eq. ( 14.42) 
leads to a fourth-degree polynomial, with respect to A. 

14.10 Prove Eq. ( 14.50). 
14.ll (a) Derive Eqs. ( 14.56) and ( 14.57) for the fuzzy C ellipsoidal shells (FCES) 

algorithm. (b) Write the parameter determination part of the fuzzy C ellipsoidal 
shells (FCES) algorithm. 

14.12 Fill in the gaps in the derivation of the fuzzy C quadric shells (FCQS) algorithm. 
(see Appendix) 

14.13 (a) State explicitly the modified fuzzy C quadric shells (MFCQS) algorithm. 
(b) Under what general conditions are the algebraic and the perpendicular distances 
close to each other? 

14.14 What is the relation between the perpendicular and the radial distance between a 
point x and a hyperspherical cluster? 

14.15 (a) Derive the AFCS algorithm [Dave 92b] for the case that spherical clusters are 
to be recovered. The distance between a point x and a hypersphere Q with center 
c and radius r is 

d2
(x, Q) = (llx - ell - rJ2 

(b) Derive the fuzzy C spherical shells (FCSS) algorithm [Kris 92bj for the case 
that spherical clusters are to be identified. 

14.16 Derive the possibilistic algorithm obtained via minimization of the function ./1 
given in Eq. (14.77). 

14.17 Plot 11;1 versus d(x;.9j)/'lj· using Eq. (14.78). Compare this plot with the one 
shown in Figure 14.15. 

14. 18 Compare the iso<lata algorithm with the variant of the BSAS proposed in I MacQ 
67] and outlined in section 12.6. 

14.19 Prove that Eq. ( 14.100) is satisfied if 'E j is equal to 
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15.1 INTRODUCTION 

The clustering algorithms presented in the previous two chapters evolved along 
two distinct major philosophies. The current chapter presents categories of algo
rithms that cannot be included in either of the previous two families , and they 
stem from various ideas. The first one includes clustering algorithms based on 
graph theory concepts, such as the minimum spanning tree and the directed tree. 
The second category includes competitive learning algorithms. The third category 
includes branch and bound algorithms. These schemes guarantee to provide glob
ally optimal clustering, in terrns of a prespecified optimality criterion, at the cost 
of increased computational requirements. The fourth category contains algorithms 
that are based on morphological transformations. These have been inspired by the 
corresponding methods used in signal and image processing. The fifth category 
contains algorithms that are not based on cluster representatives but, instead, seek 
to place boundaries between clusters. Algorithms of the sixth category treat clus
ters as dense in data regions of the feature space separated by regions sparse in data. 
Alternatively, clusters may be viewed as peaks of the pdf, underlying the data in 
X. separated by valleys. The seventh category includes additional algorithms that 
are based on function optimization. such as simulated annealing and dete1ministic 
annealing. The difference from the algorithms presented in Chapter 14 is that the 
optimizing methods used in this chapter do not involve differential calculus con
cepts. Finally. the eighth category includes genetic algorithms modified suitably 
for clustering tasks. 

15.2 CLUSTERING ALGORITHMS BASED ON GRAPH THEORY 

The algorithms of this family are capable of detecting clusters of various shapes. 
at least for the case in which they are well separated. Detection of clusters 
of various shapes is a feature that is shared by only a few other clustering 
algorithms. 

545 
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15.2.1 Minimum Spanning Tree Algorithms 

The first algorithm is based on the idea of the minimum spanning tree (MST) 
(Chapter 13) and is motivated by the way human perception works [Zahn 71 ]. 
More precisely, humans organize information with the most economical encoding 
[Hoch 64] . For example, the more likely way for a human to organize the points 
in Figure 15.1 is in four groups (clusters). 

Let us consider the complete graph G, each node of which corresponds to a 
point of X. The weight of an edge e =(Xi , Xj), We, connecting two nodes x; and 
Xj. is set equal to the distance d(x;, Xj) of the corresponding points in the feature 
space. Also, we say that two edges ei and e1 are k steps away from each other if 
the minimum path that connects a vertex of ei and a vertex of e1 has length equal 
to k - I, that is, contains k - I edges. 

The idea of the algorithm is the following: determine the minimum spanning 
tree of G and then remove the edges that are "unusually " large compared with 
their neighboring edges. These edges are called inconsistent, and it is expected that 
they connect points from different clusters. Next, we discuss a way to determine 
inconsistent edges. For each edge e, we consider all the edges, e;, that lie k 
steps away from it, at the most, and we compute the mean, me. and the standard 
deviation, Cle, of their weights. If We lies more than q (typically q = 2) standard 
deviations (ae) away from me. then we consider e as inconsistent. From this, it is 
clear that the characterization of an edge as inconsistent is somewhat subjective 
and depends on k and q, which are preselected. 

Example 15.1. Consider Figure 15.2. Let k = 2 and q = 3. The edges lying two steps 
at the most from eo are e;, i = L ... , JO. The mean me0 and the standard deviation ae0 • 

corresponding to eo are 2.3 and 0.95, respectively. Thus Weo lies 15 .5 standard deviations 
(ae0 ) away from meo· Therefore, eo is an inconsistent edge. 

Let us now consider the edgee1 l ·Working as before, we find thatme11 andae 11 are 2.5 and 
2.12, respectively. Thus We 11 is 0.24 standard deviations (ae 11 ) away from mc11 . Therefore. 
ell is not an inconsistent edge. 

• • • • • 
• • • • • • • • • • • • • • • • • • • • • • • • 

• • • • • • • 
FIGURE 15.1: An arrangement of clusters. 
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we,';'3 

FIGURE 15.2: The minimum spanning tree of a graph. The edge eo is incon
sistent. while e 1 is consistent. 

After these definitions. the MST clustering algorithm may be stated as follows. 

The MST Clustering Algorithm 

• Construct a complete graph G such that: 
-its vertices con-espond to the vectors of X . 
- W(.r ; . .rj J == d(x;. Xj). i. j = 1, .. . . N , i -:ft j . 

• Determine the MST of G. 
• Identify the inconsistent edges of the MST. 
• The clusters are the connected components of the MST after the removal of 

the inconsistent edges. 

This algorithm works satisfactorily for many cases where the clusters are well 
separated. However. this is not a panacea. Let us consider for example Figure 15.3. 
The edge AB has a very large neighboring edgt: (BC), which increases WAB and 

a AB. Thus, AB may not be characterized as inconsistent and, as a consequence, 
the vectors from regions R 1 and Rz are considered as members of the same cluster 
[Jarv 78]. 

Some suggestions for the use of the MST algorithm for the cases where we 
have touching clusters (Figure 15.4a), as well as for the case where the clusters 
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· .. R, 

FIGURE 15.3: The MST clustering algorithm will assign the vectors of the 
regions R1 and Rz to the same cluster. 

. . . 
. . . 

. . . . . . . . . 
(a) (b) 

FIGURE 15.4: (a) Touching clusters. (b) Clusters with different densities. 

have different densities (Figure I 5.4b ), are discussed in [Zahn 71 ]. However, they 
implicitly require knowledge of the shape of the clusters. 

Remark 

• Note that this algorithm does not depend on the order in which data are 
considered by the algorithm and, also, no initial conditions are required, as 
is the case with the algorithms of Chapter 14. 
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15.2.2 Algorithms Based on Regions of Influence 

An extension of the MST involves regions of influence for each pair of vectors of 
X. This idea was used by many researchers (e.g ., [Tous 80], [Gahr 69],[Urqu 82]) 
in order to overcome the problems associated with the MST algorithms. 

Let us consider two distinct vectors, x;,Xj EX. Their region of influence is 
defined as 

( 15 .1) 

where cond(d(x,x;).d(x,xj) . d(x;.xj)) is a condition among the distances 
d(x, x; ), d(x, Xj ), and d(x;, Xj ) . Different choices of cond give rise to differ
ent shapes of regions of influence. Typical choices of cond, proposed in [Tous 80] 
and [Gahr 69], are 

max{d(x , x;), d(x , Xj)) < d(x;, Xj) (15.2) 

and 

( 15 .3 ) 

respectively. Also, in [Urqu 821, the following two alternatives are proposed : 

(d 2(x. X;) + d 2(x, Xj) < d 2(x;. Xj))OR 

and 

(amin{d(x,x;),d(x,xj)} < d(x;,Xj)) 

(max{d(x,x;) , d(x,xj)) < d(x;,Xj))OR 

(a min{d(x, x;), d(x. Xj)) < d(x; . Xj)) 

(15.4) 

(15 .5) 

where a is a factor called relative edge consistency . This factor affects the size 
of the region of influence defined by x; and Xj . The shapes of these regions are 
shown in Figure 15.5. Other choices of cond are also possible. An algorithm based 
on the idea of the regions of influence is described next. 

Algorithm Based on Regions of Influence 

• For i = I to N 
-For j = i + I to N 

* Determine the region of influence R(x;, Xj ) . 

* lfR(x;.Xj)n(X-{x;,Xj})=0then 
• Add the edge connecting x;, xi 

* End{lf) 
-End {For) 
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FIGURE 15.5: The shapes of the regions defined by (a) condition (15.2), 
(b) condition (15.3), (c) condition (15.4), and (d) condition (15.5). 

• End {For} 
• Determine the connected components of the resulted graph and identify them 

as clusters. 

In words, the edge between x; and Xj is added if no other vector of X lies in 
R(x;, Xj ). This is because when x; and Xj are closely located, it is expected that 
no other points of X will be in R(x;, Xj). The opposite is obviously true for points 
located further away. 

The algorithm is insensitive to the order in which the pairs of vectors are con
sidered. Also, for the last two choices of cond, the value of a must be chosen a 
priori. The graphs produced by these algorithms when (15.2) and (15.3) are used 
are also called relative neighborhood graphs (RNGs) and Gabriel graphs (GGs), 
respectively. 

These techniques avoid situations such as the one shown in Figure 15.3. More
over, several results are given in [Urqu 82] showing the superior performance for 
the last two choices of cond compared with the first two. Also, in [Urqu 82] it is 
shown how the idea of the regions of influence may be used to give rise to hierar
chical algorithms. Finally, in [Ozbo 95], empirically defined regions of influence 
are used, that exhibit satisfactory behavior. 

15.2.3 Algorithms Based on Directed Trees 

An alternative clustering scheme, based on the idea of directed trees, is proposed 
in [Koon 76]. Before we proceed, let us give some definitions. We recall that a 
directed graph is a graph whose edges are directed (see Figure I 5.6a). We say that 
a set of edges e; 1 , • •• , e;

9 
constitute a directed path from a vertex A to a vertex 

B, if A is the initial vertex of e; 1, Bis the final vertex of e;q, and the destination 
vertex of the edge e; 1 , j = I, .. . , q - I, is the departure vertex of the edge e; J+•. 
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A 

1\ 
(a) (b) 

FIGURE 15.6: (a) A directed graph. (b) A directed tree. 

For example, in Figure l 5.6a, the sequence e 1, e2. e3 constitutes a directed path 
connecting the vertices A and B. Finally, a directed tree is a directed graph with 
a specific node A, known as root, such that (a) every node B "I A of the tree 
is the initial node of exactly one edge, (b) no edge departs from A, and (c) no 
circles are encountered, that is, there is no directed path from a node to itself (see 
Figure 15.6b). 

The idea of the algorithm is the identification of directed trees in a graph. 
corresponding to the points of X, so that each of them corresponds to a cluster. 
The vectors of X are processed sequentially. For each point x;, we define its 
neighborhood as 

p;(e) = (X_; EX: d(x;, Xj) :'.'.: 8, Xj "# X;) (15.6) 

where 8 determines the size of the neighborhood and d(X;,Xj) is the distance 
between the corresponding vectors of X. Let n; = IP; (8) I be the number of points 
of X lying in p; (8). Finally, let g;_; = (11 J - 11;) / d(x;, Xj ). This quantity will 
be used to determine the position of the point x; in a directed tree. After these 
definitions, the clustering algorithm may be stated as follows. 

Clustering Algorithm Based on Directed Trees 

Set 8 to a specific value. 
Determine 11;, i = 1, .... N. 
Compute giJ. i, j =I, .... N. i "I j. 
For i =I to N 

• ifn; =Othen 
-x; is the root of a new directed tree. 

• else 
-Determine Xr such that g;,. = maxx1Ep;(e) g;J. 



552 Chapter 15: CLUSTERING ALGORITHMS IV 

-If g;, < 0 then 
* x; is the root of a new directed tree. 

-Else if g;, > 0 then 
* x, is the parent of x; .1 

-Else if g;, = 0 then 
* Define T; = {x; : x; E p;(8), g;; = 0}. 
* Eliminate all the elements x; E T;, for which there exists a 

directed path from x; to x;. 
* If the resulting T; is empty then 

• x; is the root of a new directed tree. 

* Else 
• The parent of x; is Xq such that d(x;, Xq) 

= minxsET; d(x;, X 5 ). 

* End {if} 
-End {if} 

• End {if} 

End {for} 

The directed trees formed by these steps identify the clusters. 
It is clear from the preceding algorithm that the root, say x;, of a directed 

tree has the largest n; among the points lying in p;(8). That is, among the 
points lying in p; (8), x; is the point with the most dense neighborhood. It 
should be pointed out that the branch that handles the case in which g;, = 0 
ensures that no circles will occur. Also, this algorithm is sensitive to the order 
in which the vectors are processed. Finally, it can be shown that for proper 
values of e and large N this scheme behaves as a mode-seeking algorithm 
[Koon 76]. 

Example 15.2. Consider Figure 15.7. The size of the edge of the grid is I and the diagonal 
of a small rectangle equals J2. Also, let X = {x;, i = I, ... , 11}. It is clear that the vecwrs 
of X form two well-separated clusters. Let () = I. I. Applying the preceding algorithm on 
X, we determine the two directed trees shown in Figure 15.7. However, if we present x5 
before x 4 , the left-directed tree will have a different root. Nevertheless, the final results of 
the algorithm remain the same in this (rather easy) case. 

15.3 COMPETITIVE LEARNING ALGORITHMS 

These algorithms employ a set of representatives w1, j = I, ... , m.2 Their 
goal is to move each of them to regions of the vector space that are "dense" 

1 We say that Xr is the parent of x; if there exists a directed edge from x; 10 x,. 
2We use Wj here instead of (Jj to comply with the notation usually adopted for this type of schemes. 
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FIGURE 15.7: The setup of Example 15.2. 
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Xw 

in vectors <~f X. The representatives are updated each time a new vector x E X 
is presented to the algorithm. Algorithms of this type are called pattern mode 
algorithms. This is a point of differentiation from the hard clustering algorithms 
discussed in Chapter 14. There the updating of the representatives takes place after 
the presentation of all the vectors of X to the algorithm. Algorithms of the latter 
kind are also called batch mode algorithms. It must be emphasized that compet
itive learning algorithms do not necessarily stem from the optimization of a cost 
function. 

The general idea is very simple. When a vector x is presented to the algorithm. 
all representatives compete with each other. The winner of this competition is the 
representative that lies closer (according to some distance measure) to x. Then. 
the winner is updated so as to move toward x , while the losers either remain 
unchanged or are updated toward x but at a much slower rate. 

Although, in most of the cases. w j's are points in the /-dimensional space, other 
choices are also possible. For example, the representatives may be hyperplanes 
[Likh 97] . In the sequel, we consider only the case in which w j's are points in the 
/-dimensional space. 

Let t be the current iteration and tmax the maximum allowable number of 
iterations. Also, let m be the current number. lllinir the initial number. and m 111 ax 

the maximum allowable number of clusters (representatives). Then, a generalized 
competitive learning scheme (GCLS) may be stated as follows . 
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Generalized Competitive Leaming Scheme (GCLS) 

• t = 0 
• m =m;,,;1 

• (A) Initialize any other necessary parameters (depending on the specific 
scheme). 

• Repeat 
-t = t + 1 
-Present a new randomly selected x E X to the algorithm. 
-(B) Detennine the winning representative w j. 
-(C) If ((x is not "similar" tow j) OR (other condition)) AND (m < 

fflmax) then 
* m=m+I 
* Wm =x 

-Else 
* (D) Parameter updating 

w ·(t) = !Wj(t - I)+ TJh(x, Wj(t - 1)), 
} Wj(t - 1) + r/h(x, Wj(t - I)), 

-End 
• (E) Until (convergence has occurred) OR (t > tmax) 

if w j is the winner 

otherwise 
(15.7) 

• Identify the clusters represented by w /s, by assigning each vector, x E X, 
to the cluster that corresponds to the representative closest to x. 

The function h(x, w;) is an appropriately defined function. Also, T/ and T/' are 
the learning rates controlling the update of the winner and the losers, respectively. 
The parameter 1'}

1 may be different for different losers. The similarity between a 
vector x and a representative w j may be characterized by a threshold of similarity 
8; that is, if d(x, w J) > 8, for some distance measure, x and w 1 are considered as 
dissimilar and w J cannot be used to represent x accurately. It is clear that improper 
choice of the value of 8 may lead to misleading results. 

Termination of the algorithm is achieved via our familiar criterion II W (t) -
W(t - 1)11 < c, where W = [wj, ... wrn]r. 

With appropriate choices of the parts (A), (B), (C), and (D), most of the com
petitive learning algorithms may be viewed as special cases of the GCLS. In the 
sequel, unless otherwise stated, we use the Euclidean distance, although other 
distances may also be used. 

15.3.1 Basic Competitive Learning Algorithm 

In this algorithm m = m;,,; 1 = mmax; that is, the number of representatives is 
constant. Thus, condition (C) is never satisfied. Also, no other parameters are 
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necessary, so part (A) is omitted. The detennination of the winning representative 
(part (B)) is carried out using the following rule. 

• The representative w j is the winner on x if 

d(x, Wj) = min d(x, Wk) 
k=l, .... m 

Besides the Euclidean distance, other distances may also be used, depending on 
the application at hand. For example, in [Ahal 90], the Itakura-Saito distortion is 
proposed when dealing with speech coding applications in the clustering frame
work. Moreover, similarity measures may also be used (see, e.g., [Fu 93)). In this 
case, the min operator in the preceding relation is replaced by the max operator. 
Finally, the updating of the representatives (part (D)) is carried out as follows: 

w;(I)= .I .I I w (I - 1) + 17(x - w (1 - 1)), 

Wj(I - 1), 

if w j is the winner 

otherwise 
( 15.8) 

where 17 is the learning rate and takes values in [0, 1 ]. According to this algorithm, 
the losers remain unchanged. On the other hand, the winner w j (t) moves toward 
x. The size of the movement depends on 17. In the extreme case where 17 = 0, no 
updating takes place. On the other hand, if 17 = 1, the winning representative is 
placed on x. For all other choices of 17, the new value of the winner lies in the line 
segment formed by Wj(I - 1) and x. 

It is clear that this algorithm requires an accurate determination of the number of 
representatives; that is, knowledge of the number of clusters is required. Another 
related problem that may arise is associated with the initialization of w j's. If a 
representative is initialized far away from its closest vector in X ,3 it will never win. 
Thus, the vectors of X will be represented by the remaining representatives. An 
easy way to avoid this situation is to initialize all representatives using vectors 
of X. 

In the special case in which the vectors are always presented in the same order. 
that is, x 1. x2, ... , x N, x 1, x2, ... , x N, ... , and under the assumption that after 
an iteration to each representative wins on the same vectors. which is reasonable 
at least for the case where well-separated clusters are formed by the vectors of 
X, it can be shown that each representative converges to a weighted mean of the 
vectors it represents [Kout 95]. 

This algorithm has also been studied for a variable learning rate (e.g., [Likh 97]). 
Typical constraints for 17(1) in this case are: 

• 17(f) is a positive decreasing sequence and 17(1)---'> 0. 

·1 More specifically, if it lies far away from the convex hull defined by the vectors of X. 
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• L::~o 71(t) = oo. 

• L~o T/r(t) < +oo, for r > I. 

Note that these constraints are very similar to those required by the Robbins-Monro 
schemes, discussed in Section 3.4.2. This is not a coincidence. Let us consider for 
example the trivial case of a single representative (m = 1). If 71=71(1), the updating 
equation may be seen as the Robbins-Monro iteration for solving the problem 

E[h(x, w)] = 0 

where h(x, w) = x - w. 
Finally, competitive learning algorithms for binary-valued vectors are discussed 

in [Rume 86], [Mais 73]. 

15.3.2 Leaky Learning Algorithm 

This algorithm is the same as the basic competitive learning algorithm except for 
the updating equation of the representatives, which is 

W (t) = {Wj(t - 1) + T/w(X - Wj(t - 1)), 
1 Wj(t - 1) + T}1(X - Wj(t - !)), 

if w j is the winner 
if w j is a loser 

(15.9) 

where 'lw and T/1 are the learning rates in [O, l] and T/w » 7/1 ·The basic competitive 
learning scheme may be viewed as a special case of the leaky teaming scheme, for 
7/1 = 0. In the general case where T/w and 7/1 are both positive, all representatives 
move toward x. However, the losers move toward x at a much slower rate than 
the winner. 

This algorithm does not suffer from the problem of poor initialization of the 
representatives. This is because the second branch of (15.9) ensures that even if 
some representatives are initialized away from their closest vectors of X, they will 
eventually come closer to the region where the vectors of X are located. 

15.3.3 Conscientious Competitive Leaming Algorithms 

Another way to utilize the representative power of w i's is to discourage a repre
sentative from winning if it has won many times in the past. This is achieved by 
assigning a "conscience" to each representative. Several models of conscience have 
been proposed in the literature (e.g., [Gros 76a], [Gros 76b], [Gros 87], [Hech 88], 
[Chen 94], [Uchi 94]). 

Perhaps the simplest way to implement this idea is to equip each representative, 
w J, j = I, ... , m, with a counter fj, that counts the times that w 1 wins. One way 
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to proceed is the following [Ahal 90]. At the initialization stage (part (A)) we set 
.f; =I. j = 1, .... m. We define 

d*(x. Wj) = d(x, Wj)/~ 

and part (B) becomes the following: 

• The representative w J is the winner on x if 

d*(x, Wj) = min d*(x, wk) 
k=l ..... m 

• Jj (I) = fj (I - 1) + I. 
This setup ensures that the distance is penalized to discourage representatives 

that have won many times. The parts (C) and (D) are the same as their correspond
ing parts of the basic competitive learning algorithm. and also m = m; 11 ;1 = mmax· 

An alternative way is to utilize fj via the equation [Chou 97] 

fj = fj + d(X. Wj) 

Other schemes of this kind may be found in [Ueda 94], [Zhu 94], [Butl 96]. 
[Chou 97]. 

A different approach is followed in [Chen 94]. Here, in part (A), all / 1 's are 
initialized to 1 / m. We defined* (x, w J) as 

d" (x, w J ) = d (x, w J) + y (f 1 - 1 / m) 

where y is a conscience parameter. Letting ZJ (x) be 1 if w J wins on x and 0 
otherwise, part (B) of the algorithm becomes 

• The representative w1 is the winner on x if 

d*(x. Wj) = min d*(x, wk) 
k=l. .... m 

• f;(l) = f 1U -- 1) + c(:::;(x) - fj(I - I)) 

where 0 < c « I. As we can easily observe, fj increases for the winner and, in 
contrast to the previous case, decreases for the losers. Guidelines for the choice of 
the appropriate values of c and y, as wel I as a version of the algorithm where the 
value of y is adaptively adjusted, are discussed in [Chen 94 ]. 
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15.3.4 Competitive Learning-Like Algorithms Associated with Cost Functions 

The basic philosophy behind the competitive learning schemes is to move repre
sentatives toward their closest points. If we want to express this in terms of a cost 
function, then a possible way is the following. Let us consider the cost function 

(15.10) 

T TT · · where W = [w 1 , ... , wml and ZJ(X) = I, 1f WJ Iles closer to x, and 0 other-
wise. This is basically the cost function associated with the isodata algorithm 
(Chapter 14), and it is not differentiable, due to the presence of Zj(X). One way to 
overcome the problem of differentiability of J (W) is to smooth ZJ (x ). This implies 
that the concept of the competition is abandoned. Instead, each representative is 
updated in proportion to its distance from x. 

One way to smooth z 1 (x) is to redefine it as 

Zj(X) = "m II - 11-2• j = l, ... ,m 
L..r=I X Wr 

(15.11) 

where 11·11 is the Euclidean distance between two vectors. Clearly, z J (x) is no 
longer strictly equal to 0 or I but lies in [O, I]. More specifically, the closer the w 1 
to x, the larger the z J (x). 

Using the preceding definition and after some rearrangements, J ( W) becomes 

( )

-l 
l N m 

J(W) = 2 ~ f; llx; - w111-
2 ( 15.12) 

The gradient of J(W) with respect to Wk, al /Bwk, after some algebra, becomes 

aJ N 
-- = - LZ~(x;)(x; - Wk) 
awk i=I 

(15.13) 

In the context of the gradient descent algorithms and using the "instantaneous" 
value of the gradient, as it was the case with the backpropagation algorithm, the 
following updating algorithm results. 

wk(t) = wk(t - I)+ 17(t)zl(x)(x - Wk(t - 1)), k =I, .... m (15.14) 

where x is the vector currently presented to the algorithm. 
Notice that in this scheme all representatives are updated in proportion to 

their distance from x. Thus, by smoothing zk(x), we end up with algorithms 
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that are competitive in a wider sense, for which general tools may apply for the 
establishment of their convergence properties. 

Alternative choices of Zj(X) and J(W), leading to more general algorithmic 
schemes, are given in [Masu 93]. 

15.3.5 Self-Organizing Maps 

So far. we have implicitly assumed that the representatives w; are not interrelated. 
We will now remove this assumption. Specifically, for each representative w j 
we define a neighborhood of representatives Q; (t ). centered at w j (Figure I 5.8a 
and b). Ast increases, Qj(t) shrinks and concentrates around w1. The neighbor
hood is defined with respect to the indices j and it is independent of the distances 
hetween representatives in the vector space. This situation is illustrated for l = 1 in 
Figure 15 .8c, where it is assumed that the neighborhood of the jth representative 
contains the j - I and the j + I representatives, j = 2, ... , 6. Note that, although 
the second and fourth representatives are the neighbors of the third, the points w6 

and w7 are closer in terms of the geometrical distance to W3. 

If w j wins on the current input vector x all the representatives in Q1 (t) will be 
updated . This is the well-known Kohonen self-organizing mapping (SOM) scheme 
[Koho 89. Koho 95]. 

0 0 0 0 0 

..... LQ, 0 0 0 0 YQ, 
j j 

0 0 0 0 •O 0 0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

(a) (b) 

w!w6 W3 W7 WI W5 W4 WI w~ W3 W4 Ws w6 w, 
0 0 0 0 0 00 0 0 0 0 0 0 0 

(c) (d) 

FIGURE 15.8: (a) A square-shaped 3 x 3 neighborhood. (b) A square-shaped 
5 x I neighborhood. (c) The initial positions of the representatives on the real line 
(l = I). (d) The final positions of the representatives after the application of the 
SOM algorithm. 
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In its simplest form, SOM may be viewed as a special case of the generalized 
competitive learning scheme (GCLS). Precisely, it is the same as the basic compet
itive learning algorithm as far as parts (A), (B), and (C) are concerned. However, 
part (D) is different. If w J wins on x, this part becomes 

l
wk(t - I)+ t](t)(x - wk(t - l)), 

wk(t) = 
Wk(t - I), 

if Wk E Qj(t) 

otherwise 
(15.15) 

where t](t) is a variable learning rate, which is chosen to satisfy the conditions in 
Section 15.3.1. The choices of t](t) and Q J (t) are crucial for the convergence of the 
algorithm. After convergence, the representatives w; are topographically ordered 
and in a way representative of the distribution of the data. That is, neighboring 
representatives also lie "close" in terms of their distance in the vector space (see 
Figure 15.8d). A suboptimal method for selecting the winner node that may lead 
to computational savings is presented in [Vish 00). 

15.3.6 Supervised Learning Vector Quantization 

A supervised variant of the competitive schemes has been suggested and exten
sively used in the context of VQ [Koho 89], [Kosk 92). In this case, each cluster 
is treated as a class and the available vectors have known class labels. In this 
framework, let m be the number of classes. Supervised VQ uses a set of m rep
resentatives, one for each class, and tries to place them in such a way that each 
class is "optimally" represented. The simplest version of the supervised VQ (also 
called LVQl [Tsyp 73]) may be derived from generalized competitive learning 
schemes by keeping parts (A), (B), and (C) the same as in the basic competitive 
learning scheme and modifying part (D) to 

I w J (t - I) + '1 (I )(x - w J (t - I)), if w J correctly wins on x 

w1(t) = w1(t - I) - t](/)(x - w1(t - I)), if w; wrongly wins on x 

w 1 (t - 1), othe1wise 
(15.16) 

It is clear that the information related to the known class labels determines the 
direction in which w J is moved. Specifically, we move w 1 (a) toward x if w 1 
wins and x belongs to the }th class and (b) away from x if w 1 wins and x does 
not belong to the jth class. In addition, all other representatives remain unaltered. 
Such algorithms have been used in speech recognition and OCR applications. 

A variant of this scheme, where more than one representative is used to represent 
each class, is discussed in [Koho 89]. 
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15.4 BRANCH AND BOUND CLUSTERING ALGORITHMS 

As already stated in Chapter 5, branch and bound methods compute the globally 
optimal solution to combinatorial problems, according to a prespecified criterion 
(cost) function J, overcoming the need for exhaustive search.4 They are applicable 
to monotonic criteria. That is, if k vectors of X have been assigned to clusters, the 
assignment of an extra vector to a cluster does not decrease the value of J. 

We will first attempt to gain some insight into these methods by considering 
an example. Let us assume that our goal is to find the best way (with respect to a 
criterion 1) in which three vectors can be clustered in two clusters. To this end. 
we construct the class(fication tree of Figure I 5.9. Each node is characterized by a 
string of three symbols, namely 1, 2, and x. For example, the string "122" means 
that the first vector is assigned to cluster I while the other two are assigned to 
cluster 2. Also, the string "1 xx" means that the first vector is assigned to cluster 1 
while the other two remain unassigned. The first vector is always assigned to the 
first cluster. Note that each leaf corresponds to an actual clustering and there are as 
many leaves as the possible clusterings of the three vectors in two clusters. All the 
other nodes correspond to the so-called partial clusterings, that is, to clusterings 
where not all the vectors of X have been assigned yet to a cluster. 

We are now ready to see where the computational saving comes from. Let us 
assume that at an iteration step of the algorithm, the best computed value for the 
criterion J is B. Then, if at a node the corresponding value of J is greater than B, 

lxx 

ll:c 12x 

111 112 121 122 

FIGURE 15.9: The classification tree corresponding to the grouping of three 
vectors in two clusters. 

4 In the sequel we consider only the minimization problem. 
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no further search is performed for all subsequent descendants springing from this 
node. This is because of the monotonicity of the criterion, which ensures that all 
descendants will result in values of 1 no less than B. 

More formally, let Cr = [c1, ... , Cr], 1 _::: r _::: N, denote a partial clustering, 
where c; E { 1, 2, ... , m}, c; = j if the vector x; belongs to cluster C j, and the 
vectors x r+ 1, ... , x N are not yet assigned to any cluster. 

In the sequel, we focus on compact clusters and we give a simple branch and 
bound algorithm [Koon 75]. We assume that the number of clusters, m, is fixed. 
The criterion function employed is defined as 

,. 
l(Cr) = l:)x; -mc;(Cr)ll 2 

i=l 

where me; is the mean vector of the cluster Cc;, that is, 

j = l, ... ,m 

(15.17) 

(15.18) 

with nj(Cr) being the number of vectors x E {x 1, ... , Xr) that belong to clus
ter C j. Note that the computation of the mean vectors of the clusters takes into 
account only the first r vectors. We assume that 1 (C1) = 0. One can easily verify 
that 

l(Cr+1) = l(C,.) + /'o;,.J(Cr) (15.19) 

with /'o;,.J(Cr) 2'., 0. In words, /'o;,.J(Cr) denotes the increase in the value of 1 when 
the next vector is assigned to a cluster. More precisely, assuming that the r + 1 
vector is assigned to the cluster C j, it can be shown that 

nj(Cr) 2 
/'o;,.J(Cr) = llxr+I - fflj(Cr)ll 

11j(Cr)+1 
(15.20) 

Let C~ = [er, ... , c"Jy] denote the optimal clustering. In the sequel, the index 
r denotes the vector that is currently considered for cluster assignment. Then the 
algorithm may be stated as follows. 

Branch and Bound Clustering (BBC) Algorithm 

r=1 

B = +oo 
While r f= 0 do 
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• If (J (C,) < 8) AND (r < N) then 
-r=r+I 
-Among all possible assignments, c, , of x, that have not been tested 

yet , choose the one that minimizes the value of D.J(C,).5 

• End {If} 
• If (J(C,) < 8) AND (r = N) then 

-CN =CN 
-8 = J(CN) 

• End {If} 
• If (J(C,.) ~ B) AND (r = N)) OR (J(C,.) > 8)) then 

-(A) r = r - I 

-lf(r = 0) then 

* Stop 
-Else 

* If all possible clusterings that branch from this node have been 
exhausted for the rth vector then 

• Go to (A) 

* Else 
• r=r+l 
• Among all possible c,. 's that have not been tested yet, 

choose another path, the one that minimizes the value of 
D.J(C,.). 

* End {If} 
-End {If} 

• End {If} 
End (While} 

The algorithm starts from the initial node of the tree and goes down until either 
(i) a leaf or (ii) a node q with cost function value greater than B is encountered. In 
case (i) if the cost for the clustering that corresponds to that leaf is less than B, then 
this cost becomes the new bound B, and the clustering is the best clustering found 
so far. In case (ii) all subsequent clusterings branching from q are not considered 
any further and we say that they are exhausted. The algorithm, then, backtracks 
to the parent node of q in order to span a different path. If all paths branching from 
the parent of q have already been considered, we move to the grandparent of q. 
The algorithm terminates when all possible paths have been considered explicitly 
or implicitly (via the aforementioned case (ii)). Clearly. in the beginning, the BBC 
algorithm spans first a whole path from the initial node of the tree down to a leaf. 
The cost function of the clustering corresponding to that leaf is the new value of B . 

s If mor~ than one c,. 's minimize tiJ (Cr ), choose 1he smalles1 one. 
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It is clear that the tighter the upper bound B, the more paths are rejected without 
explicit consideration. Variations of this algorithm that use better estimates of B 
are discussed in [Koon 75]. Moreover, the substitution of the values J (Cr) with 
tighter lower bounds of the optimal value of J is also suggested in [Koon 75] . 
This leads to the rejection of many more clusterings without considering them 
explicitly. 

The major disadvantage of this algorithm is the excessive amount of compu
tational time it requires even for moderate values of N .6 In addition, this time 
is unpredictable . One way to face this problem is to run the algorithm for a pre
chosen time and use the best clustering found so far. It is clear that in this case, 
the algorithm can no longer guarantee the dete1mination of the globally optimal 
clustering. 

15.5 BINARY MORPHOLOGY CLUSTERING 
ALGORITHMS (BMCAs) 

Algorithms of this type are suitable for cases in which clusters are not properly 
represented by a single representative ([Post 93], [Mora 00]). The idea here is 
to map X to a discrete set S that facilitates the clustering procedure and then 
use the identified clusters in S as a guide for the identification of the clusters in 
X. In the sequel, we describe such an algorithm, called the binary morphology 
clustering algorithm [Post 93]. The BMCA involves four main stages. During 
the first stage the data set is discretized and a new set is derived. This is the 
so-called discrete binary (DB) set. During the second stage, the basic morpho
logical operators (opening and closing) are applied on the DB set, giving rise 
to a new discrete set. The third stage reveals the clusters formed in the last set. 
Finally, the last stage is responsible for the identification of the clusters formed by 
the original vectors of X, using as guide the clusters discovered during the third 
stage. Before we present the algorithm, let us first recall some basic tools and 
definitions. 

15.5.l Discretization 

During the first step of the discretization stage, we normalize the vectors x E X 
so that all their coordinates lie in the range [O, r - I], where r is a user-defined 
parameter. This is achieved via the following transformation: 

Xij - minq=l ..... N Xqj 
Yu= . (r-1). i=l, .... N,J=l,. . .,I 

maxq=l ..... N Xqj - mmq=l ... .,N XqJ 

(15 .21) 

6Tuis is a common feature for the methods performing global optimization. 
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FIGURE 15.10: (a) The original data set X . (b) Normalization of the data set X 
in 10. r - I ]1, with r = I 0, and discretization. The nonempty hypercubes define 
the discrete binary set. 

where x;1 denotes coordinate j of vector i . Let us denote the resulting set by X', 
that is. 

X' = !Y; E 10.r - 1]1. i = 1, . . .. N} 

Next. we discretize [O, r - l ]1 into r1 hypercubes. This is achieved by seg
menting the [O, r - I] interval, for each coordinate, into r subintervals (see 
Figure 15.10). Each hypercube is identified by the coordinates of its lower left 
corner. The parameter r defines the "resolution" of [O, r - I ]1. 

In the sequel, we identify the hypercube where each vector Y; E X' lies. This 
can be accomplished by simply taking the integer part of each coordinate of Y;. 
The resulting vector, Z;, will be the identity label of a hypercube in the defined 
grid . More specifically, 

i=l, . .. ,N, j=1 . ... . I 

where [x l denotes the integer part of x . Let S be the set containing the new 
vectors z;. after removing all duplicates. Thus. each element of S corresponds to 
a nonempty hypercube. and S is the discrete binary set. 

15.5.2 Morphological Operations 

These operations are applied only to sets with discrete-valued vectors. The simplest 
operations of this kind are dilation and erosion. Based on these two operations, 
opening and closing operations are defined. 
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Let Y and T be subsets of Z 1, where Z is the set of integers and s a vector in 
z1• The translation of Y bys is defined as 

Ys={tEZ1:t=x+s, XEY) (15.22) 

Definition 1. The dilation of Y by T, denoted by Y ffi T, is defined as 

Y ffi T = {e E Z1: e = x + s, x E Y, s ET) (15.23) 

Equivalently, the set Y ffi Tis determined by translating Y by all elements of T 
and taking the union of the resulting sets {Gonz 93]. 

Definition 2. The erosion of Y by T is denoted by Y 8 T and is defined as 

y e T = {/ E Z1: x = f + s' x E Y, v s E T} (15.24) 

Equivalently, the set Y 8 T is determined by translating Y by all elements of T 
and taking the intersection of the resulting sets [Gonz 93 ]. 

In both of these cases, T is called the structuring element. Usually, it has a 
hypercubical shape (see Figure 15. l l) but other choices, such as hyperspherical 
shape, are also possible. 

Example 15.3. Let us consider a two-dimensional normal density function with mean 
µ = [O, Of and covariance matrix :E = 31, where I is the 2 x 2 identity matrix. Let X 
be a set containing 200 vectors stemming from this distribution (Figure 15. I 2a). We apply 
the discretization process on X, with r = 20, in order to obtain the corresponding discrete 

• • • • 
• • • • • • 

• • • • • • 
• • • • 

(a) (b) 

FIGURE 15.11: (a) A squared 3 x 3 structuring element. (b) A squared 5 x 5 
structuring element. 
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FIGURE 15.12: (a) The original data set X given in Example 15.3. (b) The 
discrete binary set Y derived from X. (c) The set Y dilated by T. (d) The set Y 
eroded by T. 

binary set, which is denoted by Y (Figure 15.12b). Let T be the 3 x 3 structuring element 
shown in Figure 15.11 a, which consists of the points 

T = ft1. t2 .... , 19) 

= {(-1, -1), (-1. 0), (-1, I), (0. -1), (0. 0), (0, I), (I, -1), (I, 0), (I, I)} 

In order to derive the dilation of Y by T, we compute the sets Yi, i = I, ... , 9, produced 
by the translation of Y by each element t; of T, i = I, .... 9, and in the sequel, we take the 
union of all Y; 's. This is the dilation of Y by T (Figure I 5. I 2c ). The erosion of Y by T is 
computed by taking the intersection of all Y; 's defined above. The result of this operation 
is shown in Figure I 5. I 2d. 

Opening and closing are two additional basic operations that are defined in terms 
of the dilation and the erosion. 
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Definition 3. The opening of Y by T is denoted by Yr and is defined as 

Yy = (Y 8 T) E& T ( 15.25) 

that is, the opening of Y by T is the erosion of Y by T followed by the dilation 
of the resulting Ye T by T . 

Definition 4. The closing of Y by T is denoted by YT and is defined as 

yr = (YE& T) 8 T (15.26) 

that is, the closing of Y by T is the dilation of Y by T followed by the erosion 
of the resulting Y E& T by T. 

In general, Y is different from Yr and yr. Note that the opening operation 
smooths out the boundary of Y by discarding irrelevant details of it. On the other 
hand, the closing operation fills the gaps in the set Y. These observations show 
that opening and closing tend to produce new sets with simpler shapes than the 
original ones. As pointed out in [Post 93], "Opening and closing seem to be very 
effective to eliminate isolated groups of set points and holes, provided that these 
details do not exceed the size of the structuring element." The following example 
shows how the opening and closing operations work. 

Example 15.4. Let us consider the discrete binary set Y (see Figure 15.12b) and the 
structuring element T of Example 15.3. We derive first the opening of Y by T. The result 
is shown in Figure 15.13a. As one can observe, the resulting set retains the basic shape of 
Y, while irrelevant details of the boundary of Y have been discarded. The action of closing 
Y by Tis shown in Figure 15 .13b. 

The above arguments indicate that the structuring element T plays an important 
role in the outcome of the above operations. Unfortunately, there are no general 
guidelines for choosing the appropriate T. 

15.5.3 Determination or the Clusters in a Discrete Binary Set 

We begin with a description of a rather simple algorithm suitable for clusters 
formed by the points of a discrete-valued data set S c {O, I, . .. , r - I }1. Let us 
first define the neighborhood, V(x), of a point x ES as 

V(x) = {y ES- {x}: d(x, y) S dq} 

where d may be any distance measure between two points (see Chapter 11) 
and dq is a distance threshold. Also, let e be a threshold of the density of the 
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FIGURE 15.13: (a) The set Y given in Example 15.3, opened by T. (b) The set 
Y given in Example 15.3, closed by T. 

neighborhood V (x) of a point x. That is, if V (x) contains at least () points of S, it 
is considered "dense." These are user-defined parameters. 

Let U(x) be the immediate neighborhood of x, that is, the set that contains all 
points lying at a (Euclidean) distance less than or equal to ./i from x. 

Cluster Detection Algorithm for Discrete-Valued Sets ( CDADV) 

• Initially no vector is considered as processed. 
• Repeat 

-Choose a nonprocessed point x of S. 
-Determine the neighborhood V(x). 
-If V (x) contains at least() points then 

* Create a new cluster that includes: 
• The pointx 
• All points y E S for which there exists a sequence of 

points Yj, ES, s = 1, ... , qy. such that y E U(yh), Yj, E 
U(yis+ 1), s = 1, ... , qy - 1, and Yjqy E U(x). 

* The defined points are considered as processed. 
-Else 

* Consider x as processed 
-End {if} 

• Until all points of Shave been processed. 

Example 15.5. Consider the setup of Figure 15.14a. We choose dq = ,J2 and()= 1 (in 
this case V(x) = U (x)). Also, the sides of the squares depicted in Figure 15.14a are of unit 
length. The CD ADV considers first x I· Since it is "dense" (i.e., its neighborhood contains 



570 

y 

)Xg , ........ . . 

• ~1~ .· 

(a) 

Chapter 15: CLUSTERING ALGORITHMS IV 

x 

y 

·x, 
..... ... ..... 

• :i;s .:i;9 .. 1 ......... , ........ . 

X10 •···· 

(b) 

x 

FIGURE 15.14: (a) The setup ofExample 15.5. (b) A data set containing outliers. 

at least one point of S apart from x l ), a new cluster is created. x2 also belongs to this cluster 
because x2 E U (x 1 ) . Moreover, x3, x4 belong to this cluster because x3. x4 E U (x2) and 
x2 e U(x1) . In addition, x5 belongs to this cluster because x5 E U(x3). x3 E U(x2). 
and x2 E U(x1) . Finally, since X6 E U(x5), x5 E U(x4). x4 E U(x2). and x2 E U(x1). 
X6 also belongs to this cluster. Working similarly, we find that x7. xg, x9, and x 10 form a 
second cluster, while no action is taken for x 11 . 

In the preceding scheme, all points of S are processed by the algorithm, regard
less of their density. In fact, CDADV works well when the points of S form 
well-separated clusters. However, if this is not the case. for example, when we 
have a small number of outliers in S lying between its clusters (Figure 15.14b), 
we may proceed as follows. As it is expected, the neighborhood of an outlier is 
rather "sparse", and we first define a lower threshold 01 (:'.::11) for the density of 
the neighborhood of a point and we consider the set S' of all points of S whose 
neighborhoods have density at least 81. That is, we exclude the outliers from S'. 
Then we run the CDADV on S' using B, and, after its completion, we assign each 
vector of S - S' to the cluster where its nearest point in S' belongs. Note that 
the distance function between a point and a cluster that we employ for this stage 
should not involve cluster representatives, since Sis a discrete-valued set. 

15.5.4 Assignment of Feature Vectors to Clusters 

This subsection deals with the final stage of the algorithmic procedure. Let us recall 
that Sis the discrete-valued set obtained from X, after applying the opening and 
closing transformations. Let c;, ... , c;,, be the clusters formed in S, determined 
by the previously discussed CDADV algorithm. The aim of the current task is to 
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determine m clusters in X, denoted by C 1, ...• Cm, that correspond to the clusters 
c:.i=l,. . .,m. 

The algorithm assigns the vectors of X to clusters in two steps. During the first 
one, all vectors x E X such that [y] E S 7 are considered. In the sequel, the algo
rithm assigns a vector x to the cluster C; if [y] belongs to q. Let X' be the set 
of the vectors of X that have been assigned to clusters during this step. At the 
second stage, the algorithm assigns each of the points in X - X' to its closest C;. 
j = l, ... ,m. 

15.5.5 The Algorithmic Scheme 

Having described the steps, we may proceed now to the description of the BMCA. 

Binary Morphology-Based Clustering Algorithm (BMCAi 

• /st stage. Discretize the data set X and let S be the resulting discrete binary 
set. 

• 2nd .~tage. 
-(a) Apply the opening transformation on S using a preselected 

structuring element T, to obtain ST. 
---(b) Apply the closing transformation on Sr using T. Let S1 = (Sr)' 

be the set obtained. 
• 3rd stage. Determine the underlying clusters of S1 using the CDADV 

algorithm. 
• 4th stage. Based on the clusters formed in S1, determine the underlying 

clusters of X. 

It should be noted here that different choices of morphological operators can be 
used at the second stage of the algorithm. Thus, for example, one may use either 
the opening or the closing operator or both of them in the reverse order. 

BMCA is sensitive to the parameter r and the structuring element T. These 
parameters may cause overestimation or underestimation of the true number of 
clusters underlying X. However, it is expected that when X contains clusters, their 
number remains unchanged for a significant range of values of the parameters 
involved (a similar situation has been met earlier in Chapter 12). Based on this 
assumption, we run the first three stages of the algorithm for various values of r 
and different T (for simplicity we may assume that T has a hypercubic scheme and. 
thus, its only parameter that is subject to change is the length of its side a). Then we 
plot the number of the resulting clusters versus r and a and we consider the widest 
area in the (r, a) plane, for which the number of clusters remains unchanged. The 

7 By IYI we denote the /-dimensional vector whose ith coordinate is the integer part of the ith 
coordinate of the /-dimensional vector Y-
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final values for r and a are chosen to be those corresponding to the middle point 
of the area. Using these values, we run the BMCA algorithmic scheme in order to 
determine the clusters of X. 

A major drawback of the procedure is that it requires intensive computations, 
since many combinations of the values for rand a have to be considered. A way to 
reduce the required computations is to fix one of the two parameters to a reasonable 
value (if this is possible) and to apply the procedure only to the other parameter. 

An important observation is that when the underlying clusters of X are compact 
and well separated, algorithms such as the isodata give better results than BMCA 
(see Problem 15.6). However, the situation is reversed when this is not the case. 
Let us consider the following example. 

Example 15.6. Let X be a data set consisting of 1000 vectors. The first 500 of them, 
(xi

1
• x;2), are defined as 

2s 
x;1 == (i - I) 500 

x;2 == js2 - Xf1 + z; 

wheres == 10 and z; stems from a Gaussian distribution with zero mean and unit variance, 
i == I, ... , 500. Similarly, the remaining vectors (x; 1 , x;2 ) are defined as 

2s 
x == b 1 + (i - 50 I) -11 500 

Xi 2 == b2 + js2 - (Xii -b1)2 +z; 
where b1 == -10, b2 = 3, s == 10, and z; is normally distributed with zero mean and unit 
variance, i == 50 I, ... , 1000. It is not difficult to realize that the first 500 feature vectors 
spread around the upper half-circle with radius IO centered at (0, 0). Similarly, the rest of 
the 500 vectors spread around the lower half-circle with radius IO, centered at the point 
(-10, 3) (see Figure 15.15a). 

Clearly, two clusters are formed in X and each of them cannot be represented satisfactorily 
by a single point representative. In our simulations we use the 3 x 3 structuring element 
defined in Example 15.3 and r == 25. Also, the Euclidean distance between two vectors is 
adopted. The discrete binary set S, resulting from the discretization process, is shown in 
Figure 15. l 5b. Figure J 5.15c shows the result of the opening of S by T, and Figure I 5. I 5d 
shows the result of the closing of Sr by T. The two clusters involved in the last set are 
well separated. Application of the third stage of the BMCA algorithmic scheme reveals 
these two clusters. Finally, application of the fourth stage of the algorithm determines the 
clusters formed in X. The results obtained are excellent. Only two of the first 500 vectors 
were misclassified, and only I of the remaining 500 vectors was misclassified. Thus, 99.7% 
of the vectors of X were correctly classified. In contrast, the results obtained with the isodata 
algorithm were much inferior to these results. 



21) -------------~ 

JO. 

. 
"\~ 

•• , > ... 

.:.;~ -10 0 

21) 

IS 

10 

(:l) 

. . . ,,,, ...... .............. ... . ,,,., ...... .. . . . . ......... . 
•• • • • • • • >>••••· .. . . . .. ... .. 
1· . . 

... .... ... . . . , ,,. ... 

10 

~ 0-""''"'"'"'"'"'1"'0 ____ 2_0 ____ _ 

(.;) 

. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
>5; 

,,.., ... ,,, . ... .. . 
!! !! 

... 
. . 

.... . .. 
... •••••• > ;;.;;;· • • ••• ••>+>>•• , .....•.. " ••••••• >• . .... 
I) • • 

IJ 11) 

(h) 

.... 

'" 

. . . .......... .. 

15 

10 

. ... , ......... .. ...... ,,. , ...... .. . .... ,,,, ...... .. .............. .. . 
. .......... . . . . . . . . . . . . . ••• •••• ••• . ... " ... 

. 
' 

~ o~-·-·-·-·-·-»-~----·,o----~ 
{:l} 

f"JCtfUl 15.15: (<i> ·1hc <.>n~1ual J:.tUl Sl'il X. lb> ·rile Sl'il $ resl•Jliu~ ff(1111 dtc 
rli!tctcti;i:ation ai .'<.(..:)Tl>: set l'~5-ulting f1\"lm o~ning <1f .Ii to}· T. td) The c.:c 
~'>t•Uiu~ ff(1cu t·J~i1'-S <.>f s.,.. by ·r, 

JS.6 JJOt.'Nl)A.M. 'r' 1lt::'J'l£C'1'1():S Al.CORl'J'lll\t'> 

t1ofuic uf cite ;llgc,1ricl11c~ 1liit.:uiieicl '>(1 f'1r 1lele1111i11l'i .~lvice1~ l>.Jlieicl c,1c1 l'lill•.:c 1l1c 
dis1uncc bctiA'ccn vccl\>r:> tind clus1~cs \:IC chc dis1un~c bel'>':een ~lu~1cel. (n 1h1s 
¢t'rinu. :\ diff..:f<:l'l11:11icu1.11lc i!>. cli'J(.'uJ:s ... ~ct. C:lt1!tCC';1!t '1lC f,)fMCcl vi.111t1r; <:J:1iM:lfi<111 
ut ll'I: OOundat)' sucr¥.~es 1b¥.l l!('ptU'<1le ll>e.m IA1iy ~1'1.11. l 'his llpprour.;h 1s ,.,.e,11 ~uil<tl 
..... ll•~l'I I he l)llclCfl}'·i •1.f, cl l)trc1t :lfC COlllP'lC'L Tl1c idc .11 i~ •':llhCf >.i 111111 c. TllC' C<llll(l:\<:C 
ch1)1ec) <IR' \'le'o':etl 11$ dense regi\>ns. 1n the !-dU11e11)ional ~pott'e, ).Cpac.:1cc;J b)' 
1\":giM~ !t('nf-..~ i11 rl:\l.11 "'occcwt. rh.<:t<:fnf..:, ir ~11ffi<:ct t.,) b:iin \('lfh a11 il'liti:ll ..:!tci111at.~ 

ut the OOuutl<U')' .inti mt>\'< i1 i1erot11''<l>' '"' Jl'lgi.c,111s 1hac ;ul'i ~v••JSl'i u1 \'ct·c1>1s. 
l ~tu~ cnn!tirlcr tir~t chc<:s!tc iu ,•;hich t\c,•n c luc,1~rc, 2rep1cc,cnt. 1.-:t t.,(x: IJ} he th~ 

fu1t(;uun de$1.:cibi1'-S lhl'l<5t't'isi.u11 Wu111l'1cy l'<:'t ''~Cll the t"'<.1<:lu~1cr'>, ~''he~ 0 j~ 11le 
unl<no\\.'11 J)31·an1ctcr \'Cc tor describing 1hc surface. If. for a c,pccitic x. g(.t·: 8) ; ... 0, 
11~11 :r l«l<.>JJ,S'> •<> ll1l'I fl~c clt•~Cer, 1lcu1>1e•I l•}• (:+, Oll'<"''i~. ,i; tx:luc1g'> tu 1hc 



574 Chapter 15: CLUSTERING ALGORITHMS IV 

second cluster, denoted by c-. The goal is to determine the unknown parameter 
vector 8. The situation looks similar to the supervised case where we identify 
the decision boundary between classes, utilizing the labelling information of the 
feature vectors. However, no such information is available here. In the present 
case, the adjustment of 8 relies exclusively on the distances of the vectors of X 
from the decision boundary. 

To this end, we define a cost function J, whose maximization will lead to locally 
optimal values for 8. Let l be defined as 

N ( N )2q 
1(8) = ~ '{; f 2 

(g(x;; 8)) - 1~ '{; f(g(x;; 8)) (15.27) 

where q is a constant positive integer and f (x) is a monotonically increasing 
symmetric squashing function with 

Jim f(x) = 1, 
x-->+oo 

Jim f(x)=-1, and f(O)=O 
x___,.-oo 

A common choice for such a function is the hyperbolic tangent 

I - e-x 
f(x) = 1 +rx 

(15.28) 

Each of the two terms in (15.27) has a maximum value of 1. Also, 1(8) is 
nonnegative since 

l N ( l N )

2 

1(8) ~ N ~ f(g(x;; 8)) - Nb f(g(xk; 8)) ~ 0 (15.29) 

One can easily observe that the first term in Eq. (15.27) is maximized when 
all x EX lie away from the boundary. In this case f 2(g(x;; 8)) -+ 1 and the 
first term attains values close to 1. However, this argument holds also true if 
all vectors of X lie on the same side of the boundary and away from it. The 
role of the second term is to discourage such trivial solutions. Indeed, in such 
cases ( 1J- 'L;:1 f (g(x;; 8)))2q --+ 1 and therefore J (8) approaches zero, its min
imum value. The role of q is to control the impact of the second term on the cost 
function l. 

Let us now consider an intermediate case in which the boundary lies between 
two dense regions. In such cases, the contribution of the second term to J is small. 
Let us demonstrate it via a simplified example. Assume that the decision surface is 
a hyperplane Hand that at the positive (negative) side of H we have k points lying 
at distance a (-a) away from it. Then it is not difficult to show that the second 
term becomes zero while the first equals f 2 (a 118 II). 
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In the sequel we adopt a steepest ascent scheme in order to detennine the optimal 
value for 8. Let e j be a coordinate of 8. Then 

or 

aJ(8) I 
8j(I + 1) = 8j(I) + µ-.- 1 

ae1 fl; =ll;ui 

fHt+l)=(}·(t)+ -'°'f((x ·· 8)).f(g(i,) g( 1
,) 

(

2 N a x ·· O)a x·O 
1 1 µ N ~ 8 1

' ag(x;;O) aej 

_?.!i ~ tf(g(x; ; O)) L a~(g(x,::8)) 8g~x;;O) I 
( 

y ) 2q-l N ) 

N N . . 8g(Xi. 8) 081· fl = IJ (I) 
1=( 1=! I J 

(15 .30) 

For the simple case that g(x; 8) is a hyperplane we can write 

g(x:O)=wTx+wo 

where () = [ w wof. The updating equation for the parameters follows directly 
from Eq. ( 15 .30) if we notice that 

ag(x; ()) = Ix j· 
awj 1, 

j = 1, ... , I 

j=O 

The resulting algorithm is rather simple in its formulation and may be stated as 
follows 

Boundar\' Detection Algorithm (BDA) 

• Choose an initial value 6(0) for the parameter vector. 
• Compute 1(0(0)) using Eq. (15.27). 
• I= 0 
• R.:peat 

-I= I+ l 
-Compute fJ(t) using Eq. (15.30). 
-Compute J(fJ(t)) using Eq. (15.27). 

• Until j J(fJ(i)) - JlfJ(I)) j < to. 
J 1811))-J 18 (1-1 )) 
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We note here that the coordinates of 9 should not grow in an unbounded way. 
In the case that g(x; 9) corresponds to a hyperplane, a bounded condition for the 
coordinates of 9 could be 119 II _::: a, where a is a user-defined parameter. 

Let us now consider the case in which more than two clusters underlie X. In this 
case, we follow a hierarchical procedure. First we divide X into two clusters 
x+ and x- using the boundary detection algorithm. Then, using the algorithm 
again, we further divide x+ (X-) and obtain x+- and x++ (x-- and x-+). 
This procedure is then applied iteratively to the resulting clusters until a specific 
termination criterion is met. This procedure reminds us of the neural network 
design discussed in Chapter 4 [Atiy 90) . 

One can easily observe that if no sparse regions exist in a formed cluster C, the 
division of C will result in a low value of J (9). Thus, an appropriate criterion that 
may be used to check whether C contains more clusters is 

1(9) ::: b 

where b is a user-defined threshold. If this happens, the division of C is not 
acceptable. Otherwise, the division of C is accepted and we proceed with c+ and 
c-. It is clear that the smaller the value of b, the more clusters will be defined. On 
the other hand, higher values of b result in the acceptance of fewer clusters with 
well-defined borders among them. Thus, b should be chosen with care. 

15.7 VALLEY-SEEKING CLUSTERING ALGORITHMS 

The method discussed here is in the same spirit as that of the previous section. Let 
p(x) be the density function describing the distribution of the vectors in X. An 
alternative way to attack the clustering problem is to view the clusters as peaks 
of p(x) separated by valleys. Inspired by this consideration, one can search to 
identify such valleys, and try to move and place the borders of the clusters in these 
valleys. 

In the sequel, we discuss an iterative and computationally effective algorithm 
based on this idea [Fuku 90]. Once more, let V (x) be the local region of x, 
that is. 

V(x) = {y EX - {x}: d(x, y) _:::a) (15.31) 

where a is a user-defined parameter. The distance d(x, y) can be taken to be 

d(x, y) = (y - x)TA(y - x) (15.32) 

where A is a symmetric positive definite matrix. Also, let k~ denote the number of 
vectors of the j cluster that belong to V (x; ), excluding x;. Also, let c; E (I, .. . , m} 
denote the cluster to which x; belongs, i = I , ... , N. Then the algorithm is stated 
as follows. 
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Valfe1·-Se<!king Algotitlim 

• Fix ''-
• Hx the number uf dusters 111. 

• Define an initial clustering of X. 
• Repeat 

-For i = I to N 

* Find j: k~ = maxq= 1, .... m k;, :\ 
* Set c; = j 

-End (For} 
- for i = I to N 

* Assign x; to cluster Cc,. 
-End ( f-or} 

• Until no rcclustcring of vt:t:turs occurs. 

Remarks 

577 

• Observe that the preceding i1!gorithm has close similarities to the Parzen 
windows method, for pdf estimalion, discussed in Chapter 2. Indeed, all 
it docs is to move a window d(x. JI) ~ a at x and to count poims from 
different clusters. Then it assigns x to the cluster with the larger number of 
points in the window. That is, to the cluster with the highest local pdt' den
sity. This is equivalent with moving the boundary away from the '·winning .. 
duster. 

• The preceding is a mo<le seeking algorithm. That is, it' more than enough 
clusters arc initially appointed, some of them may be empty. 

Example 15.7. (a) Cnnsider Figure l 5. I 6a. X consist,; of the following IO vectors: x 1 -

ro. 1]7. x2 = 11. O)r_ x~ = 11. 211 • .r4 = 12. 11T. xs = [I. 11r. X6 = (5. I).,., .r-; = 
16. of. X:; = [6. 21T X9 = (7. 11t. x 10 = 16. I Jr The squared Euclidean distarH.:e i,: 
employed. 

The initial clustering consists of twn clusters as shown in Figure 15.16a. Also, a decision 
line, b 1, separating the two clusters is shown <Figure I 5. l 6a). Let a = 1.415.9 After the nr~t 
iteration of the algorithm, x 4 is assigned to the cluster denoted by ".r ." This is equivalenl 
to m<wing the decision curve separating the two clusters to the valley between the two high 
density areas. 

(b) Now ~onsider Figure I 5. I 6b. The set X remains unchanged. Also.1he ini1ial clustering 
remains the same except that x 6 i~ assigned to the duster dt'note<l hy "x." Three curves. /J 1 . 

112. and bi. urn now be used to separate 1he clusters. After the first iteration of the algorithm. 

~II' tk:< ocn1r. that is. more than one:: m~ximuu• ar.; cm:ounte1\:<I. we ch<><>~c the one with the smallest 
imlc~. 

"This number is slightly greater than ,,/2. 
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bl bl b) bz 

f3 ~s ;i [8 

X1 !s [4 
XO g;10 g;9 

Xi 
;:s g:4 g;10 g;9 

XI 
~9 

6 

Xz X7 Xz X7 

(a) (b) (c) 

FIGURE 15.16: (a) The setup of Example 15.7(a). (b) The setup of Example 
15.7(b). (c) The setup of Example 15.7(c). 

x4 is assigned to the cluster denoted "x" and x6 is assigned to the cluster denoted by "o.'' 
Equivalently, b 1, bi can be thought to move to the valley between the two peaks in the 
place of b]. 

(c) Finally, let us consider Figure 15.16c. Again X remains unchanged. However, the 
initial clustering consists of three clusters, denoted by "x,'' "o." and"* ." Also, the initial 
clustering is the same as that of (b) except that x4 and X6 are assigned to the cluster denoted 
by"*,'' X5 is assigned to the cluster denoted by "o," and, finally, XJO is assigned to the 
cluster denoted by ··x .''The decision surfaces consist of the curves b;, i = 1, . .. , 4. After 
the first iteration of the algorithm, x4 and x5 are assigned to the cluster denoted by "x ." 

Likewise, x6 and x 10 are assigned to the cluster denoted by "o." Finally, the rest vectors 
remain in the clusters where they were initially assigned. The important point here is that, 
although we initially considered three clusters, the algorithm ends up with two. This is 
because only two peaks are present. Moreover, in all cases, the decision surface is moved 
to the valley between the two peaks. 

It should be emphasized here that the algorithm is sensitive to the value of the 
parameter a. Thus, one should run the algorithm several times for different values 
of a and interpret the results very carefully. 

An alternative algorithm based on similar ideas is discussed in [Fuku 90]. It 
identifies the underlying clusters of X by moving the x; E X toward the direc
tion of op(X)/oX, computed at X;, by f/8p(x)j8x, where T/ is a user-defined 
parameter. Iterating this procedure, points of the same cluster converge towards 
the same point in space (a method for the estimation of the gradient of p(x) is 
given in [Fuku 90]). Finally, other related algorithms can be found in [Touz 88], 
[Chow 97]. 

15.8 CLUSTERING VIA COST OPTIMIZATION (REVISITED) 

In this section we present two optimization methods that have been used 
successfully in many fields of application. 
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15.8.1 Simulated Annealing 

This is a global optimization algorithm. More specifically, under certain conditions. 
it guarantees, in probability, the computation of the globally optimal solution of 
the problem at hand via the minimization of a cost function J. This algorithm has 
been proposed by Kirkpatrick et al. [Kirk 83] (see also [Lam· 87]) and it is inspired 
by the problem of condensed matter in physics. 10 In contrast to the algorithms that 
allow corrections of the unknown parameters only to directions that reduce the cost 
function J, simulated annealing allows moves that, temporat·ily, may increase the 
value of J. The rationale is that, by allowing such moves, we may escape from 
the region of attraction of a local minimum. 

A very important parameter of this method is the so-called temperature T, which 
is the analog of the temperature in physical systems. The algorithm starts with a 
high temperature, which is reduced gradually. A sweep is the time that has to be 
spent at a given temperature so that the system can enter the "thermal equilibrium,. 
state. Let T,11ax andC;11 ; 1 denote the initial value of the temperature. T , and the initial 
clustering, respectively. Also, C denotes the current clustering and t the current 
sweep. The general scheme of simulated annealing, in the clusteting context, is 
the following. 

Simula1ed Annealing for Clustering 

• Set T = Tmax and C = C;11i1. 
e I= 0 
• Repeat 

-t=t+l 
-Repeat 

* Compute J(C). 
* Produce a new clustering, C', by assigning a randomly chosen 

vector from X to a different cluster. 
* Compute J(C'). 
* If 6.J = J(C') - J(C) < 0 then 

(A)C=C' 

* Else 
(B) C = C', with probability P(6.J) = e-""J / T. 

* End if 
-Until an equilibrium state is reached at this temperature. 
-T = f(T,11u.r-l) 

• Until a predetermined value T,11 ;11 for T is reached. 

10A!so. it shares many common features with the Metropolis algorithm [Metr 53]. 
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It is clear that high values of the temperature imply that almost all movements 
of vectors between clusters are allowed, since, as T ~ +oo, P(!J.J) ::::: I. On 
the other hand, for low values of T, fewer moves of the (B) type arc allowed 
and, finally, as T ~ 0, the probability of such moves tends to zero. Thus, as T 
is lowered, it becomes more probable that clusterings that correspond to lower 
values of J will be reached. On the other hand, by keeping T positive, we ensure 
a nonzero probability for escaping from a local minimum. 

A difficulty with this algorithm is the determination of the equilibrium state 
at a specific temperature. One heuristic rule for this case is to consider that the 
equilibrium state has been reached if fork successive random reassignments of 
patterns, C remains unchanged (typically k is of the order of a few thousand). 
Further discussion of this direction is provided in [Klei 89]. Also, another crucial 
point is the schedule for lowering T. It has been shown that if 

T = Tmax/ In(!+ l) ( 15.33) 

this scheme converges to the global minimum with probability [Gema 84]. 
However, this schedule is too slow. A faster schedule for lowering T is discussed 
in [Szu 86]. Despite this, the main disadvantage of this algorithm remains the vast 
amount of computations required. 

Finally, in [Al-S 93] simulated annealing is used in terms of fuzzy clustering. 
Experiments with simulated annealing in clustering problems are presented in 
[Klei 89], [Brow 92]. 

15.8.2 Deterministic Annealing 

This is a hybrid parametric scheme combining the advantages of simulated anneal
ing and the deterministic clustering methods. In contrast to simulated annealing, 
where successive clusterings are obtained by randomly disturbing the current one, 
no random disturbances occur here. On the other hand, the cost function is changed 
slightly, in order to accommodate the parameter f3 = I/ T, where T is defined as 
in the simulated annealing methods. 11 In contrast to simulated annealing, deter
ministic annealing is the counterpart of the phase transition phenomenon that is 
observed when the temperature of a material changes [Rose 91]. 

In this framework, a set of representatives w j, j = I, ... , m (m is fixed). is 
adopted and our goal is to locate them in appropriate positions so that a distortion 
function is minimized. To this end, the following "effective" cost function J is 
constructed [Rose 91]: 

J = -- l:In I:e-#d(X;.Wj) 1 N ( m ) 

f3 i=l J=l 

(15.34) 

11 We choose IO work with {J instead of T, because !his notation is generally used for this algorithm. 
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where m is the number of clusters. Differentiating J with respect to the repre
sentative w, and setting it equal to 0, we obtain 

}_!__ = ~ ( e-f3d(X;.W,) ) ad(X;, W,) = O 
aw ~ °"'~ e-f3d(X;.W1) aw 

r i=I L-1=1 r 

( 15.35) 

It is clear that the ratio in parentheses takes values in [0, l] and, in addition, all these 
terms for a specific x; sum up to 1. Thus, it may be interpreted as the probability, 
P;,., that x; belongs to Cr, r = 1, ... , m. Then Eq. (15.35) can be written as 

(15.36) 

In the sequel, we assume that d(x, w) is a convex function of w for fixed x. 
Note that for fJ = 0, all P;; 's are equal to 1 /m, for all x; 's, i = 1, ... , N. Thus, 
in this case Eq. (15.36) becomes 

t ad(x;, w,) = 0 
aw, 

i=I 

( 15.37) 

Since d(x, w) is a convex function, L~=I d(x;, w,) is also a convex function 
and, thus, it has a unique minimum, which may be captured by any gradient 
descent scheme. Thus, in this case, all the resulting representatives coincide with 
this unique global minimum. That is, all data belong to a single cluster. As the 
value of fJ increases, it reaches a critical value where a phase transition occurs 
(alternatively, the probabilities P;,. "depart sufficiently" from the uniform model); 
that is, the clusters are no longer optimally represented by a single representative. 
Thus, the representatives split up in order to provide an optimal representation of 
the data set at the new phase. Further increase of fJ causes a new phase transition 
and the available representatives are further split up. By choosing m to be greater 
than the "actual" number of clusters, we ensure the ability of the algorithm to 
represent the data set properly. In the worst case, some of the representatives will 
coincide. 

Note that as f3 increases, the probabilities Pij depart from the uniform model 
and approach the hard clustering model; that is, for all x;, P;, :::::: 1 for some r. and 
P;j '.::::' 0 for j :f. r. 

Thus, the requirement for each vector to be assigned to a specific cluster with 
probability close to unity may serve as a termination criterion for the algorithm. 

Schedules for the increase of f3 are discussed in [Rose 91 ]. Although simulation 
results show satisfactory performance of the algorithm, it is not guaranteed that 
it reaches the globally optimum clustering. Other applications of deterministic 
annealing to clustering are discussed in [Hofm 97], [Beni 94 ]. 
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15.9 CLUSTERING USING GENETIC ALGORITHMS 

Genetic algorithms have been inspired by the natural selection mechanism intro
duced by Darwin. They apply certain operators to a population of solutions of the 
problem at hand, in such a way that the new population is improved compared with 
the previous one according to a prespecified criterion function J. This procedure 
is applied for a preselected numher of iterations and the output of the algorithm is 
the best solution found in the last population or, in some cases, the best solution 
found during the evolution of the algorithm. 

In general, the solutions of the problem at hand are coded 12 and the operators 
are applied to the coded versions of the solutions. The way the solutions are coded 
plays an important role in the performance of a genetic algorithm. Inappropriate 
coding may lead to poor performance. 

The operators used by genetic algorithms simulate the way natural selection is 
carried out. The most well-known operators used are the reproduction, crossover, 
and mutation operators applied in that order to the current population. The repro
duction operator ensures that. in probability, the better (worse) a solution in the 
current population is, the more (less) replicates it has in the next population. 
The crossover operator, which is applied to the temporary population produced 
after the application of the reproduction operator, selects pairs of solutions ran
domly. splits them at a random position, and exchanges their second parts. Finally, 
the mutation operator, which is applied after the application of the reproduction 
and crossover operators, selects randomly an element of a solution and alters it 
with some probability. The last operator may be viewed as a way out of getting 
stuck in local minima. Apart from these three operators, many others have been 
proposed in the literature (e.g., [Mich 94)). 

Besides the coding of the solutions, other parameters, such as the number of 
solutions in a population, p, 13 the probability with which we select two solutions 
for crossover, and the probability with which an element of a solution is mutated. 
play very important roles in the performance of the algorithm. 

Several genetic algorithms with application to clustering have been pro
posed (e.g., (Bhan 91], (Andr 94] , [Sche 97], [Maul 00], (Tsen 00]). In the 
sequel, we briefly discuss a simple parametric one that is suitable for hard 
clustering. We assume that the number of clusters, m, is fixed. As stated before, the 
first thing we have to decide is how to code a solution. A simple (but not unique) 
way to achieve this is to use the representatives in order to form the following 
string: 

12Binary representations as well as more general ones are possible. 
13This may be fixed or varied. 

(15.38) 
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or, in more detail, 

f w1 I· w12 •...• w11. w21. w22 •..• , w21 • ... , Wm1, Wm2 .... , Wm/] 

The cost function we use is 

where 

llij =II. . 0, 

N 

J = I:U;1d(x; , WJ) 
i = I 

d(x; . Wj) = mink=l. .... md(x; , Wk) 

otherwise 
i =I . . ... N 
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(15.39) 

(15.40) 

(15.41) 

The allowable cut points for the crossover operator are between different repre
sentatives. Also, in this case the mutation operator selects randomly a coordinate 
of a vector of a solution and decides randomly to add a small random number to it. 

An alternative to this algorithm is the following. Before we apply the repro
duction operator to the current population. we run the hard clustering algorithm, 
described in Chapter 14, p times, each time using a different solution of the current 
population as the initial state. The p solutions produced after the convergence of 
the hard clustering algorithm constitute the population to which the reproduction 
operator will be applied. It is expected that this modification will give better results. 
as it is likely that the resulting p solutions are local minima of the cost function. 
This modified algorithm has been reported to give satisfactory results in a color 
image quantization application, [Sche 97]. 

15.10 OTHER CLUSTERING ALGORITHMS 

A clustering algorithm that is based on the so-called 1abu search me I hod is presented 
in [Al-S 95] . Its initial state is an arbitrarily chosen clustering. The algorithm 
proceeds as follows. Based on the current state of the algorithm, a set of candidate 
clusterings, A , is created. The next state is chosen to be the "best" element of 
A, according to some criterion function. Certain criteria are used to prevent the 
algorithm from returning to recently visited states. The procedure is repeated for a 
prespecified number of iterations. Preliminary results reported in [Al-S 95] show 
that this algorithm compares favorably with the hard clustering and the simulated 
annealing algorithms. A recent tabu search based heuristic scheme for clustering 
is presented in [Sung 00]. 

A method that directly relates clusters to peak values of the pdf has been sug
gested in [Tou 74], where the estimation of the pdf is achieved via Parzen windows. 

A related method is the mountain method (see, e .g., [Dave 97]). The idea is to 
assign to each vector, x, an energy source. The generated potential has a peak at 
x and rapidly decays as we move away from it. The total potential function al a 
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specific point in the vector space is the summation of the potentials produced by 
all the vectors of X. We compute the value of this function at each data point and 
form the array v of the N resulting values. The maximum one, which corresponds 
to the highest peak, is identified and the corresponding vector is considered as 
the representative of the first cluster. Then we remove the largest value of v and 
update the rest of the components appropriately. This procedure is repeated until 
a specific termination criterion is met. 

An algorithm that combines ideas from both the fuzzy clustering schemes and 
the agglomerative algorithms (Chapter 13) is discussed in [Frig 97]. This scheme 
produces clusterings that minimize the following cost function 

(15.42) 

where now m varies. Clearly, the first term in the above equation is minimized when 
m = N, and the second term is maximized when m = 1. It is worth mentioning 
that the hierarchies of clusterings produced do not necessarily possess the nested 
property. 

Besides the preceding algorithms, many other clustering algorithms based on 
very different ideas have been proposed. For example, in [Matt 91] a scheme that 
does not use the concept of the distance between vectors is proposed. Also, in 
[Kodr 88] a clustering technique based on a conceptual distance is presented. 

Another technique combining supervised and unsupervised methods has been 
proposed in [Pedr 97]. The latter may be useful in applications in which only a 
fraction of the data have a class label for the training. 

In [Robe 00], a different clustering method is discussed. The clustering prob
lem is stated in information theoretic terms and it is shown that minimization of 
the entropy can be used in order to estimate the clustering structure underlying 
the data set X. This is equivalent to obtaining the structure associated with maxi
mum certainty. Another algorithm based on information theoretic criteria has been 
suggested in [Goks 02]. It is a valley-seeking algorithm and builds upon Renyi's 
entropy estimator. 

Problems 

15.1 Consider the set X = {x;, i =I, ... , 7), where XJ =[I, If, x2 =[I, 2f, X3 = 
[2, If, X4 = [3, lf, X5 = [6, l]T, X6 = [7, l]T, X7 = (6, 2]T. 

(a) Determine the value of q (Section 15.2. I) for which the MST clustering 
algorithm gives two clusters. 
(b) Apply the algorithms that are based on the idea of regions of influence when 
these regions are defined by Eqs. (15.2)-(15.5). 
(c) Run the directed tree-based clustering algorithm and determine the values of() 

for which it gives two clusters. 
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15.2 Consider the basic competitive learning algorithm with T/ = 0 .2. Let X = (x; . 

i = I . .... 4}, where x1 = -3, x2 = -2, x3 = 2, x4 = 3. Also, let m = 2 and 
w 1 = - 1 and wz = 1. Assume that the vectors of X are presented to the algorithm 
in the same order, xi, x2. XJX4 . xi. xz. x3. x4 • .... Let us call the time required for 
the consideration of the feature vectors of X once the updating circle. 
(a) Show that w1 (wz) always wins on the first (last) two feature vectors when the 
squared Euclidean distance is in use. 
(b) Will w 1 and w2 converge to the values -2.5 and 2.5, respectively. after an 
infinite number of updating circles? Give intuitive arguments. 

15.3 What would the behavior of the leaky learning algorithm be if T/w = 171 '? 
15.4 von der Malsburg teaming rule. Assume that the data set X consists of N binary

valued feature vectors, and for each of the m available representatives, Wj , we 

have L~= 1 Wjk = I, where Wjk is the kth coordinate of Wj. The rule may be stated 

as follows: 
• Present an input vector x E X. 
• Determine the winner, w j, of the competition for x. 
• Update the representatives 

"~"' _ { w Jk + 11 ( ~ - w Jk). if w j wins on x 
IJ)jk -

Wjk· ifwj losesonx 
(15.43) 

where xk is the kth coordinate of x. In the last equation n.x = L~= 1 Xk. that is. it 
is equal to the number of I's contained in x, and 11, the learning rate, takes values 
in 10. l ]. The updating rule may be stated in words as follows: "If a representative 
wins, each of its coordinates gives up some proportion T/ that in the sequel is equally 
distributed among the coordinates w Ji that correspond to Xk = I. All the remaining 
representatives do not change." 
(a) Verify that this statement is equivalent to the updating rule given by Eq. (I 5.4J) . 

(b) Prove that L~·= 1 w'Jfw = l . j = 1, .... m . 
15.5 Prove Eq. (15.20). 
15.6 Consider three 2-dimensional Gaussian probability density functions with means 

/Lt-= [-1. -llT./L2 = [6.3f , /LJ = [- 0.7. 7f andcov~riancematrices 'E1 = 
t2 = 'E.1 = 21, respectively, where I is the 2 x 2 identity matrix. Draw 200 points 
from each distribution and form a data set X with the resulting 600 points. 
(a) Run the Binary Morphology Clustering Algorithm (BMCA) when Tis the 3 x 3 
square strncturing element given in Example 15.3. For each case use different values 
of r and proceed to the third stage of the algorithm with the best one of them. 
fb) Run the Generalized Hard Clustering Scheme (GHAS) algorithm from Chapter 
14. using the squared Euclidean distance as the dissimilarity function between two 
vectors. for the optimum number of clusters derived by the previous procedure. 
Compare the results of the two algorithms. 

15.7 For the data set X given in Example 15.6. run the isodata algorithm assuming that 
the number of clusters is 2. Compare the results obtained in Example 15.6 and those 
obtained with isodata. Give a qualitative explanation of the differences that nrny 

be observed. 
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15.8 Verify Eq. (15.29) and (15.30). 
15.9 Derive the updating equation for the coordinates of the parameter vector (J when 

g(x; 9), defined in Section 15.6, is a quadratic function of (J. 

Hint: In this case g(x; 9) = wo + z=i=l w;x; + L~=I L~=I WsrXsXr. 

15.10 Consider two 2-dimensional Gaussian distributions with means /LJ = [0, O]T and 
fL2 = (3, 3l and covariance matrices E 1 = I and ~2 = l.51, respectively, where 
I is the 2 x 2 identity matrix . Create a data set X such that JOO feature vectors 
stem from the first and another JOO feature vectors stem from the second Gaussian 
distribution. 
(a) Run the Boundary Detection Algorithm (BDA) algorithm on X assuming that 
the decision boundary is a hyperplane. Use the hyperbolic tangent as f. 
(b) Run the BDAalgorithm on the x+ and x- stemming from the previous running. 
Comment on the results. 

15.11 (a) What is the shape of V(x). defined by Eq. (15 .31) when d(x , y) is given as in 
Eq. (15.32)? 
(b) How should d (x , y) be defined in order to have a hypercubical shape 
for V(x)? 

(c) Does the shape of V(x) affects tht: behavior of the valley-seeking clustering 
algorithm? Give an example. 

15.12 Consider the set X = {x;, i =I, ... , 10}, where x1 = (0, ll, x2 = (0, 2l, x3 = 
[0,3l,x4 = [O, 4l.xs = [l, ll,x6 = [l, 2]T,x7 = [1,3f,xg = [2, l]T, 
xg = [2, 2] T, x 10 = [2, 3] T . Initially, the first six of them belong to cluster C 1 
and the next four belong to cluster C2 . Apply the valley-seeking algorithm to X 
and comment on the results. 

15.13 If Tmax = 5 and Tmin = 0.5, estimate the number of sweeps required with the 
simulated annealing algorithm in order to dctennine (in probability) the clustering 
with the globally minimum value of J. 
Hint: Use Eq. ( 15.33). 

15.14 Modify the deterministic annealing algorithm so that the number of representatives 
is not fixed a priori but increases as f3 increases. 

15.15 Consider the function 

N 

J = Ld(x; , Cx;) 
i=I 

( 15.44) 

where Cx ; is the cluster to which x; belongs and d(x;. Cx;) is a distance between 
a point and a set using no representative for the set (e.g., Chapter 11 ). Propose a 
coding of the solutions for a genetic algorithm that uses this function. Discuss the 
merits and the disadvantages of the proposed coding. 
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CHAPTER 16~~~~~~--~--~~~ 

CLUSTER VALIDITY 

16.1 INTRODUCTION 

A common characteristic of the majority of the clustering algorithms, discussed 
in the previous chapters, is that they impvse a clustering structure on the dala set 
X. even though X may not possess such a structure. Jn the latter case, the results 
produced after the application of a clustering algorithm on X are not indicative 
of the structure of X. In other words, cluster analysis is not a panacea . That is, 
we must have an indication that the vectors of X f01m clusters before we apply a 
clustering algorithm. The problem of verifying whether X possesses a clustering 
structure. without identifying it explicitly. is known as clustering tendency and is 
discussed at the end of the chapter. 

Let us now assume that X possesses a clustering strncture and we want to unravel 
it. A different kind of problem is encountered now. Recall that all the clustering 
algorithms require knowledge of the values of specific parameters and, in addition . 
some of them impose restrictions on the shape of the clusters (e .g., compact. 
hyperellipsoidal). As already shown in the previous chapters. poor estimation 
of these parameters and inappropriate restrictions on the shape of the clusters 
(wherever such restrictions are required) may lead to incorrect conclusions about 
the clustering structure of X. Thus, the need for further evaluation of the results 
of a clustering algorithm is apparent. 

Jn this chapter, we discuss methods suitable for quantitative evaluation of the 
results of a clustering algorithm. This task is known under the general term cluster 
validity. However. it must be emphasized that the results obtained by these meth
ods are only tools at the disposal of the expert in order to evaluate the resulting 
clustering. 

Let C denote the clustering structure resulting from the application of a clus
tering algorithm on X. This may be a hierarchy of clusterings. as is the case with 
the hierarchical algorithms, or a single clustering, as happens with all the other 
algorithms discussed in the previous chapters. Cluster validity can be approached 
in three possible directions. First, we may evaluate C in terms of an indepen
dently drawn structure, which is imposed on X a priori and reflects our intuition 
about the clustering structure of X. The criteria used for the evaluation of this 
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kind are called external criteria. In addition, external criteria may be used to 
measure the degree to which the available data confirm a prespecified structure, 
without applying any clustering algorithm to X. Second, we may evaluate C in 
terms of quantities that involve the vectors of X themselves, for example, the 
proximity matrix. The criteria used for this kind of evaluation are called internal 
criteria. Finally, we may evaluate C by comparing it with other clustering struc
tures, resulting from the application of the same clustering algorithm, but with 
different parameter values, or of other clustering algorithms to X. Criteria of this 
kind are called relative criteria. 

The cluster validation methods based on external or internal criteria rely on 
statistical hypothesis testing, which was introduced in Chapter 5. The following 
section contains some additional definitions to be used in this chapter. 

16.2 HYPOTHESIS TESTING REVISITED 

Let Ho and H 1 be the null and alternative hypotheses, respectively, 

Hi : (} :f= 9o 

Ho : (} = 9o 

Also let Dp be the critical interval corresponding to significance level p of a test 
statistic q, and 8 1 the set of all possible values that(} may take under hypothesis 
H1. The power function of the test is defined as 

(16.1) 

For a specific(} E 81. W (0) is known as the test power under the alternative(}. 
In words, W (9) is the probability that q lies in the critical region when the value 
of the parameter vector is (}. This is the probability of making the correct decision 
when Ho is rejected. The power function can be used for the comparison of two 
different statistical tests. The test whose power under the alternative hypotheses 
is greater is always preferred. 

There are two types of errors associated with a statistical test. 

• Suppose that Ho is true. If q(x) E Dp. Ho will be rejected even if it is 
true. This is called a type I error. The probability of such an error is p . The 
probability of accepting Ho when it is true is I - p. 

• Suppose that Ho is false. If q (x) ¢ fJ P• Ho will be accepted even if it is false. 
This is called a type II error. The probability of such an error is I - W(9), 
and it depends on the specific value of(}. 

In practice, the final decision to reject or accept Ho is based partially on 
the preceding statements as well as on other factors, such as the cost of a 
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FIGURE 16.1: Critical regions of (a) a two-tailed test, (b) a right-tailed test. and 
(c) a left-tai led test. q~ is the a percentile of q under Ho.1 

wrong decision. Thus. the terms "accept" and "reject" Ho must be interpreted 
accordingly. 

The probability density function (pdf) of the statistic q, under Ho, for most of 
the statistics used in practice has a single maximum and the Dp region is either a 
half-line or the union of two half-lines. These assumptions have also been adopted 
here. Figure 16.1 shows the three possible cases for Dµ. In the first case, 8,, is 
the union of two half-lines. Such a test is known as a rwo-wiled sratisticaf test. 
The other two tests arc called om?-tt1ifed statistical tests. because Dp consists of 
a single half-line. Figure 16. Ia is an example of a two-tailed statistical test2 and 
Figure 16.1 band 16. Jc are examples of a right- and a left-tailed test, respectively. 

In many practical cases the exact form of the pdf of a statistic q, under a given 
hypothesis. is not available and it is difl\cult to obtain. ln the sequel, we discuss 
two methods for estimating pdf's via simulations. 

• 1\tfome Carlo techniques [Shre 641. {Sobo 84] rely on simulating the proces1' 
at hand using a sufficient number of computer-generated data. ror each of 
the, say r, data sets, X;, we compute the value of q, denoted by q,, and then 
we construct the corresponding histogram of these values. The unknown pdf 

1 The a percentile of q is the smallest number qu such that a = P(q ~ qa ). 
2More general versions of a two-tailed statistical test are also possible (e.g .. [Papo 91 )). 
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can then be approximated by this histogram. Assume now that q corresponds 
to a right-tailed statistical test and a histogram is constructed using r values 
of q corresponding to the r data sets. For a given data set, if q is the corre
sponding value of the statistic, rejection (acceptance) of the null hypothesis 
is done on the basis of 

Reject (accept) Ho if q is greater (smaller) than (1-p)r of the q; values 
( 16.2) 

For a left-tailed test, rejection or acceptance of the null hypothesis is done 
on the basis of 

Reject (accept) Ho if q is smaller (greater) than pr of the q; values 
(16.3) 

Finally, for a two-tailed test we have 

Accept Ho if q is greater than (p/2) r of the q; values and 

less than (1 - p/2) r of the q; values (16.4) 

• Bootstrapping techniques constitute an alternative way to cope with a lim
ited amount of data. The idea here is to parameterize the unknown pdf in 
terms of an unknown parameter. To cope with the limited amount of data 
and in order to improve the accuracy of the estimate of the unknown pdf 
parameter, several "fake" data sets X 1, ... , Xr are created by sampling X 
with replacement, as discussed in Chapter 5. 

Typically, good estimates are obtained if r is between I 00 and 200. For 
a more detailed discussion and applications of the bootstrapping techniques 
see, for example, [Diac 83], [Efro 79], [Jain 87a], [Jain 87b]. 

16.3 HYPOTHESIS TESTING IN CLUSTER VALIDITY 

In this framework, the null hypothesis Ho will be expressed in a slightly different 
way. This is because our major concern is not to test a parameter against a specific 
value. In contrast, our concern here is to test whether the data of X possess a 
"random" structure or not. Thus, in this case, the null hypothesis Ho should be 
a statement of randomness concerning the structure of X. Thus, our goal is now 
twofold. 

• First, we must generate a reference data population under the random 
hypothesis, that is, a data population that models a random structure. 

• Second, we must define an appropriate statistic, whose values are indica
tive of the structure of a data set, and compare the value that results from 
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our data set X against the value obtained from the reference (random) 
population. 

There are three different ways to generate the reference population under the 
null (randomness) hypothesis, each being appropriate for different situations. 

• Random po1;ition hypothesis. This hypothesis is appropriate for ratio data. 
It requires that "All the arrangements of N vectors in a specific region of 
the I-dimensional space are equally likely to occur." Such regions may be 
the H1 hypercube or the /-dimensional hypersphere. One way to produce 
such an arrangement is to insert each point randomly in this region of the 
/-dimensional space, according to the uniform distribution. The random 
position hypothesis can be used with either external or internal criteria. 

- Internal criteria. In this case, the statistic q is defined so as to measure 
the degree to which a clustering structure, produced by a clustering 
algorithm, matches the proximity matrix of the corresponding data 
set. Let X; be a set of N vectors generated according to the random 
position hypothesis and P; be the corresponding proximity matrix. In 
the sequel, we apply the same clustering algorithm to each X; and to 
our data set X and let C1 and C be the resulting clustering structures. 
respectively. For each case, the value of the statistic q is computed. 
The random hypothesis, Ho, is then rejected if the value q, resulting 
from X lies in the critical interval Dp of the statistic pdf of the reference 
population (i.e., under Ho), that is, if q is unusually small or large. 

- External criteria. The statistic q is defined so as to measure the degree 
of correspondence between a prespecified structure P imposed on X 
and the clustering that results after the application of a specific clus
tering algorithm to X. Then. the value of q corresponding to the 
clustering C resulting from the data set X is tested against the q; 's. 
corresponding to the clusterings resulting from the reference popula
tion generated under the random position hypothesis. Once more. the 
random hypothesis is rejected if q is unusually large or small . 

• Random graph hypothesis. It is usually adopted when only internal infor
mation (i.e., information that concerns only the vectors themselves or 
their relationships) is available. It is appropriate when ordinal proximitie~ 
between vectors are used. Before we proceed, let us define the ordinal. 
or rank order, N x N matrix A as a symmetric matrix with zero diago
nal elements (provided that dissimilarity measures are used) and wi1h i1s 
upper diagonal elements being integers in the range [I, N(N - I )/2 ]. 
The entry A(i, j) of A provides only qualitative information about the dis
similarity between the corresponding vectors x; and x j. If, for example, 
A(2, 3) = 3 and A(2, 5) = 5, we can only conclude that X3 is more sim
ilar to x2 than X5. That is, in this context, comparing dissimilarities is 
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meaningless (recall the comments made in Chapter 11, concerning ordinal 
type data). 

Let A; be an N x N rank order proximity matrix with no ties; that is, 
all entries in the upper diagonal are different from each other. Under the 
random graph hypothesis, the reference population consists of such matri
ces A; each one generated by inserting randomly the integers in the range 
[I, N(N - 1)/2), in its upper diagonal entries. Let P be the ordinal prox
imity matrix associated with the given data set X and C be the clustering 
structure produced by the application of a specific algorithm to P. Finally, 
let C; be the clustering structure produced when the same algorithm is 
applied to A;. We may now proceed as in the previous case and define a 
statistic q that measures the agreement between a rank order (proximity) 
matrix and the corresponding clustering structure. If the value of q, corre
sponding to P and C, is unusually large or small, the random hypothesis is 
rejected. 

It must be emphasized that the random graph hypothesis is not appro
priate for ratio-scaled data. Let us take, for example, the case where the 
Euclidean distance is in use and I :=-: N - 2 and consider the points x 1 = 0, 
x2 = I, x3 = 3 on the real line. It is clear that the distance between x1 and 

:• ~an[~ot b~ sIJ"'':' ~::: :~.::::.:::w:::2 [::::,',,::::~:~::~::: 
I 3 0 

• Random label hypothesis. Let us consider all possible partitions, P', of X 
into m groups. Each partition may be defined in terms of a mapping g from 
X to (I, ... , m}. The random label hypothesis assumes that all possible 
mappings are equally likely. The statistic q can be defined so as to measure 
the degree to which information inherent in the data set X, such as the 
proximity matrix P, matches a specific partition. The statistic q is then used 
to test the degree of match between P and an externally imposed partition P, 
against the q; 's corresponding to the random partitions generated under the 
random label hypothesis. Once more, Ho is then rejected if q is unusually 
large or small. 

In the sequel, we give a number of statistic indices appropriate for external and, 
then, for internal criteria. 

16.3.1 External Criteria 

External criteria are used either (a) for the comparison of a clustering structure C, 
produced by a clustering algorithm, with a partition P of X drawn independently 
from C or (b) for measuring the degree of agreement between a predetermined 
partition P and the proximity matrix of X, P. 
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Comparison of 'P with a Clustering C 

In this case, C may be either a specific hierarchy of clusterings or a specific clus
tering. The latter may be produced either by cutting the dendrogram produced by a 

hierarchical algorithm at a given level (see Chapter 13) or by any other algorithm 
discussed in the previous chapters. However. a prespecified hierarchy of parti
tions is rarely available in practice. Thus. the problem of validating hierarchies of 
clusterings is of limited practical interest. 

In the sequel. we consider the validation task concerning a clustering, C, result
ing from a specific clustering algorithm. in tenns of an independently drawn 
partition P of X. Let C = {C1, .. .. C111 ) and P = I Pi, ... , F's). Note that the 
number of clusters in C need not be the same as the number of groups in P. 
Our goal is to define appropriate statistical indices to be used for the hypothesis 
test. 

Let nij denote the number of vectors that belong to C; and Pj simultaneously. 
Also let nf = L~=I llij; that is, nf is the number of vectors that belong to C;. 
Similarly, we define the number of vectors that belong to Pj as n f = L7:, 1 11;1 . 

Consider a pair of vectors (x,,, x,,). We refer to it as (a) SS if both vectors 
belong to the same cluster in C and to the same group in P. (b) DD if both 
vectors belong to different clusters in C and to different groups in P. (c) SD if the 
vectors belong to the same cluster in C and to different groups in P, and (d) DS if 
the vectors belong to different clusters in C and to the same group in P . Let a, b. c. 
and d be the number of SS, SD, DS, and DD pairs of vectors of X, respectively. 
Then a + b + c + d = M. where M is the total numberof possible pairs in X, that 
is. M = N(N - IJ/2. 

Example 16.1. Let X = {x;.i =I, .... 6), C = ({x1.x2.x3} . {x4.x5) . {x6)}. and 
P = { /x 1. x2. x3 ). {x4. x5, x6) }. The following table shows the type of all pairs of vectors 
in X. 

x, x2 XJ X4 x5 X6 

xi SS SS DD DD DD 
x2 SS DD DD DD 
XJ DD DD DD 
X4 SS OS 

X5 OS 
X(> 

From this table we obtain u = 4. b = 0. c = 2 and d = 9. 

Let m 1 = a+ b be the number of pairs of vectors that belong to the same cluster in 
C and m 2 = a + c be the number of pairs of vectors that belong to the same group 
in P. Using the preceding definitions, we can define statistical indices (statistics) 
in order to measure the degree to which C matches P. Such statistical indices are 
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the following: 

• Rand statistic 

R =(a +d)/M (16.5) 

• Jaccard coefficient 

J = a/(a + b + c) (16.6) 

• Fowlkes and Mallows index 

FM= a/Jm1m2 = J-a ___ a_ 
a+ba+c 

(16.7) 

The term a + d is the number of SS pairs of vectors plus the number of DD 
pairs. Thus, the Rand statistic measures the fraction of the total number of pairs 
that are either SS or DD. The Jaccard coefficient follows the same philosophy as 
the Rand statistic, except that it excludes d. The values of these two statistics are 
between 0 and l. However, a prerequisite for achieving the maximum value is to 
have m == s, which, in general, is not always the case. 

For all the above defined indices, it is clear that the larger their value ( l ), the 
higher the agreement between C and P, i.e., all the corresponding statistical tests 
are right tailed. 

Another very popular statistic that is frequently used in conjunction with 
external criteria is Hubert's r statistic (e.g., [Hube 76],[Mant 67], [Bart 62]). 
It measures the correlation between two matrices, X and Y, of dimension 
N x N, drawn independently of each other. For symmetric matrices this can be 
written as 

• Hubert's f statistic 

N-1 N 

r = (l/M) L L xu. j)Y(i. n (16.8) 
i=l j=i+l 

where X (i, j) and Y (i, j) are the (i, j) elements of the matrices X and Y, 
respectively. High values of r indicate close agreement between X and Y. 
The normalized version of the r statistic, denoted by r' is also used. 

• Normalized r statistic 

f' = (l/M) '£f=l1 
'£J=i+1<X(i, j) - µx)(Y(i, j) - µy) 

( 16.9) 
axay 
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where µx, µy, ai. and a~ are the respective means and variances. 

that is, f.LX = (l/M) 1=;''=] 11=7=i+I XU. j), a;= (l/M) Li~] 1 1=7=i+I 
X (i. j)2 -11} (similarly we defineµ y and o}). The values of rare between 
- I and I. 

Let us set X (i, j) equal to I if x; and x_; belong to the same cluster in C and 0 
otherwise, and Y(i, j) equal to I if x; nnd x j belong to the same group in 'P and 0 
otherwise. It can then be shown (see Problem 16.2) that in this case the f statistic 
becomes equal to 

(16. 10) 

Unusually large absolute values of f(f) suggest that C and P agree with each 
other. 

As almost always happens in practice, the exact computation of the pdf of all 
these indices, under the null hypothesis, is very difficult. Thus, we use Monte Carlo 
techniques for their estimation. In the sequel, we discuss such a procedure, which 
is based on the random position hypothesis. Data are assumed to be ratio scaled. 

• For i = l tor 

- Generate a data set X; of N vectors in the area of interest of X, so that 
the vectors are unifonnly distributed in it. 

- Assign each vector y~ E X; to the group where the x j E X belongs, 
according to the structure imposed by P. 

- Run the same clustering algorithm. used for obtaining C, on X; and let 
C; be the resulting clustering. 

- Compute the value q(C;) of the corresponding statistical index q for 
P and C; . 

• End {For} 
• Create the histogram of q (C; )'s. 

The following example demonstrates how this methodology can be used in 
practice. 

Example 16.2. (a) Consider a data set X of 100 v.:ctors in the H3 hypercube. The uata 
are generated to form four groups, each consisted of 25 vectors. Each group is gcncraLed 
by a nomlal distribuLion. The firs1 group of 25 vectors of X is generated from the first 
distribution while the second, third, and fourth groups of 25 vectors are generated from 
the secQnd. the third. and the fourth distribution. re!;pectively. The covariance matrices 
of all distribu1ions are equal 10 0.2/, where I is the 3 x 3 identity matrix. The mean 

· , · · · T T ? '/' vectors lor the lour d1stnbut1ons are (0.2, 0.2, 0.2] , [0.5. 0.2. 0.8] , f0.5, 0.8. 0.-] , and 
(0.8. 0.8. 0.8ff. respectively. If a distribution generates a vector that is outside the unit 
hypercube, i1 is ignored and replaced by another that lies inside HJ. It is not difficuh to 
reali:i:c that the points of X form four compact and well -separated clusters. 
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We assume that the external information is: "The vectors of X belong to four different 
groups Pi, P2. P3, and P4, such that Pi contains the first 25 vectors of X and P2. P3, and 
P4 contain the second, third, and fourth groups of 25 vectors of X, respectively." 

We run the isodata algorithm form = 4 and let C be the resulting clustering. We compute 
the values of the Rand, R, the Jaccard, J, the Fowlkes and Mallows, FM, and the r 
statistics for C and P. These are 0.91, 0.68. 0.81 and 0.75, respectively. Next, we estimate 
the distribution of these statistics using the procedure described before. Specifically, 100 
datasets X;, i = I, ... , 100, are generated, each of them consisting of JOO randomly selected 
vectors in H), following the uniform distribution. According to the P defined earlier, we 
assign the first 25 of them to Pi and the second, third, and fourth groups of 25 vectors to 
P2, P3, and P4, respectively. For each X; we run the isodata algorithm for m = 4 and we 
produce the clustering C;, i = I .... , I 00. Then we compute the values of the four statistics, 
R;, l;. FM;. and f; for each C; and P. i =I, ... , JOO. We set the significance level at 
p = 0.05. Then, in terms of a given statistic, we accept or reject the null hypothesis (i.e., 
the random hypothesis) according to the conditions given in section 16.2. In our case R is 
greater than all R; 's. Similarly, J, FM, and r are greater than all l; 's, FM; 's, and f; 's, 
respectively. Thus, all statistics reject the null hypothesis at significance level p = 0.05. 

(b) Now let X' be a data set constructed as X. but with the covariance matrices of the 
normal distributions equal to 0.6/. In this case, the vectors of X form weak clusters, that 
is, clusters that exhibit "large" spread around their mean vector. The values of the four 
statistics in this case are R = 0.64, J = 0.15, FM= 0.27, and r = 0.03. R is greater than 
99 of the R; 's. Similarly, 1, FM, and rare greater than 94 1; 's, 94 FM; 's, and 98 f; 's, 
respectively. Thus, according to the Rand and r statistics, the null hypothesis is rejected at 
significance level p = 0.05. However, this is not the case for the other two indices. 

This situation illustrates the fact that different statistics may lead to different conclusions 
when no clear-cut situations are considered (see also comparative studies in [Mill 80], 
[Mill 83], [Mill 85]). 

(c) Let us now construct X" by selecting the covariance matrices equal to 0.8/. In this 
case, the vectors of X" are so dispersed that, practically. X" does not exhibit any clustering 
structure. The values of the four statistics in this case are R = 0.63, J = 0.14, FM= 0.25, 
and r = - 0.0 I. Specifically, R is greater than 62, from the total of JOO, R; 's. Similarly, 
J, FM, and r are greater than 48 R; 's, 48 1; 's, and 55 f; 's, respectively. Thus, according 
to all statistics, the null hypothesis is not rejected at significance level p = 0.05. 

Remark 

• For each of these statistics, q, there exists a corresponding "corrected" 
statistic q', which is a normalized version of q and is defined as 

I q - E(q) 
q = 

max(q) - E(q) 
(16.ll) 

where max(q) is the maximum possible value of q and E(q) is the mean 
value of q, under the null hypothesis. Its values are between 0 and I. The 
maximum value is always achievable when a perfect match between C and P 
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occurs and the minimum if C and P have been chosen by chance. The 
problem encountered here is the computation of E(q) and max(q). This 
problem is attacked in [Hube 85], for the Rand statistic, underthe assumption 
that the maximum value of the Rand statistic is l. The same problem for the 
Fowlkes-Mallows index is treated in [Fowl 83]. 

Assessing the Agreement Between 'P and Proximity Matrix P 

In this section, we show that the r statistic can be used to measure the degree to 
which lhe proximity matrix P of X matches a partition P, which is imposed a 
priori on X. Recall that P may be viewed as a mapping g of X to {I , .. . , m}. Let 
us consider the matrix Y whose (i. j) element, Y (i, j), is defined as follows: 

Y(i,}) = 11, 
0, 

if g(x;) =ft g(x J) 

otherwise 
(16.12) 

for i, j = I, ... , N. It is clear that Y is symmetric. Then, the r (or f) statistic is 
applied to the proximity matrix P and Y. Its value is a measure of the degree lo 
which Y matches P. 

In order to estimate the pdf of r (or f) under the random label hypothesis. 
we produce, say, r mappings g;, i = I, ... , r.3 For each of them we form the 
corresponding Y; matrix and we apply the r (or f) statistic to P and Y;, i = 
I .... , r . Then we proceed as usual for the acceptance or rejection of the random 
label hypothesis. 

Example 16.3. We consider a data set X of 64 1wo-dimensional vectors. The firs! 16 
of them spring oul of a normal distribution with mean [0.2, 0.2]T, and lhe remaining 
three groups of 16 veclors slem from lhree normal distribulions with means [0.2. 0.8) T. 

10.8. 0.2f. and [0.8, 0.8f, respeclively. The covariance malrices of all distributions are 
equal to 0.15/. Let P be the proximity matrix of X when the squared Euclidean distance is 
in use. Also, we set the significance level at p = 0.05. 

(a) Lei ·p = { P1 . P2. P3, P4}. Suppose that the first set of 16 vectors is assigned to Pi . 
the second is assigned to P2. the third is assigned to P3, and the last to P4. Based on this 
information. we form y as described before and we compute the value of r for p and 
Y, which is found to be 0.77. Then we generate random partitions P;, i = 1, ... , 100. 

we fom1 the corresponding matrices Y;, and we compute the values f; between P and each 
of the Y; ' s. It turns out that f is greater than all of these values. Thus, the null hypothesis 
is rejected al significance level p. 

(b) Assume now that the external infomation P assigns randomly 16 vectors of X to 
each P; . It is clear that the external information does not agree with the underlying structure 

3Typically. r = 100. 
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of x. If we apply the same procedure as before, we find that r = -0.01, which is less than 
70 values off;. Thus, the randomness hypothesis is accepted. 

16.3.2 Internal Criteria 

Our aim here is to verify whether the clustering structure produced by a clustering 
algorithm fits the data, using only information inherent in the data. In the sequel, 
unless otherwise stated, we consider the case in which the data are represented 
by their proximity matrix. Two cases are considered: (a) the clustering structure 
is a hierarchy of clusterings and (b) the clustering structure consists of a single 
clustering. 

Validation of Hierarchies of Clusterings 

We recall that the dendrogram produced by a hierarchical clustering algorithm may 
be represented by the respective cophenetic matrix, Pc. We will define statistical 
indices that measure the degree of agreement between the cophenetic matrix, Pc. 
produced by a specific hierarchical clustering algorithm, with the proximity matrix 
P of X. Because both matrices are symmetric and have their diagonal elements 
equal to 0,4 we consider only the M = N(N - 1)/2 upper diagonal elements of 
Pc and P. Let dij and Cij be the (i, j) element of P and Pc. respectively. 

The first index, known as the cophenetic correlation coefficient ( CPCC) 
measures the correlation between Pc and P and is used when the matrices are 
interval or ratio scaled. It is defined as 

(l/M) L~::il LJ=i+l dijCij - J,lp/,lc 
CPCC=---;=========================================== 

(o/M) L~=ll L,J=i+I d5 - µ~)(o/M) L~=ll L,J=i+I c;j - µn 
(16.13) 

where the corresponding mean values are defined as in Eq. (16.9). It can be shown 
that the values of the CPCC are between -I and 1 (see Problem 16.4). The closer 
the CPCC index to I, the better the agreement between the cophenetic and the 
proximity matrix. The CPCC statistic has been studied by various researchers 
(see, e.g., [Rolp 68], [Rolp 70], [Farr 69] ). The major difficulty associated with 
it is that it depends on many parameters of the problem, such as the size of X, 
the clustering algorithm used and the employed proximity measure. Hence, the 
exact computation of its pdf under Ho is very difficult. Once more, one is forced 
to use Monte Carlo techniques for the estimation of its distribution, under Ho. 
According to the random position hypothesis, we generate r sets X;, whose vectors 
are randomly distributed according to the uniform distribution, and we apply to 

4This implies that we use a dissimilarity measure. 
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each Xi the same hierarchical algorithm that has produced Pc. Then, we compute 
CPCC for the proximity matrix of X;, P;, and the resulting cophenetic matrix, Pc; 
and we construct the corresponding histogram. 

Interestingly enough, in [Rolp 70], it is stated that even high values of CPCC 
(near 0.9) should be handled with caution when the unweighted pair group method 
average (UPGMA) algorithm is in use (Chapter 13), as there are cases for which 
even such large values cannot guarantee close agreement between the cophenetic 
and the proximity matrix . 

Another statistical index, which is suitable for cases in which Pc and P are 
ordinally scaled, is they statistic, which is described in the sequel. Let v,, and Ve be 
two vectors of dimension N(N-1 )/2, each containing the upper diagonal elements 
of P and P,, respectively, ordered by rows. Let ( v ,,, , v ,,) and ( v,.,, Ve 

1
) be two 

pairs of elements of v,, and v., respectively. The following definitions are in order. 
A set of pairs ((v,,,. v,,). (v"i ' v, )) is called 

• concordant if 

((vf>; < v,J & (vp1 < v,)) or ((vp; > v,-;) & (Vp ; >Ve; )) 

• discordant if 

((vp, < v,-;) & (v,,1 > Ve
1

)) or ((vf>; > Ve;) & (vp1 <Ve)) 

Finally, a set of pairs is neither concordant nor discordant if vp, =Ve; or 
vp1 = Vc;. Lei S+ and S_ be the numbers of the concordant and discordant pairs. 
respectively. Then y is defined as 

S-"- - S_ 
y=-' - 

S+ + S _ 
(16.14) 

The y statistic takes values between -1 and 1. 

Example 16.4. Let Vp = 13 . 2. I. 5. 2. 61T and Ve = [2,3 . 5. J.6.4]T. For all possiblt: 
16 pairs of pairs we have 

Index v,, v, . Index Vp Vc 

(I . 2) (3. 2) (2. 3) dis. (2. 6) (2, 6) (3 . 4) dis. 
(I. 3) <3. I) (2.5) dis. (3. 4) (I, 5) (5. I) dis. 
(I. 4) (3, 5) (2. 1) con. (3.5) (I. 2) (5. 6) con. 
(I. 5) (3. 2) (2. 6) dis. (3. 6) (I. 6) (5. 4) dis. 
(I. 6) (3. 6) (2. 4) con. (4, 5) (5 . 2) (I. 6) dis. 
(2. 3) (2. I) (3 . 5) con. (4. 6) (5. 6) (I. 4) con. 
(2. 4) (2. 5) (3. I) dis. (5, 6) (2 . 6) (6.4) dis. 
(2. 5) (2 , 2) (3. 6) con. 

Thus. S+ = 6. S- = 9 and y == - I / 5 = -0.2. 
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The y statistic depends on all the factors of the problem at hand and, as a 
consequence, the estimate of its pdf under the randomness hypothesis (Ho) is also 
difficult to derive. Thus, one has to use Monte Carlo techniques once again for the 
estimation of the pdf of y under Ho. In this case, the random graph hypothesis is 
used. Specifically, we produce r random rank order proximity matrices P;, with 
no ties, and we run the algorithm that produced Pc on each of them. Then we 
compute the value of y for each P; and its corresponding cophenetic matrix Pc; 
and we fonn the histogram for the values of y. 

Remarks 

• It has been conjectured [Hube 74] that when the single and the complete link 
algorithms are used, the statistic Ny - a In N follows (approximately) the 
standard normal distribution. The constant a is set equal to l . l ( 1.8) when 
the single (complete) link algorithm is used. If we adopt this conjecture, it 
relieves us of the computational burden of the Monte Carlo method. 

• The y statistic may also be used to compare the results for two different 
hierarchies of clusterings resulting from two different clustering algorithms. 
(e.g., [Bake 74],[Hube 74], Problem 16.5). 

Another measure that is suitable for ordinal-scaled P and Pc is Kudall's T 

statistic [Cunn 72], which is defined as 

S+ - S_ 
T=-----

N(N - 1)/2 
(16.15) 

The difference from the y statistic is that the denominator here extends to all 
sets of pairs, whereas in the case of the y statistic the sets of pairs that are neither 
concordant nor discordant are excluded. 

Validation of Individual Clusterings 

Our goal here is to investigate whether a given clustering C. consisting of m 
clusters, matches information that is inherent in the data set X. In the sequel, we 
show that the r (or f) statistic can be used in order to achieve this goal. Once 
again, we use the proximity matrix P as a measure representing the structural 
information inherent in the data. The (i, j) element of the matrix Y is defined as 

Y(i, j) = g: if x; and x j belong to different clusters 

otherwise 
(16.16) 

for i, j = l, ... , N. It is clear that Y is symmetric. Then the r (or f) statistic is 
applied to P and Y. Its value is a measure of the degree of correspondence between 
P and Y. 
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The random position hypothesis is employed. For each of the resulting random 
data sets X;, the proximity matrix P; is computed. Then we apply, to each of 
them, the clustering algorithm used to produce C. Let C;, i = 1, ... , r, be the 
resulting clusterings of m clusters. We compute Y; and f;. Finally, we decide for 
the rejection or acceptance of the null hypothesis at a given significance level p 
according to the conditions given in Section 16.2. 

Example 16.5. Consider a data set X of JOO vectors in the H2 hypercube. The vectors 
are generated to fonn four groups, each of 25 vectors. Each group is generated by a normal 
distribution. The corresponding covariance matrices are all equal to 0.1 / and the mean vec
tors are [0.2. 0.2f. [0.8, o.2J7', [0.2, 0.8f, [0.8, 0.8]T, respectively. We apply the isodata 
algorithm and let C be the resulting clustering. Computing the corresponding matrices Y and 
P. we obtain f = 0.5704. Then we generate I 00 data sets, X; . whose vectors are randomly 
distributed in Hz, following the uniform distribution . The isodata algorithm is applied to 
each of them, and let C;. i = 1 .... , 100, be the resulting clusterings. Computing Y; and P; 
associated with the resulting clusterings for each X;, it turns out that 99 of the correspond
ing f; values are smaller than f . Thus, the null hypothesis is rejected at significance level 
p = 0.05. 

Repeating the experiment but with covariance matrices equal to 0.2/, we find that r is 
greater than 86 of JOO f'; values. Thus. the null hypothesis is not rejected at significance 
level p = 0.05 . 

16.4 RELATIVE CRITERIA 

So far, clustering validation has been performed on the basis of statistical tests. 
A major drawback of most of these techniques is their high computational demands. 
due to the required Monte Carlo methodology. In this section, a different approach 
is discussed that does not involve statistical tests. To this end, a set of clusterings 
is considered and the goal is to choose the best one according to a prespecified 
criterion. More specifically, let A be the set of parameters associated with a specific 
algorithm. For example, for the algorithms of Chapter 14, A contains the number 
of clusters, m, as well as the initial estimates of the parameter vectors associated 
with each cluster. The problem can be stated as follows: 

·'Among the clusterings produced by a specific clustering algorithm, for different 
values of the parameters in A, choose the one that best fits the data set X ." 

We consider the following cases: 

• A does not contain the number of clusters, m, as a parameter (such as the 
algorithms based on graph theory, the morphological clustering algorithm 
and the boundary detection algorithms). 

The choice of the "best" parameter values for this type of algorithm is 
based on the assumption that if X possesses a clustering struc111re, this 
structure is captured for a "wide" range of values of the parameters in A 
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(e.g., [Post 93]). Based on this assumption, we proceed as follows. We run 
the algorithm for a wide range of values of its parameters and we choose 
the widest range for which, m, remains constant (typically m < < N). Then 
we choose as appropriate values of the parameters of A the values that 
correspond to the middle of this range. Note that, implicitly, this procedure 
also identifies the number of clusters that underlie X. 

Example 16.6. (a) We consider a data set X, consisted of three groups of 100 two
dimensional vectors. These groups are formed from normal distributions with means 
(0, OJ T, (8, 4f, and (8, OJ T, respectively, and covariance matrices equal tu 1.5 /. As one 
can easily observe in Figure 16.2a, the three groups form three compact and well-separated 
clusters. We run the binary morphology clustering algorithm (BMCA), using the 3 x 3 
structuring element (Figure 15. I la), with the resolution parameter r ranging from I to 77 
and we plot the number of clusters versus r (Figure 16.2b). We observe that for any value 
of r between 27 and 67, the number of clusters remains contant and equal to 3. Taking into 
account that this range of values is the largest one, we chooser = 47, and we conclude that 
our data form three clusters. 

(b) Generate another data set, as before, but with the covariance matrices equal to 2.5/. 
This data set is depicted in Figure 16.3a. We observe that in this case the three groups are 
so dispersed that they practically cannot be distinguished from each other. We run BMCA 
once again, using the 3 x 3 structuring element, for r ranging from 1 to 77, with step I, and 
we plot the number of clusters versus r (see Figure 16.3b). In this case, for r = 7, ... , 46, 
the number of clusters remains constant and the corresponding value of m is I. 
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FIGURE 16.2: (a) Three well-separated clusters. (b) The plot of the number 
of clusters m versus the resolution parameter r, using the binary morphology 
clustering algorithm (BMCA). 
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FIGURE 16.3: (a) Three overlapped clusters. (b) The plot of m versus r . 

/' 

• A contains m as a parameter (such as the fuzzy and hard clustering algo
rithms discussed in Chapter 14). For this case, a different procedure is 
followed. We first select a suitable performance index q. The "best" clus
tering is identified, in terms of q, via the following procedure. We run the 
clustering algorithm at hand for all values of m between a minimum 11lmin 
and a maximum mmax, where mmin and mmax are chosen a priori. For each 
value of m , we run the algorithm r times, using different sets of values for 
the other parameters of A. 5 Then we plot the best values of q, obtained for 
each m. versus m and we seek the maximum or the minimum of this plot, 
according to whether large or small values of q indicate good clusterings. 
This procedure works well if q exhibits no trend with respect tom . How
ever, as we will see, several of the commonly used indices q exhibit an 
increasing (decreasing) trend as m increases. Thus, locating the maximum 
(minimum) versus m is no longer indicative of a good clustering. For indices 
that exhibit such behavior, in the range [mmin. mmax l. we search for values 
of m at which a significant local change in the value of q occurs. This change 
appears in the plot as a significant "knee". The presence of such a knee is an 
indication of the number of clusters underlying X. On the other hand, the 
absence of such a knee may be an indication that X possesses 110 clustering 
structure. 

Another source of complication, associated with many of the indices used 
in this framework is that their behavior depends on many other factors such 

5For example. if the isodata algorithm is used, we run it using different initial conditions. 
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as the number of vectors in X and their dimensionality. The situation is 
demonstrated via the following example. 

Example 16.7. (a) In this example, we consider 16 different data sets with different 
numbers of vectors and dimensionalities. Specifically, we consider four 2-dimensional 
data sets of 50, 100, 150, and 200 vectors; four 4-dimensional data sets of 50, 100, 
150, and 200 vectors; four 6-dimensional data sets of 50, 100, 150, and 200 vectors; 
and four 8-dimensional data sets of 50, 100, 150, and 200 vectors. The vectors of the 
data sets lie in the H; hypercube, i = 2, 4, 6, 8, respectively. All the data sets contain 
four compact and well-separated clusters. All the clusters stem from normal distributions 

i /2 i /2 i /2 i /2 
~T~~T~~T 

with means [0.2, ... , 0.2) , [0.2, ... , 0.2, 0.8, ... , 0.8) , [0.8, ... , 0.8, 0.2, ... , 0.2) , 
i 
~ 

[0.8, ... , 0.8f, where i is the dimensionality, and covariance matrices 0.2/;, where I; 
is the i x i identity matrix. For each of these data sets we run the isodata algorithm for 
m = 1 .... , 10, and we compute the corresponding values of the cost function J. For 
this case, only a single run is performed for each m. In Figure 16.4 we plot J versus the 
number of clusters, m, for the cases of 50, 100, 150, and 200 vectors and for different 
dimensionalities. 

One can easily notice that the higher the dimensionality, the sharper the knee at m = 4. 
Moreover, as the size of the data set increases, the knee at m = 4 becomes sharper, even 
at lower dimensionalities. Rules for automatic identification of a knee are discussed in 
[Dube 87a]. 

(b) We again construct 16 data sets, but now the vectors in each of them are randomly 
distributed in the H; hypercube, according to the uniform distribution. If we carry out 
the same procedure as before, we see in Figure 16.5 that there are no sharp knees in the 
plots. Thus, the absence of sharp knees in the plots may be an indication of the absence of 
clustering structure. 

16.4.1 Hard Clustering 

In this section we discuss indices that are suitable for hard clusterings. In the sequel 
unless otherwise stated, we consider only the case of compact clusters. 

• The modified Hubert r statistic. Let c; =kif the vector x; belongs to cluster 
Ck. Also let Q be the N x N matrix whose (i, j) element, Q(i, j), is equal 
to the distance d(wc;, We) between the representatives of the clusters where 
x; and x 1 belong. The modified Hubert r statistic is defined as in Eq. ( 16.8) 
and it is applied to the proximity matrix P of the data set X and the matrix 
Q (of course, the same distance measure must be used for both P and Q). 
Similarly, we can define the normalized modified Hubert r statistic. It is 
clear that if d(Wc;, We) is close to d(x;, x J ), for i, j=l, ... , N, i.e., when 
compact clusters are encountered in X, P and Q will be in close agreement 
and the values of r and f will be high. Conversely, high values of r(f) 
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FIGURE 16.4: Plots of J versus m for (a) N = 50, (b) N = JOO. (c) N = 150. 
(d) N = 200, for clustered data. 

indicate the existence of compact clusters. If the opposite is true, the values 
of the modified r and f' indices are expected to be low. Thus. in the plot 
of r versus m, we seek a significant knee that corresponds to a significant 
increase off' . The value of m at which this knee occurs indicates the number 
of clusters that underlie X . 

For m = I and m = N the index is not defined. Also, this index tends to 
increase as m increases toward N (see Problem 16.6) for random data and 
tends to be flat for data sets that possess a clustering structure [Jain 88] . 
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FIGURE 16.5: Plots of J versus m for (a) N = 50, (b) N = 100, (c) N = 150, 
(d) N = 200, for random data. 

• The Dunn and Dunn-like indices. Let the dissimilarity function between two 
clusters C; and C; be (Chapter I l) 

d(C;, C;) = min d(x, y) 
xEC;.yECJ 

and define the diameter of a cluster C as 

diam(C) = max d(x, y) 
x,yEC 

(16. I 7) 

(16. I 8) 
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that is, the diameter of a cluster C is the distance of its two most distant 
vectors. diam(C) may be viewed as a measure of dispersion of C. Then, 
the Dunn index for a specific m is defined as 

Dm = min { min ( d(C;, CJ) ) } 
i=I ..... m j=i+ I .. .. m maxk=l. .... 111 diam(Ck) 

( 16.19) 

It is clear that if X contains compact and well-separated clusters, Dunn ·s 
index will be large, since the distance between the clusters is expected to be 
"large" and the diameter of the clusters is expected to be "small." Conversely. 
large values of Dunn's index indicate the presence of compact and well
separated clusters. The index Dnr does not exhibit any trend with respect to 
m, hence the maximum in the plot of Dm versus m c.:an be used to indicate 
the number of clusters that underlie X. 

Jn [Dunn 74], it is shown that if Dm > 1 for a specific clustering. then 
this clustering contains compact and well-separated clusters. 

A disadvantage of the Dunn index is the considerable amount of time 
required for its computation (see Problem I 6.7) . Moreover, Dunn's index is 
sensitive to the presence of noisy vectors in X, because these are likely to 
increase the value of the denominator of Eq. ( 16. 19). 

Jn [Pal 97] three Dunn-like indices are proposed that are more robust to 
the presence of noisy vectors. Furthermore, preliminary simulation results 
show that they may be used for cases in which shell-shaped clusters underlie 
X. These three indices are based on the concepts of the minimum spanning 
tree (MST). the relative neighborhood graph (RNG). and the Gabriel graph 
(GG), discussed in Chapter 15. Let us consider explicitly the index hased on 
the MST concept. The other two are defined using similar arguments. 

Consider a cluster C; and the complete graph G; having vertices that 
correspond to the vectors of C;. The weight, We , of an edge, e, of this graph 
equals the distance between its two end points, x and y, that is, W e = d(x . y) . 
Let E;MST be the set of edges of the MST of G; and let ef15T be the edge 

in Et'ST with the maximum weight. Then the diameter of C; , diam;wsT. is 

defineu as the weight of ef" ST (see Figure 16.6). 

MST 
e; 

FIGURE 16.6: A minimum spanning tree . 
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The dissimilarity between two clusters is defined as the distance of their 
mean vectors, d ( C;, C j) = d (m;, m j). Then, the Dunn-like index, based 
on the concept of the MST, is defined as 

D MST . { . ( d(C;,Cj) )) 
m = . mm . _nun . MST 

1=1, ... ,rn 1=1+1, .. .,m maxk=l ....• m d1amk 
(16.20) 

The maximum in the plot of D:;{ ST versus m indicates the underlying number 
of clusters in X. Similar arguments are followed to define Dunn-like indices 
for GG and RNG graphs (see Problem l6.8). 

• The Davies-Bouldin (DB) and DB-like indices. Lets; be a measure of dis
persion of a cluster C; (i.e., a measure of its spread around its mean vector) 
and d ( C;, CJ) = dij the dissimilarity between two clusters, using an appro
priate dissimilarity measure. Based on these, a similarity index RiJ between 
C; and c1 is defined to satisfy the following conditions [Davi 79]: 

(Cl) Rij '.':: 0. 

(C2) RiJ = RJi· 
(C3) Ifs;= 0 and SJ= 0 then Rij = 0. 
(C4) If SJ > Sk and diJ = d;k then RiJ > R;k. 
(CS) If SJ = Sk and diJ < d;k then R;J > R;k. 

These conditions state that Rij is nonnegative and symmetric. If both clus
ters, C; and CJ. collapse to a single point, then RiJ = 0. A cluster C; with 
the same distance from two other clusters, CJ, Ck. is more similar to the 
cluster with the largest dispersion (condition (C4)). For the case of equal 
dispersions and different dissimilarity levels, the cluster C; is more similar 
to the closer of the two (condition (CS)). 

A (simple) choice for an R;i that satisfies these conditions is the following 
[Davi 79]: 

S; +SJ 
R;J = --

d;i 

provided that d;1 is symmetric. 
Also let R; be defined as 

R; = . max .. RiJ. i = 1, ... , m 
1=l,. . .,m,;'f1 

Then the DB index is defined as 

l Ill 

DBm= - LR; 
m i=I 

(16.21) 

(16.22) 

(16.23) 
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That is, DBm is the average similarity between each cluster C;, i = l, .... m. 
and its most similar one. As it is desirable for the clusters to have the 
minimum possible similarity to each other, we seek clusterings that min
imize DB. On the other hand, small values of DB are indicative of the 
presence of compact and well-separated clusters. The DBm index exhibits 
no trends with respect tom [Davi 79), thus we seek the minimum value of 
DB111 , in the plot of DBm versus m. 

In [Davi 79), the dissimilarity d(C;, Ci) between two clusters is 
defined as 

( 16.24) 

Also, the dispersion of a cluster C is defined as 

) 

l / r 

s; = (,:; L llx - w;I( 
:rEC; 

(16.25) 

where n; is the number of vectors in C;. (Compare this definition with that 
of the diameter of a duster defined earlier.) 

In [Pal 97] three variants of the DB index, based again on the MST, RNG. 
and GG concepts, are proposed. We focus on the MST case. Let sr ST be 
the diamff ST, as defined in the Dunn-like index, and let d;1 be the distance 
between the mean vectors of C;, CJ. Then, we define 

SMST + SMST 
wwsT = 1 1 

lj 
( 16.26) 

It is easy to show that R;1 ST satisfies the conditions (CI )-(CS) (see Problem 

16.10). Defining Rf11 sT max.i=l. .... m.#i RJj5r, the MST DB index is 
defined as 

1 Ill 

DBMST = _ " RMST 
fll f/1~ I 

i=I 

(16.27) 

The minimum in the plot of DBi;;:sr versus m is an indication of the number 
of clusters that underlie X . 

Using arguments similar to these, we may define DB~,NG and DB~c. 
• Information Theory based criteria. A different philosophy that may be used 

for the estimation of the number of clusters m relies on the determination of 
a model that best fits the available data, without having any knowledge of 
their true distribution (see, for example, [Lu 00]). 
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Let us define the following criterion function : 

C(9, K) = -2 ln(L(9)) + </J(K) (16.28) 

where 9 is the parameter vector of the model , L(9) , is the loglikelihood func
tion (seeeq. (2.50)), K is theorderofthe model, that is, the dimensionality of 
9, and <Pis an increasing function of K . Typical choices of <Pare </J(K) =2K 
(Akaike Information Criterion, AIC [Akai 85]), </J(K) = N 2_K:_ 1 (Consistent 
AIC [Hurv 89]), </J(K) = K log N (Minimum Description Length (MDL) 
Criterion [Riss 78], [Riss 89] and Bayesian Information Criterion (BIC) 
[Schw 76], [Fral 98]). Note that K is a strictly increasing function of the 
number of clusters, m, since the higher them, the larger the dimensionality 
of 9. For example, in the case where p(x; 9) is a weighted summation of 
m /-dimensional Gaussian distributions, each one corresponding to a clus
ter, 9 consists of the ml 8arameters associated with the mean values of 
the distributions, plus m 1 11

> parameters associated with the covariance 
matrices of the distributions plus the m - I weighting parameters. Thus, 
K = (/ + 1(It1) + I )m - I. In words, K is an increasing linear function of m. 

The aim is to minimize C with respect to 9 and K. We proceed as fol
lows. First, the set of candidate models is fixed, involving models of similar 
structure but of different orders. Let m E [mmin, mmaxl for the models of the 
above set. Then for each value of m; E [mmin. mmax], we optimize C(9, m;) 
with respect to 9, that is, we determine the maximum likelihood estimation 
9;. Then, among all pairs (9;, m; ), we choose the one, say (9j, mj ) , that min
imizes C . Thus, the estimated number of clusters is mj. In the case where 
it is desirable to choose the best among models of different structure, we 
first identify all the subsets, each one containing similar models of differing 
order. Then, we determine the best model of each subset as described above. 
Finally, among these models, we select the one that leads to the minimum 
value of C. 

Other indices suitable for hard clusterings have also been proposed. For exam
ple, in [Mill 80] and [Mill 85] many indices of this kind are tested on specific 
data sets . Also, in [Kiri 00) two new indices are presented and their relation to 
the method discussed in Section 12.3, for estimating the number of clusters, is 
investigated. 

16.4.2 Fuzzy Clustering 

In this section we consider indices suitable for fuzzy clustering. In this context, 
we seek clusterings that are not very fuzzy, that is, those whose clusters exhibit 
small overlap. In other words, we seek clusterings where most of the vectors 
of X exhibit high grade of membership in only one cluster. Recall that a fuzzy 
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clustering is defined by the N x m matrix U = [u;; ], where u;; denotes the grade of 
membership of the vector x; in the }-th cluster. Also, let W = { w J. j = I . .... m} 
be the set of the cluster representatives . 

The strategy followed for the hard clustering case is also adopted here. That 
is, we define an appropriate index q (not to be confused with the fuzzifier) and 
we search for the minimum or the maximum in the plot of q versus m. In the case 
where q exhibits a trend with respect tom in the range [mm; 11 , mmax ], we seek a 
significant knee of decrease or increase of q . 

Indices for Clusters with Point Representatives 

A. Indices that Involve Only U 

One such index is the partition coefficient [Bezd 74], which is defined as 

l N m 

PC= - '°''°'u2 
N~~ I} 

i=I J=I 

( 16.29) 

where u;; 's are the values obtained after the convergence of the adopted fuzzy 
clustering algorithm. 

The range of values for PC is [ 1 / m, I]. This index is computed for values of m 
greater than I, since form = I, it is trivially equal to I. The closer to unity the 
PC, the harder the clustering is or, alternatively, the smaller the "sharing" of the 
vectors in X among different clusters. The lowest value of PC is obtained when all 
u;j's are equal, that is, u;; = I/m, j =I, ... , m, i =I, ... , N . Thus, the closer 
the value of PC to 1 / m, the fuzzier the clustering. A value close to I/ m indicates 
that either X possesses no clustering structure or the adopted clustering algorithm 
failed to unravel it [Pal 95] . 

Another index of this category is the partition entmpy coefficient [Bezd 75]. 
which is defined as 

I N m 

PE= - NL L(u;; log0 u;;) 
i=l J=I 

( 16.30) 

where a is the base of the logarithm. This index is also computed for values of m 
greater than I. Its minimum value equals 0 and its maximum log0 m. The closer 
the value of PE to 0, the harder the clustering is. On the other hand, the closer 
the value of PE to !og

0 
m, the fuzzier the clustering is. As in the previous case, 

values close to log
0 

m indicate the absence of any clustering structure in X or the 
inability of the clustering algorithm to reveal it [Pal 95]. 

Both of these indices measure the amount of "overlap" among clusters, without 
utilizing any additional information concerning the positions of the data vectors 
and the cluster representatives in space. 
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FIGURE 16.7: (a) The data set. (b) The plot of PC versus m. (c) The plot of 
PE versus m. 

A disadvantage of hoth PC and PE indices is that they exhihit a dependence 
on m with a trend to increase or decrease. respectively, as m increases. Thus, one 
seeks significant knees of increase (for PC) or decrease (for PE) in the plot of the 
indices versus m _ Moreover, they are also sensitive to the fuzzifier q. It can he 
shown (Problem 16.13) that as q ___,,. l _._ .6 both PC and PE give the same values 
for all m's; that is, they are unable to discriminate between different values of m. 
On the other hand, as q ___,,. oo, hoth PC and PE exhihit the most significant knee 
at m = 2 (see Problem 16.13). The behavior of PC and PE is illustrated via the 
following example. 

Example 16.8. Let X be a data set that consists of three groups of two-dimensional 
vectors, each containing I 00 vectors. The groups stem from normal distributions with 
means [ 1, lf, [4. 4 ]T _ [ 7. !Jr. respectively (see Figure l 6.7a). All covariance matrices 
are equal totheidentiry2x2matrix. We run the fuzzyc-meansalgorirhmforq = 1.5, 2, 3. 5 
and m = L ... , 10. Figure 16.7b shows the behavior of the PC index. One can observe 
!hat for q = 1.5 and q = 2. the rnrresponding plols exhibit a significant knee at m = 3, 
which is the correct number of(the natural) clusters. The plots for q = 3 and q = 5 coincide. 
This implies that no significant change in the behavior of the index is expected for q :::: 3. 
Moreover. no peak is encountered; that is, no conjecture can be made for the number of 
clusters. Also, notice the general decreasing trend as 111 increases. 

Figure 16.7c shows the behavior of !he PE index. The plots corresponding to q = 1.5 
and q = 2 exhibit a significant knee at 111 = 3. Also. as in the previous case, no significant 
change in the behavior of the index is expec1ed for q :::: 3, and no minimum is encountered 
for q 2: ]. Finally. PE exhibits an increasing trend as m increases. 

Other indices of this kind have also been proposed in the literature 
(e.g .. [Wind 81]). We consider next indices that involve X, U, and W. 

6This not~tion means lhal q lends lo I from lh~ right. 
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B. Indices Involving W, U, and the Data Set X 

Let us define the so-called cluster variation asaJ = L~=l ujj llx; -w J 11 2 (compare 
this with the dispersion used in the DB index) and the total variation as aq = 

I:'j~ 1 aJ. The parameter aq may be viewed as a measure of compactness of the 

specific clustering. Also let dmin = mini.j=l. .... m.i;fJ Jlw; - w j 11
2 be a measure of 

separability of the clusters in X, where w J denotes the representative of the j-th 
cluster j= I, ... , m. Then theXie-Beni index, which is also called the compactness 
and separation validity function, is defined as 

u2/N 
XB=--

dmin 
(16.31) 

This index is usually employed for the validation of clusterings produced by the 
fuzzy c-means algorithm when the Euclidean distance is in use. Note that despite 
the fact that the fuzzifier q in the fuzzy c-means may have any value greater than I, 
in the XB index the value of q involved in aq is restricted to 2. 

It is clear that for compact and well-separated clusters, small values of XB 
are expected. On the other hand, small values of XB indicate compact and well
separated clusters. As stated in [Xie 91 ], the XB index decreases monotonically 
as 111 gets very close to N. One way to handle this problem is to determine the 
starting point, mmax, of the monotonicity behavior and to search for the minimum 
value of XB in the range [2. mmaxl· 

Let 

N m 

.lq = L l.:ui;llx; - w; 11
2 

i=l }=I 

(16.32) 

(recall that this is the cost function minimized by the fuzzy c-means clustering 
algorithm when the squared Euclidean distance is in use). Then XB may be written 
in terms of h as 

XB=___.!2_ (16.33) 
Ndrnin 

Thus, minimization of XB implies minimization of ]z. 
Removal of the constraint q = 2, used in the definition of XB. allows the 

detinition of the generalized XB index as 

aq 
XBq = -- (16.34) 

Ndmin 

It can be shown (Problem 16.14) that, as q--'> oo, XB tends to oo and XBq 
becomes indeterminate. 
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Another index that combines X, W, and U is the Fukuyama-Sugeno index 
[Pal 95], which is defined as 

N m 

FSq = I:I:>r1(11x; -w1ll~ - llw1 -wll~) ( 16.35) 
i=I J=I 

where w is the mean vector of X and A is an I x l positive definite, symmetric 
matrix. Recall that II · II A is the A norm defined in Section 2.4. When A = I, the 
above distance becomes the squared Euclidean distance. 

The first of the two terms in the parenthesis measures the compactness of the 
clusters, and the second one measures the distance of the cluster representatives, 
w;, from the overall mean vector w. It is clear that for compact and well-separated 
clusters we expect small values for FS4 . Furthermore, small values of FSq are 
indicative of compact and well-separated clusters. As far as the limiting behavior 
of FS4 is concerned, it can be shown (Problem 16.15) that (a) as q ~ I+, FS4 
behaves like tr(Sw), the trace of the within scatter matrix (see Chapter 5), and (b) 
as q ~ oo, F Sq tends to 0. 

In [Gath 89], three additional indices are proposed that are based on the concepts 
of hypervolume and density. Let us define the fu zzy covariance matrix of the j-th 
cluster as 

(16.36) 

The fuzzy hypervolume of the j-th cluster is defined as 

(16.37) 

where I :E JI is the determinant of :E J. Note that this is a measure of compactness 
of the j-th cluster. The smaller the value of VJ, the more "compact" the j-th 
cluster is. 

The total fuzzy hypervolume is defined as 

( 16.38) 

Small values of FH indicate the existence of compact clusters. 
Let Xj = Ix E X:(x - w1f:Ej1(x - WJ) < 1}; that is, x1 contains all 

the vectors in X that are within a prespecified (small) region around w J. Also let 
S1 = Lx;EXJ u;1 be the so-called sum of central members of the j-th cluster. 
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The quantity SJ/ VJ is called the fuzzy density of the )-th cluster. Then the average 
partition density is defined as 

I m S· 
PA = - "'"' _.!_ 

m~V 
j=I J 

A different measure is the partition density index and it is defined as 

where S = L)'= 1 SJ. 

s 
PD=

FH 

( 16.39) 

(16.40) 

"Compact" clusters lead to large values of PA and PD, and vice versa, large 
values of PA and PD are indications of "compact" clusters. 

Note that all these indices, except PE and PC, may be used in the framework of 
hard clustering as well, by defining 

ll;j=ll. 
. 0. 

if d(x;. Cj) = mink==l .... m d(x;, Ck) 

otherwise 

Indices for Shell-Shaped Clusters 

i=l, .. .,N (16.41) 

Let us now focus on the case of shell-shaped clusters (see Chapter 14). The PE 
and PC indices, discussed previously, may also be used in this case, since they 
involve no information concerning the geometrical characteristics of X. 7 However, 
the rest of the previously discussed indices need to be modified accordingly. Here, 
the representatives of each cluster, are shell shaped and they are denoted by f3 J. The 
parameter vector o1 contains all the necessary parameters for the identification 
of f3 J. For a vector x;, we define its distance from f3 J in terms of 

i 
Tjj=X;-Xj ( 16.42) 

where xj is the point on f3 J that is closer to x;. It is not difficult to show (Problem 
16.16) that for clusters of spherical shape, where OJ = (c J, r1 ), with c J being the 
center and r1 being the radius of the corresponding sphere, 

X; - Cj 
Tij = (x; -c1)-rjll II 

X; - Cj 
(16.43) 

However, for general types of shells. computation of the r iJ 's is not always an 
easy task. In such cases we resort to approximations of x~ ([Kris 95a]). 

7 Such characteristics may concern the shape of the clusters, the position of the representatives. etc. 
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The fuzzy shell covariance matrix for the j-th cluster is defined in accordance 
with Eq. (16.36) as 

"\'N Uq T· ·T· .T 
S L...i=I ij I] I) 

"'£j= N q 
Li=I U;j 

(16.44) 

Then the shell hypervolume of a cluster is defined as 

v~ = 1"'£'1 112 
J J 

(16.45) 

Let us define xf = {x;: T;/ ("'£1)- 1 
Tij < l) and sf Lx;EXj Uij· Then, 

the fuzzy shell density, the average partition shell density, and the shell partition 
density are defined as before. 

Finally, another measure suitable for shell-shaped clusters is the total fuzzy 
average shell thickness, rs [Kris 95b], which is defined as 

m 

rs= L:rf (16.46) 
j=l 

where rf is the so-called fuzzy average shell thickness of the j-th cluster, 
defined as 

(16.47) 

It is clear that the "thicker" the clusters, the smaller the value of rs. Further
more, small values of rs indicate "thick" clusters. However, rs tends to decrease 
monotonically as the number of clusters increases. 

The comments made for the total fuzzy hypervolume, the average partition 
density and the partition density indices are also valid here. 

Note that PAs, PDs, and Ts can be thought as measures of the density of the 
clusters formed by the vectors of X around their representatives. 

A few other indices of this kind have also been proposed and discussed in 
[Dave 90), [Kris 93). A general comment applied to all these indices is that they 
are sensitive to the size and the density of the points in the clusters. 

Finally, using Eq. ( 16.41 ), we obtain the shell density, the average partition shell 
density, and the shell partition density for the hard clustering case. 

Remarks 

• An alternative way of determining the number of clusters underlying in 
the data set X, is to perform the so called progressive clustering method 



Section 16.S: VALIDITY OF INDIVIDUAL CLUSTERS 621 

(e.g .. [Kris95b]). According to this method we run first the clustering 
algorithm at hand for an overspecified number of clusters, m. Then, we 
remove spurious clusters, we merge compatible clusters and we identify 
the "good" clusters. Let k be the number of spurious and "good" clusters 
defined above. Then, we temporarily remove the vectors contained in the 
above clusters from the data set and we apply the algorithm on the reduced 
data set for m-k clusters. This procedure is repeated until no "good" clus
ters can be removed anymore or no vectors are left in the data set. The 
output of the above method is the set of the "good" clusters determined 
above. 

The advantage of this method is that, in general, it is not necessary to 
run the clustering algorithm for all values of m in a prespecified range. 
Also, this method is less influenced by the presence of noise. However, one 
must establish criteria concerning the merging and the removing operations 
involved in the above method as well as criteria for the identification of 
"good" clusters. 

• A different philosophy for the determination of the number of clusters under
lying in the data set X employs the idea of infonnation criteria (IC), such 
as Akaike and the Minimum Description Length (MDL) criteria (see, e.g .. 
[Scio 87], [Lang 98]). 

16.S VALIDITY OF INDIVIDUAL CLUSTERS 

There are two cases in which individual cluster validity may be of interest. One is 
when we want to test whether a given subset of X forms a "good" cluster. "Good" 
in this case is interpreted in terms of compactness. with respect to its own data, 
and isolation with respect to the other vectors of X. The other case concerns the 
validation of a cluster resulting from the application of a clustering algorithm. To 
this end. both external and internal criteria may be used. 

16.5.1 External Criteria 

In this section we consider hard clusters and ordinal-type proximity matrices 
[Bail 82], [Jain 88]. The goal is to test whether a given subset of X forms a compact 
and well-separated cluster. In [Bail 82], two indices are defined, one for compact
ness and one for isolation. Both are based on graph theory concepts. However. 
some necessary definitions must first be provided. 

Let us consider the proximity graph G(p), with p (<N(N - 1)/2) edges, 
whose vertices correspond to the N vectors of X and whose edges correspond 
to the p smallest entries of the upper diagonal of the proximity matrix of X, P. 
In other words, a pair of vertices x; and x j is connected with an edge if the 
dissimilarity d(x;. x j) is among the p smallest dissimilarity values of all possible 
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pairs of vectors in X (see Chapter 13). Also, let C be a predetermined subset of 
X, with k vectors. Our goal is to determine whether C is a good cluster. For the 
G(p) and the given P, we define the sets A;,,(p). Aout (p), and Abet (p) as follows: 
(a) A;,,(p) is the set of edges whose end points are vectors in C, (b) Aout(P) is the 
set of edges whose end points are vectors in X - C, and (c) Abet (p) is the set of 
edges that connect vectors in C with vectors in X - C. 

For a given G (p), let qc (p) be the number of edges connecting vertices in C with 
vertices in X - C and re (p) be the set of edges connecting vertices in C. Clearly, 
these indices depend on p. It is easy to see that low values of qc(p) indicate a 
well-isolated cluster, and large values of re (p) indicate a compact cluster. In order 
to extract conclusions about the compactness and isolation of C. we consider the 
behavior of these indices with respect to p. To this end, we plot the indices versus 
p. It is expected that an isolated and compact cluster will exhibit low values for 
qc(p) and high values for rc(p), for a "wide" range of values of p. The size of 
this range is application dependent. 

A drawback of these indices is that they do not provide information with respect 
to a random population. To overcome this, an extension of the indices within the 
probabilistic framework is discussed in [Bail 82]. 

16.5.2 Internal Criteria 

The aim here is to validate a single cluster that results from a clustering algorithm 
using only the information residing in the proximity matrix, P. of X. 

• Hard clustering case 
-Ordinal proximity matrices. A method for the evaluation of a cluster 

is given in [Ling 72] and [Ling 73]. This method is well suited for 
hierarchies of clusterings, produced by a hierarchical clustering algo
rithm. It relies on the lifetime, L(C), of a cluster C, which is given by 
L ( C) = da ( C) - d f ( C) where d f ( C) is the level of hierarchy where C 
is formed and da ( C) is the level where C is absorbed in a larger cluster. 
The statistical index used is the so-called Ling index, which is defined as 
the probability of the lifetime of a randomly selected cluster exceeding 
L(C). Finally, other methods in this category are the so-called best case 
method [Bail 82] and the CM (clustering method) reachable method 
[Bake 76]. 

-Ratio-scaled proximity matrices. In this case, we may adopt the hard 
hypervolume and the hard density (Section 16.4.2) when we seek com
pact clusters and the hard shell hypervolume and hard shell density 
when shell-shaped clusters are considered. Here, an empirically estab
lished threshold, £, is used and, according to whether the value of the 
index is greater or less than £, C is characterized as a "good" cluster 
or not. 
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• Fuzzy clustering case. We first focus on shell-shaped clusters. In this context. 
"good" clusters are those that are "compact" around their shell represen
tatives. In this framework, one can use the shell hypervolume. the shell 
density indices, and the fuzzy average shell thickness, defined in Section 
16.4. Based on these indices, a cluster is characterized as a good one accord
ing to whether the value of the corresponding index is greater or less than a 
prcspecitied threshold E. 

All these indices do not take into account the fact that shell clusters 
lie in subspaces of the vector space [Kris 95b]. A criterion that takes this 
observation into account is the swface densiry criterion. We present the 
two-dimensional case. The criterion measures the number of points in a 
cluster per unit curve length. Let us define X' as the set of the vectors in C 
that lie at a distance smaller than or equal to Tmax from the shell representa
tive f3 of C and let S = Lj:X;EX' Uj. Then, the surface density 8 of a cluster 

C is defined as 

where ref f is defined as 

s o=--
2rr reff 

reff = Jtrace{1:) 

( 16.48) 

(16.49) 

where I: is given in Eq. (16.44) and tr(I:) is the trace of L The quantity 
2rr rcff may be viewed as an estimate of the arc length of C (See problem 
16.17). The higher the value of 8, the more dense the cluster is expected 
to be. Consider for example Figure 16.8. The clusters depicted there have 
a circular shape and their representative circles are of equal radius. Also, 
the one on the right is denser around its representative than the one on 

• • • • • • • • 
• • • • • • 

• • • • • • 
• • • • 
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• • • • 
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(a) (b) 

FIGURE 16.8: A sparse and a dense circular cluster. 
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the left. The value of o for the right cluster is greater than that for the left 
cluster. 

For compact clusters, indices such as the fuzzy hypervolume or the fuzzy 
density of a cluster can be employed. 

16.6 CLUSTERING TENDENCY 

As discussed in the introduction of the chapter, almost all the clustering algo
rithms introduced in the previous sections share an annoying feature. That is, they 
impose a clustering structure on a data set X even though the vectors of X do not 
exhibit such a structure. Thus, in order to prevent a misleading interpretation of 
the structure of the data set X, it would be more sensible to check first whether 
X possesses a clustering structure. If this is the case, then one may proceed by 
applying a clustering algorithm to X. Otherwise, cluster analysis is likely to lead 
to misleading results. The problem of determining the presence or the absence of 
a clustering structure in X is called clustering tendency. Usually, this task relies 
on statistical tests. 

Clustering tendency methods have been applied in various application areas 
(e.g., [Digg 83], [Ripl 81]). However, most of these methods are suitable only for 
l = 2. In the sequel, we discuss the problem in the general l ::: 2 case. Furthermore, 
we focus on methods that are suitable for detecting compact clusters (if any). 

In this framework, we test the randomness (null) hypothesis (Ho) against the 
clustering hypothesis and the regularity hypothesis. Let us define these terms more 
precisely. 

• "The vectors of X are randomly distributed, according to the uniform 
distribution in the sampling window8 of X" (Ho). 

• "The vectors of X are regularly spaced in the sampling window." 
This implies that, they are not too close to each other. 

• "The vectors of X form clusters." 

If the randomness or the regularity hypothesis is accepted, methods alternative 
to clustering analysis should be used for the interpretation of the data set X. 

There are two key points that have an important influence on the performance of 
many statistical tests used in clustering tendency. The first is the dimensionality of 
the data, l, which affects the performance in a non-obvious way. This dependence 
can be revealed through simulations [Pana 83]. 

The other key point is the sampling window. Apart from artificial experiments, 
in practice, we do not know the sampling window. One of the problems that this 

8Jn [Smit 84] the sampling window is mathematically defined as the compact convex support set 
for the underlying distribution of the vectors of the data set X. 
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FIGURE 16.9: See text for explanation. 
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may cause is demonstrated in Figure 16.9. The vectors in the dashed circle are 
uniformly distributed in it. Thus, we expect that tests for randomness will identify 
this situation. However, if we use as sampling window the region surrounded by 
the dash-dotted line (for the same data set), the vectors are no longer uniformly 
distributed and the tests for randomness may fail to accept Ho. Moreover, due 
to the finite extent of the window, the statistical characteristics of the data are 
different near the edges of the sampling window than they are in its center. For 
example. the distribution of the distances of a vector x E X from the rest of the 
vectors of X is different when x is in the center than when it is near the border 
of the sampling window. One way to overcome this situation is to use a periodic 
extension of the sampling window. Another popular technique is to consider data 
in a smaller area inside the sampling window, known as sampling frame. With this 
method, we overcome the boundary effects in the sampling frame by considering 
points outside it and inside the sampling window, for the estimation of statistical 
properties. 

Example 16.9. Consider a data set X that consists of 100 vectors uniformly distributed in 
the Hz hypercube (see Figure 16.1 Oa). Figure 16.1 Ob shows the distribution of the distances 
between the point x = [0.5045, 0.4764f and each of the points of X - (x). Also, Figure 
16. l Oc shows the distribution of the distances between the point y = (0.0159, 0.8089] T 

and each of the points of X - { y ). Note that x lies close to the center of H1 and y lies close 
to its border. 

A method for estimating the sampling window is to use the convex hull of the 
vectors in X. However, the distributions for the tests, derived using this sampling 
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FIGURE 16.10: (a) The data set X. (b) The distribution of the distances of the 
point L0.5045, 0.4764] from the remaining points in X. (c) The distribution of the 
distances of the point [0.0159, 0.8089f from the remaining points in X. 

window, depend on the specific data at hand. A second drawback associated with 
this approach is the high computational cost for computing the convex hull of X. 
An alternative [Zeng 85], [Dube 87b] that seems to work well in practice is to 
define the sampling window as the hypersphere centered at the mean point of X 
and including half of its vectors. The fact that half of the vectors are discarded is 
not so crucial, because in the current framework we want to test only whether the 
vectors of X possess a clustering structure. If this is the case, then the clusters will 
be identified by applying a clustering algorithm to all the data of X. Notice the 
similarity to the sampling frame technique discussed earlier. 

In the sequel, we define various test statistics, q, suitable for the detection 
of clustering tendency. Recall that a crucial quantity we have to determine is 
p(qlHo). Moreover, in order to measure the power of q against the regularity 
and the clustering tendency hypotheses, we also need to detennine the respective 
pdf's under these hypotheses. In the sequel, we provide general guidelines on 
how to generate clustered and regularly spaced data sets. This is required in order 
to estimate the pdf's of q under regularity and clustering tendency hypotheses. 
vi!L Monte Carlo simulations. Randomly spaced data sets may be generated by 
inserting vectors in the sampling window. according to the uniform distribution. 

• Generation of clustered data. A well-known procedure for generating 
(compact) clustered data is the Neyman-Scott procedure [Ncym 72]. This 
procedure assumes that the sampling window is known. It produces a random 
number of compact clusters, formed at random positions in the sampling win
dow and each consisting of a random number of points. The number of points 
in each cluster follows the Poisson distribution (Appendix A). The technique 
requires as inputs the total number of points N of the set, the intensity of 
the Poisson process A., and the spread parameter a that controls the spread 
of each cluster around its center. According to this procedure, we randomly 
insert a point Y; in the sampling window, following the uniform distribution. 
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FIGURE 16.11: (a) and (b) Clustered data sets produced by the Neyman-Scott 
process . (c) Regularly spaced data produced by the SSI model. 

This point serves as the center of the ith cluster, and we determine its number 
of vectors, n;, using the Poisson distribution . Then the 11; points around Y; 
are generated according to the normal distribution with mean Y; and covari
ance matrix ff 2 /.If a point turns out to be outside the sampling window, we 
ignore it and another one is generated. This procedure is repeated until N 
points have been inserted in the sampling window (see Figure 16.11 a and b ). 
In some cases, Y; 's are also included as vectors in the set. 

• Generation of regularly spaced data. Perhaps the simplest way to produce 
regularly spaced points is to define a lattice in the convex hull of X and to 
place the vectors at its vertices. An alternative procedure, known as simple 
sequential inhibition (SS!) (see, e .g., [Jain 88], [Zeng 85]), is the following. 
The points Y; are inserted in the sampling window one at a time. For each 
point we define a hypersphere ofradius r centered at Y;. The next point can be 
placed anywhere in the sampling window in such a way that its hypersphere 
does not intersect with any of the hyperspheres defined by the previously 
inserted points. The procedure stops when a predetermined number of points 
have been inserted in the sampling window. or when no more points can be 
inserted in the sampling window, after say a few thousand trials (see Figure 
16. I I c ). A variation of this model allows intersection of these hyperspheres 
up to a certain degree. A measure of the degree of fulfillment of the sampling 
window is the so-called packing density, which is defined as 

L 
P = -V,. v ( 16 . .'iO) 

where L/ V is the average number of points per unit volume and V, is the 
volume of a hypersphere of radius r. V,. can be written as 

V,. = Ar1 ( 16.51) 
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where A is the volume of the I-dimensional hypersphere with unit radius, 
which is given by 

JTl/2 
A=----

f(l/2 + I) 
and f(-) is the gamma function (Appendix A). 

(16.52) 

16.6.1 Tests for Spatial Randomness 

Several tests for spatial randomness have been proposed in the literature. All 
of them assume knowledge of the sampling window. The scan test ([Naus 82], 
[Cono 79]), the quadrat analysis [Grei 64], [Piel 69], [Mead 74], the second 
moment structure [Rip! 77], and the interpoint distances [Rip! 78], [Silv 78], 
[Stra 75] provide us with tests for clustering tendency that have been extensively 
used when l = 2. In the sequel, we discuss three methods for determining clus
tering tendency that are well suited for the general I ~ 2 case. All these methods 
require knowledge of the sampling window. 

Tests Based on Structural Graphs 

In this section, we discuss a test for testing randomness, that is based on the 
idea of the minimum spanning tree (MST) ([Smit 84]). First, we determine the 
convex region where the vectors of X lie. Then, we generate M vectors that are 
uniformly distributed over a region that approximates the convex region found 
before (usually M = N). These vectors constitute the set X'. Next we find the MST 
of XU X' and we determine the number of edges, q, that connect vectors of X with 
vectors of X'. This number is used as the statistic index. If X contains clusters, then 
we expect q to be small. Conversely, small values of q indicate the presence of 
clusters. On the other hand, large values of q indicate a regular arrangement of the 
vectors of X. 

Let e be the number of pairs of the MST edges that share a node. In [Frie 79], 
the following expressions for the mean value of q and the variance of q under the 
null (randomness) hypothesis, conditioned one, are derived: 

and 

2MN 
E(qlHo) = M + N 

2MN [2MN- L 
var(qle. Ho)= L(L _I) L 

+ - [L(L-1)-4MN+2] e-L+? ] 
(L - 2)(L - 3) 

(16.53) 

(16.54) 
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where L = M + N. Moreover, it can be shown [Frie 79] that if M, N __., oo and 
M / N is away from 0 and oo, the pdf of the statistic 

, q - E(qiHo) 
q =~==== 

Jvar(q[e, Ho) 
(16.55) 

is approximately given by the standard normal distribution. Thus, we reject Ho 
at significance level p if q' is less than the p-percentile of the standard normal 
distribution. This test exhibits high power against clustering tendency and little 
power against regularity [Jain 88]. 

Tests Based on Nearest Neighbor Distances 

Two tests of this kind are the Hopkins test [Hopk 54] and the Cox-Lewis test 
[Cox 76]. [Pana 83]. The tests rely on the distances between the vectors of X and 
a number of vectors which are randomly placed in the sampling window. 

The Hopkins 1es1 

Let X' = (y;. i = I. ... , M), M « N, 9 be a set of vectors that are randomly 
distributed in the sampling window, following the uniform distribution. Also let 
X 1 C X be a set of M randomly chosen vectors of X. Let dj be the distance from 
y J E X' to its closest vector in X 1, denoted by x J, and 8 J be the distance from 
x 1 to its closest vector in X 1 - {x J ). Then the Hopkins statistic involves the /th 
powers of dj and 8 J and it is defined as [Jain 88] 

'°'M di. 
h = L1=I J 

'\'M di '°'M 81 
Lj=I j + Lj=l j 

(16.56) 

This statistic compares the nearest neighbor distribution of the points in X 1 with 
that from the points in X'. When X contains clusters, the distances between nearest 
neighbor points in X 1 are expected to be small, on the average, and, thus, large 
values of h are expected. Furthermore, large values of h indicate the presence of 
a clustering structure in X. When the points in X are regularly distributed in the 
sampling window, it is expected that, on the average, the term 2:)1

= 1 d~ is smaller 

than L)~ 1 8j, thus leading to small values of h. Also, small values of h indicate 
the presence of regularly spaced points. Finally, a value around 1 /2 is an indication 
that the vectors of X are randomly distributed over the sampling window. It can 
be shown (e.g., [Jain 88]) that if the generated vectors are distributed according 
to a Poisson random process (hypothesis of randomness) and all nearest neighbor 

9Typically M = 0.1 N. 
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distances are statistically independent, h (under Ho) follows a beta distribution, 
with (M, M) parameters (Appendix A) . 

Simulation results [Zeng 85] show that this test exhibits high power against 
regularity for a hypercubic sampling window and periodic boundaries, for l 
2, ... , 5. However, its power is limited against clustering tendency. 

The Cox-Lewis test 

This test is less intuitive than the previous one. It was first proposed in [Cox 76] for 
the two-dimensional case and it has been extended to the general l ::=:_ 2 dimensional 
case in [Pana 83]. It follows the setup of the previous test with the exception that 
X 1 need not be defined. For each y j E X', we determine its closest vector in X, 
say x j, and then we determine the vector closest to x J in X - {x J ), say x;. Let 
d 1 be the distance between y 1 and x j and 8 j the distance between x J and x; . We 
consider all y 1 's for which 2dj /8 j is greater than or equal to one. Let M' be the 
number of such y 1 's. Then, an appropriate function R J of 2d1/8 j (see [Pana 83]) 
is defined for these y 1 's. Finally, we define the statistic 

M' 
I 

R=-°"R M' L.,, ; 
J=l 

( 16.57) 

It can be shown [Pana 83) that R, under Ho, has an approximately normal distri
bution with mean 1/2 and variance 12M'. Small values of R indicate the presence 
of a clustering structure in X, and large values indicate a regular structure in X . 
Finally, values around the mean of R indicate that the vectors of X are randomly 
arranged in the sampling window. Simulation results [Zeng 85) show that the Cox
Lewis test exhibits inferior performance compared with the Hopkins test against 
the clustering alternative. However, this is not the case against the regularity 
hypothesis. 

Two additional tests are the so called T-squared sampling tests, introduced in 
[Besa 73). However, simulation results [Zeng 85) show that the these two tests 
exhibit rather poor performance compared with the Hopkins and Cox-Lewis tests . 

A Sparse Decomposition Technique 

This technique begins with the data set X and sequentially removes vectors from it 
until no vectors are left [Hoff 87). Before we proceed further, some definitions are 
needed. A sequential decomposition D of X is a partition of X into L 1, ••• , Lk sets, 
such that the order of their formation matters . L; 's are also called decomposition 
layers. 

We denote by M ST(X) the MST corresponding to X. LetS(X) be the set derived 
from X according to the following procedure. Initially, S(X) = 0. We move an 
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end point x of the longest edge, e, of the MST(X) to S(X). Also, we mark this 
point and all points that lie at a distance Jess than or equal to b from x, where 
b is the length of e. Then, we determine the unmarked point, y E X, that lies 
closer to S(X) and we move it to S(X). Also, we mark all the unmarked vectors 
that lie at a distance no greater than b from y. We apply the same procedure for 
all the unmarked vectors of X. The procedure terminates when all vectors are 
marked. 

Let us define R(X) = X - S(X). Setting X = R0 (X), we define 

L; = S(Ri-l(X)), I = I. .. .. k (16.58) 

where k is the smallest integer such that Rk (X) = 0. The index i denotes the 
so-called decomposition layer. Intuitively speaking, the procedure sequentially 
"peels" X until all of its vectors have been removed. 

The information that becomes available to us after the application of the 
decomposition procedure is (a) the number of decomposition layers k, (b) the 
decomposition layers l;, (c) the cardinality, I;, of the l; decomposition layer, 
i =I, .... k, and (d) the sequence of the longest MST edges used in deriving 
the decomposition layers. The decomposition procedure gives different results 
when the vectors of X are clustered and when they are regularly spaced or ran
domly distributed in the sampling window. Based on this observation we may 
define statistical indices utilizing the information associated with this decompo
sition procedure. For example, it is expected that the number of decomposition 
layers, k, is smaller for random data than it is for clustered data. Also, it is smaller 
for regularly spaced data than for random data (see Problem 16.20). This situation 
is illustrated in the following example. 

Example 16.10. (a) We consider a data set X 1 of 60 two-dimensional points in the unit 
square. The first 15 points stem from a normal distribution, with mean [0 .2. 0.2f and 
covariance matrix 0. 151 . The second, the third, and the fourth group of 15 points also stem 
from normal distributions with means [0.2. 0.8 JT , (0.8. 0.2]T. and [0.8. 0.8]T, respectively. 
Their covariance matrices are also equal to 0.151. Applying the sparse decomposition 
technique on X 1, we obtain 15 decomposition layers. 

(b) We consider another data set X 2 of 60 two-dimensional points. which are now 
randomly distributed in the unit square. The sparse decomposition technique in this case 
gives 10 decomposition layers. 

(c) Finally. we generate a data set X 3 of 60 two-dimensional points regularly distributed 
in the unit square, using the simple sequential inhibition (SSI) procedure. The sparse 
decomposition technique gives seven decomposition layers in this case. 

Figures 16.12, 16.13, and 16.14 show the first four decomposition layers for clustered, 
random. and regularly spaced data. It is clear that the rate of point removal is much slower 
for the clustered data and much faster for the regular data. 



632 Chapter 16: CLUSTER VALIDITY 

... . . ~ · .. · . · .. ·.· 
... 

.. .. .. ·: : .. : : . . 

LI l2 

:· .. ... ·. ,• ·. 

. ··.·-:. ......... · . :· . . 

FIGURE 16.12: The first four decomposition layers for clustered data in the unit 
square (Example 16. l O(a)). 

Several tests that rely on the preceding information are discussed in [Hoff 87]. 
One such statistic that exhibits good performance is the so-called P statistic, which 
is defined as follows: 

k f. P=n -'
i=I n; -/; 

(16.59) 

where n; is the number of points in Ri-I (X). In words, each factor of P is the 
ratio of the removed to the remaining points at each decomposition stage. 

Preliminary simulation results show high power of P against the cluster
ing alternative. The required pdf's of P under Ho, H 1, and H2 are estimated 
using Monte Carlo techniques, since it is difficult to derive theoretical results 
[Hoff 87]. 
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L, 

FIGURE 16.13: The first four decomposition layers for randomly distributed 
data in the unit square (Example 16.lO(b)). 

Finally, tests for clustering tendency for the cases in which ordinal proximity 
matrices are in use have also been proposed (e.g. [Fill 71 ],[Dube 79)). Most of 
them are based on graph theory concepts . Let G N (v) be a threshold graph with 
N vertices, one for each vector of X (Chapter 13 ). Then, graph properties, such 
as the node degree and the number of edges needed for G N ( v) to be connected. 
are used in order to investigate the clustering tendency of X . Specifically, suppose 
that we use the number of edges n needed to make G N ( v) connected. Obviously. 
11 depends directly on v. That is, increasing v. we also increase n. Let v* be the 
smallest value of v for whichG N (v") becomes connected, for the given proximity 
matrix. Let V be the random variable that models v. Also, let P(V .::;: vjN) be the 
probability that a graph with N nodes and v randomly inserted edges is connected 
(this is provided from tables in [Ling 76)). Then, for the specific v*. we determine 
P(V .::;:v*IN) . Very high values of P(V .::;:v*IN) indicate that lhe proximity matrix 
was not chosen at random. This is because the within-cluster edges will tend to 
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FIGURE 16.14: The first four decomposition layers for regularly spaced data 
in the unit square (Example 16. l 0( c) ). 

occur before the between-cluster edges when the data are clustered, thus, delaying 
the formation of a connected graph. 

Problems 

16.1 Let X be a set of vectors. Show that if the number of clusters in a clustering C of X 
is m and the number of groups in a partition P of X is q f= m, then the maximum 
values of the Rand, the Jaccard, and the Fowlkes and Mallows statistics are less 
than 1. 

16.2 Prove Eq. (16.10). 
16.3 (a) Repeat Example 16.2 with two-dimensional vectors sterning from the nor

mal distributions with means (0.2, 0.2]T, (0.2. 0 .8f, (0.8, 0.2]T, [0.8, 0.8f and 
covariance matrices 0.22 J. 
(b) Repeat the experiment when all covariance matrices are equal to 0.52 I. 

16.4 Prove that the values of the CPCC in Section 16.3.2 lie in the interval [-1, I]. 
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16.5 Consider a data set X of six vectors. whose (ordinal) proximity matrix is 

0 5 7 8 9 
I 0 3 6 10 II 

P= 
5 3 0 12 13 14 

7 6 12 0 6 4 

8 10 13 6 0 2 
9 ll 14 4 2 0 

Run the single and the complete link algorithms on X and compare the resulting 
dendrograms. using they statistic. Comment on the results. 

16.6 Let X = lxi.i = 1,. . .. 12), with x1 = l-4 , 0JT. x2 = (-3 . l]T . x3 = 

16.7 

16.8 

16.9 

16.IO 

16.11 

16.12 

16.13 

T _ T _ T _ T _ , T [ - 3. - 1) . X4 - [-2, 0} • X5 - (2,0] , X6 - [3. IJ . X7 - 14.0J . 
T T T T T xx=[3. - I] .x9=[ - l.7] .xw=[0.8} .x11 =[1.7] .x12=JO. 61. 

(a) Let /11 = 2. Consider the vectors wt = (0. Of and w 2 = [0. 7] T. such that the 

first one represents the points x t through xg and the second one represents the rest 
of the points in X. Compute the values of r and f (Section 16.4. 1 ). 

(b) Let /11 = 3. Consider the vectors w1 = [-3. OJT w 2 = (3. OJT . and 
w.1 = 10. 7JT. so that the first one represents the points x 1 through x4. the second 
represents the points x5 through x3. and the third represenh the rest of the point~ 

of X. Compute the values of r and r. 
(c) Let /11 = 4. Define wt and w2 as in the previous case. Also. define w .1 = 
1-0.5. 7 .S]T and w4 = [0.5. 6.5] T. so that the first represents x9 and x 10 . while 

the second represents x 11 and x 12. Compute the values of r and f. 
(d) What conclusions can you draw from the comparison of the values of r and f 
obtained from the preceding three cases? 

Estimate the number of operations required for the computation of Dunn's index. 

0 111 , given by Eq. ( 16.19). What is the total number of computations required for 

the computation of D111 , for /11 = I ..... N? 
Deline explicitly dia111pc and diamf NG that are involved in the definitions of 

the GG and the RNG Dunn-like indices. Using these detinitions derive explicitly 
till'. GG and the RNG Dunn-like indices. 

Show that D,~~G S D,~NG sD;~ST 

Hi111: Use the fact that for a cluster Ci. EMST C ER.NC c EGG. 
I - I - I 

(a) Show that the Rj\1ST given by Eq. ( 16.26) satisfies the conditions (CI )-(CS). 

(h >Taking into acco~nt the definition of Rj11 ST. define R~G and R;~ NG and show 
that they also satisfy the L:onditions (CI )- (c5). · · 
Show that DBf(,G ~ DB,~NC ~ DB;~tsr. 

Hi111· Use the fan that for a <:luster C E''vlST c ERN0 c_ E(j(j 
. ' ' / • I - I I 

Explain intuitively why the MST DB is more robust to the presence of noisy vcc1ors 
than the original DB. 
(a) Prove that. as q ---> I+ . PC and PE tend to I and 0. respectively. 
(h) Prove that. as q ---> oo. PC and PE tend to I / /11 and log0 111. respectively. 
(c) Show that in the latter case. in the plots of PC and PE. the most significant 

knee is exhibited at /11 = 2. 
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16.14 Prove that, as q ~ oo, the XB index tends to oo, while X Bq becomes 
indeterminate. 
Hint: Use the following facts: (a) limq--+oo w; = w, where w is the mean vector 
of all vectors in X, i =I, ... , m, and (b) forq ~ oo, Uij = l/m. 

16.15 (a) Prove that limq--+ 1+ F Sq = 2Ntrace(Sw) - Ntrace(Sm ), where Sw and Sm are 
the within and the mixture scatter matrices defined in Chapter 5. 
(b) Prove that limq_.. 00 F Sq = 0. 
Hint: Use the hints given in the previous problem. 

16.16 Prove that the distance of a point x; from a sphere with center c j and radius r j is 
given by Eq. ( 16.43). 

16.17 Consider a cluster C that consists of the points of a circular arc of radius r, sub
tending an angle <f> (of course, this case is of theoretical interest, since the number 
of vectors in C would be infinite). The covariance matrix of this arc is 

I f </>/2 T T I: = - xx di - mm 
L</> -</>12 

( 16.60) 

where x = [rcos8.rsin8f is a point on the arc, di= rd8, and L¢ is the arc 
length. Prove that 

</> 
ll = ---;:::===== (16.61) 

2rr 

What is the value of ll when <f> = 2rr? 

(b) Repeat for the case where the length of the cluster is a line segment of length L. 
16.18 Consider a square of side a. Consider a grid of horizontal and vertical Jines in 

the square so that the distance between two adjacent parallel lines is r. Place in it 
(a /2r )2 vectors (of course, a /2r is assumed to be an integer) such that each of them 
lies at an intersection point of a grid and the circles of radius r centered at these 
points do not intersect at more than one point. (a) Compute the packing density of 
the square. Repeat the above for the case where r is replaced by r/2. 
(b) Assuming that no circle is allowed to have a part of it outside the square, is it 
possible to detennine an arrangement of points in the square that results in a higher 
packing density? 

16.19 Sometimes we say that the Hopkins test includes "first-order" infonnation on the 
data set X and the Cox-Lewis test "second-order" information. Can you justify 
this proposition? 

16.20 Repeat Example 16.10 and explain why (a) the number of decomposition layers is 
greater in clustered data than in random data and (b) the number of decomposition 
layers is greater in random data than in regular data. 
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APPENDIX A ___ _ _ _ _ 

HINTS FROM PROBABILITY 
AND STATISTICS 

A.I TOTAL PROBABILITY AND THE BAYES RULE 

Ler A;. i = I, 2, ... , M, be M events so that L;;~ 1 P(A;) = I. Then the 
probability of an arbitrary event B is given by 

M 

P(B) = L P(BIA;)P(A;) (A. I) 

i = I 

where P(BIA;) denotes the conditional probability of B assuming A; , which is 
defined as 

P(BIA) = P(B , Al 
P(A) 

(A.2) 

and P (B. A) is the joint probability of the two events. Equation (A. I) is known as 
the to/al pmbability 1/1eorem . From the definition in (A.2) the Bayes rule is readily 
available 

P(BIA)P(A) == P(AIB)P(B) (A.3) 

These are easily extended to random variables or vectors described by probability 
density functions and we have 

p(xlA)P(A) == P(Alx)p(x) (A.4) 

and 

p(xly)p(y) = p(ylx)p(x) (A . .5) 

and finally 

M 

p(x) = L p(xlA;)P(A;) (A .6) 

i=I 

643 



644 Appendix A: HINTS FROM PROBABILITY AND STATISTICS 

A.2 MEAN AND VARIANCE 

Let p(x) be the probability density function (pdf) describing the random variable x. 
Its mean and variance are defined as 

l
+oo l+oo 

E[x] = -oo xp(x)dx, a}= -oo (x - E[x])
2 
p(x) dx (A.7) 

A.3 STATISTICAL INDEPENDENCE 

Two (or more) random variables x and y are statistically independent if and 
only if 

p(x, y) = Px(x)py(y) (A.8) 

It turns out that in this case E[xy] = E[x]E[y] . These are generalized to more 
than two variables. 

A.4 CHARACTERISTIC FUNCTIONS 

Let p(x) be the probability density function of a random variable x. The associated 
characteristic fLtnction is by definition the integral 

!
+= 

<l>(Q) = -oo p(x)exp(jQx)dx = E[exp(jQx)] (A.9) 

If jQ is changed into s, the resulting integral becomes 

l
+oo 

<l>(s) = -oo p(x) exp(sx) dx = E[exp(sx)] (A. IO) 

and it is known as the moment generating fLtnction . 
The function 

W(Q) =In <fl(Q) (A. I I) 

is known as the second characteristic function of x . 
The joint characteristic function of I random variables is defined by 

The logarithm of the above is the second joint characteristic function of the I 
random variables . 
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A.5 MOMENTS AND CUMULANTS 

Taking the derivative of ¢(s) in Eq. (A.10) we obtain 

d11 ¢(s) --- = ¢(n)(s) = E[x" exp(sx)] 
ds" 

and hence for s = 0 

q,(n)(O) = E[x"] = m11 

645 

(A.13) 

(A.14) 

where m,, is known as the nth-order moment of x. If the moments of all orders are 
finite. the Taylor series expansion of¢ (s) near the origin exists and is given by 

+oc 

L 
111,, 

¢(s) = --s" 
n ! 

(A.15) 

n=O 

Similarly. the Taylor expansion of the second generating function results in 

where 

+oo 

L Kn 
IJl(s) = --s" 

11 ! 
11=1 

d" Iii (0) 
K =---

11 - ds" 

(A.16) 

(A.17) 

and are known as the cumulants of the random variable x. It is not difficult to show 
that Ko = 0. For a zero mean random variable. it turns out that 

K 1 (x) = E[x] = 0 

K2(X) = £[x 2J = a 2 

KJ(X) = E[x 3
] 

K4(x) = E[x4
] - 3a4 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

That is, the first three cumulants are equal to the corresponding moments. The 
fourth-order cumulant is also known as kurtosis. For a Gaussian process all 
cumulants of order higher than two are zero. The kurtosis is commonly used 
as a measure of the non-Gaussianity of a random variable. For random variables 
described by (unimodal) pdfs with spiky shape and heavy tails, known as leptokur
tic or super-Gaussian. K4 is positive. whereas for random variables associated with 
pdfs with a flatter shape. known as platykurtic or sub-Gaussian. K4 is negative. 
Gaussian variables have zero kurtosis. The opposite is not always true. in the sense 
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that there exist non-Gaussian random variables with zero kurtosis; however, this 
can be considered rare. 

Similar arguments hold for the expansion of the joint charcteristic functions 
for multivariate pdf's. For zero mean random variables, x;, i = 1, 2, ... , I, the 
cumulants of order up to four are given by 

K1(x;) = E[x;] = 0 

K2(x; , Xj) = E[x;Xj] 

K3(X; , Xj,Xk) = E[x;XjXkl 

K4(X;,Xj,Xk,Xr) = E[XjXjXkX,]- E[XiXj]E[XkXr] 

- E[XiXk]E[XjXr] - E[x;x, JE[XjXkl 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

Thus, once more, the cumulants of the first three orders are equal to the corre
sponding moments. If all variables coincide, we talk about auto-cumulants, and 
otherwise about cross-cumulants, i.e., 

K4(X;,X;,x; , x;) =K4(xi) 

that is, the auto-cumulant of x; is identical to its kurtosis . It is not difficult to see that 
if the zero mean random variables are mutually independent, their cross-cumulanrs 
are zero. This is also true for the cross-cumula111s of all orders. 

A.6 EDGEWORTH EXPANSION OF A PDF 

Taking into account the expansion in Eq. (A.16), the definition given in Eq. (A.11), 
and taking the inverse Fourier of <t>(Q) in Eq. (A.9) we can obtain the following 
expansion of p(x) for a zero mean unit variance random variable x: 

(A.27) 

where g(x) is the unit variance and zero mean normal pdf, and HK (x) is the Hermite 
polynomial of degree k. The rather strange ordering of terms is the outcome of a 
specific reordering in the resulting expansion, so that the successive coefficients in 
the series decrease uniformly. This is very important when truncation of the series 
is required. The Hermite polynomials are defined as 

(A.28) 



Section A.7: KULLBACK-LEIBLER DISTANCE 647 

and they form a complete orthogonal basis set in the real axis, i.e., 

exp(-x2/2)Hn(x)Hm(x)dx = . 
/

+oo ln!,Jiii ifn=m 
-oc 0 if n ~ m 

(A.29) 

The expansion of p(x) in Eq. (A.27) is known as the Edgeworth expansion. and it 
is actually an expansion of a pdf around the normal pdf [Papo 91 ]. 

A.7 KULLBACK-LEIBLER DISTANCE 

The Kullback-Leibler (KL) distance is a measure of the distance between two 
probability density functions p(x) and p(x) and is defined as 

I p(x) 
L = - p(x) In --dx 

p(x) 
(A.30) 

Sometimes it is referred to as cross or relative entropy. The KL distance can 
be shown to be always nonnegative but it is not a true distance measure, from a 
mathematical point of view, since it is not symmetric. Sometimes it is referred as 
the KL divergence. 

The KL distance is closely related to the mutual infonnation measure, I, between 
I scalar random variables, x;. i = \, 2, ... , l. Indeed, let us compute the KL 
distance between the joint pdf p(x) and the pdf resulting from the product of the 
corresponding marginal probability densities, i.e., 

L I ( ) I n:=l p; (x; )d 
=- px n x 

p(x) 

I 

= f p(x) In p(x)dx - L f p(x) In p;(x;)dx 
l=l 

I 

= -H(x) - L f p(x) In Pi(Xi)dx 

i=l 

(A.31) 

Carrying out the integrations on the right-hand side it is straightforward to see the 
KL distance is equal to the mutual information, /, defined as 

I 

l(x1.x2 ..... x1) = -H(x)+ LH(x;) 
i=l 

where H (x;) is the associated entropy of x;, defined as ([Papo 91]) 

H (x;) = - f Pi (xi) In Pi (xi) dxi 

(A.32) 

(A.33) 
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It is now easy to see that if the variables x;, i = 1, 2, ... , I, are statistically 
independent their mutual information I is zero. Indeed, in this case n~=l p;(x;) = 
P(X)• hence L = l(x1. x2 •... , x1) = 0. 

A.8 MULTIVARIATE GAUSSIAN OR NORMAL PROBABILITY 
DENSITY FUNCTION 

This is defined as a generalization of the univariate normal pdf 

1 ( 1 T -l ) 
p(x) = (2rr)i/2p:::J'/2 exp -2(x - µ) I: (x - µ) ' (A.34) 

where µ is the mean vector, that is, E [[xi, x2, ... , x1 f J = [111, µz, ...• µ1 f 
and I: the covariance matrix 

I: = E[(x - µ)(x - µ) 1
] (A.35) 

and we say that x is normally distributed as ;V(µ, I:). For the one dimensional, 
l = I. case the covariance matrix becomes the variance a 2 and the Gaussian 
density function takes the form 

I ( (x - µ)
2

) 
p(x) = ./2iia exp - 2a2 

Figure A.I shows the plots of two Gaussians for the same mean and different 
variances. For the general l dimensional case the covariance matrix has the form 

a2 
I a12 a11 

a21 a2 a21 
I: = 2 (A.36) 

all a12 a2 
I 

where a?= E[(x; - µ;) 2
], a;1 = a1; = E[(x; - µ;)(xi - µJ)]. Thus, the main 

matrix diagonal consists of the respective variances of the elements of the random 
vector and the off-diagonal elements are the respective covariances between the 
elements of the random vector. Note that if the random variables x; are statistically 
independent, then the mean of the product equals the product of the means, that is, 
E[(x; -µ; )(x1-µ J )] = E[(x; -µ,; )]E[(x1-J.L J )] = 0, and the covariance matrix 
is diagonal. However, a diagonal covariance matrix does not, in general, mean 
that the variables are statistically independent. In the case, though, of multivariate 



Section A.9: THE CRAMER-RAO LOWER BOUND 649 

p(x) r-----.------.---.-------.--~ 

µ x 

FIGURE A.1: Two Gaussians with the same meanµ, and different variances. 

Gaussian densities the opposite is also valid. Indeed, if the covariance matrix is 
diagonal then it is straightforward to see that 

I 

p(x) = n Pi(x;) (A.37) 
i=l 

where 

I ( (Xi-J.1.i)
2

) Pi(x;) = --- exp - 2 
5a; 2ai 

which is the univariate Gaussian describing the ith variable (why?). Thus, the joint 
probability density is the product of the individual (marginal) ones, which is the 
definition of statistical independence. 

A.9 THE CRAMER-RAO LOWER BOUND 

Let p(x; IJ) be the pdf of a random vector, parameterized in terms of an 
r-dimensional vector parameter IJ. If X is the set of N observations xi, i = 
I, 2, .... N, the log likelihood function is the logarithm of the joint pdf of the 
observations In p(X; IJ) = L(IJ). The Fisher matrix is defined so that its (i, j) 
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element equals 

[ 
a2 

L(8) J I·--E--
'1 - ae;ae1 · 

i,j=l,2,. .. ,r (A.38) 

It can be shown that the ith element of any unbiased estimate 8, of the parameter 8, 
based on the observations set X satisfies 

" 2 -1 E[(B; - B;) ] ~ 1;; (A.39) 

In other words, its variance is lower bounded by the (i, i) element of the inverse 
Fisher matrix. This is known as the Cramer-Rao bound. If the relation is valid 
with equality, the corresponding estimator is called efficient. 

A.10 CENTRAL LIMIT THEOREM 

Let x1, x2 •... , XN be N independent random variables, with mean and variances 
µ,;, u;2, respectively. We form the new random variable 

N 

z= Lx; (A.40) 
i=I 

Its mean and variance are given byµ = Lf=I µ; and u2 = '2:)~ 1 u?. The central 
limit theorem states that as N ---'? oo and under certain general conditions the pdf 
of the variable 

z - µ, 
q=-

(} 
(A.41) 

approaches N(O, 1), irrespective of the pdf's of the summands [Papa 91 ]. Thus in 
practice, for large enough N we can consider z as approximately Gaussian with 
meanµ, and variance u 2. 

A.11 CHI-SQUARE DISTRIBUTION 

Let x;, i = 1, 2, ... , N be samples of a Gaussian N (0, l) random variable x. The 
sum of squares variable 

(A.42) 

is a chi-square distributed variable with N degrees of freedom. Its probability 
density function is given by [Pa po 91] 

1 
Py(y) = 2N/2r(N 12/N/2-I exp(-y/2)u(y) (A.43) 
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where 

l'(b+ I) = fo :x:Jlexp(-v)dy b >-I (A.44) 

where u(y) is the step function (I for y > 0 and 0 for y < 0). Recalling the 
respective definitions, it is easy to show that E[y] = N, a,2 = 2N. 

The chi-square distribution possesses the additive property. Let xf and XI be 
independent random variables of chi-square distribution with N 1 • N2 degrees of 
freedom. respectively. Then the random variable 

(A.45) 

is a chi-square variable with N 1 + N2 degrees of freedom. Based on these properties 
we can show that the variance estimate of Equation (5.5) is described by a chi
square distribution with N - I degrees of freedom, provided x is Gaussian and the 
samples x; are independent. The proof is simple and interesting [Fras 58] . Define 
the following transformation: 

J.7- X1+···+X11 
VJ= v/VX = -----. JN 

I 
"' = - (x2 - x1) . - Ji_ 

I 
-'"11 = -r====[(n - l)x,, - (x1 + · · · + x11-1)l. 

Jn(n - I) 
II= 2. 3, .... N 

It is easy to show that this transformation is an orthogonal one (Problem 5.3). Thus 
the random variables y; are also Gaussian, statistically independent, and with the 
same variance a 2 as x (Problem 5.4). This transformation easily results in 

N N 

L.:-V? = I.>-P (A.46) 
i = l i=I 

and of course 

2 N-2 Y1 = x (A.47) 

Subtracting the two, we obtain 

N N 

L.>? = L.)x; - .r) 2 = (N - l)a 2 (A.48) 

i=2 i=I 
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Furthermore, E[y;] = 0, i = 2, ... , N. Thus the variable 

(A.49) 

is a chi-square with N - l degrees of freedom. 

A.12 t-DISTRIBUTION 

Let x and z be two independent random variables with x being N(O, 1) and z a 
chi-square with N degrees of freedom. Then it can be shown [Papo 91) that the 
variable 

x 
q=~ (A.50) 

is a so-called t-distributed variable with probability density function given by 

YI 
Pq (q) = --;::::==== JO+ q2/N)N+I 

f((N + 1)/2) 
Yi= ../rrNf(N/2) 

where f(-) was defined in Eq. (A.44). Thus, from the test statistic in Equation 
(5.6) and (A.49) we have 

x-µ 
i - µ a/../N 

q = -& /_fti_N_ = -.j;=z/::;:;N::;:=-:::::;:1 (A.51) 

Since z is a chi-square with N - I degrees of freedom, q is a I-distributed variable 
with N - l degrees of freedom. In a similar way we can show that the test statistic 
in Equation (5.10) is I-distributed with 2N - 2 degrees of freedom. 

A.13 BETA DISTRIBUTION 

A random variable follows the Beta distribution with parameters a and b(a, b > 0), 
if its probability density function is defined as 

where 

I 
xa-1 (l-x)h-1 

p(x) = B(a,b) ' 

0, 

O<x<l 

Otherwise 

B(a, b) = fo' ua-l (l - u)b-I du 

(A.52) 

(A.53) 
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Its mean and variance are equal to a/(a + b) and ab/((a + b)2(a + b + I)). 
respectively. 

A.14 POISSON DISTRIBUTION 

A Poisson distributed random variable X with parameter a takes the values k = 
0. I. 2, .... with probabilities 

ak 
P ( X = k) = e -a -

k! 
(A.54) 

A Poisson process scatters vectors in a Euclidean space in such a way that the 
random variable X, denoting the number of vectors in a region of volume V. has 
a Poisson distribution with parameter "AV. i.e., 

("AV)k 
P(X = k) = e->.v __ 

k! 
k = 0. 1. 2 .... (A.55) 

The parameter "A is called the intensity of the process and equals the expected 
number of vectors per unit volume. 
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LINEAR ALGEBRA BASICS 

B.1 POSITIVE DEFINITE AND SYMMETRIC MATRICES 

• An I x I real matrix A is called positive de.finite if for every nonzero vector 
x the following is true: 

(B. l) 

If equality with zero is allowed, A is called nonnegative or positive 
semidefinite. 

• It is easy to show that all eigenvalues of such a matrix are positive. Indeed, 
let "A; be one eigenvalue and v; the corresponding unit norm eigenvector 
(vT v; = I). Then by the respective definitions 

Av;= "A;v; or 

0 < vT Av;= "A; 

(8.2) 

(8.3) 

Since the determinant of a matrix is equal to the product of its eigenvalues. 
we conclude that the determinant of a positive definite matrix is also positive. 

• Let A be an I x I symmetric matrix, AT= A. Then the eigenvectors corre
sponding to distinct eigenvalues are orthogonal. Indeed, let "A; -j. ), J be two 
such eigenvalues. From the definitions we have 

Av; = "A;v; 

Avj = AjV 1 

(8.4) 

(8.5) 

Multiplying (8.4) on the left by v)· and the transpose of (8.5) on the right 
by v;, we obtain 

(8.6) 

Thus. v) v; = 0. Furthermore, it can be shown that even if the eigenvalues 
are not distinct, we can still find a set of orthogonal eigenvectors. The same 
is true for Hermitian matrices, in case we deal with more general complex
valued matrices. 

655 
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• Based on this, it is now straightforward to show that a symmetric matrix A 
can be diagonalized by the similarity transformation 

<l>T A<I> =A (B.7) 

where matrix <I> has as its columns the unit eigenvectors (vT v; = 1) of A, 
that is, 

(B.8) 

and A is the diagonal matrix with elements the corresponding eigenvalues of 
A. From the orthonormality of the eigenvectors it is obvious that <l>T <I> = I, 
that is, <I> is a unitary matrix, <l>T = <1>- 1• The proof is similar for Hermitian 
complex matrices as well. 

B.2 CORRELATION MATRIX DIAGONALIZATION 

Let x be a random vector in the /-dimensional space. Its correlation matrix is 
defined as R = E[xxT]. Matrix R is readily seen to be positive semidefinite. For 
our purposes we will assume that it is positive definite, thus invertible. Moreover, 
it is symmetric, and hence it can always be diagonalized 

(B.9) 

where <I> is the matrix consisting of the (orthogonal) eigenvectors and A the diago
nal matrix with the corresponding eigenvalues on its diagonal. Thus, we can always 
transform x into another random vector whose elements are uncorrelated. Indeed 

(B.10) 

Then the new correlation matrix is R1 = <l>T R<I> =A. Furthermore, if A 112 is 
the diagonal maLrix whose elemenLs are the square roots of the eigenvalues of 
R (A 112 A 112 = A), then it is readily shown that the transformed random vector 

(B.11) 

has uncorrelated elements with unit variance. A - 112 denotes the inverse of A 112. 

It is now easy to see that if the correlation matrix of a random vector is the identity 
matrix /, then this is invariant under any unitary transformation AT x, AT A = I. 
That is, the transformed variables are also uncorrelated with unit variance. A useful 
byproduct of this is the following lemma. 

Lemma. Let x, y be two random vectors with correlation matrices Rx. Ry. 
respectively. Then there is a linear transformation that diagonalizes both matrices 
simultaneously. 
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Proof. Let <l> be the eigenvector matrix diagonalizing Rx. Then the trans
formation 

XJ = /\.-1/2\l>T X 

Yi = A-l/2<l>T y 

(B.12) 

(B.13) 

generates two new random vectors with correlation matrices R.! = I. R~. respec

tively. Now let IJ! be the eigenvector matrix diagonalizing R_~·· Then the random 

vectors generated by the unitary transformation (IJ! T IJ! = /) 

x2=1J!Tx1 

- ,,,T 
Y2 =.., Y1 

(B.14) 

(B.15) 

have correlation matrices R.~ = I, R_~ = D, where D is the diagonal mat1ix with 

elements the eigenvalues of R~ _ Thus, the linear transformation of the original 
vectors by the matrix · 

(B.16) 

diagonalizes both correlation matrices simultaneously (one to an identity matrix). 
All these are obviously valid for covariance matrices as well. • 
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COST FUNCTION 
OPTIMIZATION 

In this appendix we review a number of optimization schemes that have been 
encountered throughout the book. 

Let fJ be an unknown parameter vector and J (6) the corresponding cost function 
to be minimized. Function J (6) is assumed to be differentiable. 

C.l GRADIENT DESCENT ALGORITHM 

The algorithm starts with an initial estimate 6(0) of the minimum point and the 
subsequent algorithmic iterations are of the form 

0(11ew) = fJ(old) + D.0 

D.(J = -µ aJ(fJ) I 
afJ 0=9(o/d) 

(C.I J 

(C.2) 

where ~l > 0. If a maximum is sought, the method is known as gradiem ascenr and 
the minus sign in (C.2) is neglected. 

Figure C .1 shows the geometric interpretation of the scheme. The new estimate 
fJ(new) is chosen in the direction that decreases 1(0) . The parameter'"' is very 
important and it plays a crucial role in the convergence of the algorithm. If it is too 
small, the corrections D.(J are small and the convergence to the optimum point is 
very slow. On the other hand, if it is too large, the algorithm may oscillate around 
the optimum value and convergence is not possible. However, if the parameter 
is properly chosen, the algorithm converges to a stationary point of J (fJ ), which 
can be either, a local minimum (0?) or a global minimum (0°) or a saddle point 

(fJ~) . In other words, it converges to a point where the gradient becomes zero (see 
Figure C.2). To which of the stationary points the algorithm will converge depends 
on the position of the initial point, relative to the stationary points. Furthermore. 
the convergence speed depends on the form of the cost J (0) . Figure C.3 shows 
the constant J (0) = c curves. for two cases and for different values of c, in the 

65l) 
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FIGURE C.1: In the gradient descent scheme, the correction of the parameters 
takes place in the direction that decreases the value of the cost function. 

J(8) 

\ / 

\ // 
\ I 

~--'/ 

/.--- - . -

\ ,1'( 

\ ! 
' I '-__./ 

I _ _/ 

... 

FIGURE C.2: A local minimum, a global minimum and a saddle point of 1(8). 
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92r •, 1 . 

~ ~ I 

e. 01 

(a) (b) 

FIGUREC.3: Curves of constant cost values. 

two-d imensional space, that is, 9 = [81 , lhf. The optimum 8° is located at the 
center of the curves. Recall that the gradient a~~8' is always vertical to the tangent 
to the constant 1 curves. Indeed , if 1 (8 ) = c, then 

T 
de= 0 = ol(8) d8 l (8) ..L d9 

a9 ~ a9 
(C.3) 

Hence. in the case of Figure C.3a the gradient, that is, the correction term. always 
points to the optimum point. In principle, in such cases, convergence can be 
achieved in a single step. The scenario is different for the case o f Figure C.3b. 
There, the gradient points to the center at only very few places. Thus, convergence 
in this case can be quite slow and D.9 can oscillate hack and forth following a 
zigzag path until it rests at the optimum. 

• QuC1dratic surface: Let 1 (8) be of a quadratic form, that is, 

T I T 
1(9) = b - p 9 + 29 R9 (C.4) 

where R is assumed to he positive definite, in order (C.4) to have a (single) 
minimum (why?). Then, 

a 1 (8) -- = R9-p 
88 

Thus. the optimum value is given hy 

R9° = p 

The tth iteration step in (C. I) then becomes 

9(t ) = 8 (1 - 1) - µ, (R9(t - 1) - p ) 

(C.5) 

(C.6) 

(C.7) 
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Subtracting (Jo from both sides and taking into account (C.6), (C.7) becomes 

O(t) = 0(1 - I) - µRO(t - 1) =(I - µR)O(t - I) (C.8) 

where 0(1) = O(t) - o0 . Now let R be a symmetric matrix. Then, as we 
know from Appendix B, it can be diagonalized, that is, 

R = <l>T Act> (C.9) 

where ct> is the orthogonal matrix with columns the orthonormal eigen
vectors of Rand A the diagonal matrix having the corresponding eigenvalues 
on its diagonal. Incorporating (C.9) into (C.8) we obtain 

A A 

O(t) = (I - µA)O(t - I) (C. I 0) 

A -

where O(t) = <t>O(t). Matrix I - µA is now diagonal, and (C.10) is equiva-
lent to 

e;(r) = o - µA;)e;(r - 1) (C.11) 

'_'A 'T 
where () = [81, 82, ... , 81] . Considering (C.11) for successive iteration 
steps we obtain 

iJ;(t) =(I - µA;)'e;(O) (C.12) 

which converges to 

Jim e;(t) = 0, => Jim 8;(t) = 8?. i =I, 2, ... , l 
f---;.e>o r---;.oo 

(C.13) 

provided that 11 - µA; I < I, i = I, 2, ... , l. Thus, we can conclude that 

. 2 
tfµ < -

Amax 
(C.14) 

where Amax is the maximum eigenvalue of R (which is positive since R 
is positive definite). Thus, the convergence speed of the gradient descent 
algorithm is controlled by the ratio Amin/Amax as (C.12) and (C.14) suggest. 
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• Nonquadratic cost jimctions: If J (9) is not quadratic. we can mobilize 
Taylor's theorem and assume that at some step near a stationary point. 
9°. J (9) can be written approximately as 

(C.15) 

where g is the gradient at 9° and H is the corresponding Hessian matrix, 
that is. 

(C. 16) 

Thus, in the neighborhood of 9°, J (9) is given approximately by a quadratic 
form and the convergence of the algorithm is controlled by the eigenvalues 
of the Hessian matrix. 

C.2 NEWTON'S ALGORITHM 

The problems associated with the dependence of the convergence speed on the 
eigenvalue spread can be overcome by using Newton's iterative scheme, where 
the correction in (C.2) is defined by 

(C. I 7) 

where H(old) is the Hessian matrix computed at 9(old). Newton's algorithm 
converges much faster than the gradient descent method and, practically, its speed 
is independent of the eigenvalue spread. Faster convergence can be demonstrated 
by looking at the approximation in (C.15). Taking the gradient results in 

a1(8) aJ(9) I 0 -- = -- + H(9 -9) 
a(9) a<9) 9= 9° 

(C.18) 

Thus, the gradient is a linear function of 9 and hence the Hessian is constant, that 
is H. Having assumed that 9° is a stationary point, the first term on the right-hand 
side becomes zero. Now let 9 = 9(old). Then, according to Newton's iteration 

9(new) = 9(old) - H- 1 (H (9(old) - 9°)) = 9° (C.19) 

Thus. the minimum is found in a single iteration. Of course, in practice, this is not 
true, as the approximations are not exactly valid. It is true, however. for quadratic 
costs. 
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Following a more formal proof (e .g., [Luen 84 )), it can be shown that the conver
gence of Newton's algorithm is quadratic (i .e ., the error at one step is proportional 
to the square of the previous step) while that of the gradient descent is linear. 
This speedup in convergence is achieved at increased computational cost, since 
Newton's algorithm requires the computation and then inversion of the Hessian 
matrix. Furthermore, numerical issues concerning the invertibility of H arise. 

C.3 CONJUGATE-GRADIENT METHOD 

Discussing the gradient descent method, we saw that, in general, a zigzag path is 
followed from the initial estimate to the optimum. This drawback is overcome by 
the following scheme, which results in improved convergence speed with respect 
to the gradient descent method. Compute the correction term according to the 
following rule: 

where 

and 

or 

t:..6(1)::::: g(t) - f3(t)MJ(t - 1) 

g T (l )g(l) 
f3 (1) ::::: ---,-----

g T (t - 1)g(t - 1) 

gT(t)(g(l)-g(t-1)) 
f3 (l) ::::: ---=-----

g T (t - l)g(t - 1) 

(C.20) 

(C.21) 

(C.22) 

(C.23) 

The former is known as the Fletcher-Reeves and the latter as the Polak-Ribiere 
formula. 

For a more rigorous treatment of the topic the reader is referred to [Luen 84]. 
Finally, it must be stated that a number of variants of these schemes have appeared 
in the literature. 

C.4 OPTIMIZATION FOR CONSTRAINED PROBLEMS 

C.4.1 Equality Constraints 

We will first focus on linear equality constraints and then generalize to the nonlinear 
case. Although the philosophy for both cases is the same, it is easier to grasp the 
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basics when linear constraints are involved. Thus the problem is cast as 

minimize 
subject to 

J (0) 

AO= b 

where A is an m x l matrix and b, 0 are /11 x I and I x I vectors, respectively. It is 
assumed that the cost function J (0) is twice continuously differentiable and it is. 
in general. a nonlinear function. Furthermore, we assume that the rows of A are 
linearly independent. hence A has full row rank. This assumption is known as the 
regularity assumption. 

Let 0, be a local minimizer of J(O) over the set (0: AO = b). Then it is 
not difficult to show (e.g .. fNash 96]) that. at this point. the gradient of 1(0) is 
given by 

o T 
~(J(O))lo-O =A A. ao - • 

(C.24) 

where A. = I)... 1 ••••• )... 111 IT. Taking into account that 

a T 
--(AO)=A 
iJO 

(C.25) 

Eq. (C.24) states that. at a constrained minimum. the gradient of the cost function 
is a linear combination of the gradients of the constraints. This is quite natural. 
Let us take a simple example involving a single linear constraint. i.e .. 

Equation (C.24) then becomes 

where the parameter X is now a scalar. Figure C.4 shows an example of isovalue 
contours of J(O) = c in the two-dimensional space(/ = 2). The constrained 
minimum coincides with the point where the straight line "meets" the isovalue 
contours for the first time, as one moves from small to large values of c. This is 
the point where the line is tangent to an isovalue contour; hence at this point the 
gradient of the cost function is in the direction of a (see Chapter 3.) 

Let us now define the function 

[(0. A.)= J(O) - A.T (AO - b) 

111 

= J(O) - LAi(aTo -hi) 

i=I 

(C.26) 

(C.27) 

where a j". i = 1. 2 ..... m. are the rows of A. [(0. A.) is known as the Langrangian 
f1111ctio11 and the coefficients, A;. i = I. 2 .... , m, as the Lang range multipliers. 
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oJ(8) 
ao 

J(8)=c, 
c1<c2<c3··· 

FIGURE C.4: At the minimizer, the gradient of the cost function is in the 
direction of the gradient of the constraint function. 

The optimality condition (C.24 ), together with the constraints, which the minimizer 
has to satisfy, can now be written in a compact form as 

\7£(9,A.)=0 (C.28) 

where V denotes the gradient operation with respect to both 9 and A.. Indeed, 
equating with zero the derivatives of the Langrangian with respect to 9 and A. 
gives, respectively, 

a 
a91(9)=ATJ.. 

A9 =h 

The above is a set of m + l unknowns, i.e., (81, ... , 81, A1, ••• , A,,,), with m + l 
equations, whose solution provides the minimizer 9. and the corresponding 
Langrange multipliers. Similar arguments hold for nonlinear equation constraints. 
Let us consider the problem 

minimize 
subject to 

1(9) 
f;(9) = 0, i =I, 2, ... ,m 
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The minimizer is again a stationary point of the corresponding Langrangian 

,,, 
£(9, A.)= 1(9) - LA;f;(9) 

i=I 

and results from the solution of the set of m +I equations 

\1 £(9. A.)= 0 

The regularity condition for nonlinear constraints requires the gradients of the 
constraints /o (f; (9)) to be linearly independent. 

C.4.2 Inequality Constraints 

The general problem can be cast as follows: 

minimize 
subject to 

1(9) 
f; (9) :::: o. i =I, 2 .... , m (C.29) 

Each one of the constraints defines a region in R 1• The intersection of all these 
regions defines the area in which the constrained minimum, 9*, must lie. This 
is known as the feasible region and the points in it (candidate solutions) as fea
sible points. The type of the constraints control the type of the feasible region. 
i.e., whether it is convex or concave. At this point, it will not harm us to recall a 
few definitions. 

Convex functions. A function f (9) 

is called convex in S, if for every 9 and 9' E S 

f (A.9 +(I - A.)9') :::: Af (6) +(I - )...)j(6
1

) 

for every )... E [O. l ]. If strict inequality holds, we say that the function is strict 
convex. 

Concavef1111ctio11s. A function f (6) is called concave, if for every 9. 9' ES 

f(A.6 + (I - A.)6
1

) ::'.: Af (6) + (I - A.).f(6
1

) 

for every )... E [O. I] . For strict inequality, the function is known as strict 
concave. 
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/(fJ) /(8) 

(J (J (J 

(a) (b) (c) 

FIGURE C.5: (a) A convex function. (b) a concave function, and (c) a function 
that is neither convex nor concave. 

0 

(a) (b) 

FIGURE C.6: (a) A convex set and (b) a concave set of points. 

Figure C.5 shows three functions, one convex, one concave, and one which is 
neither convex nor concave. 

Convex sets. A set S s; R 1 is called convex, if for every pair of points 6, 6' E S, 
the line segment joining these points also belongs to the set. In other words, all 
points )...6 + ( 1 - )...)6 1

, )... E [0, l] belong to the set. Figure C.6 shows two sets, 
one convex and one nonconvex. 

Remarks 

• If f(6) is convex then - f (6) is concave and vice versa. Furthermore, if 
f;(6) , i =I, 2, ... ,m, are convex, so is the sum 2:;'~ 1 )...;jj(6), )...; 2- 0. 
Similarly, if Ji ( 6) are concave, so is their summation. 
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• If a function f (0) is convex, it can be shown that a local minimum is also 
a global one. This can be easily checked from the graph of Figure C.5. 
Furthermore. if the function is strict convex then this minimum is unique. For 
concave functions, the above also hold true but for points where a maximum 
occurs. 

• A direct consequence of the respective definitions is that if f (0) is convex 
then the set 

x = {Olf (0) ::: b, b E R} 

is convex. Also. if j(O) is concave then the set 

x = {Olf (0) :.:: b. b ER} 

is also convex. 
• The intersection of convex sets is also a convex set. 

From the above remarks one can easily conclude that. if each one of the functions in 
the constraints in (C.29) is concave, then the feasible region is a convex one. This 
is also valid if the constraints are linear, since a linear function can be considered 
either as convex or concave. For more on these issues, the interested reader may 
refer. for example, to [Baza 79] . 

The Karush-Kuhn-Tucker (KKT) Conditions 

This is a set of necessary conditions, which a local minimizer O* of the problem 
given in (C.29) has to satisfy. If O* is a point that satisfies the regularity condition. 
then there exists a vector A. of Langrange multipliers so that the following are valid: 

a 
(I) ao.C(O*,A)=O 

(2) 'A; :.:: 0 . i = I. 2 ... . . /11 

(3) A.;f;(O*)=O. i=l,2 ..... m (C.30) 

Actually, there is a fourth condition concerning the Hessian of the Langrangian 
function. which is not of interest to us. The above set of equations is also part 
of the sufficiency conditions; however, in this case, there are a few subtle points 
and the interested reader is referred to more specialized textbooks, e.g., [Baza 79. 
Flet 87. Hert 95, Nash 96]. 

Conditions (3) in (C.30) are known as compleme/lfary slackness conditions. 
They state that at least one of the terms in the products is zero. In the case where. 
in each one of the equations. only one of the two terms is zero. i.e., either A.; or 
fi (0*). we talk about strict compleme11tarity. 
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Remarks 

• The first condition is most natural. It states that the minimum must be a 
stationary point of the Langrangian, wiLh respect to 9. 

• A constraint, (f; ((),,)),is called inactive if the corresponding Langrange mul
tiplier is zero. This is because this constraint does not affect the problem. A 
constrained minimizer 9 * can I ie either in the interior of the feasible region or 
on its boundary. In the former case, the problem is equivalent to an uncon
strained one. Indeed, if it happens that a minimum is located within the 
feasible region, then the value of the cost function in a region around this 
point will increase (or remain the same) as one moves away from this point. 
Hence, this point will be a stationary point of the cost function J (9). Thus 
in this case. the constraints are redundant and do not affect the problem. 
In words, the constraints are inactive and this is equivalent Lo setting the 
Langrange multipliers equal to zero. The nontrivial constrained optimiza
tion task is when the (unconstrained) minimum of the cost function is located 
outside the feasible region. In this case, the constrained minimum will be 
located on the boundary of the feasible region . In other words, in this non
trivial case, there will be one or more of the constraints for which f; (9*) = 0. 
These constitute the active constraints. The rest of the constraints will be 
inactive with the corresponding Langrange multipliers being zero. 

Figure C.7 illustrates a simple case with the following constraints: 

/1 (9) = 81 + 282 - 2 ::;:. 0 

fz(9) =Bi - 82 + 2:::::. 0 

/3(9) = -81 + 2 :::::. 0 

The (unconstrained) minimum of the cost function is located outside the 
feasible region. The dotted lines are the isovalue curves J (9) = c, with 
c1 < cz < c3 . The constrained minimum coincides with the point where 
an isovalue curve "touches" the boundary of the feasible region for the first 
time (smallest value of c). This point may belong to more than one of the 
constraints. e .g., a comer point of the boundary. 

• The Langrange multipliers of the active constraints are nonnegative. To 
understand why this is so, let us consider for simplicity the case of linear 
constraints A9 :::::. b, where A includes the active constraints only. If 9* is a 
minimizer lying on the active constraints, then any other feasible point can 
be written as 
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FIGURE C.7: An example of the nontrivial case. where the unconstrained 
minimum lies outside the feasible region. 

since this guarantees that AB ~ b. If the direction p points into the feasible 
region (Figure C.7) then Ap :I= 0, that is, some of its components are strictly 
positive. Since (J* is a minimizer, from condition (I) in (C.30) we have 
that 

The change of the cost function along the direction of p is proportional to 

and since (J* is a minimizer, this must be a direction of ascent at 8*. Thus A. 
must be nonnegative to guarantee that p TAT A. ~ 0 for any p pointing into 
the feasible region. An active constraint whose corresponding Langrange 
multiplier is zero is known as degenerate. 

• It c:rn be shown that, if the cost function is convex and the feasible region 
is also convex, then a local minimum is also a global one. A little thought 
(and a look at Figure C.7) suffices to see why this is so. 

Having now discussed all these nice properties, the major question arises: how 
can one compute a constrained (local) minimum? Unfortunately, this is not always 
an easy task. A straightforward approach would be to assume that some of the 
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constraints are active and some inactive, and check if the resulting Langrange 
multipliers of the active constraints are nonnegative. If not, then choose another 
combination of constraints and repeat the procedure until one ends up with non
negative multipliers. However, in practice, this may require a prohibitive amount 
of computation. Instead, a number of alternative approaches have been proposed. 
In the sequel, we will review some basics from Game Theory and use these to 
reformulate the KKT conditions. This new setup can be useful in a number of 
cases in practice. 

Min-Max Duality 

Let us consider two players, namely X and Y, playing a game. Player X will choose 
a strategy, say, x and simultaneously player Y will choose a strategy y. As a result, 
X will pay to Y the amount :F(x, y ), which can also be negative, i.e., X wins. 
Let us now follow their thinking, prior to their final choice of strategy, assuming 
that the players are good professionals. 

X: If Y knew that I am going to choose x, then, since he/she is a clever player, 
he/she would choose y to make his/her profit maximum, i.e., 

:F*(x) =max :F(x, y) 
)' 

Thus, in order to make my worst-case payoff to Y minimum, I have to choose x 
so as to minimize :F*(x), i.e., 

min F*(x) 
x 

This problem is known as the min-max problem since it seeks the value 

minmax.F(x,y) 
x y 

Y.· X is a good player, so if he/she knew that I am going to play y, he/she would 
choose x so that to make his/her payoff minimum, i.e., 

:F,.(y) = min:F(x, y) 
x 

Thus, in order to make my worst-case pro.fit maximum I must choose y that 
maximizes :F*(y), i.e., 

max :F*(y) 
y 

This is known as the max-min problem, since it seeks the value 

max min:F(x, y) 
)' x 
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The two problems are said to be dual to each other. The first is known to be the 
primal. whose objective is to minimize :F*(x) and the second is the dual problem 
with the objective to maximize :F*(y). 

For any x and y, the following is valid: 

:F* (y) = min:F(x. y) :S :F(x, y) :S max:F(x . y) = :F* (x) (C.31) 
- ~ J 

which easily leads to 

max min :F(x. 1') < min max :F(x , v) 
y .r ., - x y . 

(C .32) 

Saddle Poi111 Condition 

Let F <x . y) be a function of two vector variables with x E X ~ R..1 and y E 

Y ~ R 1• If a pair of points (x * ' y . ), with x* E X, y * E Y satisfies the condition 

(C.33) 

for every x E X and y E Y, we say that it satisfies the saddle point condition. It is 
not difficult to show (e.g., [Nash 96]) that a pair (x * . y*) satisfies the saddle point 
conditions if and only if 

maxmin:F(x, y) = minmax.F(x. y) == :F(x * . y * ) 
y x x y . 

(C.34) 

Langrangian Duality 

We will now use all the above in order to formulate our original cost function min
imization problem as a min-max task of the corresponding Langrangian function. 
Under certain conditions, this formulation can lead to computational savings when 
computing the constrained minimum. The optimization task of our interest is 

minimize 
subject to 

The Langrangian function is 

J (8) 
f; (8) :::::_ 0. i = 1, 2, . . . . m 

Ill 

l',(H. 1) = 1(6) - _L).;.fi(6 ) 

Let 

i=I 

C ((J) = max .C(8. 1) 
1 

(C.35) 

(C.36) 



674 Appendix C: COST FUNCTION OPTIMIZATION 

However, since l :::::. 0 and f; (8) ;::: 0, the maximum value of the Langrangian 
occurs if the summation in (C.35) is zero (either A; = 0 or f; (8) = 0 or both) and 

£*(8) = 1(8) 

Therefore our original problem is equivalent with 

min J(8) =min max £(8, l) 
8 8 l~O 

As we already know, the dual problem of the above is 

Convex Programming 

max min £(8, l) 
l~O 8 

A large class of practical problems obeys the following two conditions: 

(I) J (8) is convex 

(2) f;(8) are concave 

(C.37) 

(C.38) 

(C.39) 

(C.40) 

(C.41) 

This class of problems turns out to have a very useful and mathematically tractable 
property. 

Theorem. Let 8* be a minimizer of such a problem, which is also assumed to 
satisfy the regularity condition. Let l* be the corresponding vector of Lang range 
multipliers. Then (8*, 1,..) is a saddle point of the Langrangianfunction, and as 
we know this is equivalent to 

£(8.,., l*) =max min£(8, l) =min max £(8, l) 
1?:0 8 8 A.:::_0 

(C.42) 

Proof. Since f;(8) are concave, - f;(8) are convex, so the Langrangian 
function 

m 

£(8, l) = 1(8) - L A;f;(8) 
i=I 

for A; '.::: 0, is also convex. Note, now, that for concave function constraints of the 
form f;(8) '.::: 0, the feasible region is convex (see remarks above). The function 



Section C.4: OPTIMIZATION FOR CONSTRAINED PROBLEMS 675 

J (9) is also convex. Hence, as already stated in the remarks, every local minimum 
is also a global one; thus for any 9 

(C.43) 

Furthem10re, the complementary slackness conditions suggest that 

(C.44) 

and for any A. :::_ 0 

Ill 

£(9*,A.) = 1(9*) - L~/ ... ;f;(9*) S ./(9*) = £(9*,A.*) (C.45) 

i=I 

Combining (C.43) and (C.45) we obtain 

C(9*, A.) S C(9*, A.*) S L(9, A.*) (C.46) 

In other words, the solution (9*, A.*) is a saddle point. • 

This is a very important theorem and it states that the constrained minimum of a 
convex programming problem can also be obtained as a maximization task applied 
on the Langrangian. This leads us to the following very useful formulation of the 
optimization task. 

Wolfe Dual Representation 

A convex programming problem is equivalent to 

max L(9, A.) 
A.>0 - a 

subject to aeC(9, A.)= 0 

The last equation guarantees that 9 is a minimum of the Langrangian. 

Example C.l. Consider the quadratic problem 

minimize 

subject to 

~9T9 
2 
A9 ~ b 

(C.47) 

(C.48) 

This is a convex programming problem; hence the Wolfe dual representation is valid : 

maximize !_9T9_>..T(AIJ-b) 
2 

subject to IJ - AT>.. = 0 

For this example, the equality constraint has an analytic solution (this is not, however, 
always possible). Solving with respect to IJ, we can eliminate it from the maximizing 
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function and the resulting dual problem involves only the Langrange multipliers, 

m;x {- ~ JJ A AT A. + J.7 b} 
subject to A. ::: 0 

This is also a quadratic problem but the set of constraints is now simpler. 
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BASIC DEFINITIONS FROM 
LINEAR SYSTEMS THEORY 

D.l LINEAR TIME INVARIANT (LTI) SYSTEMS 

A discrete linear time-invariant system is characterized uniquely by its impulse 
response sequence, h (n). This is the output of the system when its input is excited 
by the impulse sequence, o(n), that is, 

1
1 for n = 0 

i5(n) = 0 
for11 #I 

(D.ll 

When its input is excited by a sequence .x(n) , its output sequence is given by the 
convolution of x(n) with IJ(n). defined as 

+:x> +oo 
v(11) = L h(k).x(n - k) = L x(k)h(n - k) = h(n) * x(n) (0.2) 

k=·-?<.; k= - oc 

For continuous time systems the convolution becomes an integral. that is, 

!
+oo 

y(t) = - <XJ h(r)x(I - r) dr 

!
+oc 

= x(r)h(t - r) dr = x(t) * y(I) 
-oo 

(D.3) 

where h(I) is the impulse response of the system, that is, the output when its input 
is excited by the Dirac delta function 8 (I). defined by 

15(1) = 0, fort # 0, and I:oo 8(t)dt = 1 (D.4) 

677 
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Linear time-invariant systems can be: 

• Causal: Their impulse response is zero for n < 0. Otherwise, they are known 
as noncausal. Observe that only causal sysLems can be realized in real lime. 
This is because for noncausal systems, the output at time n would require 
knowledge of future samples x(n + I) , x(n + 2), ... , which in practice is 
not possible. 

• Finite impulse response (FIR): The corresponding impulse response is of 
finite extent. If this is not the case, the systems are known as infinite impulse 
response (llR) systems. For a causal FIR system the input-output relation 
becomes 

L-1 

y(n) = L h(k)x(n - k) (D.5) 

k=O 

where Lis the length of the impulse response. When a system is FIR but non
causal, it can become causal by delaying its output. Take for example the sys
tem with impulse response 0, .. . , 0, h(-2), h(-1), h(O), h(l), h(2), 0, .... 
Then, 

y(n - 2) = h(-2)x(n) +h(-l)x(n - l) +h(O)x(n - 2) 

+ h(l)x(n - 3) + h(2)x(n - 4) (D.6) 

That is, at time "n" the output corresponds to the delayed time "n - 2." The 
delay is equal to the maximum negative index of nonzero impulse coefficient. 

D.2 TRANSFER FUNCTION 

The z-transform of the impulse response, defined as 

+oo 
H(z) == L h(n)z-n (D.7) 

n=-oo 

is known as the transfer function of the system. The free parameter z is a complex 
variable. The definition in (D. 7) is meaningful, provided that the series converges. 
For most of the sequences of our interest this is true for some region in the com
plex plane. It can easily be shown that for causal and RR systems the region of 
convergence is of the form 

lzl > JRJ, for some JRJ < 1 (D.8) 

that is, it is the exterior of a circle in the complex plane, centered at the origin, and 
it contains the unit circle (Jzl = I). Let X (z) and Y (z) be the z-transfonns of the 
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input and output sequences of a linear time-invariant system. Then (D.2) is shown 
to be equivalent to 

Y(z) = H(z)X(z) (D.9) 

If the unit circle is in the region of convergence of the respective z-transforms 
(for example, for causal FIR systems), then for z = exp(- jw) we obtain the 
equivalent Fourier transform and 

Y(w) = H(w)X(w) (D.10) 

If the impulse response of a linear time-invariant system is delayed by r samples, 
for example, to make it causal in case it is noncausal, the transfer function of the 
delayed system is given by z-• H(z)_ 

D.3 SERIAL AND PARALLEL CONNECTION 

Consider two LTI systems with responses h1(n) and h1(n), respectively. 
Figure D.la shows the two systems connected in serial and Figure D. I h in parallel. 

(a) 

_X(_z)~---IL-_H_,_<z)~~~~-~~H_,_<z_)~1--~~~-(z_) 

H(zpH,(z) H,(z) 

(b) 

~---<I H,(z)L __ _ L ___ _ :___J 
X(z) Y(z) 

~-__,'.~· _H,(z) } ·--·-

H(zpH,(z)+H,(z) 

FIGURE D.l: Serial and Parallel connections of LTI systems. 
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The overall impulse responses are easily shown to be 

Serial h(n)=h1(n)*h2(n) 

Parallel h(11)=h1(n)+h2(n) 

D.4 TWO-DIMENSIONAL GENERALIZATIONS 

(D.11) 

(D.12) 

A two-dimensional linear time-invariant system is also characterized by its two
dimensional impulse response sequence H(m, 11), which in the case of images is 
known as a point spread function. On filtering an input image array X (m, 11) by 
H(m, n) the resulting image array is given by the two-dimensional convolution 

Y(m, n) =LL H(m - k, n - l)X(k, /);;:; H(m, n) * *X(m , 11) 

k I 

= LLH(k,l)X(m -k, n -/) (D.13) 

k I 
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